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Bias Estimation for Moving

Optical Sensor Measurements

with Targets of Opportunity

DJEDJIGA BELFADEL

RICHARD W. OSBORNE, III

YAAKOV BAR-SHALOM

Integration of space based sensors into a Ballistic Missile Defense

System (BMDS) allows for detection and tracking of threats over a

larger area than ground based sensors. This paper examines the ef-

fect of sensor bias error on the tracking quality of a Space Tracking

and Surveillance System (STSS) for the highly non-linear problem

of tracking a ballistic missile. The STSS constellation consists of

two or more satellites (on known trajectories) for tracking ballistic

targets. Each satellite is equipped with an IR sensor that provides

azimuth and elevation to the target. The tracking problem is made

more difficult due to a constant or slowly varying bias error present

in each sensor’s line of sight measurements. The measurements pro-

vided by these sensors are assumed time-coincident (synchronous)

and perfectly associated. The Line Of Sight (LOS) measurements

from the sensors are used to estimate simultaneously the Cartesian

target of opportunity positions, and the sensor biases. The evalu-

ation of the Cramér-Rao Lower Bound (CRLB) on the covariance

of the bias estimates, which serves as a quantification of the avail-

able information about the biases, and the statistical tests on the

results of simulations show that this method is statistically efficient,

even for small sample sizes (as few as two sensors and six points

on the (unknown) trajectory of a single target of opportunity). We

also show that the Root Mean Square (RMS) position error is sig-

nificantly improved with bias estimation compared with the target

position estimation using the original biased measurements.
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I. INTRODUCTION

Space-based sensors can expand the range and effec-

tiveness of the capabilities of a Ballistic Missile Defense

System (BMDS) to counter future projected threats. A

space based tracking system utilizing an IR sensor will

allow detection and tracking of targets outside of ter-

restrial radar coverage. This is possible because a sen-

sitive IR sensor in relatively close proximity can detect

and track a target against the cold background of space.

Multisensor systems use fusion of data from multiple

sensors to form accurate estimates of a target track. To

fuse multiple sensor data the individual sensor data must

be expressed in a common reference frame. A problem

encountered in multisensor systems is the presence of

errors due to sensor bias. Some sources of bias errors

include: measurement biases due to the deterioration

of initial sensor calibration over time; attitude errors

caused by biases in the gyros of the inertial measure-

ment units of (airborne, seaborne, or spaceborne) sen-

sors; and timing errors due to the biases in the onboard

clock of each sensor platform [6].

In [6] time varying bias estimation based on a non-

linear least squares formulation and the singular value

decomposition using truth data was presented. However,

this work did not discuss the CRLB for bias estimation.

An approach using maximum a posteriori (MAP) data

association for concurrent bias estimation and data as-

sociation based on sensor-level track state estimates was

proposed in [7] and extended in [8].

Sensor calibration using in-situ celestial observa-

tions to estimate bias in space-based missile tracking

was discussed in [5]. In [4] simultaneous sensor bias

and targets position estimation using fixed passive sen-

sors was presented. In the present paper, bias estima-

tion is investigated when only targets of opportunity are

available. The tracking system consists of two or three

satellites tracking a ballistic target. We assume the sen-

sors are synchronized, their locations are known, and

the data association is correct; and we estimate their

orientation biases. We investigate the use of the mini-

mum possible number of moving sensors and measure-

ments. Two cases are considered. In the first case, we

use three moving optical sensors to estimate 3 points

on the (unknown) trajectory of a single target of op-

portunity simultaneously with the biases of the three

optical sensors [3]. In the second case, we estimate the

position of 6 points on the trajectory of a single target

of opportunity simultaneously with the biases of two

space-based optical sensors[2]. First, we discuss the ob-

servability requirement related to the bias estimation.

We evaluate the Cramér-Rao lower bound (CRLB) on

the covariance of the bias estimates, which is the quan-

tification of the available information on the sensor bi-

ases, and show via statistical tests that the estimation

is statistically efficient–it meets the CRLB. Section II
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presents the problem formulation and solution in de-

tail. Section III describes the simulations performed and

gives the results. Finally, Section IV gives the conclu-

sions.

II. PROBLEM FORMULATION

The fundamental frame of reference used in this pa-

per is the Earth Centered Inertial (ECI) Coordinate Sys-

tem. The ECI is defined by the orthogonal set of unit

vectors fex,ey,ezg. The X-axis is directed toward the
vernal Equinox, the Y-axis is in the equatorial plane and

normal to the X-axis, and the Z-axis is directed along

the rotation axis of the Earth (i.e., normal to the equato-

rial plane). In a multisensor scenario, sensor platform s

will typically have a sensor reference frame associated

with it (measurement frame of the sensor) defined by the

orthogonal set of unit vectors fe»s ,e´s ,e³sg. The origin of
the measurement frame of the sensor is a translation of

the ECI origin, and its axes are rotated with respect to

the ECI axes. The rotation between these frames can be

described by a set of Euler angles. We will refer to these

angles Ás+Á
n
s , ½s+ ½

n
s , Ãs+Ã

n
s of sensor s as roll, pitch,

and yaw respectively [6], where Áns is the nominal roll

angle, Ás is the roll bias, etc.

Each angle defines a rotation about a prescribed axis,

in order to align the sensor frame axes with the ECI

axes. The xyz rotation sequence is chosen, which is

accomplished by first rotating about the x axis by Áns ,

then rotating about the y axis by ½ns , and finally rotating

about the z axis by Ãns . The rotations sequence can be

expressed by the matrices

Ts(Ã
n
s ,½

n
s ,Á

n
s ) = Tz(Ã

n
s ) ¢Ty(½ns ) ¢Tx(Áns )

=

264 cosÃ
n
s sinÃns 0

¡sinÃns cosÃns 0

0 0 1

375

¢

264cos½
n
s 0 ¡sin½ns

0 1 0

sin½ns 0 cos½ns

375

¢

2641 0 0

0 cosÁns sinÁns

0 ¡sinÁns cosÁns

375 (1)

Assume there are NS synchronized passive sensors,

with known positions in ECI coordinates at times ti,

»s(ti) = [»s(ti),´s(ti),³s(ti)]
0, s= 1,2, : : : ,NS, and Nt target

locations at x(ti) = [x(ti),y(ti),z(ti)]
0, i= 1,2, : : : ,Nt, also

in ECI coordinates. We assume that each sensor sees

all the target locations (same physical target at different

times).1 With the previous convention, the operations

1This can also be different targets at a common time or at different

times, as long as the sensors are synchronized.

Fig. 1. Optical sensor coordinate system with the origin in the

center of the focal plane.

needed to transform the position of a given target loca-

tion at ti expressed in ECI coordinates into the sensor s

coordinate system (based on its nominal orientation) is

xns (ti) = T(!s(ti))(x(ti)¡ »s(ti))
i= 1,2, : : : ,Nt, s= 1,2, : : : ,NS (2)

where !s(ti) = [Á
n
s (ti),½

n
s (ti),Ã

n
s (ti)]

0 is the nominal orien-
tation of sensor s at times ti, T(!s(ti)) is the appropriate

rotation matrix, and the translation (x(ti)¡ »s(ti)) is the
difference between the vector position of the target i

and the vector position of the sensor s, both expressed

in ECI coordinates. The superscript “n” in (2) indicates

that the rotation matrix is based on the nominal sensor

orientation.

As shown in Figure 1, the azimuth angle ®s(ti) is the

angle in the sensor xz plane between the sensor z axis

and the line of sight to the target, while the elevation

angle ²s(ti) is the angle between the line of sight to the

target and its projection onto the xz plane, i.e.,

·
®s(ti)

²s(ti)

¸
=

26664
tan¡1

μ
xs(ti)

zs(ti)

¶
tan¡1

Ã
ys(ti)p

x2s (ti)+ z
2
s (ti)

!
37775 (3)

The model for the biased noise-free LOS measurements

is then ·
®bs (ti)

²bs (ti)

¸
=

·
g1(x(ti),»s(ti),!s(ti),bs)

g2(x(ti),»s(ti),!s(ti),bs)

¸
¢
=g(x(ti),»s(ti),!s(ti),bs) (4)

where g1 and g2 denote the sensor Cartesian coordinates-

to-azimuth/elevation angle mapping that can be found

by inserting (2) and (3) into (4), and the bias vector of
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sensor s is
bs = [Ás,½s,Ãs]

0 (5)

For a given target, each sensor provides the noisy

LOS measurements

zs(ti) = g(x(ti),»s(ti),!s(ti),bs) +ws(ti) (6)

where
ws(ti) = [w

®
s (ti),w

²
s(ti)]

0 (7)

The measurement noises ws(ti) are zero-mean, white
Gaussian with

Rs =

·
(¾®s )

2 0

0 (¾²s)
2

¸
(8)

and are assumed mutually independent. The problem is

to estimate the bias vectors for all sensors and the loca-

tions of the targets of opportunity. We shall obtain the

maximum likelihood (ML) estimate of the augmented

parameter vector

μ = [x(t1)
0, : : : ,x(tNt )

0,b01, : : : ,b
0
NS
]0 (9)

consisting of the (unknown) target locations and sensor

biases, by maximizing the likelihood function (LF) of μ

¤(μ) =

NtY
i=1

NSY
s=1

p(zs(ti) j μ) (10)

where

p(zs(ti) j μ) = j2¼Rsj¡1=2

¢ exp(¡ 1
2
[zs(ti)¡his(μ)]0R¡1s [zs(ti)¡his(μ)])

(11)

and we use the compact notation

his(μ)
¢
=g(x(ti),»s(ti),!s(ti),bs) (12)

The ML estimate (MLE) is then

μ̂ML = argmax
μ
¤(μ) (13)

In order to find the MLE, one has to solve a nonlinear

least squares problem for the exponent in (11). This will

be done using a numerical search via the Iterated Least

Squares (ILS) technique [1].

A. Requirements for Bias Estimability

Minimum number of measurements. The number of

equations (size of the measurement vector) has to be

at least equal to the number of parameters to be esti-

mated (target location and bias components). Each pas-

sive sensor provides two-dimensional measurement (the

two LOS angles to the target), and it is assumed that

each sensor sees all the target locations at a common

time. Stacking together each measurement of Nt target

locations seen by NS sensors results in an overall mea-

surement vector of dimension 2NtNS . Therefore we must

have
2NtNS ¸ 3(Nt+NS) (14)

This is a necessary condition but not sufficient because

(13) has to have a unique solution, i.e., the parameter

vector has to be estimable [1].

Invertibility of the Fisher Information matrix (FIM).

In order to have parameter observability, the FIM must

be invertible. If the FIM is not invertible (i.e., it is sin-

gular), then the CRLB (the inverse of the FIM) will not

exist–the FIM will have one or more infinite eigenval-

ues, which means total uncertainty in a subspace of the

parameter space, i.e., ambiguity [2].

For the examples of bias estimability discussed in

the sequel, to estimate the biases of 3 sensors (9 bias

components) we need 3 target locations (9 position

components), i.e., the search is in an 18-dimensional

space, while for 2 sensors (6 bias components) we need

at least 6 target locations (18 position components) in

order to meet the necessary requirement (14). As stated

previously, the FIM must be invertible, so the rank of

the FIM has to be equal to the number of parameters to

be estimated (9+9 = 18, or 6+18 = 24, in the previous

examples). The full rank of the FIM is a necessary and

sufficient condition for estimability.

B. Iterated Least Squares for Maximization of the LF
of μ

Given the estimate μ̂j after j iterations, the ILS

estimate after the (j+1)th iteration will be

μ̂j+1 = μ̂j +[(Hj)0R¡1Hj]¡1(Hj)0R¡1[z¡h(μ̂j)] (15)

where

z= [z1(t1)
0, : : : ,zs(t1)

0, : : : ,zs(ti)
0, : : : ,zNS (tNt)

0]0 (16)

h(μ̂j) = [h11(μ̂
j)0, : : : ,his(μ̂

j)0, : : : ,hNtNS (μ̂
j)0] (17)

R =

266664
R1 0 ¢ ¢ ¢ 0

0 R2 ¢ ¢ ¢ 0

...
...

. . .
...

0 ¢ ¢ ¢ 0 RNS

377775 (18)

where Rs is the measurement noise covariance matrix

of sensor s, and

Hj =
@h(μj)

@μ

¯̄̄̄
μ=μ̂j

(19)

is the Jacobian matrix of the vector consisting of the

stacked measurement functions (17) w.r.t. (9) evaluated

at the ILS estimate from the previous iteration j. In this

case, the Jacobian matrix is, with the iteration index

omitted for conciseness,

H = [H11 H21 ¢ ¢ ¢HNt1 H12 ¢ ¢ ¢HNtNS ]0 (20)
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where

His =

266666666666666666666666666666666666666666666666666666666664

@g1s(ti)

@x(t1)

@g2s(ti)

@x(t1)

@g1s(ti)

@y(t1)

@g2s(ti)

@y(t1)

@g1s(ti)

@z(t1)

@g2s(ti)

@z(t1)

...
...

@g1s(ti)

@x(tNt )

@g2s(ti)

@x(tNt )

@g1s(ti)

@y(tNt )

@g2s(ti)

@y(tNt )

@g1s(ti)

@z(tNt )

@g2s(ti)

@z(tNt )

@g1s(ti)

@Ã1

@g2s(ti)

@Ã1

@g1s(ti)

@½1

@g2s(ti)

@½1

@g1s(ti)

@Á1

@g2s(ti)

@Á1

...
...

@g1s(ti)

@ÃNS

@g2s(ti)

@ÃNS

@g1s(ti)

@½NS

@g2s(ti)

@½NS

@g1s(ti)

@ÁNS

@g2s(ti)

@ÁNS

377777777777777777777777777777777777777777777777777777777775

(21)

The appropriate partial derivatives are given in the ap-

pendix.

C. Initialialization

In order to perform the numerical search via ILS, an

initial estimate μ̂0 is required. Assuming that the biases

are null, the LOS measurements from the first and the

second sensor ®1(ti), ®2(ti), and ²1(ti) can be used to

solve for each initial Cartesian target position, in ECI

coordinates, using (22)—(24).

x(ti)
0 =

»2(ti)¡ »1(ti) + ³1(ti) tan®1(ti)¡ ³2(ti) tan®2(ti)
tan®1(ti)¡ tan®2(ti)

(22)

y(ti)
0 =

tan®1(ti)(»2(ti)+ tan®2(ti)(³1(ti)¡ ³2(ti)))¡ »1(ti) tan®2(ti)
tan®1(ti)¡ tan®2(ti)

(23)

z(ti)
0 = ´1(ti)+ tan²1(ti)

¯̄̄̄
(»1(ti)¡ »2(ti))cos®2(ti) + (³2(ti)¡ ³1(ti)) sin®2(ti)

sin(®1(ti)¡®2(ti))
¯̄̄̄

(24)

D. Cramér-Rao Lower Bound

In order to evaluate the efficiency of the estimator,

the CRLB must be calculated. The CRLB provides a

lower bound on the covariance matrix of an unbiased

estimator as [1]

Ef(μ¡ μ̂)(μ¡ μ̂)0g ¸ J(μ)¡1 (25)

where J is the Fisher Information Matrix (FIM), μ is

the true parameter vector to be estimated, and μ̂ is the
estimate. The FIM is

J(μ) = Ef[rμ ln¤(μ)][rμ ln¤(μ)]
0gjμ=μtrue (26)

where the gradient of the log-likelihood function is

¸(μ)
¢
=ln¤(μ) (27)

rμ¸(μ) =

NtX
i=1

NSX
s=1

H 0isR
¡1
s (zs(ti)¡his(μ)) (28)

which, when plugged into (26), gives

J(μ) =

NtX
i=1

NSX
s=1

H 0is(R
¡1
s )Hisjμ=μtrue

=H 0(R¡1)Hjμ=μtrue (29)

Since μtrue is not available in practice, J will be eval-
uated at the estimate, and, as it’s pointed out later, the

two results are practically the same.

E. Test for Efficiency with Monte Carlo Runs

The Normalized Estimation Error Squared (NEES)

for the parameter μ (under the hypothesis of efficiency),

defined as

²μ = (μ¡ μ̂)0P¡1(μ¡ μ̂) = (μ¡ μ̂)0J(μ)(μ¡ μ̂) (30)

is chi-square distributed with nx (the dimension of μ)

degrees of freedom, that is,

²μ » Â2nx (31)

The hypothesis test for efficiency whether (31) can

be accepted, i.e., that P = J¡1 is discussed in [2] and
outlined next. The NEES is used in simulations to check

whether the estimator is efficient, that is, the errors are

statistically consistent with the covariance given by the

CRLB–this is the efficiency check. Thus the efficiency
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check of the estimator (in simulation–because this is

the only situation where μ is available) consists of

verifying whether (31) holds. The practical procedure

to check the estimator efficiency is using the sample

average NEES from N independent Monte Carlo runs

defined as

²̄x =
1

N

NX
i=1

²ix (32)

The quantity N²̄ is chi-square distributed with Nnx
degrees of freedom.

Let the 1¡Q (Q is the type I error probability of the
test) two-sided probability region for N²̄ be the interval

[²01,²
0
2].

²01 = Â
2
Nnx

μ
Q

2

¶
(33)

²02 = Â
2
Nnx

μ
1¡ Q

2

¶
(34)

where in view of the division by N in (32), one has

²i =
²0i
N

(35)

Thus, if the estimator is efficient, one has to have

Pf²̄x 2 [²01,²02]g= 1¡Q (36)

III. SIMULATIONS

We simulate a space based tracking system tracking

a ballistic missile. The missile and satellite trajectories

are generated using System Tool Kit (STK).2 The target

modeled represents a ballistic missile with a flight time

of about 20 minutes. STK provides the target and sensor

positions in three dimensional Cartesian coordinates at

1 s intervals. The target launch time is chosen so that

the satellite sensors were able to follow the missile

trajectory throughout its flight path.

A. Three-Sensor Case

We simulated three space based optical sensors at

various known orbits observing a target at three points

in time at unknown locations. In this case, an 18-

dimensional parameter vector is to be estimated. Figure

2 shows each target position observed by the sensors

(Figure 3 gives an image of this). As discussed in the

previous section, the three sensor biases are roll, pitch,

and yaw angle offsets. The biases for each sensor were

set to 0:5± = 8:72 mrad. We ran 100 Monte Carlo runs.
In order to establish a baseline for evaluating the per-

formance of our algorithm, we also ran the simulations

without biases, and with biases but without bias estima-

tion. The horizontal and vertical fields-of-view of each

sensor are assumed to be 60±. The measurement noise
standard deviation ¾s (identical across sensors for both

2STK Systems Tool Kit are registered trademarks of Analytical

Graphics, Inc.

Fig. 2. Target and satellite trajectories for the three-sensor case.

Fig. 3. Target and satellite trajectories for the three-sensor case.

azimuth and elevation measurements, ¾®s = ¾
²
s = ¾s) was

assumed to be 30 ¹rad.

1) Description of the scenarios. The sensors are as-

sumed to provide LOS angle measurements. We de-

note by »1,»2,»3 the 3D Cartesian sensor locations, and
x(t1),x(t2),x(t3) the 3D Cartesian target locations (all in

ECI). The three target locations were chosen from a

trajectory of a ballistic target as follows (in km)

x(t1) = [7,518 ¡1,311 ¡ 1,673]0 (37)

x(t2) = [7,942 ¡509 ¡ 1,375]0 (38)

x(t3) = [7,988 317 ¡1,012]0 (39)

Table I summarizes the sensor positions (in km).

2) Statistical efficiency of the estimates. In order to

test for the statistical efficiency of the estimate (of the

18 dimensional vector (9)), the NEES [1] is used, with

the CRLB as the covariance matrix. The sample aver-

age NEES over 100 Monte Carlo runs calculated using

the FIM evaluated at the true bias values and target lo-

cations is approximately 17.3, and the sample average

NEES calculated using the FIM evaluated at the esti-

mated biases and target locations is approximately 17.6

and both fall in the interval given below. According to
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Fig. 4. Sample average bias NEES (CRLB evaluated at the

estimate), for each of the 9 biases, over 100 Monte Carlo runs

(Three-sensor case).

TABLE I

Sensor positions (km).

t1 t2 t3

»1 1,235 1,062 887

´1 158 ¡174 ¡507
³1 6,927 6,955 6,963

»2 5,549 3,061 112

´2 1,116 2,993 4,418

³2 6,285 7,295 7,212

»3 6,499 7,897 8,389

´3 ¡279 ¡719 ¡1,074
³3 ¡5,407 ¡2,944 ¡143

the CRLB, the FIM has to be evaluated at the true pa-

rameter. Since this is not available in practice, however,

it is useful to evaluate the FIM also at the estimated

parameter, the only one available in real world imple-

mentations [9], [10]. The results are very close regard-

less of which values are chosen for evaluation of the

FIM. The 95% probability region for the 100 sample

average NEES of the 18 dimensional parameter vector

is [16:84,19:19]0. This NEES is found to be within this
interval and the MLE is therefore statistically efficient.

Figure 4 shows the individual bias component NEES,

The 95% probability region for the 100 sample aver-

age single component NEES is [0:74,1:29]0. The NEES
values are found to be within this interval.

The RMS position errors for the 3 target locations

are summarized in Table II. In this table, the first es-

timation scheme was established as a baseline using

bias-free LOS measurements to estimate the target lo-

cations.3 For the second scheme, we used biased LOS

measurements but we only estimated target locations.

In the last scheme, we used biased LOS measurements

and we simultaneously estimated the target locations

and sensor biases. Bias estimation yields significantly

3As shown in [9], [10] the unbiased LOS measurements yield com-

posite measurements (full position MLEs) whose errors are zero-mean

and their covariance is equal to the corresponding CRLB.

TABLE II

Sample average position RMSE (m) for the 3 targets, over 100

Monte Carlo runs, for the 3 estimation schemes (Three-sensor case).

Scheme 1 2 3

First Target 127 69,391 673

Second Target 98 41,713 484

Third Target 82 16,271 343

TABLE III

Sample average bias (¹rad) RMSE over 100 Monte Carlo runs and

the corresponding bias standard deviation from the CRLB

(Three-sensor case).

RMSE ¾CRLB

Ã1 138.009 138.211

½1 176.073 195.808

Á1 150.108 149.209

Ã2 178.507 191.110

½2 147.752 154.675

Á2 230.009 246.231

Ã3 229.131 241.389

½3 134.680 139.726

Á3 708.588 768.215

TABLE IV

Sample average bias (¹rad) error
¯̃
b over 100 Monte Carlo runs

(Three-sensor case).

¯̃
b 2

¾CRLBp
N

Ã1 ¡1:728 27.642

½1 16.945 39.161

Á1 4.545 29.841

Ã2 ¡17:323 38.222

½2 5.262 30.935

Á2 22.804 49.246

Ã3 20.580 48.277

½3 ¡7:454 27.945

Á3 79.386 153.643

improved target RMS position errors in the presence of

biases.

Each component of μ should also be individually
consistent with its corresponding ¾CRLB (the square root

of the corresponding diagonal element of the inverse of

the FIM). In this case, the sample average bias RMSE

over 100 Monte Carlo runs should be within 15% of its

corresponding bias standard deviation from the CRLB

(¾CRLB) with 95% probability. Table III demonstrates

the consistency of the individual bias estimates. This

complements the NEES evaluations from Figure 4.

To confirm that the bias estimates are unbiased, the

average bias error
¯̃
b, from Table IV (over 100 Monte

Carlo runs) confirms that j ¯̃bj is less then 2¾CRLB=
p
N

(which it should hold with 95% probability), i.e., these

estimates are unbiased.
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Fig. 5. Target and satellite trajectories for the two-sensor case

Fig. 6. Target and satellite trajectories for the two-sensor case

B. Two-Sensor Case

We simulated two space-based optical sensors at var-

ious known orbits observing a target at six (unknown)

locations (which is equivalent to viewing six differ-

ent targets at unknown locations). In this case, a 24-

dimensional parameter vector is to be estimated. As

shown in Figure 5, each target position can be observed

by all sensors. As discussed in the previous section, the

three sensor biases were roll, pitch and yaw angle off-

sets. All the biases for each sensor were set to 50 ¹rad.

We made 100 Monte Carlo runs. In order to estab-

lish a baseline for evaluating the performance of our

algorithm, we also ran the simulations without bias, and

with bias but without bias estimation. The measurement

noise standard deviation ¾s (identical across sensors for

both azimuth and elevation measurements) was assumed

to be 30 ¹rad.

1) Description of the scenarios. The sensors are as-

sumed to provide LOS angle measurements. We denote

by »1,»2 the 3D Cartesian sensor positions at six differ-

ent times, and x(t1),x(t2), x(t3),x(t4), x(t5),x(t6) the six

3D Cartesian target locations (all in ECI). The six tar-

get locations were chosen from a trajectory of a ballistic

TABLE V

Sensor positions (km).

t1 t2 t3 t4 t5 t6

»1 187 ¡902 ¡1,934 ¡2,840 ¡3,559 ¡4,046
´1 ¡1,439 ¡2,786 ¡3,951 ¡4,858 ¡5,447 ¡5,680
³1 6,886 6,400 5,494 4,229 2,687 968

»2 ¡3,966 123 4,195 7,646 9,965 10,810

´2 ¡5,969 ¡7,238 ¡7,436 ¡6,533 ¡4,664 ¡2,105
³2 8,519 8,458 7,145 4,774 1,698 ¡1,630

target as follows (in km)

x(t1) = [¡1,167 ¡ 5,782 3,028]0 (40)

x(t2) = [¡1,054 ¡ 6,027 3,436]0 (41)

x(t3) = [¡922 ¡6,148 3,772]0 (42)

x(t4) = [¡774 ¡6,155 4,036]0 (43)

x(t5) = [¡611 ¡6,056 4,228]0 (44)

x(t6) = [¡435 ¡5,852 4,344]0 (45)

Table V summarizes the sensor positions.

2) Statistical Efficiency of the Estimates. In order to

test for the statistical efficiency of the estimate (of the 24

dimensional vector), the NEES is used, with the CRLB

as the covariance matrix. The sample average NEES

over 100 Monte Carlo runs calculated using the FIM

evaluated at the true bias values and target locations is

approximately 23.995, and the sample average NEES

calculated using the FIM evaluated at the estimated

biases and target locations is approximately 23.996

and both fall in the interval given below. The results

are practically identical regardless of which values are

chosen for evaluation of the FIM. The 95% probability

region for the 100 sample average NEES of the 24

dimensional parameter vector is [22:66,25:37]0. This
NEES is found to be within this interval and the MLE

is therefore statistically efficient. Figure 7 shows the

individual bias component NEES. The 95% probability

region for the 100 sample average single component

NEES is [0:74,1:29]0. These NEES are found to be

within this interval, except for one component, which

is slightly outside this region.

The RMS position errors for the 6 target locations

are summarized in Table VI. In this table, the first esti-

mation scheme was established as a baseline using bias-

free LOS measurements to estimate the target locations.

For the second scheme, we used biased LOS measure-

ments but we only estimated target locations. In the last

scheme, we used biased LOS measurements and we si-

multaneously estimated the target locations and sensor

biases. Once again, bias estimation yields significantly

improved target RMS position errors in the presence of

biases.

Each component of μ should also be individually
consistent with its corresponding ¾CRLB (the square root

of the corresponding diagonal element of the inverse
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Fig. 7. Sample average bias NEES (CRLB evaluated at the

estimate), for each of the 6 biases, over 100 Monte Carlo runs

(Two-sensor case).

TABLE VI

Sample average position RMSE (m) for the 6 targets, over 100

Monte Carlo runs, for the 3 estimation schemes (Two-sensor case).

Scheme 1 2 3

First Target 234 93,123 521

Second Target 235 70,902 417

Third Target 212 60,840 403

Fourth Target 501 57,113 677

Fifth Target 637 262,712 754

Sixth Target 580 163,104 703

of FIM). In this case, the sample average bias RMSE

over 100 Monte Carlo runs should be within 15% of its

corresponding bias standard deviation from the CRLB

(¾CRLB) with 95% probability. Table VII demonstrates

the efficiency of the individual bias estimates.

To confirm that the bias estimates are unbiased, the

average bias error
¯̃
b, from Table VIII, over 100 Monte

Carlo runs confirms that j ¯̃bj is less then 2¾CRLB=
p
N

(which it should hold with 95% probability), i.e., these

estimates are unbiased.

IV. CONCLUSIONS AND FUTURE WORK

Previous research into the simultaneous estimation

of the 3D Cartesian locations of the targets of opportu-

nity and the angle measurement biases of fixed sensors

[4] demonstrated that the maximum likelihood estima-

tor via the ILS algorithm was able to provide statisti-

cally efficient estimates. In the three-sensor case it was

shown that one has complete observability of the sensor

biases. In the two-sensor case a rank deficiency of 1 in

the FIM was observed. A suitable geometric explana-

tion was provided for this. In the present paper we pre-

sented a new algorithm that uses targets of opportunity

for estimation of measurement biases for moving sen-

sors. The first step was formulating a general bias model

for synchronized space-based (moving) optical sensors

TABLE VII

Sample average bias (¹rad) RMSE over 100 Monte Carlo runs and

the corresponding bias standard deviation from the CRLB

(Two-sensor case).

RMSE ¾CRLB

Ã1 74.945 72.334

½1 108.100 99.322

Á1 88.624 81.117

Ã2 53.548 52.208

½2 25.491 30.455

Á2 140.719 98.743

TABLE VIII

Sample average bias (mrad) error
¯̃
b over 100 Monte Carlo runs

(Two-sensor case).

¯̃
b

¾CRLBp
N

Ã1 ¡27:248 19.750

½1 ¡13:943 21.213

Á1 0.289 17.705

Ã2 ¡9:677 12.289

½2 5.167 0.654

Á2 10.985 19.217

at known locations. The association of measurements

is assumed to be perfect. Based on this, we used a ML

approach that led to a nonlinear least-squares estimation

problem for simultaneous estimation of the 3D Carte-

sian locations of the targets of opportunity and the angle

measurement biases of the sensors. The bias estimates,

obtained via ILS, were shown to be unbiased and sta-

tistically efficient for all the scenarios considered.

APPENDIX

The appropriate partial derivatives of (21) are

@g1s(ti)

@x(tk)
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@g1s(ti)
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+
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+
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Given that (2) can be written as
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therefore
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Fusion of Multipath Data with

ML-PMHT for Very Low SNR

Track Detection in an OTHR

KEVIN ROMEO

YAAKOV BAR-SHALOM

PETER WILLETT

TheMaximumLikelihoodProbabilisticMulti-HypothesisTracker

(ML-PMHT) is formulated for and applied to an Over-The-Horizon

radar (OTHR) scenario. In this scenario there are two ionosphere

layers acting as reflectors of the electromagnetic (EM) waves and

each scan can contain multiple measurements (up to four) originat-

ing from each target; each of these target-originated measurements

takes one of four possible round-trip paths. The ML-PMHT likeli-

hood ratio is modified to model this uncertainty in the measurement

path which then allows the fusion of multipath data in the presence

of false measurements.

This tracker is shown to have a high track detection probability

and track accuracy with a low probability of false track in very

low signal to noise ratio (SNR) OTHR scenarios. It is also shown to

be a statistically efficient estimator. Consequently, the ML-PMHT

holds great promise in increasing the sensitivity and robustness of

the next generation OTHR.

Results indicate that one can achieve for a very low observable

(VLO) target a true track detection probability above 95% and a

false track rate under one per 24 hours.
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1. INTRODUCTION

Over-the-horizon radar (OTHR) relies on signal re-

fraction through the ionosphere to detect targets beyond

the horizon. Due to the nature of the ionosphere, the

signal from the radar may propagate via multiple paths,

resulting in several target-originated detections. There

is an ambiguity between detections and paths; the path

corresponding to each target detection is not known.

There are also measurements from false detections.

There are a wide range of approaches to the OTHR

problem, varying in how detection, tracking, and as-

sociation are handled. The multiple detection multiple

hypothesis tracker (MD-MHT) [16] is formulated to

solve the data association problem between measure-

ments and measurement paths using an extended mul-

tiframe assignment technique. Alternatively, a multihy-

pothesis fusion algorithm, presented in [11, 13—15], is

a measurement-level fusion algorithm using only mea-

surements already associated with targets by another fil-

ter to calculate the probabilities of association hypothe-

ses. In [1, 2] a method is proposed for joint multiple

target ground track estimation and slant track associ-

ation. Additionally they assume unknown ionospheric

conditions. Their method shows an improvement in ac-

curacy and the number of correct track and path assign-

ments. The Signal Inversion for Target Extraction and

Registration (SIFTER) signal processing algorithm de-

veloped in [9] provides a better detection of low SNR

targets in clutter by solving for the scattering surface

that reproduces the radar’s measurements and has been

demonstrated effectively on real OTHR data.

Other approaches include applying the probabilis-

tic data association filter (PDAF) [6—8], the multipath

probabilistic data association algorithm (MPDA) [12],

and the Probabilistic Multi-Hypothesis Tracker (PMHT)

[8] to OTHR data. An extension of the PDAF called the

Multiple Model Unified PDAF (MM-UPDAF) is devel-

oped in [7]. The MM-UPDAF is designed to handle

multiple nonuniform clutter regions. The SNR in [7] is

unavailable as the parameters used to determine the per-

formance of the MM-UPDAF are proprietary. The low-

est SNR available from [12] and [16] is around 10 dB,

with an ionosphere model similar to what we use in our

simulations. We show that our algorithm with a VLO

target SNR of 4 dB yields a high track detection prob-

ability (95%) and a very low false track rate (less than

one per day) for the scenario considered.

A multipath Expectation Maximization algorithm is

developed and applied to an OTHR scenario in [10].

Similar to the PMHT, it treats data association as miss-

ing data. It also treats propagation paths as missing

data. The (single path) Maximum Likelihood Proba-

bilistic Multi-Hypothesis Tracker (ML-PMHT) uses the

log-likelihood function based on the PMHT model. The

ML-PMHT has previously been formulated for single

and multitarget [17, 18] scenarios. It has been shown to

perform well even with very low target SNR.
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In this paper we extend the ML-PMHT formulation

from [17, 18]. We present a generalized form of the ML-

PMHT that accounts for multiple possible propagation

paths. We apply this algorithm to an OTHR scenario.

Unlike the MD-MHT [16], no data association is re-

quired. The ML-PMHT considers simultaneously all the

measurements without knowing their origins or propa-

gation paths and, remarkably, has linear complexity in

the number of measurements. The ML-PMHT performs

fusion of the multipath data in the presence of false

measurements.

Section 2 briefly describes the ML-PMHT for a sin-

gle target case and the extension to allow for multiple

paths. Section 3 describes the multiple path extension to

the ML-PDA. Section 4 presents the OTHR model used

for simulation. Section 5 discusses the performance of

the ML-PMHT from Monte Carlo testing. Section 6 de-

velops the Cramér-Rao Lower Bound for the multipath

ML-PMHT.

2. ML-PMHT

2.1. Single Target ML-PMHT

The ML-PMHT log-likelihood ratio (LLR) for the

motion parameter of a single target is developed in [17].

This LLR is given by

¤(x;Z)
¢
=ln

½
p(Z j x)

p(Z j all false)
¾

=

NwX
i=1

miX
j=1

lnf¼0 +¼1Vp[zj(i) j x(i)]½j(i)g (1)

with
Z
¢
=ffzj(i)gmij=1gNwi=1 (2)

Here Nw is the number of scans in the batch (the window

length), and mi is the number of measurements in the ith

scan (frame). The parameter x determines the target state
x(i) in a deterministic way (we use a constant velocity

model1 i.e., x= [st(1), _st]
0, where st(1) and _st are the ini-

tial position and velocity of the target, respectively). The

prior probabilities that a measurement occurred due to

clutter or due to a target are given by ¼0 and ¼1, re-

spectively. These values are related to the probability

of detection, PD, and the probability of false alarm in a

resolution cell, PFA. The volume of the search region is

V and a measurement, which didn’t occur due to a tar-

get, has a uniform pdf in V. The jth measurement in the

ith scan is zj(i) and its associated amplitude likelihood
ratio is ½j(i). Finally, p[zj(i) j x(i)] is a Gaussian with
mean determined by the target state parametrization x(i),

and with the measurement noise covariance matrix. The

amplitude likelihood ratio serves as a feature discrim-

inant between the target originated measurements and

the false ones due to spurious detections.

1Any arbitrary deterministic motion model can be used, such as de-

terministic motion in a known gravitational field [4].

The pdfs p[Z(i) j x(i)] (likelihood of the target
present hypothesis) and p[Z(i) j all false] (likelihood of
the target absent hypothesis) are derived using the ML-
PMHT assumptions [17]:

² There is a single target with known probability of
detection.

² Any number of measurements in a scan can be as-
signed to the target.

² The motion of the target is deterministic.
² False detections are uniformly distributed.
² The number of false detections is Poisson distributed
with known density.

² Amplitudes of target and false detections are Rayleigh
distributed with known distribution.

² Target measurements are corrupted with zero-mean
Gaussian noise.

² Measurements at different times, conditioned on the
parameterized state, are independent.

These likelihoods are then given by

p[Z(i) j x(i)]

=

miY
j=1

n¼0
V
p¿0[aj(i)] +¼1p[zj(i) j x(i)]p¿1[aj(i)]

o
(3)

p[Z(i) j all false] =
miY
j=1

1

V
p¿0[aj(i)] (4)

where p¿0[aj(i)] and p
¿
1[aj(i)] are the pdfs of a false

alarm and target measurement amplitude conditioned on
exceeding the threshold ¿ , respectively.

2.2. The Multipath ML-PMHT Log-Likelihood Ratio for
OTHR

The LLR of the generalized ML-PMHT that allows
multiple propagation paths is given by

¤(x;Z)

=

NwX
i=1

miX
j=1

ln

(
¼0 +¼1V½j(i)

npX
`=1

p[zj(i) j x(i),`]P[`]
)
(5)

where ` is used to denote which path the signal took,
P[`] is the probability of path ` being taken, and np
is the total number of possible paths. The mean of
the Gaussian p[zj(i) j x(i),`] is f̀ (x(i)), where f̀ is the
function that transforms the target state x(i) into the
measurement space via path `. The covariance matrix
for this Gaussian is the measurement noise covariance
for a measurement from path `. Note that, for simplicity,
we have assumed that ½j(i) is the same for each path `
(a path dependent LLR can be used if available).

3. ML-PDA

We can extend the single-path ML-PDA likelihood
presented in [17] to allow for multiple paths by applying
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the total probability theorem. For a single scan this

results in

¤(x;Z) =

npX
nd=0

p(z j x,nd)P(nd) (6)

P(nd) = P
nd
D (1¡PD)np¡nd

μ
np
nd

¶
(7)

p(z j x,nd) =
1¡

m
nd

¢¡
np
nd

¢
nd!

X
M2Mnd

X
A2And

¢p[fzkgk =2M j “clutter”]
ndY
j=1

p[zM(j) j x,A(j)]
(8)

where nd is the number of detections, and PD is the

probability of detection.Mnd
is the set of all unordered

nd-tuples of measurement indices. It contains
¡
m
nd

¢
nd-

tuples. And is the set of all ordered nd-tuples of path in-
dices. This set contains

¡
np
nd

¢
nd! nd-tuples. The ML-PDA

gives similar results to the ML-PMHT in very low clut-

ter scenarios, but is significantly more complex. For sce-

narios with a large amount of clutter (like the ones we

are exploring in this paper) the ML-PDA becomes in-

tractable due to the number of terms in the double sum-

mation in equation (8). Its CRLB is also complicated to

determine since it requires extensive Monte Carlo simu-

lations [5]. We choose the ML-PMHT for its simplicity

and effectiveness. In a single scan i the ML-PMHT has

minp terms–linear complexity–while the ML-PDA

has
Pnp

nd=0

¡
mi
nd

¢¡
np
nd

¢
nd!nd =minp

Pnp
nd=0

(nd¡ 1)!
¡
mi¡1
nd¡1

¢
¢ ¡np¡1
nd¡1

¢
terms and therefore suffers from a combinatorial

explosion with increasing mi.

4. OTHR MODEL

We investigate two two-dimensional OTHR scenar-

ios which assume the target to be in a great circle plane

on the earth’s surface as shown in Figure 1, and a three-

dimensional scenario where the target is on the surface

of a sphere. We use a two-layer reflection model (spher-

ical mirror model) for the ionosphere.2 In this model the

signal may reflect from either layer of the ionosphere

resulting in multiple (up to four) round-trip propagation

paths. In the 2-D and 3-D scenarios the radar measures

slant range, slant range rate, and amplitude. In the 3-D

scenario it also measures azimuth.

4.1. Measurement Amplitudes

We model the amplitudes of the measurements ac-

cording to a Swerling I model [4]. The amplitude is

2The actual paths are subject to refraction, which requires numeri-

cal algorithms for ray tracing. The reflection model used here is a

simplified one, which, however, captures the essence of the OTHR.

Fig. 1. The 2-D OTHR scenario with a reflection ionosphere model

(spherical mirror model).

Rayleigh distributed with pdfs

p0(a) = ae
¡a2=2 a¸ 0 (9)

p1(a) =
a

1+ d
e¡a

2=2(1+d) a¸ 0 (10)

for the noise only and target, respectively. Here d is the

expected SNR of the target in a resolution cell. For a

chosen threshold ¿ we have

PD =

Z 1

¿

p1(a)da (11)

PFA =

Z 1

¿

p0(a)da (12)

The pdfs of the amplitude of a measurement given that

it has exceeded the threshold ¿ are

p¿0(a) =
1

PFA
p0(a) a¸ ¿ (13)

p¿1(a) =
1

PD
p1(a) a¸ ¿ (14)

and the amplitude likelihood ratio is then

½j(i) =
p¿1[aj(i)]

p¿0[aj(i)]
(15)

4.2. Measurements

The OTHR measures both position and velocity of

the target via slant range and slant range rate measure-

ments. The equations of the measurements, given the

signal reflected off the lower layer in both directions,

are given below.3 Defining

r1
¢
=4

s
h21¡2R©(h1 +R©)cos

μ
sr¡ st
2R©

¶
+2h1R©+2R

2©

(16)

3The signal propagates forward and is reflected in the plane of the

great circle defined by the radar and the target. We assume that the

antenna beam illuminating the target is in this plane. This beam cor-

responds to the measured azimuth of the reflection from the target.
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Fig. 2. Illustration of the geometry used to derive the equations for

the measurements. Here μr and μt are the angles in polar coordinates

of the radar and the target, respectively.

_r1
¢
=
@r1
@st

@st
@t

=¡
2sin

μ
sr ¡ st
2R©

¶
(R©+ h1)s

2R©h1 +2R
2
©+ h

2
1 ¡ 2R© cos

μ
sr ¡ st
2R©

¶
(R©+ h1)

_st

(17)

one has

zr1 = r1 +wr1 (18)

z_r1 =
_r1 +w_r1 (19)

Here h1 is the height of the lower ionosphere layer. The

radius of the earth is R©. The locations of the radar and
target on the surface of the earth (on the great circle

connecting them) are given by sr and st, respectively.

An illustration of the geometry of this problem is shown

in Fig. 2. The velocity of the target along the great

circle is _st. The noise terms, wr1 and w_r1 , are zero-mean,

Gaussian, independent of each other, and with variances

¾r and ¾_r, respectively. We assume, for simplicity, the

same noise variances on the other paths.

Given that the signal reflected off the upper layer

only (with height h2), we can find similar equations for

r2, _r2, zr2 , and z_r2 , with noises wr2 and w_r2 . The equations

for the measurements resulting from the remaining two

paths, where the signal reflects off of alternate layers,

can then be expressed as

zr3 =
1
2
(r1 + r2)+wr3 (20)

z_r3 =
1
2
(_r1 + _r2)+w_r3 (21)

Fig. 3. Slant range measurements in one batch in 2-D scenario 1

(4 dB post-signal processing SNR).

Fig. 4. Slant range rate measurements in one batch in 2-D scenario

1 (4 dB post-signal processing SNR).

zr4 =
1
2
(r1 + r2)+wr4 (22)

z_r4 =
1
2
(_r1 + _r2)+w_r4 (23)

The azimuth measurement (used only in the 3-D

scenario) is given by

zμ = μ+wμ (24)

where μ is the true azimuth of the target, and the noise

term wμ is zero-mean, Gaussian, and has variance ¾μ.

4.3. 2-D Simulation Parameters

We simulated a target with an initial position

2000 km away from the radar, moving with a constant

speed of 10 m/s towards it. The other values used in the

2-D simulations are given in Tables I and II. Figures

3 and 4 show the measurements used (after amplitude

thresholding) in one run of the tracker from scenario

1. False measurements are generated uniformly in the

measurement space. Note that, due to the very low SNR

in a cell, PD is a meager 0.34 and the high PFA leads

to 60 false measurements per scan. Also note that there

are usually zero to three target originated measurements

in each scan (rarely all four) and the overwhelming

number of false measurements, which, however, can be
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TABLE I

Scenario parameters used in the both the 2-D and 3-D simulations.

Nw 15

Time between scans 1 s

¾r 300 m

¾_r 5 m/s

SNR in a cell 2.5=4 dB

R© 6371 km

Ionosphere lower layer height 100 km

Ionosphere upper layer height 200 km

P[`] for all ` 0.25

successfully handled by the multipath ML-PMHT track

detector.

4.4. 3-D Simulation Parameters

We also simulated a target starting at 2000 km away

from the radar and 0 azimuth. It is moving with a

constant speed of 10 m/s with an initial course of 5±. The
target follows the great circle starting from these initial

conditions. The other values used in the 3-D simulation

are given in Tables I and II. The very low SNR in a cell

now leads to 72 false measurements per scan.

5. PERFORMANCE OF THE TRACK DETECTOR

5.1. 2-D Results

The LLR of the ML-PMHT for a single run is shown

in Figures 5 and 6 for the first 2-D scenario. The plot is

centered at the true target location. There are five peaks

resulting from path ambiguity. The central peak (the

correct one), however, is easily distinguishable from

the side peaks. It is also much higher than any peak

occurring due to clutter.

We use a simple grid search with 1 km spacing

in range, and 20 m/s spacing in velocity to get into

the neighborhood of the global maximum of (5). For

simplicity, no target feature was used. We then run

a local optimization routine from MATLAB using an

interior-point algorithm on the highest valued point

from the grid search to produce the final state estimate.

In the first 2-D scenario this takes approximately 8

seconds per run in MATLAB (faster than real time),

and from 10000 Monte Carlo runs the root mean square

TABLE II

Scenario parameters used in the 2-D and 3-D simulations.

2-D Scenario 1 2-D Scenario 2 3-D Scenario

Resolution cell size 600 m£ 10 m/s 15000 m£ 10 m/s 1200 m£ 20 m/s£ 1:2±
Search region size 150 km£ 100 m/s 150 km£ 100 m/s 150 km£ 100 m/s£ 90±
Number of cells 2500 100 46875

V 1:5 ¢ 107 m2/s 1:5 ¢ 107 m2/s 2:4 ¢ 107 m2=s£ rad
¾μ N/A N/A 0:3±

Amplitude detection threshold ¿ 2.7 1.7 3.6

PD for each path 0.34 0.66 0.16

PFA in a cell 0.024 0.24 0.0015

Expected number of false alarms per scan 60 24 72

¼0 0.9776 0.8991 0.9913

(RMS) errors for position and velocity at the end of the

batch were 40.7 m and 0.7 m/s, respectively. There were

no false tracks or missed tracks.

We also applied the MD-MHT [16] to the first 2-D

scenario. Using perfect initialization and a sliding win-

dow of size 2, the RMS errors from 100 Monte Carlo

runs for position and velocity at the end of the run

were 83 m and 5.8 m/s, respectively, i.e., significantly

larger than the ML-PMHT. An extended Kalman filter

was used to update the track with the measurement-

path combinations chosen by the algorithm. In the MD-

MHT, increasing the window size Nw rapidly increases

the computational requirements of the algorithm. The

number of hypotheses for a single target scenario de-

pends on the number of paths and measurements and is

approximately (NpathsNmeas)
Nw , which quickly becomes

intractable.

Using the same grid search method for the second

scenario 2, the RMS errors from the ML-PMHT for

position and velocity at the end of the batch were 27.2 m

and 0.4 m/s, respectively, from 100 Monte Carlo runs,

also with no false tracks.

We also ran the first 2-D scenario with different

values for the SNR and threshold ¿ . We chose ¿ such

that PD remained fixed at 0.34. These results are shown

in Table III. In the lowest SNR case (4 dB) the track

was detected in each of the 104 runs. The algorithm was

demonstrated to yield a track detection probability, PDT,

higher than 95%. Also no false tracks were detected by

the algorithm in these 104 runs, thus the probability of

false track, PFT, is at most 10
¡4 for the 15 s time interval.

Based on this, the false track rate (over 24 hours) is

0.6/day.

5.2. 3-D Results

Figure 7 shows the LLR surface using the true val-

ues for azimuth and course. Similarly, Figure 8 shows

the LLR surface using the true values for range and

speed. We use MATLAB’s GlobalSearch algorithm to

perform the optimization. From 100 Monte Carlo runs

the RMSE values were 3.3 km in position, 54 m in

range, and 21 m/s in velocity (in the range direction

0.86 m/s while in the crossrange direction 21 m/s;
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TABLE III

Results for various SNR values in the first 2-D scenario from 1000 Monte Carlo runs (results for SNR = 4 dB are from 10000 Monte Carlo

runs). The measurement detection threshold ¿ is chosen such that the single-measurement PD is fixed at 0.34.

Expected number of

false alarms (false Position Velocity Position Velocity

Cell PFA measurements) per scan RMSE (m) RMSE (m/s) CRLB (m) CRLB (m/s)

SNR= 10 dB, ¿ = 4:84 7 ¢ 10¡6 0.02 32.90 0.5449 33.11 0.5519

SNR= 7 dB, ¿ = 3:6 0.0015 4 35.30 0.5647 34.36 0.5727

SNR= 6 dB, ¿ = 3:3 0.0043 11 37.10 0.6037 35.57 0.5929

SNR= 4 dB, ¿ = 2:73 0.024 60 40.67 0.6760 39.57 0.6595

Fig. 5. The log-likelihood ratio centered on the true target state

from 2-D scenario 1.

Fig. 6. The log-likelihood ratio centered on the true target state

from 2-D scenario 1.

the latter is due to the fact that the crossrange rate is

based on the 0:3± azimuth measurement, which maps
to 5 mrad£ 2000 km = 10 km crossrange errors, i.e.,

extremely large).

The algorithm’s running time in the 3-D scenario

was approximately 2 minutes per run (on 15 s of data)

in MATLAB. Therefore, this algorithm can run at least

one order of magnitude faster, i.e., it is real time capable

if it is implemented in a faster programming language,

such as C.

6. MULTIPATH FUSION ML-PMHT CRAMÉR-RAO
LOWER BOUND

We develop the Cramér-Rao Lower Bound (CRLB)

[3] for the multipath fusion ML-PMHT and show that

Fig. 7. The log-likelihood ratio at the true values for azimuth and

course from the 3-D scenario.

Fig. 8. The log-likelihood ratio at the true values for range and

speed from the 3-D scenario.

it is statistically efficient in the first 2-D scenario. We

can assume all scans to be independent and also assume

the measurements in each scan to be independent. The

Fisher Information Matrix (FIM) J will then be the sum
of the FIMs Ji,j of each measurement,

J= Ef(rx lnp[Z j x])(rx lnp[Z j x])Tgjx=x0 =
NwX
i=1

miX
j=1

Ji,j

(25)
where

Ji,j = Ef(rx(i) lnp[zj(i) j x(i)])
¢ (rx(i) lnp[zj(i) j x(i)])Tgjx(i)=x0(i) (26)

The state vector x(i) is given by

x(i) = [st(i), _st]
0 (27)
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where st(i) is the target’s position at time i, and _st is

the target’s velocity. The function that transforms x(i)

into the measurement space via the path that reflects

both ways off the lower layer only is expressed as (28)

with derivatives given by (29) and (30). The functions

f̀ (x(i)) for the other paths (and their derivatives) can be

found similarly.

f1(x(i)) =

26666666664

4

s
h21¡ 2R©(h1 +R©)cos

μ
sr¡ st(i)
2R©

¶
+2h1R©+2R

2©

¡
2sin

μ
sr¡ st(i)
2R©

¶
(R©+ h1)s

2R©h1 +2R
2©+ h21¡ 2R© cos

μ
sr ¡ st(i)
2R©

¶
(R©+ h1)

_st(i)

37777777775
(28)

@

@st(i)
f1(x(i)) =
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A`(i) = P(`)e
¡ 1
2
[zj (i)¡f̀ (x(i))]0R¡1[zj (i)¡f̀ (x(i))]DT` (i)R

¡1[zj(i)¡ f̀ (x(i))] (34)

The multipath ML-PMHT likelihood for a sin-

gle measurement is given by (31). The gradient of

the logarithm of this likelihood gives (32), where

D`(i) is the Jacobian of f̀ (x(i)). Finally, combining

equations (26) and (32) gives us the FIM of one

measurement, which has to be evaluated numerically,

as (33).
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Fig. 9. The pdf of w (a single clutter measurement transformed by

the multipath LLR).

Using the parameters given in Table I, the CRLB is

39.57 m and 0.6595 m/s for the position and velocity,

respectively. From 10000 Monte Carlo runs for the

lowest SNR= 4 dB the standard error of the sample

variance is 0.5596 m for position, and 0.009327 m/s

for velocity [3]. This gives the 95% (2-sigma) intervals

of [38.45 m, 40.69 m] and [0.6408 m/s, 0.6782 m/s]

for position and velocity, respectively. Since the RMSE

values from the multipath fusion ML-PMHT (which were

40.67 m and 0.6760 m/s) are within these intervals, it

is a statistically efficient estimator. We also include the

CRLB for different values of the SNR and ¿ in Table III.

7. FALSE TRACK AND TARGET TRACK DETECTION
PROBABILITIES

We use the methods in [19, 20] to determine a

threshold for the probability of false track, PFT, and

then calculate the probability of track detection, PDT,

for the first 2-D scenario with 4 dB SNR presented in

Section 4.3.

7.1. Probability of False Track

We begin with the multipath LLR for a single

measurement, zj(i), and its corresponding amplitude

LLR, ½j(i),

¤i,j[zj(i)] = ln

(
¼0 +¼1V½j(i)

npX
`=1

p[zj(i) j x(i),`]P[`]
)
(35)

and treat zj(i) 2 R2 and ½j(i) 2R+ as random variables.

Equation (35) is a function that transforms these random

variables into a new random variable w,

w = ¤i,j[zj(i)], w 2R (36)

While in [19] it was possible to get a closed-form

expression for the pdf of w when using the LLR for

a single path ML-PMHT, here we cannot. The sum of

exponentials that arises from the multiple paths prevents

us from inverting equation (35). We must instead rely

on a numerical or empirical approximation of the pdf

of w. This empirical pdf of w is shown in Figure 9.

Fig. 10. The batch and peak pdfs (from clutter) along with

thresholds for several values of PFT.

We take the pdf of w and convolve it with itself

N ¡ 1 times to find the pdf for a batch of N measure-

ments from clutter. We refer to this resulting pdf as the

“batch” pdf; it is the LLR pdf for a batch of measure-

ments. We use N = 900, the expected number of mea-

surements from clutter in one batch of measurements in

our scenario. Again, following the methodology of [19],

we must use the batch pdf to determine the “peak” pdf;

this is the pdf of the maximum sample value from M

samples from the batch pdf. This peak pdf is determined

from extreme value theory. The determination of M is

discussed in [19]; we use M = 107. The batch and peak

pdfs, along with thresholds for several values of PFT are

shown in Figure 10.

7.2. Probability of Target Track Detection

Now that we have calculated thresholds using the

desired values for PFT, we can use a similar procedure

to evaluate PDT for these thresholds using the methods

in [20]. We again begin with the multipath LLR for a

single measurement given by equation (35), but with

zj(i) as a Gaussian mixture (for the four paths) ran-
dom variable (originating from the target) instead of a

uniformly distributed random variable (originating from

clutter). The approximation of the pdf of a single target

measurement transformed by the multipath LLR pdf is

shown in Figure 11.

We convolve this pdf with itself N ¡1 times to find
the pdf for a batch of N target originated measurements.

We use N = 20, the expected number of target origi-

nated measurements in one batch of Nw = 15 scans in

our scenario. We do not need to find a peak pdf from

this batch pdf; the batch pdf is the peak pdf in this case.

The batch pdf and the thresholds calculated in Section

7.1 for several values of PFT are shown in Figure 12. A

PFT of 10
¡4 yields (1¡PDT) = 6 ¢ 10¡9.

8. CONCLUSIONS

We have developed an extension to the single target

ML-PMHT to allow for the fusion of data from multiple

signal propagation paths. We applied this algorithm to

an OTHR scenario. We showed that, with low target
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Fig. 11. The pdf of w (a single target measurement transformed by

the multipath LLR).

Fig. 12. The batch and peak pdfs (from the target) along with

thresholds for several values of PFT .

SNR even down to 4 dB post-signal processing, the

fusion ML-PMHT has excellent track detection and

accuracy in such a scenario and is statistically efficient.

Consequently, the ML-PMHT holds great promise in

increasing the sensitivity and robustness of the next

generation OTHR.

The results indicate that the ML-PMHT can yield

very high PDT (probability of track detection) and very

low PFT (probability of false track). Future work would

include using a more accurate ionosphere model.
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Tracking Targets with Multiple

Measurements per Scan Using

the Generalized PHD Filter

CHRISTOPH DEGEN
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The task of tracking targets, that generate more than one mea-

surement per scan appears in several applications such as extended

object and group tracking. In this case, the target (or group) extent

implies that multiple measurements, drawn according to a spatial

probability distribution, are measured per sensor-scan. However,

applications exist where targets generate several measurements per

sensor-scan, which are not geometrically correlated according to

a distribution in the measurement space. An example for such an

application is Blind Mobile Localization, which is the passive non-

cooperative localization and tracking of mobile terminals in urban

scenarios. In this paper a Probability Hypothesis Density filter for

general models of target-generated measurements is applied to track

targets with multiple measurements per scan, where the measure-

ments do not necessarily have to be spatially related in the mea-

surement space. Furthermore, the problem of numerical feasibility

is identified and two ways of approximating the update equation of

the generalized Probability Hypothesis Density filter are proposed.

Finally, two numerical evaluations are carried out to assess sequen-

tial Monte Carlo-implementations of the generalized PHD-filter.
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I. INTRODUCTION

The purpose of this paper is to investigate the appli-

cability of the generalized PHD-filter [7] to scenarios

with arbitrary target-measurement models. To this end,

approximation conditions and a generalization of the

probability of detection are developed, applied to two

different scenarios and compared to existing standard

approaches.

Fig. 1. Visualization of the field-strength prediction given by the

ray-tracing simulation: For a given observer (black cross) mobile

station (antenna) constellation the color at the emitter location

indicates the received field-strength at the observer. Three multipaths

are visualized (black solid, block dotted, gray) and the interaction

points are plotted as black dots.

Due to the assumption that targets generate condi-

tionally independent observations with at most one ob-

servation per target, the standard Probability Hypothesis

Density (PHD)-filter [26] is not suited for applications

where a target may generate multiple measurements in

one sensor-scan. However, for the problem of extended

object tracking several modifications of the standard

PHD-filter are available (an excellent overview about

existing methods is given in [28]). In [26] the target

extent is modeled by a set of point scatterers, where

each scatterer generates an individual measurement. In

[27] an approximation is presented, based on the ap-

proximate Poisson model of Gilholm, Godsill, Maskell

and Salmon [15], where the target extent is modeled by

a spatial probability distribution. Furthermore, the set

of measurements is preprocessed into associated groups

which represent the individual targets. In [22] the target

extent is modeled by random matrices and in [16], [17],

[18], [20], [19] the approach is combined using PHD

and cardinalized PHD-filters. Furthermore, techniques

for reducing the number of measurement set partitions,

which are essentially based on clustering measurements,

are presented in these references. All methods men-

tioned have in common that they make explicit use of
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the target extent. However, scenarios exist where targets

generate multiple measurements which are not spatially

related in the measurement space.

An example is given by Blind Mobile Localization

(BML) [9], [2], [1], where an observer station (OS)

tracks the state of an electromagnetic emitter in an ur-

ban environment. The boundary conditions of the prob-

lem imply that the OS has to determine the location of

the mobile terminal by only inspecting the transmitted

electromagnetic waves. In urban scenarios the effect of

multipath propagation often is inevitable. This is due

to physical effects on the electromagnetic wave of the

signal such as reflection, diffraction, and scattering. As

a consequence, the observer station receives multiple

signals that have traveled along different paths. Each of

these paths is distinct in either the time of arrival (ToA),

azimuth (angle) of arrival (AoA) or the elevation (an-

gle) of arrival (EoA). Hence, the mobile station (MS),

which is a point target in the sense of [26], generates

several observations, the so-called multipaths. A mul-

tipath is defined by a relative time of arrival (RToA),

an AoA and an EoA. The distribution of measurements

in the measurement space strongly depends on the en-

vironment and a measurement function would be dis-

continuous and difficult to model and calculate. This

makes it impossible to find a general distribution of

the multipath-measurements in the measurement space,

which can be used for the association of targets and

multipaths as it is done in [26] and [27], when prepro-

cessing the measurement set.

In [9] a sequential Monte Carlo (SMC)-implementa-

tion of the standard Intensity filter (iFilter) [33], [32],

which is closely related to the standard PHD-filter [26]

and uses the same assumptions, is applied to the prob-

lem of BML. For the formulation of the likelihood-

function context information of the urban environment

is used in terms of a ray-tracing simulation, which pre-

dicts a set of multipaths for a given OS-MS constella-

tion (see Figure 1, for details on the formulation of the

likelihood-function see [9]). Due to the standard scat-

terer measurement model of the iFilter, it is assumed

that each multipath represents an individual and inde-

pendent measurement. Therefore, the estimated number

of targets is not equal to the true number of targets, but

to the number of multipaths which belong to a target.

A sophisticated method for state extraction, considering

the association possibilities between different multipath-

sets and targets, is also presented in [9]. This state ex-

traction scheme needs to be considered since the target

generated measurement models of the standard PHD-

filter and BML differ. Even though this solution yields

satisfying results, it is an approximation, which assumes

that each multipath represents an individual target, i.e.,

the creation of at most one observation per target, which

is obviously not given for the application of BML. Tak-

ing into account all of the previous considerations a

PHD-filter for targets which generate multiple measure-

ments per sensor-scan without a common distribution in

the measurement space is needed.

The PHD-filter derivation using probability gener-

ating functionals (PGFLs) can be found in [26], [23],

[24], [25] and [35]. A very detailed derivation of the

PHD-filter using the PGFL-framework is presented in

[21]. There, the PHD-filter is derived by modeling a

PGFL, using Bayes theorem and afterwards the up-

date (and prediction) equation of the PHD-filter is ob-

tained by functional differentiation. To derive a PHD-

filter for scenarios, which do not fulfill the standard as-

sumptions, PGFLs represent an appropriate approach.

In [36] and [26] examples of PGFLs for nonstandard

targets are given and the calculation of the respec-

tive Gâteaux derivatives using compositions of so-called

secular functions with functionals is proposed. In [7]

the authors present a general chain rule (GCR) for

functional-derivatives. This result is extended to locally

convex topological spaces in [6] and closely related to

the ideas presented in [36]. It can be used to deter-

mine the Gâteaux derivatives of complex PGFLs, e.g.,

for PGFLs which model target interaction [21, chap-

ter 3]. Furthermore, in [7] a generalized PHD-filter is

developed for arbitrary models of target-generated mea-

surements and general clutter processes. The general-

ized PHD-filter possesses the ability to track targets,

which are themselves point scatterers and create multi-

ple measurements per scan, that are not drawn according

to a spatial probability distribution in the measurement

space.

In [10] the generalized PHD-filter is investigated

and approximation conditions are developed. A small

numerical evaluation is carried out to demonstrate that

the proposed methods are applicable. This work extends

the considerations made there by introducing a gener-

alization of the probability of detection for targets that

generate multiple measurements per sensor-scan. Fur-

thermore, extensive numerical evaluations are carried

out. Especially, the proposed methods are applied to the

challenge of BML for the first time and compared to an

existing approach.

In this paper, the generalized PHD-filter, using a

Poisson-model for the clutter process, is investigated for

the purpose of tracking targets with multiple measure-

ments per sensor-scan. Thereby, a spatial distribution

of the measurements is not assumed. Two approxima-

tions of the update equation of the generalized PHD-

filter with Poisson-clutter are presented to reduce the

number of partitions and thus the computational effort.

To assess the proposed approach two numerical eval-

uations are carried out. First, a multi-target scenario,

where two targets generate multiple correlated measure-

ments, is investigated and different parameterizations of

an SMC-implementation of the generalized PHD-filter

are applied. The results are compared in terms of the
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estimated number of targets, the mean runtime per up-

date, the optimal sub pattern assignment (OSPA) met-

ric and the root mean squared error (RMSE). Second,

the generalized PHD-filter is applied to a single-target

BML-scenario and it is compared to an adaption of the

standard iFilter, presented in [9] in terms of the RMSE

and the processing time. A detailed investigation of the

different likelihood-functions in the BML-scenario of

the two compared approaches closes the numerical eval-

uation.

This paper is organized as follows. Section II gives

an overview of the relation between PGFLs and the

PHD-filter. Section III considers the formulation of the

problem. In III-A the generalized PHD-filter with Pois-

son clutter model is presented. Section III-B investigates

the computational complexity for scenarios where tar-

get measurements are not spatially related. Section IV-A

proposes two ways of approximating the update equa-

tion of the generalized PHD-filter with Poisson-clutter

and without using a distance-criterion in the measure-

ment space. Two numerical evaluations are carried out

in Section V. In Section V-A different parameterizations

of SMC-implementations of the generalized PHD-filter

are applied to a multi-target scenario.The generalized

PHD-filter is applied to a BML-scenario and compared

to the standard iFilter adaption presented in [10] in Sec-

tion V-B. Conclusions are drawn and future work is

presented in Section VI.

II. PROBABILITY GENERATING FUNCTIONALS AND
THE PHD-FILTER

This section follows the considerations and notation

of [21], which is based on [26], [23], [24], [25], [34],

[8] and [30]. It has to be pointed out that all the work

presented in this section has been presented first in

[26], [23], [24], [25], [34], [8] and [30]. However, the

notation of this paper is based on [21] and [35] since

the authors consider it to be more intuitive.

This section provides background information about

the connection between PGFLs and the PHD-filter

which are necessary to understand following sections.

However, for details the authors refer to [26], [21],

[34] or [35], which explains the connection between

the PHD- and the Intensity-filter, using PGFLs.

To begin with, let X be a separable metric space. A

typical choice for X is Rd, d > 0, which is sufficient for
the most applications appearing in target tracking. Then

the space of sets of points in X is defined by

EX := Ø[
[
n¸1
X (n), (1)

where X (n) is the space of sets of size n 2N, that is
X (n) := ffx1, : : : ,xng j xi 2 X , i= 1, : : : ,ng: (2)

When interpreting X as the target state space in a clas-

sical multi-target tracking scenario, where the number

of present targets are not known, EX can be interpreted

as the collection of all possible combinations of target

states at a given time-step. It is assumed, that each el-

ement ' 2 EX nØ is locally finite, that is each bounded
subset of X must only contain a finite number of points

of ' and simple, i.e.,

8xi,xj 2 ', xi = xj ) i= j: (3)

In terms of target tracking this translates to the assump-

tions that only finitely many targets can be present in

a scenario and that no two targets share the same state.

A stochastic process in the sense of [34] is defined as a

measurable mapping

© : (−,F ,P)! (EX ,B(EX )), (4)

where (−,F ,P) is an arbitrary probability space and
B(EX ) denotes the Borel ¾-algebra of EX . Note that
due to this definition the stochastic model of the point

process is defined on the probability space (−,F ,P),
since © is defined to be a measurable mapping. The

associated counting function for an arbitrary B 2 B(X )
is defined by

N¢(B) : (EX ,B(EX ))! (N,B(N))
' 7!N'(B) := jBj, (5)

which counts the number of elements in B and is

measurable. Then the composition,

N¢(B) ±©=N©(¢)(B) : (−,F ,P)! (N,B(N)) (6)

is measurable, since the composition of measurable

functions is measurable again. It can be interpreted as

a counting-function of the outcomes of the stochastic

process. In target-tracking for example N¢(B) ±© yields
the number of targets in the area B 2 B(X ) for a specific
element in the probability space (−,F ,P). The intensity
measure (first order moment, PHD, etc.) is defined for

an arbitrary B 2 B(X ) by the expectation value

E[N©(¢)(B)] =
Z
−

N©(!)(B)P(d!) =
Z
EX
N'(B)P©(d')

(7)

=: ¹©(B), (8)

and thus yields the expected number of points in B. In

target tracking ¹©(B) for B 2 B(X ) denotes the expected
number of targets in some area B μ X . Therefore, the
intensity measure is not a probability density function.

Instead, it can be described as a function of subsets

of X that determines the expected number of elements

therein. P© denotes the pushforward (image) measure

of P, using the point process ©. For any bounded and
Lebesgue-integrable function

h : (X ,B(X ))! (R,B(R)) (9)
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the PGFL of the point process © is defined by

G©[h] :=
X
n¸0

Z
X (n)

nY
i=1

h(xi)P©(dfx1, : : : ,xng) (10)

=
X
n¸0

1

n!

Z
X n

nY
i=1

h(xi)f©(x1, : : : ,xn)dx1 : : :dxn,

(11)

where f© : X n!R is the multi-object density of the

corresponding Jannossy measure and defined such thatZ
B

n!P©(dfx1, : : : ,xng) =
Z
B

f©(x1, : : : ,xn)dx1 : : :dxn (12)

holds for all B 2 B(EX). Equation (11) holds due to the
assumed absolute continuity of P© and the application

of the Radon-Nikodym Theorem (for details see [26] or

[21, p. 16]).

To illustrate the connection of PGFLs and the PHD-

filter, the update equation (the prediction equation is

derived analogously) is exemplary derived using Bayes

theorem, the definition of PGFLs and functional differ-

entiation. For details see [26], [21, p. 17—p. 24] or [35].

Let X μ Rd, d > 0 be the target and Z μ Rl, l > 0 be
the measurement space. Then

EX =Ø[
[
n¸1
X(n) (13)

and
EZ =Ø[

[
n¸1
Z(n) (14)

are defined analogously to (1). According to the defi-

nition of conditional probability, the multi-joint object

density is defined on the product space EZ £EX by
fZ,X : EZ £EX !R

(Z,X) 7! fZ,X(Z,X) = LZjX(Z j X)fX(X),
(15)

where LZjX : EZ £EX !R denotes the multi-object like-
lihood-function on EZ £EX , fX : EX !R is the distribu-
tion of X on EX . In the same way Bayes theorem for

point processes is given by

fXjZ : EX £EZ !R

(X,Z) 7! fXjZ(X j Z) =
LZjX(Z j X)fX(X)R

EX

1

jX 0j!LZjX(Z j X
0)fX(X 0)dX 0

,

(16)

where fXjZ : EX £EZ !R denotes the conditional multi-
object density on EX £EZ . By multiplying (16) with
(1=jXj!)Qx2X h(x) and integrating over EX the PGFL-
form of Bayes theorem is obtained by

GXjZ[h j Z] =
R
EX

1

jXj!
Q
x2X h(x)LZjX(Z j X)fX(X)dXR

EX

1

jX 0j!LZjX(Z j X
0)fX(X 0)dX 0

:

(17)

In the following we are interested in an alternative

representation of (17). To this end, we first determine

the PGFLs of the multi-object likelihood-function and

derive afterwards the PGFL of the joint state under the

following assumptions (see [26], [35, chapter 5.2]).

1) The target process is a Poisson Point Process (PPP)

on X with intensity function ¹s(¢).
2) Conditioned on the event X = fx1, : : : ,xng, the mea-
surement process is the superposition of n mutually

independent, identical, target-oriented measurement-

processes and a given PPP clutter process on Z with

intensity function ¸c(¢).
3) A target generates at most one measurement in Z.

First, the PGFL of the multi-object likelihood-func-

tion LZjX(Z j X) is considered for different cases. If
X =Ø, the PGFL is given by

GZjX[g jØ] :=Gclutter[g]

:= exp

μ̧ μZ
Z

c(z)g(z)dz¡ 1
¶¶

(18)

due to assumption (2), where ¸ 2R denotes the average
number of clutter and each false alarm is distributed

according to c : Z! [0,1]. Second, let X = fxg. Then it
holds, that

GZjX[g j fxg] =
Z
EZ

1

jZj!
Y
z2Z
g(z)LZjX(Z j fxg)dZ

= LZjX(Ø j fxg)+
Z
Z

g(z)LZjX(fzg j fxg)dz

=:Gobs[g j x], (19)

where (19) is given due to assumption (3) and

g : (Z,B(Z))! (R,B(R)) (20)

denotes a bounded and Lebesque integrable test-func-

tion. Let L̂ZjX and pD be defined on Z £X and X,

respectively such that

LZjX(fzg j fxg) = pD(x)L̂ZjX(z j x) (21)

and

LZjX(Ø j fxg) = 1¡pD(x), (22)

where x 2 X, z 2 Z. This implies

GPHDobs [g j x] = 1¡pD(x) +pD(x)
Z
Z

g(z)L̂ZjX(z j x)dz,
(23)

where x 2 X. From now on due to simplicity L̂ZjX is
denoted by LZjX . Third, let X = fx1, : : : ,xng. Then due
to assumption (2) the PGFL is given by

GZjX[g j fx1, : : : ,xng] =Gclutter
nY
i=1

GPHDobs [g j xi]: (24)
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The next step is to find an expression for the PGFL of

the joint state. It holds that

GZ,X[g,h] =

Z
EX

1

jXj!
Y
x2X
h(x)

Z
EZ

1

jZj!
Y
z2Z
g(z) (25)

LZjX(Z j X)fX(X)dZ dX

=

Z
EX

1

jXj!
Y
x2X
h(x)Gclutter

nY
i=1

Gobs[g j x]fX(X)dX
(26)

=GclutterGX[hG
PHD
obs [g j ¢]], (27)

where due to assumption (1) GX is given by

GX[h] := exp(¹(

Z
X

s(x)h(x)dx¡ 1)): (28)

Equation (25) is given due to the definition of condi-

tional probability and (26) holds since

GZjX[g j x] =
Z
EZ

1

z!

Y
z2Z
g(z)LZjXdZ (29)

and (24). The second factor of (27) denotes a composi-

tion of functionals, called branching form of the respec-

tive PGFL and holds due to the definition of PGFLs.

Note, that (27) is obtained by considering

Gclutter

nY
i=1

Gobs[g j ¢] : X!R (30)

as a test-function with respect to x 2 X. In (28) ¹ denotes
the average number of targets and s : R! [0,1] is the

distribution of the targets.

In the following the derivative of a PGFL is needed.

Therefore, let G be a PGFL defined as in (11). Then the

Gâteaux derivative of G[h] with respect to the variation

! is defined by

±G[h;!] := lim
²&0

G[h+ ²!]¡G[h]
²

, (31)

where ! is a real-valued, bounded and Lebesgue-

integrable function on X (or Z). The differentiation with

respect to multiple real-valued, bounded and integrable

variations !1, : : : ,!m is defined iteratively, that is

±mG[h;!1, : : : ,!m] = ±(±
m¡1G[h;!1, : : : ,!m¡1];!m):

(32)

In [26] and [35] it is shown that

LZjX(Z j X) = ±mGZjX[g j X;±z1 , : : : ,±zm]jg=0 (33)

and thus

GXjZ[h j Z] =
±mGZ,X[g,h;±z1 , : : : ,±zm]jg=0
±mGZ,X[g,1;±z1 , : : : ,±zm]jg=0

(34)

holds. Here, ±a denotes Dirac delta at the point a.

The Gâteaux derivative with respect to the Dirac

delta from (33) and (34) has to be investigated carefully,

since Dirac delta is not a proper function [40], [12],

[14], [38] and thus the ordinary Gâteaux derivative

[13, p. 406] is not defined. However, it can be proven

that (31) is well-defined for a large class of PGFLs

[11], in the sense that Dirac delta is approximated by

a series of test-functions, called approximate identities

or Dirac sequences [3, p. 114]. In [11] it is shown that

the Gâteaux derivative with respect to the Dirac delta

from (33) and (34) can be defined using approximate

identities for the class of PGFLs

P2 ´
8<:ª :H!R jª (h) =

X
n¸0

an
n!

¢
Z
X n

nY
i=1

h(xi)f©(x1, : : : ,xn)dx1 ¢ ¢ ¢dxn

9=; , (35)
H´ fh :X !R j h is bounded and

Lebesgue-integrableg, (36)

an 2 [0,1], where the multi-object density f©(x1, : : : ,xn),
x1, : : : ,xn 2 X μ R is either continuous, bounded and in
L1(¹;X n) or in C00 (X n), that is a continuous function

with compact support, n 2 N. Furthermore, in [11] and
[37] it is shown that many well known tracking filters

can be represented by PGFLs from (35).

Finally, the update equation for the first order mo-

ment (or PHD) ¹XjZ is given by an additional functional
derivative

¹XjZ(x j z1, : : : ,zm) = ±GXjZ[h j Z;±x]jh=1: (37)

A computation of (34) and (37) yields the update equa-

tion of the PHD-filter

¹XjZ(x j z1, : : : ,zm) = ¹s(x)
Ã
(1¡pD(x))

+
X
z2Z

pD(x)LZjX(z j x)
¸c(z)+¹

R
X
pD(x)s(x)L̂ZjX(z j x)

dx

!
:

(38)

III. FORMULATION OF THE PROBLEM

A. The Generalized PHD-Filter

The previous section shows how to obtain the update

equation of the PHD-filter by inspecting PGFLs. When

deriving the update equation using PGFLs, essentially

three steps can be identified.

1) Definition of the PGFL of the multi-object likeli-

hood-function GZjX[g j fxg] (see (19)—(24))
2) Definition of the PGFL of the joint state GZ,X (see

(25)—(28)).

3) Functional differentiation to determine the intensity

(see (34) and (37)).

In [7] the authors present the GCR, which is a

generalization of the fourth chain rule for functional
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derivatives from [26]. This can be used to differenti-

ate complex PGFLs. Furthermore, a PHD-filter for gen-

eral target-generated measurement models and a general

clutter process is developed using the GCR. If the clut-

ter is assumed to be Poisson, the update equation of

the general PHD-filter for arbitrary number of measure-

ments per target is given by

¹XjZ(x j z1, : : : ,zm) = ¹s(x)
0@LZjX(Ø j x)+

P
¼2¦(1:m)

³Pj¼j
j=1LZjX(i(¼j) j x)

Qj¼j
k=1,k 6=j ´¼,k

´
P
¼2¦(1:m)

Qj¼j
j=1 ´¼,j

1A ,
(39)

where

´¼,j := 1fa:jaj=1g(¼j)¸c(i(¼j,1)) +¹
Z
s(x)pD(x)

¢LZjX(i(¼j,1), : : : , i(¼j,j¼j j) j x)dx, (40)

and ¦(1:m) denotes the set of all partitions of f±z1 , : : : ,
±zmg, e.g., ¦(1:2) = fff±z1g,f±z2gg,ff±z1 ,±z2ggg. The value
of the likelihood-function LZjX(Ø j x) represents the
probability of a non-detection of target x. The func-

tion i :¦(1:m)!P(Z) is defined as i(f±z1 , : : : ,±zmg) =
(z1, : : : ,zm), for all j 2 f1, : : :mg and

1fa:jaj=1g(¼) =
½
1, if j¼j= 1
0, otherwise

(41)

defines the indicator function. As mentioned in [7] the

probability of detection pD in (39) is defined more

generally as in the standard PHD-filter. A discussion

on this can be found in Section IV-C.

The derivation of (39) can be done analogously to

the standard PHD-filter as described in Section II for

Gobs[g j x] := LZjX(Ø j x)+X
n¸1

1

n!

Z
Z(n)

nY
j=1

g(zj)LZjX(z1, : : : ,zn j x)dz1 : : :dzn
(42)

instead of (23), using the GCR. The difference between

(42) and (23) is that in the second summand of (42) a

sum occurs. This is due to the fact that the generalized

PHD filter does not assume that a target generates at

most one measurement. Instead a target can generate

an arbitrary number of measurements and thus all sets

of size n, that is Z(n) (see definition (1)) need to be

considered. Another possible approach for deriving the

update equation of the generalized PHD-filter is to

use so-called secular functions and the technique of

automatic differentiation as it is done in [36].

Note that (39) can handle correlated measurements

originating from a specific target, since only the as-

sumption that the measurement process is the super-

position of n mutually independent (conditioned on

X = fx1, : : : ,xng) target-oriented measurement-processes
is needed for the derivation of the update equation. In

particular, the measurements are not assumed to be inde-

pendent conditioned on a specific target state. Measure-

ments originating from different targets cannot be cor-

related since in the derivation of the generalized PHD-

filter in [7] the corresponding measurement processes

need to be mutually independent.

B. Computational Complexity of the General
PHD-Filter

The update equation of the PHD-filter for targets

with a general target-generated measurement model

(39) and Poisson clutter is highly complex due to the

combinatorial sum numerically. The number of parti-

tions is growing exponentially with the number n of

measurements and is given by the Bell number Bn. The

exponential-growth of the Bell number is visualized in

Figure 2 and one can see that for an application of (39)

approximations are inevitable. In [16], [17], [18], [20],

[19] and [39] clustering approaches, which are essen-

tially based on the spatial relation of measurements, are

used to reduce the number of partitions. These approx-

imations are possible, if the measurements of a target

are spatially related in the measurement space. How-

ever, scenarios exist where a target generates multiple

measurements per scan which are not spatially related

in the measurement space, e.g., BML. For such scenar-

ios, the partitions in equation (39) need to be reduced

without using any information about the distribution of

measurements in the measurement space.

IV. APPROXIMATION OF THE UPDATE EQUATION

As mentioned in the previous section an evaluation

of all feasible measurement set partitions is not possible

due to the exponential-growth of the number of parti-

tions with increasing set size. Moreover, a reduction of

the number of partitions by the application of clustering

methods is not applicable if measurements that belong

to a specific target are not spatially related in the mea-

surement space. To this end, two novel approaches are

presented in the following section, which approximate

the update equation of the generalized PHD filter, by

reducing the number of investigated partitions without

assuming an underlying spatial distribution of the mea-

surements belonging to a specific target in the measure-

ment space. Furthermore, a generalized definition of the

probability of detection is presented for the generalized

PHD filter.

A. Incorporation of a Priori Information

The first proposed approximation of equation (39)

considers available a priori information about the num-
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ber of generated measurements per target- and sensor-

scan. The idea is to restrict the possible number of

generated measurements, that is to assume that a target

generates at least Nmin 2N and at most Nmax 2 N mea-
surements per sensor-scan. Even though it might seem

obvious how a restriction of the number of measure-

ments per target will influence the update equation of

the generalized PHD-filter, a detailed derivation is car-

ried out in the following to demonstrate how a priori in-

formation and specific assumptions can be incorporated

via a mathematically correct approach into an existing

generalized PHD-filter.

To derive the respective PHD-update equation the

general higher order chain rule, presented in [6] is used.

As in the previous section let

g : (Z,B(Z))! (R,B(R)) (43)

and

h : (X,B(X))! (R,B(R)) (44)

be bounded and Lebesgue-integrable test-functions.

First, the PGFL of the joint state is given analogously

to equation (27) by

GZ,X[g,h] =GclutterGX[hGobs[g j ¢]] = (exp±f)[g,h],
(45)

where

f[g,h] := ¸

μZ
c(z)g(z)dz¡ 1

¶
+¹

μZ
s(x)h(x)Gobs[g j x]dx¡ 1

¶
(46)

and the approximated PGFL of the likelihood-function

Gobs[g j ¢], which incorporates the a priori knowledge
on the number of measurements per target is defined by

Gobs[g j x] := LZjX(Ø j x)+
NmaxX
n=Nmin

1

n!

Z
Zn

nY
j=1

g(zj)LZjX,n(z1, : : : ,zn j x)dz1 : : :dzn:
(47)

Note, that the key to obtain a PGFL-derivable fil-

ters with specific target-generated measurement models,

only Gobs[g j ¢] needs to be adapted. Therefore, incorpo-
rating assumptions/information that is scenario specific,

can be done by modifying Gobs[g j ¢] accordingly. Ap-
plying the general higher order chain rule to determine

the functional derivative of (45) with respect to impulses

yields

±mGZ,X[g,h;±z1 , : : : ,±zm] = ±
m(exp±f)[g,h;±z1 , : : : ,±zm]

=
X

¼2¦(1:m)
±j¼j exp(f[g,h];»¼1 [g,h], : : : ,»¼j¼j[g,h])

=
X

¼2¦(1:m)
exp(f[g,h])

j¼jY
j=1

»¼j [g,h], (48)

where

»![g,h] = ±
j!jf[g,h;!1, : : : ,!j!j]

= ¹

Z
s(x)h(x)±j!jGobs[g;!1, : : : ,!j!j]dx: (49)

For the evaluation of (49) the functional derivative of

definition (47) has to be considered. Therefore, let ! be

an arbitrary element of a partition from ¦(1:m). Then, the

Gâteaux derivative of the functional is given by

±j!jGobs[g;!1, : : : ,!j!j] =
NmaxX
n=Nmin

1

n!
¢ n ¢ (n¡ 1) ¢ : : : ¢ (n¡ j!j+1)

¢
Z
Zn¡j!j

n¡j!jY
j=1

g(z0j)LZjX(i(!),z
0
1, : : : ,z

0
n¡j!j j x)dz01 : : :dz0n¡j!j

(50)

if j!j<Nmin. If j!j 2 fNmin, : : : ,Nmax¡ 1g it is given by

±j!jGobs[g;!1, : : : ,!j!j] =

Ã
LZjX(i(!) j x)

+

NmaxX
n=Nmin

1

n!
¢ n ¢ (n¡ 1) ¢ : : : ¢ (n¡ j!j+1)

¢
Z Nmax

n=Nmin

n¡j!jY
j=1

g(z0j)LZjX(i(!),z
0
1, : : : ,z

0
n¡j!j j x)dz01 : : :dz0n¡j!j

!
(51)

and if j!j=Nmax it is equal to
±j!jGobs[g;!1, : : : ,!j!j] = LZjX(i(!) j x): (52)

If j!j>Nmax the derivative is
±j!jGobs[g;!1, : : : ,!j!j] = 0: (53)

Thus,

±j!jGobs[0;!1, : : : ,!j!j]

=

½
LZjX(i(!) j x), if j!j 2 fNmin, : : : ,Nmaxg

0, otherwise (54)

= 1A(!)LZjX(i(!) j x), (55)

where A := fa : jaj 2 fNmin, : : : ,Nmaxgg. In the following,
the short-hand notation from (55) is used. Given the

functional derivative of the PGFL of the joint state with

respect to impulses the update equation of the corre-

sponding PHD-filter can be determined. It is given by

¹XjZ(x j z1, : : : ,zm) =
±m+1GZ,X[0,1;±z1 , : : : ,±zm ,±x]

±mGZ,X[0,1;±z1 , : : : ,±zm]
(56)

=

0@ X
¼2¦(1:m)

j¼jY
j=1

»¼j [0,1]

1A¡10@ X
¼2¦(1:m)

±B¼[0,1;±x]

1A ,
(57)
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where

B¼[g,h] := f[g,h] ¢
j¼jY
j=1

»¼j [g,h] (58)

and

±B¼[g,h;±x] = ¹s(x)Gobs[g j x]
j¼jY
j=1

»¼j [g,h]

+

j¼jX
j=1

¹s(x)±j¼j jGobs[g;¼j,1, : : : ,¼j,j¼j j j x]

¢
¼Y

k=1,k 6=j
»¼k [g,h] (59)

The evaluation of (57) yields the update equation of

the approximated generalized PHD-filter with Poisson-

clutter. It is given by

¹XjZ(x j z1, : : : ,zm) = ¹s(x)
0@LZjX(Ø j x)

+

P
¼2¦(1:m)

Pj¼j
j=1 1A(¼j)LZjX(i(¼j) j x)

Qj¼j
k=1,k 6=j ´¼,kP

¼2¦(1:m)
Qj¼j
j=1 ´¼,j

1A ,
(60)

where

´¼,j := »¼j [0,1] = 1fa:jaj=1g(¼j)¸c(i(¼j,1))+

¹

Z
s(x)1A(¼j)pD(x)LZjX(i(¼j) j x)dx: (61)

Due to the fact that some summands of equation (60)

are zero, computational effort can easily be saved. A

summand of the sum over all partitions in (60) is zero

if for the respective partition ¼ 2¦(1:m) holds
9j 2 f1, : : : , j¼jg : j¼j j =2 f1,Nmin, : : : ,Nmaxg, (62)

since then either 1fa:jaj=1g(¼j) = 0 or 1A(¼j) = 0. There-
fore, the computational effort can be reduced by reject-

ing the partitions which fulfill condition (62). After re-

jecting the partitions, equation (39) can be evaluated,

since except for the appearance of 1A(¢) = 0 it is identi-
cal to equation (60).

Note, that partitions are not rejected, if they have a

subset, which is of cardinality one. This is independent

of Nmin and Nmax and holds since a Poisson-clutter model

is chosen. Therefore, clutter is modeled as single mea-

surements in the measurement space. However, more

enhanced clutter models could be included. For exam-

ple, in a BML-scenario the context information, which

is available due to a ray-tracer, does not consider cars

and other road users. Therefore, typical clutter sources

in a BML-scenario can be road users, which reflect the

signal emitted by the mobile station and act as new point

sources of the reflected electromagnetic wave(s). Thus,

Fig. 2. Comparison of the Bell number and the number of

partitions due to approximation (60).

multipaths which are received due to the same clutter

source are not independent and hence clutter models

which enable multiple measurements per clutter source

could enhance data fusion algorithms. Obviously, con-

dition (62) then needs to be adapted.

B. Evaluation of Significant Summands

In practical applications, the likelihood-function is

close to zero or might even be represented by zero

for unlikely events due to the numerical resolution of

the computer. Therefore, another practical approach of

reducing the number of partitions which have to be

considered in equation (60) is to evaluate only the

terms for which the likelihood-function value is above

a specific significance-threshold. To this end, a criterion

based on the cardinality of the partition elements is

developed to determine those partitions. Let ¼ 2¦(1:m)
be an arbitrary partition which does not fulfill criterion

(62) and x 2 X be an arbitrary target position. Then, if
9j 2 f1, : : : , j¼jg : j¼j j> 1 and LZjX(i(¼j) j x)· ¿

(63)

is fulfilled

j¼jX
j=1

1A(¼j)LZjX(i(¼j) j x)
j¼jY

k=1,k 6=j
˜́
¼,k ¼ 0 (64)

approximately holds, where ¿ > 0 is a chosen threshold,

which is suitable small, for the significance of a parti-

tion. Note that j¼j j> 1 in (63) has to be fulfilled due to
the first summand in ˜́¼,j , since otherwise it might hap-

pen that only the jth summand of (64) is approximately

zero, while the other summands are significantly larger

than zero. Hence condition (63) can be used to reduce

the number of the considered partitions. If ¿ = 0 in (63),

“¼” can be replaced by “=” in (64).
Note that for the application of this condition the

likelihood-function has to be evaluated for all possible

subsets and all particle positions. The number of all
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possible subsets is given by the binomial series, e.g.,

for a set of m measurements,

NSubsets =

mX
k=0

μ
m

k

¶
= 2m (65)

subsets have to be evaluated. However, depending on

Nmin and Nmax the application of condition (62) already

reduces the number of subsets which have to be con-

sidered significantly, that is for m> 0 and 1<Nmin ·
Nmax ·m an application of condition (62) reduces the

number of subsets of the measurement set, which have

to be considered to

NSubsets = 2
(Nmax+1)¡Nmin+1: (66)

C. Generalization of the Probability of Detection

In [7] the authors emphasize that the probability of

detection in [7, (27)] is defined more generally than in

the standard PHD-filter, where the detection is modeled

by a single Bernoulli-process. If targets generate multi-

ple measurements per scan, the detection process can be

modeled by a discrete probability distribution over the

number of measurements. For (39) and (60) the single-

target likelihood function can be formulated by

LZjX(i(¼j) j x) = p(j¼j j,x) ¢ L̂ZjX(i(¼j) j x), (67)

where the sensor likelihood function L̂ZjX(i(¼j) j x) is
given by

L̂ZjX(i(¼j) j x) = L̃(i(¼j) j x) (68)

and

L̂ZjX(Ø j x) = 1: (69)

Here, x 2 X, where X μ Rd, d > 0 denotes the target
space and ¼j 2 ¼, where ¼ 2¦(1:m) [Ø denotes the set

of partitions for a set of measurements of cardinality m,

defined analogously to Section III-A.

For the definition of the generalized probability of

detection p(¢,x), x 2 X the detection process of the mea-
surements, which are generated by the same target,

needs to be investigated. If the detections (each consid-

ered as a random variable) of the single measurements

are conditionally (conditioned on a specific target) inde-

pendent and have the same distribution (same detection

probability), the detection process can be modeled by a

series of Bernoulli-trials. If this assumption is fulfilled,

a possible choice for p(¢,x) is the Poisson-distribution,
that is

p(n,x) =
¸n

n!
e¡¸, (70)

for all n 2 N and x 2 X, where the parameter ¸ 2R>0
is the expected number of measurements per target. If

the number of measurements, which are generated by a

single target can be restricted to Nmax 2 N the Binomial-

distribution can be used to model the detection process.

It is given by

p(n,x) =

μ
Nmax

n

¶
qn(1¡ q)Nmax¡n, (71)

for all n 2N and x 2 X, where q 2 [0,1] denotes the
detection probability of an individual measurement.

Note, that the Binomial-distribution can be consid-

ered as a special case of the Poisson-distribution. To this

end, let

q :=
¸

Nmax
: (72)

Then

lim
Nmax!1, q!0, Nmaxq!¸

μ
Nmax

n

¶
qn(1¡q)Nmax¡n = ¸

n

n!
e¡¸,

(73)

for all n 2N [29, p. 79].
Thus the Poisson-distribution can be used to model

the detection process for small detection probabilities

of the individual measurements and a large number of

trials, that is in scenarios where the target may gen-

erate a large number of measurements. The Binomial-

distribution can be used if the maximal number of mea-

surements per target Nmax is known. Note, that the two

proposed definitions for p(¢,x), x 2 X are only valid if

the detections of the single measurements belonging to

the same target are conditionally independent and iden-

tically distributed. If this assumption is not valid, other

distributions need to be considered.

V. NUMERICAL EVALUATION

To verify the applicability of the considerations of

Section IV two numerical evaluations are carried out in

the following.

A. Multi-Target Scenario with Correlated
Measurements

In this section, a two-target scenario is considered

(see Figure 3 (a)), where the targets are moving linearly

with a constant speed of 5 m/s (target 1) and 3 m/s (tar-

get 2). The trajectory of the first target starts at (10,5)T

and is directed to (650,400)T. The second target starts at

(10,500)T and is directed to (700,10)T. In each iteration

(the scan time is 1 s) two correlated measurements are

drawn per target according to a Gaussian-distribution

with the following parameters. The mean is given by the

position of the target and the covariance matrix is given

by § =

μ
R C

CT R

¶
, R = diag(10,10) and C = diag(5,5).

Since the probability of detection per measurement is

pD = 0:8, the covariance matrix § is restricted according

to the size of available measurements per target. Further-

more, two clutter measurements are drawn uniformly

per iteration in the field of view, which is given by

FOV := [0,700]£ [0,700]: (74)
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Fig. 3. Visualization of the two-target scenario. Two targets (green

circle) are linearly moving with a constant velocity on their

trajectory (blue line). In one iteration a target generates two

correlated measurements (blue crosses), each with probability of

detection pD = 0:8. The measurements are drawn around the targets

true position according to a Gauss-distribution with covariance

matrix §. Furthermore, two clutter measurements (red crosses) are

generated uniformly over the field of view in each iteration.

Fig. 4. Legend for Figures 5—8.

For the evaluation of (60), an SMC-implementation is

used. The prediction is the same as for the standard

PHD-filter, where the probability of survival is set to

pS = 1:0 for all particles and the single-object transi-

tion density is defined by the continuous white-noise

acceleration model from [4] with q̃= 1:5. To reduce the

computational complexity, in each iteration 50 newborn

particles are generated around the measurements of the

previous iteration. For the initialization 100 particles

are uniformly drawn in the field of view. A standard

resampling-algorithm (see [33]) is carried out and the

maximal number of particles is restricted to 150. For the

update of the filter, (60) is implemented and conditions

(62) and (63) are used to restrict the number of parti-

tions. The likelihood-function is defined as follows. Let

Z μ R2 be the measurement space. Then,

EZ := Ø[
[
n¸1
Z(n) (75)

is defined analogously to Section II by the space of sets

of points in Z. The likelihood-function is given by

LZjX(i(¢) j ¢) : Ez nØ£R4!R: (76)

Let in iteration k 2 f1, : : : ,100g be mk 2 f2, : : : ,6g (num-
ber of clutter fixed to two, maximum number of mea-

surements per target is two) the number of all received

measurements. Let X μ R4 be the target state space (po-
sition + velocity in 2 dimensions, respectively). Then,

for a subset z = fz1, : : : ,zng 2 EZ nØ, n 2 f1, : : : ,mkg and
x 2 X arbitrary the likelihood-function is defined by
LZjX(i(z) j x) = p(jzj)¢

N

0BBBB@
0BB@
z1

...

zn

1CCA ,
0B@
Hx

...

Hx

1CA ,
0BBBB@
R C :: : C

CT R :: : C

...
...

. . .
...

CT CT : : : R

1CCCCA
1CCCCA ,
(77)

where H :=

μ
1 0 0 0

0 1 0 0

¶
and p : N! [0,1] defines

the probability of observing a set of measurements with

the respective number of elements. It is defined by

p(n) =

8<:
1¡PD, if n= 0

PD ¢
μ
2

n

¶
qn(1¡ q)2¡n, if n= 0,

(78)

where PD = q= 0:8. Note that given a specific target

state x 2 X the measurements are not conditionally in-

dependent. Since only the mutual independence of the

target-oriented measurement processes is needed in the

derivation of the generalized PHD-filter, the defini-

tion (77) makes sense. The mean number of clutter ¸

from (40) is set to two and the distribution of clutter

c : FOV! [0,1] is uniform in the field of view. To ex-

tract a state estimate in each iteration, the k-means al-

gorithm is applied to the set of particles, which were

present in the previous iteration. The number of clusters

k is given by the rounded number of estimated target

states from the PHD-filter in each iteration. Note that

the enhanced state extraction scheme, presented in [31]

needs to be modified for applying it to a scenario where

several targets generate multiple measurements.

To assess the proposed PHD-filter 100 Monte Carlo

runs are performed for different parameterizations of the

approximation conditions (63) and (62). Figure 7 visu-

alizes the results of the different parameterizations in

terms of the estimated number of targets. It can be seen

that the estimated number of targets does not depend on

the chosen partition-sizes, that is it does not depend on

approximation criterion (63). This is due to the fact that

the number of significant partitions with significance

threshold ¿ = 0:0 (and ¿ = 1:0) is more or less equal for

all three investigated parameterizations Nmin = 2=Nmax =

2, Nmin = 1/Nmax = 3 and Nmin = 1/Nmax = 6. Figure 9 vi-

sualizes exemplary for one parametrization the mean

number of partitions, where in each Monte Carlo run

the mean number of significant partitions is computed
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Fig. 5. RMSE with respect to target 1 (a) and target 2 (b). Due to

the fact that the generalized PHD-filter over estimates the number of

present targets if the significance threshold ¿ is set to 1.0 (see Figure

7) and the fact that the target state extraction is based on the

rounded number of estimated targets, the parametrization using

¿ = 1:0 perform better in terms of the RMSE than the

parametrizations using ¿ = 0:0.

for each time-step over all particles. Furthermore, it can

be seen from Figure 7 that the parameterizations with

significance threshold ¿ = 1:0 have a larger deviation in

terms of the estimated number of targets than the param-

eterizations using the significance threshold ¿ = 0:0 and

over-estimate the true number of present targets. This

yields to a better performance of the parameterizations

using the significance threshold ¿ = 1:0 in terms of the

root mean squared error (RMSE) with respect to the two

true target states, which can be seen in Figures 5. This is

due to the fact that the target state extraction is done us-

ing a k-means clustering algorithm, where k is given by

the rounded estimated number of targets. Therefore, the

over-estimation of the number of targets by the parame-

terizations with significance threshold ¿ = 1:0 yields to

a clustering that always estimates at least two clusters. In

contrast to that, the parameterizations with significance

Fig. 6. Mean of the OSPA-values with order p= 2 and cut-off

value c= 100. In terms of the OSPA-metric the parametrizations

using ¿ = 0:0 perform better compared to those that use ¿ = 1:0,

since the over-estimation of the number of targets (see Figure 7) is

penalized by the OSPA-metric. The change of the number of

investigated partitions does not yield a significant alteration of the

results.

Fig. 7. Estimated number of targets, where the dashed black line

shows the true number of present target.

threshold ¿ = 0:0 under-estimate the true target number

for some iterations and thus the k-means clustering algo-

rithm estimates only one cluster for these iterations. In

iterations, where no estimate for a specific target is pro-

duced by the generalized PHD-filter, the squared error is

set to 1002 m = 10000 m. However, the over-estimation

yields to a worse performance of the parameterizations

using significance threshold ¿ = 1:0 compared to the

parameterizations, which use a significance threshold

¿ = 0:0, since each over-estimation is penalized by the

OSPA-metric. The result in terms of the mean time con-

sumption per iteration is shown in Figure 8. It can be

seen that the parameterizations using the significance

threshold ¿ = 1:0 are faster compared to the parameter-

izations using a threshold of ¿ = 0:0. Furthermore, the

parameterizations with Nmin = 2/Nmax = 2 perform bet-
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Fig. 8. Comparison of the mean time for updating the generalized

PHD-filter of different parametrizations. It can be seen that the more

partitions the filter processes and the smaller the significance

threshold ¿ is chosen the longer the update takes.

Fig. 9. Mean number of partitions resulting from condition (62)

and mean number of partitions due to condition (63) for two

parameterizations (Nmin = 2/Nmax = 2 (black), Nmin = 1/Nmax = 3

(red)). The number of all partitions is given by the Bell number

(blue). For the computation of the mean number of significant

partitions in each Monte Carlo run the mean number of significant

partitions is computed for each time-step over all particles.

Afterwards, the mean of the number of significant partitions is

computed over all Monte Carlo runs. The number of significant

partitions is almost the same for the two parameterizations.

ter in terms of time consumption than Nmin = 1/Nmax = 3

and Nmin = 1/Nmax = 6. In summary: the less partitions

and the larger the significance-threshold is, the faster

and worser the algorithm performs.

Also a parameterization without using the two ap-

proximation conditions has been investigated in terms

of processed time per iteration. Since for this non-

approximated SMC generalized PHD-filter one iteration

took up to 5:30 ¢ 103 s, only one MC-run has been per-
formed. Thereby, the mean computation time was 2:28 ¢
103 s, which shows, that even if Nmin = 1 and Nmax = 6

(no approximation in terms of (62) has been made) and

Fig. 10. A single target moves on a linear trajectory with constant

speed in an urban environment. At each instance of time multipaths

are created using a ray-tracer on a grid and the measurement process

is simulated using a Gaussian distributed noise for each

multipath–parameter. Furthermore, the detection process is

simulated. The colors indicate the received field–strength at the

observer (star). Map Data: ©GeoBasis-DE/BKG 2015. Ray-Tracer

Visualization: AWE Communications.

¿ = 0:0 is chosen, the respective generalized PHD-filter

parameterization (Nmin = 1=Nmax = 3,¿ = 0:0) performs

about 45 times faster than the standard version, which

does not use any approximation condition at all.

All in all, it is numerically shown that the proposed

methods of approximation for the generalized PHD-

filter can be applied to scenarios where targets gen-

erate multiple measurements. It should be noted that

the definition of the likelihood-function does depend on

the considered scenario and is not part of the numeri-

cal evaluation of this work. Furthermore, the follow-

ing should be kept in mind. The integral of the clutter-

intensity ¸c(¢) yields the number of false measurements
(not false targets). Thus ¸ denotes the mean number of

false measurements per iteration. Hence, clutter is de-

fined in terms of elements of the measurement space,

not as clutter targets in the target space. Thus, in sce-

narios where clutter scatterer generate multiple clutter-

measurements per scan, enhanced clutter models need

to be investigated.

B. Single Target Blind Mobile Localization Scenario

To demonstrate the connection of the presented ap-

proach to the challenge of BML a single-target scenario

in a simulated urban environment is presented. For gen-

erating multipath-measurements, a database for a fixed

OS and a grid of MS locations is generated by using a

ray-tracing simulation. The distance between two grid

points is set to 10 m. The number of received multipaths
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Fig. 11. Zoom of the investigated scenario. Map Data:

©GeoBasis-DE/BKG 2015. Ray-Tracer Visualization: AWE

Communications.

is restricted to six and each multipath is characterized by

its azimut (angle) of arrival (AoA), its elevation (angle)

of arrival (EoA) and its relative time of arrival (RToA)

with respect to the first received multipath. Thus,

Z := [0,2¼]£ [¡¼,¼]£R>0 (79)

and

EZ := Ø[
[
n¸1
Z(n) (80)

analogously to Section II. Afterwards, a linear ground-

truth for the target (that is an electromagnetic emitter),

which is moving with a constant velocity of 2.4 m/s,

is simulated (see Figure 11). Then, in each time-step

the lower left grid point of the box, in which the tar-

get is located in, is determined. The multipaths which

correspond to the chosen grid point are taken to gen-

erate the multipath-measurements, referred to as the

true multipaths in the following. First, in each iteration

Gaussian-distributed noise is added to the true multi-

paths, where the standard deviations are set to ¾AoA =

¾EoA = 0:001 rad for the azimuth and elevation of arrival

and ¾RToA = 1:0=c s, where c := 299792458 m/s defines

the speed of light. Furthermore, the detection is simu-

lated by a binomial detection process with probability

of detection of pD = 0:95. No clutter is added to the

measurements.

The generalized PHD-filter is implemented includ-

ing the approximations proposed in (62) and (63), where

Nmin := 3, Nmax := 6 and the threshold for significance

of a partition ¿ := 1:0 ¢1010. The field of view (FOV) of
the considered scenario is given by

FOV := [645259:0,645999:0]£ [5495257:0,5496747]:
(81)

Furthermore, the probability of detection is indepen-

dent of the target’s state space, that is p(n,x) = p(n)

for all x 2 X = FOV£R2, n 2 f1, : : : ,6g. It is modeled
by (71), where q := pD := 0:95. Then, it is incorporated

into the likelihood-function, which is defined for a hy-

pothetical emitter position » 2 X and a set of multipath-
measurements ZK := fzkgKk=1, where zk 2 Z (according
to the ideas presented in [1]) by

p(fzkgKk=1 j ») := p(n) ¢¸K¡n© ¢
Y
j2I
N (hj»;zij ,Cij ), (82)

where

h» := fhk»gMk=1 (83)

denotes the set of predicted multipaths with respect to

» and the fixed OS coming from the ray-tracer. The

occurrence of clutter in a set of multipaths is modeled by

¸© :=
0:1

FOV
, (84)

which is equal to the clutter density of the general-

ized PHD-filter. In [chapter 4.4][1] and [2] the prob-

abilistic likelihood-function is defined by the sum over

all possible data interpretation, that is all possible as-

sociations between measured and predicted multipaths.

Therefore, a possible data interpretation is denoted by

EKi1,:::,iM , where

ij :=

8>>>><>>>>:
0, no association, measured

multipath is not detected

k 2 f1, : : : ,Kg, jth predicted multipath is

associated with measured

multipath k

:

(85)

However, due to the computational effort, we only use

the best data association, which is determined by ap-

plying the Munkres-algorithm [5] to the set of mea-

sured and predicted multipaths, using the Mahalanobis-

distance with the covariance matrix

Cij = C = diag[¾2AoA ¾
2
EoA ¾

2
RToA] (86)

for the construction of the cost matrix. Thus, the index ij
in (82) denotes the best (global) association for the spe-

cific predicted path. The generalized PHD-filter is real-

ized by an SMC-implementation, since the likelihood-

function can be computed only point-wisely. The max-

imal number of particles used by the generalized PHD-

filter is given by 700 and particles are only drawn and

predicted to grid points, where at least one multipath can

be received due to the available database. In each itera-

tion 200 newborn targets are uniformly drawn over the

FOV. The single-object transition density is defined by

the continuous white-noise acceleration model from [4],

with q̃= 1:5 and the probability of survival pS = 1:0. To

extract the target states the weighted mean of all parti-

cles is computed.

To compare the result of the proposed generalized

PHD-filter, the approach proposed in [9] is considered.

There, standard PHD and intensity filters (iFilter) are

applied to BML. Since the standard PHD and iFilter

make the assumption that a target generates at most

one measurement per sensor-scan, the integral of the
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intensity, that is the estimated number of targets, that are

present in the FOV, is equal to the estimated number of

measurements. Due to the fact, that one target in BML

can emit several multipaths a post-processing is needed

for the state-extraction. Thus, in [9] a generalization of

the so-called particle grouping from [31] is presented.

In the following the generalized mean computation from

[9, Section 4.B] together with an SMC-implementation

of the iFilter [33] is applied. The likelihood-function of

a hypothetical emitter position xi 2 X and one multipath
zk 2 ZK , k 2 f1, : : : ,Kg is defined by

p(zk j ») :=
8<:
N (hj»;zij ,Cij ), if 9j 2 f1, : : : ,Mg

such that ij = k

0, otherwise

(87)

The assignment is done via Munkres Algorithm be-

tween the set of measured multipaths Z and the set of

predicted multipaths h» of ». Therefore, the index ij de-

notes the assigned measured multipath ZK of the jth
predicted multipath from h» . The probability of detec-

tion is set to pD(x) = 0:9 for all x 2 X and the detection
probability in the space of hypothesis SÁ is defined by

pD(Á) = 0:4. The transition probability from SÁ to S is
set to ª(x j Á) = 0:2, the transition probability in SÁ is
defined as ª (Á j Á) = 0:01 and the transition probability
from S to SÁ is given by ª(Á j x) = 0:1. The number of
particles is restricted to 1500. The thresholds for tar-

get existence of the standard iFilter and the generalized

PHD-filter are set to 0 to make the filter comparable in

their RMSE-performance.

To assess both filters with respect to accuracy 100

Monte-Carlo runs of the presented scenario are per-

formed. The results in terms of the RMSE is shown

in Figure 12. It can be seen that both filters perform

more or less equivalent after iteration 30 (the general-

ized PHD-filter is slightly better in terms of its RMSE-

performance). However, it also can be seen that until

iteration 20 the generalized PHD-filter performs worse

than the standard iFilter. First, it can be seen that the ini-

tialization of the generalized PHD-filter is not as good

as the initialization of the standard iFilter. This is essen-

tially due to the fact that the likelihood-function of the

generalized PHD-filter is much more restrictive than the

likelihood-function of the standard iFilter. This is visu-

alized in Figure 14 (a) and (c) which shows the sum of

the likelihood-functions given in (82) and (87), that isX
¼2¦ZK

(1,3:6)

p(¼ j »), (88)

where ¦Z
K

(1,3:6) denotes the set of all partitions of ZK ,
where the subsets of one partition possess cardinality

c 2 f1,3, : : : ,6g, that is
¦Z

K

(1,3:6) := ff¼Z1 , : : :¼zmg : ¼zi μZK , j¼zi j 2 f1,3, : : : ,6gg
(89)

KX
k=1

p(zk j ») (90)

for the standard iFilter and all » 2 X respectively. The

number of investigated partitions is restricted due to

the approximation condition (62), where Nmin = 3 and

Nmax = 6. For better visualization only values of the

likelihood-function, which are larger than 1 ¢ 1010 are
plotted. It is obvious that the shape of (88) is sharper

and therefore more restrictive than (90). This is due to

the fact that the likelihood-function in (82) is given by a

product of Gaussians. Therefore, partitions with at least

one unlikely subset of multipaths (with respect to a hy-

pothetical emitter position) possess a small likelihood-

function value. This contrasts the likelihood-function of

the standard iFilter, which only assesses single multi-

paths (see 87). Thus, the time of convergence (until it-

eration 10—11) of the generalized PHD-filter is longer

than the time of convergence of the standard iFilter. Fur-

thermore, it can be seen from Figure 12 that the local-

ization of both filters around iteration 15 gets worse,

while the generalized PHD-filter performs worse than

the standard iFilter. This is due to the fact, that the

likelihood-functions produce ambiguities in terms of

the most likely hypothetical emitter position, which is

shown in Figures 14 (b) and (d) for iteration 15. Since in

some MC-runs a correct initialization of the generalized

PHD-filter was not performed until the occurrence of

these ambiguities, the generalized PHD-filter performs

worse than the standard iFilter. However, the general-

ized PHD-filter performs better in iteration 20—25, since

the restriction cancels out the ambiguities earlier than

the likelihood-function of the standard iFilter.

The comparison of both filters in terms of estimated

number of targets, that is the integral of the intensity

function over FOV is presented in Figure 13. Due to

the assumption that one target generates at most one

measurement per iteration the standard iFilter estimates

the number of multipaths which belong to a target.

In contrast to this the generalized PHD-filter estimates

after a few iterations the correct number of present

targets.

In terms of time consumption the standard iFilter

clearly outperforms the generalized PHD-filter: For one

MC-run the standard iFilter needs 82614 ms, where

the generalized PHD-filter takes 20250085 ms, which

shows that it is of factor 245 slower than the standard

iFilter.

VI. CONCLUSION AND FUTURE WORK

In this paper two different ways of approximation

for the generalized PHD-filter update from [7] are pro-

posed. In contrast to approximations for extended ob-

ject and group tracking, the spatial relation of the mea-

surements in the measurement space is not used. The

approximations are based on incorporating the a pri-
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Fig. 12. RMSE of the standard iFilter, which uses an enhanced

post-processing scheme for target state extraction and the

generalized PHD-filter applying the proposed approximation

conditions with Nmin = 3, Nmax = 6 and ¿ = 1:0 ¢ 1010.

Fig. 13. Estimated number of targets, that is the sum of all particle

weights before resampling of the standard iFilter and the generalized

PHD-filter. Due to the assumption that one target generates at most

one measurement per iteration, which is violated in the considered

scenario, the standard iFilter estimates the number of multipaths,

which belong to target. The generalized PHD-filter is able to

estimate the correct number of present targets.

ori knowledge on the number of measurements per tar-

get and the significance of a partition in terms of the

likelihood-function. Therefore, the proposed approxi-

mations can be applied to scenarios, where a spatial

distribution of the measurements is not available. Fur-

thermore, the detection process is modeled as a func-

tion of target state and number of measurements and

the usage of the Binomial- and Poisson-distribution for

conditionally independent and identical distributed de-

tection processes of the single measurements is moti-

vated. An example for such a kind of scenario is BML

where mobile terminals have to be tracked passively and

non-cooperatively in an urban environment (see [9], [1],

[2]). Two numerical examples for assessing the pro-

Fig. 14. Visualization of the likelihood-functions (88) and (90) at

two instances of time.

posed methods are presented. First, a two-target sce-

nario, where each target generates multiple correlated

measurements is used to show the applicability of the
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proposed methods and to discuss the number of parti-

tions that have been reduced. Several parameterizations

are investigated and compared to each other. Second, a

single-target BML-scenario is investigated and the gen-

eralized PHD-filter, using the proposed approximations

and the generalization of the probability of detection is

compared against an adaption of the standard intensity

filter in terms of runtime, the estimated number of tar-

gets and the RMSE performance.

Future work will investigate improved schemes for

state extraction and enhanced clutter modulation.
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Track initiation for blind mobile terminal position tracking

using multipath propagation.

In Proceedings of the 11 th International Conference on

Information Fusion, Cologne, Germany, 2008.

[3] H. W. Alt

Lineare Funktionalanalysis.

Springer, 2012.

[4] Y. Bar-Shalom, X. Li, and T. Kirubarajan

Estimation with Applications to Tracking and Navigation.

Wiley-Intersience, 2001.

[5] F. Bourgeois and J.-C. Lassalle

An extension of the Munkres algorithm for the assignment

problem to rectangular matrices.

Communications of the ACM, 14(12):802—804, Dec. 1971.

[6] D. Clark and J. Houssineau

Faa di bruno’s formula for chain differentials.

arXiv Preprint arXiv:1310.2833, Okt. 2013.

[7] D. Clark and R. Mahler

Generalized PHD filter via a general chain rule.

In Proceedings of the 15th International Conference on In-

formation Fusion, Singapore, 2012.

[8] D. J. Daley and D. Vere-Jones

An introduction to the theory of point processes.,

volume 2. Springer, 2nd edition edition, 2008.

[9] C. Degen, F. Govaers, and W. Koch

Emitter localization under multipath propagation using

SMC-intensity filters.

In Proceedings of the 16th International Conference on In-

formation Fusion, Istanbul,Turkey, 2013.

[10] C. Degen, F. Govaers, and W. Koch

Tracking targets with multiple measurements per scan.

In Proceedings of the 17th International Conference on In-

formation Fusion, Salamanca, Spain, 2014.

[11] C. Degen, R. Streit, and W. Koch

On the functional derivative with respect to the Dirac delta.

Submitted to the 10th Workshop on Sensor Data Fusion:

Trends, Solutions, and Applications, Bonn. July 2015.

[12] P. A. M. Dirac

The physical interpreatation of the quantum dynamics.

Proceedings Royal Society, 113:621—641, 1927.

[13] E. Engel and R. M. Dreizler

Density Functional Theory.

Springer, 2011.

[14] F. G. Friedländer and M. Joshi

Introduction to the Theory of Distributions.

Cambridge University Press, 2nd edition, 1999.

[15] K. Gilholm, S. Godsill, S. Maskell, and D. Salmond

Poisson models for extended target and group tracking.

In SPIE Conference 5913: Signal and Data Processing of

Small Targets, 2005.

[16] K. Grandström

Extended Object Tracking using PHD filters.
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An improved measurement

model for target tracking

under measurement origin

uncertainty

VIJI PAUL PANAKKAL

RAJBABU VELMURUGAN

Single-target tracking using a standard Kalman filter with fixed

measurement noise covariance will be effective if the target orig-

inated measurement is known. Under measurement origin uncer-

tainty (MOU) the target state is updated in a probabilistic data

association (PDA) framework using the set of measurements ob-

tained inside a validation region (gate region). This paper develops

a model for validated measurements using a conventional target

originated measurement model and a model for measurements with

uncertain origin. Using the developed model for validated measure-

ments the measurement noise covariance under measurement origin

uncertainty (MOU) is estimated. With this model the multiplicative

scalar information reduction factor (IRF) in the computation of

Cramér-Rao lower bound (CRLB) with MOU is shown to be due

to an additive term in the measurement noise covariance. This ad-

ditive term is used in the probabilistic data association (PDA) filter

for computing the spread of innovation. This leads to a modified

measurement noise covariance, innovation covariance and Kalman

filter gain resulting in an adaptive iterative PDA (Iter-PDA) filter.

Improvements obtained using the proposed approach are demon-

strated through Monte Carlo (MC) simulations by comparing with

PDA and CRLB. The consistency of the modified filter is checked

and found to be within the acceptable limits.
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1. INTRODUCTION

In surveillance systems, measurements can be due to

targets of interest, clutter or false alarms. Target track-

ing in such conditions suffers from measurement origin

uncertainty (MOU) in addition to measurement noise.

Multiple hypotheses tracking (MHT), the optimal ap-

proach for tracking under MOU, [1], [2], uses all mea-

surements Zk up to time k for data association. The

issue with MHT is the maintenance of exponentially

increasing number of hypotheses with time [1]. MHT

uses pruning and merging of hypotheses to limit the

Gaussian components [3], [4]. Sub-optimal approaches

such as probabilistic data association (PDA) use only

the measurements Z(k) obtained at instant k for updat-

ing the predicted target state x̂i(k j k¡1). Because of the
reduced computational effort compared to the optimal

approach and due to its robustness towards clutter and

missed detection (measurement) PDA is widely used

for tracking in clutter [5], [6]. Earlier work exploring

different aspects of using PDA in target tracking such

as, consistency, maneuver, track initiation-deletion and

track bias have appeared in [7], [8], [9], [10], [11]. In

this paper the focus is on improving the estimation ac-

curacy under MOU by modeling the uncertainty asso-

ciated with measurement origin.

PDA uses all the measurements inside a gate area

around the predicted state known as validated measure-

ments for state update using the Kalman filter frame-

work. Hence, the posterior state error covariance of the

Kalman filter is increased depending on the measure-

ment origin uncertainty. The gate size is determined us-

ing the innovation covariance computed using the pre-

diction error covariance and measurement noise covari-

ance. As the state update progresses the filter used in

state update attains steady state and the prediction error

covariance in Kalman filter reduces. Therefore, for time

index k = 1,2,3 the gate size computed using the inno-

vation covariance reduces as shown in Fig. 1. The in-

novation covariance is also used in PDA filter for com-

puting the measurement-to-track association hypotheses

probability. In PDA filter, the Kalman filter gain and

the innovation covariance corresponding to time instant

k are computed using the parameters available at time

k¡1, i.e., without using measurements from kth instant.
The proposed approach in this paper uses measurements

from kth instant to compute innovation covariance and

Kalman filter gain.

Fig. 1. Instantaneous adaptability of data association filter in

clutter and clutter free zones.
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In practice targets may move in clutter or clutter

free zones and the tracking algorithm should adapt to

the situation. As shown in Fig. 1, for time index k = 4

the target enters a clutter zone and the pre-computed

innovation covariance does not anticipate a clutter en-

vironment. The PDA filter increases the posterior error

covariance and anticipates such a situation for the next

time instant at k = 5. The standard PDA implementa-

tions provided in [5], [6], [12], [13] lack the instanta-

neous adaptability to measurement origin uncertainty.

The adaptability of PDA filter during target maneuver

is addressed in [14] by scaling the process noise co-

variance using the available data at current time k. For

bearings-only tracking the gain of the extended Kalman

filter is modified in [15] for better handling of tar-

get maneuver. In the proposed approach, the innova-

tion covariance is adapted instantaneously so that better

measurement-to-track association hypotheses probabil-

ity is obtained. Using the modified innovation covari-

ance the Kalman filter gain with MOU is computed and

used for state error covariance update. The innovation

covariance is made adaptive by computing the modified

measurement noise covariance representing the MOU in

addition to the known measurement noise variance.

The method developed in this paper improves the

target state estimation accuracy by adaptively adjust-

ing the filter parameters used in state estimation. In the

smoothed PDA filter [16], the estimation accuracy of

the PDA filter is improved by using measurements from

the future. The prior estimates such as predicted target

state and innovation covariance can be improved using

the smoothed PDA, but with increased computational

cost due to the usage of measurements from multiple

time instants. For the case of finite resolution sensors

the estimation accuracy has been improved compared to

PDA in [17] for static and dynamic clutter pattern. In the

limiting case of infinite resolution sensors the approach

in [17] gives similar estimation accuracy as PDA. In this

paper the objective is to model the origin uncertainty

and to improve the estimation accuracy compared to

PDA even in the case of measurements obtained from

sensors having infinite resolution. The estimation accu-

racy for closely moving targets are improved in itera-

tive JPDA (Iter-JPDA) compared to JPDA by comput-

ing better measurement-to-track association probabili-

ties [18], [19] using measurements from the current time

frame. The approach presented here also improves the

estimation accuracy using measurements from the cur-

rent time frame. In [20] improved estimation accuracy

in the PDA frame work has been obtained by modifying

the data association probability with an assumption that

the target originated measurements will always be closer

to the predicted measurements. The approach developed

in this paper improves estimation accuracy through bet-

ter filter parameters obtained by modeling the measure-

ment origin uncertainty. For the case of non-parametric

tracking, a measurement sparsity estimation approach is

developed in [21]. Compared to conventional track ori-

ented clutter density estimation the sparsity estimation

approach in [21] reports improved track confirmation

rate, but the approach does not report estimation ac-

curacy improvements. In parametric form the proposed

approach in this paper assumes the spatial density of

clutter measurements is known a priori, as in the case

of parametric PDA, and assumes that the number of

clutter measurements follow a Poisson distribution. In

non-parametric form the Poisson parameter is replaced

with sample spatial density as in PDA filter.

We compare the mean square error obtained us-

ing the proposed approach with the Cramér-Rao lower

bound (CRLB) [22]. The CRLB for the unknown pa-

rameter estimation is given by the Fisher information

matrix (FIM) [23]. The CRLB for a linear dynamic sys-

tem in the presence of additive white Gaussian noise

and MOU has been derived in [9], [24] and observed

that a scalar information reduction factor (IRF) exists

due to MOU. The sufficient condition for the existence

of a scalar IRF in MOU and its wide application is

shown in [25], [26]. The exact computation of CRLB

with MOU requires higher order integrals to obtain the

IRF [9], [24]. A recursive form of CRLB obeying matrix

Riccati-like expression is obtained in [27], [28] with an

exception that the measurement noise covariance term is

multiplied by an IRF. A simplified recursive expression

for CRLB is shown in [29], but still requires evaluation

of higher order integrals. The tabulated values of IRF

given in [27], [30] can be used as an approximation,

but for a fixed process and measurement noise (Q and

R) along with gate size °. In this paper the information
matrix used for the computation of CRLB for linear

Gaussian case with MOU has been computed using the

modified measurement noise covariance in a recursive

form. The derived expression for scalar IRF can be eval-

uated for anyQ,R and ° and avoids evaluation of higher
order integrals.

The main contribution of this paper is in provid-

ing a model for validated measurements to carry out

improved data association for target tracking in clutter.

Compared to the target originated measurement model

the developed model for validated measurements han-

dles the measurement origin uncertainty (MOU). Us-

ing the proposed model for validated measurements the

adaptive measurement noise covariance in target track-

ing with MOU is computed. With this adaptive measure-

ment noise covariance other filter parameters are mod-

ified and improved target state estimates are obtained.

Another contribution of this paper is a method to com-

pute the information reduction factor (IRF) with Monte

Carlo (MC) simulations. Using this IRF the CRLB with

MOU is computed and the performance of the proposed

approach is compared.

The outline of this paper is as follows. In Section 2

we discuss the standard PDA based estimation process

for comparison with the proposed approach. The pro-

posed measurement model for validated measurements
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to handle MOU is developed in Section 3. Using this

measurement model, the modified innovation covari-

ance and Kalman filter gain can be computed. The PDA

filter using the proposed model becomes iterative be-

cause of the dependency between measurement-to-track

association hypothesis probability and the innovation

covariance. In Section 4, the recursive form of infor-

mation matrix update with MOU has been developed.

Here we also show that the scalar multiplicative IRF

is due to an additive term in the measurement noise

covariance computed with MOU. Section 5 gives the

simulation results and compares the root mean-square

positional error. The filter consistency test results and

the variation of IRF for various Q, R and ¸ are also

provided. Section 6 provides the conclusion.

2. TARGET STATE ESTIMATION USING PDA

Consider the target state transition and measurement

model of the form

xi(k+1) = Fxi(k)+w(k), (1)

zi(k) =Hxi(k) + v(k), (2)

where k is the time index, xi is a state vector of tar-
get i, zi is the measurement vector, w and v are zero

mean Gaussian noise vectors with covariance Q and

R, respectively. The measurements obtained inside a

gate area around the predicted state is referred as val-

idated measurements. The validated measurement set

Z(k) = fzj(k)gj=1:mk obtained at kth scan consist of mk
number of measurements and Zk = fZ(k)g denotes the
cumulative set of measurements up to time k. Among

the set fzj(k)gj=1:mk the index of target originated mea-
surement is unknown and this causes the measurement

origin uncertainty (MOU). The state transition matrix F
and observation matrix H are assumed to be known. The

predicted measurement is obtained from the predicted

target state as ẑi(k j k¡ 1) =Hx̂i(k j k¡ 1). The error of
the predicted measurement is

ºi(k) = zi(k)¡ ẑi(k j k¡ 1),
and the corresponding innovation covariance is

Si(k) = E[ºi(k)º
T
i (k)]: (3)

For single target tracking with measurement origin un-

certainty, the joint association hypothesis is defined as

A(j) =

8>>>>>><>>>>>>:

j = 1 :mk,zj(k) is associated with
target and all other measurements

are assumed to be from clutter.

j = 0, No measurement is associated

with target, all measurements are

assumed to be from clutter.

(4)

Measurement index j = 0 indicates no validated mea-

surement is used for association. Therefore, A(0) in-
dicates track is associated with predicted measurement

ẑ(k j k¡ 1). There are mk number of measurements

available at scan k and only one measurement is asso-

ciated with track. Conventional PDA approach assumes

the associated measurement to be target originated. The

set of all validated association hypotheses are denoted

as A= fA(j)gj=0:mk .
The measurements falling in the validation region

V(°) are only considered for forming the association

configuration. Validation region is a region around the

predicted target state where the measurements will be

available with high probability. The measurements in-

side the validation region satisfy the condition

Vk(°) = [z : ºj(k)S
¡1
i (k)ºj(k)

T · °] (5)

where ° is a parameter to control the validation (gate)

region and the set of validated measurements at time

k is denoted as Z(k) = fzj(k)gj=1:mk . The probability of
the hypothesis A(j) is computed in PDA as

¯j = p(A(j) j Zk) = p(A(j) j Z(k),mk,Zk¡1),

=
1

c
p(Z(k) jA(j),mk,Zk¡1)p(A(j) jmk,Zk¡1),

=
1

c
p(Z(k) jA(j),mk,Zk¡1)p(A(j) jmk), (6)

where c is a normalizing constant. The conditioning of

A(j) on Zk¡1 is considered irrelevant and so the prior for
data association p(A(j)) is uniform in PDA [12]. Hence,
the probability of association hypotheses unconditioned

(conditioned only on number of measurements) with

previous measurements is computed in (6). Because of

the un-conditioning of A(j) with prior measurements
the proposed approach computes the measurement like-

lihood using innovation covariance unconditioned with

any data association hypothesis. In the context of pa-

rameter estimation accounting model selection uncer-

tainty the unconditional covariance is computed in [31].

The unconditional covariance improves the precision

in estimates by accounting the uncertainty about what

model to use [31]. In target tracking under MOU the

data association hypothesis A(j) assumes measurement
zj is originated from target. In the proposed approach

the unconditional covariance accounts the uncertainty

in A(j) and improves the estimation accuracy. The like-
lihood function of target originated measurement zj(k)
is computed in PDA assuming a Gaussian density with

mean Hx̂i(k j k¡ 1) and variance Si(k), i.e. [12]
p(Z(k) jA(j),Zk¡1) =8><>:

V¡mk+1k P¡1G N (zj(k);Hx̂i(k j k¡1),Si(k)),
j = 1, : : : ,mk:

V¡mkk j = 0:

(7)

where Vk is the volume of the validation region de-

fined as
Vk = cnz°

nz=2jSi(k)j1=2, (8)

where nz is the dimension of measurement (simula-

tions carried out in this paper are with nz = 2) and cnz
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is the volume of the nz dimensional unit hypersphere,

and c2 = ¼. In contrast to PDA, the proposed approach

computes the likelihood given in (7) using a modified

innovation covariance Sμi (k), where the term Sμi (k) is

computed in the proposed approach as unconditional

innovation covariance [31]. PDA uses Si(k) in (7) as-

suming measurement zj(k) is target originated. In the

proposed approach the modified innovation covariance

Sμi (k) is computed using the modified measurement er-

ror covariance Rμ
i (k).

2.1 Kalman filter

In the standard Kalman filter for tracking without

MOU the prediction and update of error covariance

matrices can be summarized as [32], [33]

Pi(k j k¡ 1) = FPi(k¡ 1)FT+Qi, (9)

P¤i (k j k) = (I¡Ki(k)H)Pi(k j k¡ 1)(I¡Ki(k)H)T

+Ki(k)RKi(k)
T, (10)

where P¤i (k j k) denote posterior state error covariance
without measurement origin uncertainty. The innovation

covariance is computed as

Si(k) =HPi(k j k¡ 1)HT+R: (11)

The Kalman gain Ki(k) is computed as

Ki(k) = Pi(k j k¡ 1)HTS¡1i (k): (12)

The updated state estimate is obtained as

x̃i(k j k) = x̂i(k j k¡ 1)+Ki(k)ºi(k): (13)

In standard Kalman filter, the measurement originates

from the known target, hence

ºi(k) = zi(k)¡Hx̂i(k j k¡ 1),
can be computed without ambiguity.

2.2 Estimation with measurement origin uncertainty
(MOU)

In most of the existing approaches to handle mea-

surement origin uncertainty, the posterior target state

is obtained as the conditional mean [5] by averaging

over all valid association hypotheses. The conditional

mean is obtained as the minimum mean square estimate

(MMSE) [12]

x̃(MMSE)i (k j k) = E[xi(k) j Zk]
= E[E[xi(k) jA,Zk] j Zk]
=
X
j=0:mk

E[xi(k) jA(j),Zk]P(A(j) j Zk)

=
X
j=0:mk

E[xi(k) jA(j),Zk]¯j: (14)

The term ¯j = p(A(j) j Zk) is computed as [2], [12]

¯j =

8>><>>:
b

b+
Pmk
j=1 ej

, j = 0 no valid measurement,

ej

b+
Pmk
j=1 ej

, 1· j ·mk:
(15)

PDA filter in parametric form assumes the number of

clutter measurements are obtained from Poisson model

defined with parameter ¸, where ¸ is the spatial density

of false measurements. Parametric PDA filter computes

b and ej as follows

b = ¸
p
2¼jS(k)j

μ
1¡PdPG
Pd

¶
,

ej = exp(¡0:5ºTj (k)S¡1(k)ºj(k)), (16)

where j:j denotes the determinant, and Pd is the probabil-
ity of detection and PG is the probability of measurement

falling inside the gate. In non-parametric form the Pois-

son parameter ¸ is replaced with sample spatial density

¸=mk=Vk as the clutter density.

The proposed approach computes b and ej using

(16) by replacing Si(k) with a modified innovation co-

variance Sμi (k) to account for the measurement origin

uncertainty. Less than unity value for ¯j suggests that

the origin of jth validated measurement is uncertain.

The term x̃
(j)
i (k j k) = E[xi(k) jA(j),Zk] is the updated

state estimate conditioned on jth validated measure-

ment having originated from target. The estimate using

A(j) is

x̃
(j)
i (k j k) = x̂i(k j k¡ 1)+Ki(k)(zj(k)¡Hx̂i(k j k¡ 1)),

(17)

where Ki(k) is the Kalman gain, and ºj(k) = zj(k)¡
Hx̂i(k j k¡ 1) is the corresponding innovation. Given
target originated measurement and predicted target state,

innovation can be computed without ambiguity. But in

(14) target state x̃i(k j k) is computed with unknown
target originated measurement. Using (17) and (14) the

estimated target state is

x̃(MMSE)i (k j k) =
X
j

x̃
(j)
i (k j k)¯j

= x̂i(k j k¡ 1)+Ki(k)
X
j=0:mk

ºj(k)¯j(k):

(18)

In (18) with index j = 0 the predicted measurement is

used for updating the target state. Hence, the measure-

ment prediction error is

º0(k) = z0(k)¡ ẑi(k j k¡ 1)
= ẑi(k j k¡ 1)¡ ẑi(k j k¡ 1) = 0: (19)
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Let z̃i(k) =
P
j z̄j(k)¯j(k). The mean of the estimation

error can be computed as

E(²x,k) = E(xi(k)¡ x̃(MMSE)i (k j k))
= E[xi(k)¡ x̂i(k j k¡ 1)¡Ki(k)z̃i(k)]
= E[²xi,k¡1]¡Ki(k)E[z̃i(k)]: (20)

Therefore, if E[z̃i(k)] = 0 for every k and E[²x,k¡1] = 0
then E(²x,k) = 0 and the state estimate will be unbi-

ased. PDA assumes only one measurement originated

from target. But z̃i(k) is computed using more than one
measurement. On account of this measurement origin

uncertainty exists in the computation of z̃i(k) and the
proposed approach attempts to model the measurement

origin uncertainty by defining a random variable qj(k).
The proposed approach models the measurement ori-

gin uncertainty using qj(k), so that E[z̃i(k)] = 0 and
the target state will remain unbiased. If all measure-

ments are modeled using (2), considering only the tar-

get originated case, then the measurement noise covari-

ance is R= E[v(k)v(k)T] as in PDA. But only one mea-
surement among the validated measurement might have

originated from target. Hence, under measurement ori-

gin uncertainty the measurement noise covariance can

have two parts. The first part is a fixed known noise co-

variance R for the measurement originated from target

and the second part denoted as §(k) = E[qj(k)qj(k)
T]

is contributed by the uncertainty in the measurement

origin. The uncertainty in measurement origin is com-

puted using the spread of measurements. The random

variable qj(k) is used in the next subsection to define
the spread of measurements. The modification of the

measurement noise covariance affects the innovation co-

variance, Kalman gain and posterior error covariance as

shown in the following sub-sections.

3. PROPOSED MEASUREMENT MODEL AND
MODIFIED FILTER PARAMETERS

In PDA the target state estimate is obtained using

combined innovation z̃i(k) as given in (18). The com-
bined innovation z̃i(k) is obtained as

z̃i(k) =
X
j

z̄j(k)¯j(k)

=
X
j=0:mk

(zj(k)¡Hx̂i(k j k¡ 1))¯j(k)

=
X
j=0:mk

(zj(k)¯j(k))¡Hx̂i(k j k¡ 1): (21)

Using (21) the target state estimate obtained by (18) can

be rewritten as

x̃(MMSE)i (k j k) = x̂i(k j k¡ 1)

+Ki(k)

0@ X
j=0:mk

(zj(k)¯j(k))¡Hx̂i(k j k¡ 1)
1A :
(22)

In (22) the innovation is computed using the expecta-
tion of measurement E[zj(k)] =

P
j=0:mk

zj(k)¯j(k). Let
the target originated measurement be denoted with in-
dex i, zi(k). Therefore, posterior target state computed
using (17) with index i is corresponding to the target
originated measurement zi(k). Comparing the expres-
sion for posterior target state in PDA (22) and with the
posterior target state obtained with the target originated
measurement, zi(k) obtained with measurement index i
in (17)

z̃(k) =
X
j=0:mk

(zj(k)¯j(k)) = zi(k)

=Hxi(k) + v(k): (23)

If the measurement estimate z̃(k) = zi(k) then the PDA
estimates computed using (22) is equal to the estimates
obtained with known target originated measurement.
Hence, z̃(k) is used as an estimate of zi(k) and the error
in using validated measurement for updating the state
of target instead of the measurement that originated
from the target is computed as, qj(k) = zj(k)¡ z̃(k).
Substituting for z̃(k) from (23) gives

qj(k) = zj(k)¡
X
j=0:mk

zj(k)¯j(k): (24)

Hence, using (23) the modified measurement model for
the measurements obtained in the validation region is
defined as

zj(k) = zi(k)+qj(k)

=Hxi(k) + v(k)+qj(k), (25)

where,v(k)»N (v(k);0,R)andqj(k)»N (qj(k);0,§(k)).
For the target originated measurement, substituting j = i
in (24)

qi(k) = zi(k)¡
X
j=0:mk

(zj(k)¯j(k)): (26)

Using (23) in (26), gives qi(k) = 0, accordingly, the
modified measurement model given in (25) becomes (2)
for the target originated measurement. Under associa-
tion hypothesis A(0) the target originated measurement
may not be available inside the validation region and
the predicted measurement ẑi(k j k¡1) =Hx̂i(k j k¡ 1)
is used for state update. Hence, under A(0) the tar-
get originated measurement zi(k) is replaced with ẑi(k j
k¡1) and (25) becomes

zj(k) = ẑi(k j k¡1)+qj(k): (27)

Using the identity
P
j=0:mk

¯j(k) = 1, the expression for
qj(k) is rewritten as

qj(k) = zj(k)¡
X
j=0:mk

zj(k)¯j(k)

= zj(k)¡Hx̂i(k j k¡ 1)
¡
X
j=0:mk

(zj(k)¡Hx̂i(k j k¡ 1))¯j(k)

= ºj(k)¡E(ºj(k)): (28)
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The expression for qj(k) derived in (28) is used in
the next subsection for computing §(k). The conven-
tional PDA [12] assumes under hypothesis A(j) mea-
surement zj(k) is target originated. The association is

carried out under the assumption that at the maxi-

mum only one measurement can be originated from

target. If zj(k) is target originated then ¯j should be

equal to one. The proposed model anticipates a non-

ideal situation to identify the target originated mea-

surement zi(k) from the set of measurement Z(k) =
fzj(k)gj=1:mk , so has a provision to cater the uncertain-
ties in case none of the ¯(j) are equal to one. To sat-

isfy zi(k) =
P
j=0:mk

(zj(k)¯j(k)), the association proba-
bility ¯i(k) should be equal to one and ¯j(k) = 0 for

all j 6= i, because Pj=0:mk
¯j(k) = 1. If, max(¯j(k)) = 1

then there is only one nonzero ¯j(k) value (¯j(k) =

p(A(j) j Zk) = 1) and there is no uncertainty in select-
ing A(j), so §(k) = 0. But in practice, max(¯j(k))< 1
and this implies §(k) 6= 0 and results in additional terms
in measurement error covariance, innovation covariance

and posterior target state error covariance. Conventional

PDA modifies the posterior target state error covariance

with an additional term corresponding to the measure-

ment origin uncertainty. The proposed approach com-

putes the additional additive terms and modifies the

measurement error covariance and innovation covari-

ance along with posterior target state error covariance.

The additive term used for modifying the measurement

error covariance is obtained as, §(k) = E[qj(k)q
T
j (k) j

Zk]. An expression for computing is §(k) is derived in
the next subsection.

3.1 Modified measurement error covariance

The modified measurement error covariance is com-

puted using (25) as

Rμ(k) = E[(zj(k)¡Hxi(k))(zj(k)¡Hxi(k))T j Zk]
= (E[v(k)v(k)T]+E[qj(k)qj(k)

T j Zk]): (29)

In PDA the measurement likelihood is computed using

the error covariance R(k) conditioned on the hypotheses

that the given measurement alone is originated from

the target. The modified measurement error covariance

Rμ(k) is the unconditional measurement error variance

[31]. The unconditional measurement error covariance

consists of an additional term. The additional error

variance term corresponds to the error in using the

validated measurement for updating the target state

instead of measurement that originated from the target

and this can be obtained using (24) as

E[qj(k)qj(k)
T j Zk]

= E[(zj(k)¡ z̃(k))(zj(k)¡ z̃(k))T j Zk]:
The first term of the measurement error covariance

in (29) is computed as

E[v(k)v(k)T] =R: (30)

The second term of the measurement error covariance

can be obtained using (28) as

§(k) = E[qj(k)q
T
j (k) j Zk]

= E[(ºj(k)¡E(ºj(k)))
(ºj(k)¡E(ºj(k)))T j Zk]: (31)

Using (30) and (31) in (29) the modified measurement

error covariance can be computed as

Rμ(k) =R+§(k): (32)

Assuming ºj(k) are independent and identically dis-

tributed (i.i.d), as shown in [28], the expression for §(k)
can be obtained from (31) as

§(k) = E[ºj(k)ºj(k)
T j Zk]

¡E(ºj(k) j Zk)E(ºj(k) j Zk)T

=

mkX
j=0

¯jºj(k)ºj(k)
T¡ Z̃(k)Z̃(k)T, (33)

where Z̃(k) = E(ºj(k) j Zk). The expectation in (33) is
over the measurement error ºj(k) = zj(k)¡Hx̂i(k j k¡
1) and ¯j / p(ºj(k)). The expression given in (33) is
used in PDA filter for computing the posterior error

covariance [12], [6]. For the case with Pd = 1 and PG = 1

in (16), i.e., with b = 0 in (15) results in ¯0 = 0 and the

modified measurement error covariance is obtained as

Rμ(k) =R+§(k): (34)

Hence, the modified measurement error covariance

Rμ(k) is adaptive with probability of detection Pd and

also with measurement origin uncertainty.

3.2 Modified innovation covariance

The modified innovation covariance is computed by

substituting Rμ(k) instead of R in (11)

Sμi (k) =HPi(k j k¡ 1)HT+(1¡¯0)R+§(k): (35)

For ¯0 = 0 the modified innovation covariance is

Sμi (k) = Si(k) +§(k): (36)

where Si(k) is the innovation covariance of target origi-

nated measurements and the term §(k) is used for com-
puting the spread of innovation in [12]. The modified

innovation covariance Sμi (k) is used in (16) and (15) to
find the data association probabilities in the proposed

approach.

3.3 Posterior error covariance in PDA

The posterior covariance with measurement origin

uncertainty can be obtained from Appendix D.3 of

[12] as

Pi(k j k) = E
£
(xi(k)¡ x̃i(k j k))(xi(k)¡ x̃i(k j k))T j Zk

¤
,

(37)
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Pi(k j k) = ¯0Pi(k j k¡ 1)+ (1¡¯0)P¤(k j k)

+Ki(k)

0@ mkX
j=0

¯j z̄j z̄
T
j ¡ Z̃Z̃T

1AKi(k)T,
(38)

where P¤(k j k) is the posterior covariance without mea-
surement origin uncertainty, obtained in (10), and ¯0
is the probability of updating the target state without

having any valid measurement.

3.4 Modified filter gain

The objective in computing gain K in Kalman fil-

ter is to minimize the estimation error, by minimizing

the trace of the posterior error covariance P(k j k). The
target index i is dropped in this section for notational

brevity. Substituting the expression for posterior covari-

ance from (10) in (38) gives

P(k j k) = ¯0P(k j k¡ 1)
+ (1¡¯0)((I¡K(k)H)P(k j k¡ 1)
£ (I¡K(k)H)T+K(k)RK(k)T)

+K(k)

0@ mkX
j=0

¯jºjº
T
j ¡ Z̃Z̃T

1AK(k)T: (39)
The gain Kμ that minimizes the trace of P(k j k) (sum
of the mean square errors in the estimates of all the

elements of state vector) is obtained by computing the

derivative with respect to K as

d(tracefP(k j k)g)
dK

= 2(1¡¯0)(I¡K(k j k)H)P(k j k¡ 1)(¡H)T

+2K(k j k)((1¡¯0)R+
mkX
j=0

¯jºjº
T
j ¡ Z̃Z̃T),

(40)

and setting this equal to zero. The modified filter gain

Kμ is

Kμ(k) =

(1¡¯0)P(k j k¡ 1)HT
(1¡¯0)(HP(k j k¡ 1)HT+R) +

Pmk
j=0¯jºjº

T
j ¡ Z̃Z̃T

:

(41)

The modified gain Kμ obtained in (41) reduces to the

standard Kalman gain

K(k) =
P(k j k¡ 1)HT

HP(k j k¡ 1)HT+R =
P(k j k¡ 1)HT

S(k j k) (42)

under no measurement origin uncertainty. The quantity

§(k) =

mkX
j=0

¯jºj(k)z̄
T
j (k)¡ Z̃(k)Z̃T(k),

will be zero if ¯j = 1 for any j, (
P
j=0:mk

¯j = 1). The

target state conditioned on hypothesis A(j) denoted as

x̃
(j)
i (k j k) is computed in (17) is conditioned on only
one hypothesis A(j). Hence, the gain K(k) used in
(17) is the standard Kalman gain. The modified filter

gain is used in computing the posterior state error

covariance because of the involvement of more than

one association hypotheses. The posterior state error

covariance computed using modified filter gain Kμ(k)

is referred as modified posterior state error covariance

denoted by Pμ(k j k).
The modified posterior state error covariance can

be obtained by substituting Kμ obtained by (41) in (39)

as

Pμ(k j k) = ¯0P(k j k¡ 1)+
(1¡¯0)((I¡Kμ(k)H)P(k j k¡ 1)(I¡Kμ(k)H)T

+Kμ(k)RKμ(k)T)

+Kμ(k)

0@ mkX
j=0

¯jºjº
T
j ¡ Z̃Z̃T

1AKμ(k)T: (43)

3.5 Iterative PDA (Iter-PDA)

The PDA approach uses Kalman filter (KF) frame-

work and in KF the estimation process evolves with

time and measurement update. The time update and

measurement update steps involved in target track-

ing under MOU using PDA approach is shown in

Fig. 2.

The modified innovation covariance is computed in

the proposed approach using modified measurement er-

ror covariance Rμ(k) instead of fixed measurement noise

variance R. The gain used for computing the covariance
update in the measurement update step is also modi-

fied with the measurement error variance. The differ-

ence in the proposed approach compared to conven-

tional PDA approach is shown with bold dotted arrows

in Fig. 2. The main difference with conventional PDA

is in computing the adaptive data association proba-

bilities and modified filter gain as shown in Fig. 2.

The proposed modifications in gain and association

probabilities are obtained with dynamic measurement

error variance §(k). The modified association prob-
abilities are used for computing the combined target

state estimate. The advantage of the proposed technique

(Iter-PDA) is shown with Monte Carlo simulations in

Sec. 5.

The modified innovation covariance Sμ(k) computed
using (35) can be written as

Sμ(k) =HP(k j k¡1)HT+(1¡¯0)R+§(k),
=HP(k j k¡1)HT+Rμ(k): (44)

Therefore, by modifying the measurement model in

Iter-PDA the measurement noise covariance is modi-

fied with an additive term §(k) corresponding to mea-
surement origin uncertainty. The modified innovation
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Fig. 2. A flow diagram for measurement update and time update in target tracking under MOU. Dotted thick arrows shown at two places

indicate the proposed adaptations compared to PDA. With the proposed adaptation, fixed measurement noise covariance R becomes

Rμ(k) =R+§(k).

covariance and modified Kalman gain are due to the

modified measurement noise covariance Rμ(k). Using

the modified innovation covariance Sμ(k) and filter gain

Kμ(k) the PDA filter is modified and steps in the Iter-

PDA algorithm are summarized as follows,

² Step 1: Compute posterior target state x̃(j)i (k j k) for
j = 0, : : : ,mk with association hypothesis A(j), us-

ing (17).

² Step 2: Compute innovation covariance Sμ(k) using
(35). For first iteration, i.e., at n= 1, §(k) is un-

known, as a result, Sμ(k) = S(k).

² Step 3: Compute filter gain Kμ(k) using (41) and

posterior covariance Pμ(k j k) using (43).
² Step 4: Compute the association probabilities ¯j using
(15) with the modified innovation covariance Sμ(k).

² Step 5: If ¯j is different from the previous iteration

go to Step 1. Otherwise iteration stops.

² Step 6: Target state in MMSE sense is estimated as
xμi (k) =

P
j x̃
(j)
i (k j k)¯j .

² Step 7: Compute the predicted state and covariance as

xi(k+1 j k) = Fxμi (k j k), (45)

Pi(k+1 j k) = FPμ
i (k j k)FT+Q: (46)

The difference between PDA and the proposed Iter-

PDA is in the computation of the modified measurement

noise covariance Rμ(k) and the modified innovation co-

variance Sμ(k). With this modification, Rμ(k)¸R and

Sμ(k)¸ S(k) because §(k) is positive semi-definite, as
shown in Appendix D.3 of [12]. The additive term §(k)

becomes zero with ¯j = 1. The instantaneous adaptabil-

ity of Iter-PDA is achieved by modifying the filter pa-

rameters Rμ(k), Sμ(k), Kμ(k) and Pμ(k j k) with MOU.
In the absence of MOU these parameters are the stan-

dard Kalman filter parameters. In the case of conven-

tional PDA given in [5], [6], [12], [13] the posterior

error covariance P(k j k) is the only term that changes

with MOU. Therefore, in conventional PDA the effect

of MOU at time instant k will appear on filter parame-

ters (S(k+1), K(k+1)) at the subsequent time instant

k+1.

The term §(k) in modified innovation covariance

Sμ(k) is a function of ¯j , j = 0, : : : ,mk as shown in (33).

But, the proposed approach computes ¯j , j = 0, : : : ,mk
using Sμ(k) in (16). Hence, the process of computing Sμ

becomes iterative and the iteration process stops when

the nth iterated ¯
(n)
j , j = 1, : : : ,mk does not change, i.e.X
j

j¯(n)j ¡¯(n¡1)j j< À, (47)

where À is a sufficiently small, pre-defined quantity.

The iteration process increases the measurement likeli-

hood as shown in Appendix B. Because of the iterative

computation of association probabilities the proposed

approach is referred here as Iter-PDA. The Iter-JPDA

developed in [19] computes the association probabili-
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ties using the iteratively computed maximum a poste-

rior estimates. The proposed approach here computes

the association probabilities and innovation covariance

by solving (33, 35) and (15, 16) iteratively.

4. CRLB WITH MOU USING MONTE CARLO
AVERAGING TECHNIQUE

In target tracking with MOU the tracking perfor-

mance can be evaluated by comparing how close the

mean square error (MSE) is to the theoretical lower

bound of the estimation error. This bound obtained

as Cramér-Rao lower bound (CRLB) is shown to be

the equivalent to the error covariance matrix [23] of

the Kalman filter for the linear Gaussian case without

MOU. The CRLB with MOU will also provide a mech-

anism to compare the performance of the proposed ap-

proach and PDA approach. In this section a recursive

form of CRLB with measurement origin uncertainty is

computed for the linear Gaussian case using the mea-

surement model proposed in Sec.3. The difficulty in ob-

taining the CRLB with MOU is in the computation of

information reduction factor (IRF). The approach given

in [9], [24] requires computationally intensive numer-

ical integration for the computation of IRF. The other

alternative is to use tabulated values given in [27], [30]

for a fixed filter parameter case. The approach devel-

oped in this section depend on Monte Carlo runs and

is applicable to any filter parameters and clutter den-

sity.

Let x̃i(k j k) be an unbiased estimate of xi(k). The
error covariance of x̃i(k j k) denoted as Pi(k j k) has a
lower bound referred to as the CRLB on the estimation

error and is expressed as [23]

Pi(k j k) = E[(x̃i(k j k)¡ xi(k))(x̃i(k j k)¡ xi(k))T]
¸ J¡1(k), (48)

where the lower bound J(k) is denoted without target

index for notational brevity and can be obtained as

J(k) = E[[rxi(k) logp(xi(k),zj(k))]
[rxi(k) logp(xi(k),zj(k))]T]

=¡E[rxi(k)[rxi(k) logp(xi(k),zj(k))]T]: (49)

An unbiased state estimator with covariance matrix

equal to CRLB (holding equality in (48)) is statistically

efficient [22], [23]. A recursive form of information

matrix J(k) can be obtained as in [34]

J(k+1) =D22(k)

¡D21(k)(J(k) +D11(k))¡1D12(k), (k > 0),

(50)

where the terms Di1i2 (k) can be computed as

D11(k) =¡Efrxi(k)
[rxi(k)

logp(xi(k+1) j xi(k))]Tg
D21(k) =¡Efrxi(k)

[rxi(k+1)
logp(xi(k+1) j xi(k))]Tg

D12(k) =¡Efrxi(k+1)
[rxi(k)

logp(xi(k+1) j xi(k))]Tg
D22(k) =¡Efrxi(k+1)

[rxi(k+1)
logp(xi(k+1) j xi(k))]Tg

¡Efrxi(k+1)
[rxi(k+1)

logp(zj(k+1) j xi(k+1))]Tg:
(51)

In (51) rxi(k) is the first-order partial derivative operator
with respect to xi(k). The expectation operator is defined

as [23]

¡Efrxi(k)[rxi(k) logp(:)]Tg
= Ef[rxi(k) logp(:)][rxi(k) logp(:)]Tg, (52)

and D12(k) = [D21(k)]T. Using the state evolution (1)

and the modified measurement error covariance (34),

the terms inside the expectation of (51) can be evalu-

ated as

rxi(k) logp(xi(k+1) j x(k))
=rxi(k)¡ 1

2
[[xi(k+1)¡Fxi(k)]TQ¡1(k)

[xi(k+1)¡Fxi(k)]]
= FTQ¡1(k)[xi(k+1)¡Fxi(k)]: (53)

Similarly

rxi(k+1) logp(zj(k+1) j xi(k+1))
=rxi(k+1)¡ 1

2
[[zj(k+1)¡Hxi(k+1)]T

£ (Rμ(k+1))
¡1
[zj(k+1)¡Hxi(k+1)]]

=HT(Rμ(k+1))
¡1
[zj(k+1)¡Hxi(k+1)],

(54)

where Rμ(k+1) is the modified measurement error

variance and obtained in (34) as

Rμ(k+1) =R+§(k+1): (55)

The matrices defined in (51) are computed using (54)

and (55) as follows

D11(k) = Efrx(k)[rx(k) logp(x(k+1) j x(k))]Tg
= EfFTQ¡1(k)Fg= FTQ¡1(k)F,

D12(k) =¡FTQ¡1(k),
D22(k) =Q¡1(k) +EfHT(Rμ(k+1))¡1Hg

=Q¡1(k) +HTEf(Rμ(k+1))¡1gH: (56)

The only term in the computation of J(k+1) that de-

pends on measurements is D22(k). Using (56) in (50)
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the recursive form of J(k+1) can be rewritten as

J(k+1) =Q¡1(k)+HTEf(Rμ(k+1))¡1gH
¡Q¡1(k)F(J(k) +FTQ¡1(k)F)¡1FTQ¡1(k):

(57)

The difficulty in computing J(k+1) using (57) is the

presence of the expectation operator. We use a Monte

Carlo approximation of J(k+1) as suggested by [23].

The term Ef(Rμ(k+1))¡1g can be obtained, from Ap-

pendix A, as

Ef(Rμ(k+1))¡1g= Ef(R+§(k+1))¡1g
= q2R

¡1, where q2 < 1: (58)

Here q2 is the scalar information reduction factor (IRF).

Substituting (58) in (57), the CRLB with MOU can be

obtained as

J(k+1) =Q¡1(k)+HTq2R
¡1(k+1)H

¡Q¡1(k)F(J(k) +FTQ¡1(k)F)¡1FTQ¡1(k):
(59)

The CRLB for the target state xi(k) can be obtained from

the inverse of the information matrix J(k) as [22], [23]

CRLB(xi(k)) = J
¡1(k): (60)

A deterministic expression for the CRLB consisting of

higher order integrals for evaluating the expectation op-

eration in (58) over all possible validated measurements

can be obtained as shown in [27]. One way to avoid

the computation of higher order integral is to use the

tabulated values for IRF. The tabulated values of IRF

given in [27], [30] are for q= 1 and R= I, but for dif-

ferent q and R the IRF values will be different. The

values of IRF are shown to depend on q, R, ¸ and Pd
[27], [28]. But, in the simulations carried out in this

paper with high clutter density it is observed that the

IRF also depends on the time index k (Fig. 10[a] shows

variation of IRF with k). The simulation results indi-

cate the information reduction decreases when a filter

attains steady state. The RMS positional error provided

in the next section are computed using Monte Carlo

simulations. Therefore, the CRLB is obtained as an aux-

iliary result of the simulations. In fact the tracker per-

formance evaluation based on Monte Carlo simulation

does not require additional MC runs for the computation

of CRLB.

5. SIMULATIONS

To compare the proposed approach with PDA, an

example scenario having state vector xT = [x _x;y _y]T

and initial condition xT = [200 0;10000;¡15]T is con-
sidered [12]. The system evolves according to

x(k+1) = Fx(k)+¡w(k), (61)

Fig. 3. Scenario in X-Y plane. Clutter measurements obtained from

cumulative time instants (k = 1 to 100) are plotted with magenta

circles. Clutter measurements at k = 50 are shown with bold black

squares. True position at k = 50 is shown with red bold square.

(a) Case (i): Clutter measurements are uniformly distributed in a

square centered around the correct measurement (b) Case (i): Clutter

measurements are uniformly distributed in surveillance region.

where ¡ =

26664
T2=2 0

T 0

0 T2=2

0 T

37775 and the time interval T =

1 s. The process noise covariance and state transition

matrices are

Q=

·
Q1 0

0 Q1

¸
q, F=

·
F1 0

0 F1

¸
, (62)

where

Q1 =

264
T4

4

T3

2

T3

2
T2

375 , F1 =

·
T 1

0 1

¸
: (63)

The process noise is a zero mean white sequence with

variance, E[w(k)2] = q2. Measurement noise is a zero

mean white sequence with variance

R=

·
200 0

0 200

¸
:

The state error covariance is initialized according to the

two-point differencing method [32], [35]. The measure-

ments are assumed to be obtained from target as well

as from clutter. The clutter measurements are generated

in two ways. In case (i), the clutter points are uniformly

distributed in a square having area A= 10¼°jS(k)j1=2
and centered around the correct measurement (known in

simulation) [12]. In case (ii), clutter measurements are

distributed uniformly in a rectangular area covering the

surveillance region. The surveillance region is defined

by minimum and maximum X-Y coordinates of the tra-

jectory. The scenario is shown in X-Y plane in Fig. 3

for q= 0. Compared to the case (i) shown in Fig. 3(a),

the number of clutter measurements will be lower inside

the gate for case (i) shown in Fig. 3(b), because of the

spread of measurements across the surveillance region.

Clutter measurements at k = 50 is shown in Fig. 3 to

demonstrate the difference in spread of measurements.

The advantage of Iter-PDA will be significantly vis-

ible with more clutter points inside the gate. Therefore,
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Fig. 4. RMS positional error (in m) versus time index k, with

conventional and the proposed approach with ° = 1 and q= 0 for

varying clutter densities (a) ¸= 1e¡4. (b) ¸= 1e¡3.

the simulations results with case (i) are provided in

Fig. 4 to Fig. 6. The results with case (ii) is provided in

Fig. 7. The parameter ° controlling the gate area is de-

fined in Section 2. The average number of clutter points

m̄k = ¸A per measurement frame is assumed to be Pois-

son distributed, where ¸ is the clutter density. The av-

erage number of iterations in Iter-PDA was five. In this

section the performance of the Iter-PDA approach and

PDA are compared to the CRLB. The CRLB and the

information reduction factor (IRF) with MOU are com-

puted for various filter parameters and clutter densities.

The IRF variation pattern with ¸ and time index k were

analyzed using Monte Carlo simulations. The consis-

tency of Iter-PDA filter is also checked and compared

with that of PDA under various Pd, ¸ and q.

5.1 Estimation performance

The root mean square (RMS) positional error for

100 Monte Carlo (MC) runs with q= 0 is plotted in

Fig. 5. RMS positional error (in m) versus time index k, with

conventional and the proposed approach with ° = 1, m̄k = 10 and

q= 1 for varying probability of detection (a) Pd = 1. (b) Pd = 0:9.

Fig. 4(a), Fig. 4(b) with ° = 1, ¸= 1e¡4 and ¸= 1e¡3,
respectively. The clutter measurements are introduced

at time index k = 10. The clutter measurements are are

uniformly distributed in a square centered around the

correct measurement as described in case (i). The num-

ber of clutter measurements are obtained in parametric

form and non-parametric form.

Parametric form: The PDA and the proposed Iter-

PDA approach computes ¯j in parametric form using

the known ¸ values in (15) and (16). As shown in

Fig. 4(a) the RMS positional error for the proposed ap-

proach (Iter-PDA) and PDA are not significantly differ-

ent with ¸= 1e¡4. But, with ¸= 1e¡3 estimation accu-
racy is improved with Iter-PDA.

Non-parametric form: For simulations carried out

with q= 1 a higher process error covariance is obtained

and this lead to higher S(k), large gate area A and

subsequently to large number of clutter measurements.

Hence, instead of keeping ¸ fixed, the simulations are
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Fig. 6. RMS positional error (in m) versus time index k, with

conventional and the proposed approach with ° = 1, for varying

clutter densities, process noise and probability of detection

(a) m̄k = 10, q= 1 and Pd = 0:7. (b) ¸= 1e
¡2, q= 0 and Pd = 1.

done with fixed m̄k = A¸ for q= 1 case. Similarly for

Pd < 1 the simulations are done with fixed m̄k = A¸. The

PDA and the proposed Iter-PDA approach computes ¯j
in non-parametric form using the computed ¸ values

(¸= m̄=A) in (15) and (16).

The RMS positional error with m̄k = 10 and with

q= 1 and Pd = 1, Pd = 0:9 are provided in Fig. 5(a) and

Fig. 5(b), respectively. Comparing Fig. 4 and Fig. 5 the

increase in the CRLB with MOU is significant for q= 1

compared to q= 0. The RMS positional error in PDA

increases more compared to Iter-PDA with Pd = 0:9. The

RMS positional errors for 100 MC runs are provided in

Fig. 6(a), for average number of clutter m̄k = 10 and

q= 1 with Pd = 0:7.

The RMS error in PDA increases with decrease of

Pd as shown in Fig. 5 and Fig. 6(a). The RMS po-

sitional error with higher clutter density compared to

the results given in Fig. 4, i.e., ¸= 1e¡2, q= 0 and

Pd = 1 is provided in Fig. 6(b). Compared to conven-

tional PDA, the proposed approach gives significantly

better estimation accuracy with higher amount of clut-

ter as depicted in Fig. 6(b). The estimation accuracy

with Iter-PDA is always better than PDA with ° = 1.

The sudden increase in error at time instant k = 10 on-

wards in Fig. 4, Fig. 5 and Fig. 6 is due to the intro-

duction of clutter. The increase in position and velocity

errors in Iter-PDA because of the introduction of clutter

is low compared to PDA. But with ° = 2, ° = 3 and

° = 4 the advantage of Iter-PDA will be visible only

with m̄k = 50 and m̄k = 100. Higher value of ° indicates

measurement sparseness and so Iter-PDA is unable to

extract additional information from measurements. In

the proposed approach qj(k) is approximated as a Gaus-

sian random variable with mean zero and variance §k.
With higher values of ° the innovation ºj(k) and qj(k)

are widely spread around the predicted position. Hence,

the approximation qj(k)»N (qj(k);0,§(k)) may not be
valid with higher values of °. Hence, the proposed iter-

ations are done only if the average likelihood is above

a threshold, i.e., (1=m̄k)
P
j=mk

p(zj(k) jA(j),Zk¡1)> ±.
In this paper ± = 0:1 has been used for the simula-

tions.

The simulation results for the case (ii), with a uni-

form clutter pattern, are provided in Fig. 7. Here, the

uniform clutter pattern is generated in an area A cov-

ering the entire surveillance region. With ¸= 1e¡3 and
Pd = 1 performance of PDA and Iter-PDA are similar.

The RMS error obtained without MOU, i.e., by using

the correct measurement in the standard Kalman filter

based estimation has been carried out. The estimation

with correct measurement is carried out to compare the

performance of PDA and Iter-PDA against an ideal data

association approach. In the absence of actual measure-

ments, i.e., with Pd < 1, the predicted measurement is

used for state update. With Pd = 0:7 the RMS error in

position has been improved with Iter-PDA as shown in

Fig. 7(a). The RMS positional error has been shown in

Fig. 7(b) with q= 0:1. The RMS error without MOU

shows slight increase at k = 10 due to the introduction

of Pd = 0:7 from 10th instant. In both cases, Iter-PDA

performs better than PDA and the estimation without

MOU gives the best result as expected.

5.2 Information reduction factor (IRF) with MOU

The value of information reduction factor (IRF) q2
for various cases of q and R are computed using the sim-

ulation scenario described in the previous sub-section

with the clutter measurements generated using the case

(i). The scalar and matrix IRF obtained with different

pattern of measurement noise covariance R is summa-

rized in [27]. The objective of this section is to check

the scalar nature of IRF q2 for diagonal measurement

noise covariance. The case of measurement noise co-

variance R being a scalar multiple of identity matrix

is considered here and the IRF q2(k) is shown to be a
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Fig. 7. RMS positional error (in m) versus time index k, with

conventional and the proposed approach with ° = 1, Pd = 0:7 for

varying process noise. Clutter is generated in an area having

coordinates covering the entire surveillance region (a) q= 0

(b) q= 0:1.

scalar for all k. The IRF q2(k) will be a scalar if ratio

dii of all the diagonal elements of R
μ(k)¡1 and R¡1 are

equal. The ratio dii is obtained as dii(k) =
Rμ
ii(k)

¡1

R¡1ii (k)
and

for two-dimensional case r12(k) =
d11(k)

d22(k)
. For r12(k) = 1,

q2(k) = d11(k) = d22(k). The IRF q2(k) and the ratio

r12(k) are plotted in Fig. 8(a) and Fig. 8(b) with ¸= 1e
¡4

and ¸= 1e¡3, for ° = 1, R=
·
200 0

0 200

¸
and q= 0.

In Fig. 8, r12 = 1 indicates the elements of R
μ(k)¡1 are

obtained by multiplying the elements of R(k)¡1 with
a scalar. The scalar q2(k) is less than one as shown

in Fig. 8. In a clutter free zone q2(k) = 1 and there is

no information reduction. The value of q2(k) reduces,

with increase in clutter density ¸= 1e¡3 as shown in
Fig. 8(b).

Fig. 8. The ratio of diagonal elements r12(k) = d11(k)=d22(k) and

q2(k) versus time index k with conventional and with the proposed

approach with ° = 1 for varying clutter densities. (a) ¸= 1e¡4.
(b) ¸= 1e¡3.

The variation of q2 with low Pd and high clutter are

analyzed in Fig. 9(a) and Fig. 9(b), respectively. The

value of q2(k) and r12(k) are computed with m̄k = 10,

q= 1, Pd = 0:7 and depicted in Fig. 9(a). Similarly

q2(k) and r12(k) for ¸= 1e
¡2, q= 0, and Pd = 1 is pro-

vided in Fig. 9(b). In all the cases considered here for

simulations, the ratio r12(k) = 1 indicates that q2(k) is

scalar and verifies the results obtained in [9], [24]. For

¸= 1e¡3 and ¸= 1e¡2 the scalar IRF q2 is not a constant
with time k. The variations are zoomed and shown in

Fig. 10(a). In the initial time instants q2 is low and as

filter stabilizes q2 increases. This suggests that the in-

formation loss due to clutter is less as the filter reaches

steady state. The variations in trace of posterior state

error covariance is plotted in Fig. 10(b). The trace in-

creases rapidly with the introduction of clutter at k = 10

in PDA. In Iter-PDA the raise is nominal and this is due
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Fig. 9. The ratio of diagonal elements r12(k) = d11(k)=d22(k) and

q2(k) versus time index k, with conventional and proposed approach

with ° = 1 for varying clutter densities, process noise and probability

of detection. (a) m̄k = 10, q= 1, Pd = 0:7 (b) ¸= 1e
¡2, q= 0, Pd = 1.

to the adaptability of Iter-PDA to adjust with clutter by

modifying the innovation error covariance.

5.3 Consistency of Iter-PDA

The consistency of the proposed Iter-PDA filter is

verified using the following three criteria [12], [35]:

1) Normalized state estimation error square (NEES)

should be within an acceptable limit.

2) Normalized innovation square (NIS) should be with-

in an acceptable limit.

3) Innovation should be acceptable as white.

The computation of acceptable limit for the above

three criteria are given in [12], [35]. In this section nu-

merical values of NEES, NIS and whiteness of inno-

vation are checked with filter consistency acceptance

limits. In [12] PDA filter consistency has been checked

Fig. 10. (a) Zoomed-in section of q2 for ¸= 1e
¡3 and ¸= 1e¡2.

(b) Trace of the posterior error covariance with ¸= 1e¡4, ¸= 1e¡3
and ¸= 1e¡2.

with three clutter densities (¸= 1e¡5, ¸= 1e¡4 and ¸=
4:5e¡4) for Pd = 1 and q= 0. PDA and Iter-PDA give

same consistency pattern for the low clutter density

cases checked in [12]. In this section consistency of

PDA and Iter-PDA are checked with high clutter density

(¸= 1e¡3), low Pd along with process noise q= 1. The
target state vector length nx = 4. For N = 100 Monte

Carlo (MC) runs, the two sided Chi-square values of

NEES with ®= 0:05 for 400(Nnx) degrees of freedom

are

[Â2400(:025),Â
2
400(:975)] = [346:48, 447:63]:

Dividing the limits by N = 100 the acceptance region

will be r1 = 3:46 and r2 = 4:47. The NEES plots with

° = 1 (i.e., with 1 sigma gate) and ¸= 1e¡3, q= 0, Pd =
1 and Pd = 0:7 are provided in Figures 11(a) and 11(b),

respectively. With Pd = 1 both PDA and Iter-PDA give

similar NEES plots. But with reduced Pd, NEES plots

corresponding to PDA filter cross the boundary while

156 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 10, NO. 2 DECEMBER 2015



Fig. 11. Normalized state estimation error square (NEES) with

° = 1, q= 0 and ¸= 1e¡3 for varying probability of detection.
(a) Pd = 1 (b) Pd = 0:7

Iter-PDA remains well within the acceptance boundary

as shown in Fig. 11(b).

For two-dimensional measurements in X-Y plane,

nz = 2. For N = 100 Monte Carlo (MC) runs the degree

of freedom is Nnz = 200. With ®= 0:05, for a two sided

interval the Chi-square values for NIS are

[Â2200(:025),Â
2
200(:975)] = [162:78, 233:99]:

Dividing the limits by N = 100 the acceptance region

will be r1 = 1:62 and r2 = 2:33. The average NIS plots

for N = 100 with q= 0 and with ° = 1 and ¸= 1e¡3,
for Pd = 1 and Pd = 0:7 are provided in Figures 12(a)

and 12(b), respectively. The NIS plots for PDA and

Iter-PDA are similar with Pd = 1. The NIS plots of

PDA cross the boundary with reduced Pd as shown in

Fig. 12(b). The auto correlation of the innovation is

computed with samples at one time instant apart. The 95

percentage region [¡1:96¾,1:96¾] for ¾ = 1=pN = 0:1

Fig. 12. Normalized innovation square with ° = 1, q= 0 and

¸= 1e¡3 for varying probability of detection. (a) Pd = 1 (b) Pd = 0:7.

is the interval [¡0:196,0:196]. The innovation is ac-
cepted as white if the computed auto correlation is

within the acceptance limit. The comparison of white-

ness of innovation with ° = 1 and ¸= 1e¡3, q= 0,
for Pd = 1 and Pd = 0:7 are provided in Figures 13(a)

and 13(b), respectively. PDA and Iter-PDA give sim-

ilar whiteness of innovation with Pd = 1 as shown in

Fig. 13(a). With reduced Pd the auto correlation of the

innovation with Iter-PDA is closer to the acceptable lim-

its compared to PDA as shown in Fig. 13(b).

Comparing the NIS values plotted in Fig. 12 the

Iter-PDA remains well within the acceptable limits com-

pared to PDA. In Fig. 12(b) the NIS plots corresponding

to PDA crosses the lower boundary more often. Lower

values of normalized statistic (NEES and NIS) indicate

larger covariance. The Iter-PDA adaptively adjusts the

state error and innovation covariance, so that the NEES

and NIS plots are within acceptable limits.

The results obtained in this section show that the

proposed origin uncertainty model improves the esti-
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Fig. 13. Innovation auto correlation with ° = 1, q= 0 and ¸= 1e¡3
for varying probability of detection. (a) Pd = 1 (b) Pd = 0:7.

mation accuracy. With the proposed modification the

error variance and the corresponding error variance ob-

tained as filter parameter are matching, so the consis-

tency of the filter is improved compared to PDA. It is

usual practice to compare the estimation accuracy with

the theoretical lower bound. But, in case of tracking un-

der MOU the theoretical lower bound i.e., CRLB is dif-

ficult to compute because of the numerical complexity

in computing the IRF. The simulation results carried out

here compute the CRLB under MOU as a by-product of

the Monte Carlo runs and present a simple approximate

CRLB computation scheme.

6. CONCLUSION

The proposed approach in this paper develops a

model for validated measurements. Instead of target

originated measurement model the proposed approach

uses the validated measurement model and enhances the

estimation accuracy of PDA filter. Using the developed

model for validated measurements the unconditional

measurement error covariance with MOU is computed.

The unconditional measurement error covariance with

MOU is adaptive with measurement origin uncertainty.

With unconditional measurement error covariance the

innovation covariance, the Kalman filter gain and the

posterior error covariance are modified. The additive

term in the measurement noise covariance with MOU

computed by the proposed approach vanishes in the

absence of MOU and the modified filter parameters

reduce to standard Kalman filter parameters.

Monte Carlo simulation results show that the target

state estimate obtained using the modified filter param-

eters are significantly better compared to that obtained

using the standard PDA approach under dense clutter

scenarios. Under low clutter conditions the proposed

Iter-PDA and the standard PDA gives similar perfor-

mance because the additional measurement noise com-

ponent is not significant.

The estimation accuracy is compared to CRLB with

MOU. The IRF in CRLB with MOU has been obtained

in this paper by Monte Carlo (MC) averaging method.

Using the Monte Carlo (MC) averaging method the pro-

posed approach is able to compute the CRLB for any

given filter characteristic and clutter density. The adapt-

ability of the proposed approach to various clutter con-

ditions has been shown with Monte Carlo simulations.
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APPENDIX A SCALAR INFORMATION REDUCTION
FACTOR

Let p§ be the probability distribution function of §.
In the simulations carried in the paper the measurements

are in Cartesian coordinates, i.e. zj(k) is of dimension

two. The measurement noise in x and y components are

independent. Hence, it is assumed that R is a diagonal

matrix. The expected value of modified measurement

noise covariance can be computed as

Ef(Rμ(k)¡1)g= Ef(R+§(k))¡1g

=
1

R+§(1)
p§(§(1))+

1

R+§(2)
p§(§(2))

+ ¢ ¢ ¢+ 1

R+§(k)
p§(§(k)) (64)
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=) Ef(Rμ(k)¡1)g ·R¡1p§(§(1))+R¡1p§(§(2))
+ ¢ ¢ ¢+R¡1p§(§(k))

=R¡1
X
k

p§(§(k)) =R
¡1

=) Ef(Rμ(k)¡1)g ·R¡1: (65)

For one dimensional measurements R is a scalar, §(k)

is scalar and (65) holds true. Therefore, expected value

of inverse of modified measurement noise covariance

can be computed as

Ef(R+§(k))¡1g= q2R¡1, where q2 · 1: (66)

If measurement dimension is more than one (n,n > 1)),

the measurement noise covariance R is n£ n. The ad-
ditional term §(k) is symmetric and positive definite as

shown in Appendix D.3 of [12]. Hence, R+§(k)·R.
The off-diagonal terms of E[§(k)] cancel out because

z̄j(k) are independent and identically distributed (i.i.d),

as shown in [28]. For two-dimensional case with differ-

ent ¸, the ratio of diagonal elements r12 and q2 are plot-

ted in Fig.8 and Fig.9 using 250 MC runs. Since, r12 = 1

the diagonal terms are equal and q2 is a scalar multiple

of R¡1. Thus, condition (66) is applicable to measure-
ment noise covariance R having dimension more than

one.

APPENDIX B ITERATIVE COMPUTATION OF ¯J AND
§(K)

Using the modified measurement model given in

(25) the validated measurements are represented as

zj(k) = zi(k) +qj(k), (67)

where qj(k) = zj(k)¡
P
j=0:mk

zj(k)¯j(k) and the weight-

ed sum of all the measurements are denoted as z̃(k) =P
j=0:mk

(zj(k)¯j(k)). The measurement model for val-

idated measurements consists of two parts, the target

originated measurement zi(k) and the spread of the mea-

surements

qj(k) = zj(k)¡ z̃(k):

Accordingly, the measurement likelihood has two parts

one corresponding to target originated and the other

corresponding to the uncertainty in target originated

measurement. The density of qj(k) is assumed to be

Gaussian denoted as qj(k)»N (qj(k);0,§k). The mea-
surement spread is obtained as qj(k) = zj(k)¡

P
j=0:mk

(zj(k)¯j(k)). The variance of qj(k) is obtained as the

one that maximizes the likelihood. Instead of directly

maximizing the measurement likelihood
P

j(pzj (k)(A(j),

Hx̂i(k j k¡ 1),Z(k))) the proposed approach maximizes
log likelihood.

The parameters ¯j and §k are computed by mini-

mizing the negative log likelihood. The expectation of

log likelihood can be computed as [36]

E-Step:

Ezj (k)[log(pzj (k)(A(j),Hx̂i(k j k¡ 1),Z(k)))] =X
j

log(pzj (k)(A(j),Hx̂i(k j k¡ 1),Z(k)))¯j: (68)

Using the modified measurement model given in (25)

zj(k)¡Hx̂i(k j k¡1) = zi(k)¡Hx̂i(k j k¡ 1)+qj(k)
= ºi(k)+qj(k): (69)

Using (69) the log likelihood given in (68) can be

obtained as

J = log(pºi(k)(A(i),Hx̂i(k j k¡ 1),Z(k))
+
X
j

(logpqj (k)(A(j),0,Z(k))))¯j: (70)

The term ºi(k) can be rewritten as

ºi(k) = zi(k)¡Hx̂i(k j k¡ 1)
= (Hxi(k)¡Hx̂i(k j k¡ 1))+ (zi(k)¡Hxi(k)):

(71)

The first term of (70) pºi(k) is independent of zj(k) and

can be expanded as

J1 = logpzi(k)(A(i),Hx̂i(k j k¡ 1),Z(k))
= (Hxi(k)¡Hx̂i(k j k¡ 1))(HPHT)¡1

(Hxi(k)¡Hx̂i(k j k¡1))T+ logdet((HPHT)¡1)
+ (zi(k)¡Hxi(k))R¡1(zi(k)¡Hxi(k))T+logdet(R):

(72)

The second term depends on zj(k) and can be ex-

panded as

J2 =
X
j

(logpqj (k)(A(j),0,Z(k)))¯j =X
j

((zj(k)¡ z̃(k))§(k)¡1(zj(k)¡ z̃(k))T

+ logdet(§(k)))¯j: (73)

The task of maximizing the measurement likelihood

is equivalent to minimizing J . The first term of J1
is independent of measurement at kth instant. For the

second term in J1 (72) maximum likelihood occurs

for target originated measurement, i.e. mode of the

distribution is at zi(k). Hence, the sum of likelihood

(J = J1 + J2) is maximum if J2 (73) also gets maximum

at the same point, i.e., at zi(k)

zi(k) = z̃(k) =
X
j=0:mk

zj(k)¯j: (74)
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Fig. 14. The expected likelihood versus iteration number Pd = 1,

mk = 10 for an arbitrary run. (a) q= 0 (b) q= 1.

The modified measurement model for the validated

measurement set given in (25) satisfy the requirement

given in (74). The expression (74) indicates that mea-

surement likelihood will be maximum if the measure-

ment corresponding to target i is a weighted sum of

all the measurements in the validation region. The un-

known parameters in J are ¯j and the variance §(k) of
J2. The variance §(k) that maximizes J2 can be obtained
by solving r§(k)¡1J2 = 0

M-Step:

r§(k)¡1J2 =
X
j=0:mk

((zj(k)¡ z̃(k))(zj(k)¡ z̃(k))T ¡§k)¯j

Letting r§(k)¡1J2 = 0

=)§(k) =
X
j=0:mk

((zj(k)¡ z̃(k))(zj(k)¡ z̃(k))T)¯j

= E[ºj(k)ºj(k)
T j Zk]¡E(ºj(k) j Zk)E(ºj(k) j Zk)T

=

mkX
j=0

¯jºj(k)ºj(k)
T ¡ Z̃(k)Z̃(k)T, (75)

where Z̃(k) = E(ºj(k) j Zk). By alternating between E-
Step (74) and M-Step (75) the iterated ¯js and §k are

obtained. The E-M algorithm and its general form is

discussed in [37]. The convergence analysis of E-M

algorithms are discussed in [38], [39]. The likelihood

p(n)zj (k) at nth iteration is computed using (76) as

p(n)zj (k)(A(j),Hx̂i(k j k¡ 1),Z(k)) = p(Z(k) jA(j),Zk¡1)

=
1

c
N (zj(k);HX̂i(k j k¡ 1),Sμ

(n)

i (k)): (76)

The average variation of the likelihood sum with itera-

tions is computed as

L(n) =
1

k

X
k

ÃX
j

N (zj(k);HX̂i(k j k¡ 1),Sμ
(n)

i (k))¯nj (k)

!
:

(77)

The variations of L(n) for n= 1, : : : ,10 is plotted in

Fig. 14. For n= 1 the proposed approach is same as

conventional PDA approach. The variations of expected

likelihood given in Fig. 14(a) shows the likelihood max-

imization with iterations for q= 0 and q= 1. The varia-

tions are similar in shape and the likelihood values set-

tles at around iteration number 4. Simulations are con-

ducted with other cases with different clutter densities

and Pd and the maximum number of iterations taken for

likelihood value settling is found to be around 4.
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Bistatic Measurement Fusion

from Multistatic Configurations

for Air Collision Warning

WENBO DOU

YAAKOV BAR-SHALOM

PETER WILLETT

A requisite for unmanned aircraft systems (UAS) to operate

within a controlled airspace is a capability to sense and avoid colli-

sions with non-cooperative aircraft. Ground-based transmitters and

UAS-mounted receivers are preferred due to limitations on UAS.

This paper assumes a constant velocity motion of an intruder (tar-

get) aircraft and presents a method to estimate the position and

velocity of the target so as to predict the closest point of approach.

Bistatic range and range rate are assumed the only measurements

available. Several configurations are investigated from a parameter

observability point of view. It turns out that one needs three trans-

mitters in a general three-dimensional scenario to achieve decent

observability of the target motion parameter. With the assumption

that the target is at the same altitude as the ownship, one has a

two-dimensional scenario in which two transmitters are required in

order to have good observability. Simulation results show that the

maximum likelihood (ML) estimate of the target parameter using

an iterated least squares search can be considered as statistically

efficient in both multistatic configurations with good observabil-

ity for the scenarios considered in this paper. The collision warn-

ing can be carried out based on the ML estimate in two different

ways. The first approach is to formulate the collision as a hypothesis

testing problem using a generalized likelihood function. A second,

Bayesian, approach is also presented. The performance of the like-

lihood based collision warning shows that the multistatic configura-

tion with three transmitters is reliable for collision warning but that

the multistatic configuration with two transmitters under the same

target and ownship altitude assumption is prone to false alarms. In

the configuration with three transmitters, the Bayesian approach

yields the similarly reliable collision warning performance as the

likelihood-based approach when they use threshold values of the

same magnitude.
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1. INTRODUCTION

Sense-and-Avoid (SAA) capabilities are required for

unmanned aircraft systems (UAS) to operate within the

national airspace, since the proliferation of UAS has

increased the risk of aircraft collision. The air traffic

control radar beacon system works well to coordinate

cooperative aircraft. Active sensing methods have to

be employed for UAS to be functional against non-

cooperative targets. The limitations on the size, weight

and power of UAS suggest an implementation with

ground-based transmitters and UAS-mounted receivers.

There have been numerous works on the UAS col-

lision avoidance problem [1]. Most have emphasized

avoidance algorithms [5][13][15], while sensing and es-

timation methods have been less extensively explored.

In [9], a monostatic radar configuration in a two-

dimensional (2-D) plane with range and bearing mea-

surements is considered for collision avoidance. In [18],

collision warning in a 2-D plane using a monostatic

radar with range and azimuth measurements is dis-

cussed. A confidence ellipsis at a given time instant

is mathematically derived and a confidence corridor is

constructed by the regions covered by all confidence

ellipses at all time instants within a time interval of

interest. A warning decision is based on whether any

target aircraft falls within this confidence corridor. The

collision warning problem in a multistatic radar config-

uration has not yet been reported in the literature.

Target localization is possible using a multistatic

radar with time of arrival (TOA) measurements [6][10]

[14][17]. In [14], target localization is considered in a

multistatic ultra wideband radar. The problem is formu-

lated as estimation of target position, which is solved

using three methods. Taylor series method is shown to

have smaller estimation errors than either least-squares

or spherical-interpolation method in a system with one

transmitter and four receivers. In [10], two methods are

presented to estimate the position of a target in a mul-

tistatic passive radar. The spherical-intersection method

is shown to be better than the spherical-interpolation

method in a system with four transmitters and one re-

ceiver. In [6], target localization is investigated in a

multistatic passive radar system with one receiver when

the receiver position is subject to random errors. An

approximated maximum likelihood optimization prob-

lem is formulated and solved by a semidefinite relax-

ation combined with bisection method. In [17], target

localization based on both time of arrival and angle

of arrival measurements in a multistatic radar system

is formulated and a weighted least square method is

proposed to estimate the target location. TOA measure-

ments can be used to estimate the position but not the

velocity, range rate measurements are needed for the

velocity.

In our previous work [7][8], a strategy for collision

warning in a three-dimensional (3-D) space was pre-
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TABLE I

Target motion parameter observability summary.

Sensor Number of

Scenario configuration transmitters Observability

2-D bistatic 1 marginally observable

2-D multistatic 2 observable

3-D bistatic 1 unobservable

3-D multistatic 2 marginally observable

3-D multistatic 3 observable

sented, assuming a constant velocity motion of an air-

craft of interest (target/intruder), to estimate the position

and velocity of the target so as to predict the closest

point of approach (CPA). Since an inexpensive system

is the goal, only bistatic range and range rate mea-

surements are available. Several configurations listed

in Table I are investigated from a parameter observ-

ability point of view. In general 3-D scenarios, the tar-

get motion parameter is shown to be unobservable in a

bistatic configuration (that is: one transmitter and one

receiver, not co-located) and a change of course of the

receiver (the “observability platform maneuver” that is

the saving grace for angle-only target motion analysis

(TMA)) merely improves the observability marginally.

In a multistatic configuration, one has marginal observ-

ability using two transmitters, but good observability

with three. In a 2-D scenario which assumes that the

target is at the same altitude as the ownship, the tar-

get parameter is still only marginally observable in a

bistatic configuration. The observability is improved by

a small maneuver of the ownship but it is still unap-

pealing. On the other hand, one can have very good

observability of the target motion parameter with two

transmitters in a 2-D multistatic configuration with the

same-altitude assumption, which turns out to be another

practically useful configuration in addition to a 3-D

multistatic configuration with three transmitters. Simu-

lation results and comparison with the CRLB show that

the ML estimate of the target parameter can be consid-

ered as statistically efficient in both useful configura-

tions.

The collision warning is formulated as a hypothesis

testing problem using a generalized likelihood function.

Monte Carlo simulation shows the likelihood-based col-

lision warning algorithm using three transmitters has no

missed detection of a collision and has no false alarms

when the intruder and ownship altitude separation is

beyond 100 m. The likelihood-based collision warning

algorithm using two transmitters with the same-altitude

assumption has no missed detection of a collision, ei-

ther. It is, however, prone to false alarms when the CPA

angle is near 180±.
This paper extends the previous work [7][8] by (i)

taking the physical dimensions of aircraft into consid-

eration in the likelihood-based collision warning al-

gorithm; (ii) investigating the statistical efficiency of

the closest point of approach (CPA) time estimate in

the likelihood-based collision warning algorithm; (iii)

adding a Bayesian approach for collision warning. Since

air collision is deadly, no missed detections can be tol-

erated. It is also necessary to account for the physi-

cal dimensions of aircraft by adding a safety margin to

compensate for the errors arising in the point modeling

of aircraft. Simulation results show that the likelihood-

based collision warning algorithm with a safety margin

of 100 m has no missed detections of collision but be-

comes more conservative with false alarms occurring in

more situations.

The likelihood based collision warning algorithm

makes decisions by using an estimated CPA time, and

Monte Carlo simulations have shown that the CPA time

estimate can be considered as unbiased and statistically

efficient for the simulated scenarios. The Bayesian ap-

proach formulates the CPA distance as a random vari-

able and estimates its probability density function (pdf)

as a fitted Rician distribution. Then it defines the colli-

sion event by considering the physical dimensions of the

aircraft and calculates the probability of collision, based

on which a warning decision can be made. The perfor-

mance of the Bayesian collision warning algorithm is

consistent with that of a likelihood-based algorithm.

The remaining sections of this paper are organized

as follows. Section 2 describes and formulates the gen-

eral 3-D problem and considers a special 2-D problem.

Section 3 analyzes several possible configurations for

collision warning including both 3-D and 2-D scenarios

and shows that two of them seem to be practically use-

ful. Section 4 presents the ML estimator based on which

two different collision warning algorithms are described

in Section 5. Section 6 investigates the efficiency of the

ML estimator of the target motion parameter and the ef-

ficiency of the CPA time estimate used in the likelihood-

based collision warning algorithm, and also shows the

performances of both collision warning algorithms and

Section 7 draws conclusions.

2. PROBLEM FORMULATION

Assume a target of interest (intruder) is moving in

3-D with a constant velocity. The 3-D target position in

Cartesian coordinates at time k is therefore

»(x,k) = x0 + kT _x0 k = 0,1, : : : (1)

where

x= [x00, _x
0
0]
0 = [x,y,z, _x, _y, _z]0 (2)

is the unknown target motion parameter which is a

vector of dimension nx = 6 consisting of the target’s

position x0 and velocity _x0 in Cartesian coordinates at

time k = 0 (or without loss of generality at any chosen

reference time); and T is the sampling period. There

are NTx (NTx ¸ 1) transmitters at known locations ui =
[xui ,yui ,zui ]

0, i= 1, : : : ,NTx. At time k (k > 0), a moving
receiver (the ownship) with known position s(k) and

velocity _s(k) can obtain measurements consisting of the
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Fig. 1. A multistatic configuration in the X-Y plane. The time

differences of arrival (actual measurements) between the direct path

(ownship illumination) and the indirect path (bistatic range)

multiplied by the speed of light is added to the direct path distance

to yield an equivalent bistatic range measurement.

bistatic range [4] illustrated in Figure 1 and the bistatic

range rate from the ith transmitter located at ui given by

zi(k) = hi(x,k)+wi(k) i= 1, : : : ,NTx (3)

where

hi(x,k) =

·
ri(k)

_ri(k)

¸

=

24 k»(x,k)¡ s(k)k+ k»(x,k)¡uik
[»(x,k)¡ s(k)]0[ _x0¡ _s(k)]

k»(x,k)¡ s(k)k +
[»(x,k)¡ui]0 _x0
k»(x,k)¡uik

35
(4)

and wi(k) are the measurement noises, assumed to be

independent and identically distributed zero-mean white

Gaussian sequences with known covariance matrix

Ri =

·
¾2r 0

0 ¾2_r

¸
(5)

The measurement function comprising all the mea-

surements at time k is

z(k) = h(x,k)+w(k) k = 1, : : : (6)

where

z(k) = [z1(k)
0 : : :zNTx (k)

0]0 (7)

h(x,k) = [h1(x,k)
0 : : :hNTx (x,k)

0]0 (8)

w(k) = [w1(k)
0 : : :wNTx (k)

0]0 (9)

and

R(k) = E[w(k)w(k)0] =

266664
R1 0 ¢ ¢ ¢ 0

0 R2 ¢ ¢ ¢ 0

...
...

. . .
...

0 0 ¢ ¢ ¢ RNTx

377775 (10)

Since both intruder and ownship are moving, it is

important to avoid any collision between them. The goal

is thus to estimate the target parameter x based on N
frames of measurements, and to deliver a warning long

enough and confidently enough before a possible colli-

sion occurs so as to predict the CPA and, presumably,

to do something about it if needed.

2.1. Parameter Observability

We need to check the observability of the target mo-

tion parameter (2) to see whether there is sufficient in-

formation in the data. Observability requires the invert-

ibility of the Fisher information matrix (FIM), which is

given by [3]

J = Ef[rx ln¤(x;Z)][rx ln¤(x;Z)]0gjx=xt (11)

where ¤(x;Z) is the likelihood function of the parameter

based on the measurement set

Z= z(k)Nk=1 (12)

and xt is the true value of the target motion parameter.
In a simulated scenario, xt is known. However, in a real

scenario where xt is unknown and needs to be estimated,
the FIM is evaluated at the estimate.

Since the measurement noises are assumed to be

white, we have

¤(x;Z) =

NY
k=1

p(z(k) j x) (13)

where

p(z(k) j x) = j2¼R(k)j¡1=2

¢ exp(¡ 1
2
[z(k)¡h(x,k)]0R(k)¡1[z(k)¡h(x,k)])

(14)

The gradient of the log-likelihood function is

rx ln¤(x;Z) =¡
NX
k=1

[rxh(x,k)0]R(k)¡1[z(k)¡h(x,k)]
(15)

Substituting (15) into (11) yields

J =

NX
k=1

[rxh(x,k)0]R(k)¡1[rxh(x,k)0]0jx=xt

=

NX
k=1

NTxX
i=1

[rxhi(x,k)0]R¡1i [rxhi(x,k)0]0jx=xt (16)

If J is not invertible, then the target motion param-

eter is unobservable. Otherwise, the size of confidence

region for the true target position [3] can be used to dis-

tinguish between marginal observability and good ob-

servability. In this paper, marginal and good observabil-

ity are distinguished from each other by the length of

the longest semiaxis of 99.9999% probability region. In

the application of air collision warning, one could say

that the observability is good if the longest semiaxis

is, say, less than 100 meters and that the observability

is marginal if the longest semiaxis is, say, more than
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Fig. 2. Confidence region and probability region in the X-Y plane.

If an estimate is inside 95% probability region around the truth, then

the truth must be inside 95% confidence region around this estimate.

100 meters. Mathematically, the length of the longest

semiaxis is proportional to the square root of largest

eigenvalue of the covariance matrix in (20).

2.2. Confidence Region in the General Case

Suppose one has an unbiased and statistically effi-

cient estimate x̂, that is

E[x̂] = xt (17)

P
¢
=E[[x̂¡ xt][x̂¡ xt]0] = J¡1 (18)

where J¡1 is the Cramer Rao lower bound (CRLB). The
3-D target position estimate at an arbitrary time t is

x̂p(t) =

2641 0 0 t 0 0

0 1 0 0 t 0

0 0 1 0 0 t

375 x̂ ¢=©p(t)x̂ (19)

and the corresponding covariance is

Pp(t) = ©p(t)P©p(t)
0 (20)

If one further assumes x̂ is Gaussian, that is,

x̂»N (xt,P) (21)

then, because of linear transformation in (19)

x̂p(t)»N (xp(t),Pp(t)) (22)

The normalized estimation error squared (NEES) for the

target position xp(t) at t, defined as

²p(t) = [xp(t)¡ x̂p(t)]0P¡1p (t)[xp(t)¡ x̂p(t)] (23)

is chi-square distributed with nx=2 degrees of freedom,

that is,

²p(t)» Â2nx=2 (24)

Let g be such that

Pf²p(t)· g2g= 1¡Q (25)

where Q is a small tail probability. Given the predicted

target position x̂p(t), the 100(1¡Q)% confidence region

[2] for the true position xp(t) is defined to be within the

ellipsoid given by

[xp(t)¡ x̂p(t)]0P¡1p (t)[xp(t)¡ x̂p(t)] = g2 (26)

Alternatively, given the true position xp(t), (26) is also

defined to be the 100(1¡Q)% probability region for

the predicted target position x̂p(t). These two regions

as shown in Figure 2 have identical geometrical sizes

since they can be represented by the same equation

as in (26). If either region is large, one has marginal

observability of the target position; if any one of the

regions is small, one has good observability of the target

position.

2.3. Confidence Region When Intruder and Ownship
at Same Altitude

If the intruder’s altitude z is assumed to be known

and is equal to that of the ownship, then the 2-D X-

Y plane at the altitude z is of interest and everything

related to the target can be considered restricted to

this 2-D space. Specifically, the target parameter to be

estimated becomes

x2D = [x,y, _x, _y]0 (27)

Correspondingly, the 2-D target position at an arbitrary

time t is

x2Dp (t) =

·
1 0 t 0

0 1 0 t

¸
x2D (28)

The confidence region for the true target position around

its estimate is now an ellipse given by (26).

3. SCENARIOS AND OBSERVABILITY ANALYSIS

From (26), the size of the confidence region for the

true target position around the predicted position is the

same as that of the probability region for the predicted

target position around the true position. Since it is more

convenient for an observability analysis to obtain the

probability region for the predicted target position with

the true target motion parameter assumed available than

to estimate the true target parameter and obtain the

confidence region for it, in this section several scenarios

are simulated with the knowledge of the true target

motion parameter and the probability region of the

estimate in each scenario is obtained without performing

any estimation.

A radar system, which consists of three transmit-

ters on the ground and one receiver mounted on an un-

manned aircraft system (UAS)–the ownship–is used

to warn of a possible collision between the UAS (own-

ship) and an intruder aircraft. The transmitters are

located at (0 m, 1000 m, 0 m), (0 m, ¡ 1000 m, 0 m)
and (1000 m, 0 m, 0 m) in Cartesian coordinates, and
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TABLE II

Scenario specifications. The last column reflects the results from Section 3.

Semiaxis lengths of 99.9999%

Scenario Transmitters used UAS motion Target altitude Collision probability region (m)

1 Tx1 CV Unknown Yes 3£ 109, 2020, 62
2 Tx1 two-segment CV Unknown Yes 6468, 1660, 109

3 Tx1 and Tx2 CV Unknown Yes 1542, 50, 41

4 Tx1 and Tx2 two-segment CV Unknown Yes 1402, 51, 41

5 Tx1,Tx2 and Tx3 CV Unknown Yes 50, 42, 11

6 Tx1,Tx2 and Tx3 CV Unknown No 48, 43, 12

7 Tx1 CV Known Yes 2600, 81

8 Tx1 two-segment CV Known Yes 301, 25

9 Tx1 and Tx2 CV Known Yes 40, 8

are denoted by Tx1, Tx2 and Tx3, respectively. The

UAS is moving at an altitude of 1500 m.

Eight collision scenarios and one non-collision sce-

nario listed in the Table II, differing in the number of

transmitters, the motion of the UAS and the dimen-

sionality of target parameter are studied here. Scenar-

ios with the “known target altitude” assumption are re-

ferred to as 2-D scenarios. The rest are 3-D scenar-

ios. Two motions of UAS are considered. In a con-

stant velocity (CV) motion, the UAS starts moving

from the point (¡4500 m, 0 m, 1500 m) at time t= 0 s
with a constant velocity _s0 = [50m/s, 0 m/s, 0 m/s]

0. In
a two-segment CV motion, the UAS starts with a con-

stant velocity [43 m/s, ¡ 25 m/s, 0 m/s]0 from the point
(¡4306 m, 752 m, 1500 m) at time t= 0 s for 27 s and
then executes a 5±/s coordinated turn for 6 s before
changing to another velocity [50 m/s, 0 m/s, 0 m/s]0

when it arrives at the location (¡2850 m, 0 m, 1500 m).
In all the collision scenarios, the intruder aircraft starts

from the position (4500 m, 0 m, 1500 m) at time t= 0 s

with a constant velocity _x0 = [¡50 m/s, 0 m/s, 0 m/s]0
and will collide with the UAS at time t= 90 s. In the

non-collision scenario, the altitude of the intruder air-

craft is assumed to be 1600 m, which is 100 m higher

than in the collision scenarios, and the CPA occurs at

time t= 90 s. Bistatic range and range rate measure-

ments are made from the ownship every 1 s over a pe-

riod of 60 s, which is 30 s before the CPA time. The

noise standard deviations for the range and range rate

measurements are assumed to be 8.66 m and 1 m/s,

respectively, at all times.

Figures 3 and 4 visualize all the 3-D scenarios and

plots the 99.9999% probability region, the lengths of the

semiaxes of which are also shown in Table II, around

the collision point or the target CPA in each scenario.

In Scenario 1, the FIM is nearly singular with a

condition number1 of 18.8. The large probability region

(which implies a large confidence region) indicates the

target parameter is practically unobservable and even an

efficient estimator is useless in such a situation.

1The condition number is log10(¸max=¸min), where ¸max and ¸min are

the largest and smallest eigenvalues of the FIM.

In Scenario 2, the FIM is not ill-conditioned. The el-

lipsoid is much smaller than in the first scenario, which

indicates the change of course in the ownship trajec-

tory improves the observability. However, the size of

the probability (or confidence) region is still quite large

so that even an efficient estimator remains practically

useless.

Compared with the 3-D bistatic configuration (Sce-

narios 1 and 2), adding a second transmitter in Scenarios

3 and 4 reduces the target localization uncertainty, al-

though the size of the probability region is still too large

to be useful. Comparison between Figures 3(c) and 3(d)

indicates that the further reduction of the localization

uncertainty resulting from the change of course in the

ownship trajectory in the multistatic configuration is not

as significant as in the bistatic.

As shown in Figures 4(a) and 4(b), the addition

of a third transmitter into the multistatic configuration

has significantly improved observability, which makes

the localization practically useful. Therefore, one needs

three transmitters in a 3-D multistatic configuration to

build up an efficient estimator based on which a useful

collision warning algorithm can be designed.

Figure 5 visualizes all the 2-D scenarios and plots

the 99.9999% probability region around the collision

point in each scenario. Compared with 3-D scenarios,

the knowledge of target altitude in a 2-D scenario

results in a significant reduction in the uncertainty. In

Scenario 7, the size of the probability region is still too

large to be useful. In Scenario 8, the probability region

could be useful, however, it is due to the change of

course of the ownship and this maneuver action itself

could lead a safety situation to a dangerous collision.

In Scenario 9, adding a second transmitter reduces the

target localization uncertainty significantly. The size

of this region is practically useful. Therefore, with

the knowledge of the target altitude one needs two

transmitters in a multistatic configuration to build up

an efficient estimator based on which a useful collision

warning algorithm can be designed.

In the sequel, collision warning is only considered

in those two practically useful configurations–3 trans-

mitters in general 3-D scenarios and 2 transmitters with
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Fig. 3. 99.9999% (ellipsoidal) probability region around the collision point in Scenarios 1 to 4. The target motion parameter is practically

unobservable in Scenario 1. The target motion parameter is marginally observable in Scenarios 2, 3 and 4. (a) Scenario 1. (b) Scenario 2.

(c) Scenario 3. (d) Scenario 4.

known target altitude in 2-D scenarios, corresponding

to Scenarios 5, 6 and 9.

4. THE MAXIMUM LIKELIHOOD ESTIMATOR

The ML estimate of the target motion parameter x

in (2) is

x̂ML = argmaxx
¤(x;Z) (29)

where ¤(x;Z) is given in (13). The ILS technique [2]

was used to find the ML estimate in this case. If we set

(15) to zero, we will notice that there is no closed-form

solution. Using a first order series expansion about an

estimate x̂j at the end of the jth iteration leads to an

iterative scheme and the (j+1)th estimate is

x̂j+1 = x̂j +[(Hj)0R¡1Hj]¡1(Hj)0R¡1[z¡h(x̂j)] (30)

where

z= [z(1)0,z(2)0, : : : ,z(N)0]0 (31)

h(x̂j) = [h(x̂j ,1),h(x̂j ,2), : : : ,h(x̂j ,N)]0 (32)

R =

266664
R(1) 0 ¢ ¢ ¢ 0

0 R(2) ¢ ¢ ¢ 0

...
...

. . .
...

0 0 ¢ ¢ ¢ R(N)

377775 (33)

and

Hj =

266664
[rxh(x,1)0]0jx=x̂j
[rxh(x,2)0]0jx=x̂j

...

[rxh(x,N)0]0jx=x̂j

377775 (34)
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Fig. 4. 99.9999% (ellipsoidal) probability region around the collision point or the target CPA in Scenarios 5 and 6. The target motion

parameter observability is good in both scenarios. (a) Scenario 5. (b) Scenario 6. (c) Scenario 5 magnified. (d) Scenario 6 magnified.

An initial estimate can be obtained by solving (3) with

the noise set to zero based on the measurements for two

transmitters at two different time instants.

The ML estimate of the target parameter x2D in (27)

in a 2-D scenario can be found using the ILS technique

in the same manner.

This paper assumes that a fixed number N of frames

of measurements are processed together using a batch

approach. Therefore, there is no need to use a recursive

algorithm for sequential update. One can sequentially

process the measurements using a recursive estimator as

more and more measurements are received. For exam-

ple, the probability region considered in this paper will

become smaller and smaller as more and more measure-

ments are used in the target parameter estimation. The

decision on collision warning can be made earlier before

N frames of measurements become available. However,

since the problem is highly nonlinear, a recursive esti-

mator would be by necessity suboptimal, either due to

linearization or using a particle filter. We will consider

this in the future: This is a topic for future investiga-

tion.

5. COLLISION WARNING APPROACHES

5.1. Collision Warning via Hypothesis Testing Based
on a Generalized Likelihood Function

The collision event at time t (t to be determined) is

defined by equating the true target position xp(t) to the
ownship position, namely,

fCollision at tg ¢=fxp(t) = s(t)g (35)
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Fig. 5. 99.9999% (elliptic) probability region around the collision point in 2-D scenarios. The target motion parameter is marginally

observable in Scenarios 7 and 8. The target motion parameter observability is good in Scenario 9. (a) Scenario 7. (b) Scenario 8.

(c) Scenario 9. (d) Scenario 9 magnified.

Following [2], the likelihood function of collision

is the pdf of the predicted target position to time t (the

“observation” based on which the collision warning can

be made) conditioned on (35)

¤[xp(t) = s(t); x̂p(t)] = p[x̂p(t) j xp(t) = s(t)]
=N [x̂p(t);s(t),Pp(t)] = j2¼Pp(t)j¡1=2

¢ exp(¡ 1
2
[x̂p(t)¡ s(t)]0P¡1p (t)[x̂p(t)¡ s(t)])

(36)

where x̂p(t) is given by (19). The use of the covari-

ance Pp(t) in (36) is justified based on the discussion

presented in Section 6, which validates the efficiency

of (29).

Since the time t in (36) is not known, we estimate

the CPA time as

t̂CPA = argmaxt
¤[xp(t) = s(t); x̂p(t)] (37)

The CPA time estimate is found by using the Quasi-

Newton method with a cubic line search procedure. The

search starts with an initial value, which can be obtained

using (58) by considering the estimated target parameter
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as deterministic. For the purpose of simulations, the

MATLAB function “fminunc” is used.

The collision warning can be formulated as a hy-

pothesis testing problem as follows. The two hypotheses

are, based on (37)

H0 : xp(t̂CPA) = s(t̂CPA) (38)

H1 : xp(t̂CPA) 6= s(t̂CPA) (39)

The (generalized2) likelihood function for H0 is

¤[H0; x̂p(t̂CPA)] =N [x̂p(t̂CPA);s(t̂CPA),Pp(t̂CPA)]
=N [s(t̂CPA); x̂p(t̂CPA),Pp(t̂CPA)] (40)

For a given level of significance, say 0.0001% (as-

suming this is the desired confidence to avoid collision,

Q = 10¡6 in (25)), there are two equivalent procedures
to determine whether H0 should be rejected.

Procedure 1: one computes

²= [x̂p(t̂CPA)¡ s(t̂CPA)]0P¡1p (t̂CPA)[x̂p(t̂CPA)¡ s(t̂CPA)]
(41)

and
²th = F

¡1
Â2
(1¡Q,ndof) (42)

where F¡1
Â2

is the inverse of the cumulative distribution

function (cdf) of a chi-square random variable with ndof
degrees of freedom. If

² > ²th (43)

then s(t̂CPA) is outside the 99.9999% confidence region

centered at x̂p(t̂CPA), then one can say that collision is
unlikely (< 0:0001%). Otherwise a collision warning is

issued.

Procedure 2: one computes

²= [x̂p(t̂CPA)¡ s(t̂CPA)]0P¡1p (t̂CPA)[x̂p(t̂CPA)¡ s(t̂CPA)]
(44)

and estimates the probability of collision as

Pc = 1¡FÂ2 (²,ndof) (45)

where FÂ2 is the cdf of a chi-square random variable

with ndof degrees of freedom. If

Pc > 0:0001% (46)

then a collision warning is alerted.

These two procedures are equivalent because of the

invertibility of the cdf of the chi-square distribution.

So far, both the target and the ownship have been

modeled as points of zero size. If one takes the physi-

cal dimensions of both the target and the ownship into

consideration, a safety margin ¢d (which would, typi-

cally, be more than the sum of the target and ownship

sizes) is needed in the decision making. In this case, the

definition of the collision event in (35) will be modified

to be
fCollision at tg ¢=fkxp(t)¡ s(t)k ·¢dg (47)

2This is a generalized likelihood function because it relies on t̂CPA,

which is an estimate.

and the hypotheses in (38) and (39) will be modified as

H0 : kxp(t)¡ s(t)k ·¢d (48)

H1 : kxp(t)¡ s(t)k>¢d (49)

Therefore, H0 in (48) is rejected at a level of

0.0001% if s(t̂CPA) is outside the 99.9999% confidence

region centered at x̂p(t̂CPA) and

¢d <min
x
ks(t̂CPA)¡ xk (50)

subject to

[x̂p(t̂CPA)¡ x]0P¡1p (t̂CPA)[x̂p(t̂CPA)¡ x]
= F¡1

Â2
(0:999999,ndof) (51)

that is, the minimum distance between s(t̂CPA) and any

point on the surface of the 99.9999% confidence region

is larger than ¢d.

Equivalently, in a similar way to (44)—(46), one can

also estimate the probability of collision as

Pc = 1¡FÂ2 (²min,ndof) (52)

where

²min = minx
[x̂p(t̂CPA)¡ x]0P¡1p (t̂CPA)[x̂p(t̂CPA)¡ x] (53)

subject to

ks(t̂CPA)¡ xk ·¢d (54)

5.2. Collision Warning Based on a Bayesian Approach

In the Bayesian approach instead of using t̂CPA as

“the collision time,” the approach accounts for tCPA as

a random variable. Since the CPA distance dCPA (the

distance between the target and the ownship at the CPA

time) is a function of the CPA time, dCPA is also a

random variable. One can define the collision event

based on dCPA and estimate the probability of collision

based on an estimated pdf of dCPA.

1) CPA distance as a function of the target parameter:
Under the assumption that both the target and the

ownship are moving with constant velocities, the CPA

time is when the target and the ownship are closest to

each other, that is

tCPA = argmint
kxp(t)¡ s(t)k

= argmin
t
k(x0 + t _x0)¡ (s0 + t_s0)k

= argmin
t
k(x0 + t _x0)¡ (s0 + t_s0)k2

= argmin
t
d2 (55)

Taking the derivative of d2 with respect to t and setting

it to zero

dD

dt
= 2[(x0 + t _x0)¡ (s0 + t_s0)]0[ _x0¡ _s0] = 0 (56)
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the CPA time is obtained as

tCPA =¡
[x0¡ s0]0[ _x0¡ _s0]

k _x0¡ _s0k2
(57)

and the CPA distance is therefore a function of the target

parameter x in (2)

dCPA = f(x) = kxp(tCPA)¡ s(tCPA)k

= kx0¡ s0¡
[x0¡ s0]0[ _x0¡ _s0]

k _x0¡ _s0k2
( _x0¡ _s0)k (58)

In the above, k ¢ k is the Cartesian norm.
2) Estimation of the probability density of dCPA:
Assuming a diffuse (non-informative) prior density

for the target parameter x, as in [2], the posterior den-
sity of x conditioned on x̂ML, given by (29), is approx-
imated as

p[x j x̂ML] =N [x; x̂ML,J¡1] (59)

This Gaussian approximation is reasonable as Section

6 shows that the ML estimate can be considered as

unbiased and statistically efficient, that is, (17) and (18)

hold.

One possible way of estimating the density of dCPA
is to draw Ns samples of x from (59), obtain Ns samples
of dCPA and fit a density based on these samples. In

this paper, we estimate the pdf of dCPA as a Rician dis-

tribution. The validity of fitting the Rician distribution

is confirmed in Section 6. The Rician distribution with

noncentrality parameter º ¸ 0 and scale parameter ¾ > 0
has the density function

pdCPA(x j º,¾) =
x

¾2
exp

μ
¡x

2 + º2

2¾2

¶
I0

³xº
¾2

´
, x > 0

(60)

where I0(¢) is the zero-order modified Bessel function
of the first kind. Based on the Ns samples of dCPA, the

ML estimates ºML and ¾ML can be obtained using the

method presented in [12].

3) Decision making:
One can define the collision event as

fCollisiong= fdCPA · dming (61)

where dmin is the minimum distance between the aircraft

for which a collision will not occur, that is, one believe

that a collision occurs if the estimated dCPA is less than

dmin by taking the aircraft dimensions into account.

Therefore, the probability of collision is

Pc = P(fCollisiong) = P(fdCPA · dming)

=

Z dmin

0

pdCPA(x j ºML,¾ML)dx (62)

The integration in (62) is evaluated using the MATLAB

function “cdf.” The average computational time in a sin-

gle run, including the target parameter estimation, sam-

pling, Rician distribution parameter estimation and the

integration (62), is around 0.6 s. This computation is

performed in MATLAB 2015a on a Windows machine

equipped with a 2.40 GHz Intel Core 2 Quad CPU with

4 GB RAM. Consequently, we feel it is not unreason-

able to claim that it would be real-time feasible with a

dedicated processor and code in machine language.

If Pc is smaller than, say, 0.0001%, the collision is

unlikely and no warning will be issued. Otherwise, a

warning will be given.

6. SIMULATION RESULTS

6.1. Efficiency of ML Estimator of the Target
Parameter

Under the hypothesis Hx that the ML estimator (29)

is unbiased and efficient, that is, the mean of the esti-

mation error is zero and the estimation errors match the

covariance given by the CRLB as in (18), the NEES for

the target parameter

²x = x̃
0J x̃ (63)

is chi-square distributed with nx degrees of freedom.

The sample average NEES from N Monte Carlo runs

would be

²̄x =
1

N

NX
i=1

²ix (64)

where ²ix is a sample from ith Monte Carlo run. The

quantity N²̄x is chi-square distributed with Nnx degrees

of freedom. Therefore, for a given level of significance

®, Hx cannot be rejected if

²̄x 2
·
Lx
N
,
Ux
N

¸
(65)

where Lx and Ux are the 100®=2 and 100(2¡®)=2
percentile points of a chi-square random variable with

Nnx degrees of freedom.

The sample averages of the NEES for the 6-D target

parameter (nx = 6) in Scenario 5 from 100 Monte Carlo

runs based on the CRLB evaluated at the truth and at

the estimate are calculated. The values are 6.2576 and

6.2207, which can be considered practically identical.

Both values fall inside the two-sided 60% probability

region [5.70, 6.29], which means that one can accept the

null hypothesis Hx at a high significance level of 40%,

i.e., we allow a probability of making a type I (reject Hx
when it is true) error that is 40% in this case. In addition,

the likelihood function (13) is exponential, which is

a necessary, although not sufficient, condition for the

MLE to be efficient [16]. This strongly affirms the

acceptability of the CRLB as the actual covariance of the

3-D estimator in Scenario 5. The same reasoning was

used in [11] to demonstrate the statistical efficiency of

composite position measurements from passive sensors

for a variety of geometries.

The sample averages of the NEES for the 4-D tar-

get parameter (nx = 4) in Scenario 9 from 100 Monte

Carlo runs based on the CRLB evaluated at the truth

and at the estimate are also calculated. The values are
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3.9209 and 3.9199, which can also be considered prac-

tically identical. Both values fall inside the two-sided

30% probability region [3.885, 4.103] (i.e., the alter-

native hypothesis H1 (“not efficient”) is rejected at a

rather high significance level of 70%), which confirms

the acceptability of the CRLB as the actual covariance

of the 2-D estimator in Scenario 9. Therefore, the unbi-

asedness and efficiency of the ML estimator is verified

in both scenarios considered in this paper.

Simulation results also show that the collision warn-

ing algorithm based on the CRLB covariance provides

reliable performance by comparing the CRLB-based er-

ror probability of 10¡5 with 105 Monte Carlo runs. The
number of missed collision detections in this case was

2 in 105 runs. If one considers the following hypothesis

test

H0 : PFA = 10
¡5 (66)

H1 : PFA > 10
¡5 (67)

then, based on the Poisson approximation with param-

eter ¸ of the binomial distribution of the number of

missed detections in 105 runs (H0 : ¸= 1; H1 : ¸ > 1

with 105 runs), the probability of getting no more than 2

missed collision detections is 0.9197, i.e., we can accept

H0 at a level of significance of 8%. (The outcome is to

the left of the 8% tail.) With 105 runs and the thresh-

old set for PFA = 10
¡4 (then H0 : ¸= 10), we obtained 5

missed collision detections, i.e., in this case H0 can be

accepted at a level of significance of 93% (unusually

high).

6.2. Efficiency of the CPA Time Estimate

Based on (36), the CPA time estimate t̂CPA in (37) is

a function of the target parameter estimate x̂, denoted as

t̂CPA = g[x̂] (68)

Unfortunately, the function g has no closed-form ex-

pression, therefore, we estimate the variance of t̂CPA us-

ing the unscented transformation technique [3] as fol-

lows:

Firstly, by the method of moment matching, the

Gaussian density N (x̂;xt,P) of the nx-dimensional x̂
(centered at the true value xt; this is in view of the

unbiasedness and efficiency discussed in the previous

subsection) is replaced by a (2nx+1)-point probability

mass function (pmf)

p(x̂) =

nxX
i=¡nx

wi±(x̂¡ x̂i) (69)

where ±(¢) is the Dirac delta function. The sigma points
of the pmf are

x̂i = xt + sgn(i)a[P]
1=2

jij i=¡nx, : : : ,nx; a 2 R (70)

where [P]
1=2
i is the ith column of the Cholesky factor

of P defined by

nxX
i=1

[P]
1=2
i ([P]

1=2
i )0 = P (71)

and the signum function is defined as

sgn(i)
¢
=

8><>:
¡1 i < 0

0 i= 0

1 i > 0

(72)

The point masses are [3]

wi =

8><>:
1

2a2
jij= 1, : : : ,nx

a2¡ nx
a2

i= 0

(73)

which sum up to unity. With the sigma points and point

masses specified above, the pmf (69) has the same mean

and covariance matrix as the Gaussian pdf N (x̂;xt,P)
regardless of the value of a. A reasonable choice of a isp
nx+2, so we use that in this paper. In a simulated

scenario, the true value of the parameter is known.

However, in a real scenario where the true value of

the parameter is unknown and needs to be estimated,

the sigma points of x̂ need to match the moments of
N (x̂,P) with P evaluated at the estimate.
Secondly, a sigma point of t̂CPA corresponding to x̂

i

can be obtained as

t̂i = g[x̂i] (74)

Lastly, the pdf of t̂CPA is approximated by the pmf

p(t̂CPA) =

nxX
i=¡nx

wi±(t̂CPA¡ t̂i) (75)

which has mean

t̄ =

nxX
i=¡nx

wit̂i (76)

and variance

¾2t =

nxX
i=¡nx

wi(t̂i¡ t̄)2 (77)

If we assume that t̂CPA is a Gaussian random variable

with mean tCPA and variance ¾
2
t , then under the hypoth-

esis Ht that the estimator (37) is unbiased and efficient,

the NEES for the CPA time

²t =
(tCPA¡ t̂CPA)2

¾2t
(78)

is chi-square distributed with 1 degree of freedom.

The sample average NEES from N Monte Carlo runs

would be

²̄t =
1

N

NX
i=1

²it (79)

where ²it is a sample from ith Monte Carlo run. The

quantity N²̄t is chi-square distributed with N degrees of
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Fig. 6. Collision warning is “on” in a single run in Scenarios 5 and 9. (a) Scenario 5. (b) Scenario 9.

freedom. Therefore, for a given level of significance ®,

Ht cannot be rejected if

²̄t 2
·
Lt
N
,
Ut
N

¸
(80)

where Lt and Ut are the 100®=2 and 100(2¡®)=2
percentile points of a chi-square random variable with

N degrees of freedom.

The sample averages of the NEES for the CPA time

estimate in Scenario 5 from 100 Monte Carlo runs based

on the true value and the estimate of the target parameter

are calculated. The values are 1.0914 and 1.0950, which

can be considered practically identical. Both values fall

inside the two-sided 60% probability region [0.879,

1.117], which confirms the unbiasedness and efficiency

of the CPA time estimate in Scenario 5 for the 3-D case.

The sample averages of the NEES for the CPA time

estimate in Scenario 9 from 100 Monte Carlo runs based

on the true value and the estimate of the target parameter

are calculated. The values are 0.8753 and 0.8737, which

can also be considered practically identical. Both values

fall inside the two-sided 60% probability region, which

confirms the unbiasedness and efficiency of the CPA

time estimate in Scenario 9 for the 2-D case.

6.3. Collision Warning Based on the Generalized
Likelihood Function

The collision warning is “on” for all 100 runs in

Scenario 5 and 9 with the target and the ownship

modeled as points, that is, at the predicted CPA time the

ownship is inside the confidence region of the true target

around its predicted position as illustrated in Figure

6(a) and 6(b). The collision warning is “off” for all

100 runs in Scenario 6, that is, at the predicted CPA

time the ownship is outside the confidence region of the

true target around its predicted position as illustrated in

Figure 7(a).

Taking the physical dimensions of the aircraft into

consideration and using a safety margin of 100 m, the

collision warning is “on” for all 100 runs in Scenario

5 and 9. However, the collision warning is “on” for

all 100 runs in Scenario 6, that is, false alarms occur.

Although at the predicted CPA time the ownship is

outside the confidence region of the true target around

its predicted position, the minimum distance between

the ownship and the ellipsoid is less than the safety

margin as illustrated in Figure 7(b).

The term “CPA angle” is defined as the angle formed

by the target velocity vector and the ownship velocity

vector at the CPA time when they are projected on a

plane at the same altitude. Therefore, the CPA angle is

180± in Scenarios 5, 6 and 9.
The performance of the 3-D likelihood-based colli-

sion warning algorithm is further evaluated by varying

the target and ownship altitude separation3 from 0 to

300 m in steps of 50 m and the CPA angle from 180± to
135± in steps of 15± one parameter at a time in Scenario
5. From Figure 8(a), the 3-D likelihood based collision

warning algorithm has no missed detections of a colli-

sion in 100 runs. There are some false alarms when the

intruder and ownship altitude separation is 50 m and

the number of false alarms increases slightly with the

CPA angle decreasing. There are no false alarms when

the intruder and ownship altitude separation is beyond

100 m.

31000 ft (¼ 300 m) is a global standard for vertical separation
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Fig. 7. Collision warning decisions in a single run in Scenario 6. Collision warning is “off” without a safety margin but is “on” with a

safety margin of 100 m. (a) Without a safety margin. (b) With a safety margin of 100 m.

Fig. 8. The number of warnings in 100 runs using the 3-D likelihood based collision warning algorithm. (a) Without a safety margin.

(b) With a safety margin of 100 m.

Figure 9(a) shows the histogram of the logarithm of

the estimated probability of collision in 10, 000 runs

from scenarios with different CPA angles when there

is a collision (the target and ownship altitude separa-

tion is 0 m). The estimated probability of collision has

a similar distribution for different CPA angles, which

is also observed at other levels of altitude separation.

More than 95% of the time, the probability of collision

is estimated to be larger than 10%. Since the proba-

bility of collision is always estimated to be larger than

0.0001%, there are no missed detections, which con-

firms the results shown in Figure 8(a). As the sepa-

ration in altitude increases from 0 to 50 m, the es-

timated probability of collision gets much smaller as

shown in Figure 9(b). Similar phenomena are also ob-

served at other CPA angles. False alarms occur about

30% of the time when the estimated probability of col-

lision is larger than 0.0001%. When the intruder and

ownship altitude separation is beyond 100 m, the esti-

mated probability is always less than 10¡16 and hence
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Fig. 9. The histogram of log10 Pc in 10000 runs using the 3-D likelihood based collision warning algorithm. (a) Separation in altitude is

0 m. (b) CPA angle is 180±.

Fig. 10. The histogram of log10 Pc in 10000 runs using the 3-D likelihood based collision warning algorithm with a safety margin of

100 m. (a) CPA angle is 180±. (b) Separation in altitude is 150 m.

the corresponding distributions are not shown in Fig-

ure 9(b).

With a safety margin of 100 m, from Figure 8(b), the

3-D likelihood based collision warning algorithm has no

missed detections of a collision. However, it becomes

more conservative and there are always false alarms

when the intruder and ownship altitude separation is

below 100 m, which is not surprising because of a safety

margin of same distance. The number of false alarms

starts to decrease at 150 m altitude separation.

When the altitude separation is 0 or 50 m, it turns out

that the estimated probability of collision is always 1 in

10,000 Monte Carlo runs. When the altitude separation

is 100 m, the estimated probability of collision is not

always unity: see Figure 10(a) for the distribution of its

logarithm. When the separation is 150 m, the estimated
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Fig. 11. The number of warnings in 100 runs using the 2-D likelihood based collision warning algorithm. (a) Without a safety margin.

(b) With a safety margin of 100 m.

Fig. 12. The histogram of log10 Pc in 10000 runs using the 2-D likelihood based collision warning algorithm. (a) Separation in altitude is

0 m. (b) CPA angle is 150±.

probability of collision becomes much smaller. The

similar distributions are also observed at other CPA

angles as illustrated in Figure 10(b). It is estimated to

be less than 0.0001% for more than 90% of the time.

When the intruder and ownship altitude separation is

beyond 200 m, the estimated probability is always less

than 10¡16.

The performance of the 2-D likelihood based colli-

sion warning algorithm is evaluated in the same manner.

Figure 11(a) shows that there are no missed detections

of collisions in 100 runs, which is the same as in the

3-D scenarios. The estimated probability of collision is

very close to 1 for most of the time in 10000 runs and

its distribution is similar at different CPA angles as indi-
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Fig. 13. The histograms of dCPA with fitted Rician distributions when the CPA angle is 180
±.

Fig. 14. Performance of the 3-D Bayesian collision warning algorithm with dmin = 100 m. (a) Histogram of the number of warnings in 100

runs. (b) Histogram of log10 Pc in 10000 runs with CPA angle 180
±.

cated in Figure 12(a). The CPA angle has a pronounced

effect on false alarms in the 2-D case. Recall that in

the 2-D scenarios it is (conservatively) assumed that the

intruder is at the same altitude as the ownship, which is

not true when the altitude separation is not zero. When

the CPA angle is close to 180±, the collision is very
likely to occur based on the same altitude assumption,

and, consequently, the false alarm rate is therefore very

high. At other CPA angles, as the altitude separation

increases, the number of false alarms decreases and the

estimated probability of collision becomes smaller as

indicated in Figure 12(b).

With a safety margin of 100 m, there are no missed

detections of collisions. However, there are more false

alarms because of both the same altitude assumption

and the safety margin.

Based on the above observations, we submit that 3-

D estimation with at least 3 transmitters is the only one

reliable configuration for collision warning and that 2-D

estimation with 2 transmitters is prone to false alarms
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when the CPA angle is 180± even if there is more than
400 m altitude separation.

6.4. Collision Warning Based on the Bayesian
Approach

The one-sample Kolmogorov-Smirnov test fails to

reject the hypothesis that 1000 samples of dCPA comes

from a Rician distribution with parameters that are ML

estimates based on the same 1000 samples in all 100

Monte Carlo runs in each of the 3-D scenarios that are

used to evaluate the likelihood based collision warning

algorithm in previous subsection. The fitted Rician dis-

tributions with the corresponding histograms of dCPA at

different levels of altitude separations at 180± CPA angle
are shown in Figure 13. As shown in the previous sub-

section, 2-D collision warning with 2 transmitters under

the same altitude assumption is unreliable because it is

prone to false alarm, therefore the Bayesian approach

is considered only in the multistatic configuration with

3 transmitters in this paper. It turned out that the hy-

pothesis that the pdf of dCPA is Rician is no longer valid

in the 2D scenarios when the same altitude assumption

does not hold. Nevertheless, it is possible to estimate the

probability of collision by fitting a kernel distribution

instead of a Rician distribution in those 2-D scenarios.

The performance of 3-D Bayesian collision warning

algorithm with dmin = 100 m is shown in Figure 14,

which is very similar to that of 3-D likelihood based

collision warning algorithm with a safety margin 100 m.

There are no missed detections of a collision but there

are always false alarms when the intruder and ownship

altitude separation is below 100 m. The number of false

alarms starts to decrease at 150 m altitude separation and

becomes zero when the altitude separation is beyond

200 m.

Comparing Figure 14(b) and 10(a), the estimated

probability of collision from the 3-D Bayesian algo-

rithm has a similar distribution to that from the 3-D

likelihood based algorithm. As the altitude separation

increases, the estimated probability of collision is get-

ting smaller. When the altitude separation is 0 or 50 m,

it turns out the estimated probability of collision is al-

ways 1 in 10,000 Monte Carlo runs. When the intruder

and ownship altitude separation is beyond 200 m, the

estimated probability is always less than 10¡16.

7. CONCLUSIONS

The ability to sense and avoid non-cooperative tar-

gets is essential for UAS to perform routine tasks when

they are not alone in the airspace. We investigated sev-

eral configurations with bistatic range and range rate

measurements for collision warning. It turned out that

a multistatic configuration is needed to provide good

observability of the target, which is useful for collision

warning. The minimum number of the transmitters re-

quired is three in a 3-D scenario and two in a 2-D sce-

nario. We also implemented an ML estimator in both

types of scenarios using the ILS technique and showed

that the estimator can be considered as statistically effi-

cient through Monte Carlo simulations for the scenarios

considered. Based on the ML estimator, the collision

warning was approached in two different ways. The

first method is formulating the collision as a hypothesis

testing problem using a generalized likelihood function,

where the efficiency of the CPA time is also verified.

The second method is a Bayesian formulation focusing

on the time of CPA modeled as a random variable. Only

the multistatic configuration with three transmitters is

reliable for collision warning because the multistatic

configuration with two transmitters based on the same

target and ownship altitude assumption turns out to be

prone to false alarms. When the minimum distance in

the Bayesian approach is the same as the safety margin

in the likelihood based approach, both algorithms yield

very similar collision warning performance.
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Early Fusion and Query

Modification in Their Dual

Late Fusion Forms
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In this paper, we prove that specific widely used models in

Content-based Image Retrieval for information fusion are inter-

changeable. In addition, we show that even advanced, non-standard

fusion strategies can be represented in dual forms. These models

are often classified as representing early or late fusion strategies.

We also prove that the standard Rocchio algorithm with specific

similarity measurements can be represented in a late fusion form.
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I. INTRODUCTION

Fusion strategies1 play an important role in many
areas of research, including text Information Retrieval
(IR), Content-based Image Retrieval (CBIR), Computer
Vision, Geospatial Information Systems, Business Intel-
ligence, Bioinformatics–to name a few. In CBIR and
Computer Vision, the most widely used fusion schemes
are early and late fusion strategies. They are important
because they allow us to combine various notions of
visual information, textual information, etc. at the rep-
resentation level or system decision level.
In general, Content-based Image Retrieval is usually

based on the Vector Space Model. It represents informa-
tion objects as multidimensional vectors. A user query
is also represented as a vector which can be an image
(referred to as visual example) or text. It often contains
two types of information–visual and textual. When the
user submits his/her query, the similarity measurement
is applied to compute the relevance scores denoting the
similarities between the query and images in the data
collection. The images are then ranked according to the
relevance scores and the top n images are presented to
the user.
Based on the experimental results, researchers have

hinted at the potential interchangeability of specific fu-
sion schemes [14]. In this paper, we mathematically
prove that this interchangeability is directly related to
the interaction between early fusion operators and sim-
ilarity measurements. Thus, we validate the hypothe-
ses (interchangeability of specific fusion approaches)
that stem from experimental observations and show the
equivalence of particular fusion models. In addition, we
also derive equivalent, dual forms of the Rocchio query
modification model.
This journal paper is an extension and a follow-

up of our previous papers [9], [10]. Here, we enrich
the original publication with specific non-standard early
fusion strategies and show that even advanced models
based on the early and late fusion strategies can be
interchangeable. We also devote an entire section to
proving that the standard Rocchio query modification
model [20], [1], [34] has a dual form–which would
differ with respect to the similarity measure. The late
fusion analogues to the Rocchio algorithm had so far
been considered as separate, different techniques [22],
[12]. Section related to hybrid relevance feedback model
is based on another conference publication [10].
The rest of this paper is organized as follows: Sec-

tion 2 presents the background and related work on the
early and late fusion schemes. Section 3 shows the rela-
tionships between various models representing different
fusion strategies with examples. An interesting finding
which presents dual late fusion forms of the standard
Rocchio query modification model can be found in Sec-
tion 4. Finally, conclusions and information on future
work are provided in Section 5.

1In this paper, terms “fusion strategies,” “fusion schemes,” “fusion

methods,” and “fusion techniques” will be used interchangeably.
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II. BACKGROUND AND RELATED WORK

Different features (i.e. various visual, textual) in

CBIR represent complementary yet correlated aspects

of the same multimedia objects. This, in turn, presents

an opportunity to utilize this complementarity by com-

bining the feature spaces in order to improve their per-

formance. Fusion strategies are the main tools that can

be used to accomplish the aforementioned task [5], [3].

Early fusion strategy combines the feature spaces at the

representation level (fusion of representations) whereas

late fusion strategy combines them at the decision level

(fusion of relevance scores). Thus, for example, one can

combine visual and textual features in the first round

retrieval. It is also possible to combine them in the

context of user relevance feedback [10], [8], [6]. More-

over, search by multiple visual examples also requires

combination of features corresponding to these visual

examples. Many current state-of-the-art CBIR systems

combine various visual features (often local and global)

to achieve the best performance (e.g. [17]).

The most widely used early fusion technique is con-

catenation of visual and textual representations. In fact,

some researchers implicitly assume concatenation to be

synonymous with an early fusion strategy. Other re-

cently proposed models incorporate the tensor product

to combine visual and textual systems [30]. The tensor

product represents a useful fusion technique as it takes

into account all the combinations of different features’

dimensions. It has also other applications in IR, for ex-

ample, to model semantic (verb-noun pairs) composi-

tion [31]. The main drawback of the early fusion ap-

proach is the well-known curse of dimensionality. Later

in the paper we show that the curse of dimensional-

ity can be avoided if the equivalent late fusion form is

known.

In the case of the late fusion, the most widely used

method is the arithmetic mean of the scores, their sum

(referred to as CombSUM in the literature), or their

weighted linear combination. One of the best perform-

ing systems on the ImageCLEF2007 data collection,

XRCE [17], utilizes both early–concatenation of fea-

tures and late–an average of relevance scores fusion

strategies for comparison purposes. Another common

combination method, referred to as CombPROD in the

literature, is the squared geometric mean of the rele-

vance scores–their product. It has been argued, that

the major drawback of the late fusion approaches is

their inability to capture the correlation between dif-

ferent modalities [18]. However, in the paper we show

that in some cases the late fusion can be represented in

the form of an early fusion.

Early and late fusion strategies can be also consid-

ered in the context of classification, e.g. image cate-

gorization [4]. In the case of classification, late fusion

is performed differently, as a weighted voting strategy

from the outputs of different classifiers [21], [24]. Some

fusion strategies in CBIR can be also classified as inter-

mediate fusion [4]. They simultaneously learn individ-

ual classifier and combination classifier weights [33],

and this process happen at various levels of learning. In

this paper, however, our focus is on the similarity-based

image retrieval.

Thus, in general, most literature on fusion strate-

gies in Content-based Image Retrieval utilize either con-

catenation or a linear combination of relevance scores

in their models (e.g. [29]). Others have used both for

experimental comparison [27], [28] and conclude that

both strategies generate similar results (slightly better

performance of a late fusion) or are in favour of an

early fusion strategy (e.g. [25]). All of them, however,

treat these fusion strategies as separate, individual data

combination approaches.

In this paper, we aim to prove that specific widely

used standard and non-standard fusion models in CBIR

are equivalent. All presented models are based on early

and late fusion strategies, and represent counterexam-

ples showing that these strategies should not always be

considered as separate.

III. RELATIONSHIPS BETWEEN FUSION STRATEGIES

The most widely used fusion models in Content-

based Image Retrieval are based on the early and late fu-

sion schemes. We are going to show, that specific com-

binations of similarity measures and individual scores

(late fusion) can be represented as similarities computed

on pre-tensored or pre-concatenated individual repre-

sentations (early fusion), and vice versa.

Some of the best performing similarity measure-

ments in information retrieval in general are: cosine

similarity and metrics from the Minkowski family of

distances (Euclidean, Manhattan, etc.). In particular, Eu-

clidean distance is often utilized in visual search [11],

while textual search often uses cosine similarity [35].

Moreover, late fusion is most often represented as a

product of relevance scores, their sum, or their weighted

linear combination [18], [29]. The early fusion, on the

other hand, is usually represented by concatenation of

feature spaces [31], [29].

Thus, in this section, we are going to investigate

the interactions between these similarity measurements

and early fusion operators. We are going to reveal the

relationships between concatenation and tensor product

with the following similarity measurements:

² inner product2
² cosine similarity
² weighted cosine similarity (can be used to change the
importance of different feature spaces)

² Euclidean metric
We also investigate the interactions of the afore-

mentioned early fusion operators with a combination

2In this paper, terms “inner product” and “dot product” will be used

interchangeably.
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of Euclidean distance and cosine similarity. That is be-

cause often cosine similarity performs best in text IR

(Information Retrieval) while Euclidean distance gives

the best performance in CBIR. Therefore, we may want

to utilize different similarity measurements for differ-

ent feature spaces. Interestingly, we can combine these

different similarity measurements in such a way, that

this combination will correspond to the feature fusion

at the representation level. Further, we explore the inter-

actions with the Minkowski family of distances, which

encompasses a wide range of various metrics and sim-

ilarity measurements. The discovered relationships are

supported by examples.

For the clarity of the formulas, in this section we

assume that the visual and textual features were normal-

ized. This is not a necessary assumption as analogous

relationships can be found for representations that were

not normalized.

Table I presents the notation used in the paper.

A. Interactions of early fusion operators
(concatenation, tensor product) with the dot
product

1) We can start by making a few simple observa-

tions. Let us employ a standard inner product as the

similarity measurement. Let d be a vector representation

of a multimedia document. We can check that

hdv1© dt1 j dv2© dt2i= hdv1 j dv2i+ hdt1 j dt2i (1)

where h¢ j ¢i denotes an inner product, © is the direct

product (concatenation of vectors) and dvi ,d
t
i are the vi-

sual and textual image representations of the ith image,

for example. We can assume that dv1,d
t
1 denote the vi-

sual and textual query representations (query by visual

example) and dv2,d
t
2 denote the visual and textual rep-

resentations of an image from the image collection. We

would measure these similarities for all the images in

the data collection and use the relevance scores to rank

the images.

From the above equation we can see, that concatena-

tion of vectors is equivalent to addition of measurements

(scores) performed on individual feature spaces.

To clarify, concatenation (©) of two n and m dimen-
sional vectors produces a new n+m dimensional vector,

for example

(a,b)© (c,d,e) = (a,b,c,d,e) (2)

2) Tensor product (−) of two n and m dimensional

vectors generates an n ¢m dimensional vector or an n by
m dimensional matrix. For example

(a,b)− (c,d,e) = (ac,ad,ae,bc,bd,be) (3)

or

(a,b)− (c,d,e) =
μ
ac ad ae

bc bd be

¶
(4)

It has been shown that the tensor product can be

useful when combining the representations as it takes

TABLE I

Overview of the notation used in the paper.

Symbol Meaning

dv
1
, dt

1
Visual and textual vector representations of the

query, respectively

dv
2
, dt

2
Visual and textual vector representations of an

arbitrary image from an image collection,

respectively

© Vector concatenation (early fusion operator)

− Tensor product (early fusion operator)

h¢ j ¢i Similarity measurement–inner product (dot

product), sin(¢, ¢)
sc(¢, ¢) Similarity measurement–cosine similarity

se(¢, ¢) Similarity measurement–Euclidean metric

sb(¢, ¢) Similarity measurement–Bhattacharya similarity

sp(¢, ¢) Similarity measurements–Minkowski family of

distances

sin(¢, ¢) Similarity measurement–inner product (dot product)

k ¢ k Vector norm

Qd an arbitrary document vector from the data collection

Qm modified query vector

Qo original query vector

Dj related document vector

Dk non-related document vector

a original query weight

b related documents’ weights

c non-related documents’ weights

Dr set of related documents

Dnr set of non-related documents

(:)T transpose operator

A observable

M density matrix

hAi= tr(MA) predicted mean value of the measurement

P = pTp projector onto a subspace

Pr probability of the projection

into account all of the combinations of vectors’ dimen-

sions and gives good discrimination in terms of similar-

ity measurements [13]. Assuming that the systems were

prepared independently, we have

hdv1−dt1 j dv2−dt2i= hdv1 j dv2i ¢ hdt1 j dt2i (5)

where − denotes the tensor operator.
From the above equation it turns out that the inner

product of the tensor products is a product of the

measurements (scores) performed on individual feature

spaces. One of the implications of this observation is

that there is no need for performing the tensor operation.

B. Interactions of early fusion operators
(concatenation, tensor product) with the cosine
similarity

One of the best performing similarity measures in

text IR is the cosine similarity (sc)

sc(d1,d2) =
hd1 j d2i
kd1k ¢ kd2k

(6)
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The following equations hold

kdv1− dt1k=
=
q
hdv1− dt1 j dv1− dt1i=

=
q
hdv1 j dv1i ¢ hdt1 j dt1i=

= kdv1k ¢ kdt1k=
= 1 = kdv2− dt2k (7)

and

kdv1© dt1k=
=
q
hdv1© dt1 j dv1© dt1i=

=
q
hdv1 j dv1i+ hdt1 j dt1i=

=

q
kdv1k2 + kdt1k2 =

=
p
2 = kdv2© dt2k (8)

Therefore, we get

sc(d
v
1− dt1,dv2−dt2) = sc(dv1,dv2) ¢ sc(dt1,dt2) (9)

sc(d
v
1© dt1,dv2©dt2) = 1

2
(sc(d

v
1,d

v
2)+ sc(d

t
1,d

t
2)) (10)

Here, the square root of the similarity between the

tensored representations is the geometric mean of the

scores computed independently and the similarity be-

tween the concatenated representations is the arithmetic

mean of individual scores.

Let us assume, that a model incorporates cosine sim-

ilarity as a measurement used in combining the sub-

systems (i.e. visual features or visual and textual fea-

tures). Then, the concatenation or tensor operation pro-

duces the same effect as incorporation of the CombSUM

or CombPROD late fusion methods, respectively.

C. Interactions of an early fusion operator
(concatenation) with the weighted cosine similarity

If we utilize weighted combinations (with r1, r2
denoting the weights, the importance of visual and

textual representations, for example), then we get3

sc(r1d
v
1© r2dt1,r1dv2© r2dt2) =

=
1

r21 + r
2
2

(r21 sc(d
v
1,d

v
2)+ r

2
2 sc(d

t
1,d

t
2)) (11)

3Similar observations can be made for other similarity measurements.

Here, we only present the weighted combinations for the cosine

similarity.

PROOF Because

k(r1dv)© (r2dt)k=
=

q
h(r1dv)© (r2dt) j (r1dv)© (r2dt)i=

=
q
hr1dv j r1dvi+ hr2dt j r2dti=

=

q
r21 hdv j dvi+ r22 hdt j dti=

=

q
r21kdvk2 + r22kdtk2 =

=

q
r21 + r

2
2

we get

sc(r1d
v
1© r2dt1,r1dv2© r2dt2) =

=
hr1dv1© r2dt1 j r1dv2© r2dt2i

r21 + r
2
2

=

=
hr1dv1 j r1dv2i+ hr2dt1 j r2dt2i

r21 + r
2
2

=

=
1

r21 + r
2
2

μ
r21
hdv1 j dv2i
kdv1kkdv2k

+ r22
hdt1 j dt2i
kdt1kkdt2k

¶
=

=
1

r21 + r
2
2

(r21 sc(d
v
1,d

v
2)+ r

2
2 sc(d

t
1,d

t
2))

D. Interactions of early fusion operators
(concatenation, tensor product) with the Euclidean
metric

We can also find the relationships for Euclidean
metric

se(d1,d2) =

q
hd1¡ d2 j d1¡ d2i: (12)

Thus

se(d
v
1© dt1,dv2©dt2) =

q
s2e (d

v
1,d

v
2)+ s

2
e (d

t
1,d

t
2) (13)

and

se(d
v
1− dt1,dv2−dt2) =

=

q
s2e (d

v
1,d

v
2)+ s

2
e (d

t
1,d

t
2)¡ 1

2
s2e (d

v
1,d

v
2)s

2
e (d

t
1,d

t
2)

(14)

PROOF (1) From the fact that

se(d1,d2) =

q
kd1k2 + kd2k2¡ 2hd1 j d2i

and
kd1© d2k=

p
2

we can show that

se(d
v
1© dt1,dv2© dt2) =
=
q
kdv1© dt1k2 + kdv2© dt2k2¡2hdv1© dt1 j dv2© dt2i=

=
q
4¡ 2(hdv1 j dv2i+ hdt1 j dt2i) =

=
q
2¡ 2hdv1 j dv2i+2¡ 2hdt1 j dt1i=

=

q
s2e (d

v
1,d

v
2)+ s

2
e (d

t
1,d

t
2)
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(2) Notice that

s2e (d
v
1,d

v
2) ¢ s2e (dt1,dt2) =

= (2¡ 2hdv1 j dv2i) ¢ (2¡ 2hdt1 j dt2i) =

= 2(2¡ 2hdv1 j dv2i)+

+2(2¡ 2hdt1 j dt2i)¡ 2(2¡2hdv1 j dv2ihdt1 j dt2i) =

= 2s2e (d
v
1,d

v
2)+2s

2
e (d

t
1,d

t
2)¡ 2s2e (dv1− dt1,dv2− dt2)

E. Interactions of early fusion operators
(concatenation, tensor product) with the
Bhattacharya similarity

Similarly, for the Bhattacharya similarity

sb(d1,d2) =¡ln
ÃX

i

p
(d1)i ¢ (d2)i

!
(15)

we get

sb(d
v
1− dt1,dv2−dt2) = sb(dv1,dv2)+ sb(dt1,dt2) (16)

and

sb(d
v
1©dt1,dv2© dt2) =
=¡ln(e¡sb(dv1,dv2) + e¡sb(dt1,dt2)) (17)

PROOF Let us denote

p
d =

³p
d1,
p
d2, : : : ,

p
dn

´
Then

sb(d
v
1− dt1,dv2−dt2) =

=¡ln
ÃX

k

q
(dv1− dt1)k ¢ (dv2−dt2)k

!
=

=¡ln
μ¿q

dv1− dt1 j
q
dv2− dt2

À¶
=

=¡ln
μ¿q

dv1−
q
dt1 j

q
dv2−

q
dt2

À¶
=

=¡ln
μDq

dv1 j
q
dv2

E
¢
¿q

dt1 j
q
dt2

À¶
=

=¡
μ
ln
Dq

dv1 j
q
dv2

E
+ ln

¿q
dt1 j

q
dt2

À¶
=

=¡
0@lnX

i

q
(dv1)i ¢ (dv2)i+ ln

X
j

q
(dt1)j ¢ (dt2)j

1A=
= sb(d

v
1,d

v
2)+ sb(d

t
1,d

t
2)

For the concatenation, we have

sb(d
v
1© dt1,dv2© dt2) =

=¡ln
ÃX

k

q
(dv1© dt1)k ¢ (dv2© dt2)k

!
=

=¡ln
μ¿q

dv1©dt1 j
q
dv2©dt2

À¶
=

=¡ln
μ¿q

dv1©
q
dt1 j

q
dv2©

q
dt2

À¶
=

=¡ln
μDq

dv1 j
q
dv2

E
+

¿q
dt1 j

q
dt2

À¶
=

=¡ln
³
elnh
p
dv
1
j
p
dv
2i+ elnh

p
dt
1
j
p
dt
2i
´
=

=¡ln(e¡sb(dv1,dv2) + e¡sb(dt1,dt2))

F. Interactions of early fusion operators (concatenation,
tensor product) with the Euclidean Metric.
Interpretation of non-linear combinations of cosine
similarity and Euclidean distance

Sometimes it might be beneficial to utilize different

similarity measures for different feature spaces [7] (i.e.

Euclidean metric for visual features and cosine simi-

larity for textual space). Interestingly, we can fuse the

scores in such a way, that their combination would cor-

respond to (for example) measuring the Euclidean dis-

tance between the concatenated or tensored representa-

tions

se(d
v
1© dt1,dv2©dt2) =
=

q
s2e (d

v
1,d

v
2)¡ 2sc(dt1,dt2)+2 (18)

se(d
v
1− dt1,dv2−dt2) =
=

q
s2e (d

v
1,d

v
2)sc(d

t
1,d

t
2)¡2sc(dt1,dt2)+2 (19)

PROOF Stems from the fact that

s2e (d
t
1,d

t
2) =

= 2¡ 2hdt1 j dt2i=

= 2¡ 2 hd
t
1 j dt2i

kdt1kkdt2k
=

= 2¡ 2sc(dt1,dt2)
and (5), (13).

G. Interactions of early fusion operators
(concatenation, tensor product) with the Minkowski
Family of Distances

Minkowski family of distances include widely uti-

lized Manhattan and Euclidean metrics. Manhattan dis-

tance, for example, was utilized in [15] to query the

CBIR system by multiple visual examples. In this afore-

mentioned paper, individual scores corresponding to vi-

sual examples were aggregated. It is interesting to know,
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that if one concatenated the representations correspond-

ing to visual examples and utilized Manhattan metric,

then the influence of these fusion methods on the re-

trieval performance would be exactly the same.

Minkowski family of distances is represented by the

formula

sp(d1,d2) =

Ã
nX
i=1

jdi1¡di2jp
!1=p

(20)

where p 2N.
For the fractional values of p 2 (0,1), the formula

is not a metric in the mathematical sense. However, it

has been shown [16], that the similarity measure with

fractional values of p works well in CBIR.

We are going to show, that

sp(d
v
1© dt1,dv2© dt2) = (spp(dv1,dv2)+ spp(dt1,dt2))1=p (21)

PROOF

sp(d
v
1©dt1,dv2© dt2) =
= kdv1© dt1¡dv2© dt2kp =
= k(dv1¡ dv2)© (dt1¡ dt2)kp =
= (kdv1¡ dv2kpp+ kdt1¡ dt2kpp)1=p =
= (spp(d

v
1,d

v
2)+ s

p
p(d

t
1,d

t
2))

1=p

where

kdkp = (dp1 + dp2 + ¢ ¢ ¢dpn )1=p

Here, the representations do not have to be normalized.

Hence, in these cases the early and late fusion ap-

proaches are interchangeable. The fusion of representa-

tions is then, in fact, the fusion of similarities computed

independently on visual and textual feature spaces. This

is, in our opinion, an interesting finding.

H. Advanced Early Fusion and Interchangeability

The following section is based on and contains

excerpts from [10].

Even advanced, non-standard early fusion can in

some cases be represented as a late fusion. The hybrid

CBIR relevance model introduced in [10] can be consid-

ered as a dual form fusion. The model is based on the

tensor product of co-occurrence matrices representing

visual and textual subspaces of queries and feedback

images. It was proven that this advanced measurement

performed on the combined representations is equiv-

alent to the non-trivial combination of measurements

performed on individual feature spaces. Knowledge of

this interchangeability makes the models easy to imple-

ment and significantly faster (computations performed

on individual feature spaces).

Modern retrieval systems allow the users to interact

with the system in order to narrow down and refine

the search [18], [10]. This interaction takes the form of

implicit or explicit feedback. The representations of the

images in the feedback set are often aggregated or con-

catenated (or co-occurrence matrices may be aggregated

to represent i.e. probability distribution matrix). The in-

formation extracted from the feedback set is utilized to

expand the query or re-rank the top images returned in

the first round of the retrieval.

The proposed hybrid relevance feedback model was

inspired by the measurement used in quantum mechan-

ics, which is based on an expectation value, predicted

mean value of the measurement

hAi= tr(½A) (22)

where tr denotes the trace operator, ½ represents a

density matrix of the system and A is an observable.

We can also represent an observable A as a density

matrix (corresponding to the query or an image in

the collection). For more information on the analogies

between quantum mechanics and information retrieval

the curious reader is referred to [23].

We are going to use the tensor operator− to combine
the density matrices corresponding to visual and textual

feature spaces. In quantum mechanics, the tensor prod-

uct of density matrices of different systems represents

a density matrix of the combined system (see [32]).

Thus, the proposed measurement is represented by

tr((M1−M2) ¢ ((aT ¢ a)− (bT ¢ b))) (23)

whereM1,M2 represent density matrices (co-occurrence

matrices) of the query and images in the feedback set

corresponding to visual and textual spaces respectively,

a and b denote row vectors representing visual and tex-

tual information for an image from the data collection,4

and T is the transpose operation on matrices. We would

perform this measurement on all the images in the col-

lection, thus re-scoring the data collection based on the

user feedback.

Assuming that the systems were prepared indepen-

dently (otherwise we would have to try to model a con-

cept analogous to entanglement [2]), we get

tr((M1−M2) ¢ ((aT ¢ a)− (bT ¢ b))) =
= tr((M1 ¢ (aT ¢ a))− (M2 ¢ (bT ¢ b))) =
= tr(M1 ¢ (aT ¢ a)) ¢ tr(M2 ¢ (bT ¢ b)) =
= hM1 j aT ¢ ai ¢ hM2 j bT ¢ bi (24)

where h¢ j ¢i denotes an inner product operating on a
vector space.

Let qv, qt denote the visual and textual represen-

tations of the query, ci, di denote visual and textual

representations of the images in the feedback set, r1,

r2 denote the weighting factors (constant, importance

of query and feedback density matrices respectively),

and n denote the number of images in the feedback set.

Then, we define M1 and M2 as weighted combinations

of co-occurrence matrices (a subspace generated by the

4For the clarity of formulas a= dv
2
, b = dt

2
.
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query vector and vectors from the feedback set).5 Here,

Dvq, D
t
q, D

v
f , and D

t
f represent co-occurrence matrices of

query and feedback images corresponding to visual and

textual features respectively.

M1 = r1 ¢Dvq+
r2
n
¢Dvf =

= r1 ¢ qTv ¢qv +
X
i

³r2
n
¢ (ci)T ¢ ci

´
(25)

and

M2 = r1 ¢Dtq+
r2
n
¢Dtf =

= r1 ¢qTt ¢ qt+
X
i

³ r2
n
¢ (di)T ¢ di

´
(26)

The common way of co-occurrence matrix gener-

ation is to multiply the term-document matrix by its

transpose (rows of the matrix represent the documents

d1, : : :dm), that is D =M
T ¢M . Notice, that this is equiv-

alent to D =
Pn

i=1 d
T
i ¢ di.

This observation, due to the properties of an inner

product, will allow us to further simplify our model

hM1−M2 j (aT ¢ a)− (bT ¢ b)i=
= hM1 j aT ¢ ai ¢ hM2 j bT ¢ bi=
= hr1 ¢ qTv ¢ qv+

X
i

³r2
n
¢ (ci)T ¢ ci

´
j aT ¢ ai¢

=

*
r1 ¢qTt ¢ qt+

X
i

³ r2
n
¢ (di)T ¢ di

´
j bT ¢ b

+
=

=

Ã
hr1 ¢ qTv ¢qv j aT ¢ ai+

X
i

r2
n
h(ci)T ¢ ci j aT ¢ ai

!
¢

=

Ã
hr1 ¢ qTt ¢qt j bT ¢ bi+

X
i

r2
n
h(di)T ¢ di j bT ¢bi

!
=

=

Ã
r1 ¢ hqv j ai2 +

r2
n
¢
X
i

hci j ai2
!
¢

=

Ã
r1 ¢ hqt j bi2 +

r2
n
¢
X
i

hdi j bi2
!

(27)

Notice that the model breaks down into the weighted

combinations of individual measurements. The squares

of the inner products come from the correlation matrices

and can play an important role in the measurement.

Later in the paper, we are going to justify this claim.

We can consider a variation of the aforementioned

model, where just like in the original one M1 = r1 ¢
Dvq+(r2=n) ¢Dvf and M2 = r1 ¢Dtq+(r2=n) ¢Dtf . We can
decompose (eigenvalue decomposition) the density ma-

5Co-occurrence matrices are quite often utilized in the Information

Retrieval (IR) field. Because they are Hermitian and positive-definite,

they can be thought of as density matrices (probability distribution).

trices M1, M2 to estimate the bases
6 (pvi , p

t
j) of the sub-

spaces generated by the query and the images in the

feedback set. Now, let us consider the measurement

hP1−P2 j (aTa)− (bTb)i (28)

where P1, P2 are the projectors onto visual and textual

subspaces generated by query and the images in the

feedback set (
P
i(p

v
i )
Tpvi ,

P
j(p

t
j)
Tptj), and a, b are the

visual and textual representations of an image from the

data set. Because the tensor product of the projectors

corresponding to visual and textual Hilbert spaces (H1,

H2) is a projector onto the tensored Hilbert space7

(H1−H2), the model can be interpreted as probability
of relevance context, the probability that vector a−b
was generated within the subspace (representing the

relevance context) generated by M1−M2. Hence
hP1−P2 j (aTa)− (bTb)i=

= hP1 j aTai ¢ hP2 j bTbi=

=

*X
i

(pvi )
Tpvi j aTa

+
¢
*X

j

(ptj)
Tptj j bTb

+
=

=
X
i

hpvi j ai2 ¢
X
j

hptj j bi2 =

=
X
i

Prvi ¢
X
j

Prtj =

= k(hpv1 j ai, : : : ,hpvn j ai)− (hpt1 j bi, : : : ,hptn j bi)k2

(29)

where Pr denotes the projection probability and k ¢ k
represents vector norm.

We can see that this measurement is equivalent to

the weighted combinations of all the probabilities of

projections for all the images involved. In quantum

mechanics, the square of the absolute value of the inner

product between the initial state and the eigenstate is the

probability of the system collapsing to this eigenstate.

In our case, the square of the absolute value of the inner

product can be interpreted as a particular contextual

factor influencing the measurement.

IV. QUERY MODIFICATION AND LATE FUSION

Query reformulation techniques are often used in

multimedia retrieval to narrow down the search based

6It has been highlighted [19] that the orthogonal decomposition may

not be the best option for visual spaces because the receptive fields

that result from this process are not localized, and the vast majority

do not at all resemble any known cortical receptive fields. Thus, in the

case of visual spaces, we may want to utilize decomposition methods

that produce non-orthogonal basis vectors.
7A Hilbert space is a vector space with an inner product operation

on elements of the vector space. It is a generalization of the no-

tion of a Euclidean space. Hence, Hilbert spaces allow us to utilize a

wider variety of mathematical tools to model various phenomena in

IR, for example. This generalization can also often encompass many

different models operating in Euclidean space, thus unifying various

approaches.
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on the user feedback. We are going to show, that the

Rocchio query modification algorithm [26] can be rep-

resented as a late fusion, a combination of a number

of individual relevance scores. This interesting finding

shows that the same effect can be achieved by either

modifying the query or combining individual relevance

scores.

The late fusion analogues to the Rocchio algorithm

have been considered as separate, different techniques

[22], [12]. We show that one of the standard query

modification algorithms, the Rocchio model, also has

its dual late fusion form representations.

Rocchio algorithm modifies the query so that it

moves closer to the centroid of relevant documents and

further away from the centroid of irrelevant ones

Qm = (a ¢Qo) +
0@b ¢ 1

jDrj
¢
X
Dj2Dr

Dj

1A¡
0@c ¢ 1

jDnrj
¢
X
Dk2Dnr

Dk

1A (30)

where

Qm–modified query vector

Qo–original query vector

Dj–related document vector

Dk–non-related document vector

a–original query weight

b–related documents’ weights

c–non-related documents’ weights

Dr–set of related documents

Dnr–set of non-related documents

We will show, that the modification of the query

can be interpreted as a weighted combination of the

measurements (scores, similarities) between a query and

a document from the data collection and between a

query and each document from the feedback set. In

this section, for the clarity of the formulas, we assume

that all vectors were normalized to unit vectors and

Qd denotes an arbitrary document vector from the data

collection.

A. Inner Product

After modifying the query, we need to re-compute

the scores. Thus, we would get

hQm jQdi=

= ahQo jQdi+
b

jDrj
X
Dj2Dr

hDj jQdi¡

c

jDnrj
X
Dk2Dnr

hDk jQdi (31)

PROOF

hQm jQdi=

=

*
aQo+ b

1

jDrj
X
Dj2Dr

Dj ¡ c
1

jDnrj
X
Dk2Dnr

Dk jQd
+
=

= haQo jQdi+

+

*
b

jDrj
X
Dj2Dr

Dj jQd
+
¡
*

c

jDnrj
X
Dk2Dnr

Dk jQd
+
=

= ahQo jQdi+
b

jDrj
X
Dj2Dr

hDj jQdi¡

¡ c

jDnrj
X
Dk2Dnr

hDk jQdi

Hence, the query modification with the inner product

as a similarity measurement can be represented in a

specific late fusion form.

B. Cosine Similarity

For the cosine similarity, we get

sc(Qm,Qd) =
1

kQmk
μ
asc(Qo,Qd)+

+
b

jDrj
X
j

sc(Dj ,Qd)¡
c

jDnrj
X
k

sc(Dk,Qd)

¶
(32)

kQmk2 = a2 + c2+

+
2ab

jDrj
X
j

sc(Qo,Dj)¡
2ac

jDnrj
X
k

sc(Qo,Dk)¡

2bc

jDrj ¢ jDnrj
X
j

X
k

sc(Dj ,Dk) (33)

PROOF

sc(Qm,Qd) =
hQm jQdi
kQmk ¢ kQdk

=

=
1

kQmk
μ
asc(Qo,Qd)+

+
b

jDrj
X
j

sc(Dj ,Qd)¡
c

jDnrj
X
k

sc(Dk,Qd)

¶
where

kQmk2 = hQm jQmi=

=

*
aQo+

b

jDrj
X
j

Dj ¡
c

jDnrj
X
k

Dk j aQo+

+
b

jDrj
X
j

Dj ¡
c

jDnrj
X
k

Dk

+
=
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= a2hQo jQoi+
2ab

jDrj
X
j

hQo jDji¡

¡ 2ac

jDnrj
X
k

hQo jDki¡
2bc

jDrj ¢ jDnrj
X
j

X
k

hDj jDki+

+
c2

jDnrj2
X
k

X
k

hDk jDki=

= a2 + c2 +
2ab

jDrj
X
j

sc(Qo,Dj)¡
2ac

jDnrj
X
k

sc(Qo,Dk)¡

¡ 2bc

jDrj ¢ jDnrj
X
j

X
k

sc(Dj ,Dk)

Hence, the query modification with the cosine simi-

larity as a similarity measurement can be represented in

a specific late fusion form.

C. Euclidean Distance

For the Euclidean distance

s2e (Qm,Qd) =

= a2 + c2 +2ab¡2ac¡ 2bc¡ 2a¡ 2b¡ 2c+1¡
ab

jDrj
X
j

se(Qo,Dj)+
ac

jDnrj
X
k

se(Qo,Dk)+

+
bc

jDrj ¢ jDnrj
X
j

X
k

se(Dj ,Dk)+

+ ase(Qo,Qd)+

+
b

jDrj
X
j

se(Dj ,Qd)+
c

jDnrj
X
k

se(Dk,Qd) (34)

PROOF Based on the previous observation (for cosine

similarity), we get

s2e (Qm,Qd) =

= a2 + c2 +
2ab

jDrj
X
j

hQo jDji¡

2ac

jDnrj
X
k

hQo jDki¡
2bc

jDrj ¢ jDnrj
X
j

X
k

hDj jDki+

+1¡ 2ahQo jQdi¡
2b

jDrj
X
j

hDj jQdi

¡ 2c

jDnrj
X
k

hDk jQdi=

= a2 + c2 +1+
2ab

jDrj
jDrj ¡

2ab

jDrj
jDrj+

+
2ab

jDrj
X
j

hQo jDji+
2ac

jDnrj
jDnrj ¡

2ac

jDnrj
jDnrj+

¡ 2ac

jDnrj
X
k

hQo jDki+
2bc

jDrj ¢ jDnrj
jDrj ¢ jDnrj¡

¡ 2bc

jDrj ¢ jDnrj
jDrj ¢ jDnrj ¡

2bc

jDrj ¢ jDnrj
X
j

X
k

hDj jDki+

+2a¡ 2a¡ 2ahQo jQdi+

+
2b

jDrj
jDrj ¡

2b

jDrj
jDrj ¡

2b

jDrj
X
j

hDj jQdi+

+
2c

jDnrj
jDnrj ¡

2c

jDnrj
jDnrj ¡

2c

jDnrj
X
k

hDk jQdi=

= a2 + c2 +2ab¡ 2ac¡ 2bc¡ 2a¡ 2b¡ 2c+1¡

¡ ab

jDrj
X
j

se(Qo,Dj) +
ac

jDnrj
X
k

se(Qo,Dk)+

+
bc

jDrj ¢ jDnrj
X
j

X
k

se(Dj ,Dk)+

+ ase(Qo,Qd)+
b

jDrj
X
j

se(Dj ,Qd)+

+
c

jDnrj
X
k

se(Dk,Qd)

Hence, the query modification with the Euclidean

distance as a similarity measurement can be represented

in a specific late fusion form.

D. Hybrid Relevance Feedback and Rocchio
Algorithm

We can also tensor or concatenate the modified

query vectors in order to generate hybrid models. Then

(v, t indexes denote visual and textual representations

respectively)

hQvm−Qtm jQvd−Qtdi=
= hQvm jQvdihQtm jQtdi=

= (ahQvo jQvdi+
b

jDrj
X
Dj2Dr

hDvj jQvdi¡

c

jDnrj
X
Dk2Dnr

hDvk jQvdi)¢

(ahQto jQtdi+
b

jDrj
X
Dj2Dr

hDtj jQtdi¡

c

jDnrj
X
Dk2Dnr

hDtk jQtdi) (35)

and for concatenation

hQvm©Qtm jQvd ©Qtdi=
= hQvm jQvdi+ hQtm jQtdi=
= a(hQvo jQvdi+ hQto jQtdi)+

+
b

jDrj
X
Dj2Dr

(hDvj jQvdi+ hDtj jQtdi)¡

c

jDnrj
X
Dk2Dnr

(hDvk jQvdi+ hDtk jQtdi) (36)
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TABLE II

Summary of the findings.

Early fusion interacting with the similarity Late fusion equivalent

sin(d
v
1
© dt

1
,dv
2
© dt

2
) sin(d

v
1
j dv
2
)+ sin(d

t
1
j dt
2
)

sin(d
v
1
− dt

1
,dv
2
− dt

2
) sin(d

v
1
j dv
2
) ¢ sin(dt1 j dt2)

sc(d
v
1
− dt

1
,dv
2
− dt

2
) sc(d

v
1
,dv
2
) ¢ sc(dt1,dt2)

sc(d
v
1
© dt

1
,dv
2
© dt

2
) 1

2
(sc(d

v
1
,dv
2
)+ sc(d

t
1
,dt
2
))

sc(r1d
v
1
© r2dt1,r1dv2© r2dt2) (r2

1
sc(d

v
1
,dv
2
)+ r2

2
sc(d

t
1
,dt
2
))

r2
1
+ r2

2

se(d
v
1
© dt

1
,dv
2
© dt

2
)

p
s2e (d

v
1
,dv
2
)+ s2e (d

t
1
,dt
2
)

se(d
v
1
− dt

1
,dv
2
− dt

2
)

p
s2e (d

v
1
,dv
2
)+ s2e (d

t
1
,dt
2
)¡ 1

2
s2e (d

v
1
,dv
2
)s2e (d

t
1
,dt
2
)

sb(d
v
1
− dt

1
,dv
2
− dt

2
) sb(d

v
1
,dv
2
)+ sb(d

t
1
,dt
2
)

sb(d
v
1
© dt

1
,dv
2
© dt

2
) ¡ln(w1 +w2)

w1 = e
¡sb (dv1,d

v
2
)

w2 = e
¡sb (dt1,d

t
2
)

se(d
v
1
© dt

1
,dv
2
© dt

2
)

p
s2e (d

v
1
,dv
2
)¡ 2sc(dt1,dt2)+ 2

se(d
v
1
− dt

1
,dv
2
− dt

2
)

p
s2e (d

v
1
,dv
2
)sc(d

t
1
,dt
2
)¡ 2sc(dt1,dt2)+2

sp(d
v
1
© dt

1
,dv
2
© dt

2
) (spp(d

v
1
,dv
2
)+ spp(d

t
1
,dt
2
))1=p

tr((M1−M2) ¢ ((aT ¢ a)− (bT ¢ b))) (r1 ¢ hqv j ai2 +
r2
n
¢
P

i
hci j ai2) ¢ (r1 ¢ hqt j bi2 +

r2
n
¢
P

i
hdi j bi2)

hP1−P2 j (aTa)− (bTb)i k(hpv
1
j ai, : : : ,hpvn j ai)− (hpt1 j bi, : : : ,hptn j bi)k2

hQm jQdi ahQo jQdi+
b

jDrj
P

Dj2Dr hDj jQdi¡
c

jDnrj
P

Dk2Dnr hDk jQdi

sc(Qm,Qd)
1

kQmk

μ
asc(Qo,Qd) +

b

jDrj
P

j
sc(Dj ,Qd)¡

c

jDnrj
P

k
sc(Dk ,Qd)

¶
kQmk2 a2 + c2 +

2ab

jDrj
P

j
sc(Qo,Dj)¡

2ac

jDnrj
P

k
sc(Qo,Dk)¡

2bc

jDrj ¢ jDnr j
P

j

P
k
sc(Dj ,Dk)

s2e (Qm,Qd) a2 + c2 +2ab¡ 2ac¡ 2bc¡ 2a¡ 2b¡ 2c+1¡
ab

jDr j
P

j
se(Qo,Dj) +

ac

jDnrj
P

k
se(Qo,Dk) +

bc

jDrj ¢ jDnrj
P

j

P
k
se(Dj ,Dk)+

ase(Qo,Qd) +
b

jDrj
P

j
se(Dj ,Qd) +

c

jDnrj
P

k
se(Dk ,Qd)

We can use other similarity measures

sc(Q
v
m−Qtm,Qvd−Qtd) = sc(Qvm,Qvd) ¢ sc(Qtm,Qtd) (37)

sc(Q
v
m©Qtm,Qvd©Qtd) = 1

2
(sc(Q

v
m,Q

v
d) + sc(Q

t
m,Q

t
d))

(38)

se(Q
v
m−Qtm,Qvd −Qtd) =

=

q
s2e (Q

v
m,Q

v
d) + s

2
e (Q

t
m,Q

t
d)¡ 1

2
s2e (Q

v
m,Q

v
d)s

2
e (Q

t
m,Q

t
d)

(39)

se(Q
v
m©Qtm,Qvd ©Qtd) =

q
s2e (Q

v
m,Q

v
d) + s

2
e (Q

t
m,Q

t
d)

(40)

se(Q
v
m©Qtm,Qvd©Qtd) =
=

q
s2e (Q

v
m,Q

v
d)¡ 2sc(Qtm,Qtd)+2 (41)

se(Q
v
m−Qtm,Qvd−Qtd) =
=
q
s2e (Q

v
m,Q

v
d)sc(Q

t
m,Q

t
d)¡ 2sc(Qtm,Qtd) +2

(42)

where the last formula would be a suggested combina-

tion choice (Euclidean distance for measuring the sim-

ilarity between visual representations and cosine simi-

larity for textual representations).

Thus, the standard Rocchio query modification algo-

rithm can be represented as a late fusion, a combination

of individual similarity measurements. This late fusion

strategy is equivalent to the standard query modification

approach.

Table II presents the summary of all the findings.

Figures 1 to 11 in the Appendix show examples re-

lated to concatenation operator interacting with the in-

ner product, tensor product interacting with the inner

product, concatenation operator interacting with the co-

sine similarity, tensor product interacting with the cosine
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similarity, weighted concatenation operator interacting

with the cosine similarity, concatenation operator inter-

acting with the Euclidean distance, tensor product inter-

acting with the Euclidean distance, concatenation oper-

ator interacting with the Bhattacharya similarity, con-

catenation operator interacting with the Euclidean dis-

tance for visual features and cosine similarity for text,

tensor product interacting with the Euclidean distance

for visual features and cosine similarity for text, and

concatenation operator interacting with the Minkowski

Family of Distances, respectively.

V. CONCLUSIONS AND FUTURE WORK

Fusion strategies are widely utilized in many areas

of research, including Information Retrieval. Findings

presented in this paper are universal and also apply to

other areas of research. Here, however, we focus on the

application of fusion strategies to Content-based Image

Retrieval (CBIR).

In this paper, we have investigated some interest-

ing interactions between widely used similarity mea-

surements and widely used operators related to early

fusion strategy. We have shown that these interactions

between specific similarity measurements and specific

early fusion strategies have resulted in combinations of

representations at the decision level (late fusion strat-

egy). In other words, we have mathematically proved

that specific combinations of early fusion strategies and

specific similarity measurements are equivalent to par-

ticular combinations of measurements (i.e. relevance

scores) computed on individual feature spaces.

We have also shown that the query modification

method with specific similarity measurements (classic

Rocchio algorithm) can be interpreted as weighted com-

binations of individual similarity measurements. What

this means is that the same effect can be achieved by

either modifying the query or combining individual rel-

evance scores. The existing late fusion analogues to the

Rocchio algorithm have been considered as separate,

different techniques. However, we have seen that the

Rocchio model also have its dual late fusion form rep-

resentations.

For future work we plan to search for other combi-

nations of various operators and similarity measures that

could interact in such a way as to represent late fusion.

We have discovered that even advanced early fusion can

be represented as specific combinations of similarity

measurements. We will be also investigating whether

the late fusion is capable of capturing the correlation

between feature spaces or the interaction between the

early fusion operators and the similarity measurements

de-correlates features.
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VI. APPENDIX

EXAMPLE 1. Concatenation with the inner product.

Query visual representation:
³p

2
2
,
p
2
2

´
Query textual representation:

³p
2
2
,0,

p
2
2

´
Arbitrary image from the collection (visual): (1,0)

Arbitrary image from the collection (text): (1,0,0)

L=
D³p

2
2
,
p
2
2

´
©
³p

2
2
,0,

p
2
2

´
j (1,0)© (1,0,0)

E
=Dp

2
2
,
p
2
2
,
p
2
2
,0,

p
2
2
j 1,0,1,0,0

E
=
p
2

R =
D³p

2
2
,
p
2
2

´
j (1,0)

E
+
D³p

2
2
,0,

p
2
2

´
j (1,0,0)

E
=

p
2
2
+
p
2
2
=
p
2

L= R

Therefore the concatenation with the inner product

as a similarity measurement can be represented in a late

fusion form. This means that these specific early and

late fusion strategies must produce the same ranking of

images.

EXAMPLE 2. Tensor product with the inner product.

Query visual representation:
³p

2
2
,
p
2
2

´
Query textual representation:

³p
2
2
,0,

p
2
2

´
Arbitrary image from the collection (visual): (1,0)

Arbitrary image from the collection (text): (1,0,0)

L=
D³p

2
2
,
p
2
2

´
−
³p

2
2
,0,

p
2
2

´
j (1,0)− (1,0,0)

E
=−

1
2
,0, 1

2
, 1
2
,0, 1

2
j 1,0,0,0,0,0®= 1

2

R =
D³p

2
2
,
p
2
2

´
j (1,0)

E
¢
D³p

2
2
,0,

p
2
2

´
j (1,0,0)

E
=

p
2
2
¢
p
2
2
= 1

2

L= R

Therefore the tensor product with the inner product

as a similarity measurement can be represented in a late

fusion form. This means that these specific early and

late fusion strategies must produce the same ranking of

images.

EXAMPLE 3. Concatenation with the cosine similarity.

Query visual representation:
³p

2
2
,
p
2
2

´
Query textual representation:

³p
2
2
,0,

p
2
2

´
Arbitrary image from the collection (visual): (1,0)

Arbitrary image from the collection (text): (1,0,0)

L= sc

³³p
2
2
,
p
2
2

´
©
³p

2
2
,0,

p
2
2

´
, (1,0)© (1,0,0)

´
=

p
2p

1
2
+ 1

2
+ 1

2
+ 1

2
¢p1+1 =

p
2
2
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R = 1
2
¢
³
sc

³³p
2
2
,
p
2
2

´
, (1,0)

´
+ sc

³³p
2
2
,0,

p
2
2

´
, (1,0,0)

´´
=

1
2
¢
Ã p

2
2
1¢1 +

p
2
2
1¢1

!
=

p
2
2

L= R

Therefore the concatenation with the cosine similar-

ity as a similarity measurement can be represented in

a late fusion form. This means that these specific early

and late fusion strategies must produce the same ranking

of images.

EXAMPLE 4. Tensor product with the cosine similarity.

Query visual representation:
³p

2
2
,
p
2
2

´
Query textual representation:

³p
2
2
,0,

p
2
2

´
Arbitrary image from the collection (visual): (1,0)

Arbitrary image from the collection (text): (1,0,0)

L= sc

³³p
2
2
,
p
2
2

´
−
³p

2
2
,0,

p
2
2

´
, (1,0)− (1,0,0)

´
=

sc
¡¡
1
2
,0, 1

2
, 1
2
,0, 1

2

¢
, (1,0,0,0,0,0)

¢
=

1
2
1¢1 =

1
2

R = sc

³³p
2
2
,
p
2
2

´
, (1,0)

´
¢ sc
³³p

2
2
,0,

p
2
2

´
, (1,0,0)

´
=

p
2
2q

1
2
+ 1

2
¢p1

¢
p
2
2q

1
2
+ 1

2
¢p1

=
p
2
2
¢
p
2
2
= 1

2

L= R

Therefore the tensor product with the cosine simi-

larity as a similarity measurement can be represented in

a late fusion form. This means that these specific early

and late fusion strategies must produce the same ranking

of images.

EXAMPLE 5. Weighted concatenation with the cosine

similarity.

Query visual representation:
³p

2
2
,
p
2
2

´
Query textual representation:

³p
2
2
,0,

p
2
2

´
Arbitrary image from the collection (visual): (1,0)

Arbitrary image from the collection (text): (1,0,0)

L= sc

³
2 ¢
³p

2
2
,
p
2
2

´
©4 ¢

³p
2
2
,0,

p
2
2

´
,

2 ¢ (1,0)© 4 ¢ (1,0,0)
´
=

sc

³³p
2,
p
2,2
p
2,0,2

p
2
´
, (2,0,4,0,0)

´
=

2
p
2+8

p
2p

2+2+8+8¢p4+16 =
10
p
2p

20¢p20 =
p
2
2

R =
1

4+16
¢
³
4sc

³³p
2
2
,
p
2
2

´
, (1,0)

´
+16sc

³³p
2
2
,0,

p
2
2

´
, (1,0,0)

´´
=

1
20
¢
³
4
p
2
2
+16

p
2
2

´
=

p
2
2

L= R

Therefore the weighted concatenation with the co-

sine as a similarity measurement can be represented in

a late fusion form. This means that these specific early

and late fusion strategies must produce the same ranking

of images.

EXAMPLE 6. Concatenation with the Euclidean dis-

tance.

Query visual representation:
³p

2
2
,
p
2
2

´
Query textual representation:

³p
2
2
,0,

p
2
2

´
Arbitrary image from the collection (visual): (1,0)

Arbitrary image from the collection (text): (1,0,0)

L= se

³³p
2
2
,
p
2
2

´
©
³p

2
2
,0,

p
2
2

´
, (1,0)© (1,0,0)

´
=

se

³³p
2
2
,
p
2
2
,
p
2
2
,0,

p
2
2

´
, (1,0,1,0,0)

´
=r³p

2
2
¡ 1
´2
+ 1

2
+

³p
2
2
¡ 1
´2
+ 1

2
=
p
4¡ 2p2

R =

r
s2e

³³p
2
2
,
p
2
2

´
, (1,0)

´
+ s2e

³³p
2
2
,0,

p
2
2

´
, (1,0,0)

´
=r³p

2
2
¡ 1
´2
+

³p
2
2

´2
+

³p
2
2
¡ 1
´2
+

³p
2
2

´2
=
p
4¡ 2p2

L= R

Therefore the concatenation with the Euclidean dis-

tance as a similarity measurement can be represented in

a late fusion form. This means that these specific early

and late fusion strategies must produce the same ranking

of images.

EXAMPLE 7. Tensor product with the Euclidean dis-

tance.

Query visual representation:
³p

2
2
,
p
2
2

´
Query textual representation:

³p
2
2
,0,

p
2
2

´
Arbitrary image from the collection (visual): (1,0)

Arbitrary image from the collection (text): (1,0,0)

L= se

³³p
2
2
,
p
2
2

´
−
³p

2
2
,0,

p
2
2

´
, (1,0)− (1,0,0)

´
=

se
¡¡
1
2
,0, 1

2
, 1
2
,0, 1

2

¢
, (1,0,0,0,0,0)

¢
=
q

1
4
+ 1

4
+ 1

4
+ 1

4
= 1

R2 = s2e

³³p
2
2
,
p
2
2

´
, (1,0)

´
+ s2e

³³p
2
2
,0,

p
2
2

´
, (1,0,0)

´
¡

1
2
s2e

³³p
2
2
,
p
2
2

´
, (1,0)

´
¢ s2e
³³p

2
2
,0,

p
2
2

´
, (1,0,0)

´
=

2¡p2+2¡p2¡ 1
2
(2¡p2)2 = 1

R =
p
1 = 1

L= R

Therefore the tensor product with the Euclidean

distance as a similarity measurement can be represented

in a late fusion form. This means that these specific

early and late fusion strategies must produce the same

ranking of images.

EXAMPLE 8. Concatenation with the Bhattacharya sim-

ilarity.

Query visual representation:
³p

2
2
,
p
2
2

´
Query textual representation:

³p
2
2
,0,

p
2
2

´
Arbitrary image from the collection (visual): (1,0)
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Arbitrary image from the collection (text): (1,0,0)

L= sb

³³p
2
2
,
p
2
2

´
©
³p

2
2
,0,

p
2
2

´
, (1,0)© (1,0,0)

´
=

sb

³³p
2
2
,
p
2
2
,
p
2
2
,0,

p
2
2

´
, (1,0,1,0,0)

´
=

¡ln
μqp

2
2
+

qp
2
2

¶
=¡ln(2 ¢2¡1=4) =¡ln(23=4)

R = sb

³³p
2
2
,
p
2
2

´
, (1,0)

´
+ sb

³³p
2
2
,0,

p
2
2

´
, (1,0,0)

´
=

¡ln
Ã
e
ln

³pp
2
2
+

´
+ e

ln

³pp
2
2
+

´!
=¡ln

μ
2

qp
2
2

¶
=

¡ln(23=4)
L= R

Therefore the concatenation with the Bhattacharya

similarity as a similarity measurement can be repre-

sented in a late fusion form. This means that these spe-

cific early and late fusion strategies must produce the

same ranking of images.

EXAMPLE 9. Concatenation with the Euclidean dis-

tance for visual features and cosine similarity for text.

Query visual representation:
³p

2
2
,
p
2
2

´
Query textual representation:

³p
2
2
,0,

p
2
2

´
Arbitrary image from the collection (visual): (1,0)

Arbitrary image from the collection (text): (1,0,0)

L= se

³³p
2
2
,
p
2
2

´
©
³p

2
2
,0,

p
2
2

´
, (1,0)© (1,0,0)

´
=

se

³³p
2
2
,
p
2
2
,
p
2
2
,0,

p
2
2

´
, (1,0,1,0,0)

´
=p

4¡ 2p2
se

³³p
2
2
,
p
2
2

´
, (1,0)

´
=
p
2¡p2

sc

³³p
2
2
,0,

p
2
2

´
, (1,0,0)

´
=

p
2
2

R =
p
2¡p2¡p2+2 =

p
4¡ 2p2

L= R

Therefore the concatenation with the above similar-

ity measurements can be represented in a late fusion

form. This means that these specific early and late fu-

sion strategies must produce the same ranking of im-

ages.

EXAMPLE 10. Tensor product with the Euclidean dis-

tance for visual features and cosine similarity for text.

Query visual representation:
³p

2
2
,
p
2
2

´
Query textual representation:

³p
2
2
,0,

p
2
2

´
Arbitrary image from the collection (visual): (1,0)

Arbitrary image from the collection (text): (1,0,0)

L= se

³³p
2
2
,
p
2
2

´
−
³p

2
2
,0,

p
2
2

´
, (1,0)− (1,0,0)

´
=

se

¡¡
1
2
,0, 1

2
, 1
2
,0, 1

2

¢
, (1,0,0,0,0,0)

¢
=
p

1
4
+ 1

4
+ 1

4
+ 1

4
= 1

se

³³p
2
2
,
p
2
2

´
, (1,0)

´
=
p
2¡p2

sc

³³p
2
2
,0,

p
2
2

´
, (1,0,0)

´
=

p
2
2

R =

q¡
2¡p2¢ ¢ p2

2
¡p2+2 = 1

L= R

Therefore the tensor product with the above simi-

larity measurements can be represented in a late fusion

form. This means that these specific early and late fu-

sion strategies must produce the same ranking of im-

ages.

EXAMPLE 11. Concatenation with the Minkowski

Family of Distances.

Query visual representation: dv1 = (1,3,4)

Query textual representation: dt1 = (12,1,4,2)

Arbitrary image from the collection (visual):

dv2 = (0,3,5)

Arbitrary image from the collection (text):

dt2 = (11,0,3,1)

sp=1=4(d
v
1,d

v
2) =

(j1¡ 0j1=4 + j3¡ 3j1=4 + j4¡ 5j1=4)4 = 24 = 16
sp=1=4(d

t
1,d

t
2) =

(j12¡ 11j1=4 + j1¡ 0j1=4 + j4¡ 3j1=4 + j2¡ 1j1=4)4 =
44 = 256

Therefore, the right-hand side of the equation becomes

R = (s
1=4

p=1=4
(dv1,d

v
2)+ s

1=4

p=1=4
(dt1,d

t
2))

4 =

(161=4 +2561=4)4 = (2+4)4 = 1296

For the left-hand side, we have

L= sp=1=4(d
v
1© dt1,dv2© dt2) =

sp=1=4((1,3,4,12,1,4,2),(0,3,5,11,0,3,1)) =

(1+0+1+1+1+1+1)4 = 1296

Thus, L= R.

Therefore concatenation operation with the above

similarity measurements can be represented in a late

fusion form. This means that this specific early and

late fusion strategy must produce the same ranking of

images.
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Fusion of Asynchronous

Passive Measurements

RICHARD W. OSBORNE, III

YAAKOV BAR-SHALOM

PETER WILLETT

The use of angular information in the form of line-of-sight (LOS)

measurements from passive sensors for the purposes of target local-

ization and tracking has been extensively studied. Previous work has

shown that the formation of fused composite measurements from a

minimum number of LOS measurements (two) is statistically effi-

cient, and therefore, the Cramér-Rao Lower Bound (CRLB) pro-

vides a valid measurement noise covariance for the resulting com-

posite measurement. If the LOS measurements are not synchro-

nized, however, the formation of composite measurements is not

possible from two LOS observations. In this paper, two methods

are presented for forming composite measurements when LOS ob-

servations are obtained asynchronously. It is demonstrated that the

minimum number of LOS measurements required from two asyn-

chronous sensors is four, and that both methods provide a statisti-

cally efficient estimate for track initialization.
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1. INTRODUCTION

Target localization and tracking algorithms often

make use of passive sensors, these being for stealthy

surveillance of a region. The main disadvantage of us-

ing such sensors is that they generally provide only

line-of-sight (LOS) measurements, and without provid-

ing range measurements, a single passive sensor cannot

fully localize a target. The angular measurements could

be directly used in nonlinear tracking filters, or com-

posite measurements can be obtained by fusing multi-

ple angular measurements, with the resulting composite

measurements passed to the tracking filter.

The fused composite measurements can provide full

Cartesian position (and possibly velocity) estimates to

take advantage of the ensuing linear measurement equa-

tion. If the state equation is linear, then one can use

linear filters. The use of S-D assignment algorithms for

association of angular measurements from passive sen-

sors can be found in [4], [8]. In the present paper we

will assume that the angular measurements have been

correctly associated and will focus on the formation of

composite measurements and their use in track initial-

ization. The composite measurements could continue to

be used in a linear tracking filter, or the angular mea-

surements could be used directly in a nonlinear (EKF)

filter, such as in [9], where tracking boost phase missiles

with LOS measurements was examined.

Prior work on target localization through angular

measurements includes [3], [5], [6], [10]—[12]. Applica-

tion of Taylor-series estimation to the problem of target

localization is presented in [5] and extended in [11]. In

both papers, though the statistics of the estimation er-

rors are examined, neither the CRLB nor the statistical

efficiency of the procedure is investigated.

In [10], equations are derived for the covariance-

based uncertainty ellipsoids, circular error probability

regions, and geometric dilution of precision, along with

their relation to the particular localization scheme and

received signal characteristics. However, the CRLB and

the statistical efficiency of the estimation scheme are not

considered.

LOS measurements to “beacons” with known loca-

tion have been used to determine the position and at-

titude of a sensor (camera) in [3]. In this formulation,

the LOS angle measurements to the beacons are taken

by the sensor at an unknown location and the angles

are with respect to the unknown attitude of the sensor.

Thus, the estimation of the sensor location and attitude

has to be done simultaneously. Observability conditions

and the CRLB were derived for this problem.

An investigation of the CRLB of the initial state esti-

mate of a boost phase object using LOS measurements

from geosynchronous satellites is considered in [12].

That paper, however, focused only on the behavior of

the CRLB, and not on whether any estimation scheme

meets the CRLB.
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Fig. 1. Type III multisensor information processing configuration.

Fig. 2. Type IV multisensor information processing configuration.

The ML estimation for bearing-only target localiza-

tion (triangulation) was considered in [6]. In that paper,

examples in two dimensions with bearing-only mea-

surements show that the ML estimator is unbiased and

efficient only when a significant number of measure-

ments are utilized.

None of the previously mentioned papers provided

a comparison of linear and nonlinear tracking filters us-

ing angular and composite measurements. Furthermore,

these papers did not examine the particular difficulties

of utilizing asynchronous measurements.

In [7] the statistical efficiency of composite measure-

ments was examined for passive sensors which provide

LOS measurements. In that work, it was shown via sta-

tistical tests that the minimum number of measurements

(two) provide a composite measurement with a resulting

estimation error that was consistent with the Cramér-

Rao Lower Bound (CRLB) of the resulting parameter

estimation problem. Demonstration that the estimator

in question was statistically efficient (i.e., the estima-

tor met the CRLB) was of particular interest since the

CRLB can be easily calculated and can then be used as a

measurement noise covariance for linear tracking filters

which utilize the resulting composite measurement.

One particular limitation of the method outlined in

[7] is the need for the sensors to be perfectly synchro-

nized. The present work expands the method of [7]

for use with asynchronous passive sensors and again

demonstrates the statistical efficiency of the approach.

Additionally, an alternative track initialization scheme

using interpolated LOS measurements is examined, and

it is demonstrated that both methods are statistically ef-

ficient and the performance difference between them is

statistically insignificant.

Section 2 provides an overview of the relevant data

fusion configurations (Type III and Type IV–see [2]).

Section 3 formulates the problem by illustrating the

requirements for observability and outlining the method

of forming composite measurements. Section 4 provides

simulation results and Section 5 summarizes the paper

and presents conclusions.

2. MULTISENSOR TRACKING CONFIGURATIONS

As defined in [2], there are four general configura-

tions of information processing for multisensor track-

ing. The Type I configuration refers to single sensor

tracking and provides a baseline for comparison of mul-

tisensor tracking configurations. The Type II configura-

tion refers to single sensor tracking followed by track-

to-track association and fusion. There exist a number

of subsets of this configuration depending on possible

levels of feedback and memory. Of particular interest

to this paper, however, are the Type III and Type IV

configurations.

2.1. Type III Multisensor Configuration

The Type III multisensor configuration is illustrated

in Figure 1. In this configuration, each (passive) sensor

performs individual signal processing to generate (LOS)

measurements. The measurements are then passed on to

a fusion center where the measurements are associated

and combined into full three-dimensional (3D) position

measurements, referred to as supermeasurements or com-

posite measurements. The composite measurements can

then undergo “dynamic association,” i.e., the association

of measurements to existing tracks (or, alternatively, to

form new tracks). The use of composite measurements

allows the tracking filter to behave as a single sensor

tracker would.

2.2. Type IV Multisensor Configuration

The Type IV multisensor configuration is the fully

centralized multisensor tracking configuration and illus-

trated in Figure 2. In this configuration, each sensor

performs individual signal processing to generate mea-

surements, and each measurement is passed to a fusion

center which will then perform the association of mea-
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surements to tracks followed by track update (as well

as formation/termination of new/old tracks).

3. PROBLEM FORMULATION

Assume we have Ns sensors with known position

si = [xi,yi,zi]
0, i= 1,2, :::,Ns, in Cartesian coordinates.

Each sensor provides line-of-sight (LOS) measure-

ments, where the LOS measurement at time tn (not nec-

essarily the same across sensors) is to a target at the un-

known position xp(tn) = [x(tn),y(tn),z(tn)]
0, in the same

Cartesian coordinates. The measurement from sensor i

and at time tn is

zi(tn) = h(xp(tn),si) +wi(tn) (1)

where wi(tn) is zero-mean white Gaussian measurement

noise with covariance matrix Ri and

h(xp(tn),si) =

·
®i(tn)

²i(tn)

¸

=

26664
tan¡1

μ
y(tn)¡ yi
x(tn)¡ xi

¶
tan¡1

Ã
z(tn)¡ zip

(x(tn)¡ xi)2 + (y(tn)¡ yi)2

!
37775
(2)

Furthermore, it will be assumed that, in the asyn-

chronous case, the measurements are provided to the

fusion center with a time stamp at which the measure-

ment was taken. This time stamp will be assumed to be

known perfectly.

For a more detailed overview of the LOS measure-

ment fusion in the synchronous case, see [7]. The proce-

dure for the synchronous case is to utilize Iterated Least

Squares (closely related to the Gauss-Newton method)

with two LOS measurements to obtain a maximum like-

lihood (ML) estimate of the full 3D position of the tar-

get. We assume that there is no data association uncer-

tainty between the two measurements (i.e., it is known

perfectly that they belong to the same target).

For the asynchronous case, modifications are needed

to account for each measurement being taken at a dif-

ferent time. Assuming that the measurements are taken

a short time interval apart (so that the target does not

have time to maneuver), the target will be well-modeled

by a constant velocity motion model. In order to fit a

constant velocity motion model to the target, a six di-

mensional state vector must be estimated, consisting of

the target’s position and velocity at a particular point

in time. There exists, however, a subtle unobservability

for this problem that will necessitate the use of more

measurements than at first seems necessary.

3.1. Incomplete Observability of the Target State with
Three LOS Measurements

Since each LOS measurement (1) is a two dimen-

sional vector, three such measurements should be the

minimum required to solve for a constant velocity tar-

get’s state, i.e., we have six equations (observations

from (2)) and six unknowns (target position and velocity

in 3D space). The estimation of the constant velocity

target’s state at a particular point in time, however, is

basically equivalent to finding three positions along the

LOS vectors (one position along each vector), such that

the three positions are appropriately spaced to match

the constant velocity model and the three time stamps.

Given three sensors with one LOS from each, the tar-

get parameter vector is fully observable (provided the

sensors are not positioned on a straight line). If multi-

ple LOS measurements are provided by the same sen-

sor, however, there is a lack of full observability when

three LOSmeasurements are provided if the trajectory is

coplanar with the line connecting the two sensors. This

incomplete observability will be demonstrated by illus-

trating some of the multiple solutions obtained when

given two LOS measurements from one sensor and one

from a second sensor.

Figure 3 depicts three possible trajectories which are

found to fit the same three LOS observations provided

by two sensors. In addition to the true target which

was simulated to generate the observations, there are

two other ghost targets (only two are shown here; there

are many possible), traveling in different directions with

different constant speeds, that could have produced the

same observations. Since the target’s state is thus un-

observable with three LOS measurements, the minimum

number of observations which can form composite mea-

surements from two asynchronous sensors is four.

3.2. Formation of Composite Measurements from
Asynchronous LOS

Due to the issues with observability of the six dimen-

sional target state, a single composite measurement will

be formed from a batch of four asynchronous LOS mea-

surements. Similar to [7], the formation of the compos-

ite measurement will be done via Iterated Least Squares

(ILS) [1] using the ML criterion.

We will assume that the batch of measurements

provided to the fusion center is

z= [z1(t1)
0,z2(t2)

0,z3(t3)
0,z4(t4)

0]0 t1 < t2 < t3 < t4 (3)

where zi(tn) is given by (1).
1

The composite measurement will consist of the tar-

get’s state

x(tf) = [x(tf),y(tf),z(tf), _x(tf), _y(tf), _z(tf)]
0 (4)

1The notation of (3) would seem to suggest that four sensors are

used, however, any order of measurements from two to four sen-

sors would be valid. In fact, in later simulations, the measurements

will be assumed to come from two sensors at alternating times, i.e.,

[z1(t1),z2(t2),z1(t3),z2(t4)].
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Fig. 3. Three possible target trajectories that fit three identical LOS

observations. The speeds of these targets are 250 m/s (Truth),

146.6 m/s (Ghost 1), and 498.5 m/s (Ghost 2). The two LOS from A

and one LOS from B allow additional possible (ghost) trajectories.

at a particular “fusion time” tf . The ILS estimate (after

the jth iteration) of the target state (4) is

x̂
j+1
ILS = x̂

j
ILS + [(H

j)0R¡1Hj]¡1(Hj)0R¡1

¢ [z¡h(x̂jILS)] (5)

where

h(x̂
j
ILS)

¢
=

2666664
h(F(t1, tf)x̂

j
ILS,s1)

h(F(t2, tf)x̂
j
ILS,s2)

h(F(t3, tf)x̂
j
ILS,s3)

h(F(t4, tf)x̂
j
ILS,s4)

3777775 (6)

F(tn, tf)
¢
=

26666666664

1 0 0 tn¡ tf 0 0

0 1 0 0 tn¡ tf 0

0 0 1 0 0 tn¡ tf
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

37777777775
(7)

R =

26664
R1 0 0 0

0 R2 0 0

0 0 R3 0

0 0 0 R4

37775 (8)

and Hj is the Jacobian matrix of the measurements

(given below) evaluated at the jth ILS estimate.

By using the transition matrix (7), the target state (4)

is predicted to the time of each measurement in (3), and

(6) provides the predicted LOS observation for use in

forming the necessary residuals for the ILS iteration (5).

The Jacobian matrix is

H = [H 01 H 02 H 03 H 04]
0 (9)

where2

Hi =

2664
@®i
@x

@®i
@y

@®i
@z

@®i
@ _x

@®i
@ _y

@®i
@ _z

@²i
@x

@²i
@y

@²i
@z

@²i
@ _x

@²i
@ _y

@²i
@ _z

3775 (10)

The necessary partial derivatives with respect to the

position terms of (4) are

@®i
@x

=¡ ¢yi
(¢xi)

2 + (¢yi)
2

(11)

@®i
@y

=
¢xi

(¢xi)
2 + (¢yi)

2
(12)

@®i
@z

= 0 (13)

@²i
@x
=¡ (¢xi)(¢zi)p

(¢xi)
2 + (¢yi)

2kx¡ sik2
(14)

@²i
@y

=¡ (¢yi)(¢zi)p
(¢xi)

2 + (¢yi)
2kx¡ sik2

(15)

@²i
@z
=

p
(¢xi)

2 + (¢yi)
2

kx¡ sik2
(16)

where k ¢ k denotes the Euclidean norm,264¢xi¢yi

¢zi

375 ¢
=

2641 0 0 ¢tn 0 0

0 1 0 0 ¢tn 0

0 0 1 0 0 ¢tn

375x¡ si (17)

and
¢tn

¢
= tn¡ tf (18)

The partial derivatives with respect to the velocity terms

of (4) are

@®i
@ _x

=¢tn
@®i
@x

(19)

@®i
@ _y

=¢tn
@®i
@y

(20)

@®i
@ _z

=¢tn
@®i
@z

(21)

@²i
@ _x
=¢tn

@²i
@x

(22)

@²i
@ _y

=¢tn
@²i
@y

(23)

@²i
@ _z
=¢tn

@²i
@z

(24)

3.3. Initial Solution

In order to perform the numerical search via ILS, an

initial estimate x̂0ILS is required. Since four LOS mea-
surements are needed to form the composite measure-

ment, the initialization will be done by forming two

Cartesian measurements from pairs of LOS, as if they

2The time argument tf has been omitted for simplicity, but note that

the partial derivatives are taken with respect to the elements of (4).
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were taken synchronously. Since the initialization needs

only to be approximate, the error introduced by (incor-

rectly) assuming pairs of LOS measurements are taken

synchronously will be corrected by refinement in sub-

sequent updates.

In this case, each pair of LOS measurements will

form a Cartesian position as

264x
0

y0

z0

375=
26666664

y2¡ y1 + x1 tan®1¡ x2 tan®2
tan®1¡ tan®2

tan®1(y2 + tan®2(x1¡ x2))¡ y1 tan®2
tan®1¡ tan®2

z1 + tan²1

¯̄̄̄
(y1¡ y2)cos®2 + (x2¡ x1)sin®2

sin(®1¡®2)
¯̄̄̄

37777775
(25)

The two Cartesian positions formed from (25) can then

be differenced to provide an approximate initial veloc-

ity estimate. This procedure is analogous to two-point

differencing [1] and will provide a full six-dimensional

state estimate to initialize the ILS algorithm.

3.4. Formation of Composite Measurements from
Interpolated Asynchronous LOS

As an alternative to the above method of forming

full composite measurements by explicitly fitting to a

constant velocity model, one could form the compos-

ite measurement by utilizing interpolated asynchronous

LOS measurements and two-point differencing.

In the interpolation method, the successive LOS

measurements from one sensor are interpolated to the

time of a measurement from the second sensor, i.e., the

interpolated measurement is

ẑi(tn) = zi(tn¡1)+
tn¡ tn¡1
tn+1¡ tn¡1

[zi(tn+1)¡ zi(tn¡1)]] (26)

where tn in this case would be the time of the mea-

surement from the second sensor, and tn¡1 and tn+1
are the times of the two measurements from the first

sensor. This interpolated LOS and the second sensor’s

LOS measurement can then provide a composite po-

sition measurement using the method of [7]. This can

be repeated using a different set of LOS measurements

to obtain a composite position measurement at another

time. Two-point differencing is then performed on the

two composite position measurements, and the resulting

state estimate and covariance are predicted to the fusion

time tf .

In later sections, comparisons are made between this

interpolation method and the full asynchronous LOS

composite measurement method of Subsection 3.2. In

order to use the same number of asynchronous LOS

measurements (four) in both the interpolation method

and the composite measurement method, the first use

of (26) will involve [z1(t1),z2(t2),z1(t3)], and the second

will involve [z2(t2),z1(t3),z2(t4)]. The use of the mid-

dle two LOS measurements in both composite measure-

ments will result in correlated errors, but the two-point

differencing will be carried out assuming uncorrelated

errors.

3.5. Cramér-Rao Lower Bound

The Cramér-Rao Lower Bound (CRLB) provides a

lower bound on the estimation error obtainable from an

unbiased estimator, where

Ef(x¡ x̂)(x¡ x̂)0g ¸ J¡1 (27)

where J is the Fisher Information Matrix (FIM), x is the

true value to be estimated, and x̂ is the estimate.

The FIM is

J = Ef[rx ln¤(x)][rx ln¤(x)]0gjx=xtrue (28)

where ¤(x) is the likelihood function of the parameter

vector to be estimated, and the FIM is evaluated at the

true parameter vector.3

The gradient of the log-likelihood function is

rx¸(x) =
NsX
i=1

H 0i R
¡1
i (zi(ti)¡h(F(tf , ti)x,si)) (29)

which, when plugged into (28) gives

J =

NsX
i=1

H 0i (R
¡1
i )

0Hijx=xtrue (30)

=H 0(R¡1)0Hjx=xtrue (31)

The resulting CRLB, J¡1, evaluated at the final es-
timate x̂ILS, can be used as an (estimated) measure-

ment noise covariance matrix for the resulting compos-

ite measurement. This allows x̂ILS to be used as a linear

measurement, avoiding the need to use LOS measure-

ments directly in a nonlinear tracking filter.

4. SIMULATION RESULTS

In order to examine the fusion of asynchronous LOS

measurements in Type III multisensor tracking configu-

rations, a nearly constant velocity target was simulated.

The motion model used was a constant velocity (CV)

motion model [1].

The target’s initial state was

x(t0) = [¡4000 4000 500 100 0 0]0 (32)

Two sensors were assumed to be positioned at

s1 = [0 0 0]0 (33)

s2 = [2000 y2 0]0 (34)

3The strict definition of the FIM requires it to be evaluated at

the true parameter, however, evaluation at the estimate (referred to

as the observed Fisher information) generally yields a very good

approximation.
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Fig. 4. RMS position error (over 10,000 Monte Carlo runs) of

initial track state for various measurement noise standard deviations

and y2 = 8,000.

where two sensor-target geometries are tested by us-

ing y2 = 0 or y2 = 8000. When y2 = 0, the target tra-

jectory is coplanar with the line connecting the sensors,

demonstrating in a practical fashion that the fourth LOS

measurement provides observability for the problem de-

scribed in Subsection 3.1.

The two sensors are assumed to provide measure-

ments at a sampling interval of T = 1 s, however, Sen-

sor 2 provides measurements offset T=2 after Sensor 1;

meaning there is one LOS measurement provided every

T=2, as opposed to two LOS measurements provided

every T.

With synchronous measurements, the Type III con-

figuration could provide composite measurements of the

target position in Cartesian space once every second,

formed in the same manner as in [7]. With asynchronous

measurements, the Type III configuration will provide

composite measurements of the target position and ve-

locity at the time of the final LOS observation in the

batch; but only one composite measurement will be gen-

erated at intervals of 2T (since four LOS measurements

are needed).

Two methods of initializing target tracks using a

batch of four LOS measurements will be compared. The

formation of composite position and velocity estimates

described in Section 3.2 can be used, with the CRLB

covariance used as the initial track covariance. Alter-

natively, the method of Section 3.4–a combination of

interpolation of the LOS measurements and two-point

differencing [1]–will be used.

Figure 4 shows the RMS position error of the initial

track state for both initialization methods. The measure-

ment noise standard deviation is varied from 1 mrad to

20 mrad, y2 = 8000, and 10,000 Monte Carlo runs are

performed. The two methods perform nearly identically.

Figure 5 shows the RMS velocity error of the initial

track state for both initialization methods. Once again,

the velocity error is nearly identical for both methods.

Figure 6 shows the normalized estimation error

squared (NEES) for the two initialization methods. The

Fig. 5. RMS velocity error (over 10,000 Monte Carlo runs) of

initial track state for various measurement noise standard deviations

and y2 = 8,000.

Fig. 6. Normalized estimation error squared (NEES) over 10,000

Monte Carlo runs, with y2 = 8,000.

NEES provides a way of evaluating the consistency of

the estimation errors with the covariances provided by

each estimation method. The dashed line of the figure

shows the 95% probability region for the NEES, demon-

strating that the estimate errors are commensurate with

their corresponding calculated covariances. In the case

of the composite measurement, the covariance is pro-

vided by the CRLB. In the case of the interpolation

method, the covariance is given by the two-point dif-

ferencing procedure [1], where the measurement noise

covariance for each of the two composite position mea-

surements is given by the CRLB as outlined in [7].

Note that, since an interpolated measurement is used,

the measurement noise covariance of the interpolated

measurement is not equal to the single LOS measure-

ment noise covariance. Due to the interpolation (and the

fact that, in this case, the interpolation is performed at

the midpoint between two measurements), the measure-

ment noise covariance of the interpolated LOS measure-

ments is half that of an individual measurement. The

fact that the measurement noises in the interpolations

are correlated, however, will be neglected.
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Fig. 7. RMS position error (over 10,000 Monte Carlo runs) of

initial track state for various measurement noise standard deviations

and y2 = 0.

Fig. 8. RMS velocity error (over 10,000 Monte Carlo runs) of

initial track state for various measurement noise standard deviations

and y2 = 0.

The method which fuses all four LOS measurements

into a composite position and velocity estimate provides

a consistent covariance using the CRLB, demonstrating

that the estimator is statistically efficient with a batch

of four LOS measurements. The interpolation method,

however, also provides consistency, in spite of the fact

that the interpolation measurement noises are assumed

uncorrelated.

Figures 7—8 show the RMSE position and velocity

error when y2 = 0. In this case, there appears to be a

slight improvement in performance when using interpo-

lated measurements. In order to test this, the statistical

significance of the error difference was examined. The

squared error of each element of the state (position and

velocity in x, y, and z) was normalized by its respec-

tive error covariance and averaged over the Monte Carlo

runs. This provides a statistical test involving a chi-

square random variable (similar to the NEES), where a

non-zero mean in the difference of the errors (i.e., a sig-

nificant improvement in one method over the other) will

manifest as a value outside of the 1¡® probability re-
gion. For the average over 10,000 Monte Carlo runs and

Fig. 9. Normalized estimation error squared (NEES) over 10,000

Monte Carlo runs, with y2 = 0.

®= 0:05, this value is 1.02. The maximum normalized

squared difference of the errors over all measurement

noise values and dimensions was 0.021, well below the

threshold required to reject the hypothesis that there is

no statistically significant difference in accuracy.

Figure 9 shows the NEES for the case where y2 = 0.

For this more difficult geometry, where the target tra-

jectory is coplanar with the line connecting the sensors,

the statistical efficiency breaks down for the compos-

ite measurement method when the measurement noise

standard deviation increases. The interpolation method,

however, is more resistant to the difficulties imposed by

the marginally observable geometry. The correlations

introduced by the interpolation method work in our fa-

vor in the marginally observable case by reinforcing

a solution that is skewed towards the middle two mea-

surements. This in turn reinforces a more “straight line”

solution over the ML solution’s fit to the four noisy data

points.

Following track initialization, the track maintenance

phase can be carried out either in the Type III config-

uration (where batches of measurements are fused into

full composite measurements of position and velocity)

or the Type IV configuration where the track is updated

one measurement at a time (in a nonlinear tracking fil-

ter). For the examples considered here, the choice of

fusion configuration for the track maintenance phase

made no significant difference in tracking performance

over the course of the target’s trajectory. It should be

noted, however, that when the track maintenance phase

was examined, both types of track updates (Type III

and Type IV) were performed on identically initialized

tracks. This ensures that the effect of the style of track

update was examined independently of the track initial-

ization method.

In order to test the above track initialization methods

for accelerating targets (but retaining the assumption of

a CV target), the simulations were repeated for targets
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Fig. 10. RMS position error (over 10,000 Monte Carlo runs) of

initial track state for y2 = 8,000 and a target with 1 m/s
2 acceleration.

Fig. 11. RMS position error (over 10,000 Monte Carlo runs) of

initial track state for y2 = 8,000 and a target with 2 m/s
2 acceleration.

Fig. 12. RMS position error (over 10,000 Monte Carlo runs) of

initial track state for y2 = 8,000 and a target with 5 m/s
2 acceleration.

which had constant accelerations of 1 m/s2, 2 m/s2,

5 m/s2 and 10 m/s2.

Figures 10—13 show the RMSE position error for

the various accelerating targets. There is no significant

change in the RMSE position error over this range of

accelerations. The RMSE velocity errors (not included

Fig. 13. RMS position error (over 10,000 Monte Carlo runs) of

initial track state for y2 = 8,000 and a target with 10 m/s
2

acceleration.

here) show similar results.

Figures 14—17 show the NEES for the accelerating

targets. When the acceleration is large enough, the

errors from neglecting the acceleration component can

have a significant impact on the statistical consistency

for the smaller levels of measurement noise. When the

measurement noise is large enough (or if the target

was further away), the cross-range measurement error

would mask the errors that are a result of neglecting

the acceleration. In such cases (small levels of cross-

range errors), the target model used in the initialization

method would need to account for the acceleration.

Using a constant acceleration model, however, would

require more measurements in order to estimate the

acceleration of the target in addition to the position and

velocity.

5. CONCLUSIONS

The use of angular measurements for target local-

ization and tracking has been widely studied, includ-

ing the formation of fused composite measurements to

avoid the need for nonlinear filtering. Previous research

into the formation of composite Cartesian position mea-

surements from LOS measurements demonstrated that

the maximum likelihood (ML) estimate obtained via

the ILS algorithm was able to provide a statistically

efficient estimate using only two LOS measurements.

This allowed the CRLB to be used as the measurement

noise covariance for the purposes of target tracking with

the fused composite measurements. This procedure re-

quired the measurements to be synchronized, however,

which may be an unrealistic assumption for real sys-

tems.

This paper presented two methods of forming fused

composite measurements from four asynchronous LOS

measurements, and demonstrated that four LOS mea-

surements are the minimum required from two asyn-

chronous sensors to do so. In addition to forming a com-

posite position and velocity estimate directly from the

four asynchronous LOS measurements, an alternative
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Fig. 14. Normalized estimation error squared (NEES) over 10,000

Monte Carlo runs, with y2 = 8,000 and a target with 1 m/s
2

acceleration.

Fig. 15. Normalized estimation error squared (NEES) over 10,000

Monte Carlo runs, with y2 = 8,000 and a target with 2 m/s
2

acceleration.

involving interpolating successive LOS measurements

was presented. The resulting composite measurements

were then compared to the ML method. Both methods

provide a way to initialize tracks, and the difference in

their accuracies were found to be statistically insignif-

icant. Furthermore, both methods generally provide a

statistically consistent error covariance. The interpola-

tion method proved to provide a more consistent error

covariance in the marginally observable case of a target

trajectory which is coplanar with the line connecting

the two sensors. The consistency of the error covariance

could also break down for large target accelerations (in

comparison to the cross-range error of the sensors). In

such cases, the acceleration would need to be estimated

as well, at the expense of requiring more measurements

from the sensors.
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