
ISIF

A semi-annual archival publication of the International Society of Information Fusion

www.isif.org

June 2020            Volume 15     Number 1 ISSN 1557-6418

Journal of Advances in Information Fusion

22JAIF

Regular Papers Page

December 2022 Volume 17   Number 2 ISSN 1557-6418

Modeling Spatial Uncertainty for the iPad Pro Depth Sensor................................................................	 67
Antonio Zea, Karlsruhe Institute of Technology (KIT), Germany 
Uwe D. Hanebeck, Karlsruhe Institute of Technology (KIT), Germany 

Split Happens! Imprecise and Negative Information in Gaussian Mixture Random 
Finite Set Filtering.............................................................................................................................	 78
Keith A. LeGrand, Purdue University, West Lafayette, IN, USA
Silvia Ferrari, Cornell University, Ithaca

Variations of Joint Integrated Data Association With Radar and Target-Provided Measurements............	 97
Audun G. Hem, Norwegian University of Science and Technology, Trondheim, Norway 
Edmund F. Brekke, Norwegian University of Science and Technology, Trondheim, Norway

Probabilistic Vehicle Tracking with Sparse Radar Detection Measurements............................................	116
Philipp Berthold, University of the Bundeswehr Munich, Neubiberg, Germany 
Martin Michaelis, University of the Bundeswehr Munich, Neubiberg, Germany 
Thorsten Luettel, University of the Bundeswehr Munich, Neubiberg, Germany 
Daniel Meissner, BMW Group, Munich, Germany
Hans-Joachim Wuensche, University of the Bundeswehr Munich, Neubiberg, Germany 



JOURNAL OF ADVANCES IN INFORMATION FUSION: December 2022
Editor-In-Chief	 Stefano Coraluppi	 Systems & Technology Research, USA;  
			   +1 781-305-4055; stefano.coraluppi@ieee.org
	 Associate	 David Crouse	 4555 Overlook Ave., SW. Washington, D.C., 20375;  
			   +1 (202) 404-1859; david.crouse@nrl.navy.mil
Administrative Editor	 David W. Krout	 University of Washington, USA; +1 206-616-2589; 
			   dkrout@apl.washington.edu

EDITORS FOR TECHNICAL AREAS 

Tracking	 Paolo Braca	 NATO Science & Technology Organization, Centre for  
			   Maritime Research and Experimentation, Italy;  
			   +39 0187 527 461; paolo.braca@cmre.nato.int
	 Associate	 Florian Meyer	� University of California at San Diego,  

USA, +1 858-246-5016; flmeyer@ucsd.edu
Detection	 Ruixin Niu	 Virginia Commonwealth University, Richmond, Virginia, 
			   USA; +1 804-828-0030; rniu@vcu.edu
Fusion Applications	 Ramona Georgescu	 United Technologies Research Center, East Hartford,  
			   Connecticut, USA; 860-610-7890; georgera@utrc.utc.com
Image Fusion	 Ting Yuan	 Mercedes Benz R&D North America, USA; 
			   +1 669-224-0443; dr.ting.yuan@ieee.org
High-Level Fusion	 Lauro Snidaro	 Università degli Studi di Udine, Udine, Italy; 
			   +39 0432 558444; lauro.snidaro@uniud.it
Fusion Architectures and 	 Marcus Baum	 Karlsruhe Institute of Technology (KIT), Germany; 
Management Issues		  +49-721-608-46797; marcus.baum@kit.edu 
Classification, Learning, Data Mining	 Nageswara S. V. Rao	 Oak Ridge National Laboratory, USA; +1 865-574-7517;  
			   raons@ornl.gov
Bayesian and Other Reasoning 	 Jean Dezert 	 ONERA, Palaiseau, 91120, France; +33 180386564; 
Methods		  jean.dezert@onera.fr 
	 Associate	 Anne-Laure Jousselme	 NATO Science & Technology Organization,  
			   Centre for Maritime Research and Experimentation, Italy;  
			   +39 366 5333556; Anne-Laure.Jousselme@cmre.nato.int

Manuscripts are submitted at http://jaif.msubmit.net. If in doubt about the proper editorial area of a contribution, submit it 
under the unknown area.

INTERNATIONAL SOCIETY OF INFORMATION FUSION

Simon Maskell, President	 Lance Kaplan, Vice President Conferences
Uwe Hanebeck, President-elect	 Anne-Laure Jousselme, Vice President Membership
Fredrik Gustafsson, Secretary	 Darin Dunham, Vice President Working Groups
Chee Chong, Treasurer	 Felix Govaers, Vice President Social Media
Dale Blair, Vice President Publications	 Stefano Coraluppi, JAIF EIC
David W. Krout, Vice President Communications	 Anne-Laure Jousselme, Perspectives EIC

Journal of Advances in Information Fusion (ISSN 1557-6418) is published semi-annually by the International Society of Information 
Fusion. The responsibility for the contents rests upon the authors and not upon ISIF, the Society, or its members. ISIF is a California  
Nonprofit Public Benefit Corporation at P.O. Box 4631, Mountain View, California 94040. Copyright and Reprint Permissions: 
Abstracting is permitted with credit to the source. For all other copying, reprint, or republication permissions, contact the Administrative 
Editor. Copyright© 2022 ISIF, Inc.

INTERNATIONAL SOCIETY OF INFORMATION FUSION

The International Society of Information Fusion (ISIF) is the premier professional society and global information 
resource for multidisciplinary approaches for theoretical and applied INFORMATION FUSION technologies. 
Technical areas of interest include target tracking, detection theory, applications for information fusion methods, 
image fusion, fusion systems architectures and management issues, classification, learning, data mining, 
Bayesian and reasoning methods.



Manuscript received January 18, 2022; revised August 10, 2022; re-
leased for publication March 20, 2023

Antonio Zea and Uwe D. Hanebeck are with the Intelligent Sensor-
Actuator-Systems Laboratory (ISAS), Institute for Anthropomat-
ics and Robotics, Karlsruhe Institute of Technology (KIT), 76131
Germany (e-mail: antonio.zea@kit.edu, uwe.hanebeck@ieee.org).

Refereeing of this contribution was handled by Florian Meyer.

This work was supported by the German Federal Ministry of
Education and Research through ROBDEKON Project under Grant
13N14675.

1557-6418/22/$17.00 © 2022 JAIF

Modeling Spatial Uncertainty
for the iPad Pro Depth Sensor

ANTONIO ZEA
UWE D. HANEBECK

Depth sensors,once exclusively found in research laboratories, are

quickly becoming ubiquitous in the mass market. After Apple’s intro-

duction of the iPad Pro 2020 with an integrated light detection and

ranging (LIDAR) sensor, now even tablets and smartphones are ca-

pable of obtaining accurate 3-D information from their environments.

This, in turn, increases the reach of applications from technical fields,

such as SLAM, object tracking, and object classification, which can

now be downloaded on millions of hand-held devices with a couple

of taps. This motivates an analysis of the capabilities, strengths, and

weaknesses of these depth streams. In this paper, we present a study

of the spatial uncertainties of the iPad Pro 2021 depth sensor. First, we

describe the hardware used by the device, and provide an overview

of the machine learning algorithm that fuses information from the

LIDAR sensor with color data to produce a depth image. Then,we an-

alyze the accuracy and precision of the measured depth values, while

giving attention to the resulting temporal and spatial correlations. An-

other important topic of discussion are the tradeoffs involved in the ex-

trapolations that the depth system implements, such as how curvatures

change at different distances. In order to establish a reference baseline,

we also compare the obtained results to another widely known time-

of-flight sensor, the Microsoft Kinect 2.

I. INTRODUCTION

Depth sensors have been used for several decades
in a wide variety of fields, ranging from robotics to
computer-aided design (CAD), medicine, entertain-
ment, and even the arts.During this time,multiple depth
sensing technologies have been developed based on dif-
ferent operating principles. For example, visual data,
such asRGBor grayscale images,can be processed to de-
termine disparities at given points, which in turn can be
used to reconstruct depth information.Recent advances
in machine learning (ML) [7], [10], [11] can even extrap-
olate depth from a static image by filling in missing in-
formation from previously trained scenes. Light detec-
tion and ranging (LIDAR) sensors measure depth by
projecting a (usually rotating) laser pulse onto a scene
and calculating the time it takes for the pulse to return.
In time-of-flight (ToF) cameras, a specialization of this
technology, the laser pulse is split into a dense array of
thousands of points,measuring an entire scene in a single
scan and achieving a resolution and frame rate compa-
rable to small RGB cameras.

Until about a decade ago, depth sensors in gen-
eral were out of reach of the mass market due to their
price. This changed significantly when Microsoft intro-
duced the Kinect in 2010, an affordable depth cam-
era (150 Euro) based on structured light. Originally
designed as a body tracker for the Xbox 360, it
was quickly adopted everywhere from robotics [19] to
metrology [22] and therapeutics [16]. Since then, depth
sensors have become ubiquitous in the research and
hobbyist communities, with newer generations increas-
ing accuracy and robustnesswhile reducing their size and
price. However, they have generally remained separate
stand-alone devices.This stands in contrast toRGB cam-
eras,most of which are now integrated into PCs, laptops,
and mobile devices.

Among the first commercial attempts to integrate
depth sensors into mobile devices were Lenovo’s Phab 2
PRO in conjunction with Google’s Tango platform [20]
in 2016. Intended applications included immersive aug-
mented reality (AR) experiences, scene reconstruction,
and indoor tracking. However, there were few apps ca-
pable of exploiting these capabilities, leading to low in-
terest from consumers. In turn, Tango was discontinued
in 2017 and replaced with ARCore [13], which extracts
depth information from RGB images and ML postpro-
cessing. Since then, other smartphone manufacturers
have made integration attempts, such as the Samsung
Galaxy S20 with a ToF sensor, but it was discontin-
ued for the release of the S22. Microsoft also inte-
grated ToF sensors into its Hololens devices for AR
(both first- and second-gen), but since 2019, they have
made no concrete announcements about a third-gen
device. These ebbs and flows of depth sensor integra-
tion are a consequence of a developer chicken-and-
egg problem: if there are no apps, users will not buy
the devices, but if users are not interested, then devel-
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Fig. 1. Example of reconstructed point cloud for a table scene with
objects, captured by an iPad Pro 2021 tablet.

opers have no reason to implement apps in the first
place.

However, this situation is quickly changing with the
introduction of platforms, such as Apple’s ARKit [3],
and the entrance of new competitors, such as Magic
Leap and Facebook (now Meta). The newly introduced
depth sensors of Apple are particularly noteworthy. In
2017, they announced a depth sensing technology on the
iPhone X called “TrueDepth,” which uses an infrared
dot pattern similar to the first generation Kinect and has
a range of up to 40 cm. Later, in 2020, they released a
ToF sensor on the back of the iPad Pro with range of up
to 5 m (see Fig. 1 for an example scene). Currently, all of
Apple’s mid and high-tier smartphones and tablets come
with a depth sensor, and given the significant market
share of their mobile devices, it is likely that their depth
sensing technology will be the most widely used among
nontechnical users in the near future. In this brief time,
the iPad and iPhone LIDARs have already found versa-
tile applications outside of the intended target of AR,
ranging from forestry [12], [29], [31] and architecture
[27] to heritage documentation [23] and geology [18],
and even veterinary medicine [21]. This motivates an
in-depth analysis of these sensors, in order to determine
their usability in fields, such as localization and track-
ing. Similar depth sensors, such as the Microsoft Kinect
(first and second-gen), have been extensively studied
in literature [5], [8], [26], [32]. The TrueDepth system
has already received some attention, for example, in [4]
and [30], where the iPad is contrasted with an industrial
scanner. The measurement accuracy of the iPhone 12
LIDAR [17] and the iPad Pro 2020 LIDAR [23], [30] has
also been evaluated, but in the context of 3-D scanning
and static reconstruction. However, we have not been
able to find works that deal with quantitative models of
spatial uncertainties for the iPad LIDAR.

The rest of this paper is organized as follows.
Section II contains a description of the depth sensor, in-
cluding the hardware and the streams provided by the

API. Section III introduces a quantitative analysis of the
measurements provided by the depth streams and their
uncertainties. Finally, Section IV concludes this article.
Throughout the paper, we will compare the iPad depth
sensor to the well-known Kinect 2 device, which will
serve as a baseline for its capabilities. However, we em-
phasize that these comparisons are merely illustrative,
as both devices have different capabilities and are not
aimed at the same range of applications.

II. IPAD DEPTH SYSTEM

The iPad depth sensor was introduced with the iPad
Pro 2020 [2], the first Apple device to use a ToF sensor. It
works by fusing depth and color streams together using
ML algorithms. Its main application is inARKit,Apple’s
AR platform, where it is employed for depth occlusion,
scene understanding, and the detection, segmentation,
and tracking of objects and humans. Fig. 2 shows an ex-
ample of the data streams provided by the device, which
when converted into a point cloud produced the image
seen in Fig. 1.

The LIDAR sensor is located on the back (or rear) of
the tablet, i.e., the side pointing away from the user (see
Fig. 3). The hardware appears to be identical in both the
11 and the 12.9 in variants of the iPad Pro 2020 and the
iPad Pro 2021, and a related study [17] found no differ-
ence with the iPhone 12. Also note that the front of the
device (the display side) provides another depth system
called “TrueDepth,” based on structured light. Its main
use is face recognition for authentication (FaceID) and
face tracking, employed, for example, in Snapchat filters
and “lenses.” Both depth systems also differ in their op-
erating range.While TrueDepth works best at a distance
of atmost 40–50 cm [30], the LIDAR sensor canmeasure
walls up to 5m away with moderate accuracy. This dis-
tinction also affects where they can be used.For example,
while detecting small objects on a table is better suited
for the TrueDepth system, a localization application in a
large room would prefer the LIDAR data instead. Note
that the TrueDepth system will not be considered in this
work.

A. Sensors and Data Streams

We start by introducing the sensors on the back of
the tablet, as shown in Fig. 3. On the top left is a wide-
angle RGB camera, which from our experiments does
not appear to be used in the depth system. On the top
right is the standard RGB camera, with a smaller field
of view but higher resolution. On the bottom left is the
infrared flood illuminator, which ensures that the scene
has an appropriate amount of light for the LIDAR sys-
tem. On the bottom right is the flashlight, also not used
by the depth system. Finally, the ToF sensor at the cen-
ter consists of two submodules [28]. On the one hand,
a vertical-cavity surface-emitting laser (VCSEL) diode
is in charge of emitting a laser pulse which is split by
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(a) Color image (b) Depth image (in colormap) (c) Confidence image (in colormap)

Fig. 2. Example capture of the scene from Fig. 1 showing the three video streams of the iPad depth system: the color image (1920 × 1440 px,
RGB), the depth image (256 × 192 px, 32-bit float array), and the confidence image with 256 × 192 pixels, 1 byte/px, and three possible discrete
values: low (black), middle (brown), and high (orange) confidence. (a) Color image. (b) Depth image (in colormap). (c) Confidence image (in

colormap).

Wide-angle
RGB camera

Main RGB
camera

Flood infrared
illuminator

Direct ToF
depth sensor

Flashlight

Fig. 3. Sensors on the back of the iPad Pro 2021.Width and height of
the panel are around 27mm.

a lens into 3 × 3 blocks with 8 × 8 dots each [1], [17],
which are then projected onto the scene.A sketch of the
pattern can be seen in the left-hand side of Fig. 4.On the
other hand, a CMOS sensor captures the reflected light
and calculates the distance between the device and each
of those dots. Note that this suggests that each depth
frame is interpolated from only 24 × 24 = 9 × 64 = 576
measurements [1].

The depth data from these pulses are not directly
available from the software library. Instead, the ARKit
platform processes this information internally and fuses
it with the color stream to produce a depth estimate.
The result is a stream of three images at 60 frames/s
(Fig. 4, right-hand side): a color image, a “scene” depth
image, and a confidence image (see Fig. 2). For the sake

Main RGB
Camera

ML
interpolation

system
Depth image

Direct ToF
depth sensor

iPadProjected pattern

VCSEL
diode

CMOS
sensor

Confidence image

RGB Color image

Fig. 4. Sketch of the depth capture process: a pattern of 576 dots is
projected onto the scene, their distances are measured by the depth
sensor, and the result is fused with the data from the RGB camera.
The result are three streams: the color image, the depth image, and

the confidence image.

of completeness, we note that the depth API also pro-
vides other streams, such as a real-timemesh reconstruc-
tion and a point cloud of RGB feature points, which will
not be considered in this work. The values in this paper
were captured using ARKit 5 and iOS 15.2.

The color image [see Fig. 2(a)] is an uncompressed
packed RGB streamwith a resolution of 1920×1440 pix-
els (px) and 24 bits/px. The original YUV image is also
accessible if desired. The depth image [see Fig. 2(b)] has
a resolution of 256 × 192 px, and each pixel contains a
32-b float describing the depth in meters at that posi-
tion. The depth image is already registered to the color
image and has the same aspect ratio of 4 to 3. The field
of view of both images is about 60◦ horizontal and 48◦

vertical, with slight variations between devices. Finally,
ARKit also provides a confidence map [see Fig. 2(c)]
which determines how accurate the depth value of each
pixel is. It has the same resolution as the depth image,
but each pixel has an 8-bit integer value, which can be
either 0 (low), 1 (medium), or 2 (high). Unlike sensors,
such as the Microsoft Kinect, an invalid measurement is
not encoded with a depth value of 0. Instead, the corre-
sponding confidence is set to 0, and the depth is extrap-
olated based on surrounding depth values and semantic
cues from the color image. In Fig. 2, a confidence of 0
can be seen around the edges of the table, or at the im-
age borders. However, these gaps are not evident when
looking at the depth image on its own.

The three images in Fig. 2 correspond to the point
cloud that was shown in Fig. 1. Here, the large amount
of “fringe points” (also known as “flying pixels”) at
the borders are clearly visible, as a result of the rel-
atively low LIDAR resolution. Looking at the brown
cardboard box at the back, it is also clear that planar
surfaces are not necessarily shown flat, and that 90o cor-
ners are not usually preserved. More interestingly, we
observe that the measurement noise is strongly spatially
correlated but not temporally correlated. In other words,
unlike depth sensors, such as the Microsoft Kinect 2,
where each measurement moves back and forth inde-
pendently from its neighbors,here we observe entire sur-
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(a) Box with height 2 cm (b) Chessboard at 20 cm from a wall

Fig. 5. Illustration of how the iPad observes objects with steep depth
changes. (a) Box with height 2 cm. (b) Chessboard at 20 cm from a

wall.

faces appearing to move and deform “coherently” each
frame,but in slightly different ways.This tendency can be
appreciated, for example, in the fringe points of the tall
brown cylinder, which form different curved lines each
frame. These correlations are introduced by the interpo-
lation system, which will be described in Section II-B.

B. ML Interpolation System

The ML interpolation system is in charge of filling
the gaps between the sparse depthmeasurements by fus-
ing data from multiple streams, in particular from the
LIDAR and RGB sensors. A sketch of its workings can
be found in the patent description [33]. Unfortunately,
as of iOS 15, there is no way to turn it off and obtain
the raw data. However, given that it has a significant ef-
fect on the provided measurements, it is of interest to
describe qualitatively how it works and what it does.

Generally speaking, the iPad depth system acts by
aggregating measurements into coherent surfaces and
“smoothing” out sudden changes in depth. This can be
seen in Fig. 5(a), where the back of the white box, be-
ing observed from 1 m away, merges into the floor. The
capability of the iPad to discern depth discontinuities
is reduced by the sensor distance, as can be seen in
Fig.5(b) with the sensor being 4maway,where the chess-
board “melts” into the wall. These smoothed out mea-
surements can usually be identified by their confidence
level of 1 (medium) or 0 (low), as shown in Fig. 2(c) in
dark brown and black, allowing them to be filtered out.

As mentioned before, pixel positions with no valid
depth are denoted with a confidence level of 0. Invalid
measurements can happen for several reasons, such as a
reflective or bright material, a drastic change in depth,
or the depth being outside of the operative range. Very
narrow objects will also fail to be detected, especially if
their size is less than of about 6% of the image (i.e., 15 px
for the depth image). This value is probably related to
the distance between LIDAR dots, i.e., 256 px/row or
24 dots/row ≈ 11 px. Similarly, detection will also fail
if the depth changes quickly at the image edges [see
Fig. 2(c)]. For these regions, the depth image will not
show invalid values. Instead, the ML interpolation sys-

tem will fill in the gaps by “guessing” which depths be-
long there based on data from the color image.

As the ML interpolation combines data from both
the color and depth images, it is of interest to see how
they work when one data stream is unavailable, for ex-
ample, by covering one camera with tape or a piece of
paper. When the color stream is absent, the resulting
depth image appears extremely blurred, lacking sharp
corners and with significant sections of the confidence
image with values of middle or low.When the depth sen-
sor is covered, the entire confidence image has a value
of low, and the depth inference from color is applied
to the entire image. This can produce interesting results,
such as seen in Fig. 6. The setup is an iPad tablet 20 cm
away from a flat monitor that is showing an image of a
rendered cube on a plane. Fig. 6(a) presents the RGB
capture from the color camera. Fig. 6(b) illustrates the
resulting point cloud with the depth and color sensors
active.However, if we cover the color camera, the depth
inference generates a scene with a cube at a distance of
2m [see Fig. 6(c)]. As with the fringe points, these re-
constructed depths possess spatial correlations but lack
temporal correlation, and thus, will change drastically
between frames. Note that these reconstructions do not
only appear if the whole depth sensor is covered. For ex-
ample, a shiny, reflective object somewhere in a scene
(such as a laminated picture) can produce the same
effect.

III. MODELING SPATIAL UNCERTAINTY

In this section, we will present a quantitative analy-
sis of the uncertainties in the iPad depth system.First,we
start by analyzing the depth discretization,which tells us
the range of values that the system can provide. Then,
we will measure the measurement bias, that is, the differ-
ence between the measured and the real depths. After
this, we will focus on stochastic uncertainties and estab-
lish a measure for the correlations (in time and space)
between measurements. Finally, we will present an anal-
ysis of how the measured curvature degrades as a func-
tion of distance.

A. Discretization

An important aspect to determine the quality of the
depth stream is to see which depth values can be repre-
sented in the first place. The Kinect 1, for example, can
only produce 2048 depth values spread out over the op-
erating range of 0 to 8m.TheKinect 2 has amuch higher
resolution, but as the depths are provided in millimeters
as 16-b unsigned integers the distance betweenmeasure-
ments are necessarily multiples of 1mm. In contrast to
these sensors, the resolution of the iPad depth system de-
pends on the depth range.

Fig. 7 shows the quantization (also known as dis-
cretization) of the depth values, i.e., the distance between
one value and the next, in function of the depth.This dis-
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(a) Monitor showing a virtual scene (b) Point cloud with color and depth active (c) Inferred point cloud from color image

Fig. 6. Example of ML depth inference where the iPad observes a computer monitor from a closeup distance of 20 cm.When the depth
sensor is covered, the iPad depth system takes the color image and extrapolates it into a new scene where the cube sits at a distance of 2 m.

(a) Monitor showing a virtual scene. (b) Point cloud with color and depth active. (c) Inferred point cloud from color image.

Fig. 7. Discretization of depth values, i.e., the distance between a
value and the next possible one, depending on the distance.

cretization appears to be structured so that,between one
power of two and the next (in meters), there are 1024
values. Thus, between 1 and 2m we will see values at
spaces of 1/1024m, or around 0.977mm. However, be-
tween 2m and 4m, the space will be 1/512m instead, i.e.,
twice as large. Thus, the lower the resolution becomes,
the larger the depth value is.

The range of possible values is difficult to measure.
Any object farther than 5m will have its measurements
automatically marked as having confidence 0, and thus,
the received depths will originate from the depth in-
ference system and not from the LIDAR. Still, in our
experiments, we have not observed a depth value above
8m. Values below 10 cm will similarly be marked as low
or medium confidence, yielding “reconstructed” depths
that may have little relation to the actual physical
distance.

B. Measurement Bias

As usual in real-life sensors, the measured depth val-
ues are not the true depths, as the process of capturing
the data introduces errors, which depend on many fac-
tors, such as the pixel position, material, angle of reflec-
tion, temperature, and others. In order to keep themodel
simple,we can divide these errors into two additive com-
ponents: a fixed offset (bias) and a zero-mean stochastic

Fig. 8. Difference between the ground truth depths and the
measured depths at difference distances. The negative bias means

that the measured values are smaller than the ground truth.

noise term.Both terms depend on the depth from which
the measurement originated.

In this section, we will focus on estimating how the
bias behaves at different distances. To achieve this, we
captured 150 frames of a paper chessboard [70 × 49 cm,
see Fig. 5(b)] at different distances, ranging from 1 to
5m. The ground truth depth was obtained by detect-
ing the chessboard in the color stream, estimating the
board plane using MATLAB’s implementation of the
solvePnP algorithm, and finally calculating the depth
that corresponded to the plane center. For the measured
depth, we considered a square 5 × 5 px window around
the center of the detected chessboard, and then calcu-
lated the average of all values for all frames. All of the
considered points have a confidence of 2 (high). Fig. 8
shows the results.

It can be seen that the bias was always negative, that
is, the iPad tells us that the object is closer than it re-
ally is. The bias also appears to increase linearly, but still
remaining with 1% to 2% of the ground truth. How-
ever, this model stops being reliable at about 4m, given
the tendency of the chessboard surface to “melt” into
the back wall at large distances. In these cases, the aver-
age depth can change significantly depending on where
on the chessboard the window is located. After 5m, the
depth inference system kicks in, causing the obtained
values to bear little relation to the real depths.
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(a) Depth distribution at 1 m (b) Depth distribution at 4.5 m

Fig. 9. Representative probability distributions for nonfringe depths
values at different distances. The gaps between values are due to the
discretization. (a) Depth distribution at 1 m. (b) Depth distribution at

4.5 m.

C. Measurement Noise

In this section, we use the same data collected in
Section III-B to analyze how the noise term of the mea-
sured depth behaves. In particular, we will focus on four
aspects: the probability distribution of the noise, its vari-
ance depending on the depth, and the magnitude of spa-
tial and temporal correlations.

Fig.9 shows the distributions of nonfringe depths val-
ues captured at representative positions. These are dis-
crete distributions, and the gaps between values corre-
spond to the discretization described in Section III-A.At
short distances, the support consists of two or three val-
ues, as shown in Fig. 9(a). For higher distances, the sup-
port becomes slightly wider, reaching up to four values
in Fig. 9(b). In any case, the distributions are consistently
unimodal and appear roughly symmetrical around the
mean (prequantization), and thus, we suspect that ap-
proximating them as Gaussians in practical applications
will not lead to much loss of information.

When dealing with estimators, it is also important to
know the variance that corresponds to a given measure-
ment, preferably without having to wait for additional
measurements from the same position. Fig. 10 shows the
variances of the measurements gathered in the chess-
board dataset from Section III-A. In yellow, we observe
the variance stemming from the discretization, assuming
a uniform distribution that ranges between the previous
and the next possible values. In blue, we see the sample

Empiric variance
Polynomial fit
Variance of uniform

Fig. 10. Empiric variance of measurement noise at different
distances, and a best-fitting polynomial fit.

variance gathered from 150 frames. In red,we see a best-
fitting third degree polynomial with the form

σ 2
z = 10−6 · (0.07z3 − 0.32z2 + 0.64z− 0.02), (1)

which closely approximates this empiric variance and
can be easily integrated into an estimator.

Given a depth value z at the pixel position [u, v]T ,
i.e., at column u and row v in the depth image, it is often
necessary to obtain the covariance matrix of the recon-
structed “unprojected” point y ∈ R

3 in Cartesian coor-
dinates. This can be achieved in a closed form using the
standard pinhole model [6] and the intrinsic matrix K,
which is provided directly by ARKit’s API. To give the
reader an idea, an example intrinsic matrix from an iPad
Pro 2021 has the following form

K =
⎛
⎝212.4 0 127.0

0 212.4 96.3
0 0 1

⎞
⎠ , (2)

which corresponds to a horizontal field of view of ap-
proximately 60◦ and an image size of 256 × 192 pixels.
Assuming no uncertainties, the unprojection step can be
implemented by introducing a screen space vector in ho-
mogeneous coordinates

yuv = [u, v, 1]T (3)

which in turn yields

y = K−1 · yuv · z. (4)

Wewill now extend this step to assume that yuv and z are
both uncertain.We assume that u and v have a distribu-
tion of U (−1, 1), i.e., they are uniformly distributed be-
tween the previous and following pixels. Using moment
matching, we obtain

Cuv = cov
(
yuv

)
= diag

(
1
3
,
1
3
, 0

)
. (5)

Finally,by using the product rule of independent random
variables,we propagate (1) and (5) through (4) to obtain

Cy = K−1
(
Cuvσ 2

z + yuv
(
yuv

)T
σ 2
z + Cuvz2

)
(K−1)T .

(6)

D. Measurement Correlations in Time and Space

When discussing the stochastic properties of mea-
surement noise in sensors, the topic of correlations is
usually not mentioned. This omission is justified with
sensors such as the Kinect 2, where measurements are
mostly independent from each other. However, due to
the ML interpolation system, these assumptions cannot
be guaranteed to hold for the iPad. Note that, especially
in probabilistic estimators, ignoring correlations can lead
to estimates with misleading variances, as the estima-
tor cannot compensate for the fact that measurements
with dependent noise terms carry less information. This
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(a) Setup: Cuboid in front of a wall (b) View from above, Kinect 2 (c) View from above, iPad

Fig. 11. Setup of the cuboid in front of wall, observed by a Kinect 2 and an iPad positioned next to each other. Note how the Kinect 2
produces spatially uncorrelated noise, while the iPad produces a smooth, almost flat surface that shifts and deforms each frame. (a) Setup:

cuboid in front of a wall. (b) View from above, Kinect 2. (c) View from above, iPad.

(a) Autocorrelations, Kinect 2 (b) Autocorrelations, iPad

Fig. 12. Distribution of autocorrelation coefficients for multiple
pixels in a 20 × 20 px window around the box center and a shift of
τ = 1 frame. (a) Autocorrelations, Kinect 2. (b) Autocorrelations,

iPad.

serves as a motivation to study these correlations more
explicitly.

In order to do this, we recorded 150 frames of a rect-
angular cuboid standing in front of a wall with both an
iPad Pro 2021 and a Kinect 2 (see Fig. 11), at a distance
of about 2 m, and analyzed a small window of 20×20 px
around the center the object. The Kinect 2 will serve as
a baseline, as estimators using measurements from this
sensor and making no assumptions about dependency
have been shown to produce satisfactory reconstructions
in [14], [15], and [24].All of the considered points have a
confidence of 2 (high) on the iPad depth image and lie on
the cuboid’s surface. As an aside, the iPad LIDAR pro-
jector was not visible from the Kinect infrared camera,
which suggests that both devices do not interfere with
each other.

We start with autocorrelations, i.e.,howmuch a series
of measurements stemming from the same source is cor-
related with a time shifted version of itself.This is impor-
tant given that recursive estimators with time-evolving
states, such as the Kalman filter, generally assume that
measurements at different time steps are independent.
Fig. 12 shows how often an autocorrelation coefficient
appears in a 20 × 20 px window around the box center,
for a time shift of τ = 1 frame. For the Kinect 2 [see
Fig. 12(a)], we observe that for all positions the autocor-
relation coefficient has an absolute value below 0.2, and
most of them are below 0.1. However, for the iPad [see
Fig. 12(b)], the support of the autocorrelations is wider,

(a) Spatial correlations, Kinect 2 (b) Spatial correlations, iPad

Fig. 13. Distribution of spatial correlation coefficients for multiple
pixels in a 20 × 20 px window in relation to the center pixel. (a)
Spatial correlations, Kinect 2. (b) Spatial correlations, iPad.

briefly reaching 0.5. This shows that iPad measurements
(mean 0.034) are much more correlated in time than the
Kinect 2 (mean−0.019).This autocorrelation fades with
time, taking ten frames for the iPad autocorrelations to
reach the same spread as the Kinect. Nonetheless, both
are still rather close to 0 most of the time, so we consider
it justifiable to assume them as time independent.

Next we will analyze how measurement samples
from different pixel positions are spatially correlated.
For this, we will take the correlation coefficient of all
measurements in the window in relation to the mea-
surements in the center, and tally how often a correla-
tion coefficient appears. The results are shown in Fig. 13.
The difference between both sensors, here, is muchmore
remarkable, showing very high correlations across the
board for the iPad, with the mean (0.25) being much
higher than the Kinect 2 (0.09). This effect can be ap-
preciated visually for the wall in Fig. 11. Here, for the
Kinect [see Fig. 11(b), individual measurements can be
seen, giving the appearance of a “dusty” cloud, while
the iPad depth system generates a smooth surface that
moves and deforms between frames [see Fig. 11(c)]. Fur-
thermore, spatial correlations fade much faster for the
Kinect as the distance increases. In Fig. 14(a), for exam-
ple, using a larger 96× 96 pixel window, we observe that
all measurements farther than 3 px away from the cen-
ter have a correlation with absolute value below 0.2. For
the iPad, however,most of the cuboid surface retains the
high correlations.
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(a) Spatial correlations, Kinect 2
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(b) Spatial correlations, iPad

Fig. 14. Absolute value of the spatial correlations for a 96 × 96 px
window, in relation to the pixel in the center. The Kinect 2 image
appears “zoomed in” because it has a higher resolution. (a) Spatial

correlations, Kinect 2. (b) Spatial correlations, iPad.

If desired, spatial correlations can be incorporated
into linear estimators, such as the Kalman filter and
its extensions, quite easily by introducing a composite
measurement and adjusting the measurement equation.
Thus, if two measurements y

1
and y

2
are “close” to each

other and known to stem from the same surface, the es-
timator can use

y =
[
y
1
y
2

]
(7)

instead, with covariance matrix

Cy =
(

Cy
1 Cy

1,2(
Cy

1,2

)T Cy
2

)
. (8)

Here,Cy
1 and Cy

2 are calculated as before from (6). In or-
der to derive Cy

1,2, we assume that the yuv components
are independent from each other and from z1 and z2.
Furthermore, it holds that

cov(z1, z2) = σz,1σz,2 corr(z1, z2) (9)

where corr(z1, z2) is the scene-dependent spatial cor-
relation coefficient. Our experiments have shown that
corr(z1, z2) usually hovers around 0.2 if the distance is
less than 20 px and both measurements stem from the
same surface. Finally, the correlation matrix Cy

1,2 can be
obtained in closed form yielding

Cy
1,2 = cov(y

1
, y

2
) (10)

= cov
(
K−1 · yuv

1
· z1,K−1 · yuv

2
· z2

)
(11)

=
(
K−1 · yuv

1

(
yuv
2

)T (
K−1

)T)
cov(z1, z2). (12)

E. Working with Curved Surfaces

In the previous sections, we showed that the iPad
produced relatively accurate measurements from large
flat surfaces, such as walls. However, due to the low spa-
tial resolution, smaller objects (in relation to the field of
view) will appear ‘’smoothened” out, with hard corners

(a) Sphere, Kinect 2 (b) Sphere, iPad

Fig. 15. Plastic sphere of radius 15 cm lying on the ground, being
observed from a distance of 2m by a Kinect 2 and an iPad depth

sensor. (a) Sphere, Kinect 2. (b) Sphere, iPad.

flattened and surfaces fused together. This effect can be
compensated by ensuring that the object size is much
larger than 11 px, as explained in Section II-B. Still, the
tendency to flatten or merge surfaces can become prob-
lematic in applications that require as much knowledge
as possible about the target’s shape, such as extended ob-
ject tracking and classification.

In this section, we will analyze how much informa-
tion about the shape is lost at different distances by es-
timating the extent and position of sphere. A descrip-
tion of the experimental setup follows.The target sphere,
with a ground-truth radius of 15 cm, was already intro-
duced in the scene from Fig. 2. Here, instead, we place
it on the floor, as shown in the example captures from
Fig. 15, and observe it from a height of approximately
1.5m.As a note, in these images, we can also appreciate
the contrast between the noise correlations mentioned
in Section III-D:with the Kinect 2, the floor has a highly
irregular texture, whereas with the iPad, it appears al-
most perfectly flat.

The estimation procedure is as follows. For a given
frame, the sphere is represented using the following
state:

x = [pT , r]T ∈ R
4, (13)

where p is the position in R
3 and r is the radius. The fol-

lowing preprocessing steps are executed.First, the screen
measurements are unprojected into R

3 using (4) and (6).
Second, the ground plane is estimated using RANSAC,
and all pixels that belong to it with a threshold of 2 cm
are removed. Third, we also eliminate fringe measure-
ments (flying pixels), defined here as any pixel with at
least one neighbor farther than 2 cm away.Finally,we use
the remaining n measurements y

i
for 1 ≤ i ≤ n to esti-

mate the state x using least squares shape fitting. Here,
the idea is to minimize the weighted sum of the squared
residuals

R2
i =

∥∥∥y
i
− p

∥∥∥2
− r2, (14)
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(a) Estimated radius, Kinect 2 (b) Estimated radius, iPad

Fig. 16. Estimated radius of the sphere for the Kinect 2 and the iPad,
viewed from different camera distances. Ground truth in blue, result

means in red, and standard deviations in black (vertical lines).
(a) Estimated radius, Kinect 2. (b) Estimated radius, iPad.

where || · ||2 is the square of the Euclidean norm, using
the inverse of the residual variances as weights

wi = 1
var(R2

i )
= 1

tr(Cy
i )

. (15)

The resulting x can be obtained with standard nonlin-
ear minimization. This state estimation procedure is re-
peated along multiple frames as the camera moves hor-
izontally from a distance of 1 to 2m away from the
sphere. For the sake of simplicity, the measurements are
assumed to be independent from each other.

Fig. 16 shows the results at distances in intervals of
10 cm. The ground truth of 15 cm in blue, the means are
shown in dark red, and the standard deviations in verti-
cal red lines. Note that, due to the presence of artifacts,
the size of the sphere can vary moderately even in con-
secutive frames. Furthermore, by eliminating fringe pix-
els, we remove measurements around the sphere border.
Thus, it would be expected for the estimated radius to
be lower than the ground truth, which stands in contrast
with both results. This effect, however, is compensated
in the opposite direction by the extent bias caused by
measurement noise, a known effect in shape fitting stud-
ied in [9] and [25] among others. This bias appears con-
stant for the Kinect 2 [see Fig. 16(a)], where the radius is
consistently around 5mm (3%) higher than the ground
truth. However, the iPad, while producing accurate re-
sults at around 1m, quickly starts losing accuracy [see
Fig. 16(b)] as the camera moves away. This is a conse-
quence of the sensor flattening the measured surface as
it merges into the floor, an effect also observed in previ-
ous experiments, which in turn increases the size of the
estimated sphere.

Example results can be seen in Fig. 17, with the esti-
mated sphere in red.Here,we can see how, at a short dis-
tance, measurement quality is comparable to the Kinect
in Fig. 15(a), yielding a radius estimate of 15.5 cm. How-
ever, after a short distance,measurements become more
sparse and the proportion of fringe pixels increases sig-
nificantly. Furthermore, the patch becomes so flattened
that the increased radius (17.5 cm) pushes the sphere po-
sition into the ground. Note that, at this distance, the
sphere is only 32 px wide. After this point, the radius
reaches 20 cm at a distance of 2.3m,and beyond that seg-

(a) Sphere at 1 m (b) Sphere at 2 m

Fig. 17. Point cloud of the plastic sphere being observed by the iPad
depth sensor. Best-fitting sphere overlaid in red. Floor appears wider
at 2m due to the field of view. (a) Sphere at 1 m. (b) Sphere at 2 m.

mentation starts to become difficult, given much of the
sphere has merged into the floor.

IV. CONCLUSION

In this paper, we presented a quantitative analysis
of the spatial uncertainties for the iPad Pro depth sen-
sor. As motivation, we explained how Apple, with its
high market share in mobile devices, has begun ship-
ping depth sensors integrated in their smartphones and
tablets, increasing the reach of applications in localiza-
tion, tracking, and classification without extra cost to
developers and users. Thus, it makes sense to analyze
the properties, benefits, and pitfalls of these new data
streams. First, we briefly described the direct ToF sen-
sor that the tablet uses to obtain depth images, and
pointed out that the depth stream is most likely extrapo-
lated from only 576 real measurements, which would ex-
plain the observed low spatial resolution.We also noted
that the values provided by the API are not the direct
measured values, and instead, they are generated by an
ML algorithm that incorporates information from the
color stream. As part of the analysis, we measured the
discretization of the depth domain, provided a model
for the measurement bias and error variance, and de-
scribed the temporal and spatial correlations between
measurements.We also showed the tendency of the iPad
depth sensor to merge and flatten surfaces, which is use-
ful when dealing with planes such as walls, but becomes
problematic when estimating the shape of curved ob-
jects, such as spheres.

In general, it can be seen that the iPad depth sen-
sor, in its current iteration, is well suited for simultane-
ous localization and mapping (SLAM) based on planar
surfaces. This is shown by the robust camera tracking
provided by the default libraries.Dealing with other ob-
jects, however, imposes some restrictions on their size
and how far they can be from the sensor.Curved objects,
or objects with steep depth changes, appear flattened
out,which can reduce its applicability in fields, such as ex-
tended object tracking or object classification based on
point clouds, which have higher requirements on mea-
surement quality. Thus, applications that deal with these
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objects should keep in mind the tightened operating
range.Still, these limitations should be balanced with the
advantages provided by the Apple ecosystem, and the
wide reach of potential users available to applications
using it.
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Split Happens! Imprecise and
Negative Information in
Gaussian Mixture Random
Finite Set Filtering

KEITH A. LEGRAND
SILVIA FERRARI

In object-tracking and state-estimation problems, ambiguous evi-

dence such as imprecise measurements and the absence of detections

can contain valuable information and thus be leveraged to further

refine the probabilistic belief state. In particular, knowledge of a

sensor’s bounded field of view (FoV) can be exploited to incorporate

evidence of where an object was not observed. This paper presents a

systematic approach for incorporating knowledge of the FoV geome-

try, position, and object inclusion/exclusion evidence into object state

densities and random finite set multiobject cardinality distributions.

The resulting state estimation problem is nonlinear and solved using a

new Gaussian mixture approximation based on recursive component

splitting. Based on this approximation, a novel Gaussian mixture

Bernoulli filter for imprecise measurements is derived and demon-

strated in a tracking problem using only natural language statements

as inputs. This paper also considers the relationship between bounded

FoVs and cardinality distributions for a representative selection of

multiobject distributions, which can be used for sensor planning, as is

demonstrated through a problem involving a multi-Bernoulli process

with up to 100 potential objects.

I. INTRODUCTION

Random finite set (RFS) theory has been proven a
highly effective framework for developing and analyzing
tracking and sensor planning algorithms in applications
involving an unknown number of multiple targets (ob-
jects) [1]–[7].Until recently, however, little attention has
been devoted to the role that bounded sensor fields of
view (FoVs) play in assimilating measurements, or lack
thereof, into multiobject probability distributions. Exist-
ing tracking algorithms, for example, typically terminate
object tracks when the object leaves the sensor field-of-
view (FoV). While this approach is suitable when the
FoVdoubles as the tracking region of interest (ROI), it is
inapplicable when the sensor FoV is much smaller than
the ROI and, thus, must be moved or positioned so as
to maximize information value [8]–[13]. Other technical
challenges arise in multisensor fusion problems involv-
ing bounded overlapping FoVs and have been the focus
of recent work[14]–[17].

The simple indication of an object’s presence or ab-
sence within a known region, such as an FoV, is pow-
erful evidence that can be incorporated to update the
object probability density function (pdf) in a Bayesian
framework. For example, the absence of detections is a
type of negative information indicating that the object
statemay reside outside the FoV [18]. In contrast,binary-
type sensors may produce imprecise measurements
[19]–[21] that indicate the object is inside the sensor FoV
but provide no further localization information. Sim-
ilarly, “soft” data from human sources, such as natu-
ral language statements, can be considered as imprecise
measurements due to their inherent ambiguity [22], [23].
Particle-based filtering algorithms [21], [24], [25] can ac-
commodate suchmeasurements but require a large num-
ber of particles and are computationally expensive. The
integrated track splitting filter for state-dependent prob-
ability of detection (ITSpd) [26] uses Gaussian mix-
tures (GMs) to model both the object pdf and the state-
dependent probability of detection function. Though
GMs efficiently model some detection probability func-
tions, other simple functions, such as uniform probability
densities over a 3D FoV, require problematically large
numbers of components.Other approaches [27], [28] em-
ploy stochastic sampling and the expectation maximiza-
tion (EM) algorithm to compute GM approximations to
the posterior pdf. However, the use of intermediate par-
ticle representations and EM reconstruction can lead to
information loss, and convergence is sensitive to EM ini-
tial condition specification.

This paper presents new methods for incorporating
inclusion/exclusion evidence in Bayesian single-object
and multiobject estimation and sensor planning algo-
rithms, as illustrated in Fig. 1. Section II defines the no-
tation used in this paper, and Section III details the
problem formulation and related assumptions. Section
IV presents a deterministic method that partitions a
GM state density along the boundaries of a known
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Fig. 1. Gaussian mixture probability distribution before (left) and after (center) incorporating negative information (that is, the absence of
detections) and the known bounded sensor FoV, and a Gaussian mixture distribution after incorporating an imprecise measurement

corresponding to a set of possible mug locations (right) in a robot perception application.

region, such as an FoV, through recursive Gaussian split-
ting. By this approach, negative information is lever-
aged in GM filters to further refine the posterior ob-
ject state pdf. Similarly, imprecise measurements, such
as natural language statements, can be incorporated to
obtain GM posterior distributions using a new multi-
FoV-generalized splitting algorithm. Section V presents
an application of the splitting method to the tracking
of a person in a crowded space using natural language
statements and a new GM Bernoulli filter algorithm. In
Section VI, FoV object cardinality probability mass
functions (pmfs) are derived for some of the most
commonly encountered RFS distributions. Section VII
presents an application of bounded FoV statistics to a
sensor placement problem, and conclusions are made in
Section VIII. This paper builds on previous work [29] by
presenting a generalized partitioning algorithm for use
with multiple FoVs, a derivation of a new GMBernoulli
filter algorithm applicable to imprecise measurements,
and a simulation of a tracking problem using natural lan-
guage statements.

II. NOTATION

Throughout this paper, single-object states are repre-
sented by lowercase letters (e.g., x, x̊), while multiobject
states are represented by italic uppercase letters (e.g.,
X , X̊ ). Bold lowercase letters are used to denote vec-
tors,and bold uppercase letters are used denotematrices.
The accent “˚” is used to distinguish labeled states and
functions (e.g., f̊ , x̊, X̊ ) from their unlabeled equivalents
(e.g., f , x, X ). Spaces are represented by blackboard-
bold symbols (e.g.,X,L).

The multiobject exponential notation,

hA �
∏
a∈A

h(a), (1)

where h∅ � 1 is adopted throughout. For multivari-
ate functions, the dot (·) denotes the argument of the

multiobject exponential, e.g.,:

[g(a, ·, c)]B �
∏
b∈B

g(a,b, c). (2)

The exponential notation is used to denote the product
space, X

n = ∏n(X×), whereas exponents of RFSs are
used to denote RFSs of a given cardinality, e.g., |Xn| = n,
where n is the cardinality.The set of natural numbers less
than or equal to n is denoted by

Nn � {1, . . . ,n}. (3)

The operator diag(·) places its input on the diagonal of
the zero matrix. The Kronecker delta function is defined
as

δa(b) �
{
1, if b = a
0, otherwise (4)

for any two arbitrary vectors a, b ∈ R
n. The inner prod-

uct of two integrable functions f (·) and g(·) is denoted
by

〈 f, g〉 =
∫

f (x)g(x)dx. (5)

III. PROBLEM FORMULATION AND ASSUMPTIONS

This paper considers the incorporation of inclusion/
exclusion evidence into algorithms for (multi)object
tracking and sensor planning when the number of ob-
jects is unknown and time-varying. Often in tracking,
object detection may depend only on a partial state
s ∈ Xs ⊆ R

ns , where Xs × Xv = X ⊆ R
nx forms the full

object state space. For example, the instantaneous abil-
ity of a sensor to detect an object may depend only on
the object’s relative position. In that case, Xs is the po-
sition space, and Xv is comprised of nonposition states,
such as object velocity. This nomenclature is adopted
throughout the paper, while noting that the approach
is applicable to other state definitions. Following [30],
the sensor FoV can be defined as the compact subset
S(q) ⊂ Xs. In general, the FoV is a function of the
sensor state q, which, for example, may consist of the
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sensor position, orientation, and zoom level. However,
for notational simplicity, this dependence is omitted in
the remainder of this paper.

Now, let the object state x consist of the kinematic
variables that are to be estimated from data via filter-
ing, such as the object position, velocity, and turn rate.
Then, the single-object pdf is denoted by p(x). Letting
s = proj

Xs
x denote the state elements that correspond to

Xs, an object’s presence inside the FoV can be expressed
by the generalized indicator function

1S (x) =
{
1, if s ∈ S
0, otherwise. (6)

The number of objects and their kinematic states are un-
known a priori, but can be assumed to consist of discrete
and continuous variables, respectively. The collection of
object states is modeled as an RFS X or labeled ran-
domfinite set (LRFS) X̊ ,where the single-object labeled
state x̊ = (x, �) ∈ X × L consists of a kinematic state
vector x and a unique discrete label �. It is assumed that
the prior multiobject distribution is known,e.g., from the
output of a multiobject filter, and modeled using either
the RFS density f (X ) or the LRFS density f̊ (X̊ ).

In RFS-based tracking, single-object densities are, in
fact, parameters of the higher-dimensional multiobject
density. Non-Gaussian single-object state densities are
often modeled using GMs because they admit closed-
form approximations to the multiobject Bayes recursion
under certain conditions [2], [31]. Therefore, in this pa-
per, it is assumed that single-object densities (which are
parameters of the higher-dimensional multiobject den-
sity) are parameterized as

p(x) =
L∑

�=1

w(�)N (x; m(�), P(�)), (7)

whereL is the number ofGMcomponents andw(�),m(�),
and P(�) are the weight, mean, and covariance matrix of
the �th component, respectively.

In this paper, the problem considered is forming GM
Bayesian posteriors given evidence of the forms:

T1 The existence or nonexistence of ameasurement is ev-
idence of the inclusion or exclusion of the object state
within a known set.For example, the nonexistence of
a detection (measurement) is evidence of an object’s
position exclusion from the sensor FoV.

T2 The value of themeasurement is evidence of the inclu-
sion or exclusion of the object state within a known
set. For example, the observation that a sea-level
freshwater lake is frozen is evidence that the water
temperature belongs to the set of temperatures be-
low 0 ◦C.

Mahler’s finite-set statistics (FISST) provides the
mathematical foundation for modeling types T1 and T2
using state-dependent probability of detection functions
and generalized likelihood functions, respectively. How-
ever, in both cases, the Bayes posterior involves products

of the prior GM with indicator functions such as

p(x)1S (x) � pS (x) and (8)

(1 − 1S (x))p(x) � pC(S)(x), (9)

where C(S) denotes the complement space Xs\S . Thus,
the resulting posterior is no longer a GM.

This paper presents a fast GM approximation of (8)
and (9), thereby enabling the assimilation of inclusion/
exclusion evidence in any GM-based RFS single-object
or multiobject filter. Building on these concepts, this pa-
per also considers the role of inclusion/exclusion evi-
dence in object cardinality distributions and derives pmf
expressions that describe the probabilities associated
with different numbers of objects existing within a given
set S (such as an FoV).

IV. GM APPROXIMATION OF FOV-PARTITIONED
DENSITIES

This section presents a method for partitioning the
object pdf into truncated densities pS (x) and pC(S)(x)
with supports S × Xv and C(S)× Xv , respectively. Focus
is given to the single-object state density with the aware-
ness that the method is naturally extended to RFS mul-
tiobject densities and algorithms that use GM parame-
terization.

Consider the single-object density p(x) parameter-
ized by an L-component GM, as follows:

p(x) = pS (x) + pC(S)(x) =
L∑

�=1

w(�)N (x; m(�),P(�)).

(10)

One simple approximation of densities partitioned ac-
cording to the discrete FoVgeometry, referred to as FoV-
partitioned densities hereon, is found by evaluating the
indicator function at the component means [32], i.e.,:

pS (x) ≈
L∑

�=1

w(�)1S (m(�))N (x; m(�), P(�)), (11)

pC(S)(x) ≈
L∑

�=1

w(�)(1 − 1S (m(�)))N (x; m(�), P(�)).

(12)

By this approach, components whose means lie inside
(outside) the FoV are preserved (pruned), or vice versa.

The accuracy of this mean-based partition approxi-
mation depends strongly on the resolution of the GM
near the geometric boundaries of the FoV. Even though
the mean of a given component lies inside (outside)
the FoV, a considerable proportion of the probability
mass may lie outside (inside) the FoV, as is illustrated in
Fig. 2(a). Therefore, the amount of FoV overlap, along
with the weight of the component, determines the accu-
racy of the approximations (11) and (12). To that end,
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Fig. 2. Original component density and FoV with covariance
eigenvectors overlaid (a), and same component density and FoV after

change of variables (b).

the algorithm presented in the following subsection it-
eratively resolves the GM near FoV bounds by recur-
sively splitting Gaussian components that overlap the
FoV bounds.

A. Gaussian Splitting Algorithm

The Gaussian splitting algorithm presented in this
subsection forms an FoV-partitioned GM approxima-
tion of the original GM by using a higher number of
components near the FoV boundaries, ∂S , so as to im-
prove the accuracy of the mean-based partition.

Consider for simplicity a two-dimensional example
in which the original GM, p(x), has a single compo-
nent whose mean lies outside the FoV, as shown in
Fig.2(a).The algorithmfirst applies a change of variables
x 
→ y ∈ Y ⊆ R

ns such that p(y) is symmetric and
has a zero mean and unit variance. The basis vectors of
the space Y correspond to the principal directions of the
component’s position covariance. The same change of
variables is applied to the FoV bounds [Fig. 2(b)].

A pre-computed point grid is then tested for inclu-
sion in the transformed FoV in order to decide whether
to split the component and, if so, along which princi-
pal direction. For each new split component, the process
is repeated—if a new component significantly overlaps
the FoV boundaries, it may be further split into several
smaller components, as illustrated in Fig. 3. This process
is repeated until the stopping criteria are satisfied.After
the GM splitting terminates, pS (x) and pC(S)(x) are ap-
proximated by the mean-based partition [(8) and (9)], as
illustrated in Fig. 4.

B. Univariate Splitting Library

Splitting is performed efficiently by utilizing a pre-
generated library of optimal split parameters for the uni-
variate standard Gaussian q(x), as first proposed in [33]
and later generalized in [34]. The univariate split param-
eters are retrieved at run-time and applied to arbitrary
multivariate Gaussian densities via scaling, shifting, and
covariance diagonalization.

-1 0 1

-1

0

1

(a)

-1 0 1

-1

0

1

(b)

Fig. 3. 1σ contours of components after first-split operation (a) and
second-split operation (b), where components formed in the second

operation are shown in red.

Generation of the univariate split library is per-
formed by minimizing the cost function

J = L2(q||q̃) + λσ̃ 2 s.t.
R∑
j=1

w̃( j) = 1, (13)

where

q̃(x) =
R∑
j=1

w̃( j)N (x; m̃( j), σ̃ 2) (14)

for different parameter values R, λ. The regularization
term λ balances the importance of using smaller stan-
dard deviations σ̃ with the minimization of the L2 dis-
tance. While other distance measures may be used, the
L2 distance is attractive because it can be computed in
closed form for GMs [34]. As an example, the optimal
split parameters for R = 4, λ = 0.001 are provided in
Table I.

C. Change of Variables

The determination of which components should be
split and, if so, along which direction, is simplified by first
establishing a change of variables. For each component
with index �, the change of variables h(�) : Xs 
→ Y is
applied as follows:

y = h(�)(s;m(�)
s ,P(�)

s ) � (�(�)
s )−

1
2V (�)T

s (s − m(�)
s ), (15)

(a) (b)

Fig. 4. The densities pC(S)(x) (a) and pS (x) (b), which have been
approximated using two iterations of component splitting and the

subsequent mean-based partition.
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Table I
Univariate Split Parameters for R = 4, λ = 0.001

j w̃( j) m̃( j) σ̃

1 0.10766586425362 −1.42237156603631 0.58160633157686
2 0.39233413574638 −0.47412385534547 0.58160633157686
3 0.39233413574638 0.47412385534547 0.58160633157686
4 0.10766586425362 1.42237156603631 0.58160633157686

where

V (�)
s = [v(�)

s,1 · · · v
(�)
s,ns ], (16)

(�(�)
s )−1/2 = diag

([
1√
λ
(�)
s,1

· · · 1√
λ
(�)
s,ns

])
, (17)

and m(�)
s is the ns-element position portion of the full-

state mean, and the columns ofV (�)
s are the normalized

eigenvectors of the position-marginal covariance P(�)
s ,

with v
(�)
s,i corresponding to the ith eigenvalue λ

(�)
s,i . In the

transformed space,

p(y) = N (y; 0, I). (18)

Note that, in defining the transformation over Xs, the
same transformation can be applied to the FoV, such
that

S (�)
y = {h(�)(s;m(�)

s ,P(�)
s ) : s ∈ S}. (19)

In Y, the Euclidean distances to boundary points of
S (�)
y can be interpreted as probabilistically normalized

distances. In fact, the Euclidean distance of a point y
from the origin in Y corresponds exactly to the Maha-
lanobis distance between the corresponding point s and
the original position-marginal component.

D. Component Selection and Collocation Points

Components are selected for splitting if they have
sufficient weight and significant statistical overlap of
the FoV boundaries (∂S). For components of sufficient
weight, the change of variables is applied to the FoV to
obtain S (�)

y per (19). The overlap of the original com-
ponent on S is then equivalent to the overlap of the
standard Gaussian distribution on S (�)

y , which is quan-
tified using a grid of collocation points on Y, as shown in
Fig. 2(b).

Define the collocation point ȳi1,...,ins ∈ Y such that

ȳi1,··· ,ins � [ȳ1(i1) . . . ȳns (ins )]
T , (i1, . . . , ins ) ∈ G,

(20)

ȳ j(l) = −ζ + 2ζ
(
l − 1
Ng − 1

)
, j ∈ Nns , (21)

G = {(i1, . . . , ins ) : i(·) ∈ NNg, ‖yi1,...,ins ‖ ≤ ζ }, (22)

where ζ is a user-specified bound for the grid, G is the
set of indices of points that are within ζ of the origin,

and Ng is the upper bound of the number of points per
dimension. An inclusion variable is defined as

d(�)
i1,...,ins

� 1S (�)
y
(ȳi1,...,ins). (23)

Inclusion and exclusion patterns across the grid can be
examined by first establishing an arbitrary reference in-
dex (i′1, . . . , i

′
ns ) ∈ G. With this, �S (�)

y
∈ {0, 1} is estab-

lished to mark total inclusion or total exclusion as

�S (�)
y

=
∏
G

δd(�)
i′1 ,...,i′ns

(d(�)
i1,...,ins

), (24)

which is equal to unity if all grid points lie inside of S (�)
y

or all grid points lie outside of S (�)
y , and is zero other-

wise. If either all or no points are included, then no split-
ting is required.Otherwise, the component is marked for
splitting.

E. Position Split Direction

Rather than split a component along each of its prin-
cipal directions, a more judicious selection can be made
by limiting split operations to a single direction (per
component) per recursion.Thus, by performing one split
per component per recursion, the component selection
criteria are re-evaluated, reducing the overall number
of components generated. In the aforementioned two-
dimensional example, only a subset of new components
generated from the first split are selected for further
splitting, as shown in Fig. 3(b).

The split direction is chosen based on the relative ge-
ometry of the FoV, and thus position vectors are of inter-
est. Choosing the best position split direction is a chal-
lenging problem. A common approach is to split along
the component’s covariance eigenvector with the largest
eigenvalue [33]. This strategy, however, does not con-
sider the FoV geometry and thus may increase the mix-
ture size without improvement to the FoV-partitioned
densities (11) and (12). Reference [35] provides a more
sophisticated split direction criterion based on the inte-
gral linearization errors along the covariance eigenvec-
tors.However, in the case that the FoVdoes not intersect
the eigenvectors, this criterion cannot distinguish the
best split direction. Another approach [36] determines
the split direction based on theHessian of the underlying
nonlinear transformation, evaluated at the component
mean. However, for the transformations considered in
this paper of the form g(s) = c·1S (s),where c is some ar-
bitrary constant, theHessian either vanishes (for s /∈ ∂S)
or is undefined (for s ∈ ∂S).

Ideally, splitting along the chosen direction should
minimize the number of splits required in the next
iteration as well as improve the accuracy of the parti-
tion approximation applied after the final iteration. The
computational complexity of exhaustive optimization of
the split direction would likely negate the computational
efficiency of the overall algorithm. Instead, to minimize
the number of splits required in the next iteration, the
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position split direction is chosen as the direction that
is orthogonal to the most grid planes of consistent in-
clusion/exclusion. Introducing a convenience function
s(�)j : NNg 
→ {0, 1}, the plane of constant y j = ȳ j(l) is
consistently inside or consistently outside if

s(�)j (l) =
∏
G,i j=l

δd(�)
i′1 ,...,i j ,...,i

′
ns

(d(�)
i1,...,i j,...,ins

) (25)

is equal to unity, where i′1, . . . , i j, . . . , i
′
ns is an arbitrary

index tuple in G satisfying i j = l, to which inclusion
consistency is compared (see Appendix A for a numeri-
cal example). The optimal position split direction is then
given by the eigenvector vs, j∗ , where the optimal eigen-
vector index is found as

j∗ = argmax
j

⎛
⎝ Ng∑

l=1

s(�)j (l)

⎞
⎠ . (26)

For notational simplicity, the implicit dependence of j∗

on the component index � is omitted. For example, refer-
ring back to the two-dimensional example and Fig. 2(b),
there are more rows than columns that are consistently
inside or outside the transformed FoV, and thus j∗ = 2
is chosen as the desired position split direction index.
In the case where multiple maxima exist, the eigenvec-
tor with the largest eigenvalue is selected, which corre-
sponds to the direction of the largest variance among the
maximizing eigenvectors.

F. Multivariate Split of Full-State Component

Gaussian splittingmust be performed along the prin-
cipal directions of the full-state covariance. The general
multivariate split approximation, splitting along the kth
eigenvector v

(�)
k is given by [34]

w(�)N (x; m(�), P(�)) ≈
R∑
j=1

w(�, j)N (x; m(�, j), P(�, j)),

(27)

where

w(�, j) = w̃( j)w(�), (28)

m(�, j) = m(�) +
√

λ
(�)
k m̃( j)v

(�)
k , (29)

P(�, j) =V (�)�(�)V (�)T , (30)

�(�) = diag
(
[λ1 · · · σ̃ 2λk · · · λnx]

)
, (31)

and the optimal univariate split parameters w̃( j), m̃( j),
and σ̃ are found from the pre-computed split library
given the number of split components R and regulariza-
tion parameter λ. In general, the position components of
the full-state eigenvectors will not perfectly match the
desired position split vector due to correlations between
the states. Rather, the actual full-state split is performed

along v
(�)
k∗ , where the optimal eigenvector index is found

according to

k∗ = argmax
k

∣∣[v(�)T
s, j∗ 0T

]
v
(�)
k

∣∣ (32)

where, without loss of generality, a specific state conven-
tion is assumed such that position states are first in ele-
ment order.

G. Recursion and Role of Negative Information

The splitting procedure is applied recursively, as de-
tailed in Algorithm 1. The recursion is terminated when
no remaining components satisfy the criteria for split-
ting. Each recursion further refines the GM near the
FoV bounds to improve the approximations of (11) and
(12). However, because a Gaussian component’s split
approximation (27) does not perfectly replicate the orig-
inal component, a small error is induced with each split.
Given enough recursions, this error may become domi-
nant. In the authors’ experience, the recursion is termi-
nated well before the cumulative split approximation er-
ror dominates.

Algorithm 1 split_for_fov({w(�),m(�),P(�)}L
�=1,

wmin, S ,R, λ)
split ← {}, no_split ← {}
if L = 0 then

return split
end if
for � = 1, . . . ,L do

if w(�) < wmin then
add {w(�),m(�),P(�)} to no_split
continue

end if
Compute S (�)

y according to (19)
if �S (�)

y
= 1 then

add {w(�),m(�),P(�)} to no_split
else
j∗ ← equation (26) , k∗ ← equation (32)
{w(�, j),m(�, j),P(�, j)}Rj=1 ← equation (27) with
k = k∗

add {w(�, j),m(�, j),P(�, j)}Rj=1 to split
end if

end for
split ← split_for_fov(split,wmin, S ,R, λ)
return split ∪ no_split

One of the many potential applications of the re-
cursive algorithm presented in this section involves in-
corporating the evidence of nondetections, or nega-
tive information, in single- or multiobject filtering. To
demonstrate this, a single-object filtering problem with
a bounded square FoV is considered where, in three
subsequent sensor reports, no object is detected. The
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Fig. 5. Negative information, comprising absence of detections
inside the sensor FoV S, is used to update the object pdf as the object

moves across the ROI.

true object position and constant velocity are unknown
but are distributed according to a known GM pdf at
the first time step. As the initial pdf is propagated over
time, the position-marginal pdf travels from left to right,
as shown in Fig. 5. For simplicity, the probability of
detection inside the FoV is assumed equal to one. At
each time step, the GM is refined by Algorithm 1 using
wmin = 0.01, R = 3, and λ = 0.001. Then, the mean-
based partition approximation (12) is applied and the
updated filtering density (9) is found. The results shown
in Fig. 5 are obtained using a Matlab implementation of
Algorithm 1.When executed on an AppleM1Ultra pro-
cessor with 64 GB RAM, the total execution time (over
three time steps) of Algorithm 1 is 0.176 s, which trans-
lates to <60 ms per time step.As in many GM-based fil-
ters, the number of components may increase over time
but can be reduced as needed through component merg-
ing and pruning.

H. Splitting for Multiple Regions

The presented splitting approach can be extended to
accommodate multiple closed subsets, which may rep-
resent the FoVs in a multisensor network or imprecise
measurements that take the form of multiple closed sub-
sets, as is shown in Section V. For ease of exposition, the
multiregion method is developed in the context of mul-
tiple FoVs with the awareness that the regions can be
any bounded sets. Consider the case where the GM is to
be partitioned about the boundaries ofNs FoVs {S (ı)}Ns

ı=1.
One simple approach to incorporate the multiple FoVs
is to recursively apply Algorithm 1 for each FoV. Re-
call from Section IV-E, however, that the direction or-
der in which components are split ultimately determines
the total number of components generated. Thus, by the
described naive approach, the resulting mixture size in-
herently depends on the order by which the FoVs are
processed, which is undesirable.

Instead, the remainder of this subsection establishes
a multi-FoV splitting algorithm that is invariant to FoV
order. Given S (ı), denote by S (ı,�)

y the resulting trans-
formed FoV for component � via application of (19).
Then, an inclusion variable similar to (23) is established
as

d(ı,�)
i1,...,ins

� 1S (ı,�)
y

(ȳi1,...,ins ). (33)

In each transformed FoV, grid points are either totally
excluded or totally included if and only if

�
(�)
{Sy} =

Ns∏
ı=1

∏
G

δd(ı,�)
i′1,...,i′ns

(d(ı,�)
i1,...,ins

) (34)

is equal to unity, which indicates that a component does
not require splitting. If a component is to be split, then
the direction is chosen to minimize the ultimate mixture
size, as discussed in Section IV-E. This is accomplished
by identifying grid planes that are either consistently in-
cluded/excluded in each FoV. Consistency of the plane
of constant y j = ȳ j(l) is indicated by

s(�)j (l) =
Ns∏
ı=1

∏
G,i j=l

δd(ı,�)
i′1 ,...,i j ,...,i

′
ns

(d(ı,�)
i1,...,i j,...,ins

) (35)

equal to unity. By this multi-FoV generalized indicator
function, the optimal position split direction is found via
(26).The complete multi-FoV splitting algorithm is sum-
marized in Algorithm 2.

Algorithm 2
split_for_multifov({w(�),m(�),P(�)}L

�=1,wmin,
{S (ı)}Ns

ı=1,R, λ)

split ← {}, no_split ← {}
if L = 0 then

return split
end if
for � = 1, . . . ,L do

if w(�) < wmin then
add {w(�),m(�),P(�)} to no_split
continue

end if
for ı = 1, . . . ,Ns do

compute S (ı,�)
y according to equation (19)

end for
if �

(�)
{Sy} = 1 then
add {w(�),m(�),P(�)} to no_split

else
j∗ ← equation (26) , k∗ ← equation (32)
{w(�, j),m(�, j),P(�, j)}Rj=1 ← equation (27) with
k = k∗

add {w(�, j),m(�, j),P(�, j)}Rj=1 to split
end if

end for
split ← split_for_multifov(split,wmin,
{S (ı)}Ns

ı=1,R, λ)
return split ∪ no_split

The set inputs {S (ı)} in Algorithm 2 are not restricted
to FoVs and can represent any regions. For example,
two regions relevant to the human-robot interaction de-
picted in Fig. 1 are the human observer’s binocular FoV
and the tabletop region. The application of Algorithm
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2 with respect to these two regions then enables the
incorporation of the observation “The mug is on the ta-
ble” in a GMBayes filter, as is discussed in the following
section.

V. APPLICATION TO IMPRECISE MEASUREMENTS

This section presents the application of the split-
ting algorithm to estimation problems involving impre-
cise measurements. Unlike traditional vector-type mea-
surements, imprecise measurements are nonspecific, yet
still contain valuable information. Examples of impre-
cise measurements include natural language statements
[22], [23], inference rules [37, Sec. 22.2.4], and received
signal strength type measurements under path-loss un-
certainty [23], [38]. This section demonstrates the esti-
mation of a person’s location and velocity as they move
through a public space using imprecise natural language
measurements, as originally posed in [23]. Tracking is
performed using a newGMBernoulli filter for imprecise
measurements, as discussed in the following subsections.

A. Imprecise Measurements

Imprecise measurements, such as those from natural
language statements, can be modeled as RFSs and speci-
fied using generalized likelihood functions. For example,
the statement

S = “Felice is near the taco stand” (36)

provides some evidence about Felices’s location, yet is
not mutually exclusive1 [1, p. 104, 126]. For simplicity,
this paper adopts from [1, p. 105] the definition of being
“near” a point z0 as belonging to a disc ζ ⊂ Z of radius
D:

ζ = {z : ‖z − z0‖ ≤ D}. (37)

Although this specific natural language statement inter-
pretation is considered for simplicity, the presented ap-
proach does not preclude more sophisticated models,
such as in [22], [39]. The associated generalized likeli-
hood function for this imprecise measurement is

g̃(ζ|x) = P{z ∈ ζ} = P{h(x) ∈ ζ}, (38)

where h : X 
→ Z is the deterministic mapping from
the state space to the measurement space [23]. General-
ized likelihood functions, such as those for natural lan-
guage statements, are often nonlinear in x. Through the
presented Gaussian splitting approach and expansion of
the nonlinear likelihood function about the GM compo-
nent means, GM RFS filters can accommodate impre-
cisemeasurements,as demonstrated in the context of the
RFS Bernoulli filter in the following subsection.

1In fact, this statement can further be considered vague or fuzzy due
to uncertainty in the observer’s definition of “near” [19, p. 266].

B. Bernoulli Filter for Imprecise Measurements

The Bernoulli filter is the Bayes-optimal filter for
tracking a single object in the presence of false alarms,
misdetections, and unknown object birth/death [1, Sec.
14].A Bernoulli distribution is parameterized by a prob-
ability of object existence r and state pdf p(x). The finite
set statistics (FISST) density of a Bernoulli RFS is [1, p.
516]

f (X ) =
{
1 − r, if X = ∅
r · p(x), if X = {x}. (39)

Denote by pb the conditional probability that the ob-
ject is born given that it did not exist in the previous time
step. Similarly, denote by pS the conditional probability
that the object survives to the next time step. The ini-
tial state of an object born at time k is assumed to be
distributed according to the birth spatial density bk(x).
Then, by the FISST generalized Chapman-Kolmogorov
equation, the Bernoulli filter prediction equations are
[1, p. 519]

pk|k−1(x) = pb · (1 − rk−1|k−1)bk|k−1(x)
rk|k−1

(40)

+ pSrk−1|k−1
∫

πk|k−1(x|x′)pk−1|k−1(x′)dx′

rk|k−1
,

rk|k−1 = pb · (1 − rk−1|k−1) + pSrk−1|k−1, (41)

where πk|k−1(x|x′) is the single-object state transition
density. Suppose that the spatial density and birth den-
sity are GMs and that the transition is linear-Gaussian:

pk−1|k−1(x) =
Lk−1∑
�=1

w
(�)
k−1N (x; m(�)

k−1, P
(�)
k−1), (42)

bk|k−1(x) =
Lb,k∑
�=1

ŵ
(�)
b,kN (x; m(�)

b,k, P
(�)
b,k), (43)

πk|k−1(x|x′) = N (x; Fk−1x′, Qk−1). (44)

Then, the predicted spatial density at k is the sum of two
GMs, given as

pk|k−1(x) =
Lb,k∑
�=1

w
(�)
b,kN (x; m(�)

b,k, P
(�)
b,k) (45)

+
Lk−1∑
�=1

w
(�)
S,k|k−1N (x; m(�)

S,k|k−1, P
(�)
S,k|k−1),

where

w
(�)
b,k = ŵ

(�)
b,k

pb · (1 − rk−1|k−1)
rk|k−1

, (46)

w
(�)
S,k|k−1 = w

(�)
k−1

pSrk−1|k−1

rk|k−1
, (47)

m(�)
S,k|k−1 = Fk−1m

(�)
k−1, (48)

P(�)
S,k|k−1 = Fk−1P

(�)
k−1F

T
k−1 + Qk−1. (49)
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The predicted spatial density (45) can thus be expressed
as a combined GM of the form

pk|k−1(x) =
Lk|k−1∑
�=1

w
(�)
k|k−1N (x; m(�)

k|k−1, P
(�)
k|k−1), (50)

where
∑Lk|k−1

�=1 w
(�)
k|k−1 = 1.

The FoV-dependent probability of detection func-
tion is given by

pD(x;Sk) = 1Sk (x)pD(s), (51)

where the single-argument function pD(s) is the cor-
responding probability of detection for an unbounded
FoV. The measurement ϒk is then a finite set

ϒk = {ζ1, . . . , ζmk
} ∈ F (Z) (52)

comprised of false alarms and a potentially empty impre-
cise measurement due a true object, where Z is the set of
all closed subsets of Z and F (Z) is the space of all finite
subsets of Z, as shown in [1, Ch. 5]. Assume that false
alarms are Poisson distributed with rate λc and spatial
density c̃(ζ). Then, the posterior state density and prob-
ability of existence are given by

pk|k(x) =
1 − pD(x;Sk) + pD(x;Sk)

∑
ζ∈ϒk

g̃k(ζ|x)
λcc̃(ζ)

1 − �k
pk|k−1(x),

(53)

rk|k = 1 − �k

1 − rk|k−1�k
rk|k−1, (54)

where

�k =
∫

pD(x;Sk)pk|k−1(x)dx

−
∑
ζ∈ϒk

∫
pD(x;Sk)g̃k(ζ|x)pk|k−1(x)dx

λcc̃(ζ)
, (55)

which is a generalization of the result shown in [20] for
state-dependent probability of detection.

Because (53) involves products of indicator functions
and GMs, the resulting posterior density will not be a
GM in general. Instead, the state-dependent probabil-
ity of detection and generalized likelihood function can
be expanded about the GM component means (see Ap-
pendix B), giving

pk|k(x) =
Lk|k∑
�=1

w
(�)
k|kN (x; m(�)

k|k, P
(�)
k|k), (56)

w
(�)
k|k =

w
(�)
k|k−1

1 − �k

(
1 − pD(m

(�)
k|k−1;Sk)

+ pD(m
(�)
k|k−1;Sk)

∑
ζ∈ϒk

g̃k(ζ|m(�)
k|k−1)

λcc̃(ζ)

)
, (57)

�k =
Lk|k−1∑
�=1

w
(�)
k|k−1pD(m

(�)
k|k−1;Sk), (58)

−
∑
ζ∈ϒk

Lk|k−1∑
�=1

w
(�)
k|k−1pD(m

(�)
k|k−1;Sk)g̃k(ζ|m(�)

k|k−1)

λcc̃(ζ)

m(�)
k|k = m(�)

k|k−1, (59)

P(�)
k|k = P(�)

k|k−1. (60)

The approximation error due to the zeroth-order ex-
pansion in (57) and (58) depends on the GM resolu-
tion near points of strong nonlinearity. In a high resolu-
tionmixture containingmany components with small co-
variance matrices, the region about each mean in which
the local approximation must be valid is correspond-
ingly smaller compared to a low-resolution mixture [40].
Therefore, the recursive splitting method is employed
to refine the mixture in nonlinear regions—specifically
around ∂Sk and ∂ζ(·)—before computing the posterior
GM(56).Then, the resulting posteriorGM is reduced us-
ing one of many available algorithms for GM reduction
[41]–[44]. This process, referred to as the GM Bernoulli
filter for imprecise measurements, is summarized in
Algorithm 3.

C. Airport Tracking Example

The recursive splitting approach is demonstrated in
the context of tracking a person of interest through a
crowded airport. This problem was originally posed in
[23] and solved using a particle filter (PF) implementa-
tion of the Bernoulli filter. The object state is defined as

xTk = [xk yk ẋk ẏk] = [sTk vTk ], (61)

where dimensionless distance units are used throughout.
Measurements of the object are composed of natural
language statements describing the person’s current lo-
cation in the form Zk = {ζk,1, . . . , ζk,mk}, wheremk is the
number of statements received at time k and

ζ = a ⇒ the object is near the anchor a. (62)

In (62), the integer a ∈ A ⊂ N represents a fixed anchor,
such as a taco stand or coffee shop, with corresponding
known position ra ∈ Z. Observers sometimes report in-
correct statements (as false alarms) and sometimes fail
to report true statements (as misdetections). The corre-
sponding generalized likelihood function is

g̃k(ζ = a | xk) =
{
1 if ‖sk − ra‖ ≤ 2da/3
0 otherwise , (63)

where da is the distance between anchor a and its nearest
neighboring anchor. If the object is within 2da/3 of an-
chor a, then the natural language statement reports that
the object is near a (unless misdetected). Defining the
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Algorithm 3 GM Bernoulli Filter for Imprecise Measurements

given r0|0, p0|0(x)
for k = 1, . . . ,K do

Compute rk|k−1 according to (41)
Compute {w(�)

S,k|k−1,m
(�)
S,k|k−1,P

(�)
S,k|k−1}

Lk|k−1

�=1 according to (47)–(49)

Compute {w(�)
b,k}Lb,k

�=1 according to (46)

{w(�)
k|k−1,m

(�)
k|k−1,P

(�)
k|k−1}

Lk|k−1

�=1 ← {w(�)
S,k|k−1,m

(�)
S,k|k−1,P

(�)
S,k|k−1}Lk−1

�=1 ∪ {w(�)
b,k|k−1,m

(�)
b,k|k−1,P

(�)
b,k|k−1}

Lb,k

�=1

{w(�)
k|k−1,m

(�)
k|k−1,P

(�)
k|k−1}

Lk|k−1

�=1 ←split_for_multifov({w(�)
k|k−1,m

(�)
k|k−1,P

(�)
k|k−1}

Lk|k−1

�=1 ,wmin, {Sk} ∪ ϒk,R, λ)
Compute �k according to (58)
Compute rk|k according to (54)
Compute {w(�)

k|k,m
(�)
k|k,P

(�)
k|k}

Lk|k
�=1 according to (57),(59),(60)

{w(�)
k|k,m

(�)
k|k,P

(�)
k|k}

Lk|k
�=1 ← reduce({w(�)

k|k,m
(�)
k|k,P

(�)
k|k}

Lk|k
�=1)

end for

compact subset

Aa = {s : ‖s − ra‖ ≤ 2da/3} , (64)

the generalized likelihood function (63) can be written
in terms of an indicator function as

g̃k(ζ = a | xk) = 1Aa (sk). (65)

By this likelihood function, (57) and (58) simplify to

w
(�)
k|k =

w
(�)
k|k−1

1 − �k

(
1 − pD(m

(�)
k|k−1;Sk)

+ pD(m
(�)
k|k−1;Sk)

∑
ζ∈Zk

1Aζ
(m(�)

s,k|k−1)

λcc̃(ζ )

)
, (66)

�k =
Lk|k−1∑
�=1

w
(�)
k|k−1pD(m

(�)
k|k−1;Sk) (67)

−
∑
ζ∈Zk

Lk|k−1∑
�=1

w
(�)
k|k−1pD(m

(�)
k|k−1;Sk)1Aζ

(m(�)
s,k|k−1;Sk)

λcc̃(ζ )
,

where λc denotes the clutter cardinality mean and the
density of clutter c̃(ζ ) is taken to be uniform over
support A.

The anchor locations and bounds ∂Aa are shown in
Fig. 6. The gray shaded regions indicate exclusion re-
gions the person cannot occupy due to physical barri-
ers, and thus, pk(x) = 0 in these regions. Detections are
reported every Tk = 15 [s] and include an average of
λc = 0.25 false detections. True detections are reported
with a probability of detection pD(xk;Sk) given by (51)
with pD(sk) = 0.9 and composite detection FoV

Sk =
⋃
a∈A

Aa. (68)

The object state is governed by the transition density

πk|k−1(x|x′) = N (x; Fk−1x′, Qk−1), (69)

where

Fk =

⎡
⎢⎢⎣
1 0 Tk 0
0 1 0 Tk
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (70)

Qk =

⎡
⎢⎢⎢⎢⎣

�T 3
k

3 0 �T 2
k

2 0

0 �T 3
k

3 0 �T 2
k

2
�T 2

k
2 0 �Tk 0

0 �T 2
k

2 0 �Tk

⎤
⎥⎥⎥⎥⎦ , (71)

and � = 0.004 is the intensity of the process noise.
The simulated reports are processed by the GM

Bernoulli for imprecise measurements (Algorithm 3)
and the Bernoulli PF [23] at each time step to obtain
the posterior probability of existence and state density.

Fig. 6. Anchor locations and association extents.
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Fig. 7. (a) True trajectory and GM Bernoulli filter state estimates
over time, where position state densities are shown for time steps
k = 15, 25, 55 (t = 225, 375, 825 [s]), and (b) posterior probability of

existence over time.

The Bernoulli PF is implemented using 5000 particles
and aMarkov chainMonte Carlo (MCMC)move step to
improve sample diversity, as described in [23]. By split-
ting the density about the relevant anchor boundaries,
the imprecise measurements are incorporated to refine
the probabilistic belief and estimate the person’s tra-
jectory over time. The true trajectory, minimum mean
square error (MMSE) estimates, and densities at select
time steps are shown in Fig. 7(a). The Bernoulli PF es-
timates and densities are omitted for clarity. As shown,
the true trajectory is consistently within the spatial dis-
tribution support.

The posterior probability of existence is shown over
time in Fig. 7(b). The probability of existence of the
object is consistently near one, falling momentarily to
rk|k = 0.6. This drop in probability appropriately reflects
the increased uncertainty after three consecutive misde-
tections (the latter two of which are due to the object
traveling outside detection bounds). As shown, the GM
and PF approximations produce similar probability of
existence estimates,where only slight differences are ob-
served at times of nondetection.

Fig. 8. MMSE estimation error and conditional covariance RSS of
position (a) and velocity (b) states.

TheGMBernoulli filter for imprecise measurements
is exceptionally computationally efficient, resulting in a
total simulation time of 45.2 s. When applied to identi-
cal measurement data, the Bernoulli PF simulation re-
quired 128.5 s. In fact, the largest computational bottle-
neck of the presentedGMapproach is theGMreduction
step. A two-pass reduction strategy was found to effec-
tively balance computational cost and estimation accu-
racy. The Mahalanobis distance-based merge strategy of
[31] quickly reduces the number of GM components in
the first pass. Then, if needed, the Kullback–Leibler di-
vergence (KLD)-based Runnals algorithm [42] further
reduces the mixture size to Lmax = 100.

The state estimation performance is quantified us-
ing the MMSE estimate error and the root sum squared
(RSS) of the posterior conditional covariance, as shown
in Fig. 8. The estimation performance of the GM filter
is very similar to the Bernoulli PF, with neither method
exhibiting a clear advantage in terms of estimation ac-
curacy.The velocity root-sum-square (RSS) quickly con-
verges to a steady state of approximately 0.7 [dist/s], the
lower bound of which is largely determined by the per-
son’s assumed maneuverability and associated process
noise covariance. Similarly, the largest uncertainty is ob-
served near k = 21 (t = 315 [s]), after three consecutive
misdetections.

While this example considers single-object esti-
mation, the expansion approximation and splitting
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approach described in Section V-B are applicable to any
GM RFS filter and thus can be used in multiobject esti-
mation problems. In the presented example of tracking a
person of interest and itsmultiobject extension involving
multiple persons of interest, the posterior RFS density
can be used to intelligently query or deploy resources
to find or intercept persons of interest. In this case, one
particularly useful statistic is the probability that a given
number of individuals are near a particular anchor. This
information is fully described by the RFS FoV cardinal-
ity distribution, as presented in the following section.

VI. FOV CARDINALITY DISTRIBUTION

This section presents pmfs for the cardinality of ob-
jects inside a bounded FoV S given different global mul-
tiobject densities f (·). Previous work derived expres-
sions for the first and second moments of FoV cardi-
nality distributions given Poisson, independently and
identically distributed cluster (i.i.d.c.) [45], and multi-
Bernoulli (MB) [46] global densities. This section in-
stead develops full pmfs expressions, from which first,
second, or any higher-order moments can be easily ob-
tained [47, Ch. 30]. A similar concept is discussed in [37]
in the context of “censored” RFSs, and a general ex-
pression is provided in terms of set derivatives and be-
lief mass functions. This paper presents a new direct ap-
proach to obtain FoV cardinality distributions based on
conditional cardinality functions and derives new sim-
plified expressions for representative RFS distribution
classes. The Poisson, i.i.d.c.,MB, and generalized labeled
multi-Bernoulli (GLMB) distributions are considered in
Sections VI-A, VI-B, VI-C, and VI-D, respectively.

The probability of n objects existing inside FoV S
conditioned on X can be written in terms of the indi-
cator function as

ρS (n |X ) =
∑
Xn⊆X

[1S (·)]Xn
[1 − 1S (·)]X\Xn

, (72)

where the summation is taken over all subsets Xn ⊆ X
with cardinality n.Given the RFS density f (X ), the FoV
cardinality distribution is obtained via the set integral as

ρS (n) =
∫

ρS (n |X ) f (X )δX. (73)

Expanding the integral,

ρS (n) =
∞∑
m=n

1
m!

∫
Xm

ρS (n | {x1, ..., xm}) f ({x1, ..., xm})dx1· · ·dxm.

(74)

Remark: The results presented in this section can be triv-
ially extended to express the predicted cardinality of
object-originated detections Z (excluding false alarms)

by noting that

ρS (nZ |X ) =
∑
Xn⊆X

[pD(·)1S (·)]Xn
[1 − pD(·)1S (·)]X\Xn

,

(75)

where nZ = |Z|.

A. Poisson Distribution

The density of a Poisson-distributed RFS is

f (X ) = e−NX [D]X , (76)

where NX is the global cardinality mean andD(x) is the
probability hypothesis density (PHD), or intensity func-
tion, of X , which is defined on the single-object space X.
One important property of the PHD is that its integral
over a closed set on X yields the expected number of ob-
jects within that set, i.e.,

E[|X ∩ T |] =
∫
T
D(x)dx. (77)

Proposition 1 Given a Poisson-distributed RFS with
PHD D(x) and global cardinality mean NX , the cardi-
nality of objects inside the FoV S ⊆ Xs is distributed ac-
cording to

ρS (n) =
∞∑
m=n

e−NX

n!(m− n)!
〈1S ,D〉n〈1 − 1S ,D〉m−n. (78)

Proof: Substituting (76) into (74), we get

ρS (n) =
∞∑
m=n

1
m!

e−NX

∫
Xm

∑
Xn⊆X

[1S (·)D(·)]Xn

· [(1 − 1S (·))D(·)]X\Xn
dx1 · · · dxm. (79)

The nested integrals of (79) can be distributed, rewriting
the second sum over n-cardinality index sets In as

ρS (n) =
∞∑
m=n

1
m!

e−NX
∑

In⊆Nm

[∫
1S (x(·))D(x(·))dx(·)

]In

·
[∫

(1 − 1S (x(·)))D(x(·))
]Nm\In

. (80)

Note that the value of the integrals is independent of the
product index i, and thus

ρS (n) =
∞∑
m=n

e−NX
1
m!

m!
n!(m− n)!

〈1S ,D〉n〈1 − 1S ,D〉m−n,

(81)

from which (78) follows. �
Remark: Computation of (78) requires only one in-

tegral computation, namely 〈1S ,D〉, which can be found
either by summing the weights of (11) or throughMonte
Carlo integration. Using the integral property of the
PHD (77), the integral

〈1 − 1S ,D〉 = NX − 〈1S ,D〉. (82)
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Furthermore, for m � NX , the summand of (78) is neg-
ligible, and the infinite sum can be safely truncated at an
appropriately chosen m = mmax(NX ).

B. Independent Identically Distributed Cluster
Distribution

The density of an i.i.d.c. RFS is

f (X ) = |X |! · ρ(|X |)[p]X , (83)

where ρ(n) is the cardinality pmf and p(x) is the single-
object state pdf.

Proposition 2 Given an i.i.d.c.-distributed RFS with car-
dinality pmf ρ(·) and state density p(·), the cardinality of
objects inside the FoV S is distributed according to

ρS (n) =
∞∑
m=n

ρ(m)
(
m
n

)
〈1S , p〉n〈1 − 1S , p〉m−n, (84)

where
(m
n

)
is the binomial coefficient.

Proof: Substituting (83) into (74), we get

ρS (n) =
∞∑
m=n

1
m!

m!ρ(m) (85)

∫
Xm

∑
Xn⊆X

·[1S (·)p(·)]Xn
[(1 − 1S (·))p(·)]X\Xn

dx1· · ·dxm.

The integral can be moved inside the products so that

ρS (n) =
∞∑
m=n

ρ(m)
∑

In⊆Nm

[∫
1S (x(·))p(x(·))dx(·)

]In

·
[∫

(1 − 1S (x(·)))p(x(·))dx(·)

]Nm\In
.

(86)

Equation (84) follows from (86) by noting that there
are

(m
n

)
unique unordered n-cardinality index subsets

of Nm. �

C. MB Distribution

The density of a MB distribution is [37, p. 102]

f (X ) =
[(

1 − r(·)
)]NM ∑

1≤i1 �=···�=in≤M

[
ri(·) pi(·) (x(·))

1 − ri(·)

]Nn

,

(87)

where M is the number of MB components and maxi-
mum possible object cardinality, ri is the probability that
the ith object exists, and pi(x) is the single-object state
density of the ith object if it exists.

Proposition 3 Given at MB density of the form of (87),
the cardinality of objects inside the FoV S is distributed

according to

ρS (n) =
[(

1 − r(·)
)]NM

·
∑

I1�I2⊆NM

δn(|I1|)
[

〈1S , r(·)p(·)〉
1 − r(·)

]I1 [ 〈1 − 1S , r(·)p(·)〉
1 − r(·)

]I2
,

(88)

where the summation is taken over all mutually exclusive
index partitions I1, I2 such that I1 ∪ I2 ⊆ NM.

Proof of Proposition 3 is given inAppendix C.Within
a given summand term of (88), the index sets I1, I2, and
NM\(I1 ∪I2) can be interpreted as the indices of objects
within the FoV, objects outside the FoV, and nonexis-
tent objects, respectively. Following the same procedure,
similar results for the labeled multi-Bernoulli (LMB) [3]
and multi-Bernoulli mixture (MBM) [48] RFS distribu-
tions may be obtained.

Direct computation of (88) is only feasible for small
M due to the sum over all permutations I1 � I2 ⊆ NM.
For largeM, an alternative formulation based on Fourier
transforms allows fast numerical computation. For each
MB component, the integral 〈1S , p(i)〉 is computed either
by summing the weights of the partitioned GM or by
Monte Carlo integration. Using the integral results, the
probability of object i existing inside the FoV is found
as

r(i)S = r(i)〈1S , p(i)〉. (89)

Then, as shown in [49], (88) can be equivalently written
as

ρS (n) = 1
M + 1

× (90)

M∑
m=0

{
e− j2πmn/(M+1)

M∏
k=1

[
r(k)S e j2πm/(M+1) + (1 − r(k)S )

]}

and solved using the discrete Fourier transform, for
which a number of efficient algorithms exist.

D. GLMB Distribution

The density of a GLMB distribution is given by [2]

f̊ (X̊ ) = �(X̊ )
∑
ξ∈�

w(ξ )(L(X̊ ))[p(ξ )]X̊ , (91)

where each ξ ∈ � represents a history of measure-
ment association maps, each p(ξ )(·, �) is a probability
density on X, and each weight w(ξ ) is nonnegative with∑
(I,ξ )∈F (L)×�

w(ξ )(I) = 1. The label of a labeled state x̊ is

recovered by L(x̊), where L : X × L 
→ L is the pro-
jection defined by L((x, �)) � �. Similarly, for LRFSs,
L(X̊ ) � {L(x̊) : x̊ ∈ X̊ }. The distinct label indicator
�(X̊ ) = δ(|X̊ |)(|L(X̊ )|) ensures that only sets with dis-
tinct labels are considered.
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Proposition 4 Given a GLMB density f̊ (X̊ ) of the form
of (91), the cardinality of objects inside a bounded FoV S
is distributed according to

ρS (n) =
∑

(ξ,I1�I2)∈�×F (L)

w(ξ )(I)δn(|I1|)〈1S , p〉I1〈1 − 1S , p〉I2 . (92)

Proof: Equation (72) can be rewritten to accommo-
date the labeled RFS as

ρS (n | X̊ ) =
∑
X̊ n⊆X̊

[1S (·)]X̊ n
[1 − 1S (·)]X̊\X̊ n

. (93)

If X̊ is distributed according to the LRFS density f̊ (X̊ ),
the FoV cardinality distribution is obtained via the set
integral

ρS (n) =
∫

ρS (n | X̊ ) f̊ (X̊ )δX̊ . (94)

Expanding the integral,

ρS (n)

=
∞∑
m=n

1
m!

∑
(�1,...,�m)∈Lm

∫
X
m

ρS (n | {(x1, �1), ..., (xm, �m)})

· f̊ ({(x1, �1), ..., (xm, �m)})dx1 · · · dxm. (95)

Defining p(ξ,�)(x) � p(ξ )(x, �), substitution of (91) and
(93) yields

ρS (n) =
∞∑
m=n

1
m!

m!
∑

{�1,...,�m}∈Lm

∑
ξ∈�

w(ξ )({�1, . . . , �m})

∑
In⊆{�1,...�m}

〈1S , p(ξ,·)〉In〈1 − 1S , p(ξ,·)〉{�1,...,�m}\In

=
∑

(ξ,I)∈�×F (L)

w(ξ )(I)
∑
In⊆I

〈1S , p(ξ,·)〉In〈1 − 1S , p(ξ,·)〉I\In ,

(96)

from which (92) follows. �
Remark: Substitution of n = 0 in (92) gives the

GLMB void probability functional [6, Eq. (22)], which,
while less general, has theoretical significance and prac-
tical applications in sensor management.

VII. SENSOR PLACEMENT EXAMPLE

The FoV statistics developed in this paper are
demonstrated through a sensor placement optimization
problem subject to multiobject uncertainty. The global
distribution is assumed to beMB-distributed.Numerical
simulation is performed for the case of 100 MB compo-
nents, with probabilities of existence randomly chosen
between 0.35 and 1. Each MB component has a Gaus-
sian density and randomly chosen mean and covariance.
To visualize the global distribution, the PHD is shown in
Fig. 9.

Fig. 9. PHD of the global MB distribution with 100 potential
objects, where object means are represented by orange circles and the
bounds of the FoV that maximize the FoV cardinality variance are

shown in white.

The PHD is analogous to the expected value for
RFSs and is defined as [50]

D(x) � E[δX (x)] =
∫

δX (x) · f (X )δX, (97)

for an arbitrary RFS X with density f (X ), where

δX (x) �
∑
w∈X

δw(x). (98)

It follows that the PHDof anMBRFS (87) is [37, p. 102]

D(x) =
M∑
i=1

ripi(x). (99)

The objective of the sensor control problem is to
place the FoV, comprising a square of 1 × 1 dimensions,
in the ROI (Fig. 9) such that the variance of object car-
dinality inside the FoV is maximized. This objective can
be interpreted as placing the FoV in a region of the ROI
where the object cardinality is most uncertain.A related
objective thatminimizes the variance of the global cardi-
nality using CB-MeMBer predictions was first proposed
in [5]. For each candidate FoV placement, the FoV car-
dinality pmf is given by (88) and efficiently computed
using (90). The variance of the resulting pmf is shown as
a function of the FoV center location in Fig. 10. The op-
timal FoV center location is found to be (−0.8,−1.25).

Fig. 10. FoV cardinality variance as a function of FoV center
location, where the red star denotes the maximum variance point.
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Fig. 11. (a) True trajectory and state estimates over time, where
position state densities are shown for time steps k = 15, 25, 55

(t = 225, 375, 825 [s]), and (b) posterior probability of existence over
time.

A compelling result is that, by virtue of the bounded
FoV geometry, spatial information is encoded in the FoV
cardinality pmf. It can be seen that the optimal FoV
(Fig.9) has boundary segments (lower half of left bound-
ary and right half of lower boundary) that bisect clusters
ofMB components.These boundary segments divide the
components’ single-object densities such that significant
mass appears inside and outside the FoV, increasing the
overall FoV cardinality variance.

VIII. CONCLUSIONS

This paper presents an approach for incorporat-
ing bounded FoV geometry into state density updates
and object cardinality predictions via FISST. Inclu-
sion/exclusion evidence such as negative information
and soft evidence is processed in state density updates
via a novel Gaussian splitting algorithm that recur-
sively refines a Gaussian mixture approximation near
the boundaries of the discrete FoV geometry. Using
FISST,cardinality pmfs that describe the probability that
a given number of objects exist inside the FoV are de-
rived. The approach is presented for representative la-
beled and unlabeled RFS distributions and, thus, is ap-
plicable to a wide range of tracking, perception, and sen-
sor planning problems.

APPENDIX A Inclusion Consistency Example

Consider a plane of constant y2 = ȳ2(9)—that is,
j = 2 and l = 9. As shown in Fig. 11, the index l = 9
denotes the ninth grid plane from the bottom. To eval-
uate inclusion/exclusion consistency in this plane, an ar-

bitrary reference point is selected as ȳ2,9 (where the cor-
responding indices are i′1 = 2 and i j = i2 = l = 9). Note
that this reference index tuple (2,9) belongs to G (de-
picted by the set of orange dots) and lies in the plane of
constant i j = l.

It is apparent from Fig. 11 that ȳ2,9 /∈ S (�)
y . Thus, the

corresponding component inclusion variable (23) for the
selected reference point is

d(�)
i′1,i2

= d(�)
2,9 = 1S (�)

y
(ȳ2,9) = 0. (100)

In the following inclusion/exclusion consistency check,
which follows from (25), the inclusion variables are com-
puted for all remaining points in the plane and compared
to d2,9:

s(�)j (l) = s(�)2 (9) =
∏

G,i2=9

δd(�)
2,9
(d(�)

i1,9
)

= δd(�)
2,9
(d(�)

2,9) · δd(�)
2,9
(d(�)

3,9) · · · δd(�)
2,9
(d(�)

14,9)

= δ0(0) · δ0(0) · · · δ0(0) = 1, (101)

where it is noted that i1 ranges from 2 to 14 in the con-
sidered plane (in which there are thirteen corresponding
orange dots). Thus, s(�)j (l) = 1 signifies that the plane
is indeed consistently inside or consistently outside the
FoV, the latter of which is easily verified by inspecting
Fig. 11.

APPENDIX B Taylor Series Expansion About Means

Equation (53) can be written compactly as

pk|k(x) = α(x)pk|k−1(x) (102)

=
Lk|k−1∑
�=1

α(x)w(�)
k|k−1N (x; m(�)

k|k−1, P
(�)
k|k−1), (103)

where

α(x) =
1 − pD(x;Sk) + pD(x;Sk)

∑
ζ∈ϒk

g̃k(ζ|x)
λcc̃(ζ)

1 − �k
(104)

and where the functional dependence of α on the FoV
and measurement is omitted for brevity. The function
α(x) can be approximated locally by a Taylor series ex-
pansion about a given component mean as

α(x) ≈ α(m(�)
k|k−1) +

(
∂α

∂x

)∣∣∣∣
x=m(�)

k|k−1

(x − m(�)
k|k−1) + · · · .

(105)

To zeroth order, α(x) ≈ α(m(�)
k|k−1), such that

pk|k(x) ≈
Lk|k−1∑
�=1

α(m(�)
k|k−1)w

(�)
k|k−1N (x; m(�)

k|k−1, P
(�)
k|k−1),

(106)

from which (56)–(60) follow.
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APPENDIX C Proof of Proposition 3

Let K
(n)
M � {(i1, ..., in) : 1 ≤ i1 �= · · · �= in ≤ M}.

Then, (87) can be rewritten as

f (X ) =
[(

1 − r(·)
)]NM ∑

(Iσ )∈K
(n)
M

[
ri(·) pi(·) (x(·))

1 − ri(·)

]Nn

,

(107)

where Iσ denotes the (unordered) set {i1, ..., in} and
(Iσ ) denotes the (ordered) sequence (i1, ..., in) =
(ασ (1), ..., ασ (n)), where the n-tuple index set
{α1, ..., αn} ⊆ NM and σ is a permutation of Nn.

Substituting (107) into (74),

ρS (n) =
[(

1 − r(·)
)]NM

·
M∑
m=n

1
m!

∫
Xm

∑
(Iσ )∈K

(n)
M

δm(|Iσ |)
[
ri(·) pi(·) (x(·))

1 − ri(·)

]Nm

·
∑
Xn⊆X

[1S (·)]Xn
[1 − 1S (·)]X\Xn

dx1 · · · dxm. (108)

The last sum can be written in terms of label index sets
I1 � I2 = Iσ as

ρS (n) =
[(

1 − r(·)
)]NM

(109)

·
M∑
m=n

1
m!

∫
Xm

∑
(Iσ )∈K

(n)
M

δm(|Iσ |)
[
ri(·) pi(·) (x(·))

1 − ri(·)

]Nm

·
∑

I1�I2=Iσ

δn(|I1|)[1S (x(·))]{ j:i j∈I1}[1 − 1S (x(·))]{ j:i j∈I2}

dx1 · · · dxm,

where the innermost sum is taken over all mutually dis-
joint subsets I1, I2 such that I1 ∪ I2 = Iσ . Distributing
terms from the second summation,

ρS (n) =
[(

1 − r(·)
)]NM

(110)

·
M∑
m=n

1
m!

∫
Xm

∑
(Iσ )∈K

(n)
M

δm(|Iσ |)
∑

I1�I2=Iσ

δn(|I1|)

·
[
1S (x(·))ri(·) pi(·) (x(·))

1 − ri(·)

]{ j:i j∈I1}

·
[
[1 − 1S (x(·))]ri(·) pi(·) (x(·))

1 − ri(·)

]{ j:i j∈I2}
dx1 · · · dxm.

Because I1∩I2 = ∅, then {x j : i j ∈ I1}∩{x j : i j ∈ I2} = ∅
and the integral onX

m becomes a product of integrals on

X, such that

ρS (n) =
[(

1 − r(·)
)]NM

(111)

·
M∑
m=n

1
m!

∑
(Iσ )∈K

(n)
M

δm(|Iσ |)
∑

I1�I2=Iσ

δn(|I1|)

·
[ 〈1S , ri(·) pi(·)〉

1 − ri(·)

]{ j:i j∈I1} [ 〈1 − 1S , ri(·) pi(·)〉
1 − ri(·)

]{ j:i j∈I2}
.

Now note that the result of the innermost sum does
not depend on the permutation order of (Iσ ). Thus, the
property [51, Lemma 12], which states that for an arbi-
trary symmetric function h,∑
(i1,...,im)

h({i1, . . . , im}) = m!
∑

{i1,...,im}
h({i1, . . . , im}) (112)

is applied, yielding

ρS (n) =
[(

1 − r(·)
)]NM

(113)

·
M∑
m=n

∑
I1�I2⊆NM

δm(|I1 � I2|)δn(|I1|)

·
[

〈1S , r(·)p(·)〉
1 − r(·)

]I1 [ 〈1 − 1S , r(·)p(·)〉
1 − r(·)

]I2
.

The term δm(|I1 � I2|) is nonzero only when the com-
bined cardinality of I1 and I2 is equal tom—the index of
the outermost sum.Thus, the outermost sum is absorbed
by the second sum to give (88). �
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Variations of Joint Integrated
Data Association With Radar
and Target-Provided
Measurements

AUDUN G. HEM
EDMUND F. BREKKE

Target tracking algorithms are usually based on exteroceptive

measurements obtained from sensors placed in the center of some

surveillance area. However, information transmitted from surround-

ing targets will often also be available. This information, here dubbed

target-provided measurements, will often include valuable informa-

tion for a tracking system. We present a multitarget tracking algo-

rithm utilizing such measurements using a framework of joint inte-

grated data association. The use case we consider is maritime target

tracking using radar measurements combined with messages from the

automatic identification system. The full details of the tracking algo-

rithm are presented, including implementation-specific considerations

to account for the different natures of the incomingmeasurements.We

detail three different methods of handling the target-provided mea-

surements: one processing them as they arrive, i.e., sequentially, and

the others collecting and processing them at fixed intervals. The results

show that all three improve over the pure radar tracking algorithm and

similar state-of-the-art methods.

I. INTRODUCTION

One of the many important puzzle pieces for in-
creased degrees of autonomy in the maritime sector
is the ability of a ship to observe its surroundings.
To avoid collisions and safely navigate the waters, it
is necessary to know where the surrounding ships are
situated. For this to work safely and robustly, target
tracking algorithms have to provide precise estimates
of the position and direction of surrounding vessels,
also known as targets. Radar-based target tracking al-
gorithms have largely been the norm when navigat-
ing outside of close encounter harbor areas. There is,
however, also a standardized system to help with colli-
sion avoidance at sea: the automatic identification sys-
tem (AIS). This system provides target-provided mea-
surements with valuable information that could help
give better estimates than what only radar measurement
can provide. However, this valuable source of informa-
tion often remains unused in modern target tracking
algorithms.

When monitoring aircraft, target-provided mea-
surements are also used, with measurements based
on the automatic dependent surveillance–broadcast
(ADS-B) protocol.The latter protocol can, togetherwith
radar, be used in air traffic control to provide a bet-
ter picture of the airspace [4]. The availability of target-
providedmeasurementsmakes it possible to identify tar-
gets and utilize information that is impossible to get from
radar measurements alone, such as the ship destination.
For, e.g., long-time vessel prediction, the additional in-
formation provided by target-provided measurements
can be very valuable [31].

The two measurement types are inherently differ-
ent. The radar is attached to the ship, scanning the
surrounding area. The measurements are unlabeled,
can be false alarms, and can provide several detections
for each target. The last issue is often solved using a
clustering algorithm, while the problem of false alarms
has no single simple solution. The radar measurements
are also often noisier than the target-provided measure-
ments, with the noise becoming more prominent when
the target is far away. Target-provided measurements,
on the other hand, are sent out from the surrounding
ships as data packages containing not only the position
of the target but additional information as well, such
as the ID number of the transmitting ship. Because a
target needs to send a target-provided measurement
for it to be received, there are no false alarms, and
the precision of the transmitted kinematic information
is independent of the distance to the target because
the positional data comes from GPS measurements.
However, not all targets have a transmitter, and the
messages will often be received somewhat infrequently,
as high-frequency transmitting is not always required,
see, e.g., [19]. Thus, a robust target tracking system based
only on target-provided measurements will not be
feasible.
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There are two established approaches to the fu-
sion of sensor signals: track-to-track fusion and track-
to-measurement fusion [1]. Here track-to-measurement
fusion is examined, and a model suitable for incorpo-
rating target-provided measurements, and a tracking al-
gorithm utilizing this model, is presented. For example,
Gaglione et al. [13] have previously investigated track-
to-measurement fusion for radar and target-provided in-
formation. The tracking algorithm presented here dif-
fers from previous work in some significant ways. We
use a hybrid state framework based on [7], which can
include motion and visibility models in addition to tar-
get IDs. Furthermore, building upon [7], we derive the
tracking algorithm as a special case of the Poisson multi-
Bernoulli mixture (PMBM) filter originally proposed in
[34]. An important technical detail to enable this is to
model the birth model as a marked Poisson point pro-
cess (PPP), where the target IDs take the role of the
marks. The resulting algorithm can be seen as a gener-
alized version of joint integrated probabilistic data asso-
ciation (JIPDA) [24].

The contributions of this paper are as follows. It de-
rives a framework that includes target-provided mea-
surements based on a PMBM formulation of the JIPDA.
The resulting target tracker includes both a visibility
state and multiple kinematic models. Furthermore, the
paper details a sequential way of handling the incom-
ing target-provided measurements, a method more sim-
ilar to the one described in [13], and a method similar
to how radar measurements are processed. Lastly, we
present some implementation-specific considerations to
make when handling target-provided measurements in
a tracker.

The paper is organized as follows:We detail the prob-
lem formulation in Section III. In Section IV, we ex-
plain the structure of the hybrid state that facilitates
the inclusion of target-provided information.We present
the mathematical expressions needed for calculations
in Section V. In Section VI, three different methods
for handling the incoming measurements are detailed.
Section VII presents the implementation choices, to-
gether with considerations to make to accommodate
the target-provided measurements. Lastly, Section VIII
presents the results.We compare the performance of the
different measurement handling methods and how they
compare to using only radar and the method from [13].

II. BACKGROUND

This work builds upon the multitarget tracking
method presented in [7] and can be considered an ex-
tension of the framework described there. The tracking
algorithm, denoted as visibility interacting multiple
models joint integrated probabilistic data association
(VIMMJIPDA), combines interacting multiple models
(IMM) and a visibility state with the well-established
JIPDA framework. The tracking method was derived
with a basis in the PMBM filter [34].

Darko Musicki and Rob Evans introduced the
JIPDA in [24], where the concept of visibility is men-
tioned and indicates whether the tracked target is vis-
ible to the sensor or not. Later, e.g., [35] has ex-
plored visibility in connection with the problem of es-
timating target detectability. The JIPDA is an exten-
sion of the joint probabilistic data association (JPDA)
method developed by Yaakov Bar-Shalom [12], which
again is an extension of Bar-Shalom’s probabilistic
data association (PDA) method [3]. These methods
are well established in the target tracking community
and have been used for a range of different purposes,
such as collision avoidance for marine vessels [29], au-
tonomous navigation [11], and air traffic control [20].
Henk A. P. Blom and Yaakov Bar-Shalom introduced
the IMM method [5], and it has been used for sev-
eral decades in, e.g., air traffic control. Furthermore,
Musicki and Suvorova presented an IMM-JIPDA algo-
rithm in [25].

The PMBM filter and subsequent tracking algo-
rithms [15] utilize the PMBM density, which is the union
between a PPP and a multi-Bernoulli mixture (MBM).
The PPP represents unknown targets, i.e., undetected
targets hypothesized to exist, and the MBM represents
already detected targets. Links between PMBM and
JIPDA have been established in [34] (single kinematic
model, loopy belief propagation as an alternative to hy-
pothesis enumeration) and in [7] (multiple kinematic
models, standard hypothesis enumeration, and mixture
reduction).

Some work on the track-to-measurement fusion of
radar and target-provided measurements has been done
previously,both byHabtemariam et al. [17] andGaglione
et al. [13]. The first approach includes target-provided
measurements in a JPDA-like tracking algorithm, while
the second uses a framework that also includes track
existence. The second approach utilizes probabilistic
graphical models and loopy belief propagation for the
calculations. Furthermore, Gaglione et al. use particle
filtering for performing the calculations. Both works
perform data association on batches of target-provided
measurements simultaneously as on the radar measure-
ments. Gaglione et al. nevertheless consider that target-
provided measurements can arrive at any time. They
also share similar modeling of the target-provided mea-
surement IDs, from which the model presented here de-
viates. However, neither method directly addresses the
initialization of tracks using target-provided measure-
ments. In [21], a multiple hypothesis tracking (MHT)
approach is presented, which also showed promising
results but relied on preprocessing of the AIS mea-
surements. Track-to-track fusion using radar and AIS
measurements has also been done previously, e.g., in
[9]. Here, a multisensor network for maritime surveil-
lance is described, utilizing several sensors, including
radar and AIS. More recently, research has been con-
ducted into the track-to-track association of radar- and
AIS-tracks [27].
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III. PROBLEM FORMULATION

The unknown target intensity u(y) describes the not
yet discovered targets present in the surveillance area.
We model the unknown targets as a marked PPP, which
is equivalent to a PPP on the Cartesian product of the
space Rnx and the discrete spaces the discrete hybrid
states can take values from [30, p. 205]. In its general
form, this process is

b(y) = p(v)p(τ |v)p(s|v, τ )pγ (x|s, v, τ ), (1)

where pγ (x|s, v, τ ) is an intensity function on the the
space Rnx , and p(·) are distributions over the discrete
states. Rather than using the birth intensity directly, we
use Proposition 1 from [7] to get the converged unknown
target intensity

u(y) =Uov
uξ

τ
uμτ

u fu(x). (2)

Here,U is the overall birth rate of new targets, ov
u is the

probability of visibility state v, ξ τ
u is the probability of

ID τ , μτ
u is the probability of the kinematic mode s, and

fu(x) is the distribution of the kinematic state. The sub-
script u indicates that the individual expressions are part
of the unknown target intensity. Equation (2) does not
contain the initial values of new targets, as it is a function
of the birth intensity and the transition probability ma-
trices. However, for simplicity, the unknown target val-
ues are tuned directly and can be viewed as initial values.

Remark 1. This method of modeling the target IDs
through a marked PPP implies that two targets can have
the same ID. The probability of two targets having the
same ID in a surveillance area with relatively few tar-
gets is minuscule, but it is nevertheless a possibility [10].
We also note how themodeling of actual,observable IDs
here deviates from theoretically assigned IDs.The labels
in labeled random finite sets (RFSs), introduced in [32],
are unobservable and analogous to the identifying tags
in [14], which ensure the uniqueness of the elements of
a RFS. The IDs described here, however, serve no such
purpose and can be assumed nonunique without break-
ing the underlying mathematical assumptions of RFSs.

M2: We model the survival probability as a function of
time since the last update. A constant parameter PSc de-
notes the probability of survival after one second. Thus,
the survival probability of an interval between times tk−1

and tk, denoted as �t, becomes

PS(�t) = P�t
Sc . (3)

M3: The ID numbers τ are assumed to be static, in line
with the physical reality of the AIS protocol. The IDs
are manually set at the installation of the AIS system.
We assume that the ID numbers of the unknown targets
are distributed according to

ξ τ
u =

⎧⎨
⎩

ξ 0
u if τ = 0
1 − ξ 0

u

|V| − 1
if τ > 0

, (4)

where ξ 0
u is some parameter denoting the belief that the

target has no ID and |V| is the number of all possible ID
numbers in addition to 0.Not all targets have an ID, and
we represent this non-ID by the value τ = 0. If τ = 0,
the target does not transmit measurements.

M4: From time step k−1 to k, the evolution of a target
is given by

fy(yk|yk−1) = f sτx (xk|xk−1)π sk−1skwvk−1vk . (5)

The π -matrix contains theMarkov chain probabilities of
changing between different kinematic models. The ma-
trixw contains theMarkov chain probabilities of the tar-
get switching between the visible state v = 1 and invisi-
ble state v = 0. The ID numbers are assumed static and
therefore do not change during a prediction.

M5: For radar measurements, the detection probabil-
ity PD(yk) varies based on the visibility state v, and we
define it as

PD(yk) =
{
PD if v = 1
0 if v = 0 , (6)

where PD is a constant describing the probability of a
target being detected by the radar at a given time step.

For target-provided measurements, which are as-
sumed to give no missed detections, we have that

PD(yk) =
⎧⎨
⎩
1 if a target-provided measurement

is received
0 otherwise

(7)

independent of the visibility state. Thus, no conclusions
about a target are made from the absence of target-
provided measurements. Trying to keep track of when a
vessel should transmit measurements is a difficult prob-
lem that, e.g., would be subject to intentional random-
ness from the protocol [6].

M6: Radar clutter measurements are assumed to fol-
low a Poisson process with intensity λ. The target-
provided measurements do not contain clutter, the same
as if they are following a Poisson process with intensity 0.

M7: The radar measurements are assumed to be
synchronized and to arrive simultaneously at a fixed fre-
quency. The synchronicity means that when radar mea-
surements arrive at time step k, the set of radar measure-
ments contains measurements from all detected targets
at time step k, in addition to clutter measurements. The
radar measurement likelihood is denoted as f Rz (zk|yk).
M8: The target-provided measurements can arrive
whenever and are not synchronized. Thus, a transmit-
ted measurement can be received at any time from any
target. We do not assume that targets transmit mea-
surements simultaneously, contrary to what we do for
radar measurements. Whenever a target-provided mea-
surement arrives, however, the time of arrival is assumed
to be known.Themeasurement likelihood for the target-
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provided measurements is

fAz (zk|yk) = fp(pk|yk) fτ (τ zk |τ ), (8)

where zk is the whole measurement and pk only contains
the kinematic data of the measurement. Furthermore,

fτ (τ zk |τ ) =

⎧⎪⎪⎨
⎪⎪⎩
PC if τk = τ

zk
k

1 − PC
|V| − 1

if τk �= τ
zk
k and τ > 0

0 if τ = 0

, (9)

where PC is a fixed parameter describing the confidence
in the ID number not being corrupted, denoted as the
confidence probability. The reasoning behind the above
equation comes from the observation that the likeli-
hood of a transmitted measurement coming from a tar-
get without an ID is zero. Furthermore, the chance of a
transmitted ID being erroneous makes it a possibility, al-
beit small, that any ID can be the correct one.

IV. HYBRID STATES AND THE PMBM

As formulated in [2, p. 441], a hybrid state is a state
where the state space contains both discrete and contin-
uous states or uncertainties.This structure is useful as the
kinematic state will be continuous, while, e.g., the choice
of kinematic model for the target will be discrete.

A PMBM filter represents the posterior multitar-
get density for discovered targets as a weighted sum of
multi-Bernoulli densities.These involveweights for each
of the multi-Bernoullis, and kinematic densities and ex-
istence probabilities for each of theBernoullis.The PMB
filter, which is essentially the same as a JIPDA, approx-
imates the sum of multi-Bernoullis by a single multi-
Bernoulli at the end of each estimation cycle.

Using the equations from [34], one can get general
expressions for the weight, existence, and states irre-
spective of the sensor type, assuming the sensors gen-
erate measurements adhering to the assumptions made
in Assumption 2 in [34]. The assumptions hold for both
target-provided and radar measurements. The inclusion
of IDs in the target-providedmeasurements is contained
in the measurement likelihood function, and they do
not breach any independence assumptions. The goal of
this section is to extract expressions for the probabilistic
properties of the individual hybrid state elements.

From [34],we have that the weightw, existence prob-
ability r, and distribution f (y) of a single Bernoulli in
general can be written as

w = g(y) + h[1], (10)

r = h[1]
g(y) + h[1]

, (11)

f (y) = h(y)
h[1]

(12)

for some functions g and h of the state y. The notation [·]
indicates a linear functional, defined as

g[h] =
∫
g(x)h(x)dx. (13)

These are useful tools for compactly writing normaliza-
tion constants and likelihoods. For later use, it is conve-
nient to find general expressions for the individual states
in the hybrid state y. Using the approximation from [7,
Remark 6] that the visibility is independent on the other
states, we can write h(y) = h(v)h(τ )h(s|τ )h(x|τ, s). We
get the individual states by using the rule of conditional
probability. Starting with the kinematic state x, it can be
acquired by

f t (x|s, τ, v) = f (x, s, τ, v)∫
f (x̃, s, τ, v)dx̃

=
h(x, s, τ, v)

h[1]∫
h(x̃, s, τ, v)dx̃

h[1]

= h(x, s, τ, v)∫
h(x, s, τ, v)dx

= h(v)h(x, s, τ )
h(v)

∫
h(x̃, s, τ, v)dx̃

= h(x, s, τ )
h(s, τ )

, (14)

where we have omitted the time indices for brevity. The
˜(·) notation is used for latent variables, which disap-
pear by marginalization. Furthermore, the absence of
the visibility state v in the final expression means that
f t (x|s, τ, v) = f t (x|s, τ ). Similarly, the mode probabili-
ties are

f t (s|τ ) = μtτ s = h(s, τ )
h(τ )

, (15)

the ID probabilities are

f t (τ ) = ξ tτ = h(τ )
h[1]

, (16)

and the visibility probabilities are

f t (v) = otv = h(v)
h[1]

. (17)

Note that
∑

τ̃

∑
s̃

∫
h(x̃, s̃, τ̃ )dx̃ = h[1], which essen-

tially acts as a normalization constant. Independencies
between the states will make it possible to reduce the
needed amount of marginalization, as they will appear
both in the numerator and the denominator. The inde-
pendencies will depend on the model choices and are
written here according to the assumptions in Section III.
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V. INCLUDING TARGET-PROVIDED MEASUREMENTS
IN THE VIMMJIPDA

In the VIMMJIPDA, the unknown target intensity
u(y) is assumed stationary and is left unchanged during
the prediction and updating of the estimates. We make
the same assumption here. This assumption means that
only the Bernoulli components have to be considered,
and is further simplified by following the JIPDAmethod
of performing mixture reduction. That is, we merge all
Bernoullis originating in the same measurement into a
single Bernoulli after each update.Thus,we can omit the
weights of the association hypotheses of previous time
steps can due to marginalization. Table II shows the ex-
pressions for updating and predicting theBernoulli com-
ponents from [34]. These are adapted to simplify inser-
tion in (10)–(12) and (14)–(17). Furthermore, they are
simplified to reflect the stationary unknown target inten-
sity and themarginalization over theweights duringmix-
ture reduction.As the measurement model assumptions
made in [34] hold with regards to both radar and target-
provided measurements, both f Rz (z|y) and fAz (z|y) can
be considered special cases of the more general fz(z|y)
in the table. The expressions for predicting and updating
the Bernoulli estimates based on the potential informa-
tion acquired by the sensor updates follow.

A. Prior

For a single track,which in the context of this paper is
analogous to a Bernoulli, we write the hybrid state prior
distribution as

f tk−1(y) = f tk−1(x|τ, s)ξ tτk−1μ
tτ s
k−1o

tv
k−1, (18)

while the prior existence probability is rtk−1. As men-
tioned above, we merge all the hypotheses of the pre-
vious time step, giving wt

k−1 = 1. The prior is a joint
distribution over the continuous kinematic state and the
discrete potential IDs, kinematic modes, and visibility
states. In the following propositions, only the probabil-
ity of the target being in the visible state is presented,
i.e., ot1, which we denote as ηt . The prior is decomposed
into several states conditioned on the different discrete
states. An example of the structure of a prior with two
possible IDs and two possible kinematic modes is shown
in Fig. 1. The expressions in the square boxes are not
calculated themselves but can be constructed from the
other expressions.

B. Prediction

All tracks are predicted from the previous time step
k− 1 to the current time step k. The predicted probabil-
ities and densities are denoted by the subscript (·)k|k−1.

Proposition 1. The prediction for the existence proba-
bility rt , the visibility probability ηt , the ID probabilities
ξ tτ , the mode probabilities μtτ s, and the kinematic density

Table I
Nomenclature

a Association hypothesis
b(·) Birth intensity function
1	(·) Indicator function
H Measurement matrix
H∗ Complementary measurement matrix
N (·) Gaussian probability density function
μ Mode probabilities
η Probability of a target being visible
ξ ID probabilities
f (·) Generic (single-target) probability density function (pdf)
fy(·) Transition density for hybrid state
fz(·) Measurement density conditional on hybrid state
F Process model transition matrix
g[h] functional with test function
h Generic hybrid state probability density function
j Measurement index (superscript)
k Time step index (subscript)
�t Interval between current and preceding time step
λ Poisson intensity for false alarms
n Number of tracks
o Visibility probabilities
PSc Constant survival probability
PD Detection probability
Pv Initial velocity covariance
π Mode transition probabilities
Q Process noise covariance matrix
r Existence probability
R Measurement noise covariance matrix
Rc Cartesian measurement noise covariance contribution
Rp Polar measurement noise covariance contribution
s Model index (superscript)
τ ID number (superscript)
t Track index (superscript)
u Poisson intensity of unknown targets
U Unknown target intensity strength
v Visibility state (superscript)
v Process noise
w Measurement noise
ω Visibility transition probabilities or turn rate
	 Surveillance region
x Kinematic (continuous) state vector
y Hybrid state vector
z Measurement vector
A Target-provided (AIS) specific entity
R Radar specific entity
(·)k A (typically posterior) quantity at time step k
(·)k|k−1 A predicted quantity at time step k
(·̂) A Kalman filter estimate
(·̃) Latent variables that are marginalized away
(·)0 An initial quantity. Further meaning is context-dependent.
(·)u Unknown target intensity parameter after convergence

f t (x|τ, s) are done as
rtk|k−1 = rtk−1PS(�t), (19)

ηtk|k−1 = (1 − ηtk−1)w
01 + ηtk−1w

11, (20)

ξ tτk|k−1 = ξ tτk−1, (21)

μtτ s
k|k−1 =

∑
s̃

μtτ s̃
k−1π

s̃s(�t), (22)
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Table II
Expressions for Creating, Updating, and Predicting the Bernoulli Components

g h[1] h(y)

New target λ u[PD(ỹ) fz(z|ỹ)] u(y)PD(y) fz(z|y)
Missed detection 1 − rtk|k−1 rtk|k−1 f [1 − PD(ỹ)] rtk|k−1 fk|k−1(y)(1 − PD(y))
Detection 0 rtk|k−1 f [PD(ỹ) fz(z|ỹ)] rtk|k−1 f

t
k|k−1(y)PD(y) fz(z|y)

Prediction 1 − rtk−1 f [PS(ỹ)] rtk−1 f [PS(ỹ)] rtk−1

∫
f tk|k−1(y|ỹ)PS(ỹ) fk−1(ỹ))dỹ

f tk|k−1(x|τ, s) = ∫
fy(x|τ, s, x̃) f tk−1(x̃|τ, s)dx̃, (23)

where

f tk−1(x̃|τ, s) =
∑
s̃

μtτ s̃
k−1π

s̃s f tk−1(x̃|τ, s̃)∑
s̃ μ

tτ s̃
k−1π

s̃s(�t)
. (24)

Proof. The proof builds upon [7], but is modified to
also account for the inclusion of the IDs in the state vec-
tor. It should be noted that the survival probability is
only dependent on the times of the measurements’ ar-
rival, which are independent of the state. Because the
IDs are assumed to be static the transition model for the
IDs becomes a Kronecker delta δτ τ̃ . It is defined as

δτ τ̃ =
{
1 if τ = τ̃

0 if τ �= τ̃
. (25)

First, we write out h(y) from Table II:

h(y) = rtk−1

∫
f tk|k−1(y|ỹ)PS(ỹ) fk−1(ỹ)dỹ

= rtk−1PS(�t)
( ∑

ṽ

f (ṽ) f (v|ṽ)
)
×

×
∑

τ̃

fk−1(τ̃ )δτ τ̃

∑
s̃

fk−1(s̃|τ̃ ) f tk|k−1(s|s̃)×

×
∫

f tk|k−1(x|s, τ, x̃) fk−1(x̃|s̃, τ̃ )dx̃

= rtk−1PS(�t)
( ∑

ṽ

f (ṽ) f (v|ṽ)
)
fk−1(τ )×

Fig. 1. The structure of the distribution of a hybrid state with two
kinematic modes and two possible IDs.

×
∑
s̃

fk−1(s̃|τ ) f tk|k−1(s|s̃)
∫

f tk|k−1(x|s, τ, x̃)×

× fk−1(x̃|s̃, τ )dx̃

= rtk−1PS(�t)
(∑

ṽ

otṽk−1w
ṽv

)
ξ tτk−1

∑
s̃

μτ s
k−1π

s̃s(�t)×

×
∫

f tτ sk|k−1(x|s, τ, x̃) fk−1(x̃|s̃, τ )dx̃, (26)

which uses the fact that only the conditioning on the
most recent variable is relevant. Marginalizing this, one
gets

h(s, τ ) = rtk−1

∫ ∑
v

h(x, s, τ, v)dx

= rtk−1PS(�t)ξ
tτ
k−1

∑
s̃

μtτ s̃
k−1π

s̃s(�t), (27)

h(τ ) = rtk−1

∑
s

h(s, τ ) = PS(�t)ξ tτk−1, (28)

h(v) = rtk−1

∫ ∑
τ

∑
s

h(x, s, τ, v)dx

= rtk−1PS(�t)
( ∑

ṽ

otṽk−1w
ṽv

)
(29)

h[1] = rtk−1

∑
τ

h(τ ) = rtk−1PS(�t). (30)

Inserting this in (14)–(17) provides the expressions for
the hybrid states. Note that the expression for the visi-
bility probability ηtk|k−1 follows from the fact that ot0k−1 =
1 − ot1k−1 = 1 − ηtk−1. The expression for the existence
probability rtk|k−1 is found by inserting g(y) = rtk−1PS(�t)
from Table II and h[1] into (11). �

C. Posterior

The individual posterior distributions, conditioned
on either a detection or a missed detection, are calcu-
lated after the prediction. The four possibilities for a
track when new measurements arrive are

� The previously unknown track is detected for the first
time.

� The previously detected track is detected again.
� The previously detected track is not detected.
� The previously unknown track is not detected.
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Any tracks covered by the fourth alternative will be
represented by the unknown target density, and do not
need to be considered specifically. The posterior distri-
butions for the three first possibilities are presented in
the following propositions.

Proposition 2. Initialization of a new track on ameasure-
ment indexed by j is done as

w
t j
k =

{
λ + cUPDη0 for radar
cU

∑
τ̃ ξ τ̃

u fτ (τ
j|τ̃ ) for target-provided

, (31)

rt jk =
⎧⎨
⎩

UPDη0

λ +UPDη0
for radar

1 for target-provided
, (32)

η
t j
k =

{
1 for radar
ηu for target-provided

, (33)

ξ
tτ j
k =

{
ξ τ
u for radar
fτ (τ z|τ ) for target-provided

, (34)

μ
tτ s j
k = μs

u, (35)

f t jk (x|s, τ ) = fz(z|x, s, τ ) fu(x)/c, (36)

where c = ∫
fz(z|x, s, τ ) fu(x)dx is a constant.

Proof. Firstly, for radar measurements, we have that

h(y) =UPD(v)ov
uξ

τ
uμτ s

u fu(x) fz(z|x, s, τ ), (37)

which follows from (2) and Table II. Furthermore,

h(s, τ, v) = cUPD(v)ov
uξ

τ
uμτ s

u , (38)

h(τ, v) = cUPD(v)ov
uξ

τ
u , (39)

h(v) = cUPD(v)ov
u, (40)

h[1] = cUPDη0, (41)

where c is a constant resulting from the marginalization
over x.

For target-provided measurements, we have that
fz(z|x, s, τ ) = fp(p|x, s, τ ) fτ (τ z|τ ). This means that

h(y) =Uov
uξ

τ
uμτ s

u fτ (τ z|τ ) fu(x) fz(p|x, s, τ ). (42)

The probability of detection is omitted here, as it is de-
fined as 1 whenever a target-provided measurement has
been received. Furthermore,

h(s, τ, v) = cUov
uξ

τ
uμτ s

u fτ (τ z|τ ), (43)

h(τ ) = cUξ τ
u fτ (τ

z|τ ), (44)

h(v) = cUov
u

∑
τ̃ ξ τ̃

u fτ (τ
z|τ̃ ), (45)

h[1] = cU
∑

τ̃ ξ τ̃
u fτ (τ

z|τ̃ ), (46)

where c again is a constant.

Inserting these expressions in (14)–(17) give (33)–
(36), i.e., the distributions of the individual hybrid states
of a new target. Furthermore,we have from Table II that
g is the clutter density,which is λ for radarmeasurements,
and 0 for target-providedmeasurements.We insert gand
h[1] in (10) and (11) to get (31) and (32). The expres-
sion for the ID probability in the event of initialization
on a transmitted measurement requires some further ex-
planation.Keeping in mind the prior distribution for the
IDs (4), we have that

ξ
tτ j
k = h(τ )

h[1]

= ξ τ
u fτ (τ

z|τ )∑
τ̃ ξ τ̃

u fτ (τ
z|τ̃ )

=
⎧⎨
⎩

fτ (τ z|τ )(1 − ξ 0
u )/|V − 1|∑

τ̃ fτ (τ
z|τ̃ )(1 − ξ 0

u )/|V − 1| if τ > 0

0 if τ = 0

=
⎧⎨
⎩

fτ (τ z|τ )∑
τ̃ fτ (τ

z|τ̃ ) if τ > 0

0 if τ = 0

=
{
fτ (τ z|τ ) if τ > 0
0 if τ = 0 = fτ (τ z|τ ), (47)

where we have used that
∑

τ̃ fτ (τ
z|τ̃ ) = 1. If a different

prior distribution than (4) is used for the IDs, it can be
accommodated by replacing the final expressionwith the
one in the second line of the above expression. �

Proposition 3. Updating based on a missed detection is
done as

wt0
k =

{
1 − rtk|k−1η

t
k|k−1PD for radar

1 for target-provided
, (48)

rt0k =

⎧⎪⎨
⎪⎩
rtk|k−1(1 − ηtk|k−1PD)

1 − rtk|k−1η
t
k|k−1PD

for radar

rtk|k−1 for target-provided
,

(49)

ηt0k =

⎧⎪⎨
⎪⎩
(1 − PD)ηtk|k−1

1 − PDηtk|k−1

for radar

ηtk|k−1 for target-provided
, (50)

ξ tτ0k = f tk|k−1(τ ), (51)

μtτ s0
k = f tk|k−1(s|τ ), (52)

f t0k (x|τ, s) = f tk|k−1(x|τ, s). (53)

Remark 2.The inclusion of target-providedmeasure-
ment types in the case of a missed detection is some-
what artificial. The expressions are the same as for the
prediction, as the absence of target-provided measure-
ments gives no additional information to the tracking
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algorithm. This follows from the definition of the de-
tection probability in Section III, i.e., that PD = 0 for
target-providedmeasurements when they have not been
received. For later use, the expressions are nevertheless
written out here.

Proof.We have that

h(y) = rtk|k−1(1 − PD(v))otvk|k−1ξ
tτ
k|k−1μ

tτ s
k|k−1 fk|k−1(x|s, τ ),

(54)
where the corresponding expression from Table II has
been written out. Similarly, as to what was done previ-
ously, we find through marginalization that

h(s, τ, v) = rtk|k−1(1 − PD(v))otvk|k−1ξ
tτ
k|k−1μ

tτ s
k|k−1

h(τ, v) = rtk|k−1(1 − PD(v))otvk|k−1ξ
tτ
k|k−1

h(v) = rtk|k−1(1 − PD(v))otvk|k−1. (55)

Again, the different detection probabilities have to be
taken into account when summing over the visibility
states, giving

h[1] = rtk|k−1((1 − PD)ηtk|k−1 + (1 − ηtk|k−1))

= rtk|k−1(1 − PDηtk|k−1) (56)

for radar updates and h[1] = 1 for AIS updates. Insert-
ing this in (14)–(17) gives the wanted expressions for the
hybrid states. Furthermore, we get from Table II that g is
given by 1−rtk|k−1, which together with h[1] gives us (48)
and (49) by using (10) and (11). �
Proposition 4. Updating based on a detection is done as

w
t j
k =

⎧⎪⎪⎨
⎪⎪⎩

PDηtk|k−1r
t
k|k−1

∑
τ̃ ξ t τ̃k|k−1

∑
s̃ μ

t τ̃ s̃
k|k−1l

t τ̃ s̃ j

for radar
rtk|k−1

∑
τ̃ ξ t τ̃k|k−1

∑
s̃ μ

t τ̃ s̃
k|k−1l

t τ̃ s̃ j

for target-provided

, (57)

rt jk = 1, (58)

η
t j
k =

{
1 for radar
ηtk|k−1 for target-provided , (59)

ξ
tτ j
k =

ξ tτk|k−1

∑
s̃ l
tτ s̃ j∑

τ̃ ξ ˜tτ
k|k−1

∑
s̃ lt τ̃ s̃ j

, (60)

μ
tτ s j
k =

μtτ s
k|k−1l

tτ s j∑
s̃ μ

tτ s̃
k|k−1l

tτ s̃ j
, (61)

f t jk (x|τ, s) =
fz(z|x, τ, s) f tk|k−1(x|τ, s)

ltτ s j
, (62)

where

ltτ s j = fτ (τ j|τ )
∫

fz(z
j
k|x̃) f tτ sk|k−1(x̃)dx̃ (63)

for target-provided measurements and

ltτ s j =
∫

fz(z
j
k|x̃) f tτ sk|k−1(x̃)dx̃ (64)

for radar measurements.

Proof. Writing out the expression for a detection in
Table II, we have that

h(y) = rtk|k−1PD(v)o
tv
k|k−1ξ

tτ
k|k−1μ

tτ s
k|k−1×

× f tτ sk|k−1(x) fz(z|x, s, τ ), (65)

which we marginalize to obtain

h(s, τ, v) = rtk|k−1PD(v)o
tv
k|k−1ξ

tτ
k|k−1μ

tτ s
k|k−1l

tτ s j

h(τ, v) = rtk|k−1PD(v)o
tv
k|k−1ξ

tτ
k|k−1

∑
s

μtτ s
k|k−1l

tτ s j

h(v) = rtk|k−1PD(v)o
tv
k|k−1

∑
τ

ξ tτk|k−1

∑
s

μtτ s
k|k−1l

tτ s j.

(66)

For radar,we have thatPD(v = 1) = PD and 0 otherwise,
and for AIS PD(v) = PD = 1 if a measurement has been
received. Using this, we get

h[1] = PDηtk|k−1r
t
k|k−1

∑
τ

ξ tτk|k−1

∑
s

μtτ s
k|k−1l

tτ s j (67)

for radar updates and

h[1] = rtk|k−1

∑
τ

ξ tτk|k−1

∑
s

μtτ s
k|k−1l

tτ s j (68)

for AIS updates. The expressions for the hybrid states
result from inserting this in (14)–(17). We see from
Table II that g = 0, and using this together with h[1],
we get (57) and (58) from (10) and (11). �

D. Mixture Reduction

The mixture reduction is done similarly to what is
done in the JIPDA. That is, all the association hypothe-
ses for each track are merged.An association hypothesis
ak from the set of all possible association hypotheses
Ak contains individual track-to-measurement associa-
tions at . The probabilities for the individual association
hypotheses are

Pr(ak) ∝
∏

t s.t at=0

wtat
k

∏
t s.t at>0

wtat
k /λ, (69)

where λ is the Poisson intensity for the false alarms, and
the fact that

∑
ak∈Ak

Pr(ak) = 1 is used to normalize
the probabilities. This in turn provides the marginal
probabilities for the associations as

pt jk =
∑

ak s.t. at= j

Pr(ak). (70)

The mixture reduction remains the same irrespective
of the type of measurement, as all differences are han-
dled during the calculation of the individual posterior
distributions.
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Proposition 5. We have that

rtk =
mk∑
j=0

rt jk p
t j, (71)

ηtk =
mk∑
j=0

1
rtk
rt jk p

t j
k︸ ︷︷ ︸

β
t j
k

η
t j
k , (72)

ξ tτk =
mk∑
j=0

1
rtk
rt jk p

t j
k︸ ︷︷ ︸

β
t j
k

ξ
tτ j
k , (73)

μtτ s
k =

mk∑
j=0

1
ξ tτk r

t
k

ξ
tτ j
k rt jk p

t j
k︸ ︷︷ ︸

β
tτ j
k

μ
tτ s j
k , (74)

f tτ sk (x) =
m∑
j=0

μ
tτ s j
k ξ

tτ j
k rt jk p

t j
k

μtτ s
k ξ tτk r

t
k︸ ︷︷ ︸

βtτ s j

f tτ s jki
(x), (75)

where

β
t j
k = rt jk p

t j
k

rtk
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
pt jk
rtk

, j > 0

r0kp
t0
k

rtk
, j = 0

, (76)

β
tτ j
k = ξ

tτ j
k rt jk p

t j
k

ξ tτk r
t
k

= β
t j
k

ξ
tτ j
k

ξ tτk
, (77)

β
tτ s j
k = μ

tτ s j
k ξ

tτ j
k rt jk p

t j
k

μtτ s
k ξ tτk r

t
k

= β
tτ j
k

μ
tτ s j
k

μtτ s
k

. (78)

Using the individual f tτ s jk (x), the combined state f tτ sk (x)
can be approximated by use of moment matching
techniques.

Proof. The MBM containing the posterior track es-
timates, weights, and existence probabilities can be ap-
proximated as a multi-Bernoulli. A thorough proof of
this, andmore context regarding theMBM,can be found
in [34].Drawing from the aforementioned proof, in com-
bination with the proof in [7,Appendix D],we have that
the posterior distribution over y can be approximated as

f tk(y) ≈
mk∑
j=1

β
t j
k f

t j
k (y) (79)

where

β
t j
k = rt jk p

t j
k

rtk
(80)

and

f t jk (y) = otv jk ξ
tτ j
k μ

tτ s j
k f tsτ jk (x). (81)

Using this, together with the approximation that the vis-
ibility is independent of the other states, we can write

mk∑
j=1

β
t j
k f

t j
k (y) ≈

mk∑
j=1

β
t j
k ξ

tτ j
k μ

tτ s j
k f tsτ jk (x)

mk∑
j=1

β
t j
k o

tv j
k

=
∑mk

j=1 β
t j
k ξ

tτ j
k μ

tτ s j
k f tsτ jk (x)∑mk

j=1 β
t j
k ξ

tτ j
k μ

tτ s j
k

∑mk
j=1 β

t j
k ξ

tτ j
k μ

tτ s j
k∑mk

j=1 β
t j
k ξ

tτ j
k

×

×
mk∑
j=1

β
t j
k ξ

tτ j
k

mk∑
j=1

β
t j
k o

tv j
k

=
mk∑
j=1

β
t j
k ξ

tτ j
k μ

tτ s j
k∑mk

j=1 β
t j
k ξ

tτ j
k μ

tτ s j
k

f tsτ jk (x)
mk∑
j=1

β
t j
k ξ

tτ j
k∑mk

j=1 β
t j
k ξ

tτ j
k

μ
tτ s j
k ×

×
mk∑
j=1

β
t j
k ξ

tτ j
k

mk∑
j=1

β
t j
k o

tv j
k

=
mk∑
j=1

β
tτ s j
k f tsτ jk (x)

︸ ︷︷ ︸
f tsτk (x)

mk∑
j=1

β
tτ j
k μ

tτ s j
k

︸ ︷︷ ︸
μtτ s
k

mk∑
j=1

β
t j
k ξ

tτ j
k

︸ ︷︷ ︸
ξ tτk

mk∑
j=1

β
t j
k o

tv j
k

︸ ︷︷ ︸
otvk

.

(82)

Keeping inmind that rt jk = 1 ∀ j > 0 and that ot1 jk = η
t j
k =

1 ∀ j > 0, we get the wanted expressions. Lastly, we get
the expression for the existence probability rtk directly
from [7]. �

VI. TARGET-PROVIDED MEASUREMENT HANDLING

The method shown in the previous section does
not specify how the target-provided measurements are
grouped before being sent to the tracker. In this sec-
tion, we present three different ways of considering the
target-provided measurements.

A. Method A: Sequential Measurement Processing

The first method for handling the incoming target-
provided measurements is to process them, and perform
the data association, as they arrive. This would mean
that the predicting and updating of tracks is performed
for each target-provided measurement, which can arrive
at any time between radar measurement batches. This
approach demands no further extensions to what is de-
scribed above. The method is shown in Algorithm 1.

B. Method B: Precise Batch Measurement Processing

The second method performs the data association
for the target-provided measurements at the times when
radar measurements arrive. The method considers all
the target-provided measurements that have arrived be-
tween the previous and current time steps as a batch
of measurements. This method is conceptually similar
to what is done in [13] and [17]. The method is shown
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Algorithm 1 Method A: Sequential measurement
processing

Require: target-provided measurements
ZA = {z1A, . . . , zmA}, radar measurements
ZR = {z1R, . . . , zmR }, tracks from previous time step
X = {x1, . . . , xn}
for target-provided measurement z jA ∈ ZA do
X ← predict(X, t jA) � predict tracks to time of z jA
X ← update(X, z jA)

end for
X ← predict(X, tR) � predict tracks to time of ZR

X ← update(X,ZR)

in Algorithm 2. The target-provided measurements with
the same ID are clustered together, and the data associa-
tion is performed based on these clusters. The clustering
means that the measurement likelihood has to be calcu-
lated for each cluster rather than for each measurement.
The measurement likelihood for Im measurements with
the same ID is

fz(z|x) = fz(z1, . . . , zIm |x) =
Im∏
i=1

fz(zi|zi−1, . . . , z1, x),

(83)
where

fz(zi|zi−1, . . . , z1, x)

=
∫

fz(zi|xi) fx(xi|zi−1, . . . , z1, x)dxi. (84)

This has to be calculated for each measurement that has
arrived between the radar updates. The measurements
are sorted according to their time stamp, with zIm be-
ing the most recent measurement. This expression effec-
tively replaces the integral in (63). The individual kine-
matic states are calculated as

f tτ s jk (x|zi, zi−1, . . . , z1, x)

= fz(zi|xi) fx(xi|zi−1, . . . , z1, x)∫
fz(zi|xi) fx(xi|zi−1, . . . , z1, x)dxi

. (85)

This expression can be calculated using, e.g., a Kalman
filter.A thorough explanation of this recursive measure-
ment likelihood calculation can be found in the supple-
mentary material of [13]. With these expressions estab-
lished, the other calculations and expressions are identi-
cal to Method A.

C. Method C: Batch Measurement Processing With
Added Noise

In Section III, it is assumed that the radar measure-
ments of a single measurement batch are synchronized,
i.e., they all arrive at the same time. We do not make

Algorithm 2 Method B: Precise batch measurement
processing

Require: target-provided measurement clusters
ZA = {z1A, . . . , zmA}, radar measurements
ZR = {z1R, . . . , zmR }, tracks from previous time step
X = {x1, . . . , xn}
for track xt ∈ X do

for target-provided measurement cluster z jA ∈ ZA

do
xt, j ← copy(xt)
for target-provided measurement zi ∈ z jA do

xt, j ← predict(xt , t j,iA )
xt, j ← update(x j, t j,iA )

end for
lt, j ← measurementLikelihood(xt, j, z jA)
xt, j ← predict(xt, j, tR)

end for
Xt, j

new ← xt, j

end for
X ← mixtureReduction(Xnew, l)
X ← update(X,ZR)

the same assumption for the target-provided measure-
ments. However, making this assumption would allow
us to simplify the handling of the measurements and
remove some of the computational complexity of the
above methods. Such an approach would be well suited
when the radar frequency is high, as the timing errors
would be small. Algorithm 3 describes the approach.
Furthermore, only the most recent measurement is con-
sidered when a target has transmitted more than one
measurement between radar updates. In addition, this
method should be usedwith a highermeasurement noise
level to account for the synchronization errors.

Algorithm 3 Method C: Batch measurement
processing with added noise

Require: target-provided measurements
ZA = {z1A, . . . , zmA}, radar measurements
ZR = {z1R, . . . , zmR }, tracks from previous time step
X = {x1, . . . , xn}

X ← predict(X, tR) � predict tracks to time of ZR,ZA

X ← update(X,ZA)
X ← update(X,ZR)

Remark 3. When grouping the same-ID target-
provided measurements, one has to keep in mind the as-
sumption of only one measurement arising from each
target. If a target transmits two target-provided mea-
surements between radar updates, and one of the mea-
surements has a corrupted ID number, then this would
breach the assumption. The most obvious way to amend
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this is to discard target-provided measurements when-
ever there are more measurements than tracks present.
This will, however, interfere with initializing new tracks
on the target-provided measurements. It should also be
noted that if the radar frequency is higher than the
target-provided measurement transmission frequency, a
cluster will always only contain a single measurement.
This would avoid the aforementioned problem and sim-
plify calculations.

Remark 4.Whenusing (83), the discrete hybrid states
will take their most likely value as a mean over the infor-
mation from the measurements in the cluster. This is as
opposed to obtaining the most likely value at the most
recent target-provided measurement. This could theo-
retically impact the estimation of the discrete states. For
example, if two measurements in a cluster indicate two
different kinematic models, then this disparity will not
be captured when using the batch processing methods.

VII. IMPLEMENTATION

A. Utilization of Gaussian-Linearity

Tomake the implementation tractable,we model the
individual kinematic states and the measurement likeli-
hoods as Gaussian distributions. This allows us to use an
Extended Kalman Filter when predicting and updating
the kinematic estimates. The measurement likelihoods
are defined as

f Rz (zk|yk) = N (zk|HRx,RR) (86)

for radar measurements and as

fp(pk|yk) = N (pk|HAx,RA) (87)

for the positional part of the AIS measurements. Fur-
thermore, the kinematic transition density f sτx (xk|xk−1)
is assumed to be in the form of a Gaussian

f sτx (xk|xk−1) = N (xk|f(s)(xk−1),Q(s)). (88)

The transition model is linearized when needed to en-
able EKF prediction and Gaussian moment matching
for mixture reduction.

The kinematic unknown target density from (2) is de-
fined as

fu(x) = 1	(H(s)x)N (H∗(s)x; 0,Pv ), (89)

where 1	(·) is an indicator function, which is 1 when the
unknown target is within the surveillance area, andH∗(s)

is the permutation matrix corresponding to the nonpo-
sitional states of the state vector x. Using this, we have
that

fz(z|x, s, τ ) fu(x)
= 1	(H(s)x)N (za

t

k |H(s)x,Rs)N (H∗(s)x|0,P(s)
v ). (90)

In the case of a large enough surveillance area 	, and
under the assumption of Gaussian-linearity, this can be

approximated as N (x|x̂s0,Ps
0). Furthermore, this means

that the constant c in Proposition 2 becomes

c =
∫

fz(z|x, s, τ ) fu(x)dx ≈
∫

N (x|x̂s0,Ps
0)dx = 1.

(91)
A more thorough proof regarding the unknown target
density can be found in Appendix C of [7].

B. Gating

Because the target-provided measurements can ar-
rive at any time, the number of times we have to perform
gating increases considerably. The main computational
cost of this is the number of predictions. Thus,we should
consider this when creating the gating procedure.

Several different gating methods are presented in
[33]. The first method relies on gating for each kine-
matic model, and it uses all measurements that have
been gated by any of the models. A different method
is a centralized gating procedure, which makes an ap-
proximation across all models using a single gate.We use
a somewhat more refined method, the Two-Step Model
Probability Weighted Gating (TS-MPWG) method. TS-
MPWG was also presented in [33]. The first step in the
method is a centralized gating procedure

f tk|k−1(x) =
∑

τ̃

ξ t τ̃k|k−1

∑
s̃

μt τ̃ s̃
k|k−1 f

t τ̃ s̃
k|k−1(x), (92)

where f tk|k−1(x) = N (x|x̂k|k−1, P̂k|k−1) provides the gate
center x̂k|k−1 and the predicted covariance P̂k|k−1. Fur-
thermore, the innovation covariance becomes

S = HP̂k|k−1H	 + Rk. (93)

If no measurements are gated during the first step, then
the next step is initiated.Here, the gate is determined by
the largest possible model error and should encompass
any measurements generated by the target even if the
chosen kinematic model is wrong. Thus, the TS-MPWG
method can exploit the more computationally effective
nature of the central gating method while compensating
for eventual model errors. Adapting the expressions in
[33] to this model, the gate in the second step is deter-
mined by the maximal difference between x̂k|k−1 and the
individual x̂tτ sk|k−1. This error is

Kmax = argmax
τ,s

‖Hx̂k|k−1 − Hx̂tτ sk|k−1‖2. (94)

Using this, we calculate the gate volume as

Sd = S + Kmax (95)

where

Kmax = diag[

n︷ ︸︸ ︷
Kmax, . . . ,Kmax] (96)

for a measurement space of dimension n.
Furthermore, it would be beneficial to have the possi-

bility of gating target-provided measurements between
two radar time steps without having to predict the state
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of all tracks. We can achieve this by utilizing one of the
methods described in [36].Themethod involves expand-
ing the gate size according to a fixed presumedmaximum
velocity. That is, rather than predicting the track from
time tk−1 to tk, the gate accounts for movement in all
directions at a very high speed. This method gives very
large validation gates, and we only use it as a preliminary
step before using the TS-MPWG method. Here, the ra-
dius of the gate is decided by

rk = 2rk0 + (tk − tk−1)vmax (97)

where vmax is a parameter representing the largest pos-
sible speed for a target, and

rk0 =
√

γGeig(R)max. (98)

Here,γ is the gate size,and eig(R)max is the largest eigen-
value of the measurement covariance matrix.

C. Initialization and Termination

Due to target-provided measurements never being
clutter measurements, care should be taken when choos-
ing the initialization scheme. In JIPDA tracking algo-
rithms, new tracks are usually only initialized on so-
called free measurements, i.e., measurements that have
not been gated by any tracks at the current time step.
When using this scheme, a target-provided measure-
ment belonging to an uninitialized target, which falls
within the validation gate of a previously initialized
target, would most likely assign the measurement to
the previously initialized target. However, a scheme
that initiates tracks on all measurements will avoid this
problem.

Initializing a new track on every measurement is
computationally expensive and requires measures to
mitigate computational complexity. For this purpose, we
classify the tracks as newborn, adolescent, and ordinary.
Newborn tracks are tracks that have been initialized at
the current time step, adolescent tracks are tracks that
were initialized at the previous time step, and ordinary
tracks are all other tracks. The adolescent tracks are not
allowed to compete for measurements in the same way
as the ordinary tracks. The restriction comes into play
when an adolescent track i and an ordinary track t have
gated measurement j at the current time step, and they
have both gated the same measurement at the previous
time step. Then, the adolescent track j is only allowed
to compete for the measurement if it has a larger weight
relative to the measurement than the other track

max
t, j

w
t j
k < TBw

i j
k , (99)

where TB is a threshold parameter. Otherwise, the ado-
lescent track is not allowed to compete for measurement
j, which is enforced by setting w

i j
k = 0.

Termination is done as described in [37]. First, any
tracks with an existence probability under a predeter-
mined threshold Td are removed. Furthermore, any two

tracks deemed to be identical are identified by the use of
the hypothesis test in [1, p. 447]. The most recently ini-
tialized of these are then terminated. Lastly, any tracks
that have not been associated with a measurement for
NT radar intervals are terminated.

D. Kinematic Models

The implementation uses two different kinematic
models: the constant velocity (CV) model and the co-
ordinated turn (CT) model. Due to the varying predic-
tion intervals, we use the discretized continuous formu-
lation of the models. The CV model has the kinematic
state x = [x, y, vx, vy]T where v denotes the velocity, and
the state evolves according to xk = F(s)(�t)xk−1 + vk,
vk ∼ N (0,Q(s)) where

F(s) =
[
I2 �tI2
0 I2

]
, Q(s) =

[
(�t)3/3I2 (�t)2/2I2
(�t)2/2I2 �tI2

]
q. (100)

Here,I is the identitymatrix,�t is the prediction interval,
and q is the process noise intensity [2, p. 270] of the pro-
cess noise.TheCTmodel has an additional stateω,which
is the turn rate. It evolves as xk = F(s)(xk−1)xk−1 + vk,
vk ∼ N (0,Q(s)) where

F(s)(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
sin�tω

ω

−1 + cos�tω
ω

0

0 1
1 − cos�tω

ω

sin�tω
ω

0

0 0 cos�tω − sin�tω 0
0 0 sin�tω cos�tω 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(101)

and

Q(s) =
[
Q(1) 0
0 �tqω

]
, (102)

where Q(1) is a CV model covariance matrix and qω is
the intensity of the turn rate process noise. In the imple-
mentation, theCTmodel is linearized as in [2,Sec.11.7.2].

Remark 5. In most IMM applications, the transition
matrix is constant. Thus, an aspect that has to be con-
sidered when the measurements do not arrive at a fixed
frequency, is how to design the time-varying transition
matrix 
(�t). A solution is to use the theory of Contin-
uous Markov Chains to get an approximation for 
(�t)
from the time-independent transition matrix 
. As de-
scribed in [16], this can be done by use of a generator
matrix G. The generator matrix is closely related to the
time-independent transition matrix 
 and is formulated
as

(a) no transition takes place in the time interval�t with
probability 1 + gii�t + o(�t),

(b) a transition takes place in the time interval �t with
probability gi j�t + o(�t),

where gi j are the individual elements of G and o(�t)
indicates some small additional term, which is ignored.
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This approximation is reasonable for relatively small �t.
Thus, the generator matrixG forM number of states can
be written as

G =

⎡
⎢⎣

π11 − 1 . . . π1M

...
...

...
πM1 . . . πMM − 1

⎤
⎥⎦ , (103)

where π i j are the individual elements of
.Furthermore,
we have from [16] that

π i j(�t) ≈ gi j�t if i �= j and π ii(�t) ≈ 1+gii�t. (104)

Using this, we get


(�t) ≈

⎡
⎢⎣
1 + (π11 − 1)�t . . . π1M�t

...
...

...
πM1�t . . . 1 + (πMM − 1)�t

⎤
⎥⎦ .

(105)

E. Measurement Models

Radar Measurements

The radar measurements only contain positional
data, and the measurements can be written as

zk = Hxk + wk, wk ∼ N (0,RR). (106)

The noise matrix has both a Cartesian and polar ele-
ment, to account both for errors in range and bearing,
and clustering errors. The measurement noise matrix for
the radar measurement becomes

RR = Rc + Rp. (107)

Here,Rc is the Cartesian noise component, whileRp

is the polar noise component converted to Cartesian co-
ordinates. The conversion is done by using the unbiased
conversion equations from [22].

Target-Provided Measurements

The target-provided measurements can contain both
positional and velocity data. The kinematic part of the
measurements can be written as

pk = Hposxk + Hvelxk + wk, wk ∼ N (0,RA), (108)

where Hpos and Hvel are the position and velocity mea-
surement matrices, respectively. The position is usually
derived from GPS information, while the velocity is de-
rived either from a combination of speed and heading
data [6]. Due to the nature of the data, we approximate
the positional errors as Cartesian noise,while we approx-
imate the velocity errors as polar noise. The measure-
ment noise matrix for the AIS measurement becomes

RA = HposRc,A + HvelRp,A, (109)

whereRc,A is the Cartesian noise component,whileRp,A

is the polar noise component converted to Cartesian co-
ordinates, again by using [22].

Table III
Tracking System Parameters

Quantity Symbol unit Value

Radar sample interval T [s] 2.5
Model 1 process noise intensity qa,1 [m2s−3] 0.12

Model 2 process noise intensity qa,2 [m2s−3] 1.52

Turn rate process noise intensity qω [rad2s−3] 0.022

Cartesian noise std. radar σcR [m] 6.6
Cartesian noise std. AIS σcA [m] 3.0
Polar range std. σr [m] 8.0
Polar bearing std. σθ [◦] 1.0
Detection probability PD [%] 92
Survival probability PS [%] 99.9
Noncorrupted ID probability PC [%] 99
Initial visibility probability ηu [%] 90
Visibility Markov probability ω11 [−] 0.90
Visibility Markov probability ω10 [−] 0.10
Visibility Markov probability ω01 [−] 0.52
Visibility Markov probability ω00 [−] 0.48
Gate size γ [−] 3.5
Clutter intensity λ [m−2] 5 × 10−7

Unknown target rate U [m−2] 5 × 10−8

Initial velocity std. σv [m s−1] 10
Initial model probability μs

u [%]
[
80 10 10

]
Unknown target no ID probability ξ0u [−] 0.5
Existence confirmation threshold Tc [%] 99.9
Existence termination threshold Td [%] 1

IMM transition probability π s̃s [%]

⎡
⎣99 .5 .5

.5 99 .5

.5 .5 99

⎤
⎦

VIII. RESULTS

A. Simulation Environment

We created the simulated data in line with the as-
sumptions in Section III. The ownship is situated at the
origin and is stationary. The surveillance area is circular
with a radius of 500 m.We track five targets, all appear-
ing at the edge of the area. Three of the targets appear
at time t = 0 s, while the last two appear at time t = 10 s.
The data consists of true target positions, radar, and AIS
measurements. The movement of the targets follows a
CV model with process noise intensity q = 0.12m2s−3,
with occasional maneuvers according to a CT model.
Furthermore, all targets are guided toward the center
of the surveillance area until they are within 50 m of
it. The measurements are created according to the mea-
surement models in Section VII-E.

The tracking parameters were tuned to achieve good
performance on experimental data and are similar to the
ones in [7]. We list the parameters in Table III. These
are also the parameters used for creating the simulated
data. The AIS measurement noise was also chosen ac-
cording to the experimental data and would correspond
to the measurements providing high location accuracy.
Furthermore, in practical applications, the precision of
the AIS location data can be dynamically adjusted ac-
cording to a position accuracy flag in the AIS protocol
[19].
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To evaluate the results, we used five different per-
formance measures: the optimal subpattern assignment
(OSPA) metric [28], the track localization error (TLE),
track fragmentation rate (TFR), track false alarm rate
(TFAR), and track probability of detection (TPD). The
last four evaluation methods are described in [26]. The
OSPA metric provides an overall performance assess-
ment, while the other measures provide information
about specific aspects of the methods.

We tested five different methods: The three methods
described in Section VI, a method using only the radar
measurements, and the method described by Gaglione
et al. in [13]. The method from [13] uses a particle fil-
ter and loopy belief propagation and is thus very dif-
ferent from the one described in this paper. We denote
the method from [13] as the belief propagation and par-
ticle filter method (BP-PF method). The implementa-
tion uses a single CV model with process noise inten-
sity q = 0.72 m2s−3, and the same parameters as in Ta-
ble III where applicable. As proposed in [23], of which
the method in [13] is an extension, we use 3000 particles
for each potential target.We set the number of potential
targets to 30, as is done in [13].

The code implementing Method A from Section VI
is available at [18].

B. Simulated Data

We tested the methods on 100 simulated data sets
over a range of different detection probabilities. The re-
sults are seen in Figures 2 and 3. Not surprisingly, the
pure radar tracking method performs worse than the
AIS-aided tracking methods from Section VI when the
PD is low. The difference becomes smaller as PD ap-
proaches 1, but is still significant. Furthermore, we see
that themethod from [13] generally performsworse than
all themethods in SectionVI,and, in some aspects,worse
than the pure radar tracking method. The right subfig-
ure in Fig. 2 shows that the largest difference in perfor-

mance is in the initial stage of the scenarios. That is, the
method from [13] struggles with initialization relative
to the other methods. This struggle to initialize tracks
also results in significantly worse TPD,whereas the other
methods perform similarly to each other.

Furthermore, the TLEof themethod from [13] is bet-
ter than that of the pure radarmethod,but it is still worse
than the other methods. We see that the three meth-
ods from Section VI perform similarly. As expected, the
batch processingmethod using added noise gives slightly
less precise estimates.While we see some differences be-
tween the methods for TFR and TFAR, the errors are
of an overall small magnitude. However, the pure radar
tracker is more prone to track fragmentation than the
other methods.

The computational complexity of the methods also
warrants a comparison. The pure radar tracker is the
least computationally demanding, as all the other meth-
ods add functionality in addition to performing the cal-
culations of the pure radar tracker. The precise batch
processing method is the most demanding of the target-
provided measurement handling methods. This is be-
cause it requires predictions and updates for each track
for eachmeasurement.The least demanding of the three
is the batch processing method with added noise, as it
does not need to perform more predictions than the
pure radar methods.The three methods generally do not
introduce a prohibiting amount of complexity and can
all be implemented using a Kalman filter. Furthermore,
they are all significantly less demanding than the BP-PF
method, as it uses a particle filter.

C. Experimental Data

In addition to the simulated data, the sequentialmea-
surement handling method, the pure radar tracker, and
the method from [13] were tested on experimental data
collected as part of the Autosea project at NTNU [8].
The data set is the same set used in [7].We consider two
scenarios, which include three different ships using AIS,
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Fig. 2. Comparison of the different methods using the OSPA metric. The left figure shows the average OSPA values of each method for
different detection probabilities. The right figure shows the average OSPA value for each time step, with PD = 0.9. Here, we only consider the
BP-PF method and the sequential measurement processing method. Both figures contain results from the same 100 scenarios. The OSPA

values are calculated using p = 2 and c = 200. The purpose of the two parameters is described in [28].
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Fig. 3. TFAR, TPD, TLE, and TFR are the five different methods for different detection probabilities. The values were calculated by running
the methods on the same 100 scenarios as above.

of which two provide frequent measurements.The trans-
mission frequency for the two ships is higher thanwhat is
mandated by the IMO [19], but the data set is neverthe-
less helpful for demonstrating the functionality and use-
fulness of the tracking method.Due to the AIS data pre-
viously being used as ground truth for theAIS-equipped
vessels, the AIS data has been interpolated to increase
the number of measurements.This interpolation was un-
done prior to using the data, i.e., we removed any artifi-
cially added measurements.

Figure 4 shows the results from the first scenario.
The scenario contains three fast-moving and maneuver-
ing targets and a single slow-moving target. The slow-
moving target is a large vessel with an AIS transmitter,
while the three fast-moving targets are small, rigid in-
flatable boats (RIBs). Only one of the RIBs has an AIS
transmitter, and it only transmits a single AIS measure-
ment. The large vessel, however, provides high-quality
AIS measurements. As can be seen, both the sequen-
tial measurement handling method and the pure radar
method can track the scenario well, while the BP-PF
method struggles. The BP-PF method likely struggles
due to the kinematic modeling, i.e., because it has to use

a single model to cover the kinematic behavior of both
the RIBs and the large vessel. The two other methods
have more flexibility in their use of IMM, and they can
thus use different kinematic models for the RIBs and
the large ship. When combining target-provided mea-
surements with IMM, the tracker is also better able to
select the correct kinematic model for each target. Fur-
thermore, the sequential measurement handling method
can use the AIS measurements when tracking the large
vessel, improving upon the track from the pure radar
method. It also correctly associates the single AIS mea-
surement transmitted by the RIB.

The second scenario can be seen in Fig. 5. The plots
show the two vessels with frequent AIS transmissions
and the ownship. Figure 6 displays a close-up of the
northernmost turn,with andwithoutAISmeasurements.
The second scenario highlights some advantages of uti-
lizing the AIS measurements when available. The main
event occurs during the turn depicted in Fig. 6, where
the radar measurements are poor due to the large ves-
sel making a maneuver and generating numerous clut-
ter measurements. A similar effect also occurs on the
straight leading up to the turn. Both of these effects
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Fig. 4. A scenario showing four targets. The ownship is the gray line, moving southwards, while the targets all move northwards. The gray dots
are radar measurements, and the green crosses are AIS measurements. The measurements become more transparent as time passes, i.e., the

darker ones have arrived closer to the end of the scenario. The transparency of the tracks is decided by the existence probability, with the more
transparent having a lower probability of existence. The target originating furthest to the right is a large vessel with an AIS transmitter, while
the three other targets are small, fast-moving RIBs. Of the RIBs, only the orange has an AIS transmitter, which transmits a single measurement
during the scenario. The RIBs make several maneuvers before moving beyond the radar range. (a) Results when tracking the scenario using

Method A: Sequential measurement processing. (b) Results when tracking the scenario using only radar. (c) Results when tracking the
scenario using the BP-PF method.

cause the purely radar-guided tracking method to veer
off track, while the sequential measurement handling
method can utilize the AIS measurements to avoid this.
The BP-PF method loses track on the straight due to a
shift in the radar measurements, combined with a tem-
porary absence of AIS measurements, but is better able
to handle the northernmost turn than the pure radar
tracker. This improvement comes at the expense of a
falsely initialized track on the unused radar measure-
ments. The false track is avoided when using the sequen-
tial measurement handling method, given the correct

tuning. Figure 7 shows the estimated course of the tar-
get during the turn, in addition to the standard deviation
of the estimates. The poor radar measurements make
the course estimates unreliable when not also utilizing
the AIS measurements. When using the AIS measure-
ments, the standard deviation of the course estimates
during the turn is significant, but they are still consider-
ably smaller than when the tracker uses only radar mea-
surements. Furthermore, the track avoids sudden course
changes. In this scenario, the inclusion of AIS measure-
ments causes no unwanted consequences, opening the
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Fig. 5. A scenario showing two large vessels with AIS transmitters (with tracks shown as blue and orange lines), in addition to an ownship
(gray line).We depict the measurements and tracks as in Fig. 4. Initially, the orange target moves north, while the blue target moves east. After
some time, the orange target makes a u-turn, while the blue target makes a turn toward southwest. The ownship moves in a clockwise motion.
The orange and blue dots represent the track positions at the end of the scenario. (a) Results when tracking the scenario using Method A:

Sequential measurement processing. (b) Results when tracking the scenario using only radar. (c) Results when tracking the scenario using the
BP-PF method.
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Fig. 6. A closer look at the northernmost turn for the orange track in
the scenario in Figure 5. A single large vessel makes a clockwise turn,
resulting in significant amounts of radar clutter. (a) A target making a
clockwise turn while being tracked using AIS and radar. (b) A target

making a clockwise turn while being tracked using only radar.

possibility of utilizing all the potential enhancements in-
formation given by the messages can bring.

IX. CONCLUSION

We present a framework for including target-
provided measurements in a JIPDA-based tracking al-
gorithm. We use AIS measurements as an example of
such measurements. It is seen that the inclusion of such
measurements can help a pure radar tracking method
and improve performance greatly when the radar mea-
surements are of low quality. In addition to the pure
performance improvements, target-provided measure-
ments can facilitate the identification of targets, which
can be useful for, e.g., a collision avoidance system. Fur-
thermore,we present and compare three different meth-
ods of handling the target-provided measurements:One
method where the tracker processes the target-provided
measurements when they arrive,and twomethodswhere
the tracker processes them at the time of the radar up-

Fig. 7. Course estimate for the turn depicted in Figure 6 using both
radar and AIS (top) and using only radar (bottom).

date.All three methods outperform similar state-of-the-
art methods.

A. Future Work

The main focus of this work is how to incorporate
target-provided measurements into a tracking method,
and we have avoided amore thorough analysis of how to
exploit the information provided by different protocols.
Thus,how to usemore of the data provided by suchmea-
surements should be investigated. There is also the pos-
sibility of using the expressions presented in Section V
in a PMBM,which could improve performance.Another
option is to use target-provided measurements to assist
in clustering radarmeasurements.Lastly, there are safety
concerns when using target-provided information. That
is, the inclusion of easily manipulated input in a safety-
critical system should be investigated.
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Probabilistic Vehicle Tracking
with Sparse Radar Detection
Measurements
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Most automotive perception systems leverage radar sensors for

their long-range measuring capability and weather robustness at eco-

nomic costs. A downside is the rather low spatial resolution. It com-

plicates the estimation of pose and size of an extended object. High-

resolution sensors facilitate techniques like shape recognition based

on a single measurement. But even these sensors only provide sparse

measurements at larger distances, which makes instantaneous object

detection highly ambiguous. We propose an approach that incorpo-

rates the current state estimate to probabilistically identify the true

origin of a detection and thereby decreases its association ambiguity.

It uses all given measurement data, including the radial speed. This

improves the information gain for mass-market sensors with a high

measurement uncertainty. We first perform a parametrization of the

object using a set of components. They describe the characteristics of

a detection in dependency of the current state estimate and various

physical relations. Their superposition resembles the spatial detection

likelihood of the entire object. Subsequently, we perform a computa-

tionally efficient state update that exploits the probabilistic association

of the detection to the components. All steps take about 20µs of com-

puting time. In this article, we demonstrate this technique in an ap-

plication that tracks vehicles with radar detections. Besides providing

details on the algorithm and a formal description of the components,

we also illustrate the probabilistic association with examples. Finally,

we discuss the performance in real-world tracking scenarios and out-

line interfaces tomulti-hypotheses andmulti-sensor fusion algorithms.

This paper is accompanied by an exemplary MATLAB implementa-

tion and a demonstration video.
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I. INTRODUCTION

Advanced automotive perception systems have to
meet high expectations in terms of cost-effectiveness,
performance,and robustness.The fusion of different sen-
sor types accommodates these requirements by exploit-
ing the cumulative strengths. Monocular cameras are
widely used to identify objects as they provide semantic
information. However, they do not provide range mea-
surements. This impairs the immediate estimation of the
position and the extent of objects and often requires the
incorporation of model knowledge. Stereo cameras are
typically limited to short ranges [11].On the other hand,
LiDAR sensors mainly capture high-resolution spatial
information on an object’s contour, which encapsulates
the pose and the extent of an object. Radar sensors also
provide full spatial information, but with a lower reso-
lution.However, their major advantages are their ability
to directly measure radial speed and their resistance to
tough weather conditions due to their lower frequency
range.

The nature of extended objects states that multiple
detections might be caused by arbitrary parts of the ex-
tent of the object. High-resolution sensors provide such
a large quantity of detections that the contour of ob-
jects can be spotted in a single measurement [8]. The
thereby captured object instances can be directly filtered
to their corresponding tracks [28]. However, these ap-
proaches are not feasible if only sparse measurement
data are available, resulting in few or no resolved de-
tections per object. This issue is not necessarily limited
to mass-market sensors; also high-performance sensors
only provide sparse measurement data at respective dis-
tances. At this point, a contour (or structure) extraction
from a single measurement is no longer possible. To sus-
tain the tracking, the detections need to be directly fil-
tered to their tracks. The arising challenge is the correct
determination of the origin of each detection without
any structural information from the current measure-
ment data. Especially in the case of a radar sensor, the
association problem is tough: The lateral measurement
noise is substantial due to its measurement principle [25]
and depends on the complexity of the surrounding.

We propose a filtering approach that tackles this
association problem. First, it splits the object in com-
ponents with individual, physically deduced detection
characteristics. Second, it incorporates the current ob-
ject state estimate to model the current statistical ap-
pearance of these components. We apply this approach
to radar sensors for vehicle tracking in this work. The
utilized radar sensors provide a set of points, which is
called scatter data. Each point represents a so-called
detection, which represents a maximum of local reflec-
tivity and is given by measurements of position, radial
speed, and amplitude. Our approach not only uses the
position measurement but also exploits the radial speed
measurement. This shifts the association problem to a
space of higher dimension and improves its resolution.
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A. Related Work

Adaptive cruise control has been one of the first pop-
ular automotive radar applications.The radar detects ve-
hicles in direction of travel and returns their distance
and speed. For this application, it is sufficient to obtain
a single measurement for an object. Modern advanced
driver assistance systems like the lane change assistant
require pose and extent information. Filter techniques,
which use radar measurements to estimate both pose
and extent of objects, can be grouped into four cate-
gories. In 2017, Granström et al. [14] defined three cat-
egories: generic spatial models, set of points on a rigid
body (SPRB) models, and physical models. In the past
few years, however, machine learning approaches have
also been adopted in this area and represent a popular
fourth category.

Spatial models define the extent by a shape or
function. Popular approaches incorporate ellipse-based
models [24], probabilistic density fields given by Pois-
son processes [12], [13], radius functions [14], [38], or
any kind of functional shape descriptions by Gaussian
processes [27], [35]. As these approaches can be ex-
pressed in closed functions, they show high runtime
performance. Additionally, they do not require explicit
model knowledge and are therefore suitable for a wide
spectrum of objects. However, the lack of model knowl-
edge impairs the extent estimation accuracy and, con-
sequently, also the estimation of the pose and the kine-
matics. The impact of the observation perspective and
model-specific features like micro-Doppler cannot be
exploited.

SPRB models use discretized spatial model descrip-
tions instead of continuous ones. According to SPRB,
the object can be modeled by a set of discrete scatter-
ing points. The location of these points can be estimated
online [16], or by incorporating some model knowledge.
In this manner, Bühren et al. [9] place the points on
typical reflection sources of vehicles like wheels and
corners. They also consider some visibility constraints.
Hammarstrand et al. [17] propose an adequate SPRB fil-
tering approach.Amajor downside of SPRB is the miss-
ing ability to model continuous, extended parts of the
object.

Physical models are powerful and accurate in de-
scribing the object and predicting its expected measure-
ments. They are often composed of an object model and
ameasurement model.The accuracy of the object model
varies from geometric shapes to 3D computer models.
The measurement model is an inference of physical con-
siderations. Ray tracing methods [23] incorporate any
desired level of model knowledge and achieve high re-
production accuracy. The prevalent downside is a sub-
stantial runtime overhead, which often renders them fu-
tile in real-time multi-object tracking applications. The
poor runtime performance is not only due to the de-
manding modeling computation but also due to the
tracking itself that often requires particle filters.

A both new and by now very popular approach to
model radar detections is machine learning. It correlates
the state of objects to their obtained detection charac-
teristics in annotated training data. These approaches
vary from variational Gaussian mixtures (VGM) [19],
[21], [30], [37] to deep neural networks [10], [36]. The
latter was facilitated by the recent progress in 4D high-
resolution imaging radars that provide a large number
of detections per target in a single measurement frame
[41]. Machine learning approaches allow accurate mea-
surement reproductions and circumvent expensive man-
ual statistical studies on the sensor model. The sensor-
specific measurement characteristics are learned from
the measurement data. Their overall performance de-
pends on the spectrum of the scenarios in the training
data. If the training data does not contain more complex
scenarios like different kinds of occlusion, then the out-
come is undefined. Additionally, the network needs to
learn new training data to adapt to new sensors or object
types; it cannot be parametrized easily.However, thanks
to recent advances in GPU development, their runtime
performance allows real-time usage.

B. Previous Research

With the exception of some machine learning ap-
proaches, most of these models do not really match our
observed data. This seems to be mainly due to oversim-
plification or incomplete modeling of the objects, i.e., ve-
hicles.As a result, our aim is the development of amodel
that is physically derived to ensure generalizability. Its
abstraction is chosen at a level that allows for its real-
time usage in tracking applications, but without sacrific-
ing performance potential.

Our work has began with a radar measurement anal-
ysis. In [2], we performed measurement campaigns to
record the reflection characteristics of vehicles. These
campaigns cover a spectrum of relative poses between
the radar sensor and the target vehicle. An algorithm,
which sorts, accumulates, and statistically re-weighs the
measurement data, extracts a detection probability map
in target coordinates for any desired relative observation
pose. These results reveal a high impact of the observa-
tion angle. Unsurprisingly, the outer parts of the vehicle,
which are oriented perpendicular toward the radar sen-
sor, cause the most significant portion of the object’s re-
flectivity. Moreover, the corners are highly reflective as
a part of the round curve is always perfectly orthogonal
toward the sensor. Next to the vehicle sides and corners,
the wheels are also significant reflection sources.Wheels
that are facing toward the radar reflect well due to the
wheel rim. But the measurement analysis reveals that
the opposite wheels are also often spotted in the radar
measurement data. The low mounting height of series
radars often causes a line of sight between the sensor
and the opposite wheels.Opposite-wheel visibility is also
given by underbody reflections, i.e., depending on the el-
evation angle of incidence, the beam is reflected by the
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ground surface and the vehicle underbody. This effect
causes a slight spatial detection probability for the com-
plete underbody extent of the vehicle. On the contrary,
inner parts of the vehicle are rarely visible. Varnish and
windows heavily attenuate the beam amplitude. Roof
structures are visible if the vertical field of view of the
sensor is sufficiently large.

In [3],we complemented this work with a radar mea-
surement model. Its primary aim is the preferably ac-
curate probabilistic prediction of measurement data for
any given target state.Themeasurementmodel is a phys-
ical one. It achieves a generic measurement reproduc-
tion and an inherent incorporation of effects like mu-
tual occlusion. Typically, the latter is hard to accomplish
when dealing with statistical or oversimplified models.
Our model separates the generation process of detec-
tion measurements in abstraction layers like physical
wave distribution, signal reception, and peak detection.
We utilize this measurement model to evaluate models
against real-world data,but its runtime performance hin-
ders an immediate usage in multi-hypotheses tracking
applications.

In [4], we enhanced both the measurement analysis
and the measurement model with the Doppler-derived
radial speed measurement. The radial speed measure-
ment provides valuable information as it is directly mea-
sured and subject to only low measurement noise. Be-
sides, it plays a crucial role in determining the angle
of the detections. The radial speed measurement can
be predicted for any point of the rigid object body as
long as the relative kinematics of the object and the
radar sensor are known. Parts like legs or wheels that
move relative to the rigid body span a range of poten-
tial Doppler measurements. The radial speed measure-
ments of moving parts of a moving object are known as
micro-Doppler measurements and are subject to ongo-
ing research [18], [32]. Current approaches [20] explic-
itly detect micro-Doppler measurements of vehicles in
imaging radar data, extract the wheels by exploiting the
Doppler spectrum [39], and use their position to track
their pose.

C. Our Contribution

While our previous work has primarily elaborated a
preferably precise and well-founded but computation-
ally expensive physical model, this article presents its
abstraction that can be utilized in real-time tracking ap-
plications. As far as possible, its functional structure is
derived from physical and technical interrelations. Ac-
cording to our findings, the division of an object into dif-
ferent components yields a good modularizability and
allows for individual measurement characteristics. The
proposed abstracted model uses this mechanism and
therefore resembles primarily the SPRB approaches.
The main differences are that our model also supports
and utilizes spatially extended, continuous components.
Besides, we exploit the kinematic measurement of a

Fig. 1. The expected spatial detection likelihood of a moving vehicle
in a left turn. The measurement space consists of the two-dimensional

Euclidean position in target coordinates T(x, y) and the
Doppler-deduced radial speed measurement vr shown in the z-axis.
To illustrate the three-dimensional detection likelihood, this plot
shows the isosurface of an examplary detection likelihood. The

vertically extended tubes are caused by the micro-Doppler effect of
the wheels. The azimuth view angle corresponds to the observation

angle of the radar sensor. Due to the left turn, the front of the vehicle
moves away faster than the rear.

detection, e.g., the radial speed, to improve the origin
search and to perform a direct kinematic state update.
Figure 1 outlines the modeled joint measurement space
and illustrates the expected multidimensional detection
likelihood of a moving vehicle. The state of the compo-
nents is linked to the state vector using type-dependent
definitions. Concerning the components themselves, we
consider not only angular visibility regions (similar as
proposed by [9]) but also the reflectivity, the kinematic
Doppler properties, and physical effects like scattering.
This addition of features, though, requires more model-
ing effort. The proposed spatial measurement function
described in this article can be used independently from
the proposed tracking approach in any Bayes-based fil-
ters. It also outputs the expected number of detections
for any given object state.

Learning-based approaches have the essential ad-
vantage that learning the reflectivity of an object does
not require expert knowledge. However, learning meth-
ods usually learn the complete stack of measurement
generation and cannot split different components, e.g.,
sensor model from object model. The proposed ap-
proach aims for parameterability and exchangeability
of all relevant modules. New object types can be sup-
ported by partial adjustments of the object model on
the basis of a datasheet, for example. There is no need
for gathering and annotating new training data and re-
learning, especially if only partial properties have to be
adjusted. Physical effects like scattering are mathemati-
cally described and therefore generically utilizable, and
it is possible to apply assumptions like symmetry for a
subset of the object model. Another drawback is the
computing effort that comes, i.e., with the high dimen-
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sionality of the VGM. Scheel et al. [30] still manage,
though, to incorporate the radial speed profile of an ob-
ject. The origin association and object tracking is com-
monly performed using probabilistic multi-hypothesis
tracking (PMHT) [33], particle filters or labeled multi-
Bernoulli filter (LMB) [30]. In case of PMHT applica-
tions, the computation of the association probabilities
[7, eq. (19)] is similar to our approach. The subsequent
tracking, however, optimizes the association cost using
the expectation-maximization algorithm.We use a prob-
abilistic Kalman-based approach [5]: The usage of ex-
plicit mathematical functions allows for a very fast ex-
ecution time of our approach. The complete state up-
date takes about 20µs, rendering it suitable for multi-
hypotheses tracking applications. Besides, our approach
inherently supports and utilizes extended structures of
the object model like vehicle sides. This avoids their ap-
proximation with a large number of Gaussian mixture
components and reduces both computing effort and bias
effects.

Another key functionality of the proposed filter is
its treatment of sparse measurement data. In contrast to
applications requiring imaging or high-resolution data,
where, e.g., wheels can be spotted in a single measure-
ment, this filter is suitable for radars receiving about two
detections per target and measurement epoch on aver-
age. It performs a probabilistic association and uses the
state estimates to infer the origin of the detections.

We provide an implementation of the proposed fil-
tering approach for vehicle tracking and finally a dis-
cussion of its tracking performance based on real-data
examinations. We also provide a MATLAB code that
implements the proposed object modeling and state up-
date.1

D. Structure

The goal of the presented approach is to update the
state x using radar detection measurements y at times-
tamp k:

p(xk|y1:k) ∝ p(yk|xk) · p(xk|y1:k−1). (1)

To solve the origin search problem, we model the tar-
get object as a complex of spatially distributed scatter-
ing sources (components). They show different statisti-
cal properties in terms of detection rates and kinematic
measurements. We exploit this heterogeneity to obtain
statistical inference regarding the possible origin of the
detection. The division of the object into these compo-
nents j ∈ J resembles Gaussian mixtures, allowing the
marginal measurement likelihood to be specified in the
following format, where o( j) is the mixture weight:

p(yk|xk) ∝
∑
j∈J

o( j)(x) · N (·) . (2)

1Available at
https://github.com/UniBwTAS/sparse_radar_tracking.

Table I
The Notation and Some Variables of This Article

Symbol Description

x (target) state vector
y single detection measurement
x� predicted state (prior)
y� predicted measurement (given x�)
x̂ updated state (posterior)
x, y scalar Euclidean coordinates
(x, y) Euclidean position vector (2D)
F (·) reference coordinate frame F ∈ { world frame W, ego

vehicle frame E, sensor frame S, target object frame
T}

(·)(K) component identifier K

Each component thereby abstracts technical principles
that strongly depend on the object type and its current
state.

This article is structured bottom-up: Section II spec-
ifies the notation and the utilized variables. Section III
states our sensor model. Section IV denotes the object
modeling concept and its implementation for a vehicle.
The fundamental technical properties for each compo-
nent are stated.SectionV carries this on to a spatialmea-
surement function that resembles themarginal measure-
ment likelihood. It is given for each component; the su-
perposition of all likelihoods describes the spatial mea-
surement function for the complete object. This mea-
surement function can be used in Bayes filters. In Sec-
tion VI, we utilize the predictive measurement likeli-
hood p(yk|y1:k−1) based on the state prediction to deter-
mine the origin for a given detection measurement y in a
probabilisticmanner.SectionVII proposes ourBayesian
filtering approach. It explains the state update of a sin-
gle state hypothesis.The performance of the algorithm is
then examinedwith real-world tracking scenarios in Sec-
tion VIII. We briefly outline interfaces to multi-object
multi-sensor tracking frameworks in Section IX and fi-
nally discuss the filter in Section X. This article is con-
cluded in Section XI and provides an outlook for future
work in Section XII.

II. NOTATION, VARIABLES, AND COORDINATE
FRAMES

Table I briefly outlines frequently used variables and
the notation of this article. The therein referenced co-
ordinate frames are required for coordinate transforma-
tions of the detection measurements and illustrated in
Fig. 2.A detection measurement y is initially obtained in
polar sensor coordinates and consists of

� range measurement r with measurement noise σr,
� angle measurement α with measurement noise σα ,
� Doppler measurement ṙ with measurement noise σṙ,
� amplitude or radar cross section measurement a.
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Fig. 2. The coordinate systems. The odometry provides a
time-variant transform WHE(t) from the world coordinates W to the
ego vehicle coordinates E. The static mounting location EHS of the
treated sensor establishes the sensor coordinate system S. These
transforms project the detection measurement D given in sensor
coordinates S(xD, yD) into world coordinates W(xD, yD). The state
estimate x provides the reference point of the target T in world

coordinates.

The position of the detection in Cartesian sensor co-
ordinates S(xD, yD) is given by

S(xD, yD) :=
S [
xD
yD

]
=

S [
r · cosα

r · sinα

]
, (3)

and the Cartesian measurement noise matrix in sensor
coordinates SRxy is

SRxy = R(α) ·
[
σ 2
r 0
0 (2r · tan(σα/2))2

]
· R(α)ᵀ, (4)

where R(·) is the two-dimensional rotation matrix.
These conversions are subject to bias effects when used
in state filters. Dedicated compensation techniques are
provided by Bordonaro et al. [6], but these effects are
negligible compared to real-world measurement phe-
nomena the filter has to deal with in this application. A
transformation matrix EHS from sensor coordinates S
to ego coordinates E, which reflects the mounting posi-
tion, and a time-variant egomotion transformation ma-
trix WHE(t) from ego toworld coordinates convert these
parameters into world coordinates. The position of the
detection in world coordinates W(xD, yD) is given by

W [
xD
yD

]
= WHE(t) · EHS ·

S [
xD
yD

]
. (5)

Therefore, its measurement noise in world coordinates
can be derived as
WRxy = R

(WϕE(t) + EϕS
) · SRxy · R (WϕE(t) + EϕS

)ᵀ
,

(6)
with the mounting yaw EϕS being deduced from EHS

and the heading of the ego vehicle WϕE(t) provided by
WHE(t).

Further variables in this article, like the state vectors,
are explained when they are introduced.

III. SENSOR MODEL

This section briefly denotes some sensor-specific pa-
rameters and their derivations.Given a specific target re-

flector, the radar sensor will measure a detection with a
particular detection probability. It manifests in the de-
tection rate o, which describes at which rate a detec-
tion is invoked by a specific reflectivity at a certain dis-
tance r. As this rate depends both on the sensor and
the individually measured reflectivity, we factor out the
sensor-specific part: the reference rate oR(r).We address
not only the resolution ability of the sensor but also
firmware-sided tuning. In fact, the signal strength of a
radar echo decreases with the fourth power of the dis-
tance, but the firmware often neutralizes this effect by
applying adapted trigger and noise thresholds in the con-
stant false alarm rate algorithms [29]. This way, the de-
tection rate of an object keeps almost constant over
the distance, until the maximum measurement range of
the sensor is reached. At this point, the detection rate
drops rapidly.However, the exact effect should be deter-
mined by measurement analysis for each sensor model.
We model the reference rate oR(r) of our sensor with

oR(r) = a · erf ((rmax − r)/d) , (7)

using the error function erf(·)

erf(x) = 2√
π

∫ x

0
e−t2dt, (8)

and the parameters effective maximum range rmax (e.g.,
40m), decay magnitude d (e.g., 10m) and amplitude a,
which depends on the reference reflectivity. The refer-
ence reflectivity can be chosen arbitrarily here; we have
selected the corner of a car. If the amplitude a is de-
termined by measurement analysis, then the reference
rate already incorporates the ratio for false negative
and true positive detections. The false positive detection
rate causes clutter measurements and needs to be deter-
mined independently.

The detection measurement is spread around the
true position of the target according to its measurement
noise characteristics. They are mostly given in sensor co-
ordinates to match the physical measurement process
and are described by the scalar uncertainties introduced
in Section II. Some sensors provide these uncertainties
for each measured detection themselves. This allows for
the incorporation of certain ambiguities in the sensor-
internal preprocessing that depend on the environment
[4].

Another important parameter is the bandwidth of
the sensor. It affects the resolution capability. Besides
the number of resolved detections, it also determines a
kind of longitudinal “penetration” depth: The larger the
range resolution is, the more reflections of a larger depth
of the object (e.g., caused by vertical tapers) are received
inseparably. The peak detection of the sensor then sig-
nals a longitudinal measurement, which is smeared over
the penetration depth, and therefore needs to be consid-
ered as an additive term of the range measurement. The
actual incorporation of this term is firmware-specific and
depends on the structure of the target.
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These parameters describe the radar sensor and aim
for its exchangeability without the need to touch the ob-
ject model. However, if a sensor is utilized that changes
the relative detection rate ratio between the individual
components of the object, an adjustment of the object
model might be required, since this ratio is primarily ex-
ploited in the presented approach.Wehave not observed
such a behavior in comparable sensor series, though.Ob-
taining the extrinsic and intrinsic sensor parameters by
dedicated measurement campaigns and ground-truth-
assisted analysis is often not trivial despite automation,
as it requires manual effect decomposition and can take
several days.

IV. OBJECT MODEL AND A VEHICLE
IMPLEMENTATION

The abstraction of the physical model (i.e., [3], [4])
has to meet diverse requirements. Its usage in a multi-
hypotheses tracking framework must meet real-time
constraints, although an oversimplification of the pre-
cise physical model impairs the tracking performance.
A major criterion is the correct reproduction of the ob-
ject contour, since any deviation causes a position bias
of the object estimate. The measurement data show a
strong impact of the viewing angle, which thus needs to
be modeled accordingly. Additionally, the data does not
only show a dependency on occlusions by other objects
but also on self-occlusions. For instance, wheels that are
facing the sensor might shadow opposite wheels.

Our approach is to model an object by the super-
position of a certain number of components: the object
is split into a set of separate, individually, and formally
described parts. This method gives the opportunity to
use different measurement models, visibility constraints,
and detection likelihoods for each component. The
number of components should preferably be small to
achieve fast computation times, but sufficiently large to
allow a precise representation of the object. In the ex-
ample of our vehicle model, suitable component classes
are wheels, corners, sides, and the body. A component
class can have multiple instances. Physical effects like
the micro-Doppler can be specifically implemented for
each class and can be exploited to tightly associate a
detection to a component. The visibility constraint of
a component class can also depend on other compo-
nents in advanced models. This enables the modeling of
self-occlusions or, in multi-object tracking applications,
occlusions by other objects.

The following describes a set of components that
jointly define the measurement characteristic of a ve-
hicle. This set and its configuration have been obtained
by recording and analyzing the reflection characteristics
of various vehicles, among them a compact class vehi-
cle and a sport utility vehicle in particular as edge cases
[2].Besides, short-range and far-range sensors have been
utilized. According to our findings, the set of compo-
nents comprising wheels, corners, sides, and the body

is a good compromise between precision and complex-
ity regarding the utilized radar sensors. This set results
in 4 component classes and 13 component instances.
Each component class is defined by a set of attributes
A(·) = { position T(xC, yC)(·)(x), position uncertainty

Cov
(
T(xC, yC)(·)

)
, detection rate o(·)(x), radial speed

model v
(·)
r (x)}. The position T(xC, yC)(·)(x) denotes the

position of the component in the target frame T. The

position uncertainty Cov
(
T(xC, yC)(·)

)
describes the un-

certainty of this position and can also be used to model
a slight extent with an additive noise term. The detec-
tion rate o(·)(x) describes the expected number of de-
tections this component invokes. It depends mainly on
the reflection characteristics of the component and its
visible angular extent. The visible angular extent is usu-
ally estimated using the target state and the pose of the
radar sensor toward the object. The radial speed model
v
(·)
r (x) denotes the measurement model of the radial
speed measurements for the given component. We de-
duce the mathematical correlation of these attributes
to the state vector using the physical relations found in
[3], and parametrize those accordingly to match the ob-
served data. In this work, we use the plain extent state
vector xext = [l,w]ᵀ to estimate the length l and the
width w of the object to preserve a low computing ex-
pense. As a result, all remaining required information,
like the wheel positions, is statistically derived from both
variables. Alternatively, any desired parameter can also
be included in the state vector. Apart from that, the fol-
lowing component descriptions are based on a constant
turnrate and velocity (CTRV) state model, which de-
scribes the position (x, y) and heading ϕ of the object
along with its kinematical properties translational speed
v and yaw rate ω. The state vector is finally given as

xkin = [x, y, ϕ, v, ω]ᵀ, (9)

x = [xᵀkin, x
ᵀ
ext]

ᵀ. (10)

The kinematic transition matrix yields [31], [34]:

xkin,k+1 =

⎡
⎢⎢⎢⎢⎣
xk + vk/ωk · (+ sin(ωk�t + ϕk) − sin(ϕk))
yk + vk/ωk · (− cos(ωk�t + ϕk) + cos(ϕk))

ϕk + ωk�t
vk
ωk

⎤
⎥⎥⎥⎥⎦ ,

(11)
and predicts the state epoch k + 1 from epoch k by in-
tegrating the sample time �t. When the yaw rate ω is
close to zero, the transition matrix should be simplified
to avoid numeric issues:

xkin,k+1 =

⎡
⎢⎢⎢⎢⎣
xk + vk · cos(ϕk)�t
yk + vk · sin(ϕk)�t

ωk�t + ϕk
vk
ωk

⎤
⎥⎥⎥⎥⎦ . (12)

The transition matrix of the extent state vector xext for
rigid objects is the unit matrix 12×2.
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In the following, the attributes for the four compo-
nent classes—corners, wheels, sides, and body—are de-
clared.

A. Vehicle Corners

The corners of a vehicle benefit from a good reflec-
tion effect. As discussed in Section I-B, the curvature of
a visible corner exposes a spot that is perfectly perpen-
dicular to the line of sight of the radar sensor. This spot
reflects electromagnetic waves back to the radar sensor
with only minimal deflection and thereby obtains an ex-
cellent visibility in themeasurement data.Consequently,
we model the corner as a point target. The exact posi-
tion of the reflective spot depends on the shape of the
vehicle and is empirically derived from the extent state
vector. We model the uncertainty of the position with
an additive Gaussian noise term. The resulting descrip-
tion is noted in Table II and graphically represented in
Fig. 3.

The detection rate depends on several factors, where
each models a specific influence on the detection rate.
The corner detection rate o(C) depends here on three
factors. The first one is the reference rate, oR(r), as dis-
cussed in Section III. The second factor, the component
base rate oC, now puts the reflectivity of a component
into relation to the reference reflectivity. The product of
both factors thus resembles the detection rate of a spe-
cific component. In the case of the corners, o(C)

C is con-
sequently 1, and the amplitude a of the reference rate
has been adjusted to our findings. The third factor o(C)

V is

-1 0 1 2 3 
Tx in m

-1

0 

1 

T
y 

in
 m

Corners Wheels Sides Body

Fig. 3. The location of the components of the reflection model. The
dots and lines denote the location of the components in the target
frame; the gradients in the background the uncertainty of their
location. The contour of a vehicle is overlayed for illustration

purposes (gray).

a simple visibility constraint that checks if the corner is
visible:

o(C)
V (x) =

{
1 if adjacent vehicle sides are visible,
0 otherwise,

(13)

which implies that a corner is considered visible if both
adjacent sides of the vehicle are visible.The resulting de-
tection rate o(C)(x) of a corner is the product of all fac-
tors:

o(C)(x) = oR(r) · o(C)
C (x) · o(C)

V (x). (14)

Table II
The Component Parametrization for Our Vehicle Model

Components
Position

T(xC, yC)(·)(xext)
Position uncertainty

Cov
(
T(xC, yC)(·)

) Detection rate
o(·)(x)

Doppler
model

Corner front
{left, right}

(
0.65 · l

±0.25 · w

)
R(∓45◦) ·

(
(0.15m)2 (0m)2

(0m)2 (0.05m)2

)
· R(∓45◦)ᵀ Reference Rate × Base Rate

(1) × Visibility Constraint
CTRV

Corner rear {left,
right}

( −0.2 · l
±0.35 · w

)
R(±45◦) ·

(
(0.15m)2 (0m)2

(0m)2 (0.05m)2

)
· R(±45◦)ᵀ Reference Rate × Base Rate

(0.66) × Visibility Constraint
none

Wheel front {left,
right}

(
0.5 · l

±0.5 · w ∓ 0.15m

) (
(0.2m)2 (0m)2

(0m)2 (0.1m)2

)

Wheel rear {left,
right}

(
0m

±0.5 · w ∓ 0.15m

) (
(0.2m)2 (0m)2

(0m)2 (0.1m)2

)

Side {left, right}
(−0.15 · l → 0.6 · l

±0.5 · w ∓ 0.15m

) (
(0m)2 (0m)2

(0m)2 (0.05m)2

)
Reference Rate × Base Rate
(0.29/1◦) × Angular Width ×

Visibility Constraint ×
Scattering

CTRV

Side front
(

0.67 · l
−0.125 · w → 0.125 · w

) (
(0.05m)2 (0m)2

(0m)2 (0m)2

)

Side rear
( −0.2 · l

−0.15 · w → 0.15 · w

) (
(0.05m)2 (0m)2

(0m)2 (0m)2

)
Body - - Reference Rate × Base Rate

(0.11)
CTRV

The coordinates are given in the target frame T. The predicted state estimate x� provides the length l and the width w of the vehicle. R(·) is the
two-dimensional rotation matrix.
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Fig. 4. The computation of the expected radial speed measurement.
The velocity vector over ground of the radar sensor is the sum of the
translational speed of the ego vehicle vE and the rotary movement of

the sensor caused by the yaw rate ωE . The velocity vector of the
requested point z on the target vehicle is similarly computed using v

and ω. The radial speed measurement vr of this point is the projection
of the difference of both velocity vectors along the line of sight

(dashed line).

The expected radial speedmeasurement is computed
using the CTRV model [22]. Figure 4 accompanies the
following calculation. Firstly, the velocity vector of the
radar sensor over ground vS is computed:

vS =
(
cosϕE · vE − ωE · (yS − yE )
sinϕE · vE + ωE · (xS − xE )

)
. (15)

This requires the longitudinal speed of the ego vehi-
cle vE , its heading in world coordinates ϕE , its yaw rate
ωE := ϕ̇E , its pivot point (xE, yE ), and the position of the
sensor (xS, yS) in world coordinates. Secondly, the veloc-
ity vector vz of the requested point z, which lies on the
target vehicle, is determined analogously:

vz(z) =
(
cosϕ · v − ω · (yz − y)
sinϕ · v + ω · (xz − x)

)
, (16)

where the speed v, heading ϕ, yaw rate ω, and position of
the target (x, y) are obtained from the target state esti-
mate, while (xz, yz) are the world coordinates of the re-
quested point. Thirdly, the orientation to the detection
originating from the sensor 	 is determined:

	(z) = atan2(xz − xS, yz − yS). (17)

And fourthly, the difference of both velocity vectors is
rotated to the radar frame:

vr(z) = (
cos	(z), sin	(z)

) · (vz(z) − vS). (18)

vr returns the longitudinal velocity component or rather
the radial speed. These equations are outlined in detail
in [4, Section II.C].

B. Vehicle Wheels

Thewheels of a vehicle are good reflectors, especially
due to the metal rim and the suspension. We model the
wheels as point targets, as their extents are also rather
small. The rotating wheels cause radial speed measure-
ments that do not match the body of the vehicle and
cause the micro-Doppler effect. Thus, the radial speed
measurement cannot be used for the kinematic state es-

timate of the vehicle. However, the radial speed mea-
surement can be exploited to associate a nearby strong
detection to a wheel: If the radial speed measurement
mismatches the expected radial speed measurement of
the body, then the wheel gains a high association proba-
bility. The component base rate o(W )

C is 0.66 according to

our measurement analysis. The visibility constraint o(W )
V ,

however, is more complex to model. For example, if the
sensor is mounted at a typical low height, then the op-
posite wheels are in line of sight to it. Although the vis-
ible area of an opposite wheel can be computed, neces-
sary parameters like the underbody height of the target
are still unknown, and the estimation of it can be chal-
lenging. As a result, we reduce this problem to an em-
piric constant that corresponds to the average detection
rate of opposite wheels according to our measurement
analysis:

o(W )
V (x) =

{
1 if the corresponding side is visible,
0.3 otherwise.

(19)

The detection rate o(W ) is again the product of all
factors:

o(W )(x) = oR(r) · o(W )
C (x) · o(W )

V (x). (20)

C. Vehicle Sides

The sides of a vehicle resemble the largest part of
the shape of the vehicle. Therefore, they are a signif-
icant source of detections. Their extent no longer jus-
tifies a point target approximation. Especially, in static
scenarios, where a specific part of a side has the highest
reflectivity and causes nonuniformly distributed detec-
tions along the side, a bias occurs. It shifts the center, or
mean, of the side toward that part. Instead, each point of
the side has to be regarded as a potentially independent
detection source. As a result, we consider each point of
the line as a subcomponent of the side of the car, with
each point having an independent measurement func-
tion to obtain the expected position and radial speed
measurements. The detection rate o(S) for the complete
side consists of multiple factors. Figure 5 outlines the
calculation of these factors. The first ones are again the
reference rate oR(r) and the component base rate o(S)

C .
The latter must now be referenced to a certain angu-
lar width like 1◦ to consider the actual observed width.
Multiplying this reference angular width with the actual
observed angular width, ψ , then gives the final compo-
nent base rate. The observed angular width,ψ , depends
on the distance, the absolute length, and the orientation
of the side. It is computed using the edge points of the
side A = (xA, yA) and B = (xB, yB), which are defined
in a counter-clockwise order around the center of the
vehicle:

ψ = ∣∣∠(−→SA,
−→
SB)

∣∣. (21)
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Fig. 5. The computation of the detection occurrence likelihood for
the vehicle sides. The rear and right side of the target vehicle T are
considered as visible because the sensor S is “right” of the respective
vector

−→
AB. The observed angular width ψ and the angle of incidence

δ are drawn for the right side.

When measuring o(S)
C , the vehicle side needs to precisely

face the sensor. According to our evaluation, this factor
is 0.29/1◦.

The next factor is the visibility constraint qv(S),which
checks if the side is oriented to the radar sensor. This
is mathematically performed by computing the non-
normalized signed distance d(S)

S of the radar sensor S =
(xS, yS) toward the side:

d(S)
S = (xS − xA) · (yB − yA) − (yS − yA) · (xB − xA) .

(22)
The boolean visibility constraint o(S)

V is then given by a
sign check:

o(S)
V (x) =

{
1 if d(S)

S > 0,
0 otherwise.

(23)

The last factor represents the scattering effect.The reflec-
tions of the radar waves are scattered depending on the
angle of incidence δ:

δ = atan2(yB − yA, xB − xA) − ∠(−→SM,
−→
AB), (24)

where the point M is the midpoint of the side and used
as approximative reference:

M = 1/2(
−→
A + −→

B ). (25)

This approximation is required as each point of the line
has a different angle of incidence. It is fully sufficient for
vehicles that are not in the immediate vicinity. Later, in
the state update,

−→
SM can also be replaced by the actual

orientation of the radar toward the detection.
The steeper the angle between the vehicle side and

the radar, the more signal power is scattered and the less
signal power is reflected back to the sensor. This damp-
ing factor o(S)

S is provided by a model proposed in [15]
and [3]:

o(S)
S (x) = sin(δ)2. (26)

The detection rate finally results in

o(S)(x) = oR(r) · o(S)C (x) · ψ

1◦ · o(S)
V (x) · o(S)

S (x). (27)

D. Vehicle Body

Finally, a portion of detections is caused by arbitrary,
model-specific parts of the vehicle body. It is not possible
to perform a position update of the estimate as the ori-
gin of the detection is unknown. However, a kinematic
update is conceivable for the current position of the de-
tection.We derived the component base rate o(B) of the
vehicle body from the measurements (i.e., 0.11):

o(B)(x) = oR(r) · o(B)C (x). (28)

At this point, all relevant components of a vehicle
have been abstracted to a set of generic functions.

V. EXPECTED SPATIAL DETECTION LIKELIHOOD

This section depicts the computation of the expected
spatial detection likelihood based on the generic com-
ponent descriptions.The expected spatial detection like-
lihood serves as a measurement function for an arbi-
trary object state x and indicates the expected number
of detections for any point in the measurement space
z. Thereby, it also takes into account the expected state
uncertainty P. The spatial detection likelihood can also
be interpreted as the detection rate or frequency for a
given point, or as a probabilistic detection density. The
spatial sum of the detection likelihood corresponds to
the expected number of detections the complete object
presumably invokes.

The following equations are given for a single time
step. Hence, the corresponding indices are omitted for
the sake of simplicity. As a prerequisite, the algorithm
requires the component locations (xC, yC)

(·) to be trans-
formed from target coordinates T to world coordinates
W. The mean transformation is given by

W [
xC
yC

](·)
=

[
x�

y�

]
+ R(ϕ�) ·

T [
xC
yC

](·)
, (29)

and its uncertainty transformation by

Cov
(
W(xC, yC)(·)

)
= R(ϕ�)·Cov

(
T(xC, yC)(·)

)
·R(ϕ�)ᵀ.

(30)
In the following, we perform all computations in world
coordinates and omit the coordinate frame indexW and
time indices to simplify the formal representation.

The spatial detection likelihood indicates the chance
of obtaining a detection for any desired point in the
measurement space.The likelihood is computed for each
component and depends on the object state, the position
of the component, its extent model, and also on the un-
certainties of both the state and the measurement.
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A. Vehicle Corners

The expected measurement vector of a corner con-
sists of a position and radial speed measurement:

y�(C) =

⎡
⎢⎣

x(C)
C (x�)
y(C)
C (x�)

vr

(
(xC, yC)

(C)(x�)
)
⎤
⎥⎦ . (31)

The measurement matrix C(C) for a corner can be deter-
mined using linearization:

C(C) =

∂

⎡
⎢⎣

x(C)
C (x)
y(C)
C (x)

vr

(
(xC, yC)

(C)(x)
)
⎤
⎥⎦

∂x

∣∣∣∣∣
x�

. (32)

Subsequently, the innovation covariance matrix S(C)

yields

S(C) = C(C)P�C(C)ᵀ +
[
Cov

(
(xC, yC)

(C)
)

+ Rxy 0

0 σ 2
ṙ

]
,

(33)
which treats the location uncertainty Cov((xC, yC)

(C)) of
the corner as an additive measurement uncertainty. At
this point, the spatial detection likelihood caused by a
corner γ (C)(z) can be computed using the Gaussian dis-
tribution N (·):

γ (C)(z) = o(C)(x�) · N
(
x=z, μ=y�(C), σ 2=S(C)

)

= o(C)(x�)√
(2π )3det

(
S(C)

) ·

exp
(

−1
2

(
z − y�(C)

)ᵀ
S(C)−1

(
z − y�(C)

))
.

(34)

B. Vehicle Wheels

The spatial detection likelihood of the wheels is sim-
ilar to the corners, but the micro-Doppler effect pre-
vents the usage of the radial speed measurement. The
expected measurement y�(W ) is given by

y�(W ) =
[
x(W )
C (x�)
y(W )
C (x�)

]
, (35)

and the measurement matrix C(W ) is given by

C(W ) =
∂

[
x(W )
C (x)
y(W )
C (x)

]

∂x

∣∣∣∣∣
x�

. (36)

The innovation covariance matrix S(W ) is

S(W ) = C(W )P�C(W )ᵀ + Cov
(
(xC, yC)

(W )
)

+ Rxy. (37)

Therefore, the spatial detection likelihood can be de-
scribed by

γ (W )(z) = o(W )(x�) · N
(
x=z, μ=y�(W ), σ 2=S(W )

)
.

(38)

C. Vehicle Sides

As discussed, the length of the vehicle sides demands
amore sophisticated handling than the approximation as
a point target. Instead, we model a vehicle side as a line.
Each point of the line can be the possible source of a de-
tection.As a result, the uncertainties of the state and the
measurement reveal a subordinated, continuous associa-
tion ambiguity for a given detection, as there is a span of
possible point sources for a given detection.We aim for
a continuous approach [5,Section II.B] to solve the asso-
ciation ambiguity: splitting the line into segments would
result in more runtime efforts and only attenuate the
bias effect that is evoked by discretized sampling points.
To begin, we consider a point s(S)(u) ∈ S,u ∈ [0; 1]. Its
parametrization can be formally represented as

s(S)(u) =
[
xA(x�) + u · (xB(x�) − xA(x�))
yA(x�) + u · (yB(x�) − yA(x�))

]
, (39)

by utilizing both end points of the side (xA(x�), yA(x�))
and (xB(x�), yB(x�)) in world coordinatesW.This allows
for the denotation of the expected measurement vector
as

y�(s)(u) =
[

s(S)(u)
vr

(
s(S)(u)

)] , (40)

the measurement matrix as

C(s)(u) =
∂

[
s(S)(u)

vr(s(S)(u))

]
∂x

∣∣∣∣∣
x�

, (41)

the innovation covariance matrix as

S(s)(u) = C(s)(u)P�C(s)ᵀ(u)

+
[
Cov

(
(xC, yC)

(S)
)

+ Rxy 0

0 σṙ

]
,

(42)

and finally, the spatial detection likelihood as

γ (s)(u, z) = o(S)(x�) · N
(
x=z, μ=y�(s)(u), σ 2=S(s)

)
.

(43)
The spatial detection likelihood invoked by the com-
plete vehicle side can be computed by summing up the
detection likelihoods of all the points:

γ (S)(z) =
1∫

0

γ (s)(u, z) du. (44)

This integral is known as stick model in the literature.
Some simplifications of the stick model and the follow-
ing integrals yield short closed functions. As the com-
putation of the expected radial speed measurement is
rather complex, we approximate it by a linear function.
This approximation is only used for the association steps
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and uses both end points as sampling points. The mea-
surement matrixC(s)(u) is different for all points,mainly
because of the altering impact of the uncertainty of the
yawof the state estimate.Due to its symmetric character-
istic, we consider a static innovation covariance matrix,
which is either sampled for the center of the line or for
the nearest point of the line from the detection.

D. Vehicle Body

The last component class represents arbitrary detec-
tions on the body of the vehicle. As the actual source is
unknown, a position update is not feasible.However, the
expected radial speed measurement can be computed
for any point z. This allows for purely kinematic asso-
ciation hypotheses and state updates. The latter is viable
by filtering the radial speedmeasurement at the position
of the measured detection. The measurement vector for
the body component consequently consists only of the
radial speed measurement ṙ:

y(B) = ṙ, (45)

while the corresponding expected measurement is given
by

y�(B) = vr (z) . (46)

By considering the partial derivative, the body measure-
ment matrix C(B) yields

C(B) = ∂vr(x)
∂x

∣∣∣∣
x�

, (47)

and the innovation covariance matrix S(B) yields

S(B) = C(B)P�C(B)ᵀ + σ 2
ṙ . (48)

With these equations,we can compute the detection like-
lihood γ (B):

γ (B)(z) = o(B)(x�) · N
(
x=z, μ=y�(B), σ 2=S(B)

)
, (49)

which indicates the likelihood that the body component
is the source of the detection.

E. Clutter (Optional)

Similar to probabilistic data association filter
(PDAF) applications, a clutter hypothesis can be
added to the association problem. Clutter is caused
by false positive detection measurements and part of
the sensor model (Section III). The clutter likelihood
γ (0) can be modeled with a Poisson distribution. Its
parameters usually depend on the distance and the en-
vironmental complexity and are firmware-specific. They
can be determined with an appropriate measurement
analysis. Clutter is not part of the object model itself.
However, for single-object tracking applications, it can
be interpreted as an additional virtual component that
does not invoke a state innovation.

Figure 6 shows the spatial detection likelihoods for
different observation angles. Besides, the superposition
of all expected spatial detection likelihoods γ (J)(z) =∑

j∈J γ ( j)(z) is illustrated and compared with the mea-
surement data.As the measurement data can only be vi-
sualized for a span of observation angles, the superposed
spatial likelihoods are sampled and averaged over this
span tomatch the data visualization.Note that Fig.6 only
shows the position components (x, y) of the measure-
ment space vector z = (x, y, ṙ = 0). A dynamic scenario
is shown in Fig. 1 and rendered in the full measurement
space.

At this point, our proposed (spatial) measurement
function for an extended object is available. It can be
used in a Bayes filter like a particle filter to judge
state hypotheses and thereby to estimate the state of an
object.

VI. DETECTION-TO-COMPONENT ASSOCIATION
PROBABILITY

This section outlines the computation of the asso-
ciation probability β ( j) of a single detection measure-
ment y toward any component j. This is done by nor-
malizing their detection likelihoods γ (·) for the given
detection y:

β ( j) = γ ( j)(y)∑
k∈J γ (k)(y)

. (50)

Figure 7 illustrates the prior detection likelihoods and
the association hypotheses for an example target state
estimate with a realistic state and measurement uncer-
tainty.The target is positioned at W(0m, 0m) and parked
at a heading of 30◦. The radar sensor is positioned at
W(0m,−10m). At this distance, the (Euclidean) lateral
measurement noise of the radar sensor is significantly
higher than the longitudinal one. First, the priors are
computed. The visibility constraints predict visibility for
the rear and right vehicle sides, the rear right corner, and
all wheels. The a priori detection likelihood of the right
vehicle side is higher than the detection likelihood of the
rear side because the angle of incidence causes a signif-
icantly higher scattering effect at the rear side. The sum
of all a priori detection likelihoods is approximately two,
i.e., themeasurementmodel expects two detections to be
obtained in this scenario.The prior spatial detection like-
lihood takes all uncertainties into account and predicts
the occurrence of detections in the measurement space.
It is visualized in the background (gradients).As it is not
possible to print the three-dimensional detection likeli-
hood, the gradients are rendered for the sectional plane
given by z = (x�, y�, ṙ� = ṙ), i.e., the plane in the z-axis
of Fig. 1 that corresponds to the actually measured radial
speed.This foreknowledge about the detectionmeasure-
ment at this point is limited to this illustrative purpose.
According to the illustrated spatial detection likelihood,
there is a high probability that these are located on the
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α = 0◦ (←) α = 0◦ ± 15◦ α = 0◦ ± 15◦

α = 45◦ (↙) α = 45◦ ± 15◦ α = 45◦ ± 15◦

α = 90◦ (↓) α = 90◦ ± 15◦ α = 90◦ ± 15◦

α = 135◦ (↘) α = 135◦ ± 15◦ α = 135◦ ± 15◦

Fig. 6. Comparison of the approximated model and the measurement data: The left column shows the spatial prior detection likelihood for
various observation angles α. The middle column shows their superposition for a certain range of observation angles, for which the

measurement data on the right column have been respectively recorded. The resolutions are adjusted. The colors of the spatial detection
likelihood plots correspond to Fig. 3. The data histograms are collected over several minutes.

rear right corner or on the right vehicle side. The likeli-
hood that a detection is measured at the back side or the
rear right wheel is lower.

As the illustrated detection measurement (blue
point) is received, the association probabilities can be
computed. The detection results in a high association
probability of the right side, a moderate probability of
the back side, but a low probability of the rear right
corner (primarily due to the lower longitudinal mea-
surement uncertainty). The shown orange arrows repre-
sent the association hypotheses. In case of the sides, they
point to their mean origin point s̄(S). This point is the
average of all points on the side, but weighted by their
individual association likelihood:

ū =
⎛
⎝ 1∫

0

u · γ (s)(u, y) du

⎞
⎠ / ⎛

⎝ 1∫
0

γ (s)(u, y) du

⎞
⎠ , (51)

s̄(S) =
[
xA(x�) + ū · (xB(x�) − xA(x�))
yA(x�) + ū · (yB(x�) − yA(x�))

]
. (52)

The obtained mean origin point s̄(S) can be used to re-
compute the measurement matrix C(s)(u) in a recursive
approach.As the lateral innovation uncertainty is higher
than the longitudinal uncertainty, the mean origin points
of the sides are mainly laterally shifted from the detec-
tion measurement.

Figure 8 introduces dynamics in the scenario: The
target drives in a curve to the left. The radial speed
measurement is set in a manner that it matches the
expected radial speed measurement of the rear side.
As the rear slightly moves toward the sensor in a
left curve, the radial speed measurement is negative.
Given the low uncertainty of the radial speed measure-
ment, the detection is now associated with the rear side
with high significance. Additionally, the hypothesis that
the detection originates from the wheel emerges as its
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Fig. 7. Association probabilities of a static scenario. The orange
arrows denote the association probabilities. The probabilities for the

body (18.0%) and clutter (3.6%) are not shown.

association ignores the mismatching radial speed differ-
ences due to the micro-Doppler effect. The estimated
mean origin of the right side is shifted to the left to bet-
ter match the radial speed measurement, but it still loses
any significant association likelihood.

The association probabilities β ( j) can now be used
to obtain a probabilistic indication about the origin of a
detection.

VII. STATE UPDATE

This section describes the filter principle and its ac-
tual implementation to update the state and uncertainty
of a single-object state hypothesis x.

A. Principle

Each component is a possible source of a detection.
Especially when considering the uncertainty of both
measurement and state, a given detection could orig-
inate from multiple components. A particle filter that
matches the complete spatial detection frequency or a
multiple hypothesis tracking (MHT)-adapted approach
that tracks the associations of the detections to the com-
ponents over time is not feasible in an application where
a multi-hypotheses tracking is run upstream. A sim-
ple maximum a posteriori estimate, or hard association,
though, does not establish a robust tracking due to the
high ambiguity of the association problem. We aim for
a soft association approach, which represents a suitable
compromise according to our findings. The association
ambiguities are resolved probabilistically and are still
encased in aGaussian state formulation.Association un-
certainties are thereby incorporated in the state uncer-
tainty. The utilized association and tracking algorithm
has been developed previously [5] as preparation for this
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Fig. 8. Association probabilities of a dynamic scenario. The
probability for the body is ∼0% and for the clutter is 10.9%. The gray
arrows denote the radial speed measurement of the detection and the

expected radial speed measurements of all components
(1m =̂ 1ms−1).

work. It shares its basic principles with the PDAF [1] and
is briefly stated in the following.

Every component j has a state-dependent associ-
ation likelihood γ ( j). It denotes the presumption that
component j has caused a given detectionmeasurement.
The absolute association probability, β ( j), is determined
by computing the association likelihoods for all compo-
nents J and by normalizing them, as done in equation
(50).At this point, clutter measurements are not yet con-
sidered. As each component description correlates the
object state with the component, it can also provide a
state update x̂( j) of the predicted target state x�. This up-
date is conditioned on the assumption that the detection
is actually caused by the component j:

x̂( j) = x� + K( j) ·
(
y − y�( j)

)
, (53)

where K( j) is the Kalman gain of component j, y is the
detection measurement, and y�( j) is the expected mea-
surement if component j is assumed to be the origin of
the detection. In a last step, the conditional state updates
x̂( j) are fused according to their association probabilities
β ( j) to obtain the updated state x̂:

x̂ =
∑
j∈J

β ( j) · x̂( j). (54)

The updated state uncertainty P̂ is calculated similarly
by

P̂ =
∑
j∈J

β ( j)
(
(1 − K( j)C( j))P� + (x̂( j) − x̂)(x̂( j) − x̂)ᵀ

)

(55)
and depends on the predicted state uncertainty P� and
measurement matrices C( j) for all components j ∈ J.
The term marked with a dashed underline represents
the uncertainty of the association, the so-called spread

128 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 17, NO. 2 DECEMBER 2022



of means. This term carries the information how certain
the association search is. It increases according to the car-
dinality, the likelihood, and the impact of alternative as-
sociation hypotheses.

This probabilistic association requires a far lower
computing expense than multi-hypotheses trackers,
which resolve the combinatorial association problem
over time. The downside of probabilistic associations is
that evenwrong associations are filtered in with a certain
weight. In this application, significant association proba-
bilities are only invoked by components that are of com-
parable likelihood to have caused the detection. Such
components are mostly close together, and their state
updates are similar as they are part of a rigid body. This
is a major difference to PDAF applications where multi-
ple, independent object tracks are updated with a single
measurement.

B. Implementation

In the following, a Kalman filter update of the tar-
get state, considering a single-object hypothesis, is per-
formed.

The update of the target state is composed of update
steps for each single component. According to the prin-
ciple of the probabilistic origin association, each individ-
ual component update step is performed in the assump-
tion that the respective component is the origin of the
given detection, regardless of its actual association prob-
ability. For every component j ∈ J, the Kalman gainK( j)

is computed as

K( j) = P�C( j)ᵀS( j)−1 (56)

and utilized for the component-wise state updates x̂( j)

according to equation (53), and subsequently for the
fused posterior state estimate x̂ according to equation
(54) and the posterior state uncertainty P̂ according to
equation (55). While the state updates x̂( j) can be di-
rectly obtained for the other components, the vehicle
sides require a more elaborate treatment. Their native
posterior state estimates x̂(S) yield

x̂(S) =
1∫

0

β (s)(u) · x̂(s)(u) du

=
1∫

0

β (s)(u) ·
(
x� + K(s)(u) · (

y − y�(s)(u)
))

du.

(57)

The recursive approximation of the measurement ma-
trixC(s)(u) for a static replacementC(s)(s̄(S)), previously
discussed in Section VI, simplifies the posterior state es-
timate to

x̂(S) = x� + K(s)(ū) ·
⎛
⎝y −

∫ 1

0
β (s)(u) · y�(s)(u) du

⎞
⎠ ,

(58)

where the dashed underlined term represents the mean
of the origins. This mean has already been computed in
equation (51) and yields

x̂(S) = x� + K(s)(ū) ·
(
y − y�(s)(ū)

)
. (59)

This approximation implies that the Kalman gain of the
expected mean origin is applied to the nearby, less likely
origins in a symmetricmanner.Therefore, the native pos-
terior state uncertainty of a vehicle side P̂(S) is given by

P̂(S) =
1∫

0

β(u)
((

1 − K(s)(u)C(s)(u)
)
P�

+
(
x̂(s)(u) − x̂(S)

)(
x̂(s)(u) − x̂(S)

)ᵀ)
du

(60)

and can be simplified with the same approximation
C(s)(u) ≈ C(s)(ū) to obtain a closed equation, albeit too
long to be printed here. Details on the analytic solution
can be found in the supplied MATLAB code. Similar
to the discrete association problem, this term incorpo-
rates the uncertainty of the association search into the
resulting innovation uncertainty. In this way, high state
or measurement uncertainties increase the possible as-
sociation range and are—in contrast to pure greedy de-
cision approaches—probabilistically resolved.

Another implementation issue concerns the compu-
tation of the expected radial speed measurement. In the
association step, it is computed for the mean position
of the respective component (xC, yC). Its advantage is
the improved search for the origin of a detection by
comparing it with the precise radial speedmeasurement.
However, the actual origin of the detection can be lo-
cated anywhere on the extent of the component; it is
spatially distributed according to its position mean and
uncertainty parametrization in Table II. Depending on
the size of the respective extent, this discrepancy might
cause a pseudo-systematic bias in the state update, espe-
cially when perceiving the component repeatedly from
a similar angle. An alternative is the usage of the mea-
sured position of the detection (xD, yD): It is instead sub-
ject to (zero-mean) measurement noise. The choice de-
pends on the magnitude of the estimated uncertainties,
the measurement noise and the extent of the compo-
nents.We have performed an ablation study and gained
the result that both variants perform almost identical,
primarily because the Gaussian extents are minor rela-
tive to the Doppler gradient [4]. We utilize the second
option for (and only for) the state update to achieve
higher generality with respect to extent sizes. This re-
quires the reprocessing of equations (31) and (40) to use
vr

(
(xD, yD)

)
, and subsequently the reprocessing of their

respective measurement and innovation covariance ma-
trices described by equations (32), (33), (41), and (42).
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Fig. 9. Country road trailing: Exemplary measurement time steps
and their respective true target positions in the ego frame. The blank
circles denote the reference points of the ego vehicle (black) and the
target vehicle (colored according to the timestamp). The filled circles
denote the respective detection measurements. No detections were

obtained in t1 and t5.

VIII. SINGLE-OBJECT TRACKING PERFORMANCE

This section focuses on single-object tracking and
illustrates three different tracking scenarios. The mea-
surement data has been recorded with low-resolution
radar sensors, which are mounted on the corners of the
ego vehicle.We utilize aRTK-GNSS/IMU-based ground
truth with centimeter-level accuracy for both the gating
of the radar detections (within a radius of 4m to the cen-
ter of the target) and the evaluation of the tracking per-
formance. Figure 9 shows the measured detections and
the ground-truth-provided true object state of some rep-
resentative measurement frames of the first curve of the
first scenario. This illustration reveals the challenge that
the tracking algorithm has to tackle. On the one hand,
the number of detections is low, the detections are gen-
erated at unknown positions and are subject to signif-
icant measurement noise. On the other hand, the dy-
namic variables of the object state can change abruptly.
Wrong associations would directly impair the tracking
robustness. The association algorithm primarily exploits
the statistical detection characteristic, provided by the
object model, and the radial speed measurements to
solve the association problem. These difficulties should
be considered when assessing the resulting tracking per-
formance.

All scenarios use the same parametrization.The pro-
cess noise of the CTRVmodel has been obtained by the
inspection of a larger dataset and regards slight model
inconsistencies concerning unpaved roads, slopes, and
varying driving styles.We parameterize it by

σ 2
kin = diag

(
[(4.5 cm)2, (4.5 cm)2, (61)

(1.1◦)2, (0.67ms−1)2, (6.3◦s−1)2]
)
. (62)

There is no process noise modeled for the extent state
model. The initial CTRV position is roughly set to the
first encounteredmeasurement.All kinematicmeans are
zero. All CTRV state parameters are initialized as ex-
tremely uncertain. The initialization of the extent state,
though, depends on the application. In general, the low
number of detections obtained in the usual observation
time,as in urban scenarios,does not permit a very precise
extent estimation. In such applications, the extent state
should be initialized with an average extent state (like
xᵀext,0 = [4.85m, 1.85m]) and with a low uncertainty.
Longer observation times, as given in the presented sce-
narios, render extent estimation feasible. The initial ex-
tent is set to xᵀext,0 = [4.7m, 1.75m]. The length of the
utilized target vehicles exceeds this by up to ∼0.6m:
This initial mismatch additionally challenges the compo-
nent association search. The initial extent uncertainty is
set to σ 2

l,0 = 0.1 m2 and σ 2
w,0 = 0.015 m2 . Especially the

variety of the width among typical vehicles is obviously
bounded by regulations [21].

To deal with clutter in the single-object tracking
(without a track management that handles clutter it-
self), we utilize the clutter hypothesis from Section V-E.
We set γ (0) = 0.01. This implies that roughly 1% of
all detection measurements in immediate proximity of
the target are clutter. This value is conservatively mod-
eled without dependency to distance or signal strength,
as such factors are already regarded in the clutter sup-
pression of the sensor firmware. The clutter hypothesis
has a certain “association” probability in equation (50)
depending on the matching of a detection measurement
to the real components.The clutter is then ignored in the
subsequent state updates [equations (54) and (55)].Con-
sequently, the clutter detection is resolved probabilisti-
cally.A detection measurement that does not match any
component at all (after consideration of all uncertain-
ties), will not invoke a state update.

A. Country Road Trailing

In this scenario, the ego vehicle follows the target (a
mid-class sedan) in a winding round trip. Clutter mea-
surements are obtained fromvegetation on the road side.
The short-range mass-market, 77GHz radar sensors uti-
lized in this scenario have a substantial lateral measure-
ment noise. A sensor is mounted at each corner of the
vehicle, although only the front two sensors perceive the
target. Each sensor provides measurements at a rate of
roughly 20Hz.

Figure 10 outlines the path of the ego vehicle (both
by estimate and ground truth) in world coordinates,
while Fig. 11 illustrates the accumulation of detection
measurements and position estimates over time in the
target frame (based on the ground truth). The lateral
measurement noise also manifests itself in a lateral po-
sition estimate error.Moreover, Fig. 12 provides the yaw
estimate over time, while Figs. 13 and 14 outline the es-
timation errors of the dynamic states. Their estimation
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Fig. 10. Country road trailing: Position estimate in world
coordinates.
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Fig. 11. Country road trailing: Position estimates in target
coordinates (accumulation over whole dataset). The rectangle

resembles the true extent of the vehicle.
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Fig. 12. Country road trailing: Yaw estimate.
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Fig. 13. Country road trailing: Speed estimate.

is subject to higher noise as they are the highest-order
states of theCTRVmodel.Figure 15 shows the length es-
timation.After the first curve and progressing kinematic
estimation, it is steadily improving. An error of roughly
5% remains. The repository referred in Section I-C con-
tains a video that illustrates the association technique
based on the first curve of this scenario.

B. Circling

In this scenario, the target is a long-wheelbase lux-
ury sedan. Its extent exceeds the dimensions of the vehi-
cles used as reference in themodeling.Besides, the radar
sensors of the ego vehicle are slightly more recent and
provide more detections but also more clutter measure-
ments than the ones used in the first scenario. In addi-
tion, two additional sensors are mounted near the cen-
ters of the left and right vehicle side. The target vehi-
cle drives circles around the parked ego vehicle, and is
thus perceived by all sensors in rotating manner. How-
ever, only one side of the target vehicle is observed. Al-
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Fig. 14. Country road trailing: Yaw rate estimate.
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Fig. 15. Country road trailing: Length estimate.

though the lateral measurement noise is lower than in
the previous example, the lateral association problem
arises for the entire vehicle side. The longitudinal move-
ment of the car is mainly inferred by detections at the
ends of the side because they restrict the possible longi-
tudinal position. In this scenario, the tracking algorithm
benefits from the different component characteristics for
the association and subsequent position estimation. Fig-
ures 16 and 17 show the position estimates, while Figs.
18–20 outline the estimation of the yaw, the speed and
the yaw rate over time. Figure 21 shows the length es-
timation. It has settled from the 20th second. This sce-
nario shows an interesting effect. Although the sensors
only observe the left side of the target, a width estima-
tion is feasible if the initial extent uncertainty is cho-
sen accordingly: The filter inherently exploits the visi-
bility of the opposite wheels to directly infer the width
state. Figure 22 shows its estimation over time, although
the resulting accuracy is attributable to the long obser-
vation time. This specific figure has been obtained by
utilizing an initial width uncertainty of σ 2

w,0 = 0.2 m2 .
This parametrization, though, is far higher than the sta-
tistical variety of typical vehicles and needlessly reduces
the robustness of the filter especially in challenging
situations.

C. Urban Trailing

The ego vehicle follows the target vehicle again in
this scenario.The target vehicle and the sensors are iden-
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Fig. 16. Circling around the ego: Position estimate in world
coordinates.

Fig. 17. Circling around the ego: Position estimates in target
coordinates.

tical to the those utilized in the second scenario. Nearby
metallic containers and buildings on this narrow track
cause mirrored (ghost) detections and signal overexpo-
sures. They lead to biased detections and the loss of
detections from the target vehicle. The estimation per-
formance decreases, especially concerning the yaw due
to the biased detections, but the tracking stays robust.
Figures 23–27 show the respective tracking performance.
Figure 28 illustrates the length estimate.Again, after the
kinematic quantities have roughly been estimated, it is
able to resolve the initial extent error. It is steadily im-
proving as the vehicle is mostly observed from behind.

Table III depicts a root-mean-square error (RMSE)
comparison of all scenarios.Changes of the parametriza-
tion of the CTRV process noise in the range of ±20%
(standard deviation) have not shown a worse degrada-
tion than 6% of the RMSE of any state variable; some
state variables also show better accuracy. The position
of features like the wheels is yet purely statistically de-
rived, and its modeling error and the extent are mod-
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Fig. 18. Circling around the ego: Yaw estimate.
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Fig. 19. Circling around the ego: Speed estimate.
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Fig. 20. Circling around the ego: Yawrate estimate.
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Fig. 21. Circling around the ego: Length estimate.
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Fig. 22. Circling around the ego:Width estimate.
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Fig. 23. Urban trailing: Position estimate in world coordinates.

Table III
Tracking Performance

RMSE Tx Ty Wϕ Wv Wω

1) Country road 0.34m 0.66m 4.3◦ 0.25ms−1 5.4◦s−1

2) Circling 0.60m 0.18m 3.2◦ 0.39ms−1 2.3◦s−1

3) Urban trailing 0.30m 0.69m 5.1◦ 0.15ms−1 4.3◦s−1

The Position Error References the CTRV Pivot Point and is Given in

Target Coordinates T,While the Other Errors are Given in World Co-

ordinates W.

eled with a Gaussian noise term. A possible improve-
ment is to correlate this noise term with the estimated
extent size. However, the induced change is negligible
considering typical vehicles.The incorporation of the po-
sition of such features in the state vector and their ex-
plicit estimation support the extent estimation, as the
individual modeling error can be corrected over time.
However, their precise estimation requires an observa-
tion time that exceeds typical urban scenarios (consider-

Fig. 24. Urban trailing: Position estimate in target coordinates.
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Fig. 25. Urban trailing: Yaw estimate.

ing sparse measurements). Next to groundtruth-assisted
scenarios, our dataset also contains urban scenarios with
numerous vehicles. As no ground truth is available for
those vehicles, only a qualitative evaluation of the ro-
bustness using LiDAR scans could be performed there.

IX. TRACKING FRAMEWORK INTERFACES

This section outlines interfaces which integrate the
proposed filter into larger tracking frameworks.

A. Interfaces to Low-Level Fusion Algorithms

The abstraction of an object to its physical compo-
nents offers a convenient opportunity to fuse heteroge-
neous sensor data. Camera sensors and their process-
ing chains often utilize semantic segmentation to de-
tect features of objects. Following the example of vehi-
cles, these are wheels, lights, license plates, and corners.
Furthermore, LiDAR sensors detect license plates par-
ticularly well due to their reflectivity. If mounted closer
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Fig. 26. Urban trailing: Speed estimate.
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Fig. 27. Urban trailing: Yaw rate estimate.

to the ground, they also obtain pointmeasurements from
opposite wheels.

Those features are either already directly observable
with the radar sensor (e.g.,wheels and corners) or can be
added as additional components. The description of ad-
ditional components with the parameter setA correlates
them to the state vector. The abstraction of objects into
components is thus a suitable interface for a low-level or
feature-level fusion.

B. Interfaces to Multi-Object Trackers

We use this radar tracker in interaction with a multi-
hypotheses track management in a C++/ROS-based
real-time tracking application. Although the tracking
shows robustness against local optima like turned ve-
hicles or wrong wheel associations, a multihypotheses
tracker speeds up the correction.The track management
usually requires some additional interfaces to the under-
lying trackers in addition to the actual state updates of
the hypotheses. Due to the size of this article, an actual
implementation of a multi-target tracking and the inter-
action of objects cannot be covered here.

1) Track Initialization: When a track for a new object
is created, either because it enters the range of visibility
or it leaves an occluded area, the first obtained measure-
ment is usually a single detection y.The center of the new
object is normally set to the position of the detection as
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Fig. 28. Urban trailing: Length estimate.
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its orientation, and therefore its side facing the sensor, is
unknown. Instead, we exploit the radial speed measure-
ment to obtain a first rough velocity vector vW in world
coordinates. Subsequently, we derive the orientation of
the object ϕ (by assuming that it moves forward), deter-
mine the facing side, and place this side on the obtained
detection.The velocity vector vW is the sum of the veloc-
ity vector of the radar sensor vS (see equation (15)) and
the rotated radial speed measurement ṙ, which is trans-
formed to world coordinates:

vW = vS + R (	(y)) · [ṙ, 0]ᵀ, (63)

and results in the initial yaw ϕ and speed v estimate:

ϕ = atan2(vW ), (64)

v = ‖vW‖. (65)

The orientation to the detection originating from the
sensor 	(y) is provided by equation (17). The radar-
facing side of the object is now determined and placed
in the position of the detection. If no additional informa-
tion on the lateral position is available, then the center
of the side can be simply placed on the detection posi-
tion. Although only one component of the velocity vec-
tor of the target can be measured, this approach reduces
the initialization time significantly. If further detections
aremeasured, then a complete velocity vector can be ob-
tained [22].

We also use the radial speed measurement to deter-
mine if an unassociated detection belongs to a dynamic
object. If the longitudinal component of vS, regarded in
the sensor frame S, plus the radial speed measurement ṙ
is above a noise-dependent threshold, a new object hy-
pothesis is created.

2) Expected Number of Detections: Track existence
checks require the expected number of detections N
that an object presumably generates. This number cor-
responds to the sum of the detection occurrence likeli-
hoods of all components:

N =
∑
j∈J

o( j). (66)

3)Detection-to-TrackAssociationLikelihood: The cru-
cial problem multi-object trackers deal with is the asso-
ciation of a detection to multiple plausible objects. This
process demands the association likelihoods of one de-
tection to all of these objects. The association likelihood
for a complete object γ and a given detection measure-
ment y is the sum of the association likelihoods of all
components for this detection:

γ (y) =
∑
j∈J

γ ( j)(y). (67)

The radial speed measurement appears here as a
valuable support for the detection-to-track association.

X. DISCUSSION

The focus of this work is the both precise and fast
filtering of sparse radar detections. The problem is split
into two parts: an accurate modeling and prediction of
measurement data, and the respective state update us-
ing this representation.The usage of a set of components
to model the measurements is conformable and predicts
all relevant measurement effects. The noise of the mea-
surement data does not justify any further particulari-
ties in our case. The state update is performed with a
probabilistic association approach, which shows robust
results and demands far less computing resources than
combinatorial approaches. The computing time is a cru-
cial factor as the upstream track management itself usu-
ally utilizes multi-hypotheses approaches. A single Intel
i7-4790k (2014) core performs a typical complete state
update in MATLAB within 2ms, and in automatically
generated C within 20µs.

However, a difficulty results from the base point er-
ror. Besides the measurement matrices, also the visibil-
ity computations rely on the current state estimate. Es-
timates always differ from the true state. Assuming an
example vehicle that is observed from the front, slight
changes in the yaw estimate predict either a good visi-
bility of the left or the right corner of the vehicle (simi-
lar to the actual physical characteristic). A workaround
is to exploit multiple samplings and evaluations of the
measurement functions in relation to the uncertainty of
the estimate.However, this effect plays a minor role and
workarounds are not necessarily required according to
our findings: If a component is wrongly assumed to have
just become visible, then its estimated angular extent is
still small and invokes a weak, thus insignificant detec-
tion likelihood.

A major benefit is the inherent dealing with the er-
ror in variables. The filter considers all the uncertain-
ties of both the state and measurements, as well as all
possible sources of origin. This is in contrast to models,
which assume that the regression variables can be de-
termined in an exact manner. For example, most radial
functions determine and apply the difference between
measurement and contour solely in radial direction and
ignore any measurement errors in the tangential direc-
tion.Dedicated precautions [26], [40] have to be applied
to circumvent this issue.

To use this approach for different objects, component
descriptions need to be modeled and parametrized sta-
tistically.Machine learning approaches,which derive the
object characteristics frommeasurement data,can be de-
ployed more quickly and are easier to implement. On
the other hand, our proposed algorithm offers a low run
time. Its parameterability allows the exchange of sen-
sors without extensively recording new data. As the al-
gorithm is based on physical relations, the model is scal-
able for any desired precision.The behaviour of the algo-
rithm is deterministic and predictable. It can bemodular-
ized and extended with interfaces for a low-level fusion.
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XI. CONCLUSION

This work deals with the filtering of sparse measure-
ment data. When techniques like feature recognition in
measurement data are no longer conceivable, the mea-
surements need to be associated with their estimated
origins that are derived from the state vector. We split
the object into a set of different components with dif-
ferent measurement characteristics to compute the asso-
ciation more robustly. Association uncertainties are re-
solved probabilistically to achieve a low computing ex-
pense. This approach shows remarkable results in the
prediction of measurements according to real-data com-
parisons. It also places a low demand on computing re-
sources. A tracking evaluation proves the possibility of
robust tracking with a low number of measurements.
This low number of detections would usually not allow
an accurate object state estimation with a single mea-
surement epoch or a even few of them—the estimation
is achieved by the filtering over time. The proposed al-
gorithm is developed to be utilized in interaction with
a multihypotheses track management and a heteroge-
neous low-level sensor fusion.

XII. FUTURE WORK

This article outlines the usage of the probabilistic
component association with sparse radar measurement
data and applies it for vehicle tracking. Further works
can focus on other objects like pedestrians, cyclists, and
trucks. After an evaluation of the usage of camera and
LiDAR sensors, the algorithm can be extended with
heterogeneous sensor data fusion. With the availability
of radar sensors with an adequate elevation measure-
ment performance, the component descriptions can be
extended to 3D models.

The extension of the PDAF adaption to a joint prob-
abilistic data association filter (JPDAF) variant might
further improve the performance when obtaining dense
measurement data [17].

A statistical study on the structure of objects and/or
their measurement characteristics based on a large sam-
ple with spatial and kinematic reference data can im-
prove the generality of the component descriptions.

Our current work, though, continues the proposed
approach to support (and exploit) mutual occlusion.
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