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From the Editor-in-Chief:
June 2016

Jindrich Duník Ondrej Straka

Guest Editorial: Foreword to the Special Issue on Non-
linear Derivative-Free Filters: Theory and Applica-
tions

State estimation, or filtering, is a focal point for nav-

igation, positioning, and tracking systems. State esti-

mation also plays a crucial role in various areas and

applications, where knowledge of the state is required

for a (multistep) prediction, control, fault detection, or

generally for decision making.

The special issue is focused on the design of local,

i.e., nonlinear Kalman-filter-based, derivative-free fil-

ters for nonlinear stochastic dynamic time-varying sys-

tems with an emphasis on the theoretical advances in

the field of study. In particular, the focus of the issue

is laid on both the design of novel algorithms for state

and parameter estimation and the in-depth analysis and

further development of existing methods.

The special issue consists of six papers all from

renowned research groups systematically working in the

area of the state estimation. Some of the papers are sig-

nificantly extended versions of the papers presented at

the 17th International Conference on Information Fu-

sion (FUSION 2014) within the special session “Ad-

vanced Sigma-Point Filters: Analysis, Sigma-Point Set

Design, and Applications”.

The opening paper of this special issue, the paper en-

titled “Partitioned Update Kalman Filter” by M. Raito-

harju, R. Piché, J. Ala-Luhtala, and S. Ali-Löytty, is

devoted to the design of the state estimation algorithm

inherently measuring or assessing the nonlinearity of the

function in the measurement equation of the state-space

model at the actual estimator working point. Depending

on the computed measure of nonlinearity, the partic-

ular elements of the measurement vector are processed

starting from those having the lowest measure, i.e., from

those with the lowest expected approximation error.

The second paper entitled “Sigma-Point Filtering

based Parameter Estimation in Nonlinear Dynamic Sys-

tems” by J. Kokkala, A. Solin, and S. Särkkä, deals

with the estimation of unknown parameters in nonlin-

ear state-space models based on the maximum marginal
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likelihood. The marginalized likelihood is computed us-

ing two approximate methods, namely a direct likeli-

hood method and the expectation-maximisation algo-

rithm, evaluated by means of approximate nonlinear fil-

tering and smoothing techniques. The considered tech-

niques take advantage of a higher-order unscented trans-

formation and the Gauss-Hermite integration rule.

The third paper entitled “On the Relation between

Gaussian Process Quadratures and Sigma-point Meth-

ods” by S. Särkkä, J. Hartikainen, L. Svensson, and

F. Sandblom, is dedicated to a numerical evaluation of

the Gaussian weighted integrals based on Gaussian pro-

cess regression methods, i.e., Gaussian process quadra-

tures. Special attention is paid to the interpretation of

derivative-free sigma-point approximate methods for

the evaluation of integrals typically appearing in the lo-

cal filter design (for conditional moment computation)

as a special case of Gaussian process quadratures. As a

consequence, a set of novel local methods for nonlinear

state estimation is proposed.

The fourth paper entitled “Nonlinear Kalman Fil-

ters Explained: A Tutorial on Moment Computations

and Sigma Point Methods” by M. Roth, G. Hendeby,

and F. Gustafsson, is concerned with an in-depth and

widespread survey of nonlinear local estimation algo-

rithms published so far. The algorithms are introduced

in a unified framework and particular approximation

techniques, both derivative-free and with an explicit

derivative, used for integral evaluation are analysed with

respect to the structure and properties of the considered

integrals and nonlinear functions.

The fifth paper entitled “The Smart Sampling Kal-

man Filter with Symmetric Samples” by J. Steinbring,

M. Pander, and U. D. Hanebeck, is aimed at a design

of a novel local filtering algorithm suitable even for

high-dimensional tasks. The algorithm is based on the

deterministic symmetric equally-weighted sample set,

which is used by an integration rule computing the

conditional moments. The set is computed prior to the

estimation experiment by an optimization procedure,

thus not affecting the computational complexity of the

filter.

The last, the sixth, paper entitled “Sigma-Point Set

Rotation for Derivative-Free Filters in Target Tracking

Applications” by J. Duník, O. Straka, M. Šimandl, and

E. Blasch, is focused on a thorough analysis of the im-

pact of user-defined parameters on the estimation per-

formance of the derivative-free local filters. In particu-

lar, the sigma-point (or sample) set rotation determined

either by a selected covariance matrix factorisation tech-

nique or by an additional sigma-point set rotation is

treated. Recommendations for optimal and sub-optimal

set rotations are provided and justified.

Overall, the special issue covers numerous perspec-

tives of local nonlinear state estimation and represents

an excellent overview of the state-of-the-art and current

trends of the research in the area. We hope that you will

find the special issue attractive, educational, and moti-

vating and enjoy reading the papers. Finally, we would

like to thank the Journal of Advances in Information Fu-

sion (JAIF) Editorial Board for the possibility to prepare

this special issue and the Editor-in-Chief, Prof. Uwe D.

Hanebeck, for his encouragement and continuous sup-

port. We also greatly appreciate the authors and the re-

viewers for their outstanding effort and contribution to

the special issue.

Jindrich Duník, Ondrej Straka

Guest Associate Editors

Department of Cybernetics

Faculty of Applied Sciences

University of West Bohemia

Pilsen, Czech Republic
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Partitioned Update Kalman

Filter

MATTI RAITOHARJU

ROBERT PICHÉ

JUHA ALA-LUHTALA

SIMO ALI-LÖYTTY

In this paper we present a new Kalman filter extension for

state update called Partitioned Update Kalman Filter (PUKF).

PUKF updates the state using multidimensional measurements in

parts. PUKF evaluates the nonlinearity of the measurement function

within a Gaussian prior by comparing the effect of the 2nd order

term on the Gaussian measurement noise. A linear transformation

is applied to measurements to minimize the nonlinearity of a part

of the measurement. The measurement update is then applied using

only the part of the measurement that has low nonlinearity and the

process is then repeated for the updated state using the remaining

part of the transformed measurement until the whole measurement

has been used. PUKF does the linearizations numerically and no

analytical differentiation is required. Results show that when the

measurement geometry allows effective partitioning, the proposed

algorithm improves estimation accuracy and produces accurate

covariance estimates.
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ber 25, 2015.

Refereeing of this contribution was handled by Ondrej Straka.

Authors’ addresses: M. Raitoharju and R. Piché, Department of Au-
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I. INTRODUCTION

Bayesian filtering algorithms are used to compute

the estimate of an n-dimensional state x. In a general

discrete-time model the state evolves according to a state

transition equation

xt = f̃t(xt¡1,"
x
t ), (1)

where f̃t is the state transition function at time index t

and "xt is the state transition noise. The state estimate is

updated using measurements that are modeled as

yt = h̃t(xt,"
y
t ), (2)

where h̃t is a measurement function and "
y
t is the mea-

surement noise. If the measurement and state transition

are linear, noises are additive, white and normal dis-

tributed, and the prior state (x0) is normal distributed,

the Kalman update can be used to compute the poste-

rior. If these requirements are not fulfilled, usually an

approximate estimation method has to be used. In this

work, we concentrate on situations where the noises are

additive and Gaussian so that (1—2) take the form

xt = ft(xt¡1)+ "
x
t (3)

yt = ht(xt)+ "
y
t , (4)

where "xt »N(0,Wt), Wt is the state transition noise co-
variance, "

y
t »N(0,Rt), and Rt is the measurement noise

covariance.

There are two main approaches for computing an

approximation of the posterior distribution:

1) Approximate probabilities using point masses (e.g.

grid and particle filters)

2) Approximate probabilities by Gaussians (e.g. Kal-

man filter extensions)

In the first approach one problem is how to choose

a good number of point masses. The first approach also

often requires more computational resources than the

second approach. A drawback of the second approach

is that the state distribution is assumed normal and uni-

modal, which makes the estimate inaccurate when the

true posterior is not normal. Gaussian Mixture Filters

(GMFs) (a.k.a. Gaussian sum filters) can be considered

as a hybrid approach that use multiple normal distribu-

tions to estimate the probability distributions and can

approximate any probability density function (pdf) [1].

GMFs have the same kind of problems as the algorithms

using point masses in choosing a good number of com-

ponents. The algorithm that will be proposed in this pa-

per uses the second approach and so we will concentrate

on it.

The algorithms that are based on Gaussian approx-

imations usually extend the Kalman filter update to

nonlinear measurements (there are also other options,

see for example [2], [3]). The Extended Kalman Fil-

ter (EKF) is a commonly used algorithm for estima-

tion with nonlinear measurement models [4]. EKF is
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based on the first order Taylor linearization of the mea-

surement function at the mean of prior. In the Second

Order Extended Kalman Filter (EKF2) the linearization

takes also the second order expansion terms into account

[4]. In contrast to EKF, in EKF2 the prior covariance

also affects the linearization. Both EKF and EKF2 re-

quire analytical computation of the Jacobian matrix and

EKF2 requires also the computation of Hessian matrices

of the measurement function. In [5] a 2nd order Cen-

tral Difference Filter (CDF), which can be interpreted

as a derivative-free numerical approximation of EKF2,

was presented. The most commonly used Kalman filter

extension that does not require analytical differentia-

tion is probably the Unscented Kalman Filter (UKF)

[6]. The Gaussian approximations in UKF are based on

the propagation of “sigma points” through the nonlinear

functions. Cubature Kalman Filters (CKFs) are similar

algorithms, but they have different theory in the back-

ground [7]. All these methods do the update as a single

operation.

Some algorithms do multiple linearizations to im-

prove the estimate. In [8] the posterior is computed us-

ing multiple EKF updates that use different linearization

points. In the Iterated Extended Kalman Filter (IEKF),

the EKF update is computed in the prior mean and then

the new mean is used as the new linearization point [9].

This can be done several times. A similar update can

be done also with other Kalman type filters [10]. The

Recursive Update Filter (RUF) updates the prior with

measurement with reduced weight several times [11].

In every update the linearization point is used from the

posterior of the last reduced weight update. GMFs can

also be considered to be filters that do the linearization

multiple times, once for each Gaussian component, and

any Kalman filter extension can be used for the update.

In this paper we present Partitioned Update Kalman

Filter (PUKF) that updates the state also in several steps.

PUKF first computes the nonlinearity of measurement

models. The nonlinearity measure is based on compar-

ing the covariance of the 2nd order term covariance of

the Gaussian measurement noise. Computation of this

nonlinearity measure requires the same matrices as the

EKF2 update and for this we use the 2nd order CDF

[5], which is a derivative free version of the EKF2.

PUKF applies a linear transformation to the mea-

surement function to make a new measurement func-

tion that has linearly independent measurement noise

for measurement elements; the smallest nonlinearity

corresponding to a measurement element is minimized

first, then the second smallest nonlinearity etc. After the

transformation, the update is done using only measure-

ment elements that have smaller nonlinearity than a set

threshold value or using the measurement element with

the smallest nonlinearity. After the partial measurement

update the covariance has become smaller or remained

the same and the linearization errors for remaining mea-

surements may have also became smaller. The remain-

ing measurements’ nonlinearity is re-evaluated using the

Fig. 1. Process diagram of the PUKF

partially updated state, the remaining measurements are

transformed and a new partial update is applied until the

whole measurement is applied. This process is shown in

Figure 1. The use of only some dimensions of the mea-

surements to get a new prior and the optimization of

measurement nonlinearities differentiates PUKF from

other Kalman filter extensions.

The article is structured as follows: In Section II a

numerical method for approximate EKF2 update is pre-

sented. The main algorithm is presented in Section III.

The accuracy and reliability of the proposed algorithm

is compared with other Kalman filter extensions and

PFs in Section IV. Section V concludes the article.

II. EKF2 AND ITS NUMERICAL UPDATE USING 2ND
ORDER CDF

Kalman filter extensions, like all Bayesian filters,

can be computed in two stages: prediction and update.

For the state transition model (3) the state is propagated

in EKF2 using equations [9]:

¹¡t = ft(¹
+
t¡1)+

1
2
»
f
t (5)

P¡t = J
fP+t¡1J

fT + 1
2
¥
f
t +Wt, (6)

where ¹¡t is the predicted mean at time t, ¹
+
t¡1 is the

posterior mean of the previous time step, Jf is the

Jacobian of the state transition function evaluated at

¹+t¡1, P
¡
t is the predicted covariance, P+t¡1 is the posterior

covariance of the previous time step and »ht and ¥
h
t are

defined as

»
f
t[i] = trP

+
t¡1H

f
i (7)

¥
f
t[i,j] = trP

+
t¡1H

f
i P

+
t¡1H

f
j , (8)

where H
f
i is the Hessian of the ith element of the state

transition function evaluated at ¹+t¡1. To simplify the
notation we do not further show the time indices.

The update equations of EKF2 for the measurement

model (4) are [9]

y¡ = h(¹¡) + 1
2
»h (9)

S = JhP¡Jh
T

+ 1
2
¥h+R (10)

K = P¡Jh
T

S¡1 (11)
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¹+ = ¹¡+K(y¡ y¡) (12)

P+ = P¡ ¡KSKT, (13)

where Jh is the Jacobian of the measurement function,

K is the Kalman gain, S is the innovation covariance,

and »h and ¥h are defined as

»h[i] = trP
¡Hh

i (14)

¥h[i,j] = trP
¡Hh

i P
¡Hh

j , (15)

where Hh
i is the Hessian matrix of the ith component of

the measurement function. Eqns (9—13) can be turned

into the EKF update using »h = 0 and ¥h = 0.

If the measurement model is linear, the trace terms

in EKF2 are zero and the update is the optimal update

of the Kalman filter. When the measurement function

is a second order polynomial the EKF2 update is not

optimal as the distributions are no longer Gaussian, but

the mean (9) and innovation covariance (10) are correct.

In this paper we use a numerical algorithm to com-

pute an EKF2 like update. To derive this algorithm, we

start with the formulas of the 2nd-order CDF from [5].

Let
p
P¡ be a matrix such that

p
P¡
p
P¡

T
= P¡: (16)

In our implementation this matrix square root is com-

puted using Cholesky decomposition.

Next we define matrices M and Q that are used

for computing the numerical EKF2 update. We use

notation ¢i = °
p
P¡[:,i], where

p
P¡[:,i] is the ith column

of matrix
p
P¡ and ° is an algorithm parameter that

defines the spread of the function evaluations. Matrix

M, whose elements are

M[:,i] =
h
Jh
p
P¡
i
[:,i]

¼ °¡1 h(¹
¡+¢i)¡ h(¹¡ ¡¢i)

2
, (17)

is needed for the terms with Jacobian. The matrices

Qk ¼
p
P¡Hhk

p
P¡

T
are needed to compute terms with

Hessians. Elements of Qk are

Qk[i,i] = °
¡2[h[k](¹

¡+¢i)+ h[k](¹
¡ ¡¢i)¡2h[k](¹¡)]

Qk[i,j] = °
¡2[h[k](¹

¡+¢i+¢j)¡ h[k](¹¡+¢i)
¡ h[k](¹¡+¢j) + h[k](¹¡)], i 6= j: (18)

The EKF2 update can be approximated with these by

doing the following substitutions:

»hi = trP
¡Hh

i ¼ trQi in (9) (19)

JhP¡Jh
T ¼MMT in (10) (20)

P¡Jh
T ¼

p
P¡MT in (14) (21)

¥h[i,j] = trP
¡Hhi P

¡Hh
j ¼ trQiQj: in (15). (22)

The prediction step can be approximated by computing

Mf (17) and Qf (18) matrices using the state transition

function instead of the measurement function and doing

the following substitutions:

JhP+t¡1J
hT ¼MfMfT in (6) (23)

trP¡Hf
i ¼ trQfi in (7) (24)

trP¡Hf
i P

¡Hf
j ¼ trQfi Qfj in (8): (25)

In [12], an update algorithm similar to numerical

EKF2 is proposed that uses only the diagonal elements

of Q matrices. They state that ° =
p
3 for Gaussian

distributions is optimal because it preserves the fourth

moment and so we use this ° value in our algorithm.

III. PARTITIONED UPDATE KALMAN FILTER

When the measurement function is linear and the

measurement noise covariance is block diagonal, the

Kalman update produces identical results whether mea-

surements are applied one block at a time or all at once.

In our approach we try to find as linear as possible part

of the measurement and use this part to update the state

estimate to reduce approximation errors in the remain-

ing measurement updates. When the measurement noise

covariance R is not diagonal a linear transformation

(decorrelation) is applied to transform the measurement

so that the transformed measurement has diagonal co-

variance [13]. In PUKF, we choose this decorrelation so

that the nonlinearity of the least nonlinear measurement

element is minimized. The prior is updated using the

least nonlinear part of the decorrelated measurements.

After the partial update the process is repeated for the

remaining dimensions of the transformed measurement.

For measuring the amount of nonlinearity we com-

pare the trace term ¥h with the covariance of the mea-

surement noise:

´ = tr

dX
i=1

dX
k=1

R¡1[k,i]P
¡Hh

i P
¡Hh

k (26)

= tr

dX
i=1

dX
k=1

R¡1[k,i]¥
h
[i,k]

This nonlinearity measure is a local approximation of

the nonlinearity and is developed from the measure

presented in [9], [14]. In [15] it was compared with

other nonlinearity measures and it was shown to be a

good indication of how accurately state can be updated

with a nonlinear measurement model using a Kalman

filter extension. When the measurement model is linear

the nonlinearity measure is ´ = 0.

The matrix ¥h depends on the nonlinearity of the

measurement function and contributes to the innova-

tion covariance (10) similarly, but multiplied with 1
2
, as

the Gaussian measurement noise R. The measure (26)

compares the ratio of Gaussian covariance R and non-

Gaussian covariance ¥h. Figure 2 shows how the pdf

PARTITIONED UPDATE KALMAN FILTER 5



Fig. 2. Probability density functions of sums of independent Â2

and normal random variables with different variances

of the sum of independent normal and Â2 distributed

random variables is closer to normal when R > ¥ than

when R < ¥. The Â2 distribution is chosen in the ex-

ample, because a normal distributed variable squared

is Â2 distributed and in the second order polynomial

approximations the squared term is the nonlinear part.

The nonlinearity measure (26) can be approximated

numerically using the substitution (22). Numerical com-

putation of a similar nonlinearity measure was proposed

in [16], but the algorithm presented in Section II does

the nonlinearity computation with fewer measurement

function evaluations.

Multiplying (4) by an invertible square matrix D

gives a transformed measurement model

Dy =Dh(x) +D"y: (27)

We use the following notations for the transformed

measurement model: ŷ =Dy, ĥ(x) =Dh(x), R̂ =DRDT,

and "̂y =D"y »N(0, R̂). We will show that D can be

chosen so that

R̂ = I and trP¡Ĥhi P
¡Ĥhk = 0, i 6= k, (28)

where Ĥhi and Ĥ
h
k denote the Hessians of the ith and kth

element of ĥ(x).

In [15], it was shown that when a measurement

model is transformed so that R̂ = I the nonlinearity

measure (26) is equal to the nonlinearity measure of

the transformed measurements

´ = tr

dX
i=1

dX
k=1

R¡1[k,i]P
¡Hh

i P
¡Hhk

= tr

dX
i=1

dX
k=1

R̂¡1[k,i]P
¡Ĥh

i P
¡Ĥhk = tr

dX
i=1

P¡Ĥhi P
¡Ĥh

i :

(29)

Because the cross terms do not affect to the amount of

nonlinearity we can extract the nonlinearity caused by

individual elements of the transformed measurements

´i = trP
¡Ĥh

i P
¡Ĥh

i (30)

and the total nonlinearity is

´ =

dX
i=1

´i: (31)

In Appendix A it is shown that

¥̂h[i,j] = [D¥
hDT][i,j] ¼ trP¡Ĥh

i P
¡Ĥh

j : (32)

In this case the measurement related error terms of the

transformed measurement R̂ and ¥̂h are diagonal. This

makes the measurements independent and allows the

update of the state one element at a time.

In PUKF nonlinearities are minimized in such a way

that ´1 (30) is as small as possible. Then ´2 is minimized

such that ´1 does not change, and ´3 so that ´1 and ´2
do not change etc. The decorrelation transformation D

that does the desired nonlinearity minimization can be

computed by first computing a matrix square root (16)

of the measurement noise covariance
p
R
p
R
T
= R (33)

and then an eigendecomposition of
p
R
¡1
¥h
p
R
¡T

U¤UT =
p
R
¡1
¥h
p
R
¡T
: (34)

We assume that the eigenvalues in the diagonal matrix ¤

are sorted in ascending order. The transformation matrix

is now

D =UT
p
R
¡1
: (35)

A proof that this transformation minimizes the nonlin-

earity measures is given in Appendix B. After trans-

forming the measurement model with this matrix, the

measurement noise covariance is R̂ = I and ¥̂h = ¤.

After the measurement model is decorrelated (mul-

tiplied with D), the parts of measurement model that

have low nonlinearity (¤[i,i] · ´threshold) are used in the
update (Section II). If there is no such part then the

most linear element of the measurement model is used

to update the state. Then the same process is repeated

for the remaining transformed measurement model until

the whole measurement is processed.

In summary the PUKF update is:

1) Transform the measurement model using D (35)

2) Update the prior using only the least nonlinear mea-

surement elements of the transformed measurement

3) If there are measurement elements left, use them as

new measurement and use the updated state as a new

prior and return to step 1

The detailed PUKF algorithm is presented in Algo-

rithm 1 and a Matlab implementation is available on-

line [17].
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ALGORITHM 1 Algorithm for doing the measurement

update in PUKF

input : Prior state: ¹—mean P—covariance

Measurement model: y—value, h(¢)—
function, R—covariance

´threshold—nonlinearity limit,

°—measurement function evaluation spread

(default ° =
p
3)

output: Updated state: ¹—mean, P—covariance

1 Compute
p
R (33)

2 dÃmeasurement dimension

3 while d > 0 do

4 Compute
p
P (16)

5 Compute M and Qi, 1· i· d (17—18)
6 Compute »h and ¥h (19) and (22)

7 Compute U and ¤ (34)

8 DÃUT
p
R
¡1

9 Choose largest k so that

¤[i,i] · ´threshold, i· k ^¤[j,j] > ´threshold, j > k
10 if k == 0 then

11 j kÃ 1

12 end

/ / Compute partial EKF2 update
13 y¡ ÃD[1:k,:][h(¹)+

1
2
»h]

14 SÃD[1:k,:]MM
TDT[1:k,:] +

1
2
¤[1:k,1:k] + I

15 KÃp
PMTDT[1:k,:]S

¡1

16 ¹Ã ¹+K(D[1:k,:]y¡ y¡)
17 PÃ P¡KSKT

/ / Update remaining measurement
18 yÃD[k+1:d,:]y

19 h(x)ÃD[k+1:d,:]h(x)

20
p
RÃ I Updated measurement
noise covariance is an identity
matrix due to decorrelation

21 dÃ d¡ k Updated measurement
dimension

22 end

The amount of nonlinearity (26) for independent

measurements is equal to the sum of the nonlinearities

for each of the measurements. The quantity ´threshold is

compared separately to independent transformed mea-

surements elements and, thus, we propose to use same

´threshold regardless of the measurement dimension. As

a rule of thumb the nonlinearity threshold can be set to

´threshold = 1, which is equal to the threshold proposed

for one dimensional measurements in [9].

Figure 3 shows how PUKF treats a two-dimensional

second order polynomial measurement function

y =

·
x2¡ 2x¡ 4
¡x2 + 3

2

¸
+ ", (36)

where "»N(0,I). The prior has mean 1 and covariance
1. The nonlinearity of each measurement is 4 and the

total nonlinearity is 8. Then D = 1p
2

·
1 1

1 ¡1

¸
and the

Fig. 3. Transforming second order polynomial measurements to

minimize nonlinearity of ŷ1 and posterior comparison of PUKF and

EKF2

transformed measurement model has a linear term and

a polynomial term

ŷ =
p
2

· ¡x¡ 5
4

x2¡ x¡ 11
4

¸
+ "̂, (37)

where "̂»N(0,I). After transformation the first element
of the measurement function is linear and ´1 = 0 and all

the nonlinearity is associated with the second element

´2 = 8. In PUKF the linear measurement function is ap-

plied first and the partially updated state has mean ¡ 1
2

and covariance 1
3
. The polynomial measurement func-

tion is applied using this partially updated state. The

amount of nonlinearity for the second order polynomial

has decreased from 8 to 8
9
. EKF2 applies both measure-

ments at once and the posterior estimate is the same

for the original and transformed measurement models

as shown in Appendix A. When comparing to the true

posterior, which is computed using a dense grid, the

posterior estimate of PUKF is significantly more accu-

rate than the EKF2 posterior estimate.

IV. TESTS

We compare the proposed PUKF with other Kalman

filter extensions and a PF in three different test scenar-

ios. The PUKF was tested with 4 different values for

´threshold. When ´threshold =1 the whole measurement is

applied at once and the algorithm is a numerical EKF2.

When ´threshold < 0 measurement elements are processed

one at a time and when ´threshold = 0 all linear measure-

ment elements are first processed together and then non-

linear measurement elements one by one. Due to numer-

ical roundoff errors it is better to use a small positive

PARTITIONED UPDATE KALMAN FILTER 7



´threshold to achieve this kind of behaviour. In our tests

we use values f¡1,0:1,1,1g for ´threshold.
EKF and EKF2 are implemented as explained in

Section II with analytical Jacobians and Hessians. RUF

is implemented according to [11] with 3 and 10 steps.

IEKF uses 10 iterations. For UKF the values for sigma

point parameters are ®= 10¡3, ·= 0, ¯ = 2. All Kalman
filter extensions are programmed in Matlab with similar

levels of code optimizations, but the runtimes should

still be considered to be only indicative.

For reference we computed estimates with a boot-

strap particle filter that does systematic resampling at

every time step [18] using various numbers of particles

and with a PF that uses EKF for computing the proposal

distribution [19] with 10 particles.

In every test scenario the state transition model is lin-

ear time-invariant xt = J
fxt¡1 + "

x, where "x »N(0,W).
Thus, the prediction step (5)—(6) can be computed an-

alytically and all Kalman filter extensions in tests use

the analytical prediction.

The first test scenario is an aritificial example chosen

to show the maximal potential of PUKF. The measure-

ment model used is

h(x) =

266666666664

2x[1] + x[2] + x[3] +
1
2
x2[1] +

1
2
x2[2] +

1
2
x2[3]

x[1] + 2x[2] + x[3] +
1
2
x2[1] +

1
2
x2[2] +

1
2
x2[3]

x[1] + x[2] + 2x[3] +
1
2
x2[1] +

1
2
x2[2] +

1
2
x2[3]

x[1] + x[2] + x[3] + x
2
[1] +

1
2
x2[2] +

1
2
x2[3]

x[1] + x[2] + x[3] +
1
2
x2[1] + x

2
[2] +

1
2
x2[3]

x[1] + x[2] + x[3] +
1
2
x2[1] +

1
2
x2[2] + x

2
[3]

377777777775
+ "y ,

(38)

where "y »N(0,8I+ 1) and 1 is a matrix of ones. This
model is a linear transformation of

ĥ(x) =

266666666664

x[1]

x[2]

x[3]
1
2
x2[1]
1
2
x2[2]
1
2
x2[3]

377777777775
+ "̂y, (39)

where "̂y »N(0,I). The first three elements of (39) are
linear and PUKF with ´threshold 2 f0:1,1g uses the three
linear measurement functions first to update the state.

In this test scenario the prior mean is at the origin, the

prior and state transition noise covariances are both 16I,

and the state transition matrix is an identity matrix.

Results for positioning with measurement model

(38) are presented in Figure 4. The markers in the upper

plot show the 5%, 25%, 50%, 75% and 95% quantiles

of mean errors for each method. The quantiles are com-

puted from 1000 runs consisting of 10 steps each. To

show the quantiles better a logarithmic scale for error

is used. PUKF (´threshold <1) is the most accurate of

Fig. 4. Accuracy of different Kalman filter extensions in estimation

with second order polynomial measurement model (38). In the top

figure markers show the 5%, 25%, 50%, 75% and 95% quantiles of

errors for each method for every estimated step. The errors are

computed as the norm of the difference of the true and estimated

mean. In the bottom figure the markers show how often the true

state was within estimated error ellipsoids containing 5%, 25%,

50%, 75% and 95% of the probability mass.

the Kalman filter extensions by a large margin. When

´threshold =1 the whole measurement is processed at

once and the result is the same as with EKF2, as ex-

pected. In this test scenario the PUKF performs clearly

the best and methods that use EKF linearizations have

very large errors. PUKF also outperforms PF with sim-

ilar runtime.

In the bottom plot the accuracy of covariance es-

timates of different Kalman filter extensions are com-

pared. For this plot we compute how often the true state

is within the 5%, 25%, 50%, 75% and 95% ellipsoids of

the Gaussian posterior. That is, a true location is within

the p ellipsoid when

Â2n((¹¡ xtrue)TP¡1(¹¡ xtrue))< p, (40)

where xtrue is the true state, ¹ and P are the posterior

mean and covariance computed by the filter, and Â2n
is the cumulative density function of the chi-squared

distribution with n degrees of freedom. The filter’s error

estimate is reliable when markers are close to the p

values (dotted lines in the Figure). From the figure it

is evident that PUKF and EKF2 have the most reliable

error estimates and all other methods have too small

covariance matrices.

The EKFPF did not perform wery well. This is

probably caused by the inconsistency of EKF estimates
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Fig. 5. Example situation of bearings positioning

that were used as the proposal distribution. We tested

EKFPF also with 1000 particles. The estimation accu-

racy was similar to that obtained with a bootrstrap PF

with 1000 particles, but the algorithm was much slower

than other algorithms.

In our second test scenario the planar location of a

target is estimated using bearing measurements. When

the target is close to the sensor the measurement model

is nonlinear, but when the target is far away the measure-

ment becomes almost linear. The measurement model is

y = atan2(x[2]¡ r[2],x[1]¡ r[1]) + "y, (41)

where atan2 is the four quadrant inverse tangent, r is the

sensor location, and measurement noises are zero mean

independent, with standard deviation of 2±. We choose
the branch of atan2 so that evaluated values are as close

as possible to the realized measurement value. In the

test scenario two bearings measurements are used, one

from a sensor close to the prior and the second from a

sensor far away.

A representative initial state update using UKF,

EKF2, RUF and PUKF is shown in Figure 5. This ex-

ample is chosen so that the differences between esti-

mates of different filters is clearly visible. The red line

encloses the same probability mass of the true poste-

rior as the 1 ¢¾ ellipses (black lines) of the Gaussian
approximations computed with different Kalman filter

extensions. The measurement from the distant sensor is

almost linear within the prior and UKF uses it correctly,

but the linearization of the estimate from the nearby sen-

sor is not good and the resulting posterior is very narrow

(EKF would be similar). In the EKF2 update the second

order term of the measurement model from the nearby

sensor is so large that EKF2 almost completely ignores

that measurement and the prior is updated using only

the measurement from the distant sensor. The iterative

Fig. 6. Accuracy of different filters in bearings only tracking

update of RUF results in an estimate with small covari-

ance that has similar shape as the true covariance. The

mean of the true posterior is not inside the one-sigma

ellipses of the RUF estimate and the mean is too close

to the nearby sensor.

The first transformed measurement used by PUKF

is almost the same as the measurement from the distant

sensor and the estimate after the first partial update is

similar to the EKF2 estimate. Because the estimate up-

dated with the first measurement is further away from

the nearby sensor the linearization of the second mea-

surement is better and the posterior estimate is closer

to the true posterior than with EKF2. The covariance

estimate produced by PUKF is more conservative than

the RUF of UKF covariances.

Figure 6 shows the statistics for this scenario. For

this Figure the scenario was ran 1000 times using the

same sensor locations and 10 step estimation with a

4-dimensional state model containing 2 position and

2 velocity dimensions. The prior has zero mean and

covariance 10I. The state transition function is

f(x) =

·
I I

0 I

¸
x+ "x, (42)

where

"x »N
μ
0,

· 1
300
I 1

200
I

1
200
I 1

100
I

¸¶
: (43)

Figure 6 shows that the PUKF provides the best

accuracy. Interestingly RUF with 3 iterations has better

accuracy than with 20 iterations. From the plot that

shows the accuracy of the error estimates we can see
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Fig. 7. Example of first update in bearings only tracking

that the PUKF and EKF2 have the best error estimates.

Other methods have too optimistic covariance estimates.

In this test scenario the PF did not manage to get good

estimates with similar runtimes.

In the third test scenario we consider bearings only

tracking with sensors close to each other. Otherwise the

measurement model is the same as in the previous sce-

nario The prior is as in previous test scenario. The state

transition function is also (42) but the state transition

noise is higher:

"x »N
μ
0,

· 1
3
I 1

2
I

1
2
I I

¸¶
: (44)

The initial state and representative first updates are

shown in Figure 7. In this Figure UKF and RUF esti-

mates have very small covariances and so the plots are

magnified. The UKF estimate mean is closer to the true

mean than EKF2 and PUKF estimates, but the covari-

ance of the estimate is very small. RUF has a better

estimate than UKF, but the estimate is biased towards

the sensor locations. Because both sensors are nearby

and have large second order terms EKF2 and PUKF

estimates do not differ much.

Results for estimating 10 step tracks 1000 times are

shown in Figure 8. In this case the RUF has the best

accuracy. In PUKF there is only very small differences

whether all of the measurement are used at once or a

nonlinearity threshold is used. This means that in this

measurement geometry the partitioned update does not

improve accuracy. EKF2 has better covariance estimates

than the numerical update PUKF even though it has

larger errors. The covariance estimates produced by

RUF were again too small. In this test the PF has better

accuracy than the Kalman filter extensions.

Fig. 8. Results for bearings only tracking with sensors close to

each other

To further evaluate the accuracy of the estimates,

we compare Kullback-Leiber (KL) divergences of esti-

mates. The KL divergence is defined asZ
ln

μ
p(x)

q(x)

¶
p(x)dx, (45)

where p(x) is the pdf of the true distribution and q(x)

is the pdf of the approximate distribution [20]. We

computed the KL divergence for position dimensions.

The true pdf is approximated using a 50£ 50 grid. The
probability for each grid is computed as the sum of

particle weights of a PF particles within each cell. For

this we used 106 particles. Table I shows the median

Kullback-Leibler divergences for each method in the

two bearings measurement test scenarios. PUKF has the

smallest KL divergence in both test scenarios.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new extension of the

Kalman filter: the Partitioned Update Kalman Filter

(PUKF). The proposed filter evaluates the nonlinear-

ity of a multidimensional measurement and transforms

the measurement model so that some dimensions of the

measurement model have as low nonlinearity as possi-

ble. PUKF does the update of the state using the mea-

surement in parts, so that the parts with the smallest

amounts of nonlinearity are processed first. The pro-

posed algorithm improves estimation results when mea-

surements are such that the partial update reduces the

nonlinearity of the remaining part. According to the

simulated tests the PUKF improves the estimates when
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TABLE I

Median Kullback-Leibler divergences of position dimensions in the two bearings only tests

Method PUKF PUKF PUKF PUKF RUF RUF UKF EKF IEKF EKF2

´threshold =¡1 ´threshold = 0:1 ´threshold = 1 ´threshold =1 ¿ = 20 ¿ = 3 ¿ = 10

First bearings test 0.62 0.62 0.63 1.07 0.99 1.70 5.20 14.42 6.69 1.16

Second bearings test 2.14 2.14 2.14 2.33 3.56 2.53 9.36 10.97 8.84 2.60

measurements can be transformed so that an informative

linear part of the measurement can be extracted.

In many practical situations the almost linear part

could be extracted manually. For example, Global Posi-

tioning System (GPS) measurements are almost linear

and they could be applied before other measurements.

The proposed algorithm does the separation automati-

cally and when using the numerical algorithm for com-

puting the prediction and update analytical differentia-

tion is not required.

In our tests the estimated covariances produced by

EKF2 and PUKF were the most accurate. In [11] it was

claimed that RUF produces more accurate error esti-

mates than EKF2. Their results were based on compar-

ing 3 ¢¾ errors in 1D estimation. In this comparison 92%
of samples should be within the 3 ¢¾ range. For their re-
sults they had only 100 samples and from the resulting

figure it is hard to see how many samples exactly are

within the range, but for EKF2 most of the points are

within the range and some are outside.

In our tests, among other Kalman filter extensions

RUF had good accuracy, but it provided too small co-

variance matrices. In future it could be interesting to

extend RUF [11] to use EKF2-like statistical second or-

der linearization and then combine it with the proposed

algorithm.

Another use case for PUKF would be merging it

with the Binomial Gaussian mixture filter [21]. This

filter decorrelates measurements and uses nonlinearity

measure (30) as an indication of whether the measure-

ment model is so nonlinear that the prior component

should be split. By decorrelating measurements with the

algorithm proposed in this paper and doing the partial

updates for the most linear components first, unneces-

sary splits could be avoided.

APPENDIX A INVARIANCE OF EKF AND EKF2 TO A
LINEAR TRANSFORMATION OF THE MEASUREMENT
MODEL

The second order Taylor polynomial approximation

of the measurement function is

h(x) = h(¹¡)+ Jh(x¡¹¡)

+
1

2

266664
(x¡¹¡)THh1 (x¡¹¡)
(x¡¹¡)THh2 (x¡¹¡)

...

(x¡¹¡)THhd (x¡¹¡)

377775+ "y (46)

where Jacobian Jh and Hessians Hh are evaluated at

prior mean, "y is the measurement function noise.

In the linear transformation the measurement func-

tion (46) is multiplied by D. The second order approx-

imation is

ĥ(x) =Dh(x) =Dh(¹¡)+DJh(x¡¹¡)

+
1

2
D

266664
(x¡¹¡)THh

1 (x¡¹¡)
(x¡¹¡)THh

2 (x¡¹¡)
...

(x¡¹¡)THh
n (x¡¹¡)

377775+D"y (47)

The transformed Jacobian is

Ĵh =DJh (48)

and ith transformed Hessian is

Ĥh
i =

nX
k=1

D[i,k]H
h
k : (49)

The terms »h and ¥h are

»̂h =

2666664
trP¡Ĥh

1

trP¡Ĥh
2

...

trP¡Ĥh
n

3777775=
2666664
trP¡

Pn
k=1D[1,k]H

h
k

trP¡
Pn
k=1D[2,k]H

h
k

...

trP¡
Pn
k=1D[n,k]H

h
k

3777775 (50)

=D

266664
trP¡Hh

1

trP¡Hh
2

...

trP¡Hh
n

377775=D»h

¥̂h[i,j] = trP
¡Ĥh

i P
¡Ĥh

j

= trP¡
Ã

nX
k=1

D[i,k]H
h
k

!
P¡
Ã

nX
l=1

D[i,l]H
h
l

!
(51)

=

nX
k=1

nX
l=1

D[i,k]D[j,l]trP
¡Hh

k P
¡Hh

l

) ¥̂h =D¥hDT

For EKF update these terms are replaced with zero

matrices.

Now using these transformed quantities in the EKF2

update equations (9—13) gives

ŷ¡ = ĥ(¹¡) + 1
2
»̂h =D(h(¹¡) + 1

2
»h) (52)
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Ŝ =DJhP¡Jh
T

DT+ 1
2
D¥hDT+DRDT (53)

=DSDT

K̂ = P¡Ĵh
T

Ŝ¡1

= P¡Jh
T

DTD¡TS¡1D¡1 = P¡Jh
T

S¡1D¡1 (54)

=KD¡1

¹̂+ = ¹¡+ K̂[Dy¡Dh(¹¡)¡ 1
2
D»h]

= ¹¡+K(y¡ Jh¹¡ ¡ 1
2
»h) (55)

= ¹+

P̂+ = P¡ ¡ K̂ŜK̂T

= P¡ ¡KD¡1DSDT(KD¡1)T = P¡ ¡KSKT

= P+, (56)

which shows that the posterior is the same as with the

non-transformed measurements.

APPENDIX B PROOF THAT THE NONLINEARITIES
ARE MINIMIZED

Let ¥h be a diagonal matrix containing nonlinear-

ity values ordered ascending on the diagonal and let

measurement noise covariance matrix be identity matrix

R = I. We will show that the smallest diagonal element

of ¥h is as small as possible under a linear transfor-

mation that preserves R = I and further that the second

smallest diagonal element is as small as possible, when

the smallest is as small as possible etc.

If the measurement model is transformed by mul-

tiplying it with V, the transformed variables are ¥̂h =

V¥hVT and R = VIVT = VVT. Because we want to have

R = I, V has to be unitary. The ith diagonal element

of the transformed matrix is vTi ¥
hvi =

Pd
j=1 v

2
i,[j]¥

h
[j,j],

where vi is the ith column of V. Because V is unitary,

we have
Pd

j=1 v
2
i,[j] = 1 and the ith diagonal element of

the transformed matrix ¥̂h is

dX
j=1

v2i,[j]¥
h
[j,j] ¸

dX
j=1

v2i,[j]min
j
f¥h[j,j]g=min

j
f¥h[j,j]g:

(57)

Thus, the new diagonal element cannot be smaller than

the smallest diagonal element of ¥h.

If the smallest element is in the first element of

the diagonal the possible transformation for the second

smallest element is

¥̂h =

·
1 0T

0 V

¸
¥h
·
1 0T

0 VT

¸
: (58)

With the same reasoning as given already the second

diagonal has to be already the smallest possible. Induc-

tively this applies to all diagonal elements.
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Sigma-Point Filtering and

Smoothing Based Parameter

Estimation in Nonlinear

Dynamic Systems

JUHO KOKKALA

ARNO SOLIN

SIMO SÄRKKÄ

We consider approximate maximum likelihood parameter esti-

mation in nonlinear state-space models. We discuss both direct opti-

mization of the likelihood and expectation-maximization (EM). For

EM, we also give closed-form expressions for the maximization step

in a class of models that are linear in parameters and have additive

noise. To obtain approximations to the filtering and smoothing dis-

tributions needed in the likelihood-maximization methods, we focus

on using Gaussian filtering and smoothing algorithms that employ

sigma-points to approximate the required integrals. We discuss dif-

ferent sigma-point schemes based on the third, fifth, seventh, and

ninth order unscented transforms and the Gauss-Hermite quadra-

ture rule. We compare the performance of the methods in two sim-

ulated experiments: a univariate nonlinear growth model as well as

tracking of a maneuvering target. In the experiments, we also com-

pare against approximate likelihood estimates obtained by particle

filtering and extended Kalman filtering based methods. The exper-

iments suggest that the higher-order unscented transforms may in

some cases provide more accurate estimates.
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I. INTRODUCTION

This paper is an extended version of our article

[24] where we considered parameter estimation in state-

space models using expectation-maximization (EM) al-

gorithms based on sigma-point and particle smoothers.

In this paper, we extend our interest from EM algo-

rithms to so called direct maximum likelihood based

parameter estimation methods, where instead of using

the EM algorithm, the marginal likelihood of the param-

eters is directly approximated using nonlinear filtering

methods. In particular, we focus our interest to sigma-

point filters which use high-order unscented Kalman fil-

ters and Gauss-Hermite Kalman filters to approximate

the likelihood surface.

We consider state-space models of the following

form:

xk = f(xk¡1,μ) +qk¡1,

yk = h(xk,μ) + rk, (1)

where xk 2Rn is the discrete-time state sequence with
an initial distribution x0 » N(x0 jm0(μ),P0(μ)), yk 2Rd
is the measurement sequence, qk » N(0,Q(μ)) is the
Gaussian process noise sequence, rk » N(0,R(μ)) is the
Gaussian measurement error sequence, and μ 2 Rm is
a static parameter vector. Typically, one is interested in

computing the posterior distribution of the state xk given

measurements up to time k, p(xk j y1, : : : ,yk), known as
the filtering problem, or computing the posterior dis-

tribution of the state xk given all measurements, p(xk j
y1, : : : ,yT), where k · T, known as the smoothing prob-
lem. In the general case, analytical expressions do not

exist and we have to resort to approximative algorithms

such as the sigma-point methods. See, for example, [32]

for a general overview of Bayesian filtering and smooth-

ing.

While many filtering and smoothing algorithms are

formulated assuming fixed static parameters μ, in prac-
tice optimal values for these parameters are generally

unknown. Therefore, methods for estimating the param-

eters from the data are desired. In this paper, we concen-

trate on maximum-likelihood methods, where the pa-

rameters are selected by maximizing the marginal like-

lihood, or equivalently the logarithm of the marginal

likelihood, that is

μML = argmax
μ
logp(y1:T j μ): (2)

In linear systems with additive Gaussian noise, the like-

lihood can be evaluated using the Kalman filter [17, 21].

Many optimization algorithms utilize also the gradient

of the log-likelihood. The gradient can be evaluated

by so-called sensitivity equations, a recursion that is

obtained by differentiating the Kalman filter recursion

[15]. Alternatively, due to Fisher’s identity, the gradi-

ent may be evaluated by differentiating an auxiliary

function that can be computed during the smoothing
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pass [28, 35]. Instead of directly optimizing the like-

lihood, the expectation-maximization (EM) algorithm

[9] can be used to optimize parameters. The EM al-

gorithm consists of iterating the expectation (E) step

where a bound of the log-likelihood is computed using

the current parameter estimates, and the maximization

(M) step where the bound is maximized with respect

to the parameters. The evaluation of the bound in the

E-step is obtained by solving the smoothing problem.

See [36] for a discussion of applying the EM algorithm

in state-space models. Note that in the linear-Gaussian

case both gradient evaluation methods as well as the

EM algorithm in principle converge to the same solu-

tion, namely, the parameter value that maximizes the

log-likelihood.

In this paper, our interest lies in estimating the

static parameters by maximum-likelihood estimation in

the case of nonlinear state-space models with addi-

tive Gaussian noise, that is model (1). Formally, the

marginal likelihood can be computed by marginaliz-

ing out the states from the joint distribution of the

measurements and states using nonlinear filtering equa-

tions and the prediction error decomposition (see, e.g.,

[5, 32]), leading to similar methods as in the linear-

Gaussian case. However, since the state variables x can-
not in general be marginalized out analytically, one

needs to employ approximative methods. In the so

called direct likelihood methods, the likelihood is ap-

proximated directly using approximative nonlinear fil-

tering methods (see, e.g., [5, 22, 29, 32, 37]) and its

maximum is found via nonlinear optimization. Simi-

larly, the expectation-maximization (EM) algorithm can

be employed, but the E-step cannot be solved ex-

actly. Instead, the E-step is approximated with non-

linear smoothing algorithms (see, e.g., [12, 24, 31,

34, 41]).

The aim of this paper is to extend the results of

our paper [24] by showing how high-order (i.e., third,

fifth, seventh, and ninth order) unscented transforms

and Gauss-Hermite integration based sigma-point meth-

ods can be used for approximate direct likelihood and

EM-based parameter estimation in nonlinear state-space

models. For EM, we also give closed-form expressions

for the maximization step in a class of models that are

linear in parameters and have additive noise. We com-

pare the unscented transform and Gauss-Hermite based

sigma-point methods to linearization-based extended

Kalman filter algorithms and Monte Carlo based particle

filtering algorithms. We also provide an algorithm for

computing the gradients required by the gradient-based

optimization methods. Although we focus on maximum

likelihood estimation, the provided algorithms can be

easily extended to computation of maximum a poste-

riori estimates by including a prior distribution to the

objective function.

The remainder of the paper is organized as follows.

In Section II, we present the sigma-point filters and

smoothers based on assumed Gaussian density filtering

and smoothing. In Section III, we discuss parameter

estimation based on direct likelihood maximization and

EM. Numerical experiments are presented in Section IV.

Finally, Section V presents concluding discussion.

II. SIGMA-POINT FILTERING AND SMOOTHING

Under our interpretation, sigma-point filtering and

smoothing is derived by assuming Gaussian approxima-

tions for the state distributions, which enables the use

of a Kalman filter like filtering recursion and a Rauch-

Tung-Striebel backward pass for the smoothing distri-

butions. The Gaussian filtering and smoothing equa-

tions contain expectations over Gaussian distributions

which cannot be generally evaluated in closed form. The

sigma-points arise from approximating these Gaussian

integrals by weighted sums determined by some cuba-

ture (multi-dimensional quadrature) formula. Hence, we

interpret the different sigma-point methods as incarna-

tions of different integral approximations.

In the following, we first present the assumed Gaus-

sian density filtering and smoothing framework. Then,

we discuss various different cubature rules for approx-

imating the Gaussian integrals. Finally, we show how

the cubature rules are applied to the assumed Gaussian

density filtering and smoothing framework to obtain

the filtering and smoothing equations explicitly in the

sigma-point form.

A. General Gaussian Filtering and Smoothing

Assumed densityGaussian filtering (see [16, 32, 33])

is based on assuming that the filtering distributions are

approximately Gaussian, that is, assuming means mkjk
and covariances Pkjk such that

p(xk j y1:k)¼ N(xk jmkjk,Pkjk) (3)

as well as meansmkjk+1 and covariances Pkjk+1 such that

p(xk+1 j y1:k)¼ N(xk+1 jmkjk+1,Pkjk+1): (4)

The filtering equations of the resulting Gaussian filter

[16, 43] consist of a prediction step and an update

step. In the prediction step, we compute the state mean

and covariance of the distribution p(xk j y1:k¡1) using
the Gaussian approximation for p(xk¡1 j y1:k¡1). The
resulting equations are

mkjk¡1 = E[f(xk¡1)],

Pkjk¡1 = E[(f(xk¡1)¡mkjk¡1)

£ (f(xk¡1)¡mkjk¡1)
T]+Q, (5)

where the expectations are taken with respect to the

distribution xk¡1 » N(mk¡1jk¡1,Pk¡1jk¡1).
In the corresponding update step, we assume a Gaus-

sian density p(xk j y1:k¡1) =N(xk jmkjk¡1,Pkjk¡1) and
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compute the state mean and covariance for the distri-

bution p(xk j y1:k). The resulting equations are
¹k = E[h(xk)],

Sk = E[(h(xk)¡¹k)(h(xk)¡¹k)T]+R,
Ck = E[(xk ¡mkjk¡1)(h(xk)¡¹k)T],
Kk =CkS

¡1
k ,

mkjk =mkjk¡1 +Kk(yk ¡¹k),
Pkjk = Pkjk¡1¡KkSkKTk , (6)

where ¹k and Sk are the expectation and variance, re-
spectively, of the measurement yk and Ck is the covari-

ance of the state xk and the measurement yk. These

expectations are taken with respect to the distribution

xk » N(mkjk¡1,Pkjk¡1).
The smoothing distributions p(xk j y1:T) are obtained

from a backward pass, that is, starting from k = T and

iterating backwards in time. On each step, the smooth-

ing density of xk+1 is assumed to be Gaussian: p(xk+1 j
y1:T) =N(xk+1 jmk+1jT,Pk+1jT). The mean and covari-
ance for p(xk j y1:T) are then computed from the previ-

ous Gaussian smoothing density and the Gaussian filter-

ing densities using the Rauch-Tung-Striebel backward

pass [13, 30] as follows [33]:

mk+1jk = E[f(xk)],

Pk+1jk = E[(f(xk)¡mk+1jk)

£ (f(xk)¡mk+1jk)
T]+Q,

Dk+1 = E[(xk ¡mkjk)(f(xk)¡mk+1jk)
T],

Gk =Dk+1[Pk+1jk]
¡1,

mkjT =mkjk +Gk(mk+1jT¡mk+1jk),

PkjT = Pkjk +Gk(Pk+1jT¡Pk+1jk)GTk , (7)

where Gk is known as the smoother gain and the ex-

pectations are taken with respect to the distribution

xk » N(mkjk,Pkjk). The pairwise joint smoothing distri-
butions p(xk,xk¡1 j y1:T) are also of interest since they
are used in the expectation-maximization algorithm (see

Section III-B). Gaussian approximations for these dis-

tributions are obtained as a by-product of the smoothing

backward pass results as follows (see, e.g., [32, p. 189]).

p(xk,xk¡1 j y1:T)¼

N
μμ

xk

xk¡1

¶¯̄̄̄μ
mkjT
mk¡1jT

¶
,

μ
PkjT PkjTG

T
k¡1

Gk¡1PkjT Pk¡1jT

¶¶
:

(8)

B. Approximating the Gaussian Integrals

As we saw in the previous section, during the evalu-

ation of the prediction and update steps of the Gaussian

filter and smoother, we need to solve a set of Gaus-

sian integrals on each step. These integrals are of the

following form:

E[g(x)] =
Z
Rn
g(x)N(x jm,P)dx, (9)

where g :Rn!Rd is the integrand and the weighting
function N(x jm,P) is a multi-dimensional Gaussian
density with mean m and covariance matrix P. In this

paper, these integrals are computed by using multi-

dimensional generalizations of Gaussian quadratures–

also referred to as Gaussian cubatures [6]. They give

approximations of the form

E[g(x)]¼
X
i

wig(xi), (10)

where the weights wi and sigma-points xi are functions

of the meanm and covariance P of the Gaussian weight-

ing function. The sigma-points are positioned as fol-

lows:

xi =m+L»i, (11)

where »i are method specific unit sigma-points, and L is
a matrix square-root factor such that P= LLT (e.g., the

Cholesky decomposition of P). The differences in the

methods come from different choices of weights and

unit sigma-points.

In the following we briefly introduce a number of

schemes for choosing the weights and sigma-points.

The difference between these schemes stems from a

trade-off between the number of sigma-points (required

function evaluations) versus precision in the approxi-

mation. The degree of approximation is quantified by

the highest polynomial order, p, for which the method

is exact.

Unscented transform. The unscented transform (UT,

[19, 20]) uses a set of 2n+1 cubature points located

in the center and on the surface of an n-sphere. The

radius and the weights can be controlled using a set of

parameters. The cubature points are given by:

»0 = 0,

»i =

½ p
¸+nei, i= 1, : : : ,n,

¡p¸+ nei¡n, i= n+1, : : : ,2n,

where ei denotes a unit vector to the direction of coor-

dinate axis i, and the weights are defined as follows:

w(0) =

8><>:
¸

n+¸
, for mean terms,

¸

n+¸
+(1¡®2 +¯), for covariance terms,

w(i) =
1

2(n+¸)
, i= 1, : : : ,2n,

where ¸= ®2(n+·)¡n and ®, ¯, and · are parameters
of the method.
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Fig. 1. Unit sigma-points in two dimensions for each of the methods. The absolute value of the weights are indicated by the point size,

positive weights being black, negative weights white. (a) The symmetric cubature rule of order p= 3 with 4 points. (b) The symmetric

cubature rule of order p= 5 with 9 points. (c) The symmetric cubature rule of order p= 7 with 17 points. (d) The symmetric cubature rule

of order p= 9 with 25 points. (e) For comparison, the Gauss-Hermite (order p= 9) sigma-points (81 points, many of which with very small

weights) are also shown.

Symmetric, 3rd order. A widely applicable sigma-point

scheme is constructed by setting the unscented trans-

form parameters to ®=§1, ¯ = 0, and ·= 0 [43]. This
is also known as the 3rd order symmetric spherical-

radial cubature method (CKF, [3]; see [38] for the ex-

plicit connection). This method utilizes a scaled and ro-

tated set of 2n points, which are selected to be at the

intersections of an n-sphere and the coordinate axes:

»i =

½ p
nei, i= 1,2, : : : ,n,

¡pnei¡n, i= n+1, : : : ,2n:

The weights are defined as wi = 1=(2n) for i= 1,2, : : : ,

2n. The number of evaluation points is a linear function

of the state dimension. The corresponding sigma-point

filter is referred to as UKF 3.

Symmetric, 5th order. Building upon the work of Mc-

Namee and Stenger [26], it is possible to find explicit

fully symmetric integration formulas of higher order

than three. These integration schemes are exact for sym-

metric polynomials up to a given order p. For order

p= 5, the number of required sigma-points is 2n2 +1.

The corresponding sigma-point filter is referred to as

UKF 5.

Symmetric, 7th order. For order p= 7, the number of

required sigma-points is 1
3
(4n3 +8n+3), meaning that

they scale cubicly with the number of state dimensions.

The corresponding sigma-point filter is referred to as

UKF 7.

Symmetric, 9th order. For order p= 9, the number of

required sigma-points is 1
3
(2n4¡ 4n3 +22n2¡8n+3).

The corresponding sigma-point filter is referred to as

UKF 9. If required, even higher order methods can be

constructed in the spirit of [26].

Gauss-Hermite. The n-dimensional Gauss-Hermite

quadrature method forms the sigma-points as a Carte-

sian product of the one-dimensional Gauss-Hermite

quadratures, and the weights are simply products of the

one-dimensional weights [6, 16, 43]. The disadvantage

of this method is that with a pth order GH approxima-

tion (exact for polynomials up to order p), the required

number of evaluation points is pn, the number growing

Fig. 2. Scaling of the number of sigma-points for each of the

symmetric methods (solid lines). The required number of

sigma-points for the Gauss-Hermite cubature of corresponding order

p is visualized by the dashed lines.

exponentially with state dimension n. The correspond-

ing filter is referred to as GHKF.

The exact formulas for the higher-order methods be-

come lengthy and have been omitted here for brevity

(see, [25, 26, 43], for implementation details and dis-

cussion). Figure 1 gives a pictorial example of how the

points and weights are placed in two dimensions (n= 2)

for each of the methods. Note that even though the 5th

and 9th order methods do not have negative weights

when n= 2, they have negative weights in other dimen-

sions.

For higher state dimensions, Figure 2 shows how the

number of required points scale in each of the schemes.

The exponentially growing number of evaluation points

for Gauss-Hermite is apparent in Figure 2. In the UKFs,

the number of evaluation points grow polynomially.

McNamee and Stenger provide the following bound for

the number of evaluation points for the fully symmetric

integration formulas of arbitrary degree p= 2k+1 in

n-space: O((2n)k=k!). Note that while in this paper we

focus on the higher-order methods based on McNamee

and Stenger, alternative cubature rules have also been

suggested (see [7, 18]).
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C. Sigma-Point Filtering and Smoothing

The following sigma-point filtering and smoothing

equations are obtained by selecting a cubature rule, for

example, one of the rules discussed in Section II-B

and substituting it in place of the expectations in the

Gaussian filtering and smoothing equations (Sec. II-A,

Eqs. 5—7).

In the following equations, we denote the lower

triangular matrix square-root (Cholesky) factor of a

covariance matrix P by L so that for example Pkjk¡1 =
Lkjk¡1L

T
kjk¡1. The prediction step is

mkjk¡1 =
X
i

wif(mk¡1jk¡1 +Lk¡1jk¡1»i),

Pkjk¡1 =
X
i

fwi(f(mk¡1jk¡1 +Lk¡1jk¡1»i)¡mkjk¡1)

£ (f(mk¡1jk¡1 +Lk¡1jk¡1»i)¡mkjk¡1)
Tg+Q

(12)

and the update step is

¹k =
X
i

wih(mkjk¡1 +Lkjk¡1»i),

Sk =
X
i

fwi(h(mkjk¡1 +Lkjk¡1»i)¡¹k)

£ (h(mkjk¡1 +Lkjk¡1»i)¡¹k)Tg+R,

Ck =
X
i

fwiLkjk¡1»i

£ (h(mkjk¡1 +Lkjk¡1»i)¡¹k)Tg,
Kk =CkS

¡1
k ,

mkjk =mkjk¡1 +Kk(yk ¡¹k),
Pkjk = Pkjk¡1¡KkSkKTk : (13)

The Rauch-Tung-Striebel smoother equations are

mk+1jk =
X
i

fwif(mkjk +Lkjk»i)g,

Pk+1jk =
X
i

fwi(f(mkjk +Lkjk»i)¡mk+1jk)

£ (f(mkjk +Lkjk»i)¡mk+1jk)
Tg+Q,

Dk+1 =
X
i

fwiLkjk»j(f(mkjk +Lkjk»i)¡mk+1jk)g,

Gk =Dk+1[Pk+1jk]
¡1,

mkjT =mkjk +Gk(mk+1jT¡mk+1jk),

PkjT = Pkjk +Gk(Pk+1jT¡Pk+1jk)GTk : (14)

To evaluate expectations with respect to the pair-

wise smoothing distributions (Eq. 8), the required 2n-

dimensional sigma-points need to be generated sepa-

rately as they are not used in the smoother pass. The

sigma-points used for the pairwise smoothing distribu-

tions are of the formÃ
x(i)k

x(i)k¡1

!
=

Ã
m(i)
kjT

m(i)
k¡1jT

!
+

sμ
PkjT PkjTG

T
k¡1

Gk¡1PkjT Pk¡1jT

¶
»(2n)i ,

(15)

where »(2n)i are the 2n-dimensional unit sigma-points.

Then, expectation a function f(xk,xk¡1) is approxi-
mated as

E(f(xk,xk¡1) j y1:T) =
X
i

w(2n)i f(x(i)k ,x
(i)
k¡1), (16)

where w(2n)i are the corresponding weights of the 2n-

dimensional sigma-point scheme.

III. PARAMETER ESTIMATION

In this section, we consider methods for estimating

the static parameters μ of the state-space model (1). All
methods discussed target the maximum likelihood solu-

tion, that is, aim to maximize p(y1:T j μ), or equivalently
the log-likelihood:

μML = argmax
μ
logp(y1:T j μ): (17)

Since the state variables x0:T cannot in general be

marginalized in closed-form, approximative numeric

methods are needed.

Here, we focus on three approaches where sigma-

point filtering and smoothing is used to approximate

the likelihood. First, we consider a so-called direct-

likelihood approach, where the sigma-point algorithm

is used to directly approximate the log-likelihood and

its gradient, which are then used in numeric optimiza-

tion algorithms such as conjugate-gradient optimization.

Second, the expectation-maximization (EM) algorithm

which is based on a lower bound for the log-likelihood

and iterating optimization of parameters with respect to

the lower bound and updating the lower bound with new

parameters. The third approach is a modification of the

direct-likelihood optimization where Fisher’s identity is

used to express the gradient of the log-likelihood using

the same lower bound function that appears in the EM

algorithm. Note that the third approach is otherwise sim-

ilar to the first, but since it is based on the EM lower

bound, we present the methods in this order. Each of

these three approaches may be used in combination with

any of the sigma-point rules discussed in Section II-B.

Note that all the algorithms presented in this section

are easily extended to maximum a posteriori estimation

since maximizing the posterior density is equivalent to

maximizing the (unnormalized) log-posterior. That is,

the sum of log-likelihood and log-prior:

μMAP = argmax
μ
[logp(y1:T j μ)+ logp(μ)]: (18)

Since the log-prior is known, approximations of the

unnormalized log-posterior as well as its gradient and
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lower bounds are immediately obtained from the corre-

sponding approximations for the log-likelihood.

A. Direct Likelihood Based Parameter Estimation

The marginal log-likelihood function can be formu-

lated as the following sum

LT(μ) =
TX
k=1

logp(yk j y1:k¡1,μ): (19)

Furthermore, the terms of the sum on the right hand

side may in principle be evaluated by

p(yk j y1:k¡1,μ) =
Z
p(yk j xk,μ)p(xk j y1:k¡1,μ)dxk,

(20)

that is, integrating the measurement model p(yk j xk,μ)
over the predicted state distribution p(xk j y1:k¡1,μ)
which is computed during the Bayesian filtering recur-

sion. In assumed density Gaussian filtering is used, we

get the approximation

p(yk j y1:k¡1,μ)¼ N(yk j ¹k,Sk), (21)

whence the marginal log-likelihood expression in Equa-

tion (19) evaluates to

LT(μ) = logp(y1:T j μ)¼¡
1

2

TX
k=1

log j2¼Skj

¡ 1
2

TX
k=1

(yk ¡¹k)TS¡1k (yk ¡¹k), (22)

where the quantities ¹k and Sk are evaluated during the
filtering recursion, in the case of sigma-point methods

by Equation (13).

To enable use of gradient-based optimization algo-

rithms, we also need a method for evaluating the gra-

dients of the marginal log-likelihood. This is based on

the so-called sensitivity equations [14, 32] that are ob-

tained by differentiating the filtering equations. Namely,

the gradient of the log-likelihood is obtained by the re-

cursion

@Lk(μ)
@μi

=
@Lk¡1(μ)
@μi

¡ 1
2
tr

μ
S¡1k (μ)

@Sk(μ)

@μi

¶
¡ vTk (μ)S¡1k (μ)

@vk(μ)

@μi

+
1

2
vTk (μ)S

¡1
k (μ)

@Sk(μ)

@μi
S¡1k (μ)vk(μ),

(23)

where vk = yk ¡¹k. The derivatives @Sk(μ)=@μi and
@vk(μ)=@μi are computed along the filtering pass by the
equations shown in Figure 3.

B. Expectation-Maximization Based Parameter
Estimation

Expectation-maximization (EM), proposed by

Dempster et al. [9] is an iterative algorithm for find-

ing maximum likelihood parameter estimates in settings

with some unobserved variables, such as the state vari-

ables x in the state-space context. The motivation is

that the so-called full-data likelihood of the observed

and unobserved variables is easier to compute, and a

lower bound for the marginal likelihood of the observed

variables may be obtained based on expected full-data

log-likelihood. In the following, we present the EM al-

gorithm following the formulation by Neal and Hinton

[27] and the notation of Schön et al. [34].

The EM algorithm is based on the following lower

bound of the log-likelihood:

logp(y1:T j μ)¸
Z
q(x0:T) log

p(x0:T,y1:T j μ)
q(x0:T)

dx0:T,

(24)

where q is an arbitrary probability density over the

states x0:T. The idea is to iteratively maximize this

lower bound with respect to q (holding μ fixed) and

with respect to μ (holding q fixed). Furthermore, when

μ = μ(n) is fixed, the maximum with respect to q is

obtained by

q(x0:T) := p(x0:T j y1:T,μ(n)): (25)

By substituting this into Equation (24), the bound be-

comesZ
p(x0:T j y1:T,μ(n)) log

p(x0:T,y1:T j μ)
p(x0:T j y1:T,μ(n))

dx0:T

=

Z
p(x0:T j y1:T,μ(n)) logp(x0:T,y1:T j μ)dx0:T

¡
Z
p(x0:T j y1:T,μ(n)) logp(x0:T j y1:T,μ(n))dx0:T:

The latter term is independent of μ and may thus be

omitted when maximizing the lower bound with respect

to μ. The first term is the conditional expectation of

logp(y1:T,x0:T j μ) conditional on μ(n) and y1:T. Thus, the
step of maximizing the lower bound (Eq. 24) may be

replaced by computing the following function:

Q(μ,μ(n)) = E[logp(x0:T,y1:T j μ) j y1:T,μ(n)]: (26)

The EM algorithm in its general form thus consists of

initializing the parameters to μ(0) and for n= 0,1, : : :

iterating the following two steps:

² E-step: compute Q(μ,μ(n)).
² M-step: μ(n+1)Ã argmaxμQ(μ,μ(n)).
In state-space models, the Q-function can be decom-

posed by employing the Markov property of the state

sequence and the conditional independence of the mea-

surements:

Q(μ,μ(n)) = I1(μ,μ(n)) + I2(μ,μ(n)) + I3(μ,μ(n)), (27)
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Fig. 3. Recursion for computing the derivatives of the prediction

and update steps. Fx is the Jacobian of f(x,μ) as a function of x and

Hx is the Jacobian of h(x,μ) as a function of x. Algorithms for

computing the derivatives of the Cholesky factors L such that

P= LLT are omitted here (see [32]).

where the terms are

I1(μ,μ
(n)) = E[logp(x0 j μ) j y1:T,μ(n)], (28)

I2(μ,μ
(n)) =

TX
k=1

E[logp(xk j xk¡1,μ) j y1:T,μ(n)], (29)

I3(μ,μ
(n)) =

TX
k=1

E[logp(yk j xk,μ) j y1:T,μ(n)]: (30)

To evaluate this expression, one needs the smoothing

distributions p(xt j y1:T,μ(n)) and the joint smoothing

distributions of consecutive states p(xk,xk+1 j y1:T,μ(n)).
Sigma-point approximations to the EM algorithm are

then obtained by replacing the expectations over the

smoothing distributions by their sigma-point smoother

approximations. The Gaussian smoother approximation

for Q is

Q(μ,μ(n))¼

¡ 1
2
log j2¼P0j ¡

T

2
log j2¼Qj ¡ T

2
log j2¼Rj

¡ 1
2
trfP¡10 [P0jT+(m0jT¡m0)(m0jT¡m0)

T]g

¡ 1
2

TX
k=1

trfQ¡1E[(xk ¡ f(xk¡1))(xk ¡ f(xk¡1))T j y1:T]g

¡ 1
2

TX
k=1

trfR¡1E[(yk ¡h(xk))(yk ¡h(xk))T j y1:T]g,

(31)

where P0,Q,R and the model functions f(¢),h(¢) de-
pend on the parameters μ. The smoothing distribu-

tion means and covariances mkjT,PkjT are obtained dur-
ing the smoothing backward pass. The expectations

over the smoothing distribution in the latter two terms

are evaluated by using the sigma-point approximations

for Gaussian integrals as follows. The second expecta-

tion depends only on the smoothing distribution N(xk j
mkjT,PkjT) and is computed as follows:

E[(yk ¡h(xk)(yk ¡h(xk)T j y1:T]
¼
X
i

wi(yk ¡h(mkjT) +LkjT»i)

£ (yk ¡h(mkjT) +LkjT»i)
T: (32)

The first expectation depends on the pairwise joint

smoothing distribution p(xk,xk¡1 j y1:T) (cf. Sec. II-
A, Eq. 8). Thus, to evaluate it we need to use 2n-

dimensional sigma-points as discussed in Section II-C,

Equation 15.

In general, maximizing Q in the M-step requires

the use numerical optimization, for example, using the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

[11]. However, using numerical optimization inside EM

is quite cumbersome, because with the same effort we
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could numerically optimize the approximate likelihood

directly. Hence the benefit of EM is in the situation

when the optimization can be performed in closed form.

This kind of special case is the class of models where

the parameters appear linearly although the model itself

might be nonlinear.

In the following, we present closed-form solutions

for the special case where the model functions are linear

combinations of the parameters where the parameters

appear as coefficients of the linear combinations and/or

the covariances. That is, we consider models that can

be represented as follows:

xk =Af̃(xk¡1)+qk, (33)

yk =Hh̃(xk)+ rk, (34)

where f̃(¢) and h̃(¢) are functions containing the nonlin-
earities and the parameters are a subset of fA,H,Q,R,
m0,P0g.
For these models, the expression for Q can be writ-

ten as

Q(μ,μ(n)) =

¡ 1
2
log j2¼P0j ¡

T

2
log j2¼Qj ¡ T

2
log j2¼Rj

¡ 1
2
trfP¡10 [P0jT+(m0jT¡m0)(m0jT¡m0)

T]g

¡ T
2
trfQ¡1[§¡CAT¡ACT +A©AT]g

¡ T
2
trfR¡1[D¡BHT¡HBT +H£HT]g,

where the model parameters to be optimized are some

subset of fA,H,Q,Rm0,P0g and §,©,£,B,C,D can

be evaluated based on the latest E-step sigma-point

smoother results as follows:

§ =
1

T

TX
k=1

PkjT+mkjT[mkjT]
T, (35)

©=
1

T

TX
k=1

E[f̃(xk¡1)f̃
T(xk¡1) j y1:T], (36)

£ =
1

T

TX
k=1

E[h̃(xk)h̃
T(xk) j y1:T], (37)

B=
1

T

TX
k=1

ykE[h̃
T(xk) j y1:T], (38)

C=
1

T

TX
k=1

E[xk f̃
T(xk¡1) j y1:T], (39)

D=
1

T

TX
k=1

yky
T
k : (40)

Using these values, the optimal parameters in the M-

step, that is, the maximum points of the Q(¢,μ(n))-
function are

² When μ =A, we get
A¤ =C©¡1:

² When μ =H, we get
H¤ = B£¡1:

² When μ =Q, we get
Q¤ =§¡CAT¡ACT +A©AT:

² When μ =R, we get
R¤ =D¡HBT¡BHT +H£HT:

² When μ =m0, we get

m¤0 =m0jT: (41)

² Finally, the maximum with respect to the initial co-

variance μ = P0 is

P¤0 = P0jT+(m0jT¡m0)(m0jT¡m0)
T:

C. Evaluating the Gradient Based on Fisher’s Identity

The expected log-likelihood that appears in the EM

algorithm may also be used as a basis of an alterna-

tive approach for evaluating the gradient in direct opti-

mization. Based on Fisher’s identity, the gradient of the

marginal log-likelihood may be expressed as

@LT(μ)
@μ

=
@Q(μ,μ(n))

@μ

¯̄̄̄
μ(n)=μ

, (42)

where Q is the function defined in the EM algorithm

(Eq. 27). When the Q-function is approximated with
sigma-point smoothers, we obtain an alternative approx-

imation of the gradient of the marginal log-likelihood

that may be used in place of the approximation derived

in Section III-A. For linear state-space models, this ap-

proach was suggested by Segal and Weinstein [35] and

later by Olsson et al. [28] who called the approach the

‘easy gradient recipe.’ See [5, 32] for discussions of the

nonlinear case.

IV. EXPERIMENTS

In this section, we demonstrate the different sigma-

point schemes and different parameter estimation algo-

rithms with two example models. First, we use a one-

dimensional model (the univariate nonstationary growth

model, UNGM, [1, 23]) to illustrate the approximate

likelihood curves obtained by different methods. Sec-

ond, we compare the performance of different algo-

rithms with simulated data in a problem of tracking a

maneuvering target with bearings-only measurements.

In this example, we focus on estimating the sensor vari-

ances and compare the variance estimates as well as the

actual tracking error.
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Fig. 4. Visualization of the one-step evolution of the EM algorithm

for the univariate estimation of parameter a. The dotted line

represents the particle filter log-likelihood estimate (extrapolated in

the tails), while the solid line is the sigma-point filter log-likelihood

approximation. The dashed lines correspond to the sigma-point EM

bounds for iterations n and n+1.

Codes for replicating the experiments are available

on the author homepages.

A. Simple Nonlinear Growth Model

We simulated a realization with T = 100 data from

the following model:

xk+1 = axk + b
xk

1+ x2k
+ ccos(1:2k) + qk, (43)

yk = dxk + rk: (44)

with a= 0:5, b = 25, c= 8, d =
p
0:05, qk » N(0,10),

rk » N(0,0:01), x0 » N(0,0:01). This is the univariate
nonstationary growth model [1, 23] except that we

changed the measurement model to linear as the model

with the typically used quadratic measurement model

is known to be challenging for sigma-point algorithms

[42].

First, we estimated the likelihood of parameter a,

holding other parameters fixed at their ground-truth val-

ues. Likelihood curves obtained by direct likelihood es-

timation with various sigma-point rules as well as the

EM lower bounds for two iterations are shown in Fig-

ure 4. For comparison, a likelihood estimate obtained

by particle filtering (1000 particles and the optimal im-

portance distribution) is also shown. The EM iterations

seem to converge toward the maximum of the likelihood

curve and the second EM bound is rather close to the

particle filter likelihood estimate. The EM lower bounds

are mostly below the sigma-point likelihood curve as

expected, except that the first EM lower bound slightly

exceeds the sigma-point likelihood approximation in the

vicinity of the initial parameter. However, both the eval-

uation of Q and the sigma-point estimate of the likeli-

hood are approximations.

Second, to compare the different sigma-point rules,

we considered estimation of the parameter b with other

Fig. 5. Log-likelihood curves for parameters b and c evaluated by

five different sigma-point methods. The vertical line indicates the

location of the maximum.

parameters fixed and parameter c with other parame-

ters fixed, using a grid of parameter values with close

proximity to the maximum likelihood values. Namely,

for b we used 32 evenly spaced points between 21.7698

and 22.5698 and for c we used 32 points between 7.376

and 8.176. These are shown in Figure 5. The estimate

obtained by the Gauss-Hermite rule and the estimates

obtained by the higher-order UKFs are rather close to

each other while the estimate by the 3rd order UKF is

farther in both parameters.

B. Coordinated-Turn Model

In this section, we compare the performance of the

parameter estimation methods discussed in this article

using a more practical example. The problem is tracking

a target maneuvering according to the coordinated turn

model [2, 4, 33, 38] with bearings-only sensor measure-

ments. The state is 5-dimensional:

x= (x1 x2 _x1 _x2 !)T, (45)

where (x1,x2) is the location of the target in 2-dimen-

sional Cartesian coordinates, ( _x1, _x2) is the correspond-

ing speed, and ! is the turn rate. The dynamic model is

xk+1 =0BBBBBBBBB@

1 0
sin(!k¢t)

!k

cos(!k¢t)¡ 1
!k

0

0 1 ¡cos(!k¢t)¡ 1
!k

sin(!k¢t)

!k
0

0 0 cos(!k¢t) ¡sin(!k¢t) 0

0 0 sin(!k¢t) cos(!k¢t) 0

0 0 0 0 1

1CCCCCCCCCA
xk +qk:

(46)
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The process noise is qk » N(0,Q), where

Q=

0BBBBBB@

qc¢t
3=3 0 qc¢t

2=2 0 0

0 qc¢t
3=3 0 qc¢t

2=2 0

qc¢t
2=2 0 qc¢t 0 0

0 qc¢t
2=2 0 qc¢t 0

0 0 0 0 q!¢t

1CCCCCCA :

(47)

The measurements are angles from the sensors with

additive Gaussian noise:

yk = h(xk) + rk, (48)

where the measurement noise is rk » N(0,R). The co-
variance matrix R is naturally assumed diagonal, as the
measurement errors of separate sensors should be inde-

pendent. For each sensor i at location si the measure-
ment is given by

hi(xk) = atan2(x2,k ¡ s2,i,x1,k ¡ s1,i), (49)

where atan2 is the four-quadrant inverse tangent. We

focus on estimating the measurement noise variances

while keeping other parameters fixed. That is, the sensor

locations and dynamic model covariance are assumed to

be known and the initial state distribution fixed.

The parameters of the process noise covariance were

set to qc = 0:1, q! = 0:1 and the time step to ¢t=

0:01. The ground-truth measurement noise covariance

was R= diag(0:052,0:12). The two sensors were lo-
cated at s1 = (¡1,0:5) and s2 = (1,1). The parameters
of the initial distribution were m0 = (2,0,0,0,0)

T and

P0 = diag(0:5
2 0:52, 0:52, 0:52, 12). We simulated 100

different trajectories with T = 50 timesteps from this

model.

To compare performance of the different sigma-

point schemes, we performed direct maximum likeli-

hood estimation of the sensor noise standard devia-

tion of the first sensor, keeping the noise of the sec-

ond sensor as well as other parameters fixed at their

ground truth values. The sigma-point schemes used

were UKF 3, UKF 5, and UKF 7, as well as GHKF 3,

GHKF 5, and GHKF 7. The 9th order schemes were

omitted since the number of sigma-points is already

quite high as the state is 5-dimensional. In addition

to the sigma-point methods, we also compared against

maximum likelihood estimation based on the extended

Kalman filter (EKF, see, e.g. [17]).

The optimization was performed with gradient-based

optimization using the Matlab optimization toolbox.1

Furthermore, we investigated how the estimation per-

formance varies as a function of uncertainty of the tar-

get’s initial location. This was done by using an addi-

tional parameter for the per-coordinate standard devi-

ation (¾ 2 (0,0:5]). The first two diagonal components

1MATLAB version R2014b, the fminunc function, quasi-Newton al-
gorithm, initialized with

p
R1,1 = 0:1.

Fig. 6. Median absolute error of the parameter estimates compared

to GHKF 7 (median taken over the 100 simulated trajectories) as a

function of the initial location prior standard deviation. UKF 5 is

essentially indistinguishable from GHKF 3.

of P0 were set to ¾
2. Furthermore, the first two com-

ponents of m0 were interpolated between the original

m0 and the simulated x0 to keep the uncertainty of the

initial location consistent with the prior.

Since GHKF 7 is the highest-order sigma-point

scheme amongst those used in this experiment, we as-

sume it is the most accurate and compare against it.

Figure 6 shows comparison of median (over the 100

trajectories) absolute deviation of the MLE estimates

obtained by the various filtering schemes compared to

the ones obtained by GHKF 7. GHKF 5 is closest, while

EKF and UKF 3 are farthest from the baseline. UKF 7,

GHKF 3 and UKF 5 have similar performance. UKF 5

and GHKF 3 are essentially identical. This is explained

by the observation that in 5 dimensions, all UKF 5

sigma-points are present in the GHKF 3 sigma-point

set and the sum of the GHKF 3 weights of these points

is 0.79. The contribution of the remaining sigma-points

that have total 0.21 weight apparently has a negligible

contribution at least with this model. In addition, we also

look at track estimation errors using the final parameter

estimates by each sigma-point scheme. Figure 7 shows

the mean RMSE over the 100 trajectories, that is, for

each simulated trajectory, we computed the smoother

RMSE and then took the average.

To compare the two different gradient evaluation ap-

proaches, sensitivity equations (Section III-A) and the

Fisher identity approach (Section III-C), we evaluated

the derivative of the log-likelihood with respect to the

standard deviation of the error of the first sensor, us-

ing UKF 3 and UKF 5 and both gradient evaluation

approaches. The results are shown in Figure 8.

To measure the performance as a function of compu-

tational cost, we recorded the parameter values as well

as the times used at each iteration of the optimization

routines. In this experiment, the initial location stan-

dard deviation per coordinate was set to 0.5. Median

24 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 1 JUNE 2016



Fig. 7. Mean RMSE of smoothed location (mean taken over the

100 trajectories) using the MLE estimated noise variance of the first

sensor. UKF 5 is essentially indistinguishable from GHKF 3.

Fig. 8. Derivative of the log-likelihood with respect to the standard

deviation of the error of the first sensor. Evaluated using UKF 3 and

UKF 5 both with the sensitivity equation approach (Section III-A)

and the Fisher identity based approach (Section III-C).

absolute error (compared to final GHKF 7 estimate, as

a function of time) is shown in Figures 9 and 10. As

one would expect, the higher-order schemes are more

computationally demanding and GHKF is more com-

putationally demanding than UKF, but eventually the

higher-order GHKF schemes find better parameter esti-

mates.

Figure 11 shows the evolution of EM parameter

estimation for one simulated trajectory with ¾ = 0:5.

The EM algorithm practically converges in a couple

of steps with all three sigma-point schemes, and the

final parameter estimates are rather close to each other

and to the direct MLE estimates. Theoretically, the EM

algorithm has linear convergence [9] although it is hard

to say whether these convergence results extend to the

case where the E-step is approximated using sigma-

point smoothers.

Fig. 9. Median absolute error of the parameter as a function of

computation time during the optimization. Median taken over 100

datasets.

Fig. 10. Median absolute error of the parameter as a function of

computation time during the optimization. Median taken over 100

datasets. The solid lines are gradient-based direct optimization,

while the dashed lines show EM (run for 32 iterations) with the

corresponding sigma-point schemes.

V. CONCLUSION AND DISCUSSION

In this paper together with the complementing con-

ference article [24], we have considered various proba-

bilistic point estimation approaches for parameter es-

timation in nonlinear system identification. We dis-

cussed direct likelihood maximization as well as the

expectation-maximization (EM) algorithm coupled with

various filtering and smoothing algorithms, namely,

sigma-point filters, particle filters, and extended Kalman

filters as well as the corresponding smoothers. In this

paper, we focused on the differences between differ-

ent sigma-point filters based on unscented transforms

of third, fifth, seventh and ninth orders, and the Gauss-

Hermite cubature rules.

In diminishing order of computational complexity

and theoretical exactness, the filtering methods would
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Fig. 11. The plot on the left shows the evolution of the parameter

estimate during the first 10 EM steps using UKF 3, UKF 5, and

UKF 7. All methods converge essentially at same speed to the same

value. The plot on the right shows the evolution of the parameter

estimates after the first 10 EM steps as well as the corresponding

direct MLE estimates (the dashed lines).

rank as follows: particle filter, sigma-point filter, ex-

tended Kalman filter based direct likelihood approxi-

mation. In theory, particle filters converge to the exact

filtering solution as the number of particles increases,

while the other methods considered are based on assum-

ing a Gaussian density and using the Kalman filter equa-

tions. However, especially in high-dimensional cases,

the computational cost may prohibit the use of particle

filters. In practice, the assumed density Gaussian filter-

ing approach may have satisfactory performance if the

nonlinearity is not too high. In principle, all sigma-point

filters are based on assuming Gaussian density, and a

higher-order cubature rule should lead to more accurate

approximation of the Gaussian integrals at the cost of

higher computational burden. However, typically in the

literature (e.g. [2]) it has been claimed that when the

Gaussian density approximation is already inaccurate,

more accurate computation of the Gaussian integrals is

not beneficial.

We also tested the methods in two simulated case

studies. In the univariate nonstationary growth model,

maximum likelihood estimates produced by different

sigma-point schemes were similar. However, the esti-

mates obtained by higher-order unscented schemes were

closer to the Gauss-Hermite (order 16) baseline than the

conventional 3rd order unscented transform. This sug-

gests that the higher-order methods may indeed have

some utility.

In the target tracking experiment, we compared the

estimates of the noise standard deviation of one of the

sensors as a function of prior uncertainty of the tar-

get’s location using each of the sigma-point schemes.

With higher prior uncertainty, there were more differ-

ences amongst the methods. This is reasonable because

when there is less uncertainty in the model, all the meth-

ods obtain more accurate parameter estimates. Further-

more, the nonlinearity of the model has a stronger ef-

fect when the state variance is larger. Since no exact

maximum likelihood estimate was available, we com-

pared to the highest-order sigma-point scheme, namely,

GHKF 7. Compared to that, the Gauss-Hermite schemes

were closer than the unscented transform based schemes

and higher-order schemes were closer than lower-order

schemes. Thus, the results are consistent with an as-

sumption that the higher-order sigma-point methods

produce better approximations to the Gaussian filter-

ing result. However, the magnitude of the differences

observed in this experiment is not of practical relevance

and the sample size is small. Thus, the experiment may

be viewed only as suggestive.

We also measured the performance of the discussed

optimization routines as a function of computational

time. In direct gradient-based optimization, higher-

degree algorithms are more time-consuming but even-

tually seem to obtain better parameter estimates. The

EM algorithm with low-degree sigma-point schemes

(UKF 3, UKF 5) was initially faster than the gradient-

based optimization, but eventually the gradient-based

optimization seems to obtain better values. The EM al-

gorithm with UKF 7 sigma-points was more compu-

tationally demanding than the direct optimization with

UKF 7. This is due to the fact that EM requires the

2n-dimensional sigma-points for the smoothing dis-

tribution. This suggests that EM is not applicable in

high-dimensional problems combined with high-degree

sigma-point schemes. However, when interpreting these

findings, it should be noted that we compared to the

GHKF 7 estimate since the true maximum-likelihood

estimate was not available.

The sigma-point integration schemes are derived by

assuming exact integration results for polynomials of

certain degrees. Thus, it should be noted that it is not

guaranteed that a higher-order integration rule produces

a more accurate results, even though it is accurate for

higher-order polynomials. Furthermore, it is not guar-

anteed that a better approximation to the Gaussian filter-

ing result produces a better approximation to the exact

maximum likelihood result. On the other hand, there is

no reason why in general a lower-order approximation

to the Gaussian filtering integrals would produce more

accurate approximations to the exact filtering results.

We also compared the actual tracking performance

in terms of the smoother root mean square errors of

the target locations using the smoother results obtained

with the maximum likelihood parameter estimate of

each sigma-point filter. There was no clear differences

between the different sigma-point schemes in terms of

the tracking error in this experiment. The tracking error

of EKF increased more rapidly as a function of the

initial location uncertainty, which demonstrates the local

linearization nature of EKF.

In five dimensions, the UKF 5 sigma-point scheme

approximates the GHKF 3 scheme in the sense that

all UKF 5 sigma-points are GHKF 3 sigma-points as

well, and more than half of total weight is contributed

by these points. The target-tracking experiment demon-

strated that these two schemes indeed produce almost

equal results. However, most GHKF 3 sigma-points are
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not used in the UKF 5 scheme, and thus evaluating an

integral by UKF 5 requires considerably fewer func-

tion evaluations. These results suggest that there is no

reason to use GHKF 3 in five dimensions as UKF 5 pro-

duces essentially same results with fewer computations.

It is possible that similar computationally lighter close

approximations exist for other Gauss-Hermite based

sigma-point schemes as well.

In the target-tracking experiment, we also investi-

gated how the performance of the EM algorithm varies

with the sigma-point scheme used. As a function of EM

iterations, the evolution of the parameter estimate was

not affected by the choice of sigma-point scheme. How-

ever, the number of sigma-points in the UKF 3 rule

is a small fraction of the number of sigma-points with

the higher-order rules. Thus, measured by model func-

tion evaluations, EM with the UKF 3 rule converged

faster. This suggests that even when the interest lies in

obtaining as accurate parameter estimates as possible,

a reasonable computational approach would be to first

use EM with a low-order sigma-point scheme, such as

UKF 3, to obtain a ballpark estimate. Then, if accuracy

is desired, the initial estimate could be refined using

a more accurate sigma-point scheme combined with a

direct optimization algorithm.

In this paper, we considered only discrete-time state-

space models. Different sigma-point schemes may also

be used for continuous-discrete state-space models (see,

e.g., [8] and references therein). We considered only

fixed deterministic sigma-point schemes. An interesting

future research topic could be to combine the recently

proposed filters based on adapting or randomizing the

sigma-points [10, 39, 40] with parameter estimation.

Finally, we attempt to conclude which of the meth-

ods considered here one should use in practice. Regard-

ing the choice of sigma-point methods the higher-order

unscented transform methods turned out to be quite

good in the examples that we considered–but if the best

possible accuracy is desired, then Gauss-Hermite meth-

ods need to be used. The EM algorithm is indeed useful

in situations when the M-step optimization can be done

in closed form–of which important special cases are

the linear-in-parameters models considered here. How-

ever, for models that are not linear-in-parameters, EM

might not be a good choice. For these models, it is thus

beneficial to directly optimize the log-likelihood, and

in that case we have the choice to evaluate the gradi-

ents either using the sensitivity equations or using the

Fisher’s identity. It turned out that the Fisher’s identity

is often computationally more demanding than the sen-

sitivity equations, due to the requirement of a smoothing

pass, which favors the use of the sensitivity equations

for this purpose. Furthermore, the sensitivity equations

give the exact gradients of the approximate likelihood

whereas the Fisher’s identity only gives approximate

gradients of it. However, the Fisher’s identity has the

advantage of easy black-box implementation which can

sometimes be seen as an advantage.

APPENDIX. M-STEP IN THE LINEAR-IN-PARAMETERS
CASE

By substituting the linear-in-parameters model

(f(x) :=Af̃(x), h(x) :=Hh̃(x)) into the general expres-

sion for Q(μ,μ(n)), we obtain

Q(μ,μ(n))

¼¡1
2
log j2¼P0j ¡

T

2
log j2¼Qj ¡ T

2
log j2¼Rj

¡ 1
2
trfP¡10 [P0jT+(m0jT¡m0)(m0jT¡m0)

T]g

¡ 1
2

TX
k=1

trfQ¡1E[(xk ¡Af̃(xk¡1))

£ (xk ¡Af̃(xk¡1))T j y1:T]g

¡ 1
2

TX
k=1

trfR¡1E[(yk ¡Hh̃(xk))

£ (yk ¡Hh̃(xk))T j y1:T]g: (50)

Since trace is linear, the penultimate term can be writ-

ten as

=¡T
2
trfQ¡1 1

T

TX
k=1

E[(xk ¡Af̃(xk¡1))

£ (xk ¡Af̃(xk¡1))T j y1:T]g

=¡T
2
trfQ¡1 1

T

TX
k=1

E[xkx
T
k ¡ xk f̃(xk¡1)TAT

¡Af̃(xk¡1)xTk +Af̃(xk¡1)f̃(xk¡1)TAT j y1:T]g,
(51)

which due to linearity of expectation equals

=¡T
2
tr
n
Q¡1

h 1
T

TX
k=1

E[xkx
T
k j y1:T]

¡ 1
T

³ TX
k=1

E[xk f̃(xk¡1)
T j y1:T]

´
AT

¡A 1
T

TX
k=1

E[f̃(xk¡1)x
T j y1:T]

+A
1

T

TX
k=1

(E[f̃(xk¡1)f̃(xk¡1)
T j y1:T])AT

io
: (52)

Noting that E[xkxTk j y1:T] =mkjTm
T
kjT+PkjT and substi-

tuting in the notation introduced in Equations (35—40),

we obtain

=¡T
2
trfQ¡1[§¡CAT¡ACT +A©AT]g: (53)
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Similar calculation for the last term in Equation (50),

noting that E[ykyTk j y1:T] = ykyTk , gives

¡T
2
trfR¡1[D¡BHT¡HBT +H£HT]g: (54)

Substituting Equations (53) and (54) into Equation (50),

we get

Q(μ,μ(n)) =

¡ 1
2
log j2¼P0j ¡

T

2
log j2¼Qj ¡ T

2
log j2¼Rj

¡ 1
2
trfP¡10 [P0jT+(m0jT¡m0)(m0jT¡m0)

T]g

¡ T
2
trfQ¡1[§¡CAT¡ACT +A©AT]g

¡ T
2
trfR¡1[D¡BHT¡HBT +H£HT]g:

To maximize this with respect to the parameters

(m0,P0,A,H,Q,R) we differentiate with respect to pa-

rameter in question and set the derivative to 0. For Q:

dQ
dQ

=¡T
2

d

dQ
log j2¼Qj

¡ T
2

d

dQ
trfQ¡1[§¡CAT¡ACT +A©AT]g

=¡T
2
Q¡1

+
T

2
Q¡1[§¡CAT¡ACT +A©AT]Q¡1: (55)

Setting the derivative equal to 0, we obtain the equation

T

2
Q¡1 =

T

2
Q¡1[§¡CAT¡ACT +A©AT]Q¡1: (56)

Multiplying from right by (2=T)Q and from left by Q

gives

Q=§¡CAT¡ACT +A©AT: (57)

The derivations for the optimal solutions of R and P0
are similar. For A:

dQ
dA

=¡T
2

h
¡ d

dA
tr(Q¡1CAT)

¡ d

dA
tr(Q¡1ACT) +

d

dA
tr(A©AT)

i
=¡T

2
Q¡1[2A©¡ 2C] (58)

Since Q¡1 is nonsingular, the derivative is zero only if
the last factor is zero. If © is invertible, this in turn

implies

A=C©¡1: (59)

The derivations for the optimal solutions of H and m0

are similar.

If theparameterμ is any subset offA,H,Q,R,m0,P0g,
it can be optimized by these closed-form expressions.

First, note that (A,Q), (H,R) and (m0,P0) are indepen-

dent in the sense that, for example, the optimal A and

Q do not depend on the other four parameters. Further-

more, the optimal A does not depend on Q. Thus, A and

Q can be jointly optimized by first solving the optimal A

and then substituting that into the expression of optimal

Q. Similar reasoning works for (H,R) and (m0,P0).
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On the relation between

Gaussian process quadratures

and sigma-point methods

SIMO SÄRKKÄ

JOUNI HARTIKAINEN

LENNART SVENSSON

FREDRIK SANDBLOM

This article is concerned with Gaussian process quadratures,

which are numerical integration methods based on Gaussian pro-

cess regression methods, and sigma-point methods, which are used

in advanced non-linear Kalman filtering and smoothing algorithms.

We show that many sigma-point methods can be interpreted as

Gaussian process quadrature based methods with suitably selected

covariance functions. We show that this interpretation also extends

to more general multivariate Gauss-Hermite integration methods

and related spherical cubature rules. Additionally, we discuss dif-

ferent criteria for selecting the sigma-point locations: exactness of

the integrals of multivariate polynomials up to a given order, mini-

mum average error, and quasi-random point sets. The performance

of the different methods is tested in numerical experiments.
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I. INTRODUCTION

Gaussian process quadratures [1]—[6] are methods to

numerically compute integrals of the form

I[g] =
Z
g(x)w(x)dx, (1)

where g :Rn 7!Rm is a non-linear integrand function

and w(x) is a given, typically positive, weight function
such that

R
w(x)dx<1. In Gaussian process quadra-

tures the function g(x) is approximated with a Gaussian

process regressor [7] and the integral is approximated

with that of the Gaussian process regressor.

Sigma-point methods [8]—[16] can be seen [17] as

methods that approximate the above integrals viaZ
g(x)w(x)dx¼

X
i

Wig(xi), (2)

where Wi are some predefined weights and xi are the

sigma-points. Typically the sigma-points and weights

are selected such that when g is a multivariate polyno-

mial up to a certain order, the approximation is exact.

A particularly useful class of methods is obtained

when the weight function is selected to be a multivari-

ate Gaussian density w(x) = N(x jm,P). In the context
of Gaussian process quadratures it then turns out that

the integral of the Gaussian process regressor can be

computed in closed form provided that the covariance

function of the process is chosen to be a squared ex-

ponential [7], [18] (i.e., exponentiated quadratic). This

kind of quadrature methods is also often referred to

as Bayesian or Bayes-Hermite quadratures [2]. They

are closely related to Gauss-Hermite quadratures in the

sense that as Gaussian quadratures can be seen to form

a polynomial approximation to the integrand via point-

evaluations, Gaussian process quadratures use a Gaus-

sian process regression approximation instead [1]—[3].

Because Gaussian process regressors can be used to ap-

proximate a much larger class of functions than poly-

nomial approximations [7], they can be expected to per-

form much better also in numerical integration.

The selection of a Gaussian weight function is also

particularly useful in non-linear filtering and smoothing,

because the equations of non-linear Gaussian (Kalman)

filters and smoothers [17], [19]—[22] consist of Gaus-

sian integrals of the above form and linear operations

on vectors and matrices. The selection of different

weights and sigma-points leads to different brands of

approximate filters and smoothers [17]. For example,

the Gauss-Hermite quadrature and cubature based filters

and smoothers [21]—[25] are based on explicit numeri-

cal integration of the Gaussian integrals. The unscented

transform based methods as well as other sigma-point

methods [8]—[16] can also be retrospectively interpreted

to belong to the class of Gaussian numerical integra-

tion based methods [23]. Conversely, Gaussian type of

quadrature or cubature based methods can also be in-

terpreted to be special cases of sigma-point methods.
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Furthermore, the classical Taylor series based methods

[26] and Stirling’s interpolation based methods [16],

[27] can be seen as ways to approximate the integrand

such that the Gaussian integral becomes tractable (cf.

[17], [28]). The Fourier-Hermite series [29], Hermite

polynomial [30] methods are also based on numerical

approximation of the integrands. For more recent ad-

vances and applications of sigma-point methods in fil-

tering and smoothing, see the articles [31]—[35] and the

references therein.

The aim of this article is to provide a Gaussian

process quadrature viewpoint to sigma-point meth-

ods and multivariate numerical integration methods for

non-linear filtering and smoothing. The generalized

viewpoint also leads to novel non-linear filtering and

smoothing algorithms. We show that many sigma-point

filtering and smoothing algorithms such as unscented

Kalman filters and smoothers, cubature Kalman filters

and smoothers, and Gauss-Hermite Kalman filters and

smoothers can be seen as special cases of Gaussian pro-

cess quadrature based methods with suitably chosen co-

variance functions. More generally, we show that many

classical multivariate Gaussian quadrature methods, in-

cluding Gauss-Hermite rules [36], and symmetric inte-

gration formulas [37] are special cases of the present

methodology. We also discuss different criteria for se-

lecting the sigma-point locations: exactness for multi-

variate polynomials up to a given order, minimum av-

erage error, and quasi-random point sets.

The combination of Gaussian process regressors

with Bayesian filters has also been previously studied

in [38] and [18]. In both of those works the idea is to

use training data to form Gaussian process approxima-

tions to the dynamic and observation models. In [38],

filtering in the resulting Gaussian process state-space

model is done using approximate Bayesian filters such

as unscented Kalman filters and particle filters, whereas

in [18] the non-linear (Kalman) filtering and smoothing

equations are computed via closed form formulas. The

present approach and point of view is different, because

we use Gaussian processes to approximate the integrals

(quadratures) appearing in the filtering and smoothing

equations. In practical point of view this roughly cor-

responds to locally retraining the Gaussian process re-

gressor at every step using specifically designed training

point locations.

The Gaussian process quadrature methodology used

here can be seen to belong to a larger field of proba-

bilistic numerics [39]—[41], where the underlying idea

is to interpret numerical methods as instances of prob-

abilistic inference. For example, numerical integration

amounts to computing an estimate of the integral of a

function given a finite number of function evaluations,

whereas differential equation solvers estimate the ODE

solution given a sequence of derivative evaluations, and

optimization methods use local estimates of the target

function to steer their iterations. Although in this arti-

cle we only use probabilistic numerical integration, it is

clear that probabilistic ODE solvers, optimization meth-

ods, and other probabilistic numerical methods would

be useful in non-linear filtering and smoothing context

as well.

This article is an extended version of the confer-

ence article [6], where we analyzed the use of Gaussian

process quadratures in non-linear filtering and smooth-

ing as well as their connection to the unscented trans-

form and Gauss-Hermite quadratures. In this article, we

deepen and sharpen the analysis of those connections

and extend our analysis to a more general class of spher-

ically symmetric integration rules. We also analyze dif-

ferent sigma-point selection schemes as well as provide

more extensive set of numerical experiments.

II. BACKGROUND

A. Non-Linear Gaussian (Kalman) Filtering and
Smoothing

Non-linear Gaussian (Kalman) filters and smoothers

[17], [21]—[23] are methods that can be used to ap-

proximate the filtering distributions p(xk j y1, : : : ,yk) and
smoothing distributions p(xk j y1, : : : ,yT) of non-linear
state-space models of the form

xk = f(xk¡1)+qk¡1,

yk = h(xk)+ rk, (3)

where, for k = 1,2, : : : ,T, xk 2 Rn are the hidden states,
yk 2Rd are the measurements, and qk¡1 »N(0,Qk¡1)
and rk »N(0,Rk) are the process and measurements
noises, respectively. The non-linear function f(¢) is used
to model the dynamics of the system and h(¢) models
the mapping from the states to the measurements.

Non-linear Gaussian filters (see, e.g., [17], page 98)

are general methods to produce Gaussian approxima-

tions to the filtering distributions:

p(xk j y1, : : : ,yk)¼N(xk jmk,Pk), k = 1,2, : : : ,T: (4)

Non-linear Gaussian smoothers (see, e.g., [17], page

154) are the corresponding methods to produce approx-

imations to the smoothing distributions:

p(xk j y1, : : : ,yT)¼N(xk jms
k,P

s
k), k = 1,2, : : : ,T: (5)

Both Gaussian filters and smoothers can be easily gen-

eralized to state-space models with non-additive noises

(see [17]), but here we only consider the additive noise

case.

B. Gaussian Integration and Sigma-Point Methods

Sigma-point filtering and smoothing methods can

generally be described as methods that approximate the

Gaussian integrals in the Gaussian filtering and smooth-

ing equations (and in the Gaussian moment matching

transform) asZ
g(x)N(x jm,P)dx¼

X
i

Wig(xi), (6)
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where Wi are some predefined weights and xi are the
sigma-points. Typically, the sigma-point methods use

so called stochastic decoupling which refers to the idea

that we do a change of variablesZ
g(x)N(x jm,P)dx=

Z
g(m+

p
P»)| {z }

g̃(»)

N(» j 0,I)d», (7)

where P=
p
P
p
P
T
. This implies that we only need to

design weights Wi and unit sigma-points »i for integrat-
ing against unit Gaussian distributions:Z

g̃(»)N(» j 0,I)d» ¼
X
i

Wig̃(»i), (8)

thus leading to approximations of the formZ
g(x)N(x jm,P)dx¼

X
i

Wig(m+
p
P»i): (9)

Different sigma-point methods correspond to differ-

ent choices of weights Wi and unit sigma-points »i. For
example, the canonical unscented transform [8] uses the

following set of 2n+1 weights (recall that n is the di-

mensionality of the state) and sigma-points:

W0 =
·

n+·
, Wi =

1

2(n+·)
, i= 1, : : : ,2n,

»i =

8><>:
0, i= 0,p

n+·ei, i= 1, : : : ,n,

¡pn+·ei¡n, i= n+1, : : : ,2n:

(10)

where · is a design parameter in the algorithm and

ei 2 Rn is the unit vector towards the direction of the
ith coordinate axis.

Note that sigma-point methods sometimes use dif-

ferent weights for the integrals appearing in the mean

and covariance computations of Gaussian filters and

smoothers. However, here we will only concentrate on

the methods that use the same weights for both in order

to derive more direct connections between the methods.

For example, the above unscented transform weights are

just a special case of more general unscented transforms

(see, e.g., [17]).

C. Gaussian Process Regression

Gaussian process quadrature [2], [3] is based on

forming a Gaussian process (GP) regression [7] approx-

imation to the integrand using pointwise evaluations and

then integrating the approximation. In GP regression [7]

the purpose is to predict the value of an unknown func-

tion

o= g(x) (11)

at a certain test point (o¤,x¤) based on a finite num-
ber of training samples D = f(oj ,xj) : j = 1, : : : ,Ng ob-
served from it. The difference to classical regression is

that instead of postulating a parametric regression func-

tion gμ(x;μ), where μ 2RD are the parameters, in GP

regression we put a Gaussian process prior with a given

covariance function K(x,x0) on the unknown functions
gK(x).

In practice, the observations are often assumed to

contain noise and hence a typical model setting is:

gK »GP(0,K(x,x0)),
oj = gK(xj)+ ²j , ²j »N(0,¾2), (12)

where the first line above means that the random func-

tion gK has a zero mean Gaussian process prior with the

given covariance function K(x,x0). A commonly used

covariance function is the exponentiated quadratic (also

called squared exponential) covariance function

K(x,x0) = s2 exp
μ
¡ 1

2`2
kx¡ x0k2

¶
, (13)

where s,` > 0 are parameters of the covariance function

(see [7]).

The GP regression equations can be derived as fol-

lows. Assume that we want to estimate the value of the

noise-free function g(x) based on its Gaussian process
approximation gK(x) at a test point x given the vector

of observed values o= (o1, : : : ,oN). Due to the Gaussian
process assumption we now getμ

o

gK(x)

¶
»N

μμ
0

0

¶
,

μ
K+¾2I k(x)

kT(x) K(x,x)

¶¶
, (14)

whereK= [K(xi,xj)] is the joint covariance of observed
points, K(x,x) is the (co)variance of the test point, and
k(x) = [K(x,xi)] is the vector of cross covariances with
the test point.

The Bayesian estimate of the unknown value of

gK(x) is now given by its posterior mean, given the

training data. Because everything is Gaussian, the pos-

terior distribution is Gaussian and hence described by

the posterior mean and (auto)covariance functions:

E[gK(x) j o] = kT(x)(K+¾2I)¡1o
Cov[gK(x) j o] =K(x,x0)¡kT(x)(K+¾2I)¡1k(x0):

(15)

These are the Gaussian process regression equations in

their typical form [7], in the special case where g is

scalar. The extension to multiple output dimensions is

conceptually straightforward (see, e.g., [7], [42]), but

construction of the covariance functions as well as the

practical computational methods tends to be compli-

cated [43], [44]. However, a typical easy approach to

the multivariate case is to treat each of the dimensions

independently.

D. Gaussian Process Quadrature

In Gaussian process quadrature [2], [3] the basic

idea is to approximate the integral of a given function

g against a weight function w(x), that is,

I[g] =
Z
g(x)w(x)dx, (16)

ON THE RELATION BETWEEN GAUSSIAN PROCESS QUADRATURES AND SIGMA-POINT METHODS 33



by evaluating the function g at a finite number of points

and then by forming a Gaussian process approximation

gK to the function. The integral is then approximated by

integrating the Gaussian process approximation (or its

posterior mean) which is conditioned on the evaluation

points instead of the function itself. Here we assume

that g is scalar for simplicity as we can always take a

vector function elementwise.

Gaussian process quadratures are related to a re-

gression interpretation of classical Gaussian quadratures

which means that we can interpret many of the classical

methods as orthogonal polynomial approximations of

the integrand evaluated at certain finite number of points

[3]. The integral is then approximated by integrating the

polynomial instead of the original function. However,

the aim of Gaussian process quadrature is to get a good

performance in average, whereas in classical polyno-

mial quadratures the integration rule is designed to be

exact for a limited class of (polynomial) functions. Still,

these approaches are very much linked together [3].

Due to linearity of integration, the posterior mean of

the integral of the Gaussian process regressor is given as

E

·Z
gK(x)w(x)dx j o

¸
=

Z
E[gK(x) j o]w(x)dx, (17)

where the “training set” o= (g(x1), : : : ,g(xN)) now con-

tains the values of the function g evaluated at certain

selected inputs.

The posterior variance of the integral can be evalu-

ated in an analogous manner, and it is sometimes used

to optimize the evaluation points of the function gN [2]—

[5]. The posterior covariance of the approximation is

Var

·Z
gK(x)w(x)dx j o

¸
=

Z Z
Cov[gK(x) j o]w(x)dxw(x0)dx0: (18)

That is, when we approximate the integral (16) with the

posterior mean we haveZ
g(x)w(x)dx¼

·Z
kT(x)w(x)dx

¸
(K+¾2I)¡1o: (19)

The posterior variance of the (scalar) integral is

Var

·Z
gK(x)w(x)dx j o

¸
=

Z Z
K(x,x0)w(x)dxw(x0)dx0

¡
·Z

kT(x)w(x)dx

¸
(K+¾2I)¡1

·Z
k(x0)w(x0)dx0

¸
:

(20)

In this article we are specifically interested in the case

of Gaussian weight function, which then reduces the

integral appearing in the above expressions (19) and

(20) to·Z
kT(x)w(x)dx

¸
i

=

Z
K(x,xi)N(x jm,P)dx: (21)

It is now easy to see that when the covariance function

is a squared exponential K(x,xi) = s
2 exp(¡(2`2)¡1kx¡

xik2), this integral can be computed in closed form by

using the computation rules for Gaussian distributions.

Furthermore if the covariance function is a multivari-

ate polynomial, then these integrals are given by the

moments of the Gaussian distributions, which are also

available in closed form.

III. GAUSSIAN PROCESS QUADRATURES FOR
SIGMA-POINT FILTERING AND SMOOTHING

In this section we start by showing how Gaussian

process quadratures (GPQ) can be seen as sigma-point

methods and then introduce the Gaussian process trans-

form (GPT). The Gaussian process transform then en-

ables us to construct GPQ-based non-linear filters and

smoothers analogously to [17].

A. GPQ as a sigma-point method

In this section the aim is to show how Gaussian

process quadratures (GPQ) can be seen as sigma-point

methods.

LEMMA III.1 (GPQ as a sigma-point method). The

Gaussian process quadrature (or Bayes-Hermite/Bayesian

quadrature) can be seen as a sigma-point-type of integral

approximationZ
g(x)N(x jm,P)dx¼

NX
i=1

Wig(xi), (22)

where xi =m+
p
P»i, with the unit sigma-points »i se-

lected according to a predefined criterion, and the weights

are determined by

Wi =

·μZ
kT(»)N(» j 0,I)d»

¶
(K+¾2I)¡1

¸
i

, (23)

where K= [K(»i,»j)] is the matrix of unit sigma-point
covariances and k(») = [K(»,»i)] is the vector of cross
covariances. In principle, the choice of unit sigma-points

above is completely free, but good choices of them are

discussed in the following sections.

PROOF Let us first use stochastic decoupling (7),

which enables us to only consider unit-Gaussian in-

tegration formulas of the form (8). Because we can

integrate vector functions element-by-element, with-

out loss of generality we can assume that g(x) is

single-dimensional. Let us now model the function

» 7! g(m+
p
P») as a Gaussian process gK with a

given covariance function K(»,»0) and fix the train-
ing set for the GP regressor by selecting the points
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»i, i= 1, : : : ,N, which also determines the correspond-

ing points xi =m+
p
P»i such that the training set is

o= (g(x1), : : : ,g(xN)). The GP approximation to the in-

tegral now follows from (19):Z
g(m+

p
P»)N(» j 0,I)d»

¼
·Z

kT(»)N(» j 0,I)d»
¸
(K+¾2I)¡1o, (24)

which when simplified and applied to all the dimensions

of g gives the result.

Note that above we actually assume that the stocha-

stically-decoupled-function » 7! g(m+
p
P») instead of

the original integrand g(x) has the given covariance

function. The reason for this modeling choice is that

it enables us to decouple the mean and covariance from

the integration formula and hence it is computationally

beneficial. This also makes the result invariant to affine

transformations of the state and it also has a property

that the variability of the functions corresponds to the

scale of the problem. However, on the other hand, one

might argue that it is the function g(x) which we should

actually model and using the stochastically-decoupled-

function is “wrong.”

REMARK III.1 (Variance of GPQ). From Equation (20)

we get that the component-wise variances of the Gaus-

sian process quadrature approximation can be expressed

as

Vj =

Z Z
K(»,»0)N(» j 0,I)d»N(»0 j 0,I)d»0

¡
Z
kT(»)N(» j 0,I)d»(K+¾2I)¡1

£
Z
k(»0)N(»0 j 0,I)d»0: (25)

Using the above integration approximations we can

also define a general Gaussian process transform as

follows. The reason for introducing the transform is that

the corresponding approximate filters and smoothers

can be readily constructed in terms of the transform (cf.

[17]), which we will do in the next section.

ALGORITHM III.1 (Gaussian process transform). The

Gaussian process quadrature based Gaussian approxima-

tion to the joint distribution of x and the transformed

random variable y= g(x)+q, where x»N(m,P) and
q»N(0,Q), is given byμ

x

y

¶
»N

μμ
m

¹GP

¶
,

μ
P CGP

CTGP SGP

¶¶
, (26)

where

xi =m+
p
P»i,

¹GP =
NX
i=1

Wig(xi),

SGP =

NX
i=1

Wi(g(xi)¡¹GP)(g(xi)¡¹GP)T +Q,

CGP =

NX
i=1

Wi(xi¡m)(g(xi)¡¹GP)T: (27)

Above, »i is some fixed set of sigma/training points and

the weights are given by Equation (23) with some selected

covariance function K(»,»0).

In this article, at least in the analytical results, we

usually assume that the measurements are noise-free,

that is, ¾2 = 0. This enables us to obtain analytically ex-

act relationships with the classical quadrature methods.

However, when using Gaussian process quadratures as

numerical integration methods, it is often beneficial to

have at least a small non-zero value for ¾2 in (23).

This kind of “jitter” stabilizes numerics and can even

be sometimes used to compensate for inaccuracies in

modeling.

EXAMPLE III.1 (GPT with squared exponential ker-

nel). Let us now consider » 2R and select the sigma-

point locations to be the ones of unscented transform

(10). With the squared exponential covariance function

(13) and noise-free measurements (¾2 = 0) we then get

the weights:

W =

0BBBBBBBBBBBBBBBB@

e
¡ ·+1

2(`2+1)

³
`e

·+1

2(`2+1) ¡ 2`e 3(·+1)2`2 + `e
·+1

2(`2+1) e
2(·+1)

`2

´
p
`2 +1

³
e
·+1

`2 ¡ 1
´2

¡
`e

(2`2+3)(·+1)

2`2(`2+1)

³
e

·+1

2(`2+1) ¡ e ·+12`2

´
p
`2 +1

³
e
·+1

`2 ¡ 1
´2

¡
`e

(2`2+3)(·+1)

2`2(`2+1)

³
e

·+1

2(`2+1) ¡ e ·+12`2

´
p
`2 +1

³
e
·+1

`2 ¡ 1
´2

1CCCCCCCCCCCCCCCCA
:

(28)

An interesting property is that in the limit `!1 we get

lim
`!1

W =

0BBBBB@

·

·+1

1

2(·+1)

1

2(·+1)

1CCCCCA (29)

which are the unscented transform weights. We return

to this relationship in Section IV-D.
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B. GPQs in filtering and smoothing

In this section we show how to construct filters

and smoothers using the Gaussian process quadrature

approximations. Because Algorithm III.1 can be seen as

a sigma-point method, analogously to other sigma-point

filters considered, for example, in [17], we can now

formulate the following sigma-point filter for the model

(3), which uses the unit sigma-points »i and weights Wi
defined by Algorithm III.1.

ALGORITHM III.2 (Gaussian process quadrature filter).

The filtering is started from initial mean and covariance,

m0 and P0, respectively, such that x0 »N(m0,P0). Then

the following prediction and update steps are applied for

k = 1,2,3, : : : ,T.

Prediction:

1) Form the sigma points as follows: X (i)
k¡1 =mk¡1 +p

Pk¡1»i, i= 1, : : : ,N.
2) Propagate the sigma points through the dynamic

model: X̂ (i)
k = f(X (i)

k¡1), i= 1, : : : ,N.
3) Compute the predicted mean m¡k and the predicted

covariance P¡k :

m¡k =
NX
i=1

WiX̂ (i)
k ,

P¡k =
NX
i=1

Wi(X̂ (i)
k ¡m¡k )(X̂ (i)

k ¡m¡k )T +Qk¡1:

Update:

1) Form the sigma points: X¡(i)k =m¡k +
q
P¡k »i,

i= 1, : : : ,N.

2) Propagate the sigma points through the measurement

model: Ŷ (i)k = h(X¡(i)k ), i= 1 : : :N.

3) Compute the predicted mean ¹k, the predicted covari-
ance of the measurement Sk, and the cross-covariance
of the state and the measurement Ck:

¹k =
NX
i=1

WiŶ (i)k ,

Sk =

NX
i=1

Wi(Ŷ (i)k ¡¹k)(Ŷ (i)k ¡¹k)T +Rk,

Ck =

NX
i=1

Wi(X¡(i)k ¡m¡k )(Ŷ(i)k ¡¹k)T:

4) Compute the filter gain Kk and the filtered state mean
mk and covariance Pk, conditional on the measure-
ment yk:

Kk =CkS
¡1
k ,

mk =m
¡
k +Kk[yk ¡¹k],

Pk = P
¡
k ¡KkSkKTk :

The result of the filter is a sequence of approxima-

tions

p(xk j y1, : : : ,yk)¼N(xk jmk,Pk), k = 1,2, : : : ,T: (30)

Further following the line of thought in [17] we can

formulate a sigma-point smoother using the unit sigma-

points and weights from Algorithm III.1.

ALGORITHM III.3 (Gaussian process quadrature sigma-

point RTS smoother). The smoothing recursion is started

from the filtering result of the last time step k = T,

that is, ms
T =mT, P

s
T = PT and proceeded backwards for

k = T¡ 1,T¡2, : : : ,1 as follows.
1) Form the sigma points: X (i)

k =mk +
p
Pk»i,

i= 1, : : : ,N.

2) Propagate the sigma points through the dynamic

model: X̂ (i)
k+1 = f(X (i)

k ), i= 1, : : : ,N.

3) Compute the predicted mean m¡k+1, the predicted co-
variance P¡k+1, and the cross-covariance Dk+1:

m¡k+1 =
NX
i=1

WiX̂ (i)
k+1,

P¡k+1 =
NX
i=1

Wi(X̂ (i)
k+1¡m¡k+1)(X̂ (i)

k+1¡m¡k+1)T

+Qk,

Dk+1 =

NX
i=1

Wi(X (i)
k ¡mk)(X̂ (i)

k+1¡m¡k+1)T:

4) Compute the gain Gk, mean m
s
k and covariance P

s
k as

follows:

Gk =Dk+1[P
¡
k+1]

¡1,

ms
k =mk +Gk(m

s
k+1¡m¡k+1),

Psk = Pk +Gk(P
s
k+1¡P¡k+1)GTk :

The approximations produced by the smoother are

p(xk j y1, : : : ,yT)¼N(xk jms
k,P

s
k), k = 1,2, : : : ,T: (31)

Note that we could cope with non-additive noises in the

model by using augmented forms of the above filters

and smoothers as in [17]. The fixed-point and fixed-lag

smoothers can also be derived analogously as was done

in the same reference.

IV. SELECTION OF COVARIANCE FUNCTIONS AND
SIGMA-POINT LOCATIONS

The accuracy of the Gaussian process quadrature

method and hence the accuracy of the filtering and

smoothing methods using it is affected by

1) the covariance function K(»,»0) used and
2) the sigma-point locations »i.

36 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 1 JUNE 2016



Once both of the above are fixed, the weights are

determined by Equation (23). In this section we discuss

certain useful choices of covariance functions as well

as “optimal” choices of sigma-point locations for them.

We also discuss the connection of the resulting methods

with sigma-point methods such as unscented transforms

and Gauss-Hermite quadratures.

A. Squared exponential and minimum variance point
sets

In a machine learning context [7] the default choice

for a covariance function of a Gaussian process is

the squared exponential covariance function in Equa-

tion (13). What makes it convenient in Gaussian process

quadratures is that the integral required for computing

the weights in Equation (23) can be evaluated in closed

form (cf. [3], [18]). It turns out that the posterior vari-

ance can be computed in closed form as well which is

useful because for a given set of sigma-points we can

immediately compute the expected error in the integral

approximation (assuming that the integrand is indeed

a GP)–this is possible because the variance does not

depend on the observations at all.

One way to determine the sigma-point locations is

to select them to minimize the posterior variance of the

integral approximation [2], [3]. In our case this corre-

sponds to minization of the variance in Equation (25)

with respect to the points »1:N . Although the minimiza-
tion is not possible in closed form, with a moderate

N this optimization can be done numerically. Unfor-

tunately, this numerical optimization problem is quite

hard, because the optimum is far from being unique

due to numerous symmetries appearing in the problem.

Figure 1 shows examples of minimum variance point

sets optimized by using the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [45].

The squared exponential covariance function is not

the only possible choice for a covariance function.

From the machine learning context we could, for ex-

ample, choose a Matérn covariance function or some

of the scale-mixture-based covariance functions [7]. In

that case the weight integral (23) becomes less trivial,

but at least we always have a chance to precompute

the weights using some (other) multivariate quadrature

method. The sigma-point optimization could also be

done similarly as for the squared exponential covariance

function.

One potential disadvantage of using off-the-shelf co-

variance functions from machine learning is that they

usually do not lead to filtering and smoothing meth-

ods which would give the exact result for linear state-

space models. Recall that unscented Kalman filters

and smoothers as well as Gauss-Hermite filters and

smoothers do give the linear Kalman filter result when

applied to a linear model. One way to diminish this issue

is to use a covariance function which is formed as a sum

of, for example, squared exponential covariance func-

tion and a suitable polynomial covariance function (see

Fig. 1. Minimum variance (2d) point sets for the squared

exponential covariance function. The gray circle is the unit circle

depicted for visualization purposes. (a) 5 points. (b) 10 points.

(c) 15 points. (d) 20 points.

next section). Other ways include an explicit inclusion

of the linear part into the regression model.

B. UT and spherical cubature rules

In addition to the squared exponential covariance

function, another useful class of covariance functions

are polynomial covariance functions. They correspond

to linear-in-parameters regression using polynomials as

the regressor functions. It turns out that also for polyno-

mial covariance functions we can compute the weights

(23) in closed form. What is even more interesting is

that the Gaussian process quadratures reduce to clas-

sical numerical integration methods. In this section we

show that with certain selections of symmetric evalua-

tion points we get a classical family of spherically sym-

metric integration methods of McNamee and Stenger

[37] of which the unscented transform [8], [9] can be

(retrospectively) seen as a special case [12]. More de-

tailed information on the multivariate Hermite polyno-

mials used below can be found in Appendix A.

THEOREM IV.1 (UT covariance function). Assume that

K(»,»0) =
3X
q=0

X
jJ j=q

3X
p=0

X
jIj=p

1

I!J !¸I,JHI(»)HJ (»
0), (32)

where ¸I,J s form a positive definite covariance matrix

and HI(») are multivariate Hermite polynomials (see
Appendix A). If we now select the evaluation points

as in UT (10), then the GPQ weights Wi become the

UT weights. Furthermore, the posterior variance of the

integral approximation is exactly zero.
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PROOF The prior gK »GP(0,K(»,»0)) with the above
covariance is equivalent to a parametric model of the

form

gK(») =
3X
p=0

X
jIj=p

1

I!cIHI(»), (33)

where cI are zero mean Gaussian random variables with
the covariances ¸I,J = E[cIcJ ]. When the joint covari-
ance matrix ¤= [¸I,J ] is non-singular, the posterior co-
variance of the integral being zero is equivalent to that

the integral rule is exact for all functions of the form

(33) with arbitrary coefficients. Note that we treat ¤ as

a covariance matrix despite formally being indexed by

multi-indices. Clearly with the UT evaluations points,

the UT weights are the unique ones that have this prop-

erty (see, e.g., [17]) and hence the result follows.

Note that the above result also covers the cubature

transform (CT), that is, the moment matching rule used

in the cubature Kalman filter (CKF) and the smoother,

because the transform is a special case of UT [17].

THEOREM IV.2 (Higher order UT covariance function).

Assume that

K(»,»0) =
PX
q=0

X
jJj=q

PX
p=0

X
jIj=p

1

I!J !¸I,JHI(»)HJ (»
0): (34)

If we select the evaluation points according to order

P = 5,7,9, : : : rules in [37], we obtain the higher order

integration formulas in [37], which are often referred to

as the fifth order, seventh order, ninth order and higher

order UTs.

PROOF The result follows analogously to the 3rd order

case above.

Figure 2 shows two examples of unscented trans-

form point sets, the 3rd and 5th order point sets (for 2

dimensions).

EXAMPLE IV.1 (Derivation of UT weights from GPQ).

Let » 2 R2 and consider the GPQ with UT (10) sigma-
points and the covariance function (32). With ¾ = 0 and

¸I,J = ±I,J we then obtain the covariance matrix in (35).

K=
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Fig. 2. Unscented transform point sets. (a) UT-3. (b) UT-5.

It also turns out thatZ
kT(»)N(» j 0,I)d» = (1 ¢ ¢ ¢1) (36)

and finally

W0:4 =

μ
·

·+2

1

2(·+2)

1

2(·+2)

1

2(·+2)

1

2(·+2)

¶T
,

(37)
which are indeed the UT weights.

C. Multivariate Gauss-Hermite point sets

The multivariate Gauss-Hermite point sets (see, e.g.,

[17], [21]) of order P are exact for monomials of the

form x
p1
1 £ ¢¢ ¢£ xpnn , where pi · 2P¡ 1 for i= 1, : : : ,n.

This implies the following covariance function class.

THEOREM IV.3 (Gauss-Hermite covariance function).

Assume that

K(»,»0) =
X

maxJ·2P¡1

X
maxI·2P¡1

1

I!J !¸I,JHI(»)HJ (»
0),

(38)

where ¸I,J s form a positive definite covariance matrix

and HI(») are multivariate Hermite polynomials. If we
now select the evaluation points to form a cartesian prod-

uct of the roots of the Hermite polynomials of order P,

then the GPQ weightsWi become the multivariate Gauss-

Hermite quadrature weights. The posterior variance of

the integral approximation is again exactly zero.

38 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 1 JUNE 2016



Fig. 3. Gauss-Hermite point sets. (a) GH-4. (b) GH-5.

PROOF Again the result follows from the equivalence

of the polynomial approximations and polynomial co-

variance functions together with the uniqueness of the

Gauss-Hermite rule for exact integration of this same

function class.

Figure 3 shows 2d sigma-point sets formed as Carte-

sian products of two 4- and 5-point 1d Gauss-Hermite

rules, respectively.

Even when we are using polynomial covariance

functions, we are by no means restricted to using the

specific points sets corresponding to the classical inte-

gration rules. However, given the order of the polyno-

mial kernel and number of sigma-points they are also

minimum variance points sets and hence good choices

also in average–provided that the integrand is indeed a

polynomial. In any case, for an arbitrary set of sigma-

points we can use Equation (23) to give the correspond-

ing minimum variance weights.

D. Connection between squared exponential and
polynomial Gaussian process quadratures

As discussed in [3], the Gaussian process quadra-

ture with squared exponential covariance function also

has a strong connection with classical quadrature

methods. This is because we can consider a set of

damped polynomial basis functions of the form Ái(») =

xi exp(¡x2=(2`2)), which at least informally speaking
can be seen to converge to a polynomial basis when

`!1. We can now construct a family of random func-
tions (Gaussian processes) of the form

g`(x) =
X
j

cjÁk(x) =
X
j

cjx
j exp

μ
¡ x

2

2`2

¶
, (39)

where cj »N(0,(j!l2j)¡1). The covariance function of
this class is

K(x,y) =
X
i

1

i!`2i
xi exp

μ
¡ x

2

2`2

¶
yi exp

μ
¡ y

2

2`2

¶

= exp
³xy
`2

´
exp

μ
¡ x

2

2`2

¶
exp

μ
¡ y

2

2`2

¶
= exp

μ
¡ (x¡ y)

2

2`2

¶
, (40)

Fig. 4. Hammersley point sets. (a) 3 points. (b) 7 points. (c) 10

points. (d) 20 points.

which is the squared exponential covariance function.

Based on the above, Minka [3] argued (although did

not formally prove) that GPQs with squared exponential

covariance functions should converge to the classical

quadratures. This argument is indeed backed up by

our analytical example in Example III.1 where this

covergence indeed happens.

E. Random and quasi-random point sets

Recall that one way to approximate the expecta-

tion of g(») over a Gaussian distribution N(0,I) is to
use Monte Carlo integration. In that method we sim-

ply draw N samples from the Gaussian distribution

»i »N(0,I) and use them as sigma-points. The classical

Monte Carlo approximation to the integral would now

correspond to setting Wi = 1=N. Alternatively, we could

use these random points as sigma-points and evaluate

their weights by Equation (23). This leads to an ap-

proximation, which is sometimes called the Bayesian

Monte Carlo approximation [46], [47].

Instead of sampling from the normal distribution,

we can also use quasi-random points sets such as the

Hammersley point sets [48], [49]. These are points sets

which are designed to give a smaller error in average

than random points. The classical method would cor-

respond to setting all weights to Wi = 1=N, but again,

we can also use Equation (23) to evaluate the weights

for the GP quadrature. This corresponds to a “Bayesian

quasi Monte Carlo” approximation to the integral. Some

examples of Hammersley point sets are shown in Fig-

ure 4.
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Fig. 5. Covariance functions corresponding to different orders of

unscented transforms (UT) and the squared exponential (SE)

covariance function (s= 1, `= 1=2) for a single-input scalar-valued

Gaussian process. (a) UT-3. (b) UT-5. (c) UT-7. (d) SE.

V. NUMERICAL RESULTS

A. Covariance functions and regression implied by
unscented transform

The unscented transform covariance functions of or-

ders 3—7 (see Theorems IV.1 and IV.2) and the expo-

nentiated quadratic (i.e., the squared exponential, SE)

covariance function (Eq. (13)) are illustrated in Fig. 5.

The polynomial nature of the unscented transform (UT)

covariance function can be clearly seen in the figures–

the UT covariance function as such does not have such a

simple local-correlation-interpretation as the SE covari-

ance function has, because the UT covariance functions

simply blow up polynomially when moving away from

the diagonal.

The corresponding Gaussian process regression re-

sults on random data are illustrated in Fig. 6. The poly-

nomial nature of the unscented transform can be clearly

seen in the figures. The Gaussian process prediction

with the unscented transform covariance function has

a clear polynomial shape as expected. Clearly the poly-

nomial fit has less flexibility to explain the data than the

exponentiated quadratic fit although the flexibility cer-

tainly grows with the polynomial (and thus UT) order.

B. Illustrative high-dimensional example

We use the same test case as in Section VIII.A. of

[24], that is, the computation of the first two moments of

the function y(x) = (
p
1+ xTx)p for p= 1,¡2,¡3,¡5.

We thus aim to approximate the following integrals:

E[y(x)] =

Z ³p
1+ xTx

´p
N(x jm,P)dx, (41)

E[y2(x)] =

Z
(1+ xTx)pN(x jm,P)dx: (42)

Fig. 6. Regression with covariance functions for UT and SE.

(a) UT-3. (b) UT-5. (c) UT-7. (d) SE.

Figure 7 shows the result of using the following meth-

ods as function of the state-dimensionality:

² Cubature: The 3rd order spherical cubature sigma-
points (2n points) with the standard integration

weights.

² GPQ-Cubature: The Gaussian process quadrature

with SE covariance function and the 3rd order spher-

ical cubature sigma-points above.

² GPQ-Hammersley: The Gaussian process quadrature
with SE covariance and 2n Hammersley points.

The 3rd spherical cubature points refer to the inte-

gration rule proposed in [37], which was also used in

the cubature Kalman filter (CKF) in [24]. In the rule, the

sigma-points are placed to the intersections of coordi-

nate axes with the origin-centered n-dimensional hyper-

sphere of radius
p
n. Following [24] we measured the

accuracy of the methods by computing accurate mean

¹0 and covariance §0 via Monte Carlo sampling and by
comparing it to the approximate means m1 and covari-

ances §1 using the following KL-divergence for two
Gaussian distributions:

KL[N0kN1] =
1

2

½
tr(§¡11 §0)

+ (¹1¡¹0)T§¡11 (¹1¡¹0)¡ n+log
μ j§1j
j§0j

¶¾
:

(43)

The results in Figure 7 show that the GPQ quite consis-

tently gives a bit lower KL-divergence and hence better

result than the plain cubature when the cubature points

are used. When Hammersley point sets are used, the

results vary a bit more: with small state dimensions the

results are slightly worse than with the cubature points.

When p 6= 1, the Hammersley results are much better
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Fig. 7. Comparison of different methods in computing the moment integrals used in [24] for illustrating the performance of the cubature

rule. It can be seen that the GPQ methods outperform the cubature rule in most of the cases. (a) Cubature for (41). (b) GPQ-Cubature for

(41). (c) GPQ-Hammersley for (41). (d) Cubature for (42). (e) GPQ-Cubature for (42). (f) GPQ-Hammersley for (42).

in high dimensions whereas with p= 1 the results are

worse than with the cubature point sets.

C. Univariate non-linear growth model

In this section we compare the performance of the

different methods in the following univariate non-linear

growth model (UNGM) which is often used for bench-

marking non-linear estimation methods:

xk =
1

2
xk¡1 +25

xk¡1
1+ x2k¡1

+8cos(1:2k)+ qk¡1,

yk =
1

20
x2k + rk, (44)

where x0 »N(0,5), qk¡1 »N(0,10), and rk »N(0,1).
We generated 100 independent datesets with 500

time steps each and applied the following methods

to it: extended, unscented (·= 2), and cubature filters

and smoothers (EKF/UKF/CKF/ERTS/URTS/CRTS);

Gauss-Hermite filters and smoothers with 3, 7, and 10

points (GHKF/GHRTS); Gaussian process quadrature

filter and smoother with unscented transform points

(GPKFU/GPRTSU) and cubature points (GPKFC/

GPRTSC); with Hammersley point sets of sizes 3, 7, and

10 (GPKFH/GPRTSH); and with minimum variance

points sets of sizes 3, 7, and 10 (GPKFO/GPRTSO). The

covariance function was the exponentiated quadratic

with s= 1 and `= 3, and the noise variance was set

to 10¡8. The RMSE results together with single stan-
dard derivation bars are shown in Figures 8 and 9. As

can be seen in the figures, with 7 and 10 points the

Fig. 8. RMSE results of filters in the UNGM experiment.

Gaussian process quadrature based filters and smoothers

have significantly lower errors than almost all the other

methods–only Gauss-Hermite with 10 points and the

unscented RTS smoother come close.

D. Bearings only target tracking

In this section we evaluate the methods in the bear-

ings only target tracking problem with a coordinated-

turn dynamic model, which was also considered in Sec-
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Fig. 9. RMSE results of smoothers in the UNGM experiment.

tion III.A of the article [22]. The non-linear dynamic

model is

xk =

0BBBBBBBBB@

1
sin(!k¢t)

!
0 ¡

μ
1¡ cos(!k¢t)

!

¶
0

0 cos(!k¢t) 0 ¡sin(!k¢t) 0

0
1¡ cos(!k¢t)

!k
1

sin(!¢t)

!
0

0 sin(!k¢t) 0 cos(!k¢t) 0

0 0 0 0 1

1CCCCCCCCCA
£ xk¡1 +qk¡1, (45)

where the state of the target is x= (x1, _x1,x2, _x2,!), and
x1,x2 are the coordinates and _x1, _x2 are the velocities

in two dimensional space. The time step size is set

to ¢t= 1 s and the covariance of the process noise

qk »N(0,Q) is

Q =

0BBBBBBBBBBBB@

q1
¢t3

3
q1
¢t2

2
0 0 0

q1
¢t2

2
q1¢t 0 0 0

0 0 q1
¢t3

3
q1
¢t2

2
0

0 0 q1
¢t2

2
q1¢t 0

0 0 0 0 q2¢t

1CCCCCCCCCCCCA
,

(46)

where we used q1 = 0:1 m
2s¡3 and q2 = 1:75£ 10¡4 s¡3.

In the simulation setup we have four sensors mea-

suring the angles μ between the target and the sensors.

The non-linear measurement model for sensor i can be

written as

μi = arctan

μ
x2¡ si2
x1¡ si1

¶
+ ri, (47)

Fig. 10. Position RMSE results of filters in the bearings only

experiment.

Fig. 11. Position RMSE results of smoothers in the bearings only

experiment.

where (si1,s
i
2) is the position of the sensor i in two

dimensions, and ri »N(0,¾2μ ) is the measurement noise.
The used parameters were the same as in the article [22].

The RMSE results for the position errors are shown

in Figures 10 and 11. Clearly all of the sigma-point

methods outperform the Taylor series based meth-

ods (EKF/EKS). However, the performances of all the

sigma-point methods are very similar: also the Gaussian

process quadrature methods give very similar results to

the other sigma-point methods. There is a small dip in

the errors at the Gauss-Hermite based methods as well

as in the highest order Hammersley GPQ method, but
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practically the performance of all the sigma-point meth-

ods is the same.

VI. CONCLUSION

In this article we have provided a Gaussian process

quadrature viewpoint to sigma-point methods and mul-

tivariate numerical integration methods for non-linear

filtering and smoothing. Using this viewpoint, we have

also developed new Gaussian process quadrature based

non-linear Kalman filtering and smoothing methods and

analyzed their relationship with other sigma-point fil-

ters and smoothers. We have also discussed the se-

lection of the evaluation points for the quadratures

with respect to different criteria: exactness for mul-

tivariate polynomials up to a given order, minimum

average error, and quasi-random point sets. We have

shown that with suitable selections of (polynomial) co-

variance functions for the Gaussian processes the fil-

ters and smoothers reduce to unscented Kalman fil-

ters of different orders, as well as to Gauss-Hermite

Kalman filters and smoothers. By numerical experi-

ments we have also shown that the Gaussian process

quadrature rules as well as the corresponding filters

and smoothers often outperform previously proposed

(polynomial) integration rules and sigma-point filters

and smoothers.

At this point it is useful to reiterate where the relation

of Gaussian process quadratures (GPQs) and sigma-

point methods actually originates from. First of all,

sigma-point filtering and smoothing methods can be

seen as multivariate (classical) quadrature approxima-

tions to formal Gaussian (Kalman) filtering and smooth-

ing equations. We also know that classical quadratures

can be seen as methods that integrate a polynomial ap-

proximant of the function instead of the function itself.

From probabilistic numerics we know that Gaussian

process (i.e., Bayes-Hermite) quadrature corresponds

to integrating a Gaussian process approximant of the

function. Now the “kernel trick” tells us that polyno-

mial interpolants can be converted into Gaussian pro-

cess regressors by using a suitable polynomial covari-

ance function. This implies that using a suitable poly-

nomial covariance function in GPQ approximation of

Gaussian (Kalman) filtering and smoothing equations

will give us back the conventional sigma-point methods.

The known limit results of GPQs converging to classical

quadratures also directly translate to convergence of the

GPQ based filters and smoothers to the conventional

sigma-point methods.

APPENDIX A FOURIER-HERMITE SERIES

Fourier-Hermite series (see, e.g., [50]) are orthogo-

nal polynomial series in a Hilbert space, where the inner

product is defined via an expectation of the product over

a Gaussian distributions. These series are also inherently

related to non-linear Gaussian filtering as they can be

seen as generalizations of statistical linearization and

they also have a deep connection with unscented trans-

forms, Gaussian quadrature integration, and Gaussian

process regression [17], [29], [30].

We define the inner product of the multivariate scalar

functions f(x) and g(x) as follows:

hf,gi=
Z
f(x)g(x)N(x j 0,I)dx: (48)

If we now define a norm via kfk2H = hf,fi, and the cor-
responding distance function d(f,g) = kf¡ gkH, then
the functions kfkH <1 form a Hilbert space H. It now
turns out that the multivariate Hermite polynomials form

a complete orthogonal basis of the resulting Hilbert

space [50].

A multivariate Hermite polynomial with multi-index

I = fi1, : : : , ing can be defined as
HI(x) =Hi1 (x1)£ ¢¢ ¢£Hin(xn), (49)

which is a product of univariate Hermite polynomials

Hp(x) = (¡1)p exp(x2=2)
dp

dxp
exp(¡x2=2): (50)

The orthogonality property can now be expressed as

hHI ,HJ i=
½I!, if I = J
0, otherwise,

(51)

where we have denoted I! = i1! ¢ ¢ ¢ in! and I = J means

that each of the elements in the multi-indices I =
fi1, : : : , ing and J = fj1, : : : ,jng are equal. We will also
denote the sum of indices as jIj= i1 + ¢ ¢ ¢+ in.
A function g(x) with hg,gi<1 can be expanded

into Fourier-Hermite series [50]

g(x) =

1X
p=0

X
jIj=p

1

I!cIHI(x), (52)

where HI(x) are multivariate Hermite polynomials and
the series coefficients are given by the inner products

cI = hHI ,gi.
Consider a Gaussian process gG(x) that has zero

mean and a covariance function K(x,x0). In the same
way as deterministic functions, Gaussian processes can

also be expanded into Fourier-Hermite series:

gG(x) =

1X
p=0

X
jIj=p

1

I! c̃IHI(x), (53)

where the coefficients are given as c̃I = hHI ,gGi. The
coefficients c̃I are zero mean Gaussian random variables
and their covariance is given as

E[c̃I c̃J ] = E[hHI ,gGihHJ ,gGi]

=

Z Z
HI(x)K(x,x

0)HJ (x
0)

£N(x j 0,I)N(x0 j 0,I)dxdx0: (54)
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If we define constants ¸I,J = E[c̃I c̃J ] then the covari-
ance function K(x,x0) can be further written as series

K(x,x0) =
1X
q=0

X
jJ j=q

1X
p=0

X
jIj=p

1

I!J !¸I,JHI(x)HJ (x
0):

(55)
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Nonlinear Kalman Filters

Explained: A Tutorial on

Moment Computations and

Sigma Point Methods
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Nonlinear Kalman filters are algorithms that approximately

solve the Bayesian filtering problem by employing the measurement

update of the linear Kalman filter (KF). Numerous variants have

been developed over the past decades, perhaps most importantly

the popular sampling based sigma point Kalman filters.

In order to make the vast literature accessible, we present

nonlinear KF variants in a common framework that highlights

the computation of mean values and covariance matrices as the

main challenge. The way in which these moment integrals are

approximated distinguishes, for example, the unscented KF from

the divided difference KF.

With the KF framework in mind, a moment computation prob-

lem is defined and analyzed. It is shown how structural properties

can be exploited to simplify its solution. Established moment com-

putation methods, and their basics and extensions, are discussed

in an extensive survey. The focus is on the sampling based rules

that are used in sigma point KF. More specifically, we present

three categories of methods that use sigma-points 1) to represent

a distribution (as in the UKF); 2) for numerical integration (as in

Gauss-Hermite quadrature); 3) to approximate nonlinear functions

(as in interpolation). Prospective benefits and downsides are listed

for each of the categories and methods, including accuracy state-

ments. Furthermore, the related KF publications are listed.

The theoretical discussion is complemented with a comparative

simulation study on instructive examples.

Manuscript received March 31, 2015; revised June 18, 2015; released

for publication January 22, 2016.

Refereeing of this contribution was handled by Jindrich Dunik.

Authors’ address: Dept. Electrical Engineering, Linköping Univer-
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I. INTRODUCTION

Many real world problems have a common underly-

ing structure in which the task is to estimate a latent dy-

namic state from measurements that are taken at specific

time instances. Examples include air traffic control [1],

where the state comprises the position and velocities of

aircraft that are observed by an airport radar; navigation

[2], where the state includes the user position and its

derivatives, and the measurements might come from a

GPS or an inertial measurement unit; or speech process-

ing [3], where the states might be formant frequencies

and the measurements are extracted from an estimate

of the spectrum. Stochastic state-space models can be

used to describe all of these examples in a realistic and

mathematically appealing way. The resulting estimation

task appears in the form of a Bayesian state estimation

problem [4].

The Bayesian filtering problem that is addressed

in this tutorial has an elegant mathematical solution,

the Bayesian filtering equations [4]. Unfortunately, the

mathematical elegance cannot be translated to algo-

rithms in all but a few special cases. In contrast, the

Kalman filter [5, 6] is a recursive algorithm that has

been developed for optimal filtering in linear mod-

els, and has been used in countless applications since

the 1960s. Interestingly, the first problem where the

KF made an impact was in fact a nonlinear naviga-

tion problem in the Apollo mission [7]. This immedi-

ate development of the extended Kalman filter (EKF)

has been followed by many nonlinear KF adaptations

[6, 8—11].

The interest in the Bayesian filtering problem has

significantly increased in the last two decades, mainly

due to advances in computing. In the early 1990s,

the particle filter [12, 13] was developed to approxi-

mately implement the Bayesian filtering equations us-

ing sequential Monte Carlo sampling. At the same time,

a sampling based extension of the Kalman filter was

suggested [14] to improve upon the EKF, eliminate

the need for Jacobian matrices, while still retaining the

KF measurement update and its computational com-

plexity. Several related algorithms followed: the un-

scented Kalman filter (UKF) and the underlying un-

scented transformation were further refined in [15, 16];

numerical integration filters [17, 18] were developed

from an alternative starting point to arrive at a very

similar recursion; and interpolation variants [17, 19, 20]

introduced sampling for function approximation in the

spirit of the EKF. In this tutorial, we address these

aforementioned sampling based sigma point Kalman fil-

ters [21].

Although the literature on nonlinear Kalman filters

appears very diverse, it turns out that all variants can be

expressed in an intuitive common framework (Gaussian

filters [22], Riccati-free Kalman filters [2, 23]). The

computation of mean values and covariance matrices

of nonlinearly transformed (Gaussian) random variables
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appears as a common challenge. The employed methods

to approximate these statistical moments distinguishes,

for example, the UKF from the divided difference filters

of [20]. By emphasizing this common structure, we

hope to simplify the reader’s access to the extensive

literature.

The occurring moment computation problem has

also been explored beyond the filtering context [24, 25].

We provide a detailed analysis that reveals useful struc-

tural properties, some of which are exploited in the ex-

isting methods. Deeper understanding of these proper-

ties can give rise to new methods and, in special cases,

even reduce n-fold moment integrals to one-dimensional

problems.

The moment computation methods that are used in

sigma point Kalman filters avoid analytical approxima-

tions in favor of sampling techniques. We thoroughly in-

vestigate the most common approaches and group them

into three categories in which the sigma points carry dif-

ferent roles. More specifically, we present sigma points

that approximate distributions as in the UT; sigma points

that are used in numerical integration; and sigma points

that are used to interpolate nonlinear functions. Inter-

estingly, many equivalences between methods can be

shown. Accuracy statements are given where available

and also the related KF publications are listed, including

recent developments. With this critical survey we hope

to clarify the basis of most nonlinear Kalman filters and

provide realistic expectations of what a KF can achieve.

Existing overview papers on nonlinear Kalman fil-

ters include [26], which significantly extends the numer-

ical integration perspective on the UKF in [17]; [27], in

which the UKF and interpolation filters are analyzed

and compared as local derivative-free estimators; [23],

which establishes relations between sigma point filters

and analytical EKF variants; and the recent survey [28],

which assumes the linear regression Kalman filter per-

spective of [29] and discusses algorithms in similar cat-

egories as we do in Sec. IV, albeit with less material on

the numerical integration and function approximation

perspectives. The present tutorial is based on the thesis

[30] and complements the existing literature by high-

lighting the moment computation problem that is central

to all nonlinear Kalman filters. Especially the extensive

treatment of the analytical moment expressions and the

resulting insights for sigma point methods distinguish

our paper from previous work.

The structure of the paper is as follows. The intro-

duction is followed by an overview of Bayesian filtering

and the unifying framework for nonlinear Kalman filters

in Sec. II. The moment computation problem is defined

in Sec. III and analyzed in greater detail. Methods to

approximately solve the moment integrals are surveyed

in Sec. IV. A simulation study with several experiments

is presented in Sec. V and followed by Sec. VI with

concluding remarks.

II. BAYESIAN STATE ESTIMATION AND NONLINEAR
KALMAN FILTERS

This section provides the required background on

state-space models and filtering theory. Most impor-

tantly, nonlinear Kalman filters are presented in a uni-

fied framework that highlights moment computations as

central step in each of the algorithms. This motivates for

the detailed treatment of moments in Sec. III and IV.

The discussion is extensive. Readers with a back-

ground in Bayesian filtering can advance to the nonlin-

ear KF part in Sec. II-D. Alternative references include

[4] as a classic on Bayesian state estimation, and more

recent treatments in [2] or [22]. A standard reference

on the Kalman filter and linear estimation is [6].

A. Stochastic State-Space Models

Stochastic state-space models permit an intuitive

and powerful mathematical framework for describing

real world processes that are subject to uncertainty, for

example the position and velocities of aircraft that are

observed by an airport radar.

We consider the general discrete-time model

xk = f(xk¡1,vk¡1), (1a)

yk = h(xk,ek), (1b)

with the state x 2 X , the measurement y 2 Y, and the
process and measurement noise v 2 V and e 2 E , respec-
tively. The function f : X £V !X determines the evo-

lution of x in the state difference equation (1a). Sim-

ilarly, the function h : X £E !Y determines the mea-

surement in the measurement equation (1b). Uncertain-

ties in the state evolution and measurements are mod-

eled by asserting that the initial state x0 and the noise

vk¡1 and ek are random variables with known distribu-

tion for all k > 0. Common assumptions are that vk¡1
and ek are white and uncorrelated to x0 and each other;

or that the noise sequences1 and the initial state are inde-

pendent and admit the joint probability density function

p(x0,v0:k¡1,e1:k) = p(x0)
kY
l=1

p(vl¡1)p(el): (1c)

The functions f and h and all densities in (1c) are as-

sumed to be known, but allowed to be time-varying.

That allows for including deterministic input signals in

(1) through either the function f or the process noise

density p(vk¡1). An extra time index on the functions
and densities is omitted for brevity. Following physi-

cal reasoning, it is assumed that all measurements are

affected by noise and that dim(E) = dim(Y). In fact, ad-
ditive measurement noise is most common in (1b). For

some cases, e.g., when the system (1) is operating in a

feedback control loop, the joint density p(x0,v0:k¡1,e1:k)
cannot be factored as in (1c) because ek affects vk.

1We use the short hand notation v0:k¡1 to denote the sequence

fv0,v1, : : : ,vk¡1g.
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An alternative to specifying (1) is to describe the

state and measurement processes in terms of the condi-

tional densities2

xk » p(xk j xk¡1), (2a)

yk » p(yk j xk): (2b)

The symbol » in (2a) denotes that, given xk¡1, the
state xk is drawn from a conditional distribution that

admits the transition density p(xk j xk¡1). The density
p(yk j xk) is termed likelihood. For the case of additive
independent noise in (1), the transition density and like-

lihood can be specified in terms of the process and mea-

surement noise densities p(vk¡1) and p(ek), respectively.
The formulation (2) highlights some conditional inde-

pendence properties in the independent noise case that

are important in the derivation of the Bayesian filtering

equations [4]:

p(xk j x0:k¡1,y1:k¡1) = p(xk j xk¡1), (3a)

p(yk j x0:k,y1:k¡1) = p(yk j xk): (3b)

B. Bayesian State Estimation

The models (1) and (2) fully characterize the state

and measurement sequences in a probabilistic manner.

This interpretation of the state as a random variable

is the cornerstone of Bayesian state estimation, and

facilitates the elegant mathematical treatment in terms

of probability density functions. In this paper, we shift

our attention to estimation problems in which we try to

recover the marginal3 density p(xk j y1:l) of a single state
xk given the model and a sequence of measurements y1:l.

The previous section has shown how x0:k and y1:k are

generated from x0, v0:k¡1, and e1:k. As a consequence,
the joint density p(x0:k,y1:k) is a nonlinear transforma-

tion of the density p(x0,v0:k¡1,e1:k). Slightly more gen-
eral, the density p(x0:k,y1:l) can be obtained in the same

way. The manipulations of probability density functions

p(xk,y1:l) =

Z
p(x0:k,y1:l)dx0:k¡1, (4a)

p(xk j y1:l) =
p(xk,y1:l)

p(y1:l)
, (4b)

p(y1:l) =

Z
p(xk,y1:l)dxk, (4c)

show how the Bayesian state estimation problem of

finding (4b) can, in principle, be reduced to the basic op-

erations of conditioning and marginalization. This holds

for any l and k. In fact, the order of marginalization and

conditioning can be interchanged. Depending on the re-

lation between k and l, three different Bayesian state es-

timation problems can be distinguished. The case k > l

constitutes a prediction problem, the case k < l gives a

smoothing or retrodiction problem, and for k = l a fil-

2For simplicity, we assume the densities to exist. A more general

treatment is possible by working on transition kernels [31] instead.
3as opposed to the joint density p(x1:k j y1:l)

tering problem is obtained. The focus of this article is

on filtering and the inherent one-step-ahead prediction,

but similar challenges appear in the smoothing prob-

lem [22].

The above view of Bayesian state estimation in terms

of transformation, conditioning, and marginalization of

probability density functions is intuitive. It includes

filtering, prediction, and smoothing, and it covers the

case of arbitrary correlation in the noise. Unfortunately,

it faces some issues. First, finding p(x0:k,y1:k) from

p(x0,v0:k¡1,e1:k) is a challenge beyond hope for all but
the simplest models (1). Second, the use of state and

measurement sequences does not immediately yield a

recursive filtering algorithm.

The Bayesian filtering equations, in contrast, do

yield a recursion for the filtering density p(xk j y1:k):

p(xk j y1:k¡1) =
Z
p(xk j xk¡1)p(xk¡1 j y1:k¡1)dxk¡1,

(5a)

p(xk j y1:k) =
p(xk,yk j y1:k¡1)
p(yk j y1:k¡1)

=
p(yk j xk)p(xk j y1:k¡1)

p(yk j y1:k¡1)
, (5b)

p(yk j y1:k¡1) =
Z
p(yk j xk)p(xk j y1:k¡1)dxk: (5c)

The derivation of (5) relies on the structural properties

(3) of the model (1) and can be found in [4]. Similarities

between (5) and (4) are apparent, and so it comes

as no surprise that some of the challenges of (4) are

inherited. First, the marginalization integrals might not

be tractable. Second, the filtering density p(xk j y1:k)
cannot in general be described by a finite number of

parameters. For example, in a linear system that is

driven by two-component Gaussian mixture noise vk,

the number of parameters to describe p(xk j y1:k) grows
exponentially in k [2].

C. Linear Gaussian Models and the Kalman Filter

One of the few exceptions for which the Bayesian

filtering equations are tractable is the linear Gaussian

case. Here, the state transition and measurement equa-

tions of (1) can be written as

xk = Fxk¡1 +Gvk¡1, (6a)

yk =Hxk + ek: (6b)

Moreover, the initial state and process and measurement

noise are mutually independent Gaussian with

p(x0,v0:k¡1,e1:k)

=N (x0; x̂0,P0)
kY
l=1

N (vl¡1;0,Q)N (el;0,R): (6c)

Again, we allow the model to vary with time, e.g., F or

Q, but omit the time indices.
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By induction, it can be easily shown that the filtering

density p(xk j y1:k) remains Gaussian for all k > 0. As a
consequence, the Bayesian filtering equations (5) appear

as the update equations for mean values and covariance

matrices that are known as the Kalman filter (KF) of [5].

From the filtering density p(xk¡1 j y1:k¡1) =N (xk¡1;
x̂k¡1jk¡1,Pk¡1jk¡1), the one-step-ahead prediction density
p(xk j y1:k¡1) =N (xk; x̂kjk¡1,Pkjk¡1) can be obtained. The
updated mean value and covariance matrix

x̂kjk¡1 = Fx̂k¡1jk¡1, (7a)

Pkjk¡1 = FPk¡1jk¡1F
T +GQGT (7b)

constitute the KF time update or prediction step.

Slightly more general, the joint prediction density of

the state and output is given by

p(xk,yk j y1:k¡1)

=N
Ã·
xk

yk

¸
;

·
x̂kjk¡1
ŷkjk¡1

¸
,

"
Pkjk¡1 Mk

MT
k Sk

#!
, (8)

with the mean and covariance of the predicted output

ŷkjk¡1 =Hx̂kjk¡1, (9a)

Sk =HPkjk¡1H
T +R, (9b)

and the cross-covariance

Mk = Pkjk¡1H
T: (9c)

The conditioning step in the Bayesian filtering equa-

tions simplifies considerably, because rules for the

Gaussian distribution can be applied. The KF measure-

ment update yields p(xk j y1:k) =N (xk; x̂kjk,Pkjk) with the
filtering mean and covariance

x̂kjk = x̂kjk¡1 +MkS
¡1
k (yk ¡ ŷkjk¡1) (10a),

Pkjk = Pkjk¡1¡MkS¡1k MT
k : (10b)

It is common to introduce the Kalman gain Kk =

MkS
¡1
k and express the measurement update as

x̂kjk = x̂kjk¡1 +Kk(yk ¡ ŷkjk¡1) (11a)

Pkjk = (I¡KkH)Pkjk¡1(I¡KkH)T +KkRKTk (11b)

= Pkjk¡1¡KkSkKTk (11c)

= (I¡KkH)Pkjk¡1, (11d)

where we listed several alternative expressions for the

filtering covariance [6].

The above presentation of the Kalman filter assumes

a linear Gaussian model (6), and in fact implements

the Bayesian filtering equations. The derivation differs

from Kalman’s perspective [5] and does not establish

certain optimality properties that also hold for non-

Gaussian linear systems with known noise statistics [6].

In that case, the KF is still the best linear unbiased

estimator (BLUE) but the propagated mean values and

covariance matrices are no longer those of Gaussian

random variables.

D. Kalman Filters for Nonlinear Models

The preceding sections have shown two extremes.

The Bayesian filtering equations (5) are a conceptual so-

lution to a general filtering problem that typically cannot

be implemented. In contrast, the Kalman filter solves a

specific problem but gives a simple recursive algorithm

for updating mean values and covariance matrices. The

following section shows how these complementing re-

alities are combined in nonlinear Kalman filters.

Most real world processes exhibit nonlinearities.

Furthermore, the process and measurement noise are not

necessarily Gaussian. If the nonlinearities are mild and

if the noise is not too far from Gaussian, however, a

filter that shares a measurement update of the form (10)

is a promising candidate. These filters are henceforth

termed nonlinear Kalman filters.

The measurement update in the linear KF (10) can

be derived from the Gaussian density in (8). In analogy,

all nonlinear KF variants employ a Gaussian density

p̂(xk,yk j y1:k¡1)

¼N
Ã·
xk

yk

¸
;

·
x̂kjk¡1
ŷkjk¡1

¸
,

"
Pkjk¡1 Mk

MT
k Sk

#!
, (12)

to approximate p(xk,yk j y1:k¡1), which can be easily
shown to be non-Gaussian in the nonlinear case [22].

The measurement update (10) of the linear KF follows

and is thus part of any nonlinear KF. This unifying

framework is known under the names assumed density

filtering [32] or Gaussian filtering [22]. Another inter-

pretation is that the resulting filters locally approximate

the Bayesian filtering equations [10, 27]. The differ-

ences between specific KF algorithms lie in the way in

which the mean values x̂kjk¡1 and ŷkjk¡1, and the covari-
ance matrices Pkjk¡1, Mk, and Sk are computed.
Apart from the algorithmic convenience of the KF

measurement update, the approximation in (12) is rea-

sonable because the Gaussian is the maximum entropy

distribution for a given mean and covariance [33]. That

is, if we use the exact mean and covariance of p(xk,yk j
y1:k¡1) then the Gaussian density in (12) is the least re-
strictive choice in some sense. Moreover, the Kullback-

Leibler divergence

KL(pkp̂) =¡
Z
p(xk,yk j y1:k¡1)

£ ln
μ
p̂(xk,yk j y1:k¡1)
p(xk,yk j y1:k¡1)

¶
dxkdyk (13)

is minimized by matching the moments [34] of the exact

density and its Gaussian approximation, which gives

further motivation for using the exact mean values and

covariance matrices in (12).
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Next, we present the moment integrals to compute

the parameters of (12). First, the one-step-ahead predic-

tion of the state is discussed. The model (1a) shows that

xk depends nonlinearly on xk¡1 and vk¡1. In the Kalman
filter context with independent noise we assume that the

joint density

p(xk¡1,vk¡1 j y1:k¡1)
¼N (xk¡1; x̂k¡1jk¡1,Pk¡1jk¡1)N (vk¡1;0,Q) (14)

is Gaussian. The mean value and covariance matrix

of the predicted state are then given by the moment

integrals

x̂kjk¡1 ¼ Efxk j y1:k¡1g

=

ZZ
f(xk¡1,vk¡1)

£p(xk¡1,vk¡1 j y1:k¡1)dxk¡1dvk¡1, (15a)
and

Pkjk¡1 ¼ covfxk j y1:k¡1g

=

ZZ
(f(xk¡1,vk¡1)¡Efxk j y1:k¡1g)

£ (f(xk¡1,vk¡1)¡Efxk j y1:k¡1g)T

£p(xk¡1,vk¡1 j y1:k¡1)dxk¡1dvk¡1: (15b)
For linear models, (15) simplifies to the KF time update

(7). If the noise vk¡1 enters additively, it does not
influence (15a) and appears in (15b) similar to the Q-

dependent term in (7b).

The computation of the remaining parameters ŷkjk¡1,
Sk, andMk can be approached in two different ways. The

first option is to accept that

yk = h(f(xk¡1,vk¡1),ek) (16)

is a function of xk¡1 and both the process and the
measurement noise. Consequently, the expected values

must be carried out with respect to a joint density

p(xk¡1,vk¡1,ek j y1:k¡1).
Alternatively, and common in Kalman filtering al-

gorithms, an intermediate approximation

p(xk j y1:k¡1)¼N (xk; x̂kjk¡1,Pkjk¡1) (17)

is used in the remaining computations. We present the

second option below but note that both approaches have

their pros and cons. The choice should depend on the

accuracy of utilized moment computation methods and

the nonlinearities. The intermediate Gaussian density

(17) might not reflect the true prediction density well.

On the other hand, the composition of the measurement

and state transition functions in (16) might be too

complicated to be treated directly. For the linear case,

there is no difference between the two.

Combining (17) with the measurement noise density

yields

p(xk,ek j y1:k¡1)
¼N (xk; x̂kjk¡1,Pkjk¡1)N (ek;0,R) (18)

in the case of independent Gaussian noise. The remain-

ing moment integrals follow as

ŷkjk¡1 ¼ Efyk j y1:k¡1g

=

ZZ
h(xk,ek)p(xk,ek j y1:k¡1)dxkdek, (19a)

Sk ¼ covfyk j y1:k¡1g

=

ZZ
(h(xk,ek)¡Efyk j y1:k¡1g)

£ (h(xk,ek)¡Efyk j y1:k¡1g)T

£p(xk,ek j y1:k¡1)dxkdek, (19b)

Mk ¼ covfxk,yk j y1:k¡1g

=

ZZ
(xk ¡Efxk j y1:k¡1g)

£ (h(xk,ek)¡Efyk j y1:k¡1g)T

£p(xk,ek j y1:k¡1)dxkdek: (19c)

For the linear case, the above expressions simplify

to (9).

The computation of (15) and (19) is the crucial

challenge in any nonlinear KF. Due to the involved

nonlinearities in the model (1) the integrals are typi-

cally intractable. Therefore, approximations are utilized.

The list of employed concepts includes linearization in

the EKF [6]; truncated Taylor polynomials beyond lin-

earization [8, 9, 35]; statistical linearization and alterna-

tive function approximations [11, 36—39]; interpolation

approaches in the divided difference filters [17, 19, 20];

Monte Carlo [40] and deterministic numerical integra-

tion [17, 18, 41, 42] or a combination [43]; and vari-

ants of the unscented transformation [15, 16, 44] in the

UKF. The majority of the above algorithms are sampling

based and can be categorized as sigma point Kalman

filters [21].

With the nonlinear KF application in mind we de-

fine and analyze the moment computation problems in

Sec. III. The methods to solve it, with reference to the

related KF variants, are discussed in Sec. IV.

Due to the approximations, many results of the linear

KF are no longer valid. For example, there is no non-

linear equivalent to the stationary KF [6] in which Pkjk
converges to a constant. Furthermore, the order in which

measurements are processed in the case of a (block)

diagonal measurement noise covariance R matters, as

opposed to the linear case [6]. A recommendation from

[45] is to process the most accurate measurement first,

and then refine the utilized approximation by, for ex-

ample, re-linearization in an EKF.
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The above discussion used Gaussian noise in (14)

and (18) as this results in desirable structural properties

of the moment integrals (15) and (19). In the non-

Gaussian case the relevant densities can be replaced.

We conclude this section with a warning. The Gaus-

sian distribution has limitations because it cannot model

phenomena such as heavy tails, skewness, bounded sup-

port, or multimodality. An example is shown in Fig. 1,

where a Gamma density is illustrated along a Gaussian

with the same mean and covariance. The Gamma den-

sity is non-zero only for x > 0, which is clearly not the

case for the Gaussian. Similarly, the Gaussian is sym-

metric about its mean value. Accordingly, it is a realistic

view that Kalman filters, with their close relation to the

Gaussian distribution, cannot solve any arbitrary filter-

ing problem. However, more advanced algorithms such

as the interacting multiple model (IMM) filter [1] or

marginalized particle filters [46] can solve more com-

plicated cases, and employ nonlinear Kalman filters as

building blocks.

III. A DETAILED TREATMENT OF THE MOMENT
COMPUTATION PROBLEM

The following section introduces and discusses the

moment computation problem that is the central chal-

lenge in the nonlinear Kalman filters of Sec. II-D, but

also relevant beyond the filtering context [24]. We cover

structural properties of the moment integrals and ways

to exploit them in greater mathematical detail. Further-

more, a compact solution in terms of the Taylor series

is presented.

A. The Moment Computation Problem

Sec. II-D highlighted that the challenges in nonlin-

ear Kalman filtering lie in the computation of mean

values and covariance matrices of nonlinearly trans-

formed Gaussian random variables. We here generalize

this problem to arbitrary functions of Gaussian random

variables and functions, that are not necessarily to be

seen in a filtering context. Accordingly, the notation is

adjusted: the symbol x now represents a generic random

variable4 rather than a state; f(x) represents a generic

function rather than the state transition of (1a).

A problem that is encountered in many applications

can be formulated as follows. Let the n-dimensional

random variable x have a Gaussian distribution N (x̂,P)
with the known mean vector and the covariance matrix

Efxg= x̂, covfxg= P, (20a)

and the probability density function

p(x) =N (x; x̂,P): (20b)

Furthermore, let f :Rn!Rm be a known function. How
can the random variable

z = f(x) (21)

4The same symbols are used for random variables and their realiza-

tions. What is meant should be clear from context.

Fig. 1. A Gamma density and a Gaussian with the same mean

value and variance.

be characterized in an informative but compact manner?

For special cases, the distribution of z can be ob-

tained via a transformation theorem [47]. In general,

however, this is not possible or even desirable. An alter-

native is to characterize z by its moments. In the Kalman

filtering context, the first5 raw moment and second cen-

tral moment of z are utilized. Of course, these are better

known as the mean value and the covariance matrix and

given by the integrals

Efzg=
Z
f(x)p(x)dx, (22a)

covfzg=
Z
(f(x)¡Eff(x)g)

£ (f(x)¡Eff(x)g)Tp(x)dx: (22b)

Furthermore, cross-covariance matrices of the form

covfx,zg=
Z
(x¡ x̂)(f(x)¡Eff(x)g)Tp(x)dx (22c)

are required in nonlinear Kalman filters.

An example of a relevant moment computation prob-

lem is the conversion between coordinate frames. For

example, a Kalman filter might estimate a position in

polar coordinates. However, feedback to the user is

much more intuitive in Cartesian coordinates, which re-

quires conversion of the polar mean value and its covari-

ance by computing (22a) and (22b). A similar problem

is to initialize a Kalman filter with Cartesian state based

on the first radar measurements.

The restriction to first and second moments of z is a

convenient one, as these are intuitively stored in a vector

and a matrix. In principle also higher moments can be

considered, although their number grows exponentially

with z having m first moments, in the order of m2 second

moments, and so on. Both covariance matrices (22b)

and (22c) can be reduced to solving nested problems of

the form (22a). Therefore, we concentrate on (22a) in

some of the following discussions.

The Gaussian restriction (20b) is chosen because

of the Kalman filtering context and because of the

structural properties that follow. These are the basis of

5We avoid the term “order” in connection to moments and reserve it

to describe the order of a Taylor series or partial derivatives.
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the methods in Sec. IV-C. An extension to arbitrary

densities p(x) is immediate.

The moment computation problem (22) requires in-

tegration of nonlinear functions over the entire Rn,
which is a global problem. However, the integrands

are weighted by the probability density function p(x).

Hence, only regions in which x has some probability

mass contribute to the moment integrals. This is an im-

portant aspect to consider when trying to solve (22) by

locally approximating f as in Sec. IV-D.

B. Exploiting Structure in the Moment Integrals

The following section shows how the integrals in

(22) can be manipulated in order to simplify them

and cast them into the structure that some methods of

Sec. IV require.

1) Stochastic decoupling:
The following technique is called stochastic decou-

pling because it can be used to turn expected values with

respect to N (x̂,P) into expected values with respect to
the standard Gaussian distribution N (0,I). It employs
an n£n matrix square root P1=2 of the covariance P, as
presented in (77) of App. A.

Using the rules for substitution in multivariate inte-

grals and x= P1=2s+ x̂, it is easy to show that

Efzg=
Z
f(x)N (x; x̂,P)dx

=

Z
f(P1=2s+ x̂)N (s;0,I)ds: (23)

The Jacobian determinant of the substitution rule is

det(P1=2) = det(P)1=2 and cancels with the normaliza-

tion constant of N (x; x̂,P). The quadratic form in the

Gaussian density collapsed to sTs.

The reformulation (23) is utilized in several methods

throughout Sec. IV. An early reference of its use in

filtering is [19].

A related variant is obtained from the substitution

rule x=
p
2P1=2t+ x̂ and yields

Efzg=
Z
f(P1=2t+ x̂)

¼n=2
exp(¡tTt)dt, (24)

an integral expression with respect to an exponential

weight exp(¡tTt). The problem of computing (24) is the
starting point for Gauss-Hermite quadrature [48] and the

numerical integration methods of Sec. IV-C.

2) From Cartesian to spherical coordinates:
The following technique can help to simplify mo-

ments of functions that depend on the range only. Fur-

thermore, the separation of moment integrals into spher-

ical and range components has been used to derive in-

tegration rules [18, 42, 49].

The change of variables below is a straightforward

extension of the Cartesian to polar coordinate change

that is taught in undergraduate calculus courses. Con-

sider the relation s=©(r,μ1, : : : ,μn¡1) with

s1 = r sin(μ1),

s2 = rcos(μ1)sin(μ2),

s3 = rcos(μ1)cos(μ2)sin(μ3),

...

sn¡1 = rcos(μ1) ¢ ¢ ¢cos(μn¡2)sin(μn¡1),
sn = rcos(μ1) ¢ ¢ ¢cos(μn¡2)cos(μn¡1), (25)

where r 2 [0,1), μn¡1 2 [¡¼,¼), and μi 2 [¡¼=2,¼=2)
for i= 1, : : : ,n¡ 2. From (25) follows that sTs= r2 and

thus

N (s;0,I) = 1

(2¼)n=2
exp

μ
¡r

2

2

¶
: (26)

Using the substitution rule (25) in the moment inte-

gral (22a) yields an integral in terms of the range r and

the n¡ 1 angles μ

Efzg=
ZZ

f(P1=2©(r,μ)+ x̂)
1

(2¼)n=2
exp

μ
¡r

2

2

¶
£ rn¡1 cosn¡2(μ1)cosn¡3(μ2) ¢ ¢ ¢cos(μn¡2)drdμ

(27)

over the above mentioned values, e.g., all r ¸ 0.
A closely related result can be obtained from the

fact that any Gaussian variable with the spherically

symmetric distribution N (0,I) can be generated from
a random variable » that is uniform on the unit sphere

[50]. The substitution rule x= P1=2r»+ x̂ yields

Efzg=
ZZ

f(P1=2r»+ x̂)
1

(2¼)n=2
exp

μ
¡r

2

2

¶
rn¡1drd»,

(28)

where the integration is over all r ¸ 0 and »T» = 1.
An interesting case occurs when the function de-

pends on the range only, that is, f(P1=2©(r,μ) + x̂) =

f(P1=2r»+ x̂) = '(r). Then the spherical integration can

be performed analytically with the result

Efzg= 2¼n=2

¡
³n
2

´ Z '(r) 1

(2¼)n=2
exp

μ
¡r

2

2

¶
rn¡1dr: (29)

Alternatively, if '(r) = Ã(r2) can be written as a

function of the squared range, we can arrive at a familiar

expression. The substitution rule r =
p
½ is a one-to-

one relation for r ¸ 0. The Jacobian determinant is

dr=d½= 1
2
½¡1=2, and the integral can be written as

Efzg=
Z
Ã(½)

2¡n=2

¡
³n
2

´½n=2¡1 exp³¡½
2

´
d½: (30)

The integrand can be recognized as Ã(½) times a chi-

squared density with n degrees of freedom [49]. In [30],

the above technique is used to evaluate the Kullback-

Leibler divergence between Gaussian and Student’s t
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densities, a problem which relates to the filter develop-

ment of [51].

3) Extension beyond the Gaussian:
The Gaussian distribution is one instance of the

wider class of elliptically contoured distributions

[49, 50], in which the probability density function p(x)

is constant for elliptical regions

(x¡ x̂)TP¡1(x¡ x̂) = c, (31)

for c > 0. These densities can be written as

p(x) =
1p
det(P)

h((x¡ x̂)TP¡1(x¡ x̂)), (32)

where the function h :R!R is known as density gen-
erator [50] and satisfiesZ

¢ ¢ ¢
Z
h(s21 + ¢ ¢ ¢+ s2n)ds1 ¢ ¢ ¢dsn = 1 (33)

to ensure that (32) is a valid probability density function.

In the Gaussian case, the density generator is

h(sTs) = (2¼)¡n=2 exp
μ
¡s

Ts

2

¶
=N (s;0,I): (34)

Both stochastic decoupling and the change to spher-

ical coordinates can be applied to problems in which

p(x) is elliptically contoured. A discussion of this is

given in [30].

4) Exploiting structure in the function:
In contrast to the preceding paragraphs, the follow-

ing discussion evolves around structure in f(x) rather

than p(x). In fact, the techniques can be applied to arbi-

trary p(x) and show how the moment computation prob-

lem (22) can be broken down systematically.

We consider the case in which x is composed of two

random vectors x1 and x2, and

z = f(x1,x2): (35)

Following the rules for joint probability density func-

tions, any density p(x) can be factored into

p(x) = p(x1,x2) = p(x1 j x2)p(x2): (36)

In the Gaussian case the expression for the marginal

density p(x2) and the conditional density p(x1 j x2) are
well known [49].

Next, we recall to the reader’s attention the expres-

sions for the conditional mean

Efz j x2g=
Z
f(x1,x2)p(x1 j x2)dx1 (37a)

and the conditional covariance

covfz j x2g=
Z
(f(x1,x2)¡Eff(x1,x2) j x2g)(f(x1,x2)

¡Eff(x1,x2) j x2g)Tp(x1 j x2)dx1: (37b)

These resemble (22a) and (22b) except for the extra

conditioning on x2. A useful consequence of the above

is that the moment computation problem (22) can be

formulated in terms of the nested expressions

Efzg= EfEff(x1,x2) j x2gg

=

Z μZ
f(x1,x2)p(x1 j x2)dx1

¶
p(x2)dx2

(38a)

and

covfzg= Efcovff(x1,x2) j x2gg
+covfEff(x1,x2) j x2gg, (38b)

where the outer expectations average over x2. The

nested covariance expression (38b) is less known than

its counterpart (38a) and therefore derived in App. B.

The above expressions are especially useful if

f(x1,x2) is an affine (or linear) function for a given

x2, i.e.,
f(x1,x2) = F(x2)x1 + g(x2): (39)

Then, the conditional expectations appear as the familiar

expressions

Efz j x2g= F(x2)Efx1 j x2g+ g(x2), (40a)

covfz j x2g= F(x2)covfx1 j x2gF(x2)T: (40b)

The moment computation problem (22) appears as

Efzg= EfF(x2)Efx1 j x2g+ g(x2)g, (41a)

covfzg= EfF(x2)covfx1 j x2gF(x2)Tg
+covfF(x2)Efx1 j x2g+ g(x2)g: (41b)

C. The Exact Solution for Differentiable Functions

The section is concluded by a discussion about the

exact solution to the moment computation problem (22)

for functions that have a convergent Taylor series.

1) Taylor series expansion:
Given that f is differentiable in a neighborhood of

x̂, it can be expanded as an infinite Taylor series

f(x) = f(x̂) +

nX
i=1

@

@xi
f(x̂)x̃i

+
1

2

nX
i=1

nX
j=1

@2

@xi@xj
f(x̂)x̃ix̃j

+
1

3!

nX
i=1

nX
j=1

nX
k=1

@3

@xi@xj@xk
f(x̂)x̃ix̃j x̃k + : : : :

(42)

Here, x̃= x¡ x̂ denotes the deviation from x̂, and

(@=@xi)f(x̂) denotes the partial derivative of f with re-

spect to xi that is evaluated at x̂. For polynomial f of de-

gree d, the dth order Taylor series is exact everywhere.

From (20) follows that x̃»N (0,P).
The infinite series (42) is a polynomial in the com-

ponents of x̃ with the partial derivatives as coefficients.
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Consequently, its expected value can be computed from

the moments

Efx̃ig,Efx̃ix̃jg,Efx̃ix̃j x̃kg, : : : (43)

for all combinations of i= 1, : : : ,n; j = 1, : : : ,n; k =

1, : : : ,n; and so on. The existence of all moments is guar-

anteed in the Gaussian case. Moreover, all odd moments

are zero due to symmetry, for example the first and third

item in (43). The even moments can be computed from

the characteristic function [49]. For example, the second

and fourth moments,

Efx̃ix̃jg= Pij , (44)

Efx̃ix̃j x̃kx̃lg= PijPkl+PikPjl+PilPjk, (45)

can be expressed in terms of the scalar entries of the

covariance matrix P.

We have established that (22a) can, in principle, be

computed if the required partial derivatives and mo-

ments are available. For polynomial functions, we can

compute the exact mean. For arbitrary differentiable

functions, we can compute the moments of their Tay-

lor polynomial of degree d. A compact formula that

includes all the moments of a scalar x is given in [52].

The next step towards computing (22b) involves an

outer product of the infinite series (42). The monomials

of a specific degree are no longer grouped as in (42),

which renders the approach impractical. A reformula-

tion of the Taylor series can improve upon this situation

as we show below.

2) A compact Taylor series notation:
The moment computation problem (22) is easily

solved for affine functions Ax+ b:

EfAx+ bg= AEfxg+ b, (46a)

covfAx+ bg= AcovfxgAT, (46b)

covfx,Ax+ bg= covfxgAT: (46c)

Motivated by the above simplicity, we now turn the

nonlinear problem (22) into an infinite dimensional

linear problem.

A related technique that uses the Kronecker product

to reshape (42) is described in [53]. Higher moments

of the Gaussian distribution and the Kronecker prod-

uct are explored in [54]. Derivative operators in con-

junction with the Kronecker product, as used below, are

also treated in [55]. The formulas below have been de-

veloped in [30], where a more detailed account can be

found. A related discussion with a KF background is

given in [56].

The tools that facilitate a compact expression for

(42) are the d-fold Kronecker product [53]

a−d = a− ¢ ¢ ¢− a, (47a)

the derivative operator

D =

·
@

@x1
, : : : ,

@

@xn

¸
(47b)

that acts on each row of a function, and a combination

of the two

D−d =D− ¢ ¢ ¢−D (47c)

that gives all partial derivatives of order d when applied

to a function f.

Using the above, the infinite series in (42) can be

written as the linear relation

f(x) = f(x̂)+F(x̂)x̃(x̃) (48a)

in the infinite dimensional coefficient matrix and mono-

mial vector

F(x̂) = [Df(x̂), (D−2)f(x̂), (D−3)f(x̂), : : :]

(48b)

x̃(x̃) = [x̃T, 1
2
(x̃−2)T, 1

3!
(x̃−3)T, : : :]T (48c)

The expression (48a) mimics Ax+ b. The randomness

has been concentrated in x̃(x̃), while F(x̂) is fully deter-

ministic. Because of the structure in f, F(x̂) is typically

sparse because not all rows of f depend on all entries in

x. The 1=d! factors of the degree d terms can be either

assigned to (48b) or (48c). The latter option turns out

to be more convenient.

Now, the moment computation problem can be for-

mulated as

Efzg= f(x̂) +F(x̂)Efx̃(x̃)g, (49a)

covfzg= F(x̂)covfx̃(x̃)gF(x̂)T, (49b)

covfx,zg= covfx, x̃(x̃)gF(x̂)T: (49c)

Apparently, we have replaced (22) by the simpler prob-

lem of finding the moments of x̃(x̃). From the sym-

metry in the distribution of x̃ follows a “checkerboard

pattern” in

Efx̃(x̃)g=
[0T, 1

2
Efx̃−2gT, 0T, 1

4!
Efx̃−4gT, : : :]T

(50a)

and

covfx̃(x̃)g=2666664
P 0 1

3!
covfx̃, x̃−3g

0 1
22
covfx̃−2g 0 ¢ ¢ ¢

1
3!
covfx̃−3, x̃g 0 1

(3!)2
covfx̃−3g

...
. . .

3777775 :

(50b)

The cross-covariance covfx, x̃(x̃)g is the first row of the
matrix in (50b). A remaining challenge is the sheer

number of terms in the expressions. However, each

entry can be obtained from the moments of the Gaussian

distribution [49]. These moment expressions simplify

significantly if the stochastic decoupling technique is
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applied. Then, however, the inherent sparsity that might

be present in F(x̂) typically disappears.
Beyond moment computation, the above results are

useful for assessing the nonlinearity of f in the neigh-

borhood of an expansion point x̂. If the error between

the degree d Taylor approximation of f and f is small

for carefully chosen x, then f is well represented by

a polynomial. In Sec. V-B, Taylor polynomials up to

degree 5 are used to assess a range rate measurement in

terms of its nonlinearity.

3) Quadratic functions as special case:
We here investigate the special case of a specific

z = f(x) with m rows that are given by

zl = al+ b
T
l x+ x

TClx: (51)

The al are scalars, the bl are n-vectors, and the Cl are

n£ n-matrices. With the Jacobian and Hessian matrices
Jl(x) = b

T
l + x

T(Cl+C
T
l ), Hl = (Cl+C

T
l ) (52)

that contain the first and second order partial derivatives,

respectively, (51) can be written as

zl = fl(x̂)+ Jl(x̂)(x¡ x̂) + 1
2
(x¡ x̂)THl(x¡ x̂): (53)

Because f is a polynomial of degree 2, (53) is exact

everywhere.

The moments of z can be derived using the tools

from the previous subsection together with (45). The

mean and covariance are determined by [1]

Efzlg= fl(x̂) + 1
2
tr(HlP), (54a)

covfzl,zkg= Jl(x̂)PJk(x̂)T + 1
2
tr(HlPHkP), (54b)

covfx,zg= PJ(x̂)T, (54c)

with k = 1, : : : ,m, and l = 1, : : : ,m. These expressions

can be implemented entirely sampling based as shown

in Sec. IV-D.

IV. SIGMA POINT METHODS FOR SOLVING THE
MOMENT COMPUTATION PROBLEM

In this section we discuss methods for solving the

moment computation problem (22) of Sec. III. The

discussion is focused on approximate techniques that

are all based on sampling. Apart from a brief coverage

of Monte Carlo integration, deterministic methods are

presented. The interpretation of the sigma point differs

considerably in the unscented transformation, numerical

integration, and interpolation approaches.

For convenience, we introduce the abbreviations

ẑ ¼ Efzg, S ¼ covfzg, M ¼ covfx,zg (55)

for the moment approximations of the transformed ran-

dom variable z = f(x).

A. Monte Carlo Integration

This section describes Monte Carlo integration in

its most basic form. It is the only stochastic moment

computation method that we discuss in detail. For a

more thorough treatment of Monte Carlo methods in

general the reader is referred to [57] and the dedicated

chapters in [34, 58].

The basis of Monte Carlo integration is sampling.

Hence, it is applicable to the moment computation

problem (22) with arbitrary distributions of the random

variable x, as long as they allow sampling. Specifically,

a large number N of realizations fx(i)gNi=1 is generated,
passed through the function f to yield fz(i) = f(x(i))gNi=1,
and then used to approximate Efzg in (22a) by the
sample average

ẑ =
1

N

NX
i=1

z(i): (56a)

In a similar manner, the covariance matrices covfzg and
covfx,zg of (22b) and (22c) are approximated by

S =
1

N ¡ 1
NX
i=1

(z(i)¡ ẑ)(z(i)¡ ẑ)T, (56b)

M =
1

N ¡ 1
NX
i=1

(x(i)¡ x̂)(z(i)¡ ẑ)T: (56c)

Justification for the above expressions is given by the

law of large numbers which states that the averages in

(56) indeed converge to the true moments as N tends to

infinity. Another important point is that the accuracy of

(56a), expressed in terms of its covariance

covfẑg= 1

N
covfzg, (57)

depends solely on the true covariance, not the dimension

n of x [58]. As a result some problems can be solved

with very few samples N, although n is big, whereas

others cannot be solved by Monte Carlo integration at

all. The standard deviation of a scalar ẑ decays as 1=
p
N

which is rather slow.

Monte Carlo methods impose no restriction on the

functional form of f. If the true moments exist, then

(56) will work for sufficiently large N. Due to the ran-

dom sampling, there is always some variation in the

results of (56). These variations decrease with increased

sample size N, and can be reduced further by employ-

ing variance reduction techniques [57]. If it is difficult

to generate samples of x directly, the concept of impor-

tance sampling can be used, which actually builds the

basis for the particle filter [12, 13]. Even more advanced

sampling schemes are Markov chain Monte Carlo meth-

ods [57].

The idea to use Monte Carlo integration in a non-

linear Kalman filter is mentioned in [23, 40]. It could

be argued that the required computational complexity

to run a Monte Carlo Kalman filter contradicts the idea

of maintaining only mean values and covariance matri-

ces. Interestingly, a related KF variant beyond the scope

of this paper, the ensemble Kalman filter [59], uses

Monte Carlo sampling to mimic the KF algorithm in
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high-dimensional state spaces that prohibit the storage

of n£n covariance matrices.

B. The Sigma Point Approximation of a Distribution
and the Unscented Transformation

The ideas of the following paragraphs were intro-

duced in the filtering context in [14], together with

the term sigma points. Later, the somewhat mysterious

name unscented transformation (UT) was given to the

moment computation method, and the resulting filter be-

came known as the unscented Kalman filter (UKF) [16].

As starting point, we can assume the moment com-

putation problem (22) for a discrete random variable x

that takes values from the set fx(i)gNi=1 with the probabil-
ities Prfx(i)g= w(i). The integrals in (22) then appear as
finite sums. The resulting simplicity therefore justifies

the idea to approximate the continuous density p(x) of

(22) with a discrete point mass function or Dirac mix-

ture density [60].

The UT [15] implements the above idea by systemat-

ically selectingN sigma points and weights fx(i),w(i)gNi=1.
As in MC integration, the function f is evaluated at ev-

ery sigma point to yield fz(i)gNi=1. The moment integrals
(22) are approximated by

ẑ =

NX
i=1

w(i)z(i), (58a)

S =

NX
i=1

w(i)(z(i)¡ ẑ)(z(i)¡ ẑ)T, (58b)

M =

NX
i=1

w(i)(x(i)¡ x̂)(z(i)¡ ẑ)T: (58c)

The expressions resemble a weighted version of (56).

However, the number of sigma points is typically much

smaller than in Monte Carlo sampling with N = 2n+1

in the most common variant [14].

1) Sigma point and weight selection:
The problem of approximating a probability density

function by a number of representative samples goes be-

yond the moment computation context. For example, the

quantization problem [33, 61] in information theory is

closely related. For computational reasons, the number

of points should be small. In order to approximate the

continuous density well, however, more points would

be valuable.

The UT sigma points are chosen deterministically

such that the mean and covariance of x are preserved in

the weighted sample mean and covariance

NX
i=1

w(i)x(i) = x̂, (59a)

NX
i=1

w(i)(x(i)¡ x̂)(x(i)¡ x̂)T = P: (59b)

The condition (59) guarantees that (58) is correct for

affine functions. Also constraints on higher moments

can, in principle, be included [16]. For any fixed num-

ber of points N > n, infinitely many combinations of

weights and samples satisfy (59).

The original sampling scheme [15] utilizes the

columns fuigni=1 (78) of the n£ n matrix square root
P1=2 (77) (App. A) to generate N = 2n+1 sigma points

and weights

x(0) = x̂, (60a)

x(§i) = x̂§
p
(n+·)ui, (60b)

w(0) =
·

n+·
, (60c)

w(§i) =
1

2(n+·)
, (60d)

where i= 1, : : : ,n. The signed superscripts (§i) under-
line the symmetry in the sigma points. Accordingly, the

summation in (58) is replaced by a sum from ¡n to n.
The alternative expression for (58a)

ẑ = w(0)z(0) +

nX
i=1

w(§i)(z(+i) + z(¡i)) (61)

establishes a relation to the divided difference methods

in Sec. IV-D.

The authors of [15] suggest that · can be chosen as

any number such that · 6=¡n and recommend ·= 3¡ n.
The square root in (60b), however, suggests that · >¡n.
Furthermore, the obtained negative w(i) for 0> ·>¡n
compromise the interpretation as point mass function

and can lead to indefinite S in (58b). For ·= 0, the UT

is identical to a cubature rule (Sec. IV-C) that is used

in [18].

For large n, the sigma points in (60) are located far

from the mean x̂, which might yield degraded results for

functions f that change severely over the x-space. The

scaled UT [62] addresses this by moving the samples

towards x̂ without violating (59). The procedure has

been condensed into a selection scheme similar to (60)

by [21].

In the selection scheme, the parameter · is replaced

by ¸= ®2(n+·)¡ n with 0< ®· 1. The samples and
weights for (58a) or (61) are

x(0) = x̂, (62a)

x(§i) = x̂§
p
n+¸ui

= x̂§®pn+·ui, (62b)

w(0) =
¸

n+¸
, (62c)

w(§i) =
1

2(n+¸)
, (62d)

with i= 1, : : : ,n. The covariance (58b) is computed with

the weight w(0)c = (¸=(n+¸))+1¡®2 +¯ for the z(0)

term instead. Here, the scalar parameter ¯ is a correction
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term [16] which is recommended to be 2 for Gaussian x.

With some effort, the motivation for the above choice

can be extracted from [16] or [21]. The latter recom-

mends that the choice of ® should depend on f as well

as covfxg= P, whereas the choice of · is secondary.
Alternative sigma point generation schemes beyond

moment matching were investigated in [60]. Instead

of a simple generation rule, the points are chosen to

minimize a cost function. The procedure is more costly

but allows the user to choose an arbitrary number of

sigma points N. In the spirit of the stochastic decoupling

technique (Sec. III-B) the authors of [39] employ the

method of [60] to generate a sigma point approximation

to N (0,I) offline. These carefully selected samples are
then transformed to represent x»N (x̂,P).
2) Accuracy considerations:
The UT is built upon the idea that a good approxi-

mation of the distribution of x should also give a good

approximation of the distribution of z. Its implementa-

tion is simple and requires hardly more than evaluating

f for all sigma points. Albeit the intuition, accuracy

statements are difficult to make. After all, how the char-

acteristics of the weighted sigma points in x carry over

to z is highly dependent on the function f.

In an attempt to show the UT accuracy, the authors

of [15] expand the covariance (22b) as infinite Taylor

series and compare the terms of low degree to the

solutions provided by linearization and UT. It is argued

that the former gives only the first term in the infinite

series, whereas the UT does not truncate. So, more

terms of low degree in the infinite Taylor expansion of

(22b) are matched by UT. This observation has lead

to the easily misinterpreted statement that the UT is

“correct up to the second order” [15, App. II], but it

is not clear whether this “order” refers to degree of the

Taylor polynomial of (22b) or to the moments of the

transformed samples. Certainly, the statement has led to

misunderstandings.

To be clear, the UT does not give the correct first

and second6 moments (22a) and (22b) for arbitrary

nonlinearities. Furthermore, the UT does not give the

moments of a degree two Taylor approximation of f

(Sec. III-C). This is discussed and demonstrated for

a simple example in [23], and further clarified in the

simulation study of polynomial function in Sec. V-A.

Another extensive discussion of the statements in [15]

is given in [21]. Although the UT often works well,

concise accuracy statements are difficult to make. The

numerical integration perspective in Sec. IV-C alleviates

this to some extent.

3) Unscented and related Kalman filters:
The first UKF was suggested in [14] but the ideas

took several years before they appeared in journal for-

mat [15]. A complete account of the developers is given

6As stated earlier, we reserve “order” to describe the order of a Taylor

series of partial derivative to avoid confusion.

in [16]. An interpretation of the UKF as performing

statistical linearization is discussed in [63]. The UKF as

one member of the sigma point KF class is discussed

in [21], including its use for parameter estimation and

an account of the accuracy statements in [15]. The re-

lations between the UKF and divided difference filters

[17, 20] are investigated in [27], and the authors of [23]

discuss asymptotic relations to analytical EKF. An ex-

tensive account of the numerical integration perspective

of UKF is given in [26]. The authors of [44] investigate

the scaling parameter in UKF variants with the sample

set (60) and devise an adaptive scaling method for ·

in an online filter. The recent smart sampling Kalman

filter [39] makes use of the alternative sampling method

[60] and allows the user to select an arbitrary number of

sigma points N. References to comparative simulation

studies are listed in Sec. V.

C. Sigma Points and Numerical Integration

The discussion below results in methods that appear

very similar to the UT and, in fact, share the formu-

las (58).

As starting point, we consider the problem of com-

puting the integral of an exponentially weighted func-

tion g(t) Z
¢ ¢ ¢
Z
g(t)exp(¡tTt)dt1 : : :dtn: (63)

The relation to the moment computation problem (22)

with Gaussian x is established using the stochastic de-

coupling technique (Sec. III-B). Specifically, the con-

version of (22a) to (63) is given in (24).

The problem of computing (63) has been addressed

by mathematicians for centuries. The suggested solu-

tions, for example Gauss-Hermite quadrature rules [48],

use formulas that are similar to (58a):Z
g(t)exp(¡tTt)dt¼

NX
i=1

w(i)g(t(i)): (64)

The classical numerical integration literature [64, 65]

provides rules to select the N weights w(i) and sigma

points t(i) such that (64) is exact for polynomial func-

tions of degree7 d. The number of required points N

increases as d increases. The built-in accuracy statement

is an advantage over the UT. However, by showing the

equivalence between an integration rule and a UT vari-

ant, the accuracy statements can be transferred to the

latter.

For the moment computation problem (22) a rule of

degree d gives the correct mean value (22a) for poly-

nomial f of degree d. The covariance (22b), however,

requires integration of outer products of f. Therefore,

an integration rule of degree d computes (22b) correctly

only if f has at most degree d=2. Furthermore, the cross-

covariance (22c) is computed correctly if f has at most

7For a vector or matrix function g, the degree is the highest appearing

monomial degree. For example, g(t) = [t3
1
t2
2
¡ 3, t2]T has degree 5.
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degree d¡1. The above considerations are confirmed
by the simulation results in Sec. V-A.

Integration rules can be grouped into product and

nonproduct rules [64] that are further explained below.

1) Product rules:
Product rules compute the n-fold integral (63) by

applying integration rules to one dimension at a time.

For example, the integration with respect to t1 can

be approximated by an M1-point rule. The result is

a sum of M1 integrals with respect to the remaining

components t2:n

M1X
i1=1

w(i1)1

Z
g(t(i1)1 , t2:n)exp

0@¡ nX
j=2

t2j

1Adt2:n: (65)

Continuing in this way requires N =
Qn
i=1Mi points and

weights in total, which renders the method unfeasible

for all but small n. The overall degree of such an n-

dimensional product rule is determined by the smallest

Mi. The Kronecker product can be used to compute the

overall weights and samples [66].

Gauss-Hermite quadrature rules [48] can be used

to generate the Mi weights and points for the one-

dimensional integrals from the Hermite polynomials.

An M-point Gauss-Hermite rule integrates polynomials

of degree d = 2M ¡1 exactly.
In a Kalman filter context, product rules were in-

vestigated first in [17] and later in [26, 41]. As pointed

out, the required number of points is problematic for

larger n. A technique to divide the filtering problem

into smaller chunks that can be approached by product

rules is given in [67]. The simulations in Sec. V include

3-point and 5-point (per dimension) quadrature rules.

2) Nonproduct rules:
In contrast to product rules, nonproduct rules are

tailored formulas to integrate monomials8 of at most

degree d exactly. The number of required point scales

much better with n.

An example from the filtering literature is the rule

of degree 3 that is used in the cubature Kalman filter

(CKF) of [18]. It requires N = 2n weights and sigma

points that are given by

t(§i) =§
r
n

2
ei, (66a)

w(§i) =
¼n=2

2n
, (66b)

with i= 1, : : : ,n and the ith column ei of the identity ma-

trix. The selection scheme (66) can be found in as early

references as [64, 65]. Using the variable substitution

(24) of Sec. III-B the t(i) can be mapped to

x(§i) = x̂§
p
2P1=2t(§i) = x̂§pnui: (67a)

8and hence polynomials.

Furthermore, the weighted transformed samples can be

written as

w(§i)g(t(§i)) =
¼n=2

2n

1

¼n=2
f(x(§i)) =

1

2n
z(§i): (67b)

The above (67) discloses that the degree 3 rule corre-

sponds to the UT (60) with ·= 0. Therefore, ·= 0 can

be regarded as well founded parameter choice in the UT.

The authors of [18] show how to use a change to

spherical coordinates (Sec. III-B) and subsequent sepa-

ration of the integral (63) into a range and a spherical

component to arrive at the above expressions. The au-

thors of [26] assume a numerical integration perspective

on the UT to arrive at a similar expression.

An extensive numerical integration source is [64],

where the above degree-3 rule with 2n points, a degree-

5 rule with 2n2 +1 points, and a degree-7 rule with

(4n3 +8n+3)=3 points are provided. Related Kalman

filtering advances are described in [26], including an as-

sessment of the stability factor that relates to numerical

accuracy [65]. The recent high-degree cubature Kalman

filters of [42] provide arbitrary degree rules developed

from the integral representation (28). The number of re-

quired points grows polynomially with n, which yields

an improvement over the exponentially growing num-

ber of points in Gauss-Hermite quadrature. Also, [42]

highlights the degree-5 rule of [64] in their discussion

and KF simulations.

3) Randomized integration rules:
We conclude this section with a numerical integra-

tion approach that combines Monte Carlo integration

with deterministic integration rules.

In (28) of Sec. III-B it is shown how the integral (63)

can be separated into a range and a spherical part. This

variable change is exploited in [68] in a Monte Carlo

scheme, and implemented within the Kalman filtering

context by [69] as randomized UKF variant and [43]

with the numerical integration perspective. The sug-

gested stochastic integration filter [43] uses randomized

rules for both the radial and spherical integration, and

refines the results in an iterative scheme. Thereby, less

sigma points are required compared to a direct Monte

Carlo approach. The required number of points N de-

pends on the user parameters, which are set to deter-

mine the degree of the radial and spherical integration

rules. The approach is further discussed and success-

fully tested in [70].

An immediate variation of the above is to use a de-

terministic integration rule for the spherical and Monte

Carlo integration for the range component. Such derived

rules can be viewed as randomized deterministic inte-

gration rules.

D. Sigma Points for Function Approximation

This section summarizes how sigma points can be

used to approximate the function f in the moment

computation problem (22). Such local approximations

NONLINEAR KALMAN FILTERS EXPLAINED: A TUTORIAL ON MOMENT COMPUTATIONS AND SIGMA POINT METHODS 59



Fig. 2. The extended sigma points of (70) (circles) and the original

samples of (68) (crosses) for n= 2. The ellipse indicates a contour

for which N (x; x̂,P) is constant. The required matrix square root is
computed using the singular value decomposition of P.

are in the spirit of linearization or Taylor approximation

of f, but with divided differences rather than analytical

derivatives.

1) Divided difference methods:
The solutions of the moment computation problem

(22) are given by (46) in the case of linear f, and by

(54) for quadratic f (51). If we consider a nonlinear f,

we might want to mimic these solutions using a local

Taylor expansion of f. The required partial derivatives

are then evaluated at the expansion point only, and do

not take into account the uncertainty in x. If, instead, the

local approximation is carried out by an interpolation

approach, the interpolation points can be chosen to also

reflect the uncertainty in x.

A linearization based on the above idea was first

suggested in [19] in the Kalman filtering context, and

extended independently to include quadratic approxima-

tions by [20] and [17]. Both motivate their development

from an interpolation point of view that replaces ana-

lytical derivatives with divided differences. The method

generates sigma points similar to the UT

x(0) = x̂, (68a)

x(§i) = x̂§p°ui, (68b)

where i= 1, : : : ,n. The ui are the columns (78) of the

square root P1=2 (77) (see App. A) and act as perturba-

tion points in the divided differences. The parameter °

determines the length of the interpolation interval.

The sigma points are transformed to yield z(0) and

all z(§i) and processed as

ẑ =
°¡ n
°

z(0) +
1

2°

nX
i=1

(z(i) + z(¡i)), (69a)

S =
1

4°

nX
i=1

(z(i)¡ z(¡i))(z(i)¡ z(¡i))T (69b)

+
°¡ 1
4°2

nX
i=1

(z(i)¡ 2z(0) + z(¡i))(z(i)¡ 2z(0) + z(¡i))T,

M =
1

2
p
°

nX
i=1

ui(z
(i)¡ z(¡i))T: (69c)

The expressions sacrifice some inconvenient terms for
the sake of a faster algorithm. Further details on the
omitted terms are provided in [71]. The second order
divided difference method from [20] is illustrated in
(69). A first order divided difference method [19] is
obtained by retaining only the first sum in (69b), and
setting ẑ = z(0) similar to the Taylor based linearization.
The expression (69a) has the same functional form

as the UT mean in (61). A detailed discussion on the
relations between divided difference methods and the
UT is given in [27].

2) Sigma Point Implementation for the Moments of a
Quadratic Function:
The exact solution of the moment computation prob-

lem for quadratic f is given by (54). The divided differ-
ence solution (69) is an approximation to this in general.
If f is indeed quadratic then (69a) and (69c) are exact,
but (69b) is not. We here show how an exact S can be
computed entirely from sigma points. The material is
based on [23] and the extensions in [30, 35].
The sigma points (68) are not sufficient to make S

exact. Therefore, the set is extended to include n2 points

x(0) = x̂, (70a)

x(§ij) = x̂§
p
°

2
(ui+ uj), (70b)

with i= 1, : : : ,n and j = 1, : : : ,n. By construction, the
points of (68) are contained in (70): x(§ii) = x(§i). In
addition, n(n¡ 1) unique points are generated. The in-
creased number of points N corresponds to that of a
degree-5 integration rule [42, 64]. Fig. 2 illustrates the
extended as well as the points of (68) for n= 2.
The exact S for quadratic f is given by

S =
1

4°

nX
i=1

(z(i)¡ z(¡i))(z(i)¡ z(¡i))T + 1

8°2

nX
i=1

nX
j=1

(4z(ij) + 4z(¡ij)¡ z(i)¡ z(¡i)¡ z(j)¡ z(¡j)¡ 4z(0))
(4z(ij) + 4z(¡ij)¡ z(i)¡ z(¡i)¡ z(j)¡ z(¡j)¡ 4z(0))T:

(71)

The derivation of the above expression is provided in
App. C.
In the Kalman filter context the above leads to a

sample implementation of the second order EKF [35].

V. SIMULATION EXPERIMENTS

In this section we provide simulations to illustrate
the performance of the moment computation methods of
Sec. IV. Insights about differences and advantages are
highlighted. Furthermore, it is shown that the methods
do not always work as out-of-the-box solutions to any
moment computation problem (22).
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Fig. 3. The legend for all subsequent figures.

TABLE I

List of evaluated methods, their abbreviation, and a reference

motivating the selected parameters.

Abbrev.Method Parameters

MC Monte Carlo N = 50000

T1 1st order Taylor [23] –

T2 2nd order Taylor [23] –

D1 1st order div. diff. [20] ° = n

D2 2nd order div. diff. [20] ° = n

U1 Unscented [14] ®= 1; ¯ = 0; ·= 3¡ n
U2 Unscented [21] ®= 10¡3; ¯ = 2; ·= 0
U3 Cubature [18] ®= 1; ¯ = 0; ·= 0

Q3 3-point Gauss-Hermite [17, 48] –

Q5 5-point Gauss-Hermite [17, 48] –

T2S 2nd order Taylor, sigma points [35] ° = 0:1

The examples include polynomial functions as well

as a radar target tracking problem that occurs in air

traffic control. The displayed methods are chosen in

favor of a compact description that aims at both new

and experienced researchers in the field. Hence, simple

rules are favored over the more advanced methods

that are mentioned in Sec. IV. The reader is referred

to [23, 28, 30, 42] for other comparative simulation

studies of moment computation methods in the spirit

of our discussion below, and to [21, 26, 27, 29, 70] for

comparative studies of the related filtering algorithms.

The investigated moment computation methods are

first and second order Taylor approximation using ana-

lytical derivatives (T1 and T2, Sec. III-C); first and sec-

ond order divided difference approximations (D1 and

D2, Sec. IV-D.1) and the related second order Taylor

approximation using sigma points (T2S, Sec. IV-D.2);

Monte Carlo integration (MC, Sec. IV-A); three varia-

tions of the unscented transformation with different pa-

rameter settings including a degree-3 cubature rule (U1—

U3, Sec. IV-B); and 3-point and 5-point (per dimension)

Gauss-Hermite quadrature rules (Q3 and Q5, Sec. IV-C)

which are more accurate than UT at the expense of more

sigma points (3n and 5n). Table I summarizes the abbre-

viations used and the parameters according to Sec. IV.

The plot legend for all subsequent illustrations is given

in Fig. 3.

A. Polynomial functions

First, two quadratic functions are used to study the

moment computation problem (22) with Gaussian input.

In this case Sec. III-C describes the exact analytical

solution T2 that can be compared to the approximate

methods. Second, the composition of the two functions

is studied, both in a two stage and single stage approach.

Fig. 4. The result obtained when using different methods to

transforming x. The legend for this and subsequent figures is given

in Figure 3. (a) y = f1(x). (b) y = f2(x).

The two two-dimensional quadratic functions f1 and

f2 are specified as in (51) with the parameters·
a11

a12

¸
=

·¡0:2
0

¸
, [b11 b12] =

·
0:1 0:2

0:2 0:3

¸
,

C11 =

·
0:15 0

0 0:05

¸
, C12 =

·
0:025 0:009

0:003 0:005

¸
,

(72a)·
a21

a22

¸
=

·
0

1:2

¸
, [b21 b22] =

·¡0:8 0:4

0:8 0:4

¸
,

C21 =

·
0:625 ¡0:303
¡0:303 0:275

¸
, C22 =

·
0:08 0

0 0:28

¸
,

(72b)

where the superscript is used to distinguish between

the two functions. The input is assumed Gaussian x»
N ([0,1]T,4I).
1) Quadratic Transformation:
The results from applying the different methods in

Table I to compute the mean and covariance of f1(x)

and f2(x) are presented in Fig. 4. Illustrated are the

ellipses that contain 95 percent of the probability mass

of a Gaussian with the computed mean and covariance.

We notice that f1 is less nonlinear than f2, which

NONLINEAR KALMAN FILTERS EXPLAINED: A TUTORIAL ON MOMENT COMPUTATIONS AND SIGMA POINT METHODS 61



can be observed from the visualization of the correct

target distribution which has been obtained as a kernel

density estimate from MC samples. Both T2 and T2S

by construction provide the exact mean and covariance.

With f1 and f2 being polynomials of degree 2, the

correct mean is recovered by all integration rules of

degree 2 and above. This includes the UT variants U1,

U2, U3 which can be seen as integration rules of degree

3 [26], but also the algebraically equivalent D2. The 3-

point and 5-point (per dimension) quadrature rules with

degrees 2 ¢ 3¡1 = 5 and 2 ¢ 5¡ 1 = 9, respectively, also
manage to capture the correct covariance which requires

an integration rule of degree 4 for f1 and f2. In contrast

to the UT variants (N = 2n= 4 or N = 2n+1 = 5), Q3

and Q5 use more sigma points (N = 3n = 9 and N =

5n = 25). Still, with n= 2 the computational demands

remain low. The MC method with 50 000 samples is

very close to the correct solution. Only T1 and D1 with

their underlying linearity assumption fail to capture the

correct mean and severely underestimate the covariance.

The methods perform mostly well for the quadratic

functions, especially for the mildly nonlinear f1 the

approximations are similar, including T1 and D1. For f2

the differences are more pronounced and the degree 3

rules U1, U3, and D2 do not reflect the true uncertainty

ellipse well.

In summary, T2, T2S, Q3, and Q5 are exact for

quadratic functions. The UT variants fail to capture the

correct covariance with U2 slightly better for the chosen

function f2. D1 and T1 can perform very poorly, even

though the nonlinearity is mild in the sense that it is

only “one degree above linear.” Other experiments with

randomly selected quadratic functions support the above

findings [30].

2) Quartic Transformation:
In a second simulation a quartic function f3 is con-

structed by composing f2 and f1, f3(x) = f2(f1(x)).

This allows us to study the selected methods on a higher

degree polynomial than covered by most methods in

Table I, as well as touching on the interesting ques-

tions: “When considering a series of transformations, is

it preferable to keep the same sigma points throughout the

approximation, or should new sigma points be selected in

each step?” This has implications to the filtering prob-

lem where the time propagation step and measurement

prediction are performed in series (Sec. II-D) and for

cases where a function can be decomposed into simpler

ones.

Fig. 5 shows the result obtained when applying the

methods in Table I to the quartic function f3. The

difference between the result from applying the methods

directly to the quartic function (Fig. 5(a)) and from

performing the approximation in two steps (Fig. 5(b))

is striking. In the former case, only the Q5 rule with its

degree 9 is accurate enough to capture the true mean and

covariance. The MC method also recovers the true mean

and covariance, albeit with some small sampling errors.

Fig. 5. The result obtained when applying the different

approximations to a quartic function. Note that the MC solution is

only correct in (a) as an intermediate approximation is performed in

(b). Therefore the composed MC estimate has been added as dotted

black line in the latter case. (a) Direct function evaluation, z = f3(x),

corresponding to keeping the same sigma points. (b) Sequential

function evaluation, y = f1(x) and z = f2(y), with intermediate

sigma point regeneration.

With degree 5, the rule Q3 still provides the correct

mean whereas the remaining methods fail to do so. In

the later case, none of the methods (including the MC

method) can be expected to recover the true mean and

covariance, as a result of the intermediate step where

the non-Gaussian distribution of f1(x) is approximated

as a Gaussian, which results in information loss.

The two step computations result in comparable ap-

proximations in the sense that all methods underesti-

mate the true covariance (as provided by MC and Q5 in

Fig. 5(a) and as dotted line in Fig. 5(b)) and rotate its

principal axes. T1 and D1 assert the smallest covariance

and put the mean close to the most likely value of the

resulting distribution. The similarity among the remain-

ing approximations can be explained with the compara-

ble Gaussian approximations of f1(x) that all methods

provide (Fig. 4(a)). The lack of performance can be ex-

plained by the fact that all methods ignore the skewness

in the distribution of f1(x). Note that MC, T2, T2S, Q3,

and Q5 are all identical, as they all perfectly capture the

two quadratic transformations, but that none of them are

correct due to the intermediate approximation.
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The result obtained from applying the approxima-

tions directly to f3 yields less comparable results. D1,

U1, and D2 provide roughly the same estimates, slightly

worse than the sequential results. U2, T2, and T2S seri-

ously underestimates the uncertainty and provide results

far from the correct Q5 estimate. Q3 obtains the correct

mean but underestimates the covariance. T1 and D1 no

longer agree due to the differences between the numer-

ical and analytical derivatives for the degree-4 polyno-

mial.

Overall, we conclude that of the studied methods

only Q5 and MC are suitable for the quartic function.

Interestingly, there seems to be a gain from performing

a two stage procedure where new sigma points are

selected when using methods of insufficient accuracy,

albeit the intermediate Gaussian approximation. Still,

directly computing the moments of f3(x) with a rule

of sufficient degree such as Q5 should be preferred if

computationally feasible.

B. Tracking Application

In this second set of examples we consider moment

computations problems that occur in target tracking, say,

for air traffic control. In our set-up the tracked aircraft

are described with a simple state-space model with the

state vector

x= [x, y, s, h]T, (73)

where x and y make up the position in Cartesian coor-

dinates [m], and s and h are the speed [m/s] and head-

ing [rad], respectively.

A radar provides measurements y = h(x) + e of the

range, r, the bearing, Á, and the range rate, _r, with

h(x) =

264 rÁ
_r

375=
264

p
x2 + y2

atan2(y,x)
s

r
(xcos(h)+ ysin(h))

375 , (74)

where atan2 is the quadrant compensated arctangent

function.

The dynamic model for how the state evolves in time

is given by xk = f(xk¡1,vk¡1), where26664
xk

yk

sk

hk

37775=
26664
xk¡1 + cos(hk¡1)(sk¡1 +¢sk¡1)

yk¡1 + sin(hk¡1)(sk¡1 +¢sk¡1)

sk¡1 +¢sk¡1
hk¡1 +¢hk¡1

37775 (75)

and v = [¢s,¢h]T is process noise. Such models can

be used to describe highly maneuvering targets, for

example a flying robot, but also slowly maneuvering

aircraft.

One time step and measurement will be studied, with26664
xk¡1
yk¡1

sk¡1 +¢sk¡1
hk¡1 +¢hk¡1

37775

»N

0BBB@
26664
2500

4330

250

¡ 2¼
3

37775 ,
26664
2500 0 0 0

0 2500 0 0

0 0 25 0

0 0 0 900¼2

1802

37775
1CCCA
(76)

in the simulations below. This represents one step in a

filter solution to track the target, but retains the focus

on moment computation problems. For simplicity, the

speed and heading uncertainty for the current time step

is assumed to be included in the state already. This has

no impact on the end result as they always appear to-

gether in (75). The position and speed accuracy has been

exaggerated and the heading error is large to make the

example more illustrative. Hence, the observed effects

can be expected to be less pronounced in practice.

1) Range and Bearing Measurements:
The range and bearing measurements obtained by a

radar are mildly nonlinear functions of the position, as

shown in the heatmaps of Fig. 6. The state estimate is

illustrated with an uncertainty ellipse that contains 95

percent of the probability mass. For the relevant posi-

tions, the heatmap appears similar to a linear function.

The approximate linearity is confirmed by computing

the moments of Taylor polynomials of different degree,

as suggested in Sec. III-C. There is hardly any change

for degrees above one.

Following the above considerations, it is not surpris-

ing to see that all the methods perform equally well.

The result is illustrated in Fig. 7, where it is virtually

impossible to tell the different methods apart.

2) Range Rate Measurement:
Adding range rate to the measurement vector pro-

vides important additional information about the target

motion, but does at the same time add a more com-

plex and nonlinear function that depends on all the state

components. At this distance, the range rate is almost

constant with respect to changes in the position, whereas

Fig. 8 illustrates that the range rate is nonlinear (approx-

imately sinusoidal) in the heading angle.

Again, the methods in Table I are used to obtain

the mean and variance of the range rate. The result is

given in Fig. 9. The methods T2, T2S, D2, U1, U2, U3,

Q3, and Q5 are almost perfect matches with the MC

method. T1 and D1 provide virtually identical results

considerably underestimating the variance, and with a

significant bias coinciding with the most likely values

of the distribution. Thus, a reasonable choice of method

would be U3 which uses the least sigma points.
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Fig. 6. Illustration of the severity of the radar measurement

nonlinearity. Note, the range and bearing ((a) and (b)) are

independent from the speed and heading. The blue ellipse represents

the state uncertainty. (a) Range as function of target position.

(b) Bearing as function of target position.

Fig. 7. Result obtained when applying the measurement function to

xk¡1 and visualizing the range and bearing components.

Table II shows the moments of different Taylor

polynomials of the range rate that have been computed

using the compact representation of Sec. III-C. It can

be seen that the mean value changes for every two

polynomial degrees added to the approximation. One

Fig. 8. Range rate as a function of speed and heading of the target

when x and y have their mean values. The blue ellipse illustrates the
state uncertainty.

Fig. 9. Illustration of transformed range rate using the different

approximations. The black solid line here visualize the true

underlying function obtained with MC simulations.

TABLE II

Mean and variance matrix of the range rate based on Taylor

expansions of different degrees.

Degree Mean Covariance

1 ¡250 25

2 ¡215:7 2375.5

3 ¡215:7 2370.1

4 ¡218 1784.4

5 ¡218 1784.5

interpretation of the result is that the range rate is

difficult to approximate by a polynomial of low degree

for the given input uncertainty.

3) Dynamic Model and Measurement:
In the linear KF it is common to alternate between

time updates and measurement updates. As discussed in

Sec. II-D, in nonlinear KF the situation is not as clear

because the user can either combine the state transition

and measurement functions to jointly compute the mo-

ments of the predicted state and output; or introduce an

intermediate Gaussian approximation for the predicted

state and then compute the moments of the predicted

output. Also, see the related example in Sec. V-A.2.

Here, the two approaches are compared. The result

is presented in Fig. 10. First, notice that the state pre-
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Fig. 10. Illustration of separated and composed transformation

from xk¡1 to yk . Note that the MC solution is only correct in (c) as
an intermediate approximation is performed in (b). Therefore the

composed MC estimate has been added as dotted black line in the

latter case. (a) Time propagation, xk = f(xk¡1). (b) Sequential time
propagation and measurement prediction, yk = h(xk). (c) Combined

time propagation and measurement prediction, yk = h(f(xk¡1)).

diction results in a slightly banana shaped distribution

(Fig. 10(a)), as a result of the uncertain heading but

certain speed. Hence, the state transition is only mildly

nonlinear. All methods, except for T1 and D1, produce

mean and covariance estimates close to the true values.

Again, T1 and D1 stand out by underestimating the co-

variance.

Comparing the result from performing the transfor-

mation in two steps (Fig. 10(b)) and in a single step

(Fig. 10(c)) it is hard to tell the two approaches apart.

In both cases the true distribution is well approximated

by Q3, Q5, T2, T2S, D2, U1, U2, and U3, whereas T1

and D1 provide worse results with bias and too small

covariances.

A conclusion from this experiment, supported by

the experiences in Sec. V-A.2, is that it is not obvi-

ous whether to keep the sigma points between the two

steps or to generate new ones. With the almost linear

range and bearing measurements it made no difference.

Furthermore, our results confirm the widespread view

that T1 and D1 tend to introduce biases and to under-

estimate the covariance due to their underlying linearity

assumptions.

VI. CONCLUDING REMARKS

In this tutorial we have discussed the nonlinear

Kalman filter solution to the Bayesian filtering problem,

with a focus on sigma point filters. It was shown that

the central challenge in all Kalman filter algorithms is

the computation of the mean values and the covariance

matrices of nonlinearly transformed random variables.

These moments are then used in the measurement up-

date. This unifying view facilitates an easier access to

the filtering literature for researchers who are new to the

field, and provides additional (perhaps subtle) insights

for the more experienced audience.

The underlying moment computation problem was

discussed in greater detail including its structural prop-

erties, common reformulations, and even a solution in

terms of the Taylor series. It is hoped that the presen-

tation will facilitate a greater understanding of existing

methods as well as catalyze new methods with a solid

theoretical foundation.

The presentation of sigma point based moment com-

putation methods which are motivated from the differ-

ent concepts of density approximation (UT), numeri-

cal integration, and interpolation has shown significant

similarities between the approaches. Noticing the inter-

relations is beneficial, for example in the case of the

degree of integration rules and the accuracy statements

that follow for the UT.

The simulations have shown that for mildly non-

linear functions all approaches perform well. It was

seen that methods that are based on analytical Taylor

expansion work well if the function is well approxi-

mated by polynomials of the assumed degree. However,

if the degree of the approximation is too low, then the

performance can deteriorate. The investigated UT vari-

ants (including the cubature setup) showed solid perfor-

mance throughout the examples, but not without failure

on some. Similar statements can be made for the divided

difference approaches. Both failed for one of the inves-

tigated quadratic functions. Two more accurate Gauss-

Hermite integration rules were shown to perform well,

but at the expense of more sigma points which prohibits

their use for high-dimensional problems.
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We conclude with the insight that for moment com-

putation problems, it is important to understand the ad-

dressed nonlinearities, to understand the type of prob-

lems that can be accurately handled, and to understand

the limitations of sigma point methods. This is espe-

cially crucial in nonlinear Kalman filters which are

based on the chosen moment computation methods.

APPENDIX

A. About Matrix Square Roots

Any positive definite n£n matrix, in particular the
covariance P of x»N (x̂,P), can be factored as

P1=2PT=2 = P (77)

with an n£ n matrix square root P1=2.
The square root is not uniquely defined because any

P1=2U with orthogonal U is also a matrix square root

for P.

Matrix square roots can be computed using differ-

ent algorithms [72]. The Cholesky factorization is a fast

method for computing a triangular P1=2. The singular

value decomposition enjoys desirable numerical prop-

erties but is computationally more demanding.

The ith column of P1=2 is given by

ui = P
1=2ei, (78)

where ei is the ith basis vector in the standard basis

of Rn.
From the columns of P1=2

P =

nX
i=1

uiu
T
i (79)

can be re-constructed.

B. Nested Covariance Computation for Partitioned x

Expression (38b) of Sec. III-B can be derived as

follows:

covfzg= EfzzTg¡EfzgEfzgT

= EfEfzzT j x2gg
¡EfEfz j x2ggEfEfz j x2ggT

= Efcovfz j x2gg
+EfEfz j x2gEfz j x2gTg
¡EfEfz j x2ggEfEfz j x2ggT

= Efcovfz j x2gg+covfEfz j x2gg:
C. Sigma Point Implementation of the Exact

Covariance for Quadratic f

The function f is quadratic. Each row fk can be

expressed by its Taylor expansion (53) with the Jacobian

Jk(x̂) and the Hessian matrix Hk. All Jk compose the

Jacobian matrix J . The dependence on x̂ is omitted for

convenience. For the following discussion we discuss

the first two rows f1 and f2.

First, we use the sigma points in (68) to derive the

Jacobian term of (54b). Using (53), the transformed

points can be written as

z(§i)1 = f1(x̂)§
p
°J1ui+

°

2
uTi H1ui: (80)

For quadratic f this is not an approximation but exact

for any °. After pairwise processing and rearranging,

we can isolate the Jacobian

z(i)¡ z(¡i) = 2p°Jui, (81a)

Jui =
1

2
p
°
(z(i)¡ z(¡i)): (81b)

A summation over all Jui together with the result (79)

gives

JPJT =

nX
i=1

Juiu
T
i J

T

=
1

4°

nX
i=1

(z(i)¡ z(¡i))(z(i)¡ z(¡i))T, (82)

the desired first term of (54b).

Next, we address the trace term of (54b) which for

f1 and f2 can be written as

tr(H1PH2P) =

nX
i=1

nX
j=1

tr(H1uiu
T
i H2uju

T
j )

=

nX
i=1

nX
j=1

uTj H1uiu
T
i H2uj , (83)

a sum of n2 terms. One term in the sum is given by

uTj H1uiu
T
i H2uj: (84)

For i= j, we can extract (84) from (80)

z(i)1 + z
(¡i)
1 = 2f1(x̂) + °u

T
i H1ui, (85a)

uTi H1ui =
1

°
(z(i)1 ¡2z(0)1 + z(¡i)1 ) (85b)

and

uTi H1uiu
T
i H2ui

=
1

°2
(z(i)1 ¡ 2z(0)1 + z(¡i)1 )(z(i)2 ¡ 2z(0)2 + z(¡i)2 ):

(85c)

That is as far as we can get with the original sigma

points (68). From here we start working with the ex-

tended sigma points (70) which are passed through f to

yield

z
(§ij)
1 = f1(x̂)§

p
°

2
J1(ui+ uj)

+
°

8
(ui+ uj)

TH1(ui+ uj): (86)
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Again, we can isolate the Hessian term by a combination

of transformed samples similar to (85b). The resulting

expression

z
(ij)
1 ¡ 2z(0)1 + z

(¡ij)
1

=
°

4
(ui+ uj)

TH1(ui+ uj)

=
°

4
(uTi H1ui+ u

T
j H1uj +2u

T
j H1ui) (87)

involves a mixed j, i-term that we require for computing

(84) and also homogeneous terms (85c). We can now

isolate the mixed term 2uTj H1ui of (87) by subtracting

expressions of the form (85b):

2uTj H1ui =
4

°
(z
(ij)
1 ¡ 2z(0)1 + z

(¡ij)
1 )

¡ 1
°
(z(i)1 ¡2z(0)1 + z(¡i)1 )

¡ 1
°
(z
(j)
1 ¡ 2z(0)1 + z

(¡j)
1 ): (88)

Simplification yields

uTj H1ui =
1

2°
(4z

(ij)
1 + 4z

(¡ij)
1

¡ z(i)1 ¡ z(¡i)1 ¡ z(j)1 ¡ z(¡j)1 ¡ 4z(0)1 ): (89)

Next, (84) can be written as product

uTj H1uiu
T
i H2uj =

1

4°2
(90)

£ (4z(ij)1 + 4z
(¡ij)
1 ¡ z(i)1 ¡ z(¡i)1 ¡ z(j)1 ¡ z(¡j)1 ¡ 4z(0)1 )

£ (4z(ij)2 + 4z
(¡ij)
2 ¡ z(i)2 ¡ z(¡i)2 ¡ z(j)2 ¡ z(¡j)2 ¡ 4z(0)2 ):

Summation over i and j from 1 to n yields the trace

term of (83) and hence the second term of (54b).
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The Smart Sampling Kalman

Filter with Symmetric Samples

JANNIK STEINBRING

MARTIN PANDER

UWE D. HANEBECK

Nonlinear Kalman Filters (KFs) are powerful and widely-used

techniques when trying to estimate the hidden state of a stochastic

nonlinear dynamic system. A novel sample-based KF is the Smart

Sampling Kalman Filter (S2KF). It is based on deterministic Gaus-

sian samples which are obtained from an offline optimization pro-

cedure. Although this sampling technique is quite effective, it does

not preserve the point symmetry of the Gaussian distribution. In

this paper, we overcome this issue by extending the S2KF with a

new point-symmetric Gaussian sampling scheme to improve its es-

timation quality. Moreover, we also improve the numerical stability

of the sample computation. This allows us to accurately approx-

imate thousand-dimensional Gaussian distributions using tens of

thousands of optimally placed and equally weighted samples. We

evaluate the new symmetric S2KF by computing higher-order mo-

ments of standard normal distributions and investigate the estima-

tion quality of the S2KF when dealing with symmetric measurement

equations. Additionally, extended object tracking based on many

measurements per time step is considered. This high-dimensional

estimation problem shows the advantage of the S2KF being able to

use an arbitrary number of samples independent of the state dimen-

sion, in contrast to other state-of-the-art sample-based Kalman Fil-

ters. Finally, other estimators also relying on the S2KF’s Gaussian

sampling technique, e.g., the Progressive Gaussian Filter (PGF), will

benefit from the new point-symmetric sampling as well.
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I. INTRODUCTION

Estimating the hidden state of a stochastic dynamic

system based on noisy measurements is crucial for many

applications in control, object tracking, or robotics.

When considering linear systems corrupted by additive

Gaussian noise, the Kalman Filter (KF) is the optimal

estimator with respect to the mean square error [1]. Un-

fortunately, most practical problems are nonlinear, mak-

ing closed-form solutions intractable. Consequently, ap-

proximative approaches have to be used. Particle Fil-

ters (PFs) [2]—[5] try to approximate the complete, in

general multimodal, system state density with a set of

weighted particles. This comes at the cost of compu-

tational complexity due to the curse of dimensionality.

Another problem is sample degeneracy, in particular for

high-dimensional state spaces, as a consequence of the

particle reweighting using the likelihood function. To

reduce computational complexity and circumvent the

problem of sample degeneracy, the Progressive Gaus-

sian Filter (PGF) [6], [7] approximates the system state

as a Gaussian and moves the particles automatically to

the important regions of the state space. Nevertheless,

those nonlinear filters are still costly compared to linear

filters applied to nonlinear problems.

The Extended Kalman Filter (EKF) explicitly lin-

earizes the underlying models around the current state

estimate to be able to apply the standard KF to the

considered problem [8]. Iterated variants of the EKF

(IEKF) try to improve the EKF approach by iteratively

searching for a more suitable point for the model lin-

earization [8]. A more suitable way of model lineariza-

tion is based on statistical linearization, which can be

performed in the best case analytically or, in all other

cases, by exploiting samples in the form of Linear Re-

gression Kalman Filters (LRKFs) [9]. LRKFs obtain the

required moments by propagating samples through the

system and measurement models and computing sample

mean and sample covariance matrix, respectively. The

most commonly used LRKF is the Unscented Kalman

Filter (UKF) [10]. Its samples are, however, limited in

number and placement, and several attempts exist to

improve the UKF by finding its optimal parameter set-

tings for specific estimation problems [11]. Neverthe-

less, the additional computational time required to find

proper UKF parameters can be used instead to propa-

gate more carefully chosen samples through the models

in order to improve the estimation quality. For exam-

ple, the Gauss-Hermite Kalman Filter (GHKF) intro-

duced in [12] is based on the Gauss-Hermite quadra-

ture rule to generate its samples. Unfortunately, the

GHKF also suffers from the curse of dimensionality,

and hence, is not well suited for larger state spaces.

The fifth-degree Cubature Kalman Filter (CKF) [13]

relies on a fifth-degree spherical-radial integration rule

to construct its samples. However, by design, the num-

ber of samples still grows quadratically in the state di-

mension making the fifth-degree CKF computational
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burdensome when dealing with larger state spaces. A

non-deterministic LRKF was proposed with the Ran-

domized UKF (RUKF) [14], [15]. Here, an arbitrary

number of randomly scaled and rotated UKF sample

sets are combined to a single set of samples. On the

one hand this has the advantage of being able to change

the employed number of samples. On the other hand it

prohibits a reproducible filter behavior and imposes an

additional runtime overhead compared to other LRKFs

due to the creation of several random orthogonal ma-

trices per prediction and measurement update. The esti-

mation quality of any LRKF, regardless of the sampling

it is based on, can be improved by using the iterated

statistical linearization approach [16], [17]. A more de-

tailed overview of linear filters and LRKFs can be found

in [18], [19].

Recently, the Smart Sampling Kalman Filter (S2KF)

was proposed in [19], [20], and already successfully

used for Simultaneous Localization and Mapping

(SLAM) in [21]. The S2KF uses optimal determinis-

tic sampling of a standard normal distribution compris-

ing an arbitrary number of equally weighted samples

based on a combination of the Localized Cumulative

Distribution (LCD) and a modified Cramér-von Mises

distance [22], [23]. The same LCD approach was also

extended to approximate arbitrary Gaussian mixture dis-

tributions [24].

In this paper, we improve the numerical stability of

the LCD approach when dealing with Gaussian den-

sities and, more importantly, extend the S2KF with a

point-symmetric Gaussian sampling. This new sampling

approach offers several benefits. First, it reflects the

point symmetry of the Gaussian distribution and allows

for matching all odd moments of a standard normal

distribution exactly, which results in a more accurate

state estimation. In this regard, the S2KF catches up

to state-of-the-art LRKFs as all of them also rely on a

point-symmetric sampling scheme. Second, due to the

improved numerical stability, it is now possible to com-

pute an optimal approximation of thousand-dimensional

standard normal distributions comprising tens of thou-

sands of samples. Third, as a minor benefit, the required

number of parameters that have to be optimized is re-

duced by half. Consequently, the samples can be com-

puted faster. However, this is only a minor improvement

as the computation is performed offline.

The remainder of the paper is organized as follows.

First, we give an overview of nonlinear Kalman filtering

and its transition to LRKFs. After that, in Sec. III, we

introduce a new point-symmetric version of the S2KF.

In Sec. IV, we evaluate the symmetric S2KF by com-

puting higher-order moments of multivariate standard

normal distributions, showing the advantage of the new

point-symmetric sampling scheme when dealing with

symmetric measurement equations, and performing ex-

tended object tracking. Finally, conclusions are given in

Sec. V.

II. SAMPLE-BASED NONLINEAR KALMAN FILTERING

We consider estimating the hidden state xk of a

discrete-time stochastic nonlinear dynamic system,

where the system model

xk = ak(xk¡1,wk) (1)

describes its temporal evolution.1 Additionally, we re-

ceive noisy measurements ỹ
k
that are assumed to be

generated according to the measurement model

y
k
= hk(xk,vk): (2)

Thus, the received measurements ỹ
k
are realizations of

the random variable y
k
. The noise variables wk and

vk are assumed to be Gaussian and independent of

the system state for all time steps. Their densities are

given by
fwk (wk) =N (wk; ŵk,Cwk )

and
fvk (vk) =N (vk; v̂ k,Cvk),

where ŵ k and v̂ k denote the mean vectors, and C
w
k and

Cvk the covariance matrices.
Our goal is to determine a state estimate of xk in the

form of a conditional state density

fek (xk) := f(xk j ỹ k, : : : , ỹ1)
recursively over time using Bayesian inference. Such

a recursive estimator consists of two parts, namely

the prediction step and the filter step. On the one

hand, the prediction step propagates the state estimate

fek¡1(xk¡1) from time step k¡ 1 to the current time step k
by employing the system model (1) resulting in the

predicted state density

f
p
k (xk) := f(xk j ỹk¡1, : : : , ỹ1):

On the other hand, the filter step incorporates a newly

received measurement ỹ
k
into this propagated state esti-

mate f
p
k (xk) with the aid of the measurement model (2).

In nonlinear Kalman filtering, both state densities

are approximated as Gaussian distributions, and the

predicted state density is given by

f
p
k (xk)¼N (xk; x̂pk,Cpk),

with predicted state mean

x̂
p
k =

ZZ
ak(xk¡1,wk)¢

fek¡1(xk¡1) ¢fwk (wk)dxk¡1dwk (3)

and predicted state covariance matrix

C
p
k =

ZZ
(ak(xk¡1,wk)¡ x̂pk) ¢ (ak(xk¡1,wk)¡ x̂pk)T

¢fek¡1(xk¡1) ¢fwk (wk)dxk¡1dwk, (4)

1The subscript k denotes the discrete time step, matrices are printed

bold face, and vectors are underlined.
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respectively. Furthermore, the, in general intractable,

Bayesian measurement update is also approximated to

obtain the posterior Gaussian state density

fek (xk)¼N (xk; x̂ek,Cek),
with posterior state mean

x̂
e
k = x̂

p
k +C

x,y
k ¢ (Cyk)¡1 ¢ (ỹ k ¡ ŷ k) (5)

and posterior state covariance matrix

Cek =C
p
k ¡Cx,yk ¢ (Cyk)¡1 ¢ (Cx,yk )T, (6)

which are the well-known Kalman Filter formulas [8].

In order to obtain (5) and (6), the measurement mean

ŷ
k
=

ZZ
hk(xk,vk) ¢fpk (xk) ¢fvk (vk)dxkdvk, (7)

the measurement covariance matrix

C
y
k =

ZZ
(hk(xk,vk)¡ ŷ k) ¢ (hk(xk,vk)¡ ŷ k)T¢

f
p
k (xk) ¢fvk (vk)dxkdvk, (8)

as well as the cross-covariance matrix of predicted state

and measurement

C
x,y
k =

ZZ
(xk ¡ x̂pk) ¢ (hk(xk,vk)¡ ŷ k)T¢

f
p
k (xk) ¢fvk (vk)dxkdvk (9)

are required.

Unfortunately, computing the above integrals in

closed-form is only possible for a small set of system

and measurement models, but it yields the best possible

Kalman Filter for the given models. In all other cases,

numerical integration methods have to be applied. As

we aim for an online estimation technique, the employed

numerical integration has to possess a real-time capable

computational complexity and still deliver adequate inte-

gration results in order to obtain a good recursive state

estimation quality. When looking at the five integrals, it

can be seen that the last terms are always a product of

two independent Gaussian densities, namely

fek¡1(xk¡1) ¢fwk (wk) =

N
μ·
xk¡1
wk

¸
;

·
x̂
e
k¡1
ŵ k

¸
,

·
Cek¡1 0

0 Cwk

¸¶
(10)

for the prediction and

f
p
k (xk) ¢fvk (vk) =N

μ·
xk

vk

¸
;

·
x̂
p
k

v̂ k

¸
,

·
C
p
k 0

0 Cvk

¸¶
(11)

for the measurement update, respectively. By exploit-

ing this fact, an efficient, i.e., fast but still accurate,

computation of the integrals is possible. This can be

done by replacing the occurring Gaussian distributions

(10) and (11) with proper Dirac mixture densities, that

is, sample-based density representations, and evaluating

the system model (1) and measurement model (2) using

these samples. As a result, emphasis is directly put on

the important regions of the state space, and the regions

covered by only a small portion of the probability mass

of the Gaussian densities are neglected. This approach

leads to the class of Linear Regression Kalman Filters

(LRKFs).

A Dirac mixture approximation of a given proba-

bility density function fk(sk) comprising Mk samples

with sample positions sk,i and sample weights ®k,i is

defined as
MkX
i=1

®k,i ¢ ±(sk ¡ sk,i), (12)

where ±(¢) denotes the Dirac delta distribution and the
sample weights must sum up to one. Such an approxi-

mation can be computed in several ways, e.g., by sim-

ply using random sampling or deterministic approaches

such as done by the UKF.

Now, we assume that an approximation of the Gaus-

sian joint density (10) comprisingMk samples with posi-

tions [xTk¡1,i, w
T
k,i]

T and weights ®k,i is at hand. By replac-

ing the Gaussian joint density in the integrals (3) and

(4) with this Dirac mixture approximation, and using

the Dirac sifting property, we obtain an approximation

for the predicted state mean

x̂
p
k ¼

MkX
i=1

®k,i ¢ ak(xk¡1,i,wk,i)

and the predicted state covariance matrix

C
p
k ¼

MkX
i=1

®k,i ¢ (ak(xk¡1,i,wk,i)¡ x̂pk)

¢ (ak(xk¡1,i,wk,i)¡ x̂pk)T:
The same procedure is used for computing the integrals

required for the measurement update. First, a Dirac mix-

ture approximation of the Gaussian (11) encompassing

Mk samples with positions [x
T
k,i, v

T
k,i]

T and weights ®k,i is

computed. Second, by replacing the joint Gaussian with

its Dirac mixture approximation in the three integrals

(7), (8), and (9), and using once more the Dirac sifting

property, we get an approximation for the measurement

mean

ŷ
k
¼

MkX
i=1

®k,i ¢ hk(xk,i,vk,i),

the measurement covariance matrix

C
y
k ¼

MkX
i=1

®k,i ¢ (hk(xk,i,vk,i)¡ ŷ k)

¢ (hk(xk,i,vk,i)¡ ŷ k)T,
and the cross-covariance matrix

C
x,y
k ¼

MkX
i=1

®k,i ¢ (xk,i¡ x̂pk) ¢ (hk(xk,i,vk,i)¡ ŷ k)T:
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It should be noted that the number of samples for the

time and the measurement update do not have to be

the same. Moreover, both Dirac mixture approximations

can be completely different in the way they are obtained,

although this is usually not the case.

III. THE SMART SAMPLING KALMAN FILTER WITH
SYMMETRIC SAMPLES

In [22], the authors proposed an approach based

on the Localized Cumulative Distribution (LCD) to op-

timally approximate Gaussian distributions with a set

of equally weighted samples. This is done by trans-

forming the approximation problem into an optimiza-

tion problem. Unfortunately, such optimization is very

time-consuming, and hence, not suitable for online non-

linear filtering. To enable the LCD approach for online

filtering, it is used to optimally sample only a stan-

dard normal distribution offline (before filter usage) and

transform these samples online (during filter usage) to

any required Gaussian with the aid of the Mahalanobis

transformation [25]. This is the fundamental basis for

the S2KF [19]. But other nonlinear estimators such as

the Progressive Gaussian Filter also make use of this

Gaussian sampling technique.

However, the current LCD approach can, and will,

arrange the samples in an arbitrary way to optimally

approximate a standard normal distribution. More pre-

cisely, it does not take the point symmetry of the

standard normal distribution explicitly into account so

that not all samples have point-symmetric counterparts.

Here, we extend the LCD approach to approximate an

N-dimensional standard normal distribution with a set

of point-symmetric and equally weighted samples. More-

over, we improve the numerical stability of the LCD

approach when dealing with Gaussian densities to al-

low approximations of very high dimensions. This new

optimal point-symmetric sampling is then used to obtain

a symmetric version of the S2KF.

The use of point-symmetric samples offers several

benefits. First, the proposed sampling reflect the point

symmetry of the standard normal distribution allowing

for more accurate estimation results as will be seen

in the evaluation. Second, the used point symmetry

makes it possible to capture all odd moments of the

standard normal distribution exactly (a proof is given

in Appendix A). Finally, although not the actual goal of

the proposed sampling, the required number of sample

positions, i.e., the parameters, that have to be optimized

is reduced by half, and hence, speeds up the offline

sample computation.

Besides point symmetry, other symmetries such as

axial symmetry could also be exploited. However, this

would prevent us from using an arbitrary number of

samples and would limit the optimizer’s control over

the sample placement.

In the following, we first define the set of parameters

describing point-symmetric Dirac mixtures in Sec. III-

A. These parameters have then to be optimized in or-

der to approximate a standard normal distribution in

an optimal way. This requires the distance measures

between a standard normal distribution and the point-

symmetric Dirac mixtures given in Sec. III-B. Subse-

quently, the gradients of the distance measures are de-

rived in Sec. III-C. Finally, in Sec. III-D, we give a

procedure to compute point-symmetric Dirac mixture

approximations of standard normal distributions based

on the introduced distance measures and their gradi-

ents.

A. Point-Symmetric Dirac Mixtures

First, we have to modify the generic Dirac mixture

(12) to obtain a point-symmetric one. This is performed

by distinguishing between an even and odd number

of samples. For the case of 2L samples with L 2 N+,
that is, the even case, we place the samples point-

symmetrically around the state space origin yielding the

equally weighted Dirac mixture

1

2L

LX
i=1

±(s¡ s i) + ±(s+ s i), (13)

with sample positions s i and ¡s i. For 2L+1 samples,
the odd case, we additionally place a sample fixed at

the state space origin and obtain the Dirac mixture

1

2L+1

Ã
±(s)+

LX
i=1

±(s¡ s i) + ±(s+ s i)
!
: (14)

This preserves the desired point symmetry. As the posi-

tion of the additional sample in the odd case is constant,

the set of parameters

S := fs1, : : : ,sLg
is the same for both Dirac mixtures. That is, S de-

scribes the entire set of 2L or 2L+1 samples form-

ing a density approximation although S contains only

half of the sample positions. Given a set S, the full set

of point-symmetric samples is fs1,¡s1, : : : ,sL,¡sLg or
f0,s1,¡s1, : : : ,sL,¡sLg, depending on whether the even
or the odd case is considered. Moreover, the Dirac

mixtures specified in (13) and (14) are always point-

symmetric no matter what values S will take.

For example, the UKF sample set comprising 2L or

2L+1 (equally weighted) samples [10] is a special case

of these point-symmetric Dirac mixtures. With an even

number of samples, it has the parametrization

s i =
p
N ¢ ei 8i 2 f1, : : : ,Ng,

where ei denotes the unit vector along the ith dimension.

In the odd case, the parametrization is

s i =
p
N +0:5 ¢ ei 8i 2 f1, : : : ,Ng,
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that is, the sample spread is larger due to the additional

point mass at the state space origin.

B. Distance Measures

Our goal is to determine the set of parameters S for

the above Dirac mixtures so that they approximate a

multivariate standard normal distribution in an optimal

way. This requires a distance measure between the

involved continuous and discrete distributions. As the

classical cumulative distribution function is not suitable

for the multi-dimensional case [26], we utilize the LCD

approach in the same way as the asymmetric S2KF.

DEFINITION III.1 (Localized Cumulative Distribution

[19]).

Let f(s) be an N-dimensional density function. The

corresponding Localized Cumulative Distribution is de-

fined as

F(m,b) =

Z
RN
f(s) ¢K(s¡m,b)ds,

with m 2 RN , b 2 R+, and the symmetric and integrable
kernel

K(s¡m,b) = exp
μ
¡1
2

ks¡mk22
b2

¶
:

Here, m characterizes the location of the kernel and b

its size.

The LCD of an N-dimensional standard normal dis-

tribution is an integral of a product of two (unnor-

malized) Gaussians. By using the fact that the prod-

uct of two Gaussian distributions is also an unnormal-

ized Gaussian and the integral over a probability density

equals one, its LCD is obtained by [22]

FN (m,b) =
Z
RN
N (s;0,IN) ¢ (2¼)N=2bNN (s;m,b2IN)ds

=
(2¼)N=2bN

(2¼)N=2
pj(1+ b2)IN j exp

μ
¡1
2

kmk22
(1+b2)

¶

=

μ
b2

1+ b2

¶N=2
exp

μ
¡1
2

kmk22
(1+ b2)

¶
,

where IN denotes the identity matrix of dimension N.

Based on the Dirac sifting property, the LCD of the

Dirac mixture comprising an even number of samples

is given by

Fe± (S,m,b) =
1

2L

Ã
LX
i=1

exp

μ
¡1
2

ks i¡mk22
b2

¶

+ exp

μ
¡1
2

k¡ s i¡mk22
b2

¶¶
,

whereas the LCD of the odd Dirac mixture is

Fo± (S,m,b) =
1

2L+1

μ
exp

μ
¡1
2

kmk22
b2

¶

+

LX
i=1

exp

μ
¡1
2

ks i¡mk22
b2

¶

+ exp

μ
¡1
2

k¡ s i¡mk22
b2

¶¶
:

To compare the standard normal LCD with a Dirac

mixture LCD, we use the modified Cramér-von Mises

distance defined as follows.

DEFINITION III.2 (Modified Cramér—von Mises Dis-

tance).

The modified Cramér—von Mises (CvM) distance D

between two LCDs F(m,b) and F̃(m,b) is given by

D(F, F̃) =

Z 1

0

w(b)

Z
RN
(F(m,b)¡ F̃(m,b))2dmdb,

with weighting function

w(b) =

½
¼¡N=2b1¡N , b 2 (0,bmax]

0, elsewhere:

The new term ¼¡N=2 in the weighting function w(b)
(in contrast with the definition in [19]) is a consequence

of the involved LCDs FN , F
e
± , and F

o
± . Without this

term, the modified CvM distances between these LCDs

would be unbounded for an increasing dimension N,

which in turn would make the distances numerically

unstable. This improvement now allows the S2KF to

compute Dirac mixture approximations for very high

state dimensions, e.g., N > 200.

Note that the LCD approach is closely related to the

concept used in regularized particle filtering [3], [27].

Here, a kernel with a given bandwidth, i.e., kernel

size, is convolved with a set of weighted particles,

i.e., a Dirac mixture, to improve the sample diversity.

Nevertheless, the LCD is also applied to a continuous

density to make it comparable with a discrete one.

Additionally, we also integrate over all kernel locations

m and kernel sizes b.

First, we consider the distance between the standard

normal distribution and the Dirac mixture comprising

an even number of samples, and then extend the results

to the odd case. The distance D(FN ,F
e
± ) can be split into

three terms according to

D(FN ,F
e
± ) =D

e(S) =De1¡2De2(S)+De3(S),
with the sample-independent part

De1 =

Z bmax

0

b

μ
b2

1+b2

¶N=2
db,

THE SMART SAMPLING KALMAN FILTER WITH SYMMETRIC SAMPLES 75



and the sample-dependent terms

De2(S) =

Z bmax

0

2b

2L

μ
2b2

1+2b2

¶N=2

¢
LX
i=1

exp

μ
¡1
2

ks ik22
(1+2b2)

¶
db,

and

De3(S) =

Z bmax

0

2b

(2L)2

LX
i=1

LX
j=1

exp

Ã
¡1
2

ks i¡ sjk22
2b2

!

+exp

Ã
¡1
2

ks i+ sjk22
2b2

!
db:

The proof is given in Appendix B. Note that the inte-

gration over b is bounded by bmax due to the support of

the weighting function w(b). To speed up the distance

computation, the following theorem can be applied.

THEOREM III.1. For a given bmax, the following expres-

sion for De3(S) can be obtained

De3(S) =
2

(2L)2

LX
i=1

LX
j=1

b2max
2

Ã
exp

Ã
¡1
2

ks i¡ sjk22
2b2max

!

+ exp

Ã
¡1
2

ks i+ sjk22
2b2max

!!

+
1

8

Ã
ks i¡ sjk22Ei0

Ã
¡1
2

ks i¡ sjk22
2b2max

!

+ ks i+ sjk22Ei0
Ã
¡1
2

ks i+ sjk22
2b2max

!!
,

where Ei0(x) is defined as

Ei0(x) :=

½
0, if x= 0

Ei(x), elsewhere

and Ei(x) denotes the exponential integral

Ei(x) :=

Z x

¡1

et

t
dt:

PROOF The proof is given in Appendix C.

Now, we consider the case of an odd number of

samples. Like in the even case, D(FN ,F
o
± ) can be split

into three terms

D(FN ,F
o
± ) =D

o(S) =Do1 ¡ 2Do2(S)+Do3(S):
The first part Do1 is also independent of the samples S

and identical to its even counterpart, i.e.,

Do1 =D
e
1:

The sample-dependent terms Do2(S) and D
o
3(S) can be

expressed in terms of the even case plus additional

terms due to the fixed sample at the state space origin

according to

Do2(S) =
2L

2L+1
De2(S) +

Z bmax

0

b

2L+1

μ
2b2

1+2b2

¶N=2
db

and

Do3(S) =
(2L)2

(2L+1)2
De3(S)+

b2max
2(2L+1)2

+

Z bmax

0

4b

(2L+1)2

LX
i=1

exp

μ
¡1
2

ks ik22
2b2

¶
db:

The proof is given in Appendix D. Like for the even

case, also the computation of the odd case can be sped

up by using the following theorem.

THEOREM III.2. For a given bmax, the following expres-

sion for Do3(S) can be obtained

Do3(S) =
(2L)2

(2L+1)2
De3(S)+

b2max
2(2L+1)2

+
4

(2L+1)2

LX
i=1

b2max
2
exp

μ
¡1
2

ks ik22
2b2max

¶

+
1

8
ks ik22Ei0

μ
¡1
2

ks ik22
2b2max

¶
,

where Ei0(¢) is defined as in Theorem III.1.
PROOF The proof is given in Appendix E.

The extra terms in Do2(S) and D
o
3(S), compared to the

even case, reflect the influence of the additional sample,

placed at the state space origin, on the distance between

the Dirac mixture and the standard normal distribution.

The result is that the point mass of the additional

sample will cause the other samples to have a slightly

larger spread compared to a sample set without the

additional sample at the state space origin. Concerning

the above mentioned numerical stability, we also give

a proof for the boundedness of both distances De(S)

and Do(S) in Appendix F. Note also that, like the

standard normal distribution, both distance measures

De(S) and Do(S) are invariant under rotation/reflection

(see Appendix G).

The proposed distance measures can be seen as

constrained versions of the asymmetric LCD distance

measure. Consequently, a Dirac mixture minimizing the

new distance measures can be suboptimal with respect

to the asymmetric distance measure. However, the actual

goal is to approximate a standard normal distribution

as best as possible, not to minimize certain distance

measures. More precisely, the term “best” induces the

utilized distance measure, and in addition to [22], here

“best” also means to preserve the point symmetry of

the standard normal distribution. This, in turn, requires

new distance measures in the form of the proposed

measures De(S) and Do(S).

76 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 1 JUNE 2016



C. Gradients of the Distance Measures

In order to optimize the parameters S of a given

Dirac mixture, we chose to apply a gradient-based it-

erative optimization procedure. This requires the par-

tial derivatives of the two distance measures De(S) and

Do(S) with respect to the set of parameters S. For the

even case, the partial derivatives are

@De(S)

@s(d)i
=¡2@D

e
2(S)

@s(d)i
+
@De3(S)

@s(d)i
8d 2 f1, : : : ,Ng,

with its two terms

@De2(S)

@s
(d)
i

=¡s
(d)
i

2L

Z bmax

0

2b

(1+2b2)

μ
2b2

1+2b2

¶N=2

¢ exp
μ
¡1
2

ks ik22
(1+2b2)

¶
db,

and

@De3(S)

@s(d)i
=¡ 2

(2L)2

Z bmax

0

1

b

¢
LX
j=1

(s(d)i ¡ s(d)j )exp
Ã
¡1
2

ks i¡ sjk22
2b2

!

+(s(d)i + s(d)j )exp

Ã
¡1
2

ks i+ sjk22
2b2

!
db:

(15)

Analogous to De3(S), the following theorem can be used

for the computation of its partial derivatives.

THEOREM III.3 For a given bmax, the following expres-

sion for @De3(S)=@s
(d)
i can be obtained

@De3(S)

@s(d)i
=

1

(2L)2

LX
j=1

(s
(d)
i ¡ s(d)j )Ei0

Ã
¡1
2

ks i¡ sjk22
2b2max

!

+(s(d)i + s(d)j )Ei0

Ã
¡1
2

ks i+ sjk22
2b2max

!
,

where Ei0(¢) is defined as in Theorem III.1.
PROOF The proof is given in Appendix H.

As with the distance Do(S) itself, its partial deriva-

tives

@Do(S)

@s(d)i
=¡2@D

o
2(S)

@s(d)i
+
@Do3(S)

@s(d)i
8d 2 f1, : : : ,Ng

can be obtained in terms of the even case plus additional

terms according to

@Do2(S)

@s(d)i
=

2L

2L+1

@De2(S)

@s(d)i

and

@Do3(S)

@s(d)i
=

(2L)2

(2L+1)2
@De3(S)

@s(d)i

¡ 2s(d)i
(2L+1)2

Z bmax

0

1

b
exp

μ
¡1
2

ks ik22
2b2

¶
db:

To ease the computation of the partial derivatives of

Do3(S), the next theorem can be used.

THEOREM III.4 For a given bmax, the following expres-

sion for @Do3(S)=@s
(d)
i can be obtained

@Do3(S)

@s(d)i
=

(2L)2

(2L+1)2
@De3(S)

@s(d)i

+
s
(d)
i

(2L+1)2
Ei0

μ
¡1
2

ks ik22
2b2max

¶
,

where Ei0(¢) is defined as in Theorem III.1.
PROOF The proof is given in Appendix I.

D. The S2KF with Symmetric Samples

Based on the introduced distance measures De(S)

and Do(S), and their partial derivatives, we can compute

a Dirac mixture approximation of a standard normal dis-

tribution comprising an arbitrary number of optimally

placed point-symmetric samples. As this amounts to a

simple shape approximation, it does not guarantee an

identity sample covariance matrix of the resulting Dirac

mixture, a property of key importance in Kalman fil-

tering. Thus, we will additionally constrain the possible

resulting Dirac mixtures with this requirement in mind.

For the sample computation, the remaining integrals

over b in the distance measures and their gradients are

computed with the aid of an adaptive numerical in-

tegration scheme, namely the 31-point Gauss-Kronrod

quadrature [28]. Furthermore, we utilize the low mem-

ory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton

optimization (L-BFGS) [29]. The low memory variant

is essential here as it avoids the explicit computation

and storage of the inverse Hessian matrix of the dis-

tance measures. The set of Dirac mixture parameters S

encompasses L£N single parameters to be optimized.

Hence, the (inverse) Hessian matrix of De(S) or Do(S)

would contain (L£N)2 entries. When now assuming

only a linear increase in the number of samples for an

increasing dimension N, that is, 2L= C ¢N, with a linear
factor C, the size of the Hessian grows with O(N4). This
problem is illustrated in Fig. 1 for two different linear

factors (5 and 10). It can be seen that approximating

a 100-dimensional standard normal distribution with a

thousand samples would require a Hessian of ¼ 20 giga-
bytes, and already a Hessian of over 4 gigabytes in case

of only 500 samples. Consequently, using the inverse

Hessian of De(S) or Do(S) directly in the optimization

is intractable.

The computation of the point-symmetric samples

works as follows.

1) Choose the desired number of samplesM to approx-

imate the N-dimensional standard normal distribu-

tion.

2) Depending on the number of samples M, the even

distance measure De(S) or the odd distance measure

Do(S) is selected.
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Fig. 1. Size of the Hessian matrix for different dimensions and

number of samples.

3) A proper maximum kernel width bmax has to be se-

lected. Generally speaking, the larger the dimension

N is the larger bmax has to be in order to consider all

sample positions during the optimization, and thus,

to get a meaningful approximation. Empirically, we

have found that a value of 70 is large enough for up

to N · 1000 dimensions.
4) The initial parameters of the point-symmetric Dirac

mixture required by the L-BFGS procedure, i.e., the

set S comprising L= bM=2c sample positions, is
obtained by drawing L samples randomly from an

N-dimensional standard normal distribution.

5) The L-BFGS procedure optimizes the point-sym-

metric Dirac mixture parameters such that the dis-

tance measure is minimized, i.e., it moves the ini-

tial L samples (and implicitly their point-symmetric

counterparts) in the state space to approximate the

standard normal distribution in an optimal way. The

point-symmetric Dirac mixture parameters resulting

from the L-BFGS procedure are denoted as fzigLi=1.

Fig. 2. Different LCD-based approximations of a two-dimensional standard normal distribution with samples s i (blue), point-symmetric

counterparts ¡s i (orange), fixed sample at the state space origin in the odd case (green), and 95% confidence interval of the standard normal

distribution (gray). (a) Symmetric approach with 12 samples. (b) Symmetric approach with 13 samples. (c) Asymmetric approach with

12 samples.

6) These parameters finally have to undergo a transfor-

mation so that the resulting Dirac mixture captures

the identity covariance matrix of the standard normal

distribution as much as possible. The transformation

is done by first computing the sample covariance

matrix

Cz =
2

M

LX
i=1

zi ¢ zTi ,

second computing the Cholesky decomposition

Cz = LLT,

and third transforming the parameters according to

s i = L
¡1 ¢ zi, 8i 2 f1, : : : ,Lg:

The proof of the transformation is given in Ap-

pendix J.

7) The desired set of point-symmetric samples finally

approximating the standard normal distribution is

either fs1,¡s1, : : : ,sL,¡sLg or f0,s1,¡s1, : : : ,sL,¡sLg,
depending on whether M is even or odd.

Experimentally, we have found that in situations

where the covariance matrix was added as an explicit

constraint to the optimization procedure, the sample co-

variance matrix of the resulting Dirac mixture was less

accurate compared to the proposed transformation ap-

proach. Moreover, the constraint made the optimization

procedure much more time-consuming. Consequently,

we dropped this approach in favor of the transformation

approach.

The results of different LCD-based approximations

of a two-dimensional standard normal distribution are

depicted in Fig. 2. On the one hand, Figures 2(a)

and 2(b) show approximations using the new point-

symmetric sampling scheme comprising 12 and 13 sam-

ples, respectively. The point-symmetric arrangement

around the state space origin can be clearly seen. Note
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Fig. 3. Two different approximation results with 14 samples of a

two-dimensional standard normal distribution.

also the subtle difference in the sample spread of the

samples near the state space origin between Fig. 2(a)

and Fig. 2(b). This is caused by the additional point

mass from the fixed sample at the state space origin.

On the other hand, Fig. 2(c) shows an approximation

based on the classical asymmetric sampling scheme also

comprising 12 samples. Here, the optimization proce-

dure can position all samples individually, and hence,

the samples are not necessarily arranged in a point-

symmetric way like in the depicted case.

We also have to point out that, due to the random

initialization of the L-BFGS procedure and the rota-

tion/reflection invariance of the distance measures, the

computed samples are not unique. That is, different ap-

proximations with the same number of samples can ei-

ther differ only in a rotation/reflection or can have a

completely different sample placement. For example,

Fig. 3 shows two different approximation results for

the same number of samples where the difference is

not only a rotation or reflection. Concerning the time

needed for the computation, on an Intel Core i7-3770

CPU, our implementation in C++ [30] takes about 4

minutes to approximate a 500D standard normal distri-

bution with 10,000 samples and 35 minutes to approxi-

mate a 1000D standard normal distribution with 20,000

samples.

Using the above described optimal point-symmetric

sampling of a standard normal distribution, we obtain a

symmetric version of the S2KF. Furthermore, to avoid

a re-computation on every program start, we store any

computed Dirac mixture approximation of a standard

normal distribution persistent in the file system for later

reuse. This mechanism is called the Sample Cache and

was already used by the asymmetric S2KF.

IV. EVALUATION

In this Section, we want to compare the new point-

symmetric sampling scheme of the S2KF with its asym-

metric version and other state-of-the-art LRKFs. First,

we take a closer look at the approximation of higher-

order moments of standard normal distributions. Then,

the advantage of using a point-symmetric sampling

scheme, and hence, the new version of the S2KF, is dis-

cussed by means of a simple symmetric measurement

equation. Finally, extended object tracking is performed

to compare the recursive state estimation quality of var-

ious state-of-the-art LRKFs.

A. Moment Errors of a Standard Normal Distribution

First, we investigate how well the employed sam-

pling schemes of state-of-the-art LRKFs approximate

the moments of a standard normal distribution. Thus,

we are interested in the expectation values

E[xn11 x
n2
2 ¢ ¢ ¢xnNN ] =

Z
RN
xn11 x

n2
2 ¢ ¢ ¢xnNN N (x;0,IN)dx,

with
NX
i=1

ni =m, 0· ni ·m

for different dimensions N and moment orders m. This

has the advantage of being independent of a concrete

system and measurement model. For given N and m,

the number of possible combinations JN,m to select the

values for ni is equal to the number of terms in a

multinomial sum with N summands raised to the power

m, that is,

JN,m =

μ
m+N ¡ 1
N ¡ 1

¶
=
(m+N ¡ 1)!
(N ¡ 1)!m! :

Hence, a moment is characterized by JN,m distinct val-

ues.

As all state-of-the-art LRKFs employ a point-sym-

metric sampling scheme and capture mean and covari-

ance matrix, we focus on higher-order even moments.

More precisely, we take a look at the 4th, 6th, and 8th

moment, i.e., m 2 f4,6,8g. In many practical applica-
tions, 3D and 6D Gaussian distributions are of special

interest. For example, the location and orientation in 2D

or the position in 3D can be estimated using a three-

dimensional system state. When additionally consider-

ing velocities in the 2D case or the orientation in the

3D case, a six-dimensional state is required. Thus, we

chose to study the approximations of standard normal

distributions with these two dimensions, i.e., N 2 f3,6g.
We compare the new point-symmetric S2KF, the

UKF with equally weighted samples, the RUKF, the

fifth-degree CKF, and the GHKF with two quadrature

points. To assess the different LRKF sampling tech-

niques, for each dimension N and moment m we com-

pute a normalized moment error according tovuut 1

JN,m

JN ,mX
j=1

(Etruej ¡ELRKFj )2, (16)

where Ej denotes one of the JN,m possible combinations
for the mth moment, the superscript “true” the true mo-

ment value and “LRKF” the LRKF sampling estimate.

It is important to note that the moments computed with

samples are not invariant under rotation. Thus, the same
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holds for the normalized moment error (16). To mit-

igate this, we randomly rotate the sample sets of the

UKF, fifth-degree CKF, and GHKF 100 times and build

the average moment error. Regarding the S2KF and the

RUKF, they do not have unique sample sets, and hence,

for both filters 100 sample sets are generated and the av-

erage moment errors are computed as well. Moreover,

the S2KF and the RUKF are evaluated with different

number of samples. Note that we do not compare the

asymmetric S2KF here due to its errors in the odd mo-

ments. Those errors will likely reduce the errors in even

moments. Because of this, a moment-based comparison

against the other LRKFs is not meaningful.

The results are depicted in Figures 4 and 5. As the

UKF, the fifth-degree CKF, and the GHKF have a fixed

number of samples, they are depicted as a bar at their

respective employed number of samples. Additionally,

for all filters their respective minimum and maximum

moment errors are also depicted. The average moment

errors of the UKF and the S2KF are nearly identical

for the case when both filters use the same number of

samples. This is due to the fact that both sample sets are

equally weighted and the S2KF places its samples like

the UKF (except for the rotation) as this minimize the

utilized distance measure. The RUKF, however, scales

the utilized UKF sample sets randomly. Consequently,

its sample set is not necessarily equally weighted like for

the UKF and the S2KF, and hence, their moment errors

differ. Considering all average moment errors, the S2KF

delivers always smaller errors than the RUKF and the

GHKF (for the same number of samples). The sampling

of the fifth-degree CKF is the only one that matches

the 4th moment exactly. This is based on the fact that

the spherical-radial rule of the fifth-degree CKF has a

5th-degree accuracy [13]. Regarding the spread of the

moment errors, it can be seen that the S2KF and UKF

have nearly the same variability in the errors, and that

the maximum moment errors of the GHKF exceed the

ones of the S2KF. Furthermore, the S2KF has a much

smaller variability in the errors than the RUKF. Most

times the errors of the S2KF are as small as the smallest

errors of the RUKF or are even smaller, especially for

the 6D standard normal distribution.

B. Symmetric Measurement Equations

To illustrate the advantages of using a point-sym-

metric sampling scheme, we consider the two-dimen-

sional system state

x= [a, b]T

combined with the scalar and symmetric measurement

equation

y = h(x,v) =
p
a2 +b2 + v,

where v is zero-mean Gaussian noise with variance

¾2 = 0:01. Hence, we measure a noisy distance from

the system state x to the state space origin. Such a

symmetric measurement equation arises for example in

[31], [32].

We assume that the true system state is

xtrue = [1, 2]
T,

and our goal is to estimate it using a Nonlinear Kalman

Filter initialized with mean and covariance matrix

x̂
p
= [0, 0]T, Cp = diag(4,0:5):

The setup is illustrated in Fig. 6. From the the esti-

mator’s perspective, the received measurement ỹ could

stem from any state located on the gray circle around the

prior mean, not only xtrue. Hence, a Nonlinear Kalman

Filter cannot gain any new information about the hid-

den system state from the measurement ỹ. This situation

is reflected in a zero cross-covariance matrix of state

and measurement Cx,y in (5) and (6). Consequently, the
posterior state estimate (mean and covariance matrix)

equals the prior, no matter what prior uncertainty we

have.

Now, we try to reproduce this result when using

LRKFs. More precisely, we compare the asymmetric

S2KF, its new point-symmetric version (both using 11

samples), and the UKF. We perform R = 100 Monte

Carlo runs. In each run, we reset the initial state es-

timate, and simulate a noisy measurement ỹ to perform

one measurement update. Moreover, both S2KF variants

compute a new set of samples approximating a stan-

dard normal distribution in every Monte Carlo run. We

compute the Root Mean Square Error (RMSE) for the

posterior mean vuut 1

R

RX
r=1

kx̂er ¡ x̂pk22,

where x̂
e
r denotes the estimated posterior mean of run

r. Additionally, we compute the RMSE of the posterior

covariance matrixvuut 1

R

RX
r=1

kCer ¡Cpk2,

where Cer denotes estimated posterior covariance matrix
of run r and k ¢ k the Frobenius norm.
The results of the evaluation are depicted in Fig. 7. It

can be seen that the UKF and the point-symmetric S2KF

do not have any errors. This can be explained with their

point-symmetric sampling scheme. More precisely, the

cross-covariance matrix is computed correctly accord-

ing to

Cx,y =
1

2L+1

·
0

0

¸³
ŷ¡
p
(ai)

2 + (bi)
2

´
+

1

2L+1

LX
i=1

μ·
ai

bi

¸
¡
·
ai

bi

¸¶³
ŷ¡
p
(ai)

2 + (bi)
2

´
=

·
0

0

¸
,
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Fig. 4. Moment errors of a 3D standard normal distribution. (a) Average errors 4th moment. (b) Average errors 6th moment. (c) Average

errors 8th moment. (d) Min/Max errors 4th moment. (e) Min/Max errors 6th moment. (f) Min / Max errors 8th moment.

Fig. 5. Moment errors of a 6D standard normal distribution. (a) Average errors 4th moment. (b) Average errors 6th moment. (c) Average

errors 8th moment. (d) Min/Max errors 4th moment. (e) Min/Max errors 6th moment. (f) Min/Max errors 8th moment.

where ŷ is the measurement mean, L= 2 for the UKF,

and L= 5 for the point-symmetric S2KF. For the asym-

metric sampling scheme, however, point-symmetric

samples cannot be guaranteed, and hence, the cross-

covariance matrix Cx,y do not necessarily evaluates to

zero. In such a case, it introduces (theoretically non-

existent) correlations between the measurement and the

system state. As a consequence, the asymmetric S2KF

slightly changes its state estimate mistakenly. Over time,

those small errors can accumulate to non-negligible es-
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Fig. 6. Symmetric measurement model with prior mean (orange),

prior uncertainty (blue), true system state (green).

Fig. 7. Estimation errors for symmetric measurement model.

timation errors or even result in filter divergence. The

other estimators do not have such a problem due to

their point-symmetric sampling. So even such a sim-

ple scenario demonstrates the advantages of the new

point-symmetric sampling scheme of the S2KF.

C. Extended Object Tracking

Now, we consider estimating the pose and extent of a

cylinder in 3D based on a Random Hypersurface Model

(RHM) [33], [34]. The system state is composed of po-

sition ck = [c
x
k, c

y
k, c

z
k]
T and velocity º k = [º

x
k, º

y
k , º

z
k]
T,

rotation angles Á
k
= [Áxk, Á

y
k]
T and their velocities !k =

[!xk, !
y
k]
T, as well as the cylinder radius rk and length lk

according to

xk = [c
T
k ,º

T
k ,Á

T

k
,!Tk ,rk, lk]

T:

The temporal evolution of the cylinder is modeled

with a constant velocity model

xk =Axk¡1 +w,

with system matrix

A=

26666664

I3 I3 0 0 0

0 I3 0 0 0

0 0 I2 I2 0

0 0 0 I2 0

0 0 0 0 I2

37777775
and zero-mean Gaussian white noise w with covariance

matrix

Cw = diag(10¡6I3,10
¡4I3,10

¡10I2,10
¡5I2,10

¡4I2):

TABLE I

LRKF settings for the measurement update.

LRKF Number of samples

Fifth-degree CKF 2 ¢ 922 +1 = 16,929

RUKF (with 5 iterations) 5 ¢ (2 ¢ 92)+1 = 921

RUKF (with 20 iterations) 20 ¢ (2 ¢ 92)+1 = 1,841

Asymmetric S2KF Freely selectable 461

Asymmetric S2KF Freely selectable 1,841

Symmetric S2KF Freely selectable 461

Symmetric S2KF Freely selectable 1,841

This linear model allows to compute the prediction step

analytically for all LRKFs.

A measurement is a noisy point

ỹ
k
= [ỹxk, ỹ

y
k, ỹ

z
k]
T

from the cylinder’s surface. It is related to the system

state by means of the implicit nonlinear measurement

equation

0 = h(xk, ỹ k,v,s) =

264(m
x
k)
2 + (m

y
k)
2¡ r2k

mzk ¡ s ¢ lk
(mzk ¡ s ¢ lk)2

375 , (17)

where

mk = (R(Á
y
k) ¢R(Áxk))¡1(ỹ k ¡ v¡ ck),

and zero-mean Gaussian white noise v with covari-

ance matrix Cv = 0:01 ¢ I3 and multiplicative white noise
s» U(¡0:5,0:5).2 Furthermore, R(¢) denotes a 3D rota-
tion matrix around the respective axis. It is important

to note that the measurement equation itself depends

on the received measurement ỹ
k
, and the estimator only

takes the so-called pseudo measurement 0 as input. The

reason for this is that the proposed measurement model

tries to minimize the Euclidean distance between the

received measurements ỹ
k
and the cylinder’s surface,

and thus, generates measurements of value zero in the

optimal case. Note also that the quadratic term in the last

row of (17) is necessary when dealing with multiplica-

tive noise in combination with Kalman Filters [33], [35].

At each time step, we receive a set of 20 measure-

ments
Yk = fỹ(1)k , : : : , ỹ

(20)

k
g:

As the order of processing measurements affects the

filtered state estimate, we do not process measurements

sequentially. More precisely, we process all measure-

ments at once, that is, in a single measurement update,

by stacking the measurements into a large measurement

vector according to2664
0

...

0

3775=
2664
h(xk, ỹ

(1)

k
,v(1),s(1))

...

h(xk, ỹ
(20)

k
,v(20),s(20))

3775 :
2As LRKFs can only sample Gaussian distributions, the uniform dis-

tribution will be approximated as a Gaussian using moment matching.
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Fig. 8. Cylinder state (blue) after 360 time steps inclusive its

trajectory (green line) and 20 noisy measurements (orange crosses).

This, in turn, requires a set of 20 ¢ 4 = 80 measure-
ment noise variables in total. Together with the twelve-

dimensional system state, a LRKF has to sample a 92-

dimensional random vector to perform a measurement

update. The number of samples used by the investigated

LRKFs are summarized in Table I. It should be noted

that the GHKF [12] is intractable for the considered

scenario as it relies on a Cartesian product and would

require at least 292 samples. In addition, the UKF is not

able to estimate the cylinder’s height as discussed in

[20], and hence, it is also not evaluated here.

We simulate a nonlinear trajectory of a cylinder

over 500 time steps including rotations in all its three

degrees of freedom as depicted in Fig. 8. Additionally,

the initial cylinder’s length of 1 increases to 1.5 after

200 time steps, and the initial radius of 0.3 increases to

0.4 after further 100 time steps. Finally, at time step 400,

the cylinder’s length shrinks back to 0.5. We perform

100 Monte Carlo runs. In reach run, we initialize the

estimators with

x̂
e
0 = [ĉ

T
,0, : : : ,0,1,2]T

Ce0 = diag(C
c,10¡3I3,10

¡7I4,10
¡2I2),

where ĉ denotes the mean and Cc the covariance

of the first set of measurements Y0. For each in-

vestigated LRKF, we compute the cylinder position

RMSE (Fig. 9(a)), the RMSE of the angle between

the true cylinder longitudinal axis and the estimated

one (Fig. 9(b)), as well as the cylinder volume RMSE

(Fig. 9(c)). Regarding the cylinder position, the RUKF

instances were the filters with the largest errors although

they used the same or twice the number of samples

of the S2KF variants. The asymmetric S2KF was a lit-

tle bit less accurate than the symmetric S2KF and the

fifth-degree CKF. Same results can be observed for the

cylinder orientation error. For the cylinder volume error,

all estimators had noticeable error peaks at time steps

200, 300, and 400. These can be explained with the

abrupt shape changes of the cylinder at the respective

time steps. Furthermore, the fifth-degree CKF is not as

good as in the other estimation quality criteria, and also

the asymmetric S2KF is slightly better than the symmet-

ric S2KF in the beginning.

However, when looking at the runtimes of the re-

spective LRKF measurement updates in Fig. 9(d), the

fifth-degree CKF was the slowest filter due to its large

amount of samples. The runtimes of the asymmetric and

the symmetric S2KF were nearly identical as they used

the same number of samples. For the case when the

RUKF and the S2KF variants used the same number of

samples, the RUKF was slower (11.5 ms compared to

4.5 ms) due to the additional overhead resulting from

the creation of several 92-dimensional random orthog-

onal matrices during each measurement update. All in

all, both S2KF variants were the filters yielding the best

compromise between runtime performance and estima-

tion accuracy. Moreover, this illustrates the advantage

of being able to select the number of samples indepen-

dently of the state/noise dimensions, in contrast to the

fifth-degree CKF.

V. CONCLUSIONS

In this paper, we introduced a new point-symmetric

Gaussian sampling scheme for the Smart Sampling

Kalman Filter. This reflects the point symmetry of the

Gaussian distribution, allows for matching all odd mo-

ments of a standard normal distribution exactly, and im-

proves the estimation quality of the S2KF.

After describing the structure of a sample-based

Kalman Filter, we extended the general Dirac mixture

to a point-symmetric form by distinguishing between an

even and an odd number of samples. Then, we adapted

the existing LCD distance measure to these new Dirac

mixtures and also gave formulas for their respective gra-

dients. These are required by the iterative optimization

procedure which optimizes the Dirac mixture parame-

ters to optimally approximate a multi-dimensional stan-

dard normal distribution with a set of equally weighted

point-symmetric samples. Furthermore, we improved

the numerical stability of the optimization, and together

with the halved number of Dirac mixture parameters

to be optimized, now it is possible to compute optimal

approximations of thousand-dimensional standard nor-

mal distributions comprising tens of thousands of sam-

ples. As the Progressive Gaussian Filter also relies on

the S2KF Gaussian sampling technique, it can directly

use and benefit from the new point-symmetric sampling

scheme.

The evaluations showed that the S2KF can han-

dle symmetric measurement equations now much better

when using the new symmetric sampling scheme. It was

also shown that the S2KF gave the best compromise be-

tween estimation accuracy and filter runtime when deal-

ing with high-dimensional problems such as extended

object tracking. Additionally, this illustrated the advan-

tage of the S2KF being able to use an arbitrary number

of samples independent of the state/noise dimensions.
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Fig. 9. Cylinder tracking simulation results. (a) Cylinder position error. (b) Cylinder orientation error. (c) Cylinder volume error.

(d) Measurement update runtime.

Finally, an open source implementation of the S2KF

including both the new point-symmetric Gaussian sam-

pling and the asymmetric Gaussian sampling is available

in the Nonlinear Estimation Toolbox [30].

APPENDIX

A. Odd Moments of a Point-Symmetric Dirac Mixture

The odd moments of an arbitrary density function

f(x) with x 2RN are defined as

Ef

24 NY
j=1

x
nj
j

35= Z
RN

NY
j=1

x
nj
j ¢f(x)dx,

where

NX
j=1

nj = 2k+1, 0· nj · 2k+1, k 2 N:

For a standard normal distribution, i.e., f(x) =

N (x;0,IN), all odd moments equals zero. Hence, we
have to show that this also holds for a point-symmetric

Dirac mixture density function comprising 2L samples.

By replacing the density f(x) with a point-symmetric

Dirac mixture approximation we obtain

E±

24 NY
j=1

x
nj
j

35= Z
RN

NY
j=1

x
nj
j

1

2L

LX
i=1

±(x¡ xi) + ±(x+ xi)dx

=
1

2L

LX
i=1

0@ NY
j=1

x
nj
i,j +

NY
j=1

(¡xi,j)nj
1A

=
1

2L

LX
i=1

0@ NY
j=1

x
nj
i,j ¡

NY
j=1

x
nj
i,j

1A= 0:
84 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 1 JUNE 2016



The same result can be easily obtained for the case of

an odd number of samples 2L+1 where the additional

sample is placed at the state space origin.

B. Proof of Distance De(S)

By using the facts that the distance De(S) is com-

posed of sums of products of unormalized Gaussians

and their product is also an unnormalized Gaussian as

well as the integral over a Gaussian equals always one,

the three terms of the distance De(S) are obtained ac-

cording to

De1 =

Z bmax

0

1

¼N=2bN¡1

Z
RN

μ
b2

1+b2

¶N
¢ (2¼)N(1+ b2)NN (m;0,(1+b2)IN)2dmdb

=

Z bmax

0

1

¼N=2bN¡1

μ
b2

1+b2

¶N
¼
N
2 (1+ b2)N=2db

=

Z bmax

0

b

μ
b2

1+ b2

¶N=2
db,

De2(S) =

Z bmax

0

1

¼N=2bN¡1

Z
RN

μ
b2

1+ b2

¶N=2
¢ (2¼)N=2(1+ b2)N=2

¢ N (m;0,(1+ b2)IN)
(2¼)N=2bN

2L

¢
LX
i=1

N (m;s i,b2IN)+N (m;¡s i,b2IN)dmdb

=

Z bmax

0

2N¼N=2bN+1

2L

1

(2¼)N=2(1+2b2)N=2

¢
LX
i=1

exp

μ
¡1
2

ks ik22
(1+2b2)

¶

+exp

μ
¡1
2

k¡ s ik22
(1+2b2)

¶
db

=

Z bmax

0

2b

2L

μ
2b2

1+2b2

¶N=2
¢
LX
i=1

exp

μ
¡1
2

ks ik22
(1+2b2)

¶
db,

and

De3(S) =

Z bmax

0

1

¼N=2bN¡1

Z
RN

μ
(2¼)N=2bN

2L

¶2
¢
LX
i=1

N (m;s i,b2IN)+N (m;¡s i,b2IN)

¢
LX
j=1

N (m;sj ,b2IN)+N (m;¡sj ,b2IN)dmdb

=

Z bmax

0

2N¼N=2bN+1

(2L)2
1

(2¼)N=2(2b2)N=2

LX
i=1

LX
j=1

exp

Ã
¡1
2

ks i¡ sjk22
2b2

!
+exp

Ã
¡1
2

ks i+ sjk22
2b2

!

+exp

Ã
¡1
2

k¡ s i¡ sjk22
2b2

!

+exp

Ã
¡1
2

ksj ¡ s ik22
2b2

!
db

=

Z bmax

0

2b

(2L)2

LX
i=1

LX
j=1

exp

Ã
¡1
2

ks i¡ sjk22
2b2

!

+exp

Ã
¡1
2

ks i+ sjk22
2b2

!
db:

C. Proof of Theorem III.1

Like in [22], to compute the term De3(S) we use that

for z > 0Z bmax

0

2

b
exp

μ
¡1
2

z

2b2

¶
db =¡Ei(¡1

2

z

2b2max
), (18)

where Ei(x) is the exponential integral defined as

Ei(x) :=

Z x

¡1

et

t
dt:

Moreover, the product rule gives

b2max
2
exp

μ
¡1
2

z

2b2max

¶
=

Z bmax

0

bexp

μ
¡1
2

z

2b2

¶
db

+
z

4

Z bmax

0

1

b
exp

μ
¡1
2

z

2b2

¶
db,

and together with (18) we obtainZ bmax

0

bexp

μ
¡1
2

z

2b2

¶
db =

b2max
2
exp

μ
¡1
2

z

2b2max

¶

+
z

8
Ei(¡1

2

z

2b2max
): (19)

Note that, although Ei(x) is not defined for x= 0, the

integral in (19) still converges for z = 0 and is equal to

b2max=2. Hence, we introduce the function

Ei0(x) :=

½
0, if x= 0

Ei(x), elsewhere
(20)
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to also cover the case z = 0. By replacing Ei(x) in (19)

with Ei0(x), we get the closed-form expression

De3(S) =
2

(2L)2

LX
i=1

LX
j=1

b2max
2

Ã
exp

Ã
¡1
2

ks i¡ sjk22
2b2max

!

+ exp

Ã
¡1
2

ks i+ sjk22
2b2max

!!

+
1

8

Ã
ks i¡ sjk22Ei0

Ã
¡1
2

ks i¡ sjk22
2b2max

!

+ ks i+ sjk22Ei0
Ã
¡1
2

ks i+ sjk22
2b2max

!!
:

D. Proof of Distance Do(S)

The distance Do(S) differs from its even counter-

part due to the additional sample placed fixed at the

state space origin. This does not effect Do1, and hence,

it equals De1. The other two terms are sums of their

reweighted even counterparts (due to the changed sam-

ple weight) and terms comprising also products of un-

normalized Gaussians. Hence, they are given as

Do2(S)

=
2L

2L+1
De2(S) +

Z bmax

0

1

¼N=2bN¡1

Z
RN

μ
b2

1+ b2

¶N=2
¢ (2¼)N=2(1+b2)N=2N (m;0,(1+ b2)IN)

¢ (2¼)
N=2bN

2L+1
N (m;0,b2IN)dmdb

=
2L

2L+1
De2(S)

+

Z bmax

0

2N¼N=2bN+1

2L+1

1

(2¼)N=2(1+2b2)N=2
db

=
2L

2L+1
De2(S) +

Z bmax

0

b

2L+1

μ
2b2

1+2b2

¶N=2
db

and

Do3(S) =
(2L)2

(2L+1)2
De3(S) +

Z bmax

0

1

¼N=2bN¡1

¢
Z
RN

μ
(2¼)N=2bN

2L+1

¶2Ã
2 ¢ N (m;0,b2IN)

¢
Ã

LX
i=1

N (m;s i,b2IN) +N (m;¡s i,b2IN)
!

+N (m;0,b2IN)2
!
dmdb

=
(2L)2

(2L+1)2
De3(S) +

Z bmax

0

2N¼N=2bN+1

(2L+1)2

¢ 1

(2¼)N=2(2b2)N=2

Ã
2 ¢

LX
i=1

exp

μ
¡1
2

ks ik22
2b2

¶

+ exp

μ
¡1
2

k¡ s ik22
2b2

¶
+1

¶
db

=
(2L)2

(2L+1)2
De3(S) +

b2max
2(2L+1)2

+

Z bmax

0

4b

(2L+1)2

LX
i=1

exp

μ
¡1
2

ks ik22
2b2

¶
db:

E. Proof of Theorem III.2

A closed-form expression for Do3(S) can directly be

obtained by using again (19) and (20) as well as the

closed-form expression for De3(S) resulting in

Do3(S) =
(2L)2

(2L+1)2
De3(S)+

b2max
2(2L+1)2

+
4

(2L+1)2

LX
i=1

b2max
2
exp

μ
¡1
2

ks ik22
2b2max

¶

+
1

8
ks ik22Ei0

μ
¡1
2

ks ik22
2b2max

¶
:

F. Boundedness of De(S) and Do(S)

We show the boundedness of the distances De(S)

and Do(S) for an increasing dimension N. For a given

bmax it holds

lim
N!1

De1 = lim
N!1

Z bmax

0

b

μ
b2

1+ b2

¶N=2
| {z }
!0 for N!1

db = 0,

lim
N!1

De2(S) = lim
N!1

Z bmax

0

2b

2L

μ
2b2

1+2b2

¶N=2

¢
LX
i=1

exp

μ
¡1
2

ks ik22
(1+2b2)

¶
| {z }

·L

db

· lim
N!1

Z bmax

0

b

μ
2b2

1+2b2

¶N=2
| {z }
!0 for N!1

db = 0,
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and

lim
N!1

De3(S) = lim
N!1

Z bmax

0

2b

(2L)2

¢
LX
i=1

LX
j=1

exp

Ã
¡1
2

ks i¡ sjk22
2b2

!

+exp

Ã
¡1
2

ks i+ sjk22
2b2

!
| {z }

·2L2

db

· lim
N!1

Z bmax

0

bdb =
b2max
2
:

Hence, the distance De(S) is bounded by bmax accord-

ing to

lim
N!1

De(S) = lim
N!1

De1¡ 2De2(S)+De3(S)·
b2max
2
:

In a similar manner, the same result can be obtained for

the distance Do(S).

G. Invariance under Rotation/Reflection

We want to proof that the distance measures De(S)

and Do(S) are invariant under rotation/reflection. Let

R 2 RN£N be an orthogonal matrix and a,b 2RN . Then,
it holds

kRak22 = kak22
kRa§Rbk22 = ka§ bk22:

Hence, given two point-symmetric Dirac mixtures pa-

rameterized by the sets

A= fs1, : : : ,sLg
and

B = fRs1, : : : ,RsLg,
we directly see that De(A) =De(B) and Do(A) =Do(B).

H. Proof of Theorem III.3

With the aid of (18), the termsZ bmax

0

1

b
(s(d)i § s(d)j )exp

Ã
¡1
2

ks i§ sjk22
2b2

!
db (21)

of (15) can be computed according to

¡1
2
(s(d)i § s(d)j )Ei

Ã
¡1
2

ks i§ sjk22
2b2max

!
: (22)

For the special case of ks i§ sjk22 = 0 also s(d)i § s(d)j
equals zero. Consequently, the integral (21) converges

to zero as well. Like in the closed-form expression

for De3(S), we can replace Ei(x) in (22) with (20) to

handle such cases and obtain a closed-form expression

for @De3(S)=@s
(d)
i according to

@De3(S)

@s(d)i
=

1

(2L)2

LX
j=1

(s
(d)
i ¡ s(d)j )Ei0

Ã
¡1
2

ks i¡ sjk22
2b2max

!

+(s(d)i + s(d)j )Ei0

Ã
¡1
2

ks i+ sjk22
2b2max

!
:

I. Proof of Theorem III.4

A closed-form expression for @Do3(S)=@s
(d)
i can anal-

ogously be obtained by exploiting (18) and (22) as well

as the closed-form expression for @De3(S)=@s
(d)
i result-

ing in

@Do3(S)

@s(d)i
=

(2L)2

(2L+1)2
@De3(S)

@s(d)i

+
s(d)i

(2L+1)2
Ei0

μ
¡1
2

ks ik22
2b2max

¶
:

J. Sample Covariance Matrix Correction

Given a point-symmetric Dirac mixture parameter-

ized by fzigLi=1. Our goal is to find a matrix T to trans-
form these parameters according to

s i = T ¢ zi, 8i 2 f1, : : : ,Lg,
such that the sample covariance matrix of the point-

symmetric Dirac mixture given by fs igLi=1 equals the
identity, i.e.,

Cs =
2

M

LX
i=1

s i ¢ sTi = IN ,

whereM = 2L+1 orM = 2L, depending on whether an

additional sample is placed at the origin or not. Hence,

we set

Cs =
2

M

LX
i=1

(Tzi) ¢ (Tzi)T = TCzTT
!
=IN:

With the matrix decomposition Cz =AAT, we see that

IN = (TA)(TA)
T can be satisfied with T=A¡1. A can be

computed, for example, with the eigendecomposition or

Cholesky decomposition of Cz .
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Sigma-Point Set Rotation for

Derivative-Free Filters in Target

Tracking Applications

JIND²RICH DUNÍK

OND²REJ STRAKA

MIROSLAV ²SIMANDL

ERIK BLASCH

The paper focuses on the state estimation of the nonlinear

discrete-time stochastic dynamic systems by the derivative-free fil-

ters. In particular the impact of the ¾-point set rotation on the

performance of the unscented transform and the unscented Kalman

filter (UKF) is analysed. It is shown that the ¾-point set rotation is

an additional user-defined parameter closely tied with the covari-

ance matrix decomposition technique used in ¾-point computation

that significantly affects the estimation performance. Analysis, al-

gorithms, and recommendations for computations of the optimal ¾-

point set rotation are provided to determine either the rotation prior

to the estimation experiment (off-line) or during the estimation ex-

periment (on-line). Further, two approaches for a reduction of op-

timisation computational costs are presented. The proposed algo-

rithms, namely the on-line adaptive-sigma-point-set-UKF (AUKF)

and off-line trained-sigma-point-set-UKF (TUKF), are illustrated

and verified in a numerical study considering two static and two dy-

namic examples. The TUKF improves the UKF performance, while

the computational complexity is preserved. The AUKF further im-

proves the estimate accuracy with increased computational burden.
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LIST OF ABBREVIATIONS

AUKF Adaptive-sigma-point-set Unscented Kalman

Filter

BRRs Bayesian Recursive Relations

CKF Cubature Kalman Filter

DDFs Divided Difference Filters

KF Kalman Filter

MC Monte-Carlo

TUKF Trained-sigma-point-set Unscented Kalman

Filter

PDF Probability Density Function

RMSE Root Mean Square Error

STD Standard Deviation

SVD Singular Value Decomposition

TE Taylor series Expansion

UKF Unscented Kalman Filter

UT Unscented Transformation

1. INTRODUCTION

State estimation of nonlinear discrete-time stochastic

systems plays an important role in many fields such as

adaptive and optimal control, fault detection, and signal

processing in many applications such as navigation and

target tracking.

The state estimation can be solved by various tech-

niques among them the Bayesian and optimisation ap-

proaches are widely preferred. The Bayesian approach

stems from the solution to the Bayesian recursive rela-

tions (BRRs) computing the probability density func-

tions (PDFs) of the state conditioned by the available

measurements. The conditional PDF provides a com-

plete description of the immeasurable state, which is

valid almost over the whole state space. Therefore, the

BRRs-based methods are usually called global. In con-

trast, the solution to the estimation problem provided by

the optimisation approach is in the form of conditional

moments of the state, which do not represent a com-

plete description of the estimated state. Therefore, the

optimisation-based methods are usually called local1 as

the estimate is valid in a small vicinity of the working

point only. The local methods are based on specification

and (usually) minimisation of a criterion (most often

the mean squared error) under assumption of a certain

estimator structure.

The closed-form solution to the state estimation

problem is available only for a limited set of the sys-

tems. Among these systems, the linear ones are the most

important [21], [1]. In other cases [5], [29], [30], if

the closed-form solution is not available, approximate

methods have to be used. The approximate global meth-

ods are based on various approximations to the BRRs

solution and are represented for example by the parti-

cle filter [5], point-mass method [29], the Gaussian sum

method [30], or their combinations [19]. The application

1In literature besides the term “local filters,” terms “Gaussian filters”

or “Kalman filters” can be found as well.
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of the global methods is usually limited by their com-

putational complexity especially for high-dimensional

systems. Therefore, in most practical applications the

approximate local methods are often preferred.

The approximate local filters use the algorithm struc-

ture of the Kalman filter2 (KF) for solving the state es-

timation problem of nonlinear systems. The local filters

can further be divided into two groups; derivative and

derivative-free. Derivative filters approximate nonlinear

functions in a system description by derivative-based

expansions, for example by the Taylor or the Fourier-

Hermite series expansions which lead to the extended

Kalman filter, the second-order filter [1], or the Fourier-

Hermite Kalman filter [27]. Derivative-free local filters

are based on differential polynomial interpolations, the

unscented transform, or various numerical integration

rules. These approximations might be viewed as ap-

proximations of the state estimate description by a set of

weighted points while the nonlinear functions in the sys-

tem description remains unaffected. The filters within

this group are represented by the divided difference fil-

ters (DDFs) based on the Stirling polynomial interpola-

tion [23], the unscented Kalman filter (UKF) based on

various versions of the unscented transformation (UT)

[16], or the quadrature [13], cubature [2], and stochastic

integration [9] based filters utilizing deterministic and

stochastic integration rules.3

Derivative-free filters (contrary to the derivative

ones) evaluate the nonlinear functions in the system

description at multiple points (often called ¾-points).

Placement of the ¾-points in the state-space is deter-

mined by i) inherent parameters, which are the cur-

rent mean and associated covariance matrix of the esti-

mate error (i.e., the approximation point) and ii) user-

defined parameters affecting the quality of the approx-

imation and subsequently the filter performance. The

user-defined parameters might include specification of

the ¾-point set rotation (also tied to the selection of

the covariance matrix decomposition) or the ¾-point set

scaling (if applicable).

Scaling of the ¾-point set by specification of a

scaling parameter or parameters has been widely studied

in the last decade and recommendations for both fixed

and adaptive parameter settings have been proposed.

Recommendations for fixed parameters setting stem

from a term-by-term comparison of the Taylor series

2The Kalman filter is an optimal (in the mean squared error sense)

linear estimator for linear systems.
3Although the approximations used in the derivative-free filters orig-

inate from quite different basic ideas, the resulting filter algorithms

are in many cases identical. As examples, the analysis and analytic

comparison of the DDFs and UKF are given in [28], cubature and

quadrature filters and UKF in [14], cubature and stochastic integra-

tion filters in [9], and the stochastic integration filter and Monte-Carlo

filter are in [8].

expansion (TE) of the true mean and covariance matrix

of a random variable transformed through a nonlinear

function with the TE of the point-approximated statistics

[23], [17]. In this case, the scaling parameter is a

function of the state-space dimension only. On the other

hand, an adaptive parameter setting takes an advantage

of possibly different parameter values over time instants

reflecting the actual working (or approximation) point.

Various off-line and on-line adaptive strategies were

proposed e.g., in [26], [10], [36], [11], resulting in a

non-negligible estimation performance improvement.

Rotation of the ¾-point set has been recently directly

analysed in [4], [7], [6] and indirectly via the covariance

matrix decomposition4 in [24], [34]. In [7], an adaptive

selection of the ¾-point set rotation has been studied

and illustrated using a simplistic bearings-only tracking

example. It was shown that the impact of the ¾-point

set rotation on the transformation and subsequently on

the filter performance is comparable with the ¾-point

set scaling, which is worth for a deeper analysis.

The goal of the paper is therefore twofold; to

summarise the recent results related to the ¾-point

set rotation in a unified local filter design frame-

work and to thoroughly analyse and explain the im-

pact of the ¾-point set rotation on a filter perfor-

mance. Special emphasis is also placed on a numeri-

cal illustration and on reduction of the computational

costs of the optimal ¾-point set rotation specifica-

tion.

The rest of the paper is organised as follows. In Sec-

tion 2 the system description and the introduction to the

state estimation with the stress on the UKF are given.

Rotation of the ¾-point set, its influence, parametrisation

and optimisation are discussed in Section 3. Section 4

focuses on two techniques to reduce optimisation costs

of ¾-point set rotation. In Section 5 a general algorithm

for the UKF with rotated ¾-point set is summarised.

Section 6 compares the proposed algorithms in a nu-

merical study. Conclusions are drawn in Section 7.

2. SYSTEM DESCRIPTION AND STATE ESTIMATION
BY UKF

A discrete-time nonlinear stochastic dynamic system

is given as

xk+1 = fk(xk)+wk, k = 0,1,2, : : : , (1)

zk = hk(xk) + vk, k = 0,1,2, : : : , (2)

where the vectors xk 2 Rnx and zk 2Rnz represent the
immeasurable state of the system and measurement

at time instant k, respectively, fk :Rnx !Rnx and hk :
Rnx !Rnz are known vector functions, and wk 2 Rnx and
vk 2Rnz are the state and measurement white noises.
The noises are assumed to be zero-mean with known

4The particular matrix decompositions lead to the same ¾-point sets

up to their rotation (or reflection), i.e., all the sets lies on the surface

of a hyper-ellipsoid determined by the covariance matrix [34].
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covariance matrices §w
k = cov[wk] and §

v
k = cov[vk],

respectively. The first two moments of the initial state

x0 are assumed to be known as well, i.e., E[x0] = x̄0,
cov[x0] = P0.

The local state estimation methods provide the point

estimate x̂kjk approximating the conditional mean E[xk j
zk], in which zk = [z0,z1, : : : ,zk], and the corresponding

covariance matrix of the estimation error Pxxkjk.
The first two moments can be realised as a Gaussian

approximation of the conditional PDF, i.e., p(xk j zk)¼
Nfxk : x̂kjk,Pxxkjkg [2], [9], depending on the type of

employed approximation.

For calculation of predictive statistics of the state

and measurement the UKF utilises the UT.

2.1. Unscented transformation

The UT [16] is a tool for approximate computation

of the mean, covariance matrix, and cross-covariance

matrix of a transformed random variable

y= g(x) = [g1(x), : : : ,gny (x)]
T, (3)

where x 2Rnx and y 2 Rny , under the assumption of
known vector function g(¢) and known mean x̂= E[x]
and covariance matrix Pxx = cov[x] of x. The UT is

based on computation of a symmetric set of determin-

istic ¾-points fXig2nxi=0 with appropriate weights fWig2nxi=0

according to

X0 = x̂, W0 =
·

nx+·
, (4)

Xj = x̂+
p
(nx+·)S

xxej , Wj =
1

2(nx+·)
, (5)

Xnx+j = x̂¡
p
(nx+·)S

xxej , Wnx+j
=Wj , (6)

where j = 1, : : : ,nx, term ej is the jth column of the

nx-dimensional identity matrix Inx , and S
xx is a de-

composition of the covariance matrix Pxx such that

Sxx(Sxx)T = Pxx. The variable · is a scaling parameter.

To get an approximate characteristic of y, each point is

transformed through the nonlinear function

Yi = g(Xi), 8i: (7)

The resulting approximate characteristics calculated by

the UT are given by

ŷUT =

2nxX
i=0

WiYi, (8)

Pyy,UT =

2nxX
i=0

Wi(Yi¡ ŷUT)(¢)T, (9)

Pxy,UT =

2nxX
i=0

Wi(Xi¡ x̂)(Yi¡ ŷUT)T, (10)

where the notation (a)(¢)T stands for (a)(a)T. Now, hav-
ing the UT introduced, the UKF algorithm can be stated.

2.2. Unscented Kalman filter

The UKF algorithm has the following structure [16]:

ALGORITHM 1: Unscented Kalman Filter

Step 1: (initialisation) Set the time instant k = 0 and

define a priori initial condition by the predictive mean

x̂0j¡1 = E[x0] = x̄0 and the predictive covariance matrix
Pxx0j¡1 = cov[x0] = P0. Set the scaling parameter · and
compute the ¾-point weights

W0 =
·

nx+·
, (11)

Wi =
1

2(nx+·)
, i= 1, : : : ,2nx: (12)

Step 2: (filtering step) The state predictive estimate

is updated with respect to the last measurement zk
according to

x̂kjk = x̂kjk¡1 +Kk(zk ¡ ẑkjk¡1), (13)

Pxxkjk = P
xx
kjk¡1¡KkPzzkjk¡1KTk , (14)

where Kk = P
xz
kjk¡1(P

zz
kjk¡1)

¡1 is the filter gain,

ẑkjk¡1 =
2nxX
i=0

WiZi,kjk¡1, (15)

Pzzkjk¡1 =
2nxX
i=0

Wi(Zi,kjk¡1¡ ẑkjk¡1)(¢)T +§v
k , (16)

Pxzkjk¡1 =
2nxX
i=0

Wi(Xi,kjk¡1¡ x̂kjk¡1)(Zi,kjk¡1¡ ẑkjk¡1)T,
(17)

Zi,kjk¡1 = hk(Xi,kjk¡1), (18)

and the predictive state ¾-points are computed accord-

ing to

X0,kjk¡1 = x̂kjk¡1, (19)

Xj,kjk¡1 = x̂kjk¡1 +
p
(nx+·)S

xx
kjk¡1ej , (20)

Xnx+j,kjk¡1 = x̂kjk¡1¡
p
(nx+·)S

xx
kjk¡1ej , (21)

with j = 1, : : :nx and S
xx
kjk¡1 being a decomposition of

Pxxkjk¡1.
Step 3: (predictive step) The predictive statistics are

given by the relations

x̂k+1jk =
2nxX
i=0

WiXi,k+1jk, (22)

Pxxk+1jk =
2nxX
i=0

Wi(Xi,k+1jk ¡ x̂k+1jk)(¢)T +§w
k , (23)

Xi,k+1jk = fk(Xi,kjk), (24)
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where the filtering state ¾-points are computed accord-

ing to

X0,kjk = x̂kjk, (25)

Xj,kjk = x̂kjk +
p
(nx+·)S

xx
kjkej , (26)

Xnx+j,kjk = x̂kjk ¡
p
(nx+·)S

xx
kjkej , (27)

with j = 1, : : :nx and S
xx
kjk being a decomposition of P

xx
kjk.

Let k = k+1. The algorithm continues by Step 2.

2.3. ¾-point set

The ¾-point set of the UT (4)—(6) ((19)—(21) and

(25)—(27) in the UKF) is determined by the inherent

parameters given by the mean and covariance matrix of

x (i.e., by x̂, Pxx) and by the user-defined parameters.

The latter include the scaling parameter · influencing

the set scaling (the area of the state-space covered

by the points) and the decomposition technique which

is inevitably tied with the ¾-point set rotation [34].

However, independently of the selected user-defined

parameter, the weighted ¾-point set has at least the

same mean and covariance matrix as the original to-

be-transformed random variable, i.e.,

x̂UT =

2nxX
i=0

WiXi = x̂, (28)

Pxx,UT =

2nxX
i=0

Wi(Xi¡ x̂UT)(Xi¡ x̂UT)T

= Sxx[Sxx]T = Pxx: (29)

This is the ultimate property of any ¾-point set.

2.4. Scaling parameter of ¾-point set

In literature, three main options for the selection of

the scaling parameter can be identified, namely:

² constant parameter (specified prior to the estimation
experiment),

² off-line computed time-varying parameter,
² on-line computed time-varying parameter.
The standard setting of the constant scaling param-

eter follows the recommendation ·= 3¡nx [16], [17],
which minimises the error of the TE of the true mean

and its UT approximation.5

The strategies for time-varying setting of the scaling

parameter take into account not only the state dimension

but also the actual filter working point (mean and co-

variance matrix) and the particular nonlinear functions

in the state-space model. The strategies for off-line set-

ting can be found e.g., in [26] and for on-line setting

in [11], [35], [33]. The on-line strategies compute ·

5Note that, if nx > 3, the covariance matrices may lose positive semi-

definiteness as · < 0. Then, it is better to choose ·= 0 [17], which en-

sures positive definiteness of covariance matrices. For such a choice,

the UKF converts into the cubature Kalman filter (CKF) [2].

(usually in the filtering step) at every time instant to

minimise or maximise a chosen criterion.

2.5. Covariance matrix decomposition

The choice of the covariance matrix decomposition

technique was discussed in [34], where it was shown

that all decomposition techniques provide the same ¾-

point set up to the ¾-point set rotation or reflection.6

The consequence is that there are infinitely many de-

compositions which can be parametrised by a rotation

matrix. The analysis also indicated that the impact of

the rotation is increasing for covariance matrices with

non-negligible off-diagonal elements and with differ-

ence in magnitude of the matrix eigenvalues. Illustration

of three different ¾-point sets based on the Cholesky de-

composition, singular value decomposition (SVD), and

matrix square root and three different sets obtained by

the SVD and consequently rotated by 0, 30, and 60

degrees can be found in Fig. 1.

In [4], [6], and [7] the discussion was further ex-

tended by introducing arbitrary rotation and reflection

matrices in the ¾-point set computation and a signifi-

cant impact of the rotation was illustrated by a set of

numerical examples without a theoretical analysis. As a

consequence, the provided recommendations for the ¾-

point set rotation were rather ad hoc without theoretical

justification.

The aim of the following section is to provide a

thorough theoretical analysis of the impact of the ¾-

point rotation on the UT and subsequently on the UKF

performance and the justification for on-line and off-

line rotation matrix optimisation. The theoretical results

are then illustrated by static and dynamic numerical

examples.

3. OPTIMISATION OF ¾-POINT SET ROTATION IN
UT

The ¾-points lie on an hyper-ellipsoid with its size

determined by the scaling parameter and the semi-

axes given by eigenvectors of the covariance matrix

Pxx. Specific position of the ¾-points on the hyper-
ellipsoid are determined by the chosen decomposition.

Different decompositions can be obtained by right-

multiplying a decomposition by a rotation matrix C. To
avoid confusion, in the rest of the paper the SVD will

be used to generate the decomposition Sxx if not stated
otherwise. The SVD decomposes the symmetric and

positive definite covariance matrix Pxx as Pxx =UDUT,
where U is a unitary matrix and D is a diagonal matrix.
Then, the decomposition Sxx is given by Sxx =U

p
D,

where
p
D is a diagonal matrix with elements given by

square root of elements on the diagonal of D. Note that
using the SVD generates the ¾-points on the principal

axes of a hyper-ellipsoid.

6Contrary to the rotation, the reflection changes the order of the points

besides their rotation. If a symmetric ¾-point set is considered, the

rotation and reflection are interchangeable.
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Fig. 1. Illustration of ¾-point sets based on different decompositions and with different rotations.

3.1. Rotation of UT ¾-point set

The ¾-point set is typically computed by (4)—(6).

The ¾-point set with explicit consideration of the rota-

tion can be computed according to

X r
0 = x̂, (30)

X r
j = x̂+

p
(nx+·)S

xx,rej , (31)

X r
nx+j

= x̂¡
p
(nx+·)S

xx,rej , (32)

where j = 1, : : :nx and S
xx,r is a decomposition of Pxx

parametrised by a rotation matrix C

Sxx,r = SxxC, (33)

where C is a rotation matrix in nx dimensional space.

Because of the orthogonal property of the rotation ma-

trix, the rotated covariance matrix decomposition Sxx,r

also produces the covariance matrix Pxx as well as the

original decomposition Sxx:

Pxx = Sxx,r[Sxx,r]T = SxxCCT[Sxx]T = SxxInx[S
xx]T:

(34)

As the rotated ¾-point set (30)—(32) is still symmetric

and the relation (34) is valid, the rotated set preserves

the mean and covariance matrix of the original variable

x similarly to the “unrotated” set in (28), (29). The ¾-

point set rotation, therefore, does not affect the weights

fWig2nxi=0.

Hence, the rotation matrix C can be seen as another

design parameter of the ¾-point set (besides the scaling

parameter).

3.2. Effect of ¾-points rotation

Let us focus on the UT based approximation of

ŷ= E[y] by ŷUT in (8). The approximation uses the
weights Wi and ¾-points Yi(C) = g(X r

i ), where the no-

tation emphasises dependence of the ¾-points on the

rotation matrix C.

The error of approximation denoted as ỹ(C) is

given by

ỹ(C) = ŷ¡ ŷUT(C): (35)

The optimum rotation will be sought to minimise the

weighted squared error of approximation

J(C) = ỹ(C)TWỹ(C), (36)

whereW can be any symmetric positive definite matrix

weighting individual elements of ỹ(C). The weight ma-

trix W can for example be chosen as W= (Pyy)¡1, in
which case the criterion puts stress on the elements of

ỹ(C) corresponding to small diagonal values of Pyy.

The true mean ŷ can be expressed using the TE of

g around x̂ as

ŷ= E[y] = E[g(x)] = E[
1X
i=0

1

i!
g(i)(x̂)(x¡ x̂)−i]

=

1X
i=0

1

i!
g(i)(x̂)Mx(i), (37)

where − is the Kronecker product and the jth row of

g(i)(x̂) 2Rny£(nx)i is given by

g(i)j (x̂) =

nx,:::,nxX
l1,:::li

@igj(x)

@xl1 ¢ ¢ ¢@xli

¯̄̄̄
¯
x=x̂

(el1 − el2 − ¢ ¢ ¢− eli ) (38)

with xli being the lith element of x. Further, (x¡ x̂)−i =
(x¡ x̂)− (x¡ x̂)−i¡1, (x¡ x̂)−0 = 1nx£1, Mx(i) =

E[(x¡ x̂)−i], and Mx(i) 2 R(nx)i£1 is the ith central mo-
ments of x stacked column-wise.

Similarly, by expansion of each transformed ¾-point

Yi(C) = g(X r
i ) around the mean x̂, the mean ŷ

UT(C) can
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be written as

ŷUT(C) =

2nxX
j=0

Wj

1X
i=0

1

i!
g(i)(x̂)(X r

j ¡ x̂)−i

=

1X
i=0

1

i!
g(i)(x̂)

2nxX
j=0

Wj(X r
j ¡ x̂)−i

=

1X
i=0

1

i!
g(i)(x̂)Mx(i),UT(C), (39)

whereMx(i),UT(C) is an UT approximation ofMx(i). Note

that

Mx(1) =Mx(1),UT(C) = 0nx£1, (40)

Mx(2) =Mx(2),UT(C) = vec(Pxx), (41)

where vec(A) is a column vector obtained by stacking
the columns of A. Hence, the first two moments are

independent of the ¾-point rotation C.
Assuming x being Gaussian and the ¾-point set

being symmetric, the odd terms are zero Mx(2i+1) = 0,
Mx(2i+1),UT = 0, 8i 2 Z¤, and considering (40) and (41),
the error of approximation is equal to

ỹ(C) =

1X
i=2

1

(2i)!
g(2i)(x̂)(Mx(2i)¡Mx(2i),UT(C)): (42)

This means that the first non-zero term of the error ỹ(C)

expansion (42) is the fourth one, i.e., 1
4!
g(4)(x̂)(Mx(4)¡

Mx(4),UT(C)). For a scalar function g the fourth term
may be zeroed by a choice of the scaling parameter

· [32] and the first non-zero term is the sixth term.

Nevertheless, for general vector functions g the fourth
term is non-zero and depends on the rotation matrix

C. This implies that the value of the criterion (36) also

depends on the rotation matrix C, of which appropriate
choice may lead to a minimum value of the criterion

and consequently to the best ŷUT.

3.3. Selection of the optimum rotation

A direct utilisation of the TE of the mean error (42)

for the rotation matrix C optimisation purposes is im-

possible due to the infinite number of terms. Assuming

the magnitude of the ith term in (42) is decreasing with

i!1, the criterion (36) can be replaced by
J4(C) = [ 1

4!
g(4)(x̂)M̃x(4)(C)]TW[ 1

4!
g(4)(x̂)M̃x(4)(C)]:

(43)

where M̃x(4)(C) =Mx(4)¡Mx(4),UT(C). Hence, J4(C) in
(43) contains the first non-zero term of (42).

The criterion J4(C) can be used in the UT for finding
an optimal rotation matrix C. However, its utilisation is

not very practical as the criterion requires calculation

of fourth derivatives of g, which might be limiting for
the UT and subsequently for the UKF designed to be

derivative-free.

An alternative of (36) more suitable for optimisation

of the rotation matrix C to achieve the smallest error is

based on a replacement of the mean ŷ by a sample ys
of the variable y. This leads to the criterion

JS(C) = [ys¡ ŷUT(C)]TW[ys¡ ŷUT(C)], (44)

which is suitable for an application in the UKF.

Note that the criterion (36) and its consequent sim-

plifications (43) and (44) aim to minimise the approxi-

mation error of the mean ŷUT. Other criteria also can be
proposed for minimising approximation error of other

quantities, such as the covariance matrix Pyy,UT. In that
case a modification analogous to (43) can be proposed

while no modification analogous to (44) exists as there

is no sample of Pyy available.

3.4. Choice of the weight matrix

It has been suggested above to choose the weight

matrixW as the inverse of the covariance matrix Pyy to
properly weight individual elements of the mean error.

This choice is however usually impossible as the covari-

ance matrix Pyy is usually unknown and is approximated

by the UT. Its approximation also depends on the choice

of the rotation matrix C. So it may be replaced by its
estimate Pyy,UT(C), in which case the criterion would be

JS(C) = [ys¡ ŷUT(C)]T(Pyy,UT(C))¡1[ys¡ ŷUT(C)]:
(45)

Hence, by minimising (45), the difference ys¡ ŷUT(C)
and (Pyy,UT(C))¡1 are minimised and thus Pyy,UT(C) is
maximised.

If W in (44) is selected as W= (Pyy,UT(C))¡1, then
JS(C) is Â2 distributed random variable with ny degrees

of freedom with the mean E[JS(C)] = ny. Also note
that E[ys¡ ŷUT(C)] = ŷ¡ ŷUT(C). Consequently, the cri-
terion can be formulated as

JMS(C) = j[ys¡ ŷUT(C)]T(Pyy,UT(C))¡1

£ [ys¡ ŷUT(C)]¡nyj: (46)

Minimising (46) results in JS(C) (45), computed on

the basis of predicted measurement statistics, which is

closest to its mean value, i.e., to ny.

3.5. Rotation parametrisation

Minimisation of the criterion (44) w.r.t. the rota-

tion matrix C directly is quite difficult and should be

avoided. The reason is twofold; the rotation matrix has

to be an orthogonal matrix, thus it is difficult to perform

minimisation while the structure is respected, and n2x el-

ements need to be found. Instead the rotation matrix

could be parametrised by a set of

nμ = nx(nx¡ 1)=2 (47)

rotation angles μ1, : : : ,μnμ . Therefore, if J(C) is min-
imised with respect to the rotation matrix parametrised

by the rotation angles, then nμ is the dimension of

the optimisation space. Additionally, the rotation angles

correspond to a minimal representation of a general ro-

tation in Rnx .
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As an example, parametrisation of a rotation matrix

by six consecutive rotations μ1,μ2, : : : ,μ6 in four dimen-

sional space is given by [22], [12]

C=

26664
1 0 0 0

0 1 0 0

0 0 cos(μ6) ¡sin(μ6)
0 0 sin(μ6) cos(μ6)

37775

£

26664
cos(μ5) 0 0 ¡sin(μ5)
0 1 0 0

0 0 1 0

sin(μ5) 0 0 cos(μ5)

37775

£

26664
cos(μ4) 0 ¡sin(μ4) 0

0 1 0 0

sin(μ4) 0 cos(μ4) 0

0 0 0 1

37775

£

26664
1 0 0 0

0 cos(μ3) 0 ¡sin(μ3)
0 0 1 0

0 sin(μ3) 0 cos(μ3)

37775

£

26664
1 0 0 0

0 cos(μ2) ¡sin(μ2) 0

0 sin(μ2) cos(μ2) 0

0 0 0 1

37775

£

26664
cos(μ1) ¡sin(μ1) 0 0

sin(μ1) cos(μ1) 0 0

0 0 1 0

0 0 0 1

37775 , (48)

where the last right-hand side matrix rotates a vector

through an angle μ1 in the x¡ y plane (about the axis
perpendicular to the plane) with x= [x,y,u,z]T 2 R4.
4. REDUCTION OF OPTIMISATION COSTS

Due to quadratic dependence of the number of ro-

tation angles nμ (47) on the state dimension it is con-

venient to pay attention to a possible costs reduction.

In this section two approaches to optimisation costs re-

duction will be described. The reduction is achieved by

decreasing the dimension nμ of the optimisation space.

The first approach is applicable only for a class

of functions g and offers a costs reduction that does
not affect the smallest attainable approximation error

of ŷUT(C) and Pyy,UT(C). Hence, the approach will be

called lossless.

The second approach is applicable for general func-

tions g and suggests optimising over the angles with
a significant effect only. Application of this approach

leads a suboptimal solution, i.e., to the approximation

error probably higher than if the optimisation over the

full optimisation space is done. Hence, the approach will

be called lossy.

4.1. Lossless optimisation space dimension decreasing

If the variable y is a function of only some elements

of x, then the optimisation over some rotation angles

does not affect the mean approximation ŷUT(C) and

the covariance matrix approximation Pyy,UT(C). Hence,

these rotations are useless in the optimisation and the

dimension of the optimisation space can be decreased.

This is for example the case of tracking applications

where only some elements (usually positional) of the

state xk are directly observed by the measurement zk,

while other elements (velocity, acceleration) are not.

Suppose, the variable x can be split into two parts,

xa 2 Rna and xb 2Rnb , nb ¸ 2, i.e., x= [xTa ,xTb ]T with
na+ nb = nx, where only the part xa is directly observ-

able through y. More specifically,

y= g

μ·
xa

xb,1

¸¶
= g

μ·
xa

xb,2

¸¶
, 8xb,1 2Rnb , xb,2 2 Rnb : (49)

To show, that some rotation matrices do not affect the ¾-

points Yi = g(X r
i ), i= 0, : : :2nx, it is convenient to con-

sider Sxx being obtained by the Cholesky decomposition

for which the independence will be proven. Later, the

rotations that do not affect the ¾-points Yi will be spec-
ified for a general decomposition.

The decomposition Sxx obtained by the Cholesky

decomposition has the following form

SxxCh =

·
La 0na£nb
F Lb

¸
, (50)

where La 2 Rna£na and Lb 2Rnb£nb are lower triangular
matrices and F 2 Rnb£na is a full-rank matrix. Note that
the notation SxxCh emphasises that it is the Cholesky

decomposition. The ¾-points X r
i,a related to xa that do

affect the ¾-points Yi are given by

X r
0,a = x̂a, (51)

X r
j,a = x̂a+

p
(nx+·)[La,0na£nb ]ej , (52)

X r
nx+j,a

= x̂a¡
p
(nx+·)[La,0na£nb ]ej , (53)

where j = 1, : : : ,nx, ej is the jth column of Inx and

x̂= [x̂Ta , x̂
T
b ]
T.

Now, consider an arbitrary nx-dimensional rotation

matrix C0 that rotates in Rnb while the space Rna is
unaffected. Such rotation matrix can be written as

C0 =
·
Ina 0na£nb
0nb£na Cb

¸
: (54)

Note that the rotation matrix of this form is the first

rotation matrix in (48) with rotation angle μ6.
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The Cholesky decomposition Sxx,rCh rotated by C0 is
given by

Sxx,rCh = S
xx
ChC

0 =
·
La 0na£nb
F Lb

¸·
Ina 0na£nb
0nb£na Cb

¸
=

·
La 0na£nb
F LbCb

¸
: (55)

From (55) it can be seen that the rotation matrix C0 in
(54) does not affect the first na rows of S

xx
Ch. Hence, the

rotation matrix C0 does not affect the ¾-points X r
i,a and

consequently the ¾-points Yi, the mean ŷUT(C0) and the
covariance matrix Pyy,UT(C0). This implies that rotation
matrices in the form (54) do not have to be considered

for optimisation. This gives nb(nb ¡ 1)=2 rotation angles
that do not have to be optimised. Hence, the dimension

of the optimisation space is now reduced to

nμ = [nx(nx¡ 1)=2]¡ [nb(nb ¡1)=2]: (56)

A general decomposition Sxx can be written as Sxx =

SxxChC̄, where C̄ is an nx dimensional rotation matrix.

Then, the rotation matrices unnecessary for optimisation

are given by C̄TC0 as the rotated decomposition Sxx,r is
given by

Sxx,r = SxxC̄TC0 = SxxChC̄C̄
TC0 = SxxChInxC

0, (57)

in which case again the ¾-points X r
i,a are unaffected by

the rotation C̄TC0.
However, for the considered decrease of nμ, a direct

usage of the Cholesky decomposition SxxCh is convenient

due to parametrisation of the rotation matrix C by angles

μ as is shown in Section 3.5.
The proposed lossless decrease of optimisation space

dimension does not affect the smallest error of ŷUT(C)

and Pyy,UT(C) attainable by the optimisation. However,

it does affect the cross-covariance matrix Pxy (10).

Therefore, when applied in the UKF, the predictive state

¾-points X r
i,kjk¡1 affect through P

xz
kjk¡1 the gain Kk of the

filter.

4.2. Lossy optimisation space dimension decreasing

For reduction of the computational costs, it is ad-

visable to consider only the rotation angles that signif-

icantly affect the criterion value. For such analysis the

usage of the criterion (43) is opportune. To set up an

order of elements of x according to their influence on

(43), the value J4i (C) is calculated for i= 1, : : : ,nx

J4i (C) = [
1
4!
g(4)(x̂)M̃x(4)(C)Ji]

TW[ 1
4!
g(4)(x̂)M̃x(4)(C)Ji]

(58)

where Ji = diag[(ei)
−4] is a matrix selecting the element

of M̃x(4)(C) corresponding to the ith element of x. Then,

the values J4i (C), i= 1, : : : ,nx are sorted and the order

and individual values provide information of magnitude

of influence of x elements on the criterion. Using this

information the user can decide over which rotation

angles the chosen criterion should be optimised.

Note that for calculation of (58) any rotation matrix

C can be used, e.g., C= I.

5. UKF WITH ROTATED ¾-POINT SET

The concept of the ¾-point set rotation can directly

be extended from the UT to the UKF. The UKF with

the rotated ¾-point set has the same structure as the

UKF given by Algorithm 1, where the filtering state

¾-points and the predictive state ¾-points respect the

optimal rotation matrices.

When finding an optimal rotation matrix for the

predictive state ¾-points in the filtering step both criteria

(43) and (44) can be used as the measurement zk is
available and can be used in place of the sample ys in
(44). To find an optimal rotation matrix for the filtering

state ¾-points in the predictive step, only the criterion

(43) can be used.

The UKF with optimised rotation of the ¾-point set

is given by Algorithm 2.

ALGORITHM 2: Unscented Kalman Filter with Rotated

¾-point Set

Step 1: Identical with Step 1 of Algorithm 1.

Step 2: Find an optimal rotation matrix Ckjk¡1.
Step 3: Similar to Step 2 of Algorithm 1 with Sxxkjk¡1
replaced by Sxx,r

kjk¡1 = S
xx
kjk¡1Ckjk¡1.

Step 4: Find an optimal rotation matrix Ckjk.
Step 5: Similar to Step 3 of Algorithm 1 with Sxxkjk
replaced by Sxx,r

kjk = S
xx
kjkCkjk.

Let k = k+1. The algorithm continues by Step 2.

The rotation matrices C¤kjk and C¤kjk¡1 can be in
principle selected on on-line or off-line basis.

5.1. Off-line computed time-invariant and
time-varying rotation matrix

The simplest choice of the rotation matrices is Ckjk =
Ckjk¡1 = Inx , 8k. This corresponds to utilisation of a
constant rotation of the ¾-points that is determined by

the selected covariance matrix decomposition technique.

Alternatively, a constant rotation matrix (or matrices

different for the filtering and prediction step) might be

found by e.g., a prior analysis of a considered problem

as outlined in [6].

Another possibility is to find a sequence (or se-

quences) of the rotation matrices for a considered sce-

nario based on a prior Monte-Carlo (MC) analysis. This

approach is suitable for systems with set-up allowing

periodical repetition of their dynamic behaviour. As an

example, during the landing phase all aircrafts of a given

category follow the same path (trajectory). Nevertheless,

once the set-up is changed (either trajectory, sensor lo-

cation, etc.) the procedure of finding the rotation ma-

trices must be repeated. This is illustrated in numerical

simulations in Section 6.

For the prior analysis either criterion (36), (43) or

(44) may be used. Note that the rotation matrices Ckjk¡1,
Ckjk, if computed off-line, are not conditioned by the
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past measurements of considered experiment as the

notation indicates. The notation is, however, kept to be

sufficiently general to cover also the possibility for the

on-line computation of the matrices.

The UKF given by Algorithm 2 with rotation ma-

trices Ckjk¡1 and Ckjk optimised off-line by means of a
prior analysis will be denoted as trained-sigma-point-

set-UKF (TUKF).

5.2. On-line computed time-varying rotation matrix

The on-line computation of the rotation matrix (or

matrices) respects the current status of the filter. This

procedure can be understood as a rotation matrix op-

timisation and in fact, a similar approach, in principle,

has been used for the scaling parameter adaptation [33],

[4] and is adopted here.

The rotation matrices used in the filtering and pre-

diction steps, i.e., Ckjk¡1 and Ckjk, can be computed by
minimising (43) or (44).

The UKF given by Algorithm 2 with rotation matri-

cesCkjk¡1 and Ckjk optimised on-line using either (43) or
(44) will be denoted as adaptive-sigma-point-set-UKF

(AUKF).

5.3. Notes

Note 1: The on-line optimisation of the rotation ma-

trix is clearly the most computationally demanding part

of the algorithm. Moreover, the dimension of the op-

timisation space nμ grows quadratically with the state

dimension (see (47)). Selection of the rotation angles for

optimisation and the optimisation technique is thus cru-

cial. Two techniques for optimisation space dimension

nμ decrease have been proposed in Section 4. A brief

discussion regarding the suitable optimisation technique

can be found in [10]. In this paper, the grid method

is preferred due to its simplicity. The method is sum-

marised in Appendix A.

Note 2: The order of the successive rotations affects

the overall rotation matrix. However, if a sufficiently

dense grid is assumed, then the impact of the rotation

order in the optimisation can be neglected.

Note 3: The rotation matrix optimisation might be

performed independently in the predictive and the filter-

ing steps. However, the impact of the adaptation in one

step is often dominant and the adaptation in the second

step can be skipped to reduce computational costs.

Note 4: The ¾-point set rotation does not affect the

UT performance if the function g(¢) in (3) is linear.
Therefore, it is reasonable to supplement the UKF adap-

tively rotating of the ¾-point set with an algorithm eval-

uating the severity of the nonlinearities at the actual

working points. If the nonlinearity is mild at a given

time, the adaptive selection of the rotation matrix might

be skipped without any significant impact on the esti-

mation performance. Such nonlinearity measures were

proposed and integrated with local filters in [33].

Note 5: The paper considered the system (1) and (2)
with additive noises. However, the concept can readily

be extended for systems with non-additive noises. Just

the optimisation space for rotations would be higher

dimensional due to the state augmentation by the noises.

Note 6: Although the concept of the ¾-point set
rotation was discussed in the UKF framework, the ¾-

point set rotation adaptation can be used with any

deterministic ¾-point set based local filter.

6. NUMERICAL ILLUSTRATION

The performance of the UT and the UKF is affected

by the ¾-point set rotation and scaling. In this section,

the UT and UKF are evaluated each using two examples

mainly with respect to the ¾-point set rotation influence.

6.1. Static example I: Fourth-order polynomial

Consider a random variable nonlinear transforma-

tion (as defined by (3)—(10)) with

x̂=

·
x̂1

x̂2

¸
=

·
1

1

¸
, Pxx =

·
4 0:8

0:8 10

¸
(59)

and

y = g(x) = xTxxTx: (60)

In Fig. 2, the impact of the ¾-point set rotation through

an angle μ on the approximate characteristics of y are

illustrated. The characteristics are computed using the

UT (8)—(10) with Sxx computed by the SVD,7 scaling
parameters ·= 1 and ·= 2, and the rotation matrix used

in (30)—(33) of the form

C=

·
cos(μ) ¡sin(μ)
sin(μ) cos(μ)

¸
: (61)

Besides these characteristics, the true ones and the ones

approximated using the UT with

² a recommended fixed ·= 1,
² a fixed ·= 2,
both with μ = 0 [deg], are plotted in Fig. 2. Here, it

should be noted, that the true and fixed UT charac-

teristics are not functions of the rotation parameter μ,

they are plotted for the whole range of the parameter

just for ease of comparison. The figure shows a signifi-

cant dependency of the UT performance on the ¾-point

set rotation. As shown in (42) under assumption of the

Gaussian PDF of x, the set rotation affects fourth- and
higher-order even terms of the TE of the UT-based mean

computation. Considering the mean value computation,

i.e., ŷUT (8), in this polynomial example, the fourth-

order term of the TE is the only term depending on the

rotation. Therefore, the error (42) of ŷUT is equal to

ỹ(C) = 1
4!
g(4)(x̂)(Mx(4)¡Mx(4),UT(C)), (62)

7Throughout this section, the SVD of the covariance matrix Pxx is

considered. In this case, the ¾-points lie on the principal axes of the

covariance matrix ellipsoid [34].
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Fig. 2. Static example I: Dependence of the UT-based approximate

characteristics on the rotation of ¾-point sample set.

where

g(4)(x̂) =

·
@4g(x)

@x41
,
@4g(x)

@x31@x2
,
@4g(x)

@x31@x2
,
@4g(x)

@x21@x
2
2

,
@4g(x)

@x31@x2
, : : :

@4g(x)

@x21@x
2
2

,
@4g(x)

@x21@x
2
2

,
@4g(x)

@x1@x
3
2

,
@4g(x)

@x31@x2
,
@4g(x)

@x21@x
2
2

, : : :

@4g(x)

@x21@x
2
2

,
@4g(x)

@x1@x
3
2

,
@4g(x)

@x21@x
2
2

,
@4g(x)

@x1@x
3
2

,
@4g(x)

@x1@x
3
2

,
@4g(x)

@x42

¸
= [24,0,0,8,0,8,8,0,0,8,8,0,8,0,0,24]: (63)

Hence the criterion (43) is a function of the fourth

moments only and g(4)(x̂). Thus, it is equal to (36).

Value of the criterion (43) withW= 1 as a function

of the rotation μ is shown in Fig. 3 for both setting of ·.

6.2. Static example II: Arctangent

Arctangent is a nonlinear transformation appear-

ing in tracking8 applications for a conversion between

Cartesian and polar coordinates. Contrary to the pre-

vious polynomial function, arctangent cannot by ex-

pressed by the TE with a finite number of terms.

Let a random variable nonlinear transformation with

x̂=

·
x̂1

x̂2

¸
=

·
10

1

¸
, Pxx =

·
4 0:8

0:8 10

¸
(64)

and

y = g(x) = atan(x2=x1): (65)

8The four-quadrant inverse tangent function (atan2) is considered.

Fig. 3. Static example I: Dependence of the UT-based mean error

on the rotation of ¾-point sample set (for ·= 1).

be considered. In Fig. 4, the impact of both parameters

affecting the UT performance, i.e., · and μ, is illus-

trated for the mean ŷUT and variance Pyy,UT computa-

tion together with the true characteristics of y and the

ones approximated using the UT with fixed ·= 1, and

μ = 0 [deg].

Fig. 4 indicates that both user-defined parame-

ters (scaling and rotation) heavily impact the UT-

approximated mean value ŷUT and the variance Pyy,UT.

By a suitable rotation, it is possible to get the true val-

ues of the mean and variance of y (for mean μ ¼ 31 and
79 [deg], for variance μ ¼ 10 and 58 [deg]; the values
are highlighted by the vertical red lines). On the other

hand, in this example it is not possible to get the true

values of the statistics by any selection of the scaling

parameter ·.

The value of the criterion J(C(μ)) (36) with W= 1

is plotted in Fig. 5. The value is slightly different from

the fourth-order moment based criterion J4(C(μ)) (43)

as, in this case, the rotation affects not only the fourth-

order term of the TE but also all remaining higher-order

even terms. However, the criterion J4(C(μ)) (which can

be computed without the knowledge of the true mean

ŷ) still represents a reasonable approximation of the

criterion J(C(μ)) (which cannot be computed without

the knowledge of the true mean ŷ).

6.3. Dynamic example I: Bearings-only tracking

The impact of the ¾-point set rotation either fixed

or adaptive on the UKF performance is illustrated us-

ing the bearings-only tracking example where a ma-

noeuvring object is tracked by a radar platform [25].

The object follows a course of ¡140 [deg] (the angles
are referenced clockwise positive to the y axis) starting

12.2 [km] away from the platform at a constant speed

of 4 [knots]. The platform follows a course of 140 [deg]

at a constant speed of 5 [knots] and at the time inter-

val k = h13,17i executes a manoeuvre to reach a new
course of 18 [deg]. The initial positions are [12,2] [km]

for the object and [0,0] [km] for the platform. The ge-

ometry of the motion is depicted in Fig. 6. The object
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Fig. 4. Static example II: Dependence of the UT-based approximate characteristics on the rotation and scaling of ¾-point sample set

(together with the true and fixed UT characteristics).

Fig. 5. Static example II: Dependence of the UT-based mean error

on the rotation of ¾-point sample set (for ·= 1).

motion (relative to the platform) is modelled by a con-

tinuous white noise acceleration model [3]. The state of

the model xk = [x1,k,x2,k,x3,k,x4,k]
T consists of the po-

sitions in x and y-directions ([x1,k,x2,k]) and respective

velocities ([x3,k,x4,k]) which evolves as

xk+1 = Fxk +Gwk, (66)

with

F=

26664
1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

37775 , G=

26664
0:5T2 0

0 0:5T2

T 0

0 T

37775 , (67)

where T = 1 [min] is the sampling interval, k = 0,1,

: : : ,K = 100, and wk is the Gaussian zero-mean state

Fig. 6. Geometry of bearings-only tracking example.

noise with covariance matrix §w with §w = 10¡4I2
£[km2=sec4].
The measurement zk providing the relative angle of

the object w.r.t. the platform at time k is

zk = arctan
x1,k ¡ xp1,k
x2,k ¡ xp2,k

+ vμk , (68)

where [x
p
1,k,x

p
2,k] is the known platform position and the

variance of the measurement noise is §v = (3 [deg])2.

In total M = 103 MC simulations were carried out

and the UKF with different settings of the user-defined

parameters were simulated. In particular, the following

UKFs and CKFs are considered

² UKF(svd)–UKF with Sxx computed by the SVD,
² UKF(chol)–UKF with Sxx computed by the Chol-
esky decomposition,
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² AUKF(μ12,J4(C))–AUKF with the Cholesky decom-
position and rotation matrix computed on the basis of

μ12 with the criterion J
4(C) (43),

² AUKF(μ12)–AUKF with the Cholesky decomposi-
tion and rotation matrix computed on the basis of μ12
with the criterion JMS(C) (46),

² AUKF(μ34)–AUKF with the Cholesky decomposi-
tion and rotation matrix computed on the basis of μ34
with the criterion JMS(C) (46),

² AUKF(μ12,23,34)–AUKF with the Cholesky decom-
position and rotation matrix computed on the basis

of μ12,23,34 with the criterion J
MS(C) (46),

² AUKF(μall)–AUKF with the Cholesky decomposi-
tion and rotation matrix computed on the basis of μall
with the criterion JMS(C) (46),

² TUKF–UKF with the Cholesky decomposition and
off-line identified sequence of rotation matrices,

² CKF5(svd)–CKF of the fifth-order proposed in [15]
with Sxx computed by the SVD,

² CKF5(rot)–CKF5 with the SVD and fixed rotation

of the ¾-points through 30 [deg],

² ACKF5(μ12)–CKF with the SVD and rotation ma-

trix computed on the basis of μ12 with the criterion

JMS(C) (46),

where μ12 denotes the rotation in the plane of the first

two state vector elements, i.e., the respective rotation

matrix is of the form

C(μ12) =

26664
cos(μ12) ¡sin(μ12) 0 0

sin(μ12) cos(μ12) 0 0

0 0 1 0

0 0 0 1

37775 (69)

etc., and μall = [μ23,μ12,μ13,μ14,μ24]. It means that rota-
tion μ12 rotates the part of sigma points relative to the

position, where as μ34 rotates relative to the velocity

components. Note that all the considered filters were

run with the recommended scaling parameter ·= 0.

Hence, the filters AUKF(μ12,J
4(C)), AUKF(μ12),

AUKF(μ34), and AUKF(μ12,23,34) used the lossy de-

crease of nμ proposed in Section 4.2 with nμ = 1, nμ = 1,

nμ = 1, and nμ = 3, respectively. The filter AUKF(μall)
used the lossless decrease of nμ proposed in Section 4.1

and thus ignored rotation with the angle μ34.

Note that the filter AUKF(μ34) was used to demon-

strate that the rotation computed on the basis of μ34, i.e.,

in the plane defined by the state elements that are not

directly measurable, has almost no effect on the estima-

tion quality.

The AUKFs use the grid optimisation technique [10]

with the grid defined as μij = f0,15, : : : ,75g [deg], 8i,j
which results in 6 different values used in optimisa-

tion for the AUKF(μ12), AUKF(μ34), in 6
3 = 216 val-

ues for the AUKF(μ12,23,34), and in 6
5 = 7776 for the

AUKF(μall). The grid optimisation method is further
discussed in Appendix A.

The TUKF takes advantage of the optimal rotation

μ12 found prior to the estimation experiment on the basis

Fig. 7. Dynamic example I: Averaged optimal rotation angle μ12
used in TUKF and the averaged measurement sequence.

of a set of MC simulations. In particular 103 simulations

of the AUKF(μ12) were carried out and the average

(sample-based) optimal rotation angle was computed as

μ
opt

12,kjk¡1 =
1

103

103X
i=1

μ(i)¤
12,kjk¡1, 8k, (70)

where μ(i)¤
12,kjk¡1 is the optimal rotation at time k of

ith MC simulation. The average optimal rotation was

used for the rotation matrix C
opt

kjk¡1(μ12) computation
in the TUKF. The optimal rotation angle is plotted

in Fig. 7 together with the respective sample standard

deviation (STD). In Fig. 7 the sample statistics of the

measurement zk, i.e., the mean and STD, over the MC

simulations are given as well.

The filters were initialised according to [25] with

initial range pdf p(r) =Nfr;
p
122 +22,42g and a speed

pdf p(s) =Nfs; s̄,42g, where s̄ is the true speed.
The filter results were compared using the root mean

square error (RMSE) defined as

RMSE
pos
k =

vuut 1

M

MX
m=1

(x̂
(m)
1,kjk ¡ x(m)1,k )

2 + (x̂
(m)
2,kjk ¡ x(m)2,k )

2

(71)

for the position error and

RMSEvelk =

vuut 1

M

MX
m=1

(x̂(m)
3,kjk ¡ x(m)3,k )

2 + (x̂(m)
4,kjk ¡ x(m)4,k )

2

(72)

for the velocity error and using the non-credibility index

(NCI) [20] defined as

NCIk =
1

M

MX
m=1

[10log10((x̃
(m)
kjk )

T(Pxx(m)
kjk )¡1x̃(m)

kjk )

¡ 10log10((x̃(m)kjk )
T§¡1k x̃

(m)
kjk )], (73)
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TABLE I

Dynamic example I: RMSE, NCI, and time results of bearings-only tracking.

UKF(svd) UKF(chol) AUKF(μ12) AUKF(μ12, J
4(C)) AUKF(μ34) AUKF(μ12,13,24) AUKF(μall) TUKF

RMSEpos [km] 3.30 3.40 2.90 2.80 3.30 2.70 2.70 3.10

RMSEvel [km/sec] 0.16 0.16 0.15 0.15 0.15 0.15 0.14 0.16

NCI 4.60 4.80 3.80 3.80 4.60 3.40 2.90 4.40

time [msec] 12.8 9.5 86 3175 104191 10.6

CKF5(svd) CKF5(rot) ACKF5(μ12)

RMSEpos [km] 3.10 3.50 2.80

RMSEvel [km/sec] 0.15 0.16 0.14

NCI 4.15 5.10 3.50

time [msec] 13.30 93

Fig. 8. Dynamic example I: Time behaviour of the RMSE for

UKF(svd) and the AUKF(μ12).

where x̃(m)
kjk

¢
=(x(m)k ¡ x̂(m)

kjk ), x
(m)
k is the true state, x̂(m)

kjk and

Pxx(m)k are the filtering mean and covariance matrix of

the estimate provided by the filter at the mth MC run

and §k is the mean square error. Whereas the RMSE
compares just the quality of the mean estimate (the

lower RMSE value, the better performance), the NCI

assesses the credibility of the estimate, i.e., whether

the error covariance matrix of the filter corresponds to

the real mean square error of the state estimate. The

NCI value should be ideally zero. Negative NCI values

indicate pessimistic estimates of the filter, positive NCI

values, on the other hand, imply optimistic estimates.

The averaged values of the RMSE and the NCI over all

time instants are given in Table I. Illustration of time

behaviour of the RMSE and the NCI for the UKF(svd)

and the AUKF(μ12) is depicted in Fig. 8 and Fig. 9.

It can be seen that the UKF(svd) slightly outper-

forms the UKF(chol) at the cost of mild increase of

the computational complexity. The further improvement

can be reached by using the off-line found averaged

Fig. 9. Dynamic example I: Time behaviour of the NCI for

UKF(svd) and the AUKF(μ12).

optimal rotation μ
opt

12,kjk¡1 with negligible computational
requirements increase.

The results for the AUKFs confirm the theoretical

analysis of Section 4.1 that the largest impact on the

estimation quality is tied with the rotation in the planes

defined by the state components which are “directly”

measured, i.e., the positions in this example. The major

improvement is caused by the rotation in the position

plane, i.e., through the angle μ12. Then, the additional ro-

tations through the angles μ23 and μ13 reduces the RMSE

and the NCI further. Adding the adaptive selection of the

optimal rotation also in the remaining directions (five in

total) brings almost no benefit. This is also confirmed

by the results of the AUKF(μ34) which indicates that the

rotation in the plane defined by the velocities in x and

y directions does not lead to any performance improve-

ment.

Concerning the optimisation criteria, there is no

significant difference in using the criterion J4(C) (43)

or the criterion JMS(C) (46). With respect to the fact that

the criterion J4(C) requires computation and evaluation

of the fourth-order derivatives, the criterion JMS(C)

seems to be more suitable in the considered set-up.

From the results it is evident that the lossy decrease

of nμ may save a considerable amount of computational

costs. If only the directly observable state elements are

considered in the lossy decrease of nμ, the decrease of

estimate quality is negligible in this illustration.
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TABLE II

Dynamic example II: RMSE and NCI of two-dimensional example.

UKF AUKF(15[deg]) AUKF(30[deg])

RMSE 14.70 8.90 8.95

NCI 11.10 11.00 11.10

For the sake of completeness, the fifth-order CKF,

the CKF5 [15], was tested as well. Compared to the

UKF, the CKF5 processes 2n2x +1 ¾-points. Therefore,

it provides estimates of better quality, in this exam-

ple, in both monitored criteria at the costs of slightly

higher computational complexity. The performance of

the CKF5 is, however, still affected by the rotation of the

¾-point set. Fixed ¾-point set rotation may improve but

also worsen the estimation performance (as can be seen

for CKF5(rot)). In principle, the same rotation adapta-

tion criteria may be used as for the UKF. The CKF5 with

the adaptation, the ACKF5, according to the criterion

(46), then offers further improvement to the estimation

performance.

6.4. Dynamic example II: Nonlinear two-dimensional
system

The second dynamic example considers a nonlinear

system introduced in [37] described by

xk+1 =

·
x1,k+1

x2,k+1

¸
=

"
3sin(5x22,k)

x1,k + e
¡0:05x2,k +10

#
+wk,

(74)

zk = cos(x1,k) + x
2
2,k + vk, (75)

with p(wk) =Nfwk : 0,6I2g, p(vk) =Nfvk : 0,1g,
p(x0) =Nfx0 : [¡0:7,1]T,I2g, and k = 0,1, : : : ,100.
Three filters, namely

² UKF(svd),
² AUKF(15 [deg])–AUKF with the SVD with the

criterion JMS(C) (46) and grid-based optimisation

with step of 15 [deg],

² AUKF(30 [deg])–AUKF with the SVD with the

criterion JMS(C) (46) and grid-based optimisation
with step of 30 [deg],

all with ·= 1, were compared in terms of the averaged

RMSE (71) and NCI (73). The simulation results are

summarised in Table II.

Adaptation in the ¾-point set rotation significantly

improves the UKF performance in terms of the RMSE.

The NCI remains almost unaffected, which means that

the optimisation reduces the estimation error and esti-

mated covariance matrix proportionally. The results also

reveal that the AUKF is not heavily dependent on the

optimisation grid density in this example. Doubling the

optimisation grid points does not have almost and im-

pact on the estimation performance while the computa-

tional requirements of AUKF(30[deg]) are half of the

AUKF(15[deg]) requirements.

7. CONCLUDING REMARKS

The paper dealt with an analysis of the ¾-point set

rotation in the derivative-free approximations used in

the local filter design, namely in the unscented trans-

form being a cornerstone of the unscented Kalman fil-

ter. It was shown that the covariance matrix decompo-

sition, used in ¾-point computation, can be multiplied

by an arbitrary rotation matrix. The matrix can be then

viewed as the user-defined parameter significantly im-

pacting the filter performance. In principle, two differ-

ent approaches for selection of the appropriate rotation

were proposed; off-line approach determining the opti-

mal rotation prior to the estimation experiment (in cer-

tain recurrent scenarios even time-varying) leading to

the TUKF, or an on-line approach computing the opti-

mal rotation during the experiment respecting the actual

conditions leading to the AUKF. To avoid excessive in-

crease of computational costs due to the optimisation

of the rotation angles, two techniques were proposed to

decrease dimension of the optimisation space. The pro-

posed approaches for rotation matrix optimisation were

illustrated and compared in terms of the estimation per-

formance and the computational complexity in several

numerical examples.

Note that algorithms of the UKF with rotated ¾-point

set are part of the Nonlinear Estimation Framework

available at http://nft.kky.zcu.cz/.

APPENDIX A GRID-BASED OPTIMISATION METHOD
USED IN AUKF

Computationally efficient adaptation of the ¾-point

set rotation matrix is the key enabler allowing effective

usage of the AUKFs.

Any optimisation technique used for the solution to

(43) and (44) requires specification of the range for the

parameters being optimised as the task is generally non-

linear. If the rotation matrix parameterisation by a se-

quence of the subsequent rotations is selected, then the

simplest way is to define the range for each particular

rotation (omitting time indices) as

μi = h0,360), i= 1,2, : : : ,nμ, (76)

where nμ is the number of subsequent rotations (47).

However, because of the symmetry of the considered

¾-point set, the interval can be significantly reduced to

μi = h0,90), 8i, (77)

without the loss of generality. This is illustrated for

a two- and a three-dimensional case below assuming

the grid-based optimisation method used in the filtering

step.

The grid-based optimisation method simply covers

the interval μi (77) by a grid of equidistantly placed

points, i.e.,

μ
grid
i = fμ(1)i ,μ(2)i , : : : ,μ(G)i g, 8i: (78)

104 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 1 JUNE 2016



If nμ > 1, then the final (multidimensional) grid is given

by the Cartesian product of the particular grids as

μgrid = μ
grid
1 £ μ

grid
2 £ ¢¢ ¢£ μgridnμ

: (79)

The cardinality of the grid-points set (79) is

ngrid =G
nμ , (80)

thus exponentially growing with the number of the

rotation angles μi.

The criterion function is then evaluated at all points

of the set μgrid (79) and the optimum point is chosen

according to
μ¤ = argmin

μgrid
J(C(μ)): (81)

The chosen vector μ¤ is subsequently used for the

rotation matrix computation as illustrated by (48).

1.1. Two dimensional case

Considering nx = 2, x̂= 02£1, P
xx = I2 = [e1,e2], and

(nx+·) = 1, the ¾-point set computed according to (4)—

(6) is

X0 = 02£1, X1 = e1, X2 = e2, X3 =¡e1, X4 =¡e2,
(82)

where 0nx£1 is the zero matrix of the indicated dimen-
sion. The number of available rotation angles (47) is

nμ = 1, therefore μ
grid = μ

grid
1 , and the respective covari-

ance matrix C is computed according to (61).
Then, it is not difficult to see that the ¾-point set

rotation through an angle μh 2 h90,180) [deg] results
in virtually the same ¾-point set as for the rotation

μl = (μh¡ 90) 2 h0,90) [deg]. It means that
X r
0 =C(μh)X0 =C(μl)X0 = X0, (83)

X r
i =C(μh)Xi =C(μh¡90)C(90)Xi =C(μh¡ 90)Xi+1
=C(μl)Xi+1, (84)

X r
4 =C(μh)X4 =C(μl)X1, (85)

where C(90) =

·
0 ¡1
1 0

¸
and i= 1,2,3.

As the ¾-points X1, : : : ,X4 are weighted equally and
the UT (8)—(10) does not reflect the ¾-point order, the

UT with the rotated ¾-points (30)—(32) provides the

same results for

C(μ) =C(μ+90) =C(μ+180) =C(μ+270): (86)

assuming μ in [deg]. That means the optimisation of the

criterion (81) does not bring any benefit if performed

on the interval μ 2 h0,360) [deg] w.r.t. optimisation on
μ 2 h0,90) [deg].
1.2. Three dimensional case

Considering nx = 3, x̂= 03£1, P
xx = I3 = [e1,e2,e3],

and (nx+·) = 1, the ¾-point set computed according to

(4)—(6) is

X0 = 03£1, X1 = e1, X2 = e2, X3 = e3, X4 =¡e1,
X5 =¡e2, X6 =¡e3: (87)

Fig. 10. Illustration of the ¾-point set rotation in three dimensional

case.

The number of available rotation angles (47) is nμ = 3,

therefore μgrid = μ
grid
1 £ μ

grid
2 £ μ

grid
3 , and the respective

covariance matrix C is computed according to

C(μ) =C3(μ3)C2(μ2)C1(μ1) (88)

=

2641 0 1

0 cos(μ3) ¡sin(μ3)
0 sin(μ3) cos(μ3)

375
264cos(μ2) 0 ¡sin(μ2)

0 1 0

sin(μ2) 0 cos(μ2)

375

£

264cos(μ1) ¡sin(μ1) 0

sin(μ1) cos(μ1) 0

0 0 1

375 :
Similarly to the two dimensional case, the ¾-point

set rotated through the angle(s) greater than 90± is
analysed and it is shown that such rotation results again

in virtually the same ¾-point set rotated just within the

range from 0± to 90±. This is illustrated by the rotation
μ1,h 2 h90,180) [deg] as

X r
0 =C3,2C1(μ1,h)X0 =C3,2C1(μ1,l)X0 = X0, (89)

X r
i =C3,2C1(μ1,h)Xi =C3,2C1(μ1,h¡ 90)C1(90)Xi
=C3,2C(μ1,h¡90)Xj =C3,2C(μ1,l)Xj , (90)

where μ1,l 2 h0,90) [deg], C3,2 =C3(¢)C2(¢),

C1(90) =

2640 ¡1 0

1 0 0

0 0 1

375 , (91)
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i,j = 1,2, : : : ,6, and

C1(90)X1 = [0,1,0]T = X2, (92)

C1(90)X2 = [¡1,0,0]T = X4, (93)

C1(90)X3 = [0,1,0]T = X3, (94)

C1(90)X4 = [0,¡1,0]T = X5, (95)

C1(90)X5 = [1,0,0]T = X1, (96)

C1(90)X6 = [0,0,¡1]T = X6: (97)

The ¾-points X1, : : : ,X6 are again weighted equally
and the UT (8)—(10) does not reflect the ¾-point or-

der, therefore, the optimisation for an interval μi 2
h0,μi,max) [deg] with μi,max > 90

± cannot improve the re-
sults.

For illustration, the set of ¾-points (87) rotated for

the Cartesian product μgrid with μ
grid
i = f0,1, : : : ,89g,

i= 1,2,3, is shown in Fig. 10.
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