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Camera Calibration Using
Inaccurate and Asynchronous
Discrete GPS Trajectory
from Drones

R. YANG
Y. BAR-SHALOM
H. A. J. HUANG

This paper considers a stationary camera calibration problem that

estimates the camera orientation angles yaw, pitch, and roll, using a

drone trajectory recorded by a GPS. There are three challenges in us-

ing a GPS trajectory as ground truth for camera calibration. One, the

altitude of GPS data is inaccurate with an unknown bias. Two, theGPS

receiver and camera are not time synchronized, and there is an un-

known time offset between the two systems. Three, the GPS trajectory

is time discrete, and accurate interpolation is needed. This is actually

an estimation problem since velocity is also needed. To address the

first two challenges, we formulate the problem as a parameter estima-

tion problem to estimate a vector consisting of the GPS altitude bias

and time offset in addition to the camera yaw, pitch, and roll biases.

We then develop a special maximum-likelihood estimator using the

Iterated Least-Squares algorithm, which can work with a nonsynchro-

nized time-discrete GPS trajectory for the third challenge. Since the

camera measurement errors are usually small, this requires a high cal-

ibration accuracy so that the residual bias error following the cali-

bration should not be significant compared to the measurement er-

ror standard deviation.The calibration accuracy depends highly on the

drone’s trajectory. This paper also recommends an appropriate drone

trajectory that can yield a good calibration accuracy, namely, 14% of

the measurement error standard deviation. Simulation tests are con-

ducted to demonstrate the algorithm performance. The estimation re-

sultsmeet theCramer–Rao lower bound (CRLB) since the normalized

estimation error squared w.r.t. the CRLB is statistically acceptable.
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I. INTRODUCTION

This paper presents a camera calibration approach
for a stationary camera that looks at air targets. We as-
sume the camera is of “pinhole” type without radial and
tangential distortion. The position of the camera is as-
sumed to be known. The calibration computes the cam-
era orientation,which is defined by three rotation angles:
yaw, pitch, and roll. Since the camera is looking for air
targets, there is no fixed object with known position in
its field of view (FOV). The calibration is based on the
trajectory of a drone instrumented with a GPS receiver,
which, however, usually has a significant altitude bias er-
ror.1 Also, the camera andGPS receiver are not time syn-
chronized. This introduces an unknown fixed time offset
between theGPS and camera time-stamps.Furthermore,
the drone trajectory is a sequence of discrete points with
a certain time interval, and there is no analytical expres-
sion for the trajectory.This paper will develop a practical
approach for the problem of estimating the camera ori-
entation, the GPS altitude bias and the time offset.

Camera calibration is not a new problem.Numerous
works have been done before, and they can be catego-
rized into two areas: computer vision-related applica-
tions and estimation theory-based approaches.The cam-
era calibration in computer vision is developed from the
Perspective-n-Point (PnP) problem [4], [13].The original
PnP problem is described as follows: Given the relative
spatial locations of n control points Pi with i = 1, . . . ,n,
and given the angle to every pair of these points from an
additional point, called the center of perspectiveC, find
the lengths of the line segments joiningC to each of the
control points. The camera calibration is based on the
matching of n 3D control points and their correspond-
ing points in the 2D image space. They share the same
angles of arrival with reference to the camera center of
perspective C. A number of solutions have been devel-
oped with this approach [4], [7], [8], [10], [13]. Some fo-
cused on the solution of theminimum number of control
points required (n = 3) as P3P problem [7], [8], [10], [13],
and some deal with a large number of points consist-
ing of outliers and inaccurate points. The RANSAC [4]
scheme can be applied to select good samples. Some ex-
tensions on the camera calibration take unknown focal
length and radial distortion into consideration [9], [21].

If we apply the PnP approach to our problem, then a
3D GPS-instrumented drone trajectory needs to match
the camera-measured 2D trajectory.Since there is an un-
known time offset between GPS-based 3D and camera
2D trajectories and an unknown altitude bias on the 3D
trajectory, it is not practical to apply point-to-point 3D–
2D matching. We then seek a solution from the estima-
tion theory.

1The altitude estimate fromGPS is substantially less accurate than the
horizontal position since there are fewer high-orbit satellites, which
provide most of the altitude information versus low-orbit satellites,
which provide most of the horizontal location information.
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Unlike the computer vision approach, which devel-
ops the camera calibration as a particular geometric
problem, the estimation theory approach formulates the
camera calibration as a parameter estimation problem
with stochastic models. It defines the unknown param-
eter to be estimated as θ , and builds a relationship be-
tween θ and measurements that include noise. If the
problem is observable (i.e.,with a unique solution), opti-
mization algorithms, such as gradient descent, Newton’s
algorithm,or Iterated Least Squares (ILS) [1], can be ap-
plied in a systematic manner. A number of works along
this line have been carried out to estimate the sensor
position/orientation and measurement biases. This is of-
ten referred to as the sensor registration problem. It
can be solved offline using either ILS or maximum-
likelihood (ML) estimator from a batch of data [3], [5],
[19], [22], [23], [27], or online (estimating the sensor
biases and target trajectories simultaneously) using a
Kalman filter (KF) type dynamic estimator or Recursive
Least-Squares (RLS) approach [2], [17], [24], [25]. The
online approaches (also referred to as auto-calibration)
sound more attractive. However, they estimate a large
augmented state consisting of all target states and sensor
biases. This large state may create computational infea-
sibility for real time when the number of targets is large.
Furthermore, sensor bias estimation accuracy is not al-
ways guaranteed, as arbitrary target trajectories do not
reduce the bias error compared to a dedicated special
trajectory. The calibration accuracy (or sensor bias esti-
mation accuracy) is paramount in our problem, as cam-
era orientation must be accurately estimated so that the
residual bias error should not be significant compared
to the camera measurement error. We therefore prefer
an offline approach that allows a GPS-equipped drone
to fly in a special predefined path dedicated to accu-
rate camera calibration. Such a path will be discussed
in the sequel. The previous work on offline sensor reg-
istration mainly dealt with radar pose and measurement
biases [5], [19], [22], [23]. Camera calibration was con-
ducted in [3], [27]. The yaw, pitch, and roll biases of mul-
tiple cameras and target locations are estimated simulta-
neously using the ILS method in [3] for a satellite-based
camera observing an exoatmospheric target of opportu-
nity. In [27], a camera was calibrated through observing
a planar pattern shown at several different orientations,
and camera intrinsic and extrinsic parameters were es-
timated using a closed-form solution. Neither of them
deals with unknown time offsets among different sys-
tems, for example, sensor and ground truth systems—the
different sensors are assumed to be time synchronized.

Online and offline calibration with an unknown time
offset have been discussed in various applications [6],
[11], [14]–[16], [18], [20]. We focus on the offline solu-
tions [6], [11], [18], [20]. In [11] and [18], the time off-
set and spatial calibration were conducted separately
in sequence. The time offset was estimated first, and
then spatial calibration was conducted. A more robust
approach [6], [20] estimated the time offset and spa-

tial biases simultaneously. This was a robotics applica-
tion with camera, inertial measurement unit (IMU) and
laser rangefinder. It estimated the time offset among
sensors and measurement transformation.However, the
camera was assumed well calibrated. The Levenberg–
Marquardt (LM) algorithm was used to minimize an ob-
jective function based on theML criterion,using station-
ary objects detected by the camera and rangefinder on
a moving platform.Although the approach included un-
known time offsets into its estimation parameter,camera
calibration was not conducted.

In this paper, we develop our approach based on
estimation theory, which will include the GPS altitude
bias and time offset in the estimation of the parame-
ter vector θ . Another challenge is that the GPS 3D tra-
jectory is given in numerical form. The preliminary ver-
sion of the present study, [26], conducted calibration as-
suming an accurate GPS without altitude bias. An ILS
algorithm was developed to perform calibration based
on a stochastic model dealing with a GPS trajectory ex-
pressed by a sequence of discrete-time points. In the
present paper, inaccurate GPS with unknown altitude
bias is used. The calibration accuracy drops significantly
with this additional unknown unless it is part of the esti-
mated parameter vector. If the residual bias error (fol-
lowing the calibration) is not small enough compared
to the camera measurement error, then the calibration
is not meaningful. We will develop an enhanced ILS al-
gorithm to improve the estimation accuracy, and recom-
mend a practical drone path to achieve good calibration
accuracy.

The rest of the paper is structured as follows.
Section II describes the three coordinate systems used
in this paper. Section III describes the problem for-
mulation, namely, the stochastic model for estimation.
Section IV presents the estimation algorithm based on
the stochastic model dealing with numeric GPS trajecto-
ries. Section V presents simulation results on calibration
error, and recommends a suitable drone path.SectionVI
draws the conclusions.

II. COORDINATE SYSTEMS

The following three coordinate systems are used in
this paper:

� Common coordinate system with x-y-z as East,North,
and Up (ENU).

� Camera coordinate system with xC-yC-zC centered at
the camera position (xs, ys, zs), shown in Fig. 1.

� Image coordinate system with xI-yI shown in Fig. 1.

The notations used in the paper are listed in Table I.
The conversion of x to xC is given by

xC = T(α, ε, ρ)(x − xs)

= Tz(ρ)Tx(ε − 90o)Tz(−α)(x − xs), (1)
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Fig. 1. Camera and image coordinate systems.

where we use the following mnemonic notations for ro-
tations between 3D Cartesian systems:

Tx(φ) =
⎡
⎣
1 0 0
0 cosφ sinφ

0 − sinφ cosφ

⎤
⎦ , (2)

for a rotation around the x-axis by φ from y toward z,

Tz(φ) =
⎡
⎣

cosφ sinφ 0
− sinφ cosφ 0

0 0 1

⎤
⎦ , (3)

for a rotation around the z-axis byφ from x toward y.The
rotation around the y-axis is not necessary asTx(90o−ε)
replaces the y-axis by the z-axis, so that rotation around
the z-axis occurs twice. The combined rotation in (1) is

T(α, ε, ρ) =
⎡
⎣
cαcρ + sαsεsρ cαsεsρ − sαcρ −cεsρ
sαsεcρ − cαsρ sαsρ + cαsεcρ −cεcρ

sαcε cαcε sε

⎤
⎦ ,

(4)
where

sα = sinα, sε = sin ε, sρ = sin ρ, (5)

cα = cosα, cε = cos ε, cρ = cos ρ. (6)

Table I
Notations

x [x y z]′, a point in the common (ENU) coordinate system.
xC [xC yC zC]′, a point in the camera coordinate system.
xI [xI yI]′, a point in the image coordinate system.
xs [xs ys zs]′ sensor (camera) position.
α Camera pointing azimuth or yaw (clockwise from N).
ε Camera pointing elevation or pitch (up from horizontal).
ρ Camera roll (ideally zero), clockwise around the center of the

FPA.
� GPS altitude bias. The GPS-provided altitude is higher than

the true value when � is positive; otherwise, � is negative.
τ Time offset between the drone GPS and the camera. The GPS

clock is ahead of the camera clock when τ is positive;
otherwise, τ is negative.

The conversion of xC to xI is

xI = f(xC) =

⎡
⎢⎣

Px
2 + xC f

zC

Py
2 + yC f

zC

⎤
⎥⎦ , (7)

where f is the focal length with units of pixel (assumed
square)

f = Px
2 tan(�x/2)

= Py
2 tan(�y/2)

, (8)

and Px and Py are the numbers of pixels in xI and yI co-
ordinates, respectively;�x and�y are the FOV—angular
spans—in xI and yI, respectively.

III. PROBLEM FORMULATION

This section formulates the estimation problem in a
stochastic model. The parameter to estimate is

θ = [α ε ρ � τ ]′, (9)

which consists of three camera orientation angles α, ε

and ρ, GPS altitude bias �, and the time offset between
the drone GPS and camera systems τ , which are esti-
mated simultaneously. The stochastic model for estimat-
ing θ is

Z = H(θ,X) + w, (10)

where H(·) is defined in (17), Z is the camera measure-
ment vector consisting of n discrete-time points in the
image coordinates as

Z = [z(t1)′ . . . z(tn)′]′

= [xI(t1)′ . . . xI(tn)′]′ + w, (11)

with measurement times t1, . . . , tn, w is a 2n zero-mean
Gaussian measurement noise vector with covariance

R = I2n×2nσ
2
F, (12)

and σ 2
F is the variance of the measurement noise in the

focal-plane array (FPA). For details of how this is ob-
tained based on the optics’ point spread function (PSF)
and pixel size, see [12]. X is the GPS drone trajec-
tory (with unknown altitude bias and time offset) rep-
resented by a set of discrete-time points in the common
coordinate system (ENU) at times corresponding to the
camerameasurement times, corrected by the (unknown)
time offset. It is defined as

X = [x(t1 + τ )′ . . . x(tn + τ )′]′. (13)

However,X is not known exactly.The available informa-
tion on the GPS trajectory is

X = [x(t1)′ . . . x(tm)′]′, (14)

where t1, . . . , tm do not correspond to the times inX, and
X and X intervals can differ. We need to find the rela-
tionship between X and X, so that the model in (10) can
be utilized for estimation. This will be solved in the next
section.
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Fig. 2. True and GPS trajectories.

Figure 2 shows the relationship of the true trajectory
X̆ and GPS trajectory of the drone, where

X̆ = [x̆(t1)′ . . . x̆(tn)′]′. (15)

Each discrete-time point (•) on the true trajectory has a
corresponding point (�) on the GPS trajectory. The re-
lationship of the ith points of X̆ and X is

x̆(ti) = x(ti + τ ) − [0 0 �]′. (16)

The measurement function H in (10) is then

H =

⎡
⎢⎣
h1[α, ε, ρ, x̆(t1)]

...
hn[α, ε, ρ, x̆(tn)]

⎤
⎥⎦ (17)

with

hi(·) = f
{
T(α, ε, ρ)[x(ti + τ ) − [0 0 �]′ − xs]

}

= f(xCi ) = xIi

i = 1, . . . ,n. (18)

The above converts a position “�” xi to a position “•” x̆i,
then converts to camera coordinates as xCi using (1), and
finally converts to the image space as xIi using (7).

IV. ESTIMATION ALGORITHM

This section solves the problem described in
Section III using a unique ILS algorithm, which is
illustrated in Fig. 3. Its uniqueness lies in the fact that Z
and X are used to estimate X and Ẋ, and then Z and X
are used in the iterative estimation of θ , defined in (9).

Given the camera measurement Z, the GPS trajec-
tory X and the initial value of the parameter θ̂0, the al-
gorithm finds θ̂ through iteration, indexed by j, based on
the nonlinear model given in (10). We will describe the
algorithm with the following three steps:

(A) Estimation of X j and its velocity Ẋ j from X and θ̂ j
in the jth iteration. X j and Ẋ j are needed in the θ

estimation in (B);

Fig. 3. The ILS estimation algorithm.

(B) Updating of θ̂ j to θ̂ j+1 using an optimization algo-
rithm based on the model (10) with estimated X j

and Ẋ j;
(C) Stop the iteration when a satisfactory θ̂ is obtained.

A. Estimate X and its Velocities Ẋ

To estimate θ ,we need to knowX and its velocities Ẋ
from the positions X (namely, to estimate the GPS tra-
jectory “�” points from “◦” points in Fig. 2), so that the
discrete-time points on the GPS trajectory are at times
[t1+τ, . . . , tn+τ ] corresponding to the camera measure-
ments at times [t1, . . . , tn].2 The Least-Squares (LS) fit-
ting algorithm developed in [26] used a sliding window
containing the neighboring “◦” points before and after a
particular “�” to estimate its position and velocity.How-
ever, this will not perform well when a maneuver hap-
pens within the window. We therefore enhance it as a
two-step LS fitting approach in this paper. Figure 4 il-
lustrates the two steps. We can see the one-step LS ap-
proach in (a) has a large error when there is a maneuver.
The two-step LS fitting approach shown in (b) uses two
LS estimators on the neighboring points before and af-
ter the “�”. They obtain two estimates “b” and “a”, re-
spectively. The final estimate “c” is a combination of “b”
and “a”. The estimation error of the two-step LS fitting
is therefore reduced significantly.

In the two-step LS fitting approach,we illustrate LS1
(applied to the neighbors before the “�”) to obtain point
“b” in detail in the following. The estimation of point
“a” is similar. First of all, we estimate the velocities and
accelerations of the nearest “◦” [assuming x(ti)] before
the “�”. Its velocity and acceleration are

ẋ(ti) = [ẋ(ti) ẏ(ti) ż(ti)]′, (19)

ẍ(ti) = [ẍ(ti) ÿ(ti) z̈(ti)]′. (20)

2This amounts to more than interpolation since the velocities are also
estimated, and a special approach is used when the drone maneuvers.
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Fig. 4. The LS fitting algorithms. (a) One-step LS fitting approach
developed in [26]. (b) Two-step LS fitting approach used in the

present paper.

The vectors consisting of velocities and accelerations in
x, y, and z coordinates are defined as

dix = [ẋ(ti) ẍ(ti)]′, (21)

diy = [ẏ(ti) ÿ(ti)]′, (22)

diz = [ż(ti) z̈(ti)]′. (23)

They are estimated separately. The model to estimate dix
from its neighbors is

�i
x = Didix, (24)

where

�i
x =

⎡
⎢⎣
x(ti−δ ) − x(ti)

...
x(ti−1) − x(ti)

⎤
⎥⎦ , (25)

Di =

⎡
⎢⎢⎣
Ti−δ −0.5T

2
i−δ

...
...

Ti−1 −0.5T
2
i−1

⎤
⎥⎥⎦ , (26)

and

Ti−k = ti−k − ti (27)

k = [δ, . . . , 1].

The number of neighboring points used in (24) is δ = 3.
LS is applied to estimate dix as

d̂ix = [(Di)′Di]−1(Di)′�i
x, (28)

and diy and diz are estimated similarly as

d̂iy = [(Di)′Di]−1(Di)′�i
y, (29)

d̂iz = [(Di)′Di]−1(Di)′�i
z, (30)

Next, we compute positions and velocities of “�”,
namely, “b” point in Fig. 4(b). We assume the “�” is the
kth point inX.The positions and velocities are computed
by

[
xb(tk + τ j)
ẋb(tk + τ j)

]
=

⎡
⎣1 Tk

T 2
k

2
0 1 Tk

⎤
⎦

⎡
⎣
x(ti)
ẋ(ti)
ẍ(ti)

⎤
⎦ , (31)

[
yb(tk + τ j)
ẏb(tk + τ j)

]
=

⎡
⎣1 Tk

T 2
k

2
0 1 Tk

⎤
⎦

⎡
⎣
y(ti)
ẏ(ti)
ÿ(ti)

⎤
⎦ , (32)

[
zb(tk + τ j)
żb(tk + τ j)

]
=

⎡
⎣1 Tk

T 2
k

2
0 1 Tk

⎤
⎦

⎡
⎣
z(ti)
ż(ti)
z̈(ti)

⎤
⎦ , (33)

whereTk = tk+τ j−ti and τ j is from θ j in the jth iteration.
The likelihood of point “b” [see in Fig. 4(b)] is computed
using the measurement residual

vb = [(�i
x − Didix)

′ (�i
y − Didiy)

′ (�i
z − Didiz)

′]′, (34)

according to

Lb = N (vb; 0, I), (35)

whereN (·) is the standard 3δ-multivariateGaussian pdf.
The second step LS is computed in a similar manner

to obtain the positions, velocities, and likelihood of point
“a”. The final estimate, for point “c” in Fig. 4(b) is based
on a weighted average as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

x̂(tk + τ j)
ˆ̇x(tk + τ j)
ŷ(tk + τ j)
ˆ̇y(tk + τ j)
ẑ(tk + τ j)
ˆ̇z(tk + τ j)

⎤
⎥⎥⎥⎥⎥⎥⎦

= La

La + Lb

⎡
⎢⎢⎢⎢⎢⎢⎣

xa(tk + τ j)
ẋa(tk + τ j)
ya(tk + τ j)
ẏa(tk + τ j)
za(tk + τ j)
ża(tk + τ j)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ Lb

La + Lb

⎡
⎢⎢⎢⎢⎢⎢⎣

xb(tk + τ j)
ẋb(tk + τ j)
yb(tk + τ j)
ẏb(tk + τ j)
zb(tk + τ j)
żb(tk + τ j)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (36)

B. Update the Estimate of θ

The parameter given in (9) is estimated based on

θ̂ = argmin
θ

||Z − H(θ,X)||2R−1 . (37)

Using the ILS [1] to solve the above optimization,3 one
has

θ̂ j+1 = θ̂ j + P jJ′
jR

−1[Z − H(θ j,X j)], (38)

3The ILS is the numerical algorithm to solve for theMLestimate under
Gaussian assumption.
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Fig. 5. Test scenario 1. Target moves in constant velocity in a vertical
rectangle (1, 2, 3, 4) twice. The higher and lower horizontal edges are
at altitudes of 284 m and 84 m, respectively, and the near and far

vertical edges are at ranges of 200 and 500 m, respectively. The target
speed is 12.5 m/s. (a) Top view in the 3D common coordinates. (b)

Trajectory in image coordinates.

P j = (J′
jR

−1J j)−1, (39)

j = 1, . . . ,nj

with the Jacobian

J j = [∇θ jH(θ j,X)′]′ = [∇θ jh1(·)′ . . . ∇θ jhn(·)′]′, (40)

where j is the iteration index. The final estimate θ̂ is the
value to which the iteration (38) converged using a stop-
ping criterion. The derivatives needed for (40) are given
in Appendix B.

C. Stopping Criterion

To obtain a good calibration result, we set a tight
stopping criterion. First, we normalize the measurement
residual squared element by element in iteration j

V j = [Z − H(X j, θ̂ j)] ⊗ [Z − H(X j, θ̂ j)]σ−2
F . (41)

Then, we check every element v j,i with (i = 1 . . . 2n) in
V j, where 2n is the number of measurements times the
measurement dimension 2.All v j,i must be below the “3
sigma” limit

v j,i ≤ 32. (42)

This element-wise checking criterion can prevent a few
large measurement residuals being smoothed by a large
number of small residuals. Also, to prevent a run that
cannot meet the stopping criterion, the maximum num-
ber of iterations is set to 20.

V. SIMULATION RESULTS

This section evaluates the performance of the al-
gorithm described in Section IV. We simulate two test
scenarios. Scenario 1 shown in Fig. 5 has a drone (quad-
copter) moving in a vertical rectangular trajectory 1, 2,
3, 4 with two cycles. Points 1 and 4 are at near range of
200 m with altitudes of 284 m and 98 m, respectively.
Points 2 and 3 are at farther range of 500 m with alti-
tudes 284 m and 98 m, respectively. The drone moves

Fig. 6. Test scenario 2. Target moves in constant velocity, makes a
180o turn, and flies back in constant velocity. The target speed is

12.5 m/s. (a) Top view in the 3D common coordinates. (b) Trajectory
in image coordinates.

with a nearly constant speed of 12.5 m/s between the
four edges. When reaching a corner, it decelerates to 0
m/s, then accelerates to 12.5 m/s on the new direction.
The total duration is 109.2 s with 546 measurements.The
design principle of the trajectory for this scenario is to
span the entire FOV (with near and far motion, i.e., also
in depth). Scenario 2 uses the recommended drone path
in [26].This is shown in Fig. 6 with the dronemoving with
speed of 12.8 m/s at altitude 100 m, and then it makes a
180o turn, and flies back with the same speed and alti-
tude. The total duration is 36 s with 126 measurements.
The inaccurate GPS trajectories are discretized with a
time interval of 0.1 s. Camera measurements sampling
interval is 0.2 s. The camera to calibrate has a FOV of
10o and 17.8o horizontal and vertical, respectively. The
nominal orientation angles4 are set as α = 30o, ε = 2o,
and ρ = 0o. However, their actual values (to be esti-
mated) are α = 32o, ε = 4.1o, and ρ = 2.3o. The camera
provided the measurements only when the target is in its
FOV with measurement error standard deviation σF =
1pixel. The time and altitude offsets are τ = 1.35 s and
� = 10 m in both scenarios, respectively.We set the time
offset precision lower than the GPS discretized preci-
sion5 on purpose to observe the algorithm estimation ac-
curacy better.We will study the estimation accuracy, the
statistical efficiency through normalized estimation er-
ror squared (NEES) w.r.t. the Cramer–Rao lower bound
(CRLB) [2] and the real impact of the results next.

A. Estimation Accuracy

We conducted 100 Monte Carlo runs for each sce-
nario,and recorded the rootmean square error (RMSE).
The CRLB-based covariance matrix is also computed as
a benchmark, and is given by

P = (J′R−1J)−1 (43)

4The nominal values are the design values. After system installation,
the actual values are usually biased w.r.t. the nominal values.
5The smallest significant digit for the offset is 0.01 s, while for the GPS,
it is 0.1 s.
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Table II
CRLB and RMSE From 100 Runs

Scenario Parameter RMSE σCRLB

α—yaw (mdeg) 0.23 0.21
ε—pitch (mdeg) 0.87 0.82

1 ρ—roll (mdeg) 2.90 2.81
�— (mm) 4.69 4.35
τ (ms) 0.27 0.22

α—yaw (mdeg) 1.34 1.05
2 ε—pitch (mdeg) 36.08 32.21

ρ—roll (mdeg—yaw) 14.63 14.25
�— (mm) 531 475
τ (ms) 0.80 0.75

α—yaw (mdeg) 0.45 0.43
2∗ ε—pitch (mdeg) 0.47 0.43

ρ—roll (mdeg) 8.89 8.42
τ (ms) 0.57 0.50

where J is computed by (38), but θ used in (38) is the
true value, namely,

θ = [32o 4.1o 2.3o 10 m 1.35 s]′. (44)

Note the three angles in θ should be converted to radi-
ans as the unit of measurement in both CRLB and ILS
computing, as discussed before. The CRLB standard de-
viations of the estimated parameters are

αCRLB =
√
P(1, 1), (45)

εCRLB =
√
P(2, 2), (46)

ρCRLB =
√
P(3, 3), (47)

�
CRLB =

√
P(4, 4), (48)

τCRLB =
√
P(5, 5). (49)

Table II gives the RMSE and CRLB for scenarios 1
and 2. It also lists the results of the scenario 2 (under
2∗) obtained in [26], where the same drone path was
used,butGPS altitudewas assumed perfect without bias.
It can be seen that the estimate RMSEs of scenario 1
are close to their CRLBs. The algorithm is statistically
efficient in this scenario, as shown in the next subsec-
tion. However, the results of scenario 2 are significantly
less accurate. The CRLBs are significantly larger than
those of scenario 1, especially for ε and � with values
32.21 mdeg and 475 mm, respectively. This indicates the
observabilities of ε and � are marginal in this scenario.

We plot the drone trajectories as seen by the cam-
era and the GPS converted positions in the image space
for scenarios 1 and 2 in Figs. 7 and 8, respectively. The
parameters used for GPS conversion are set the same
as the true values, except for the two marginally observ-
able parameters ε and �. The true values are ε = 4.1o

and � = 10 m, respectively. The values used in the GPS
conversion are ε = 2o and � = 0 m, respectively. It
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Fig. 7. Measured and GPS converted trajectories of scenario 1,
where the actual and nominal yaw, roll, and time difference are set to
the same values as α = 32o, ρ = 2.3o, and τ = 1.35 s, respectively. The

actual and nominal pitches are ε = 4.1o and 2o, respectively. The
actual and nominal GPS altitude bias are 10 m and 0 m, respectively.

can be seen that the true and the GPS converted tra-
jectories for scenario 1 (Fig. 7) are quite different. This
is mainly because the longer vertical edge is at near
range 200 m, and the shorter vertical edge is at farther
range 500 m. One cannot match them without correct
values on both ε and �.However, the trajectories for sce-
nario 2 (Fig. 8) are almost parallel. Since the two legs on
the drone path are at similar range, one can change ei-
ther GPS altitude or pitch to match the two trajectories.
Furthermore,we can also observe that the difference be-
tween the RMSE and σCRLB for ε and � are also signifi-
cantly larger in scenario 2 than those of scenario 1. The
algorithm does not perform well when the problem ob-
servability is marginal, as in scenario 2, which does not
meet the design principle of Scenario 1.

Comparing scenarios 2 and 2∗, we can see that in-
cluding GPS altitude bias (which is generally present)

−500 0 500 1000 1500 2000

−500

0

500

1000

1500

xI(pixel)

yI

measured
converted from GPS

Fig. 8. Measured and GPS converted trajectories of scenario 2,
where the actual and nominal yaw, roll, and time difference are set to
the same values as α = 32o, ρ = 2.3o, and τ = 1.35 s, respectively. The
actual and nominal pitch are ε = 4.1o and 2o, respectively. The actual

and nominal GPS altitude bias are 10 m and 0 m, respectively.
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Fig. 9. NEES of 100 runs of the scenario 1.

significantly increases the estimation error using the
drone path recommended in [26]. The path is not prac-
tical for camera calibration when GPS altitude bias is
taken into consideration. The reason is that the trajec-
tory of scenario 2 has poor observerbility when both
GPS altitude and camera pitch are unknown.

Another interesting observation is the estimation ac-
curacy of τ is smaller than the GPS time discretiza-
tion of 100 ms. The best RMSE reaches 0.27 ms in test
scenario 1. This shows that the trajectory estimation
algorithm described in Section IV overcomes the dis-
cretization of the GPS trajectory problem effectively.

B. Statistical Efficiency

The statistical efficiency analysis was conducted us-
ing the NEES [2] computed w.r.t. the CRLB, namely,

εi(tk) = (θ − θ̂ )′P−1(θ − θ̂ ) (50)

where θ̂ and θ are the parameter estimate and true
value, respectively. The NEESs of N = 100 runs were
recorded and the analysis is carried out for each run, as
well as using the average. The NEES of the parameter
(with dimension 5) is a 5◦ of freedom chi-square ran-
dom variable if the errors are Gaussian. Its two-sided
p = 95% probability region is [0.8, 12.8]. The estima-
tion is statistically efficient, if 95% of NEESs are within
this region. Figures 9–10 show the NEES for the two test
scenarios, and the number of NEES out of the region
[0.8, 12.8] for scenario 1 is 0 (versus the expected value
of 5), i.e., the algorithm produced statistically efficient
estimates—consistent with equality in the CRLB. How-
ever, the number of NEES out of the this interval from
100 runs is scenario 2 is 9. This shows that the estima-
tion algorithm for a marginally observable scenario is
marginally statistically efficient.This is because the stan-
dard deviation of the number of exceedances of the 95%
probability interval is

√
Np(1 − p) ≈ 2, thus the border-

line efficiency.
For the average NEES over 100 runs, the 95% prob-

ability region, based on χ2
500/100, is the interval [4.1
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Fig. 10. NEES of 100 runs of the scenario 2.

5.63]. For scenario 1, the average NEES is 4.69,while for
scenario 2, it is 5.86. Thus, the same conclusions can be
drawn: for scenario 1, the algorithm is efficient, while for
scenario 2, it is borderline.

C. Impact of the Residual Biases

The real impact is further discussed based on the cal-
ibration result of scenario 1,which yields a good calibra-
tion result.The pixel bias error in the image space caused
by the residual calibration errors should be much lower
than the measurement error, so that the residual calibra-
tion errors are negligible. We compute the pixel bias er-
ror based on the calibration RMSE of yaw, pitch, roll,
and their combination. The residual bias error impact
is obtained from the shifted distances (the unit of mea-
sure is pixel) for uniformly distributed 5 × 5 pixel grid
elements covering the whole image space6 (1–2160 in xI,
1–3840 in yI) when the residual yaw, pitch, and roll errors
are introduced. The residual bias error of the kth grid is

bk = |(x̆Ik, y̆Ik) − (xIk, y
I
k)|, (51)

where (xIk, y
I
k) is the center of the kth grid element in

pixel units and (x̆Ik, y̆
I
k) is the shifted grid center when

the residual calibration errors are added to the nomi-
nal yaw, pitch, and roll; bk is the distance in pixel units
between these two grids. We recorded the residual er-
rors bk of all the grids and plot them in Fig. 11 for three
cases. Case (a) has 0.23 mdeg calibration error added to
yaw only. Cases (b) and (c) have 0.87 mdeg error added
to pitch and 2.9 mdeg error added to roll, respectively.
Figure 12 shows the effect of the combination of yaw,
pitch, and roll errors. Case (a) increases the yaw, pitch,
and roll by 0.23 mdeg, 0.87 mdeg, and 2.9 mdeg, re-
spectively. Case (b) reduces the yaw, pitch, and roll by
0.23 mdeg, 0.87 mdeg, and 2.9 mdeg, respectively. The

6The errors for each pixel in such a small grid are practically the same,
so there is no point in evaluating the impact of the errors in each pixel
separately.
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Fig. 11. Biased errors on all 5 × 5 grids. (a) The biased error caused
by calibration error on yaw of 0.23 mdeg. (b) The biased error caused

by calibration error on pitch of 0.87 mdeg. (c) The biased error
caused by calibration error on roll of 2.9 mdeg.

statistics of the grid biases are summarized in Table III.
It shows the bias min., max., mean, standard deviation,
and root mean square (RMS) value for the five cases in
Figs. 11 and 12. From these results, we observe the fol-
lowing:

� The residual bias error is negligible compared to the
measurement error. The highest RMSE due to the
residual bias is 0.20 pixel. The measurement RMSE
in one coordinate (either xI or yI) is 1 pixel.Assuming
they are uncorrelated between the coordinates, the to-
tal measurement error standard deviation is 1.41 pixel.
The highest RMSE due to residual bias is 7.2 times
smaller than the measurement RMSE. Thus, the cali-

Table III
Biased Error in Pixel Caused by the Calibration Error

Calibration error Bias
(mdeg) (pixel)

α ε ρ Min. Max. Mean Sthv. RMS

0.23 0 0 0.050 0.050 0.050 0.000 0.050
0 0.87 0 0.187 0.192 0.189 0.001 0.189
0 0 2.90 0.000 0.110 0.064 0.025 0.059
0.23 0.87 2.90 0.134 0.285 0.210 0.033 0.200

−0.23 −0.87 −2.90 0.134 0.285 0.210 0.033 0.200

Fig. 12. Biased errors on all 5 × 5 grids. (a) Increases the yaw, pitch,
and roll by 0.23 mdeg, 0.87 mdeg, and 2.9 mdeg, respectively. (b)
Reduces the yaw, pitch, and roll by 0.23 mdeg, 0.87 mdeg, and

2.9 mdeg, respectively.

bration using the scenario 1 drone trajectory achieves
negligible bias error.

� A yaw error creates higher bias on the two verti-
cal edges, and pitch error creates higher bias on the
two horizontal edges, as shown in Fig. 11(a) and (b).
The differences between the edges and the center are,
however, very small.

� A roll error creates higher bias at the four corners, the
furthest distance to the center, and the center has zero
bias in Fig. 11(c). Nevertheless, the bias at the corners
is negligible.

� Acombined yaw,pitch, and roll error creates the high-
est bias at one of the corners from Fig. 12. However,
the max. 0.29 pixels is still negligible compared to
the measurement RMSE of 1.41 pixel. The max. com-
binedRMSE (measured and bias) is

√
1.412 + 0.292 =

1.44 pixel.

VI. CONCLUSIONS

In this paper, we develop a camera calibration al-
gorithm using drone trajectories recorded by a GPS
receiver. However, the recorded GPS data has an
unknown altitude bias and an unknown time offset
between the GPS and camera systems. The GPS trajec-
tories are discretized with a time interval of 0.1 s. The
paper developed a special ML/ILS algorithm dealing
with discretized GPS trajectories to estimate camera
orientation angles (yaw, pitch, and roll), GPS altitude
bias, and time offset simultaneously.The simulation tests
were conducted, and an appropriate drone trajectory is
recommended whose estimation results met the CRLB
and NEES requirements. The time offset estimation er-
ror was much smaller than the discretization of the GPS
reference trajectory (0.27 ms versus 100 ms). The rec-
ommended drone trajectory is suitable for practical use.
Its residual calibration bias RMSE was 14% of the mea-
surement error standard deviation, which is negligible.
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In our real camera setup and calibration experiments,
we realized that more work needs to be done along this
research. First, the camera’s focal length cannot be fixed
beforehand accurately. It needs to be adjusted during
setup based on the real situation. Due to a lack of ac-
curate equipment to measure a camera’s focal length, it
should be an additional camera parameter included in
the estimation. Second, the GPS equipment usually has
quantization errors in latitude and longitude. This error
cannot be ignored when a target is in a near range (with
ten-pixel quantization). The ILS algorithm proposed in
this paper needs to be further developed to handle these
types of errors.

APPENDIX A. THE IMPORTANCE OF BEING EARNEST
ABOUT RADIANS

When trigonometric functions are expressed as
Taylor expansion, one has to use radians as the unit of
measure. This can be illustrated using the following sim-
ple example, using the first-order Taylor expansion to
compute sin(30.01o). The answer should be 0.50015. If
we use degrees as the unit of measure, then we will have
wrong result as

sin(30.01o) = sin(30o + 0.01o)

≈ sin(30o) + 0.01o × [sin(30o)]′

≈ sin(30o) + 0.01o × cos(30o)

≈ 0.5 + 0.01 × 0.866

≈ 0.50866. (52)

If we use radians, then the correct result is

sin
(
30.01 × π

180

)
≈ sin

(
30 × π

180

)
+ 0.01 × π

180
cos

(
30 × π

180

)

≈ 0.5 + 0.00175 × 0.866

≈ 0.50015. (53)

Although sin(·) and cos(·) should give the same values
whether the units are degrees or radians, the small differ-
ence 0.01o in front of cos(·) in (52) leads to wrong result
in (53). Thus, angles must be converted to radians when
using series expansions.

APPENDIX B. DERIVATIVES FOR (40)

The iteration index j is omitted for simplicity. The
gradients needed are

[∇θhk(·)′]′ = ∂xIk
∂xCk

∂xCk
∂θ

k = 1 . . . n, (54)

∂xIk
∂xCk

=

⎡
⎢⎢⎢⎣

f

zCk
0 − f xCk

(zCk )
2

0
f

zCk
− f yCk
(zCk )

2

⎤
⎥⎥⎥⎦ , (55)

∂xCk
∂θ

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂xCk
∂α

∂xCk
∂ε

∂xCk
∂ρ

∂xCk
∂�

∂xCk
∂τ

∂yCk
∂α

∂yCk
∂ε

∂yCk
∂ρ

∂yCk
∂�

∂yCk
∂τ

∂zCk
∂α

∂zCk
∂ε

∂zCk
∂ρ

∂zCk
∂�

∂zCk
∂τ

⎤
⎥⎥⎥⎥⎥⎥⎦

, (56)

and

∂xCk
∂α

= �xk(cαsεsρ − sαcρ ) − �yk(sαsεsρ + cαcρ ),

(57)

∂xCk
∂ε

= �xksαcεsρ + �ykcαcεsρ + �zksεcρ, (58)

∂xCk
∂ρ

= �xk(sαsεcρ − cαsρ )

+�yk(cαsεcρ + sαsρ ) − �zkcεcρ, (59)

∂xCk
∂�

= cεsρ, (60)

∂xCk
∂τ

= ˆ̇x(tk + τ )(cαcρ + sαsεsρ )

+ ˆ̇y(tk + τ )(cαsεsρ − sαcρ ) − ˆ̇z(tk + τ )cεsρ,

(61)

∂yCk
∂α

= �xk(cαsεcρ + sαsρ ) + �yk(cαsρ − sαsεcρ ),

(62)

∂yCk
∂ε

= �xksαcεcρ + �ykcαcεcρ + �zksεcρ, (63)

∂yCk
∂ρ

= −�xk(sαsεsρ + cαcρ )

+�yk(sαcρ − cαsεsρ ) + �zkcεsρ, (64)

∂yCk
∂�

= cεcρ, (65)

∂yCk
∂τ

= ˆ̇x(tk + τ )(sαsεcρ − cαsρ )

+ ˆ̇y(tk + τ )(sαsρ + cαsεcρ ) − ˆ̇z(tk + τ )cεcρ,

(66)

∂zCk
∂α

= �xkcαcε − �yksαcε, (67)

∂zCk
∂ε

= −�xksαsε − �ykcαsε + �zkcε, (68)

∂zCk
∂ρ

= 0, (69)

∂xCk
∂�

= −sε, (70)
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∂zCk
∂τ

= ˆ̇x(tk + τ )sαcε + ˆ̇y(tk + τ )cαcε + ˆ̇z(tk + τ )sε,

(71)

where

�xk = x̂(tk + τ ) − xs, (72)

�yk = ŷ(tk + τ ) − ys, (73)

�zk = ẑ(tk + τ ) − � − zs. (74)

The point [x̂(tk + τ ), ŷ(tk + τ ), ẑ(tk + τ )] in (72)–(74)
on the drone trajectory and its velocity [ ˆ̇x(tk + τ ), ˆ̇y(tk +
τ ), ˆ̇z(tk + τ )] in (61), (66), and (71) have been estimated
in Section IV-A.

The unit of measure for the three angles α, ε, and ρ

has to be radians—see Appendix A.
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The Generalized Fibonacci
Grid as Low-Discrepancy Point
Set for Optimal Deterministic
Gaussian Sampling

DANIEL FRISCH
UWE D. HANEBECK

We propose a multivariate Gaussian sampling scheme. The sam-

ples exhibit an “optimal deterministic” configuration. This entails bet-

ter quadrature or cubature results than with random or quasi-random

samples. Our sampling is based on the generalized Fibonacci grid that

makes the remarkable properties of the well-known two-dimensional

Fibonacci grid applicable in higher dimensions. Two options for gener-

ating the multivariate generalized Fibonacci grid are presented, based

on a rotated grid and a linear programming counter, respectively. Var-

ious options for covariance matching are explored to obtain an un-

scented transform.

I. INTRODUCTION

A. Context

In many practical applications, such as nonlinear
filtering and control, moments of nonlinear functions
of Gaussian random vectors must be approximated in
real-time. Mathematically, this is a multidimensional
integration, or cubature, that can be computationally
very expensive. Nevertheless, filters and controllers of-
ten have to run under real-time constraints. A standard
way to perform such integration is throughMonte Carlo
simulation using random samples. However, the con-
vergence rate with independent samples is quite poor.
Variance reduction techniques help to improve the
efficiency of stochastic expectation value computations.
After giving an overview of state-of-the-art variance re-
duction methods,we introduce novel Gaussian sampling
schemes.

B. Considered Problem

We present a Gaussian sampling method for multi-
variate Gaussian densities based on a higher-
dimensional generalization of the two-dimensional
Fibonacci grid. See Fig. 1 for a visual comparison be-
tween random samples and proposed variance-reduced
samples.

C. State-of-the-Art

Variance reduction techniques for expectation value
calculations include antithetic variates [2], control vari-
ates [3], importance sampling [4], stratified sampling [5],
low-discrepancy or quasi-random sampling [6], [7], mo-
ment matching [8]–[10], localized cumulative distribu-
tion (LCD)-based sampling [11], [12], and Projected Cu-
mulative Distribution based sampling [13], [14]. These
methods can also be combined, for example,LCD-based
sampling with moment matching and antithetic vari-
ates [15]. In this work, we focus on Gaussian sampling
and therefore present various state-of-the-art methods
to obtain Gaussian samples in more detail.We comment
on sampling techniques in common Gaussian estima-
tors like the cubature Kalman filter (CKF), unscented
Kalman filter (UKF), and Gaussian particle filter (GPF)
and compare our proposed method against them.

The “standard” way of sampling from the normal
distribution employs independent and identically dis-
tributed (iid) samples, e.g., by transforming iid uniform
samples with the Box–Muller method [16]. This corre-
sponds to standard Monte Carlo simulation. According
to the central limit theorem (CLT) [17, p. 244], the stan-
dard deviation of the integration error equals the stan-
dard deviation of the integrand divided by the square
root of the number of samples used [18, Sec. 2.1]. This
slow convergence makes the computation inefficient.

Gauss–Hermite quadrature entails a finite set of
predefined, weighted evaluation points for integration.
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Fig. 1. Independent random samples (left) and Fibonacci-based
samples (right) approximating a Gaussian density with covariance

C = diag([1, 0.32]). A total of 300 samples are drawn.

It is ideally suited for scalar integrals of polynomial-
like functions multiplied with a univariate Gaussian
density function [19]. Extensions to higher dimensions
require a Cartesian product of the evaluation points [20,
Eq. (3.3)], [21], [22, Eq. (17)], so the number of required
points increases exponentially with the number of di-
mensions. Kalman filters using this method for moment
computation are called Gauss–Hermite quadrature fil-
ters (GHQF).

To avoid the “curse of dimensionality,”one can place
samples on the main axes only [23]. A more radical
variant is the UKF, where only two samples, “sigma
points,” are placed on each coordinate axis [8], [24],
plus one in the center, i.e., the number of samples is
L = 2D + 1 for dimension D. The distances are chosen
such that mean and covariancematch.Very similarly, the
third-order CKF places two samples on each coordinate
axis, without the sample at the mode, hence L = 2D
[25]. The fifth-order CKF employs instead L = 2D2 + 1
weighted samples [26], see also [27, Sec. 7], [28, Eqs. (48)
and (49)]. The smallest possible sample set suitable to
propagate mean and covariance has been explored in
[29], [30]—it takes onlyL = D+1 orL = D+2 samples.

All these filters belong to the class of linear regres-
sion Kalman filters (LRKFs), introducing the second
Gaussian assumption in the joint state and measure-
ment space and thus performing an implicit linearization
of the measurement equation. Particle filters avoid this
and follow Bayes’ theorem more directly. Thereby, the
GPF [31], [32], its progressive variant [33], [34],andmany
other particle filters [35] need to draw medium to high
numbers of samples from Gaussian priors, where our
proposed Gaussian sampling technique could increase
efficiency.

Now we focus on methods that allow the number of
samples to be flexibly adapted to the problem and the
desired accuracy. Given a suitable distance or optimal-
ity measure such as the LCD [11], optimal deterministic
Gaussian sample sets can be computed using gradient
optimization [36]. As this kind of sampling process is it-
self computationally expensive, for practical filtering it
is necessary to compile a library of standard normally
distributed samples beforehand, and transform them to
the desired arbitrary Gaussian density online using the
Cholesky factorization of its covariance matrix [12], [15],
[37]. After such a transformation, however, the samples
are usually no longer optimal as before [38,Figs. 4(a) and
5(a)].

Therefore, it is convenient to use low-discrepancy se-
quences. They are exactly made to achieve optimal con-
vergence when used for numerical integration—better
than the well-known convergence rate of 1√

L
for L sam-

ples obtainedwith independent random samples accord-
ing to the CLT. This is also referred to as quasi-Monte
Carlo integration [7]—as opposed to Monte Carlo in-
tegration with independent random samples. Refer to
Section IV-C2 for a formal definition of discrepancy (13)
and its relation to approximate cubature (14).

Low-discrepancy sequences can, under some con-
straints, be transformed to densities other than uniform
while preserving their low discrepancy. These point sets
have already successfully been applied to nonlinear fil-
tering problems [39], [40], yet not using a discrepancy-
preserving transformation as we propose; see Fig. 8 for a
visual comparison. In the one-dimensional case, equidis-
tant samples make the best possible low-discrepancy
point set. In higher dimensions, Frolov and Fibonacci
grids are the only low-discrepancy sequences known
to attain the theoretical optimum under very univer-
sal conditions [41]—they are, so to speak, the “lowest-
discrepancy grids.” Thus, we can expect them to pro-
vide results similar to the optimal deterministic samples
based on the LCDwith nonlinear optimization while be-
ing transformable without compromising quality.

In 2008, James Purser published generalized
Fibonacci grids for certain higher dimensions [42]. He
formulates the reason why two-dimensional grids are
optimal in such a deep way that higher-dimensional gen-
eralizations become tangible. The generalized Fibonacci
grid has already been applied to Gaussian sampling [1]
and rejection sampling [43].
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Fig. 2. Anisotropic scaling demonstration for Fibonacci grid (a) and regular grid (b). Scaling is altered exponentially along horizontal axis.
Blue dots indicate grid points; black net the Delaunay triangulation of the same points. Note how in (a) the grid rearranges itself into square
configurations of different sizes six times, evenly filling the space at any scaling, while in (b) there is only one square configuration (near the

center) and away from that points clump together into horizontal or vertical lines, yielding bad space filling. For more quantitative assessment,
maximum and minimum angle in Delaunay triangles, as well as maximum and minimum triangle side length (normalized to the side length of a

square of appropriate size) are shown as well.

D. Key Idea

To produce univariate Gaussian samples, uniform
samples can be transformed by the inverse Gaussian dis-
tribution. For multivariate Gaussians, this scalar trans-
formation is applied along the directions of the eigen-
vectors of the covariance matrix, respectively. By doing
so, the distribution of samples should stay locally homo-
geneous, i.e., without forming clumps or gaps. Therefore,
we need a uniform point set being collision-avoiding un-
der rescaling along certain axes.

An ideal candidate is the Fibonacci grid, as it can
be anisotropically rescaled along the main axes while
preserving the uniformity of points. Instead of collid-
ing, Fibonacci grid points automatically get new neigh-
bors, depending on the amount of rescaling. Refer to
Fig. 2(a) for a visual demonstration of how the well-
known two-dimensional Fibonacci grid remains uni-
form under inhomogeneous horizontal scaling, very
much unlike the axis-aligned regular grid in Fig. 2(b).
This remarkable property is what we take advantage

of in this work. Grids with equivalent properties also
exist in higher dimensions—the generalized Fibonacci
grids [42].

With a suitable mapping, these uniform samples can
be transformed to an arbitrary density, similar to the
well-known “inverse transform sampling” method. We
introduce such a mapping for the Gaussian density.
Refer to Fig. 3(a) for a visual demonstration of the map-
ping workflow using Fibonacci samples as compared to,
e.g., a regular grid Fig. 3(b). In addition, we introduce
some methods for moment matching so that the covari-
ance of the samples is accurate to machine precision.

E. Overview

This paper is structured as follows: After explaining
well-known and optimal two-dimensional uniform sam-
ples in Section II, we generalize to higher-dimensional
uniform samples in Sections III and IV. Then in
Section V, we explain how to obtain Gaussian instead
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Fig. 3. (a) Transformation workflow from uniform distribution to arbitrary Gaussian. As opposed to the commonly used transformation via
Cholesky factorization, see Fig. 8(a), our approach preserves the discrepancy of the input point set and is therefore better suited for

low-discrepancy sequences. (b) Same transformation is applied to an axis-aligned regular grid instead of low discrepancy. Note how resulting
Gaussian samples fill the space less homogeneously. (c) Gaussian copula, shown only for reference. Note that the first step in its transformation

pipeline is related to what we discuss here.

of uniform samples and evaluate their optimality in
Section VI.

The merits of our Gaussian samples lie in (i) pro-
viding superior coverage of the state space and (ii) free
choice of the number of samples.Thus, they can improve
the convergence and accuracy of algorithms that utilize
Gaussian samples, e.g., sample-based Gaussian state es-
timation filters and controllers.

II. THE TWO-DIMENSIONAL FIBONACCI GRID

Two-dimensional Fibonacci grids have been known
for a long time since they are ubiquitous in plant life.
Seed heads are often arranged as a polar Fibonacci grid.
Due to the size of its seeds, this is best seen in the
sunflower, but a close look reveals similar structures

in many other flower heads. It is well known that the
two-dimensional Fibonacci grid is the best possible low-
discrepancy point set [44, p. 186], [45, p. 61].

Arranging the seeds on a Fibonacci grid has two ad-
vantages. First, the space is well utilized and second, the
arrangement is flexibly scalable along the radius.The for-
mer is important to utilize biological resources as effi-
ciently as possible,and the latter is necessary because the
whole thing is growing, with bigger seeds on the outside
and younger, smaller seeds near the center. Although a
hexagonal arrangement would make even better use of
the space, this would require all seeds to always be of the
same size.

In summary, the polar Fibonacci grid can be aniso-
tropically rescaled along the radius—and the angle, for
that matter, i.e., both main axes of the polar coordinate
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Fig. 4. Fibonacci grids computed via the lattice rule (a)–(c) and Frolov method (d)–(e). Points are arranged uniformly in polar coordinates on
the left, in Cartesian coordinates in the middle, and in Gaussian density on the right.

Fig. 5. Volume of the smallest hypercube (blue) and smallest
hyperrectangle (yellow) that encloses the unit hypercube that is
rotated by V�. Note that there is no big difference between

hypercube and hyperrectangle. Note also that the ratio for both
increases exponentially with the dimension. For the linear

programming method, the ratio between surface (red) and volume is
more important. It increases much slower with the number of

dimensions.

system. In Cartesian coordinates, the Fibonacci grid al-
lows anisotropic scalings along the horizontal and ver-
tical axes. This can be seen in Fig. 2(a), where the hor-
izontal scaling of a Fibonacci grid is varied while the
vertical scaling stays constant. Instead of colliding, the
points change their neighborhood relationships periodi-
cally. Note how the Fibonacci grid repeatedly returns to
a “regular grid” configuration, i.e., the Delaunay interior
angles are 45◦ and 90◦, and the normalized side lengths
are 1 and

√
2 over and over again,only at different scales.

For comparison, the same anisotropic scaling performed
on a regular axis-aligned grid does produce point colli-
sions, Fig. 2(b).

A. Fibonacci Matrix

The Fibonacci numbers Fk are defined as [46,
Sec. 6.6]

Fk+1 = Fk + Fk−1 , F0 = 0 , F1 = 1 .

This recurrence can be expressed with the Fibonacci
matrix

M =
[
1 1
1 0

]
, (1)
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where Fibonacci numbers are then generated as
[
Fk+1

Fk

]
= M ·

[
Fk
Fk−1

]
.

With the eigenvalue decomposition of the Fibonacci
matrix

M = V · D · V� , (2)

we define the orthogonal unitary matrix V containing
the eigenvectors of M, and diagonal matrix D contain-
ing the eigenvalues.

Note thatM is unimodular, i.e., it consists of integers
and has a unit absolute determinant. The former implies
that M transforms integer vectors z into other integer
vectors Mz, and the latter implies that convex sets of
integer vectors z stay convex after transformation, i.e.,
no empty holes would appear. When the entire integer
lattice Z

2 is transformed by M, exactly the same integer
lattice comes out, as lattice points are indistinguishable.
Relaxing the unit determinant restriction and includ-
ing intermediate configurations in between the square-
lattice configurations, we can apply continuous scaling,
as visualized in Fig. 2(a), where square lattice configura-
tions are reached at six instances.But the fact that we run
into square lattice configurations again and again guar-
antees that the points will always have a homogeneous
microstructure and never collide, as in Fig. 2(b).

B. Rank-One Lattice

Mathematically, the Fibonacci grid is often repre-
sented as a rank-1 lattice rule. To produce lattice point
xi, a generating vector is multiplied with an integer
index i, and the result is taken modulo 1

xi =
i

Fk+1
·
[
1
Fk

]
mod 1 , (3)

i = 0, 1, . . . ,Fk+1 − 1 ,

where Fk is the kth Fibonacci number [7, Ex. 2.8]. The
result is a Cartesian Fibonacci grid with Fk+1 samples in
[0, 1)2. An example with Fk = 144 is shown in Fig. 4(b).
The grid can not only be anisotropically rescaled along
its coordinate axes [as demonstrated in Fig.2(a)] but also
transformed to other coordinate systems while main-
taining its packing efficiency. Transformation to polar
coordinates (and proper scaling along the radius axis)
yields the conspicuous sunflower pattern; see Fig. 4(a).

C. Frolov Lattice

A slightly different Fibonacci grid can be computed
as a Frolov lattice. Here, the regular axis-aligned integer
grid Z

2 is rescaled with factor δ (to achieve the desired
number of points L) and linearly transformed with ma-
trixT (e.g., a rotationmatrix).The result is then confined
to the unit square [0, 1]2

{
xi
}L
i=1 = {T · δ · z : z ∈ Z

2} ∩ [0, 1]2 . (4)

Now,we use the eigenvectors of the Fibonacci matrix (2)
as the linear transformation T

T = V� , (5)

with V� meaning the transpose of V. This again yields a
two-dimensional Cartesian Fibonacci grid; see Fig. 4(e).
As opposed to (3), this grid is not periodic; therefore, a
transformation to polar coordinates is not smooth at the
angular coordinate’s transition between 0 and 2π ; see the
red box in Fig. 4(d).

In this work, we focus on the nonperiodic Fibonacci
lattice that is computed via Frolov-like construction.The
advantages of nonperiodic generalized Fibonacci grids
are their visually appealing symmetry, and that they can
be generated for arbitrary numbers of points. On the
downside, their generation becomes more difficult in
higher dimensions.

III. PURSER’S GENERALIZED FIBONACCI GRID

James Purser showed that higher-dimensional gen-
eralizations with optimality properties analogous to the
two-dimensional Fibonacci grid do exist [42]. Purser’s
higher-dimensional Fibonacci grid is based on a new the-
ory that captures the concept behind two-dimensional
Fibonacci grids on a deep level. From that perspective,
it is then easy to see how Fibonacci-type grids can be
conceptualized in higher dimensions as well. The theory
involves quasi-Fibonacci matrices that generalize (1) to
higher dimensions. Specific constructions are stated for
dimensionsDwith the restriction that (2D+1) is a prime
number.

A. The Quasi-Fibonacci Matrix

The D-dimensional quasi-Fibonacci matrix M ac-
cording to Purser [42, Appendix A] is given by

[M]i, j =
{
1, i+ j ≤ D+ 1
0, i+ j > D+ 1 , (6)

for example,

M(D=2) =
[
1 1
1 0

]
, M(D=3) =

⎡
⎣
1 1 1
1 1 0
1 0 0

⎤
⎦ .

Note that M(D=2), also (1), is known as “Fibonacci
Q-Matrix” [47], but attempts to generalize to higher di-
mensions, e.g., in [47] are different from the concept in
[42, Appendix A] that we pursue here. An eigenvalue
decomposition

M = V · D · V� ,

again splitsM into unitaryV and diagonalD. The eigen-
vectors V can also be obtained by properly normalizing
the unnormalized eigenvector matrix Vu, which is given
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in closed form by [42, Eq. (A.4)]

[Vu]i, j = cos
(

π

2
· (2i− 1) (2 j − 1)

2D+ 1

)
,

i, j ∈ {1, 2, . . . ,D} . (7)

B. Dimensions With (2D + 1) Prime

In dimensions where (2D + 1) is prime, the eigen-
vector matrix V of the generalized Fibonacci matrix M
is used in Frolov lattice creation (4) just as in the two-
dimensional case (5).

C. Other Dimensions

In dimensions where (2D + 1) is not prime, (6)
is not well suited: One column of V has entries with
identical fractional parts because in (7) the numerator
(2i−1) (2 j−1) “interferes”with the denominator 2D+1.
However, it is possible to search for alternative matrices.
An example for D = 4 is given in [42, Sec. 7] as

M(D=4) =

⎡
⎢⎢⎣
1 1 0 0
1 0 0 0
0 0 1 1
0 0 1 0

⎤
⎥⎥⎦ .

It consists of block-diagonal replications of M(D=2).

IV. OPTIMAL DETERMINISTIC UNIFORM
FIBONACCI GRIDS

In this section, we describe how to enumerate the
L samples xi of the generalized Fibonacci grid using
Frolov-like construction

{
xi
}L
i=1 = {V� · δ · z : z ∈ Z

D} ∩
[
−1
2
,
1
2

]D
,

where δ specifies the number of points L approximately
according to δ ≈ L−1/D, see Section IV-C for more de-
tails. Note that to simplify notation, we changed the unit
hypercube under consideration from [0, 1]D to

[− 1
2 ,

1
2

]D
.

The computation can be done by (i) enumerating the
grid points of a regular grid inside the rotated hypercube
or (ii) enumerating the grid points of a rotated regular
grid in an axis-aligned hypercube.

A. Enclosing Hypercube Counter

The most simple and obvious method works as fol-
lows: Find the smallest axis-aligned hyperrectangle or
hypercube that encloses the desired rotated hypercube.
Iterate through all the points of the axis-aligned hyper-
rectangle or hypercube, check if the point is inside or
outside the rotated hypercube, and return all points that
are inside [1, Alg. 1].

How large is the smallest axis-aligned unit hyperrect-
angle enclosing a rotated unit hypercube? To find out it

Fig. 6. Fibonacci grid with unit cells of side length δ = 50−1/2,
calculated by Lvol = 50 according to (10). The actual number of grid

points turns out to be L2 = 49.

is sufficient to examine, the 2D corners xcrn of the cen-
tered rotated hypercube. Their coordinates are

xcrn,j = V · uj ,

uj ∈
{
−1
2
,
1
2

}D
,

j ∈ {1, 2, . . . , 2D} .

Therefore, the side lengths βd of the smallest enclosing
hyperrectangle are

βd =
D∑
j=1

∣∣Vd, j
∣∣ , d ∈ {1, 2, . . . ,D} ,

and the side length β of the smallest enclosing hypercube
is

β = max
d

⎧⎨
⎩

D∑
j=1

∣∣Vd, j
∣∣
⎫⎬
⎭ = ‖V‖∞ .

For simplicity, we will focus on the hypercube instead
of the hyperrectangle here, as for generalized Fibonacci
matrices obtained by (6), the smallest hyperrectangle is
very close to a hypercube; see Fig. 5.

We can now define a sampling vector r ∈ R
L1 with

centered, equidistant elements r j that represent the grid
coordinates along each dimension

r j = δ ·
(
j + 1 − L1

2

)
,

j ∈ {0, 1, . . . ,L1 − 1} . (8)

After replicating r, we obtain a regular grid with LD
1 el-

ements and spacing δ, stored column-wise in the matrix
Xreg ∈ R

D×LD
1 . IfL1 is odd, then there will be a sample at
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the origin, otherwise not. This grid is then transformed
according to V�Xreg, followed by a rejection of points

outside the centered unit hypercube
[− 1

2 ,
1
2

]D
. The re-

sult are L2 Fibonacci grid points XFib ∈ R
D×L2 that uni-

formly cover the centered unit hypercube
[− 1

2 ,
1
2

]D
. By

adding 1
2 , this can be transformed to cover the “stan-

dard” unit hypercube [0, 1]D. See Fig. 6 for a visualiza-
tion of the finally obtained samples inside the square for
D = 2.

The volume ratio between the smallest enclosing hy-
percube βD and a unit hypercube 1D = 1 increases ex-
ponentially with the dimensionD; see Fig. 5. This means
that the majority of samples are rejected in higher di-
mensions, and the method is applicable in dimensions
smaller than 10 only, refer to Fig. 11(c) for more details.

B. Linear Programming Counter

In this section, we describe a method that avoids the
excessive rejection of the enclosing hypercube counter.
It is based on linear programming. The complexity is re-
lated more to the surface of the unit hypercube than to
the volume of the enclosing hypercube; see Fig. 5. The
generalized Fibonacci grid can be written as a system

of linear inequalities for integer vectors that describe
a bounded polytope—so to speak, a “Diophantine in-
equality system,” yet with real (instead of rational) co-
efficients. In this perspective, the first step is to find all
integer vectors z such that

A z ≤ b , (9)

with coefficient matrix A ∈ R
Nc×D, desired vectors

z ∈ Z
D, and vector b ∈ R

Nc . Thereby, Nc is the number
of linear inequality constraints that define the bounded
polytope. For Fibonacci sampling, we define

A = δ ·
[

V�

−V�

]
, b = 1

2
·

⎡
⎢⎣
1
...
1

⎤
⎥⎦ ,

and find all integer vectors z withA z ≤ b .
The method to obtain these points can best be de-

scribed as a recursive procedure.Initially,we focus on the
first coordinate z1 and find its minimum and maximum
values inside the polytope A z ≤ b via linear program-
ming or integer linear programming. Then, recursively
for each integer value ẑ1,k between said minimum and
maximum: fix z1 = ẑ1,k as a constant temporally. In the

Fig. 7. Absolute difference between the expected number of points due to the volume and the obtained number of points in generalized
Fibonacci grids (solid lines). Dotted lines show bounds based on the CLT (a) and the point discrepancy (b). For all sets of curves, the lowest

dimension D = 2 appears at the bottom, with the higher dimensions following upwards according to the legend.
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Fig. 8. Low-discrepancy point set transformed from uniform to Gaussian via nondiscrepancy-preserving transformations [39], [40] (a) and via
discrepancy-preserving transformations as proposed here (b).While in (a), the sampling quality depends on the orientation of the Gaussian, in

(b), it is always the same.

thus defined polytope

A · z ≤ b ∩ z1 = ẑ1,k ,

find the minimum and maximum values of z2. Repeat
for all integer values ẑ2,k in that range. By doing so re-
cursively for all dimensions 1 . . .D, all L2 integer vec-
tors that fulfill (9) are visited and collected in a matrix
Z ∈ Z

D×L2 . The Fibonacci point set XFib ∈ R
D×L2 that is

uniform in
[− 1

2 ,
1
2

]D
can then be derived from the ob-

tained integral vectors Z via

XFib = V� · δ · Z .

An iterative version of this algorithm avoiding explicit
recursion has been implemented in this work. For bet-
ter efficiency it uses the GNU Linear Programming Kit
GLPK [48].

Fig. 9. Ratio of computation time between eigenvalue
decomposition and the faster Cholesky factorization of random

symmetric and positive definite matrices in Matlab.

Unfortunately, computational complexity increases
exponentially with the dimension here as well, but
slower than in the enclosing hypercube counter. This
method is practical for dimensions up to about 20; see
Fig. 11(c). Note that the samples, once created, can be
stored and used henceforth to obtain sample sets of the
same dimensionality.

C. Number of Points Obtained

In this section, we will elaborate on the number L2

of grid points that can be expected to be inside a ro-
tated hypercube, or, equivalently, howmany rotated grid
points can be expected inside an axis-aligned hypercube.
Of course, a rough estimate Lvol is the ratio between the
volume of a unit cell δD representing one sample and the
volume of the rotated hypercube,which is one, therefore

L2 ≈ Lvol = δ−D ,

δ = Lvol
−1/D . (10)

However, due to the rotation between unit cells and the
rotated hypercube, this estimate is not necessarily cor-
rect; see Fig. 6.

Therefore, we aim to quantify the worst case of how
many “missing” or “surplus” points we can expect in
L2 compared to Lvol. This is related to the Gauss cir-
cle problem, where the number of two-dimensional in-
teger lattice points inside a circle with a given radius is
determined or approximated. It is even more related to
the convergence rate of Monte Carlo and quasi-Monte
Carlo methods. To quantify this, we define a “hypercube
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Fig. 10. Cubic measurement update, system model as explained in Section VI-A. Out of 100 trials, minimum,maximum, and mean RMSE
between the estimated and true posterior mean are indicated, respectively. FibonacciD means diagonal variance matching according to (17);
the same correction method has been applied to the quasi-random Halton [55] samples. FibonacciE means exact covariance matching by the

eigenvalue method (19) that is however non discrepancy-preserving. FibonacciHQ means “high quality” covariance matching (21). Also
included are Unscented Kalman Filter (UKF) samples [9] with scaling such that they have equal weights, CKF3 samples [25], and CKF5

samples [26].

function” ha(·) centered around the origin

ha(x) =
{
1, |xi| < a

2 ∀ i ∈ [1,D]
0 otherwise ,

0 < a < 1 ,

and a centered unit-size hypercube

I =
[
−1
2
,
1
2

]D
.

1) CLT: The CLT states [18, Sec. 2.1] that the Monte
Carlo integration error εL, f of an arbitrary function f (x)
over a unit cube I

εL, f =
∣∣∣∣∣

(
1
L

L∑
n=1

f (xn)

)
−
(∫

I
f (x)dx

)∣∣∣∣∣

(with a large number L of i.i.d. uniform random samples
xn on I) is normally distributed with standard deviation
σ f · L−1/2, where

σ f =
√∫

I

(
f (x) −

(∫
I
f (x̃) dx̃

))2

dx .

Thus, relying on a c-sigma-bound, we may assume

εL, f ≤ c · σ f · L−1/2

with high probability. Now we multiply both sides with
L and insert ha for f . This yields

∣∣L2 − L · aD∣∣ ≤ c · σh ·
√
L ,

σh =
√
aD − a2D ,

and with Lvol = L · aD, we write
|L2 − Lvol| ≤ c ·

√
(1 − aD) · Lvol .

For a → 0, this finally becomes

|L2 − Lvol| ≤ c ·
√
Lvol ,

L2 ≥ Lvol − c ·
√
Lvol . (11)

Solving this for Lvol, we see that we should select

Lvol ≥ L2 + c2

2
+
√
L2 · c2 + c4

4
, (12)

and then δ according to (10), to always obtain at least the
desired number of samples L2. Fig. 7(a) shows a numer-
ical overview, where c = exp

{D+1
4

}
has been selected

heuristically as the y-intercept.Note that for largeL and
in dimensions lower than 10, the CLT is a rather conser-
vative estimate because the generalized Fibonacci points
have a lower discrepancy and therefore better conver-
gence rate than iid samples that the CLT assumes.

2) Discrepancy: We give an intuitive definition of the
discrepancy of a point set x̂i ∈ [0, 1]D, i ∈ [1, 2, . . . ,L].
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Fig. 11. (a) Fourier-based optimality measure with isotropic Gaussian. (b) Fourier-based optimality measure with strongly nonisotropic
Gaussian. The best, worst, and mean RMSE of 100 trials are shown, respectively. Note that for a given accuracy, far less Fibonacci samples than,
e.g., random samples are needed. (c) Calculation times for 1 000 optimal deterministic samples. Note that samples can be generated offline and
tabulated for given D and L, for subsequent real-time use. (d) The fastest optimal deterministic sampling method for given number of samples
and dimension. Fibonacci samples are only given for dimensions where 2D+ 1 is prime andD = 4, i.e., where suitable unimodular matrices are

currently known.

Consider the volume of a hyperrectangle spanned be-
tween the origin 0 and point x ∈ [0, 1]D. The pro-
portion of points inside this hyperrectangle minus its
volume yields the local discrepancy function �(x) of
the point set. Aggregating all local discrepancies via a
p-norm yields the discrepancy [7]

discrp =
(∫

x∈[0,1]D

∣∣�(x)
∣∣p
) 1

p

. (13)

According to the Koksma–Hlawka identity
∣∣∣∣∣
1
L

L∑
i=1

g(x̂i) −
∫
[0,1]D

g(x)dx

∣∣∣∣∣ ≤ discrp ·V (g) , (14)

i.e., the integration error is bounded by the discrepancy
of the point set times the variation V (g) of the inte-
grand,a constant that depends on the smoothness of g(·).
Hence, the discrepancy, as a function of the number of

26 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 18, NO. 1 JUNE 2023



samples L, is a measure for integration error, similar to
the L−1/2 term in the CLT integration error estimate. A
proven lower bound on the L2 discrepancy of any finite
point set is [49, Sec. 2]

L · discr2 ≥ c · (logL)(D−1)/2
.

For D = 2, this is also known to be the best possible
bound [49, Sec. 3]. Unfortunately, there is currently no
known upper bound on theL∞ discrepancy.Conjectures
include

L · discr∞ ≤ c · (logL)D−1
,

L · discr∞ ≤ c · (logL)D/2
,

with respective unknown constants c that depend on
the dimension [50, Sec. 4.2]. In Fig. 7(b), we plot the
function

|L2 − Lvol| ≤ log(Lvol)
√
D−1 . (15)

It can be seen in Fig. 7(b) that (15) is an upper bound
only for higher numbers of samples, but there it is
a tighter bound than the CLT-based bound (11); see
Fig. 7(a).

3) Removing Excess Samples: If too many samples
have been generated, then the excess samples can eas-
ily be removed using the following strategy: Sort the
samples with respect to the value of the first coordinate.
Then, half the necessary number of points to remove
are deleted at the beginning and end of that sorted list
of samples, respectively. Finally, the first coordinate is
stretched to fully cover the unit cube again. This is simi-
lar to the process depicted in [1, Fig. 3(c) and (d)].

Removing samples equally on both ends, instead of
simply removing them at the end, preserves the symme-
try of the point set and also the first moment, which is
zero due to the symmetry. However, configurations with
an odd number of samples can only be reduced to other
odd configurations then. The same applies to even con-
figurations. For the enclosed hypercube method, an even
configuration is produced if the sampling vector (8) has
an even number of entries, i.e., ifL1 is even and therefore
has no entry at zero.For the linear programming counter,
an odd grid is produced when the integer vectors z ∈ Z

are offset by 1
2 .

4) Sample Library: Since sample computation using
Frolov-like methods as proposed here is quite expen-
sive in higher dimensions, it makes sense to calculate
and save the samples in advance for each dimension
in an odd and an even configuration, respectively. The
CLT formula can be solved in closed form (12) and
hence allows direct computation of a scaling factor such
that at least the wanted number of samples is generated
in any case and therefore helps to avoid “trial and er-
ror” in producing the desired number of samples. In the
real-time application, the respective number of samples
can then be extracted from this library as described in
Section IV-C3.

V. OPTIMAL DETERMINISTIC GAUSSIAN
FIBONACCI GRIDS

At this point, it has been shown how to find a given
number L of uniform Fibonacci samplesXFib ∈ R

D×L in
the unit hypercube I. Now, we will see how these can be
transformed into Gaussian samples with various levels
of sophistication.

A. Types of Transformations

The Fibonacci grid has the unique property that
point collisions are avoided under anisotropic rescaling
along certain directions. We begin with reiterating two
common conditions on transformations before quantify-
ing the “discrepancy-preserving” property that we need
here.

1) Rigid transformations preserve angles and dis-
tances. They are in the class of linear transformations,
where the determinant of the transformation matrix is
either 1 or−1.Rigid transformations are translations, ro-
tations, and reflections.

2) Conformal maps preserve angles locally. Every-
where, the respective local Jacobianmatrices are orthog-
onal matrices multiplied by a scalar.

3) Discrepancy-preserving transformations preserve
the uniformity of Fibonacci grids. Therefore, their Jaco-
bian matrices must be orthogonal matrices multiplied
with a diagonal matrix from left. That is, the right angles
between the main axes are preserved.

In the following, we describe a discrepancy-
preserving mapping that transforms the uniform density
on I to arbitrary Gaussian densities.

B. Standard Normal Samples

First of all, we apply the usual inverse transform to
obtain standard normal samples

[Xstd]d,i =
√
2 · erf−1(2 · [XFib]d,i) ,

with the Gauss error function

erf(z) = 2√
π

∫ z

0
exp
{−t2} dt .

This transformation maps samples uniform in
[− 1

2 ,
1
2

]D
to standard normal samples in R

D. Refer to Fig. 4(f) for
a visualization.

C. Variance Correction

Due to the discrete sample locations, the diagonal
elements of the covariance matrix Cstd of the resulting
point set Xstd are only approximately one, and the off-
diagonal elements are only approximately zero. We can
easily correct the former because rescaling along the co-
ordinate axes, i.e., multiplication with a diagonal ma-
trix, is a discrepancy-preserving transformation. So, we
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calculate the variances

νd = 1
L

L∑
i=1

[Xstd]2d,i (16)

and correct the variance of the samples accordingly by
rescaling the coordinates individually

[XstdD]d,i = [Xstd]d,i√
νd

. (17)

D. Arbitrary Gaussian Samples

Nowwe want to transform the standard normal sam-
plesXstdD with a covariance of approximately I (the off-
diagonals are not entirely zero) to a sample set with a
given, arbitrary positive definite covariance C ∈ R

D×D.
Usually, this is done via the Cholesky decomposition
C = L · L� according to XGauss = L · XstdD. However,
this transformation is not discrepancy-preserving as the
orthogonality of theDmain axes is not being preserved;
see Fig. 8(a). Therefore, we have to calculate the eigen-
value decomposition V ·D ·V� = C, with V orthogonal
andD diagonal, and transform the samples according to

XGauss1 = V ·
√
D · XstdD . (18)

Refer to Fig. 3(a) for a visual description of the trans-
formation workflow.While Cholesky decomposition re-
quires 1

3D
3 floating point operations, eigenvalue decom-

position is an iterative procedure with computational
complexity O(D3) per iteration step. A quick test in
Matlab showed that the eigenvalue decomposition takes
up to 70 times longer than the Cholesky decomposition;
see Fig. 9. This is a small disadvantage that we have to
accept when working with Fibonacci grids or other low-
discrepancy point sets.

E. Fast Cholesky Covariance Correction

Because the off-diagonals of CstdD are not exactly
zero, CGauss1 in (18) will not mach C exactly. We
can correct this by using a transformation that is not
discrepancy-preserving. As the amount of correction is
rather small, the downside that the transformation is not
discrepancy-preserving should have a rather small ef-
fect. We determine CStdD and its Cholesky decomposi-
tion LStdD

CStdD = 1
L

· XStdD · X�
StdD = LStdD · L�

StdD

and perform the correction

XGauss = V ·
√
D · L−1

StdD · XStdD ,

resulting in unscented samples XGauss with matching co-
variance.

F. Fast Eigenvalue Covariance Correction

Instead of the Cholesky decomposition of CstdD, we
can also use its eigenvalue decomposition

CStdD = VStdD · DStdD · V�
StdD

and obtain unscented samples XGauss via

XGauss = V ·
√
D · VStdD ·

√
D−1

StdD · V�
StdD · XStdD .

(19)

Again, this transformation is not discrepancy-preserving,
but due to the rather small amount of correction neces-
sary, this should not cause real problems.

G. Discrepancy-Preserving Covariance Correction

Now we will derive a different covariance correction
method that is discrepancy-preserving. Recall that the
problem with CstdD from (17) was that the off-diagonals
are not exactly zero. That is, there are small correla-
tions present that are expressed in inequality of eigenval-
ues, i.e., the Gaussian contour map looks like an ellipse
(ellipsoid, hyperellipsoid) instead of a circle (sphere,
hypersphere)—where the principal axes of the ellipse
(ellipsoid, hyperellipsoid), i.e., the eigenvectors of the
covariance matrix, do not coincide with the principal
axes of the coordinate system. If we only manage to de-
form that covariance in a discrepancy-preserving way
such that the eigenvalues match the wanted eigenvalues
inD, then we can easily find an appropriate rotation that
puts the covariance in the right orientation subsequently.

Therefore, we have to findD deformations along the
coordinate axes, collected in the vector a ∈ R

D, such that
the eigenvalues of

Cstd,a = a� Cstd � a� , (20)

where � is the pointwise product, i.e., the Hadamard
product, match the targeted eigenvalues inD.

Note that eigenvalues must be compared with a
Wasserstein or earth mover’s distance, i.e., the eigenval-
ues from both sets have to be associated appropriately.
For real eigenvalues, this can be done by sorting both sets
of eigenvalues [51, Sec. 3].

The search for a is now a gradient-based nonlinear
optimization problem with D variables. Derivatives of
eigenvalues can be calculated analytically [52, Eq. (11)],
[53, Eq. (5)]

∂λ

∂a
= V� · ∂C

∂a
· V ,

where V is the normalized right eigenvector matrix of
symmetric matrix C, and λ the corresponding eigenval-
ues. With the optimal deformation vector â obtained
by nonlinear optimization, and the eigenvector matrix
Vstd,â ofCstd,â,we get the transformedGaussian samples

XGauss = V · V�
std,â · (â� Xstd) ,
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where V is again the eigenvector matrix of the wanted
covariance C.

The transformation (20) can only increase the ratio
between eigenvalues. Therefore, if some eigenvalues of
C are equal or nearly equal, the optimization cannot
match the eigenvalues perfectly, and some residual dis-
tance to the desired eigenvalues remains.Again, this can
be fully matched via a nondiscrepancy-preserving trans-
formation

XGauss = V · (b� V�
std,â · (â� Xstd)

)
, (21)

with nondiscrepancy-preserving deformation vector b

b =
√
diag(D) � diag(V�

std,âCstd,âVstd,â) ,

where � denotes element-wise division. The amount
of nondiscrepancy-preserving deformation encoded in b
that is needed to match the covariance exactly is rather
small, so point collisions will not occur.

VI. EVALUATION

The application we had in mind when developing
this method are the “unscented transform” for nonlin-
ear Gaussian filtering. Approximating first and second
moments, i.e., means and covariances of nonlinear
functions of Gaussian random variables, facilitates
probabilistic Kalman filtering based on stochastic lin-
earization, i.e., the various forms of LRKFs and also
GPFs. Low-discrepancy sequences like the proposed
Fibonacci grid and other deterministic sampling meth-
ods like LCD allow for better accuracy by using more
samples than onlyL = 2 ·D as in the standard unscented
transform. In [1, Sec. IV], we used one specific nonlinear
function to compare various deterministic sampling
methods. After showing a similar, simple evaluation, we
evaluate Gaussian sample sets based on a linear space
of nonlinear functions.

A. Simple Evaluation

To evaluate different sampling methods, we define a
nonlinear system model with additive noise

yyy = ∥∥xxx∥∥33 + vvv , E{vvv} = 0 , E
{
vvv2} = 302 .

Given prior moments

xp =
[
2

−2

]
, Cp =

[
12 0
0 52

]

and the measurement

ŷ = 30 ,

we compute a UKF as well as a Gaussian Filter update
step with various methods for Gaussian sampling.

For the UKF case, we take Gaussian samples x̂i, i ∈
{1, . . . ,L} from the prior Gaussian N (x; xp,Cp) us-
ing the respective sampling method, insert them into
the measurement equation, add samples from the

measurement noise, compute the empirical moments in
the joint state and measurement space

zp =
[
xp

yp

]
, Cz =

[
Cp Cxy

Cyx Cyy

]
,

and obtain the posterior estimate

xe = xp + CxyC−1
yy (ŷ− yp) .

Refer to Fig. 10(a) for a quantitative evaluation of the
root mean square error (RMSE) of the estimated pos-
terior. Note that the real bottleneck here is the second
Gaussian assumption, i.e., the statistical linearization be-
tween state space x and measurement y.

For GPF-style filtering, we take again L Gaussian
samples x̂i from the prior Gaussian N (x; xp,Cp) using
the respective sampling method and apply individual
sample weights wi according to the likelihood function
value at the respective sample

wi ∝ N
(
ŷ; ∥∥x̂i

∥∥3
3 , Cv

)
,

L∑
i=1

wi = 1.

The posterior mean is then approximated as the empiri-
cal average of the weighted samples. Refer to Fig. 10(b)
for a quantitative evaluation of the RMSE of the esti-
mated posterior.

B. Measure of Quality

In this section, we will define a general quality mea-
sure for Gaussian samples. It describes how well the ex-
pected values of Gaussian random variables are esti-
mated using the respective sample sets. Thereby, instead
of focusing on one specific nonlinear function, e.g., ‖xxx‖33

� =
∣∣∣E
{∥∥xxx∥∥33

}
− Ê

{∥∥xxx∥∥33
}∣∣∣ ,

where E{·} is the true expected value, Ê{·} is the sam-
ple approximation, and � is an optimality measure for
the employed samples, we take a broad class of smooth
nonlinear functions into account.

1) Harmonic Expectations: The expectation value of
the function g(·) of a random variable xxx is

E
{
g(xxx)

} =
∫

RD
g(x) · f (x) dx,

where xxx ∼ f (x), and g(·) is a smooth nonlinear func-
tion. Numerical approximation of this integral with un-
weighted samples x̂i, i ∈ {1, . . . ,L} goes like

Ê
{
g(xxx)

} =
∫

RD
g(x) · f̂ (x) dx

=
∫

RD
g(x) · 1

L

L∑
i=1

δ(x− x̂i) dx

= 1
L

L∑
i=1

g(x̂i) .
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To obtain a representative comparison, we take into
account all possible smooth functions g(x) by using a
Fourier basis

gt (x) = exp
{
i t · x}

= cos(t · x) + i sin(t · x) . (22)

The true expected value of a harmonic function of xxx,

E
{
gt (xxx)

} =
∫

RD
gt (x) · f (x) dx

=
∫

RD
exp
{
i t · x} · f (x) dx

= F (t) ,

is the characteristic function F (t) of the density f (x).
Furthermore, the approximated expectation

Ê
{
gt (xxx)

} = 1
L

L∑
i=1

gt (x̂i)

= 1
L

L∑
i=1

exp
{
i t · x̂i

}

= F̂ (t)

is the characteristic function of f̂ (x).

2) Distance Measure: Now by averaging over all spa-
tial frequencies in domain T

�2 =
∫
T

∣∣E{gt (xxx)
}− Ê

{
gt (xxx)

}∣∣2 dt

=
∫
T

∣∣F (t) − F̂ (t)
∣∣2 dt , (23)

we obtain distancemeasure� that quantifies the approx-
imation error of expectation values in the function space
of band-limited nonlinear functions. In other words, �

quantifies the average accuracy of an expectation value
estimate of a sample set for band-limited functions.Note
that (23) computes the square sum of the real and imag-
inary parts from (22), representing cosine and sine parts
appropriately, according to

|a+ ib|2 = (a+ ib)(a− ib) = a2 + b2 .

We consider spatial frequencies t in a certain domain
T ,

T =
{
t

∣∣∣∣∣
D⋂
d=1

t (d) ∈ [−τ, τ ]

}
, (24)

around the origin, i.e.,we focus on all sufficiently smooth
functions g(x), where the Fourier transform G(x) does
not have significant energy outside T .From theNyquist–
Shannon sampling theorem, we can try to derive a suit-
able bound for τ .GivenL optimal deterministic uniform
samples on [0, 1], their spacing is aboutL−1.When trans-
forming these to arbitrary densities by inverse transform
sampling, the spacing of the transformed samples at the
point of maximum density is (L · fmode)

−1, where fmode

is the maximum derivative of the cumulative density,
i.e., the density value at the mode. Therefore, the “sam-
pling rate” is L · fmode at the mode, and lower elsewhere.
Thus, according to Nyquist–Shannon, we may conclude
that the maximum spatial frequency that can be repre-
sented by these samples is τ = L · fmode/2. In higher
dimensions, the hypercubic cell representing one sample
has volumeL−1.Using the inverse function theorem, the
volume of this cell is transformed by the inverse of the
Jacobian determinant 1/det(J(x)) of the mapping func-
tion that maps f (x) to a uniform density. As a result,
the new side length is (L · det(J(x)))−1/D, and we can
choose τ = (L · det(J(x)))1/D/ 2.

In our application, f (x) is a Gaussian density

f (x) = N
(
x;μ,C

)

= 1√|2π C| exp
{
−1
2

(
x− μ

)�
C−1

(
x− μ

)}
,

with μ ∈ R
D, and positive definite component covari-

ance matrix C ∈ R
D×D. The characteristic function of

f (x) is

F (t) = exp
{
iμ· t − 1

2
t�C t

}
.

To simplify the solution of (23), we choose

μ = 0 ,

Ck = diag(σ 2
1 , σ 2

2 , . . . , σ 2
D) (25)

without restriction of generality, as the basis system and
origin of the coordinate system can always be chosen ap-
propriately.We obtain

�2 =
∫
T

∣∣∣∣∣exp
{
−1
2
t�C t

}
− 1
L

L∑
i=1

exp
{
i t · x̂i

}
∣∣∣∣∣
2

dt

= �xx − 2�xy + �yy ,

where

�xx =
∫
T
exp
{−t�C t} dt ,

�xy = 1
L

∫
T
exp
{
−1
2
t�C t

}
·

L∑
i=1

cos(t · x̂i) dt ,

�yy = 1
L2

∫
T

L∑
i=1

L∑
j=1

exp
{
i t · (x̂i − x̂ j)

}
dt .

For diagonal covariances (25) and T according to (24),
this can be simplified to

�xx = πD/2
D∏
d=1

erf(τ · σd)
σd

,

�xy = (2π )D/2

L

L∑
i=1

D∏
d=1

1
σd

exp

{
−1
2

x2i,d
σ 2
d

}

�
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· real
{
erf
(

τσ 2
d + i · xi,d√

2 σd

)}
,

�yy = 2D

L2

L∑
i=1

L∑
j=1

D∏
d=1

sin
((
xi,d − x j,d

) · τ
)

xi,d − x j,d
.

The integration domain could be chosen as

τ =
√

π

2
·
(
L ·

D∏
d=1

σd

)1/D

according to considerations relating to the sampling the-
orem.However, we choose τ constant to make the opti-
mality measure better comparable over different L.

C. Gaussian Sampling Comparison

Now we will compare various Gaussian sampling
methods for their suitability for numerical approxima-
tion of expectation values of band-limited nonlinear
functions of Gaussian densities. The state-of-the-art we
compare against includes LCD samples from the non-
linear estimation toolbox [54] and the Halton sequence
[55], a well-known low-discrepancy sequence, that is
transformed from uniform to Gaussian just as explained
for the proposed Fibonacci grids in (16).

In Fig.11(a),we show howwell the differentmethods
can approximate the three-dimensional standard normal
density, i.e., the isotropic case.We can see there that the
LCD method (yellow) generally provides the best re-
sults, closely followed by the Fibonacci methods with co-
variance matching (cyan, green). Note that L = 10 LCD
or Fibonacci samples with moment correction are as ef-
fective as L = 200 samples from the Halton sequence,
or more than 1 000 iid samples.

Fig. 11(b) shows the same for an anisotropic
Gaussian with covariance C = diag([1, 0.1, 0.01])2.
Here we see that the Fibonacci and Halton samples gen-
erally provide the best results, closely followed by LCD
samples. This difference compared to the standard nor-
mally distributed case is because these LCD samples
are produced by anisotropic transformation of standard
normal ones, where some optimality is lost. Fibonacci
grids, however, can be rescaled without any quality
loss.

Fig. 11(c) visualizes the computational effort to com-
pute L = 1 000 LCD samples and Fibonacci sam-
ples computed via the enclosing hypercube enumeration
from Section IV-A and linear programming enumera-
tion from Section IV-B, respectively, for various dimen-
sions. For dimensions D < 6, the enclosing hypercube
method is fastest; for dimensions 6 ≤ D ≤ 15, the lin-
ear programming counter; and for D > 15, the LCD
samples. Note that for all three methods, samples can be
computed beforehand and stored for later real-time use.
LCD samples have to be generated for every desired di-
mensionD and number of samplesL, respectively,while
Fibonacci grids have to be generated separately for ev-

ery dimensionD only, because subsets of Fibonacci grids
can easily be used; see Section IV-C.

Fig. 11(d) shows the overall fastest sampling method
out of LCD, Fibonacci linear programming, and Fi-
bonacci hypercube for various dimensions and various
numbers of samples. Again, we find that the Fibonacci
enclosing hypercube method is fastest for smaller di-
mensions, and LCD for higher dimensions, and Fi-
bonacci linear programming in between. Note that for
D = 7 and D = 10, where 2D + 1 is not prime, suit-
able generalized Fibonacci matrices are not yet known;
therefore, LCD is available only. Note also that LCD
with symmetric samples from the nonlinear estimation
toolbox [54] requires L ≥ 2D.

VII. CONCLUSION

We presented a new enumeration method for Fi-
bonacci grids that is based on linear programming. It
is faster than the existing enclosing hypercube method
for dimensions D ≥ 6. Furthermore, we introduced
different methods for covariance correction, including
a simple and fast Cholesky correction and a slower
discrepancy-preserving method. We have also investi-
gated the possible range of enumerated points given
a certain scaling factor. The evaluation that was per-
formed for a broad function class suggests that Fibonacci
samples, together with the state-of-the-art LCD samples,
yield the best approximations of nonlinear Gaussian
expectations.

In the future, we will look for generalized Fibonacci
matrices for dimensions where (2D + 1) is prime. We
will also look for lattice rule versions of the gener-
alized Fibonacci grid, as they are faster to compute,
and the number of resulting samples is exactly known
beforehand.

The authors acknowledge support by the state of
Baden–Württemberg through bwHPC.
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Repeated Filtering for
Smoothing Particle Filters

STEPHEN L. ANDERSON
LAWRENCE D. STONE
SIMON MASKELL

This paper presents the repeated filtering method for finding a

smoothed, Bayesian estimate of the path of a stochastic process over

a time interval [0, T] when one has used a particle filter to estimate

the state of the process. It provides good resolution over [0,T], is easy

to implement, and can be used with any sequential importance resam-

pling particle filter regardless of the probabilistic model employed by

the stochastic process.Repeated filtering is general, powerful, and sim-

ple. It does not require the restrictive assumptions or complex calcu-

lations of other methods. It is suitable for real-time operational use in

complex situations. We demonstrate the method on two single-target

tracking examples. The second of these tracking examples is very dif-

ficult to solve by any other method known to us. We then apply re-

peated filtering to a standard nonlinear time seriesmodel that has been

used extensively for testing numerical filtering techniques. To further

illustrate the power of repeated filtering, we show how adding reflect-

ing boundaries to this time series creates a process that is difficult to

smooth with existing techniques but simple with repeated filtering.

I. INTRODUCTION

Particle filters are powerful and general tools for
performing nonlinear, non-Gaussian filtering. For target
tracking, they provide an estimate of the distribution on
target state at the time of the last measurement. How-
ever, it is often desirable to compute the posterior dis-
tribution on the target’s path over an interval of time
[0,T ] given the measurements received in that interval.
The process of computing this distribution is called fixed
interval smoothing.

We present the repeated filtering method for
smoothing in the context of surveillance and tracking,
but the method is applicable to very general situations
where one can use a sequential importance resampling
(SIR) particle filter to estimate the history of the state
of a stochastic system. To illustrate this, we apply the re-
peated filteringmethod to smooth the nonlinear time se-
ries analyzed in Example 1 of [5]. According to [5], this
series has been used extensively for testing numerical fil-
tering techniques. In the final example,we add reflecting
boundaries to this time series.We show in Section IV-D
that this process is difficult to smooth using the methods
of [5], but simple with repeated filtering.

Repeated filtering is conceptually simple. Once
one has developed a particle filter for the problem of
interest, they have done the hard part. Repeated filter-
ing proceeds as follows. Run the particle filter on the
measurements received in [0,T ] while preserving the
path histories of the particles. Choose a smoothed path
from the filtered result at the end of the time interval
[0,T ]. Repeat the filtering process using the same mea-
surements as in the first run of the filter but using inde-
pendent random numbers to generate the particle paths.
Choose a smoothed path as before. Repeat this process
to obtain M independent draws from the posterior
distribution on the paths of the process, given the mea-
surements received in [0,T ]. This produces a discrete
sample path approximation of the posterior distribution.

Repeated filtering is simple and general. It can be
incorporated into operational systems and used by op-
erators who are not experts in tracking or data fusion.
Many operational problems require motion models that
are not Markovian or do not have a closed-form transi-
tion function as required by other particle filter smooth-
ing methods. Repeated filtering produces smoothed
paths, not just smoothed marginal distributions at dis-
crete times, as many smoothing techniques do. More-
over, repeated filtering can be applied to both discrete
and continuous time motion models. For continuous-
time models, the smooth paths are continuous time
paths.

Despite the conceptual simplicity of repeated filter-
ing, we have not been able to find a reference to it. The
first two authors spent over a year trying unsuccessfully
to solve a smoothing problem conceptually similar to the
surveillance problem in Example 2. The existing meth-
ods for smoothing particle filters, which are referenced
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below, require assumptions that do not fit this prob-
lem.We tried a method involving Markov Chain Monte
Carlo (MCMC) sampling, which was technically correct
but computationally complex and delicate. In addition,
it was unstable, producing qualitatively different results
from different starting paths.

Perhaps by adjusting some of the tuning parame-
ters of the MCMC, such as the acceptance probability
or the proposal distribution, we could have made the
MCMC method work. However, we decided that, even
if we could make the method work, it would not be
suitable for an operational system. By contrast, the re-
peated filtering method solved the problem easily and
quickly and has been incorporated into an operational
system. Its simplicity and robustness suggest that one
might want to consider this method for some particle
filter smoothing problems that can be solved by other
methods.

A. Smoothing Particle Filters

In tracking situations, one is often faced with non-
linear measurements, such as lines-of-bearing and non-
Gaussian motion models. The combination of nonlinear
measurements and non-Gaussian motion models means
that the traditional Kalman filter approach to tracking
does not work well in these situations. For bearings-only
tracking, particle filters have been shown [9] to outper-
form a Kalman filter as well as numerous nonlinear ex-
tensions of it.

In the case of a Kalman filter, there are efficient
methods for smoothing, for example, the Rauch–Tung–
Striebel smoother described in Section 3.2.3 of [12] or in
[10]. Smoothing a particle filter is more difficult. If the
particle filter preserves the full target path as the parti-
cles are split and reweighted during the resampling pro-
cess, then the surviving paths and their posterior weights
provide an estimate of the posterior distribution on the
target paths. The difficulty with this smoother is that re-
sampling particles usually leads to a set of surviving par-
ticles (paths) that descend from a small number of initial
paths,and in some cases,only one initial path.As a result,
this estimate loses resolution as one proceeds backward
in time.

This generates the need for a better method of es-
timating the smoothed (posterior) distribution on the
paths of a particle filter. Reference [10] provides a
succinct review of Bayesian smoothing methods and,
along with [5] and [8], provides an excellent overview of
smoothing methods for particle filters.

Forward–backward smoothing, as described in
Section 3.1.4 of [12] is a general solution to the smooth-
ing problem. The difficulty with this solution is that,
except in the case of Kalman filtering, one cannot
evaluate the integrals involved explicitly. As a result,
numerical methods are required for problems such as
smoothing the output of a particle filter.

References [8], [6], and [3] present numerical meth-
ods for smoothing discrete-time particle filters that are
aimed at producing marginal distributions on the state
of the smoothed process at the discrete times of the pro-
cess. These methods assume that the process is Marko-
vian with an explicit functional form for the transition
density.

Under these assumptions,Godsill et al. [5] developed
a numerical approach to forward–backward smoothing
called backward simulation. As with repeated filtering,
backward simulation begins with the output from a par-
ticle filter with particles that preserve the full path of
the particle. Backward smoothing produces a discrete
set of independent sample paths from the posterior dis-
tribution on sample paths given the measurements re-
ceived in [0,T ].By construction, the state of a smoothed
path at time t is equal to one of the states in the par-
ticle filter approximation to the distribution at time t.
References [1] and [2] remove this restriction to pro-
vide improved diversity and accuracy of the smoothing
approximation.

Unfortunately, the smoothing problem that we
wished to solve concerned a surveillance tracking sys-
tem that used a quite natural but somewhat complex,
continuous-time motion model that did not have a
closed-form transition function. Although we could not
use the methods referenced above, the structure of the
problem allowed us to apply an MCMC method for
generating the posterior distribution on target paths. In
Example 2 of [11],we applied this method to a simplified
version of this problem. Even for the simplified prob-
lem, the procedure was difficult and complex. Because
of the nature of the motion model, a reversible-jump
MCMC was required, which is even more complex than
a standard MCMC. See the Appendix of [11]. However,
the method obtained reasonable results on this difficult
problem. As part of the further analysis and testing of
this smoother, we examined the stability of the results.
To do this, we ran the MCMC for 1 million iterations to
estimate the posterior distribution on paths.This process
took 4 h or more on a modest laptop.To test the stability
of the procedure, we made a second MCMC run with 1
million iterations using the same inputs as the first run
but with a different starting path for the iterations. The
results were qualitatively different. The MCMC process
had not converged even after 1 million iterations.

Asmentioned above,we decided that theMCMCap-
proach is too complex and delicate for an operational
system. In its place, we developed the much simpler,
faster, more robust, and more general repeated filtering
approach presented here.Repeated filtering can be used
with any stochastic processmodel for which one can gen-
erate independent sample paths from the process distri-
bution. For measurements, the only requirement is that
one be able to calculate likelihood functions for them. In
Example IV.B, the repeated filtering method is applied
to the surveillance problem mentioned above, where it
performs well.
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B. Outline of Paper

Section II presents a quick overview of Bayesian par-
ticle filtering to establish the notation and terminology
used in this paper. Section III describes the repeated fil-
tering method of smoothing, and Section IV presents
four examples of the application of repeated filtering.
Examples 1 and 2 have the same settings as Examples
1 and 2 in [11], but the results are obtained by repeated
filtering. In Example 1, we apply repeated filtering to a
problem that has a Kalman smoother solution and show
that it produces a good approximation to that solution.
Example 2 is the surveillance problem to which we ap-
plied the MCMC method in [11]. We have no yardstick
by which to measure the accuracy of the solution we ob-
tained.However, by comparing the repeated filtering so-
lution to the actual target path,we show that thismethod
provides a reasonable and stable solution for this
problem.

Example 3 applies repeated filtering to smooth a
nonlinear time series not related to tracking. This is the
same problem as in Example 1 of [5], which obtained a
smoothed solution to the time series using methods that
require a discrete-time Markov process with a closed-
form transition density. We apply repeated filtering to
this problem and obtain results comparable to those in
[5]. We then modified the stochastic process by adding
reflecting boundaries, which produces a problem that is
very difficult to solve with the methods of [5] but is sim-
ple to solve using repeated filtering.

II. BAYESIAN PARTICLE FILTERING

For this discussion, Bayesian particle filtering begins
with a prior distribution on a time-varying parameter
(e.g., target state) in the form of a stochastic process X
on the state space S. Time is continuous, running over
[0,T ], and the state space S can be continuous, discrete,
or a combination of the two. The modifications when
time is discrete will be obvious.

We approximate the prior stochastic process X (tar-
get motion model) by making a large number N of in-
dependent draws from the sample paths of the process.
These sample paths form a discrete path approximation
to the process. There may be times when it is more ef-
ficient to use a proposal distribution for obtaining in-
dependent sample paths from the process prior and to
weight these appropriately to obtain an approximation
of the stochastic processX.However,we do not consider
that possibility here.

Let {xn,n = 1, . . . ,N} be the set of N sample paths
that we have drawn from the processX.Each xn specifies
a possible target path with xn(t) ∈ S being the target
state at time t for t ∈ [0,T ]. We call xn a particle path
and xn(t) a particle state at time t. We assign probability
p(n) = 1/N to xn for n = 1, . . . ,N and define

PN = {
(xn, p (n)) ,n = 1, . . . ,N

}

to be the prior particle path distribution. This distribu-
tion is a discrete sample path approximation to the prior
distribution on the process X. The distribution PN pro-
duces a prior particle state distribution for each t ∈ [0,T ]
by

PtN = {
(xn (t) , p (n)) ,n = 1, . . . ,N

}
.

Bayesian particle filtering computes the Bayesian
posterior distribution on this discrete particle state ap-
proximation at time t given the measurements received
by time t.

In performingBayesian filtering on this discrete sam-
ple path approximation, we obtain a solution to the par-
ticle filtering problem that is an approximation to the
filtering problem on X. Thus, we find an exact solution
to a problem that approximates the problem we wish
to solve. The quality of this solution will depend on the
quality of the discrete sample path approximation used
to represent X.

A. Bayesian Recursion

We receive measurements at a discrete sequence of
possibly random times 0 ≤ t1 < t2 · · · < tK ≤ T. Let
Lk(yk|·) be the likelihood function for the measurement
Yk = yk received at tk. Specifically,

Lk (yk|s) = Pr
{
Yk = yk|X (tk) = s

}
for s ∈ S. (1)

Note,we use Pr to indicate probability or probability
density as appropriate.

Suppose we have received the measurementY1 = y1
at time t1. We compute

p (n|y1) = L1 (y1|xn (t1)) p (n)∑N
m=1 L1 (y1|xm (t1)) p (m)

for n = 1, . . . ,N

(2)
to obtain

PN (y1) = {
(xn, p (n|y1)) ,n = 1, . . . ,N

}
, (3)

which is the posterior particle path distribution given
Y1 = y1.

Define y1:k = {y1, . . . , yk} andY1:k = {Y1, . . . ,Yk} for
k = 1, . . . ,K. Suppose

PN (y1:k−1) = {
(xn, p (n|y1:k−1)) ,n = 1, . . . ,N

}

is the posterior particle path distribution givenY1:k−1 =
y1 k−1, and we receive the measurement Yk = yk at time
tk. We compute

p (n|y1:k) = Lk (yk|xn (t1)) p (n|y1:k−1)∑N
m=1 Lk (yk|xm (t1)) p (m|y1:k−1)

(4)

for n = 1, . . . ,N to obtain

PN (y1:k) = {
(xn, p (n|y1:k)) ,n = 1, . . . ,N

}
, (5)

which is the posterior particle path distribution given
Y1:k = y1:k.
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B. Resampling

A common problem with particle filters is that as
measurements are received and processed into the filter,
the posterior probability distribution tends to become
concentrated on a small number of particles, causing the
filter to lose resolution. This problem can be solved by
resampling.

When one must resample, the filtering process be-
comes more complicated than described above. Instead
of generating a set ofN complete paths at the beginning
of the filter, one must generate the paths sequentially in
time so that at the time of kth measurement, one has a
set of N paths (particles) over [0, tk] that provides good
resolution for the distribution on system state at time tk.

One method of resampling, described in Sections
3.3.3 and 3.3.4 of [12], splits high-probability particles
into multiple (almost identical) particles and “kills off”
low-probability particles in a manner that produces ex-
actly N particles. Each child particle inherits the path
history of its parent but has a slightly different state at
time tk. The resulting set of particles have probability
p(n|y1:l ) = 1/N for n = 1, . . . ,N.

The paths of the resampled particles are then ex-
tended to the time tk+1 of the next measurement to ob-
tain Ptk+1

N (y1:k),the particle state distribution at time tk+1

given the measurements y1:k. When Yk+1 = yk+1 is re-
ceived,we compute the posterior distribution on the par-
ticle paths using (4), with k replaced by k + 1. Alter-
natively, one may want to use a proposal distribution in
place of Ptk+1

N (y1:k) to compute the posterior distribution
on the particle paths.

C. The Problem With Resampling

The above procedure is a bootstrap version of the
SIR particle smoother of Kitagawa [7]. This works well
to provide a high-resolution estimate of the posterior
distribution of the present target state at the time of the
last measurement. The difficulty is that the surviving re-
sampled particles tend to originate from a small number
of the original particles, so the posterior distribution on
sample paths lacks resolution as onemoves from present
time back to time 0.The set of particle paths obtained by
time T in this fashion form an estimate of the smoothed
distribution on sample paths. However, it is not a very
good estimate. See [3] and [4]. Simply increasing the ini-
tial number of sample paths is not an effective solution
to this problem in most cases; see [8]. Repeated filtering
was developed to solve this problemwithout theMarkov
or discrete-time assumptions required by othermethods.

III. REPEATED FILTERING

The increasing speed,memory capacity, and capabil-
ity of present-day computers allow us to propose the fol-
lowing method, which would not have been practical a
few years ago. The method is called repeated filtering. It

is implemented by the following recursion, which pro-
duces M independent sample paths from the smoothed
distribution on sample paths.

A. Repeated Filtering Recursion
� Step 1. Make an initial run of the particle filter, pro-
cessing the measurements received over the time in-
terval [0,T ] and resampling as necessary.

� Step 2. Resample the particles at time T to obtain
N equal probability particle paths {xn;n = 1, . . . ,N}.
Choose one of these paths at random, with each path
having probability 1/N of being chosen. Save the cho-
sen sample path x̄.

� Step 3. Rerun the particle filter with the same mea-
surements as in Step 1, but drawing particles that are
independent of those drawn in Step 1. This will ensure
that we choose new and independent samples of the
target state at time 0 and at the measurement times.

� Step 4.Make a randomdraw to choose one of the sam-
ple paths as in Step 2. Save this sample path.

� Step 5. Repeat Steps 3 and 4, using particles that are
independent of those drawn previously, until one ob-
tainsM smoothed sample paths x̄m form = 1, . . . ,M.

Define the particle path distribution

P̄N (y1:K) = {
(x̄m, 1/M) ;m = 1, . . . ,M

}
. (6)

Then P̄N(y1:K) is a discrete path approximation to the
posterior distribution on sample paths given the mea-
surements received in [0,T ].

The solution in (6) gives each smoothed path an
equal weight. We hypothesize that an alternate weight-
ing scheme applied to the smoothed paths in (6) would
produce a better solution. However, none of the meth-
ods we have tried have done this. This is an area for fur-
ther investigation.

B. Marginal Distributions

For any t ∈ [0,T ], we can obtain from P̄N(y1:K) a
particle state estimate for the smoothed marginal distri-
bution at time t as follows:

P̄tN (y1:K) = {
(x̄m(t), 1/M) ;m = 1, . . . ,M

}
. (7)

We often provide a visual representation of such a
distribution by imposing a grid of cells on the state space,
summing the probability of the points in each cell, and
color coding the cells to represent the probabilities in the
cells.

The ability to estimate the distribution of the state
of the smoothed process at a time between measure-
ments can be particularly important in situations where
there are large time gaps between measurements, as oc-
curs in some surveillance problems. In addition, having a
set of smoothed paths can be helpful in determining pat-
terns ofmotion.Moreover,as noted in [5],having sample
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paths also allows one to explore relationships between
the state of the process at different times.

C. Resolution of the Smoothed Solution

Resampling within each run of the particle filter is
necessary to preserve the resolution of the estimate of
the posterior distribution as the number of measure-
ments increases. Making independent runs of the parti-
cle filter in Step 3 to obtain M posterior sample paths
is necessary to preserve the resolution of the estimate
of the posterior as one goes back in time toward 0. De-
termining the number of particle filter runs required and
the number of particles for a run generally requires some
experimentation.

We expect that there is some limitation on the length
of the interval [0,T ] over which this process produces
solutionswith good resolution,ormore likely,as the time
interval gets longer, the number of particle filter runsM
may need to get larger.We have not explored this ques-
tion. Another possibility is to break the interval [0,T ]
into two or more subintervals and splice the solutions
from the subintervals together in some fashion.We have
not explored this possibility either.

D. Computation Time

The computation time to obtain a repeated filtering
solution depends on the time to perform one filter run,
which depends on the complexity of the problem. Gen-
erating M independent samples from the posterior will
take M times as long as a single filter run. If time be-
comes a problem, one can easily apply coarse grain par-
allel processing by allocating the repetition of Steps 3
and 4 across a number of processors.

IV. EXAMPLES

This section presents four examples of estimating the
posterior distribution on sample paths in [0,T ] using re-
peated filtering. The first example compares repeated
filtering to a Kalman smoother where the exact solu-
tion is known. The second example involves a simpli-
fied surveillance situation where the target is moving
through an area in which it has to avoid certain regions.
Even though this is a simplified situation, it is still a chal-
lenge for smoothing. We use a motion model called a
generalized random tour (GRT), see [11] or Section 1.3.3
of [12], which is a special case of a variable rate parti-
cle filter. We incorporate avoidance regions to provide
a more realistic and challenging motion model. The last
two examples smooth a standard nonlinear time series
used to test particle filters.

A. Example 1: Comparison to a Kalman Smoother

For this comparison, the motion model is the almost-
constant velocity model described below, and the mea-
surements are position measurements with additive cir-

cular normal errors.We find a repeated filtering solution
for this example and compare it to the solution from the
Rauch–Tung–Striebel smoother [10, p. 135].

1) Almost Constant VelocityModel: The target state is
given by a position–velocity pair (x, v). The state at time
0 is

(x0, v0) ∼ η (·, (x̄, v̄), �0) , (8)

where we use η(·, μ,�) to denote a normal density func-
tionwithmeanμ and covariance�.Let� be a fixed time
increment.There are I time increments andT = I�.The
target proceeds at velocity v0 until time t1 = � at which
time a new velocity v1 is obtained by adding a small, in-
dependent,mean-zero,Gaussian distributed variation to
v0 to obtain v1. The target continues at this velocity until
the next time increment.Wemay express this mathemat-
ically as follows. Let (xi, vi) be the target state at time
ti = i�. Then

(
xi
vi

)
=

(
xi−1 + �vi−1

vi−1 + wi

)
for i = 1, 2 . . . , (9)

where {wi : i = 1, . . . , I} are independent, identically
distributed random variables with wi ∼ η(·, (0, 0),Q)
and Q is a “small” covariance matrix.

Let Im be the m-dimensional identity matrix. The pa-
rameters of the motion model are � = 1 hr,

x̄ = (0, 0) , v̄ = 7 kn (cos(θ ), sin(θ )) where θ = π

6

�0 =
[
σ 2
x I2 0
0 σ 2

v I2

]
where σx = 4 nm, σv = 1 kn

Q = σ 2
wI2,where σw = 1 kn. (10)

We use the abbreviations nm for nautical miles and
kn for knots. A knot equals 1 nm/h.

The target follows a slightly curved path starting at
the origin, as shown by the black line in Fig. 1. The time
duration is 10 h.There are eleven positionmeasurements
received at 1-h increments over the duration of the path.
The 2-sigma uncertainty ellipses for the measurements
are shown in black. The measurements have circular
Gaussian errors with a standard deviation of 4 nm.

2) Comparison of Kalman and Repeated Filtering
Smoothers: The Kalman smoother provides an ana-
lytic solution to this problem. The red ellipses are the
2-sigma ellipses from the Kalman smoother solution at
equally spaced times on the path.

Repeated filtering was applied to this problem by
drawing 10 000 particle paths from the almost-constant
velocity motion model and performing the recursion in
Section III to obtain 400 samples from the posterior
distribution on target paths. The green ellipses are the
2-sigma ellipses derived from the empirical means and
covariances of the path positions at the same times as
the Kalman smoother ellipses. As one can see, there is
good agreement between the two plots of 2-sigma el-
lipses. Note that agreement improves as time increases

REPEATED FILTERING FOR SMOOTHING PARTICLE FILTERS 39



Fig. 1. Comparison of Kalman and repeated filtering smoothers. The
black line is the target’s path, which starts at (0,0); black circles are

2-σ uncertainty circles for measurements; red ellipses are 2-σ ellipses
for the Kalman smoother solution; green ellipses are 2-σ ellipses for

the repeated filtering smoother solution.

because the smoother has more history to use for the
smoothing.

Wemade the following computation tomeasure how
well repeated filtering approximated the optimal solu-
tion from the Kalman smoother. At each of the eleven
equally spaced points on the target track in Fig. 1, we
computed the mean squared distance from the point to
the bivariate normal distribution at that point computed
by theKalman smoother and to the bivariate normal dis-
tribution corresponding to the 2−σ ellipse for the re-
peated filtering result. We averaged these results over
the eleven points and took the square root of this av-
erage to obtain the square root of the average mean
squared missed distance for the Kalman and repeated
filtering smoothers.

The results were 3.97 nm for the Kalman smoother
and 4.61 nm for repeated filtering. The repeated filtering
result is only 16% larger than the Kalman result demon-
strating that repeated filtering provides a good approxi-
mation to the posterior path distribution in a case where
we can calculate the exact distribution. We produced
only 400 smoothed paths for this example. Using more
paths would improve the approximation.

B. Example 2: Surveillance Problem

As before, we use a target state space that is
2-dimensional in position and velocity and use (x, v) to
represent a position and velocity pair in this space. A

Fig. 2. Speed change distribution.

GRTmotionmodel is specified by first specifying a prob-
ability (density) function p0(x, v) on the position and ve-
locity (x0, v0) of the target at time 0.As time progress, the
target changes velocity (instantaneously) at the event
times of a Poisson process with rate λ.

Between velocity changes, the target follows a con-
stant velocity path at the previously chosen velocity.
When the target changes velocity, its new velocity vi is
drawn from a probability (density) function p(·|vi−1),
where vi−1 is the velocity just prior to the change. For
many tracking problems, theGRTmotionmodel is more
operationally realistic than the almost-constant veloc-
itymotionmodel or other often-usedGaussian-diffusion
motion models.

For this example, we set λ = 0.25/h and

p0 (x0, v0) = η
(
x0, (0, 0), (15 nm)2I2

)

× η
(
v0, (0, 0), (10 kn)

2I2
)

.

When a velocity change occurs, the new velocity is
chosen by making independent draws to determine the
changes to the speed and course of the target. The speed
change distribution is symmetric about zero. On each
side of zero, the distribution is proportional to that of a
truncated Gaussian whose mean has an absolute value
of 2 kn and a standard deviation of 1 kn, as shown in
Fig. 2. Similarly, the course change distribution is sym-
metric about zero, with each side being proportional to
a truncated Gaussian whose mean has an absolute value
of 60°and a standard deviation of 30°.

As the sample paths are generated, we ensure that
they stay clear of avoidance regions, as follows: When a
velocity change takes place, the time on that leg is drawn
as well as the new velocity. If the resulting leg hits an
avoidance region, a new velocity is drawn. This process
is repeated up to a maximum of 20 times until the re-
sulting leg does not intersect an avoidance region. If no
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Fig. 3. Slinky plot from the first run of the repeated filtering
smoother. The heavy blue line shows the target’s path, which starts at
(0, 0). The red dots show the measurements. The black circles show
discs of the regions that the target must avoid. The red ellipses are
2-sigma ellipses generated by the repeated filtering smoother. The

dashed circle shows the 2-sigma ellipse for the initial position
distribution at time 0.

such leg is found, then the path is discarded and a new
one generated in its place.

1) Scenario Description: The actual target path, shown
in blue in Fig. 3, has a fixed speed of 8 kn. It follows the
ladder path with long legs of 24 h duration and short legs
of 6 h duration.The black circles indicate regions that the
target must avoid as it traverses its path. The target path
starts near the origin. The total time is 240 h or 10 days.

The time to the first measurement is gamma-
distributed with a mean of 4 h and variance of (8/3) h2.
The time intervals between subsequent measurements
are independent with this same gamma distribution.The
measurements are of position with a circular Gaussian
error distribution having a standard deviation of 10 nm.
In Fig. 3, measurements are indicated by red dots, and
the dashed circle shows the 2-sigma ellipse of the initial
position distribution.

2)Repeated Filtering Smoother: For repeated filtering,
we ran the particle filter with N = 10 000 and at time T
randomly chose one of the paths, with each path having
an equal probability of being chosen.

We repeated Steps 3 and 4 in Section III-A to obtain
M = 400 sample paths from the posterior (smoothed)
distribution on the target paths. The 2-sigma ellipses for
the position estimates were calculated every 4 h.This se-
quence of ellipses, called a slinky plot, is shown in Fig. 3.
The ellipses represent normal approximations to the po-
sition distributions every 4 h. Thus, even though some
ellipses intersect an avoidance region, the paths them-
selves do not.

To illustrate the stability of the repeated filtering
method, we repeated this run a second time using the
same measurements as in the first run but using random
draws independent of those made for the first run. We
overlaid the slinky plots for the two runs in Fig. 4. As

Fig. 4. Comparison of the slinky plots from two runs of the repeated
filtering method using the same inputs but independent random

numbers. The blue line shows the target’s path.

the reader can see, there is little, if any, difference in the
plots, which gives us confidence in the stability of the
method.

A sample of the smoothed paths from repeated filter-
ing is shown in Fig. 5.Note that none of the sample paths
pass through the avoidance regions. Note also that there
is more uncertainty in the distribution of the smoothed
paths near (0,0), the target’s starting point at time 0, than
there is close to time T. It is not surprising that having
past history as well as future information is helpful in
estimating the target’s smoothed path.

3) MCMC Smoothing: In [11], we applied an MCMC
method to estimate the posterior distribution on the tar-
get paths for this example. The procedure was difficult
and complex. In the hope of ensuring the stability of the
results, we ran the MCMC for 1 million iterations to es-
timate the posterior distribution on paths. This process
took 4 h or more on a modest laptop. The results looked
reasonable, but to test the stability of the procedure,
we made a second MCMC run with 1 million iterations

Fig. 5. Smoothed sample paths selected by random draws from the
set of smoothed paths. Each path has an equal probability of being

chosen. Note that none of the sample paths pass through the
avoidance regions. The dashed line connects the measurements.
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using the same inputs as the first run but with a different
starting path for the iterations.As noted in the introduc-
tion, the results were qualitatively different.TheMCMC
had not converged even after 1 million iterations.At this
point, we abandoned the MCMC approach and devel-
oped the repeated filtering approach.

4) Discussion: We have no analytical method with
which to compare our smoothed solution in this exam-
ple. The solution appears reasonable compared to the
actual target path in this example, even though this is a
difficult problem and there is a mismatch between the
motion model and the target’s motion. The smoothed
paths stay out of avoidance regions, and the distribution
is repeatable up to the small differences that are to be
expected in Monte Carlo solutions.

We have used slinky plots to display the smoothed
solution. Alternatively, one could calculate a mean
smoothed path by finding themean of the position of the
paths at each time in a sequence of evenly spaced times
and displaying the line connecting these means. Or, one
could display both the mean path and the slinky plot.

C. Example 3: Smoothing a Nonlinear Time Series

In this example, we apply repeated filtering to
smooth the output of the stochastic nonlinear time series
model given in Example 1 of [5].Reference [5] describes
thismodel as a standard nonlinear time seriesmodel that
has been used extensively for testing numerical filtering
techniques.

The time series {X (t), t = 1, ..., 100} has for its initial
state X (1) ∼ η(·, 0, 10) and is defined for t ≥ 2 by

X (t) = X (t − 1)
2

+ 2.5X (t − 1)
1 +X 2(t − 1)

+ 8 cos (1.2t) + v (t)

v (t) ∼ η (·, 0, 10) , v (t) independent of v (s) for s �= t.

(11)

The measurements {Y (t), t = 1, ..., 100} are defined
by

Y (t) = X 2 (t)
20

+ w (t)

w (t) ∼ η (·, 0, 1) ,w (t) independent of w (s) for s �= t.

(12)

We cannot reproduce the results in Example 1 in [5]
exactly because we do not have access to the sample
path [5] of the process used for their example or the
series of measurements produced. While we cannot
reproduce this example exactly, we are able to produce
comparable results and similar figures, which leads us
to conclude that the repeated filtering method produces
results comparable to the method in [5], which is limited
to discrete-time Markov processes with closed-form
transition functions.

Fig. 6. Fifty smoothed paths are shown in black; the time series
values are in red.

1) Repeated FilteringApproach: To apply repeated fil-
tering,we simulated one sample path and set ofmeasure-
ments from the time series defined by (11) and (12). Us-
ing these as inputs, we ran a standard SIR particle filter
with 1000 particles resampling as described in Section II-
B.Weused the stochastic process defined in (11) and (12)
for our motion model for the filter. The particles were
resampled at each time step so that they all had equal
weight. At the conclusion of a filter run at time 100, we
selected one of these paths by making a draw from this
set of particles,with each particle having an equal proba-
bility of being drawn.This path was saved as a smoothed
path.We repeated the filtering process 1000 times, using
independent random numbers to produce the particles
and drawing one of them for a smoothed path. The re-
sulting set of 1000 independently drawn smoothed paths
constitutes our estimate of the posterior distribution on
the target paths given the measurements in [1,100].

Fig. 6 shows a sample of 50 smoothed paths in black
and the actual values of the time series in red. Look-
ing at the measurement equation (12), one can see that
a value x of the series will produce the same measure-
ment as −x. As more measurements are received, the
smoother (usually) sorts out this ambiguity. This ambi-
guity has produced the bimodal results near time 100.

Fig. 7 shows the smoother results when restricted to
the interval [0, 51]. The ambiguity in the smoothed solu-
tion near time 51 in this figure is resolved by time 100 in
Fig. 6.

Figs. 8–10 below are similar to Figs. 4, 5, and 7 in [5],
and the results are qualitatively similar. Since the sam-
pled time series andmeasurements in our data are some-
what different from those in [5], we do not expect an ex-
act match.

Fig. 8 shows a histogram of the smoothed distribu-
tion values at each of the 100 times. As [5] notes, one
of the advantages of finding smoothed paths rather than
marginal distributions at each time is the ability to an-
alyze joint densities of values at two different times.
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Fig. 7. Smoother results for [0,51]. Smoothed paths are in black.
Time series values are in red.

Figures 9 and 10 show examples of these joint densities
and exhibit behavior similar to that seen in [5].

D. Smothing a Nonlinear Time Series With Reflecting
Boundaries

This example adds reflecting boundaries at +15 and
−15 to the nonlinear time series example in Section
IV-C. Smoothing of this process is easily performed us-
ing repeated filtering but is difficult to do using themeth-
ods of [5]. Equations (13)–(15) in the Appendix give the
revision to the equation forX (t) produced by the reflect-
ing boundaries.

One can see from these equations that for each tran-
sition, one must allow for the reflection off one or more
boundaries to determine the distribution of X (t) given
X (t − 1). In fact, since the term, v(t) is drawn from a
Gaussian distribution, the transition function involves

Fig. 8. Histogram of smoother values. Dark grey indicates
higher-density areas. Red stars show the actual values of the time

series.

Fig. 9. Joint density plot for the values of the smoothed time series
at times 8 and 9. Note the multimodal distribution.

summing an infinite number of terms to account for the
number of possible reflections!

To smooth this process,wemodified the particle filter
in Section IV-C by adding the reflective boundaries and
performed repeated filtering as above.

Fig. 11 shows 50 smoothed sample paths from this
process. The smoothed paths are shown in black, and
the red dots indicate the values of the process. Note the
ambiguity at time 100. The value of the process is ap-
proximately −10, but the smoother shows an ambiguity
about 0 because of the measurement model. This ambi-
guity will not be resolved until more data is received. If
one truncated the time series at time 50,as in Fig.12, then
one would see a similar ambiguity that is resolved as the
filter receives more data.

Fig. 13 shows the joint density of the smoothed paths
at times 99 and 100.As one can see from this figure, if the
series is positive (negative) at time 99, it will be positive
(negative) at time 100.

Fig. 10. Joint density plot for times 77 and 78. This density is
unimodal but not Gaussian.
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Fig. 11. Smoothed paths for time series with reflecting boundaries.
Smooth paths are shown in black; times series values in red.

Fig. 12. Smoothed paths resulting from stopping the series at
time 50.

Fig. 13. Joint density at times 99 and 100.

V. CONCLUSIONS

This paper presents the repeated filtering smoother,
which is a simpler method than most smoothing meth-
ods and can be applied to any SIR particle filter.Like the
method in [5], the smoother produces sample paths from
the smoothed distribution, allowing for more detailed
analysis of path behavior than can be obtained from
smoothers that produce only marginal distributions. The
only restriction on the stochastic process defining the
motion model used for the particle filter is that one must
be able to draw independent sample paths from the pro-
cess and that these paths can be produced sequentially
in time. In particular, the process does not have to be
Markovian in its state space.

We have demonstrated the repeated filteringmethod
on a Kalman filter problem and shown that it produces
comparable results. We demonstrated the method on
a tracking problem with a motion model whose tran-
sition function does not have a closed analytical form,
and which has unusual features such as avoidance areas.
Next, we demonstrated the repeated filtering method
on a standard nonlinear time series problem used to
test many particle filters. We also performed repeated
smoothing on a modification of this time series with re-
flecting boundaries. The smoothing was performed on
this example by simply putting reflecting boundaries on
the time series and applying the repeated filtering. By
contrast, the method in [5] would require substantial ad-
ditional effort.

In all four examples, the repeated filtering method
performed well and required only modest amounts of
computational effort. We stress again the simplicity
and generality of this method. If one can construct a
good particle filter for the process, one can easily find
smoothed sample paths using repeated filtering. The
computational load is easy to estimate. If you want M
smoothed paths, the computational effort will be M
times the effort required for a single run of the particle
filter.

APPENDIX

EQUATION FOR TIME SERIES WITH REFLECTING
BONDARIES

This appendix derives the modifications to (11)
resulting from adding the reflecting boundaries in
Example 4.

If v(t) > 0, let

Z (t) = X (t − 1)
2

+ 2.5X (t − 1)
1 +X 2(t − 1)

+ 8 cos (1.2t) . (13)

If v(t) ≤ 15 − Z(t), then

X (t) = Z (t) + v (t) . (14)
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If v(t) > 15 − Z(t), let

R (t) = v (t) − (15 − Z(t))

n (t) = ⌊
R (t) /30

⌋

f (t) = v (t) − [30n (t) + (15 − Z(t))] .

Then

X (t) = (−1)n(t) (15 − f (t)) . (15)

If v (t) ≤ 0, then one obtains a similar set of equa-
tions for X (t).
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Absolute Calibration of Imaging
Sensors

DJEDJIGA BELFADEL

Despite the efforts for precise alignment of satellite-based imag-

ing sensors before launch, several factors may cause the values of the

calibration parameters to vary between the time of ground calibration

and on-orbit operation. This paper considers the problem of satellite-

based imaging sensors on-board calibration while estimating the posi-

tion and velocity of a target of opportunity. The pixel measurements

(estimated location of the target’s image in the focal-plane array) gen-

erated by these sensors are used to estimate the sensors’ pointing an-

gle biases, which is a key element of accurate tracking of a target in a

space-based system. The target is assumed to be seen by the sensors

from a changing direction as a function of the target position, allow-

ing the target in this nonlinear tracking system to be observable. The

evaluation of the corresponding Cramér–Rao lower bound on the co-

variance of the bias estimates and the statistical tests on the results

of simulations show that both the target trajectory and the biases are

observable and that this method is statistically efficient.

I. INTRODUCTION

Image registration is an important research topic
in many related areas, such as computer vision, auto-
matic object detection, remote sensing, image process-
ing, robotics, and medical imaging. Multisensor image
fusion is the process of combining relevant information
from several images into one image.The final output im-
age can provide more information than any of the single
images.

In the literature of computer vision, several cam-
era calibration methods exist. These methods are classi-
fied based on the calibration object used, such as stereo
calibration, plane calibration [13], line calibration [14],
and self-calibration [10]. However, it is important to
note that constraint conditions become weaker and pre-
cision decreases when the dimension is reduced. Thus,
if high-precision results are necessary, the latter two
methods may not be suitable. Furthermore, the three-
dimensional calibration block required for the third
method is challenging to make. Therefore, the plane cal-
ibration method is a widely used method in computer
vision due to its flexibility and simplicity [13].

In order to carry out image fusion, registration error
correction is crucial inmultisensor systems.This requires
estimation of the sensor measurement biases. Measure-
ment bias in target tracking problems can result from a
number of different sources. Some primary sources of
bias errors include measurement biases due to the dete-
rioration of initial sensor calibration over time, attitude
errors caused by biases in the gyros of the inertial mea-
surement units of (airborne or spaceborne) sensors, and
timing errors due to the biases in the onboard clock of
each sensor platform [9].

For angle-only sensors, imperfect registration leads
to line-of-sight (LOS) angle measurement biases in
azimuth and elevation. If not corrected, the registra-
tion errors can seriously degrade the global surveillance
system’s performance by increasing tracking errors and
even introducing ghost targets. In [7], the effect of sen-
sor and timing bias error on the tracking quality of a
space-based infrared (IR) tracking system that utilizes
a linearized Kalman filter (LKF) for the highly nonlin-
ear problem of tracking a ballistic missile was presented.
This was extended in [8] by proposing a method of us-
ing stars observed in the sensor background to reduce
the sensor bias error. In [5] simultaneous sensors bias
and targets position estimation using fixed passive sen-
sors was proposed. A solution to the related observabil-
ity issues discussed in [5] was proposed in [6] using space-
based sensors. In [4], a simultaneous target state and pas-
sive sensor bias estimation were proposed.

In this paper, imaging sensor bias estimation is inves-
tigated when only a single target of opportunity is avail-
able. The tracking system consists of two or three satel-
lites tracking a ballistic target. The sensors provide syn-
chronized focal-plane (pixel) measurements. The data
association is assumed to be correct, and the sensors’
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locations are known, and we estimate their orientation
biases while simultaneously estimating the state of the
target (position and velocity). Our new bias estimation
method is validated using a hypothetical scenario cre-
ated using the System Tool Kit (STK) [1]. Two cases are
considered. In the first case,we use three imaging sensors
to estimate the state of a ballistic target simultaneously
with the biases of the three sensors. In the second case,
we estimate the position and velocity of a single target of
opportunity simultaneously with the biases of two imag-
ing sensors [3].

First, we discuss the bias estimation for syn-
chronously biased imaging sensors in pixel coordinates.
Then we evaluate the corresponding Cramér–Rao lower
bound (CRLB) on the covariance of the bias estimates,
which is the quantification of the available information
on the sensor biases,and show via statistical tests that the
estimation is statistically efficient—it meets the CRLB.
Section II describes the problem formulation and

solution in detail. Section III describes the simulations
performed and gives the results. Finally, Section IV gives
the conclusions.

II. PROBLEM FORMULATION

To locate a target in world coordinates and to esti-
mate and correct the biases, one needs to transform the
pixels on the image plane to positions in world coordi-
nates and vice versa. Starting with a discussion on the
orientation of a spaceborne sensor, this section is de-
voted to defining the transformations used in the for-
mulation of the new method. The fundamental frame
of reference used in this paper is the Earth-centered in-
ertial (ECI) coordinate system. The ECI is defined by
the orthogonal set of unit vectors (ix, iy, iz). In a mul-
tisensor scenario, sensor platforms will typically have a
sensor reference frame associated with them (measure-
ment frame of the sensor) defined by the orthogonal set
of unit vectors (ixs, iys, izs). The origin of the measure-
ment frame of the sensor is a translation of the ECI ori-
gin, and its axes are rotated with respect to the ECI axes.
The rotation between these frames can be described by
a set of Euler angles.We will refer to these angles α+αn,
ε+εn,ρ+ρn of the sensor, as pitch, yaw, and roll, respec-
tively, where αn is the nominal pitch angle, α is the pitch
bias,etc.Each angle defines a rotation about a prescribed
axis in order to align the sensor frame axes with the ECI
axes. The xyz rotation sequence is chosen, which is ac-
complished by first rotating about the x axis by αn, then

Fig. 1. Sensor coordinates and azimuth pointing bias.

rotating about the y axis by εn, and finally rotating about
the z axis by ρn. The rotation sequence can be expressed
as

T (ρn, εn, αn) = Tz(ρn)Ty(εn)Tx(αn)

�=
⎡
⎣
cos ρn cos εn cos ρn sin εn sinαn − sin ρn cosαn cos ρn sin εn cosαn + sin ρn sinαn

sin ρn cos εn sin ρn sin εn sinαn + cos ρn cosαn sin ρn sin εn cosαn − cosψs sinαn

− sin εn cos εn sinαn cos εn cosαn

⎤
⎦ . (1)

Assume there are NS synchronized passive sen-
sors with known positions in ECI coordinates,
sps(k) = [es(k),ns(k),us(k)]′, s = 1, 2, . . . ,NS, k =
0, 1, 2, . . . ,K, tracking a single target at unknown posi-
tions x(k) = [x(k), y(k), z(k)]′, also in ECI coordinates.
With the previous convention, the operations needed to
transform the position of the target location expressed
in ECI coordinates into the sensor s coordinate system
(based on its nominal orientation) is

xns (k) = T (ωs(k))(x(k) − sps(k))

s = 1, 2, . . . ,NS, k = 0, 1, 2, . . . ,K, (2)

where ωs(k) = [αn
s (k), ε

n
s (k), ρ

n
s (k)]

′ is the nominal ori-
entation of sensor s, T (ωs(k)) is the appropriate rota-
tion matrix, and the translation (x(k) − sps(k)) is the
difference between the vector position of the target and
the vector position of the sensor s, both expressed in
ECI coordinates. The superscript “n” in (2) indicates
that the rotation matrix is based on the nominal sensor
orientation.

A. Measurement Model

In the process of optical imaging, a simplified model
of image formation is shown in Fig. 1. In this so-called
pinhole camera model, the lens is a single point.A given
scene is mapped onto the image plane by projection
through the optical center of the imaging lens. We shall
define the sensor coordinate system as having the hor-
izontal and vertical axes of the image plane labeled ξ
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Fig. 2. Sensor coordinates and elevation pointing bias.

and η, respectively, and the “optical axis”, labeled ζ (as
shown in Figs.1 and 2).Assume that the origin of the sen-
sor coordinate system is the lens center, and fs is the fo-
cal length of the optical sensor, the distance from the lens
focal point to the image plane. The three-dimensional
coordinates (xs(k), ys(k), zs(k)) of a point target are
transformed to the image coordinates (ξs(k), ηs(k)) un-
der perspective projection. Then using the two similar
triangles, we can write the ξs(k) image coordinate in the
focal plane as

ξs(k) = − fs
xs(k)
zs(k)

, (3)

where fs is the focal length of sensor s and the nega-
tive sign is due to the reversing of the image. Similarly,
as shown in Fig. 2, the ηs(k) coordinate of the image is
given by

ηs(k) = − fs
ys(k)
zs(k)

. (4)

For our bias estimation algorithm, the target measure-
ments will be generated in pixels ξs(k) and ηs(k). For
convenience, the xzy coordinate system is used, the
azimuth angle βs(k) is taken in the sensor xz plane be-
tween the sensor z axis and the line of sight to the target,
while the elevation angle γs(k) is the angle taken in the
Cartesian plane yz between the z axis and the line of
sight to the target, that is,

[
βs(k)
γs(k)

]
=

⎡
⎢⎣
tan−1

(
xs(k)
zs(k)

)

tan−1

(
− ys(k)√

x2s (k)+z2s (k)

)
⎤
⎥⎦ . (5)

Assuming a small clockwise roll of bρ about the ζ axis,
the resulting tilted (rotated) image has the focal plane
coordinates

ξ ′
s(k) = ξs(k) cos bρs + ηs(k) sinbρs , (6)

η′
s(k) = −ξs(k) sinbρs + ηs(k) cos bρs , (7)

where ξ ′
s(k) and η′

s(k) are the resulting pixel positions
after the rolling, and ξs(k) and ηs(k) are the ideal image
positions.As shown in Fig. 1, the azimuth bias bαs of sen-
sor s results in a horizontal bias in pixels of

�ξ s(k) = fs sinbαs

cosαs(k) cos(αs(k) − bαs )

= fs sinbαs

cosαs(k)(cosαs(k) cos bαs + sinαs(k) sinbαs )

= fs sinbαs

cos2 αs(k) cos bαs + cosαs(k) sinαs(k) sinbαs

= fs

cos2 αs(k)
cosbαs
sin bαs

+ cosαs(k) sinαs(k)

= fs
cos2 αs(k) cot bαs + cosαs(k) sinαs(k)

s = 1, 2, . . . ,Ns. (8)

Similarly, as shown in Fig. 2, the elevation bias bεs results
in a vertical bias in pixels of

�ηs(k) = fs sinbεs

cos εs(k) cos(εs(k) − bεs )

= fs
cos2 εs(k) cot bεs + cos εs(k) sin εs(k)

. (9)

The focal length is related to the horizontal field of view
2αmax and Nξ , the number of pixels along the horizontal
ξ axis.

fs = 1
2
Nξ

1
tanαmax

. (10)

Combining (7)–(10), the noiseless biased measurements
of the target from sensor s in pixels are

ξbs (k) = ξs(k) cos bρs

− fs
cos2 αs(k) cot bαs + cosαs(k) sinαs(k)

+ ηs(k) sinbρs , (11)

ηbs (k) = ηs(k) cos bρs

− fs
cos2 εs(k) cot bεs + cos εs(k) sin εs(k)

− ξs(k) sinbρs , (12)

where ξs(k) and ηs(k) are the ideal image pixel posi-
tions. bαs , bεs , and bρs are the azimuth, elevation, and
roll biases, respectively. The model for the biased noise
free focal-plane measurements expressed in pixels is

ABSOLUTE CALIBRATION OF IMAGING SENSORS 49



then

h (xs(k),bs) =
[
ξbs (k)
ηbs (k)

]
=

[
ξs(k) cos bρs − fs

cos2 αs(k) cotbα s+ cosαs(k) sinαs(k)
+ ηs(k) sinbρs

ηs(k) cos bρs − fs
cos2 εs(k) cotbεs+ cos εs(k) sin εs(k)

− ξs(k) sinbρs

]

=

⎡
⎢⎢⎣

− fsxs(k)
zs(k)

cos bρs − fs
z2s (k)

x2s (k)+z2s (k)
cotbαs+ xs (k)zs (k)

x2s (k)+z2s (k)

− fsys(k)
zs(k)

sinbρs

− fsys(k)
zs(k)

cos bρs − fs

x2s (k)+z2s (k)
x2s (k)+y2s (k)+zs (k)

cotbεs+
zs (k)

√
x2s (k)+z2s (k)

x2s (k)+y2s (k)+z2s (k)

+ fsxs(k)
zs(k)

sinbρs

⎤
⎥⎥⎦

= fs

⎡
⎣ − xs(k)

zs(k)
cos bρs − ys(k)

zs(k)
sinbρs − x2s (k)+z2s (k)

z2s (k) cotbαs+xs(k)zs(k)
− ys(k)

zs(k)
cos bρs + xs(k)

zs(k)
sinbρs − x2s (k)+y2s (k)+z2s (k)

(x2s (k)+z2s (k)) cotbεs+zs(k)
√
x2s (k)+z2s (k)

⎤
⎦ , (13)

where [ξs(k) ηs(k)]′ is the focal-plane position of
the image of the target seen by sensor s, xs(k) =
[xs(k), ys(k), zs(k)] is the target position, and bs =
[bαs bεs bρs ]

′ is the bias vector of sensor s.
At time k, each sensor provides the noisy measure-

ments

zs(k) = hs (xs(k),bs) + ws(k), (14)

Let z be an augmented vector consisting of the batch-
stacked measurements from all the sensors up to time
K

z = [z1(1), z2(1), . . . , zNS (1), . . . , z1(K), z2(K), . . . ,

zNS (K)], (15)

and

ws(k) = [
wξ
s (k),w

η
s (k)

]′
. (16)

The measurement noises ws(k) are zero-mean, white
Gaussian with

Rs =
[
(σ ξ

s )2 0
0 (ση

s )2

]
s = 1, 2, . . . ,NS (17)

and are assumed mutually independent.
The problem is to estimate the bias vectors for all

sensors and the state vector (position and velocity) of
the target of opportunity, i.e.,

θ = [x(K), y(K), z(K), ẋ(K), ẏ(K), ż(K),b′
1, . . . ,b

′
NS
]′

(18)
from

z = h(θ ) + w, (19)

where

h(θ ) = [h11(θ )′,h21(θ )′, . . . ,hNS1(θ )
′, . . . ,

h1K(θ )′,h2K(θ )′, . . . ,hNSK(θ )
′]′, (20)

w = [w1(1)′,w2(1)′, . . . ,wNS (1)
′, . . . ,w1(K)′,

w2(K)′, . . . ,wNS (K)′]′, (21)

and the covariance of the stacked process noise (21) is
the (NsK ×NsK) block-diagonal matrix

R =

⎡
⎢⎢⎢⎣

R1 0 · · · 0
0 R2 · · · 0
...

...
...

...
0 · · · 0 RNS

⎤
⎥⎥⎥⎦ . (22)

We shall obtain the maximum likelihood (ML) estimate
of the augmented parameter vector (18), consisting of
the (unknown) target position, velocity, and sensor bi-
ases, by maximizing the likelihood function (LF) of θ

based on z

�(θ; z) = p (z|θ ) , (23)

where

p (z|θ ) = |2πR|−1/2 exp
(

−1
2
[z − h (θ )]′ R−1 [z − h (θ )]

)
,

(24)

and h is defined in (20)
The ML estimate (MLE) is then

θ̂ (z)
ML = argmax

θ
�(θ; z). (25)

In order to find the MLE, one has to solve a nonlinear
least squares problem. This will be done using a numeri-
cal search via the batch iterated least squares (ILS) tech-
nique.

B. Space Target Dynamics

The state-space model for a noiseless discrete-time
system1 is of the general form

x(k+ 1) = f [x(k),u(k)] k = 0, 1, 2, . . . ,K − 1. (26)

With small time steps (≤10 s), we can approximate the
motion model with the discrete-time dynamic equation

x(k+ 1) = Fx(k) +Gu(k), (27)

1Since we are dealing with exoatmospheric motion, it is reasonable to
assume that it is noiseless.
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where

x(k) = [x(k), y(k), z(k), ẋ(k), ẏ(k), ż(k)]′,

k = 0, 1, 2, . . . ,K (28)

is the six-dimensional state vector at time k, F is the
state-transitionmatrix, and u is a known input represent-
ing the gravitational effects acting on the target [given in
(31)]. The state-transition matrix for a target with accel-
eration due to gravity is

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 �t 0 0
0 1 0 0 �t 0
0 0 1 0 0 �t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (29)

and the known input gainmatrix (multiplying the appro-
priate components of the gravity vector) is

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

�t2/2 0 0
0 �t2/2 0
0 0 �t2/2
�t 0 0
0 �t 0
0 0 �t

⎤
⎥⎥⎥⎥⎥⎥⎦

, (30)

where �t is the sampling interval. The gravity term is
given by

u(k) = g
xp(k)

a(xp(k))
, (31)

where xp is the position part of the state x in (28), g =
9.8 m/s2, and

a =
√
x(k)2 + y(k)2 + z(k)2 (32)

is the distance from the target to the origin of the coordi-
nates system. For simplicity, we assume g to be constant.
The ratio xp/a yields the time-varying components of the
gravity acting on the target and provides the scaling fac-
tor for the gravity term. Note that in view of (31), the
state model (27) is not linear.

C. Bias Estimability

Intuitively, the observability of a system guarantees
that the sensor measurements provide sufficient infor-
mation for estimating the unknown parameters. As dis-
cussed in [4], the two requirement for bias estimability
are:

First Requirement for Bias Estimability: Each sensor
provides a two-dimensional measurement (the two pixel
positions of the target in the sensor image) at timeK.We
assume that each sensor sees the target at all the times
0, 1, 2, . . . ,K. Stacking together all the measurements
results in an overall measurement vector of dimension
2KNS. Given that the position, velocity of the target,
and bias vectors of each sensor are three-dimensional,

and knowing that the number of equations (size of the
stacked measurement vector) has to be at least equal to
the number of parameters to be estimated (target state
and biases), we must have

2KNS ≥ 3NS + 6. (33)

This is a necessary condition but not sufficient because
(25) has to have a unique solution, i.e., the parameter
vector has to be estimable.This is guaranteed by the sec-
ond requirement.

Second Requirement of Bias Estimability: This is the
invertibility of the Fisher information matrix (FIM). In
order to have parameter observability, the FIM must be
invertible. If the FIM is not invertible (i.e., it is singu-
lar), then the CRLB (the inverse of the FIM) will not
exist—the FIM will have one or more infinite eigenval-
ues, which means total uncertainty in a subspace of the
parameter space, i.e., ambiguity [2].

For the example of bias estimability discussed in the
sequel, estimate the biases of 2 sensors (6 bias compo-
nents) and 6 target components (3 position and 3 veloc-
ity components), i.e., the search is in a 12-dimensional
space in order to meet the necessary requirement (33).
As stated previously, the FIM must be invertible, so the
rank of the FIM has to be equal to the number of param-
eters to be estimated (6 + 6 = 12 in the previous exam-
ple).The full rank of the FIM is a necessary and sufficient
condition for estimability. There exists, however, a sub-
tle unobservability for this example that will necessitate
the use of more measurements than the strict minimum
number of measurements given by (33).

D. Iterated Least Squares for Maximization of the
LF of θ

Given the estimate θ̂ j after j iterations, the batch ILS
estimate after the ( j + 1)th iteration will be

θ̂ j+1 = θ̂ j + [(H j)′R−1H j]−1(H j)′R−1[z − h(θ̂ j)], (34)

where

h(θ̂ j) = [h11(θ̂ j)′,h21(θ̂ j)′, . . . ,hNS1(θ̂
j)′, . . . ,h1K(θ̂ j)′,

h2K(θ̂ j)′, . . . ,hNSK(θ̂
j)′], (35)

where

H j = ∂h
(
θ j

)
∂θ

∣∣∣∣∣
θ=θ̂ j

(36)

is the Jacobian matrix of the vector consisting of the
stackedmeasurement functions (35) w.r.t. (18) evaluated
at the ILS estimate from the previous iteration j. In this
case, the Jacobianmatrix is,with the iteration index omit-
ted for conciseness,

H = [
H11 H21 HNS1 · · · H1K H2K HNSK

]′
, (37)
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where

Hs(k) =
⎡
⎣

∂ξs(k)
∂x(k)

∂ξs(k)
∂y(k)

∂ξs(k)
∂z(k)

∂ξs(k)
∂ ẋ(k)

∂ξs(k)
∂ ẏ(k)

∂ξs(k)
∂ ż(k)

∂ξs(k)
∂bα1

∂ξs(k)
∂bε1

∂ξs(k)
∂bρ1

...
∂ξs(k)
∂bαNS

∂ξs(k)
∂bεNS

∂ξs(k)
∂bρNS

∂ηs(k)
∂x(k)

∂ηs(k)
∂y(k)

∂ηs(k)
∂z(k)

∂ηs(k)
∂ ẋ(k)

∂ηs(k)
∂ ẏ(k)

∂ηs(k)
∂ ż(k)

∂ηs(k)
∂bε1

∂ηs(k)
∂bε1

∂ηs(k)
∂bρ1

...
∂ηs(k)
∂bεNS

∂ηs(k)
∂bεNS

∂ηs(k)
∂bρNS

⎤
⎦ , (38)

The appropriate partial derivatives, in pixel measure-
ments, with respect to the target position and velocity
components are given in the appendix.

E. Initial Solution

Assuming that the biases are null, the LOS measure-
ments from the first and second sensors α1(k),α2(k), and
ε1(k) can be used to solve for each initial Cartesian tar-
get position in ECI coordinates using (39)–(41).The two
Cartesian positions formed from (39) to (41) can then
be differenced to provide an approximate velocity. This
procedure is analogous to two-point differencing [2] and
will provide a full six-dimensional state to initialize the
ILS algorithm.

x(k)0 = y2(k) − y1(k) + x1(k) tanα1(k) − x2(k) tanα2(k)
tanα1(k) − tanα2(k)

,

(39)

y(k)0 =
tanα1(k) (y2(k) + tanα2(k) (x1(k) − x2(k))) − y1(k) tanα2(k)

tanα1(k) − tanα2(k)
,

(40)

z(k)0 = z1(k) + tan ε1(k)

×
∣∣∣∣
(y1(k) − y2(k)) cosα2(k) + (x2(k) − x1(k)) sinα2(k)

sin (α1(k) − α2(k))

∣∣∣∣
k = 1, 2, . . . ,K.

(41)

The CRLB provides a lower bound on the covariance
matrix of an unbiased estimator [2] as

E{(� − �̂)(� − �̂)′} ≥ J(�)−1, (42)

where � is the true parameter vector to be estimated, �̂
is the estimate, and J is the FIM given as

J(�) = E
{
[∇� ln�(�)] [∇� ln�(�)]′

}∣∣
�=�true

= �′
(
R−1

)
�

∣∣∣
�=�true

, (43)

where � is given by (37) and R given by (22).

F. Statistical Test for Efficiency With Monte Carlo Runs

As discussed in [2], the normalized estimation error
squared (NEES) for the parameter � (under the hy-
pothesis of efficiency), defined as

γ� = (� − �̂)′P−1(� − �̂) = (� − �̂)′J(�)(� − �̂)
(44)

is Chi-square distributed with n� (the dimension of �)
degrees of freedom, assuming that estimation errors are
Gaussian, that is,

γ� ∼ χ2
n�

. (45)

The hypothesis test whether efficiency can be accepted,
i.e., that P = J−1, is discussed in [2] and outlined next.
The NEES is used in simulations to check whether the
estimator is efficient. In practice, to check the estimator
efficiency, we use the sample average NEES from N in-
dependent Monte Carlo runs, defined as

γ̄� = 1
N

N∑
i=1

γ i
�. (46)

The quantity Nγ̄� is Chi-square distributed with Nn�

degrees of freedom.

III. SIMULATIONS

We simulate a space-based tracking system tracking
a ballistic missile. The missile and satellite trajectories
are generated using STK.2 The target modeled repre-
sents a ballistic missile with a flight time of about 20 min.
STK provides the target and sensor positions in three-
dimensional Cartesian coordinates at 1 s intervals. The
target launch time is chosen so that the satellite sensors
are able to follow the missile’s trajectory throughout its
flight path. The missile and satellite trajectories repre-
sent 5 min of flight time (exoatmospheric).

A. Three-Sensor Case

We simulated three space-based imaging sensors at
various known orbits, observing a target of opportunity
at unknown locations. In this case, a 15-dimensional pa-
rameter vector is to be estimated. The horizontal and
vertical fields of view of each sensor are assumed to be
60◦.Themeasurement noise standard deviation σs (iden-
tical across sensors for both horizontal and vertical axes
of the image plane ξ and η measurements,σ ξ

s = σ
η
s = σs)

was assumed to be 0.3 pixel. As shown in Fig. 3, these
satellite orbits enabled maximum visibility of the missile
trajectory from multiple angles. As discussed in the pre-
vious section, the three sensor biases are roll, pitch, and
yaw angle offsets. Table I summarizes the bias values (in
mrad).

2STK is registered trademark of Analytical Graphics, Inc.
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Fig. 3. Target and satellite trajectories for the three-sensor case.

B. Statistical Efficiency of the Estimates for the
Three-Sensor Case

In order to test for the statistical efficiency of the
estimate [of the 15-dimensional vector (18)], the NEES
[2] is used,with the CRLB as the covariance matrix. The
sample average NEES over 100 Monte Carlo runs cal-
culated using the FIM evaluated at the true bias values
and target locations is approximately 14.3, and the sam-
ple average NEES calculated using the FIM evaluated
at the estimated biases and target locations is approx-
imately 14.6, and both fall in the interval given below.
According to the CRLB, the FIM has to be evaluated at
the true parameter. Since this is not available in practice,
however, it is useful to evaluate the FIM also at the es-
timated parameter, the only one available in real-world
implementations [11], [12]. The 95% probability region
for the 100-sample average NEES of the 15-dimensional
parameter vector is [13.95, 16.09]. This NEES is found
to be within this interval, and the MLE is therefore
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Fig. 4. Sample average bias NEES (CRLB evaluated at the
estimate), for each of the nine biases, over 100 Monte Carlo runs

(three-sensor case).

Fig. 5. Target and satellite trajectories for the two-sensor case.

Table I
Sensor Biases (mrad) for the Three-Sensor Case

α ε ρ

Sensor 1 2.90 2.80 3.40
Sensor 2 3.33 2.90 3.00
Sensor 3 3.03 3.00 2.90

statistically efficient. Fig. 4 shows the individual bias
component NEES. The 95% probability region for the
100-sample average single component NEES is
[0.74, 1.29]. The NEES values are found to be within this
interval.

C. Two-Sensor Case

We simulated two satellite-based imaging sensors at
various locations, observing a single target of opportu-
nity. The sensor satellites are in circular orbits of 550 km
and 675 km altitude with 0◦ and 45◦ inclination, respec-
tively. The horizontal and vertical fields of view of each
sensor are assumed to be 60◦. The measurement noise
standard deviation σs (identical across sensors for both
horizontal and vertical axes of the image plane ξ and
η measurements, σ

ξ
s = σ

η
s = σs) was assumed to be

0.3 pixel. As shown in Fig. 5, these satellite orbits en-
abled maximum visibility of the missile trajectory from
multiple angles.As discussed in the previous section, the
three sensor biases were pitch, yaw,and roll angle offsets.
Table II summarizes the bias values (in mrad).

Table II
Sensor Biases (mrad) for the Two-Sensor Case

α ε ρ

Sensor 1 2.90 2.80 3.40
Sensor 2 3.33 2.90 3.00

ABSOLUTE CALIBRATION OF IMAGING SENSORS 53



0 1 2 3 4 5 6 7

Biases

0.4

0.6

0.8

1

1.2

1.4

1.6

B
ia

s 
N

E
E

S

NEES of 
1

NEES of 
1

NEES of 
1

NEES of 
2

NEES of 
2

NEES of 
2

Fig. 6. Sample average bias NEES for each of the six biases.

D. Statistical Efficiency of the Estimate for the
Two-Sensor Case

In order to test for the statistical efficiency of the es-
timate [of the 12-dimensional vector (18)], the NEES
is used, with the CRLB as the covariance matrix. The
sample average NEES over 100Monte Carlo runs calcu-
lated using the FIM evaluated at the true bias values, tar-
get position, and velocity is approximately 11.24, and the
sample average NEES calculated using the FIM evalu-
ated at the estimated biases, target position, and veloc-
ity is approximately 11.45, both fall in the interval given
below. According to the CRLB, the FIM has to be eval-
uated at the true parameter. Since this is not available in
practice, however, it is useful to evaluate the FIM also at
the estimated parameter, the only one available in real
world implementations [12]. The results are practically
identical regardless of which values are chosen for the
evaluation of the FIM. The 95% probability region for
the 100-sample averageNEES of the 12-dimensional pa-
rameter vector is [11.20, 12.81]. This NEES is found to
be within this interval, and the MLE is therefore sta-
tistically efficient. Fig. 6 and Table III show the individ-
ual bias component, NEES. The 95% probability region
for the 100-sample average single component NEES is
[0.74, 1.29]. These NEES are found to be within this
interval.

IV. CONCLUSIONS

In this paper, we presented an algorithm that uses a
single target of opportunity for the estimation of mea-

Table III
Sample Average Bias NEES (CRLB Evaluated at the Estimate), for

Each of the Six Biases, Over 100 Monte Carlo Runs

Biases α1 ε1 ρ1 α2 ε2 ρ2

NEES 1.2461 0.9891 1.2043 1.0711 1.0430 0.9734

surement biases. The first step was deriving a general
bias model for synchronized imaging sensors. Based on
this derivation, we formulated a nonlinear least-squares
estimation scheme for concurrent estimation of the
Cartesian position and the velocity in three-dimensional
of the target and the angle biases of the sensors. The ILS
estimatewas shown to be a statistically efficient estimate,
and the residual biases are negligible in view of the mea-
surement noise.As such, the covariance matrix from the
CRLB can be used as the measurement noise covari-
ance matrix for the resulting composite measurement in
a tracking filter. This composite measurement can then
be used (with a linear measurement equation) for dy-
namic state estimation, where position measurements in
Cartesian space are preferable to pixel measurements.

APPENDIX

The partial derivatives of (38), in pixel measure-
ments, with respect to the target position and velocity
components are

∂ξs(k)
∂xs(k)

= −cos bρs

zs(k)
− 2xs(k)

q1
+ zs(k)(x2s (k) + z2s (k))

q12

∂ξs(k)
∂ys(k)

= − sinbρs

zs(k)

∂ξs(k)
∂zs(k)

= xs(k) cos bρs + ys(k) sinbρs

z2s (k)
− 2zs(k)

q1

+ (x2s (k) + z2s (k))(xs(k) + 2zs(k)cot bαs )
q21

∂ξs(k)
∂ ẋs(k)

= �t
∂ξs(k)
∂xs(k)

∂ξs(k)
∂ ẏs(k)

= 0

∂ξs(k)
∂ żs(k)

= �t
∂ξs(k)
∂zs(k)

∂ξs(k)
∂bαs

= −z2s (k)(x
2
s (k) + z2s (k))
q21

∂ξs(k)
∂bρs

= xs(k) sinbρs + ys(k) cos bρs

zs(k)

∂ηs(k)
∂xs(k)

= sinbρs

zs(k)
− xs(k)

r2q2

+
r2

(
2xs(k) cot bεs + xs(k)zs(k)√

x2s (k)+z2s (k))

)

q22

∂ηs(k)
∂ys(k)

= −cos bρs

zs(k)
− ys
r2q2

∂ηs(k)
∂zs(k)

= ys(k) cos bρs − xs(k) sinbρs

z2s (k)
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+
r2

(
2zs(k) cot bεs + √

x2s (k) + z2s (k) + zs2√
x2s (k)+z2s (k)

)

q22

− zs(k)
r2q2

∂ηs(k)
∂bεs

= − r2(x2s (k) + z2s (k))(cotb
2
εs

+ 1)

q22

∂ηs(k)
∂bρs

= xs(k) cos bρs + ys(k) sinbρs

z2s (k)

∂ηs(k)
∂ ẋs(k)

= �t
∂ηs(k)
∂xs(k)

∂ηs(k)
∂ ẏs(k)

= �t
∂ηs(k)
∂ys(k)

∂ηs(k)
∂ żs(k)

= �t
∂ηs(k)
∂zs(k)

,

where

q1 = cot bαsz
2
s (k) + xs(k)zs(k),

and

q2 = cot bεs (x
2
s (k) + z2s (k)) + zs(k)

√
x2s (k) + z2s (k)
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