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From the Vice President
for Publications:
December 2006

The Business Model for JAIF

The Journal for Advances in Information Fusion
(JAIF) was started following the announcement in 2002
at the International Conferences on Information Fusion
(ICIF or FUSION Conference) in Annapolis, Maryland.
Like every system start, it had a time delay, which in
this case was more than anticipated. The first issue was
published this year and a hard copy of it was distribut-
ed as part of the registration package at the FUSION
Conference.
The plan was to have an on-line journal, which is

what the ISIF flagship publication is. The primary credit
for making this plan into reality goes to W. Dale Blair
who, with his extensive experience as Editor-in-Chief
of the IEEE Transactions on Aerospace and Electronic
Systems, managed to put together the publication mech-
anism and orchestrate, together with Robert Lynch and
Mahendra Mallick, the operation of the Editorial Board
consisting of seven Area Editors and eight Associate
Editors.
However, there is more to it.
The business model for this journal, as decided by

the ISIF Board of Directors, is, using the terminology
from the time I used to be in control, “zero-high-zero”.
This can be translated as follows: “no (input) fee for
authors, no (output) fee for readers, only strict qual-
ity control (the transfer function–a high-pass filter)”.
In other words, the journal, posted on the ISIF web-
site, is open access to anyone and, unlike other free
e-journals, it will not charge the authors any publication
fee. Recently, I had the experience of having a paper
published in an open access e-journal, but the fee we
had to pay was US$1,500.00 (this is not a typo).
The third part of the business model is to ensure the

high standards of this flagship publication, as appro-
priate for an archival publication that is worth of this
designation. While it is easier said than done, this re-
quires a dedicated Editorial Board as well as reviewers,
who can operate so that the manuscripts submitted are
refereed by qualified reviewers and this should happen
in a timely manner.
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I want to take this opportunity to thank the entire
Editorial Board (all volunteers) for their work and solicit
additional volunteers for both editorial work as well as
reviewers.

Yaakov Bar-Shalom
Vice President for Publications
International Society for Information Fusion
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Level I and Level II Target
Valuations for Sensor
Management

K. C. CHANG
George Mason University

JOE P. HILL
SRS Technologies

Advanced optimization-based algorithms for sensor resource

management have been the research focus area in multisensor track-

ing and fusion in the last decade. These algorithms for the most

part offer the potential for automating the sensor control process

in response to level 1 sensor data fusion (object or track-level) esti-

mates. However, previous studies have indicated that these types of

sensor resource management algorithms may have limited value in

certain operational scenarios involving multi-platform surveillance

and strike missions because the response is optimized for track

maintenance without any assessment of overall situation context.

In this paper, we will develop a framework for representing the

expected information value of planned sensor measurements as it

contributes to higher-level situation inferences. Specifically, a hier-

archical target valuation model that estimates target value on the

basis of not only a level 1 valuation function but also on the basis

of a level 2 valuation function will be presented. These algorithms

will provide for improved tracking and classification performance

when identifying higher-level units such as convoys of vehicles. The

valuation models rely on a computationally efficient implementation

of Bayesian modeling and inference algorithms. Note that the main

focus of the paper is on developing a hierarchical cost function that

captures both level 1 and level 2 objectives and is not on developing

sophisticated techniques for optimizing this objective. Simulation

results which validate the approach are also presented.
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1. INTRODUCTION

Current military Intelligence Surveillance and Re-
connaissance (ISR) systems employ agile, multi-mode
sensors, which are capable of producing variable scan
patterns within a surveillance region in response to ex-
ternal tasking [18]. A number of platforms are currently
available to carry out these missions. For example, long-
range surveillance is accomplished with aircraft capable
of high coverage rate, high signal to noise moving tar-
get indicator (MTI) and high range resolution (HRR)
modes (see Fig. 1). Additionally, these systems can per-
form long dwell synthetic aperture radar scans for pur-
poses of identification. A primary example of such a
sensor is a multi-mode, electronically scanned antenna
radar capable of tasking individual beams in terms of
pointing direction, dwell time, and waveform. As illus-
trated in Fig. 1, an enhanced radar is capable of not only
interleaving various radar beam modes (i.e., wide area
search (WAS), sector search (SS), high range resolution
(HRR), and synthetic aperture radar (SAR)), but will
also be capable of scanning the surveillance region in
an asynchronous fashion as the timeline suggests (e.g.,
irregular revisits could be due to sensor tasking to main-
tain tracks, search new areas, identify high-value targets,
etc.). For such systems, the dynamic management of
sensor mode control requires an automated process due
to the variable timeline for adaptation.
Exploitation of sensor data from multi-mode sensors

is capable of producing tactically significant informa-
tion that can contribute to battlefield situation aware-
ness. The multi-mode sensor data products contribute
attributes of target detection, location, and classifica-
tion together with environmental characteristics related
to clutter. These attributes provide evidence necessary
to produce a fused situation estimate. The challenge
of sensor resource management for such systems is to
characterize the exploitation and data production pro-
cess according to a consistent model that provides for
real-time adaptive sensor management.
In order to support the solution of the sensor man-

agement problem, several different solution approaches
have been previously developed. They include informa-
tion theoretic approaches [14], random set approaches
[12], and the methods based on stochastic dynamic pro-
gramming (SDP) [2—5]. The SDP algorithms were de-
veloped to address the problem of determining the op-
timal time sequencing of the radar’s SAR (for detecting
stationary objects) and MTI modes (for tracking mov-
ing objects) that maximizes the total information value.
A value function is basically a function of low level
tracking and classification quality states. The scheduler
operates in a feedback manner in real time; for example,
as objects are detected by the SAR, they may be elim-
inated from consideration by the scheduler so that the
remaining radar resources can be better focused on only
those objects remaining undetected or needing track im-
provement.

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 1, NO. 2 DECEMBER 2006 95



Fig. 1. Advanced airborne surveillance radars will include capabilities to operate in multiple modes and interleave modes.

The output of the scheduler is to determine for each
instant of time whether the radar should

² operate in the SAR mode to image a single cell (for
a stopped target), or

² operate in the MTI mode to detect and update tracks
on all moving objects, or

² operate in the HRR mode to image a single cell
(for a moving target) in order to obtain identification
information (this is indeed the only way to obtain
classification information), or,

² not be used at all in order to meet some exposure
constraint.

The MTI mode typically requires the shortest dwell
times (and thus consumes the least amount of radar re-
sources); however, it has low range resolution and typi-
cally a low signal to noise ratio. The MTI mode is capa-
ble of detecting targets moving faster than the so-called
minimum detectable velocity (MDV) of the sensor. It
is well suited for problems such as tracking moving
vehicles, characterizing traffic flow, and lines of com-
munication using low-complexity (highest throughput)
algorithms. The HRR mode has slightly longer dwell
times (still shorter than SAR) but offers higher range
resolution and strong signal to noise performance again
for characterizing targets whose velocities exceed the
MDV of the sensor. It has been proven to be useful for
extracting coarse features (e.g. length and width) and
as a tool for low-confidence classification. The HRR
mode is eminently well suited for track maintenance
problems. Finally, the SAR mode is ideal for two di-
mensional, high confidence classifications of stationary
targets as well as change detection.
In the context of the Joint Director of Laboratories

(JDL) terminology [17], it is observed that the track fu-
sion models previously considered only address level 1
fusion (Object Assessment). Previous studies also indi-
cated that sensor resource management algorithms uti-

lizing only level 1 information may have limited value in
certain operational scenarios involving multi-platform
surveillance and strike missions because the response is
optimized for track maintenance without any assessment
of overall situation context [1, 13]. We contend that the
problem of effective SRM for agile, multi-mode sensors
will require improved representations of the process
exploitation through level 2 information to adequately
address the benefits of agile sensor tasking.
In this paper, we present a description of an algo-

rithm that could be used to provide hierarchical target
valuation based on not only level 1 (e.g., object or track)
information, but also level 2 (e.g., groups of objects) in-
formation. This algorithm has the potential to improve
the target valuation function used in a sensor resource
manager by adding a valuation component related to the
ability to identify a group of objects, such as convoys.
This algorithm builds upon earlier results [10] that only
addressed target valuation based on level 1 fusion infor-
mation. The valuation algorithm is based on a Bayesian
approach where a recursive composition inference algo-
rithm was used to compute the hierarchical value func-
tion [10]. We have developed an efficient approximation
algorithm to solve the combinatorial problem present in
the original approach [7—8]. We have also developed an
evaluation environment to analyze the performance of
this valuation algorithm given a set of ground moving
targets. The preliminary simulation results demonstrate
the validity of our approach.
Note that the focus of this paper is on developing

the hierarchical valuation function, not on deriving a
sophisticated optimization algorithm. Essentially, any
appropriate optimization algorithm can be applied to
obtain the optimal solution. Although the stochastic
dynamic programming approach mentioned before [3—
5] seems to be a very suitable one. The remainder of the
paper is organized as follows. Section 2 introduces and
formulates the problem. Section 3 presents a complete
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description of the valuation function and solution pro-
cedure. Section 4 describes the evaluation environment
and the test scenarios followed by a set of simulation
results given in Section 5 to demonstrate the new ap-
proach. Finally, our contribution and future research di-
rections are summarized in Section 6.

2. PROBLEM DESCRIPTION AND SOLUTION
CONCEPTS

Current Intelligence Surveillance and Reconnais-
sance (ISR) sensors can detect and take measurements
on individual entities, such as moving vehicles and in-
stallations. These measurements can be used to infer the
particular class of these individual entities. However,
very few collection assets provide direct measurements
on the hierarchical force structure of units that the en-
tities comprise. Consequently, it is desirable to develop
the capability to produce inferences on the hierarchi-
cal structure of military units based on inferences and
measurements of individual entities and sub-units.
In many cases, the optimality of a sensor allocation

policy is defined in terms of reduced tracking error and
the best policy is determined through the solution of
an optimization problem. While significant progress has
been made in this area in the past, there remain open
issues in the synthesis and validation of an approach to
sensor resource management capable of utilizing high
level fusion information.
A technique that can be used to assess the relative

merit of aggregate force hypotheses from observations
of a set of entities was presented in [10]. The technique
draws inferences about the type of military unit that is
present given partial observations of entities that com-
prise the units. Furthermore, making inferences about
the type of military unit provides contextual informa-
tion that enables improved inference about the type of
individual vehicles. However, it was pointed out in [10]
that the inference process involves intensive computa-
tions where the enumeration of an exponentially grow-
ing set is needed. In general, this could be very time
consuming and may not be practical. In this paper, we
develop an efficient approximate algorithm to resolve
the combinatorial problem.
In a hierarchical data fusion functional model, high

level processing includes estimation and prediction of
relations among entities, force structure and cross force
relations, communications and perceptual influences,
physical context, etc. The goal of this paper is to develop
models that estimate relations among entities which
can contribute to force structure/composition assess-
ment and to do this in a manner that enables the adap-
tive sensor management algorithms that have been pre-
viously developed.
Herein, we present a hierarchical value function

(encompassing both level 1 and level 2 utility) using
Bayesian Networks (BNs) [9] to implement sensor re-
source management algorithms. The valuation function

includes both track level and higher-level (entity, con-
voy, group, scenario, etc.) information. Although sig-
nificant research has been done in the area of sensor
resource management as well as BNs with sensor fusion
applications independently, to our knowledge, these two
technologies have not been previously applied together
to date to solve the higher-level fusion for sensor man-
agement problem.

3. SENSOR RESOURCE MANAGEMENT
ALGORITHMS

As discussed earlier, the sensor has a capability of
determining whether to collect MTI data at a dwell, or
instead to collect HRR data on part of a dwell. The
sensor management decisions will be based on informa-
tion reported by a MHT (Multiple Hypothesis Tracker)
[11, 15] which processes the sensor measurements.1

This MHT also includes an ATR capability [6] which
provides information on object estimated classifications
based on the HRR measurements. The SRM algorithm
can be considered as a controller which uses sensor ac-
tions to control the evolution of the information incorpo-
rated into the MHT algorithm. In order to make “good”
sensor management decisions, it is important to model
this evolution so that the SRM algorithm can predict the
consequences of the alternative decisions.
However, the set of possible information states re-

ported by the MHT for each track is very large. It con-
sists of continuous variables with uncertainty (position,
velocity, etc.), plus a set of probability distributions over
target type, and discrete variables such as number of
missed detection and status. Furthermore, the evolution
of this information is highly uncertain, depending on
the specific values of the future sensor measurements.
For a large number of targets, the set of possible in-
formation states is the cross product of individual target
states, leading to a large-dimensional continuous-valued
state space. Designing feedback controls using such a
state space would not lead to a practical real-time sen-
sor management algorithm. An alternative approach is
to characterize the information relevant to a track us-
ing an aggregate discrete-valued “information quality
state” [1]. The model state has two components: track-
ing and classification quality. Each of these components
can take a discrete number of values; thus, its evolu-
tion in response to sensor actions can be described by
a finite-state Markov chain.

A. Track Quality State

In order to represent the behavior of the tracker al-
gorithm, one way is to represent the track quality as a
combination of tracking quality and classification qual-
ity. For example, in [1], the tracking quality state con-

1Note that the SRM algorithm could take information from any
tracker, not necessary a MHT tracker.
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sists of: Undetected, Detected, New Track, Continuing
Track, Coast 3 to go, Coast 2 to go, Coast 1 to go,2

and Dropped. The transition probabilities between these
Markov states were given by parameters, which depend
on the specific sensor mode being used by the radar,
the sensor beam geometry for the track position indi-
cating its probability of detection, and MHT parame-
ters describing how tracks are nominated, promoted and
dropped.
The target classification quality was modeled using

a similar approach. For example, the classification in-
formation can be aggregated into four confidence lev-
els: Unclassified, Low Confidence, Medium Confidence,
and High Confidence. Note that the classification qual-
ity does not depend on the specific identity of an ob-
ject; instead, it represents confidence in the identity as-
sertion. Thus, the evolution model predicts the confi-
dence improvement which results from specific sensor
actions.
In [1], the transition probabilities of the two models

were treated independently and computed as a function
of the sensor mode separately. However, it is clear that
the tracking and classification quality are correlated and
should not be considered independently. We therefore
develop a joint tracking and classification (JTC) qual-
ity state and develop a Markov model accordingly. By
considering all the feasible combinations, the resulting
model consists of 24 states as shown in Table I. The
values (last column) assigned for each JTC state in Ta-
ble I represent the relative preference of each state by
the user. They are assigned heuristically and can be eas-
ily modified. More on the quality state value will be
described in the next section. The Markov model tran-
sition diagram is shown in Fig. 2 and the corresponding
transition matrix is given in Table II. Each entry in Ta-
ble II represents the transition probability between two
JTC states. Note that each row in the matrix needs to
be normalized in order to make all the outgoing arcs
from a state sum to 1.0. Also note that depending on
the sensor mode, the transition matrix will be obtained
based on the sensor parameters accordingly. The de-
tailed description of the transition probabilities is given
in Appendix A.
Given the representation of the information state de-

scribed above, we can express the sensor management
objectives as follows. First, we define the Tracking and
Classification (TC) quality states and assign a numer-
ical value V(TC state) for every possible TC quality
state. For example, a high numerical value would be
assigned to a tracking quality of Continuing Track and
a classification quality of High Confidence, whereas the
lowest value would be assigned to a tracking quality of
Dropped Track (see Table I). It may be more important
to track objects having a priority classification assess-

2Coast 1 to go is the last tracking quality state before the track will
be dropped.

TABLE I
24 State JTC Markov Model

Index JTC Tracking Classification Values

1 J11 Undetected Unclassified 0
2 J21 Detection Unclassified 1
3 J22 Detection Low confidence 2
4 J31 False Unclassified 0
5 J41 New track Unclassified 2
6 J42 New track Low confidence 3
7 J43 New track Medium confidence 4
8 J51 Continuing track Unclassified 7
9 J52 Continuing track Low confidence 8
10 J53 Continuing track Medium confidence 9
11 J54 Continuing track High confidence 10
12 J61 Coast 3 to go Unclassified 6
13 J62 Coast 3 to go Low confidence 7
14 J63 Coast 3 to go Medium confidence 8
15 J64 Coast 3 to go High confidence 9
16 J71 Coast 2 to go Unclassified 5
17 J72 Coast 2 to go Low confidence 6
18 J73 Coast 2 to go Medium confidence 7
19 J74 Coast 2 to go High confidence 8
20 J81 Coast 1 to go Unclassified 4
21 J82 Coast 1 to go Low confidence 5
22 J83 Coast 1 to go Medium confidence 6
23 J84 Coast 1 to go High confidence 7
24 J91 Dropped track Unclassified 0

ment, such as time critical targets. Thus we assume that
there are values assigned to the different object classes.
We then define an objective function which represents
an overall tracking quality value given a sequence of
sensor manager decisions. Note that the advantage of
this method is that the aggregate Markov chain repre-
sentation of information quality allows for fast predic-
tion of MHT performance. The result is a practical, pre-
dictive model which can be used to evaluate trades be-
tween alternative sensor management decisions in real
time.

B. Sensor Management Objectives

The SRM algorithm is based on an open-loop feed-
back approach. The basic idea is that at frame t, we
generate the desired sequence of decisions for frames t,
t+1, : : : , t+H, where H is the planning horizon, based
on the aggregate evolution represented by the informa-
tion quality Markov chains in Fig. 2. We then collect
the information from frame t, and receive updated track
information from the MHT algorithm. Given this new
information, we repeat the process and select decisions
for frames t+1, t+2, : : : , t+H+1, receive new infor-
mation from the MHT and continue the iteration. Thus
at each frame t, we compute sensor management deci-
sions for several frames ahead, but use only the next
frame’s decisions to resolve the SRM problem. An im-
portant aspect of the sensor management methodology
is that it decides immediate sensor mode commitments
with a view towards how these decisions will affect the
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Fig. 2. Markov transition diagram of the joint tracking and classification quality state.

TABLE II
JTC Markov State Transition Matrix

information state H frames in the future. The size of H
reflects a tradeoff between the desire to account for fu-
ture actions versus the unpredictable evolution of future
target motions. Larger values of H introduce more pre-
diction uncertainty into future target positions, thereby

making it harder to predict the effect of future sensor
actions.
The SRM uses this information as follows. First,

for each SRM track created from an MHT track, the
classification probabilities of each track are used to
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assign a value to this SRM track, as follows:

V(SRM Track) =
X

class2classes
V(class)P(class jMHT Track)

(1)

where class 2 fclassesg represents each of the possible
target classification, V(class) represents the decision
maker’s preference/priority on each target class and is
assumed to be available.
The SRM objective for decisions selected at frame t

is as follows. Given a set of SRM decisions for frames
t, t+1, : : : , t+H, for each SRM track, we can predict the
probability distributions for the track quality state, PQ( ),
after the information from frame t+H is processed.
Denote these decisions as ut,ut+1, : : : ,ut+H , the overall
value of this sequence of decisions is computed as [1],

J(ut,ut+1, : : : ,ut+H)

=
X

SRM Track
2SRM Tracks

V(SRM Track)

£
X
JTC state
2JTC states

PQ(JTC state j SRM Track)V(JTC state)

(2)

where SRM Tracks is the set of all SRM Track and
JTC States is the set of all JTC State. In (2), it is im-
plicit that the track quality probabilities depend on the
sequence of decisions. The SRM objective function de-
scribed above represents an assignment of value to in-
formation quality and to classification of objects. This
formulation couples the values of tracking and classifi-
cation quality.
We will next show how to extend the target valuation

models to include a hierarchical structure. The approach
will be to modify the target valuation function (2) to
include a higher level (cluster or unit) component. We
rewrite (2) as

J(ut,ut+1, : : : ,ut+H)

=
X

SRM Cluster
2SRM Clusters

V(SRM Cluster)

24 X
Cluster Track
2Cluster Tracks

V(Cluster Track)
X
JTC state
2JTC states

P(JTC state j Cluster Track)V(JTC state)
35
(3)

where

V(SRM Cluster)

=
X

Unit types

V(Unit Type)P(Unit Type jCluster Tracks)

(4)
and SMR Cluster is a group of tracks, denoted as
Cluster Tracks, linked together by proximity of a par-
ticular type of military unit.

As shown in (3), a hierarchical target valuation model
is a function of both level 1 (Object Assessment) and
level 2 (Situation Assessment) fusion quantities. The
model is developed as follows:

1. First, we group the current MHT tracks into clusters.

2. For each cluster, we use a force structure model
to infer unit type. We will construct a stochastic
model by representing uncertainty (e.g. detection
probability and unit composition variation).

3. We then develop a unit-level value function in ad-
dition to the entity level tracking and classifica-
tion value functions as shown in (3). Note that the
unit-level valuation function consists of two parts,
V(Unit Type) and P(Unit Type j Cluster Tracks), as
given in (4). V(Unit Type) is the default value spec-
ified by the decision maker based on their pref-
erence/priority on each unit type and P(Unit Type j
Cluster Tracks) is the Unit Type probability given a
set of tracks computed by the BN force structure
model to be discussed in the next section.

C. Bayesian Network Force Structure Model

With Bayes rule, the Unit Type probability given a
cluster of tracks can be computed by,

P(Unit Type j Cluster Tracks)

=
1
c
P(Cluster Tracks jUnit Type)P(Unit Type):

(5)

The solution to (5) represents one of the key contribu-
tions described in [10]. P(Unit Type) represents the prior
probabilities, and P(Cluster Tracks jUnit Type) can be

computed as follows:

P(Cluster Tracks jUnit Type)
=

X
d2D(n,r+1)

P(Cluster Tracks j d)P(d jUnit Type):
(6)

In (6), D(n,r+1) is the set of all possible distributions
of the n detected vehicles into the r+1 possible vehicle
classes (including the false-alarm class), which is a
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Fig. 3. A Bayesian network model for composition inference.

space with (r+1)n elements, P(Cluster Tracks j d) is
the likelihood of tracks classification states given the
specific detection composition d, and P(d jUnit Type) is
the probability of detection composition given the unit
type (see (8)). Note that in (6),

p(Cluster Tracks j d)
=
X
a

p(Cluster Tracks j a)P(a j d)

=
X
a

"
nY
k=1

p(Cluster Track(k) j vk)
#
P(a j d) (7)

where in (7) p(Cluster Track(k) j vk) is the likelihood of
producing a track classification state Cluster Track(k)
given a class vk vehicle, and a is the joint assignment
of a set of vehicles types to a set of tracks. Assuming
all joint assignments consistent with the composition
constraint are equally likely, then

P(a j d) =
½
1=j−(d)j, a 2 −(d)

0, otherwise
where

j−(d)j= Cn(d)n(1;d),:::,n(r;d) =
[n(1;d) + ¢ ¢ ¢+ n(r;d)]!
n(1;d)! ¢ ¢ ¢n(r;d)!

is the set of all joint assignments in which n(v;d) is the
number of detected class v vehicles in d.
Also in (6), from the detection model (for simplicity,

u´Unit Type will be used in the following equations),

P(d j u) = po(n(0;d);¸FA)
rY
v=1

P(n(v;d) j n(v;u)): (8)

In (8), n(0;d) is the number of false detections, n(v;u)
is the number of class º vehicles in a type u unit,3

po(k;¸) = ¸
ke¡¸=k! is the Poisson distribution for false

alarm detection probability, and

P(n(v;d) j n(v;u))

=
min[n(v;u),n(v;d)]X

k=0

B(k;n(v;u),PD(v)) ¢po(n(v;d)¡ k;¸C(v))

(9)

3Note that the composition of each unit type is assumed to be given.

is the probability of target detection with B(k;n,p) =
Cnk p

k(1¡p)n¡k, a Binomial distribution, where ¸C(v) is
the density of confusers of class º vehicle.
To implement the hierarchical valuation function,

one way is to use the BN model constructed based on
(6)—(9) as shown in Fig. 3. Many efficient algorithms
exist for BN probabilistic inference [16]. However, (6)—
(9) involve intensive computations where the enumera-
tion of an exponentially growing set is needed. In gen-
eral, this could be very time consuming and may not
be practical. We have thus developed an approximate
method to simplify the approach, namely,

P(Cluster Tracks jUnit Type)
¼ P(d(Cluster Tracks) jUnit Type) (10)

where d(Cluster Tracks) is defined as the joint detection-
classification state by collapsing all the track classifica-
tion probability distributions into one. Namely,

d(Cluster Tracks) =
X

Cluster Track
2Cluster Tracks

PC(Cluster Track),

where PC(Cluster Track) is the classification probabil-
ity distribution of the track Cluster Track. Note that
d(Cluster Tracks) is the expected number of targets of
each class. Essentially, the approximation amounts to
replacing the distribution over numbers of each vehicle
type by the mean number of each vehicle type. Then

P(d(Cluster Tracks) jUnit Type)

=
rY
v=1

PB(n(v;d(Cluster Tracks)) j n(v;u))

(11)
where PB(n(v;d(Cluster Tracks)) j n(v;u)) is defined sim-
ilarly to (9). However, since d(Cluster Tracks) is a vec-
tor of positive real numbers (not necessary integers), it
may not be possible to perform the calculation in (9).
We therefore approximate it by

PB(n(v;d(Tks)) j n(v;u))¼N(n(v;d(Tks)); n̄,¾2n)
(12)

where N(n; n̄,¾2n) is a Gaussian distribution, n̄= n(v;u)
¢PD(v) +¸C(v) is the expected number of detected class
º targets, and ¾2n =max[¾min,n(v;u)PD(v)(1¡PD(v)) +
¸C(v)] is the approximate associated variance. With
(10)—(12), the composition inference becomes signifi-
cantly simpler and much more efficient to compute.

4. SENSOR RESOURCE MANAGEMENT
EVALUATION ENVIRONMENT

In order to test our target valuation algorithms, we
implemented a simple test system as shown in Fig. 4.
Note that the purpose of this architecture was not to
provide high fidelity modeling conditions; rather, it was
designed to be quickly constructed for the purpose of
evaluating the proof-of-concept target valuation algo-
rithm(s) that were developed in this paper.
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Fig. 4. A SRM system architecture.

The architecture contains an outer loop where at
each instant of time, the system simulator creates and
sends the current scenario information (related to the
targets and sensors) to the simulated tracker. The sim-
ulated tracker then produces the simulated tracks with
proper joint (tracking and classification) quality states
and classification vectors based the Markov transition
model as well as the true target/sensor parameters. The
simulated tracker then sends the track results to the eval-
uator. The evaluator uses the tracking results to deter-
mine the best sensor mode and pointing direction for
next instant of sampling time and sends that decision
back to the system simulator. In the remainder of this
section, we will provide a description of each of the
components in Fig. 4.

A. System Simulator

The system simulator is the overall driver of the
system. It generates the ground truth scenarios including
target trajectories, group/convoy composition, sensor
placements, and sensor observations based on sensor
mode/characteristics, as well as sensor/target geometry.
Note that the two important aspects of the simulator
are: (a) the ability to simulate group/convoy behavior,
and (b) the ability to switch sensor operating modes
based on the information supplied by the Performance
Evaluator and SRM components.
The system simulator sends parameters such as the

number of targets, their locations and classes, group
composition/identity, sensor mode, detection probabil-
ity, false alarm density, target density, and confusion
matrix/classification probability to the Simulated Track-
er. The relative target/sensor geometry (which accounts
for a target dropping below the sensor’s Minimum De-
tectable Velocity (MDV) for MTI) is incorporated by
the system simulator to produce the required operating
parameters.
For simplicity, we leave the burden of represent-

ing the convoys/units to the system simulator. Namely,
the system simulator will send both target and con-
voy/group information to the simulated tracker. In the
simulation, we assume coverage of all targets in the test
scenario area of interest (AOI) when the sensor is in
the MTI mode. On the other hand, the HRR mode has
a more limited FOV depending on the sensor pointing
direction.

B. Simulated Tracker

The purpose of this module is to produce simulated
tracking results for performance evaluation without im-
plementing a real tracker. The simulated tracker receives

inputs such as ground truth, sensor models, etc. from
the system simulator and produce a set of tracks each
with tracking and classification joint quality state. Note
that for every ground truth target, there is a “track”
which will be in one of the joint quality states at each
instance of time. For test and validation purposes, we
did not attempt to use a complete Multiple Hypothe-
sis Tracker (MHT) for tracking moving ground targets.
Rather, the simulated tracker was designed to estimate
the joint tracking and classification quality state for each
target track.
As described in Section 3, the track quality states

behave according to a Finite State Markov transition
model based on sensor mode and operating conditions.
There are three choices available to the SRM: to use
the MTI mode, to use the HRR mode, or to not use
the sensor at all. Each sensor mode represents an action
that the sensor can take to observe targets. Note that this
is a simplified form of the state transitions that were
presented earlier, which were chosen on the basis of
their ease of implementation.
In addition to the joint quality states, in order to

evaluate the track valuation function, each track needs
to have an a posteriori classification probability distri-
bution. The simulated tracker produces the classification
probability vector based on the true target class, previ-
ous track class probability, and the current sensor mode
and operating conditions. For example, at the beginning
of the simulation, each track is at untracked/unclassified
state with a uniform classification probability. Depend-
ing on the sensor mode (of the next sampling time)
and operating characteristics, the track quality state at
the next sampling time will be simulated stochastically
based on a Finite State Markov transition model. The
track classification probability is also updated (accrued
over time) using the confusion matrix of the particu-
lar sensor mode and the simulated sensor observations.
For example, the confusion matrix for GMTI mode is a
matrix consisting of uniform probabilities since GMTI
mode has no ability to classify target. On the other hand,
each row of the HRR mode confusion matrix is the
probability of observed classification given a true tar-
get class. Note that for the kinematic state, the simu-
lated tracker does not represent the tracks in the target
state space, but rather only on the quality state space.
The simulated tracker then sends the track results to the
evaluator.

C. Performance Evaluator

As mentioned previously, larger values of H (the
planning horizon) introduce more prediction uncertainty
into future target positions, thereby making it harder to
predict the effect of future sensor actions. However, for
test purpose we assumed that H = 1, (i.e., a one-step
look ahead) in order to simplify the implementation (this
avoids the need for implementing a dynamic program-
ming algorithm) and to focus on validating the higher
level valuation algorithm.
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The evaluator receives track results from the sim-
ulated tracker. In the results, there is a set of clus-
ters/groups/convoys where each group contains a set
of tracks. As described before, each track has a joint
quality state and a classification probability vector. The
evaluator will use the track results to determine the best
sensor mode and pointing direction for the next detec-
tion time. In order to do so, in addition to the informa-
tion from the tracker, truth-related domain knowledge
such as unit composition, decision maker’s preference
value (for each target class and convoy/unit type) are
needed as well. The evaluator first finds all the possi-
ble detected compositions (based on the possible unit
types) and map these to the track compositions of each
cluster, which are produced by the simulated tracker. It
then computes the value function based on a hierarchi-
cal Bayesian model/inference (as described in Section
3) which takes into account the track classification like-
lihood of a joint state assignment. The evaluator then
produces a best sensor mode decision (HRR or MTI)
and pointing direction based on the resulting informa-
tion value and sends these decisions back to the SRM to
be used by the system simulator for the next sampling
time.
Note that to evaluate the overall system performance,

the probability distributions of each unit and individual
target are produced by the simulated tracker based on
the selected sensor decision. The tracking results are
then averaged over multiple Monte Carlo runs as will
be described in the next section.

5. SIMULATION RESULTS

We implemented the system described in Fig. 4
and also defined a set of metrics that can be used for
evaluation purposes:

² Sensor allocated resources–the percentage of time
that the sensor is operating in HRR mode (HRR Rate)

² Average probability of correct unit classification–the
average correct unit classification probability over the
simulation time (Pcc)

² Average percentage of correctly identified targets–
the average percentage of correct target classification
in each unit over the simulation time (Trk Rate)

In order to test these algorithms, we implemented a
simple ground moving target scenario containing con-
voy units, each consisting of a different combination of
target types. There are a total of 4 possible types of unit:
Scud (class 1), C2 (class 2), Tank (class 3), and Un-
known, as well as 6 target classes: UAZ-469 (class 1),
ZIL-151 (class 2), GAZ-66 (class 3), MAZ-543 (class
4), T-72 (class 5), and Other (class 6). However, in this
particular scenario, ground truth only contains two units
and four target classes: unit 1 (containing 2 UAZ-469
vehicles, as well as one of ZIL-151, GAZ-66, and MAZ-
543 each) and unit 2 (containing 5 UAZ-469 vehicles).
The parameters used for the simulation are sum-

marized in Appendix B. We made several test trials

with different value functions and strategies. Specifi-
cally, in each of the combinations below, the notation
“Case xy” refers to x= unit type and y = target class.
Also, the notation [a b c d] refers to the valuation
of each unit (since there are 4 possible units for this
particular scenario) and the notation [a b c d e f g]
similarly refers to the valuation of individual targets,
since there are 6 possible targets. Note that for sim-
plicity, the target valuation is assumed to be a “binary”
variable (i.e., valued at either 0 or 1); other combina-
tions of target values are certainly possible, but were
not considered here. This means that, for this particu-
lar scenario, there are a total of 15 possible combina-
tions, as follows: 2 (unit classes) ¤ 4 (target classes) +
4 (level 1 valuation only) +2 (level 2 valuation only) +
1 (neither level 1 nor level 2 valuation) = 15. Also, we
assume the cost of using the HRR mode is about twice
as expensive than the MTI mode.

Level 1 value function only, unit class value [1 1 1 1]
² Case 01: Focus on target class 1, track class value:
[1 0 0 0 0 0]

² Case 02: Focus on target class 2, track class value:
[0 1 0 0 0 0]

² Case 03: Focus on target class 3, track class value:
[0 0 1 0 0 0]

² Case 04: Focus on target class 4, track class value:
[0 0 0 1 0 0]

Level 2 value function only, target class value [1 1 1 1 1 1]
² Case 10: Focus on unit class 1, unit class value:
[1 0 0 0]

² Case 20: Focus on unit class 2, unit class value:
[0 1 0 0]

Level 1 and 2 value functions
² Case 11: Focus on unit class 1, [1 0 0 0], and target
class 1, [1 0 0 0 0 0]

² Case 12: Focus on unit class 1, [1 0 0 0], and target
class 2, [0 1 0 0 0 0]

² Case 13: Focus on unit class 1, [1 0 0 0], and target
class 3, [0 0 1 0 0 0]

² Case 14: Focus on unit class 1, [1 0 0 0], and target
class 4, [0 0 0 1 0 0]

² Case 21: Focus on unit class 2, [0 1 0 0], and target
class 1, [1 0 0 0 0 0]

² Case 22: Focus on unit class 2, [0 1 0 0], and target
class 2, [0 1 0 0 0 0]

² Case 23: Focus on unit class 2, [0 1 0 0], and target
class 3, [0 0 1 0 0 0]

² Case 24: Focus on unit class 2, [0 1 0 0], and target
class 4, [0 0 0 1 0 0]

Neither level 1 nor level 2 value functions
² Case 00: unit class value, [1 1 1 1], and target class
value, [1 1 1 1 1 1]

Note that for Case 00, in order to ignore target (or
unit) value, all of the entities are equally valued and
have a value of 1, e.g., a target class of [1 1 1 1 1 1].
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TABLE III
Performance Results using Only Level 1 Value Function

Case HRR U1 Rate HRR U2 Rate U1 Avg Pcc U2 Avg Pcc U1 Trk Rate U2 Trk Rate

00 0.0032 0.0020 0.5671 0.5466 0.3173 0.3140
01 0.0000 0.0260 0.5000 0.8596 0.2500 0.8585
02 0.0036 0.0000 0.5838 0.5000 0.3405 0.2500
03 0.0068 0.0000 0.6502 0.5000 0.4242 0.2500
04 0.0076 0.0000 0.6656 0.5000 0.4243 0.2500

TABLE IV
Performance Results using Only Level 2 Value Functions

Case HRR U1 Rate HRR U2 Rate U1 Avg Pcc U2 Avg Pcc U1 Trk Rate U2 Trk Rate

00 0.0032 0.0020 0.5671 0.5466 0.3173 0.3140
10 0.0236 0.0000 0.9746 0.5000 0.8150 0.2500
20 0.0000 0.0236 0.5000 0.8925 0.2500 0.7777

TABLE V
Performance Results using Both Level 1 and Level 2 Value Functions

Case HRR U1 Rate HRR U2 Rate U1 Avg Pcc U2 Avg Pcc U1 Trk Rate U2 Trk Rate

10 0.0236 0.0000 0.9746 0.5000 0.8150 0.2500
11 0.0240 0.0000 0.9868 0.5000 0.8162 0.2500
12 0.0224 0.0000 0.9127 0.5000 0.7482 0.2500
13 0.0212 0.0000 0.9181 0.5000 0.7790 0.2500
14 0.0244 0.0000 0.9695 0.5000 0.8148 0.2500
20 0.0000 0.0236 0.5000 0.8925 0.2500 0.7777
21 0.0000 0.0336 0.5000 0.9288 0.2500 0.9088
22 0.0008 0.0056 0.5182 0.6089 0.2721 0.3922
23 0.0000 0.0048 0.5000 0.5730 0.2500 0.3586
24 0.0004 0.0068 0.5000 0.6219 0.2500 0.4301

With 50 Monte Carlo simulations, the average per-
formance for several different cases are summarized in
the following tables. Table III shows the performance
results using only level 1 valuation functions. Note
that case 00, by definition, contains neither level 1 nor
level 2 valuation functions. In the table, the HRR rates
(percentage of time spent in HRR mode versus GMTI
mode) for unit 1 and unit 2 are shown in columns 2 and
3, average correct classification probabilities for unit 1
and unit 2 are given in cloumns 4 and 5, and the average
correct track classification probabilities of each unit are
shown in the last two cloumns respectively.
The results show that the classification performance

of both units are in the range of 50—60%. Both unit
1 and unit 2 classifications improve somewhat when
adding the “right” level 1 valuation. For example, when
adding target class 2, 3, and 4 valuation functions, unit 1
classification increases from 50+% to around 60+%
while unit 2 classification drop slightly from 55% to
50%. Similarly, when adding a target class 1 valuation
function, unit 1 classification decreases to 50% while
unit 2 classification increases significantly to 86%. This
is understandable since unit 1 consists of all 4 classes
of targets and unit 2 contains only class 1 targets.
Table IV shows the corresponding performance re-

sults using only level 2 value functions. It can be

seen that the classification performance improves sig-
nificantly compared to the level 1 performance. For
example, for case 10, since the emphasis (i.e., valua-
tion) is on unit 1, the resulting sensor strategy improves
the unit 1 classification performance significantly from
57% to 97%. Similarly, for case 20, unit 2 classifica-
tion increases from 55% to 89%. Note here that the
track level classification probabilities also improve sig-
nificantly from around 30% to 80% despite no level 1
valuation being used.
Table V shows the performance results using both

level 1 and level 2 value functions. It can be seen
that the classification performance values are similar to
those obtained using only level 2 value functions. For
example, in cases 11 through 14, since the emphasis is
on unit 1, the unit 1 classification performance is similar
to that of case 10. However, for cases 21 through 24,
only case 21 performs similarly to case 20–the others
perform significantly worse in being able to classify
unit 2. This is because, interestingly enough, unit 2
includes only target class 1. Adding a level 1 track
value function of the other target class (not included
in unit 2) not only does not help in classifying unit 2,
but it also manages to confuse the sensor manager and
subsequently deteriorates the performance (relative to
case 20) significantly.
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Fig. 5. Unit 1 average Pcc with level 1 and level 2 valuation
functions.

Fig. 6. Unit 2 average Pcc with level 1 and level 2 valuation
functions.

Another useful comparison is to determine the pos-
sible benefit of adding a level 2 valuation function to the
level 1 function. This comparison is particularly relevant
because use of level 1 (target-based) valuation can be
considered to be the typical baseline or current operating
mode for most sensor management systems. In order to
perform this comparison, we extract comparable por-
tions of Table III and Table V and display these values
in Figs. 5 and 6, where the comparison is between case
0n with cases 1n and 2n respectively, where n= 1, : : : ,4.
Note that case 0n represents level 1 valuation that em-
phasizes target class n and case jn represents level 1
and level 2 valuations that emphasize unit type j and
target class n.
As seen from the figures, in all 4 cases, unit 1

Pcc improve significantly (from about 60% to 90%)
when adding level 2 valuation function. However, the
unit 2 Pcc only improve moderately (about 10%) when
adding a level 2 function that emphasizes unit 2 valua-
tion. Again, this is because unit 2 consists of only target
type 1, the combination of “inconsistent” unit level and
target level values (such as 22, 23, and 24) simply will
not help the classification performance.

In summary, as seen in the results, by adding a
level 2 valuation function, the performance improves
significantly. Particularly, without level 2 function, the
performance for unit level classification is mostly un-
satisfactory. It is interesting to note that, with a level 2
valuation function, the track level performance also im-
prove slightly when the objective functions of the two
levels are consistent. When the objective functions are
inconsistent or contradictory as we described above, the
performance may not improve as expected. Note that
since we are not comparing performance between the
proposed approach and an alternative baseline, the nu-
merical results imply, not so much that performance uni-
formly improves when optimizing the proposed objec-
tive criterion but that the objective criterion is a reason-
able one to optimize to meet both level 1 and 2 fusion
objectives.

6. SUMMARY

In this paper, we have presented an approach for dy-
namically choosing sensor mode and pointing direction
based on both level 1 and level 2 information. Specif-
ically, a hierarchical target valuation model based on
track quality value was presented. The valuation algo-
rithm relies on a Bayesian approach where a recursive
composition inference algorithm was used to compute
the hierarchical valuation function. This approach not
only will provide for adequate object identification and
tracking performance, but also can provide the ability
to be able to identify higher-level entities such as con-
voys.
We have also developed an evaluation environment

to analyze the performance of this valuation algorithm
given a set of ground moving targets. The preliminary
simulation results demonstrate the validity of our ap-
proach. In order to completely validate algorithm per-
formance, it will be necessary to implement the algo-
rithm in a higher fidelity modeling environment, in-
cluding more complex algorithms for the tracker and
SRM. Nevertheless, the algorithms presented in this pa-
per represent a significant step toward efficient sensor
management using higher level valuation and objec-
tive functions. Some useful future research directions
include extending the hierarchical valuation model to
account for level 3 (eg., intent assessment) function and
developing a analytical prediction model to estimate the
SRM performance without extensive Monte Carlo sim-
ulations.

APPENDIX A

The parameters in the transition matrix of the track-
ing and classification quality Markov chains are defined
as the follows.
(1) a1 = PnewPd (object, sensor mode), u1 = 1¡ a1,

s1 = 0, when a potential track is covered by the sensor
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beam, where Pnew is the probability of new target arrivals
per unit position, and Pd is the probability of detection
calculated based on the relative predicted target-sensor
geometry and the sensor mode as well as the target
radial velocity (for MDV purposes).
(2) u1 = a1 = 0 and s1 = 1 when a potential track is

not covered by the sensor.
(3) a3 = Pd (object, sensor mode) is the probability

that a second beam look results in an initial track,
u3 = 1¡ a3.
(4) a2 = Pd (object, sensor mode), r2 = 1¡ a2, s2 = 0,

when the object is covered by the sensor beam.
(5) When the object is unobservable, a2 = 0, r2 =

rate, s2 = 1¡ r2, where rate= 3Fd=Tdrop is the probabil-
ity an unobservable object will reach the dropped state
in Tdrop expected time. Note that Fd is the frame duration
and Tdrop is the maximum time that a track can be kept
coasting before the MHT algorithm drops the track.
(6) a4 (HRR) = Pimprove, a4 (MTI) = 0, s4 = 1¡ a4

where Pimprove is the probability that classification quality
will improve if an HRR model is used.
(7) u4 (MTI) = Pdegrade, u4 (HRR) = 0, s5 = 1¡ a4¡

u4, s6 = 1¡ u4 where Pdegrade is the probability that
classification quality will degrade if an MTI model
is used.

APPENDIX B

The parameters in the simulation are given as the
follows.
(1) probability of detection: Pd (GMTI) = 0:9,

Pd (HRR) = 0:5
(2) probability of classification: PC (GMTI) = 1=n,

PC (HRR) = 0:9
4

(3) probability of new target arrivals per unit posi-
tion: Pnew = 0:1
(4) the probability that classification quality will

improve with HRR mode: Pimprove = 0:8
(5) the probability that classification quality will

degrade with GMTI mode: Pdegrade = 0:8
(6) the probability an unobservable object will reach

the dropped state: rate= 0:1
(7) the values of joint quality state: given in the last

column of Table I.
(8) Decision maker’s preference value for each

tareget and unit: varied in each test case, see Sec-
tion 5.
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Higher levels of the data fusion process call for prediction and

awareness of the development of a situation. Since the situations

handled by command and control systems develop by actions per-

formed by opposing agents, pure probabilistic or evidential tech-

niques are not fully sufficient tools for prediction. Game-theoretic

tools can give an improved appreciation of the real uncertainty in

this prediction task, and also be a tool in the planning process. Based

on a combination of graphical inference models and game theory,

we propose a decision support tool architecture for command and

control situation awareness enhancements.

This paper outlines a framework for command and control

decision-making in multi-agent settings. Decision-makers represent

beliefs over models incorporating other decision-makers and the

state of the environment. When combined, the decision-makers’

equilibrium strategies of the game can be inserted into a represen-

tation of the state of the environment to achieve a joint probability

distribution for the whole situation in the form of a Bayesian net-

work representation.
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1. INTRODUCTION

The military domain is one of the purest possible
game arenas, and history is full of examples of how mis-
takes in handling uncertainty about the opponent have
had large consequences. For an entertaining selection,
see, e.g., [16]. Commanders on each side have resources
at their disposal, and want to use them to achieve their,
mostly opposing, goals. In the network centric war-
fare [1, 2] era, they are aided by large amounts of infor-
mation about the opponent from sensors and historical
data bases, and about the status of their own resources
from their own information technology infrastructure.
In recently proposed infostructures for command and
control (C2) [12], decision support tools play a promi-
nent role. These tools seldom include game-theoretic
means. Gaming is, however, a prominent feature of mil-
itary training and the regulated decision processes often
assign the roles of red and blue players to staff officers
in manual planning activities [52]. Gaming is thus a
conceptual part of the planning process in many orga-
nizations. It must be emphasized, however, that there
are significant differences between practice and theory
in application of such regulations. It has, for example,
been shown in studies that the Swedish defense orga-
nization practices a more naturalistic decision-making
process than the recommended one [51]. A pure nat-
uralistic planning process relies more on unobservable
mental capabilities of decision-makers than on rational
analyses of alternative moves and their utilities [28].
The most common way to deal with uncertainty is, how-
ever, to make an assumption–and to forget that it was
made. These observations have been the starting point
for introducing a less complex planning model–PUT
(Planning Under Time-pressure)–in the Swedish de-
fense organization. PUT is based on analyses of a few
opponent alternatives and incremental improvement of
one’s own plans [51]. It thus has potential for the use of
gaming tools, provided they are realized in a way that
supports subjective improvement of decision situations
and decision quality [3].
Data fusion aims at providing situation awareness at

different levels for a commander. The JDL model [47,
56] has been proposed for structuring the fusion pro-
cess into five levels where the third level consists of
higher level prediction of possible future problems and
possibilities. We believe that the problem of predicting
the future in a C2 context comes in two variations that
differ in complexity and dependencies: the problem of
capturing all aspects of a complex situation, and the
problem of strategic dependence in a multi-agent en-
counter. Considering the former problem, the influence
diagram is a well-established and appropriate modeling
technique for modeling everything that is not dependent
on our own or the opponents’ actions, for example doc-
trine and terrain. Efforts in this direction have been pro-
posed; see for example [50] for a discussion about doc-
trine modeling using dynamic Bayesian networks [40].
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Looking at the latter problem, predicting decisions is
also a game-theoretic problem, which has been noted
in a recent proposal for revisions to the JDL model
where the authors suggest the use of game-theoretic al-
gorithms for the estimation process in higher level data
fusion [37].
In this paper, we outline a schematic model using

influence diagrams to obtain parameters for a descrip-
tion of the situation in the form of a Bayesian game.
The result from the game is a description of equilib-
rium strategies for participants that can be incorporated
in the influence diagram to form a Bayesian network
(BN) description of the situation and its development,
changing decision nodes to chance nodes.
We review some applications of gaming and simu-

lation in Section 2 and describe our use of influence
diagrams in Section 3. Section 4 gives background and
some historical notes regarding agent interaction and
Section 5 gives a short background on game theory. Sec-
tion 6 contains an outline of the game component rep-
resentation. Section 7 discusses solutions and addresses
the problem of obtaining these solutions in a compu-
tationally feasible manner. In Section 8 we illustrate
the use of Bayesian game-theoretic reasoning for opera-
tions planning by transforming a decision situation into
a Bayesian game that we solve. Section 9 addresses the
problems and possibilities that the ambiguities typical
for a game-theoretic solution pose. Section 10 discusses
related work and Section 11 is devoted to conclusions
and discussion regarding future research.

2. THE GAMING PERSPECTIVE

Tools proposed to support the gaming perspective
include microworlds [10, 17, 35], which are com-
puter tools where several operators train together; and
computer-intensive sensitivity analyses of simple mod-
els [22, 39]. There are also large numbers of full and
small scale simulation systems used to assess effective-
ness of new types of equipment and ways to use them.
These microworld and simulation systems are used for
off-line analyses to define recommended strategies in
conceivably relevant situations.
Systems built for real-time decision-making can take

advantage of anytime algorithms with which a coarse
prediction can be obtained instantly but is subject to
successive refinements when additional time, resources
and observations arrive. In such a system, refinements
are typically based on either solution improvement or
solution re-calculation. An interesting prototype system
based on solution improvement is [25] where the sit-
uation picture is continuously improved as new obser-
vations arrive. The method used is particle filtering, a
method where new observations strengthen, weaken or
eliminate current hypotheses. A somewhat similar pro-
totype system based on solution re-calculation is [9]
where a predicted future situation picture is calculated
as a one shot event. Here, solely the particle filtering

prediction step is used. The actual choice between the
two principles depends on several factors such as the
system’s intended usage, i.e., whether the decision prob-
lem is a one shot problem or a continuous task, and the
nature of the problem itself, i.e., whether the present
solution can actually be used as basic data for the cal-
culation of a new solution.
Recently, it has become possible to build Bayes-

ian networks to identify the opponent’s course of ac-
tion (COA) from information fusion data using the plan
recognition paradigm, which was extended from a sin-
gle agent context to that of a composite opponent con-
sisting of a hierarchy of partly autonomous units [50].
The conditions for this recognition to work are that
the goals and rules of engagement of the opponent are
known, and that he has a limited set of COAs to choose
from given by the doctrines and rules he adheres to. The
opponent’s COA can then be deduced reasonably reli-
ably from fused sensor information, such as movements
of the participating vehicles. The game component has
thus been compiled out of the plan recognition problem.
When the goals and resources are not known, these can
be modeled as stochastic variables in a BN. However,
this is not a strictly correct approach, since the oppo-
nent’s choice of COA should depend, in an intertwined
gaming sense, on what he thinks about our resources,
rules of engagement and goals. The situation is essen-
tially a classic Bayesian game, and should be resolved
using game algorithms.

3. REALISTIC SITUATION MODELING

It has been suggested that decision-makers often
produce simplified and/or misspecified mental represen-
tations of interactive decision problems, see, e.g., [34].
Furthermore, most erroneous representations tend to be
less complex than the correct ones which, in turn, sug-
gest that decision-makers may act optimally based on
simplified and mistaken premises [15]. In this section
we discuss and propose the concept of influence dia-
grams, along with its preliminaries, as a means to spec-
ify a reasonably correct representation of the decision
problem at hand. An influence diagram is well suited for
modeling complex situations. In Section 6, an influence
diagram will serve as the underlying model that gives
us the basic data needed for the game component.
One goal of artificial intelligence (AI) [45] has been

to create expert systems, i.e., systems that can, provided
the appropriate domain knowledge, match the perfor-
mance of human experts. Such systems do not yet ex-
ist, other than in highly specific domains, but AI re-
search has inspired important interdisciplinary efforts
to solve questions regarding knowledge representation,
decision-making, autonomous planning, etc. These re-
sults provide a good ground for the construction of C2
decision support systems. Modern expert systems strive
for the ideal of a clean separation of its two components;
the domain-specific knowledge base and the algorithmic
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inference engine [14]. Our work proposes generic infer-
ence procedures and, thus, targets the inference engine
part of the expert system in this regard. During the last
decade, the intelligent agent perspective has led to a
view of AI as a system of agents embedded in real en-
vironments with continuous sensory inputs. We believe
that this is a viable way to reason about C2 decision-
making and we adopt the agent perspective throughout
this paper.
Agents make decisions based on modeling principles

for uncertainty and usefulness in order to achieve the
best expected outcome. The assumption that an agent al-
ways tries to do its best relative to some utility function,
is captured in the concept of rationality. The combina-
tion of probability theory, utility theory and rationality
constitutes the basis for decision theory. The basic ele-
ments that we use for reasoning about uncertainty are
random variables. General joint distributions of more
than a handful of such variables are impossible to handle
efficiently, and modeling distributions as Bayesian net-
works has become a key tool in many modeling tasks.
A BN offers an alternative representation of a prob-

ability distribution with a directed acyclic graph where
nodes correspond to the random variables and edges
correspond to the causal or statistical relationships be-
tween the variables. Calculating the probability of a
certain assignment in the full joint probability distri-
bution using a BN means calculating products of prob-
abilities of single variables and conditional probabili-
ties of variables conditioned only on their parents in
the graph. The BN representation is often exponentially
smaller [45] than the full joint probability distribution
table and many inference systems use BNs to repre-
sent probabilistic information. Another advantage with
the BN representation is that it facilitates the definition
of relevant distributions from causal links that are in-
tuitively understandable and, in the case of a dynamic
BN, develop with time. Successful(?) uses of these net-
works include the implementation of the “intelligent pa-
per clip” in Microsoft Office [23], although much of its
potential functionality was stripped away in the actual
deployment.
An influence diagram is a natural extension to a

BN incorporating decision and utility nodes in addition
to chance nodes, and represents decision problems for
a single agent [24]. Decision nodes represent points
where the decision-maker has to choose a particular
action. Utility nodes represent terminal nodes where
the usefulness for the decision-maker is calculated as
a function of the values of its parents. These diagrams
can be evaluated bottom up by dynamic programming
to obtain a sequence of maximum utility decisions.
When designing decision-theoretic systems to be

used for C2 decision-making, complex situations arise
where one wants to represent knowledge, causality, and
uncertainty at the same time as one wants to reason
about the situation, simulating different COAs in order
to see the expected usefulness of proposed moves. We

Fig. 1. The C2 process modeled in an influence diagram. Terrain
data bases and doctrine are examples of domain-specific

subdiagrams that characterize a particular model.

believe the influence diagram is the right choice for both
representation and evaluation and propose a simplified
schematic generic diagram in Fig. 1 for the C2 process.
C is a discrete random variable representing the con-
sequence of the decisions D1, : : : ,Dn. D1 represents our
own decision and D2, : : : ,Dn represent the decisions of
the other agents. G1 is a discrete random variable that
represents our own goals. U1 is the utility that we gain
after performing decision D1 depending on the conse-
quence C and our own goals G1. Gi and Ui are defined
similarly for the other agents where 2· i· n.
The diagram in Fig. 1 is a simplified representation,

to be connected to models–encoded as BNs–of ter-
rain, doctrine, etc., that can be implemented as subdia-
grams with causal relationships between different nodes
of models. While these subdiagrams are interesting in
their own right, they are not the topic of this article.
Hence, we have chosen to think of them as existing
models that influence the decisions we are modeling.
A problem with the diagram in Fig. 1 is that it

does not capture “gaming situations” where one wants
to reason about opposing agents that act according to
beliefs about one’s own actions. Such dependencies are
not possible to model in an influence diagram or BN
without additional machinery. At this point it should
also be noted that the diagram in Fig. 1 should not be
considered to be very useful in its own right. Rather,
it is a statement of the problem we are trying to solve.
Among other things, the diagram is not regular which
is a requirement for algorithms that evaluate influence
diagrams, see, e.g., [46]. Regularity assumes a total
ordering of all of the decisions, a reasonable condition
for a single decision-maker who only needs to take his
own actions into account.
In this work we use the influence diagram as basic

data to develop a generalized technique that solves
problems for multiple decision-makers. In Fig. 2 we
give an alternative algorithm for evaluation of influence
diagrams with multiple agents, inspired from the single
agent construction found in [44, 45]. Here, the payoffs
for all combinations of alternatives are returned instead
of only the alternative with the highest possible payoff.

110 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 1, NO. 2 DECEMBER 2006



Fig. 2. Algorithm for evaluating an influence diagram where
multiple agents make decisions.

4. AGENT INTERACTION

The decision situation that arises in decision node
D1 in the influence diagram depicted in Fig. 1 is char-
acterized by its dependency on other actors’ decisions.
Standard AI tools for solving decision-making prob-
lems in complex situations, such as dynamic decision
networks and influence diagrams, are not applicable for
these kinds of situations, as the decisions are intimately
related to the other agents’ decisions. Game theory, on
the other hand, provides a mathematical framework de-
signed for the analysis of agent interaction under the
assumption of rationality where one tries to identify the
game equilibria as opposed to traditional utility maxi-
mization principles. A game component in multi-agent
decision-making thus uses rationality as a tool to predict
the behavior of other agents.
In higher level C2, i.e., threat prediction in a data

fusion context, the need of a game component becomes
obvious [55]. Circular relationships are not allowed in
influence diagrams or other traditional agent modeling
techniques and therefore we cannot make the agents’
decisions dependent on each other in the diagram in
Fig. 1. On lower level C2 this need is not as obvious,
because agents’ choices are to a large extent driven by
standard operating procedures obtained by training and
developed using off-line game analyses. On this level,
like in helicopter dogfights, successful developments
of strategies have been obtained with look-ahead in
extensive form, i.e., perfect information game trees with
zero-sum payoffs as reported in [27] or moving horizon
imperfect information game trees as reported in [54].
The depth of the game tree corresponds to inference
of agents’ actions that are dependent on each other,
i.e., a series of what-if questions such as “what is the
usefulness if agent i performs action ci and the other
agents perform actions c1, : : : ,ci¡1,ci+1, : : : ,cn which in
turn makes agent i respond with action c0i,” etc. Look-
ahead algorithms are typically modeled using a discount

factor ° 2 (0,1) that reduces the utility by °d where d
is the tree depth. For problems in which the discount
factor is not too close to 1, a shallow search is often
good enough to give near-optimal decisions [45].
Look-ahead game trees have been used successfully

for reasoning in, possibly uncertain, games with perfect
information where optimal solutions are obtained with
the minimax algorithm. Examples of such games are
chess, go, backgammon, and monopoly. In the context
of C2 we deal with imperfect information which forces
us to solve a more complex game, more similar to poker,
since we cannot be sure of exactly where we are in
the game tree. Although ordinary minimax algorithms
cannot be used in our context it is still likely that the
ideas from ordinary game play algorithms, such as the
famous alpha-beta pruning [29], can be re-used to some
extent. This is interesting as these ideas rest on almost
a century of research and experience [33, 45].
Decision-making in environments where multiple

agents make decisions based on what they think the
other agents might do is a difficult problem, and the
use of game theory for agent design has so far been
limited due to lack of standard implementation methods.
We believe, however, that this barrier will be overcome
as more research is focused on the use of game theory
for agent design. The widely used AI book by Russell
and Norvig [45] added a section on game theory just
recently which indicates that the ideas are new and still
need to be investigated more thoroughly.
One of the barriers that do exist when using tradi-

tional game theory for agent design is that it assumes
that a player will definitely play a (Nash) equilibrium
strategy. This assumption is certainly true in applica-
tions where the game is a designed mechanism, such as
the management of (own) mobile sensors [26, 57] or the
construction of algorithms for efficient network capacity
sharing [4]. However, these situations must be consid-
ered a small subset compared with the many situations
in everyday life that involve uncertainty about both the
other actors and the world as a whole. Over time it has
come to be recognized that benevolence is the excep-
tion; self-interest is the norm [43]. Particularly, in our
C2 application self-interest is the norm that commander
training seeks to foster. In this work we aim at solving
this problem using the Bayesian game technique, which
is described below.
Other problems with game theory for agent design

are the lack of methods for combining game theory with
traditional agent control strategies [45] and the lack of
standard computational techniques for game-theoretic
reasoning [33].
In this paper we propose the use of a Bayesian game

for modeling higher-level agent interaction in an attempt
to obtain better situation awareness in a C2 system. As
situation awareness is obtained using fusion techniques
we believe that the game component is an integral part
of the data fusion process and provides information that
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is needed in level three data fusion processing according
to the JDL model [37, 47, 56]. A Bayesian game is a
game with incomplete information, that is, at the start
of the game the players may have private information
about the game that the others do not know of. Also,
each player expresses its prior belief about the other
players as a probability distribution over what private
information the other players might possess.

5. STRUCTURE OF GAMES AND THEIR
REPRESENTATIONS

Recent developments in game theory and AI have
made applications with significant game components
feasible. Most of the work, however, does not address
Bayesian games. Many description methods have been
developed with algorithmic techniques being able to
solve quite large games if they are of the right type.
The extensive form of a game is a tree structure, where
a non-terminal node can describe a chance move by
nature (random draw) or a move possible for one of the
participants, and a leaf node represents the end of the
game and its payoff after evolving through the path to it.
The immediate descendants of a non-leaf represent the
alternative outcomes of a chance move (in which case
the node is associated with a probability distribution) or
the set of actions available for the player in turn at this
point. This is adequate for leisure games like chess, a
perfect information game, but the chess game tree does
not fit into any computer. A deterministic game with full
information (like generalized chess or checkers) can be
solved if its game tree can be traversed, by bottom-up
dynamic programming.
In games with imperfect information, the exact po-

sition in the game tree may not be known to players.
This is the case in leisure games of cards, where the
hand of a player is only available to her. The deter-
mination of optimal strategies must use a game tree
where the decision is the same for a whole information
set, a set of nodes for a player where the information
available to her is the same. As an example, at the first
bid of a game of contract bridge, each of the possible
distributions of the cards not seen by the player is in
the same information set. Bottom-up evaluation does
not work, because at the lower levels of the game tree
the players have information on the hidden informa-
tion that was communicated by their opponents’ choices
of moves (like the initial round of bidding in bridge).
This situation is solved by putting the game on strate-
gic form, which means that all combinations of moves
for all of a player’s information-equivalent nodes in the
tree, and all chance moves, are listed with their payoffs.
Solutions can be found with numerical methods, linear
programming techniques for zero-sum games [11] and
solution methods for the linear complementarity prob-
lem (LCP) for general games [13]. For the former, a
unique mixed (randomized) strategy for each player is
a non-controversial definition of the game’s solution.

For the latter, the Nash equilibrium is the accepted so-
lution concept [42]. A Nash equilibrium always, under
general assumptions, exists but is less non-controversial
since sometimes several equilibria exist, and there are
alternative proposals regarding how to find one that is
in a tangible way more relevant than the others. The
payoff matrix is typically impossibly large, and games
of this type, like standard variants of poker and bridge,
have no known optimal solution although interesting ap-
proximation algorithms have appeared recently [5]. In
the above games, all players know the exact structure
and payoff system of the game. This is adequate for
many purposes, but not for our application.
The concept of a Bayesian game is fairly complex

and different views abound in the literature. With nota-
tion from [41], a Bayesian game, ¡ b, is defined by

¡ b = (N, (Ci)i2N , (Ti)i2N , (pi)i2N , (ui)i2N) (1)

where N is a set of players, Ci is the set of possible
actions for player i 2N, Ti is the set of player i’s possible
types, pi is a probability distribution representing what
player i believes about the other players’ types, and ui
is a utility function mapping each possible combination
of actions and types into the payoff for player i. It
should be noted that the set notation we use differs from
standard mathematical notation. Indices contain one or
several players in the set N and hence represent the
“player dimension.” When there is no subscript at all we
actually mean a set with a variable for each player in N
which is denoted a profile. The subscript ¡i denotes the
set of all players except for player i, i.e., N n fig. The
other dimension is defined by the letter itself that can be
either lower-case, representing one particular choice, or
upper-case, representing the set of all possible choices.
Henceforth, Ci is the set of possible actions for player
i, ci 2 Ci is one of player i’s possible actions, c 2 C is
a possible strategy profile in the game, and C is the set
of all possible strategy profiles that we may encounter
in the game.
The definition given above is a flat representation

given originally in [21]. It seems as if it only states first-
order beliefs of players about each other, but this is not a
fair perspective. We want to consider all types of higher-
order knowledge, such as what player 1 believes that
player 2 believes that player 1 : : : believes. This type of
information can indeed be modeled in a standard Bayes-
ian game, under quite general conditions, as shown in
a strictly mathematical and non-algorithmic argument
in [38]. On the other hand, the amount of information
required to perform such modeling can be infinite and
thus not extractable from, or actually used by, experts
and decision-makers. Bayesian games can have infinite
type sets even in simple cases like natural analyses of
bargaining situations. We will restrict our attention to
games with finite type sets and players, since otherwise
general solution algorithms do not exist (games with
infinite type sets must be analyzed manually to bring
about a finite solution algorithm).
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Fig. 3. Architecture overview. Models are represented by influence
diagrams that yield payoff values for a Bayesian game.

An important class of Bayesian games is games with
consistent beliefs. In this case the player’s belief, con-
ditional on his type, about other players’ types are all
derivable from a global distribution over all players’
types by conditioning, i.e., pi(t¡i j ti) = p(t¡i j ti). Hence,
this class is a subclass of imperfect information games.
The assumption of consistent beliefs is both required
and natural for most applications; it simply means we
should model the players using all information we cur-
rently have in our possession. Although game theory
means we solve the game for all players at the same
time, the solution is still obtained from one particular
decision-maker’s view of the situation. Therefore, con-
sistent versus inconsistent beliefs becomes more of a
philosophical question and we will assume consistent
beliefs throughout this work.

6. THE GAME COMPONENT

In this section we define the proposed information
fusion game component using notation from [41]. A
brief concept sketch is given in Fig. 3 and a more
formal summary is given in Fig. 4 which, in turn,
uses the algorithm depicted in Fig. 2. The objective
has been to specify an architecture that is suitable for
threat prediction in the C2 domain. The most important
criteria for the specification of such an architecture
are that the agents’ decisions are based on their belief
regarding the other agents’ private information, and
that the architecture is made up from an underlying
well-established and realistic probabilistic model of the
situation. We achieve the former criterion by the use
of a game with incomplete information, and the latter
criterion by using an influence diagram for representing
our model of the current situation awareness.
A top-down perspective on the architecture can be

seen in Fig. 3, depicting a probability distribution over
the possible worlds. Each such world is modeled in
an influence diagram, such as the diagram outlined
in Fig. 1, containing nodes for the goals (Gi), the
possible courses of actions (Di), and the payoff (Ui) for
each respective agent. Apart from these variables, each
influence diagram is connected to model specific subdi-

Fig. 4. Summary of the game component.

agrams containing environmental descriptions, doctrine
and other properties specific to the model in question.
An important observation regarding the model in Fig. 1
that motivates the use of game theory is the fact that
this model, seen as an ordinary influence diagram, does
not account for situations when agents’ try to make
decisions that are influenced by other agents’ decisions.
That is, it is not capable of representing circular causal
relationships between D1 and D2. To account for this
gaming perspective we therefore think of the possible
world states as Bayesian game type profiles. Utilities
are obtained for each such type profile by using its
correlated influence diagram to create a strategic form
game, i.e., utilization of the algorithm in Fig. 2 which
for each combination of the decision profile D1, : : : ,Dn
calculates utilities U1, : : : ,Un.
Using our prior belief regarding which model is

accurate, we then obtain a Bayesian game for the
whole decision problem. Calculation of equilibria in the
Bayesian game yields solutions for the decision vari-
ables D1, : : : ,Dn in the form of mixed strategy Nash
equilibria. A more formal description of the scheme can
be found in Fig. 4.
Assuming consistent beliefs, the solution to a Bayes-

ian game is obtained by introducing a new root node
called a historical chance node that is used to imple-
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ment the Bayesian property of the game. A historical
chance node differs from an ordinary chance node in
that the outcome of this node has already occurred and
is partially known to the players when the game model
is formulated and analyzed. For each set of possible
types, the edges from the root node in the game corre-
spond to the model that is used if the players were of
this type. We say that a player i believes that the other
players’ type profile is t¡i 2 T¡i with subjective probabil-
ity pi(t¡i j ti) given that player i is of type ti 2 Ti. Again,
note that the subscript ¡i is standard notation for the
set of all players except for player i, i.e., t¡i is a list of
types for all the other players.
For each type profile t 2 T, an influence diagram, as

in Fig. 1, describes the decision situation using random
state variables. The different models differ in properties
that cannot be seen in Fig. 1, consisting of other random
variables describing for example terrain, doctrine, and
belief regarding all kinds of properties that do not rely
on other participating agents’ decisions. In the context
of our Bayesian C2 game the historical chance node
is thus a lottery over the possible models that are
represented as influence diagrams.
The Bayesian property of the game might seem triv-

ial at first glance, but the historical chance node at the
root of the tree poses a serious concern to us. To estab-
lish Nash equilibria for the game the normal representa-
tion in strategic form is needed, but the algorithm for the
creation of this relies on the players being able to decide
their strategies before the game begins, which is not true
in a Bayesian game that is represented with a histori-
cal chance node. The solution, due to Harsanyi [21],
is to reduce the game to Bayesian form and compute
its Bayesian equilibria. Such an equilibrium consists of
a probability distribution over actions for each player
and each of this player’s types. This can in principle
be accomplished by solving an LCP to obtain a mixed
strategy for each type of each player. Although in game-
theoretic studies, Bayesian games are often defined with
infinite type and action spaces, we classify actions dis-
cretely after doctrines the players are trained to follow,
and if the intuitive type of a player is a continuous vari-
able we discretize it.
At level two, for each node represented by a distinct

type profile t¡i 2 T¡i, the node is the start of the model
that the type profile t¡i 2 T¡i gives rise to. To represent
this model we use a game on strategic form; that is,
a game with players N, actions (Ci)i2N , and utility
functions (ui)i2N .
The (still Bayesian) game relates to the influence

diagram in Fig. 1 in that N represents the n agents that
are about to make decisions D1, : : : ,Dn, Ci represents
the actions available for agent i in decision node Di,
and ui is the utility that is obtained in the diamond
shaped utility node Ui which is, in turn, depending
on the random variables C and Gi denoting the world
consequence and the agent’s goals respectively.

7. EQUILIBRIA AND COMPLEXITY

While modeling and representing a C2 situation is
interesting in its own right, a primary concern is the
use and interpretation of the model. In game theory the
concept of Nash equilibria defines game solutions in
the form of strategy profiles in which no agent has an
incentive to deviate from the specified strategy. Without
doubt, defining equilibria is the foremost goal in game
theory. Fortunately, this means that we can lean on well-
established results in our effort to find equilibria for the
C2 situation.
For a Bayesian game, Harsanyi [21] defined the

Bayesian equilibrium to be any set of mixed strategies
for each type of each player, such that each type of
each player would be maximizing his own expected
utility given that he knows his own type but does not
know the other players’ types. Mathematically speaking,
a Bayesian equilibrium for a Bayesian game ¡ b, as
defined in (1), is any mixed strategy profile ¾ such that,
for every player i 2N and every type ti 2 Ti,

¾i(¢ j ti) 2 argmax
¿i2¢(Ci)

X
t¡i2T¡i

pi(t¡i j ti)

£
X
c2C

0@ Y
j2N¡i

¾j(cj j tj)
1A¿i(ci)ui(c, t): (2)

Here, ¢(Ci) denotes the set of probability distributions
over the set Ci, i.e., the set of possible mixed strate-
gies that player i can choose from, and ¾i(¢ j ti) is the,
possibly mixed, strategy of player i in type ti.
Existence of a Bayesian equilibrium solution in

mixed strategies follows from the famous existence the-
orem for general games, which is due to Nash [42].
Solution methods for general-sum game-theoretic prob-
lems are however intractable for the generic case. The
most well-known solution method, the Lemke-Howson
algorithm [36, 49], solves a linear complementarity
problem [13]. The computational complexity for find-
ing one equilibrium is still unclear. We know, according
to Nash’s theorem [42], that at least one equilibrium in
mixed strategies exists but it is problematic to construct
one. The Lemke-Howson algorithm exhibits exponen-
tial worst case running time for some, even zero-sum,
games. However, this does not seem to be the typical
case [49]. Interior point methods that are provably poly-
nomial are not known for linear complementarity prob-
lems arising from games [49]. Methods amounting to
examining all equilibria, such as finding an equilibrium
with maximum payoff, have unfortunately been proven
NP-hard [19], so for these kinds of problems no efficient
algorithm is likely to exist.
The standard way of calculating equilibria in a game

in extensive form is to transform the game into strate-
gic form. However, the creation of the matrix for the
strategic form typically causes a combinatorial explo-
sion. This is due to each value in the matrix represen-
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tation of a strategic form game representing the payoff
for a complete strategy. Hence, even though a game tree
typically contains widely different decision alternatives
in different subtrees the decisions in the other subtree
still need to be considered. Therefore the strategic form
matrix dimension grows for each node that is traversed.
In a series of articles [30, 31, 48] published during the
last decade the sequential form as a replacement for the
strategic form has provided a representation suitable for
efficient computation of equilibria in an extensive im-
perfect game with chance nodes. The idea is to replace
the game’s strategies with new strategies based on se-
quences ranging from the root node down to the leaves.
That is, each sequence represents a possible course of
events in the game. As the creation of the matrix for
the sequence form relies on payoffs that are already
in the tree the problem complexity is reduced from a
PSPACE-complete problem into a problem that is linear
in the size of the tree. However, it should be kept in mind
that general game trees often share decision alternatives
and, hence, do not exhibit a full scale combinatorial ex-
plosion. In totally symmetric problems, as investigated
in for example [8], the choice of game representation
therefore does not affect the computational tractability
significantly. Also, as mentioned above a pre-requisite
for the sequential method to be effective is that the game
is in extensive form to start with. Referring to the in-
formation fusion game component, as outlined in Sec-
tion 6, this is problematic since the algorithm depicted
in Fig. 2 results in a strategic game. However, using
an additional chance node denoting the common model
prior, it is possible to hinder this combinatorial explo-
sion by transforming the whole game component into
one large influence diagram. This influence diagram can
then be utilized to create the game tree directly using
the multi-agent influence diagram conversion algorithm
in [32] which, in turn, is a straightforward extension of
the single-agent decision tree algorithm found in [44].
As indicated, the incentive for us to actually use

the sequential method when developing the information
fusion game component has so far been limited, but the
relation between the sequential method and its potential
savings must be kept in mind when developing the game
component further. A model incorporating a series of
ordered decisions, or perhaps a hierarchy of decisions as
outlined in [7], is likely to benefit significantly from this
representation. More information on this topic regarding
so-called MAIDs, an acronym for multi-agent influence
diagrams, and their relation to the information fusion
game component can be found in Section 10.
Although game-theoretic methods are, in most cases,

computationally infeasible in theory, computation of op-
timal solutions still seems to be tractable in reasonably
sized C2 decision problems [8]. Moreover, despite the
intractability of finding all optimal solutions there exist
fast algorithms that often finds all, or nearly all, solu-
tions.

Fig. 5. Influence diagram depicting an example scenario with a
blue player and a red player. The Boolean node BS denotes the blue
player’s private information that gives rise to two blue player types

in the game.

8. A SMALL EXAMPLE

In this section the gaming perspective is illustrated
with an example of a situation where the commander
wishes to reason about two possible models.
At a certain point in battle, a blue (male) unit con-

trols an asset (equipment or territory). When a red (fe-
male) unit appears on the scene the blue unit knows
immediately whether its own forces are inferior or su-
perior. The red unit on the other hand, does not know
anything regarding the capabilities of the blue unit. The
blue unit has the choice to engage in battle or to remain
passive. If he remains passive the red unit will use her
sensors to detect whether he is superior or not and if
he is inferior she will force him to give up the asset.
On the other hand, if the blue unit chooses to engage
the red unit she will be faced with an opportunity to
retreat or to engage. If the blue unit is superior and the
red unit chooses to engage him, he will both defeat the
red unit and keep control of the asset. If the blue unit is
inferior and the red unit chooses to engage him he will
lose both the battle and the asset. If the red unit retreats
the blue unit will keep control of the asset whether he
is superior or not. The central part of the correspond-
ing influence diagram is shown in Fig. 5. The random
variable BS (Blue Superior) constitutes evidence for the
blue decision-maker but not for the red decision-maker,
denoted with the dotted arrow from BS to Dblue. The
node BS is also a parent to the world consequence node
C because it determines the outcome of an engagement
and thus the state of the world. The C node then affects
the decision-makers’ respective utility nodes where, in
this case, Ublue =¡Ured since the game is zero-sum. It
is vital to understand the difference between evidence
variables and query variables to fully grasp the exam-
ple (and the game component as a whole). For the blue
player, the variable BS is evidence which, in turn, gives
rise to one “blue superior game model” and one “blue
inferior game model.” For the red player, BS is just an
ordinary random variable with an associated conditional
probability table. The chance node C, on the other hand,
can never have its value set as an evidence variable as
it is referring to a future state.
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TABLE I
Payoff Matrices for the Myerson Card Game

Player 2 Player 2
M P M P

R 2,¡2 1,¡1 R ¡2,2 1,¡1
Player 1 Player 1

F 1,¡1 1,¡1 F ¡1,1 ¡1, 1

t1 = 1:a (superior) t1 = 1:b (inferior)

If the value of 1) winning the battle and 2) con-
trolling the asset are worth one utility unit respectively,
the game becomes similar to the card game of Myer-
son [41]. As indicated in the situation description, we
follow the convention that odd-numbered players are
male and even-numbered players are female. This is
common practice in game theory and has no deeper
meaning. At the beginning of the game both players put
a dollar (the asset) in the pot. Player 1 (the blue force)
looks at a card from a shuffled deck which may be red
(he is superior) or black (he is inferior). Player 2 (the
red force), on the other hand, does not know the color
of the card but maintains a belief of this in the form of
a probability distribution in her influence diagram, i.e.,
a belief of the possibility of player 1 being superior or
inferior. Player 1 moves first and has the opportunity to
fold (F) or to raise (R) with another dollar, i.e., remain
passive or engage in battle. If he raises, player 2 has
the opportunity to pass (P) or to meet (M) with another
dollar in the pot, i.e., retreat or engage in battle.
We let ® 2 (0,1) denote player 2’s belief of player 1

being superior. In this example, player 1 also knows
the value of ®, i.e., the players’ beliefs are consis-
tent. The situation can then be modeled with a Bayes-
ian game ¡ b, as defined in (1), with N = f1,2g, C1 =
fF,Rg, C2 = fM ,Pg, T1 = f1:a,1:bg, T2 = f2g, p1(2 j
1:a) = p1(2 j 1:b) = 1, p2(1:a j 2) = ®, p2(1:b j 2) = 1¡®
and (u1(c1,c2, t1),u2(c1,c2, t1)) as in Table I.
Solving the game using the technique described by

Harsanyi [21] involves introducing a historical chance
node, a “move of nature,” that determines player 1’s
type, hence transforming player 2’s incomplete infor-
mation regarding player 1 into imperfect information.
The Bayesian equilibrium of the game is then pre-
cisely the Nash equilibrium of this imperfect informa-
tion game. The Harsanyi transformation of ¡ b is de-
picted in Fig. 6 on extensive form.
Note that there are two decision nodes denoted “2.0”

that belong to the same information set, representing the
uncertainty of player 2 regarding player 1’s type. Also,
note that the move labels on the branch following the
“1.a” node do not match the move labels on the branches
following the “1.b” node, representing that player 1 is
able to distinguish between these two nodes. The normal
way of solving such a game is to look at the strategic
representation, as seen in Table II.
In order to solve the game, first note that Fr is

dominated by Rr and that Ff is dominated by Rf

Fig. 6. The Harsanyi transformation of the game in Table I.

TABLE II
The Strategic Form of the Game in Fig. 6

Player 2
M P

Rr 4®¡ 2,2¡ 4® 1,¡1
Rf 3®¡ 1,1¡ 3® 2®¡ 1,1¡ 2®

Player 1
Fr 3®¡ 2,2¡ 3® 1,¡1
Ff 2®¡ 1,1¡ 2® 2®¡ 1,1¡ 2®

regardless of the value of ®, i.e., player 1 will always
raise if in a superior position. Second, if 3=4· ® < 1 we
have that P dominates M so that player 2 will always
choose to pass, which, in turn, implies that player 1 will
always choose to raise. Hence, ([Rr], [P]) is the one and
only equilibrium strategy profile for 3=4· ® < 1. For
0< ®< 3=4 there are no equilibria in pure strategies
(just check all four remaining possibilities) and we
have to look for equilibria in mixed strategies. Let
q[Rr]+ (1¡ q)[Rf] and s[M] + (1¡ s)[P] denote the
equilibrium strategies for players 1 and 2 respectively,
where q denotes the probability that player 1 raises with
a losing card and s the probability that player 2 meets if
player 1 raises. A requirement for an equilibrium for
player 1 is that his expected payoff is the same for
both Rr and Rf, i.e., s(4®¡ 2)+ (1¡ s)1 = s(3®¡ 1)+
(1¡ s)(2®¡ 1)) s= 2=3. Similarly, to make player 2
willing to randomize between M and P, M and P
must give her the same expected utility against q[Rr]+
(1¡q)[Rf] so that q(4®¡ 2)+ (1¡ q)(3®¡ 1) = q1+
(1¡q)(2®¡ 1)) q=¡®=(3(®¡ 1)).
We can now use the equilibrium strategy of the im-

perfect information game in order to derive the Bayes-
ian equilibrium of the game ¡ b. A Bayesian equilib-
rium specifies a randomized strategy profile contain-
ing one strategy ¾i(¢ j ti) for all combinations of play-
ers and types. Hence, the unique Bayesian equilibrium
of the game ¡ b is ¾1(¢ j 1:a) = [R], ¾1(¢ j 1:b) = q[R] +
(1¡q)[F], ¾2(¢ j 2) = 2=3[M]+1=3[P] for 0< ®< 3=4
and ¾1(¢ j 1:a) = [R], ¾1(¢ j 1:b) = [R], ¾2(¢ j 2) = [P] for
3=4· ® < 1.
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Although this simple game presents a solution that
is not entirely trivial, it is simpler than our full family
of games in that it is zero-sum with only two players
and thus has a unique Nash equilibrium that is compu-
tationally easy to find.

9. SOLUTION INTERPRETATION

Nash equilibria, in the form of mixed strategies, as
a solution to decision problems require a moment of
thought. On the one hand, it is easy to argue that the
equilibrium strategy is theoretically sensible. After all,
the notion of Nash equilibria, building on the concept of
rationality, defines precisely this. By using the idea of
Bayesian games we are able to create alternative models
regarding agents that are in some way “irrational.” Thus,
by using Bayesian games we can counterattack any ob-
jections on the existing model by simply extending the
model with a new submodel that models the objection
in question. Of course, this also requires assigning a
prior probability to the new submodel and re-evaluating
the prior probabilities for the existing submodels, which
makes sense if someone comes up with an objection
(which is interpreted as a new model that we have not
thought of before). If the objection is independent of
the existing models, normalization is the natural way
to re-assign probabilities. Otherwise it is natural to let
the prior probability of the new model be represented
by a reduction of prior probabilities of the model or
the models that it depends on. In most cases we believe
that it is appropriate to have a separate model for the
“uncertain case” that takes care of whatever we have not
thought of. In that case the new submodel, provided it is
independent of other existing models, typically reduces
our overall uncertainty regarding the situation and thus
causes a reduction of prior probability for the earlier
mentioned “uncertain case” submodel. Models that take
care of the rest, i.e., that represent options or possibil-
ities that we are not yet aware of, are often found in
proposed architectures for multi-agent modeling, see for
example [20] where irrational behavior as well as lack
of information is modeled in so called “no information
models.”
On the other hand, although representing the the-

oretically rational course of action, the Nash equilib-
rium poses several concerns regarding its interpretation.
Looking at the example scenario in Section 8, it is inter-
esting to see how q and s varies depending on ® which
is shown in the diagram in Fig. 7, i.e., how the solu-
tion to our decision problem varies depending on our
subjective beliefs regarding the opponent being superior
or inferior. How do we convince a commander that he
should decide what to do by throwing a die that varies
depending on q(®)? He probably understands that he is
bluffing, and that it is in general disadvantageous both
to always bluff and to never bluff. Without knowing

Fig. 7. The graph shows how the game-theoretic solution s(®) to
the decision problem in Section 8 varies in a non-intuitive manner
depending on the player’s speculation regarding the other player

being inferior or superior.

the background to the solution it is not trivial to under-
stand why player 1 should raise with a losing card with
probability q(®) in Fig. 7. Perhaps even more strange
is that player 2’s counterattack, the probability s(®) to
meet, is kept constant at s(®) = 2=3 until ®= 3=4 when
it suddenly goes down to zero. So there is a disconti-
nuity in the optimal strategy when ® varies, although at
the discontinuity the optimal utilities vary continuously.
Hence, an error in the ® estimate has no large utility
effect although the equilibrium solution strategies may
vary significantly. The conclusion regarding the Myer-
son card game is that a simple problem gives us a so-
lution that is difficult to understand intuitively and that
may or may not, dependent upon the decision-maker’s
objective, raise questions regarding robustness. This is
quite typical, see for example [6] for another example,
and we need to address the question of how to use the
solution in a sensible way. To actually throw the die is
part of the solution and if this is not performed the com-
mander is not rational and, hence, will be outperformed
by a rational opponent that is capable of modeling this
behavior. It is probably easier to accept the opponent’s
randomized strategy as a prediction. Then the optimal-
ity of one’s own randomized strategy is fairly easy to
establish. As can be seen in Fig. 7, however, such a pre-
diction must be analyzed for discontinuities that indicate
potential issues related to strategy robustness.
To outperform someone by exploiting his plan is

called outguessing. It is tempting to use an estimate of
the risk of exploitation as a basis for decision-making
so that the (risk-compensating) Nash equilibrium mixed
strategy is chosen when the risk is high and the pure
strategy with the highest payoff is chosen when the risk
is low. An approach in this direction using hypergame
theory, which is fundamentally heretical to the concepts
of game theory, is proposed in [53].
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10. RELATED WORK

Development of game tools is an active area in AI. In
the Gala system of [33], tools exist for defining games
with imperfect information. A tractable way to handle
games with recursive interaction in strategic form was
developed in [20], where the potentially infinite recur-
sion of beliefs about opponents is represented approxi-
mately as a finite depth discrete utility/probability ma-
trix tree defining the players’ beliefs about each other.
The solution emerging from this modeling is not a
Bayesian game equilibrium, however.
There is a significant body of work on multi-agent

interactions in the intelligent agents literature. A survey
of methodological and philosophical problems appears
in [20]. The principle of bounded rationality can be
taken as an excuse to use simpler solution concepts than
Bayesian game solutions. In our case, there is no reason
to assume that the opponent is not rational–there would
be few excuses if he turned out to be so. This does not
mean that it is not necessary to take advantage of op-
ponents’ mistakes when they occur. Plans must foresee
this and have opportunities of opponent mistakes as a
part; but these options should not be executed until the
evidence of the mistake is sufficient. The recursive mod-
eling of multi-agent interaction of [20] (mostly devel-
oped for cooperative rather than competitive interaction)
is thus not appropriate in our application. The proposal
in [27] is to use game theory with zero-sum game tree
look-ahead for C2 applications. Although this approach
was successful for analysis of lower level game situa-
tions, we have argued above that it is not enough in a
complete higher level C2 tool.
In [32] the concept of a multi-agent influence di-

agram (MAID) is defined, which in a similar manner
to our information fusion game component partitions
the decision and utility variables by agent so that util-
ities and decisions of many agents can be described.
The key idea behind the MAID framework is to use
the graph structure to explicitly state strategic relevance
between decision variables which, in turn, is being used
to break up a large game into a set of singly connected
components (SCCs) which can be solved in sequence.
The complexity of equilibria computation in the full
game is therefore reduced to the complexity of equi-
libria computation in the largest SCC in the MAID. In
some games, where the maximal size of an SCC is much
smaller than the total number of decision variables, the
MAID representation provides exponential savings over
existing solution algorithms. In the worst case, however,
the strategic relevance graph forms a single large SCC
and the MAID algorithm simply solves the game in its
entirety, with no computational benefits. The influence
diagrams in the information fusion game component
outlined in Section 6 are unfortunately examples of such
large SCCs. As it turns out, the whole game component
could be alternatively represented by a MAID with a
single large SCC provided an additional chance node,

representing the “move of nature,” was added to connect
the models to each other.
An extension of the MAID framework is the NID–

Network of Influence Diagrams. In the version de-
scribed in [18], several MAIDs–or other game repre-
sentations–can be connected in a directed acyclic
graph, where outgoing arcs are labeled with a proba-
bility distribution. This allows us to define situations
where agents do not all use the same model, but there
is no way to describe in an acyclic graph a situation
where there is mutual uncertainty and inconsistent be-
liefs about the game structure and the opponents’ goals.

11. CONCLUSIONS

In higher level command and control (C2) we can be
certain that large efforts are directed towards predicting
the beliefs, desires, and intentions of the adversary–
and there will not be a common agreed upon model of
the situation and its utilities. In fact, the complex na-
ture of any C2 decision situation makes it necessary to
go beyond any proposed theoretical model and question
how, if at all, it can be used in practice. Adding conflict,
where opposing parties try to outguess each other, com-
plicates things even further with the necessary addition
of a gaming perspective–putting stress on a decision
situation that is complex already from the beginning.
In this paper we propose a way to overcome the bar-

riers between theory and practice, taking into account
opponent modeling as well as current state-of-the-art C2
situation modeling principles. We characterize the pro-
posed architecture as an information fusion game com-
ponent to emphasize the inherent dependencies between
the gaming perspective and the process of fusing sensor
data into a comprehensible situation picture. It is our
belief that game theory should not be considered just
another tool in the decision-maker’s toolbox. Rather, it
is the science of agent interaction itself, i.e., we con-
sider game theory to be the whole toolbox as well as
a statement of the information fusion threat prediction
problem.
Game-theoretic tools have a potential for situation

prediction that takes uncertainties in enemy plans and
deception possibilities into consideration. The idea be-
hind Bayesian games is particularly interesting, and
needed, from the viewpoint of a commander facing a
real setting decision problem; it combines several mod-
els of the situation, thus making it possible to con-
sider such diverse factors as opponent irrationality or
the decision-maker’s intuition by incorporating these
ideas as separate models. However, Bayesian games,
as well as game theory in general, still have shortcom-
ings when representing realistic, potentially large and
complex, situation descriptions–at least compared to
the expressiveness and ease of understanding obtained
with the current state-of-the-art single agent description
within AI, i.e., a Bayesian network representation of
the situation. Hence, the natural extension in order to
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make the Bayesian game truly useful for other prob-
lems than leisure games is to maintain several influence
diagram representations of the possible models and let
the game’s utility functions consist of the utilities that
can be calculated with the use of the respective influence
diagrams.
For a situation picture to be truly useful for a com-

mander, it should convey both awareness of the cur-
rent situation as well as predictive awareness regard-
ing likely future courses of events. Hence, prediction
of future courses of events must be considered of ut-
most importance when commencing development of the
next generation’s C2 systems and, henceforth, in higher
level fusion the game component is both important and
needed.
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Situation assessment (SA) involves deriving relations among en-

tities, e.g., the aggregation of object states (i.e., classification and

location). While SA has been recognized in the information fusion

and human factors literature, there still exist open questions regard-

ing knowledge representation and reasoning methods to afford SA.

For instance, while lots of data is collected over a region of interest,

how does this information get presented to an attention constrained

user? The information overload can deteriorate cognitive reason-

ing so a pragmatic solution to knowledge representation is needed

for effective and efficient situation understanding. In this paper,

we present issues associated with Level 2 Information Fusion (Sit-

uation Assessment) including: (1) user perception and perceptual

reasoning representation, (2) knowledge discovery process models,

(3) procedural versus logical reasoning about relationships, (4) user-

fusion interaction through performance metrics, and (5) syntactic

and semantic representations. While a definitive conclusion is not

the aim of the paper, many critical issues are proposed in order to

characterize future successful strategies for knowledge representa-

tion, presentation, and reasoning for situation assessment.
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1. INTRODUCTION

Situation assessment (SA) is an important part of
the information fusion (IF) process because it (1) is the
purpose for the use of IF to synthesize the multitude
of information, (2) provides an interface between the
user and the automation, and (3) focuses data collection
and management. Hall and Llinas (Table I) have listed
a variety of techniques that need to be solved for SA
to be viably implemented in real systems [15]. Since
the late 1990s there has been few cumulative updates in
the progress of SA and still there are remaining issues
and challenges. During the FUSION05 conference, Ivan
Kadar organized, moderated, and participated in a panel
discussion with invited leading experts to elicit and
summarize current issues and challenges in SA that need
to be researched in the next decade.

1.1. Panel Participants, Topics, and Perspectives

This paper serves as a retrospective view of the
panel discussion that was held in July 2005. In this
format, we list our retrospective and annotated view of
the panel information in a condensed (bulletized) format
to make it easier for the reader to assimilate the general
concepts. Due to space limitation, only a few key issues
are expanded on in text format.

² Organizer: Ivan Kadar, Interlink Systems Sciences,
Inc.

² Co-Organizers: Subrata Das, Charles River Analyt-
ics and Mieczyslaw M. Kokar, Northeastern Univer-
sity

² Moderators: Ivan Kadar, Interlink Systems Sciences,
Inc. and James Llinas, SUNY at Buffalo

² July 26, 2005 FUSION 2005–The 8th Interna-
tional Conference on Information Fusion, July 25—28,
Philadelphia, PA

PARTICIPANTS AND PRESENTATION TITLES

² “Knowledge Representation Issues in Perceptual Rea-
soning Managed Situation Assessment” Ivan Kadar,
Interlink Systems Sciences, Inc., Lake Success, NY

² “Knowledge Representation Requirements for Situ-
ation Awareness” John Salerno, Douglas Boulware,
Raymond Cardillo, Air Force Research Laboratory,
Rome Research Site, NY

² “Situation Assessment: Procedural versus Logical”
Mieczyslaw M. Kokar, Department of Elect. & Com-
puter Eng., Northeastern University, Boston, MA

² “Tactical Situation Assessment Challenges and Impli-
cations for Computational Support” Gerald M. Pow-
ell, U.S. Army RDECOM CERDEC I2WD, Ft. Mon-
mouth, NJ

² “Situation Assessment in Urban Combat Environ-
ments” Subrata Das, Charles River Analytics, Inc.,
Cambridge, MA
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TABLE I
SA Challenges and Limitations–Hall and Llinas, [15]

JDL Process Processing Description Current Status Challenges and Limitations

Level 2 Develops a description of current
relationships among objects and
events in the context of the
environment (i.e., situation
assessment)

Numerous prototypes
Dominance by Knowledge-Based
Systems (KBS)
–Blackboard methods
–Rule-based representation
–Logical templates
KBS experiments
–Case based reasoning, Fuzzy Logic
Non-real time implementation

Dominated by prototypes
No experience on scaling to field
models
“Excedrin” cognitive models
Difficult KB development
Perfunctory Test & Evaluation
Integration of identity/kinematic data

² “Representation and Contribution-Integration Chal-
lenges in Collaborative Situation Assessment” Daniel
D. Corkill, University of Massachusetts, Amherst,
MA

² “Human-Aided Multi-Sensor Fusion” Enrique H.
Ruspini, et al., Artificial Intelligence Center, SRI In-
ternational, Menlo Mark, CA

² “DFIG Level 5 (User Refinement) issues supporting
Level 2 (Situation Assessment)” Erik Blasch, AFRL,
WPAFB, OH

1.2. Common Themes

While discussion of individual research results by
the participants highlighted specific key issues, there
were common themes that resulted from the panel dis-
cussion. The common themes were:

COMMON ISSUES

² User–The SA process includes perceptual, interac-
tive, and human control

² Process models–updating behavioral models (e.g.
Bayes Nets, procedural/logical, perceptual, learning)

² Context–operational situation (i.e., dependent on the
current state of the environment)

² Meaning–semantics and syntax issues (formal meth-
ods, ontologies)

² Metrics–develop a standard set of metrics (e.g. trust,
bounds, uncertainty)

COMMON CHALLENGES

² Explanation of process–evidence accumulation and
contradiction in knowledge representation and rea-
soning

² Graphical displays to facilitate inferential chains, col-
laborative interaction, and knowledge presentation

² Interactive control for corrections and utility assess-
ment for knowledge management

2. SITUATION AWARENESS/SITUATION
ASSESSMENT

There are two main communities that are look-
ing at situational information (i.e., Situation Awareness

Fig. 1. Endsley’s situation awareness model.

(SAW) and Situation Assessment (SA)): the human fac-
tors community and the engineering information fusion
(IF) research community. SAW is a mental state while
SA supports (e.g. fusion products) that state. The human
factors notion of SAW is being lead by Mica Endsley
[12]. For the IF society, there are many leading people
proposing different aspects of SAW research. Research
is a way to categorize developments, but another way is
by applications. There are many application communi-
ties looking at SAW research including: military, med-
ical, aviation, security, and environmental. Each might
have differences, but the commonality rests in the fact
that a multitude of data needs to be synthesized into a
single operating picture (dimensionality reduction) [37].
Likewise, the salient information needs to be provided
to the user to assist the user in completing their mission
tasks.

2.1. Situational Awareness Models

The Human in the Loop (HIL) of a semi-automated
system must be given adequate situation awareness.
According to Endsley “SAW is the perception of the
elements in the environment within a volume of time
and space, the comprehension of their meaning, and the
projection of their status in the near future.” [12]. This
now-classic model, shown in Fig. 1, translates into 3
levels:

² Level 1 SAW–Perception of elements in the envi-
ronment
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Fig. 2. Fusion situation awareness model [4].

² Level 2 SAW–Comprehension of the current situa-
tion

² Level 3 SAW–Projection of future states
Operators of dynamic systems use their SAW in de-

termining their actions. To optimize decision making,
the SAW provided by an IF system should be as precise
as possible as to the objects in the environment (Level 1
SAW). A SA approach should present a fused represen-
tation of the data (Level 2 SAW) and provide support for
the operator’s projection needs (Level 3 SAW) in order
to facilitate the operator’s goals. From the SA model
presented in Fig. 1, workload is a key component of the
model that affects not only SAW, but also the decision
and reaction time of the user.

2.2. User Fusion Model

As another example, the Situational Model compo-
nents [32], shown in Fig. 2, developed by Roy, show
the various information needs to provide the user with
an appropriate SAW. To develop the SA model further,
we note that the user must be primed for situations to
be able to operate faster, and more effectively.
A fusion system must satisfy the user’s functional

needs and extend their sensory capabilities. Of inter-
est to the information fusion community are IF sys-
tems which translate data about a region of interest into
knowledge, or at least information over which the hu-
man can reason and make decisions. A user fuses data
and information over time and space and acts through
their world mental model–whether it be in the head
or with graphical displays, tools, and techniques. The
current paradigm for fusion research, shown in Fig. 3,
is called the user-fusion model [5].

Fig. 3. User fusion model.

2.3. Perceptual Reasoning Managed Situation
Assessment

“Knowledge Representation Issues in Perceptual
Reasoning Managed Situation Assessment” Ivan Kadar
The IF community has had several definitions of SA

over time. The JDL Model [14], defined SA as “estima-
tion and prediction of relations among entities, to in-
clude force structure and cross force relations, commu-
nications and perceptual influences, physical context,
etc.” DSTO [11, 22] defined SA as “an iterative process
of fusing the spatial and temporal relationships between
entities to group them together and form an abstracted
interpretation of the patterns in the order of battle data.”
Issues with the SA definitions, and some subsequent
models based on these definitions are:

² not domain independent,
² do not incorporate human thought processes, human
perceptual reasoning, the ability to control sensing
and essence of response time,
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Fig. 4. Perceptual reasoning machine.

² imply use of limited a priori information,
² and only imply potential for new knowledge cap-
ture.

Therefore, the desired properties of SA are:

² One needs the ability to control Levels 1—4 of Data
Fusion processes for knowledge capture in SA

² SA is to establish relationships (not necessarily hi-
erarchical) and associations among entities, it should
anticipate with a priori knowledge in order to rapidly
gather, assess, interpret and predict what these rela-
tionships might be; it should plan, predict, anticipate
again with updated knowledge, adaptively learn, and
control the fusion processes for optimum knowledge
capture and decision making

² These features are similar to the characteristics of
human perceptual reasoning

² Therefore it is conjectured that the “optimum” SA
system should emulate human thinking as much as
possible

As a matter of fact, the godfather of the Internet
and knowledge representation, Vannevar Bush [8] in
his famous 1945 essay, “As We May Think” stated,
op. cit., “The human mind does not work that way
hierarchically. It operates by association.” Spatial and
temporal associations are key ingredients of Perceptual
Reasoning Model (PRM).
The goal is the perceptual reasoning model which is

viewed as a “meta-level information management sys-
tem,” as shown in Fig. 4. PRM consists of a feed-
back planning/resource control system whose interact-
ing elements are: “assess,” “anticipate” and “predict”
[16—18].

² Gather/Assess current, Anticipate future (hypothe-
ses), and Predict information requirements and mon-
itor intent,

² Plan the allocation of information/sensor/system re-
sources and acquisition of data through the control
of a separate distributed multisource sensors/systems
resource manager (SRM),

² Interpret and act on acquired (sensor, spatial and
contextual) data in light of the overall situa-
tion by interpreting conflicting/misleading informa-
tion.

Representative elements and knowledge bases, as-
sociated with the assess, anticipate and predict PRM
modules, are categorizable into: (1) functions, with
each function further categorized into (a) knowledge re-
quired, (b) knowledge acquisition methods, (c) knowl-
edge representation approaches, and (d) implementa-
tion techniques. Specific knowledge representation and
reasoning (KRR) methods were discussed at the panel
highlighting implementation issues and research chal-
lenges.

Issues for SA

1. Knowledge–a priori and current
2. PROCESS–anticipate and gather facts
3. User queries instantiation
4. Fusion System presents Beliefs
5. Need a process model interface

KRR Challenges for SA

1. Adequacy of KRR (logic, ontology, algorithmic,
probabilistic), how to quantify/measure?

2. Expressiveness of models versus tractability of inference
3. Managing Complexity (how to bound problem w/incomplete
knowledge)

4. Data Information (How to manage heterogeneous and
uncertain KSs and detect duplicate or incomplete concepts)

5. Presentation of knowledge to different users (what is
pragmatic?)

2.4. Syntactic Algorithms and Semantic Synonyms

“Knowledge Representation Requirements for Situ-
ation Awareness” John Salerno, Doug Boulware, Ray
Cardillo
Full Spectrum Dominance (FSD), as defined by

Joint Vision 2020, is the ability to be persuasive in
peace, decisive in war and preeminent in any form of
conflict. FSD cannot be accomplished without the ca-
pability to know what the adversary is currently doing
as well as the capacity to correctly anticipate the ad-
versary’s future actions. This ability of projection is an
element of Situation Awareness [12, 13]. SA has re-
ceived increased attention due to its diverse applications
in a number of problem domains including: asymmet-
ric threat, tactical, cyber, and homeland security [14].
Salerno, et al. proposes an architecture that combines
the Endsley and JDL models (shown in Fig. 5) and has
applied this model to various strategic, cyber and tactical
applications [35].
Through a display, a user can (1) build a model

by either editing an existing template/model or create
a new one; (2) activate/de-activate existing models; or
(3) view active models and any evidence that has been
associated with the model over time. Different political,
military, economic, social, infrastructure, and informa-
tion models can be accessed and the result published (or
subscribed) to.
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Fig. 5. SA framework.

Issues encountered in its development mainly per-
tain to evidence access, storage, usage and providing
a priori knowledge. In order to resolve any seman-
tic issues in context and value, we need to normalize
the data before we can use it. Data normalization in-
volves converting different formats of the same data
into a common representation. Dealing with semantic
inconsistencies is much more difficult. In these cases,
we need to resolve synonyms both in what is repre-
sented and what the value itself represents. Two differ-
ent labels can have the same meaning, or two aliases
can represent the same entity. Finally, what level of
a priori data is needed depends on the context of op-
eration.

Issues for SA

1. Lots of data for analyst, but not able to get it
2. Analyst–under stress and fatigue
3. What to publish and subscribe
4. Security issues in data gathering

Challenges for SA

1. Syntactic algorithms (normalization/transformation)
2. Semantic synonyms (different meaning between ideas)
3. Learning from what is presented
4. People can think of new situations

2.5. Procedural versus Logical

“Situation Assessment: Procedural versus Logical”
Mieczyslaw M. Kokar
Various terms have been used to refer to Level 2 fu-

sion processing: situation refinement, situation aware-
ness, situation development, relation estimation and
other. All of these terms have a common part in their
definition, i.e., all of them require that the definition
should include the knowledge of all the relevant objects
and their kinematic states. This is essentially a Level 1
function, so it will not be discussed here. Some of the
definitions, but not all, include the requirement of know-
ing relationships among the objects. This brings three
problems: 1) The relevance problem: there are so many
possible relations–which ones are relevant? 2) The re-
source problem: where can we get the necessary infor-
mation resources, both data and processing, that can be
used to assess the current situation? 3) The derivation
problem: how do we derive whether a particular rela-
tion holds or not? And even fewer definitions capture
the aspect of awareness as defined in the Webster dictio-
nary, where awareness is explained as “AWARE implies
vigilance in observing or alertness in drawing inferences
from what one experiences.” In other words, a subject is
aware if the subject not only observes (experiences) the
objects but also is capable of drawing conclusions from
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Fig. 6. SAWA. Situation management component (SMC), relation
monitor agent (RMA), triples data base (TDB), and event

management concept (EMC).

these observations. We call this the inference problem:
how can we infer the implications of a specific situation
on the tasks that we are pursuing?
The observations presented in this paper have been

collected during the two year period of working on the
situation awareness assistant (SAWA), shown in Fig. 6
[27]. In most general terms, SAWA is an ontology based
situation monitor [26]. Its main goal is to monitor a
“standing relation,” i.e., a query formulated in terms
of an underlying ontology. SAWA collects informa-
tion (events) and invokes its inference engine that de-
rives whether the relation holds or not. The reasoning
mechanism of SAWA combines logical inference with
Bayesian belief propagation. A number of findings from
this project have been published in papers [20, 21, 26,
27, 28].
Solutions are sought by either procedural or logical

(declarative) means. In the logical approach, a query
about a specific relation can be posed to an inference
engine (or a theorem prover). The inference engine
then returns an answer, possibly with some variable
bindings. A number of inference engines for OWL
have been developed and/or are under development. In
typical data fusion applications the derivation problem
is solved in a procedural way, i.e., in order to determine
whether a particular relation holds or not, a procedure is
invoked, which returns either a “yes” or a “no” answer,
possibly also including some return parameters. While
this approach may turn out to be more efficient in
terms of time complexity, it lacks the genericity that
the logical approach has. The limitation comes from the
fact that only those queries for which procedures have
been explicitly coded by the system developer can be
answered. The logical approach is termed declarative
programming, while the procedural approach is called
procedural programming.
In the logical approach, the inference problem is

closely related to the relation derivation problem. A log-
ical query regarding any feature of a situation is posed
to an inference engine. The query language for OWL is
called OWL-QL. The number of types of queries is only
limited by the complexity of the ontology that captures
the domain knowledge. The queries are built out of the
class expressions and property expressions using logi-

cal connectives that are part of the ontology language.
Again, the advantage of the logical approach is that the
query engine is not designed to answer a specific set
of queries, but it is rather generic, capable of answer-
ing any query that is expressible in the query language.
This is not the case in the procedural approach, where
only those queries that have been formulated at the de-
sign time can be resolved by the system. The reasoning
mechanism of SAWA combines logical inference with
Bayesian belief propagation. Although the logical ap-
proach is a promising approach to solve the general SA
problem, still, a number of issues need to be resolved
in order to make the logical approach scalable up to the
real world problems.

Issues for SA

Relations–Future in Semantic Web approach
1. Relevance–need a generic relevance theory
2. Resource–from closed (level 1 provides all information) to
open (level 2 accesses Semantic Web for additional
knowledge)

3. Derivation/Inference–expressiveness versus efficiency of
reasoning

Challenges for SA

1. Consistency and ontology mapping
2. Identity crisis (association problem)
3. Representational expressiveness, computational complexity
4. Trust Metrics
5. “Semantic Web”–use standard language (i.e. “OWL”), but
need more expressiveness (rules)

3. USERS AND APPLICATIONS

3.1. Tactical SA and Computational Support

“Tactical Situation Assessment Challenges and
Implications for Computational Support” Gerald M.
Powell
A number of definitions of Level 2 fusion are avail-

able [2, 3, 23]. The comments in this paper relate to
one or more of these definitions. The operational fo-
cus is Army brigade intelligence analysis. There exist
approaches to instantiate these definitions into practi-
cal designs [3]. Fig. 7 shows the representational in-
formation from Waltz [36] which shows the context-
dependent perceptual knowledge views for processing.
These displays show spatial and temporal relations from
which to act. The display technology is domain depen-
dent and requires operational considerations [30—31].
What follows is a small subset of key issues and chal-
lenges in knowledge representation and reasoning meth-
ods for Level 2 fusion in this task domain.
Hypotheses and Their Utilities: There is a need to

generate hypotheses to serve as predictors of behav-
ior, to guide information gathering, and to provide a
framework for constructing plausible explanations for
evidence. The goal of creating hypothesis structures that
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Fig. 7. Categories of view.

will satisfy these purposes would indicate an adequate
understanding exists of the hypothesis types required
and the logical relationships among them. The relative
importance of a given hypothesis in the structure will
be context-dependent–this requires analysis. Similarly,
the relative value of reports/data from differing source
types and instances will be context-dependent. Like hy-
potheses, their relevance or value, will vary over time
as the situation unfolds including what information has
already arrived, whether it has been analyzed, the qual-
ity of it, its relative importance and so on. A report
deemed irrelevant in a particular context may, much
later, become relevant as the interpretation has evolved.
Analysis and interpretation are context-dependent. They
must take place within the set of context-dependencies
defined by the information peculiar to a given situation
(mission, terrain, battlespace reports, etc.) as well as
historical knowledge about the adversary. These depen-
dencies can cause combinatoric growth in the number of
interpretations possible and lead to erroneous analyses
and conclusions. Identifying what these dependencies
are, and constructing ways to represent and reason with
them to produce increased accuracy and speed of anal-
ysis and interpretation remain open issues.
Weak Models of the Adversary: In some situations,

our knowledge of the actors we are observing and
trying to understand may be extremely weak such as
when there has been little opportunity for information
gathering prior to engagement, when their organiza-
tional elements and communications patterns are par-
titioned in ways that inhibits discovery of structure, and
when their doctrine and tactics encourage rapid, adap-
tive changes in behavior sometimes manifesting in un-
expected ways. Even when opportunities for observa-
tion are plentiful, accurately interpreting data in a timely
manner may be extremely difficult due to indicators that
are weak discriminators of hypotheses. These issues in-
dicate there are implications for both directed and undi-

rected machine-based knowledge discovery. Also, mod-
els and tools to help analysts understand situational-
specific risks of Type I (false positive) and II (false-
negative) errors in interpretation would be useful.
Multiple Inferencing Strategies: Abductive, deduc-

tive and inductive inferencing are present in human
performance in situation assessment. There are implica-
tions for machine capabilities to support each of these
in an integrated framework. Their machine implementa-
tions should be such that they support user understand-
ing, trust and acceptance.

Issues for SA

1. Massive information overload on analysts
2. Analysis and interpretation are context-dependent
3. Cognitive biases cause errors in analysis and interpretation
4. Models of adversary structure/behavior are often weak
5. Heterogeneous, non-integrated information sources
6. Automated environments supporting adequately fast, direct
authoring of knowledge by analysts do not exist

Challenges for SA

1. Automated analysis/interpretation that is fast enough while
also being accurate

2. Overcoming representational and processing complexities
caused by context-dependence

3. System designs that will help analysts overcome cognitive
biases

4. Automatic adaptation to changing threats
5. Semantic consistency across info sources
6. Building adequate knowledge authoring environments for
analysts

3.2. Urban Combat

“Situation Assessment in Urban Combat Environ-
ments” Subrata Das
The two largest hurdles for SA in contemporary ur-

ban combat environments are the environmental clut-
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ter and the enemy’s lack of conformity to established
tactical doctrine. Adversarial entities in the environ-
ment must be identified and tracked, individually or as
groups, to recognize higher-level situations (e.g. attack,
ambush, interdiction, insurgency) and determine effec-
tive military responses or preemptive actions. Further-
more, because contemporary enemy behavior is often
innovative and unpredictable, traditional tactical mod-
els cannot be applied to recognize significant devel-
opments in contemporary situations. As a result, an
effective automated means for extracting useful situ-
ation information from the thousands of multi-source
events generated every minute in the theatre of oper-
ations remains an open problem. Human analysts cur-
rently perform the bulk of this difficult situation and
threat assessment work, but are only able to process
a small fraction of the available data. Knowledge dis-
covery (aka. data mining) is a process of abstracting
knowledge from data to form models for problem solv-
ing. Knowledge discovery techniques such as Decision
Trees and Inductive Logic Programming discover asso-
ciation rules between items within an unordered collec-
tion of records, transactions, or events. Techniques also
exist for extracting causal Bayesian belief network (BN)
structures along with their strengths. BN technology of-
fers several advantages, including its easy-to-understand
graphical modeling and consistent probabilistic seman-
tics in dealing with the uncertainty involved in sensor
data. Focusing now on the model-based approach, cur-
rent state-of-the-art approaches for answering the com-
mander’s priority intelligence requirements (PIRs) for
SA are model-based. Knowledge discovery or model-
based approaches fail to provide a complete solution
for SA requirements because a) they can only model
specific patterns within a relatively small subset of vo-
luminous data, and b) there is never enough historical
data available to model novel phenomena. To address
these issues, we explore a hybrid approach combin-
ing model-based reasoning with knowledge discovery
techniques for SA, especially suitable for detecting and
identifying asymmetric threats in urban environments.
The proposed hybrid approach leverages the wealth of
data available to provide information about “what is
strange” about a given situation, without having to know
what exactly what it is we are looking for, thus trigger-
ing models for follow-up SA.
The hybrid approach recognizes significant patterns

by taking into account environmental clutter. It also uses
spatiotemporal clustering algorithms to perform a space
and time-series analysis of messages without requiring
semantic information. This approach can, for example,
detect spatially correlated moving units over time within
the environment. Detected patterns trigger follow-up as-
sessment of newly developed situations, resulting in in-
vocations of various doctrine-based computational mod-
els, including causal static and dynamic Bayesian belief
networks. The invoked models then perform SA based

on other observables propagated as evidence into the
models. The approach extends further in recognizing
significant patterns without relying on doctrinal knowl-
edge. Instead, we make use of latent semantic indexing
(LSI), which is a proven technique in text based infor-
mation retrieval applications. We leverage LSI to ex-
tract underlying patterns from observables reported in
formatted (e.g. USMTF) or plain text messages. These
patterns establish a “normal” profile against which sub-
sequent incoming observations are matched so as to de-
tect any unusual activities (e.g. large scale attack prepa-
ration).

Issues for SA

1. Model Based Reasoning–closed form of reasoning and
model construction process is time consuming

2. Traditional Knowledge Discovery–requires large amount of
training data

3. Link Analysis–manual process and not able to handle large
amount of data

Challenges for SA

1. Rapid construction of models
2. BN–for model building (all pair-wise interactions)
3. Unsupervised clustering techniques for large volumes of data
to generate normalcy and determine “something is going on”

4. Automation to find “needle in a haystack”

3.3. Collaborative Situation Awareness

“Representation and Contribution-Integration Chal-
lenges in Collaborative Situation Assessment” Daniel
D. Corkill
Blackboard systems are an ideal architecture for sit-

uation assessment involving large data volumes and het-
erogeneous data and knowledge sources. However, the
ad hoc confidence and belief values used in traditional
blackboard applications have led to criticism of the
blackboard approach and spawned efforts to combine
collaborative blackboard-system techniques with more
“principled” graphical-network representations. We dis-
cuss two important collaborative-assessment challenge
areas: 1) principled blackboard representations and
2) principled integration of contributions made by inde-
pendent knowledge-source entities. The complexity of
these challenges is highlighted using a simple assess-
ment scenario, shown in Fig. 8(a).
The effectiveness of blackboard systems is the prod-

uct of a number of architectural capabilities working
in concert. The first important capability is the control
flexibility provided by indirect, anonymous, and tem-
porally disjoint interaction among software entities. The
blackboard-system control shell can delay execution of
a knowledge-source (KS) execution without having to
modify an explicit process or worry about managing
the data needed by the delayed KS–they remain on
the blackboard. Similarly, KS activations can be exe-

BLASCH ET AL.: ISSUES AND CHALLENGES IN SITUATION ASSESSMENT (LEVEL 2 FUSION) 129



Fig. 8. Fair coin detector.

cuted earlier than normal–whenever there appears to
be sufficient information for them to perform useful
work. Preliminary efforts in applying graphical belief
networks to blackboard systems have focused on a prin-
cipled representation of the developing solution on the
blackboard [34]. Current beliefs are represented on the
blackboard as disconnected graphical network [9, 10,
29]. The emphasis should be on making the integra-
tion of the contributions made by diverse entities well
founded. This can only be achieved by modeling how
these contributions are generated and how they relate
to one another. For example, if two KSs use the same
data and produce similar results using different compu-
tational approaches, how independent are the results?
Are they redundant (with no added certainty in the
results) or complementary (in the sense that each has
the potential to make mistakes on certain data values,
but these mistakes are fully independent of one an-
other)?
The Fair-Coin Problem: To illustrate these chal-

lenges, consider a simple collaborative-assessment prob-
lem of deciding if a U.S. quarter is a fair coin (has a head
and a tail) by observing a series of coin flips. A priori
we are told that there is a 50% chance that the quarter is
either two-headed or two-tailed. We have a tabletop that
can be viewed by three cameras: two black-and-white
cameras and a color camera (Fig. 8(a)). Images feed
into our assessment architecture that includes a number
of KSs. There are low-level KSs that attempt to identify
coin features, higher-level KSs that aggregate features
to hypothesize coin sides, and a decider KS that makes
the fair or non-fair-coin designation. The goal is to make
a principled determination with a specific confidence
with as few flip observations as possible. Adding to the
complexity is the U.S. 50 State Quarter program, where
a new quarter with a state-specific reverse side is issued
every 10 weeks in the order that the states were admitted
into the Union (Fig. 8(b)).

Issues for SA

1. Blackboard architectures
Different knowledge sources
Benefit from shared information
Bayesian blackboard systems
Graphical belief nets (procedural)

2. Integration of contribution systems

Challenges for SA

1. Representation of uncertainty and certainty
2. Develop entity-specific behavioral specifications of
contributions

3. Specifications provided by user for computer to learn
4. Development of feature-identification Knowledge-source
5. Use of characteristics in concert
6. How to deal with mistakes in condition characterizations

3.4. Human Aided Situation Awareness

“Human-Aided Multi-Sensor Fusion” Enrique H.
Ruspini, Artificial Intelligence Center, SRI Interna-
tional
In multi-sensor fusion problems, relevant knowledge

cannot be completely represented by computer models.
In these cases, it is necessary to implement mechanisms
that permit human experts to apply the full range of
knowledge that only they can master. We identify two
fundamental requirements for such a system. It is first
necessary to identify properties of a reasoning system
that may be visualized by humans so as to judge the
credibility and reliability of its results. In addition, it is
necessary to implement control and review procedures
that may be applied by humans to improve fusion
results. We believe that any sophisticated human-aided
multi-sensor system that addresses these two needs must
provide the following capabilities:

a) Knowledge acquisition procedures
b) Explicit representation of multi-sensor knowledge
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Fig. 9. Structural evidential argumentation system.

c) Quantitative indicators of properties of fusion
results
d) Intuitive, understandable displays of those prop-

erties
e) Interactive techniques to improve the quality of

fusion results

We propose a human-aided multi-sensor fusion sys-
tem based on the integration of the Probabilistic Argu-
mentation System (PAS) [4], developed by Lockheed
Martin, and the Structural Evidential Argumentation
System (SEAS) [25], developed by SRI International,
shown in Fig. 9. These two software tools implement
variants of the Dempster-Shafer (DS) calculus of evi-
dence [19]. PAS is a formalism that explicitly encodes
assumptions by means of logical rules in the context of
a generalized probabilistic framework. The reasoning
procedures of PAS produce measures of support and
plausibility for various conclusions while also provid-
ing mechanisms to explain the nature of the inferen-
tial chains employed to arrive at those results. SEAS
permits the recording of analytical processes employed
by intelligence analysts to derive their findings. SEAS
was originally developed to support collaborative rea-
soning among multiple analysts. SEAS provides intu-
itive graphical displays that enable analysts to review
analytical processes, their underlying assumptions, and
the nature of the processes employed to arrive at con-
clusions. In practice, the structured-argumentation pro-
cesses employed by SEAS have been shown to facilitate
quick understanding of analytical processes while per-
mitting capture of the collective thinking of groups of
analysts.
The integration of PAS and SEAS attempts to satisfy

the previously requirements by developing:

a) Logical rules to facilitate the acquisition and
explicit representation of knowledge
b) DS calculus of evidence to provide a powerful

mechanism to model sensor evidence and uncertain
knowledge
c) Explanations about the fusion processes to per-

mit quantification of the relevance of various knowl-
edge items and the detection and identification of con-
tradictions while enabling consideration of alternative
hypotheses
d) Graphical displays to facilitate understanding of

inferential chains and their conclusions
e) Interactive control and review mechanisms to

permit humans to correct arguments to increase the
utility of conclusion and fusion results

Issues for SA

1. Knowledge acquisition systems
2. Explicit representation of multi-sensor knowledge
3. Quantitative indicators of properties of results
4. Intuitive, understandable displays of those properties
5. Interactive techniques to improve fusion results quality

Challenges for SA

1. Logical rules to facilitate acquisition
2. DS–evidence for uncertain knowledge
3. Explanation of process–evidence and contradiction
4. Graphical displays to facilitate inferential chains
5. Interactive control for corrections and utility of conclusions

3.5. User Refinement–Level 5 of DFIG Model

“DFIG Level 5 (User Refinement) issues supporting
Level 2 (Situation Assessment).” Erik Blasch
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Fig. 10. DFIG 2004 model.

The current fusion model supporting the evaluation
and deployment of sensor fusion systems is the User-
Fusion model, [7], shown in Fig. 3, with upgrades from
the current Data Fusion Information Group1 (DFIG)
(which is the current JDL). The key for SA is the user’s
mental model [1]. The mental model is the representa-
tion of the world as aggregated through the data gath-
ering, IF design, and the user’s perception of the social,
political, and military situations.
The DFIG model, shown in Fig. 10, separates the

data fusion and management functions. Management
functions are divided into sensor control, platform
placement, and user selection to meet mission objec-
tives. Level 2 (SA) includes tacit functions which are in-
ferred from level 1 explicit representations of object as-
sessment. Since the unobserved aspects of the SA prob-
lem can not be processed by a computer, user knowl-
edge and reasoning is necessary. The current definitions,
based on the revised JDL fusion model [7], include: (see
for other revisions [24])
Level 0–Data Assessment: estimation and predic-

tion of signal/object observable states on the basis of
pixel/signal level data association (e.g. information sys-
tems collections);
Level 1–Object Assessment: estimation and predic-

tion of entity states on the basis of data association,
continuous state estimation and discrete state estimation
(e.g. data processing);
Level 2–Situation Assessment: estimation and pre-

diction of relations among entities, to include force
structure and force relations, communications, etc. (e.g.
information processing);
Level 3–Impact Assessment: estimation and pre-

diction of effects on situations of planned or estimated
actions by the participants; to include interactions be-
tween action plans of multiple players (e.g. assessing
threat actions to planned actions and mission require-
ments, performance evaluation);

1Frank White, Otto Kessler, James Llinas, Alan Steinberg, Dave Hall,
Ed Waltz, Gerald Powell, Mike Hinman, John Salerno, Erik Blasch,
Dale Walsh, Chris Bowman, Mitch Kokar, Joe Karalowski, Richard
Antony.

Level 4–Process Refinement (an element of Re-
source Management): adaptive data acquisition and
processing to support sensing objectives (e.g. sensor
management and information systems dissemination,
command/control).
Level 5–User Refinement (an element of Knowledge

Management): adaptive determination of who queries
information and who has access to information (e.g.
information operations) and adaptive data retrieved and
displayed to support cognitive decision making and
actions (e.g. human computer interface).
Level 6–Mission Management (an element of Plat-

form Management): adaptive determination of spatial-
temporal control of assets (e.g. airspace operations) and
route planning and goal determination to support team
decision making and actions (e.g. theater operations)
over social, economic, and political constraints.
For SA, the user must (1) prioritize information

needs to the fusion manager, (2) require reliable and
validated information, and (3) seek patterns [6]. The
information priority is based on the information desired.
The user must have the ability to choose or select the
objects of interest and the processes from which the raw
data is converted to the fused data. One of the issues in
the processing of fused information is related to ability
to understand the information origin or pedigree. It is
important to note that reliability and validity are two
different concepts. A piece of information can be 100%
reliable and either totally diagnostic (100% validity) or
un-diagnostic (0% validity) in predicting information.
However, the less reliable the information, the less valid
it is because of the inherent uncertainty (i.e., error) in
the information itself.
Users have individual differences for Reasoning

Methods (RM) and thus, the coordination between the
user and the machine needs to be flexible. An example
is that one user might look at sensor data while another
might plan missions (see Fig. 10). The responsibility
of the user thus determines the information needs re-
quirements for SA. To be able to facilitate many users,
a control strategy needs to be defined wherein the user
can query and update the database. One way to facilitate
user opportunities, a standard set of metrics for Knowl-
edge Representation (KR) should be designed that af-
ford Quality. Blasch [6] explored the concepts of level
2, situation awareness or assessment, by detailing the
user needs of attention, workload, and trust which can
be mapped into metrics of timeliness, throughput, con-
fidence, and accuracy. Table II lists metrics for SAW as
referenced to the communications, human factors, auto-
matic target recognition (ATR), and target tracking lit-
erature. SA is hard to define and creates interface prob-
lems if not standardized. Information needs of fusion
systems for KR and RM need rigorous testing in ex-
perimental designs to define SA Products. Additionally,
dynamic updating of Knowledge Delivery for planning
requires timely and reliable data for reasoning.
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TABLE II
Metrics for Fusion and Situational Awareness

COMM Human Factors Sit Aware¤ ATR TRACK

Delay Reaction Time Timeliness Acquisition/Run Time Update Rate
Probability of Error Confidence Confidence Prob. (Hit), Prob. (FA) Probability of Detection
Delay Variation Attention Purity, Precision Positional Accuracy Covariance
Throughput Workload Usage # Images No. Targets

Cost Cost Utility Collection platforms No. Assets
Security Trust Reliabilty Ontology, Taxonomy Cooperative Nav.

¤Tadda et al. propose some of these for Cyber SA: purity for quality detection, evidence recall, and attack score [35].

Issues for SA

1. Standard Set of Metrics for Knowledge Representation
2. User (individual differences) for Reasoning Methods
3. Dynamic updating of Knowledge Delivery for Planning
4. Users desire a variety of SA display information
5. Information Needs of fusion systems for KR and RM

Challenges for SA

1. Scoping a common terminology and metrics
2. Affording control strategies for different users
3. KR must afford timeliness for reasoning
4. Interface design must be flexible (KR) to different users
5. Rigorous testing in experimental designs to define SA

4. CONCLUSIONS

The panel discussion highlighted many different, but
common themes that are SA issues and proposed a
variety of challenges of SA for the future. The com-
mon issues are: (1) User focused (perceptual, interac-
tive, control), (2) developing Process models for behav-
ioral modeling and updating the models (e.g.–Bayes
Nets, procedural/logical, perceptual, learning), (3) de-
termining the Context–operational situation (i.e. do-
main dependent), (4) detailing the Meaning (i.e. se-
mantics and syntactic relations), and (4) the need for
a standard set of SA Metrics (e.g. trust, bounds, un-
certainty). The common challenges include (a) expla-
nation of process that addresses evidence accumulation
and contradiction constraints for knowledge represen-
tation and reasoning, (b) graphical displays to facilitate
inferential chains, collaborative interaction, and knowl-
edge representation, and (c) interactive control for cor-
rections and utility assessment for knowledge manage-
ment. While these lists are notional, the information
presented is from a panel of participants who have all
tried to build SA tools for the operator and thus, the
issues and challenges are posed from experience. The
next phase of the collaboration research on SA design,
issues, and challenges will focus on a set of process
models. Possible directions and extensions include uti-
lization of intelligent agents to emulate team cognition
[38], use of gaming concepts for hypothesis generation
and data understanding, and rapid evolution of human-
computer interaction such as 3-D full immersion envi-
ronments.
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In this paper we present a benchmark problem for data associa-
tion based on a real-world networked surveillance system, and com-
pare the behavior of several multidimensional assignment (MDA)
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transmit track/event reports to a fusion center through a partic-
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of dimension Nn and one of dimension Ns.
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of certain parameters in the likelihood ratio is discussed. Finally,
to evaluate their performance, three different MDA algorithms are
used in this setup, Lagrangean Relaxation based MDA, Sequential
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1. INTRODUCTION

Data association is a major component of surveil-
lance systems where several sensors and/or several tar-
gets are present. The origin uncertainty of reports from
each of the sensors makes it critical for the fusion center
to operate properly, especially in scenarios with closely-
spaced targets. In such scenarios there is no clear-cut
evidence whether a new report belongs to a previous
track or not. The work in this paper deals with the for-
mulation and the solution of a particular multidimen-
sional assignment (MDA) problem using three different
association algorithms for performance comparison.
The problem presented here corresponds to a real

world surveillance network system for missile launch
events. In it, a set of sources provide “event” (track)
estimates via a number of communication networks to
a Fusion Center (FC) which has to perform data asso-
ciation prior to fusion. This network model provides a
realistic setup–a benchmark problem–that allows for
a proper evaluation of the algorithms proposed to solve
it. This differs from previous work [20], where such al-
gorithms have been tested on randomly generated costs,
which do not necessarily show the real performance of
the algorithms in practical settings. The track generation
model is a simplified one, without process noise.
The problem involves a set of Ns sources (observers)

that provide event estimates (reports/tracks) of an un-
known number of launches from their own observations.
These reports are transmitted via Nn communication net-
works to a Fusion Center that has to perform data as-
sociation prior to fusion. The network used to transmit
each report is randomly chosen every time a new report
is ready to be sent. The parameters estimated by the ob-
servers (and to be fused at the FC) are the launch time,
launch point coordinates and heading. Figure 1 shows
a possible scenario where 4 observers report through 3
networks to the fusion center.
A particular feature of the network model is that the

information needed to distinguish among reports from
the same source transmitted through different networks
is not available at the FC: the track identity (ID) as-
signed by the source is not passed on, only a track ID
assigned by the network and the source ID accompany
the track. This makes it necessary to detect track dupli-
cations among the messages with the same source ID
that arrive on different networks. This duplication elim-
ination is performed based on the association criterion
between tracks from the same origin, according to the
recently developed general Likelihood Ratio (LR) ap-
proach in [3]. Also the selection of certain parameters
in the LR is discussed. Out of the tracks deemed to be
from the same event from the same source, the one with
the smallest uncertainty is kept.
The resulting data, rearranged into sensor lists, is

then associated using the likelihood ratio criterion from
[3] with any of the proposed multidimensional assign-
ment methods. The tracks obtained after association
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Fig. 1. Hypothetical scenario, where an event is reported by four observers to the FC using three communication networks.

are fused using a maximum likelihood (ML) approach
as in [9]. An additional complication is that false re-
ports can be also transmitted by the sources. Examples
with several launches, sources and networks are pre-
sented to compare the performances of three assignment
algorithms–the Lagrangean Relaxation based multidi-
mensional (S-D) assignment [18], the “Sequential m-
best 2D” assignment and the Linear Programming based
assignment–on this realistic problem. The simpler Nor-
malized Distance Squared (NDS) criterion is considered
as well.
Section 2 describes the overall system with its layers

and the information communicated between the layers,
as well as a generic model for the local (source/observer)
track/event estimates which are sent on the communica-
tion networks to the FC. Section 3 presents a hierarchi-
cal decomposition of the problem so that MDA algo-
rithms can be applied in two stages. Section 4 presents
two association criteria, the LR criterion, as well as the
simpler normalized distance squared, also known as the
Mahalanobis Distance or Chi-square criterion. Section 5
describes the three proposed methods to solve the MDA
problem. Section 6 presents the results from the simu-
lations and their analysis. Finally, Section 7 presents a
discussion of the results and conclusions.

List of acronyms:
CC: Completely Correct
CI: Completely Incorrect
FC: Fusion Center
LaR: Lagrangean Relaxation
LR: Likelihood Ratio
LP: Linear Programming

MDA: Multidimensional (S-D) Assignment
ML: Maximum Likelihood
NDS: Normalized Distance Squared (Mahalanobis

distance)
PC: Partially Correct
S-D: S-Dimensional Assignment
Sm2D: Sequential m-best 2D Assignment

2. PROBLEM FORMULATION

2.1. The Overall System

The system considered consists of the following
layers:

1. Sources
2. Communication Networks
3. Fusion Center.

Each observer generates track reports and sends
them to the FC through independent networks. These
reports are based on individual observations made by
the observers. Each event estimate consists of a vector
and standard deviation (s.d.) for each component.1 The
reports received by the FC consist of

1. The event ID, t, which is assigned by the net-
work. The source-assigned ID is not transmitted by the
network to the FC, but replaced by a network-assigned

1The procedure easily generalizes to the case where one has full co-
variance matrices associated with the estimates, as long as they are
available.
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ID.2 Nevertheless, the network-given ID continues to be
used for all subsequent reports of the same event from
the same observer.
2. The ID of the network, n= 1, : : : ,Nn.
3. The ID of the source, s= 1, : : : ,Ns.
4. The vector estimate and standard deviation for

each component, as sent by the source.

The FC can receive reports on the same event from
the same source via different networks–since the event
ID is assigned by the network, it is not obvious upon
reception at the FC which reports with different n and
same s pertain to the same event/track. Also it is possible
that reports with different n and different s can be on
the same event. This makes it necessary to implement
a data redundancy elimination stage prior to fusion, in
order to eliminate duplicate reports on the same targets
generated by the same observer.

2.2. The Sources

Each track report from a source is based upon all
the measurements received up to the current time for
that event. The measurements have uncorrelated errors
and each report is the average of all the measurements
received so reports on the same event have correlated
errors.
It will be assumed that the measurement errors are

zero mean and white with s.d. denoted as ¾. While
this value is not needed, it allows us to obtain the
correlation coefficient of reports on the same event at
the same source based on different (unknown) numbers
of measurements. This is done as follows.
For the purpose of the present study, the estimate of

an event based on k measurements is an nx-vector with
components assumed to be given by the (rather simple)
expression3

x̂i(k) =
1
k

kX
l=1

zi(l) with variance

¾i(k)
2 ¢=E[(x̂i(k)¡ xi)2] =

¾2i
k
, i= 1, : : : ,nx

(1)

where xi is the true value of component i and the
measurements are

zi(l) = xi+wi(l), i= 1, : : : ,nx (2)

with the noises wi(l) zero mean, white and with variance
¾2i . For the nx components the noises are assumed to be
uncorrelated. Note that the simple model (1) implies that
there is no process noise and, consequently, no cross-

2This peculiarity of the network, while strange from the researcher’s
point of view, is a real-world fact. Even if the network would
have transmitted the observer’s track ID, the problem would still be
challenging.
3More general estimates can be used as long as the corresponding
likelihood functions (the pdfs of the estimates conditioned on their
origin [3]) are available.

correlation between the track estimates of the same
event by different observers.
Then, given two estimates x̂i(k1) and x̂i(k2) from the

same source, their correlation coefficient is [1]

½i(t1, t2) =
min(¾i(k1)

¡2,¾i(k2)
¡2)

¾i(k1)¡1¾i(k2)¡1
(3)

under the common origin assumption. This result will
be used when carrying out certain track to track associ-
ations with correlated errors.
Note that estimates pertaining to the same event but

obtained by different observers/sources have uncorre-
lated errors because there is no “common process noise”
[4] since the above model (1) has no process noise at
all.
On the other hand, if two tracks have different ori-

gins (i.e., they represent different events), their errors
are uncorrelated. However, if one has two tracks with
the same variance, the use of (3), which assumes com-
mon origin, would lead to unity correlation and the dif-
ference between the estimates–which is used in the test
(see [4])–would then have zero variance. To avoid this,
an upper bound (of, say, 0.95) could be used for (3).
We will consider false tracks but not tracks corrupted

by false measurements.

3. HIERARCHICAL DECOMPOSITION OF THE
PROBLEM

As discussed in Section 2, each report is accompa-
nied by 3 indices: t (event/track number, assigned by
the network), n (network number) and s (source num-
ber). In order to use an assignment algorithm for track
to track association (to be followed by fusion) across
several lists, where each list will be a collection of
track/event reports that arrived at the FC via the vari-
ous networks from a particular source, one has to make
sure no track/event appears more than once in each list.
Consequently, before the final association and fusion,
one has to eliminate redundant tracks.
Figure 2 shows a schematic of the system, where the

observers may transmit through any of the Nn communi-
cation networks. The fusion center explicitly shows its
two main components, the Removal of redundant tracks
from the same source that arrived through different net-
works and the Track association across the Ns source lists
followed by fusion of the selected tracks.
The following operations are performed at the FC:

0. Removal of redundant tracks from the same
source that arrived on the same network.
If one has two tracks from network n with the same t

(and s), then only the most recent one (with the smallest
variances) is kept. This eliminates “old (redundant)
tracks” communicated through the same network that
have been superseded by their updated versions.
1. Removal of redundant tracks from the same

source that arrived through different networks.
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Fig. 2. Block schematic showing the hierarchical decomposition of
the problem.

The remaining tracks after step 1 are reshuffled by
common source s into lists according to the network
they came on. For each s a search is done for “common
origin” tracks across these lists using the LR association
criterion of [3]. This criterion has to account for the
dependence of the tracks (since common origin tracks
have common measurements) according to (3). The
search for these redundant tracks is done with MDA on
(up to) Nn lists for each s. Tracks associated correspond
to duplications of the same source reports sent via
different networks. The best within each associated
set (which is the most recent one) is kept. This step
eliminates4 the duplications in the set of tracks at the
FC. Special attention should be given to incomplete
associations across the Nn lists because event reports
might not be sent via all the networks.
2. Track association across source lists.
At this point each source list contains the latest

estimate for each event available from that source. The
MDA will associate the elements across the Ns source
lists (with at most one from each list) using the LR
criterion function from [3]. The errors across the list
elements are uncorrelated because there is no process
noise and they have no common measurements.
3. Fusion of common origin tracks.
The tracks from different sources that have been

designated by the MDA as having a common origin
(same event) are fused. This is done according to the
ML criterion from [9].

This decomposition drastically reduces the dimen-
sionality of the problem from Ns£Nn to Ns problems
of dimension Nn and one of dimension Ns. If the ob-

4Strictly speaking, this is a statistical testing approach subject to a
maximum allowable (small) probability of error–incorrectly keeping
a redundant track–according to which the test threshold is selected.
This test then maximizes the power of the test–the probability of
eliminating truly redundant tracks. However, this power (probability
of eliminating truly redundant tracks) depends on the actual separation
between neighboring distinct tracks.

server’s track ID was available at the FC (via “ideal”
networks), one would have only the second stage (item
2 above). The hierarchical approach avoids the need for
an unnecessarily large single problem (the one formed
by considering all the lists formed using the network
IDs) in the case of the real-world networks and reduces
the problem to two subproblems of the size one would
have with ideal networks.

4. ASSOCIATION CRITERIA

The following criteria can be used for track-to-track
association:

i) Normalized distance squared (NDS). This crite-
rion will be shown to be significantly inferior to the LR
criterion. The reason for this is that large covariances
reduce the NDS without imposing any penalty in view
of the large uncertainty. Also, the use of NDS for asso-
ciating tracks from more than 2 lists leads to necessarily
heuristic approaches (see [12, 13]).
ii) Likelihood functions (LF). Since LF are pdf–

with a physical dimension–they cannot be used for
comparing associations of different number of tracks;
this approach will not be pursued in this paper.
iii) Likelihood ratios (LR). These are physically di-

mensionless quantities and, consequently, allow com-
parison of associations of different number of tracks.

4.1. The Likelihood Ratio for Association

4.1.1. Removal of redundant tracks from the same
source that arrived through different networks

Before using the MDA for removal of redundant
tracks from the same source that arrived through dif-
ferent networks, a gating test should be used to select
the candidates. The test will be based on the normalized
distance squared (e.g., [5]) between pairs of tracks. De-
noting the tracks now with full–triple–indexing, their
normalized distance should be below a threshold, i.e.,

D(x̂ti ,ni ,s, x̂tj ,nj ,s)

¢
=(x̂ti ,ni ,s¡ x̂tj ,nj ,s)

0[T(ti ,ni ,s),(tj ,nj ,s)]
¡1(x̂ti ,ni ,s¡ x̂tj ,nj ,s)< c

(4)where

T(ti,ni,s),(tj ,nj ,s)

¢
=cov(x̂ti ,ni ,s¡ x̂tj ,nj ,s)

= Pti ,ni,s+Ptj ,nj ,s¡P(ti ,ni ,s),(tj ,nj ,s)¡P
0
(ti ,ni ,s),(tj ,nj ,s)

(5)

and (following [4], Sec. 8.4) Pti,ni,s is the track covari-
ance corresponding to track x̂ti,ni ,s and P(ti,ni,s),(tj ,nj ,s) is
the cross-covariance of the tracks with the indicated
indexes. The elements of the cross-covariance are ob-
tained according to (3) in the present problem.
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The common origin likelihood function for a set of r
tracks, composed of q non-dummies and r¡ q dummies,
from source s that arrived on different networks

Ti = f(ti1 ,ni1 ,s), : : : , (tiq ,niq ,s)g (6)

is given, under a diffuse prior assumption, by [3]

¤(H(ti1 ,ni1 ,s),:::,(tiq ,niq ,s))

=
1
V
N [x̂Ti ;0,PTi]¹

r¡q
ex (Pd)

q(1¡Pd)r¡q (7)

where V is the (large) volume of the state space (in
which the true common state is assumed uniformly
distributed), Pd is the detection probability of an event,
¹ex is the “spatial density of extraneous targets,” as
shown in [2] using a spatial Poisson distribution. This
density can be taken as the expected number of tracks
(true and false) divided by V, and

x̂Ti
¢
=

2664
x̂ti2 ,ni2 ,s

¡ x̂ti1 ,ni1 ,s
...

x̂tiq ,niq ,s¡ x̂ti1 ,ni1 ,s

3775 (8)

is a stacked (q¡ 1)nx-vector (with nx the dimension
of x), whose covariance has diagonal blocks

(PTi)j¡1,j¡1 = T(ti1 ,ni1 ,s),(tij ,nij ,s), j = 2, : : : ,q (9)

where T(ti1 ,ni1 ,s),(tij ,nij ,s) is given by (5), and the off-

diagonal blocks are given by

(PTi )k¡1,j¡1 = Pti1 ,ni1 ,s¡P(tik ,nik ,s),(ti1 ,ni1 ,s)
¡P(tij ,nij ,s),(ti1 ,ni1 ,s) +P(tik ,nik ,s),(tij ,nij ,s),

k,j = 2, : : : ,q; k6= j: (10)

Since the comparisons might have to be made
between hypotheses containing different numbers of
tracks, likelihood functions cannot be used since, be-
ing pdf based, they have different physical dimensions
for different numbers of tracks [5] and thus cannot be
compared. Consequently, likelihood ratios have to be
used. The likelihood ratio is obtained by dividing the
above likelihood function by the joint pdf of the r track
estimates under consideration, under the hypothesis that
they are not of common origin. Given r tracks, the first
one can be assumed uniformly distributed in V and the
rest, which should be in its neighborhood, are again
assumed to have a pdf given by the “spatial density
of the extraneous targets,” ¹ex (this is a consequence
of the analysis presented in [2] using a spatial Poisson
process).
Thus the LR will be

L(H(ti1 ,ni1 ,s),:::,(tiq ,niq ,s)
)

=
1

¹q¡1ex

N [x̂Ti ;0,PTi ](Pd)
q(1¡Pd)r¡q (11)

Note that the use of non-unity Pd “penalizes” in-
complete associations. This becomes necessary for the
costs obtained for this problem, as full tracks may yield
better costs when split. For example, suppose a 4-D set
of tracks having common origin fi1, i2, i3, i4g yields cost
Ccomplete, and a partition of two feasible partial track
associations, fi1, i2,0,0g and f0,0, i3, i4g, yields costs
Csplit1 and Csplit2 satisfying Ccomplete <Cspliti for i= 1,2
but Ccomplete >Csplit1 +Csplit2 . Then the split tracks can
minimize the cost, although providing a less accurate
solution. This undesirable phenomenon has been ob-
served a number of times and the use of Pd in the LR
cost function will avoid it.
The cost function to be used by the assignment algo-

rithm in associating across the Nn lists is the negative of
the logarithm of (11). This covers both complete associ-
ations (of Nn-tuples) as well as incomplete associations
of q-tuples (q < Nn). In the latter case the “dummy ele-
ment” [18] (i.e., no track) is chosen fromNn¡ q lists; for
these elements the likelihood ratios are taken as unity
and consequently, they do not modify (11). The cost
calculation for an association containing q non-dummy
elements requires inversion of a q ¢nx£ q ¢nx matrix.
Note that an association should have a negative cost

if the (non-dummy) tracks in it are more likely to have a
common origin than not. For q= 1, i.e., when a single
track is associated with dummies (hence it is unasso-
ciated), the cost for this should be larger than an as-
sociation with negative cost. Consequently an “unasso-
ciation” will be given zero cost and also associations
with positive costs will be discarded, implementing an
implicit fine gating.
From the LR cost formulation above it can be seen

that, in terms of the computational complexity required,
Network MDA is a harder problem than sequential
MDA/MHT. In the case of having S lists with mS re-
ports in each, and each report contains a vector of data
of dimension n, the sequential MDA/MHT calculates
the association cost adding one list at a time. Each el-
ement of the first list does pass the gating test with
a certain proportion, ®, of the reports in the follow-
ing list, and for the cost calculation the inversion of
a matrix of size n is required; hence the computation
requirement is mS(®mS)n

3 for the first two lists. When
the third list is added the requirement is mS(®mS)

2n3 as
a consequence of the reports in the third list passing the
gating test, what accounts for the exponential growth of
the hypotheses. Finally when the last list is added, the
number of operations required is mS(®mS)

S¡1n3, so the
number of operations required is O(mSS®

S¡1n3). On the
other hand, for the networked MDA, the static nature of
the problem makes the cost calculation require the inver-
sion of a (S¡1)n matrix, which renders a complexity of
O(mSS®

S¡1((S¡ 1)n)3). The cost calculation complexity
of the sequential m-best 2D algorithm is much lower,
as each list incorporated does also give birth to ®m2S
associations, out of which roughly mS are kept after the
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2D association. Thus the number of cost calculations
involved is O(mS(®mS)(S¡ 1)).

4.1.2. Track association across source lists
The common origin likelihood ratio for a set of Ns

tracks (one from each source list), composed of q non-
dummies and Ns¡ q dummies, from different sources
sjl , l = 1, : : : ,q

Tj = f(tj1 ,nj1 ,sj1 ), : : : , (tjq ,njq ,sjq)g (12)

is given, similarly to (11), by

L(H(tj1 ,nj1 ,sj1 ),:::,(tjq ,njq ,sjq ))

=
1

¹q¡1ex

N [x̂Tj ;0,PTj ](Pd)
q(1¡Pd)Ns¡q (13)

where x̂Tj is a stacked (q¡ 1)nx-vector as in (8) except
that here all the tracks are from different sources.
The covariance in (13) has diagonal blocks

(PTj )k¡1,k¡1 = T(tj1 ,nj1 ,sj1 ),(tjk ,njk ,sjk ) = Ptj1 ,nj1 ,sj1 +Ptjk ,njk ,sjk ,

k = 2, : : : ,q: (14)

Differing from (5), there are no cross-covariance terms
in (14) as these tracks are from different sources and
there is no process noise. Consequently, the off-diagonal
blocks are

(PTj )k¡1,l¡1 = Ptj1 ,nj1 ,sj1 , k, l = 2, : : : ,q; k6= l:

(15)

4.2. The Normalized Distance Criterion for
Association

4.2.1. Removal of redundant tracks from the same
source that arrived through different networks

In addition to using the LR criterion, the simpler
NDS (normalized distance squared) [4], also known as
“Chi-square,” which is the (negative of the) exponent
of the likelihood function, will be considered. The NDS
between a pair of tracks coming from the same observer
through two different networks is defined as

D(x̂tij ,nij ,s
, x̂tik ,nik ,s

)

¢
=(x̂tij ,nij ,s

¡ x̂tik ,nik ,s)
0[T(tij ,nij ,s),(tik ,nik ,s)

]¡1(x̂tij ,nij ,s
¡ x̂tik ,nik ,s)

(16)

which is the LHS of (4). The covariance matrix is
defined as in (5) with nonzero cross-covariance matrices
due to the common origin of the tracks.5

As before, a track to dummy association will be
given zero cost. However, due to the positiveness of
the distance, the use of zero cost for the association to
dummies implies that the best (least cost) assignment

5Note that we are testing whether these tracks from the same source
represent the same event.

will consist of only track to dummy associations with
zero cost. To avoid this problem and to implement the
gating (4) at the same time, the cost for each association
pair is calculated as

Cj,k =Dj,k ¡Â2nx(®) (17)

where Â2nx(®) is a level ® threshold (usually big enough,
say ® > :99) obtained from Â2 tables with nx degrees of
freedom, and Dj,k corresponds to the distance between
tracks j and k (with abbreviated notation) as specified
in (16). Then, if the distance Dj,k is greater than the
threshold, an assignment with positive resulting cost
will never be selected, since an assignment to a dummy
offers better (lower) cost. In case when the distance is
smaller than the threshold, smaller distances will yield
more negative costs than bigger distances, making them
more attractive for assignment.
Since this distance criterion, defined above for a

single pair, will be shown to yield inferior performance
compared to the LR criterion, we will not pursue it any
further. The use of the distance criterion for more than
two tracks was discussed in [12].

4.2.2. Track association across source lists

The cost of associating a pair of tracks from different
lists is the same as defined in (16) (suitably modifying
the list indices), with the covariance matrix defined as

T(tjl ,njl ,sjl ),(tjk ,njk ,sjk )
= Ptjl ,njl ,sjl +Ptjk ,njk ,sjk (18)

which is similar to (14).
Similarly to the removal of redundant tracks case,

the cost of each association pair is defined here by
subtracting a suitably defined threshold as in (17).

5. MULTIDIMENSIONAL ASSIGNMENT
ALGORITHMS

Once the reports are split into lists, for duplication
elimination in the first stage and for selection of candi-
dates for fusion in the second stage, a multidimensional
assignment problem [18] needs to be solved. A compar-
ison of three different methods is carried out, one based
on Lagrangean Relaxation, another based on a sequen-
tial calculation of m-best 2D assignments and the last
one based on Linear Programming Relaxation.

5.1 Multidimensional Assignment Problem

The Multidimensional Assignment problem, also
known as the S-D Assignment problem, consists of par-
titioning S ¸ 3 lists of reports into S-tuples of report
associations (RA) in a way that every report of every
list is used, and that it is used only once. This problem
is known to be NP-hard, which motivates the use of
suboptimal methods.
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To allow for missed detections and false alarms
(hence lists of different size) each list also contains a
“dummy” element on which the above constraints do
not apply. The inclusion of these reports converts the
problem into a Generalized S-D Assignment. For the
generalized problem we can partition the set of candi-
date associations into two. One subset corresponds to
real track report associations, that is, S-tuples contain-
ing at least two non-dummy reports. The second subset
corresponds to associations, that contain only one non-
dummy report, i.e., unassociated track reports.
Defining binary event variables ½i1,:::,iS to take value

1 when Ti = f(ti1 ,ni1 ,si1 ), : : : , (tiS ,niS ,siS )g, the S-tuple of
tracks, is associated and 0 otherwise, the problem can be
recast as a Linear Binary Programming (LBP) problem

min
f½g

n1X
i1=0

n2X
i2=0

¢ ¢ ¢
nSX
iS=0

ci1i2:::iS ½i1i2:::iS (19)

subject to
n2X
i2=0

n3X
i3=0

¢ ¢ ¢
nSX
iS=0

½i1i2 :::iS = 1, i1 = 1,2, : : : ,n1

n1X
i1=0

n3X
i3=0

¢ ¢ ¢
nSX
iS=0

½i1i2 :::iS = 1, i2 = 1,2, : : : ,n2

...

n1X
i1=0

n2X
i2=0

¢ ¢ ¢
nS¡1X
iS¡1=0

½i1 i2 :::iS = 1, iS = 1,2, : : : ,nS

(20)

where ci1i2:::iS is the cost of each association, given by
the negative log-likelihood ratio (NLLR)

ci1i2:::iS =¡ lnL(H(ti1 ,ni1 ,s),:::,(tim ,nim ,s)
) (21)

where this LR is defined in (11). The dummy element
in each list has index 0.
The following sub-sections briefly describe the three

algorithms used for solving the described MDA assign-
ment.

5.2 Lagrangean Relaxation Based S-D Assignment

The LBP problem can be suboptimally solved by
relaxing the constraints and using Lagrange multipli-
ers for them, until a 2D problem is obtained. This re-
duced dimension association problem can be solved ex-
actly by well known algorithms such as JVC, Auction,
Relax, etc. Then the relaxed constraints can be added
one by one, using again a 2D association algorithm.
This approach has been extensively described [17, 18,
19]. Sketchily, the S-D assignment problem is solved
as a series of relaxed 2D subproblems in two phases:
1) relaxation of constraints, and 2) update of the La-
grange multipliers and constraint enforcement. In the
first phase, each constraint set r = S,S¡ 1, : : : ,3 is ap-
pended to the cost function using Lagrange multiplier

ur. After relaxing constraint set 3 we have a 2D assign-
ment problem, which in our case is optimally solved
using the generalized auction algorithm [7] (up to a cer-
tain accuracy–the granularity of the auction). After this
the constraint enforcement phase begins by computing
a solution of the 3D problem consisting of the previous
assignment and the third constraint set, using again a
2D generalized auction algorithm. Then the multipliers
u3 are updated using a subgradient method. Similarly,
the successive constraints r = 4,5, : : : ,S are enforced via
a 2D assignment algorithm, and the multipliers ur are
updated. These two steps are repeated until all the con-
straints are satisfied in the relaxed problem, in which
case the solution is optimal, or until the feasible solution
is of acceptable quality.
It has been found that most of the running time (usu-

ally more than 95% of it) spent in solving the associ-
ation problem with this approach is consumed by the
calculation of the costs ci1i2 :::iS . To alleviate this, cluster-
ing strategies may be used [10]. In our case performing
gating during the construction of the association tree
prevents the exponential growth of non-matching track
branches, avoiding the corresponding cost calculations.

5.3 Sequential m-best 2D Assignment

This method provides a heuristic approach to obtain
a Generalized S-D assignment solution. It relies on the
solution of a sequence of Generalized 2D assignment
problems [18, 20], where a dummy report element is
introduced in each list. These dummy reports, which
allow for missed detections, are not subject to the con-
straints (as discussed above), and the cost of associating
any report to them is defined to be zero (the cost of a
“real association” is negative). As a result, this modifi-
cation allows the association between lists with different
numbers of reports, and also allows for poorly matching
reports not to be associated among them but to dummy
reports, i.e., stay unassociated.
The algorithm is started by associating two lists, us-

ing a 2D generalized assignment algorithm. In this step,
not only the best solution is kept, but also the following
m¡ 1 best (in terms of the association cost) solutions
are found using an adaptation of Murty’s method [16,
20]. The goal is to find the m best solutions of this
assignment problem. This is achieved by first finding
the best solution, using the generalized 2D assignment
algorithm, and then partitioning it into exhaustive non-
overlapping subproblems of smaller dimension. These
problems are solved by the previous assignment algo-
rithm, and out of them the best one will correspond
to the second best solution. Partitioning this problem
again, and keeping the best solution of the list formed
with all the previous partitions provides the desired best
solutions of the problem.
An adaptation of Murty’s algorithm is necessary to

handle the use of dummy elements in the generalized 2D
assignment problem. The main point of this adaptation
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consists of keeping dummies after a dummy has been
used as pivot in the partitioning process, as opposed
to partitioning a solution when non-dummy reports are
selected as pivots, in which case this non-dummy re-
port is voided from some of the spawning assignments,
and forced in the rest of them. The complexity of the
algorithm can be reduced from O(mn4) to O(mn3) by
a clever implementation of the partitioning process, the
inheritance of variables from the assignment method,
and by bounding the subproblem costs [15]. Further
improvement can be obtained by switching the assign-
ment solving algorithm as a function of the sparsity of
the problem, and by parallelizing the algorithm [20].
The Sequential m-best 2D Assignment is started by

associating 2 lists, usually lists 1 and 2, and obtaining
the top m solutions. This initial problem is a plain
Generalized 2D problem, where the cost of associating
a pair of reports is calculated as discussed above. Each
of the solutions of this problem consists of a set of 2-
tuples:

T(r)2 = fT2,1, : : : ,T2,q2,rg, r = 1, : : : ,m (22)

where q2,r is the number of associated pairs for solutions
from the first 2 lists and

T2,i = f(ti1 ,ni1 ,si1 ), (ti2 ,ni2 ,si2 )g

is a 2D report association, the basic component of each
solution.
To add a new list, another generalized 2D problem

must be solved to match the new list elements with
the associations in T(r)2 , for each r. Each of the corre-
sponding 2D assignment matrices will have dimension
q2,r£ n3, where n3 is the number of elements in list 3,
and the cost for each element is calculated using the
3-tuple defined by

T3,i = fT2,j , (ti3 ,ni3 ,si3 )g (23)

where j = 1, : : : ,q2,r and i= 1, : : : ,n3, with the cost func-
tion defined as before.
Rather than calculating m new solutions for each of

the previous m best solutions, which would yield m2

solutions from which to pick the top m, we initialize
the list of problems with the m previous assignments.
This makes the algorithm run only once, decomposing
the solution which has the best cost at each time.
Then the same m best associations will be obtained for
considerably less computation [11].
After this second step, the obtained m best solutions

are represented by

T(r)3 = fT3,1, : : : ,T3,q3,rg, r = 1, : : : ,m (24)

where q3,r is the number of associated triplets for each
solution, and

T3,i = f(ti1 ,ni1 ,si1 ), (ti2 ,ni2 ,si2 ), (ti3 ,ni3 ,si3 )g

is a 3D report association.
The rest of the lists are incorporated using the same

procedure. That is, for each of the m best solutions

obtained after adding list k, a 2D association matrix
with the costs of associating its RAs and the reports
from list k+1 is calculated. Costs are again calculated
using all the combinations of k-D RAs and list k+1
reports, together with (13) if there are more that two
non-dummies, and setting 0 cost in case of having
only one non-dummy element in the (k+1)-D RA.
After all cost matrices corresponding to the previous
best solutions and the new list are obtained, extended
solutions formed by (k+1)-D RAs are calculated using
the m-best algorithm with the mentioned cost matrices.
After solving these problems, the m best solutions are
found and the procedure is repeated with list k+2,
and so on until the last list is incorporated. When the
last list is finally incorporated, only the top solution
is used as the resulting S-D association matrix, thus
providing a “hard” solution to the association problem.
Soft solutions that combine the m final associations may
provide a better quality solution. This is currently under
investigation.
In the results section, we will show that even for

large values of m the quality of the solution for the
problem considered does not improve from just taking
the best solution at each step.

5.4 Linear Programming Based Assignment

The Linear Binary Programming problem defined
by (19) and (20) can be relaxed to a Linear Program-
ming (LP) problem by allowing non-integer values for
the event variables ½. This relaxed problem can be
solved using several efficient LP algorithms, but the
integrality of the solution is not ensured. This brings
up the question of what to do with the fractional as-
signments. In general for the assignment problem, the
occurrence of these fractional solutions (assignments) is
rare. Thus for the present work we consider the fused
fractional assignments as fractional tracks, i.e., after fu-
sion an assignment with 0< ½i1i2:::iS < 1 will count as (a
fractional) ½i1i2 :::iS track.
The number of variables involved in the LP problem

is proportional to the product of the number of reports in
each list. For example, for a problem with 4 lists and 10
tracks per list, the number of variables is greater than
104. To reduce the number of variables, we consider
only those variables with zero or negative cost (i.e., we
perform an implicit gating). The resulting reduced set
of indexes is

¥ = f(i1i2 : : : iS) : ci1i2 :::iS · 0, i1 = 0, : : : ,n1, : : : , iS = 0, : : : ,nSg:

(25)
Then the reduced LP problem becomes

min
f½g

X
(i1i2:::iS )2¥

ci1i2 :::iS ½i1i2 :::iS (26)

ARETA ET AL.: HIERARCHICAL TRACK ASSOCIATION AND FUSION FOR A NETWORKED SURVEILLANCE SYSTEM 147



subject toX
f(i2 i3 :::iS ):(i1i2 :::iS )2¥g

½i1i2 :::iS = 1, i1 = 1,2, : : : ,n1

X
f(i1 i3 :::iS ):(i1i2 :::iS )2¥g

½i1i2 :::iS = 1, i2 = 1,2, : : : ,n2

...X
f(i1 i2 :::iS¡1):(i1i2 :::iS )2¥g

½i1i2 :::iS = 1, iS = 1,2, : : : ,nS:

(27)

The solver used for this work is LPSolve [6], a free
GNU program which implements a primal-dual method.
This solver will be shown to provide fast solutions when
the number of variables involved is below 104, although
it is not of the self-dual family, which is reported to
operate very efficiently for the 3D assignment problem
[14].

6. SIMULATION RESULTS

The scenario consists of a set of events (missile
launches) for which 2-D position, launch time and
heading need to be estimated, using multiple sensors.
The surveillance region covered by each sensors is x 2
[0,10000], y 2 [0,10000] for position, Ã 2 [0,30±] for
heading. The launches occur randomly in the surveil-
lance region, during a time interval t 2 [0,10]. Each sen-
sor receives measurements from each target on average
every 10 units of time and transmits reports on average
every 20 units of time. The time span of the scenar-
ios is 200 units of time, and both redundancy elimina-
tion and fusion are performed every 20 units of time.
The false report rate per sensor is Pf per unit time, so
on the average there are 200Pf false track/event reports
per sensor. Also, each of the communication networks
has a probability Pr of delivering the report to the FC
(its reliability). The measurements from each target re-
ceived by each sensor are corrupted with white Gaus-
sian noise, with standard deviations ¾x = ¾y = 2500,
¾Ã = 10, ¾t = 3 (uncorrelated components).
Scenario 1. The parameters that specify this sce-

nario are: 2 events (launches), Nn = 2 networks with
reliability Pr = :5, 2 sensors and false report rate (per
unit time) Pf = :01. The differences in the values of in-
terest between the two true event locations, headings
and launch times, are ¢x=¢y = 1000, ¢h= 6, ¢t= 2,
respectively.
Figures 3 and 4 show the result of the use of the LR

criterion and NDS criterion on this scenario, for 1000
Monte Carlo runs. They show the percentage of incor-
rect fusions (i.e., the fusion of two tracks with different
origin) and incorrect eliminations (e.g., eliminating a
report from a pair with different origins). It can be seen
that when the LR criterion is used, as more data are ob-
tained, the percentage of errors is reduced, despite the
presence of false reports, which are handled correctly.

Fig. 3. Percentage of errors in the duplication elimination step
using the NDS distance cost criterion (left) and LR cost criterion

(right).

Fig. 4. Percentage of errors in the fusion candidate selection step
using the NDS distance (left) cost criterion and LR cost criterion

(right).

On the other hand, when the NDS criterion is used, the
presence of false reports does affect both stages in a
way that the errors committed reach very high levels.
This is a consequence of the false reports, which have
large standard deviations compared to the normal tracks
and yield a low NDS with respect to almost any track.
In the LR the presence of the standard deviation terms
in the denominator compensates for this, and results in
substantially fewer association errors.
Scenario 2. To characterize the behavior of the as-

signment methods presented in Section 5, different size
problems are used, ranging from mid size problems
(4D), to bigger problems, up to 7D. The parameters that
govern this scenario are: 40 events, Nn = 4 networks,
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and Ns = 4,5,6,7 sensors. The impact of using Pd is in-
vestigated, as well as the selection of ¹ex = nex=V (ex-
pressed as only its numerator, nex), which will be var-
ied from the theoretical value in [2] (expected number
of total tracks per unit volume) to just the number of
false tracks divided by the surveillance region volume.
For each of these problems 50 Monte Carlo runs were
performed for each of the proposed search methods.
Due to the initial variance of the estimates of

each observer and the surveillance region volume,
this scenario is dense in the sense that several tracks
gate with each other, making the association prob-
lem hard to solve. A coarse (very optimistic) approx-
imation to the number of possible non-overlapping
events is to divide the surveillance region volume by
the product of n standard deviations of the estimates.
At the initial time this is 10000£ 10000£ 30£ 10=
(n£ 2500)£ (n£ 2500)£ (n£ 10)£ (n£ 3) which gives
approximately 2 for n= 3 and 10 for n= 2. As new
measurements come in, the track estimates reduce their
variance, and the number of feasible associations re-
duce, then, considering that at the final time the s.d. is
approximately reduced by a factor of

p
5, it is possi-

ble to have up to 50 non-overlapping tracks for n= 3.
Simulations show that each track from a list gates on
average 8 tracks from any other list when the track es-
timates are of poor quality (large variance, early in the
game) and about 5 tracks when the uncertainty of the
tracks is reduced. That is, around 15—20% of the tracks
are gated, so this can be used as a rough estimate of the
sparsity.
In general, for any number of lists, the method that

finds the lower costs is the Linear Programming based
S-D assignment, which does rarely come up with a frac-
tional solution: however this is at a computation time
expense that grows with the number of negative cost
associations that are fed to the LP solver (this number
increases with the number of lists, the number of ele-
ments per list and the value of nex). The solution cost
found by the LP solver is almost always lower than the
true cost, due to the noise that causes some associations
to give better matches than the truth. The Sequential m-
best 2D does also usually find lower costs than the truth,
but this behavior is dependent on the parameter values.
For high nex this happens both for the cases of using
and not using the Pd term, but for low nex the usage of
Pd makes the algorithm find costs lower than the truth,
while not using it renders costs higher than the truth.
This effect is reduced as the final time is approached.
This behavior is a consequence of the myopicity of the
algorithm, as will be explained later. The Lagrangean
Relaxation based approach usually finds solutions with
costs higher that the two previous methods, which are
still lower than the truth, but with the advantage of get-
ting a higher number of full associations, an effect that
will be further discussed in the sequel.
To quantify the quality of the fused tracks, a parti-

tion into 3 fusion categories is done. The first category

represents the fusion of reports having identical origin
and using one report from each possible list (observer),
i.e., completely correct (CC) fusions. The second cat-
egory represents fusions which have at least 2 reports
with common origin, and the rest may be from different
origins (but not very distant, due to gating) or not de-
tected, i.e., partially correct (PC) fusions. The last cate-
gory consists of fusions without any pair of reports com-
ing from the same origin, i.e., completely incorrect (CI)
fusions. The sum of the PC and CC fusions is taken as
the reference to quantify the performance of the fusion.
For this scenario, a number of PC+CC fusions of 40 is
optimal, together with a value of 0 for the CI fusions.
The number of PC+CC fusions will be used hereafter
to measure the quality of the solutions obtained. A more
thorough measure would involve also the CI fusions, but
these values tend to zero for all the methods presented,
and are not presented here for brevity.
Figures 5—7 show PC+CC fusion results for the 7

observers scenario using each of the proposed MDA
algorithms. In all cases the solution at earlier times
improves as nex is reduced, and the effect of using Pd is
noticeable. For nex = 1 all the algorithms provide good
quality solutions, while for higher values the sequential
m-best 2D finds lower quality solutions. The usage of
the Pd term does alleviate this, although for higher values
of nex this is not enough to get good solutions out of
this algorithm. In general the increase in the number of
PC+CC fusions comes from a phenomenon to be called
“track splitting,” in which a CC association is divided
into two or more PC associations, which provide an
overall lower cost. On the other hand, a decrease in the
number of PC+CC fusions is caused for large nex by
the unattractiveness of the track to track association, so
the majority of the tracks are associated with dummies,
resulting in a smaller number of fusions.
The Sequential m-best 2D (Sm2D) algorithm was

used with two different values of m, 1 and 10, with prac-
tically the same results, and contrary to expectations, in-
creasing m does not necessarily improve the cost. This
happens mainly due to three reasons:

i) The algorithm associates one list at a time, and
the m-best solutions for a problem size like the one con-
sidered here (at least 40£ 40) are very similar (usually
differ in only one report). So in general all the m-best
associations surviving one of these steps are minor vari-
ations of a single association. This can be mitigated by
using a much larger m, which in general will be a func-
tion of the problem size; however, the increase in the
problem size implies a need for huge values that usu-
ally render the algorithm time-infeasible, so values of
m bigger than 10 are not used.
ii) The hierarchical approach and the suboptimal-

ity of the calculations due to the fact that the data to
be fused has already undergone association, which has
some probability of producing errors, and can contain
duplicate tracks. These redundant tracks affect the fu-
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Fig. 5. Fusion quality for scenario 2, 7 observers, using Sm2D.

Fig. 6. Fusion quality for scenario 2, 7 observers, using LaR.

sion, and in general, the inclusion of redundant or noisy
reports allows the cost to be lower than the true one.
For example, if a track is observed by all 4 sensors, it
is possible that the Sm2D algorithm groups them into
two different sets of 2, due to its “myopic (greedy) ap-
proach” for the sake of a lower cost. To alleviate this
problem, the use of a “penalization” coefficient, Pd, was
introduced in the cost definition, and proves to amelio-
rate the quality of the resulting tracks.
iii) The myopicity, which seems to be the main rea-

son that, for reasonable values of m, the Sm2D solution
has a lower cost but more errors compared to the LaR.

Specifically, the Sm2D algorithm will not retain a pos-
itive cost that later could become negative (because it
prefers “myopically” the zero or negative costs which
fill the top m solutions). Another reason for the differ-
ences between Sm2D and LaR S-D lies in the nature of
the latter. There, in the relaxed cost calculations, a min-
imization operation is performed which usually rules
out partial associations in favor of a full association.
This full association is more likely to have better cost
than the individual partials but not than the sum of the
two complementary (split) partial associations that use
the same tracks as the full association (see the example
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Fig. 7. Fusion quality for scenario 2, 7 observers, using LP (for low nex run-time is prohibitive–too many costs).

in Section 4.1.1). This feature naturally favors full as-
sociations to partial (split) ones, although the latter may
yield lower costs when not penalized.
As previously stated, the inclusion of the Pd term in

the cost function helps to alleviate the usual problem
of having better costs for split tracks than for com-
plete tracks (see Fig. 7), but it may overpenalize the
incomplete associations, discarding some real associa-
tions (see Fig. 5). Continuing with the example in Sec-
tion 4.1.1, and using costs obtained from a problem
with nex = 1 and without using Pd, we have the fol-
lowing costs for a particular set of 4 tracks fi1, i2, i3, i4g
with common origin: Ccomplete = Ci1,i2,i3,i4 =¡1:46, while
for the partition into two feasible partial associations
one has Csplit1 = Ci1,i2,0,0 =¡:97 and Csplit2 = C0,0,i3,i4 =
¡:83. As before, we have Ccomplete <Cspliti for i= 1,2
but Ccomplete >Csplit1 +Csplit2 . Then the split associations
can minimize the cost, although providing a less accu-
rate solution. The Sm2D algorithm and the LP based
method select this (cheaper but undesirable) track split,
while the LaR algorithm does not. The reason for the
LaR not selecting track splits lies in its suboptimal-
ity: at each constraint relaxation step a minimization
is performed, fixing one track. In our example, the
competition between the complete track and one of
the partial tracks will happen when relaxing the con-
straints corresponding to i3. At this point we will have
costsDi1,i2,i3 = mini4 (Ci1,i2,i3,i4 ¡¹4,i4 ), where ¹4,i4 is a La-
grange multiplier. It is very likely that both Ci1,i2,i3,i4 and
Ci1,i2,0,0 will survive and generate Di1,i2,i3 and Di1,i2,0.
A further constraint relaxation will yield 2-D costs
Bi1,i2,i3 = mini3 (Di1,i2,i3 ¡¹3,i3 ). Here the two associations
will be competing one to one via the modified costs
B, and it is usually the case that the Lagrange multi-

pliers do not revert the cost majority relation between
full and split associations, hence the association split1
is discarded and the complete association is kept. As
this association is feasible, and yields a better cost than
split2, the multiplier’s update will penalize the usage of
this split association, and hence causing the complete
association to be selected after several iterations of the
algorithm. This feature of the algorithm is undesirable
in terms of getting the lowest possible cost, but in our
case turns out to be an advantage, as it implicity forces
a track completeness constraint. In other applications,
where there are no full associations with common ori-
gin, this feature may yield degraded results.

REMARK The above discussion raises the issue of cost
and optimization algorithm selection. The cost is really
a surrogate for the “association accuracy” desideratum.
However, no cost is an exact reflection of our desidera-
tum and this motivates our detailed investigation of cost
parameters and optimization algorithms.
Besides the quality of the solution, another funda-

mental aspect of these algorithms is run time, as subop-
timality of the solution can be traded off for a speedup
in the problem solution (otherwise a complete enumera-
tion of the possibilities would find the optimal solution,
at the expense of a huge run time). The algorithms used
were coded in C++ and run on a P4-2.8 GHz computer.
Figures 8—10 correspond to run times for problems

with 4 observers, 7 observers, and the ratio of com-
putation time of the LaR based method and LP based
method, over the time taken by the Sm2D method. Run
times are split into two parts, time spent in cost calcu-
lation, and time spent purely in the optimization algo-
rithm. As previously mentioned, all the algorithms have
the best performance when nex = 1 and Pd is present,
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Fig. 8. Run time for a scenario with 4 observers, 4 networks and 40 launches, using Pd = 0:7 and nex = 1. The left figure shows the time
spent in calculating the association costs, and the right figure shows the time spent in solving the minimization problem.

Fig. 9. Run time for a scenario with 7 observers, 4 networks and 40 launches, using Pd = 0:7 and nex = 1. Linear Programming time is not
shown as it exceeds the times shown by at least 2 orders of magnitude–a consequence of the large number of negative cost associations for

the scenario.

thus the presented results correspond to these parameter
values.
The run time of the Sm2D is the best, and its ad-

vantage over LaR and LP improves when the number
of lists is increased. Also it does not change notice-
ably with the variation of the parameters Pd and nex,
while for the other two methods the nex parameter af-
fects the run time in diverse ways. For the LaR based
method a smaller value of nex does increase the number
of nonredundant tracks found after redundancy elimi-
nation, especially during the initial fusion times. Hence
the feasible cost tree construction takes longer, as many

reports gate with each other, making the time increase
be polynomial. The time taken purely by the LaR mini-
mization algorithm shows a linear increase with the tree
size, so there is also a time increase in the minimization
algorithm, but the cost calculation time clearly domi-
nates the overall run time. For the LP based method the
cost calculation follows the same pattern, but the mini-
mization part does not show a linear increase as nex is
decreased, as this has not only the effect of increasing
the tree size, but also the number of negative association
costs. For problems with more than 5 ¢ 104 negative cost
associations, the LP algorithm takes too long to run, and

152 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 1, NO. 2 DECEMBER 2006



Fig. 10. Ratio of run times for a scenario with 7 observers, 4 networks and 40 launches, using Pd = 0:7 and nex = 1. The reference run time
corresponds to the Sequential m-best 2D algorithm. There are 2 different measures of time, the average of the time ratios over the 10 fusion
times, and the average of the time ratio over the last 5 fusion times, as from the previous two figures it can be seen that most of the time is

spent in the first 5 fusion times, inflating the average.

dominates over the cost calculation time. This is not an
uncommon situation for the case of having more than
4 lists, 40 elements per list and nex values below 10. In
Figure 10 the run time ratios for the latter method is
shown only for the case of having 4 and 5 lists, as for
higher values the time taken by the LP algorithm is so
large that its use is precluded for more than 5 observers.

7. SUMMARY AND CONCLUSIONS

This work compared three MDA algorithms when
applied to a benchmark problem. A hierarchical scheme
was developed to eliminate the duplicate reports from
the same observer transmitted through Nn different net-
works, and then to select which reports from each of the
Ns observers will be fused. This approach drastically re-
duces the dimensionality of the problem from Ns£Nn
to Ns problems of dimension Nn and one of dimension
Ns. This dimensionality reduction allows the use of al-
gorithms like Lagrangean Relaxation and Linear Pro-
gramming, which are infeasible for high density and
high dimension problems due to run time limitations.
The results for the comparison of different association
criteria indicate a significant performance improvement
when the Likelihood Ratio criterion is used vs. the NDS.
Due to this, and the intrinsic 2D nature of the NDS
cost criterion, this method is not used for the higher di-
mension problems presented. The Sequential m-best 2D
assignment algorithm was found to be the fastest. How-
ever, its performance does not improve as the number
m of best solutions kept at each stage is increased, and
the cost does not necessarily improve with this increase
in the number of best solutions kept. This behavior is
mainly due to the “myopicity” of the approach, which

also showed a tendency for preferring incomplete asso-
ciations. The usage of a penalization term, Pd, for the
cost calculation alleviates this drawback, by discourag-
ing incomplete associations. The Linear Programming
approach provides the lowest cost solutions, but they
are not necessarily the best quality solutions (in terms
of association accuracy), at a time expense similar to the
Lagrangean Relaxation approach for cost calculation,
but much higher for the optimization algorithm when
the number of negative association costs is large. The
LP method also has the drawback of giving non-integer
solutions from time to time (less than 5% of the time
a non-integer solution was observed). Both the LP and
Sequential m-best 2D algorithms yield solutions that de-
pend highly on the value of the number of extraneous
targets (a parameter in the LR cost) nex used, giving
better results for small nex, close to the number of false
tracks. On the other hand, the Lagrangean Relaxation
approach has proven to be the most robust method that
works consistently for almost all parameter values.
Since, in general, the cost function parameters nex

and Pd are not exactly known, the Lagrangean Relax-
ation algorithm is proposed as the algorithm to use as
its robustness pays off for the run time increase when
compared to the Sequential m-best 2D algorithm, and
it exceeds the performance of the Linear Programming
algorithm both in run time and solution quality when
the number of lists grows above 4.

APPENDIX

A. Gating implementation

Given S lists with mS event reports in each, we
form an association tree which will contain all the
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possible S-tuples. During the construction of the tree,
a coarse gating strategy is used to discard unfeasible
associations, and reduce the size of the tree. The tree
constructed in this implementation is of depth S, with
each level corresponding to a list.
The construction of the tree is recursive. Beginning

at list 1, report 1 (1,1), we continue with (2,1) and so
on until (S,1). Each time a report is incorporated we test
if it falls inside the gates defined by the previous reports
in the tuple. Next we exhaust list S reports, fixing the
S¡ 1 previous reports, and generate mS ¡ 1 branches
by selecting (S, i) for i= 2, : : : ,mS . In the same way,
fixing the first S¡2 reports we exhaust list S¡ 1, and
at each value of (S¡ 1,j) all the values of (S, i) are also
exhausted. We continue with the process until all the
lists are incorporated.
There are two possible gating methods, one based

on the NDS of Section 4.2.1, and other based on the in-
dividual coordinates, where the distance between scalar
components of the report is compared to a threshold
proportional to its standard deviation. In this way, if
a report does not pass the gating test all the branches
fanning from this node are discarded.

B. Inversion of the stacked covariance matrix

In equations (11) and (13), the LR cost calculation
for association requires the inversion of the correlation
matrix PTi and the determinant of this inverse. The
dimension of this matrix grows linearly with the number
of tracks, so efficient ways of calculating this inverse are
of great interest.
Using a permutation matrix as in [2] the vector of

differences x̂Ti can be transformed to a vector where the
differences are among consecutive tracks

x̂Ti
¢
=

26666666664

x̂ti2 ,ni2 ,si2
¡ x̂ti1 ,ni1 ,si1

x̂ti3 ,ni3 ,si3
¡ x̂ti2 ,ni2 ,si2
...

x̂tiq ,niq ,siq ¡ x̂tiq¡1 ,niq¡1 ,siq¡1
x̂ti1 ,ni1 ,si1

¡ x̂tiq ,niq ,siq

37777777775
: (28)

For the particular case of data association prior to fu-
sion, the reports are uncorrelated (see Section 4.1.2),
so the corresponding correlation matrix will be block
tridiagonal, with block size nx equal to the dimension
of xti,ni,si . Following [8], the correlation matrix corre-
sponding to q tracks can be written as

PTi =

2666666664

R11 R12

R21 R22 R23

R32
. . .

. . .

. . . Rq¡2q¡2 Rq¡2q¡1

Rq¡1q¡2 Rq¡1q¡1

3777777775

=

2666666664

D1 ¤
E1 D2 ¤

E2
. . .

. . .

. . . Dq¡2 ¤
Eq¡2 Dq¡1

3777777775
(29)

and decomposed into block Cholesky factors

LTi =

26666666664

D̃1

Ẽ1 D̃2

Ẽ2
. . .

. . . D̃q¡2

Ẽq¡2 D̃q¡1

37777777775
(30)

where D̃i, i= 1, : : : ,q¡ 1 are lower triangular and

D1 = D̃1D̃
T
1

Ei = ẼiD̃
¡T
i , i= 1, : : : ,q¡ 2

Di¡ ẼiẼTi = D̃iD̃Ti , i= 2, : : : ,q¡ 1:

(31)

Then, an algorithm for overwriting the block tridi-
agonal matrix blocks with the corresponding block
Cholesky factors is given by

for i= 1, : : : ,q¡ 2

DiÃ D̂i =Chol(Di); n3x=3 ops.

EiÃ Êi = EiD
¡T
i ; n3x ops.

Di+1ÃDi+1¡EiETi ; n3x ops.

end

Dq¡1 Ã D̂q¡1 = Chol(Dq¡1); n3x=3 ops.

(32)

Thus the total operation count of the algorithm is

1
3 (q¡ 1)n

3
x +2 ¤ (q¡ 2)n3x ¼ 7

3 (q¡ 1)n
3
x (33)

that is, the required number of operations for obtaining
the Cholesky decomposition is linear in the number of
blocks. The inverse of PTi is not explicitly required, as
it is used in a quadratic form problem

x̂TTiP
¡1
Ti x̂Ti = x̂

T
Ti(LTiL

T
Ti )
¡1x̂Ti

= (L¡1Ti x̂Ti)
T(L¡1Ti x̂Ti )

= yTTiyTi (34)

so back-substitution can be used to solve for yTi in

LTiyTi = x̂Ti (35)

requiring approximately nx(q¡ 1) operations.
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The determinant of P¡1Ti can be calculated as one
over the determinant of PTi , and this is obtained from
the diagonal of LTi in just (q¡ 1) operations.
Overall, for the LR cost calculation for the selection

of tracks to fuse the dominating term in the operation
count is 7=3(q¡ 1)n3x , which, as previously said, is
linear in the number of blocks.
For the case of the redundancy elimination, the cor-

relation matrix is full, and thus the operation count cor-
responds to the Cholesky decomposition of the matrix,
((q¡ 1)nx)3=3, which is no longer linear in the number
of blocks.
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