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From the Editor in Chief:
July 2006

Moore's law tells us that the number of semiconduc-

tor devices on an integrated circuit doubles every 24

months and this law has reliably predicted that growth

since 1960 [1]. This growth in semiconductor density

has led to the popular interpretation of Moore's law as

the computer capability and memory double every 18

months [2]. This rapid growth in computing and data

storage has already given us the ability to collect more

information than a human can process in many appli-

cations, and it appears that the trend will not end soon.

Some are predicting the continued shrinkage in mem-

ory devices to the size of a white blood cell in 2020 [3].

Furthermore, systems-on-package promises to leapfrog

Moore's Law by combining ICs with micrometer-scale

thin-film versions of discrete components and embed-

ding them in a new type of package [4]. With this

growth in computing and memory in smaller packages,

sensors are becoming cheaper and more plentiful al-

lowing the visions of more sophisticated and automated

systems to be realized, and effective information pro-

cessing plays a critical role in those systems. Examples

of that processing might include rapid and efficient dis-

tillation of a massive data set to a few salient features

or fusion of the information from multiple sources into

a common representational form.

With the pressing demand and interest in informa-

tion processing methods, scientists and engineers or-

ganized the first International Conference on Informa-

tion Fusion (Fusion 1998) in Las Vegas, Nevada on

July 6—9, 1998. With 146 papers and 161 attendees,

the first Fusion conference was considered a great suc-

cess, and the International Society for Information Fu-

sion (ISIF) was founded to be the premier global in-

formation community for multidisciplinary approaches

for theoretical and applied information fusion tech-

nologies. The second Fusion conference was an even

greater success with 190 papers and 211 attendees. After

strong sponsorship by ONERA and Thomson-CSF in

2000 and Lockheed-Martin Canada in 2001, the fourth

Fusion conference became a self-supporting conference

in 2002.

After five years of success of Fusion conferences

as summarized in the accompanying table, the ISIF
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Board of Directors voted in 2003 to establish a peer-

reviewed archival journal in the area of information

fusion in the name of Journal of Advances in Infor-

mation Fusion (JAIF). In 2003, editors were appointed

for JAIF and a web-based review system was estab-

lished at http://jaif.msubmit.net to handle the peer re-

view of manuscripts electronically. This system facili-

tates the review of manuscripts for authors and archives

the reviewers' comments and editorial decisions for all

manuscripts. Researchers are invited to volunteer to be

a referee by registering as an author at the web site.

With this inaugural issue, ISIF introduces JAIF as its

flagship journal. JAIF is a peer-reviewed, semi-annual

archival journal that will be published electronically

and distributed via the internet. JAIF has established

Ten Years of the International Conference on Information Fusion (Fusion)

Location, Date Number of Number of
Year Chair Papers Attendees

1st Las Vegas, Nevada, July 6—9, 1998 146 161

Dongping Daniel Zhu, Zaptron Systems, Inc.

2nd Sunnyvale, California, July 6—8, 1999 190 211

Dongping Daniel Zhu, Zaptron Systems, Inc.

3rd Paris, France, July 10—13, 2000 173 253

Jean Dezert, ONERA

4th Montréal, Quebec, Canada, August 7—10, 2001 146 261

Pierre Valin, Lockheed-Martin, Canada

5th Annapolis, Maryland, July 7—11, 2002 232 289

X. Rong Li, University of New Orleans

6th Cairns, Queensland, Australia, July 8—11, 2003 204 256

Subhash Challa, University of Technology, Sydney

7th Stockholm, Sweden, June 28—July 1, 2004 171 300

Per Svensson, Swedish Defence Research Agency

8th Philadelphia, Pennsylvania, July 25—29, 2005 181 332

John Sudano, Lockheed-Martin

9th Florence, Italy, July 10—13, 2006 263 397

Stefano Coraluppi, NATO Undersea Research Ctr.

Peter Willett, University of Connecticut

10th Quebec City, Quebec, Canada, July 9—12, 2007 – –

Eloi Bossé, DRDC Valcartier

REFERENCES

[1] R. Schaller

Moore's law: Past, present, and future.

IEEE Spectrum, June 1997, 53—59.
[2] Moore's Law

www.wikipedia.org.

Jan. 31, 2007.

high standards for the peer review process through

an editorial board with strong academic and indus-

trial backgrounds. Prior to publication, each manuscript

will require a review from at least three referees and

manuscript corrections that address any shortcoming

identified by the referees and editors. The inside of the

front cover gives the scope of JAIF and the editorial

board and their associated technical areas. Additional

information on the editorial process and board is avail-

able at http://www.isif.org.

William Dale Blair

Editor in Chief

[3] P. Ball

A switch in time.

Nature, Vol. 445, Jan. 25, 2007, 362—363.
[4] R. R. Tummaia

Moore’s law meets its match.

IEEE Spectrum, June 2006, 44—49.

2 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 1, NO. 1 JULY 2006



Multisensor Track-to-Track
Association for Tracks with
Dependent Errors

Y. BAR-SHALOM
University of Connecticut

H. CHEN
University of New Orleans

The problem of track-to-track association has been considered

until recently in the literature only for pairwise associations. In view

of the extensive recent interest in multisensor data fusion, the need

to associate simultaneously multiple tracks has arisen. This is due

primarily to bandwidth constraints in real systems, where it is not

feasible to transmit detailed measurement information to a fusion

center but, in many cases, only local tracks. As it has been known in

the literature, tracks of the same target obtained from independent

sensors are still dependent due to the common process noise [2].

This paper derives the exact likelihood function for the track-to-

track association problem from multiple sources, which forms the

basis for the cost function used in a multidimensional assignment

algorithm that can solve such a large scale problem where many

sensors track many targets. While a recent work [14] derived the

likelihood function under the assumption that the track errors

are independent, the present paper incorporates the (unavoidable)

dependence of these errors.

Manuscript received November 11, 2004; revised September 21,

2005; recommended by Editor Dr. Shozo Mori.

Authors’ adresses: Y. Bar-Shalom, Dept. of Electrical and Com-

puter Engineering, University of Connecticut, Storrs, CT 06269-2157,

E-mail: (ybs@ee.uconn.edu); H. Chen, Dept. of Electrical Engineer-

ing, University of New Orleans, New Orleans, LA 70148, E-mail:

(hchen2@uno.edu).
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1. INTRODUCTION

In this paper we consider the problem of associ-

ating tracks represented by their local estimates and

covariances from S sources. These sources are proces-
sors that use data from corresponding local sensor sys-

tems. While different sensors have, typically, indepen-

dent measurement errors, the local state estimation er-

rors for the same target will be dependent due to the

common prior or process noise. This dependence is

characterized by the crosscovariances of the local es-

timation errors–see [2], Sec. 8.4. The association pre-

sented in [2], while accounting for the crosscovariances

of the track errors, is limited to pairs of tracks, i.e.,

it is suitable for the situation of two lists (sources) of

tracks. Consequently, if this is used when there are more

than two lists of local tracks, the results will depend on

the order in which the lists are considered. This order-

dependence can be avoided only by simultaneous con-

sideration of all S-tuples when there are S lists.
While a recent work [14] derived the likelihood

function under the assumption that the state estimation

errors are independent, the present paper incorporates

the (unavoidable) dependence of these errors. Earlier

work on fusion of multiple tracks can be found in

[13]. This work also addressed the issue of dependence

among tracks due to prior communication. The general

fusion of crosscorrelated tracks was derived in [11]. A

recent comparison of different fusion techniques can be

found in [15].

The goal of this paper is to derive a likelihood-ratio

based cost function suitable for the use of a multidi-

mensional assignment (S-D, see, e.g., [3], Ch. 2) to de-
cide which tracks should be fused. The cost function

should allow simultaneous consideration of S tracks cor-
responding to the same target (one from each source)

or any subset of this.

First we shall derive the likelihood function of the

hypothesis that S tracks are from the same target, i.e.,

that they have a common origin. This derivation is based

on [17] where it was presented for the purpose of sen-

sor bias estimation for S = 2 sensors and it accounted
for the dependence of the track estimation errors across

sensors. More recently [14] developed the likelihood

function for the association of tracks from an arbi-

trary number of sensors, but under the assumption that

their track (local state estimation) errors are indepen-

dent. This assumption, however, is not satisfied when

the target state equations have process noise which is

necessary to model motion uncertainty.

These likelihood functions are, however, not di-

mensionless since they are joint pdfs (probability den-

sity functions) of state vectors. As indicated in [4],

Sec. 1.4.2, the pdf of a vector consisting of posi-

tion and velocity in an n-dimensional Cartesian space
has its physical dimension given by the inverse of

the product of the physical dimensions of its com-

ponents, i.e., (length)¡n ¢ (length/time)¡n. Consequently,

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 1, NO. 1 JULY 2006 3



the joint pdf of S such vectors has physical dimension of
(length)¡2Sn ¢ (time)Sn. Therefore, one cannot compare
the likelihood functions of the hypothesis that S tracks
have a common origin with the hypothesis that, say, a

subset of them, consisting of M < S tracks, have a com-
mon origin, i.e, one has an incompatibility. The remedy

for this incompatibility problem is to use dimensionless

likelihood ratios obtained by dividing a common-origin

likelihood function with the likelihood function of the

hypothesis that these tracks are all of different origin.

The latter likelihood function will consist of a diffuse

pdf (a uniform distribution in the augmented (product)

state space–see [4], Sec. 2.3.4), as detailed later. Using

these likelihood ratios one can compare all the hypothe-

ses regardless of how many tracks of common origin are

assumed in them.

The methodology of this paper, based on likelihood

ratios and a diffuse prior for the target state estimates, al-

lows for a systematic way of handling incomplete track-

to-track associations across sensors and was presented

in preliminary form in [6]. Subsequently, an application

to a practical problem was given in [1].

The rest of the paper is organized as follows. The

likelihood function of a set of tracks is derived in Sec-

tion 2. The likelihood ratios for the track-to-track asso-

ciation are presented in Section 3. The assignment with

the negative log-likelihood ratios as cost function is dis-

cussed in Section 4. An investigation of the assignment

accuracy, the sensitivity to the crosscorrelation, and a

tracking example are presented in Section 5. Conclu-

sions are in Section 6.

2. THE LIKELIHOOD FUNCTION OF A SET OF
TRACKS

Consider the situation where there are S sensors,
each with its list of tracks represented by the estimates

x̂jii in the same state space, with errors that are zero-mean

jointly Gaussian with covariances Pjii , i= 1, : : : ,S, per-
taining to a common time (not indicated for simplicity),

where subscript i denotes the sensor based on whose
data the (local) track has been obtained and superscript

ji = 1, : : : ,Ni denotes the indices of the tracks at sensor
i. The error crosscovariances for tracks representing the
same target are discussed later.

The likelihood function of the common origin hy-

pothesis Hl1,:::,lS for the tracks represented by the lo-
cal estimates x̂lii , i= 1, : : : ,S, i.e., that they represent the
same target is the joint pdf of the “track data” condi-

tioned on the hypothesis

¤(Hl1,:::,lS ) = p(x̂lSS , : : : , x̂l11 j Hl1,:::,lS ): (1)

Note that in the above we use the fact that the track

estimates are sufficient statistics–a consequence of the

Gaussian assumption. On the other hand, there is no

assumption of independence of the track estimation

errors. As it is known, the estimation errors for the

same target obtained at independent sensors (with the

measurement noises independent across the sensors) are

correlated and this is quantified by the crosscovariance

matrices (see [2], Sec. 8.4.2). Otherwise, these errors

are assumed independent.

The likelihood function (1) can be rewritten by

moving the first (or any other) track estimate into the

conditioning set, as follows

¤(Hl1,:::,lS ) = p(x̂lSS , : : : , x̂l22 j Hl1,:::,lS , x̂l11 )p(x̂l11 j Hl1,:::,lS ):
(2)

Since Hl1,:::,lS does not contribute any information to
the marginal pdf of a single track, it can be dropped

from the last term above. Furthermore, the marginal pdf

of a track estimate can be taken as diffuse (uniformly

distributed in a region of the state space V , whose
volume is V, assumed large enough to qualify for a
diffuse prior), i.e.,

p(x̂l11 j Hl1,:::,lS ) = p(x̂l11 ) =
1

V
(3)

because, in the absence of any information (which is

our assumption), a track estimate can be anywhere in

the state space. This is in accordance to Bayes’ pos-

tulate [8, 10]. The diffuse prior has to have a support

only “sufficiently larger” than the estimates’ pdf. Fur-

thermore, this diffuse prior assumption is only for the

marginal (unconditional) pdf of a track estimate. The

conditional pdf of any track estimate given another es-

timate with the same origin is not diffuse anymore and is

determined by the statistical properties of their estima-

tion errors which are not assumed independent–their

correlation can be due to the common process noise as

well as to a common prior.

With this, (2) becomes

¤(Hl1,:::,lS ) =
1

V
p(x̂lSS , : : : , x̂

l2
2 j Hl1,:::,lS , x̂l11 ): (4)

Note that V¡1, while having a physical dimension (that
makes (4) have the same dimension as (1)), is really a

constant whose exact value only scales the final result.

Consider first the case of common origin of two

tracks, li and lj from sensors i and j, respectively.

Now, under the Gaussian assumption, if x̂lii originated

from the same target as x̂
lj
j , then, with the diffuse prior

assumption, one has (see Appendix; this result was

presented in [2], Sec. 8.3.3, but without proof)

E[x̂lii j Hli,lj , x̂
lj
j ] = x̂

lj
j (5)

and

E[(x̂lii ¡ x̂ljj )(x̂ljj ¡ x̂ljj )0 j Hli ,lj , x̂
lj
j ]

= E[(x̂lii ¡ xl¡ (x̂ljj ¡ xl))(x̂lii ¡ xl¡ (x̂ljj ¡ xl))0 j Hli,lj ]

= Plii +P
lj
j ¡Pli,lji,j ¡ (Pli,lji,j )

0 (6)
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where xl is the common true state of these tracks,

which is irrelevant. The crosscovariance P
li,lj
i,j is given

by a Lyapunov type recursion (see [2], Sec. 8.4).1

Thus for tracks li and lj one has

p(x̂
li
i j Hli ,lj

, x̂
lj
j ) =N [x̂lii ; x̂

lj
j ,P

li
i +P

lj
j ¡P

li ,lj
i,j ¡ (Pli ,lji,j )

0]

=N [x̂lii ¡ x̂
lj
j ;0,P

li
i +P

lj
j ¡P

li ,lj
i,j ¡ (Pli ,lji,j )

0]

(7)

where N [x; x̄,P] denotes the Gaussian pdf with argu-
ment x, mean x̄ and covariance P. Then the joint likeli-
hood function of common origin for the tracks li and lj
is

¤(Hli,lj ) =
1

V
p(x̂lii j Hli ,lj , x̂

lj
j )

=
1

V
N [x̂lii ¡ x̂ljj ;0,Plii +Pljj ¡Pli,lji,j ¡ (Pli ,lji,j )

0]:

(8)

Note that the test statistic (normalized distance

squared)

D(x̂
li
i , x̂

lj
j ) = (x̂

li
i ¡ x̂

lj
j )
0[Plii +P

lj
j ¡P

li ,lj
i,j ¡ (Pli ,lji,j )

0]¡1(x̂lii ¡ x̂
lj
j )

(9)

has been known in the literature for some time (e.g.,

[2], Sec. 8.4.3) for the association of pairs of tracks.2

While originally this distance was introduced heuris-

tically, it can be seen to follow directly from (8)

as a likelihood test. The first rigorous derivation of

(9) was given in [17] in the context of sensor bias

estimation. The derivation given above is, however,

much simpler and, more importantly, it generalizes to

S tracks.

1Previous communication is difficult to account for in the correlation

but not impossible–this would require restarting (after every com-

munication) the iteration of the Lyapunov equation (8.4.2-3) in [2]

that yields the crosscovariance.
2The importance of using the crosscovariances is twofold: ignoring

the crosscorrelations (which are positive, as discussed in Section 5)

the distance (9) is smaller than it should be and the covariance of the

fused estimate is optimistic (see [2], Sec. 8.4.5).

The general likelihood function (4) for common

origin of the tracks l1, : : : , lS is obtained as follows. The
pdf from (4) can be written as

p(x̂
lS
S , : : : , x̂

l2
2 j Hl1,:::,lS

, x̂
l1
1 ) =N

0BB@
2664
x̂
l2
2

...

x̂
lS
S

3775 ;
2664
x̂
l1
1

...

x̂
l1
1

3775 ,
264E[(x̂

l2
2 ¡ x̂l11 )(x̂l22 ¡ x̂l11 )0 j Hl1,:::,lS

] ¢ ¢ ¢ E[(x̂
l2
2 ¡ x̂l11 )(x̂lSS ¡ x̂l11 )0 j Hl1,:::,lS

]

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
E[(x̂

lS
S ¡ x̂l11 )(x̂l22 ¡ x̂l11 )0 j Hl1,:::,lS

] ¢ ¢ ¢ E[(x̂
lS
S ¡ x̂l11 )(x̂lSS ¡ x̂l11 )0 j Hl1,:::,lS

]

375
1CCA :
(10)

Then, similarly to (7), the mean is shifted into the

argument and this yields the likelihood function

¤(Hl1,:::,lS ) =
1

V
N [x̂1,S;0,P1,S] (11)

where

x̂1,S
¢
=

2664
x̂l22 ¡ x̂l11
...

x̂lSS ¡ x̂l11

3775 (12)

is a stacked (S¡1)nx vector (with nx the dimension
of x), whose covariance, defined within (10) has the
diagonal blocks

(P1,S)i¡1,i¡1 = E[(x̂
li
i ¡ x̂l11 )(x̂lii ¡ x̂l11 )0 j Hl1,:::,lS ]

= Pl11 +P
li
i ¡Pl1,li1,i ¡ (Pl1,li1,i )

0,

i= 2, : : : ,S (13)

and the offdiagonal blocks

(P1,S)i¡1,j¡1 = E[(x̂
li
i ¡ x̂l11 )(x̂

lj
j ¡ x̂l11 )0 j Hl1,:::,lS ]

= Pl11 ¡P
l1,lj
1,j ¡ (Pl1,li1,i )

0+Pli,lji,j ,

i,j = 2, : : : ,S. (14)

Note that with the (invertible) transformation

ŷ1,S =

26666664

1 ¡1 0 ¢ ¢ ¢
0 1 ¡1 0

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ 0 1 ¡1
¢ ¢ ¢ 0 0 1

37777775 x̂1,S =
2666666664

x̂l22 ¡ x̂l33
x̂l33 ¡ x̂l44
...

x̂
lS¡1
S¡1¡ x̂lSS
x̂lSS ¡ x̂l11

3777777775
(15)

one can see that (11) is really symmetric in the sense that

it has an equivalent symmetric form even if it appears

not to be symmetric at first sight. This is due to the

fact that the determinant of the above transformation is

unity.

BAR-SHALOM & CHEN: MULTISENSOR TRACK-TO-TRACK ASSOCIATION FOR TRACKS WITH DEPENDENT ERRORS 5



REMARKS Note that the expression of the likelihood

function (11) follows from the way in which (4) is

written, namely as the joint pdf of the local track

estimates from sensors S, : : : ,2 (written for convenience
with the indices decreasing) conditioned on the track

estimate from sensor 1. Equation (4) can be rewritten

in the chain rule form as

¤(Hl1,:::,lS ) =
1

V

SY
i=2

p(x̂lii j x̂li¡1i¡1, : : : , x̂
l2
2 , x̂

l1
1 )

=
1

V

SY
i=2

p(x̂lii j x̂F
i¡1
) (16)

where x̂F
i¡1
is the fused state estimate from the first i¡ 1

local tracks.

It was this last form that was derived in [14] un-

der the assumption that the local track errors are un-

correlated. While (16) holds also for correlated tracks

since no uncorrelatedness assumption was needed in its

derivation above, its evaluation is relatively simple only

under the assumption that the local track errors are un-

correlated. Otherwise, for the realistic situation of cor-

related track errors it becomes quite complicated. Con-

sequently, expression (11) is believed to be the practical

one when the crosscovariances are taken into consider-

ation.

Note that the local track estimate from sensor 1 is

chosen in the conditioning of (2) only for notational

simplicity. One can use any local estimate as the refer-

ence track to obtain (11) with similar derivation.

3. THE LIKELIHOOD RATIOS FOR GENERAL
TRACK-TO-TRACK ASSOCIATION

The likelihood ratio of the common origin hypoth-

esis Hl1,:::,lS for the tracks represented by the local esti-
mates x̂lii , i= 1, : : : ,S, i.e., that all these tracks represent
the same target is obtained next. The numerator is given

by (11) while the denominator, which is the likelihood

of all being of different origin (hypothesis H̄l1,:::,lM ), is
obtained in a similar manner to (2) as follows

¤(H̄l1,:::,lS ) = p(x̂lSS , : : : , x̂l22 j H̄l1,:::,lS , x̂l11 )p(x̂l11 j H̄l1,:::,lS )

=

SY
s=2

p(x̂lss j H̄l1,:::,lS , x̂l11 )p(x̂l11 j H̄l1,:::,lS ):

(17)
Analogously to (3),

p(x̂l11 j H̄l1,:::,lS ) = p(x̂l11 ) =
1

V
: (18)

As shown in [7], [10], the role of the pdf of a

false/extraneous measurement in the likelihood ratio is

played by the spatial density of these measurements un-

der the assumption that they are Poisson distributed.

This was obtained from the rigorous Bayesian deriva-

tion of the Multiple Hypothesis Tracker. Consequently,

assuming the extraneous tracks in the present problem

to be Poisson distributed in the state space with spatial

density3 ¹ex, one has

p(x̂lss j H̄l1,:::,lS , x̂l11 ) = ¹ex: (19)

Using (18) and (19) in (17) yields

¤(H̄l1,:::,lS ) =
¹S¡1ex

V
: (20)

Finally, combining the above with (11) yields the like-

lihood ratio

L(Hl1,:::,lS : H̄l1,:::,lS ) =
¤(Hl1,:::,lS )
¤(H̄l1,:::,lS )

=

1

V
N [x̂1,S;0,P1,S]
1

V
¹S¡1ex

=
N [x̂1,S;0,P1,S]

¹S¡1ex

(21)

which is, clearly, a dimensionless quantity.

Next consider the likelihood ratio of an incomplete

assignment consisting of tracks from the lists cor-

responding to the subset of sensors with indices

Si = fs1,s2, : : : ,sMg, where 1· s1 < s2 < ¢ ¢ ¢< sM · S.
The entire set of list (sensor) indices is denoted

as S.
Assume that the probability of a target having a

(“detected”) track in the list of sensor s is PDs and
that these track detection events are independent across

sensors.4

Then the likelihood ratio of this assignment is [7]

L(Hls1 ,:::,lsM : H̄ls1 ,:::,lsM )

= V¡1N [x̂Si ;0,PSi]
"Y
s2Si
PDs

#
¹¡S+Mex

£
24Y
s2S̄i
(1¡PDs)

35[V¡1¹¡S+1ex ]¡1

= ¹M¡1ex N [x̂Si ;0,PSi]
"Y
s2Si
PDs

#24Y
s2S̄i
(1¡PDs)

35 :
(22)

The above follows by including in the numerator the

probabilities of the events (assumed independent) that

the tracks belonging to the hypothesized target have

been detected by the sensors in Si but not by the

3Since the true targets are typically not homogeneously distributed in

the space, this should be taken as the local density of the extraneous

(true and false) tracks.
4This is clearly only a convenient mathematical assumption–in prac-

tice the situation can be much more complex: these probabilities de-

pend on the target locations, sensor modes, their fields of view, ob-

scuration conditions, etc.

6 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 1, NO. 1 JULY 2006



sensors in S̄i. For the tracks corresponding to the sensors
in S̄i, their pdfs are the “extraneous” ones, ¹ex. In
the denominator we have the probability densities of

the tracks assuming they are not of common origin,

modeled as having pdfs ¹ex. The pdfs of the tracks

corresponding to the sensors in S̄i cancel between the
numerator and denominator.

The first argument of the Gaussian density in (22)

is, similarly to (12), given by

x̂Si
¢
=

2664
x̂
ls2
s2 ¡ x̂

ls1
s1

...

x̂
lsM
sM ¡ x̂

ls1
s1

3775 (23)

and PSi is its covariance matrix with blocks given by
expressions similar to (13)—(14).

4. THE USE OF THE LIKELIHOOD RATIOS IN
ASSIGNMENT

We first consider the assignment formulation for

track-to-track association from two sensors. Assume

sensor 1 has a list of N1 tracks and sensor 2 has a list
of N2 tracks. Define the binary assignment variable Âij
as

Âij =

8<:
1 track i from sensor 1 and track j

from sensor 2 are from the same target,

0 otherwise.

(24)

Denote by Lij the likelihood ratio of the two tracks be-
ing from the same target vs. from two different targets

which is the two sensor case of (22). If we assume that

the track association events among different track pairs

are independent, then the 2-D assignment formulation

finds the most likely (joint) track-to-track association

hypothesis by solving the following constrained opti-

mization5

min
Âij

N1X
i=0

N2X
j=0

cijÂij (25)

subject to

N1X
i=0

Âij = 1, j = 1, : : : ,N2 (26)

N2X
j=0

Âij = 1, i = 1, : : : ,N1 (27)

Âij 2 f0,1g, i= 0,1, : : : ,N1, j = 0,1, : : : ,N2

(28)

5Each list of tracks from a sensor is augmented by a “dummy element”

with index 0, which stands for “no track,” to allow for incomplete

associations, while keeping the assignment problem complete.

where

cij =¡ lnLij : (29)

This can be solved using the Auction or JVC algorithm

[19]. As shown in [12] this can also be solved opti-

mally using linear programming by relaxing the integer

constraint.

The extension to multidimensional assignment

(S-D) is as follows. Assume there are S sources (S ¸ 3)
where source Si has a list of Ni tracks. Define the binary

assignment variable Âi1i2 :::iS as

Âi1i2 :::iS =

½
1 tracks i1, i2, : : : , iS are from the same target,

0 otherwise.

(30)

We allow a subset of indices fi1, i2, : : : , isg to be zero in
the assignment variable meaning that no track will be

from the target in the corresponding list of the sources.

Denote by Li1i2:::iS the likelihood ratio of the track as-
sociation hypothesis vs. all tracks being from different

targets which is given by (22). The S-D assignment for-

mulation finds the most likely hypothesis by solving the

following constrained optimization

min
Âi1 i2 :::iS

N1X
i1=0

N2X
i2=0

¢ ¢ ¢
NSX
iS=0

ci1i2 :::iSÂi1i2:::iS (31)

subject to

N2X
i2=0

¢ ¢ ¢
NSX
iS=0

Âji2:::iS = 1, j = 1, : : : ,N1

N1X
i1=0

N3X
i3=0

¢ ¢ ¢
NSX
iS=0

Âi1ji3:::iS = 1, j = 1, : : : ,N2

¢ ¢ ¢
N1X
i1=0

¢ ¢ ¢
NS¡1X
iS¡1=0

Âi1i2:::iS¡1j = 1, j = 1, : : : ,NS

(32)

and

Âi1i2 :::iS 2 f0,1g,

i1 = 0,1, : : : ,N1, i2 = 0,1, : : : ,N2 , : : : , iS = 0,1, : : : ,NS:

(33)

In (31) the assignment cost is

ci1i2 :::iS =¡ lnLi1i2:::iS (34)

where the likelihood ratio Li1i2:::iS (written here with a
simpler index-only notation) can be computed using

(22). The above constrained integer programming is,

in general, NP hard. However, efficient algorithms exist

to find a suboptimal solution via Lagrangian relaxation

(see, e.g., [19]).
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5. SIMULATION RESULTS

5.1 Evaluation of the Association Accuracy and
Sensitivity

We want to study the track association accuracy for

a different number of local sensors with various cross-

correlation coefficients. To make it simple, we assume

that the local estimates are scalars with unity variances.

The crosscorrelation coefficients between two local es-

timates is denoted by ½. We choose various values of
½, namely, 0, 0.1, 0.3, 0.5, when the local tracks corre-
spond to the same target.

The null hypothesis H0 is that all the local estimates
correspond to the same target with its location uniformly

distributed within the surveillance region of length V =
10

H0 = f“same target”g: (35)

The hypothesis H1 is that all local estimates correspond
to different targets with their locations uniformly dis-

tributed within the surveillance region

H1 = f“different targets”g: (36)

In this case, the separation of two targets is random and

it depends on the volume of the surveillance region and

no further prior knowledge is assumed.

Note that with the relatively small region V the

targets, even if they are different, can be close enough

to appear as they were the same, i.e., it is difficult to

discriminate between the two hypotheses because they

are not easily distinguishable. Consequently, even the

most powerful test will not be very powerful is this

situation.

The test based on (22) is used to compute the

receiver operating characteristic (ROC) curves for the

cases of N local tracks from the same target, i.e., the

curves of the power of the test

PD = Pf“H0” jH0g (37)

where “H0” denotes “accept H0,” vs. the false alarm
probability

PFA = Pf“H0” jH1g: (38)

Fig. 1 shows the ROC curves for the track as-

sociation test with 2, 3, and 4 local track estimates

and various crosscorrelation coefficients. One thou-

sand random realizations are used for each hypothe-

sis with fixed ½ and N to compute these curves. We

can see that the test power increases as N increases for

fixed V since the H0 hypothesis becomes more distin-
guishable when more targets are uniformly distributed

within the surveillance region. The crosscorrelation be-

tween the local track estimates is beneficial in terms

of the test power under a given false alarm rate for

all cases. As ½ increases, the alternative hypothesis
(“different targets”) becomes more distinguishable from

the null hypothesis (“same target”) because common

origin tracks will then be closer to each other (in terms

Fig. 1. ROC curves for the track association test with a different

number of local estimates and various crosscorrelation coefficients.

of their normalized distance–see (9), which improves

the decision accuracy. However, once H0 is declared, the
variance of the fused track estimate is larger than when

they are uncorrelated [11].

Consider a case where one uses the test assuming

½= 0. The threshold is determined for a certain max-
imum allowed miss probability of H0, that is, 1¡PD.
If the true crosscorrelation coefficient is, e.g., ½= 0:5,
the actual PD will be higher than the one calculated un-
der ½= 0. At the same time, the actual PFA will also be
higher.

For two tracks (each with unity variance, for simplic-

ity) assuming ½= 0, the (chi-square) test statistic used
is

D0 = (x̂1¡ x̂2)2=2 (39)

and the “design” probability of falsely rejecting the null

hypothesis is

PfD0 > ¿0 jH0g= 1¡P0D (40)

based on the chi-square distribution with one degree of

freedom

D0 » Â21: (41)

However, since ½= 0:5, (41) does not hold, Instead,
under H0,

D = (x̂1¡ x̂2)2=[2(1¡ ½)]» Â21: (42)

Thus the test statistic used, D0, is

D0 =D=2 (43)

i.e., half of what it should have been. Consequently,

the statistic D0 will be more inclined to accept the
“same target” hypothesis than the correct statistic D,
i.e., PFA, as well as PD, will increase. Because the test
statistic used is a scaled version of the correct one, the

test assuming ½= 0 uses effectively a threshold that is
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double of what it would have been with ½= 0:5. Thus
the ROC for the test assuming ½= 0 is the one with the
true ½= 0:5 but the operating point on it is different than
the “design operating point.”

This can be illustrated on Fig. 1. Assume N = 3 and
the design operating point (on the ½= 0 ROC curve)

is PD = 0:83, PFA = 0:025. The actual operating point
for this test is on the ½= 0:5 ROC curve at PD = 0:86,
PFA = 0:05. Note the sensitivity of the actual FA rate

to ignoring the crosscorrelation: it is twice the design

value.

5.2 A Multisensor Tracking Example

We consider a target tracking scenario where three

sensors are located at (¡50, 0) km, (0, 187) km, and
(50, 0) km, respectively. All three sensors measure the

target range and bearing with the same standard devia-

tions of the measurement error given by ¾r = 50 m and

¾b = 2 mrad. The sampling interval of sensors 1 and 2
is T1 = T2 = 2 s while the sampling interval of sensor 3
is T3 = 5 s.
The two targets in the scenario considered are ini-

tially at (0, 86:6) km and (0:4, 86:6) km, respectively.
Both targets move in parallel with a speed of 300 m/s.

The motion of the two targets is characterized as fol-

lows. Both targets initially move south-east on a course

of approximately 135±. Then at t= 15 s both targets
make a course change with a constant turn rate of 4±/s
(acceleration of about 2.1 g over a duration Tman of about
11 s) and head east. Both targets make a second course

change at t= 35 s with a constant turn rate of 4±/s and
head north-east. The trajectories of the two targets are

shown in Fig. 2 where the true target positions are in-

dicated at the time instances at which a measurement

is made by one of the three sensors. The total time for

the two targets to complete the designated trajectories is

60 s. Note that the target ranges are around 100 km at

the beginning for all sensors, where the standard devia-

tion of the crossrange measurement is around 200 m.

Thus the tracker has measurement origin uncertainty

when updating the target state estimates. The true target

motion has a random acceleration from a white process

noise with power spectral density (PSD) q= 1 m2=s3 in
each realization. We assume that the two targets have

unity detection probability by each sensor and there are

no false measurements, i.e., each sensor has both tracks

and no false tracks–in this case there are no incomplete

associations to consider (see [1] for a problem with in-

complete associations). The results presented are based

on 100 Monte Carlo runs.

Two tracking configurations for performance com-

parison are implemented as follows.

i) A centralized estimator which uses an IMM with

two models and sequentially updates the target state

with measurements from sensors 1—3. This IMM es-

timator has a discretized continuous white noise accel-

eration (DCWNA) model (see [4], Sec. 6.2.2) with low

Fig. 2. Target trajectories with true positions at the times when

measurements are made by the sensors.

process noise power ql to capture the uniform target mo-
tion and a DCWNA model with high process noise PSD

qh to capture the two turns. We use ql = 1 m
2=s3 and

qh = 8000 m
2=s3 which, for Tman = 11 s, corresponds to

a target average acceleration of
p
qh=Tman ¼ 2:6 g. The

process noise is the same in east and north of the Carte-

sian coordinates and uncorrelated between these coor-

dinates. The transition between the modes is modelled

according to a continuous time Markov chain with the

expected sojourn times ([4], Sec. 11.7.3) in these modes

given by 1=¸1 and 1=¸2, respectively. These correspond
to exponential sojourn time distributions with parame-

ters ¸1 and ¸2, respectively. The transition probability
matrix between the two models (generalized version of

(11.6.7-1) in [4]) from any time t1 to time t2 is [18]

¦(t2, t1) =
1

¸1 +¸2

·
¸2 +¸1e

¡(¸1+¸2)T ¸1¡¸1e¡(¸1+¸2)T
¸2¡¸2e¡(¸1+¸2)T ¸1 +¸2e

¡(¸1+¸2)T

¸
(44)

where T = jt2¡ t1j. For the scenario used in simulation,
we chose ¸1 =

1
20
s¡1 and ¸2 =

1
10
s¡1. For the central-

ized IMM estimator, 2-D assignment is used to solve

the measurement-to-track association problem and the

most likely hypothesis is chosen for the filter update.

ii) In the decentralized tracking configuration each

sensor uses an IMM estimator and the fusion cen-

ter fuses the local estimates every TF = 10 s using

all local state estimates and the corresponding covari-

ances with approximate crosscovariances. For each lo-

cal IMM estimator, 2-D assignment is used to solve

the measurement-to-track association problem and the

most likely hypothesis is chosen for the filter up-

date. The track-to-track association is based on the

most likely hypothesis obtained by solving the 3-D

assignment. If the local tracks are declared as from

the same target, then the track-to-track fusion is car-
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Fig. 3. Crosscorrelation coefficients vs. target maneuvering index

for DCWNA model. ½11: position-position, ½12: position-velocity,

½22: velocity-velocity.

ried out with an approximate crosscovariance matrix,

as in [11].

The combined estimates and their covariances gen-

erated by the IMM were used in the association and

the corresponding state errors were approximated as

Gaussian. The crosscovariance used at the fusion cen-

ter is calculated using the fixed crosscorrelation coef-

ficients detailed below. Assuming equal variances of

the measurement error for both sensors, we can solve

the Lyapunov equation for the steady state discretized

continuous-time white noise acceleration (DCWNA)

model ([2], Sec. 6.2.2). The resulting crosscorrelation

coefficients between the estimation errors from the two

local trackers are shown in Fig. 3 for the target maneu-

vering index6 within (0.05, 2). In the simulation, we

used the following fixed values for the crosscorrelation

coefficients: ½11 = 0:15 (position-position), ½12 = 0:25
(position-velocity) and ½22 = 0:7 (velocity-velocity) to
obtain an approximate crosscovariance matrix between

the local track pairs (see [11]) which was then used in

the optimal track-to-track fusion algorithm.

Figs. 4 and 7 show the RMS position errors at the

fusion center for the above two tracking configurations

as well as that by sensor 1 alone for target 1 and target

2. Figs. 5 and 8 show the corresponding RMS velocity

errors for target 1 and target 2. We can see that the

track fusion of three local IMM estimators (configura-

tion (ii)) has the RMS errors close to that of the cen-

tralized estimator (configuration (i)). Thus the proposed

assignment solution to the track-to-track association is

very effective when the consistency of the local tracks

is good. Figs. 6 and 9 show the normalized estimation

6The target maneuvering index for a DCWNA model is given byp
qT3=¾w where q is the process noise PSD, T the sampling interval

and ¾w the measurement noise standard deviation [4], Sec. 6.5.4.

Fig. 4. Comparison of the RMS position errors for centralized

IMM estimator (configuration (i)), track fusion from three IMM

estimators (configuration (ii)) for target 1; local IMM estimator from

sensor 1 also shown.

Fig. 5. Comparison of the RMS velocity errors for centralized

IMM estimator (configuration (i)), track fusion from three IMM

estimators (configuration (ii)) for target 1; local IMM estimator from

sensor 1 also shown.

error squared (NEES, see [4], Sec. 5.4.2) at the fusion

center for the above two tracking configurations as well

as that by sensor 1 alone. We can see that the distributed

track fusion yields larger NEES than the centralized es-

timator during the target turns. Thus caution has to be

exercised when fusing the local estimates that are not

credible on their own NEES statistics.7

7While, for maneuvering targets, the IMM estimator is superior, in

terms of its NEES consistency, compared to a fixed model Kalman

filter due to its adaptability, this adaptation takes about 2 sampling

intervals, during which it can experience short-term inconsistency (see

[4], Sec. 11.7).
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Fig. 6. Comparison of the NEES for centralized IMM estimator

(configuration (i)), track fusion from three IMM estimators

(configuration (ii)) for target 1; local IMM estimator from sensor 1

also shown.

Fig. 7. Comparison of the RMS position errors for centralized

IMM estimator (configuration (i)), track fusion from three IMM

estimators (configuration (ii)) for target 2; local IMM estimator from

sensor 1 also shown.

The ML assignment for track-to-track association

from the 3 sensors over the 100 runs yielded in all runs

the correct association.

6. SUMMARY AND CONCLUSIONS

In this paper the problem of track-to-track associa-

tion from an arbitrary number of sources was considered

where tracks of the same target obtained from differ-

ent sensors have dependent estimation errors. The ex-

act likelihood function for the track-to-track association

problem from multiple sources was derived. This forms

the basis for the likelihood ratio cost function used in

a multidimensional assignment algorithm that can solve

such a large scale data association problem. Simulation

Fig. 8. Comparison of the RMS velocity errors for centralized

IMM estimator (configuration (i)), track fusion from three IMM

estimators (configuration (ii)) for target 2; local IMM estimator from

sensor 1 also shown.

Fig. 9. Comparison of the NEES for centralized IMM estimator

(configuration (i)), track fusion from three IMM estimators

(configuration (ii)) for target 2; local IMM estimator from sensor 1

also shown.

results using a two-target three-sensor tracking scenario

show that the estimation errors of the distributed track

fusion with the assignment solution to the track asso-

ciation problem are only slightly larger than those of

the centralized estimator. These results are in line with

those of [5].
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Appendix. The pdf of a State Estimate Conditioned on
Another State Estimate
Under the common origin hypothesis Hli,lj one has

x̂
lj
j = x¡ x̃ljj (45)

and
x̂lii = x¡ x̃lii (46)

where x is the common true state.
Equations (45)—(46) yield

x̂lii = x̂
lj
j + x̃

lj
j ¡ x̃lii : (47)

If the prior (unconditional) pdf of a state estimate x̂
lj
j

is diffuse (noninformative or improper [4]), it follows

from (45) that the prior of the true state x is also diffuse
because

1) x and x̃
lj
j are independent,

2) the error x̃
lj
j has a proper prior pdf, and

3) in order for the convolution of the pdfs of x and

x̃
lj
j to yield a diffuse pdf for x̂

lj
j (as assumed), the (prior)

pdf of x has to be also diffuse.

Consequently, x̃
lj
j is independent of x̂

lj
j since there is no

inference one can make on x̃
lj
j from x̂

lj
j because their

relationship contains x, which has a diffuse prior pdf.
Thus

E[x̃
lj
j j x̂ljj ] = 0 (48)

and, similarly

E[x̃lii j x̂ljj ] = 0: (49)

The conditional expectation of (47) can the be writ-

ten using (48)—(49) as

E[x̂lii j Hli ,lj , x̂
lj
j ] = E[x̂

lj
j + x̃

lj
j ¡ x̃lii j Hli ,lj , x̂

lj
j ] = x̂

lj
j

(50)

which proves (5). Equation (6) follows in a similar

manner.

Finally, because all the state errors are assumed

Gaussian, the conditional pdf of a state estimate in terms

of another state estimate (7) follows.
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The problem of maintaining tracks of multiple maneuvering tar-

gets from unassociated measurements is formulated as a problem of

estimating the hybrid state of a Markov jump linear system from

measurements made by a descriptor system with independent, iden-

tically distributed (i.i.d.) stochastic coefficients. This characteriza-

tion is exploited to derive the exact equation for the Bayesian recur-

sive filter, to develop two novel Sampling Importance Resampling

(SIR) type particle filters, and to derive approximate Bayesian fil-

ters which use for each target one Gaussian per maneuver mode.

The two approximate Bayesian filters are a compact and a track-

coalescence avoiding version of Interacting Multiple Model Joint

Probabilistic Data Association (IMMJPDA). The relation of each of

the four novel filter algorithms to the literature is well explained.

Through Monte Carlo simulations for a two target example, these

four filters are compared to each other and to the approach of using

one IMMPDA filter per target track. The Monte Carlo simulation

results show that each of the four novel filters clearly outperforms

the IMMPDA approach. The results also show under which con-

ditions the IMMJPDA type filters perform close to exact Bayesian

filtering, and under which conditions not.
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1. INTRODUCTION

In the literature approximate Bayesian approaches

towards maintaining tracks of multiple maneuvering tar-

gets from unassociated measurements have focussed on

the development of combinations of Interacting Multi-

ple Model (IMM) and Joint Probabilistic Data Associa-

tion (JPDA) approaches. Initially, combinations of IMM

and JPDA have been developed along two heuristic di-

rections. Bar-Shalom et al. [4] heuristically developed

an IMMJPDA-Coupled filter for situations where the

measurements of two targets are unresolved during pe-

riods of close encounter. The filters of the individual tar-

gets are coupled through cross-target-covariance terms.

The filtering results obtained have not been very encour-

aging to continue this heuristic approach. De Feo et al.

[20] combined JPDA and a rather crude approximation

of IMM, under the name IMMJPDA. The first proper

combination of IMM and JPDA was developed by Chen

and Tugnait [18]. Focus of this development was on

showing that fixed-lag IMMJPDA smoothing performed

far better than IMMJPDA filtering at the cost of 3 scans

delay. In [9], [10] we used the descriptor system ap-

proach [8] to develop a track-coalescence-avoiding ver-

sion of IMMJPDA (for short IMMJPDA¤). Moreover,
we showed that both IMMJPDA and IMMJPDA¤ per-
form much better than just applying IMMPDA filtering

per maintained track. In spite of these developments it

remains unclear how IMMJPDA and IMMJPDA¤ fil-
tering performs in comparison with the exact Bayesian

filter.

This motivates us to study the Sampling Importance

Resampling (SIR) based Particle Filter (PF) paradigm

[21, 28, 43] for maintaining tracks of multiple maneu-

vering targets from unassociated measurements. During

the last decade this paradigm has been recognized as

a practical means for approximating an exact Bayesian

filter arbitrarily well. This has stimulated the develop-

ment of a large variety of particle filters (e.g. [1, 22,

38, 42]) that typically outperform established approx-

imate non-linear filtering and target track maintenance

approaches such as Extended Kalman Filtering, Proba-

bilistic Data Association (PDA), the Interacting Multi-

ple Model (IMM) algorithm, and their combinations.

The extension of these results to multiple target

tracking situations has also received significant atten-

tion. Early on it was recognized that the JPDA for-

malism provided a logical starting point for this de-

velopment. Gordon [26] developed a SIR-PF version

by replacing JPDA’s Gaussian density by a density the

evolution of which is approximated with help of a SIR

particle filter. Avitzour [2] developed a more advanced

SIR particle filter by using joint-target particles; we re-

fer to this as SIR joint PF. Karlsson and Gustafsson

[30] compared the RMS position errors of a SIR joint

PF with those of a JPDA filter for maintaining tracks

in an example of two perpendicular crossing targets.

For this “easy” example the difference in performance
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appeared to be small. Salmond et al. [45] showed that

a SIR joint PF works well for the initialization of two

non-maneuvering targets that start from the same initial

position. Gordon et al. [27] developed a SIR joint PF

approach for tracking a group of targets, the members

of which stay close to each other. Through several com-

plementary studies, efficiency improvements have been

developed for these particle filters, e.g. [29, 41, 42, 48].

To track multiple objects for robotic vision, Schultz et

al. [46] developed an occlusion extension for SIR PF

and showed that this outperformed JPDA on a multi-

person tracking problem. Tracking multiple objects with

occlusion situations by SIR joint PF for robotic vision

has been shown in [33] and [34].

A complementary development in SIR particle fil-

tering is to use sensor measurements at the pixel level

as observations. This allows handling the problems of

target detection and target tracking in an integrated way,

and thus to shortcut the traditional sequence of signal

processing first, followed by target detection (thresh-

olding) and then target tracking. The feasibility of a

track-before-detect particle filtering approach has been

introduced in [15, 44] for a single target. Extensions

to multiple targets have been developed in [40] using

single target particles, and in [17, 32, 35] using joint

particles. For the current paper we assume that track

maintenance has to be performed on the basis of de-

tected measurement observations, and that pixel level

sensor measurements are not available. Hence, the track-

before-detect problem setting goes beyond the scope of

the current study.

The aim of this paper is to extend the SIR joint par-

ticle filter approach towards track maintenance, to the

situation of multiple maneuvering targets and to evalu-

ate for an example how the performance of these particle

filters compares with IMMJPDA and IMMJPDA¤ filter-
ing. This asks for the combination of an SIR joint PF for

unassociated measurements with an SIR PF for tracking

a suddenly maneuvering target [16, 36, 37]. The basis

for this integration is provided by the exact Bayesian

filter for this particular problem. We developed such an

exact Bayesian characterisation using the descriptor sys-

tem approach [10, 14]. The current paper extends these

results in the sense of incorporating a non-homogeneous

false measurement density [39].

The specialty of this exact characterization is that

both the mode switching and the data association are

performed jointly for all targets and that the false plot

density is non-homogeneous. Based on such exact equa-

tions, we develop a standard SIR particle filter to eval-

uate the exact Bayesian equations. A weakness of this

standard SIR joint particle filter is that after a resam-

pling step for some of the joint modes there may be

hardly any or even no particles left. In theory this can be

compensated for by significantly increasing the number

of particles. However, a more effective approach is to re-

sample a fixed number of joint particles per joint mode.

We refer to this as hybrid SIR joint particle filtering.

Through Monte Carlo simulations for a simple example

the standard SIR and hybrid SIR joint particle filters

are compared with the following three combinations of

IMM and PDA:

² An IMMPDA filter, which updates an individual

IMM track using MMPDA [25] and implicitly assum-

ing there are no other targets;

² A compact version of IMMJPDA, which we derive

in this paper in a systematic way from the exact

Bayesian filter equations; and

² The track coalescence avoiding version (IMMJPDA¤)
of this compact IMMJPDA.

The paper is organized as follows. Section 2 formulates

the multi-target track maintenance problem considered.

Section 3 embeds this in filtering for a jump linear de-

scriptor system. Section 4 develops an exact Bayesian

characterization of the evolution of the conditional den-

sity for the state of the multiple targets. Section 5 de-

velops the standard SIR joint particle filter. Section 6

develops the hybrid SIR joint particle filter. Section 7

adopts the IMMJPDA assumptions, and shows the im-

pact on the filter equations relative to those of [18].

Section 8 develops IMMJPDA¤. Section 9 illustrates
and compares the performance of these filters through

Monte Carlo simulation results. As a performance ref-

erence we also run single target IMMPDA filters on

the same scenario. Finally, Section 10 draws conclu-

sions.

2. MULTITARGET TRACK MAINTENANCE PROBLEM

Consider M targets and assume that the state of the

ith target is modelled as a jump linear system:

xit = a
i(μit)x

i
t¡1 + b

i(μit)w
i
t , i= 1, : : : ,M (1)

where xit is the n-vectorial state of the ith target, μ
i
t is

the Markovian switching mode of the ith target and
assumes values from M= f1, : : : ,Ng according to a

transition probability matrix ¦i, ai(μit) and b
i(μit) are

(n£n)- and (n£ n0)-matrices and wit is a sequence of
i.i.d. standard Gaussian variables of dimension n0 with
wit , w

j
t independent for all i 6= j and wit , (xi0,μi0), (xj0,μj0)

independent for all i 6= j. At t= 0, the joint density
pxi

0
,μi
0
is known for each i 2 [1,M]; typically these are

i-variant.
A set of measurements consists of measurements

originating from targets and measurements originating

from clutter. We assume that a potential measurement

originating from target i is also modelled as a jump
linear system:

zit = h
i(μit)x

i
t + g

i(μit)v
i
t , i= 1, : : : ,M (2)

where zit is an m-vector, h
i(μit) is an (m£ n)-matrix and

gi(μit) is an (m£m0)-matrix, and vit is a sequence of i.i.d.
standard Gaussian variables of dimension m0 with vit and
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vjt independent for all i 6= j. Moreover vit is independent
of xj0 and w

j
t for all i,j.

Let xt
¢
=Colfx1t , : : : ,xMt g, μt

¢
=Colfμ1t , : : : ,μMt g, A(μt)

¢
=Diagfa1(μ1t ), : : : ,aM(μMt )g, B(μt)

¢
=Diagfb1(μ1t ), : : : ,bM

¢ (μMt )g, and wt
¢
=Colfw1t , : : : ,wMt g. Then we can model

the state of our M targets as follows:

xt = A(μt)xt¡1 +B(μt)wt (3)

with A and B of size Mn£Mn and Mn£Mn0 respec-
tively, with fμtg assuming values from MM according

to the transition probability matrix ¦ = [¦´,μ]. If the M
targets switch mode independently of each other, then:

¦´,μ =
MY
i=1

¦i´i ,μi (4)

for every ´ 2MM and μ 2MM .

Next with zt
¢
=Colfz1t , : : : ,zMt g, H(μt)

¢
=Diagfh1(μ1t ),

: : : ,hM(μMt )g, G(μt)
¢
=Diagfg1(μ1t ), : : : ,gM(μMt )g, and vt

¢
=

Colfv1t , : : : ,vMt g, we obtain:
zt =H(μt)xt+G(μt)vt (5)

with H and G of sizeMm£Mn and Mm£Mm0 respec-
tively.

We next assume that with a non-zero detection prob-

ability, Pid , target i is indeed observed at moment t. In
addition to this there may be false measurements, the

density of which is not homogeneous. Similar to [39]

we assume that the number of false measurements at

moment t, Ft, has a Poisson distribution:

pFt(F) =
(F̂t)

F

F!
exp(¡F̂t), F = 0,1,2, : : :

= 0, else (6a)

where F̂t is the expected number of false measurements.
Let ft denote the column vector of i.i.d. false measure-
ments, then the conditional density of ft given Ft satis-
fies:

pftjFt(f j F) =
FY
i=1

pf(f
i) (6b)

where pf(¢) is the (measurable) probability density func-
tion of a false measurement. Hence, the local density

¸(¢) of false measurements satisfies:
¸(fi) = F̂tpf(f

i): (6c)

Furthermore we assume that the process fFt,ftg is a
sequence of independent vectors, which are independent

of fxtg, fwtg and fvtg.
At moment t= 1,2, : : : ,T a vector observation yt is

made, the components of which consist of the potential

observations zit of the detected targets plus the false mea-
surements fFt,ftg. The multi-target track maintenance

problem considered is to estimate xt,μt given observa-

tions Yt
¢
=fys;0· s· tg with y0 representing the initial

joint density px0,μ0 .

3. STOCHASTIC MODELLING OF OBSERVATION
EQUATION

This section characterizes the exact relationship be-

tween observation vector yt and the false and potential

observations at moment t > 0. For this we largely fol-
low [8]. The measurement vector yt consists of mea-

surements originating from targets and measurements

originating from clutter. Firstly, the relation for mea-

surements originating from targets is identified. Subse-

quently, the clutter measurements are randomly inserted

between the target measurements.

Let Ái,t 2 f0,1g be the detection indicator for target
i, which assumes the value one with a time invariant
probability Pid > 0, independently of Áj,t, j 6= i and in-
dependently of the processes introduced in Section 2.

This approach yields the following detection indicator

vector Át of size M:

Át
¢
=ColfÁ1,t, : : : ,ÁM,tg:

Thus, the number of detected targets is Dt
¢
=
PM

i=1Ái,t.

Furthermore, we assume that fÁtg is a sequence of i.i.d.
vectors.

In order to link the detection indicator vector with

the measurement model, we introduce the following op-

erator ©: for an arbitrary vector Á0 of lengthM 0 and hav-

ing (0,1) valued components, we define D(Á0)
¢
=
PM 0
i=1Á

0
i

and the operator © producing ©(Á0) as a (0,1)-valued
matrix of size D(Á0)£M 0 of which the ith row equals

the ith non-zero row of DiagfÁ0g. Next we define, for
Dt > 0, a vector that contains all measurements origi-
nating from targets in a fixed order

z̃t
¢
=©(Át)zt where ©(Át)

¢
=©(Át)− Im

with Im a unit-matrix of size m, and − the Kronecker

product, i.e.,

·
a b

c d

¸
− Im

¢
=

2664
aIm

... bIm

¢ ¢ ¢ ¢ ¢ ¢
cIm

... dIm

3775 :
In reality, however, we do not know in which order the

targets are observed. Hence, we introduce the stochastic

Dt£Dt permutation matrix Ât, which is independent of
the processes introduced in Section 2 and is condition-

ally independent of fÁtg given Dt. We also assume that
fÂtg is a sequence of independent matrices. Hence, for
Dt > 0,

˜̃zt
¢
=Âtz̃t where Ât

¢
=Ât− Im
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is a vector that contains all measurements originating

from targets at moment t in a random order.

Let the random variable Lt be the total number of
measurements at moment t. Thus,

Lt =Dt+Ft:

We next describe the relationship between the poten-

tial measurement vector zt, the false plot vector ft and

the measurement vector yt
¢
=Colfy1,t, : : : ,yLt ,tg, where

yi,t denotes the ith m-vectorial measurement at moment
t. Because yt contains a random mixture of Dt target
measurements and Lt¡Dt false measurements, the re-
lation between zt and yt can be characterized by the
following pair of equations for the target and false mea-

surements respectively:

©(Ãt)yt = Ât©(Át)zt if Dt > 0

= fg if Dt = 0 (7a)

©(Ã¤t )yt = ft if Lt > Dt

= fg if Lt =Dt (7b)

where Ãt, Ã
¤
t , Ât are explained below.

First we explain the target measurement (7a). This

equation has stochastic i.i.d. coefficients ©(Ãt) and
Ât©(Át). The detected target measurements in the ob-
servation vector yt are in random order. Hence, the po-

tential detected measurements of targets need to be ran-

domly mixed. To perform this by a simple matrix mul-

tiplication, a sequence of independent stochastic per-

mutation matrices fÂtg of size Dt£Dt is defined and
assumed to be independent of fÁtg. To take into account
the measurement vector size m, Ât needs to be “inflated”
to the proper size of Dtm by means of the Kronecker

product with Im. To this end, Ât
¢
=Ât− Im with Im a unit-

matrix of size m, and − the Kronecker product. Hence

Ât©(Át)zt is a column vector of potential detected mea-
surements of targets in random order.

Ãt
¢
=ColfÃ1,t, : : : ,ÃLt ,tg is the target indicator vector,

where Ãi,t 2 f0,1g is a target indicator at moment t
for measurement i, which assumes the value one if
measurement i belongs to a detected target and zero
if measurement i is false. Because there are as many
detected targets as target measurements, the following

constraint applies:

D(Ãt) =D(Át): (8)

Under this equality constraint, fÃtg is a sequence of in-
dependent vectors that is Dt-conditionally independent
of all earlier defined processes.

In order to let Ãt select the correct measurements
by simple matrix multiplication, the matrix operator

© defined above is used. To take into account the

measurement vector size m, ©(Ãt) needs to be “inflated”
to the proper size of Dtm by means of the Kronecker

product with Im. To this end, ©(Ã
0)
¢
=©(Ã0)− Im with Im

a unit-matrix of size m, and − the Kronecker product.

Hence ©(Ãt)yt is a column vector that contains all

detected target measurements in yt.

Ã¤t
¢
=ColfÃ¤1,t, : : : ,Ã¤Lt ,tg is a false indicator vector of

size Lt with Ã
¤
i,t = 1¡Ãi,t. To select the false measure-

ments by matrix multiplication, the matrix operator ©
is used again. Hence ©(Ã¤t )yt is a column vector that
contains all false measurements from yt.

Finally we develop a characterization for yt. For this

we first verify the following for Lt > Dt > 0:

©(Ãt)
T©(Ãt) +©(Ã

¤
t )
T©(Ã¤t ) = ILt£Lt :

Hence

yt = [©(Ãt)
T©(Ãt) +©(Ã

¤
t )
T©(Ã¤t )]yt if Lt > Dt > 0:

Substituting (7a) and (7b) into this equation yields the

following model for the observation vector yt:

yt =©(Ãt)
TÂt©(Át)zt+©(Ã

¤
t )
Tft if Lt > Dt > 0

=©(Ãt)
TÂt©(Át)zt if Lt =Dt > 0

=©(Ã¤t )
Tft if Lt > Dt = 0

= fg if Lt = 0: (9)

Together with equations (3), (4), (5) and (6), equation

(9) forms a complete characterization of our tracking

problem in terms of stochastic difference equations.

EXAMPLE Assume we maintain tracks of five targets

(M = 5), of which we detect detect and observe four

(Dt = 4) together with two false measurements (Ft = 2),
and with:

Ât =

26664
0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

37775 , Át = [1 0 1 1 1]
T

Ãt = [1 1 0 1 1 0]
T

i.e., the 2nd target is not detected, and the 3rd and 6th

measurements are false. This implies:

©(Át) =

26664
1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

37775

©(Ãt) =

26664
1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

37775
©(Ã¤t ) =

·
0 0 1 0 0 0

0 0 0 0 0 1

¸

18 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 1, NO. 1 JULY 2006



Ât©(Át) =

26664
0 0 0 0 1

0 0 0 1 0

1 0 0 0 0

0 0 1 0 0

37775
©(Ãt)

TÂt©(Át)zt = [z5,t z4,t 0 z1,t z3,t 0]
T

©(Ã¤t )
Tft = [0 0 f1,t 0 0 f2,t]

T:

Substituting this in (9) yields:

yt = [z5,t z4,t f1,t z1,t z3,t f2,t]
T:

4. EXACT FILTER EQUATIONS

In this section a Bayesian characterization of the

conditional density pxt,μt jYt(x,μ) is given where Yt denotes
the ¾-algebra generated by measurements yt up to and
including moment t. Subsequently, characterizations are
developed for the mode probabilities and the mode

conditional means and covariances.

First we introduce an auxiliary indicator matrix pro-

cess Ẫt of size Dt£Lt, as follows:

Ẫt
¢
=ÂTt ©(Ãt) if Dt > 0: (10)

Pre-multiplying the left- and right hand terms in (9) with

Ẫt = Ẫt− Im and subsequent straightforward evaluation
yields:

Ẫtyt =©(Át)H(μt)xt+©(Át)G(μt)vt if Dt > 0

(11)

where the size of Ẫt is Dtm£Ltm and the size of ©(Át)
is Dtm£Mm.
Notice that (11) is a linear Gaussian descriptor sys-

tem [19] with stochastic i.i.d. coefficients Ẫt and ©(Át)
and Markovian switching coefficients H(μt) and G(μt).
From (11), it follows that for Dt > 0 all relevant as-

sociations and permutations can be covered by (Át, Ẫt)-
hypotheses. We extend this to Dt = 0 by adding the
combination Át = f0gM and Ẫt = fgLt . Hence, through
defining the weights

¯t(Á, Ẫ,μ)
¢
=ProbfÁt = Á, Ẫt = Ẫ,μt = μ j Ytg

the law of total probability yields:

pxt,μtjYt(x,μ) =
X
Ẫ,Á

¯t(Á, Ẫ,μ)pxtjμt ,Át,Ẫt ,Yt (x j μ,Á, Ẫ):

(12)

And thus, our problem is to characterize the terms in the

last summation. This problem is solved in two steps, the

first of which is the following Proposition.

PROPOSITION 1 For any Á 2 f0,1gM , such that D(Á) ¢=PM
i=1Ái · Lt, and any Ẫt matrix realization Ẫ of size

D(Á)£Lt, the following holds true:
pxtjμt ,Át,Ẫt,Yt (x j μ,Á, Ẫ)

=
pz̃t jxt ,μt ,Át(Ẫyt j x,μ,Á) ¢pxt jμt,Yt¡1 (x j μ)

Ft(Á, Ẫ,μ)
(13)

¯t(Á, Ẫ,μ) = Ft(Á, Ẫ,μ)

¢
Lt¡D(Á)Y
j=1

¸([©(1Lt ¡ ẪTẪ1Lt )yt]j)

¢
MY
i=1

[(1¡Pid )(1¡Ái)(Pid )Ái] ¢pμtjYt¡1 (μ)=ct (14)

where Ẫ
¢
= Ẫ− Im, 1Lt = [1, : : : ,1]T is an Lt vector with

1-valued elements and Ft(Á, Ẫ,μ) and ct are such that
they normalize pxtjμt ,Át,Ẫt ,Yt (x j μ,Á, Ẫ) and ¯t(Á, Ẫ,μ) re-
spectively.

PROOF See Appendix A.

The next step starts with substituting (13) and (14)

into (12), which yields:

pxt,μtjYt(x,μ)

=
X
Ẫ,Á

"
pz̃t jxt ,μt ,Át(Ẫyt j x,μ,Á) ¢pxt jμt,Yt¡1 (x j μ)

Ft(Á, Ẫ,μ)

¢Ft(Á, Ẫ,μ) ¢
Lt¡D(Á)Y
j=1

¸([©(1Lt ¡ ẪTẪ1Lt )yt]j)

¢
MY
i=1

[(1¡Pid )(1¡Ái)(Pid )Ái ]
#
¢pμtjYt¡1 (μ)=ct:

Simplifying this and rearranging terms yields:

pxt,μtjYt (x,μ)

=
X
Ẫ,Á

"
pz̃tjxt,μt,Át (Ẫyt j x,μ,Á) ¢pxt,μtjYt¡1 (x,μ)

¢
Lt¡D(Á)Y
j=1

¸([©(1Lt ¡ ẪTẪ1Lt)yt]j)

¢
MY
i=1

[(1¡Pid )(1¡Ái)(Pid )Ái]=ct
#

(15)

with

pz̃tjxt,μt,Át (z̃ j x,μ,Á)

=Nfz̃;©(Á)H(μ)x,©(Á)G(μ)G(μ)T©(Á)Tg:
(16)
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Define F̃t(Á, Ẫ,x,μ)
¢
=pz̃tjxt,μt,Át (Ẫyt j x,μ,Á). Hence from

(16) we get:

F̃t(Á, Ẫ,x,μ) = [(2¼)
mD(Á)DetfQ̃t(Á,μ)g]¡1=2

¢ expf¡ 1
2
º̃Tt (Á, Ẫ,x,μ)Q̃t(Á,μ)

¡1º̃t(Á, Ẫ,x,μ)g:
(17)where

º̃t(Á, Ẫ,x,μ)
¢
= Ẫyt¡©(Á)H(μ)x

Q̃t(Á,μ)
¢
=©(Á)(G(μ)G(μ)T)©(Á)T:

Substituting (17) into (15) and rearranging terms yields

pxt ,μt jYt (x,μ)

=
1

ct

X
Ẫ,Á

"
F̃t(Á, Ẫ,x,μ) ¢

Lt¡D(Á)Y
j=1

¸([©(1Lt ¡ ẪTẪ1Lt )yt]j)

¢
MY
i=1

[(1¡Pid )(1¡Ái)(Pid )Ái ]
#
¢pxt ,μt jYt¡1 (x,μ):

(18)

THEOREM 1 For any Á 2 f0,1gM , such thatD(Á) ¢=PM
i=1

Ái · Lt, the following recursive equation holds true for the
conditional density pxt ,μt jYt (x,μ):

pxt ,μt jYt (x,μ)

=
1

ct

X
Á2f0,1gM

"
MY
i=1

[(1¡Pid )(1¡Ái)(Pid )Ái ]

¢
X
Ẫ

NmD(Á)fẪyt;©(Á)H(μ)x,©(Á)G(μ)G(μ)T©(Á)Tg

¢
Lt¡D(Á)Y
j=1

¸([©(1Lt ¡ ẪTẪ1Lt )yt]j)
#

¢
Z
RMn

NMnfx;A(μ)x0,B(μ)B(μ)Tg

¢
X
´2MM

[¦´μpxt¡1,μt¡1 jYt¡1 (x
0,´)]dx0 (19)

with normalization ct, NKf¢; x̄, p̄g a K-dimensional Gaus-
sian with mean x̄ and covariance P̄, and the 2nd sum
running over all Ẫ= Â©(Ã) with Â a D(Á)£D(Á) per-
mutation matrix and Ã 2 f0,1gLt such that D(Ã) =D(Á).
PROOF IMM’s basic derivation [38, App. A] yields:

pxt ,μt jYt¡1 (x,μ) =

Z
RMn

NMnfx;A(μ)x0,B(μ)B(μ)Tg

¢
X

´2f1,:::,NgM
[¦´μpxt¡1,μt¡1 jYt¡1 (x

0,´)]dx0:

(20)

Substituting (17) and (20) in (18) and rearranging the

summation over Ẫ yields (19).

Equation (19) is a recursive equation for the exact

Bayesian solution for tracking multiple targets from

possibly false and missing measurements. From (19) it

follows that if the initial density is a Gaussian mixture,

then the exact conditional density solution of recursive

equation (19) is a Gaussian mixture, the number of

Gaussians increasing exponentially with time.

REMARK 1 For jump-linear systems such recursive

filter equations have been characterized by [23], and

for jump-non-linear systems by [16], [3]. In [14] we

provide a version of Theorem 1 under the assumption

that ¸ is homogeneous.

REMARK 2 Proposition 1 and Theorem 1 also apply

when the initial densities are permutation symmetric

over the targets, i.e. a situation studied by [32].

5. SIR JOINT PARTICLE FILTER

In this section a SIR joint particle filter of the exact

filter characterization of Theorem 1 is developed. In this

SIR joint PF a particle is defined as a triplet (¹j ,xj ,μj),

¹j 2 [0,1], xj 2RMn, μj 2MM , j 2 [1,S]. One filter cycle
consists of the following steps:

² SIR joint particle filter Step 0: Initiation.

Each filter cycle starts with a set of S joint particles
in [0,1]£RMn£MM , i.e.:

f(¹j,t¡1 = 1=S,xj,t¡1,μj,t¡1); j 2 [1,S]g
with, for t= 0, μj,0 and xj,0 independently drawn from
pμ0 (¢) and px0jμ0 (¢ j μj,0) respectively for each j 2 [1,S].

² SIR joint particle filter Step 1: Joint mode switching.

Determine the new joint mode per joint particle (¹j,t¡1
and xj,t¡1 are not changed)

f(¹j,t¡1,xj,t¡1, μ̄j,t); j 2 [1,S]g

by generating for each joint particle a new value μ̄j,t
according to the transition probabilities:

Probfμ̄j,t = μ̄ j μj,t¡1 = μg=¦
μ,μ̄
: (21)

² SIR joint particle filter Step 2: Prediction.

Determine the new state per joint particle (the weights

¹j,t¡1 are not changed)

f(¹j,t¡1, x̄j,t, μ̄j,t); j 2 [1,S]g
by running for each particle a Monte Carlo simulation

from (t¡ 1) to t according to the model
x̄j,t = A(μ̄j,t)xj,t¡1 +B(μ̄j,t)wj,t¡1: (22)

² SIR joint particle filter Step 3: Measurement update.

Determine new weight per joint particle, i.e.

f(¹̄j,t, x̄j,t, μ̄j,t); j 2 [1,S]g
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with, for the new weights, using (17) and (18):

¹̄j,t = ¹j,t¡1 ¢
1

ct

X
Ẫ,Á

"
F̃t(Á, Ẫ, x̄j,t, μ̄j,t)

¢
Lt¡D(Á)Y
i=1

¸([©(1Lt ¡ ẪTẪ1Lt )yt]i)

¢
MY
i=1

[(1¡Pid )(1¡Ái)(Pid )Ái ]
#

(23)

where

F̃t(Á, Ẫ,x,μ) = [(2¼)
mD(Á)DetfQ̃t(Á,μ)g]¡1=2

¢ expf¡ 1
2
º̃Tt (Á, Ẫ,x,μ)Q̃t(Á,μ)

¡1º̃t(Á, Ẫ,x,μ)g
(24)

with

º̃t(Á, Ẫ,x,μ)
¢
= Ẫyt¡©(Á)H(μ)x

Q̃t(Á,μ)
¢
=©(Á)(G(μ)G(μ)T)©(Á)T

and ct a normalizing constant such that

SX
j=1

¹̄j,t = 1

² SIR joint particle filter Step 4: MMSE output equa-

tions:

°̂t(μ) =
SX
j=1

¹̄j,t1μ̄j,t(μ)

x̂t(μ) =
SX
j=1

¹̄j,tx̄j,t1μ̄j,t (μ)

P̂t(μ) =
SX
j=1

¹̄j,t[x̄j,t¡ x̂t(μ)][x̄j,t¡ x̂t(μ)]T1μ̄j,t (μ)

x̂t =
X
μ2MM

°̂(μ)x̂t(μ)

P̂t =
X
μ2MM

°̂(μ)[P̂t(μ) + [x̂t(μ)¡ x̂t][x̂t(μ)¡ x̂t]T]

² SIR joint particle filter Step 5: Resampling.

Generate the new set of joint particles

f(¹j,t = 1=S,xj,t,μj,t); j 2 [1,S]g
with μj,t and xj,t the jth of the S samples drawn inde-
pendently from the joint particle spanned conditional

densities for μt given yt and for xt given Yt and μt = μjt :

pμtjYt (μ)¼ °̂t(μ)

pxtjμt ,Yt (¢ j μj,t)¼
SX
l=1

¹̄lt1μ̄l,t(μj,t)±x̄l,t (¢):

In the next section we modify the enumeration of the

particles and adopt the particle resampling Step 5.

6. HYBRID SIR JOINT PARTICLE FILTER

In this section a hybrid SIR joint particle filter of the

exact filter characterization of Theorem 1 is developed.

The difference with the SIR joint particle filter is that we

now resample a fixed number of joint particles per joint

mode. A joint particle is defined as a triplet (¹μ,j ,xμ,j ,μ),
¹μ,j 2 [0,1], xμ,j 2 RMn, μ 2MM , j 2 [1,S0]. One cycle
of this hybrid SIR joint particle filter consists of the

following steps:

² Hybrid SIR joint particle filter Step 0: Initiation.

Each filter cycle starts with a set of S =NS0 joint
particles in [0,1]£RMn£MM , i.e.:

f(¹μ,jt¡1,xμ,jt¡1,μμ,jt¡1 = μ); j 2 [1,S0], μ 2MMg
with, for t= 0, ¹μ,j0 = pμ0 (μ)=S

0, and xμ,j0 independently

drawn from px0jμ0 (¢ j μ) for each j 2 1, : : : ,S0.
² Hybrid SIR joint particle filter Step 1: Mode switch-

ing.

Determine the new mode per particle (¹μ,jt¡1 and x
μ,j
t¡1

are not changed)

f(¹μ,jt¡1,xμ,jt¡1, μ̄μ,jt ); j 2 [1,S0], μ 2MMg
by generating for each joint particle a new value μ̄μ,jt
according to the model

Probfμ̄μ,jt = μ̄ j μμ,jt¡1 = μg=¦μ,μ̄: (25)

² Hybrid SIR joint particle filter Step 2: Prediction.

Determine the new state per joint particle (the weights

¹μ,jt¡1 are not changed)

f(¹μ,jt¡1, x̄μ,jt , μ̄μ,jt ); j 2 [1,S0], μ 2MMg
by running for each particle a Monte Carlo simulation

from (t¡ 1) to t according to the model
x̄μ,jt = A(μ̄μ,jt )x

μ,j
t¡1 +B(μ̄

μ,j
t )wt¡1: (26)

² Hybrid SIR joint particle filter Step 3: Measurement

update.

Determine new weight per joint particle, i.e.

f(¹̄μ,jt , x̄μ,jt , μ̄μ,jt ); j 2 [1,S0], μ 2MMg
with for the new weights, using (17) and (18):

¹̄μ,jt = ¹μ,jt¡1 ¢
1

ct

X
Ẫ,Á

"
F̃t(Á, Ẫ, x̄

μ,j
t , μ̄

μ,j
t )

¢
Lt¡D(Á)Y
i=1

¸([©(1Lt ¡ ẪTẪ1Lt )yt]i)

¢
MY
i=1

[(1¡Pid )(1¡Ái)(Pid )Ái ]
#

(27)
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where

F̃t(Á, Ẫ,x,μ) = [(2¼)
mD(Á)DetfQ̃t(Á,μ)g]¡1=2

¢ expf¡ 1
2
º̃Tt (Á, Ẫ,x,μ)Q̃t(Á,μ)

¡1º̃t(Á, Ẫ,x,μ)g
(28)

with

º̃t(Á, Ẫ,x,μ)
¢
= Ẫyt¡©(Á)H(μ)x

Q̃t(Á,μ)
¢
=©(Á)(G(μ)G(μ)T)©(Á)T

and ct a normalizing constant such thatX
μ2MM

S0X
j=1

¹̄μ,jt = 1:

² Hybrid SIR joint particle filter Step 4: MMSE output

equations:

°̂t(μ) =
X
´2MM

S0X
j=1

¹̄´,jt 1μ̄´,jt
(μ)

x̂t(μ) =
X
´2MM

S0X
j=1

¹̄´,jt x̄
´,j
t 1μ̄´,jt

(μ)

P̂t(μ) =
X
´2MM

S0X
j=1

¹̄´,jt [x̄
´,j
t ¡ x̂t(μ)][x̄´,jt ¡ x̂t(μ)]T1μ̄´,jt (μ)

x̂t =
X
μ2MM

°̂(μ)x̂t(μ)

P̂t =
X
μ2MM

°̂(μ)[P̂t(μ) + [x̂t(μ)¡ x̂t][x̂t(μ)¡ x̂t]T]:

² Hybrid SIR joint particle filter Step 5: Resampling

per mode.

Generate the new set of joint particles

f(¹μ,jt = °̂t(μ)=S
0,xμ,jt ,μ

μ,j
t = μ); j 2 [1,S0], μ 2MMg

with xμ,jt the jth of the S0 samples drawn indepen-
dently from the particle spanned conditional density

for xt given Yt and μt = μ:

pxtjμt ,Yt(¢ j μ)¼
X
´2MM

S0X
l=1

¹̄´,lt 1μ̄´,lt
(μ)±

x̄´,lt
(x):

For homogeneous ¸, this hybrid SIR joint particle

filter has been introduced in [11] under the name Joint

IMMPDA particle filter.

7. IMMJPDA ASSUMPTIONS

The assumptions that are underlying to the

IMMJPDA of [18] are:

C1) pμt jYt¡1 (μ) =
QM
i=1pμit jYt¡1 (μ

i);

C2) pxtjμt ,Yt¡1 (x j μ) =
QM
i=1pxit jμit ,Yt¡1 (x

i j μi);

C3) pxit jμit ,Yt¡1 (x
i j μi) is Gaussian with mean x̄it(μi) and

covariance P̄it (μ
i).

Application of these assumptions, to the exact equa-

tions of Proposition 1 yields the following theorem.

THEOREM 2 Assume C1, C2 and C3 are satisfied. Then
¯t(Á, Ẫ,μ) of Proposition 1 satisfies:

¯t(Á, Ẫ,μ) =

"
Lt¡D(Á)Y
i=1

¸([©(1Lt ¡ ẪTẪ1Lt )yt]i)
#

¢
MY
i=1

[fit (Á, Ẫ,μ
i)(1¡Pid )(1¡Ái)(Pid )Ái ¢pμit jYt¡1 (μ

i)]=ct

(29)

with, for Ái = 0: fit (Á, Ẫ,μ
i) = 1, and for Ái = 1:

fit (Á, Ẫ,μ
i)

= [(2¼)mDetfQ̄it(μi)g]¡Ái=2

¢ exp
(
¡1
2

LtX
k=1

([©(Á)T]i¤Ẫ¤kº
ik
t (μ

i)T[Q̄it(μ
i)]¡1ºikt (μ

i))

)
(30a)

ºikt (μ
i) = ykt ¡ hi(μi)x̄it(μi) (30b)

Q̄it(μ
i) = hi(μi)P̄it (μ

i)hi(μi)T+ gi(μi)gi(μi)T (30c)

where [©(Á)T]i¤ and Ẫ¤k are the ith row and kth column
of ©(Á)T and Ẫ, respectively. Moreover, pxit jμit ,Yt(x

i j μi),
i 2 [1,M], is a Gaussian mixture, while its overall mean
x̂it(μ

i) and its overall covariance P̂it (μ
i) satisfy:

pμit jYt(μ
i) =

X
Á,Ẫ,´

´i=μi

¯t(Á, Ẫ,´) (31a)

x̂it(μ
i) = x̄it(μ

i)+Wi
t (μ

i)

Ã
LtX
k=1

¯ikt (μ
i)ºikt (μ

i)

!
(31b)

P̂it (μ
i) = P̄it (μ

i)¡Wi
t (μ

i)hi(μi)P̄it (μ
i)

Ã
LtX
k=1

¯ikt (μ
i)

!

+Wi
t (μ

i)

Ã
LtX
k=1

¯ikt (μ
i)ºikt (μ

i)ºikt (μ
i)T

!
Wi
t (μ

i)T

¡Wi
t (μ

i)

Ã
LtX
k=1

¯ikt (μ
i)ºikt (μ

i)

!

¢
Ã

LtX
k0=1

¯ik
0

t (μ
i)ºik

0
t (μ

i)

!T
Wi
t (μ

i)T (31c)
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with:

Wi
t (μ

i) = P̄it (μ
i)hi(μi)T[Q̄it(μ

i)]¡1 (31d)

¯ikt (μ
i)
¢
=Probf[©(Át)T]i¤[Ẫt]¤k = 1 j μit = μi,Ytg

=
X
Á,Ẫ,´
Á 6=0
´i=μi

[©(Á)T]i¤Ẫ¤k¯t(Á, Ẫ,´)=pμit jYt (μ
i):

(31e)

PROOF See Appendix B.

Equation (30a) replaces six nested equations of

[18, eqs. (18) and (20)—(24)]. As a direct consequence,

Theorem 2 leads to a more compact version of

IMMJPDA, the detailed steps of which we give in the

next section.

8. TRACK-COALESCENCE-AVOIDING IMMJPDA
FILTER

Fitzgerald [24] has shown that less likely permu-

tation hypotheses pruning provides an effective strat-

egy towards reducing JPDA’s sensitivity to track co-

alescence if ¸= 0 and Pid = 1. In [8] we have shown
that for ¸ > 0 or Pid < 1, the appropriate strategy is to
prune per (Át,Ãt)-hypothesis all but the most likely Ât-
hypothesis prior to measurement updating. This hypoth-

esis pruning strategy is now extended as follows: eval-

uate all (Át,Ãt,μt) hypotheses and prune per (Át,Ãt,μt)-
hypothesis all but the most-likely Ât-hypothesis. For ev-
ery Á, Ã and μ, satisfying D(Ã) =D(Á)·minfM,Ltg,
the most likely Â hypothesis satisfies the mapping

Â̂t(Á,Ã,μ):

Â̂t(Á,Ã,μ)
¢
=argmax

Â
¯t(Á,Â

T©(Ã),μ)

where the maximization is over all permutation matrices

Â of size D(Á)£D(Á).
The pruning strategy of evaluating all (Á,Ã,μ)-

hypotheses and only one Â-hypothesis per (Á,Ã,μ)-
hypothesis implies that we adopt the following pruned

hypothesis weights ˆ̄t(Á,Ã,μ):

ˆ̄
t(Á,Ã,μ) = ¯t(Á, Â̂(Á,Ã,μ)

T©(Ã),μ)=ĉt

if 0<D(Á)·minfM,Ltg
= ¯t(f0gM ,fgLt ,μ)=ĉt if D(Á) = 0

= 0 else

with ĉt a normalization constant for
ˆ̄
t; i.e. such thatX

Á,Ã,μ
D(Ã)=D(Á)

ˆ̄
t(Á,Ã,μ) = 1:

Through combining the equations of Theorem 2

with the above step, we arrive at the track-

coalescence-avoiding IMMJPDA, for short IMMJPDA¤:

IMMJPDA¤ Step 1: For each target this comes

down to the interaction step of the IMM algorithm [7]

for all i 2 [1,M]: Starting with

°̂it¡1(μ
i)
¢
=pμi

t¡1 jYt¡1
(μi), μi 2M

x̂it¡1(μ
i)
¢
=Efxit¡1 j μit¡1 = μi,Yt¡1g, μi 2M

P̂it¡1(μ
i)
¢
=Ef[xit¡1¡ x̂it¡1(μi)]

¢ [xit¡1¡ x̂it¡1(μi)]T j μit¡1 = μi,Yt¡1g, μi 2M

one evaluates the mixed initial condition for the filter

matched to μit = μi as follows (due to (4)):

°̄it (μ
i) =

NX
´i=1

¦i
´i ,μi
¢ °̂it¡1(´i)

x̂i
t¡1jμit

(μi) =

NX
´i=1

¦i
´i ,μi
¢ °̂it¡1(´i) ¢ x̂it¡1(´i)=°̄it (μi)

P̂i
t¡1jμit

(μi) =

NX
´i=1

¦i
´i ,μi
¢ °̂it¡1(´i)

¢ [P̂it¡1(´i)+ [x̂it¡1(´i)¡ x̂it¡1jμit (μ
i)]

¢ [x̂it¡1(´i)¡ x̂it¡1jμit (μ
i)]T]=°̄it (μ

i):

IMMJPDA¤ Step 2: Prediction for all i 2 [1,M],
μi 2M:

x̄it(μ
i) = ai(μi)x̂it¡1jμit (μ

i) (32a)

P̄it (μ
i) = ai(μi)P̂it¡1jμit (μ

i)ai(μi)T+ bi(μi)bi(μi)T

(32b)

Q̄it(μ
i) = hi(μi)P̄it (μ

i)hi(μi)T+ gi(μi)gi(μi)T: (32c)

IMMJPDA¤ Step 3: Gating, which is based on [5].

Identify for each target the mode for which Det Q̄it(μ)
is largest:

μ¤it = argmax
μ
fDetQ̄it(μ)g

and use this to define for each target i a gate Git 2 Rm
as follows:

Git
¢
=fzi 2 IRm; [zi¡ hi(μ¤it )x̄it(μ¤it )]T

¢ Q̄it(μ¤it )¡1[zi¡ hi(μ¤it )x̄it(μ¤it )]· ·g
with · the gate size. Now we define Lt to denote the
number of measurements yt that are in one or more of

the gates Git.
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IMMJPDA¤ Step 4: Evaluation of the detection/

association/mode hypotheses is based on Theorem 2;

for all Á 2 f0,1gM , Ẫ 2 f0,1gD(Á)£Lt , μ 2MM ,

¯t(Á, Ẫ,μ)
»=
"
Lt¡D(Á)Y
i=1

¸([©(1Lt ¡ ẪTẪ1Lt )yt]i)
#

¢
MY
i=1

[fit (Á, Ẫ,μ
i) ¢ °̄it (μi)

¢ (1¡PidÂ2m(·))(1¡Ái)(PidÂ2m(·))Ái]=ct
if Ẫ1Lt = 1D(Á)

= 0 else (33a)

with for Ái = 0: fit (Á, Ẫ,μ
i) = 1, and for Ái = 1:

fit (Á, Ẫ,μ
i)

»= [(2¼)mDetfQ̄it(μi)g]¡Ái=2

¢ exp
(
¡1
2

LtX
k=1

[©(Á)T]i¤Ẫ¤kº
ik
t (μ

i)T[Q̄it(μ
i)]¡1ºikt (μ

i)]

)
(33b)

ºikt (μ
i) = ykt ¡ hi(μi)x̄it(μi): (33c)

IMMJPDA¤ Step 5: Track-coalescence hypothesis

pruning.

First, evaluate for every (Á,Ã,μ) such that 0<D(Ã)
=D(Á)·minfM,Ltg:

Â̂t(Á,Ã,μ)
¢
=argmax

Â
¯t(Á,Â

T©(Ã),μ):

Next, evaluate all Â̂t(Á,Ã,μ) hypothesis weights:

ˆ̄
t(Á,Ã,μ) = ¯t(Á, Â̂t(Á,Ã,μ)

T©(Ã),μ)=ĉt

if 0<D(Ã) =D(Á)·minfM,Ltg
= ¯t(f0gM ,fgLt ,μ)=ĉt

if D(Ã) =D(Á) = 0

= 0 else

where ĉt is a normalizing constant for
ˆ̄
t.

IMMJPDA¤ Step 6: Measurement update equations

(also based on Theorem 2); for all i 2 [1,M], μi 2M,

°̂it (μ
i)»=

X
Á,Ã,´

´i=μi

ˆ̄
t(Á,Ã,´) (34a)

x̂it(μ
i)»= x̄it(μi) +Wi

t (μ
i)

Ã
LtX
k=1

ˆ̄ik
t (μ

i)ºikt (μ
i)

!
(34b)

P̂it (μ
i)»= P̄it (μi)¡Wi

t (μ
i)hi(μi)P̄it (μ

i)

Ã
LtX
k=1

ˆ̄ik
t (μ

i)

!

+Wi
t (μ

i)

Ã
LtX
k=1

ˆ̄ik
t (μ

i)ºikt (μ
i)ºikt (μ

i)T

!
Wi
t (μ

i)T

¡Wi
t (μ

i)

Ã
LtX
k=1

ˆ̄ik
t (μ

i)ºikt (μ
i)

!

¢
Ã

LtX
k0=1

ˆ̄ik0
t (μ

i)ºik
0

t (μ
i)

!T
Wi
t (μ

i)T (34c)

with

Wi
t (μ

i) = P̄it (μ
i)hi(μi)T[Q̄it(μ

i)]¡1 (34d)

ˆ̄ik
t (μ

i) =

Ã X
Á,Ã,´
Á,Ã 6=0
´i=μi

[©(Á)T]i¤[Â̂t(Á,Ã,´)
T©(Ã)]¤k

¢ ˆ̄t(Á,Ã,´)
!,

°̂it (μ
i) (34e)

where [:]¤k is the kth column of [:] and [:]i¤ is the ith
row of [:].

IMMJPDA¤ Step 7: Output equations:

x̂it =
NX

μi=1

°̂it (μ
i) ¢ x̂it(μi) (35a)

P̂it =
NX

μi=1

°̂it (μ
i)(P̂it (μ

i) + [x̂it(μ
i)¡ x̂it] ¢ [x̂it(μi)¡ x̂it]T):

(35b)

REMARK 3 By deleting the track coalescence hypoth-

esis pruning Step 5 from IMMJPDA¤, and by replac-
ing ˆ̄(Á,Ã,´) by ¯(Á,Ã,´) in Steps 6 and 7, we get the
compact IMMJPDA filter. As already announced in Re-

mark 2, the reason to refer to compact IMMJPDA is that

(33b) replaces six nested equations in the IMMJPDA of

[18, eqs. (18) and (20)—(24)].

9. MONTE CARLO SIMULATIONS

In this section some Monte Carlo simulation results

are given for the two novel joint particle filters, for

the (compact) IMMJPDA and IMMJPDA¤ filter

algorithms, and for a multi-target tracker using an

IMM-PDA for each track. The two particle filters ran on

a total of S = 104 joint particles. The simulations aim
at gaining insight into the behavior and performance

of the filters regarding track maintenance when two

targets move in and out of close approach situations,

while giving the filters enough time to converge after
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a maneuver has taken place. In the example scenarios

there are two tracked targets, each modeled with two

possible modes. The first mode represents a constant

velocity model and the second mode represents a con-

stant acceleration model. It is assumed that both targets

are initially tracked well, that for their initial track esti-

mates there is no uncertainty regarding which track be-

longs to which target. Both objects move towards each

other, each with constant initial velocity Vinitial. At a cer-
tain moment in time both objects start decelerating with

¡50 m/s2 until they both have zero velocity. The mo-
ment at which the deceleration starts is such that when

the objects both have zero velocity, the distance between

the two objects equals d (see Fig. 1). After spending
a significant number of scans with zero velocity, both

objects start accelerating with 50 m/s2 away from each

other without crossing until their velocity equals the op-

posite of their initial velocity. From that moment on the

velocity of both objects remains constant again (thus

the final relative velocity Vrel, final = Vrel, initial). Note that
d < 0 implies that the objects have crossed each other
before they have reached zero velocity. In each simula-

tion the filters start with perfect estimates and run for 40

scans. Examples of the trajectories for d ¸ 0 and d < 0
are depicted in Figs. 1(a) and 1(b) respectively.

For each target, the underlying model of the poten-

tial target measurements is given by (1) and (2), i.e.:

xit+1 = a
i(μit+1)x

i
t + b

i(μit+1)w
i
t

zit = h
i(μit)x

i
t+ g

i(μit)v
i
t

with for i 2 f1,2g and μit 2 f1,2g:

ai(1) =

2641 Ts 0

0 1 0

0 0 0

375 , ai(2) =

2641 Ts
1
2
T2s

0 1 Ts

0 0 1

375

bi(1) = ¾ia ¢

26400
1

375 , bi(2) = ¾ia ¢

26400
0

375
hi = [1 0 0], gi = ¾im

¦ =

·
1¡Ts=¿1 Ts=¿1

Ts=¿2 1¡Ts=¿2

¸
where ¾ia represents the standard deviation of accelera-
tion noise and ¾im represents the standard deviation of
the measurement error. For simplicity we consider the

situation of similar targets only; i.e., ¾ia = ¾a, ¾
i
m = ¾m,

Pid = Pd. With this, the scenario parameters are Pd, ¸, d,
Vinitial, Ts, ¾m, ¾a, ¿1, ¿2, and the gate size °. We used
fixed parameters ¾m = 30, ¾a = 50, ¿1 = 50, ¿2 = 5, and
° = 25. Table I gives the other scenario parameter val-
ues that are being used for the Monte Carlo simula-

tions.

Fig. 1. Trajectories examples for d ¸ 0 and for d < 0.

TABLE I

Scenario Parameter Values1

Scenario Pd ¸ d Vinitial Ts

1 1 0 Variable 75 1

2 1 0.001 Variable 75 1

3 0.9 0 Variable 75 1

4 0.9 0.001 Variable 75 1

1IMMPDA’s ¸= 0:00001 for scenarios 1 and 3.

During our simulations we counted track i “OK” if

jhix̂iT¡ hixiTj · 9¾m
and we counted track i 6= j “Swapped” if

jhix̂iT¡ hjxjTj · 9¾m:

Furthermore, two tracks i 6= j are counted “Coalesc-
ing” at scan t, if

jhix̂it ¡ hjx̂jt j · ¾m ^ jhixit ¡ hjxjt j> ¾m:

For each of the scenarios Monte Carlo simulations

containing 100 runs have been performed for each of
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the tracking filters. The initial track estimates are

x̂10(μ) =

264¡75075

0

375

x̂20(μ) =

264 750¡75
0

375 , μ 2 f1,2g

P̂i0 (1) =

264100 0 0

0 100
9

0

0 0 1
9

375

P̂i0 (2) =

264100 0 0

0 100
9

0

0 0 1
36

375
°̂i0(1) = 0:9, °̂i0(2) = 0:1 for i = 1,2:

The results of the Monte Carlo simulations for the four

scenarios are shown in tables and figures as follows:

² The percentage of Both tracks “OK,” see Table II,
and Figs. 2(a), 3(a), 4(a) and 5(a).

² The percentage of Both tracks “OK” or “Swapped,”
see Table III, and Figs. 2(b), 3(b), 4(b) and 5(b).

² The average number of “Coalescing” scans, see Ta-
ble IV, and Figs. 2(c), 3(c), 4(c) and 5(c).

² The average CPU time per scan (in seconds), see

Table V.

The results in Tables II—IV and Figs. 2—5 show that

for targets that come close to each other, IMMJPDA,

IMMJPDA¤ and the particle filters perform much better
than IMMPDA. As expected, these simulation results

show increased difficulty for Pd = 0:9 when compared
to Pd = 1 and for ¸= 0:001 when compared to ¸= 0.
Furthermore ¸= 0:001 has more impact on the perfor-
mance than Pd = 0:9. This can be explained by the fact
that for ¸= 0:001 a target track may diverge because
of false measurements. The SIR-H joint particle filter

suffers the least from this.

Measured in terms of “both tracks OK” (Table II and

Figs. 2(a)—5(a)) the SIR-H joint particle filter performed

best, the IMMJPDA¤ second best, the SIR-H joint par-
ticle filter third and the IMMJPDA fourth. The both

tracks “OK” Figs. 2(a)—5(a) show a slight difference

for d < 0 and d > 0. This is because for d < 0 the target
trajectories cross each other before they have reached

zero velocity, while for d > 0 they do not cross (see
Fig. 1).

Figs. 2(a)—5(a) show that IMMJPDAand IMMJPDA¤

filters have oscillating variation in performance which is

lacking for SIR-H joint particle filter. This phenomenon

can be explained by the observation that the effect of

“overshoot” during a maneuver is for IMMJPDA and

IMMJPDA¤ more profound than for the SIR-H joint

particle filter, because the latter filters perform time

TABLE II

Average % Both Tracks “OK”

Scen. IMMPDA IMMJPDA IMMJPDA¤ SIR Joint SIR-H Joint

1 19 66 73 70 75

2 10 56 68 65 70

3 6 63 69 70 72

4 4 41 50 43 57

TABLE III

Average % Both Tracks “OK” or “Swapped”

Scen. IMMPDA IMMJPDA IMMJPDA¤ SIR Joint SIR-H Joint

1 28.3 99.96 100 97.8 96.2

2 18.9 92.5 96.8 91.6 94.6

3 8.5 99.8 100 97.6 95.8

4 5.6 76.6 80.96 66.0 82.3

TABLE IV

Average Number of Coalescing Scans

Scen. IMMPDA IMMJPDA IMMJPDA¤ SIR Joint SIR-H Joint

1 9.7 1.5 0.4 1.2 1.3

2 11.0 2.1 0.3 1.2 1.4

3 18.9 1.7 0.5 1.3 1.3

4 14.5 2.6 0.5 1.3 1.5

TABLE V

Average CPU Time Per Scan (in milliseconds)

Scen. IMMPDA IMMJPDA IMMJPDA¤ SIR Joint SIR-H Joint

1 16 22 23 385 439

2 38 54 48 7245 7959

3 14 20 20 377 438

4 38 61 56 7170 7810

extrapolation from only one state estimate per mode,

whereas the SIR-H joint particle filter performs time

extrapolation for many particles per mode. The effect is

that for some d values IMMJPDA and IMMJPDA¤ ac-
tually benefit from overshoot in the sense that it keeps

the tracks separated, while for other d values the over-
shoot actually moves the tracks closer to each other.

This effect is less profound for the SIR-H joint particle

filters due to time extrapolation for many particles per

mode; hence oscillating variation in performance does

not occur.

Rather surprisingly, IMMJPDA¤ outperforms Hy-
brid SIR joint particle filter regarding the both tracks

“OK” or “Swapped” criterion (Table III and Figs. 2(b)—

5(b)) on the “easy” scenarios 1—3. Scenario 4 shows

that IMMJPDA¤ is outperformed on this criterion by
the SIR-H joint particle filter when missing and false

measurement conditions become more challenging.

Table IV and Figs. 2(c)—5(c) show that IMMJPDA¤

performs best on track coalescence avoidance. Next best
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Fig. 2. Simulation results for scenario 1. (a) Both tracks “OK” percentage. (b) Both tracks “OK” or “Swapped” percentage.

(c) Average number of “Coalescing” scans.

are the two particle filters, and fourth is IMMJPDA.

The “dip” in “mean time in coalescence” around zero

is due to the definition of “coalescing tracks.” That is,

when the targets are actually moving very close to each

other, which is the case for small d values, there are
no coalescing scans counted. Scans are only counted

coalescing when the targets are separated from each

other far enough.

Table V indicates a significant CPU-time increase

for joint particle filters relative to the others. The in-

crease is one order of magnitude for scenarios without

clutter and two orders of magnitude for scenarios with

clutter.

It should be noticed that there are various comple-

mentary methods available that allow to reduce the num-

ber of particles and/or CPU time significantly without

reducing performance (e.g. [1], [38]). Hence when read-

ing Table V one should be aware that these methods

have not been investigated in this paper.

10. CONCLUDING REMARKS

In this paper we studied the problem of maneuvering

target tracking from possibly missing and false mea-

surements. The density of the false measurements was

assumed to be non-homogeneous. For this problem we

studied particle filtering as an alternative to multi-target

track maintenance versions of IMM in combination with

PDA or JPDA. The approach taken is to first character-

ize the problem in terms of filtering for a jump linear

descriptor system with both Markovian and i.i.d. coeffi-

cients, and next to use this for the derivation of the exact

recursive equation for the Bayesian filter (Theorem 1).

This result has been used to develop two SIR type parti-

cle filters, one which resamples a fixed number of joint

particles (SIR joint particle filter) and one which resam-

ples a fixed number of joint particles per joint mode

(SIR-H joint particle filter). We have also shown that

application of the approximating assumptions of [18] to
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Fig. 3. Simulation results for scenario 2. (a) Both tracks “OK” percentage. (b) Both tracks “OK” or “Swapped” percentage.

(c) Average number of “Coalescing” scans.

the exact Bayesian filter equations (Theorem 2) leads to

a compact version of their IMMJPDA filter equations.

For this (compact) IMMJPDA filter we also developed

a track-coalescence-avoiding version (IMMJPDA¤) by
introduction of a particular pruning of permutation hy-

potheses. All our four novel filter algorithms cover the

situation of non-homogeneous density of false measure-

ments.

Through Monte Carlo simulations for a series of

simple scenarios with two targets and two associated

tracks these four novel filters have been compared to

each other and to a filter which runs a single target

IMMPDA (per track). All four clearly outperformed

IMMPDA. The particle filters used 104 joint particles;

with this the SIR-H joint particle filter appears to ap-

proximate the Bayesian filter well, whereas the SIR joint

particle filter did not. On all scenarios, IMMJPDA¤ per-
forms significantly better than IMMJPDA and some-

times even remarkably close to the performance of

the SIR-H joint particle filter. Apparently, the perfor-

mance reduction by the IMMJPDA approximation of

the exact Bayesian filter can be partly compensated

by introducing the additional IMMJPDA¤ approxima-
tion. IMMJPDA and IMMJPDA¤ both perform less

well than the SIR-H joint PF on the following two

points:

² The performance of both IMMJPDA and IMMJPDA¤
varies heavily with changes in the geometry of en-

countering target paths; this varying kind of behavior

is not shown by the SIR-H joint particle filter;

² The SIR-H joint particle filter is least sensitive to

divergence of track because of switching to running

on false measurements; this advantage shows both

when targets are clearly separated from each other

and when target paths come close to each other.

Recently both [12] and [47] explored the poten-

tial effect on performance of extending IMMJPDA and
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Fig. 4. Simulation results for scenario 3. (a) Both tracks “OK” percentage. (b) Both tracks “OK” or “Swapped” percentage.

(c) Average number of “Coalescing” scans.

IMMJPDA¤ to joint tracking versions, i.e., to versions
where the multi-target states/modes are jointly esti-

mated. Tugnait [47] showed slightly improved sim-

ulation results for a particular example. In [12] we

showed examples where the joint tracking versions

performed better and examples where they performed

worse. On average, the joint tracking versions even

performed worse. In [14], [13] we showed that an

appropriate pruning of permutation hypothesis also

yields a track-coalescence-avoiding joint tracking ver-

sion. The two weak points listed above for IMMJPDA

and IMMJPDA¤ also apply to these joint versions.
Because the computational load of IMMJPDA¤ is

one to two orders of magnitude lower than the compu-

tational load of the SIR-H joint particle filter is, this

may be a fair reason to prefer IMMJPDA¤ over the
SIR-H joint particle filter for particular applications.

One should also be aware that the efficiency of the

SIR-H joint particle filter can be significantly improved

by incorporating various methods from literature (e.g.

[1, 38, 42]).

In addition to the option of improving the efficiency

of the SIR-H joint particle filtering, it is an option to

improve the adaptation of the output equations. In this

paper we considered the mean and covariance of target

states only, and thus averaged over the states of all

particles. One alternative approach might be trying to

incorporate the permutation hypothesis pruning strategy

of IMMJPDA¤ within the output equations of the SIR-
H joint particle filter. Another direction [32] is to apply

clustering of particles prior to averaging.

There are several other interesting extensions pos-

sible for the jump-linear descriptor framework and the

novel exact and approximate filters. For example, to in-

corporate the target initiation and termination approach

of [39], or to incorporate unresolved measurements (e.g.

[31]).
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Fig. 5. Simulation results for scenario 4. (a) Both tracks “OK” percentage. (b) Both tracks “OK” or “Swapped” percentage.

(c) Average number of “Coalescing” scans.

Appendix A

PROOF If Á= 0 we get

pxtjμt,Át,Ẫt,Yt (x j μ,0, Ẫ) = pxtjμt,Yt¡1 (x j μ): (A1)

Else, i.e., Á 6= 0:
pxt jμt,Át ,Ẫt,Yt (x j μ,Á, Ẫ)

= pxt jμt,Át ,Ẫt,yt,Lt ,Yt¡1 (x j μ,Á, Ẫ,yt,Lt)
= pxt jμt,Át ,Ẫt,yt,Lt ,ỹt ,Yt¡1 (x j μ,Á, Ẫ,yt,Lt, Ẫyt)
= pxt jμt,Át ,ỹt ,Yt¡1 (x j μ,Á,Ẫyt)
= pz̃tjxt,μt,Át (Ẫyt j x,μ,Á) ¢pxtjμt ,Yt¡1 (x j μ)=Ft(Á, Ẫ,μ)

(A2)

with

Ft(Á, Ẫ,μ)
¢
=pz̃tjμt ,Át,Yt¡1 (Ẫyt j μ,Á): (A3)

Subsequently

¯t(Á, Ẫ,μ)
¢
=ProbfÁt = Á, Ẫt = Ẫ,μt = μ j Ytg

= pÁt,Ẫt,μt jYt(Á, Ẫ,μ)

= pÁt,Ẫtμtjyt ,Lt,Yt¡1 (Á, Ẫ,μ j yt,Lt)
= pyt ,Ẫt ,μtjÁt ,Lt ,Yt¡1 (yt, Ẫ,μ j Á,Lt)
¢pÁt jLt,Yt¡1 (Á j Lt)=c0t

= pyt ,Ẫt jμt,Át ,Lt ,Yt¡1 (yt, Ẫ j μ,Á,Lt)
¢pÁt jLt,Yt¡1 (Á j Lt)pμt jYt¡1 (μ)=c0t: (A4)

If Á 6= 0, we have Dt > 0 and
ẪTt Ẫt =©(Ãt)

TÂtÂ
T
t ©(Ãt) =©(Ãt)

T©(Ãt) = DiagfÃtg:
(A5)

Hence

Ãt =DiagfÃtg1Lt = ẪTt Ẫ1Lt
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with 1Lt an Lt column vector with Lt 1-valued compo-
nents.
Moreover, because

Ẫt©(Ãt)
T = ÂTt ©(Ãt)©(Ãt)

T = ÂTt (A6)

this shows that the transformation from (Ãt,Ât) into Ẫt
has an inverse. For the first term on the right hand side
of (A.4) this implies:

pyt,Ẫt jμt,Át ,Lt,Yt¡1 (yt,Â
T©(Ã) j μ,Á,Lt)

= pyt,Ãt,Ât jμt,Át ,Lt,Yt¡1 (yt,Ã,Â j μ,Á,Lt): (A7)

Furthermore, because the transformation from (yt,Ãt,Ât)
into (z̃t,ft,Ãt,Ât) is a permutation, we get for Lt >
D(Á)> 0

pyt ,Ãt ,Ât jμt ,Át ,Lt ,Yt¡1 (yt,Ã,Â j μ,Á,Lt)

= pz̃t ,ft ,Ãt ,Ât jμt ,Át ,Lt ,Yt¡1 (Â
T©(Ã)yt,©(1Lt ¡Ã)yt,Ã,Â j μ,Á,Lt):

(A8)

Substituting (A8) in (A7) and this into (A4) yields:

¯t(Á,Â
T©(Ã),μ)

= pz̃t ,ft ,Ãt ,Ât jμt ,Át ,Lt ,Yt¡1 (Â
T©(Ã)yt,©(1Lt ¡Ã)yt,Ã,Â j μ,Á,Lt)

¢pÁt jLt ,Yt¡1 (Á j Lt)pμt jYt¡1 (μ)=c
0
t: (A9)

Hence, for Lt > D(Á)> 0, this yields:

¯t(Á,Â
T©(Ã),μ)

= pz̃t jμt,Át ,Yt¡1 (Â
T©(Ã)yt j μ,Á)

¢pftjÁt,Ãt,Lt(©(1Lt ¡Ã)yt j Á,Ã)pÃt jÁt,Lt(Ã j Á)
¢pÂtjÁt(Â j Á)pLtjÁt (Lt j Á)pÁt(Á)pμtjYt¡1 (μ)=c00:

(A10)

Evaluation of the terms in (A10) yields:

pft jÁt ,Ãt ,Lt(©(1Lt ¡Ã)yt j Á,Ã)
= pft jFt,Ãt(©(1Lt ¡Ã)yt j Lt¡D(Á),Ã)

(6b)
=

Lt¡D(Á)Y
i=1

pf([©(1Lt ¡Ã)yt]i)

=

Lt¡D(Á)Y
i=1

pf([©(1Lt ¡ ẪTẪ1Lt )yt]i) (A11)

pÃt jÁt ,Lt (Ã j Á,Lt) =D(Á)!(Lt¡D(Á))!=Lt! (A12)

pÂtjÁt (Â j Á) = 1=D(Á)! (A13)

pLt jÁt (Lt j Á) = pFt (Lt¡D(Á))
= (F̂t)

(Lt¡D(Á)) expf¡F̂tg=(Lt¡D(Á))!
if Lt ¸D(Á)

= 0 if Lt < D(Á) (A14)

pÁt (Á) =
MY
i=1

[(Pid )
Ái (1¡Pid )1¡Ái]: (A15)

Substituting (A3) and (A11) through (A15) into (A10)
and subsequent evaluation yields for Lt > D(Á)> 0:

¯t(Á,Â
T©(Ã),μ) = Ft(Á,Â

T©(Ã),μ)

¢ F̂(Lt¡D(Á))t ¢
Lt¡D(Á)Y
j=1

pf([©(1Lt ¡ ẪTẪ1Lt )yt]j)

¢
MY
i=1

[(Pid )
Ái (1¡Pid )(1¡Ái)] ¢pμt jYt¡1 (μ)=ct

with ct a normalizing constant. It can be easily verified
that the last equation also holds true if Lt =D(Á) or if
D(Á) = 0. Together with (6c) this yields (14).

Appendix B

PROOF From the proof of Proposition 1 we have

Ft(Á, Ẫ,μ) = pz̃tjμt ,Át (Ẫyt j μ,Á)

=

Z
RMn
pz̃tjxt,μt,Át ,Yt¡1 (Ẫyt j x,μ,Á)

¢pxt jμt,Át,Yt¡1 (x,μ)dx (B1)

pz̃tjxt ,μt ,Át(Ẫyt j x,μ,Á)

=

MY
i=1
Ái=1

pz̃it jxit ,μit ([©(Á)Ẫ]iky
k
t j xi,μi): (B2)

This together with C2) yields:

Ft(Á, Ẫ,μ) =
MY
i=1

fit (Á, Ẫ,μ) (B3)

with

fit (Á, Ẫ,μ) =

Z
Rn
pz̃it jxit ,μit ([©(Á)Ẫ]iky

k
t j xi,μi)

¢pxit jμit ,Yt¡1 (x
i j μi)dxi if Ái = 1

= 1 if Ái = 0: (B4)

Together with C3) the last two equations yield (29) and

(30a,b,c).

Substitution of (B2) and C2) into (13) yields

pxit jμit ,Át ,Ẫt ,Yt(x
i j μi,Á, Ẫ)

=
pzit jxit ,μit ([©(Á)Ẫ]iky

k
t j xi,μi) ¢pxit jμit ,Yt¡1 (xi j μi)
fit (Á, Ẫ,μ)

:

(B5)

If pxit jμit ,Yt¡1 (x
i j μi) is Gaussian with mean x̄it(μi) and co-

variance P̄it (μ
i), then the density pxit jÁt,Ẫt,μit ,Yt (x

i jÁ, Ẫ,μi) is
Gaussian with mean x̂it(Á, Ẫ,μ

i) and covariance P̂it (Á,μ
i)

satisfying for Ái 6= 0,
x̂it(Á, Ẫ,μ

i) = x̄it(μ
i) +Kit (Á,μ

i)[[Ẫyt]i¡ hi(μi)x̄it(μi)]
P̂it (Á,μ

i) = P̄it (μ
i)¡Kit (Á,μi)hi(μi)P̄it (μi)
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and for Ái = 0:

x̂it(Á, Ẫ,μ
i) = x̄it(μ

i)

P̂it (Á,μ
i) = P̄it (μ

i)

Hence, pxit jμit ,Yt (: j μi) is a Gaussian mixture, and all equa-
tions in Theorem 2 follow from a lengthy but straight-

forward evaluation of this mixture.
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Face localization is a face detection problem where the number

of people is known. We present a comparison between different

algorithms fusion methods dedicated to the localization of faces in

color images. Data to combine result from an appearance model

supported by an auto-associative network, an ellipse model based

on Generalized Hough Transform, and a skin color model. We intro-

duce and compare several fusion methods like the Bayesian classi-

fier with parametric or non-parametric technique, a fuzzy inference

system, and a weighted average. Given an input image, we compute

a kind of probability map on it using a sliding window. The face

position is then determined as the location of the absolute maximum

over this map. Improvement of basic detectors localization rates is

clearly shown and prevalence of the weighted average is reported.
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1. INTRODUCTION

Face detection in an image has become a very im-

portant issue for many applications such as biometric,

presence detection, video-conferencing, visiophony, in-

dexation, car driver monitoring, virtual reality, lips read-

ing, gaze tracking. Because of the high variability of the

pattern to be detected, face detection without any hy-

pothesis is a tough task [38]. Fixed camera and known

background, use of motion information [6], strong hy-

pothesis on the face location [20], scale or pose [33],

special background for an easy extraction of the sil-

houette [24] or special lighting conditions (reflected in-

frared [9] or thermal infrared [11]): face detection appli-

cations often start with making assumptions. The face

localization issue [4, 17, 20, 33] can be regarded as a

face detection problem knowing the number of faces

in the image. The location of the faces in the image–

position and extent–is searched. The face localization

issue is addressed in the present paper. It is not simpler

without additional assumption.

A wide variety of works have been reported in

face detection, much more than for face localization.

Structural and holistic approaches, common in Pattern

Recognition, are applied. Structural approaches try to

detect facial landmarks (eyes, mouth, nose, head con-

tour) and combines the results using models [3] or con-

stellation analysis [2]. [3] built a generic model of the

face through a joint distribution of parts (features mod-

els) positions. [12] brings a matching algorithm for pic-

torial structures (models of parts and connection be-

tween parts) applied to representation of an articulated

human body. In [37] a hierarchical knowledge-based

method finds face candidates at a low resolution and

verifies presence of eyes and mouth at a high resolu-

tion. [39] uses deformable templates using a radiomet-

rical model of eyes. For each facial feature, a statisti-

cal (GMM) model of Gabor filters responses is built in

[17]. Features are detected over the whole image, then

similarity with a constellation model is computed on a

scanning-window, resulting in a coarse face localization.

Then a cascade of two boosted SVM gives the accurate

location of the face. In [2] component classifiers (SVM)

are trained over selected parts of the face (bridge of the

nose, nose, eyebrows, eyes, cheek, mouth): a constella-

tions analysis performs face/non-face classification on

a scanning window at several scales. [4] implements

a similar approach at three scales with a skin/mouth

color segmentation pre-processing. SVM are also used

to model eyes and mouth in [33] at only one scale (cor-

responding to face’s size).

Holistic approaches of face detection process a sub-

image of the input image into a feature vector (mo-

mentum, projection, gray level, wavelet: : : ). These ap-
proaches estimate the classifier parameters on a train-

ing set, usually using a boosting procedure. Parameters

can be weights of neural networks [16], [29], of weak

classifiers [36] as described in Section 6.3 or terms of
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a covariance matrix (statistical classifier) [34]. As in

many detection issues, it is almost impossible to de-

fine the opposite class, the non-face patterns, which

drives researchers to choose the model-based approach.

A model does not require counter examples [13], which

may seems an advantage but actually decreases classi-

fier efficiency: generalization in a high dimension space

(221 for 13£ 17 sub-images) is tough without knowing
where are the patterns that might be confused. Another

way is to design a combination of several detectors

(classifiers). [13] and [14] did it to perform face de-

tection. In [13] uses a conditional mixture of constraint

generative models (Diabolo see Section 4) trained on

different ranges of face orientation. Product and sum

rules are used in [14] to combine two detectors based on

edge orientation (edge orientation matching and Gener-

alized Hough Transform) and one based on gray levels

(Sparse Network of Winnows). Classifier combination

has also been used in character [27, 28] and face recog-

nition [7].

Our approach makes co-operate holistic and struc-

tural approaches: it is quite different but related to [14].

Generalization capability of a single classifier is limited,

especially in a high dimension space. A more reliable

decision can be obtained by combining output of sev-

eral experts [27]: the face localization issue is divided

in sub-problems easier to deal with. Various information

is extracted from the same image using different kind

of detectors. Some try to model global features while

the others concentrate on structural features. Each face

cues are searched by a relevant expert: elliptical shape,

global appearance and skin color. Cooperation between

experts exploits their complementarities and can also

handle conflicts between sources.

An auto-associator network appearance based model

and an ellipse detector are based on the image gradient’s

direction. A luminance-free skin color model is also im-

plemented. The combination of these three detectors is

done via various methods that are compared: Bayesian

classifier, fuzzy inference system and neural networks.

Section 2 describes the skin color model, Section 3

details the ellipse model, and Section 4 deals with the

appearance based model. Several combination strategies

are presented in Section 5. Comparison of the combina-

tions is detailed in Section 6 along with our experimen-

tal results and the contribution of the combination to the

face localization problem. The last section is devoted to

conclusions and prospects.

2. SKIN COLOR MODEL

Skin color classification aims at determining whether

a color pixel has the color of flesh or not. Such a classi-

fication should overcome difficulties like different skin

tones (white, pink, yellow, brown, black: : : ) and scene
illuminations, and the fact that background pixels can

have the same color as a flesh type.

2.1. Color Spaces Definition

Two color spaces are investigated for skin color clas-

sification: HSV and YCbCr. These spaces are com-

monly used [26] in image processing for they are

expected to be more robust to lighting condition by

separating chrominance (color information) and lumi-

nance (grayscale levels) information. In a video sig-

nal, color images encoding separates the luminance and

chrominance information: this way television standards

(NSTC, Pal, Secam) ensured backward compatibility

with black and white television. Chrominance is the

color information to be added to the grayscale informa-

tion to obtain a color image in red, green and blue pri-

mary colors. Chrominance information is widely used

for skin color classification as it is expected to be a com-

mon cue between different skin tones contrarly to the

luminance. Skin color classifiers based on chrominance

tend to be more robust to different lighting conditions.

RGB conversion to YCbCr is linear (see (1))

Y = 0:299R+0:587G+0:114B

Cb = 0:564(B¡Y)+128
Cr = 0:713(R¡Y)+128:

(1)

Y channel is the luminance, Cb and Cr channels rep-

resent chrominance. We used the definition of [19], it

uses an RGB model that fits the phosphor emission

characteristics of older cathode ray tubes. Y, Cb and

Cr values range from 0 to 255. Variants of this defi-

nition that fit the phosphor emission characteristics of

newer tubes and other modern display equipment can

be found. YPbPr, YUV, YIQ are same or similar color

spaces.

HSV space is a non-linear transformation of RGB

space (see (2)): colors are defined by hue (H channel),

saturation (S channel) and luminance (V channel)

V =max(R,G,B), S = 255
V¡min(R,G,B)

V

H=

8>>>>><>>>>>:
30
G¡B
S

if V = R

30
B¡R
S

+90 if V = G

30
R¡G
S

+120 if V = B

: (2)

S ranges from 0 to 255, and represents the grayness

of the color: the lower the saturation of a color is the

more faded it appears (a monochrome color corresponds

to S = 0). H values are defined modulo 180 from red

(H = 0) through yellow, green, cyan, blue, and magenta,

and returns to red (H = 180). Similar color spaces in-

clude HSB, HLS, and HIS.

2.2. Skin Color Pixels Classification

A recent comparison of different skin color classi-

fication algorithms can be found in [26]. Linear [1, 5,
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TABLE I

Training and Validation Sets for Skin Segmentation

Dataset No. Images Skin Pixels Non-Skin Pixels

Training 500 18.2 million 120.9 million

Test 550 23 million 136.6 million

TABLE II

Confusion Matrix of the CbCr Fixed Range Skin Classifier

Classification Class Skin Non-Skin

Skin 77% 23%

Non-skin 17% 83%

6] and Bayesian classifiers [21, 26] are proposed and

compared in the present paper.

1050 images of the ECU database described in Sec-

tion 6.1 are used for training and assessment of skin

segmentation methods presented in the following sub-

section.

Repartition of the two sets is summarized in Table I.

These images are not used for face localization tests

(Section 6.2 and 6.3).

2.2.1. Rectangular Boundary in CbCr Plane
Linear classification uses a piecewise linear decision

boundary in the Cb-Cr plane. The following fixed-range

in Cb and in Cr is used to define skin color pixels:

Cb 2 [100 130] and Cr 2 [135 165]:
These thresholds were experimentally tuned using im-

ages with people. Skin being characterized by specific

chrominance information, the filter can be applied to

any ethnic skin color but our threshold is not universal

because the chrominance component is actually related

to the luminance value Y [18]. In poor or bright illu-

mination condition the filtered components are spurious

and in some cases no skin at all is filtered: this skin de-

tector is coarse but simple and we use it as a reference

for comparison with other skin classifiers.

This classifier results in a one point ROC curve (see

Fig. 3): Table II is the confusion matrix obtained over

the validation set.

2.2.2. Statistical Classifiers
The Bayesian decision rule is a popular method in

statistical pattern classification [10]. A color pixel ~X is
classified as a skin pixel if its likelihood ratio is higher

than a threshold:

P(~X j skin)
P(~X j non-skin) ¸ ¿ (3)

P(~X j skin) and P(~X j non-skin) are the conditional prob-
ability density functions (denoted pdf in this paper) of

Fig. 1. Back project of the histogram ratio.

respectively skin and non-skin color. ¿ is the decision
threshold. A given ¿ value results in a confusion matrix:
ROC curve of the classifier is obtained by varying the

threshold ¿ .
The computation of the pdfs is done using the his-

togram technique. In [31] face color is tracked using

this technique. Statistical repartition of skin pixels in

HS plane (or CbCr plane) is calculated in a 2D his-

togram. Scaling the histogram results in P(~X j skin).
Same operation is done with non-skin pixels to evaluate

P(~X j non-skin).
Ratio of the two histogram results in a likelihood

ratio table [31]: skin probability of a color pixel featured

by (H, S) values is then computed by look-up table.

Back projecting the histogram ratio onto the HSV (or

YCbCr) image results in a skin color probability image

as shown in Fig. 1.

H and S channels (respectively Cb and Cr channels)

feed the 2D skin and non skin histograms. 32 bins

per channel are allocated. [21] found that 32 bins are

optimal whereas [26] concludes that larger histogram

leads to finer pdfs estimation and better performances

when training samples are sufficient. As explained in

[26], when training set is not large enough, a larger

histogram results in a noisier pdf compared to a smaller

histogram size. Subsampling their original training set,

they found that the 256-bin histogram is more sensitive

to the number of training samples compared to the

32-bin histogram. And even with a huge sample number

the larger histogram is just a few percent more efficient

than a 32-bin histogram, justifying our choice.

In Fig. 2 it appears that skin and non-skin pixels are

pretty well-separated in the HS plane. On the opposite,

skin and non-skin pixel distributions in CbCr plane are

clearly overlapping. Therefore model the non-skin dis-

tribution brings poor improvement in HS plane and dra-

matically increases classification performance in CbCr

plane as shown by the ROC curves plotted in Fig. 3.

Assuming the non-skin pixel distribution is uniform,

the decision rule in (3) is simplified. A color pixel is

classified as skin color if

P(~X j skin)¸ ¿: (4)
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Fig. 2. Skin, non-skin and ratio histogram in HS plane (first line)

and CbCr plane (last line): hot colors correspond to high values.

Fig. 3. ROC of skin color classifier in HS space (a) and CbCr

space (b).

A classifier based on (4) uses the statistical repartition

of skin pixels regardless of non-skin pixels distribution.

Classification performance is represented with the

Receiver Operating Characteristic (ROC) curve: skin

segmentation performance for a given decision thresh-

old ¿ is measured in terms of correct detection rate and

false detection rate. Correct detection rate is the pro-

portion of skin pixels correctly classified whereas the

false detection rate is the proportion of non-skin pixels

classified as skin pixels. The ROC curve is obtained by

calculating these rates for all coherent ¿ values.
ROC curve of the classification based on Cb-Cr

statistical models of skin and non skin (decision rule

(3)) color pixels is plotted in red in Fig. 3(b). Skin

classifier based on statistical repartition of skin color

pixels (decision rule (4)) in the Cb-Cr plane is plotted in

blue in the same figure. The CbCr fixed range classifier

ROC point is plotted in red.

ROC curve of CbCr skin model is highly irregular

whereas classification that use the likelihood ratio is

quite satisfactory compared to state of the art reported

by [26]. In [26] the best classification performance is

obtained by a Bayesian classifier (decision rule (3)) in

the RGB space with the histogram technique: for a false

detection rate of 10% a correct detection rate of 82%

is reached whereas our classifier correct detection rate

is 75% for the same false detection rate. Moreover it

appears that modeling the non-skin distribution in the

CbCr space is crucial: a classifier only based on the

statistical repartition of skin pixels is not really efficient

with a correct decision rate of 50% for 10% of false

detection.

In Fig. 3(a), ROC curve of the classifier that models

both skin and non-skin distributions in the H-S plane

is plotted in red. ROC curve of the classifier modeling

only the skin distribution in the H-S plane is plotted in

blue.

Modeling non-skin distribution in the HS plane only

brings a slight improvement of skin color classification

performance compared to a classification based on the

skin distribution alone. Moreover, modeling the non-

skin distribution is not a satisfying approach as non-skin

color cannot be defined: such a distribution completely

depends on the non-skin training database. ROC of

the likelihood ratio classifier in Cb-Cr plane is a bit

better than ROC of the classifier based on skin color

repartition in H-S plane but it is also more irregular and

requires to compute the non-skin pixel distribution in

the Cb-Cr plane.

Therefore, we selected the Bayesian classifier in HS

space based on the skin color repartition as our skin

detector for the multi-scale segmentation of the face in

Section 6.3.

The CbCr fixed range classifier is also used for

combiners comparison presented in Section 6.2 for its

simplicity.

2.3. Skin Detector

For combination purpose (Section 5) each sub-

window of the original image is featured by a single

value. A retinal approach is implemented after the skin

color pixels classification stage. A sliding window of

fixed size (13£ 17) scans the skin filtered image and
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Fig. 4. SkinMap: proportion of skin pixels array.

Fig. 5. Four-quadrant inverse tangent and quantification of edge

orientation.

calculates the mean skin pixels probability at every po-

sition [32] as shown in Fig. 4.

The resulting array is named “SkinMap” and repre-

sents the face sub-image probability.

3. ELLIPSE DETECTOR BASED ON GENERALIZED
HOUGH TRANSFORM

3.1. Edge Orientation Field

Edge orientation information is processed by an

appearance-based model (so called Diabolo see Sec-

tion 4) and an ellipse detector (Generalized Hough

Transform).

Evaluation of the orientation of the gradient on

the edges requires a low pass filtering of the image:

see Fig. 5. Gradient field is estimated using Roberts

masks (2£ 2), so that horizontal gradient is calculated
by Ix = Ifiltered− [1 ¡ 1] and vertical gradient with Iy =
Ifiltered−

£
1 ¡1¤.

Then the gradient magnitude =
q
I2x + I

2
y is thresh-

old to define edge pixels. For the generalized Hough

transform, a global threshold is applied over the whole

input image. Orientations of these edge pixels are then

Fig. 6. Threshold of magnitude field defines edge pixels.

Fig. 7. Magnitude threshold to define edge is tuned to maximize

GHT performance over 168 images.

quantized on N = 36 values:

orien = round

μ
N

2¼
arctan2(Iy,¡Ix)

¶
mod N (5)

where arctan2 is the four-quadrant inverse tangent. This

function is depicted in Fig. 5 with an ellipse’s edge

orientation quantified on N = 8 values (Freeman chain
code) using (5).

For the Generalized Hough Transform edges are de-

fined as pixels with a magnitude greater than a threshold

equal to 12: see Fig. 6.

This threshold was tuned over 168 training images

containing only one person. This training corpus is

not overlapping with the test set used in Section 6.

For a given image, a Generalized Hough Transform is

computed (see next section) and the maximum of the

accumulator is defined as the location of the face. Using

ground truth we evaluate the number of faces correctly

localized versus threshold, see Fig. 7.

3.2. Ellipse Detector Based on Generalized Hough
Transform

The elliptical shape of the face is searched using

a Generalized Hough Transform: faces are modeled as

vertical ellipses with a specific eccentricity.
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Fig. 8. Generalized Hough Transform in case of an ellipse:

half-line votes accumulation.

The gray level dynamic of the input image is first

linearly adjusted between 0 and 255. This operation
proved to be better than performing histogram equal-

ization. Orientation of the gradient over the whole gray
level image is then determined. Then a Generalized

Hough Transform (GHT) is performed on the resulting

orientation map: the HT constitutes a popular method
for extracting geometrical properties [10, 32]. When

the edge orientation is used and when it is applied to
non parametric curves, the HT becomes the General-

ized HT. Each edge pixel votes for all possible location
of the shape (actually for the location of the barycen-

tre). For ellipse detection, there is a simplified structure
for the GHT based on the geometrical properties of el-

lipses.

The method consists in casting votes for a half-line
starting at each boundary pixel M with an orientation

determined by the edge one. The method consists in
casting votes for a line through each boundary pixel

with an orientation indexed in a look-up table by the
edge orientation. We suppose that we know the orienta-

tion of the ellipse. So for each point M, a simple look-up
table specifies the angle between the tangent Mt (to the

boundary) and the radius MO (O is the centre of an el-

lipse passing through M). Faces are modeled as vertical
ellipses with a specific eccentricity so we can build up

our look-up table to cast votes from each edge pixel,
knowing its gradient orientation. Fig. 8 illustrates an

ellipse case: some half-lines are drawn. Each pixel of a
line increment a vote array which is the accumulation

of all lines votes.
Accumulator maximum corresponds in the image to

the position most likely to be the center of an upright

ellipse with a horizontal minor axis a= 8, and a vertical
major axis b = 10. Fig. 9 illustrates an example of such
an accumulation by Generalized Hough Transform in
case of a cluttered scene. Finally, the accumulator is

scanned with a 13£ 17 sliding window and at each
position a weighted average of the number of vote is

Fig. 9. Edge detection (a), Generalized Hough Transform

accumulator (b) computed over gradient orientation of the edge and

resulting HoughMap (c).

Fig. 10. DiaboloMap: array of reconstruction errors calculated at

all positions of the image.

calculated as shown in Fig. 9: the resulting array is
named “HoughMap.”

4. APPEARANCE-BASED MODEL OF THE FACE

The Diabolo is an auto-associator network: its num-
ber of output equals its number of input. It is trained to
reconstruct an output identical to its input, and only face
examples constitute the training database. It implements
a specialized compression for its hidden layer has much
less units than input or output does. So a non-face im-
age should be badly compressed and the reconstruction
error (square root of the mean square error between the
input and the calculated output) would be higher than
for a face image. The Diabolo was successfully used for
handwritten character recognition [30], face detection
[13] and compression [8].
As represented in Fig. 10, reconstruction error is

computed on a fixed size window sliding over the entire
image. The resulting array is called “DiaboloMap”:
clear color correspond to small reconstruction error.
Diabolos we implemented have one hidden layer.

Hidden neurons have sigmoid activation function, and
output neurons have linear activation function, see
Fig. 11. The training set is made of face images (see
Table III). Faces are various in terms of pose, lighting
conditions and skin tones.
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Fig. 11. Architecture of a Diabolo: target is equal to input, training set is made of faces examples.

TABLE III

Training and Cross-Validation Sets of Diabolos

Set Training Cross-Validation

No face images 1602 178

The training database is divided into two sets: one
for neural networks training, one for the cross-validation
and assessment of the best architecture. The cross-
validation face samples are extracted from 167 images:
amongst these images, 126 images contain only one
person and are used as an assessment set to optimize
the inputs coding.
Face examples are used to learn parameters (weights)

of the neural networks. Training is done using a gra-
dient descent with adaptative learning rate stopped by
cross-validation. Gradient descent algorithm is a stan-
dard backpropagation in which the network weights are
moved along the negative of the gradient of the cost
function. The cost function implemented here is the sum
over training examples of the square reconstruction er-
ror between target and simulation (output calculated by
the MLP).
Networks are trained for pattern model: target is

equal to the input. Before training the MLP weights
must be initialized: a different initialization leads to
different weights, therefore to different networks. For a
given neural net architecture, several initializations must
be tested in order to avoid the network to fall in a local
minimum of the performance function different to its
global minima.
The Diabolo is fed with a specific coding of edges

orientation. Gradient field orientation is quantized on
N = 36 values as defined in Section 3.1 by (5). Edges
are defined by a local magnitude threshold depending
on the search sub-window. The threshold is defined over
each 13£17 sub-windows of the input image, so that
20% of the pixels are then regarded as edge: an example
is given in Fig. 12.
A global threshold over the whole image (face+

background) would result in a strong smoothing of
the face. A local threshold keeps facial features visi-
ble when the sear window is over the face, but it also
emphasizes edges over non-face subwindow, which re-
sults in lot of false alarms if the face location is defined

Fig. 12. Estimation of gradient field and edges orientation.

Fig. 13. Training example pre-processing.

as location of the smallest reconstruction error of the

whole image (minimum of DiaboloMap).

Each pixel is described by two features (Icos,Isin):
Icos(i,j) = cos((2¼=N) ¢ orien(i,j)) and Isin(i,j) =
sin((2¼=N) ¢ orien(i,j)) for the edge pixels, where orien
refer to (5); (0,0) is allocated to the non-edge pixels.

An elliptical mask filters the interior part of the face as

shown in Fig. 13.

We compared that coding with two others: feeding

the Diabolo with grayscale face image or with the

gradient field as illustrated in Fig. 14.

For the three selected input coding the best Diabolo

architecture (i.e. optimal number of hidden neuron) cor-

respond to the best face localization rate. Face localiza-
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Fig. 14. Other input coding: grayscale image (a) and gradient field

(b).

TABLE IV

Performances Versus Input Coding

Input Coding Gray Levels Gradient Field Orientations Coding

Localization

rate

27% 18% 40%

tion rate is evaluated over an assessment set: 126 images

from which the cross-validation set was extracted that

contain only one face. For each image a DiaboloMap

is built as in Fig. 10 and face location is defined as the

position of the minimum (smaller reconstruction error

over the whole image). Face localization performance of

the Diabolo fed with the three kind of inputs are given in

Table IV: gradient orientation coding reaches the higher

localization rate (40%), followed by the gray level cod-

ing of inputs (27%) and the gradient field (18%).

This comparison was done using a 21£ 27 retina
to build the DiaboloMaps. We also investigated 17£ 22
and 13£ 17 retina: for the selected pre-processing of the
training examples (see Fig. 13) the optimal retina size is

13£ 17. It is the best size for face localization purpose
and also for computational effort. Finally the optimal

Diabolo architecture is made of 290 inputs and outputs,

and 18 hidden neurons. Note the dimension reduction

from 442 (2£ 13£ 17 elements in Icos and Isin) to 290
due to the elliptical filtering of inputs.

Interior part of faces is used to train the network

using an elliptical mask to reduce border effects and

in order not to model the elliptical shape of the face.

The Diabolo is trained to model facial features: mouth

and eyes, mainly. This approach is different from a face

detector based on neural network which takes the face

contour into account: this enhances the face detection

rate. Our approach aims at compute face contour and

facial features separately. This way, redundant informa-

tion between the appearance-based model and the el-

lipse model are reduced.

5. COMBINATION OF THE SOURCES FOR FACE
LOCALIZATION PURPOSE

5.1. Overview of the Combination Approach

We have implemented three holistic detectors for a

color image, which result in three maps: DiaboloMap,

Fig. 15. Overview of the face localization system.

TABLE V

Training Set of Combiners

Class Face Non face

No. Samples 19.579 482.783

HoughMap, and SkinMap. When each detector alone

failed to model facial features, the combination of the

three sources can achieve this task very well. The com-

bination can also handle conflicts between sources.

For that purpose, each detector map is linearly ad-

justed onto [¡1 1]. Using the three detectors, a search
window at position (i,j) in the original image is then
featured by Ii,j = [H D S].
Several architectures exist for data fusion, we can

divide them into three kinds: serial (or sequential),

parallel and hybrid (mixing sequential and parallel,

with feed-back or interaction: : :). Our face localization
system has a parallel architecture (see Fig. 15).

Combination rules are various, depending on the

application: mean, weighted sum, product or maximum

of experts outputs, majority vote, fuzzy rules, neural

networks, or neuro-fuzzy inference for example.

Several algorithms have been proposed for combin-

ing our three detectors: parametric and non-parametric

combination strategies are described in this sub-section.

The next section is dedicated to their comparison.

Table V summarizes the number of face and non-

face samples used for training combiners: these data

were extracted from the cross-validation images used to

stop Diabolo training.

5.2. Bayesian Classifier: Parametric and
Non-Parametric Approaches

For combination purpose the input data of the

Bayesian classifier are the normalized response of our

three detectors. A sub-image featured by a 3D vector
~X = [H D S] is classified as a face if

P(~X j face)
P(~X j non-face) ¸ ¿ (6)

where P(~X j face) and P(~X j non-face) are respectively
the conditional probability density function (pdf) of the
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face and non-face class. ¿ is the decision threshold
usually estimated over a training set. As the application
presented in this paper is face localization and not
face detection, no estimation of ¿ was done. The face
location shall be the one that maximize the value of the
likelihood ratio (left hand side of (6)):

Face location$max

Ã
P(~X j face)

P(~X j non-face)

!
(7)

Parametric and non-parametric estimations of the class-
conditional pdf are implemented.
The histogram technique is a non-parametric method.

For each class a 3D histogram is computed using the
training examples. Due to the small amount of face ex-
amples, it has only five bins per dimension: 53 being
equal to 125, a mean of about 160 examples per bin is
available. We combine the two histograms obtained into
one histogram which bins values are the ratio of the bins
frequency of the two preceding histograms (face/non-
face). Resulting histogram values are then scaled into
[0 255]. When a test image is processed three maps
are calculated corresponding to our three face models
over a sliding search window at each position of the
image (see Fig. 15). For each position of the test image
a 3D vector is computed and a back-projection of the
histogram is done by a look-up table operation. This
back-project is the FusionMap illustrated in Fig. 15,
face location should correspond to the position of its
maximum value.
A parametric approach models both skin and non

skin class-conditional pdf by a unimodal Gaussians.
The face location is then defined as the position of the
maximum of the logarithm of the likelihood ratio:

(~X ¡ ~Mface)
T§¡1face(~X ¡ ~Mface)

¡ (~X ¡ ~Mnon-face)
T§¡1non-face(~X ¡ ~Mnon-face)

where the parameters of the Gaussian (§,M) are the
mean and covariance matrix of each class computed
over the training set. If ~Xi = (Hi Di Si)T is the ith
example out of Nfaces of the face training set:

~Mface =
1

Nfaces

NfacesX
i=1

~Xi

is the mean faces vector andX
face

=
1

Nfaces

NfacesX
i=1

(~Xi¡ ~Mface) ¢ (~Xi¡ ~Mface)
T

is the covariance matrix of the face class.
Other parametric functional forms of the pdf were

investigated. The simplest is a unimodal Gaussian of
the face class: this assumes that the non-face class is
uniformly distributed. In this case the face location is
defined as the maximum of the square Mahalanobis
distance to the mean center of face training examples.
Mixture of Gaussians were also tested but led to very
poor results. Due to the small amount of training data
available, this method is out of scope in this paper.

Fig. 16. Membership functions of the class “H high” and

“H small”.

5.3. Fuzzy Inference System

A face sub-image should be featured by a small Di-

abolo reconstruction error D, a high number of GHT

votes H and a high proportion of skin pixels S. A classi-

cal set approach would define a threshold on each face

model values. Hhigh = fH jH> threshg the set of high
H (for instance) values and Hsmall = fH jH< threshg
the set of small H values would be separated by this

sharp boundary: a H value slightly under that threshold

is then considered as small which make little sense. The

fuzzy logic approach is more flexible by admitting par-

tial membership to a class [40]. It is also coherent with

natural language by introducing the degree of member-

ship of H value in the class “high” and “small”:

Hhigh = fH,¹high(H)g and Hsmall = fH,¹small(H)g:
In Fig. 16 a value of H = 0:6 belongs the “high”

class at 80% and the “small” class at 10%.

S value is the normalized proportion of skin in the

sub-image: as H, high values of S correspond to high

probability of the sub-image to contain a face. D value is

the normalized Diabolo reconstruction error: the smaller

it is, the higher is the probability of the sub-image to be

a face one. For these three sources, two class are defined

with respect to their value: high and small. As shown in

Fig. 16, the membership functions for these classes are

Gaussian functions centered respectively in +1 and ¡1.
To combine our three sources, a fuzzy inference sys-

tem of Mamdani type [22] was built. A fuzzy inference

system requires fuzzifying inputs, to formulate a set of

linguistic rules and logical operators, and to aggregate

results of the fuzzy rules. Three output class are defined

as fuzzy sets: non-face, unknown, and face patterns.

Each output set is defined by a Gaussian member-

ship function centered in 0 (non-face), +0:5 (unknown)
or +1 (face), as shown in Fig. 17.

Considering only the ellipse model (H value), a

simple statement can be formulated: if H is high then
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Fig. 17. Output fuzzy sets membership functions.

Fig. 18. Implication method: “then” operation.

sub-image is a face. Consequent of this fuzzy rule

assigns a fuzzy set to the output which membership

function is a truncation of the “face” set depending on

the degree of support and according to the implication

method (i.e. the mathematical definition of “then”).

Degree of support in this particular statement only

involving H value is the degree of membership in the “H

high” class. The “then” operator results in a membership

function equal to the minimum between the degree of

support and the output fuzzy set membership function

(the green area in Fig. 18 showing the case of H = 0:6).
Finally a decision can be made out of the resulting

function by resolving a single value representing the

probability of the sub-image to be a face pattern. A

typical defuzzification method is the calculation of the

center of the area under the curve (centroïd).

Now consider a statement with multi-part antece-

dent: if H is small or D is high or S is small then sub-

image is unknown. The “or” fuzzy operation is math-

ematically defined as maximum of the three calculated

degree of membership: this minimum is the degree of

support for the output “unknown” set. In Fig. 19 a sub-

image is featured by [H D S] = [0:6 0:8 ¡0:2]: for each
source, a degree of membership is calculated. The “or”

operation resolves them to a single number: the higher

Fig. 19. Application of fuzzy operator “or”.

Fig. 20. Fuzzy inference diagram representing the rules.

value is kept as degree of support for the rule shaping

the “unknown” fuzzy set.

One rule by itself leads to a very poor localization

rate. We found experimentally that the three following

fuzzy rules are optimal for face localization purpose:

–if H is high and D is small and S is high then

sub-image is a face,

–if H is small or D is high or S is small then sub-

image is unknown,

–if H is small and D is high then sub-image is a

non-face.

The “and” operator is defined as the minimum of the

degrees of membership. The rules are given the same

weight, and order of the rules is unimportant as they

are evaluated in parallel as shown in Fig. 20.

One can notice that the skin detector is not taken

into account in the last rule: our skin color model is not

elaborated enough and this is also noted with a weighted

average combination (see next section).

Aggregation of the output fuzzy sets consists in

calculating a membership function as the maximum of

the three consequent membership functions calculated

before (see Fig. 21).

This membership function is finally defuzzified by

calculating the centroid of it, which provide a single

number: the probability that the input sub-image is a

face one.

This process is applied at all position of the original

image to construct the “fuzzy” FusionMap used to

define face location.
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Fig. 21. The aggregate output fuzzy set.

Fig. 22. Combining the three detectors with a multi-layer

perceptron (MLP).

5.4. Weighted Average and Multilayer Perceptron

We investigate neural combination of the three face

models: the three sources are the inputs of the multi-

layer perceptron (MLP). The MLP hidden neurons have

sigmoid activation function, and the output neuron has

a linear activation function as described in Fig. 22.

The training database is divided in two set: one for

neural networks training, the other for assessment of the

best architecture. 12713 face examples and 341316 non-

face examples are used as training examples to learn pa-

rameters (weights) of the MLPs. Training is done using

a gradient descent with adaptative learning rate stopped

by cross-validation. The cost function implemented here

is the sum over training examples of the square differ-

ence between target and network output.

The network is trained for pattern classification:

target is +1 when the input [H D S] corresponds to

a face and ¡1 else. Before training the MLP weights
must be initialized: for a given neural net architecture

(i.e. number of hidden neurons), several initializations

are tested.

During the test phase the MLP output is a value of

the interval [¡1 +1]. Network output is calculated at
all location of the image, which produces the “neural”

FusionMap: face location is the position of the max-

imum of this map. The optimal MLP architectures is

searched over 50 images (not used during training)

containing only one face. MLPs with different num-

ber of hidden neurons, and different initialization of the

weights are trained then assessed over this set. This ex-

haustive search leads us to the conclusion that the best

architecture correspond to one output neuron. Actually,

a growing number of hidden cells do not dramatically

decreases the localization rate: for numbers of hidden

neurons less than 3 the rates are quite the same order.

The natural approach is to choose the simplest architec-

ture for the MLP. That is to say the best neural combi-

nation is a weighted average of the inputs:

FusionMapi,j = a.Hi,j +b.Di,j +c.Si,j

where a = 0:2280, b =¡0:2620, and c = 0:1229.
One can notice the weight of the S input: as in the

preceding section, it is half the weight of Hough or

Diabolo response. This is due to the fact that the skin

color model is pretty coarse.

This weighted average is compared to a simple

average (same weight for the inputs: a = b = c = 1) in

the next section.

6. EXPERIMENTAL RESULTS

In order to compare the combination strategies we

used the ECU face database [26]: we compare the face

localization rate of the algorithms on a test set of color

images not used during training. Each of these image

contains only one person, and the rectangle bounding

the face is the same size over the whole set. A face is

considered as correctly localized or not using the face

ground truth and verification of a human operator. A

correct localization of the face contains the eyes, the

mouth, and is well-centered on the face.

6.1. ECU Face Detection Database

The ECU face and skin detection database was cre-

ated in Edith Cowan University [26]. It has three sets of

images particularly useful in our study (see Fig. 23). The

first set is made of original color images. The second set

is the corresponding ground-truth location of the faces.

The third set is the ground-truth of skin pixels.

Almost all the images are taken from the Web, and

were selected to have a wide variety of illumination

conditions, background (mostly complex), face poses

(upright, pan, tilted) and skin tones. It is widely depicted

in [26].

Our test uses a set of 1353 images non overlapping

with the training and cross-validation corpus. Each test

image contains only one person.

6.2. Combiners Comparison

In the preceding section, different combination al-

gorithms have been proposed. They include Bayesian

classifier with parametric (unimodal Gaussian model

of face and non-face) and non parametric techniques

(histogram), fuzzy inference system, neural combina-

tion and weighted average.

It is important to outline the contribution of combi-

nation, and a reference for face localization rates.
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Fig. 23. Sample from the ECU database: (a) original image, (b) face ground truth, (c) skin ground truth.

If we only consider the appearance-based model

alone, the face location is defined as the minimum of

Diabolo reconstruction error over the whole image, as

a face image should be better reconstructed than a non-

face image. Under this consideration, 656 faces out

of 1353 are correctly localized: the localization rate is

48.5%. Such a poor rate is explained in Section 4: the
Diabolo is trained on examples of the interior part of the

face, so we can see it as an eyes and mouth model. As an

eye or a mouth detector it results in many false alarms in

a cluttered scene [17]: non-face pattern is not compiled

in the Diabolo. Moreover, edges are defined over each

sub-window which makes appear patterns in a non-flat

sub-image. And even if the Diabolo response shows a

local minimum over the face area, lower minima can be

found in unexpected area of the image.

Using the ellipse model alone, the face location is

defined as the maximum number of vote given by the

Generalized Hough Transform: 903 faces are correctly

localized. In this case the face localization rate is higher:

67%. The GHT is a cumulative approach more efficient
than the appearance-based model. Missed faces of the

test set correspond to an ellipse localized in a complex

background with a lot of edge pixels from which a lot

of vote were forecast to the accumulator.

The Bayesian classifier with the histogram technique

reaches a rate of only 22%. That means that the face and
non-face distribution are strongly interleaved in the “H-

D-S” space (see Fig. 24). The fuzzy approach is more

efficient with a face localization rate of 72%; it brings
an improvement of 5% compared to the ellipse detector

alone.

A classification based on the modeling of the face

by a unimodal 3D Gaussian gives a poor 5% of success.

It means that the unimodal Gaussian center of the face

class is not far enough from the non-face examples (see

Fig. 25). When the three detectors respond strongly over

the face region, it results in a feature vector HDS close

to A = [1 ¡ 1 1] (area outlined by the red ellipse in
Fig. 24(a). On the opposite, a lot of non-face sub-image

are featured by a point close to point B = [¡1 1 ¡1] in
HDS (blue ellipse in Fig. 24(b) which corresponds to

a non-face pattern for the three basics detectors. These

two points should be correctly classify with a high con-

Fig. 24. Faces (a) and non-faces (b) distributions in the HDS space.

fidence. But the face Gaussian center (Fig. 25) is at

an equal Euclidian distance to these points: even with

the covariance matrix of the face model it is not possi-

ble to discriminate samples from the two class. Results

dramatically change if we use discriminant classifica-

tion with both Gaussian distribution of face and non

face. Indeed unimodal 3D-Gaussian of face and non-

face Bayesian classification achieves 84%. The non-
face class Gaussian center is close to the non-face HDS

point clouds as we can see on Fig. 25.
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Fig. 25. Gaussian centers of the face and non-face distribution.

Fig. 26. (a) HoughMap (b) DiaboloMap (c) SkinMap

(d) FusionMap and (e) the corresponding face localization on the

original image.

Anyway, compare to all these methods, the weighted

average performs the best. With a localization rate of

86% it outperforms all the other approach. In order to

measure the effect of the weights on the detection result,

a simple average (i.e. all weights equal 1) is performed.

With a rate of 80% it performs well too, but less than the

weighted average with the weights learned by gradient

descent.

Amongst the multiple classifier systems, linear com-

biners are the most frequently used: a recent study can

be found in [15] with a theoretical analysis based on the

framework of [35]: the analysis of linear combiners is

still a promising path of research.

Fig. 26 shows detectors response and their combi-

nation using the weighted average.

In the first example of Fig. 26, the ellipse detector

failed to locate correctly the face, while the combination

system did. In the second example, the SkinMap maxi-

Fig. 27. Multiple faces localization: the number of faces is

supposed to be known.

mum is very low (0.23), but the combination (weighted

average) brings a correct face location.

To validate the face localization rate of the weighted

average combination, a second test was performed on

205 multiple faces images (non overlapping with the

training and cross-validation corpus) containing a total

of 482 faces. Number of people in each image is known

in a face localization approach.

In single face images, face location is defined as the

position of the maximum of FusionMap. In a N faces

image (N is supposed to be known in a localization

problem) the N highest maxima (with a sufficient dis-

tance to avoid overlapping detections) of FusionMap

correspond to the location of the faces. 396 faces are

correctly localized (82%). Some examples of correct lo-
calization are shown in Fig. 27.

For all tests of this sub-section the face size is also

supposed to be known: this information can be retrieved

if we know the distance between the person and the

camera. Videos available at [25] were particularly in-

teresting for this approach, showing people in front of

their computer: face size does not vary widely along the

image sequence.

The performance of the weighted average approach

at a known scale on video sequences was tested on three

videos sequences. In each image of the sequences only

one person is present. Fig. 28 gives examples of the

sequences, with the localization rates on each sequence.

6.3. Face Localization: Multiple Scale Approach

In the previous tests, face size is supposed to be

known: it is the case when distance between the person

and the camera is given. When this information is

unavailable, a multi-scale approach of the weighted

average combination is implemented. To localize faces

of various sizes a pyramid of images is produced: the

image is repeatedly subsampled with a classical [16, 36]
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Fig. 28. Examples of face localization by our system on videos

with the number of faces correctly localized. (a) Jamie sequence: 40

correct localization/43 images. (b) Ilkay sequence: 72 correct

localization/80 images. (c) Geoff sequence: 24 correct

localization/24 images.

Fig. 29. Images Pyramid to deal with face size.

scale factor of 1.2. For each scale a FusionMap is built

using a sliding window of a fixed size: face location

probabilities are then compared across the different

scales. Fig. 29 illustrates the images pyramid principle.

That multiscale approach is tested over 923 images

containing one person with a face width superior to

100 pixels, so that the number of scale to scan is less

than twelve. 537 faces are correctly localized: the face

localization rate is 58%. This rate is small compare to
state of the art face detector [36]. We used the Haar

face detector publicly available in [19]. A statistical

model of the face, made of a cascade of boosted tree

classifiers, is trained. The cascade is trained on face

and non-face examples of fixed size 24£ 24. A 24£ 24

Fig. 30. A Haar-like feature is defined by its shape and its location

relative to the 24£ 24 sliding window.

Fig. 31. Cascade of boosted classifiers.

sliding window scans the image and each sub-image

is classified as face or non-face. To deal with face

size the cascade is scaled with a factor of 1.2 by

scaling the coordinates of all rectangles of Haar-like

features. Hundreds of features are used as these shapes

are applied at different position in the 24£ 24 retina:
a feature is defined by its shape (including its size

depending on a scale factor that defines the expected

face size) and its location (see Fig. 30).

A simple decision tree classifier, referred to as

“weak” classifier, processes the feature value. A com-

plex classifier Fk = sign(
Pn
i=1 cifi) is iteratively com-

puted as a weighted sum of weak classifiers using a

boosting procedure. At each iteration a weak classifier

parameters are trained and a weight cj is assigned to
the weak classifier relatively to its error on the train-

ing set. The trained weak classifier is then added to the

sum and the training samples weights are updated in

order to emphasize the misclassified ones to train the

next weak classifier. Finally an attentional cascade is

implemented: it is a cascade of boosted classifiers with

increasing complexity. As shown in Fig. 31, the simplest

classifiers comes first and is intended to reject majority

of sub-window before calling more complex classifiers.

This face detector is robust to illumination condition

but hardly work when face is too slanted. Fig. 32

illustrates the limitation of the detector: in the first row

the face is correctly detected. In the second row the

face moved slightly from the previous position and is

not detected.

Localization rate measures a face localizer perfor-

mance: a false positive also correspond to a missed
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Fig. 32. Limits of the face detector.

face as only one location is searched in the image. A

face detector is evaluated by its ROC performance: at

least two scores are required, the detection rate (com-

plementary of the missed rate) and the false positive

rate. The cascaded face detector is more efficient than

the weighted average combination. It detects 713 faces

out of 923 (77%) with 78 false detections; 210 faces are
missed. It is, with [16] the state-of-the-art in face detec-

tion. Its multi-scale approach is more efficient that the

usual pyramid of images produced by down-sampling

the original image: it scales the Haar filters, so that the

search window contains a “high” resolution sub-image

whatever the scale considered. In 210 images (23%)

of the 923 test images, the face is missed. They corre-

spond to faces highly rotated (pan, tilt or roll rotation)

or occluded. On these particularly difficult images the

weighted average localizer performs quite well with 90

faces correctly localized out of 210 (43%). It appears

that our approach could be used as an alternative to

the Haar detector when it fails to detect anyone in the

scene. It potentially could decrease the missing rate

by 43%.

7. CONCLUSION AND PROSPECTS

This paper aimed to present a significant contribu-

tion to the image fusion task with application to face

localization. We have presented three different detec-

tors: skin color, auto-associative multi-layer perceptron,

and ellipse Hough Transform. We proposed three vari-

ous combination schemes and compare them: Bayesian

classifier, fuzzy logic and connexionist. An awesome

improvement of localization rate is brought by the two

last methods.

For the face detection/localization issue, several im-

provements are in progress: more sophisticated skin

color models like ellipsoidal threshold, Gaussian den-

sity functions or mixture of Gaussians [38]. A more ef-

ficient appearance-based model is also elaborated, based

on the Viola&Jones face detector [36]. For the combi-

nation part, it is not clear when and why a combination

method outperforms the others: quantitative and qualita-

tive investigations of classifiers output correlation effect

on combiners performance are under study.
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Fusion of Redundant
Information in Brake-By-Wire
Systems Using a Fuzzy Voter
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In safety critical systems such as brake-by-wire, fault tolerance

is usually provided by virtue of having redundant sensors and

processing hardware. The redundant information provided by such

components should be properly fused to achieve a reliable estimate

of the safety critical variable that is sensed or processed by the

redundant sensors or hardware. Voting methods are well-known

solutions for this category of fusion problems. In this paper, a

new voting method, using a fuzzy system for decision-making, is

presented. The voted output of the proposed scheme is a weighted

average of the sensors signals where the weights are calculated based

on the antecedents and consequences of some fuzzy rules in a rule-

base. In a case study, we have tested the fuzzy voter along with the

well-known majority voting method for a by-wire brake pedal that

is equipped with a displacement sensor and two force sensors. Our

experimental results show that the performance of the proposed

voting method is desirable in the presence of short circuits to ground

or supply, excessive noise and sensor drifts. Voting error (in terms

of mean square error) is reduced by 82% by the proposed fuzzy

voting method, compared to majority voting.
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1. INTRODUCTION

Brake-by-wire is a frontier technology that will al-

low many braking functions to switch to electronic ac-

tuation. Its deployment will lead to more effective and

safe braking systems, elimination of hydraulic technol-

ogy, release of space and reduction of maintenance.

Design and implementation of brake-by-wire systems

has recently attracted interest from researchers in au-

tomotive and control engineering [9—12, 17]. The gen-

eral architecture of a brake-by-wire system is shown (in

schematic form) in Fig. 1. The figure shows that a large

variety of sensors are utilised in a brake-by-wire sys-

tem and therefore their consistent operation is vital for

the functionality of such a system. To achieve a high

level of coherency amongst such a large collection of

sensors (mandated by the safety requirement of a brake

system), the use of sophisticated data fusion techniques

is unavoidable.

Fig. 1. A schematic architecture of a brake-by-wire system.

A brake-by-wire system, by nature, is a safety criti-

cal system and therefore fault tolerance is a vitally im-

portant characteristic of this system. As a result, a brake-

by-wire system is designed in such way that many of its

essential information would be derived from a variety

of sources (sensors) and be handled by more than the

bare necessity hardware. Three main types of redun-

dancy usually exist in a brake-by-wire system:

1) Redundant sensors in safety critical components

such as the brake pedal in Fig. 1.

2) Redundant copies of some signals that are of par-

ticular safety importance such as displacement and force

measurements of the brake pedal copied by multiple

processors in the pedal interface unit in Fig. 1.

3) Redundant hardware to perform important pro-

cessing tasks such as multiple processors for the elec-

tronic controller unit (ECU) in Fig. 1.
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Reliability, fault tolerance and accuracy are the main

targeted outcomes of the fusion techniques that should
be developed especially for redundancy resolution in-

side a brake-by-wire system. In order to utilise the exist-

ing redundancy, voting algorithms need to be evaluated,

modified and adopted to meet the stringent requirements
of a brake-by-wire system.

Several well known voting algorithms have been

widely used in fault tolerant systems such as avionics

and railway systems [6—8, 13] and fault tolerant VLSI
circuits [4—6, 8, 13]. The n-input majority voter [1] pro-
duces a correct result if at least [(n+1)=2] voter inputs
match each other. In cases of no majority, the voter gen-

erates an exception flag, which can be detected by the
system supervisor to move the system toward a safe

state. As an extended version of majority voter, plural-

ity voter [2] implements “m out of n” voting, where
m is less than a strict majority. Median voter is a mid-
value selection algorithm. Assuming an odd number of

redundant inputs, this algorithm successively eliminates

pairs of outlying values until a single result remains.

The weighted average voter [21], on the other hand,
calculates the weighted mean of its redundant input val-

ues. Parhami [16] examined the performance of differ-

ent voting techniques, in terms of their execution time,

and proposed efficient implementations of a variety of
algorithms.

There is no agreement checking in weighted average

and median voters [15]. Hence, they are not appropriate
for safety critical applications such as braking. In the

case of lack of majority agreement, majority voters

give no result in the output and instead a flag is set.

In a brake-by-wire system, however, “no result” is not
acceptable as the output of fusion. Instead, a status bit is

generated for each sensor.1 If the sensors do not agree,

invalidity of the voter output will be deduced from the

status bits. Another problem with a majority voter is its
considerable output discontinuity in the event of long-

time disagreements [14, 18]. Latif-Shabgahi and his

colleagues tried to solve this problem by introducing

a smoothing voter in which an agreement-checking
threshold is adaptively set when the voter produces no

result. While their proposed method results in a lower

number of no result events in the output of the voter,

such events are not completely eliminated.
As an alternative solution for the problem, we pro-

pose to use the mean of agreeing sensors as the output

of a majority voter and use their median value if there is

no agreement. In this method that we call hard voting,
a status bit is set if the sensors agree, and reset if they

don’t. The main issue in this voting method is how to

set the geometric distance threshold [18] value by which

sensor agreement is checked. Due to sensor conversion
errors, there is almost always a distance between two

agreeing sensors of different types. Therefore, distance

1Henceforward, by sensor, a source of information is intended. It can

be a redundant sensor, a redundant signal or a redundant processor.

threshold should be large enough to prevent incorrect
decisions about sensor agreements in the presence of
sensor conversion errors. A large value for the distance
threshold in the hard voting method will, however, give
rise to late fault detection if the fault causes a grad-
ual change in the sensory signal. Such faulty gradual
changes in sensory signals usually happen because of
drifts, short circuits,2 and sensor noise that gradually
increases with temperature.
Genetic algorithms have also been applied for voting

[19]. This approach, however, is only efficient when
used with off-line calculations and in particular, for
cases when the population of redundant components is
large.
In this paper we propose a new voting method,

called soft voting (in contrast to its alternative, hard
voting), using a fuzzy logic paradigm. By using fuzzy
logic rule-base inference, a faulty sensor is gradually
removed from the output of our proposed soft voter.
Instead of status bits, a faultiness measure is defined
for each sensor that gradually increases in the event
of faults. Although fuzzy inference and fuzzy systems
have been utilised for sensor fusion in drive-by-wire
applications, they have been employed merely to gen-
erate control commands or signal estimates for control
and estimation applications in drive-by-wire technology
[3, 20].
The fuzzy voter introduced in this paper is novel in

the sense that it actually realises an adaptive weighted
averaging mechanism for voting in which the weights
are intelligently determined by the fuzzy inference en-
gine. This inference engine is designed in such a way
that faulty sensors are automatically detected based on
the geometric distance between their outputs and other
sensory measurements. As such distances grow, the
weights corresponding to faulty sensors gradually de-
crease toward zero. To our knowledge, fuzzy systems
have not been applied for voting in such a scheme.
For voting applications in systems with redundant

sensors (or information sources), our proposed soft
voter has the following advantages compared to other
existing methods: Firstly, it does not output “no result.”
Secondly, it is capable of early detection and rejection
of faulty sensors. Thirdly, its noise tolerance is higher
than existing methods (due to the automatic fault de-
tection and noise rejection phenomenon realised by the
fuzzy inference machine). In addition, the output of our
proposed voter does not suddenly jump or fall in case
of signal short-circuits, and finally its computational
complexity is comparable with simple voting methods
like majority voters (particularly for a small number of
sensors). These advantages all together make the pro-
posed voter significantly efficient for real-time voting
in redundant multi-sensor systems. We emphasize that
most of the many voting techniques in the current lit-

2The RC filters that are connected to the inputs of ADCs (analog to

digital converters) cause a gradual change in sensory signals when a

short circuit happens.
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erature have been designed for voting on multiple deci-
sions (equivalent to fusion in decision or symbol level)

while the method proposed in this paper and the meth-

ods reviewed in this section are applicable to voting on
redundant signals i.e., the cases involving signal-level

fusion.

We introduce our soft voting method in Section 2.

Implementation of a soft voter for fusion of the redun-

dant information provided by three sensors of a brake

pedal is presented in Section 3. Then comparative exper-

imental results of hard and soft voting methods on real

sensory data will also be given in this section. Among

the voting methods reviewed in this paper, hard voting is

the closest to the proposed fuzzy voter in a sense that it

is also a weighted-averaging voter but the weights have

binary values and jump to zero in the case of a faulty

sensor. Our soft voter is capable of early detection of

faulty sensors and makes the weights gradually decrease

toward zero in case of such faults. Due to their similarity

and their meaningful difference, the fuzzy soft voter and

the hard voter have been compared in Section 3 as a fair

comparison. Section 4 concludes this paper. Although

our method has been implemented and experimented

for fusion of redundant safety critical components in a

brake-by-wire system, the general scheme of our pro-

posed fuzzy voter, explained in Section 2, can be applied

to fuse redundant information in any application with

safety critical issues and fault tolerance requirements.

2. PROPOSED SOFT VOTING METHOD

The block diagram of the proposed fuzzy voter for

fusion of redundant information is shown in Fig. 2. In

this diagram, n sources of information (redundant sen-
sors, signals or hardware) are called S1,S2, : : : ,Sn. Ini-
tially, low-pass filtering (to reduce the noise) and miss-

ing data handling (by using a multi-step ahead pre-

dictive filter [10, 11]) are performed on the raw sen-

sory data. Then the signals are converted to an inter-

nal representation, which is a common format for the

multi-source information. This conversion is required

because different types of information (e.g. position

data in millimetres and force information in Newton)

should be converted to their equivalent values in a com-

mon format (internal representation) so that they have

the same physical dimension before being compared

and fused by a voter. The converted signals denoted

by x1,x2, : : : ,xn are processed by an agreement evalua-
tion block, resulting in n(n¡1)=2 metrics denoted by
f®i,j j i= 1, : : : ,n¡1; j = i+1, : : : ,ng. In this block, the
agreement of each pair of signals is quantified by an

Euclidian distance measure. For example the agreement

of the two sensors Si and Sj is evaluated by the following
equation:

®i,j = jxi¡ xj j (1)

where xi and xj are the converted signals corresponding
with the sensors Si and Sj . In the final step, the sensory

Fig. 2. Block diagram of the proposed fuzzy voter for fusion of

redundant sensory information.

data x1,x2, : : : ,xn and their agreement evaluations f®i,jg
are passed on as inputs to a box that is responsible for

fusion by voting. This box is a fuzzy system, comprising

the common three subsystems i.e., fuzzification, a fuzzy

rule-base and defuzzification. The fuzzy system has

two outputs: a voted value as the main fusion output,

and n “faultiness measures” (instead of status bits) for
the sensors. Each faultiness measure is a quantitative

evaluation of voter’s belief in the faultiness of a sensor

in [0,1], with a value of 1 for total belief.

A hard voter outputs a fused value and n status bits,
showing the occurrence of faults in the sensors. More

precisely, the hard voter does not need a fuzzy rule-base.

Instead, its outputs are determined based on the results

of comparing ®i,j values with an agreement threshold.
For instance, in the case of n= 3 if ®1,2 and ®1,3 are
higher than the threshold (i.e., S1 and S2 do not agree
with each other; so do the pair of S1 and S3) and ®2,3 is
lower than the threshold (i.e., S2 and S3 agree with each
other), then the hard voter will deduce that S1 is faulty.
In this case, the fused output will be the average of S2
and S3 and the faultiness status bits will be 100 for S1,
S2 and S3, respectively.
The agreement threshold is important in the voting

process. It is tuned based on the ®i,j values in a nor-
mal working condition, when no sensor is faulty. They

should be greater than the maximum ®i,j values in nor-
mal conditions, in such a way that conversion errors

don’t cause the voter to incorrectly assume that two sen-

sors disagree. However, if a sensor gradually deviates

from its true values because of sensor drifts or noise

or short circuits, then the large thresholds cause a long

delay in detection of the fault by a majority voter.

Our proposed soft voting method is mainly intended

to solve the problem of late fault detection, and to pre-

vent large discontinuities in the fusion output. Like any
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Fig. 3. Brake pedal and its sensors in our case study.

fuzzy system, ®i,j inputs are fuzzified first. We define
three fuzzy sets of Large, Medium and Small agree-

ments by their membership functions. These definitions

are based on empirical maximum values of ®i,j , derived
from measurements and conversions. In practice, we

collect some measurements from fine sensors and calcu-

late the ®i,j values for each multi-sensory measurement.
In case of triangular membership functions, if the max-

imum of ®i,j values is ®max, then breaking points of the
Small fuzzy set are 0—1:7®max, the breaking points of
the Medium fuzzy set are ®max—1:7®max—2:3®max, and
the breaking points of the Large fuzzy set are 1:7®max—
2:3®max. Generally, the application experts can deter-
mine the proper levels of ®i,j set as breaking points for
Small, Medium and Large fuzzy sets. Based on the logic

of majority voting, each fuzzy rule in the rule-base de-

termines a voted output and n faultiness measures. For
example to vote three sensors, a typical fuzzy rule is

expressed as follows:

IF

S1 and S2 agreement is Small
AND S2 and S3 agreement is Large
AND S3 and S1 agreement is Small
THEN

The fused output is the average of S2 and S3
AND S1 faultiness is Large
AND S2 faultiness is Small
AND S3 faultiness is Small.

This rule explains what is logically expected as a

voting result if S1 does not agree with the other two
sensors. The final defuzzified fusion output is calculated

as a weighted average of all possible expected outputs

by the following equation:

Fused Output =

MX
i=1

(wiOi)

,
MX
i=1

wi (2)

where M is the number of rules in the rule-base, Oi is
the fused output as it appears in the consequence of the

ith fuzzy rule and the weight wi is the product of mem-
bership values of the conjoined parts of the antecedent

of the rule. If the exemplar rule given above is the kth
fuzzy rule in the rule-base, then Ok = (x2 + x3)=2 where
x2 and x3 are the filtered sensory signals of S2 and S3
after conversion to the internal representation, as shown

in Fig. 2. These weights smoothly change from 0 to 1 or

reverse, and the fused output is smoothly switched from

one vote to the other, hence the name soft voter. Sensor

faultiness measures are defuzzified into crisp outputs by

a fuzzy centroid method. In this method, a fuzzy number

is transformed to crisp by taking the centre of gravity of

its membership function. More precisely, if Y is a fuzzy
number with its membership functions determined

as ¹Y(y), then the centroid crisp of Y is given as

below:

y =

Z +1

¡1
®¹Y(®)d®:

3. EXPERIMENTAL RESULTS

We implemented our fuzzy voter to fuse the redun-

dant information provided by three sensors mounted on

a brake-by-wire pedal. Two sensors measure the force

and the third sensor measures the pedal displacement.

Although the sensors are different, they are redundant

sources of information in the sense that they provide

measurements for the same quantity: driver’s brake de-

mand. A photograph of the brake pedal and its sensors

are displayed in Fig. 3.

As we have shown in the brake-by-wire diagram

in Fig. 1, the displacement and force signals are pre-

processed (low-pass filtering and missing data handling)

by fault tolerant processors in the pedal interface unit
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and then transferred to four wheels via a fault tolerant

communication bus (e.g. a LIN-bus). The processed

sensory data are also sent to an electronic control unit

(ECU) that includes a number of redundant processors

generating the high level braking commands, such as

anti-skid braking system (ABS), vehicle stability control

(VSC) or traction control (TC).

In order to provide a reliable estimate for the driver’s

brake demand, pedal sensor data are voted in the ECU,

where the resulting brake demand is then fused with the

other vehicle sensor data (e.g. wheel speed or INS–

Inertial Navigation System–sensors like accelerome-

ters and gyros) to generate four final brake commands.

To activate the brake actuators, these commands are sent

to the local controllers in the four brake callipers via a

fault tolerant time-triggered communication network. If

for any reason the ECU is faulty then pedal sensory

data will be voted in the local controller of each wheel

unit, leading to generation of a brake response on each

wheel. The main purpose of voting is to detect sensor

faults (such as excessive noise, short circuits or sensor

drifts) and to remove the effects of faulty measurements

from the brake demand. In the presence of a fault or a

substantial level of noise in sensor signals, they will

not agree with each other. A voter should detect these

disagreements and use them to identify faulty sensors.

A hard voter simply discards faulty sensor data and out-

puts the average of agreeing sensors.

Fig. 4 shows a block diagram of the pedal sensor

fusion scheme which is the revised version of the di-

agram shown in Fig. 2, for our experiments. S1 and
S2 are the two force sensors giving f1 and f2, and S3
is the displacement sensor with its signal denoted by

x. Force is the quantity selected as the internal rep-
resentation for fusion of the three sensors. In other

words, the pedal displacement signal is converted to

equivalent force signals f̂1 and f̂2 to be compared with
the signals provided by the other two sensors. In or-

der to perform this conversion, a model is required to

mathematically relate the three signals x, f1 and f2.
The passive push-return mechanism of the pedal can

be modelled with an ideal spring in parallel with a

damper, as shown in Fig. 5. The two force sensors are

located at the two ends of the paralleled spring and

damper model. Since the acceleration of pedal move-

ments is too small to be considered in the model, the

effect of the pedal mass is neglected. Thus, the two

force sensor measurements are very close and have

been simply labelled with f in Fig. 5 and the follow-
ing equations. Based on the simplified damper-spring

model, the following equation expresses the measured

force signals in terms of the measured displacement

signal:

f = kx+b _x (3)

where k and b are the spring and damping factors,
respectively.

Fig. 4. Block diagram of pedal sensor fusion.

Fig. 5. A simplified model of the pedal and its sensors.

In order to validate the model and estimate its pa-

rameters, we ran a number of experiments and collected

the three sensors measurements. In these experiments,

the pedal set was installed in a car and a driver used it

for different braking scenarios such as continuous soft

brakes, frequent push-release and panic brakes. Using

the collected sensory data, we examined the linearity

between force, displacement and velocity using a least

squares (LS) technique. More precisely, we utilised the

recorded signals f, x and dx=dt and obtained a LS esti-
mate of the parameters k and b in (3). This resulted in a
low correlation coefficient and large difference between

the measured forces f and the force values f̂ = kx+ b _x.
These results showed a poor linear relationship between

those quantities and a single linear model that would

describe the repeated experiments could not be found.
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Fig. 6. Force signals versus displacement sensors at the time instants when the pedal is stationary.

Thus, a linear model for our spring and damper is not

sufficient and their nonlinearity should also be taken

into account. We examined a generalised version of the

above linear model (3):

f = g1(x) + g2( _x): (4)

In order to find the proper mathematical form of

g1, we examined the recorded force and displacement
data for the stationary pedal, i.e., the data samples

with almost zero velocity. Fig. 6 shows the force ver-

sus displacement plotted at the time instants when the

pedal is stationary. The very close distance between the

two static force signals confirms our assumption on

negligibility of the spring and damper masses. Fig. 6

also shows that g1(x) can be properly modelled by a
quadratic polynomial:

f̂jdx=dt=0 = Ax2 +Bx+C: (5)

This model complies with the fact that the spring

force substantially increases when it is compressed be-

yond a linear region. Using the recorded static data, we

achieved a LS estimate for the parameters A, B and C
in (5).

For the function g2 in (4), another quadratic model
was chosen and its parameters were also estimated by

the LS technique. The viscous friction substantially

increases when the pedal speed rises beyond the linear

damper model, and this phenomenon is actually realised

by the quadratic model for g2. The models used for
conversion of displacement measurements to equivalent

force values are presented as follows:

f̂1 = A1x
2 +B1x+C1 +D1 _x

2 +E1 _x (6)

f̂2 = A2x
2 +B2x+C2 +D2 _x

2 +E2 _x: (7)

The LS estimates of A1 and A2 are very close to
each other, and so are B1 and B2, C1 and C2, D1
and D2, and E1 and E2. This validates our assumption
on negligibility of the effect of pedal mass and the

sufficiency of a first order dynamic model. As shown

in Fig. 4, after using the quadratic models, shown in

(6)—(7), with their estimated parameters to convert the

displacement sensor output to their equivalent force

signals, the four signals f1, f2, f̂1 and f̂2 can now be

utilised to evaluate the sensors agreement by calculating

®1,2, ®1,3 and ®2,3 values. More precisely, the internal
representation of signals in Fig. 4 is the “force” quantity

and f1 and f2 are same as x1 and x2 in Fig. 2. Since
the displacement measurement x is converted to two

estimates f̂1 and f̂2 (to be compared with f1 and f2), x3 in

Fig. 2 has two corresponding signals in Fig. 4: f̂1 and f̂2.
These values along with the forces and converted

signals are then given to a fuzzy system where the agree-

ment values are fuzzified. Fig. 7 shows the definitions

of the fuzzy sets for fuzzification of agreement evalu-

ations. Because of the conversion errors, ®-coordinates
of the break-points of the piece-wise linear member-

ship functions for ®2,3 and ®1,3 are higher than the ®-
coordinates of the break-points for ®1,2. Since a lower
®i,j value means stronger agreement between Si and Sj ,
the Large and Small fuzzy sets are associated with lower

and higher ®i,j values, respectively. The resulting mem-
bership values are then used by a fuzzy rule-base for

fuzzy inference. In our case study, the rule-base con-

tains seven fuzzy rules as shown in Table I. The third

fuzzy rule is the same rule stated before in Section 2.

Based on the details given in Table I, the final fused

value for the driver’s brake demand is computed by (2)
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Fig. 7. Definition of three fuzzy sets for fuzzification of S1 ¡ S2 agreement evaluation: Similar definitions apply to fuzzification of
agreement evaluations of S1 ¡ S3 and S2¡ S3, however due to conversion errors the ®-coordinates of the break-points f0:039,0:065,0:091g

change to higher values of f0:52,0:78,1:04g.

TABLE I

The Fuzzy Rule-Base Utilised in for Sensor Fusion in our

Experiments with the Brake-by-Wire Pedal

(L = Large, M=Medium, S = Small)

S1 S2 S3
i ®12 ®23 ®13 Oi Faultiness Faultiness Faultiness

1 L L L f1 + f̂1 +f2 + f̂2
4

Small Small Small

2 L S S
f1 +f2
2

Small Small Large

3 S L S f2 + f̂2
2

Large Small Small

4 S S L f1 + f̂1
2

Small Large Small

5 L M M
f1 +f2
2

Small Small Medium

6 M L M f2 + f̂2
2

Medium Small Small

7 M M L f1 + f̂1
2

Small Medium Small

with Oi and wi given as below:

w1 = ¹L(®12)¹L(®23)¹L(®13), O1 = (f1 + f̂1 +f2 + f̂2)=4

w2 = ¹L(®12)¹S(®23)¹S(®13), O2 = (f1 +f2)=2

w3 = ¹S(®12)¹L(®23)¹S(®13), O3 = (f2 + f̂2)=2

w4 = ¹S(®12)¹S(®23)¹L(®13), O4 = (f1 + f̂1)=2 (8)

w5 = ¹L(®12)¹M(®23)¹M(®13), O5 = (f1 +f2)=2

w6 = ¹M(®12)¹L(®23)¹M(®13), O6 = (f2 + f̂2)=2

w7 = ¹M(®12)¹M(®23)¹L(®13), O7 = (f1 + f̂1)=2:

Fig. 8. Fuzzy sets definition for defuzzification of sensor faultiness

measures.

In the consequences of the rules, the faultiness mea-

sures belong to one of the Small, Medium or Large

fuzzy sets with piece-wise linear membership functions

as shown in Fig. 8. The resulting faultiness measures

are defuzzified by the fuzzy centroid method.

In our validation experiments, we applied different

types of brake commands in various conditions such

as a continuous panic brake, short-time panic brakes,

short-time soft brakes, a continuous soft brake and so

on. Total length of each experiment was 110 s. Fig. 9

shows the signals of the three sensors recorded during

the validation experiments. S1 and S2 signals (pedal
force measurements) are very close to each other and

one of them is shown in Fig. 9. In this figure and

the next signal plots, the vertical coordinate units are

“volt,” as the filtered “electrical” measurement signals

and their fused measures have been plotted and all
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Fig. 9. Recorded sensory signals in normal (no fault) condition.

of them are proportional to the internal representation

quantity (force) with a constant factor. We then injected

several types of synthetic faults into S1 during the time

interval [80,110] and used both the hard and the soft

(fuzzy) voting methods to fuse the sensor data. Fig. 10

shows the results when the S1 signal is short-circuited

to supply. Because of the RC circuitry connected to the

input of analogue to digital converters (ADCs) the S1
signal does not suddenly jump to the supply voltage, but

rises gradually. Soft voting detects the fault and removes

the S1 signal from voting process in a timely manner. We

also applied hard voting to detect the same fault. Fig. 11

shows the fused signal and its expected true values in

the time interval, starting 10 s before the short circuit

event. It is observed that the short circuit is detected

by hard voting after four seconds as the short circuit

starts at t= 80 s but the deviation of the fused signal

from the true signal returns to almost zero at t= 84 s.

During these four seconds the hard voter provides a

Fig. 10. Soft voting result when S1 is short circuit and gradually

rises toward supply voltage.

Fig. 11. Hard voting result when S1 is short circuit and gradually

moves toward supply voltage.

wrong fused measurement. This is fairly dangerous and

unacceptable in a brake-by-wire application.

Pedal sensors data may also drift due to temperature

variations during motor warm-up or cool-down periods.

Fig. 12 shows a linear drift of 1000 mV injected into

S1 and the result of soft voting by which the drift is de-
tected and removed. On the other hand, the hard voting

method does not detect the drift, because the thresh-

old of agreement evaluation is larger than the 1000 mV

drift. Hard voting result is presented in Fig. 13. Faulti-

ness measures resulted from soft voting in the presence

of the linear drift in S1 are also shown in Fig. 14. It is
observed that faultiness for S1 is always large and fault-
iness for S2 and S3 are initially large but decrease while
the drift in S1 grows. To examine the performance of the
proposed technique for a noisy signal, excessive noise
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Fig. 12. Soft voting result when there is a linear drift in S1.

Fig. 13. Hard voting result when there is a linear drift in S1.

was injected into the S1 signal as depicted in Fig. 15. As
shown in Fig. 16, soft voting has been able to effectively

detect and remove the noise from sensor fusion output,

and Fig. 17 shows that hard voting can not substantially

reduce the noise.

In order to compare the performance of the majority

(hard) voting method with our proposed soft voting

method quantitatively, we computed the mean square

error (MSE) for soft and hard voting methods in the

presence of various faults. Table II shows the result of

our error computation. Overall, the MSE was reduced

by 82% in soft voting compared to hard voting. That

is because of the early fault detection and removal

capability of the soft voter. Finally, it should be noted

that our proposed method is a voting method, i.e., we do

not expect it to detect a fault if it exists in the majority

of sensors (two or more sensors in our case study). For

Fig. 14. Faultiness measures resulted by soft voting result in

presence of a linear drift in S1.

Fig. 15. S1 signal in presence of excessive noise.

example if a short circuit happens for both S1 and S2,
then both the hard and the soft voter will incorrectly

deduce that S3 is faulty because it does not agree with
the other two sensors.

4. CONCLUSIONS

In this paper, we introduced a new method for

fusion of redundant sensory information in fault tolerant

systems with focus on a by-wire braking system. We

applied our method to fuse the redundant data provided

by two force sensors and one displacement sensor in a

by-wire brake pedal. Because of the sensor conversion

errors, sensor agreement thresholds in a majority voter

are so large that an unacceptable delay in fault detection

occurs. Our proposed soft voting method applies a fuzzy
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Fig. 16. Soft voting result when in presence of excessive noise

in S1.

Fig. 17. Hard voting result when in presence of excessive noise

in S1.

rule-base to perform voting. The fuzzy rules here are

designed in such a way that the voter output is smoothly

switched from one majority voted value to another in

case of a sensor fault. The proposed soft voter also gives

faultiness measures for all sensors.

The novel idea in our approach is that we calculate

the averaging weights as a normalised sum of prod-

ucts of membership values. The implementation of the

proposed technique is straightforward and its execution

is time efficient. As such, it is an appropriate solu-

tion for real-time and safety critical applications such

as brake-by-wire, where computational load and mem-

ory requirements as well as convergence and stability

are important issues. Experimental results show that our

proposed method is successful in fault detection for

cases where a majority voting approach either results

in late detection or fails completely. Experiments also

show that the soft voting total error (in terms of MSE)

TABLE II

MSE Error for Pedal Sensor Fusion by Soft and Hard Voting in

Presence of Various Faults

Injected Fault Hard Voter Soft Voter

Gradually Short to Ground 0.1932 0.0367

Gradually Short to Supply 0.1033 0.0272

Suddenly Short to Ground 0.2123 0.0298

Suddenly Short to Supply 0.2099 0.0245

Noise (Substantial SNR) 0.1277 0.0434

Drift 0.2108 0.0269

Total MSE 1.0572 0.1885

is reduced by around 82% compared to a hard voting

technique.
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Initiation in Clutter
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We introduce a fixed lag smoother algorithm based on the

integrated probabilistic data association (IPDA) algorithm. IPDA

jointly estimates both the target state and its existence. In this paper

the joint density of target state and existence is extended for fixed

lag smoothing. The proposed smoothing algorithm is also tested

against various multiple target tracking parameters like state RMS

estimation, number of true target detected, number of false target

confirmed and target termination time and simulation results are

also presented in the paper.
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1. INTRODUCTION

Smoothing within the state estimation context is

technically defined as a process where the current mea-

surements are used to improve the estimates of the past

states of the object of interest. In the target tracking

problem, this corresponds to estimating the past target

states and associated tracker performance parameters

using current measurements. Formally, one can define

the track estimation problem as follows. Let x(tk) denote
the target state at time k and yk = fy(1),y(2), : : : ,y(k)g
denote the measurement sequence up to time k where
y(i) denotes the measurement at time i. The target esti-
mation problem can then be defined as the problem of

computing the conditional mean estimate of the target

state

x̂(tk¡Ljk) = E[x(tk¡L) j yk] (1)

and its associated error covariance

Pk¡Ljk = E[(x(tk¡L)¡ x̂(tk¡Ljk))(x(tk)¡ x̂(tk¡Ljk))T j yk]
(2)

where L= 0, L < 0 and L > 0 are for three types of
estimation namely filtering, prediction and smoothing

respectively.

Smoothing algorithms were shown to provide signif-

icant performance improvements in terms of RMS er-

rors in several important tracking problems like maneu-

vering target tracking using IMM smoothers by Helmick

et al. [13]—[14], tracking in clutter using PDA smoothers

by Mahalanabis et el. [17] and using IMMPDA smooth-

ing for maneuvering target tracking in clutter [12]. More

recently, the augmented state smoothing framework was

used for dealing with out of sequence measurements by

Challa et al. [11], [25].

One of the very important assumptions made in all

these efforts is the fact that the target exists. However, in

reality, target existence must first be established before

using one of the above methods. Several techniques to

achieve this are available in literature, like the heuristic

M out of N detections method [6] and the Bayesian

approaches like IMMPDA and IPDA.

IMMPDA, when used in the context of automatic

track formation [2], uses two models–one that assumes

that the target is “observable” by the sensor with a detec-

tion probability of PD, 0< PD · 1, and the other assumes
that the target is not “observable” with probability of

detection PD = 0. The algorithm uses a probability mea-
sure (the model probability) for each of the models and

estimates the “true target probability.” If that probabil-

ity crosses a suitable threshold, a decision on target’s

presence (existence) is taken.

Another effective algorithm to solve automatic track

formation in clutter, referred to as Integrated Probabilis-

tic Data Association (IPDA), is proposed by Musicki

and Evans [22]—[23]. Many of its variants for use in

difficult environments are proposed in [18], [21]. IPDA
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models target existence as a random event satisfying

Markovian properties between existence and nonexis-

tence states and provides a mechanism to associate a

probability measure (the target existence probability) to

it. Similarly to the method of IMMPDA, the target exis-

tence probability is estimated along with the target states

and if the existence probability crosses a threshold, a

decision on target’s presence (existence) is taken.

IMMPDA and IPDA are Bayesian approaches and

are amenable for treatment within the smoothing frame-

work. In this paper, we focus on the IPDA based ap-

proach for target existence and develop a new algorithm

for automatic track initiation in clutter within the aug-

mented state smoothing framework. We investigate the

effect of smoothed track existence probability on tracker

performance measures, e.g. true/false track discrimina-

tion, by comparing its performance with the standard

IPDA algorithm. The flow chart of the algorithm is

also presented in this paper. Simulation results are also

provided, where the improvements in true/false track

statistics are found to be significant with a potential to

improve all higher layer functions of tracking systems

like situation and threat assessment.

The paper is organized as follows. Following the in-

troduction, Section 2 formulates the automatic track for-

mulation problem as conceptualized by IPDA. The the-

ory of the augmented state IPDA smoother is described

in Section 3. The complete mathematical derivation of

the algorithm is carried out in Section 4. The flow chart

of the algorithm is presented in Section 5. The simu-

lation scenario and results are presented in Section 6.

Conclusions are drawn in Section 7.

2. PROBLEM FORMULATION

The target tracking algorithm starts with a priori

knowledge of the target dynamic model. Each target

within the surveillance region is assumed to follow the

dynamic equation

xk = Fxk¡1 +Gwk (3)

where

² the target state xk consists of kinematic states e.g.
position, velocity etc.,

² F is the state transition matrix,
² wk is the noise (called “process noise”). wk is assumed
normally distributed with mean zero and variance Q.
It is also assumed that Efwkwjg= 0 if k 6= j.

A measurement model is defined as

yk =Hxk + vk (4)

where

² H is the state to measurement transition matrix,

² vk is noise (called “measurement noise”). vk is as-
sumed to be normally distributed with mean zero

and variance R. It is also assumed that Efvkvjg= 0
if k 6= j. Moreover Efwivjg= 0 for any i,j.

IPDA takes “track existence” as a random event and

finds the probability of the event to solve the problem

of “automatic track maintenance.” IPDA models the

existence of a track as a two state random variable, Ek,
where

² Ek = 1 refers to the event that the track exists at time
t= k,

² Ek = 0 refers to the event that the track does not exist
at time t= k.

A target or track can also switch between these two

states according to a predefined switching probability

matrix which is

¡ =

·
¡11 ¡10

¡01 ¡00

¸
(5)

where

¡ij = p(Ek = j j Ek¡1 = i), i,j 2 0,1: (6)

In the rest of the text, Ek = 1 will be denoted as Ek and

Ek = 0 will be denoted as Ēk with the definition of ¡ij
considered to be understood as defined by (6).

IPDA solves the uncertainty in “target existence”

automatically by estimating

p(Ek¡L j yk) (7)

where again L= 0, L < 0 and L > 0 are for filtering, pre-
diction and smoothing types of estimation respectively.

The state is estimated with the condition that the target

exists and thus the state estimation is redefined by the

introduction of a conditional parameter as

p(xk¡L j Ek¡L,yk): (8)

3. FIXED LAG AUGMENTED STATE IPDA (AS-IPDA)
SMOOTHING

In an augmented approach for a lag of N, the target
dynamic model and measurement equation of (3) and

(4) respectively will be replaced by the augmented

vectors

Xk = FXk¡1 +Gwk (9)

Yk =HXk + vk (10)

where

Xk = [xk xk¡1 ¢ ¢ ¢xk¡N]T (11)

F =

266666664

F 0 0 ¢ ¢ ¢ 0

I 0 0 ¢ ¢ ¢ 0

0 I 0 ¢ ¢ ¢ 0

...
...
. . . ¢ ¢ ¢ ...

0 0 ¢ ¢ ¢ I 0

377777775
(12)
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Yk = [yk] (13)

H= [H 0 ¢ ¢ ¢0]: (14)

The noise variance matrix Qk will also be adjusted to

Q=

266664
Q 0 ¢ ¢ ¢ 0

0 0 ¢ ¢ ¢ 0

...
. . . ¢ ¢ ¢ ...

0 0 ¢ ¢ ¢ 0

377775 : (15)

But the IPDA concept suggests that along with the tar-

get’s state, its existence event also needs to be aug-

mented. Based on that conceptual framework, two pos-

sible combinations of target state and its existence are

possible at any given instant of time. These are:

² C1k = fxk,Ekg, the target exists and so does its state,
² C2k = fÁ, Ēkg, the target does not exist and so neither
does its state.

Thus for an entire fixed lag of N, the augmentation can
be carried out in the following manner

[Cak C
b
k¡1 ¢ ¢ ¢Cdk¡N]T (16)

where a,b, : : : ,d 2 1,2. This suggests that there can be
more than one augmented hypothesis possible.

From the implementation point of view of IPDA,

when a target goes out of existence, it remains that way

for all future time. In that context, the transition matrix

of (5) can be made more specific

¡ =

·
¡11 ¡10

0 1

¸
: (17)

All published results of IPDA follow this transition

matrix.

Therefore not all the combinations of Cks are valid
in (16). Thus at any time, eliminating the impossible

hypotheses, there remain N +2 permissible augmented
hypotheses. These are

² Hypothesis 1:

Hk = [Xk,Ek] =

266664
xk,Ek

xk¡1,Ek¡1
...

xk¡N ,Ek¡N

377775 (18)

² Hypothesis m:

Hmk = [Xm
k ,Emk ] =

2666666666664

Á, Ēk
...

Á, Ēk¡m
xk¡m¡1,Ek¡m¡1

...

xk¡N ,Ek¡N

3777777777775
(19)

where m= 0,1,2, : : : ,N ¡ 1.

² Hypothesis n:

Hnk = [X n
k ,Enk ] =

2664
Á, Ēk
...

Á, Ēk¡N

3775 : (20)

Except for hypothesis one, the other hypotheses

assume that the target does not exist at the current time.

It is also shown in the Appendix that hypotheses Hmk
and Hnk also do not contribute in the state update. This
is also supported by the fact that as these hypotheses

refer to the scenario that at the current time the target

does not exist, measurements at the current time will

therefore contain no information about the target. Thus

the smoothing of a track is concerned only with the first

hypothesis.

Thus the underlying Bayesian approach for devel-

oping an IPDA smoothing algorithm reduces to the cal-

culation of the probability density,

p(Xk,Ek j yk) = p(Xk j Ek,yk)p(Ek j yk): (21)

Furthermore the existence probabilities at each time

instant are readily given by,

p(Ek) = p(Ek j yk) (22)

p(Ek¡d) = p(Ek j yk)+
d¡1X
j=0

p(E jk j yk) (23)

where d = 1,2, : : : ,N.
The conditional state estimate of (21) and the exis-

tence probabilities of (22) and (23) together solve the

IPDA smoothing problem. In the next section, the cal-

culation of these estimates will be carried out.

4. DERIVATION OF AS-IPDA SMOOTHING

In this section, one iteration of the state estimate and

existence probability estimates are derived separately

for clarity.

4.1 Conditional State Estimate

The conditional state estimate p(Xk j Ek,yk) can be
expanded through Bayes’ Theorem:

p(Xk j Ek,yk) = p(Xk j Ek,yk,yk¡1)

=
p(yk j Xk,Ek,yk¡1):p(Xk j Ek,yk¡1)

p(yk j Ek,yk¡1)

=
Likelihood £ Prediction

Normalization
: (24)

The three terms likelihood, prediction and normalization

will be derived step by step. The a priori target state is

assumed known (either from a previous iteration or from

initialization of the tracks) with a Gaussian distribution

having mean X̂k¡1jk¡1 and covariance Pk¡1jk¡1.
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Likelihood

As there is uncertainty involved about the origin
of measurements, the measurements that fall within a
validating gate are used for the track state update. The
volume of the elliptical validation region is Vk.
To calculate the likelihood, the assumptions made in

the literature are

² the probability mass function of the number of false
measurements conditioned on the past measurement
history at time k is a Poisson distribution,

P(mk j yk¡1)´ P0(mk) =
¸mke¡¸

mk!
(25)

where ¸ is the expected number of validated measure-
ments and is given by

¸=

½
0 if mk = 0

mk ¡PDPGp(Ek j yk¡1) if mk > 0
(26)

where mk is the number of validated measurements
at the time t= k. PD and PG denote the detection
probability and gate probability respectively while
p(Ek j yk¡1) can be obtained from p(Ek¡1 j yk¡1) by
using the Markov Transition Probability as

p(Ek j yk¡1) = ¡11p(Ek¡1 j yk¡1) (27)

² the hypotheses that
–®0: all validated measurements are false measure-
ment or clutter
–®i: the ith validated measurement is target origi-
nated and all others are false measurements
These are complementary sets and hence the follow-
ing conditional probabilities can be defined

1) No validated measurement is target originated
given the target exists

P(®0 j Xk,Ek,yk¡1) = 1¡PDPG: (28)

2) The ith validated measurement is target originated
given the target exists

P(®i j Xk,Ek,yk¡1) =
PDPG
mk

: (29)

Based on the above defined parameters, the likeli-
hood in (24) is calculated as

p(yk j Xk,Ek,yk¡1)

=

mkX
i=0

p(yk j Xk,Ek,yk¡1,yk¡1,®i,mk)

:P(mk j yk¡1):P(®i j Xk,Ek,yk¡1)

=

μ
1

Vk

¶mk
P0(mk)P(®0 j Xk,Ek,yk¡1)

+

mkX
i=1

μ
1

Vk

¶mk¡1
P0(mk ¡ 1)£p(yk(i) j Xk,Ek,yk¡1,®i)

£P(®i j Xk,Ek,yk¡1)

=

μ
1

Vk

¶mk
P0(mk)P(®0 j Xk,Ek,yk¡1)

+

μ
1

Vk

¶mk¡1 mk
¸
P0(mk)

mkX
i=1

p(yk(i) j Xk,Ek,yk¡1,®i)

:P(®i j Xk,Ek,yk¡1)

=

μ
1

Vk

¶mk
P0(mk)

£
(
1¡PDPG +PDPG

Vk
¸

mkX
i=1

p(yk(i) j Xk,Ek,yk¡1,®i)
)
(30)

where Vk is the volume of the measurement validation
gate at time t= k.
Under the assumption of Gaussian measurement

noise, the likelihood of the ith validated measurement
is also Gaussian and hence the likelihood term within

the summation sign is a Gaussian PDF,

p(yk(i) j Xk,Ek,yk¡1,®i)¼N (yk(i);HX k,R): (31)
Therefore the expression for likelihood from (30) is

p(yk j Xk,Ek,yk¡1)

=

μ
1

Vk

¶mk
P0(mk)

(
1¡PDPG +PDPG

Vk
¸

mkX
i=1

N (yk(i);HX k,R)
)
:

(32)

Prediction

Given the linear process and measurement equations

of (25) and (26), the prediction can be directly derived

from Kalman filter theory and is given as

p(Xk j Ek,yk¡1) =N (Xk;X̂kjk¡1,Pkjk¡1) (33)

where

X̂kjk¡1 = FX̂k¡1jk¡1 (34)

Pkjk¡1 = FPk¡1jk¡1FT+Q: (35)

Normalization

From (24), the normalization is

p(yk j Ek,yk¡1) = ±

=

Z
Xk
p(yk j Xk,Ek,yk¡1)£p(Xk j Ek,yk¡1)dXk

=

Z
Xk

μ
1

Vk

¶mk
P0(mk)

£
(
1¡PDPG+PDPG

Vk
¸

mkX
i=1

N (yk(i);HX k,R)
)

£N (Xk;X̂kjk¡1,Pkjk¡1)dXk: (36)
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In (36)

N (yk(i);HX k,R)N (Xk;X̂kjk¡1,Pkjk¡1)

=
N (yk(i);HX k,R)N (Xk;X̂kjk¡1,Pkjk¡1)

N (yk(i);HX̂kjk¡1,S)

£N (yk(i);HX̂kjk¡1,S)

=N (Xk;X̂kjk(i),Pkjk(i))£N (yk(i);HX̂kjk¡1,S)
(37)where

S =HPkjk¡1HT+R

K= Pkjk¡1HT(S)¡1

X̂kjk(i) = X̂kjk¡1 +K(yk(i)¡HX̂kjk¡1)
Pkjk(i) = (I ¡KH)Pkjk¡1:

Therefore (36) becomes

p(yk j Ek,yk¡1) = ±

=

Z
Xk

μ
1

Vk

¶mk
P0(mk)

£
(
1¡PDPG+PDPG

Vk
¸

mkX
i=1

N (yk(i);HX̂kjk¡1,S)
)

£N (Xk;X̂kjk(i),Pkjk(i))dXk

=

μ
1

Vk

¶mk
P0(mk)

£
(
1¡PDPG+PDPG

Vk
¸

mkX
i=1

N (yk(i);HX̂kjk¡1,S)
)
:

(38)

Now putting all the respective expressions in (24), the

conditional state estimate becomes

p(Xk j Ek,yk)

=
1

±
N (Xk;X̂kjk¡1,Pkjk¡1)

μ
1

Vk

¶mk
P0(mk)

£
(
1¡PDPG+PDPG

Vk
¸

mkX
i=1

N (yk(i);HX k,R)
)

=
1

±

μ
1

Vk

¶mk
P0(mk)(1¡PDPG)N (Xk;X̂kjk¡1,Pkjk¡1)

+

mkX
i=1

1

±

μ
1

Vk

¶mk
P0(mk)PDPG

Vk
¸

£N (yk(i);HX k,R)N (Xk;X̂kjk¡1,Pkjk¡1): (39)

Using (37), (39) can be reduced to

p(Xk j Ek,yk)

=
1

±

μ
1

Vk

¶mk
P0(mk)(1¡PDPG)N (Xk;X̂kjk¡1,Pkjk¡1)

+

mkX
i=1

1

±

μ
1

Vk

¶mk
P0(mk)PDPG

Vk
¸
N (Xk;X̂kjk(i),Pkjk(i))

£N (yk(i);HX̂kjk¡1,S)

= ¯k(0)N (Xk;X̂kjk¡1,Pkjk¡1)

+

mkX
i=1

¯k(i)N (Xk;X̂kjk(i),Pkjk(i))

=

mkX
i=0

¯k(i)£N (Xk;X̂kjk(i),Pkjk(i)) (40)

where

¯k(0) =
1

±

μ
1

Vk

¶mk
P0(mk)(1¡PDPG) (41)

¯k(i) =
1

±

μ
1

Vk

¶mk
P0(mk)PDPG

Vk
¸
N (yk(i);HX̂kjk¡1,S)

(42)

and taking

X̂kjk(0) = X̂kjk¡1 (43)

Pkjk(0) = Pkjk¡1: (44)

From (40), the estimates of state and covariance are

derived as

X̂kjk =
mkX
i=0

¯k(i)X̂kjk(i) (45)

Pkjk =
mkX
i=0

¯k(i)Pkjk(i)+
mkX
i=0

¯k(i)X̂kjk(i)X̂kjk(i)T ¡X̂kjkX̂ T
kjk:

(46)

The expressions in (45) and (46) give the state estimate

and its covariance matrix conditioned on the target

existence.

4.2 Existence Probability Estimate

Smoothing of the existence probability requires two

steps,

² first, calculation of the probabilities of the augmented
existence hypotheses,

² second, from there calculation of existence probabil-

ities at each time instant using (22) and (23).

Here the derivation of the probabilities is shown in

details.
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Hypothesis 1:

p(Ek j yk) = p(Ek j yk ,yk¡1)

=
p(yk j Ek,yk¡1):p(Ek j yk¡1)

¢

=
1

¢
±£ [p(Ek, : : : ,Ek¡N ,EK¡N¡1 j yk¡1)

+p(Ek, : : : ,Ek¡N , ĒK¡N¡1 j yk¡1)]

=
1

¢
±[p(Ek j Ek¡1): : : : :p(Ek¡N j Ek¡N¡1):p(Ek¡N¡1 j yk¡1)]

+p(Ek j Ek¡1): : : : :p(Ek¡N j Ēk¡N¡1):p(Ēk¡N¡1 j yk¡1)]

=
1

¢
±£ (¡11)N+1£p(Ek¡N¡1 j yk¡1) (47)

where

¢= p(yk j Ek,yk¡1):p(Ek j yk¡1)

+

N¡1X
m=0

p(yk j Emk ,yk¡1):p(Emk j yk¡1)

+p(yk j Enk ,yk¡1):p(Enk j yk¡1): (48)

Hypothesis m:

p(Emk j yk)
= p(Emk j yk,yk¡1)

=
p(yk j Emk ,yk¡1):p(Emk j yk¡1)

¢

=
1

¢
p(yk j Ēk,yk¡1)

:p(Ēk, : : : , Ēk¡m,Ek¡m¡1, : : : ,Ek¡N j yk¡1)

=
1

¢

μ
1

Vk

¶mk
P0(mk)

[p(Ēk , : : : , Ēk¡m,Ek¡m¡1, : : : ,Ek¡N ,Ek¡N¡1 j yk¡1)
+p(Ēk, : : : , Ēk¡m,Ek¡m¡1, : : : ,Ek¡N , Ēk¡N¡1 j yk¡1)]

=
1

¢

μ
1

Vk

¶mk
P0(mk)(¡00)

m:¡10:(¡11)
N¡mp(Ek¡N¡1 j yk¡1):

(49)

Hypothesis n:

p(Enk j yk) = p(Enk j yk,yk¡1)

=
p(yk j Enk ,yk¡1):p(Enk j yk¡1)

¢

=
1

¢
p(yk j Ēk,yk¡1):p(Ēk, : : : , Ēk¡N j yk¡1)

=
1

¢

μ
1

Vk

¶mk
P0(mk)[p(Ēk, : : : , Ēk¡N ,Ek¡N¡1 j yk¡1)

+p(Ēk, : : : , Ēk¡N , Ēk¡N¡1 j yk¡1)]

=
1

¢

μ
1

Vk

¶mk
P0(mk)[¡

N
00:¡10p(Ek¡N¡1 j yk¡1)

+¡N+100 (1¡p(Ek¡N¡1 j yk¡1))]: (50)

Fig. 1. Flow chart of AS-IPDA smoothing.

Both in Hypothesis m and Hypothesis n, the target does
not exist at the current time t= k and so by definition

P(®0 j Ēk,yk¡1) = 1
P(®i j Ēk,yk¡1) = 0 for i= 1,2, : : : ,mk:

Therefore the likelihood,

p(yk j Ēk,yk¡1) =
μ
1

Vk

¶mk
(51)

is used in the derivation of (49) and (50).

Thus (47)—(50) give the probabilities of the aug-

mented existence hypotheses. From these expressions,

the track existence probability at each time step (of the

entire lag of N) can be obtained by using (22) and (23).

5. ALGORITHM FLOW CHART

In this section the proposed smoothing algorithm is

converted into a flow chart for direct implementation.

The flow chart is given in Fig. 1.

6. SIMULATION RESULT

Simulations were carried out to investigate the per-

formance of the proposed AS-IPDA smoother with stan-

dard IPDA filter. The simulation scenario consists of

nonmaneuvering targets moving in a 500 m long and
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200 m wide two-dimensional surveillance region. The

target dynamic state is assumed to consist of position

and velocity in each axis. The state transition matrix is

defined as

F =

26664
1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

37775
where is the sampling period T = 1 s.
The sensor receives the position of each target.

Hence the state to measurement conversion matrix is

defined as

H =

·
1 0 0 0

0 0 1 0

¸
: (52)

The process noise is zero mean with covariance

E[w(k)w(j)0] =Q where

Q = q

26664
T4=4 T3=2 0 0

T3=2 T2 0 0

0 0 T4=4 T3=2

0 0 T3=2 T2

37775
where q= 0:25. The sensor introduces an error with
variance 3 m in either coordinate axis.

The number of clutter points is generated accord-

ing to a Poisson distribution with a density of 1:0£
10¡4=scan/m2. The clutter points are also uniformly dis-
tributed within the whole surveillance region. The tracks

are initiated by two-point differencing assuming a max-

imum velocity of 50 m/s. The detection probability is

0.90.

The target existence transition matrix used is

¡ =

·
0:98 0:02

0 1

¸
The measurement validation gate threshold is 9, which

ensures a gating probability of PG = 0:99. If the exis-
tence probability of a track equals or goes above 0.9,

i.e

p(Ek j yk)>0:9
the track is moved from tentative to confirmed while if

p(Ek j yk)< 0:05
the track is terminated.

The track-to-track association threshold is taken to

be 0.005. The parameters are tested using 1000 Monte-

Carlo run (for true/false track discrimination 400 runs

were used) where each time the target reappears with

state [100 m 25 m/s 100 m 5 m/s]T. Also a default fix

lag of three was used for the smoother.

6.1 Termination Time Detection

In this simulation scenario the simulation is carried

out for 40 scans while the single target is dropped

TABLE I

¡11 = 0:98, Actual Termination Time = 30

Filter Detection Smoother Detection

Lag 1 Lag 2 Lag 3 Lag 4

34 33 32 31 30

TABLE II

¡11 = 0:9, Actual Termination Time = 30

Filter Detection Smoother Detection

Lag 1 Lag 2 Lag 3 Lag 4

33 32 32 32 31

at the 30th scan. The remaining 10 scans consist of

only clutter. Two different switching matrices are used

for comparison purposes–one with ¡11 = 0:98 and the
other with ¡11 = 0:90 where, by definition, ¡10 = 1¡
¡11. The results for these two cases are shown in Table I
and Table II.

6.2 Target State Estimation

The filter and smoother are compared in terms of

RMS error in position and velocity for both axes. A

detection of probability of 0.90 was used. The results

are shown in Figs. 2—5.

6.3 True/False Discrimination

For the simulation of the smoothing performance in

terms of true/false track detection, the scenario is set as

a 400 run of the simulation. A single target reappears

at the beginning of each run. The smoother uses a

fixed lag of three. At each time instant, the tracks that

are updated with true target originated measurements

are considered as true tracks. The detected number of

confirmed true tracks against time is shown in the Fig. 6.

Also the number of false tracks that are confirmed by

both algorithms are shown in Fig. 7.

7. CONCLUSION

In this paper, a fixed lag smoother is derived to

solve the target existence uncertainty problem in clutter.

Besides providing better state estimation, the smoother

performs better in distinguishing between true and false

tracks as well as determining true targets’ termination

time compared to a standard filter algorithm. The pro-

posed algorithm extends automatic track initiation into

the smoothing type of estimation and establishes the im-

mediate gain in estimation. Applications that take higher

level decisions or make strategies shall obtain a great ad-

vantage due to such an improvement by using smoothers

such as the proposed one.
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Fig. 2. RMS error comparison of x-direction position using 1000 Monte Carlo runs with detection probability 0.90.

Fig. 3. RMS error comparison of x-direction velocity using 1000 Monte Carlo runs with detection probability 0.90.

APPENDIX. THE HYPOTHESES Hmk and H
n
k DO NOT

CONTRIBUTE TO THE STATE UPDATE

p(Xm
k j Emk ,yk) = p(Xm

k j Emk ,yk,yk¡1)

=
p(yk j Xm

k ,Emk ,yk¡1):p(Xm
k j Emk ,yk¡1)

p(yk j Emk ,Yk¡1)

=
Likelihood £ Prediction

Normalization
: (53)

Under the assumption that the target does not exist at

time t= k, the likelihood term in (53) reduces to,

p(yk j Xm
k ,Emk ,yk¡1) = p(yk j Ēk,yk¡1) =

μ
1

Vk

¶mk
P0(mk): (54)

The prediction term is

p(Xm
k j Emk ,yk¡1) = p(xk¡m¡1, : : : ,xk¡N j Ek¡m¡1, : : : ,Ek¡N ,yk¡1):

(55)
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Fig. 4. RMS error comparison of y-direction position using 1000 Monte Carlo runs with detection probability 0.90.

Fig. 5. RMS error comparison of y-direction velocity using 1000 Monte Carlo runs with detection probability 0.90.

Lastly the normalization is

p(yk j Emk ,yk¡1)

=

Z
Xm
k

p(yk j Xm
k ,Emk ,yk¡1)£p(Xm

k ,Emk ,yk¡1))dXm
k

=

μ
1

Vk

¶mk
P0(mk): (56)

As the likelihood and normalization terms are the same,

(53) can be simplified as

p(Xm
k j Emk ,yk)

= p(xk¡m¡1, : : : ,xk¡N j Ek¡m¡1, : : : ,Ek¡N ,yk¡1)

£p(Xm
k j Emk ,yk¡1): (57)
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Fig. 6. Number of confirmed true tracks.

Fig. 7. Number of confirmed false tracks.

Thus (57) shows that the hypotheses Hmk and H
n
k , where

the target does not exist at current time t= k, do not
contribute to the update of the state and covariance. So

if the target does not exist at current time, the previous

smoothed or filtered values are retained as is.
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Robust Bayesianism: Relation
to Evidence Theory

STEFAN ARNBORG
Kungliga Tekniska Högskolan

We are interested in understanding the relationship between

Bayesian inference and evidence theory. The concept of a set of

probability distributions is central both in robust Bayesian analy-

sis and in some versions of Dempster-Shafer’s evidence theory. We

interpret imprecise probabilities as imprecise posteriors obtainable

from imprecise likelihoods and priors, both of which are convex

sets that can be considered as evidence and represented with, e.g.,

DS-structures. Likelihoods and prior are in Bayesian analysis com-

bined with Laplace’s parallel composition. The natural and simple

robust combination operator makes all pairwise combinations of

elements from the two sets representing prior and likelihood. Our

proposed combination operator is unique, and it has interesting

normative and factual properties. We compare its behavior with

other proposed fusion rules, and earlier efforts to reconcile Bayesian

analysis and evidence theory. The behavior of the robust rule is con-

sistent with the behavior of Fixsen/Mahler’s modified Dempster’s

(MDS) rule, but not with Dempster’s rule. The Bayesian frame-

work is liberal in allowing all significant uncertainty concepts to be

modeled and taken care of and is therefore a viable, but probably

not the only, unifying structure that can be economically taught

and in which alternative solutions can be modeled, compared and

explained.
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1. INTRODUCTION

Several, apparently incomparable, approaches exist

for uncertainty management. Uncertainty management

is a broad area applied in many different fields, where

information about some underlying, not directly observ-

able, truth–the state of the world–is sought from a

set of observations that are more or less reliable. These

observations can be, for example, measurements with

random and/or systematic errors, sensor readings, or re-

ports submitted by observers. In order that conclusions

about the conditions of interest be possible, there must

be some assumptions made on how the observations re-

late to the underlying state about which information is

sought. Most such assumptions are numerical in nature,

giving a measure that indicates how plausible different

underlying states are. Such measures can usually be nor-

malized so that the end result looks very much like a

probability distribution over the possible states of the

world, or over sets of possible world states. However,

uncertainty management and information fusion is often

concerned with complex technical, social or biological

systems that are incompletely understood, and it would

be naive to think that the relationship between observa-

tion and state can be completely captured. At the same

time, such systems must have at least some approximate

ways to relate observation with state in order to make

uncertainty management at all possible.

It has been a goal in research to encompass all

aspects of uncertainty management in a single frame-

work. Attaining this goal should make the topic teach-

able in undergraduate and graduate engineering cur-

ricula and facilitate engineering applications develop-

ment. We propose here that robust Bayesian analysis is

such a framework. The Dempster-Shafer or evidence

theory originated within Bayesian statistical analysis

[19], but when developed by Shafer [51] took the con-

cept of belief assignment rather than probability dis-

tribution as primitive. The assumption being that bod-

ies of evidence–beliefs about the possible worlds of

interest–can be taken as primitives rather than sam-

pling functions and priors. Although this idea has had

considerable popularity, it is inherently dangerous since

it seems to move application away from foundational

justification. When the connection to Bayes’ method

and Dempster’s application model is broken, it is no

longer necessary to use the Dempster combination rule,

and evidence theory abounds with proposals on how

bodies of evidence should be interpreted and combined,

as a rule with convincing but disparate argumentation.

But there seems not to exist other bases for obtain-

ing bodies of evidence than likelihoods and priors, and

therefore an analysis of a hypothetical Bayesian obtain-

ment of bodies of evidence can bring light to problems

in evidence theory. Particularly, a body of evidence rep-

resented by a DS-structure has an interpretation as a set

of possible probability distributions, and combining or

aggregating two such structures can be done in robust
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Bayesian analysis. The resulting combination operator

is trivial, but compared to other similar operators it has

interesting, even surprising, behavior and normative ad-

vantages. Some concrete progress in working with con-

vex sets of probability vectors has been described in

[41, 57, 29]. It appears that the robust combination op-

erator we discuss has not been analyzed in detail and

compared to its alternatives, and is missing in recent

overviews of evidence and imprecise probability the-

ory. Our ideas are closely related to problems discussed

in [32] and in the recent and voluminous report [21],

which also contains a quite comprehensive bibliogra-

phy. The Workshop hosted by the SANDIA lab has

resulted in an overview of current probabilistic uncer-

tainty management methods [34]. A current overview of

alternative fusion and estimation operators for tracking

and classification is given in [45].

The main objective of this paper is to propose that

precise and robust Bayesian analysis are unifying, sim-

ple and viable methods for information fusion, and that

the large number of methods possible can and should

be evaluated by taking into account the appropriateness

of statistical models chosen in the particular applica-

tion where it is used. We are aware, however, that the

construction of Bayesian analysis as a unifying concept

has no objective truth. It is meant as a post-modernistic

project facilitating teaching and returning artistic free-

dom to objective science. The Bayesian method is so lib-

eral that it almost never provides unique exact solutions

to inference and fusion problems, but is completely

dependent on insightful modeling. The main obstacle

to achieving acceptance of the main objective seems

to be the somewhat antagonistic relationship between

the different schools where sometimes sweeping argu-

ments have been made that seem rather unfair whoever

launched them, typical examples being [42, 51] and the

discussions following them.

Another objective is to investigate the appropriate-

ness of particular fusion and estimation operations, and

their relationships to the robust as well as the precise

Bayesian concept. Specifically, we show that the choice

between different fusion and estimation operations can

be guided by a Bayesian investigation of the application.

We also want to connect the analysis to practical

concerns in information fusion and keep the mathemat-

ical/theoretical level of the presentation as simple as

possible, while also examining the problem to its full

depth. A quite related paper promoting similar ideas is

Mahler [43], which however is terser and uses some-

what heavier mathematical machinery.

Quite many comparisons have been made of Bayes-

ian and evidential reasoning with the objective of guid-

ing practice, among others [47, 10, 11, 50]. It is gen-

erally found that the methods are different and there-

fore one should choose a method that matches the ap-

plication in terms of quantities available (evidence or

likelihoods and priors), or the prevailing culture and

construction of the application. Although the easiest

way forward, this advice seems somewhat short-sighted

given the quite large lifespan of typical advanced ap-

plications and the significant changes in understanding

and availability of all kinds of data during this life-span.

In Section 2 we review Bayesian analysis and in

Section 3 dynamic Bayesian (Chapman Kolmogorov/

Kalman) analysis. In Section 4 we describe robust

Bayesian analysis analysis and some of its relations to

DS theory; in Section 5 we discuss decisions under un-

certainty and imprecision and in Section 6 Zadeh’s well-

known example. In Section 7 we derive some evidence

fusion operations and the robust combination operator.

We illustrate their performance on a paradoxical exam-

ple related to Zadeh’s in Section 8, and wrap up with

conclusions in Section 9.

2. BAYESIAN ANALYSIS

Bayesian analysis is usually explained [7, 38, 52,

24] using the formula

f(¸ j x)/ f(x j ¸)f(¸) (1)

where ¸ 2 ¤ is the world of interest among n= j¤j pos-
sible worlds (sometimes called parameter space), and

x 2 X is an observation among possible observations.

The distinction between observation and world space is

not necessary but is convenient–it indicates what our

inputs are (observations) and what our outputs are (be-

lief about possible worlds). The functions in the formula

are probability distributions, discrete or continuous. We

use a generic function notation common in statistics,

so the different occurrences of f denote different func-
tions suggested by their arguments. The sign / indicates
that the left side is proportional to the right side (as a

function of ¸), with the normalization constant left out.
In (1), f(x j ¸) is a sampling distribution, or likelihood
when regarded as a function of ¸ for a given x, which
connects observation space and possible world space

by giving a probability distribution of observed value

for each possible world, and f(¸) is a prior describing
our expectation on what the world might be. The rule

(1) gives the posterior distribution f(¸ j x) over possi-
ble worlds ¸ conditional on observations x. A paradox

arises if the supports of f(¸) and f(x j ¸) are disjoint
(since each possible world is ruled out either by the

prior or by the likelihood), a possibility we will ignore

throughout this paper. Equation (1) is free of technical

complication and easily explainable. It generalizes how-

ever to surprisingly complex settings, as required of any

device helpful in design of complex technical systems.

In such systems, it is possible that x represents a quantity
which is not immediately observable, but instead our in-

formation about x is given by a probability distribution
f(x), typically obtained as a posterior from (1). Such

observations are sometimes called fuzzy observations.

In this case, instead of using (1) we apply:

f(¸ j f(x))/
Z
f(x j ¸)f(x)f(¸)dx: (2)
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Ed Jaynes made (1) the basis for teaching science

and interpretation of measurements [38]. In general, for

infinite (compact metric) observation spaces or possi-

ble world sets, some measure-theoretic caution is called

for, but it is also possible to base the analysis on well-

behaved limit processes in each case as pointed out by,

among others, Jaynes [38]. We will here follow Jaynes’

approach and thus discuss only the finite case. That

generalization to infinite and/or complexly structured

unions of spaces of different dimensions and quotiented

over symmetry relations is possible is known although

maybe not obvious. Mahler claims that such applica-

tions are not Bayesian in [43], but they can apparently

be described by (1) and similar problems are investi-

gated within the Bayesian framework, for example by

Green [26]. Needless to say, since the observation and

world spaces can be high-dimensional and the prior and

likelihood can be arbitrarily complex, practical work

with (1) is full of pitfalls and one often encounters what

looks like counterintuitive behaviors. On closer inves-

tigation, such problems can lead to finding a modeling

error, but more often it shows that (1) is indeed better

than one’s first intuitive attitude.

It has been an important philosophical question to

characterize the scope of applicability of (1), which lead

to the distinction between objective and subjective prob-

ability, among other things. Several books and papers,

among others [17, 49, 42, 15], claim that, under rea-

sonable assumptions, (1) is the only consistent basis

for uncertainty management. However, the minimal as-

sumptions truly required to obtain this result turn out

on closer inspection to be rather complex, as discussed

in [7, 64, 33, 31, 46, 35, 2]. One simple assumption

usually made in those studies that conclude in favor of

(1) is that uncertainty is measured by a real number

or on an ordered scale. Many established uncertainty

management methods however measure uncertainty on

a partially ordered scale and do apparently not use (1)

and the accompanying philosophy. Among probability

based alternatives to Bayesian analysis with partially

ordered uncertainty concepts are imprecise probabili-

ties or lower/upper prevision theory [62], the Dempster-

Shafer (DS) [51], the Fixsen/Mahler (MDS) [22] and

Dezert-Smarandache (DSmT) [53] theories. In these

schools, it is considered important to develop the the-

ory without reference to classical Bayesian thinking.

In particular, the assumption of precise prior and sam-

pling distributions is considered indefensible. Those as-

sumptions are referred to as the dogma of precision in

Bayesian analysis [63].

Indeed, when the inference process is widened from

an individual to a social or multi-agent context, there

must be ways to accommodate different assessments of

priors and likelihoods. Thus, there is a possibility that

two experts make the same inference using different

likelihoods and priors. If expert 1 obtained observa-

tion set X1 μ X and expert 2 obtained observation set

X2 μ X, they would obtain a posterior belief of, e.g.,

a patient’s condition expressible as fi(¸i j Xi)/ fi(Xi j
¸i)fi(¸i), for i = 1,2. Here we have not assumed that
the two experts used the same sampling and prior distri-
butions. Even if training aims at giving the two experts
the same “knowledge” in the form of sampling function
and prior, this ideal cannot be achieved completely in
practice. The Bayesian method prescribes that expert i
states the probability distribution fi(¸i j Xi) as his belief
about the patient. If they use the same sampling func-
tion and prior, the Bayesian method also allows them to
combine their findings to obtain:

f(¸ j fX1,X2g)/ f(fX1,X2g j ¸)f(¸)
= f(X1 j ¸)f(X2 j ¸)f(¸) (3)

under the assumption:

f(fX1,X2g j ¸) = f(X1 j ¸)f(X2 j ¸):
The assumption appears reasonable in many cases.

In cases where it is not, the discrepancy should be
entered in the statistical model. This is particularly
important in information fusion for those cases where
the first set of observations was used to define the
second investigation, as in sensor management. This
is an instance of selection bias. Ways of handling data
selection biases are discussed thoroughly in [24]. Data
selection bias is naturally and closely related to the
missing data problem that has profound importance in
statistics [48] and has also been examined in depth in
the context of imprecise probability fusion [16].
It is important to observe that it is the two experts

likelihood functions, not their posterior beliefs, that can
be combined, otherwise we would replace the prior by
its normalized square and the real uncertainty would be
underestimated. This is at least the case if the experts
obtained their training from a common body of med-
ical experience coded in textbooks. If the posterior is
reported and we happen to know the prior, the likeli-
hood can be obtained by f(X j ¸)/ f(¸ j X)=f(¸) and
the fusion rule becomes

f(¸ j X1,X2)/ f(¸ j X1)f(¸ j X2)=f(¸): (4)

The existence of different agents with different pri-
ors and likelihoods is maybe the most compelling argu-
ment to open the possibility for robust Bayesian analy-
sis, where the likelihood and prior sets would in the first
approximation be the convex closure of the likelihoods
and prior of different experts.

3. WHAT IS REQUIRED FOR SUCCESSFUL
APPLICATION OF BAYES METHOD?

The formula (1) is deceptively simple, and hides
the complexity of a real world application where many
engineering compromises are inevitable. Nevertheless,
any method claimed to be Bayesian must relate to (1)
and include all substantive application knowledge in the
parameter and observation spaces, the likelihood and the
prior. It is in general quite easy to show the Bayesian

ARNBORG: ROBUST BAYESIANISM: RELATION TO EVIDENCE THEORY 77



method to be better or worse than an alternative by not

including relevant and necessary application knowledge

in (1) or in the alternative method. Let us illustrate

this by an analysis of the comparison made in [56].

The problem is to track and classify a single target.

The tracking problem is solved with a dynamic version

of Bayes method, known as the Bayesian Chapman-

Kolmogorov relationship:

f(¸t jDt)/ f(dt j ¸t)
Z
f(¸t j ¸t¡1)f(¸t¡1 jDt¡1)d¸t¡1

f(¸0 jD0) = f(¸0): (5)

Here Dt = (d1, : : : ,dt) is the sequence of observations
obtained at different times, and f(¸t j ¸t¡1) is the maneu-
vering (process innovation) noise assumed. The latter is

a probability distribution function (pdf) over state ¸t
dependent on the state at the previous time-step, ¸t¡1.
When tracking targets that display different levels of

maneuvering like transportation, attack and dog-fight

for a fighter airplane, it has been found appropriate to

apply (5) with different filters with levels of innovation

noise corresponding to the maneuvering states, and to

declare the maneuvering state that corresponds to the

best matching filter. In the paper [56] the same method

is proposed for a different purpose, namely the classi-

fication of aircraft (civilian, bomber, fighter) based on

their acceleration capabilities. This is done by ad hoc

modifications of (5) that do not seem to reflect substan-

tive application knowledge, namely that the true target

class is unlikely to change, and hence does not work

well. The Bayesian solution to this problem would in-

volve looking at (5) with a critical mind. Since we want

to jointly track and classify, the state space should be,

e.g., P£V£C, where P and V are position and velocity
spaces and C is the class set, fc,b,fg. The innovation
process should take account of the facts that the target

class in this case does not change, and that the civilian

and bomber aircraft have bounded acceleration capaci-

ties. This translates to two requirements on the process

innovation component f(¸t j ¸t¡1) that (assuming unit
time sampling):

f((pt,vt,ct) j (pt¡1,vt¡1,ct¡1)) = 0 if ct 6= ct¡1
f((pt,vt,k) j (pt¡1,vt¡1,k)) = 0 if jvt¡ vt¡1j> ak

where ak is the highest possible acceleration of target
class k. Such an innovation term can be (and often is)

described by a Gaussian with variance tuned to ak, or
by a bank of Gaussians. With this innovation term, the

observation of a high acceleration dampens permanently

the marginal probability of having a target class inca-

pable of such acceleration. This is the natural Bayesian

approach to the joint tracking and classification prob-

lems. Similar effects can be obtained in the robust Bayes

and TBM [56] frameworks. As a contrast, the experi-

ments reported by Oxenham et al. [44] use an appro-

priate innovation term and also give more reasonable

results, both for the TBM and the Bayesian Chapman

Kolmogorov approaches. The above is not meant as an

argument that one of the two approaches compared in

[56] is the preferred one. Our intention is rather to sug-

gest that appropriate modeling may be beneficial for

both approaches.

The range of applications where an uncertainty man-

agement problem is approached using (1) or (5) is ex-

tremely broad. In the above example, the parameter ¸
consists of one state vector (position and velocity vec-

tors of a target) and its target label, thus the parameter

space is (for 3D tracking) R6£C where C is a finite

set of targets labels. In our main example, ¸ is just an
indicator with three possible values. In many image pro-

cessing applications, the parameter ¸ is the scene to be
reconstructed from the data x, which is commonly called
the film even if it is nowadays not registered on pho-

tographic film and is not even necessarily represented

as a 2D image. This approach has been found excellent

both for ordinary camera reconstruction problems and

for special types of cameras as exemplified by Positron

Emission Tomography and functional Magnetic Reso-

nance Imaging, the type of camera and reconstruction

objective having a profound influence on the choice of

likelihood and priors, see [3, 27]. In genetic investi-

gations, complex Bayesian models are also used a lot,

and here the parameter ¸ could be a description of how
reproduction in a set of individuals in a family has been

produced by selection of chromosomes from parents,

the positions of crossovers and the position of one or

more hypothesized disease-causing gene(s), whereas the

data are the genotypes and disease status of individuals,

plus individual covariates that may environmentally in-

fluence development of disease. For a unified treatment

of this problem family, see [14]. Another fascinating ex-

ample is Bayesian identification of state space dynamics

in time series, where the parameter is the time series of

invisible underlying states, a signaling distribution (out-

put distribution as a function of latent state) and the state

change probability distributions [59].

Characteristic of cases where (1) and (5) are not as

easily accepted is the presence of two different kinds

of uncertainty, often called aleatory and epistemic un-

certainty, where the former can be called “pure ran-

domness” as one perceives dice (Latin: alea) throw-

ing, while the latter is caused by “lack of knowledge”

(from the Greek word for knowledge, episteme). Al-

though one can argue about the relevance of this distinc-

tion, application owners have typically a strong sense

of the distinction, particularly in risk assessment. The

consequence is that the concepts of well-defined pri-

ors and likelihoods can be, and have been, questioned.

The Bayesian answer to this critique is robust Bayesian

analysis.

4. ROBUST BAYES AND EVIDENCE THEORY

In (global) robust Bayesian analysis [5, 36], one ac-

knowledges that there can be ambiguity about the prior
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and sampling distributions, and it is accepted that a con-

vex set of such distributions is used in inference. The

idea of robust Bayesian analysis goes back to the pio-

neers of Bayesian analysis [17, 39], but the computa-

tional and conceptual complexities involved meant that

it could not be fully developed in those days. Instead,

a lot of effort went into the idea of finding a canonical

and unique prior, an idea that seems to have failed ex-

cept for finite problems with some kind of symmetry,

where a natural generalization of Bernoulli’s indiffer-

ence principle has become accepted. The problem is that

no proposed priors are invariant under arbitrary rescal-

ing of numerical quantities or non-uniform coarsening

or refinement of the current frame of discernment. The

difficulty of finding precise and unique priors has been

taken as an argument to use some other methods, like

evidence theory. However, as we shall see, this is an illu-

sion, and avoiding use of an explicit prior usually means

implicit reliance on Bernoulli’s principle of indifference

anyway. Likewise, should there be an acceptable prior,

it can and should be used both in evidence theory and

in Bayesian theory. This was pointed out, e.g., in [6,

ch. 3.4].

Convex sets of probability distributions can be arbi-

trarily complex. Such a set can be generated by mixing

of a set of “corners” (called simplices in linear program-

ming theory) and the set of corners can be arbitrarily

large already for sets of probability distributions over

three elements.

In evidence theory, the DS-structure is a representa-

tion of a belief over a frame of discernment (set of pos-

sible worlds) ¤ (commonly called the frame of discern-
ment £ in evidence theory) by a probability distribution
m over its power-set (excluding the empty set), a ba-

sic probability assignment bpa, basic belief assignment

bba, bma, or DS-structure (terminology is not stable,

we will use DS-structure). The sets assigned non-zero

probability in a DS-structure are called its focal ele-

ments, and those that are singletons are called atoms. A

DS-structure with no mass assigned to non-atoms is a

precise (sometimes called Bayesian) DS-structure. Even

if it is considered important in many versions of DS the-

ory not to equate a DS-structure with a set of possible

distributions, such a perspective is prevalent in tutorials

(e.g., [30, ch. 7] and [8, ch. 8]), explicit in Dempster’s

work [18], and almost unavoidable in a teaching situa-

tion. It is also compellingly suggested by the common

phrase that the belief assigned to a non-singleton can

flow freely to its singleton members, and the equiva-

lence between a DS-structure with no mass assigned to

non-singletons and the corresponding probability dis-

tribution [55]. Among publications elaborating on the

possible difference between probability and other nu-

merical uncertainty measures are [32, 55, 20].

A DS-structure seen as a set of distributions is a

type of Choquet capacity, and these capacities form

a particularly concise and flexible family of sets of

distributions (the full theory of Choquet capacities is

rich and of no immediate importance for us–we use

the term capacity interpretation only to indicate a set

of distributions obtained from a DS-structure in a way

we will define precisely). Interpreting DS-structures as

sets of probability distributions entails saying that the

probability of a union of outcomes e½ ¤ lies between
the belief of e (

P
w½em(w)) and the plausibility of e

(
P
w\e6=Øm(w)). The parametric representation of the

family of distributions it can represent, with parameters

®ew, e 2 2¤, w 2 ¤, is P(w) =
P
e ®ewm(e), all w 2 ¤,

where ®ew = 0 if w =2 e,
P
w2e ®ew = 1, and all ®ew are

non-negative. This representation is used in Blackman

and Popoli [8, ch. 8.5.3]. The pignistic transformation

used in evidence theory to estimate a precise probability

distribution from a DS-structure is obtained by making

the ®ew equal for each e, ®ew = 1=jej if w 2 e. The
relative plausibility transformation proposed by, among

others, Voorbraak [60], Cobb and Shenoy [12, 13],

on the other hand, is the result of normalizing the

plausibilities of the atoms in ¤. It is also possible to
translate a pdf over ¤ to a DS-structure. Indeed, a pdf
is already a (precise) DS-structure, but Sudano [58]

studied inverse pignistic transformations that result in

non-precise DS-structures by coarsening. They have

considerable appeal but are not in the main line of

argumentation in this paper [58].

It is illuminating to see how the pignistic and rel-

ative plausibility transformations emerge from a pre-

cise Bayesian inference: The observation space can in

this case be considered to be 2¤, since this represents

the only distinction among observation sets surviving

from the likelihoods. The likelihood will be a func-

tion l : 2¤£¤! R, the probability of seeing evidence
e given world state ¸. Given a precise e 2 2¤ as obser-
vation and a uniform prior, the inference over ¤ would
be f(¸ j e)/ l(e,¸), but since we in this case have a
probability distribution over the observation space, we

should use (2), weighting the likelihoods by the masses

of the DS-structures. Applying the indifference princi-

ple, l(e,¸) should be constant for ¸ varying over the
members of e, for each e. The other likelihood values
(¸ =2 e) will be zero. Two natural choices of likelihood
are l1(e,¸)/ 1 and l2(e,¸)/ 1=jej, for ¸ 2 e. Amazingly,
these two choices lead to the relative plausibility trans-

formation and to the pignistic transformation, respec-

tively:

fi(¸ jm)/
X
fe:¸2eg

m(e)li(e,¸)

=

8>>><>>>:
X
fe:¸2eg

m(e)

ÁX
e

jejm(e), i= 1

X
fe:¸2eg

m(e)=jej, i= 2:

(6)

Despite a lot of discussion, there seems thus to exist

no fundamental reason to prefer one to the other, since

ARNBORG: ROBUST BAYESIANISM: RELATION TO EVIDENCE THEORY 79



they result from two different and completely plausi-

ble statistical models and a common application of an

indifference principle. The choice between the models

(i.e., the two proposed likelihoods) can in principle be

determined by (statistical) testing on the application’s

historic data.

The capacity corresponding to a DS-structure can be

represented by 2n¡ 2 real numbers–the corresponding
DS-structure is a normalized distribution over 2n¡ 1
elements (whereas an arbitrary convex set can need any

number of distributions to span it and needs an arbitrary

number of reals to represent it–thus capacities form

a proper and really small subset of all convex sets of

distributions).

It is definitely possible–although we will not elab-

orate it here–to introduce more complex but still con-

sistent uncertainty management by going beyond robust

Bayesianism, grading the families of distributions and

introducing rules on how the grade of combined dis-

tributions are obtained from the grades of their con-

stituents. The grade would in some sense indicate how

plausible a distribution in the set is. It seems however

important to caution against unnecessarily diving into

the more sophisticated robust and graded set approaches

to Bayesian uncertainty management.

Finally, in multi-agent systems we must consider

the possibility of a gaming component, where an agent

must be aware of the possible reasoning processes of

other agents, and use information about their actions

and goals to decide its own actions. In this case there

appears to be no simple way to separate–as there is

in a single agent setting–the uncertainty domain (what

is happening?) from the decision domain (what shall I

do?) because these get entangled by the uncertainties

of what other agents will believe, desire and do. This

problem is not addressed here, but can be approached

by game-theoretic analyses, see, e.g., [9].

A Bayesian data fusion system or subsystem can

thus use any level in a ladder with increasing complex-

ity:

² Logic–no quantified uncertainty
² Precise Bayesian fusion
² Robust Bayesianism with DS-structures interpreted as
capacities

² General robust Bayesianism (or lower/upper previ-

sions)

² Robust Bayesianism with graded sets of distributions

Whether or not this simplistic view (ladder of Bayes-

ianisms) on uncertainty management is tenable in the

long run in an educational or philosophical sense is

currently not settled. We will not further consider the

first and the last rungs of the ladder.

4.1. Rounding

A set of distributions which is not a capacity can

be approximated by rounding it to a minimal capacity

that contains it (see Fig. 1), and this rounded set can

be represented by a DS-structure. This rounding “up-
wards” is accomplished by means of lower probabili-

ties (beliefs) of subsets of ¤. Specifically, in this ex-
ample we list the minimum probabilities of all subsets
of ¤= fA,B,Cg over the four corners of the polytope,
to get lower bounds for the beliefs. These can be con-

verted to masses using the Möbius inversion, or, in this
simple example, manually from small to large events.

For example, m(A) = bel(A), m(fA,Bg) = bel(fA,Bg)
¡m(A)¡m(B), and m(fA,B,Cg) = bel(fA,B,Cg)¡
m(fA,Bg)¡m(fA,Cg)¡m(fB,Cg)¡m(A)¡m(B)¡m(C).
Since we have not necessarily started with a capacity,

this may give negative masses to some elements. In that
case, some mass must be moved up in the lattice to make

all masses non-negative, and this can in the general case

be done in several ways, but each way gives a minimal
enclosing polytope. In the example, we have four cor-

ners, and the computation is shown in Table I. In this

example we immediately obtain non-negative masses,
and the rounded polytope is thus unique.

In the resulting up-rounded bba, when transforming

it to a capacity, we must consider 2 ¤ 2 ¤3 = 12 possible
corner points. However, only five of these are actually

corners of the convex hull in this case, and those are the

corners visible in the enclosing capacity of Fig. 1. The
other possible corner points turn out to lie inside, or

inside the facets of, the convex hull. As an example,

consider the lowest horizontal blue-dashed line; this
is a facet of the polytope characterized by no mass

flowing to B from the focal elements fA,Cg, fB,Cg
and fA,B,Cg. The masses of fA,Cg and fA,B,Cg can
thus be assigned either to A or to C. Assigning both to
C gives the left end-point of the facet, both to A gives
the right end-point, and assigning one to A and the other
to C gives two interior points on the line.
It is also possible, using linear programming, to

round downwards to a maximal capacity contained in a

set. Neither type of rounding is unique, i.e., in general
there may be several incomparable (by set inclusion) up-

or down-rounded capacities for a set of distributions.

5. DECISIONS UNDER UNCERTAINTY AND
IMPRECISION

The ultimate use of data fusion is usually decision

making. Precise Bayesianism results in quantities–

probabilities of possible worlds–that can be used im-

mediately for expected utility decision making [49, 4].

Suppose the profit in choosing a from a setA of possible
actions when the world state is ¸ is given by the utility
function u(a,¸) mapping action a and world state ¸ to a
real valued utility (e.g., dollars). Then the action max-

imizing expected profit is argmaxa
R
u(a,¸)f(¸ j x)d¸.

In robust Bayesian analysis one uses either minimax

criteria or estimates a precise probability distribution

to decide from. Examples of the latter are the pignistic

and relative plausibility transformations. An example of
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Fig. 1. Rounding a set of distributions over fA,B,Cg. The coordinates are the probabilities of A and B. A set spanned by four corner
distributions (black solid), its minimal enclosing (blue dashed), and one of its maximal enclosed (red dash-dotted), capacities.

TABLE I

Rounding a Convex Set of Distributions Given by its Corners¤

Focal Corners min m

A 0.200 0.222 0.333 0.286 0.200 0.200

B 0.050 0.694 0.417 0.179 0.050 0.050

C 0.750 0.083 0.250 0.536 0.083 0.083

fA,Bg 0.250 0.916 0.750 0.465 0.250 0

fA,Cg 0.950 0.305 0.583 0.822 0.305 0.022

fB,Cg 0.800 0.777 0.667 0.715 0.667 0.534

fA,B,Cg 1.000 1.000 1.000 1.000 1.000 0.111

¤Corners of the black polygon of Fig. 1 are listed clockwise, starting
at bottom left.

a decision-theoretically motivated estimate is the maxi-

mum entropy estimate, often used in robust probability

applications [38]. This choice can be given a decision-

theoretic motivation since it minimizes a game-theoretic

loss function, and can also be generalized to a range

of loss functions [28]. Specifically, a Decision maker

must select a distribution q while Nature selects a dis-
tribution p from a convex set ¡ . Nature selects an out-
come x according to its chosen distribution p, and the
decision makers loss is ¡ logq(x). This makes the De-
cision maker’s expected loss equal to Epf¡ logq(X)g.
The minimum (over q) of the maximum (over p) ex-
pected loss is then obtained when q is chosen to be the
maximum entropy distribution in ¡ . Thus, if this loss
function is accepted, it is optimal to use the maximum

entropy transformation for decision making.

The maximum entropy principle differs significantly

from the relative plausibility and pignistic transforma-

tions, since it tends to select a point on the boundary of

a set of distributions (if the set does not contain the uni-

form distribution), whereas the pignistic transformation

selects an interior point.

The pignistic and relative plausibility transforma-

tions are linear estimators, by which we mean that they

are obtained by normalization of a linear function of

the masses in the DS-structure. If we buy the concept

of a DS-structure as a set of possible probability distri-

butions, it would be natural to require that as estimate

we choose a possible distribution, and then the pignistic

transformation of Smets gets the edge–it is not difficult

to prove the following:

PROPOSITION 1 The pignistic transformation is the only
linear estimator of a probability distribution from a DS-
structure that is symmetric over ¤ and always returns
a distribution in the capacity represented by the DS-
structure.

Although we have no theorem to this effect, it seems

as if the pignistic transformation is also a reasonable

decision-oriented estimator approximately minimizing

the maximum Euclidean norm of difference between

the chosen distribution and the possible distributions,

and better than the relative plausibility transformation as

well as the maximum entropy estimate for this objective

function. The estimator minimizing this maximum norm

is the center of the smallest enclosing sphere. It will not

be linear in m, but can be computed with some effort
using methods presented, e.g., in [23]. The centroid is

sometimes proposed as an estimator, but it does not

correspond exactly to any known robust loss function–

rather it is based on the assumption that the probability

vector is uniformly distributed over the imprecision

polytope.
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The standard expected utility decision rule in pre-

cise probability translates in imprecise probability to

producing an expected utility interval for each deci-

sion alternative, the utility of an action a being given
by the interval Ia =

S
f2F

R
u(a,¸)f(¸ j x)d¸. In a refine-

ment proposed by Voorbraak [61], decision alternatives

are compared for each pdf in the set of possible pdfs:

Iaf =
R
u(a,¸)f(¸ j x)d¸, for f 2 F. Decision a is now

better than decision b if Iaf > Ibf for all f 2 F.
Some decision alternatives will fall out because they

are dominated in utility by others, but in general several

possible decisions with overlapping utility intervals will

remain. In principle, if no more information exists, any

of these decisions can be considered right. But they are

characterized by larger or smaller risk and opportunity.

6. ZADEH’S EXAMPLE

We will now discuss our problem in the context of

Zadeh’s example of two physicians who investigated

a patient independently–a case prototypical, e.g., for

the important fusion for target classification problem.

The two physicians agree that the problem (the diag-

nosis of the patient) is within the set fM,C,Tg, where
M is Meningitis, C is Concussion and T is brain Tu-
mor. However, they express their beliefs differently, as

a probability distribution which is (0:99,0,0:01) for the
first physician and (0,0:99,0:01) for the second. The
question is what a third party can say about the patients

condition with no more information than that given. If

the two expert opinions are taken as likelihoods, or as

posteriors with a common uniform prior, this problem

is solved by taking Laplace’s parallel composition (1)

of the two probability vectors, giving the result (0,0,1),

i.e., the case T is certain. This example has been dis-
cussed a lot in the literature, see e.g. [53]. It is a classical

example on how two independent sets of observations

can together eliminate cases to end up with a case not

really indicated by any of the two sets in separation.

Several such examples have been brought up as good

and prototypical in the Bayesian literature, e.g., in [38].

However, in the evidence theory literature the Bayesian

solution (which is also obtained from using Dempster’s

and the Modified Dempster’s rule) has been consid-

ered inadequate and this particular example has been the

starting point for several proposals of alternative fusion

rules.

The following are reactions I have met from profes-

sionals–physicians, psychiatrists, teachers and military

commanders–confronted with similar problems. They

are also prototypical for current discussions on evidence

theory.

² One of the experts probably made a serious mistake.
² These experts seem not to know what probability zero
means, and should be sent back to school.

² It is completely plausible that one eliminated M and

the other C in a sound way. So T is the main alter-

native, or rather T or something else, since there are
most likely more possibilities left.

² It seems as if estimates are combined at a too coarse
level: it is in this case necessary to distinguish in ¤
between different cases of the three conditions that

are most likely to effect the likelihoods from observa-

tions: type, size and position of tumor, bacterial, viral

or purely inflammatory meningitis, position of con-

cussion. The frame of discernment should thus not be

determined solely from the frame of interest, but also

on what one could call homogeneity of likelihoods or

evidence.

² The assessments for T are probably based mostly

on prior information (rareness) or invisibility in a

standard MR scan, so the combined judgment should

not make T less likely, rather the opposite.
² An investigation is always guided by the patient’s
subjective beliefs, and an investigation affects those

beliefs. So it is implausible that the two investigations

of the same patient are “really” independent. This

is a possible explanation for the Ulysses syndrome,

where persons are seen to embark on endless journeys

through the health care system. This view would

call for a game-theoretic approach (with parameters

difficult to assess).

What the example reactions teach us is that sub-

jects confronted with paradoxical information typically

start building their own mental models about the case

and insist on bringing in more information, in the form

of information about the problem area, the observation

protocols underlying the assessments, a new investiga-

tion, or pure speculation. The professionals handling of

the information problem is usually rational enough, but

very different conclusions arise from small differences

in mental models. This is a possible interpretation of the

prospect theory of Kahneman and Tversky [40].

To sum things up, if we are sure that the experts

are reliable and have the same definitions of the three

neurological conditions, the result given by Bayes’ and

Dempster’s rules are appropriate. If not, the assump-

tions and hence the statistical model must be modified.

It seems obvious that the decision makers belief in the

experts reliability must be explicitly elicited in similar

situations.

7. FUSION IN EVIDENCE AND ROBUST BAYESIAN
THEORY

The Dempster-Shafer combination rule [51] is a

straightforward generalization of Laplace’s parallel

composition rule. By this statement we do not claim

that this is the way DS theory is usually motivated.

But the model in which Dempster’s rule is motivated

[18] is different from ours: there it is assumed that each

source has its own possible world set, but precise beliefs

about it. The impreciseness results only from a multi-

valued mapping, ambiguity in how the information of
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the sources should be translated to a common frame

of discernment. It is fairly plausible that the informa-

tion given by the source is well representable as a DS

structure interpreted as a capacity. What is much less

plausible is that the information combined from several

sources is well captured by Dempster’s rule rather than

by the Fixsen/Mahler combination rule or the robust

combination rule to be described shortly. The precise as-

sumptions behind Dempster’s rule are seldom explained

in tutorials and seem not well known, so we recapitulate

them tersely: It is assumed that evidence comes from a

set of sources, where source i has obtained a precise
probability estimate pi over its private frame Xi. This
information is to be translated into a common frame ¤,
but only a multi-valued mapping ¡i is available, map-
ping elements of Xi to subsets of ¤. For the tuple of ele-
ments x1, : : : ,xn, their joint probability could be guessed
to be p1(x1) ¢ ¢ ¢pn(xn), but we have made assumptions
such that we know that this tuple is only possible if

¡1(x1)\ ¢¢ ¢ \¡n(xn) is non-empty. So the probabilities
of tuples should be added to the corresponding subset of

¤ probabilities, and then conditioning on non-emptiness
should be performed and the remaining subset proba-

bilities normalized, a simple application of (1). From

these assumptions Dempster’s rule follows.

This is postulated by Dempster as the model re-

quired. One can note that it is not based on inference, but

derived from an explicit and exact probability model. It

was claimed incoherent (i.e. violating the consistent bet-

ting paradigm) by Lindley [42], but Goodman, Nguyen

and Rogers showed that it is not incoherent [25]. In-

deed, the assumption of multi-valued mappings seems

completely innocent, if somewhat arbitrary, and it would

be unlikely to lead to inconsistencies. The recently in-

troduced Fixsen/Mahler MDS combination rule [22] in-

volves a re-weighting of the terms involved in the set in-

tersection operation: whereas Dempster’s combination

rule can be expressed as

mDS(e)/
X

e=e
1
\e

2

m1(e1)m2(e2), e 6=Ø (7)

the MDS rule is

mMDS(e)/
X

e=e
1
\e

2

m1(e1)m2(e2)
jej

je1jje2j
, e 6=Ø:

(8)

The MDS rule was introduced to account for non-

uniform prior information about the world and evidence

that contains prior information common to all sources.

In this case jej, etc, in the formula are replaced by the
prior probabilities of the respective sets. The rule (8)

is completely analogous to (4): the denominator of the

correction term takes the priors out of the posteriors of

both operands, and the numerator jej reinserts it once
in the result. But as we now will see, the MDS rule

can also be considered a natural result of fusing likeli-

hood describing information with a different likelihood

function.

It is possible to analyze the source fusion prob-

lem in a (precise) Bayesian setting. If we model the

situation with the likelihoods on 2¤£¤ of (6), Sec-

tion 4, we find the task of combining the two likelihoodsP
em1(e)l(e,¸) and

P
em2(e)l(e,¸) using Laplace’s par-

allel composition as in (2) over ¤, giving

f(¸)/
X
e
1
,e
2

m1(e1)m2(e2)li(e1,¸)li(e2,¸):

For the choice i= 1, this gives the relative plausibil-
ity of the result of fusing the evidences with Dempster’s

rule; for the likelihood l2 associated with the pignistic
transformation, we get

P
e
1
,e
2
m1(e1)m2(e2)l(e1,¸)l(e2,¸)

=(je1jje2j). This is the pignistic transformation of the
result of combining m1 and m2 using the MDS rule.
In the discussions for and against different combina-

tion and estimation operators, it has sometimes been

claimed that the estimation operator should propagate

through the combination operator. This claim is only

valid if the above indicated precise Bayesian approach is

bought, which would render DS-structures and convex

sets of distributions unnecessary. In the robust Bayesian

framework, the maximum entropy estimate is com-

pletely kosher, but it does not propagate through any

well known combination operation. The combination of

Dempster’s rule and the pignistic transformation cannot

easily be defended in a precise Bayesian framework, but

Dempster’s rule can be defended under the assumption

of multi-valued mappings and reliable sources, whereas

the pignistic transformation can be defended in three

ways: (1) It can be seen as “natural” since it results, e.g.,

from an indifference principle applied to the paramet-

ric representation of Blackman and Popoli; (2) Smets

argument [54] is that the estimation operator (e.g., the

pignistic transformation) should propagate, not through

the combination operator, but through linear mixing; (3)

An even more convincing argument would relate to de-

cisions made, e.g., it seems as if the pignistic transfor-

mation is, not exactly but approximately, minimizing

the norm of the maximum (over Nature’s choice) er-

ror made measured as the Euclidean norm of the dif-

ference between the selected distribution and Nature’s

choice.

7.1 The Robust Combination Rule

The combination of evidence–likelihood functions

normalized so they can be seen as probability distribu-

tions–and a prior over a finite space is thus done simply

by component-wise multiplication followed by normal-

ization [41, 57]. The resulting combination operation

agrees with the DS and the MDS rules for precise be-

liefs. The robust Bayesian version of this would replace

the probability distributions by sets of probability distri-

butions, for example represented as DS-structures. The
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most obvious combination rule would yield the set of

probability functions that can be obtained by taking one

member from each set and combining them. Intuitively,

membership means that the distribution can possibly be

right, and we would get the final result, a set of distri-

butions that can be obtained by combining a number of

distributions each of which could possibly be right. The

combination rule (3) would thus take the form (where

F denotes convex families of functions):

F(¸ j fX1,X2g)/ F(fX1,X2g j ¸)£F(¸)
= F(X1 j ¸)£F(X2 j ¸)£F(¸): (9)

DEFINITION 1 The robust Bayesian combination op-

erator £ combines two sets of probability distribu-

tions over a common space ¤. The value of F1£F2 is
fcf1f2 : f1 2 F1,f2 2 F2,c= 1=

P
¸2¤ f1(¸)f2(¸)g.

The operator can easily be applied to give too much

impreciseness, for reasons similar to the corresponding

problem in interval arithmetic: the impreciseness of like-

lihood functions has typically a number of sources, and

the proposed technique can give too large uncertainties

when these sources do not have their full range of varia-

tion within the evidences that will be combined. A most

extreme example is the sequence of plots returned by a

sensor: variability can have its source in the target, in the

sensor itself, and in the environment. But when a partic-

ular sensor follows a particular target, the variability of

these sources are not fully materialized. The variability

has its source only in the state (distance, inclination, etc)

of the target, so it would seem wasteful to assume that

each new plot comes from an arbitrarily selected sensor

and target. This, and similar problems, are inherent in

system design, and can be addressed by detailed analy-

ses of sources of variation, if such are feasible.

We must now explain how to compute the opera-

tor of Definition 1. The definition given of the robust

Bayesian combination operator involves infinite sets in

general and is not computable directly. For singleton

sets it is easily computed, though, with Laplace’s par-

allel composition rule. It is also the case that every cor-

ner in the resulting set can be generated by combining

two corners, one from each of the operands. This ob-

servation gives the method for implementation of the

robust operator. After the potential corners of the re-

sult have been obtained, a convex hull computation as

found, e.g., in MATLAB and OCTAVE, is used to tes-

sellate the boundary and remove those points falling in

the interior of the polytope. The figures of this paper

were produced by a Matlab implementation of robust

combination, Dempster’s and the MDS rule, maximum

entropy estimation, and rounding. The state of the art

in computational geometry software thus allows easy

and efficient solutions, but of course as the state space

and/or the number of facets of the imprecision poly-

topes become very large, some tailored approximation

methods will be called for. The DS and MDS rules have

exponential complexity in the worst case. The robust

rule will have a complexity quadratic in the number of

corners of the operands, and will thus depend on round-

ing for feasibility. For very high-dimensional problems

additional pruning of the corner set will be necessary

(as is also the case with the DS and MDS operators).

We can now make a few statements, most of which

are implicitly present in [19, Discussion by Aitchison]

and [32], about fusion in the robust Bayesian frame-

work:

² The combination operator is associative and commu-
tative, since it inherits these properties from the mul-

tiplication operator it uses.

² Precise beliefs combined gives the same result as
Dempster’s rule and yield new precise beliefs.

² A precise belief combined with an imprecise belief

will yield an imprecise belief in general–thus Demp-

ster’s rule underestimates imprecision compared to

the robust operator.

² Ignorance is represented by a uniform precise belief,

not by the vacuous assignment of DS-theory.

² The vacuous belief in the robust framework is a

belief that represents total skepticism, and will when

combined with anything yield a new vacuous belief (it

is thus an absorbing element). This belief has limited

use in the robust Bayesian context.

² Total skepticism cannot be expressed with Demp-

ster’s rule, since it never introduces a focal element

which is a superset of all focal elements in one

operand.

DEFINITION 2 A rounded robust Bayesian combination

operator combines two sets of probability distributions

over a common space ¤. The robust operation is applied
to the rounded operands, and the result is then rounded.

An important and distinguishing property of the

robust rule is:

OBSERVATION 1 The robust combination operator is,
and the rounded robust operator can be made (note: it
is not unique) monotone with respect to imprecision, i.e.,
if F 0i μ Fi, then F 01 £F 02 μ F1£F2.
PROPOSITION 2 For any combination operator £0 that
is monotone wrt imprecision and is equal to the Bayesian
(Dempster’s) rule for precise arguments, F1£F2 μ F1£0
F2, where £ is the robust rule.
PROOF By contradiction; thus assume there is an f 2
F1£F2 with f =2 F1£0 F2. By the definition of £, f =
ff1g£ff2g for some f1 2 F1 and f2 2 F2. But then f =
ff1g£0 ff2g, and since £0 is monotone wrt imprecision,
f 2 F1£0 F2, a contradiction.
We can also show that the MDS combination rule

has the “nice” property of giving a result that always

overlaps the robust rule result, under the capacity inter-

pretation of DS-structures:

PROPOSITION 3 Letm1 andm2 be two DS-structures and
let F1 and F2 be the corresponding capacities. If F is the
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capacity representing m=m1 ¤MDSm2 and F 0 is F1£F2,
then F and F 0 overlap.

PROOF Since the pignistic transformation propagates

through the MDS combination operator, and by Propo-

sition 1 the pignistic transformation is a member of the

capacity of the DS-structure, the parallel combination

of the pignistic transformations of m1 and m2 is a mem-
ber of F 0 and equal to the pignistic transformation of
m, which for the same reason is a member of F. This
concludes the proof.

The argument does not work for the original Demp-

ster’s rule, for reasons that will become apparent in the

next section. It was proved by Jaffray [37] that Demp-

ster’s rule applied with one operand being precise gives

a (precise) result inside the robust rule polytope. The

same holds of course, by Proposition 3, for the MDS

rule. We can also conjecture the following, based on ex-

tensive experimentation with our prototype implemen-

tation, but have failed in obtaining a short convincing

proof:

CONJECTURE 1 The MDS combination rule always gives
a result which is, in the capacity interpretation, a subset of
the robust rule result. The MDS combination rule is also
a coarsest symmetric bilinear operator on DS-structures
with this property.

8. A PARADOXICAL EXAMPLE

In [1] we analyzed several versions of Zadeh’s ex-

ample with “discounted” evidences to illustrate the dif-

ferences between robust fusion and the DS and MDS

rules, as well as some different methods to summarize

a convex set of pdfs as a precise pdf. Typically, the

DS and MDS rules give much smaller imprecision in

the result than the robust rule, which can be expected

from their behavior with one precise and one imprecise

operand. One would hope that the operators giving less

imprecision would fall inside the robust rule result, in

which case one would perhaps easily find some plausi-

ble motivation for giving less imprecision than indicated

in the result. In practice this would mean that a system

using robust fusion would sometimes find that there is

not a unique best action while a system based on the

DS or MDS rule would pick one of the remaining ac-

tions and claim it best, which is not obviously a bad

thing. However, the DS, MDS and robust rules do not

only give different imprecision in their results, they are

also pairwise incompatible (sometimes having an empty

intersection) except for the case mentioned in Conjec-

ture 1. Here we will concentrate on a simple, somewhat

paradoxical, case of combining two imprecise evidences

and decide from the result.

Varying the parameters of discounting a little in

Zadeh’s example, it is not difficult to find cases where

Dempster’s rule gives a capacity disjoint (regarded as

a geometric polytope) from the robust rule result. A

simple Monte Carlo search indicates that disjointness

does indeed happen in general, but infrequently. Typ-

ically, Dempster’s rule gives an uncertainty polytope

that is clearly narrower than that of the robust rule,

and enclosed in it. In Fig. 2 we show an example

where this is not the case. The two combined evi-

dences are imprecise probabilities over three elements

A, B and C, the first spanned by the probability distri-
butions (0:2,0:2,0:6) and (0:2,0:5,0:3), the second by
(0:4,0:1,0:5) and (0:4,0:5,0:1). These operands can be
represented as DS structures, as shown in Table II, and

they are shown as vertical green lines in Fig. 2. They

can be combined with either the DS rule, the MDS rule,

or the robust rule, as shown in Table III. The situation is

illustrated in Fig. 2, where all sets of pdfs are depicted

as lines or polygons projected on the first two proba-

bilities. The figure shows that the robust rule claims the

probability of the first event A (horizontal axis) to be
between 0.2 and 0.33, whereas Dempster’s rule would

give it an exact probability around 0.157. The MDS

rule gives a result that falls nicely inside the robust rule

result, but it claims an exact value for the probability

of A, namely 0.25. Asked to bet with odds six to one
on the first event (by which we mean that the total gain

is six on success and the loss is one on failure), the

DS rule says decline, the robust and MDS rules say

accept. For odds strictly between four and five to one,

the robust rule would hesitate and MDS would still say

yes. For odds strictly between three and four to one, DS

and MDS would decline whereas the robust rule would

not decide for or against. Including the refinement pro-

posed by Voorbraak (see Section 5) would not alter this

conclusion unless the imprecisions of the two operands

were coupled, e.g., by common dependence on a third

quantity.

In an effort to reconcile Bayesian and belief meth-

ods, Blackman and Popoli [8, ch. 7] propose that the

result of fusion should be given the capacity interpre-

tation as a convex set, whereas the likelihoods should

not–an imprecise likelihood should instead be repre-

sented as the coarsest enclosing DS-structure having the

same pignistic transformation as the original one. When

combined with Dempster’s rule, the result is again a

prior for the next combination whose capacity interpre-

tation shows its imprecision. The theorem proved–at

some length–in [8, App. 8A] essentially says that this

approach is compatible with our robust rule for pre-

cise likelihoods. In our example, if the second operand

is coarsened to fm02(A) 7! 0:1,m02(fA,B,Cg) 7! 0:9g, the
fusion result will be a vertical line at 0.217, going from

0.2 to 0.49, just inside the robust rule result. However

no mass will be assigned to a non-singleton set con-

taining A, so the rule still gives a precise value to the
probability of A. The philosophical justification of this
approach appears weak.

The example shows that Dempster’s rule is not com-

patible with the capacity interpretation, whereas the

MDS rule is: there is no pair of possible pdfs for the

operands that combine to any possible value in the
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Fig. 2. A case where the robust rule and Dempster’s rule give paradoxical results. The coordinates are the probabilities of A and B. The

operands are shown in green dashed, the result of the robust combination rule is shown in black solid (same as in Fig. 1), Dempster’s rule

gives the result shown in red dotted, the Fixsen/Mahler MDS rule shown in blue dash-dotted lines.

Dempster’s rule result, wheras every possible pdf in the

MDS rule results from combining some pair of possible

pdfs for the operands. If Conjecture 1 can be proved, the

last is true for all pairs of operands, but there are also

many particular examples where even Dempster’s rule

gives a compatible result. It has been noted by Walley

that Dempster’s rule is not the same as the robust combi-

nation rule [62], but I have not seen a demonstration that

the two are incompatible in the above sense. There is, of

course, a rational explanation of the apparent paradox,

namely that the assumptions of private frames of dis-

cernment for sources and of a multi-valued mapping for

each source is very different from the assumption of im-

precise likelihoods, and this means that some informa-

TABLE III

Fusing the Operands of Table II with the DS, MDS and Robust Rules¤

Focal Fusion Result

DS MDS Robust Uprounded

c1 c2 m c1 c2 m c11 c22 c12 c21 m

A 0.157 0.157 0.157 0.250 0.250 0.250 0.200 0.222 0.333 0.286 0.200

B 0.255 0.490 0.255 0.422 0.234 0.234 0.050 0.694 0.417 0.179 0.050

C 0.588 0.353 0.353 0.328 0.516 0.328 0.750 0.083 0.250 0.536 0.083

fA,Bg 0 0 0

fA,Cg 0 0 0.022

fB,Cg 0.235 0.188 0.534

fA,B,Cg 0 0 0.111

¤The result for DS and MDS shown as two corners (c1 and c2), and as an equivalent DS-structure (m). For the robust rule result, its four
spanning corners are shown, where, e.g., c21 was obtained by combining the second corner c2 of op1 with c1 of op2, etc. These corners are

the corners of the black polygon in Fig. 2. The robust rule result is also shown as a DS-structure for the up-rounded result (blue dashed line

in Fig. 1). Values are rounded to three decimals.

TABLE II

Two Operands of the Paradoxical Example¤

Focal op1 op2

c1 c2 m c1 c2 m

A 0.2 0.2 0.2 0.4 0.4 0.4

B 0.2 0.5 0.2 0.1 0.5 0.1

C 0.6 0.3 0.3 0.5 0.1 0.1

fB,Cg 0.3 0.4

¤Columns marked m denote DS-structures and those marked c1, c2
denote corners spanning the corresponding capacity. Values are exact.
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tion in the private frames is still visible in the end result

when Dempster’s rule is used. Thus Dempster’s rule

effectively makes a combination in the frame 2¤ instead

of in ¤ as done by the robust rule. It is perhaps more
surprising that the paradoxical result is also obtainable

in the frame ¤ using precise Bayesian analysis and the
likelihood l1(e,¸) (see Section 4). The main lesson here,
as in other places, is that we should not use Dempster’s

rule unless we have reason to believe that imprecision

is produced by the multi-valued mapping of Dempster’s

model rather than Fixsen/Mahler’s model or incomplete

knowledge of sampling functions and prior. If the MDS

operator is used to combine likelihoods or a likelihood

and a prior, then posteriors should be combined using

the MDS rule (8), but with all set cardinalities squared.

Excluding Bayesian thinking from fusion may well

lead to inferior designs.

9. CONCLUSIONS

Despite the normative claims of evidence theory and

robust Bayesianism, the two have been considered dif-

ferent in their conclusions and general attitude towards

uncertainty. The Bayesian framework can however de-

scribe most central features of evidence theory, and is

thus a useful basis for teaching and comparison of dif-

ferent detailed approaches to information fusion. The

teaching aspect is not limited to persuading engineers

to think in certain ways. For higher level uncertainty

management, dealing with quantities recognizable to

users like medical researchers, military commanders,

and their teachers in their roles as evaluators, the need

for clarity and economy of concepts cannot be exag-

gerated. The arguments put forward above suggest that

an approach based on the precise Bayesian and the ro-

bust Bayesian fusion operator is called for, and that

choosing decision methods based on imprecise prob-

abilities or DS structures should preferably be based on

decision-theoretic arguments. Our example shows how

dangerous it can be to apply evidence theory without

investigating the validity in an application of its crucial

assumption of reliable private frames for all sources of

evidence and precise multi-valued mappings from this

frame to the frame of interest. The robust rule seems

to give a reasonable fit to most fusion rules based on

different statistical models, with the notable exception

of Dempster’s rule. Thus, as long as the capacity inter-

pretation is prevalent in evidence theory applications,

there are good reasons to consider if the application

would benefit from using the MDS rule (complemented

with priors if available) also for combining information

in the style of likelihoods. In this case, however, the

combination of the MDS rule with pignistic transfor-

mation is interpretable as a precise Bayesian analysis.

In most applications I expect that the precise Bayesian

framework is adequate, and it is mainly in applications

with the taste of risk analysis that the robust Bayesian

framework will be appropriate.
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