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Ivan Petrović, University of Zagreb, Croatia

Density Estimation on the Rotation Group Using Diffusive Wavelets ................................... 173
Nicolas Le Bihan, CNRS/Gipsa-Lab, France
Julien Flamant, Université de Lille, France
Jonathan H. Manton, The University of Melbourne, Australia

Uncertainty Propagation of Correlated Quaternion and Euclidean States 
Using the Gauss-Bingham Density ...................................................................................... 186
Jacob E. Darling, Missouri University of Science and Technology, USA
Kyle J. Demars, Missouri University of Science and Technology, USA

Multivariate Angular Filtering Using Fourier Series ............................................................. 206
Florian Pfaff, Karlsruhe Institute of Technology (KIT), Germany
Gerhard Kurz, Swiss Federal Institute of Technology Zurich, Switzerland
Uwe D. Hanebeck, Swiss Federal Institute of Technology Zurich, Switzerland

Particle Filtering with Observations in a Manifold: A Proof of Convergence and 
Two Worked Examples......................................................................................................... 227
Salem Said, Université de Bordeaux, France 
Jonathan H. Manton, The University of Melbourne, Australia

Direct Position Determination for TDOA-based Single Sensor Localization.......................... 250
Christian Steffes, Fraunhofer Institute for Communication, Germany
Marc Oispuu, Fraunhofer Institute for Communication, Germany

From the

Editor-In-Chief

Guest Editorial:

Foreword to the

Special Issue on

Estimation

Involving

Directional 

Quantities

ISIF

A semi-annual archival publication of the International Society of Information Fusion

www.isif.org

December 2016    Volume 11     Number 2 ISSN 1557-66418

Journal of Advances in Information Fusion

JAIF

´



JOURNAL OF ADVANCES IN INFORMATION FUSION: DECEMBER 2016
Editor-In-Chief	 Uwe D. Hanebeck	 Karlsruhe Institute of Technology (KIT), Germany;	  	
			   +49-721-608-43909; uwe.hanebeck@ieee.org
	 Associate	 Stefano Coraluppi	 Systems & Technology Research, USA; +1 781-305-4055;  
			   stefano.coraluppi@ieee.org
Administrative Editor	 David W. Krout	 University of Washington, USA; +1 206-616-2589; 
			   dkrout@apl.washington.edu
	 Associate	 Ruixin Niu	 Virginia Commonwealth University, Richmond, Virginia,  
			   USA; +1 804-828-0030; rniu@vcu.edu
	 Associate	 Marcus Baum	 Karlsruhe Institute of Technology (KIT), Germany;  
			   +49-721-608-46797; marcus.baum@kit.edu

EDITORS FOR TECHNICAL AREAS 
Tracking	 Stefano Coraluppi	 Systems & Technology Research, USA; +1 781-305-4055;  
			   stefano.coraluppi@ieee.org
	 Associate	 Paolo Braca	 NATO Science & Technology Organization, Centre for  
			   Maritime Research and Experimentation, Italy;  
			   +39 0187 527 461; paolo.braca@cmre.nato.int
Detection	 Pramod Varshney	 Syracuse University, Syracuse, New York, USA;  
			   +1 315-443-1060; varshney@syr.edu
Fusion Applications	 Ben Slocumb	 Numerica Corporation; Loveland, Colorado, USA;  
			   +1 970-461-2000; bjslocumb@numerica.us
	 Associate	 Ramona Georgescu	 United Technologies Research Center, East Hartford,  
			   Connecticut, USA; 860-610-7890; georgera@utrc.utc.com
Image Fusion	 Lex Toet	 TNO, Soesterberg, 3769de, Netherlands; +31 346356237; 	
			   lex.toet@tno.nl
	 Associate	 Ting Yuan	 Mercedes Benz R&D North America, USA;  
			   +1 669-224-0443; dr.ting.yuan@ieee.org
Fusion Architectures and 	 Chee Chong	 BAE Systems, Los Altos, California, USA;  
Management Issues		  +1 650-210-8822; chee.chong@baesystems.com
Classification, Learning, 	 Nageswara S. V. Rao	 Oak Ridge National Laboratory, USA; +1 865-574-7517;  
Bayesian and Other Reasoning 	 Claude Jauffret	 Université de Toulon, La Garde, France;  
Methods		  + 33 (0) 4 94 14 24 14; jauffret@univ-tln.fr
	 Associate	 Jean Dezert	 ONERA, Chatillon, 92320, France; +33 146734990;  
			   jean.dezert@onera.fr

Manuscripts are submitted at http://jaif.msubmit.net. If in doubt about the proper editorial area of a contribution, submit it 
under the unknown area.

INTERNATIONAL SOCIETY OF INFORMATION FUSION

The International Society of Information Fusion (ISIF) is the premier professional society and global informa-
tion resource for multidisciplinary approaches for theoretical and applied INFORMATION FUSION technolo-
gies. Technical areas of interest include target tracking, detection theory, applications for information fusion 
methods, image fusion, fusion systems architectures and management issues, classification, learning, data min-
ing, Bayesian and reasoning methods.

INTERNATIONAL SOCIETY OF INFORMATION FUSION

Jean Dezert, President	 Lance Kaplan, Vice President Conferences
Lyudmila Mihaylova, President-elect	 Anne-Laure Jousselme, Vice President Membership
Stefano Coraluppi, Secretary	 Garfield Mellema, Vice President Working Groups
Chee Chong, Treasurer	 Uwe Hanebeck, JAIF EIC  
Dale Blair, Vice President Publications	 Roy Streit, Perspectives EIC
David W. Krout, Vice President Communications	

Journal of Advances in Information Fusion (ISSN 1557-6418) is published semi-annually by the International Society of Information 
Fusion. The responsibility for the contents rests upon the authors and not upon ISIF, the Society, or its members. ISIF is a California 
Nonprofit Public Benefit Corporation at P.O. Box 4631, Mountain View, California 94040. Copyright and Reprint Permissions: 
Abstracting is permitted with credit to the source. For all other copying, reprint, or republication permissions, contact the Administrative 
Editor. Copyright© 2016 ISIF, Inc.



From the Editor-in-Chief:
December 2016

Gerhard Kurz Igor Gilitschenski

Guest Editorial: Foreword to the Special Issue on Es-
timation Involving Directional Quantities

Estimation problems that involve directional quanti-
ties naturally arise in applications that range from sig-
nal processing, robotics, and aerospace to bioinformat-

ics and geosciences. Directional approaches differ from
traditional estimation methods intended for real vector

spaces because they consider the underlying manifold
structure of directional problems, e.g., the unit circle,
the hypertorus, or the group of rigid body motions.

The question of how to apply methods from direc-
tional statistics in the context of estimation and filter-
ing problems has recently gained significant interest as

directional problems are abundant in a plethora of ap-
plications and classical estimation methods are being
pushed to their boundaries. As a result, we believe that

this field of research is highly relevant for the estimation
and information fusion community.

We are proud to present this special issue of the Jour-
nal of Advances in Information Fusion. It comprises
eight papers in total, some of which are extended ver-

sions of papers originally presented in the special ses-
sion on directional estimation at the International Con-
ference on Information Fusion in 2014 and 2015.

We start the special issue with the paper “Stochas-
tic Filtering Using Periodic Cost Functions” by Eyal
Nitzan, Tirza Routtenberg, and Joseph Tabrikian. This

paper proposes two novel approaches for estimation of
circular states, a sample-based method and a Fourier-

based method, which can be used to minimize a prede-
fined cost function.
The second paper “Methods for Deterministic Ap-

proximation of Circular Densities” by Gerhard Kurz,
Igor Gilitschenski, Roland Y. Siegwart, and Uwe D.
Hanebeck deals with deterministic sample-based ap-

proximations of circular densities and presents novel
algorithms based on superposition of multiple sample
sets as well as an algorithm that relies on a binary tree.

Afterwards, we turn our attention to the sphere with
the paper “Multitarget Tracking with the von Mises—

Fisher Filter and Probabilistic Data Association” by
Ivan Markovic, Mario Bukal, Josip Cesic, and Ivan
Petrovic. Here, the authors apply the idea of the joint
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probabilistic data association filter (JPDAF) to spherical

multitarget tracking problems and combine it with von

Mises-Fisher-based filtering.

On the topic of the rotation group SO(3), the special

issue includes the paper “Density Estimation on the

Rotation Group using Diffusive Wavelets” by Nicolas

Le Bihan, Julien Flamant, and Jonathan H. Manton.

Their paper is devoted to density estimation using two

novel methods, the first being based on characteristic

functions and the second relying on wavelets using the

heat kernel.

Then, the paper “Uncertainty Propagation of Corre-

lated Quaternion and Euclidean States using the Gauss-

Bingham Density” by Jacob E. Darling and Kyle J. De-

Mars considers the problem of uncertainty propagation

on the group of rigid body motions. For this purpose, a

generalization of the Bingham distribution is presented

that can consider Euclidean vectors along with quater-

nions while taking their correlation into account.

Another relevant manifold in directional estimation

is the hypertorus, which is investigated in the paper

“Multivariate Angular Filtering Using Fourier Series”

by Florian Pfaff, Gerhard Kurz, and Uwe D. Hanebeck.

The paper presents novel algorithms for multimodal

filtering on this manifold based on a multivariate Fourier

series representation either of the probability density or

its square root.

More generally, Salam Said and Jonathan H. Man-

ton do not restrict themselves to a particular manifold

in their paper “Particle filtering with observations in a

manifold: A proof of convergence and two worked ex-

amples,” but rather present some very universal results.

The paper includes a proof of convergence as well as

examples involving SO(3) and the unit sphere.

We conclude the special issue with the paper “Direct

Position Determination for TDOA-based Single Sensor

Localization” by Christian Steffes and Marc Oispuu.

This paper deals with the application of localization us-

ing TDOA sensors, a practical problem that involves

directional quantities. Four different localization meth-

ods are proposed and compared with the Cramér-Rao

Lower Bound.

At this point, we would like to thank the Journal of

Advances in Information Fusion (JAIF) Editorial Board,

the editor in chief Uwe D. Hanebeck, as well as all

involved authors and reviewers for making this special

issue possible.

Gerhard Kurz

Karlsruhe Institute for Technology

Igor Gilitschenski

Swiss Federal Institute of Technology in Zurich

Guest Associate Editors
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Stochastic Filtering Using
Periodic Cost Functions

EYAL NITZAN
TIRZA ROUTTENBERG
JOSEPH TABRIKIAN

Stochastic filters attempt to estimate an unobservable state of a

stochastic dynamical system from a set of noisy measurements. In

this paper, we consider circular stochastic filtering and develop two

dynamic methods for estimation of circular states, named sample-

based stochastic filtering via root-finding (SB-SFRF) and Fourier-

based stochastic filtering via root-finding (FB-SFRF). The proposed

SB-SFRF and FB-SFRF methods attempt to dynamically minimize

Bayes periodic risks by using Fourier series representation of their

corresponding cost functions. The performance of the proposed

methods is evaluated in the problem of direction-of-arrival (DOA)

tracking.
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1. INTRODUCTION

In stochastic filtering problems, it is required to es-

timate the state of a dynamic system using a sequence

of noisy measurements. Bayesian stochastic filtering is

a commonly-used estimation technique that based on

a state space model, recursively updates the posterior

probability density function (pdf) of the current state

given current and previous measurements. Under a cho-

sen risk, optimal estimators can be obtained from the

posterior pdf at each time step.

The mean-squared-error (MSE) risk is widely used

for performance evaluation in stochastic filtering prob-

lems. Due to the dynamic nature of these problems,

computation/approximation of the minimum MSE

(MMSE) estimator is performed recursively by using

stochastic filters and recursive computation of the pos-

terior pdf. For linear dynamic systems with Gaussian

noise, the well-known Kalman filter [17] provides, at

each time step, a closed-form expression for the MMSE

estimator. However, for the general nonlinear and/or

non-Gaussian case there is no optimal filtering method

that provides an analytic expression for the MMSE es-

timator or for the MMSE performance. Suboptimal fil-

tering methods include the extended Kalman filter (e.g.

[1], [12], [16], [56]), the unscented Kalman filter (e.g.

[15], [51]), as well as discrete (approximate grid-based)

filters and particle filters (e.g. [2], [10], [13]).

In many stochastic filtering problems, the unknown

state has a circular nature, for example, phase, fre-

quency, and direction-of-arrival (DOA) (see e.g. [26],

[43], [55], [59]). We denote these problems as circular

stochastic filtering problems. In this case, at each time

step, we are interested in the modulo-2¼ estimation er-

rors and not in the plain error values. In fact, the plain

error values may be absurd for estimation of circular

states, especially if the unknown state is close to the

edges of the circular domain [31], [45], [49]. Thus, the

MSE risk and the MMSE estimator are inappropriate for

circular stochastic filtering and alternative periodic risks

that are based on 2¼-periodic cost functions, should be

used [5], [37], [38], [40], [49]. As a result, recursively-

computed estimators under these periodic risks should

be derived.

Several circular estimation methods, also known as

directional estimation methods, have been proposed for

obtaining estimators under periodic risks in static esti-

mation problems. In [57] and [58], infinite-dimensional

equations for optimal estimation under periodic risks are

derived by using infinite Fourier series. However, the

solution to these infinite-dimensional equations is not

presented. In [47], the parameter estimation via root-

finding (PERF) method is proposed. The PERF method

expresses 2¼-periodic cost functions via their Fourier

series and derives corresponding optimal Bayes esti-

mators for these cost functions, by using a polynomial

root-finding algorithm. This method is computationally
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manageable and avoids a grid search for the optimal es-

timator. A new approach for estimating the mean direc-

tion of a circular random variable is presented in [35],

based on the minimum squared arc length criterion.

There are two main approaches in the literature for

circular stochastic filtering that utilize the circular na-

ture of the state. In [3], [20]—[23], [33], circular filters

attempt to estimate the current posterior pdf under the

assumption that it belongs to specific distributions on

the circle. The second approach is representing the pos-

terior pdf via a Fourier series, without assuming any

specific distribution, and predicting/updating its Fourier

coefficients. In [7], this approach was utilized for non-

linear filtering on linear domains under a general state

and measurement model. Circular filters that utilize this

approach are proposed in [57], [58] for a specific state

model and in [44] for a more general state model. The

circular filter in [44] maintains a valid approximation

for the posterior pdf by efficiently predicting and up-

dating the Fourier coefficients of its square root and

normalizing it accordingly.

In general stochastic filtering problems and in partic-

ular in circular problems, the posterior pdf, from which

the state is estimated, is usually computed or approxi-

mated. In circular stochastic filtering problems, the cir-

cular mean of the posterior pdf, which describes the

pdf location on the circle, is usually used as an estima-

tor of the circular state (see e.g. [20], [21], [44], [53]).

However, the posterior circular mean is not the optimal

estimator under a general periodic risk [47].

In this paper, we consider discrete-time circular

stochastic filtering problems. We propose two methods

for circular stochastic filtering via root-finding (SFRF):

the sample-based SFRF (SB-SFRF) and the Fourier-

based SFRF (FB-SFRF). The proposed methods enable

the implementation of PERF method from [47], which is

suitable for off-line estimation with batch data, for filter-

ing problems, where the data is processed sequentially.

The SB-SFRF and FB-SFRF methods derive estimators

under a general periodic Bayes risk in circular stochas-

tic filtering problems. The two methods are based on

representation of the corresponding periodic cost func-

tion by a Fourier series and then, implementation of a

root-finding algorithm. The SB-SFRF method approx-

imates the current posterior pdf with a finite sum of

weighted Dirac components while the FB-SFRF method

approximates the posterior pdf with a finite Fourier se-

ries. We examine the following periodic cost functions:

1) squared-periodic-error (SPE) (see e.g. [22], [48]); 2)

absolute-periodic-error (APE) (see e.g. [32, pp. 19—20],

[36]); and 3) cyclic-error (CE) (see e.g. [3], [39], [50],

[57]). The performance of the proposed SB-SFRF and

FB-SFRF methods is demonstrated in the problem of

DOA tracking.

The remainder of the paper is organized as follows.

In Section 2, we formulate the circular stochastic fil-

tering model and review the properties of common pe-

riodic risks. In Section 3, the SB-SFRF and FB-SFRF

methods are derived. The proposed methods are evalu-

ated via simulations for DOA tracking problem in Sec-

tion 4. Finally, our conclusions appear in Section 5.

In the sequel, we denote vectors and matrices by

boldface lowercase and uppercase letters, respectively.

The mth element of the vector b is denoted by bm and

j
¢
=
p¡1. The notations (¢)T and (¢)¤ denote the transpose

and complex conjugate operators, respectively. The no-

tation 6 ¢ stands for the phase of a complex scalar, which
is assumed to be restricted to the interval [¡¼,¼). The
modulo-2¼ operator, which maps ½ 2 R to [¡¼,¼), is
denoted as [½]2¼

¢
=½¡ 2¼b 1

2
+ ½

2¼
c, where b¢c is the floor

operator. The operators of expectation and conditional

expectation given an event Z, are denoted as E[¢] and
E[¢ j Z], respectively.

2. CIRCULAR STOCHASTIC FILTERING

Consider the following nonlinear discrete-time state

space model½
μn = an(μn¡1,wn)

xn = hn(μn,ºn)
, n= 1,2, : : : , (1)

where for any n= 1,2, : : :

² μn 2−μ

¢
=[¡¼,¼)–circular state for which we are in-

terested in the modulo-2¼ estimation error.

² μ0 2−μ–initial state with known a priori pdf fμ0 .

² xn 2CL–measurement vector.
² fwng–sequence of mutually independent P£ 1 noise
vectors with known pdfs, ffwng, that are independent
of past and present states.

² fºng–sequence of mutually independent Q£ 1 com-
plex noise vectors with known pdfs, ffºng, that are
independent of past and present states and the state

noise.

² an :−μ £RP !−μ–state transition function.

² hn :−μ £CQ!CL–measurement function.

The conditional pdfs fμnjμn¡1 and fxnjμn can be ob-
tained from (1) and the pdfs of wn and ºn, respectively.
The filtering goal is to estimate the circular state μn at

each time step n= 1,2, : : :, based on x(n)
¢
=[xT1 , : : : ,x

T
n ]
T 2

−(n)x , which is the augmented measurement vector con-

taining all the measurements up to time step n, where

−(n)x is the nth step measurement space. An estimator

of μn, based on x
(n), is denoted by μ̂n : −

(n)
x !−μ. The

posterior pdf of μn given x
(n) and the predicted pdf of μn

given x(n¡1) are denoted by fμnjx(n) and fμnjx(n¡1) , respec-

tively, 8n= 1,2, : : :, where fμ1jx(0)
¢
=fμ1 denotes the a pri-

ori pdf of μ1 2−μ. In addition, we define fμ0jx(0)
¢
=fμ0 .

In the Bayesian framework, optimal estimators are

obtained via minimization of Bayes risks. In circular

stochastic filtering problems, the appropriate Bayes risk

at time step n is based on 2¼-periodic cost function,
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Fig. 1. SE and periodic cost functions: SPE, APE, and CE.

C(μ̂n¡ μn), with respect to (w.r.t.) the estimation er-

ror, μ̂n¡ μn. The corresponding risk is the mean of the

cost function, E[C(μ̂n¡ μn)]. It should be noted that

restriction of the state estimator to the region [¡¼,¼)
does not prevent the resulting estimation error from

taking values in the region (¡2¼,2¼). Thus, the inap-
propriate nature of the conventional risks, such as the

MSE, cannot be resolved. For example, consider the

case of close parameter and its estimate on the cir-

cle, in which μn =¡¼+ ±1 and μ̂n = ¼¡ ±2, 0< ±i¿ 1,

i= 1,2. In this case, direct computation of the error re-

sults in μ̂n¡ μn = 2¼¡ (±1 + ±2), which is a large error.
However, computation of the periodic error results in

[μ̂n¡ μn]2¼ =¡(±1 + ±2), which is a small error.
In the following, we describe three examples for pe-

riodic cost functions: SPE, APE, and CE. These periodic

cost functions and the nonperiodic squared-error (SE)

cost function are presented in Fig. 1 versus the estima-

tion error. It can be seen that as the absolute value of

the estimation error grows from ¼ to 2¼, the SE cost

function increases, since it does not take the circular

nature of the error into account, while the periodic cost

functions decrease.

² SPE: The SPE cost function at the nth time step is
defined as

C(μ̂n¡ μn) = SPE(μ̂n¡ μn)
¢
=([μ̂n¡ μn]2¼)

2: (2)

Given a measurement vector, x(n), the minimum mean
SPE (MMSPE) estimator is given by

μ̂n,MMSPE = arg min
μ̂n2−μ

E[([μ̂n¡ μn]2¼)
2 j x(n)]: (3)

² APE: The APE cost function at the nth time step is
defined as

C(μ̂n¡ μn) = APE(μ̂n¡ μn)
¢
= j[μ̂n¡ μn]2¼j: (4)

Given a measurement vector, x(n), the minimum mean
APE (MMAPE) estimator is given by

μ̂n,MMAPE = arg min
μ̂n2−μ

E[j[μ̂n¡ μn]2¼j j x(n)]: (5)

² CE: The CE cost function at the nth time step is

defined as

C(μ̂n¡ μn) = CE(μ̂n¡ μn)
¢
=2¡2cos(μ̂n¡ μn): (6)

In [57], [58], it is shown that given a measurement

vector, x(n), the minimum mean CE (MMCE) estima-

tor is given by

μ̂n,MMCE(x
(n)) =½ 6 E[ejμn j x(n)], E[ejμn j x(n)] 6= 0
0, otherwise

, (7)

which is the posterior circular mean at time step n.

In general, optimal estimators under periodic risks

cannot be analytically derived except for a few special

cases, such as the estimator from (7), which is optimal

under the mean CE (MCE) risk. Therefore, a grid-

search method is used for their derivation. A grid-

search method involves the computation of conditional

expectation, as in (3) and (5), for any point on the grid.

The disadvantages of a grid-search method are: (a) its

accuracy depends on the chosen grid; and (b) using

a dense grid can be computationally prohibitive. In

[47], a method called PERF was proposed for obtaining

optimal estimators under arbitrary periodic risks. This

method was derived for batch data. In this paper, we

extend this method to circular stochastic filtering in

which the estimators can be computed recursively at

each time step, based on results from the previous steps

and the new measurement. In the following section, we

first review the PERF method. Then, we describe the

SB-SFRF and FB-SFRF methods that utilize the PERF

approach and obtain estimators under a general periodic

risk in a dynamic setting.

3. SB-SFRF AND FB-SFRF METHODS

3.1. Review–PERF method

In circular stochastic filtering, our goal is minimiza-

tion of an arbitrary periodic risk at each time step. First,

we discuss periodic risks, whose corresponding cost

function can be represented by a finite Fourier series.

We refer to the case of infinite Fourier series in Subsec-

tion 3.4.

Let C :−"!R be a real, 2¼-periodic, and even cost
function, where −"

¢
=(¡2¼,2¼), that can be expressed

as the following finite Fourier series [61]:

C(μ̂n¡ μn) =

KX
k=¡K

cke
jk(μ̂n¡μn), (8)
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for any n= 1,2, : : :, where ck, k =¡K, : : : ,K, are the
corresponding Fourier coefficients of C. Since C is

even, its Fourier coefficients satisfy ck = c¡k. Given x
(n),

the estimator that minimizes the Bayes risk, E[C(μ̂n¡
μn)], is obtained by minimization of the conditional

expectation

Q(ejμ̂n)
¢
=E[C(μ̂n¡ μn) j x(n)]: (9)

By substituting (8) in (9) and using the linearity of the

expectation operator, one obtains

Q(ejμ̂n) = E

"
KX

k=¡K
cke

jk(μ̂n¡μn) j x(n)
#

=

KX
k=¡K

ckm
(n)
¡k(x

(n))ejkμ̂n , (10)

where
m(n)k (x)

¢
=E[ejkμn j x] (11)

is the kth trigonometric moment of fμnjx (see e.g.

[14, p. 26], [32, pp. 28—29]), where x is a random vec-

tor. The term in (11) can be interpreted as a sample of

the conditional characteristic function of μn given x at an
integer k. Since fμnjx(n) is a real pdf, it can be verified that

m(n)0 (x
(n)) = 1 and m(n)k (x

(n)) = (m(n)¡k(x
(n)))¤, k = 1, : : : ,K.

In order to obtain the estimator that minimizes

Q(ejμ̂n) from (10), we first find stationary points of

Q(ejμ̂n) and then find the minimum point from the set

of stationary points. Since Q(ejμ̂n) is a real, smooth, and

2¼-periodic function w.r.t. μ̂n, it can be verified by us-

ing Rolle’s theorem (see e.g. [54, p. 132]) that it has at

least two stationary points in −μ. The stationary points

are obtained by equating the derivative of Q(ejμ̂n) w.r.t.

μ̂n to zero, which yields

KX
k=¡K

kckm
(n)
¡k(x

(n))ejkμ̄n = 0, (12)

where μ̄n is a stationary point of Q(e
jμ̂n). In general, (12)

cannot be analytically solved. Finding the stationary

points and consequently the minimum point of Q(ejμ̂n)

can be obtained by a grid-search method, whose draw-

backs are discussed in Section 2. An alternative ap-

proach is utilizing the PERF method [47].

In the PERF method, the term ejμ̄n in (12) is replaced

by a general complex scalar z 2 C, resulting in
KX

k=¡K
kckm

(n)
¡k(x

(n))zk = 0: (13)

Then, a polynomial root-finding algorithm is applied on

(13) and the 2K roots of (13), z̄1, : : : , z̄2K , are obtained.

Finally, the optimal estimator is obtained by computing

μ̂n,opt = 6 z̄opt = arg min
μ̂n2fμ̄n,1,:::,μ̄n,2Kg

Q(ejμ̂n), (14)

TABLE I

PERF method

Initialization:
² Choose a real, 2¼-periodic, and even cost function, C, with
Fourier series order K.

² Compute fckgKk=0, the Fourier coefficients of the periodic cost
function C.

Algorithm stages:
² Compute fm(n)

k
(x(n))gK

k=1
, the trigonometric moments of fμn jx(n) ,

as defined in (11).

² Find the roots of (13), z̄1, : : : , z̄2K , and compute their
corresponding phases, μ̄n,1, : : : , μ̄n,2K , respectively.

² Find μ̂n,opt using (10) and (14).

where μ̄n,1 = 6 z̄1, : : : , μ̄n,2K = 6 z̄2K . It should be noted that
as opposed to a grid-search method, which involves the

computation of conditional expectation for any point on

the grid (as mentioned in Section 2), the PERF method

involves the computation of only K conditional expec-

tations for derivation of the trigonometric moments in

(11). The PERF method is summarized in Table I.

It can be seen that in order to use the PERF method

in a circular stochastic filtering problem, the trigonomet-

ric moments, fm(n)k (x(n))gKk=1, from (11) should be com-

puted at each time step. The SB-SFRF and FB-SFRF

methods, derived in the following, enable the imple-

mentation of PERF method in a dynamic setting.

3.2. SB-SFRF method

In this subsection, we describe SB-SFRF method

that can be implemented by using any sample-based

filter. A sample-based filter, such as discrete filter and

particle filter [2], approximates the nth step posterior

pdf, fμnjx(n) , with a finite sum of weighted Dirac compo-

nents, f(S)n,SB : −μ !R, given by

f(S)n,SB(y)
¢
=

SX
s=1

!n,s±(y¡¯n,s), (15)

where y is the argument of f(S)n,SB, S is the number of

samples, ± is the Dirac delta function, ¯n,1, : : : ,¯n,S 2 −μ

are the Dirac positions, and !n,1, : : : ,!n,S are nonnegative

weights. The values of S, f¯n,sgSs=1, and f!n,sgSs=1 depend
on the chosen sample-based filter. In order to apply

the PERF method, the first K trigonometric moments

m(n)1 (x
(n)), : : : ,m(n)K (x

(n)) should be computed at each time

step. By substituting the pdf approximation from (15) in

(11), the approximations of the trigonometric moments,

fm(n)k (x(n))gKk=1, are

m
(n,S)
k,SB =

SX
s=1

!n,se
jk¯n,s , 8k = 1, : : : ,K: (16)

Thus, by substituting (16) in (10) and (13), the PERF

method can be applied to obtain an approximation for

the optimal estimator. We denote the resulting estimator
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TABLE II

SB-SFRF method

Initialization:
² Choose a real, 2¼-periodic, and even cost function, C, with
Fourier series order K .

² Compute fckgKk=0, the Fourier coefficients of the periodic cost
function C.

Algorithm stages for the nth time step:
² Compute the Dirac positions, ¯n,1, : : : ,¯n,S 2 −μ , and the

weights, !n,1, : : : ,!n,S , of the approximated posterior pdf, f
(S)
n,SB

,

from (15) by using a sample-based filter.

² Compute the approximated trigonometric moments, m(n,S)
k,SB

,

k = 1, : : : ,K, according to (16).

² Find the roots of (13), z̄1, : : : , z̄2K , and compute their
corresponding phases, μ̄n,1, : : : , μ̄n,2K , respectively.

² Find μ̂
(S)
n,SB

using (10) and (14).

as μ̂(S)n,SB. The complete SB-SFRF method at time step n

is summarized in Table II.

3.3. FB-SFRF method
In this subsection, we describe the FB-SFRF method

that is implemented by using a Fourier-based circular

filter, denoted as Fourier filter, which is proposed in

[44]. First, we define

f
(p)
μ0
(®0)

¢
=

1X
l=¡1

fμ0 (®0 +2¼l) (17)

and for any n= 1,2, : : :,

f
(p)

μnjμn¡1 (®n j ®n¡1)
¢
=

1X
l=¡1

1X
m=¡1

fμnjμn¡1 (®n+2¼l j ®n¡1 +2¼m),
(18)

f
(p)

xnjμn(¯n j ®n)
¢
=

1X
l=¡1

fxnjμn(¯n j ®n+2¼l), (19)

f
(p)

μnjx(n) (®n j ¯
(n))

¢
=

1X
l=¡1

fμnjx(n) (®n+2¼l j ¯(n)), (20)

f
(p)

μnjx(n¡1) (®n j ¯
(n¡1))

¢
=

1X
l=¡1

fμnjx(n¡1) (®n+2¼l j ¯(n¡1)), (21)

which are the 2¼-periodic extensions of the pdfs fμ0 ,

fμnjμn¡1 , fxnjμn , fμnjx(n) , and fμnjx(n¡1) , respectively, w.r.t.fμngn¸0.
Since f

(p)
μ0

is a 2¼-periodic function w.r.t. μ0 and

since f
(p)

xnjμn , f
(p)

μnjx(n) , and f
(p)

μnjx(n¡1) are 2¼-periodic functions
w.r.t. μn, it is assumed that they can be represented

via Fourier series with Fourier coefficients f´(0)l gl2Z,
fd(n)l (xn)gl2Z, f´(njn)l (x(n))gl2Z, and f´(njn¡1)l (x(n¡1))gl2Z,
respectively. That is,

f
(p)
μ0
(®0) =

1X
l=¡1

´(0)l e
jl®0 , (22)

f
(p)

xnjμn(¯n j ®n) =
1X

l=¡1
d(n)l (¯n)e

jl®n , (23)

f
(p)

μnjx(n) (®n j ¯
(n)) =

1X
l=¡1

´
(njn)
l (¯(n))ejl®n , (24)

and

f
(p)

μnjx(n¡1) (®n j ¯
(n¡1)) =

1X
l=¡1

´
(njn¡1)
l (¯(n¡1))ejl®n : (25)

Similarly, the function f
(p)

μnjμn¡1 is a 2¼-periodic function
w.r.t. both μn and μn¡1, and therefore, it is assumed that it
can be represented via a two-dimensional Fourier series

with Fourier coefficients fÁ(n)l,mgl,m2Z, i.e.

f
(p)

μnjμn¡1 (®n j ®n¡1) =
1X

l=¡1

1X
m=¡1

Á
(n)
l,me

jl®nejm®n¡1 : (26)

Based on the Fourier-based filters proposed in [7],

[44], [57], [58], we derive prediction and update stages,

which are applied on the Fourier coefficients of f
(p)

μnjx(n)
and f

(p)

μnjx(n¡1) .

² Prediction:
According to Chapman-Kolmogorov equation and by

using the Markovian nature of the state model in

(1), the predicted pdf fμnjx(n¡1) is given by (see e.g.
[2, Eq. (3)])

fμnjx(n¡1) (®n j ¯(n¡1)) =
Z
−μ

fμnjμn¡1 (®n j ®n¡1)

£fμn¡1jx(n¡1) (®n¡1 j ¯(n¡1))d®n¡1, 8®n 2−μ:

(27)

For μn,μn¡1 2−μ, the pdfs in the left hand side (l.h.s.)

and right hand side (r.h.s.) of (27) are equal to their

periodic extensions. Thus, (27) can be rewritten as

f
(p)

μnjx(n¡1) (®n j ¯
(n¡1)) =

Z
−μ

f
(p)

μnjμn¡1 (®n j ®n¡1)

£f(p)
μn¡1jx(n¡1) (®n¡1 j ¯

(n¡1))d®n¡1, 8®n 2−μ:

(28)

By substituting the corresponding Fourier series from

(22), (24), and (26) in the r.h.s. of (28), we obtain

the Fourier series representation of f
(p)

μnjx(n¡1) from (25),
whose lth Fourier coefficient is given by [7]

´
(njn¡1)
l (x(n¡1)) =

2¼

1X
m=¡1

´
(n¡1jn¡1)
¡m (x(n¡1))Á(n)l,m, (29)

8l 2 Z, n= 1,2, : : :, where ´(0j0)l (x(0))
¢
=´(0)l .

² Update:
According to Bayes’ rule, the posterior pdf fμnjx(n) is
given by (see e.g. [2, Eq. (4)])

fμnjx(n) (®n j ¯(n)) =
fxnjμn(¯n j ®n)fμnjx(n¡1) (®n j ¯(n¡1))R

−μ
fxnjμn(¯n j ®n)fμnjx(n¡1) (®n j ¯(n¡1))d®n

, (30)
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8®n 2 −μ. For μn 2 −μ, the pdfs in the l.h.s. and r.h.s.

of (30) are equal to their periodic extensions. Thus,

(30) can be rewritten as

f
(p)

μnjx(n) (®n j ¯
(n)) =

f
(p)

xnjμn(¯n j ®n)f
(p)

μnjx(n¡1) (®n j ¯(n¡1))R
−μ
f
(p)

xnjμn(¯n j ®n)f
(p)

μnjx(n¡1) (®n j ¯(n¡1))d®n
, (31)

8®n 2 −μ. By substituting the corresponding Fourier

series from (23) and (25) in the r.h.s. of (31), we

obtain the Fourier series representation of f
(p)

μnjx(n) from
(24), whose lth Fourier coefficient is given by [7]

´
(njn)
l (x(n)) =

°(n)l (x
(n))

2¼°
(n)
0 (x

(n))
, (32)

8l 2 Z, n= 1,2, : : :, where

°(n)l (x
(n))

¢
=

1X
m=¡1

´(njn¡1)m (x(n¡1))d(n)l¡m(xn):

Since fμnjx(n) from (30) is equal to f
(p)

μnjx(n) from (31)

for μn 2−μ, the Fourier series of f
(p)

μnjx(n) can be used to
represent fμnjx(n) . In practice, fμnjx(n) is approximated by a
finite Fourier series, f(D)n,FB : −μ !R, given by

f(D)n,FB(y)
¢
=

DX
l=¡D

´(n,D)l,FB e
jly , (33)

where y is the argument of f(D)n,FB and D is the cho-

sen Fourier series order. The series order, D, is deter-

mined by taking into account the trade-off between es-

timation quality and required rate of convergence. The

approximation accuracy, i.e. the distance between the

actual pdf and its Fourier series approximation, can

be measured for example by using Hellinger metric

[7] or Kullback-Leibler divergence [44]. At time step

n, ´
(n,D)
l,FB approximates ´

(njn)
l (x(n)), 8l =¡D, : : : ,D, and

for jlj>D, ´(njn)l (x(n)) is approximated by zero. The
Fourier series approximation of fμnjx(n) in (33) repre-
sents a pdf and thus, should be nonnegative and in-

tegrate to 1. In order to maintain the approximation

in (33) as a valid pdf, the approach in [44] that ap-

proximates
q
fμnjx(n) by a finite Fourier series, is ap-

plied. It should be noted that it is assumed in [44]

that f
(p)

μnjμn¡1 (®n j ®n¡1) = g(®n¡®n¡1),8®n,®n¡1 2−μ, for

some function g, which simplifies the prediction stage.

An explanation is added in the appendix for implement-

ing the prediction stage, under the approach of [44],

with a general f
(p)

μnjμn¡1 .
By substituting the pdf approximation from (33) in

(11) and since
R
−μ
ejl®d®= 2¼±kr(l), where ±kr is the

Kronecker delta function, the approximations of the

trigonometric moments, fm(n)k (x(n))gKk=1, are
m
(n,D)
k,FB = 2¼´

(n,D)
¡k,FB, 8k = 1, : : : ,K: (34)

TABLE III

FB-SFRF method

Initialization:
² Choose a real, 2¼-periodic, and even cost function, C, with
Fourier series order K.

² Compute fckgKk=0, the Fourier coefficients of the periodic cost
function C.

Algorithm stages for the nth time step:
² Compute the Fourier coefficients, ´(n,D)

l,FB
, l = 1, : : : ,D, of the

approximated posterior pdf, f
(D)
n,FB

, from (33) by using the

Fourier-based circular filter from [44].

² Compute the approximated trigonometric moments, m(n,D)
k,FB

,

k = 1, : : : ,K , according to (34).

² Find the roots of (13), z̄1, : : : , z̄2K , and compute their
corresponding phases, μ̄n,1, : : : , μ̄n,2K , respectively.

² Find μ̂
(D)
n,FB

using (10) and (14).

In case K >D, then m
(n,D)
k,FB = 0, 8k =D+1, : : : ,K. Thus,

by substituting (34) in (10) and (13), the PERF method

can be applied to obtain an approximation for the op-

timal estimator. We denote the resulting estimator as

μ̂
(D)
n,FB. The complete FB-SFRF method at time step n is

summarized in Table III.

3.4. SB-SFRF and FB-SFRF methods with a general
periodic cost function

Consider a 2¼-periodic cost function, C, with a con-

vergent infinite Fourier series representation. It is shown

in [47] that under some regularity conditions, PERF

method, applied on a truncated Fourier series represen-

tation of C with K <1, converges to the corresponding
optimal estimator in the limit K!1. For such cost
functions the SB-SFRF and FB-SFRF methods are ap-

plied on a truncated Fourier series.

In the following, we describe three examples for

periodic risks, the mean SPE (MSPE), mean APE

(MAPE), and MCE risks and discuss the implementa-

tion of SB-SFRF and FB-SFRF methods under these

risks. In order to apply SB-SFRF and FB-SFRF meth-

ods with the MSPE, MAPE, and MCE risks, their corre-

sponding Fourier coefficients should be computed. The

Fourier series order of the CE cost function is K = 1

and SB-SFRF and FB-SFRF methods can be directly

applied. As opposed to the CE cost function, the Fourier

series of the SPE and APE cost functions are infinite

and therefore, SB-SFRF and FB-SFRF methods are ap-

plied on their truncated Fourier series representations.

It is shown in [47] that under mild conditions PERF

method converges to the optimal estimators under the

MSPE and MAPE risks in the limit K!1, which jus-
tifies applying SB-SFRF and FB-SFRF methods under

these risks. The Fourier series, Fourier coefficients, and

explicit form of (13) for the SPE, APE, and CE cost

functions, are presented in Table IV.

It is shown in [47] that the optimal estimator under

first-order Fourier series approximation of the SPE and

the APE cost functions, i.e. for choosing K = 1, is given
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TABLE IV

The Fourier series of the cost functions

Cost function Squared periodic error (SPE) Absolute periodic error (APE) Cyclic error (CE)

Fourier series of C(") ¼2

3
+2

X
k2Z,k 6=0

(¡1)k
k2

eik"
¼

2
¡ 2
X
k2Z

1

¼(2k+1)2
ei(2k+1)" 2¡ ei"¡ e¡i"

Fourier coefficients ck

8<:
¼2

3
, k = 0

2(¡1)k
k2

, k 6= 0

8><>:
¼

2
, k = 0

0, k 6= 0 and even

¡ 2

¼k2
, k odd

8<:
2, k = 0

¡1, k =§1
0, otherwise

Explicit form of (13) at

nth time step

KX
k=¡K,k 6=0

(¡1)km(n)¡k(x(n))
k

zk = 0

b(K¡1)=2cX
k=¡b(K+1)=2c

m
(n)
¡2k¡1(x

(n))

2k+1
z2k = 0

m
(n)
¡1(x

(n))z+m
(n)
1
(x(n))z¡1 = 0

by the posterior circular mean estimator, which is the

MMCE estimator from (7). In addition, it is shown in

[47] and [30] that the posterior circular mean estimator

is optimal under the MSPE and MAPE risks, in case the

posterior pdf is unimodal and even (as a function sup-

ported on the circle). In the general case, where the pos-

terior pdf is not nesecarily unimodal and even, choosing

K > 1 for the SPE and APE approximations and apply-

ing SB-SFRF or FB-SFRF methods can improve the

performance, comparing to the posterior circular mean

estimator, under the MSPE and MAPE risks. We denote

SB-SFRF and FB-SFRF methods under the MSPE risk

as SB-SFRF-MSPE and FB-SFRF-MSPE, respectively.

Similarly, SB-SFRF and FB-SFRF methods under the

MAPE risk are denoted by SB-SFRF-MAPE and FB-

SFRF-MAPE, respectively.

Remarks:

1) Periodic cost functions: In the conventional Bayesian
framework, the SE and absolute-error (AE) cost

functions are commonly used for performance eval-

uation. One of the differences between these cost

functions is that the SE increases faster than the

AE and thus, the SE is more sensitive to outliers

[25, p. 51]. The SPE and APE are the natural pe-

riodic equivalents of the SE and AE, respectively.

They are obtained by periodically extending their

conventional counterparts. The CE can be viewed

as a smooth first order approximation, in terms of

Fourier series, of the SPE and APE [47]. In the small

error region, the APE and SPE coincide with the AE

and SE, respectively. Similar to the SPE, in the small

error region, the CE coincides with the SE.

2) Computational complexity: The additional run-time
complexity induced from using SB-SFRF and FB-

SFRF methods with K > 1 series order is domi-

nated by the polynomial root-finding applied on

(13). Since the order of the polynomial in (13) is

limited by 2K, the additional run-time at each time

step is of the order O(K3) [47]. The prediction and

update stages of SB-SFRF and FB-SFRF methods

are mainly affected by the chosen filter and chosen

number of samples/Fourier coefficients that are used

for approximating the posterior pdf. For FB-SFRF

method, the asymptotic run-time complexity of both

the prediction and update stages of the Fourier filter

is O(D logD) [44], where D is the chosen Fourier

series order of the approximated posterior pdf in

(33). For SB-SFRF method, the asymptotic run-time

complexity depends on the complexity of the chosen

sample-based filter.

3) Choosing the value of K: In general, for periodic
cost functions with infinite Fourier series, the value

of K can be determined by taking into account

the trade-off between the additional computational

complexity, induced from using SB-SFRF and FB-

SFRF methods, and the accuracy of approximating

the cost function Fourier series with a finite K.

In addition, the performance improvement with a

larger K depends on the posterior pdf approximation

accuracy. The periodic cost functions approximation

error can be assesed by using Parseval’s formula

[61, pp. 12—13].

4. EXAMPLE–DOA TRACKING

In this section, we consider the problem of single

source DOA tracking by using a uniform circular array

(UCA). At time step n, the measurement at the lth sensor

is modeled as (see e.g. [43])

xn,l = »e
j³ cos(μn¡(2¼l=L)) + ºn,l, l = 1, : : : ,L: (35)

where » is the signal complex amplitude, which is as-

sumed to be known, ³ = 2¼r=¸, where r is the UCA

radius and ¸ is the signal wavelength, μn is the signal

DOA, and fºng is an independent identically distributed
(i.i.d.) complex circularly symmetric zero mean Gaus-

sian noise vector sequence with known covariance ma-

trix ¾2IL, where IL is the identity matrix of size L. The
DOA state model is given by

μn = [μn¡1 +wn]2¼, (36)
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where fwng is an i.i.d. noise in which each element is
distributed according to a mixture of two von Mises dis-

tributions [14], [32] with known circular means ¹1,¹2
and concentration parameters ·1,·2, i.e.

fwn(v) =8<:²
e·1 cos(v¡¹1)

2¼I0(·1)
+ (1¡ ²)e

·2 cos(v¡¹2)

2¼I0(·2)
, v 2 [¡¼,¼)

0, otherwise

,

(37)

where Im is the modified Bessel function of order m and

0· ²· 1 is a parameter that determines the weights be-
tween the two von Mises distributions. The 2¼-periodic

extension of fwn w.r.t. wn is given by

f(p)wn
(v) = ²

e·1 cos(v¡¹1)

2¼I0(·1)
+ (1¡ ²)e

·2 cos(v¡¹2)

2¼I0(·2)
, 8v 2R:

The von Mises distribution is one of the most popu-

lar distributions for modeling random parameters with

circular nature and is analogous to the Gaussian dis-

tribution on the real axis (see e.g. [11], [14], [32],

[60]). Many noncircular distributions can be approxi-

mated to any desired degree of approximation in terms

of Kullback-Leibler divergence, using a finite mixture

of Gaussian distributions [19], [27], [46], [52]. Sim-

ilarly, it is claimed in [32, p. 90] that some circular

distributions are fitted well by mixtures of von Mises

distributions. In [9] and [34], mixtures of von Mises

distributions are used for modeling multimodal distribu-

tions on the circle. Multimodal state noise is considered

e.g. in [6], [18], [28] for modeling abrupt changes in the

state. It is assumed that the sequences fwng and fºng are
statistically independent as well as independent of past

and present states. In addition, it is assumed that the

prior distribution of μ0 is uniform, i.e. μ0 »U(¡¼,¼).
Under this model, the Fourier coefficients of f

(p)
μ0

and

f
(p)

μnjμn¡1 are given by

´(0)l =

( 1

2¼
, l = 0

0, otherwise

(38)

and

Á(n)l,m =μ
²
Ijlj(·1)

2¼I0(·1)
e¡jl¹1 + (1¡ ²) Ijlj(·2)

2¼I0(·2)
e¡jl¹2

¶
±kr(l+m),

(39)

8l,m 2 Z, n= 1,2, : : :, respectively. In this case,

f
(p)

μnjμn¡1 (®n j ®n¡1) = f(p)wn
(®n¡®n¡1), 8®n,®n¡1 2 −μ,

which simplifies the prediction stage. As proposed in

[44], the Fourier coefficients of fxnjμn are approximated
using the fast Fourier transform [42].

For this problem, the SB-SFRF and FB-SFRF meth-

ods are implemented under the MSPE and MAPE risks.

For computation of the approximated trigonometric mo-

ments in SB-SFRF method, the particle filter from [2]

with the state transition pdf as importance function, is

used. The root-finding step is employed by the function

‘roots’ of Matlab.

The SB-SFRF method is implemented with S =

500 samples (particles in this case) and the FB-SFRF

method is implemented with D = 40 Fourier coeffi-

cients. In addition, we assume L= 4, ³ = 10, ¾2 = 1,

¹1 = 0:95¼, ·1 = 20, ¹2 = 0, ·2 = 10, ²= 0:5, and » =

(1=
p
2)+ j(1=

p
2). The MSPEs and MAPEs of the con-

sidered methods are evaluated using 10,000 Monte-

Carlo trials. In the following, the posterior mean es-

timator obtained by particle filter is denoted as Particle-

PM. The posterior circular mean estimators obtained by
particle and Fourier filters are denoted as Particle-CM

and Fourier-CM, respectively. The proposed SB-SFRF-

MSPE and SB-SFRF-MAPEmethods implemented with

particle filter are denoted as Particle-SB-SFRF-MSPE

and Particle-SB-SFRF-MAPE, respectively.

In Figs. 2—3, the MSPEs of particle and Fourier

estimators are presented versus the time step n, where

the corresponding SB-SFRF and FB-SFRF methods are

evaluated with K = 2,12. It should be noted that for

K = 1, the proposed Particle-SB-SFRF-MSPE and FB-

SFRF-MSPE methods coincide with the Particle-CM

and Fourier-CM, respectively. It can be seen that in both

cases, the proposed SFRF-MSPE methods with K = 12

result in lower MSPEs than with K = 2 and that SFRF-

MSPE methods with K = 2,12 have lower MSPEs than

the MSPEs of the posterior mean and posterior circular

mean estimators.

Figs. 4—5 show the MSPEs of Particle-SB-SFRF-

MSPE and FB-SFRF-MSPE methods as a function of

the series order, K, averaged over all time steps n=

1, : : : ,30. It can be seen that in both cases, the MSPE de-

creases as K increases. The non-monotonic decrease can

be explained by the fact that the error is evaluated w.r.t.

the actual periodic cost function, while the minimization

is w.r.t. its truncated approximation, which suffers from

inaccuracies due to, for example, Gibbs phenomenon

[61]. It can be seen that for Particle-SB-SFRF-MSPE

and FB-SFRF-MSPE, the MSPEs with K = 20 are lower

than the MSPEs with K = 1 by approximately 16.4%

and 15.6%, respectively. For both methods, the MSPEs

with K ¸ 5 are very close to the MSPEs with K = 20.
Therefore, the choice K = 5 seems appropriate in this

case. The SPE cost function and its Fourier series ap-

proximations are depicted in Fig. 6, with series orders

K = 1,2,12.

In Figs. 7—8 the MAPEs of particle and Fourier

estimators are presented versus the time step n, where

the corresponding SB-SFRF and FB-SFRF methods are

evaluated with K = 3,23. Similar to the MSPE case,

for K = 1, the proposed Particle-SB-SFRF-MAPE and

FB-SFRF-MAPE methods coincide with the Particle-

CM and Fourier-CM, respectively. It can be seen that in

both cases, SFRF-MAPE methods with K = 23 result in

lower MAPEs than with K = 3 and that SFRF-MAPE
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Fig. 2. The MSPEs of Particle-PM, Particle-CM, and

Particle-SB-SFRF-MSPE method K = 2,12, with S = 500 samples,

versus the time step n.

Fig. 3. The MSPEs of Fourier-CM and FB-SFRF-MSPE method

K = 2,12, with D = 40 Fourier coefficients, versus the time step n.

methods with K = 3,23 have lower MAPEs than the

MAPEs of the posterior circular mean estimators.

Figs. 9—10 show the MAPEs of Particle-SB-SFRF-

MAPE and FB-SFRF-MAPE methods as a function

of the series order, K, averaged over all time steps

n= 1, : : : ,30. It can be seen that in both cases, the

MAPE decreases as K increases. For Particle-SB-SFRF-

MAPE and FB-SFRF-MAPE, the MAPEs with K = 39

are lower than the MAPEs with K = 1 by approximately

3.5% and 4.2%, respectively. For both methods, the

MAPEs with K ¸ 9 are very close to the MAPEs with
K = 39. Therefore, the choice K = 9 seems appropriate

in this case. It can be seen that the improvement in

MAPE is smaller for both methods in comparison to the

improvement in MSPE. The reason for this phenomenon

may be that the SPE increases faster than the APE and

thus, a low value of K is highly penalized by the SPE.

Fig. 4. The MSPE of Particle-SB-SFRF-MSPE method with

S = 500 samples versus K, averaged over time steps n= 1, : : : ,30.

Fig. 5. The MSPE of FB-SFRF-MSPE method with D = 40

Fourier coefficients versus K, averaged over time steps n= 1, : : : ,30.

Fig. 6. Fourier series approximations of SPE with K = 1,2,12.
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Fig. 7. The MAPEs of Particle-CM and Particle-SB-SFRF-MAPE

method K = 3,23, with S = 500 samples, versus the time step n.

Fig. 8. The MAPEs of Fourier-CM and FB-SFRF-MAPE method

K = 3,23, with D = 40 Fourier coefficients, versus the time step n.

In Figs. 11—12, the MSPEs of particle and Fourier

estimators are presented versus SNR
¢
= j»j2=¾2, averaged

over all time steps n= 1, : : : ,30, where the correspond-

ing SB-SFRF and FB-SFRF methods are evaluated with

K = 2,12. It can be seen that for both methods, SFRF-

MSPE methods with K = 12 result in lower MSPEs than

SFRF-MSPE methods with K = 2 and the correspond-

ing posterior circular mean estimators. In addition, it can

be seen that the difference between K = 2 and K = 12

is small.

As a comparison between SB-SFRF and FB-SFRF

methods, we examine their performance in terms of

MSPE for a similar number of samples or Fourier co-

efficients for the posterior pdf approximation, i.e. S =

F = 2D+1. In order to broaden the comparison, we

implemented a discrete filter [24], used in [44], which

is based on wrapped Dirac distribution. In the follow-

ing, the SB-SFRF-MSPE method implemented with dis-

crete filter is denoted as Discrete-SB-SFRF-MSPE. The

Fig. 9. The MAPE of Particle-SB-SFRF-MAPE method with

S = 500 samples versus K, averaged over time steps n= 1, : : : ,30.

Fig. 10. The MAPE of FB-SFRF-MAPE method with D = 40

Fourier coefficients versus K, averaged over time steps n= 1, : : : ,30.

MSPEs of the considered SFRF-MSPE methods with

K = 2, are presented in Fig. 13 versus the time step n.

It can be seen that for S = F = 9, FB-SFRF method sig-

nificantly outperforms SB-SFRF method with particle

and discrete filters in all time steps. For S = F = 201,

FB-SFRF method outperforms SB-SFRF method with

particle filter in all time steps and the difference between

FB-SFRF method and SB-SFRF method with discrete

filter is small for n¸ 7. In general, in the considered
scenario, the FB-SFRF method seems favouravle over

SB-SFRF method with both discrete and particle filters,

espcially in the case, in which only few samples/Fourier

coefficients are available. The reason for FB-SFRF ad-

vantage may be the discrete representation of the poste-

rior pdf in the frequency domain rather than parameter

domain.

Finally, we examine the performance of SB-SFRF

and FB-SFRF methods for unimodal state noise. Sim-

ilar to [11], the a priori pdf of μ0 is assumed to be a
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Fig. 11. The MSPEs of Particle-CM and Particle-SB-SFRF-MSPE

method K = 2,12, with S = 500 samples, versus SNR, averaged over

time steps n= 1, : : : ,30.

Fig. 12. The MSPEs of Fourier-CM and FB-SFRF-MSPE method

K = 2,12, with D = 40 Fourier coefficients, versus SNR, averaged

over time steps n= 1, : : : ,30.

mixture of two von Mises distributions, as in (37), with

known circular means ¹0,1 = 0:21, ¹0,2 = 1:91, concen-

tration parameters ·0,1 = 9, ·0,2 = 39, and weighting pa-

rameter ²0 = 0:3. The state-space model is assumed to be

as in (35) and (36), except that each state noise element

is assumed to be von Mises distributed with circular

mean ¹= 0 and concentration parameter ·= 3. In this

scenario, the discrete filter is also used for implemen-

tation of SB-SFRF method. In the following, the pos-

terior mean and posterior circular mean estimators ob-
tained by discrete filter are denoted as Discrete-PM and

Discrete-CM, respectively. In Figs. 14—16 the MSPEs

of particle, discrete, and Fourier estimators, are pre-

sented versus the time step n, where the correspond-

ing SB-SFRF and FB-SFRF methods are evaluated with

K = 2,12. It can be seen that in all cases, SFRF-MSPE

methods with K = 12 result in lower MSPEs than with

Fig. 13. The MSPEs of Particle-SB-SFRF-MSPE,

Discrete-SB-SFRF-MSPE, and FB-SFRF-MSPE methods with

K = 2, S = F = 9 and S = F = 201 samples/Fourier coefficients,

versus the time step n.

K = 2 and that SFRF-MSPE methods with K = 2,12

have lower MSPEs than the MSPEs of the posterior

mean and posterior circular mean estimators.

5. CONCLUSION

In this paper, we propose two methods, SB-SFRF

and FB-SFRF, for derivation of estimators under gen-

eral periodic Bayes risks in circular stochastic filter-

ing problems. Both methods utilize the PERF method

[47], which is based on Fourier series representation

of an arbitrary periodic cost function and polynomial

root-finding. The proposed methods are not based on

a grid search whose accuracy depends on the cho-

sen grid density. The SFRF methods use approximated

trigonometric moments. If the accurate trigonometric

moments are available, the SFRF methods coincide with

the optimal Bayes solution. Three examples of peri-

odic risks are considered, the MSPE, MAPE, and MCE

risks. It is shown that under the MCE risk there ex-

ist a tractable estimator. However, under the MSPE and

MAPE risks the corresponding estimators cannot be de-

rived analytically for the general case. The SB-SFRF

and the FB-SFRF methods can be applied in circu-

lar stochastic filtering problems under these risks or

any other periodic risk. The superiority of SB-SFRF

and FB-SFRF methods w.r.t. state estimation using

posterior circular mean is demonstrated in the prob-

lem of DOA tracking. A topic for future research is

derivation of a method for estimation of a mixed state

vector containing both circular and noncircular ele-

ments. Another topic is investigating the connection be-

tween the considered circular stochastic filtering prob-

lems and emerging new approaches, such as sequential

deep learning [4], learning of dynamical systems [29],

and novel methods for Bayesian filtering with discrete

states [41].
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Fig. 14. Unimodal state noise scenario: the MSPEs of Particle-PM,

Particle-CM, and Particle-SB-SFRF-MSPE method K = 2,12, with

S = 500 samples, versus the time step n.

Fig. 15. Unimodal state noise scenario: the MSPEs of

Discrete-PM, Discrete-CM, and Discrete-SB-SFRF-MSPE method

K = 2,12, with S = 500 samples, versus the time step n.

Fig. 16. Unimodal state noise scenario: the MSPEs of Fourier-CM

and FB-SFRF-MSPE method K = 2,12, with D = 40 Fourier

coefficients, versus the time step n.

APPENDIX GENERALIZATION OF THE PREDICTION
STAGE UNDER THE APPROACH OF [44] TO AN
ARBITRATY STRUCTURE OF f(p)

μnjμn¡1

In this appendix, we describe the implementation of

the prediction stage, under the approach of [44], with

a general f
(p)

μnjμn¡1 , which is not necessarily equal to a
function of μn¡ μn¡1. At each time step n, it is assumed

that the function
q
f
(p)

μnjμn¡1 can be represented via a
two-dimensional Fourier series with Fourier coefficients

fÁ(n,sqrt)l,m gl,m2Z, i.e.q
f
(p)

μnjμn¡1 (®n j ®n¡1) =
1X

l=¡1

1X
m=¡1

Á
(n,sqrt)
l,m ejl®nejm®n¡1 :

(40)

By using (40), it can be verified (see e.g. [8]) that the

Fourier coefficients of f
(p)

μnjμn¡1 =
q
f
(p)

μnjμn¡1

q
f
(p)

μnjμn¡1 from
(26) are given by the following two-dimensional dis-

crete convolution

Á
(n)
l,m =

1X
q=¡1

1X
r=¡1

Á(n,sqrt)q,r Á
(n,sqrt)
l¡q,m¡r, (41)

8l,m 2 Z. In practice, the Fourier coefficients in the r.h.s.
of (40) are usually computed numerically and the cor-

responding two-dimensional Fourier series is truncated.

Therefore, the two-dimensional discrete convolution in

(41) is finite, resulting in Á̃(n)l,m which approximates Ál,m,

8l =¡D, : : : ,D, m=¡D, : : : ,D. For jlj>D or jmj>D,
Ál,m is approximated by zero. The predicted pdf fμnjx(n¡1)
is approximated by f(D)

njn¡1,FB :−μ !R given by

f(D)
njn¡1,FB(y)

¢
=

DX
l=¡D

´
(njn¡1,D)
l,FB ejly , (42)

where y is the argument of f(D)
njn¡1,FB,

´
(njn¡1,D)
l,FB = 2¼

DX
m=¡D

´(n¡1,D)¡m,FB Á̃
(n)
l,m, 8l =¡D, : : : ,D:

(43)

Then, the Fourier series representation of
q
f(D)
njn¡1,FB is

derived by applying the procedure, proposed in [44],

for obtaining the Fourier coefficients of the square root

of a pdf from the Fourier coefficients of the actual pdf.
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Methods for Deterministic
Approximation of Circular
Densities
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Circular estimation problems arise in many applications and can

be addressed with methods based on circular distributions, e.g., the

wrapped normal distribution and the von Mises distribution. To

develop nonlinear circular filters, a deterministic sample-based ap-

proximation of these distributions with a so-called wrapped Dirac

mixture distribution is beneficial. We present a closed-form solu-

tion to obtain a symmetric wrapped Dirac mixture with five com-

ponents based on matching the first two trigonometric moments.

Furthermore, we discuss the choice of a scaling parameter involved

in this method and extend it by superimposing samples obtained

from different scaling parameters. Finally, we propose an approxi-

mation based on a binary tree that approximates the shape of the

true density rather than its trigonometric moments. All proposed

approaches are thoroughly evaluated and compared in different sce-

narios.
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1. INTRODUCTION

Many estimation problems involve circular quanti-
ties, for example the orientation of a vehicle or the angle
of a robotic joint. Since conventional estimation algo-
rithms perform poorly in these applications, particularly
if the angular uncertainty is high, circular estimation
methods such as [31], [34], [35], [6], [54], [57], and
[43] have been proposed. These methods use circular
probability distributions stemming from the field of di-
rectional statistics [21], [42].
Circular estimation methods have been applied to

a variety of problems in different fields. For example,
many signal processing applications necessitate the con-
sideration of circular quantities. Consider for instance
phase estimation and tracking [39], [7], signal process-
ing for global navigation satellite systems (GNSS) [54],
[53], [26], and azimuthal speaker tracking [57]. In me-
teorology, estimation of the wind direction [11], [8] is
of interest and in aerospace applications, the heading
of an airplane may be estimated [35]. Through a suit-
able mapping, constrained object tracking problems on
periodic one-dimensional manifolds can also be inter-
preted as circular estimation problems [29]. Finally, cir-
cular densities arise naturally in bearings-only tracking
[12], [44].
To facilitate the development of nonlinear filters,

sample-based approaches are commonly used. The rea-
son is that samples, which we represent as Dirac delta
distributions, can easily be propagated through nonlin-
ear functions. We distinguish deterministic and nonde-
terministic approaches. In the noncircular case, typical
examples for deterministic approaches include the un-
scented Kalman filter (UKF) [24] as well as extensions
thereof [56], the cubature Kalman filter [4], [23], [22],
and the smart sampling Kalman filter (S2KF) [52]. Non-
deterministic filters for the noncircular case are the par-
ticle filter [5], the Gaussian particle filter [25], and the
randomized UKF [55].
We focus on deterministic approaches because they

have several distinct advantages. First of all, as a result
of their deterministic nature, all results are reproducible,
i.e., for the same input (e.g., measurements and initial
estimate), deterministic filters will always produce the
same output.1 Second, the samples are placed accord-
ing to certain optimality criteria (i.e., moment matching
[24], shape approximation [16], [50]), or a combina-
tion thereof [19], [17]. Consequently, a much smaller
number of samples is sufficient to achieve a good ap-
proximation. Third, nondeterministic approaches usu-
ally have a certain probability of causing the filtering
algorithm to fail due to a poor choice of samples. This
is avoided in deterministic methods.

1Randomized approaches can be made reproducible by choosing a

fixed seed for the random number generator. However, this choice is

completely arbitrary and affects the performance. Also, minor changes

to the implementation, e.g., the order in which certain random num-

bers are drawn or the choice of the underlying random number gen-

erator, will affect the result.
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In our previous publication [31], we presented a de-

terministic approximation for von Mises and wrapped

normal distributions with three samples. This approx-

imation is based on matching the first trigonometric

moment. The first trigonometric moment is a complex

number and a measure of both location and dispersion.

This approximation has already been applied to con-

strained object tracking [29], sensor scheduling based

on bearing-only measurements [12], as well as stochas-

tic model predictive control [28].

The contributions of this paper can be summarized

as follows. We present an extension of our previous

approach [31] to match both the first and the second

trigonometric moment, which was first discussed in

[32]. This yields an approximation with five samples.

Even though this approximation is slightly more com-

plicated, it can still be computed in closed form and does

not require any numerical computations or approxima-

tions. We have previously applied this method to the

problem of heart phase estimation in [39].

The algorithm from [32] requires choosing a param-

eter ¸ 2 [0,1]. In this paper, we will show that the choice
¸= 0:8 ensures good approximations even when the ap-

proximated distribution converges to a uniform distribu-

tion.

Furthermore, we present a novel superposition

method that is able to combine sample sets with dif-

ferent choices of ¸ in order to obtain a larger number

of samples while still maintaining the first and second

trigonometric moment.

Finally, we also propose a new method based on the

shape of the probability distribution function rather than

its moments. This method creates a binary tree consist-

ing of intervals in [0,2¼) and distributes the samples in

proportion to the probability mass contained in the inter-

val. Unlike previous shape-based methods such as [17],

the proposed method does not require numerical opti-

mization. Thus, it is very fast, provided an efficient al-

gorithm for calculating the cumulative distribution func-

tion of the respective density is available.

2. PREREQUISITES

In this section, we define the required probability

distributions (see Fig. 1) and introduce the concept of

trigonometric moments.

DEFINITION 1 (WrappedNormalDistribution). Awrap-

ped normal (WN) distribution [48] is given by the

probability density function (pdf)

f(x;¹,¾) =
1p
2¼¾

1X
k=¡1

exp

μ
¡ (x¡¹+2k¼)

2

2¾2

¶
,

where ¹ 2 [0,2¼) and ¾ > 0 are parameters for center
and dispersion, respectively.

The WN distribution is obtained by wrapping a one-

dimensional Gaussian density around the unit circle. It

is of particular interest because it appears as a limit

Fig. 1. Probability density functions of WN, WC, and VM

distributions with identical first trigonometric moment.

distribution on the circle, i.e., in a circular setting, it

is reasonable to assume that noise is WN distributed.

To see this, we consider i.i.d. random variables μi with

E(μi) = 0 and finite variance. Then the sum

Sn =
1p
n

nX
k=1

μk

converges to a normally distributed random variable if

n!1. Consequently, the wrapped sum (Sn mod 2¼)

converges to aWN-distributed random variable. Numer-

ical computation of the pdf is discussed in [33].

DEFINITION 2 (Wrapped Cauchy Distribution). The

wrapped Cauchy (WC) distribution [21], [42] has the

pdf

f(x;¹,°) =
1

¼

1X
k=¡1

°

°2 + (x¡¹+2k¼)2 ,

where ¹ 2 [0,2¼) and ° > 0.
Similar to the WN distribution, a WC distribution

is obtained by wrapping a Cauchy distribution around

the circle. Unlike the WN distribution, it is possible

to simplify the infinite sum in this case, yielding the

closed-form expression

f(x;¹,°) =
1

2¼

sinh(°)

cosh(°)¡ cos(x¡¹) :

DEFINITION 3 (Von Mises Distribution). A von Mises

(VM) distribution [58] is defined by the pdf

f(x;¹,·) =
1

2¼I0(·)
exp(·cos(x¡¹)),

where ¹ 2 [0,2¼) and · > 0 are parameters for location
and concentration, respectively, and I0(¢) is the modified
Bessel function of order 0.

According to [1, eq. 9.6.19], the modified Bessel

function of integer order n is given by

In(z) =
1

¼

Z ¼

0

exp(z cosμ)cos(nμ)dμ:

The von Mises distribution has a similar shape as a WN

distribution and is frequently used in circular statistics.
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DEFINITION 4 (Wrapped Dirac Distribution). A wrap-

ped Dirac mixture (WD) distribution has the pdf

f(x;w1, : : : ,wL,¯1, : : : ,¯L) =

LX
j=1

wj±(x¡¯j),

where L is the number of components, ¯1, : : : ,¯L 2
[0,2¼) are the Dirac positions, w1, : : : ,wL > 0 are the

weighting coefficients and ± is the Dirac delta distribu-

tion [31]. Additionally, we require
PL
j=1wj = 1 to en-

sure that the WD distribution is normalized.

Unlike the continuous WN, WC and VM distribu-

tions, the WD distribution is a discrete distribution con-

sisting of a certain number of Dirac delta components.

These components can be seen as a set of samples and

can be used to approximate a certain original density.

WD distributions are useful for nonlinear estimation be-

cause they can easily be propagated through nonlinear

functions [31], just as Dirac mixture densities in Rn

[52]. The WD distribution as defined above does not

contain an infinite sum for wrapping, because wrap-

ping a Dirac distribution results in a single component

according to

1X
k=¡1

±(x+2¼k¡¯) = ±((x¡¯) mod 2¼),

where x 2 [0,2¼). For consistency with the WN and

WC distributions, we still refer to the WD distribution

as wrapped, because it can be obtained by wrapping a
Dirac mixture on R, which results in taking all Dirac
positions modulo 2¼ (see [27, Remark 3]). Thus, all

properties of wrapped distributions apply to the WD

distribution as well.

DEFINITION 5 (Trigonometric Moments). The nth trig-

onometric (or circular) moment of a random variable x

with pdf f(¢) is given by

mn = E(exp(ix)
n) =

Z 2¼

0

exp(inx)f(x)dx,

where i is the imaginary unit [21], [42].

Trigonometric moments are the circular analogon

to the conventional real-valued power moments E(xn).
Note, however, that mn 2C is a complex number. For

this reason, the first trigonometric moment already de-

scribes both location and dispersion of the distribution,

similar to the first two conventional real-valued mo-

ments. The argument of the complex number is anal-

ogous to the mean whereas the absolute value describes

the concentration.

Fig. 2. First trigonometric moment of wrapped normal, wrapped

Cauchy, and von Mises distributions with zero mean plotted against

their second trigonometric moment. The moments are real-valued in

this case because ¹= 0.

LEMMA 1. The trigonometric moments of WN, WC, VM,
and WD distributions are given by

mWNn = exp(in¹¡ n2¾2=2), (1)

mWCn = exp(in¹¡ jnj°), (2)

mVMn =
Ijnj(·)
I0(·)

exp(in¹), (3)

mWDn =

LX
j=1

wj exp(in¯j): (4)

Derivations can be found in [27, Lemma 2]. The

quotient of Bessel functions can be calculated numer-

ically with the algorithm by [3]. Pseudocode for this

algorithm can be found in [31, Fig. 4].

The parameters of WN, WC, and VM distributions

are uniquely defined by the first trigonometric moment.

However, WN, WC, and VM distributions with equal

first moments significantly differ in their higher mo-

ments. This is illustrated in Fig. 1 and Fig. 2. This differ-

ence motivates the use of the second trigonometric mo-

ments in deterministic Dirac mixture approximations.

3. MOMENT-BASED DETERMINISTIC
APPROXIMATION

In this section, we derive deterministic methods

for computing Dirac approximation of WN, WC,

and VM distributions. Without loss of generality,

we only consider the case ¹= 0 in order to sim-

plify the calculations. In the case of a location ¹ 6= 0,
the samples are computed for ¹= 0 and subsequently

shifted by ¹. The moment formulas (1)—(3) simplify

to mWNn = exp(¡n2¾2=2), mWCn = exp(jnj°), and mVMn =

Ijnj(·)=I0(·). In particular, we find Im(mWNn ) =

Im(mWCn ) = Im(mVMn ) = 0, so there is no imaginary part

and our calculations only involve real numbers. More
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Fig. 3. WD approximations for WN distributions with different values for ¾. In all cases, we use ¸= 0:5.

Fig. 4. WD approximations for VM distributions with different values for ·. In all cases, we use ¸= 0:5.

generally, for any circular distribution symmetric around

¹= 0, it holds that

Immn =

Z 2¼

0

sin(nx)f(x)dx

=

Z ¼

¡¼
sin(nx)f(x)| {z }
odd function

dx= 0:

Note that this property only holds for symmetric circular

distributions. In general, even for ¹= 0, only the first

trigonometric moment is guaranteed to have no imagi-

nary part, whereas higher moments are not necessarily

real-valued.

3.1. First Circular Moment

First, we derive the approximation based on the first

moment.

3.1.1. Two Components:
Obviously, one WD component is not sufficient to

match a given first moment, because a single compo-

nent only has a single degree of freedom, whereas the

first moment has two degrees of freedom. For this rea-

son, we propose a solution with L= 2 components, the

minimum number possible. We use symmetric WD po-

sitions ¯1 =¡Á, ¯2 = Á, and equal weights w1 = w2 = 1
2
.

For the first moment, we have

mWD1 =

LX
j=1

wj exp(i¯j) = cos(Á):

Solving for Á results in Á= arccos(m1).

3.1.2. Three Components:
Now we extend the mixture with two components

by adding a component at the circular mean. Con-

sider the WD distribution with L= 3 components, Dirac

positions ¯1 =¡Á, ¯2 = Á, ¯3 = 0, and equal weights2
w1 = w2 = w3 =

1
3
. For the first moment, we have

mWD1 =

LX
j=1

wj exp(i¯j) =
1
3
(2cos(Á) +1):

Now, we match with the first moment m1 of a WN or

VM distribution and obtain

1
2
(3m1¡ 1)| {z }
=:c1

= cos(Á):

Thus, we use Á= arccos(c1) to obtain a solution for the

WD distribution.

This approximation method is closely related to the

approach presented in [15], where a moment-based de-

terministic sampling scheme for the Bingham distribu-

tion on the unit hypersphere is proposed. In the circular

case, the Bingham distribution can be seen as a rescaled

von Mises distribution (see [38, Appendix B]), and the

rescaled samples of the von Mises distribution proposed

here can be shown to exactly match the samples of the

Bingham distribution obtained by the method from [15].

Also, the samples are identical to those produced by

the von Mises—Fisher sampling method [36] when it is

applied to the circular case.

3.2. First Two Circular Moments

An approximation based on the first two trigonomet-

ric moments m1 and m2 is somewhat more involved. We

consider a WD distribution with L= 5 components and

2A generalization of this method to nonequal weights is given in

[27, Sec. 2.5.1-A].
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Fig. 5. Feasible values for w5 depending on a given concentration of the distribution. (a) WN distribution with parameter ¾, (b) WC

distribution with parameter °, (c) VM distribution with parameter ·.

Dirac positions

¯1 =¡Á1, ¯2 = Á1, ¯3 =¡Á2, ¯4 = Á2, ¯5 = 0
that is symmetric around 0. As we will show later,

moment matching does not allow a solution with an

equally weighted Dirac mixture in general. Thus, we

choose equal weights for the first four components

w1 = w2 = w3 = w4 =
1¡w5
4

and leave the weight w5 of the component at ¯5 = 0

to be determined. We will later derive constraints on

the value of w5 and see that w5 =
1
5
, i.e., using equal

weights for all components, does not always guarantee

the existence of a solution.

For the first moment, we have

mWD1 = 2
1¡w5
4

cos(Á1)+2
1¡w5
4

cos(Á2)+w5,

and obtain

2

1¡w5
(m1¡w5)| {z }
=:c1

= cos(Á1)+ cos(Á2): (5)

Similarly, for the second moment, we have

mWD2 = 2
1¡w5
4

cos(2 ¢Á1)+2
1¡w5
4

cos(2 ¢Á2)+w5:

At this point, we apply the trigonometric identity

cos(2 ¢ x) = 2cos2(x)¡ 1. After a short calculation, we
obtain

1

1¡w5
(m2¡w5)+1| {z }
=:c2

= cos2(Á1)+ cos
2(Á2): (6)

By substituting x1 = cos(Á1), x2 = cos(Á2), we obtain a

system of two equations

c1 = x1 + x2,

c2 = x
2
1 + x

2
2:

We solve for x1 and x2, which yields

x1 = c1¡ x2, x2 =
2c1§

q
4c21¡ 8(c21¡ c2)
4

:

Obviously, there are two different solutions. Without

loss of generality, we only consider the solution

x1 = c1¡ x2, x2 =
2c1 +

q
4c21¡ 8(c21¡ c2)
4

(7)

because the other solution just swaps x1 and x2, which is

equivalent for our purposes. Finally, we obtain

Á1 = arccos(x1) and Á2 = arccos(x2).

This leaves the question of choosing the weighting

coefficient w5. The previous equations can only be

evaluated if the conditions

¡1· xi · 1, i= 1,2 and 4c21¡ 8(c21¡ c2)¸ 0
hold. These conditions can be used to find a lower and

an upper bound on w5. These bounds are

wmin5 =
4m21¡ 4m1¡m2 +1
4m1¡m2¡ 3

, (8)

wmax5 =
2m21¡m2¡ 1
4m1¡m2¡ 3

: (9)

In the following, we show that wmin5 · wmax5 holds in all

relevant cases.

LEMMA 2. (Existence of a Solution). If m2 >¡3+4m1,
it holds that wmin5 · wmax5 , i.e., there exists a solution in
[wmin5 ,wmax5 ].

PROOF Using m2 >¡3+4m1, we know that the de-

nominator in (8) and (9) is negative. Thus, we have

wmin5 · wmax5

, 4m21¡ 4m1¡m2 +1¸ 2m21¡m2¡ 1
, 2m21¡ 4m1 +2¸ 0

, (m1¡ 1)2 ¸ 0,
which is always fulfilled.

It can be shown that the inequality m2 >¡3+4m1
holds for WN, WC, and VM distributions [27, Lemma

18]. Consequently, for any 0· ¸· 1,
w5(¸) = w

min
5 +¸(wmax5 ¡wmin5 ) (10)
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Fig. 6. WD approximations for WN distributions with different values for ¸. In all cases, we use ¾ = 1. The periodic boundary is marked

by a dashed line. Note that for ¸¼ 0 and ¸¼ 1 the mixture degenerates to three components.

is a feasible solution. Furthermore, weights w5(¸)< 0

are invalid because negative weights violate Kol-

mogorov’s axioms, i.e., the probability of any event has

to be larger or equal to zero.3 The parameter ¸ has to

be chosen accordingly. The range of admissible values

is illustrated in Fig. 5. It is obvious from the figure

that w5 =
1
5
, i.e., equal weights for all WD components,

is not necessarily contained in the region of feasible

values. A good choice of the parameter ¸ is discussed

below. The entire method is summarized in Algorithm 1

(see also [27, Sec. 2.5, Algorithm 3], [35, Algorithm 2]).

ALGORITHM 1 Deterministic approximation with L= 5
components.

Input: First circular moment m1, second circular mo-
ment m2,

parameter ¸ 2 [0,1] with default ¸= 0:5
Output: WD(x;w1, : : : ,w5,¯1, : : : ,¯5)
/* extract ¹ */

¹Ã atan2(Imm1,Rem1);

m1Ã jm1j;
m2Ã jm2j;
/* compute weights */

wmin5 Ã (4m21¡ 4m1¡m2 +1)=(4m1¡m2¡ 3);
wmax5 Ã (2m21¡m2¡ 1)=(4m1¡m2¡3);
w5Ã wmin5 +¸(wmax5 ¡wmin5 );

w1,w2,w3,w4Ã (1¡w5)=4;
/* obtain Dirac positions */

c1Ã
2

1¡w5
(m1¡w5);

c2Ã
1

1¡w5
(m2¡w5)+1;

x2Ã (2c1 +
q
4c21¡ 8(c21¡ c2))=4;

x1Ã c1¡ x2;
Á1Ã arccos(x1);

Á2Ã arccos(x2);

/* shift Dirac positions by ¹ */

(¯1, : : : ,¯5)Ã ¹+(¡Á1,+Á1,¡Á2,+Á2,0) mod 2¼;
return WD(x;w1, : : : ,w5,¯1, : : : ,¯5);

3In practice, other filters such as the UKF [24] and the randomized

UKF [55] are sometimes used with negative weights, which can give

decent results, but does not have a proper probabilistic interpretation.

3.3. Properties of the Moment-based Approximation

There are several noteworthy properties of the pre-
sented approximation method. Obviously, it maintains

the first and second trigonometric moment of the origi-
nal density. Maintaining the first trigonometric moment
guarantees that the conversion is reversible. If we take
a WN, WC, or VM distribution and approximate it with
a WD distribution, we can recover the original distri-

bution by means of moment matching. In the case of a
VM distribution, we can also obtain the original distri-
bution by maximum likelihood estimation, which coin-
cides with the result from moment matching [21, Re-
mark 4.1].

Approximating not just the first, but also the second
moment has the advantage of more accurately approx-
imating the original distribution and producing a mix-
ture with more components. As shown before, differ-
ent types of distributions differ in their second moment,

even if they are uniquely determined by their first mo-
ment (see Fig. 2). If we use a wrapped Dirac mixture
to propagate a density through a nonlinear function, a
larger number of mixture components captures the ef-
fect of the function more accurately.

One of the main advantages of the presented method
is the fact that for WN and WC distributions, all re-
quired operations can be evaluated in closed form. The
necessary formulas (1), (2), and (5)—(10) can be evalu-

ated in constant time and are easily implemented even
on embedded hardware with limited computational ca-
pabilities. In the case of a VM distribution, the calcu-
lation of the first and second trigonometric moment re-
quires the evaluation of Bessel functions as given in (3),

but all other steps (5)—(10) are still possible in closed
form.
Examples for the approximation of both WN and

VM densities with different concentrations are depicted
in Fig. 3 and Fig. 4. These examples illustrate how the

concentration of the density affects the placement and
weighting of the samples. It can be seen that the weight
of the middle samples increases as the density gets more
concentrated. These figures also illustrate that the shape
of the two densities is slightly different.

The influence of the parameter ¸ is illustrated in
Fig. 6. If ¸ approaches 1, more and more weight is
assigned to the Dirac component at zero whereas the
other Dirac components have less influence. If, on
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Fig. 7. Locations of the Dirac delta components ¯1, : : : ,¯5 depending on ¸ for a WN Distribution with parameters ¹= ¼ and different

values of ¾. Note that in the case of ¾ = 2:5, small values of ¸ are not valid because they yield a negative w5.

the other hand, ¸ approaches zero, two of the other
components move towards the center Dirac component,
effectively reducing the number of Dirac components to
three. As both of these effects are undesirable, ¸ should
not be chosen too close to either zero or one. It can be
shown that for WN, WC as well as VM distribution,
w5 is positive for arbitrary concentrations if and only if
¸¸ 0:5, which motivates a choice of ¸ 2 [0:5,1].
LEMMA 3. (Condition for Positive Weights). For WN,
VM, and WC distributions, w5 is positive for arbitrary
concentrations if and only if ¸¸ 0:5.
PROOF We calculate

w5(¸) = w
min
5 +¸(wmax5 ¡wmin5 )

=
4m21¡ 4m1¡m2 +1
4m1¡m2¡ 3

+¸

μ
2m21¡m2¡1
4m1¡m2¡ 3

¡ 4m
2
1¡ 4m1¡m2 +1
4m1¡m2¡ 3

¶
=
4m21¡ 4m1¡m2 +1
4m1¡m2¡ 3

+¸

μ¡2m21 +4m1¡ 2
4m1¡m2¡ 3

¶
=
4m21¡ 4m1¡m2 +1+¸(¡2m21 +4m1¡2)

4m1¡m2¡ 3

=
(4¡ 2¸)m21 + (¡4+4¸)m1¡m2 +1¡ 2¸

4m1¡m2¡3
:

a) WN: From (1), we obtain the relation m2 =m
4
1 and

substitute accordingly.

w5(¸) =
(4¡ 2¸)m21 + (¡4+4¸)m1¡m41 +1¡ 2¸

4m1¡m41¡ 3

=
m21 +2¸+2m1¡ 1
m21 +2m1 +3

Because m21 +2m1 +3> 0, we have

w5(¸)¸ 0
,m21 +2¸+2m1¡ 1¸ 0

,¸¸ 1
2
¡2m1¡m21

m1!0¡! 1
2

and m1 2 (0,1) shows the claim.

b) VM: The property holds for VM distributions

as well, but the proof is more tedious because of the

involved Bessel functions. For this reason, we do not

give a formal proof here.

c) WC: From (2), we obtain the relation m2 =m
2
1

w5(¸) =
(3¡ 2¸)m21 + (¡4+4¸)m1 +1¡ 2¸

4m1¡m21¡ 3

=
2¸m1¡ 2¸¡3m1 +1

m1¡ 3
:

Because m1¡ 3< 0, we have
w5(¸)¸ 0

,2¸m1¡ 2¸¡ 3m1 +1· 0
,¸(2m1¡ 2)·¡1+3m1
,¸¸ 1

2
¢ 1¡3m1
1¡m1

m1!0¡! 1

2

and m1 2 (0,1) shows the claim.
Based on these results, we suggested to use ¸= 0:5

in [32]. The value ¸= 0:5 is a reasonable choice for both

high and low concentrations and it guarantees w5 ¸ 0 in
all cases.

However, the choice of ¸= 0:5 has the disadvantage

that the discrete approximation degenerates to four com-

ponents as the distribution approaches a circular uni-

form distribution because the weight of the sample at

the circular mean approaches zero. It would be prefer-

able to obtain five equally weighted components in this

case. For this purpose, we consider the limits

lim
m1,m2!0

wmin5 =¡ 1
3

and
lim

m1,m2!0
wmax5 = 1

3

of the minimum and maximum weights as the distri-

bution approaches a circular uniform distribution (i.e.,

the moments approach zero). Then, we can solve for ¸

according to

w5(¸) =¡ 1
3
+¸2

3

!
= 1
5

) ¸= 0:8:
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Thus, ¸= 0:8 ensures convergence to a distribution with

equally weighted components. According to Lemma 3,

this choice also guarantees positive weights in all cases.

Even though we only presented an approximation

for WN, WC, and VM distributions so far, the presented

approach can easily be generalized to other symmetric

circular probability distribution whose first and second

trigonometric moments can be calculated and satisfy the

condition given in Lemma 2.

4. SUPERPOSITION METHOD

In this section, we present an extension of the pro-

posed method. For problems with strong nonlinearities,

it may be desirable to obtain a deterministic approxima-

tion with a larger number of samples. However, gener-

alizing the proposed method to more samples and/or

higher trigonometric moments is not straightforward.

For this reason, we propose the use of a superposition

approach that combines several sample sets with differ-

ent scaling parameters into one larger sample set, which

also retains the first and second trigonometric moment.

This approach is similar to the randomized UKF [55],

where multiple UKF sample sets with different rotations

and scalings are combined.

4.1. Proposed Method

To be specific, we consider the superposition of

q 2N,q¸ 2 approximations obtained using Algorithm 1
with different parameters ¸1 < ¢ ¢ ¢< ¸q 2 (0,1). The re-
sulting density is given by

qX
k=1

pq

LX
j=1

w(¸k)j ±(x¡¯(¸k)j ) (11)

with weights p1, : : : ,pq > 0 and
Pq
k=1pq = 1, where

w(¸k)1 , : : : ,w(¸k)L and ¯(¸k)1 , : : : ,¯(¸k)L are obtained using Al-

gorithm 1 by choosing the parameter ¸k.

LEMMA 4. For n= 0,1,2, the nth trigonometric moment
of (11) is identical to the nth trigonometric moment of the
original density.

PROOF We use the linearity of integration and the fact

that Algorithm 1 maintains the first and second moment

as well as the normalization property, which allows us

to obtainZ 2¼

0

exp(inx)

qX
k=1

pq

LX
j=1

w(¸k)j ±(x¡¯(¸k)j )dx

=

qX
k=1

pq

Z 2¼

0

exp(inx)

LX
j=1

w(¸k)j ±(x¡¯(¸k)j )dx

=

qX
k=1

pqmn

=mn:

Because one sample is placed at the circular mean

of the distribution regardless of ¸, this method results

in multiple samples at this location. In a practical im-

plementation, these samples can be joined into a single

sample with weight
Pq
k=1pkw

(¸k)
5 . If no other samples

coincide, the approximation results in 4q+1 Dirac delta

components. It should be noted that the weights w(¸k)5 of

individual samples at the center may be negative as long

as the sum of the weights of all Dirac delta components

at this location remains positive. This leads to the con-

dition

qX
k=1

pkw
(¸k)
5 ¸ 0

,
qX
k=1

pk(w
min
5 +¸k(w

max
5 ¡wmin5 ))> 0

,wmin5 + (wmax5 ¡wmin5 )

qX
k=1

pk¸k ¸ 0

,
qX
k=1

pk¸k ¸
wmin5

wmin5 ¡wmax5

: (12)

We will later make sure to that this condition always

holds.

4.2. Choice of Parameters

While the approach discussed above is fairly

straightforward, it is not obvious how to choose the pa-

rameters p1, : : : ,pq and ¸1, : : :¸q. In principle, any choice

fulfilling condition (12) would be valid, and the first and

second trigonometric moments are maintained as shown

in Lemma 4. However, for good performance in a circu-

lar filter, it is desirable that a large range is covered and

that the Dirac delta components are as evenly spread as

possible. It is possible to achieve this by defining a suit-

able cost function and using a numerical optimization

procedure to obtain the parameters. Because this would

incur a significant runtime cost, we instead suggest an

intelligent heuristic that ensures good results in all cases

and that can be calculated very efficiently.

For the heuristic, we choose uniform weights pk =

1=q. When we consider the choice of the parameters

¸1, : : : ,¸k, we observe the influence of ¸k on the Dirac

delta positions ¯(¸k)1 , : : : ,¯(¸k)4 (see Fig. 7). It can be seen

in the depicted examples that the outermost components

at ¯(¸k)1 and ¯(¸k)2 move further away from the circular

mean at first when ¸k increases, but start moving inward

again as ¸k approaches 1. This behavior can formally be

shown by the following Lemma.

LEMMA 5. The angular distance between ¯1 and the
circular mean (as well as ¯2 and the circular mean) is
maximized for ¸max = 2

p
2¡ 2¼ 0:828.
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Fig. 8. WD approximations for WN distributions using superposition method with different values for ¾. In all cases, we use q= 5.

PROOF We consider the partial derivative of x1 with

respect to ¸, which yields

@

@¸
x1 =

@

@¸
(c1¡ x2)

=
@

@¸

μ
c1¡

μ
2c1 +

q
4c21¡8(c21¡ c2)

¶
=4

¶
=¡ @

@¸

μ
c1 +

q
c21¡ 2(c21¡ c2)=2

¶
=¡ @

@¸

μ
c1 +

q
¡c21 +2c2=2

¶
=¡ @

@¸

μ
2(m1¡w5)
1¡w5

+

s
¡
μ
2
m1¡w5
1¡w5

¶2
+2

μ
m2¡w5
1¡w5

+1

¶
=2

1A :
Furthermore, we obtain

w5 = w
min
5 +¸(wmax5 ¡wmin5 )

=
4m21¡ 4m1¡m2 +1+¸(¡2m21¡ 2+4m1)

4m1¡m2¡ 3
:

Substituting this term for w5 in the partial derivative

x1, setting the result to zero, and solving for ¸ yields

2
p
2¡ 2.
Note that this result does not depend on the moments

m1 and m2. To cover the maximum area, it is desirable to

choose ¸q = ¸
max and ¸1, : : : ,¸q¡1 < ¸

max. Because the

Dirac delta components should be evenly distributed,

we propose to define

¸k = ¸
min +

k

q
(¸max¡¸min), k = 1, : : : ,q,

i.e., the ¸s are spread evenly between ¸min and ¸max,

where ¸min is yet to be determined.4 Obviously, it holds

that ¸min ¸ 0, but for ¸min = 0, condition (12) is not
always guaranteed to hold. Thus, we determine ¸min

from the positivity condition (12).

4According to this definition, ¸max is included in ¸1, : : : ,¸k , but ¸
min

is not. This choice is motivated by the fact that the value of ¸min that

we derive in the following leads to a degenerate solution.

LEMMA 6. Condition (12) is satisfied if and only if

¸min ¸ 2 ¢ q

q¡1 ¢
wmin5

wmin5 ¡wmax5

¡¸max ¢ q+1
q¡ 1 :

PROOF First, we calculate a closed form solution for

the sum of all ¸s according to

qX
k=1

¸k =

qX
k=1

¸min +
k

q
(¸max¡¸min)

= q ¢¸min + ¸
max¡¸min

q

qX
k=1

k

= q ¢¸min + ¸
max¡¸min

q
¢ q ¢ (q+1)=2

= q ¢¸min + (¸max¡¸min) ¢ (q+1)=2
= ¸min ¢ (q¡1)=2+¸max ¢ (q+1)=2:

Now, we use p1, : : : ,pq = 1=q and solve equation (12)

for ¸min, which leads to

¸min ¢ (q¡ 1)=2+¸max ¢ (q+1)=2¸ q ¢wmin5

wmin5 ¡wmax5

, ¸min ¢ (q¡ 1)=2¸ q ¢wmin5

wmin5 ¡wmax5

¡¸max ¢ (q+1)=2

, ¸min ¸ 2 ¢ q

q¡ 1 ¢
wmin5

wmin5 ¡wmax5

¡¸max ¢ q+1
q¡ 1 :

Based on this result, we choose

¸min = max

μ
0,2 ¢ q

q¡ 1 ¢
wmin5

wmin5 ¡wmax5

¡¸max ¢ q+1
q¡ 1

¶
:

Examples of the proposed superposition approximation

are depicted in Fig. 8. It can be seen that even though

the ¸s were chosen to cover the largest possible area

and designed to be distributed as uniformly as possible,

the Dirac delta components form four clusters within

the possible ranges of ¯1, : : : ,¯4. Also, there is a single

central component located at ¯5, i.e., the circular mean,

and that has a fairly large weight when the uncertainty

is low. As a result, the superposition approximation is

not very evenly spread and does not approximate the

shape of the true density all that well. However, it is
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very easy and fast to compute and is always guaranteed

to maintain the first two trigonometric moments.

5. BINARY TREE APPROACH

In this section, we will introduce an approach for

deterministic sampling of circular densities that is not

based on trigonometric moment matching, but rather on

approximation of the entire probability density function

(as it is done in, e.g., [17]). The basic idea of the pro-

posed approach is to construct a binary tree by recur-

sively dividing the interval [0,2¼) into smaller intervals

while choosing the number of Dirac delta components

in each interval proportionally to the contained proba-

bility mass.

5.0.1. Proposed Method:
Formally, the proposed algorithm (see Algorithm 2)

works as follows. It considers the pdf f(¢) on the inter-
val [l,r) that is to be approximated with a predefined

number of L 2N+ samples. If L= 1, the algorithm sim-
ply returns the center of the interval.5 Otherwise, for

L > 1, the interval is divided into two halves [l,m) and

[m,r), where m= (l+ r)=2 is the center of the interval.

Thereby, two leaves are added to the binary tree, which

can be processed recursively. The probability mass

pleft =

Z m

l

f(x)dx, pright =

Z r

m

f(x)dx

in each half is computed and the number of Dirac com-

ponents in each half is chosen proportionally. Because

the number of components in each half has to been an

integer, we need to round the result. However, because

of rounding errors, we may have corner cases where

the number of Dirac components in both halves does

not sum to L. For this reason, we round down first and

then check if there is a remaining component. If that

is the case, we assign it to the half where the rounding

error is larger. In order to evaluate the probability mass

within an interval, the cumulative distribution function

(cdf) of the density f(¢) is required. In the case of the
WN, VM, and WC distributions, efficient methods for

computing this function are available. For other distri-

butions it may be necessary to fall back to numerical

integration, which would typically be slower.

REMARK 1 (Cumulative Distribution Functions).

1) WN distribution: The cdf can be obtained by compo-

nentwise integration, which reduces the problem to

the calculation of an infinite sum of Gaussian cdfs.

The Gaussian cdfs are not available analytically but

can be efficiently evaluated using the erf-function

[1, Sec. 7.1]. Similar to the infinite sum in the pdf,

5A better alternative is to put the sample at the center of mass of

the interval, i.e, at
R r
l
x ¢f(x)dx. However, this typically necessitates

numerical integration, and would thus significantly increase the com-

putation time. If the integral can be computed analytically, this choice

should be preferred, though.

the infinite sum in the cdf can be truncated to just a

few terms.

2) VM distribution: No analytic solution for the cdf of

a VM distribution is known. However, Hill proposed

an efficient approximation [18] with an accuracy of

12 decimal digits.

3) WC distribution: The cdf of a WC distribution can

be computed analytically using the indefinite integralZ
sinh(°)

2¼(cosh(°)¡ cos(x¡¹)dx

=
1

¼
arctan(coth(°=2)tan((x¡¹)=2))

+ constant:

ALGORITHM 2 approximateBT

Input: left limit l, right limit r, number of samples L,
pdf f(¢)

Output: sample positions ¯
m= (l+ r)=2;

/* one Dirac component remaining */

if L= 1 then
¯ = [m];

return ¯;
end
/* calculate integrals and distribute

Diracs components proportionally */

pleft =
R m
l
f(x)dx;

pright =
R r
m
f(x)dx;

Lleft = bL ¢pleft=(pleft +pright)c;
Lright = bL ¢pright=(pleft +pright)c;
/* assign remaining Dirac delta

component if necessary */

if Lleft +Lright = L¡ 1 then
if L ¢pleft=(pleft +pright)¡Lleft >
L ¢pright=(pleft +pright)¡Lright then

Lleft = Lleft + 1;
else

Lright = Lright + 1;
end

end
/* Recursive calls for left and right half */

¯Ã [];

if Lleft ¸ 1 then
¯Ã [¯,approximateBT(l,m,Lleft)];

end
if Lright ¸ 1 then

¯Ã [¯,approximateBT(m,r,Lright)];
end
return ¯;

5.1. Extensions

Although the binary tree approximation as presented

above works quite well in most circumstances, some

extensions are possible to improve it further.
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Fig. 9. WD approximations for WN distributions using binary tree method with different values for ¾ (without moment correction). In all

cases, we use L= 25.

5.1.1. Shifting Invariance:
In principle, the proposed algorithm can be applied

to circular densities with arbitrary circular mean directly

and it is not necessary to enforce ¹= 0. However, the

binary tree approximation is not invariant under shift-

ing, i.e., the results of the approximation depend on the

location of the density. This is due to the choice of the

initial interval [l,r) = [0,2¼). In order to avoid intro-

ducing artifacts as a result of this issue, we recommend

enforcing ¹= 0 before performing the binary tree ap-

proximation and shifting the samples by ¹ afterwards.

This modification makes the proposed method invariant

to shifting operations. Also, it is worth mentioning that

for symmetric densities, this ensures symmetry around

0, which can be exploited to cut the computational effort

in half if L is even. This is done by setting the initial in-

terval as [l,r] = [0,¼], approximating with L=2 samples,

and obtaining the samples in [¼,2¼] by mirroring.

5.1.2. Moment Correction:
Because of its shape-based approach, the binary tree

approximation does not, in general, guarantee that any

trigonometric moments are maintained. This has the dis-

advantage that the original continous density cannot be

exactly recovered from the samples using a moment-

based estimator, not even for simple distributions such

as the WN, VM, and WC distributions. Thus, propaga-

tion through an identity function or a simple shift op-

eration is also not exact. This problem can be avoided

by introducing a post-processing step to retroactively

correct the first trigonometric moment. The downside

of such a correction step is that the probability mass

in each interval is not exactly retained anymore, i.e.,

we introduce a small error into the approximation of

the shape in order to get an approximation that has the

correct first trigonometric moment.

Correction of the first trigonometric moment is car-

ried out in two steps. First, we correct the circular mean,

i.e., we adjust the complex argument Argm1 to match

the original distribution. This is achieved by calculating

the circular mean of the original density and the circular

mean of the binary tree approximation and then shifting

all Dirac delta components by the difference. As long

as the first trigonometric moment of the true density is

easy to calculate, this step does not require much com-

putational effort, and thus, is always recommended.6

In order to correct the Euclidean norm j ¢ j of the
complex first trigonometric moment m1, i.e., the spread

of the distribution, we propose the following approach.

The basic idea is to perform a scaling operation that

moves all Dirac delta component inwards or outwards

with respect to the circular mean by scaling around the

mean by a factor of c > 0, i.e., we obtain the wrapped

Dirac mixture
LX
j=1

wj±(x¡ (Argm1 + c ¢©(¯j ¡Argm1))),

where ©(x) = (x+¼ mod 2¼)¡¼ is a function that

switches to a parameterization on [¡¼,¼). The scaling
parameter c is then obtained by solving the optimization

problem

argmin
c

¯̄̄̄
¯̄jm1j ¡ LX

j=1

cos(c ¢©(¯j ¡Argm1))
¯̄̄̄
¯̄ ,

where we use an initial value of c= 1 (i.e., no scaling

is performed). This one-dimensional optimization can

be efficiently solved using a quasi-Newton algorithm

[45, Sec. 6]. Typically, we obtain a result c¼ 1, i.e.,
only a slight scaling is necessary.

5.2. Properties of the Binary Tree Approximation
The runtime of the proposed method depends on

the shape of the probability density that is to be ap-

proximated. In practical experiments, it is not quite as

fast as the closed-form solution of the moment-based

approximation discussed above, but it is still very fast

compared to approaches that necessitate the solution of

complicated multivariate nonlinear optimization prob-

lems (e.g., [17]). In particular, if the cdf can be com-

puted efficiently as is the case for WN, VM, and WC

distributions, the proposed method is very cheap to per-

form (see Sec. 6).

Unlike the moment-based approaches discussed

above, we do not restrict ourselves to symmetric den-

sities here. Thus, the binary tree method is also appli-

6For symmetric densities, the shifting invariance modification

(Sec. 5.1.1) already guarantees that the circular mean is matched ex-

actly. In this case, the correction step can be omitted.
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Fig. 10. WD approximations for WN distributions using binary tree method with different values for ¾ (with moment correction). In all

cases, we use L= 25.

Fig. 11. Distance measure between true density WN (x;¼,¾) and the different deterministic approximations.

cable to distributions with asymmetric densities such as

the wrapped exponential distribution and the wrapped

Laplace distribution [20]. More generally, it can also be

applied to multi-modal circular densities, e.g., wrapped

normal mixtures [2], von Mises mixtures [8], [44], [9],

or Fourier densities [59], [10], [46], [47].

Furthermore, this method produces a uniformly

weighted mixture. This is a desirable property because it

has advantages when reweighting the samples as parti-

cle degeneration does not occur as quickly. Reweighting

is a common technique used to derive nonlinear mea-

surement updates, e.g., as part of a progressive filter

[34], [35].

It should also be noted that the proposed approach

can be generalized to higher dimensions, i.e., to prob-

ability distributions on the torus [30], [40], [51] and

hypertorus [27], [41]. In that case, binary trees would

be replaced by quadtrees, octrees, etc. Even though

this generalization is straightforward, the higher-

dimensional version is limited to a small number of di-

mensions, because it scales exponentially with respect

to the considered number of dimensions. Also, an ef-

ficient implementation of the multidimensional integral

of the true density is required.

Examples of the binary tree approximation with-

out moment correction and with moment correction are

given in Fig. 9 and Fig. 10, respectively. It can be seen

that the binary tree approximation represents the shape

of the true distribution very well. The moment correc-

tion only changes the distribution very slightly, but ex-

actly enforcing the moment constraint has significant

advantages because it allows recovering the original

density for distributions that are uniquely defined by

their first trigonometric moment.

6. EVALUATION

In this section, we provide evaluations of the pro-

posed methods according to different criteria. We con-

sider a distance measure comparing the approximation

to the true distribution and evaluate the accuracy when

the approximations are applied for propagation of the

density through a nonlinear function.
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6.1. Approximation Accuracy Based on Distance
Measure

To determine the approximation accuracy, we define

a distance measure between the original continous den-

sity and the discrete approximation. For two circular

densities f1(¢) and f2(¢) with cumulative distributions7

F1(x) =

Z x

0

f1(t)dt and F2(x) =

Z x

0

f2(t)dt,

we define the distance measure according toZ 2¼

0

(F1(x)¡F2(x))2dx:

This measure is essentially a circular version of the

distance used in [19], [49].

During the evaluation, we consider the density

WN (x;¼,¾) with several values of ¾ and approximated
it using the methods discussed in this paper. The results

are depicted in Fig. 11. It can be seen that the moment-

based approximation with L= 2 components is always

the worst method. The moment-based approximation

with L= 3 components is usually not very accurate ei-

ther. The moment-based approximation with L= 5 com-

ponents is always quite acceptable for ¸= 0:5. Setting

¸= 0:8 decreases the accuracy of the approximation

for small uncertainties, but improves the approxima-

tion quality for larger uncertainties. The superposition-

based approximation seems similar to the L= 5, ¸= 0:5

approximation for small noise, but outperforms it for

larger noise as long as enough components are used.

Both of the binary tree methods perform very well, es-

pecially if many components (say, L¸ 15) are used. The
corrected version (see Sec. 5.1.2) is slightly better in

some cases, but very similar to the uncorrected version

in others. We also compare to random sampling, which

can be seen to be very unreliable with such a small

number of samples.

Moreover, we investigated the runtime performance

of the proposed methods. All measurements were ob-

tained on a laptop with an Intel Core i7-2640M

@2.8GHz, 8GB RAM, and MATLAB 2015a. The re-

sults are given in Table I. As can be seen, all moment-

based methods are very fast, including the superposition

method. The binary tree method is more costly, particu-

larly for the WN distribution whose cdf is the most ex-

pensive to calculate, at least in our current implementa-

tions. The retroactive moment correction procedure (see

Sec. 5.1.2) somewhat increases the computation time, ir-

7It should be noted that the definition of the cumulative distribution

on the circle is somewhat problematic because the starting point of the

integration can be chosen anywhere in [0,2¼), i.e., it is not invariant

to shifting. The choice of the starting point also affects the distance

measure used in this section. In particular if Dirac delta components

are very close to the starting point, small changes to the starting point

can cause large changes in the cdf, and consequently the distance. To

minimize this effect, we use zero as a starting point and a density

centered around ¼, such that the probability mass is concentrated far

away from the starting point.

Fig. 12. Runtime of the binary tree approximation.

TABLE I

Average runtime for a single approximation.

time (s)

method WN VM WC

L= 2 0.000166 0.000173 0.000150

L= 3 0.000166 0.000170 0.000152

L= 5 0.000246 0.000312 0.000223

Superposition (q= 5) 0.000334 0.000399 0.000315

BT (L= 25) 0.065933 0.004461 0.011233

BT corrected (L= 25) 0.081339 0.028380 0.033159

random (L= 25) 0.000269 0.000479 0.000254

respective of the underlying true distribution. Still, it can

be seen that all proposed approximation algorithms are

already suitable for many real-time applications even

though our MATLAB implementation is not well op-

timized. Particularly, the moment-based approaches are

very efficient and could even be used in situations where

only little computational power is available.

In order to more closely investigate the runtime of

the binary tree approximation, we provide a plot where

we show the runtime as a function of the number of

samples L in Fig. 12. It can be seen that the runtime

scales approximately linearly in L, i.e., it can be applied

efficiently even for many samples.8

6.2. Propagation Through a Nonlinear Function

Furthermore, we evaluate the proposed deterministic

approximation methods by determining the error when

propagating through a nonlinear function. For our eval-

uation, we consider the function gc : [0,2¼)! [0,2¼)

with

gc(x) = ¼ ¢
μ
sin

μ
sign(x¡¼)

2

jx¡¼jc
¼c¡1

¶
+1

¶
for some constant c > 0, which has previously been used

for evaluation purposes in [14]. It can be shown that this

8It seems intuitive that the runtime is linear in most cases, but for

pathological probability density functions it may not be possible to

provide that guarantee.
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Fig. 13. Propagation of a prior WN distribution with parameters ¹= ¼, ¾ = 0:4 through a nonlinear function gc(¢) by means of the
proposed deterministic WD mixture approximation with five components. In this example, we use c= 0:9.

Fig. 14. The function gc(¢) for different values of c.

function is continuous for all c > 0. We have

g0c(x) = ¼ cos
μ jx¡¼jc
2 ¢¼c¡1

¶
¢ c ¢ jx¡¼j

c¡1

2 ¢¼c¡1
which is positive for x 2 [0,2¼), i.e., the function gc(¢)
is strictly increasing and furthermore bijective.9 Varying

the value of c allows us to control how strong the

nonlinearity is (see Fig. 14). The inverse function of

gc(¢) can also be calculated analytically according to

g¡1c (x) = sign
³
arcsin

³ x
¼
¡ 1
´´

¢
¯̄̄
2arcsin

³ x
¼
¡ 1
´
¼c¡1

¯̄̄1=c
+¼:

Now, we assume a random variable A is distri-

buted according to a WN probability distribution

WN (x;¹A,¾A). We propagate A through the nonlinear
function gc(¢) to get B = gc(A), and seek to obtain a
WN distribution f(x;¹B ,¾B) that approximates the dis-

tribution of gc(A). For x 6= ¼, the density of the exact
distribution is given by

fB(x) =
f(g¡1c (x);¹,¾)

g0c(x)
:

9The proposed approach is not limited to injective or continous func-

tions. However, we use such a function because these properties sim-

plify the calculation of the true posterior density.

This distribution is not a WN distribution, but can be ap-

proximated by one. To approximate the true distribution

with a WN distribution, we proceed as follows. First,

we deterministically approximate the prior distribution

WN (x;¹A,¾A) with a WD mixture
PL
j=1wj ¢ ±(x¡¯j)

using one of the methods presented in this paper. Then,

we propagate all samples through the nonlinear function

gc(¢), which yields
PL
j=1wj ¢ ±(x¡ gc(¯j)). Finally, we fit

a WN distribution WN (x;¹B ,¾B) to the resulting WD
mixture. This process is illustrated in Fig. 13.

We calculate the optimal WN approximation

WN (x;¹opt,¾opt) of the posterior density fB by match-
ing the first trigonometric moment of fB . This is

achieved by using a grid of 20 000 equidistant samples

on the circle that are weighted using the prior pdf, prop-

agated through the nonlinear function and then used to

obtain the parameters of the optimal WN approxima-

tion. Then, we use the Kullback-Leibler divergence

DKL(WN (x;¹opt,¾opt)kWN (x;¹B ,¾B))

=

Z 2¼

0

WN (x;¹opt,¾opt) log
μWN (x;¹opt,¾opt)
WN (x;¹B ,¾B)

¶
dx

between the WN (x;¹opt,¾opt) and the fitted distribution
WN (x;¹B ,¾B) to quantify the information loss by this
approximation. The results for ¹= ¼ and different val-

ues of the nonlinearity parameter c as well as several

possible uncertainties ¾ are depicted in Fig. 15. In ad-

dition to the Kullback-Leibler divergence, we also con-

sider the error in the first trigonometric moment¯̄̄̄
¯̄Z 2¼

0

fB(x)eixdx¡
Z 2¼

0

LX
j=1

wj ¢ ±(x¡gc(¯j))eixdx
¯̄̄̄
¯̄

of the approximation compared to the true density.

Results obtained using this error measure are shown in

Fig. 16.

In this evaluation, we consider the moment-based

approaches with L= 3 and L= 5 samples (¸= 0:5),

as well as the superposition approach with q= 5, the

uncorrected and corrected versions of the binary tree

method with L= 25 and also L= 25 random samples.
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Fig. 15. Kullback-Leibler divergence between best WN that approximates the posterior and the WD-based WN approximation.

Fig. 16. Error in the first trigonometric moment between the true posterior and the WD-based approximation.

It can be seen that the random sampling generally per-

forms very poorly compared to the deterministic sam-

pling schemes, which is to be expected because random

sampling generally needs a significantly larger num-

ber of samples to provide good results. As far as the

moment-based approximations are concerned, the eval-

uation indicates that the method with L= 5 components

significantly outperforms the method with L= 3 com-

ponents, particularly in scenarios with strong nonlinear-

ity. The superposition method generally provides fairly

similar results to the approximation with L= 5 compo-

nents and does not seem to provide a significant advan-

tage in the considered settings in spite of the increased

number of Dirac delta components. Both versions of the
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binary tree method generally provide very good results.

In some cases, the uncorrected version suffers from the

systematic error in the approximation, however, so the

corrected version should be preferred if the slight in-

crease in computation time is acceptable.

7. CONCLUSION

We presented several new methods to deterministi-

cally approximate circular distributions with wrapped

Dirac mixtures. The proposed approaches are applica-

ble to a variety of circular distributions, in particular

the widely used wrapped normal and von Mises distri-

butions.

First, we considered approximations with a fixed

number of Dirac delta components based on one or two

trigonometric moments. Because all expressions can be

evaluated in closed form, these algorithms require little

computational power and are suitable for implementa-

tion even on embedded devices. One might wonder if

the presented algorithms can easily be generalized to

higher moments, but such a generalization is nontriv-

ial due to the fact that preserving n moments involves

finding the roots of polynomials of degree n. Analytic

solutions only exist for polynomials of degree · 4 and
are very complicated for n= 3 and n= 4.

Second, we presented a superposition method that is

able to combine the results of multiple moment-based

approximations to obtain a wrapped Dirac mixture with

a larger number of components while still maintain-

ing the first and second trigonometric moment. The re-

sulting approximations can also be computed in closed

form.

Third, we presented the binary tree method, a shape-

based approximation with an arbitrary number of Dirac

delta components. The resulting approximations repre-

sent the shape of the true continous density much more

accurately than those obtained with the superposition

method, but they do not guarantee that the trigonometric

moments are maintained. However, an additional cor-

rection step can be used to ensure that the first trigono-

metric moment is matched.

When considering a particular practical application,

one of these approaches has to be chosen. The most

appropriate choice mostly depends on the nonlinearity

of the problem (within the range of the uncertainty) and

on the available computation time. The moment-based

approximation with five components is very fast, but

may not be sufficient for strongly nonlinear problems.

To handle nonlinear problems better, the superposition

method can be used at a moderately higher computa-

tional cost. The best results are usually obtained by the

binary tree method using a sufficiently large number of

components, but it is computationally more costly and

does not guarantee that the second moment is retained.

Future work includes the generalization of the pro-

posed approaches to higher dimensions, e.g., the hyper-

sphere, the hypertorus, partially wrapped spaces, and the

groups of rigid body motions in two and three dimen-

sions. Some preliminary work in this area has already

been published [15], [13], [36], but there are still many

open questions, when it comes to deterministic sampling

on periodic manifolds.

MATLAB implementations of the sampling methods

presented in this paper are available as part of libDi-
rectional [37], an open source library for directional
statistics and directional estimation.
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Schiefer.

Sitzungsberichte Akademie der Wissenschaften in Wien 126
(July 1917), 515—539.

[49] Schrempf, O. C., Brunn, D., and Hanebeck, U. D.

Density Approximation Based on Dirac Mixtures with Re-

gard to Nonlinear Estimation and Filtering.

In Proceedings of the 2006 IEEE Conference on Decision
and Control (CDC 2006) (San Diego, California, USA, Dec.
2006).

Gerhard Kurz received his diploma in computer science from the Karlsruhe

Institute of Technology (KIT), Germany, in 2012. Afterwards, he obtained his Ph.D.

in 2015 at the Intelligent Sensor-Actuator-Systems Laboratory, Karlsruhe Institute

of Technology (KIT), Germany. His research interests include directional filtering,

nonlinear estimation, and medical data fusion. He has authored multiple award-

winning publications on these topics.

[50] Schrempf, O. C., Brunn, D., and Hanebeck, U. D.

Dirac Mixture Density Approximation Based on Minimiza-

tion of the Weighted Cramér-von Mises Distance.

In Proceedings of the 2006 IEEE International Conference
on Multisensor Fusion and Integration for Intelligent Systems
(MFI 2006) (Heidelberg, Germany, Sept. 2006), pp. 512—
517.

[51] Singh, H., Hnizdo, V., and Demchuk, E.

Probabilistic Model for Two Dependent Circular Variables.

Biometrika 89, 3 (2002), 719—723.
[52] Steinbring, J., Pander, M., and Hanebeck, U. D.

The Smart Sampling Kalman Filter with Symmetric Sam-

ples.

Journal of Advances in Information Fusion 11, 1 (June

2016), 71—90.

[53] Stienne, G.

Traitements des signaux circulaires appliqués à l’altimétrie
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von Mises-Fisher Filter and
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Directional data emerge in many scientific disciplines due to the
nature of the observed phenomena or the working principles of
a sensor. The problem of tracking with direction-only sensors is
challenging since the motion of the target typically resides either in
3D or 2D Euclidean space, while the corresponding measurements
reside either on the unit sphere or the unit circle, respectively.
Furthermore, in multitarget tracking there is the need to deal with
the problem of pairing sensors measurements with targets in the
presence of clutter (the data association problem). In this paper we
propose to approach multitarget tracking in clutter with direction-
only data by setting it on the unit hypersphere, thus tracking the
objects with a Bayesian estimator based on the von Mises-Fisher
distribution and probabilistic data association. To achieve this goal
we derive the probabilistic data association (PDA) filter and the
joint probabilistic data association (JPDA) filter for the Bayesian
von Mises-Fisher estimation on the unit hypersphere. The final
PDA and JPDA filter equations are derived with respect to the
Kullback-Leibler divergence by preserving the first moment of the
hyperspherical distribution. Although the fundamental equations
are given for the hyperspherical case, we focus on the filters on the
unit 1-sphere (circle inR2) and the unit 2-sphere (surface of the unit
ball in R3). The proposed approach is validated through synthetic
data experiments on 100 Monte Carlo runs simulating multitarget
tracking with noisy directional measurements and clutter.
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I. INTRODUCTION

Directional data emerge in many scientific disci-

plines. Since the surface of the earth is approximately a

sphere, such data arise readily in earth sciences, e.g. the

location of the earthquake’s epicenter, the paleomag-

netic directions of the earth’s magnetic pole etc. Fur-

thermore, many astronomical observations are points on

the celestial sphere and as such yield directional data. In

multitarget tracking (MTT), it is not uncommon to work

with sensors that can provide only directions to the ob-

jects in question. The measurement and estimation state

space have a specific geometry of their own, which is

different from the true trajectory space geometry.

The problem is challenging, because, although the

motion of the target resides either in 3D or 2D Euclidean

space, corresponding measurements reside either on the

sphere or the circle, respectively. For example, if we are

measuring and estimating only the direction to the target

in 2D, i.e. the azimuth, the state and measurements will

bear the non-Euclidean properties of angles. Applying

standard filtering techniques employing the Gaussian

distribution on Rd would ignore the underlying geome-
try. In robotics, measurements from various sensors, due

to their nature of operation, yield direction-only infor-

mation of the objects of interest, e.g. microphone arrays

measure the direction of the sound source, perspective

and omnidirectional cameras measure directions of var-

ious features of interest in space.

Considering MTT, the goal of such a system is to

estimate the multiple trajectories in scenarios with noisy

measurements, clutter or false alarms (measurements

that falsely appear to originate from moving objects).

The duties of such a system are truly numerous, and in

the past several seminal methods have been developed

in order to tackle this problem wherein data association

plays one of the crucial roles. To solve this problem

the methods that can be used are the global nearest

neighbor (GNN) which attempts to find the single most

likely data association hypothesis at each scan [1], the

probabilistic data association (PDA) filter for single

target tracking and joint probabilistic data association

(JPDA) filter for MTT where multiple hypotheses are

formed after each scan and then these hypotheses are

combined before proceeding further with the next scan

[2], and the multiple hypothesis filter (MHT) [3] where

multiple data association hypotheses are formed and

propagated from scan to scan [1]. Furthermore, a group

of methods based on random finite sets was developed

with MTT in mind. An example is the probability

hypothesis density (PHD) filter [4] which estimates the

number of objects in the scene but does not solve the

data association problem by itself, however, a solution

has been presented in [5] for the Gaussian mixture

PHD filter [6]. Further solutions within this framework

were developed, such as the cardinalized PHD (CPHD)

[7], [8], and multi-Bernoulli filters [9]—[12].
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Estimation methods using the von Mises (vM) and

the wrapped Gaussian distributions were recently dis-

cussed in [13]—[22]. Furthermore, inference on quater-

nions, namely the Bingham distribution (which actu-

ally models variables with 180± symmetry), was used
in [23]—[25] and in [26] where, furthermore, a second-

order filter was derived which included also the rota-

tional velocity. These approaches, advocating the unit

hypersphere as the appropriate filtering space, showed

better performance of the Bingham filter compared to

the extended Kalman filter. This approach was fur-

ther extended to unscented orientation estimation based

on the Bingham distribution and showed better perfor-

mance than the unscented Kalman filter and better to

equal performance than the particle filter (depending

on the number of particles) [27]. However, the normal-

ization constant of the Bingham distribution, hence its

partial derivative, cannot be computed in closed form,

but this can be surmounted by caching techniques and

its relationship with the vM distribution [25]. On the

contrary, the von Mises-Fisher (vMF) distribution does

not require such techniques since the normalization con-

stant and its partial derivative can be calculated in closed

form, which will be of practical interest in the ensuing

JPDA equations. Indeed, there are many choices for di-

rectional distributions, but for inferential purposes the

vMF distribution is most widely used because of its ex-

ponential family structure [28].

Considering target tracking on the unit sphere (as in

surface of the unit ball in R3), it was proposed in [29]
to utilize the vMF distribution to model the system state

and the sensors measurements after which a Bayesian

estimator was developed for single object tracking. This

method was used in our previous work [30] in order

to track a single target detected by an omnidirectional

camera on a mobile robot, thus not offering a consistent

method for dealing with multiple moving objects nor

false alarms/clutter. A global nearest neighbor (GNN),

which in contrast to JPDA solves the data association by

hard assignment, was applied in tracking multiple tar-

gets on the sphere in [31] and the Rényi ®-divergence

was used as a distance measure. In [32] we developed

the vM mixture PHD filter and compared it to the Gaus-

sian mixture PHD filter for MTT on the unit circle.

The vM mixture PHD filter showed better performance

since it was able to capture the circle geometry intrin-

sically, which proved important for the mixture PHD

filter having components spread throughout the entire

state space. In [33] the vMF filter was used to track

multiple speakers. The authors also addressed model-

ing the object velocity with a Gaussian distribution by

assuming that the posterior state distribution can fac-

tor to the product of the vMF and the Gaussian distri-

bution. The authors compared the performance of the

vMF filter to the constant velocity Kalman filter and

a particle filter based on the vMF sampling. The vMF

filter showed better performance than the Kalman filter,

while the performance with respect to the vMF particle

filter depended on the number of particles (at the cost

of increase in computational complexity). Multitarget

tracking was solved by averaging observations prior to

the update step, where the weights were computed based

on the normalized vMF innovation term (also taking

into account a uniform distribution to handle outliers).

The authors conclude that the vMF filter strikes a good

compromise between the efficiency of the Kalman filter

and the statistical grounding of the vMF particle filter.

In [34] we proposed a probabilistic data association

solution to the problem of tracking single and multiple

targets in clutter with direction-only sensors. This pa-

pers serves as a foundation for the present paper and we

are extending it in several ways. Instead of focusing on

the unit sphere, in the present work the Bayesian filter

is presented on the unit hypersphere, i.e. the (d¡ 1)-
dimensional unit sphere, and it is shown how vM and

vMF filters arise as special cases. We also provide

in depth mathematical proofs of the moment-matching

techniques used in the paper. Furthermore, validation

gating is discussed in detail and experiments are ex-

tended through more thorough validation via MC runs

of the vM and vMF PDA and JPDA filters.

Specifically, we pose the problem on the unit hy-

persphere and utilize a Bayesian tracking algorithm

that is based on the vMF distribution on the (d¡ 1)-
dimensional unit sphere. To solve the data association

problem we derive the PDA and JPDA filter equations

for the aforementioned Bayesian filter. This constituted

(i) deriving the a posteriori probabilities of association

events on the unit hypersphere which essentially weigh

each hypothetical estimation and form a mixture of von

Mises-Fisher densities, (ii) determining the final (single)

component density as the result of the update in the

PDA and JPDA filter by preserving the first moment

of the hyperspherical distribution (which is optimal in

the Kullback-Leibler sense), and (iii) modeling the false

alarms as Poisson processes. The proposed algorithms

were tested on 100 Monte Carlo runs of a synthetic

data set comprising of single and multiple-object scenar-

ios where direction-only measurements were corrupted

with noise and clutter.

The paper is organized as follows. Section II presents

the general mathematical background and formulae for

tracking on the hypersphere with the von Mises-Fisher

distribution. Section III describes the proposed PDA

and JPDA filtering approaches based on the von Mises-

Fisher distribution. Section IV presents the results and

discussion of the synthetic data experiments, while Sec-

tion V concludes the paper.

II. GENERAL BACKGROUND

When considering directions in d dimensions, i.e.

unit vectors in d-dimensional Euclidean space Rd, one
can represent them as points on the (d¡1)-dimensional
sphere Sd¡1 of unit radius. Thus, in our notation, 1-
sphere is the unit circle in R2 and the 2-sphere is
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the surface of the unit ball in R3. In the sequel we
introduce all the necessary constituents and discuss the

basic paradigm of a tracking system on the unit (d¡ 1)-
sphere using von the Mises-Fisher distributions.

A. von Mises-Fisher distribution
Parametric probability distribution defined on the

unit (d¡ 1)-dimensional sphere Sd¡1, whose probability
density function (pdf) is given by

f(x;¹,·) = Cd(·)exp(·¹ ¢ x), x 2 Sd¡1, (1)

is called von Mises-Fisher distribution with parameters
·¸ 0 and ¹ 2 Sd¡1 denoting the concentration and the
mean direction, respectively. Expression

Cd(·) =
·d=2¡1

(2¼)d=2Id=2¡1(·)
(2)

is the normalization constant with respect to the stan-

dard surface measure, while Ip denotes the modified

Bessel function of the first kind and order p [35]. To en-

lighten many of its properties, it is worth of considering

the vMF distributions as an exponential family. Recall, a

parametric set of probability distributions parametrized

by the natural parameter μ 2£ μ Rd is called an ex-
ponential family if their probability densities admit the
following canonical representation [36]

p(x;μ) = exp(T(x) ¢μ¡F(μ)+C(x)), (3)

where T(x) is called sufficient statistics, F(μ) is the
log-normalizing function and C(x) denotes the carrier
measure. Many familiar parametric distributions, like

the Gaussian, Poisson, Gamma, Dirichlet etc., are ex-

ponential families [37].

One easily deduces from (1) that the vMF distribu-

tion constitutes an exponential family parametrized by

the natural parameter μ = ·¹ 2 Rd, the log-normalizing
function given by

Fd(μ) =¡ logCd(kμk), (4)

and the trivial carrier measure. The minimal sufficient

statistics is the identity map on Sd¡1, T(x) = x, hence,
the vMF distribution is completely determined by the

directional (angular) mean1

E[x] =
Z
Sd¡1

xf(x;¹,·)dx=rFd(μ) = Ad(·)¹, (5)

where Ad(·) is the ratio of the following Bessel func-

tions

Ad(·) =
Id=2(·)

Id=2¡1(·)
: (6)

Please see Proposition A.1 in Appendix A for the proof.

Let us mention two more distinctive properties of the

vMF distribution: (i) density (1) is rotationally invari-

ant around the mean direction and, (ii) analogously to

1Note that the directional mean is defined by the integral (5), while the
mean direction ¹ is the parameter of the von Mises-Fisher distribution.

the multivariate Gaussian distribution, it is character-

ized by the maximum entropy principle in the follow-
ing sense. Given any pdf on Sd¡1 of prescribed di-
rectional mean ´, it is then the vMF distribution with
the natural parameter μ = (rF)¡1(´), which maximizes
the Boltzmann-Shannon entropy ¡RSd¡1 p(x) logp(x)dx
[29, Proposition 2.2].

In the present paper we present the vMF filter on

Sd¡1, but due to the aimed application of MTT, we
particularly show explicit relation in cases when d = 2

and d = 3, i.e. the vMF distributions on the unit 1-sphere

(called the von Mises distribution) and the unit 2-sphere

(also called the Fisher or Langevin distribution). For the

former the above expressions amount to [35]

C2(·) =
1

2¼I0(·)
and A2(·) =

I1(·)

I0(·)
, (7)

while for the latter they simplify to

C3(·) =
·

4¼ sinh·
and A3(·) =

1

tanh·
¡ 1
·
: (8)

An example of von Mises-Fisher distributions on the

unit 1-sphere and the unit 2-sphere with different mean

directions and concentration parameters are depicted in

Fig. 1 and Fig. 2, respectively. Even though the appli-

cation examples are shown for cases when d = 2 and

d = 3, with the presented general approach the higher

dimensional von Mises-Fisher filter could be applied in

novel applications beyond MTT. For example, a higher

dimensional von Mises-Fisher distribution was used in

[38] to address large scale data mining applications,

such as text categorization and gene expression anal-

ysis, which involve high-dimensional data that is also

inherently directional in nature.

Please note that we will denote the 1-sphere Bayes

filter as the von Mises filter, while with the practical

slight abuse of terminology the 2-sphere Bayes filter

will be denoted as the von Mises-Fisher filter and where

necessary the general Bayes filter on the (d¡ 1)-sphere
will be called the hyperspherical von Mises-Fisher fil-

ter. Furthermore, all the explicit formulae for the vM

distribution will be presented in angular variables with

the following relation ¹= (cos®, sin®).

B. Motion model

In our model we assume that moving objects are

relatively slow with respect to the sampling rate, i.e.

changes in the objects’s position between two conse-

quent observations are relatively small. Mathematically,

motion of such objects is then described by a wide-

sense stationary stochastic processes, among which,

the Wiener process (Brownian motion) is the standard

choice [39]. These time-continuous processes are typi-

cally further approximated by a random walk of a fixed

time step.

The Brownian motion distribution on Sd¡1 with pa-
rameters ¹ and · is the distribution at time ·¡1 of a ran-
dom point which starts at ¹ and moves on Sd¡1 under
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Fig. 1. Examples of the von Mises-Fisher distribution on the unit

1-sphere, i.e. the von Mises distribution, with equal mean directions

and concentration parameters of 50 (red), 150 (green), and 500

(blue), which correspond approximately to standard deviations of

8:1±, 4:7± and 2:6±, respectively.

Fig. 2. Samples on the unit 2-sphere of the von Mises-Fisher

distribution with different mean directions and concentration

parameters of 50 (red), 150 (green), and 500 (blue), which

correspond approximately to standard deviations of 10±, 5:7± and
3:1±, respectively.

an isotropic diffusion with infinitesimal variance Id¡1
(the identity matrix on the tangent space of Sd¡1) [28].
When d = 2 the Brownian motion distribution is the

wrapped Normal distribution, which in turn is very close

to and can be well approximated by the von Mises dis-

tribution with corresponding parameter transformations

[16], [28]. This closeness of the densities also extends

to the distributions on Sd¡1, i.e. to the Brownian mo-
tion distribution and the von Mises-Fisher distribution

on Sd¡1, as we shall detail out in the sequel for d = 3.
In practice, this means that in the prediction stage we

can approximate Brownian motion well with the corre-

sponding vMF distribution.

When d = 3, there are at least two viewpoints which

motivate the vMF as a motion model. First, consider

an isotropic Wiener process (Brownian motion) on S2,
which is defined as a temporally and spatially homo-

geneous Markov process [40]. It has been shown that

such process exists and is unique. Moreover, the pdf of

the distribution of a random point starting at x̂k¡1 2 S2
and moving to x̂k at time ¿ > 0 is given by

p(x̂k j x̂k¡1) = 1

4¼

1X
l=0

(2l+1)e¡¿l(l+1)=4Ll(x̂
k¡1 ¢ x̂k), (9)

where Ll are Legendre polynomials of degree l. This

formula is also obtained as the limit of the vanishing

step size of a random walk on the sphere with all di-

rections of movement being equally probable [41]. Fur-

thermore, in the same paper the authors discuss the ap-

proximation of (9), which is the true S2-analogue of the
planar symmetric Gaussian distribution, by a von Mises-

Fisher distribution, which unlike (9) features certain an-

alyticity properties. They show that for small variance

¿ > 0, one can approximate the Brownian motion on S2
by the von Mises-Fisher diffusion with large concentra-

tion parameter ·¿ = 2=¿ , i.e.

p(x̂k j x̂k¡1)¼ f(x̂k; x̂k¡1,·¿ ):
The second approach is from the applicational view-

point probably even more relevant. Consider the iso-

tropic Wiener process in R3 and corresponding time-
discretization (random walk) of fixed time step ¿ > 0.

The transition probability density function of the pro-

cess is given by the Gaussian density

p(xk j xk¡1) = 1

(2¼¾2¿ )
3=2
exp(¡kxk ¡ xk¡1k2=2¾2¿ ),

(10)

where ¾2¿ := ¾
2¿ and ¾ > 0 denotes the process strength.

If we are confined to a measurement device which only

measures direction x̂k 2 S2 of position vectors xk, then
marginalizing (10) over the range, one obtains statistical

model being the angular Gaussian density [42]

p(x̂k j xk¡1) = 1

C

Z 1

0

s2 exp(¡s2=2·¿ + sx̂k¡1 ¢ x̂k)ds
(11)

with parameters x̂k¡1 = xk¡1=kxk¡1k, ·¿ = kxk¡1k2=¾2¿ ,
and normalization constant C. Following [29], for mod-

erate or large values of ·¿ (practically most relevant

cases), (11) can be well approximated by the vMF den-

sity f(x̂k; x̂k¡1,·¿ ).
Usage of physically more realistic motion models

like Ornstein-Uhlenbeck or Langevin processes [43], in

place of simple Wiener process, requires more complex

state representation manifolds and solving the Fokker-

Planck equation to obtain the corresponding state transi-

tion densities. The latter typically needs to be further ap-

proximated by an appropriate parametric density which
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will keep the model computationally tractable and statis-

tically consistent with the remaining ingredients of the

filtering algorithm: state distribution and measurement

model.

C. Observation model

As already announced above, we assume that obser-

vation process consists of measuring a direction, where

measurement disturbances are interpreted as random ro-

tations, i.e. observed direction z is a random rotation of

the true direction x. It is reasonable to statistically de-
scribe such model by a unimodal distribution which is

rotationally invariant around the true direction x.
Since our goal is to derive a Bayesian filter on Sd¡1,

our choice for the measurement model will be the von

Mises-Fisher distribution defined on the (d¡ 1)-sphere,
represented by its density

p(z j x) = Cd(·o)exp(·ox ¢ z), z,x 2 Sd¡1, (12)

where the concentration parameter ·o describes the

measurement uncertainty. In the present paper specific

examples will be given when d = 2 and d = 3, serving

as a model for representing measurements of directions,

i.e. angle-only measurements, in 2D and 3D Euclidean

spaces.

D. Bayesian filter equations

With a Bayes filter we are striving to estimate the

density p(xk j z1:k), i.e. the pdf of the sate xk at time
instant k given the history of all the measurements z1:k.
This process can be decomposed in two steps–namely

the prediction and the correction step. Let us assume

that at time instant k¡ 1 we have estimated the pdf of
the targeted state, i.e. we have the available the posterior

p(xk¡1 j z1:k¡1). For the case at hand, filtering on Sd¡1,
the prediction step amounts to solving the following

integral

p(xk j z1:k¡1) =
Z
Sd¡1

p(xk j xk¡1)p(xk¡1 j z1:k¡1)dxk¡1,
(13)

where p(xk j xk¡1) is the transition density or motion
model of the tracked object. Then, after receiving

the measurement at time instant k the correction step

amounts to evaluating the Bayes rule

p(xk j z1:k) = p(z
k j xk)p(xk j z1:k¡1)
p(zk j z1:k¡1) , (14)

where p(zk j xk) is the sensor model and the normalizer
p(zk j z1:k¡1) can be evaluated via

p(zk j z1:k¡1) =
Z
Sd¡1

p(zk j xk)p(xk j z1:k¡1)dxk: (15)

The goal of the present paper is to employ the filtering

equations (13), (14) and (15) when the underlying dis-

tributions are all of the vMF form. If these equations

were to be solved for the Gaussian distribution, the re-

sult would be the Kalman filter [44].

If we assume that both the posterior at k¡ 1 and the
transition density are vMF distribution then the predic-

tion step (13) would not yield another vMF distribution

and the filtering equations would not stay in the do-

main of the same distribution. To solve this problem, a

moment-matching technique is applied where the mo-

ments of the resulting distribution are matched to the

moments of the corresponding vMF distribution. This

procedure is also the optimal choice in the sense of the

Kullback-Leibler divergence [45].

Let the state have the estimated position (direction)

¹k¡1 2 Sd¡1, conditioned upon all available measure-
ments up to (and including) time k¡ 1, which is sta-
tistically described by the density

p(xk¡1 j z1:k¡1) = Cd(·k¡1)exp(·k¡1¹k¡1 ¢ xk¡1):
Calculating the directional mean with respect to the

prediction density

E[xk j z1:k¡1] =
Z
Sd¡1

xkp(xk j z1:k¡1)dxk

= Ad(·¿ )Ad(·
k¡1)¹k¡1,

and according to (5) we determine a unique vMF

f(xk;¹̄k, ·̄k) such that E[xk j z1:k¡1] = Ad(·̄k)¹̄k. Thus,
the prediction equations are

¹̄k = ¹k¡1, ·̄k = A¡1d (Ad(·¿ )Ad(·
k¡1)), (16)

where A¡1d denotes the inverse to the function Ad de-

fined in (6). To compute the inverse, one must re-

sort to numerical methods since the derived equations

are transcendental. Please see Proposition A.2 in Ap-

pendix A for the proof. Similar equations were derived

in [13], [15], [16], [28], [29] for the cases of d = 2 and

d = 3, i.e. for the distributions on the unit 1-sphere and

the unit 2-sphere.

Upon availability of the measurement zk at time k,
and under the assumption that the sensor model follows

the vMF density f(zk;xk,·o), the posterior is found
using the Bayes rule (14)

p(xk j z1:k) = Cd(·k)exp(·k¹k ¢ xk),
with corresponding update equations [29]

·k = k·ozk + ·̄k¹̄kk,

¹k =
·oz

k + ·̄k¹̄k

·k
: (17)

The Bayes normalizer (15) evaluates to

p(zk j z1:k¡1) = Cd(·o)Cd(·̄
k)

Cd(·k)
: (18)

REMARK 2.1: The update equations of the 1-sphere

Bayes filter, i.e. the von Mises filter [13], [15], [16],

are

·k =

q
·2o+(·̄

k)2 +2·o·̄
k cos(¯k ¡ ®̄k), (19)

®k = ®̄k +arctan
sin(¯k ¡ ®̄k)

·̄k=·o+cos(¯
k ¡ ®̄k) , (20)
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where ·̄k¹̄k = ·̄k(cos ®̄k, sin ®̄k) and ·oz
k = ·o(cos¯

k,

sin¯k). See Appendix A for the proof.

III. TRACKING IN CLUTTER WITH THE VON
MISES-FISHER DISTRIBUTION

Target tracking in a cluttered environment requires,

among other, to resolve the problem of measurement-

to-target association. Moreover, in such approaches it is

often practical to devise a validation gate so as to reject

highly unlikely measurements. This way the computa-

tional complexity of the association procedure can be

significantly lowered [1]. In this section we recall two

basic probabilistic (nonbackscan) approaches, devel-

oped in seminal papers [46], [47] in the context of Pois-

son distributed clutter and models described by Gaus-

sian distributions. Here we extend these approaches to

directional (spherical) models described by vMF distri-

butions.

A. Validation gating

In order to assess the validity of a measurement zk,
we use the density (15) [48]. By inspecting (18) we

can notice that the result of the integral does not have

the form of a vMF distribution. If the goal was just to

compute (18) for explicit values, we would not need to

go further, but the validation gating assumes calculating

confidence intervals which is inconvenienced by a non-

standard density form of (18). To solve this issue,

similar logic as in the prediction stage is used–in lieu

of using the exact density, we will use the moment-

matched vMF distribution. Given that, the directional

mean with respect to (15) is

E[zk j z1:k¡1] =
Z
Sd¡1

zkp(zk j z1:k¡1)dzk

= A(·̄k)A(·o)¹̄
k (21)

and according to (5) we determine a unique vMF

f(zk;¹̄k,·kS) where

·kS = A
¡1
d (Ad(·o)Ad(·̄

k)): (22)

Please confer Remark A.1 for the proof. Note that

parameter ·kS has the role analogous to the Kalman

innovation for linear models.

Having computed the required vMF density, we can

determine the confidence intervals. When d = 2 the

quantiles of the distribution with mean direction ¹= 0

are transferred to the linear interval [¡¼,¼] by cutting
the unit circle at ¼. For an approximate validation region

100(1¡®)%, e.g. 95% when ®= 0:05, the lower and

upper tail area are respectively defined as [28]

Pr(¡180< x <¡180+ ±) = ®=2,
Pr(180¡ ± < x < 180) = ®=2: (23)

When d = 3, an approximate 100(1¡®)% validation

region for zk is [28]

fzk : zk ¢ ¹̄k ¸ cos±g, (24)

which defines the intersection of the unit 2-sphere with

the cone having vertex at the origin, axis the mean di-

rection ¹̄k and semi-vertical angle ± which is defined by

Pr(z ¢ ¹̄k ¸ ±) = ®, (25)

with z distributed according to vMF with parameters
¹̄k and ·S . The tables linking desired validation regions

defined by ®, and for given concentration parameters

· the corresponding intervals defined by ±, can be

found in [28], [49]. So the procedure is as follows, (i)

specify the desired validation region, i.e. the ®, (ii) given

the computed ·S from (22) and ® by using tables we

find the corresponding ±, (iii) we evaluate the obtained

measurement zk with respect to the predicted mean ¹̄k

to see if it satisfies the validation region constraint, and

(iv) if so the measurement is assigned to the target in

question, otherwise it is considered as clutter.

B. Probabilistic data association filter

First we assume a single target in track with multiple

measurements where the number of false alarms is a

Poisson distributed random variable. Let Zk denote the

set of all measurements that fall within the validation

gate at time k

Zk = fzkj : j = 1, : : : ,mkg,

and Z1:k = fZ1, : : : ,Zkg the history of all measurements
within the validation gate. We want to calculate the

conditional probability density p(xk j Z1:k) for all k ¸ 1.
Assume that at a given time k¡ 1, the object’s direction
is described by the vMF density

p(xk¡1 j Z1:k¡1) = Cd(·k¡1)exp(·k¡1¹k¡1 ¢ xk¡1):

Obtaining measurements Zk we build the following set

of hypotheses:

Hj = fzkj is the correct measurementg, j = 1, : : : ,mk,

and

H0 = fnone of the gated measurements are correctg:

Using the total probability formula, the posterior prob-

ability density at time k is given by

p(xk j Z1:k) =
mkX
j=0

p(xk j Hj ,Z1:k)P(Hj j Z1:k): (26)
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From the definition of Hj and using the Bayes rule, for
j = 1, : : : ,mk we have

p(xk j Hj ,Z1:k) = p(xk j Hj ,Zk,Z1:k¡1)

=
p(Zk,Hj j xk)p(xk j Z1:k¡1)

p(Zk,Hj j Z1:k¡1)

=
p(zkj j xk)p(xk j Z1:k¡1)

p(zkj j Z1:k¡1)
: (27)

Assuming that the likelihood and the prior density are

both vMF with respective parameters zkj ,·o, and ¹̄
k, ·̄k

given by (16), then the posterior density in (27) is also

vMF with parameters analogous to those in (17)

·kj = k·ozkj + ·̄k¹̄kk, (28)

¹kj =
·oz

k
j + ·̄

k¹̄k

·kj
, j = 1, : : : ,mk: (29)

Clearly, for j = 0, p(xk j H0,Z1:k) = p(xk j Z1:k¡1).
Let wj = P(Hj j Z1:k) denote the a posteriori proba-

bilities of each feature having originated from the object

in track. According to calculations in [47, Appendix]

wj =
p(zkj j Hj ,Z1:k¡1)

b+
Pmk

l=1p(z
k
l j Hl,Z1:k¡1)

, j = 1, : : : ,mk,

(30)

w0 =
b

b+
Pmk

l=1p(z
k
l j Hl,Z1:k¡1)

, (31)

where b = c(1¡pGpD)=pD, c > 0 is the clutter den-

sity, pG is the probability that the correct feature will

be inside the validation gate, and pD is the probabil-

ity that the correct feature will be detected. Density

p(zkj j Hj ,Z1:k¡1) denotes the probability density of a
measurement conditioned upon past data and hypoth-

esis that is correct, which is assumed to be known and

in our case it is modeled by the vMF density

p(zkj j Hj ,Z1:k¡1) = f(zkj ;¹̄k,·kS), (32)

where ·kS is given by (22).

Having defined and calculated all the ingredients,

posterior density (26) becomes a mixture of vMF den-

sities

p(xk j Z1:k) =
mkX
j=0

wjf(x
k;¹kj ,·

k
j ): (33)

In order to estimate the object’s direction ¹k 2 Sd¡1, we
calculate the directional mean

E[xk j Z1:k] =
Z
Sd¡1

xkp(xk j Z1:k)dxk =
mkX
j=0

wjAd(·
k
j )¹

k
j ,

and, using (5), determine the unique vMF density

f(xk;¹k,·k), which is the best approximation of (33) in

the sense of the Kullback-Leibler divergence by solving

·k = A¡1d

0@°°°°°°
mkX
j=0

wjAd(·
k
j )¹

k
j

°°°°°°
1A , (34)

¹k =

0@ mkX
j=0

wjAd(·
k
j )¹

k
j

1A.Ad(·k): (35)

The latter procedure is the analogon of computing the

state estimate and covariance matrix from the mix-

ture of Gaussians representing the posterior densities

in [46], [47].

When d = 2, the expressions (34) and (35) need not

be expressed in the vectorial form, but rather in the

angular variables. Componentwise, they evaluate to the

following formulae [50]

A22(·
k) =

mkX
j=0

w2j A
2
2(·

k
j )

+2

mkX
j,i=1
j<i

wjwiA2(·
k
j )A2(·

k
i )cos(®

k
j ¡®ki )

tan®k =

Pmk
j=0wjA2(·

k
j )sin®

k
jPmk

j=0wjA2(·
k
j )cos®

k
j

: (36)

C. Joint probabilistic data association filter

Next we consider the problem of tracking several in-

terfering targets fO1, : : : ,ONg, with the pertaining num-
ber being fixed to N. The main issue is how to appro-

priately assign features to targets in track. In principle,

PDA filter approach could be applied for each object

separately, but this would implicitly assume that all mea-

surement features originated by another object in track

are Poisson distributed clutter [47], and we would like

to avoid such a rough assumption.

Let Xk = fxk1, : : : ,xkNg ½ Sd¡1 denotes the set of ob-
ject’s states (directions) at time k, and assume that at a

given time k¡ 1 position of each object Oi is described
by the vMF density

p(xk¡1i j Z1:k¡1) = Cd(·k¡1i )exp(·k¡1i ¹k¡1i ¢ xk¡1i ):

Upon availability of a set of new measurements Zk =

fzkj : j = 1, : : : ,mkg, the following set of hypotheses is
built:

Hij = fzkj is caused by Oig, j = 1, : : : ,mk,

and

Hi0 = fnone of the measurements is caused by Oig:
Again, the total probability formula implies that the

posterior density for object Oi at time k is given by

p(xki j Z1:k) =
mkX
j=0

p(xki j Hij ,Z1:k)P(Hij j Z1:k), (37)
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where densities p(xki j Hij ,Z1:k) are computed following
the same lines and assumptions as in the previous PDA

filter approach. They are vMF densities f(xki ;¹
k
ij ,·

k
ij)

with parameters

·kij = k·ozkj + ·̄ki ¹̄ki k, (38)

¹kij =
·oz

k
j + ·̄

k
i ¹̄

k
i

·kij
, j = 1, : : : ,mk, (39)

and ·ki0 = ·̄
k
i and ¹

k
i0 = ¹̄

k
i .

The only difference between PDA filter and JPDA

filter is in calculation of a posteriori association prob-

abilities wij = P(Hij j Z1:k), where JPDA filter takes

into account measurement-to-object association events

jointly across the set of objects. This means that hy-

pothesis Hij consists of all valid joint association events
E which assign feature zkj to object Oi. By valid joint
association events we consider those which assert that

every feature lying within the validation gate region can

originate from at most one object and every object can

generate at most one feature. Thus, they partition the

hypothesis Hij and

wij =
X
E2Hij

P(E j Z1:k), j = 1, : : : ,mk, (40)

wi0 = 1¡
mkX
j=1

wij: (41)

In order to compute P(E j Z1:k), two auxiliary indicator
functions are introduced: measurement association indi-
cator 'j(E), which indicates whether in event E mea-
surement zkj is associated with any object, and target
detection indicator ±i(E), which indicates whether in E
any measurement is associated with object Oi. Follow-
ing [47] and using vMF model instead of the Gaussian,

we obtain

P(E j Z1:k) = B(E)
mkY
l=1

'l(E)=1

f(zkl ;¹̄
k
il
,·kS,il )

with ·kS,il = A
¡1
d (Ad(·o)Ad(·̄

k
il
)) analogous to (22), where

il is the object index with which measurement z
k
l is

associated. Next,

B(E) = cÁ(E)

p®(E)G C

NY
i=1

±i(E)=1

piD

NY
i=1

±i(E)=0

(1¡piD),

where Á(E) is the number of false features in joint
event E , which is assumed Poisson distributed, ®(E) =Pmk
j=1'j(E) is the number of measurement-to-object

associations in E , pG is the probability that the correct
measurement will be inside the validation gate, piD is

the detection probability of object Oi, and C is the

normalization constant.

Posterior density (37) for object Oi is again a mix-
ture of vMF densities, and the estimated posterior di-

rection ¹ki with uncertainty ·
k
i is calculated via

·ki = A
¡1
d

0@°°°°°°
mkX
j=0

wijAd(·
k
ij)¹

k
ij

°°°°°°
1A , (42)

¹ki =

0@ mkX
j=0

wijAd(·
k
ij)¹

k
ij

1A.Ad(·ki ): (43)

Here also for the case when d = 2, the resulting param-

eters can be computed as in (36).

IV. SYNTHETIC DATA EXPERIMENTS
In order to test the performance of the vMF PDA and

JPDA filters, we have simulated the system for 250 time

steps with maneuvering targets on the unit 1-sphere and

the unit 2-sphere. The targets were uniformly spawned

and their dynamics was described by a constant angu-

lar velocity model, where the disturbance acted as ran-

dom noise in the angular acceleration. The number of

spawned targets was a random integer from [3,5] for the

JPDA case, while for the PDA case it was set to one.

Since the JPDA filter assumes a constant and known

number of targets in the scene, the originally spawned

number of objects was kept constant during the simula-

tion, i.e. there were no target births nor deaths. Please

recall that the vM filter is the Bayes filter on the unit

1-sphere, while the vMF filter is the Bayes filter on the

unit 2-sphere. The underlying motivation behind these

simulations is MTT with directional sensors like mi-

crophone arrays and omnidirectional cameras. The for-

mer can determine directions to the sound sources based

on microphone pair signal differences [15], [51], [52],

while for the latter it has been shown that the image

formation can be described by the unified spherical pro-

jection model yielding a representation of the omnidi-

rectional image on the unit 2-sphere [30], [53], [54].

In order to make the simulations as realistic as pos-

sible (i) the trajectories were corrupted with the von

Mises, i.e. the von Mises-Fisher noise, with concentra-

tion parameter ·= 1500,2 (ii) the probability of detec-

tion was pD = 0:95 and (iii) false alarms were simulated

as a Poisson process on the unit spheres with the mean

value ¸= ¯¹(Sd¡1), where ¹ denotes the area measure
on Sd¡1, and the intensity ¯ = 0:25 was defined as the
number of false measurements per solid radian. For the

1-sphere case ¹(Sd¡1) = 2¼, while for the 2-sphere case
¹(Sd¡1) = 4¼. For example, on average we could expect
4¼¯ false alarms per sensor frame sampled from a uni-

form distribution on the unit 2-sphere. For all the exper-

iments the validation gate was computed for ®= 0:01,

i.e. the validation region of 99% was used. The experi-

ments involving the PDA and the JPDA filter were en-

visaged so as to simulate tracking of a single target and

2For the vM distribution this corresponds approximately to ¾ = 1:5±
[16], while for the vMF distribution it is closer to ¾ = 1:8±.
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Fig. 3. An example of the experimental results of the tracking task

for the von Mises PDA filter. The solid green line represents the

estimated azimuth, while the solid black line is the ground truth. The

gray circles represent false alarms. The mean error for this example

was 0:97±.

multiple targets in clutter, both on the unit 1-sphere and

the unit 2-sphere. In the end, we have performed 100

Monte Carlo runs of the previously described scenarios

for both the vM and the vMF PDA and JPDA filters.

For the 1-sphere case the error ¢err was computed

as the absolute angular error by taking the periodicity

into account

¢err = jmod(xg¡ xk +¼,2¼)¡¼j: (44)

For the 2-sphere case the error ¢err was computed as

the great circle distance between the ground truth xg
and the estimated state xk

¢err = arccos(xg ¢ xk): (45)

The expression (45) would yield the same result as (44)

if therein 2D unit vectors were used instead of angles.

For the PDA filter the error calculation is straight-

forward, since we have only one object in the scene.

But for the JPDA filter the error calculation cannot be

approached in the same manner since we are tracking

multiple objects and a ground truth trajectory needs

to be paired up with a vMF filter trajectory. In this

paper we are assuming known and constant number

of objects in the scene, and, furthermore, we are fo-

cusing on deriving the fundamentals for probabilistic

data association techniques on the unit hyperspheres.

Hence, more involved methods for track management

are not discussed in the present paper and in error

calculation we are not penalizing if filters switches

tracks when the two tracks cross. Therefore, for the

JPDA filter case, we first calculate errors between

all the filters and the ground truth trajectories, after

which we apply the Hungarian algorithm [55], [56]

to optimally assign filters to the ground truth trajec-

tories. However, in Section IV-A we discuss solutions

Fig. 4. An example of the experimental results of the tracking task

for the vMF PDA filter. The solid green line represents the estimated

direction, while the solid black line is the ground truth. The gray

circles represent false alarms. The mean error for this example was

0:93±. (a) Trajectory on the unit 2-sphere. (b) Azimuth. (c) Elevation.

which could be applied for handling such multitarget

tracking issues and metrics that can capture such er-

rors.

Examples of the experimental results of the track-

ing task involving the PDA filter on the 1-sphere and

the 2-sphere are shown in Figs. 3 and 4, respectively.
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Fig. 5. An example of the experimental results of tracking five

objects with the von Mises JPDA filter. The solid color lines

represent the estimated azimuths, while the solid black lines are the

ground truth. The gray circles represent false alarms. The mean

absolute angular error of all the trajectories for this example was

0:99±.

The figures depict the ground truth, the estimated tra-

jectory and false alarms. We can notice that the fil-

ters successfully manage to track the object in such

a high clutter scenario, while yielding a mean error

smaller than 1±. Figures 5 and 6 show an example of

the JPDA filter tracking task. Examples with five ob-

jects in the scene are depicted, each color represent-

ing a single filter. We can see that in both cases fil-

ters manage to successfully track all the objects in the

scene while maintaining overall mean error smaller than

1±. We can notice that the filters achieve mean error
smaller than the measurement noise even when clut-

ter is present. However, Fig. 5 deserves further com-

ment. We can notice therein that during track cross-

ing the filters switched tracks, e.g. at approximately

70 s the red and the cyan filter exchanged objects ap-

pearing as if they changed their course, while in truth

they kept the same course during the whole simula-

tion. As discussed previously, in the present paper we

are not penalizing the track-switch, but we will ad-

dress in Section IV-A how these issues can be allevi-

ated.

Results of the 100 MC runs are depicted in Fig. 7.

Therein statistics of the resulting errors is given both

for the vM and vMF PDA and JPDA filters. The error

for each run was calculated using (44) and (45) for the

vM and the vMF filter, respectively. From the figure

we can notice that the vM JPDA filter exhibited more

outliers in comparison to others, but this was due to

track coalescence. Namely, trajectories crossed much

more often in the [0,2¼] interval than they did on the

unit 2-sphere. Overall, the median error was smaller

than 1±.

Fig. 6. An example of the experimental results of the tracking task

for the vMF JPDA filter. The solid color lines represent the

estimated directions, while the solid black lines are the ground truth.

The gray circles represent false alarms. The mean error of all the

trajectories for this example was 0:89±. (a) Trajectories on the unit
2-sphere. (b) Azimuth. (c) Elevation.

A. Discussion

As previously mentioned, the JPDA filter assumes

known and constant number of objects in the scene.

However, in [57] the joint integrated probability data

association (JIPDA) filter was proposed in order to al-
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Fig. 7. Matlab’s boxplot of the PDA and JPDA vM and vMF filter

errors over 100 MC runs. The red lines are the median, the edges of

the boxes are the 25th and 75th percentile, while the whiskers

extend to the most extreme error not considered outliers and outliers

are plotted as red pluses (errors 1.5 times larger than the difference

between the percentiles).

leviate the JPDA assumption of the constant and known

number of targets in the scene by including the prob-

ability of target existence within the framework. The

results presented in this paper can be directly employed

within the JIPDA framework. Furthermore, to handle

issues like track switching and track coalescence, var-

ious other extensions of the PDA/JPDA filtering have

been proposed [1], [58]. As long as the theoretical re-

sults derived in this paper are used, we believe that the

aforementioned extensions can be applied to the vM and

vMF JPDA filter as well.

In the present paper the likelihood for track switch-

ing is increased since the system state comprises of just

the static component. If dynamical terms were included,

the switch would be less likely to occur since terms like

the estimated velocity would suggest the future motion

of the object and would resolve situations like the one

depicted in Fig. 5. However, principally including veloc-

ity components, which are in general Euclidean and not

directional variables, into the same filtering framework

is not a trivial task and is out of the scope of this paper.

Examples of how the system state could be extended in

this vein for the cases of the Bingham, vM and vMF

distributions are given in [21], [26], [33], respectively.

Another solution for reducing the likelihood of track

switch and coalescence is to include independent fea-

tures for describing the tracked objects. For example, in

multiple speaker tracking with a microphone array the

fundamental frequency can tracked [59] and used in the

data association process. When tracking moving objects

with an omnidirectional camera appearance-based fea-

tures can used to describe each object, like the HOG

descriptor [60], which could also be used in the data

association process. With these extensions at hand the

multitarget tracking performance with respect to track

switch, track loss, track coalescence and similar issues

could be evaluated using the CLEARMOTmetrics [61],

the optimal subpattern assignment metric [62] and its

extensions [63], [64].

V. CONCLUSION

In the present paper we have proposed methods for

tracking single and multiple targets in clutter on the

(d¡1)-sphere with the von Mises-Fisher distribution.
The methods are based on Bayesian tracking and the

data association logic of the PDA and JPDA filters. For

single target tracking we have derived the PDA filter

equations by assuming a moving object in a Poisson

distributed clutter. This has resulted with a mixture of

hypotheses represented as hyperspherical von Mises-

Fisher densities which were weighted by the a posteri-

ori probability that the selected measurement is correct.

For multiple object tracking the JPDA filter was derived

under similar assumptions which again resulted with

a mixture of hypotheses represented as hyperspherical

von Mises-Fisher densities, where each component was

weighted by the a posteriori probability of the associa-

tion event. The final single component estimate for each

object in track, both in the PDA and JPDA filter case,

was obtained by preserving the first moment of the dis-

tribution which is optimal in the Kullback-Leibler sense.

For the cases of d = 2 and d = 3 the hyperspherical fil-

ter yields the vM PDA and JPDA and the vMF PDA

and JPDA filter, respectively. In the end, the proposed

methods were validated on synthetic data examples in

100 MC runs simulating scenarios of tracking a single

and multiple targets in clutter on the unit 1-sphere and

the unit 2-sphere.

APPENDIX A
PROPOSITION A.1 The directional angular mean of
the von Mises-Fisher density f(x;¹,·) defined on Sd¡1
equals

E[x] =rFd(μ) = Ad(·)¹, (46)

where Ad(·) = Id=2(·)=Id=2¡1(·).

PROOF The first equality in (46) follows from the

identity

0 =

Z
Sd¡1
(x¡rFd(μ))ex¢μ¡Fd(μ)dx,

obtained by differentiating 1 =
R
Sd¡1 e

x¢μ¡Fd(μ)dx with re-
spect to μ. For the second equality, using μ = ·¹ and
kμk= ·, we straightforwardly calculate

rFd(μ) =¡
C0d(·)
Cd(·)

¹: (47)

Using the basic recurrence relations for the modified

Bessel functions one obtains

C0d(·) =¡
·d=2¡1

(2¼)d=2

Id=2(·)

I2
d=2¡1(·)

,
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which yields

¡C
0
d(·)

Cd(·)
=

Id=2(·)

Id=2¡1(·)
=: Ad(·):

PROPOSITION A.2 Let the prior and the transition den-
sity be defined as following von Mises-Fisher densities

p(xk j xk¡1) = f(xk;xk¡1,·¿ )
p(xk¡1 j z1:k¡1) = f(xk¡1;¹k¡1,·k¡1): (48)

Then the directional mean of the predicted density p(xk j
z1:k¡1) equals to

E[xk j z1:k¡1] = Ad(·¿ )Ad(·k¡1)¹k¡1: (49)

PROOF The result is obtained by applying the Fubini’s

theorem (rearranging the terms within the integrals) and

using the previous proposition:

E[xk j z1:k¡1]

=

Z
Sd¡1

xk
μZ

Sd¡1
p(xk j xk¡1)p(xk¡1 j z1:k¡1)dxk¡1

¶
dxk

=

Z
Sd¡1

p(xk¡1 j z1:k¡1)
μZ

Sd¡1
xkp(xk j xk¡1)dxk

¶
dxk¡1

= Ad(·¿ )

Z
Sd¡1

xk¡1p(xk¡1 j z1:k¡1)dxk¡1

= Ad(·¿ )Ad(·
k¡1)¹k¡1: (50)

A von Mises-Fisher distribution f(xk;¹̄k, ·̄k) with

matched moments then has parameters

¹̄k = ¹k¡1, ·̄k = A¡1d (Ad(·¿ )Ad(·
k¡1)): (51)

REMARK A.1: Observe that the same calculations as

above yield the following. If the sensor likelihood and

the predicted density are defined as the von Mises-

Fisher densities

p(zk j xk) = f(zk;xk,·o)
p(xk j z1:k¡1) = f(xk;¹̄k, ·̄k), (52)

then the directional mean of the Bayes normalizer p(zk j
z1:k¡1) evaluates to

E[zk j z1:k¡1] = A(·o)A(·̄k)¹̄k: (53)

PROOF OF REMARK 2.1. The equation (19) for ·k fol-

lows directly from calculating the norm of the vector

·oz
k + ·̄k¹̄k. The proof of (20) is more involved, but

also straightforward. First observe that

®k = arctan
·o sin¯

k + ·̄k sin ®̄k

·o cos¯k + ·̄
k cos ®̄k

: (54)

This form of the angle update is also frequently used

[13], [16], but we find the expression (20) more expos-

itory from the prediction-correction standpoint [15]. Let

us now transform the numerator in (54) as follows

·o sin¯
k + ·̄k sin ®̄k

= ·o sin(º
k + ®̄k)+ ·̄k sin ®̄k

= (·̄k +·o cosº
k)sin ®̄k +·o sinº

k cos ®̄k,

(55)

where ºk = ¯k ¡ ®̄k. Now using the trigonometric iden-
tity

Asinx+B cosx=
p
A2 +B2 sin

μ
x+arctan

B

A

¶
,

we get the following formula

·o sin¯
k + ·̄k sin ®̄k

=

q
·2o+(·̄

k)2 +2·o·̄
k cosºk

¢ sin
μ
®̄k +arctan

sinºk

·̄k=·o+cosº
k

¶
: (56)

Analogous procedure can be performed for the denom-

inator of (54), yielding an expression similar to (56),

where the corresponding sines are replaced by cosines.

Returning to (54) cancels the square root terms and a

tangent is left due to the sine and cosine ratio–yielding

finally the sought mean angle update formula (20).
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[14] I. Marković and I. Petrović
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I. INTRODUCTION
Statistics on Lie groups have became more and

more popular in the last decade. Applications can be

found in shape statistics [1], [2], medical imaging [3],

multiple scattering processes [4], [5], crystallography

[6], robotics and mechanics [7], [8] and many others.

In directional statistics, the abundance of datasets taking

values on spheres and homogeneous spaces has also

motivated the study of random variables and processes

on Lie groups [9]. Amongst all the matrix Lie groups,

the most popular one is the rotation group in R3, i.e.,
the Special Orthogonal group SO(3). This is due to its

predominent use in engineering problems [7], [10].

Even though the number of engineering challenges

including random rotations has grown dramatically in

the last years, the problem of probability density esti-

mation for such variables was only considered in details

recently in [6]. In parallel, the concept of wavelets on

manifolds was transposed to the case of the rotation

group, due to its relation to the 2-sphere which has

attracted a lot of work since the 90s [11], [12], [13].

In [14], authors introduce diffusive wavelets on mani-

folds. The definition of a wavelet transform on a sur-

face/manifold is conditioned by the possible definition

of two operations on the manifold: scaling and transla-

tion. While translation is easily defined on Lie groups

as it is based on the group action, the definition of scal-

ing is less obvious. In [14], authors have chosen an

intrinsic definition for scaling, whereas some extrinsic

approaches had been proposed previously in [15]. The

difference in these definitions resides in the way the

mother wavelet is scaled: it is either firstly projected

in the tangent plane before scaling and back projection

(extrinsic); or scaled on the manifold directly (intrin-

sic). In this paper, we will make use of the intrinsic

approach and study the ability of diffusive wavelets to

define interesting estimators for densities on SO(3).

The specificity of diffusive wavelets is that they are

based on the heat kernel. As this kernel can be defined

on manifolds, the diffusive wavelet approach overcomes

the problem of “scaling” on manifold. Note that this

definition problem was already pointed out by many

authors [12], [15] when defining wavelets on the 2-

sphere for example.

In this paper, we present an estimation technique for

densities on SO(3) based on the diffusive wavelet trans-

form. Using wavelet estimators (linear or thresholded)

is well known in non parametric estimation [16]. We

propose the use of the linear1 wavelet estimator to the

case of SO(3)-valued random variables and give some

of its properties. In particular, the wavelet-based esti-

mator is a characteristic kernel estimator. A comparison

with other types of estimators (characteristic function

and kernel) is provided.

1Linear wavelet estimation refers to the standard estimation through

wavelet coefficients estimation, as opposed to thresholded wavelet

coefficients estimator sometimes refered as nonlinear [16].
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The rest of the paper is organized as follows: Sec-

tion II is dedicated to the presentation of harmonic

analysis on SO(3) and various concepts about random

variables on this Lie group. In Section III, the diffuse

wavelet formalism is introduced for the case of the ro-

tation group. It is then used in Section IV to propose

a probability density function estimator. Finally, Sec-

tion V presents simulation results and comparison of

the wavelet estimator with two other estimators.

II. CHARACTERISTIC FUNCTIONS FOR RANDOM
VARIABLES ON SO(3)

We first review some basic concepts on the rota-

tion group SO(3) and random variables taking values

on this well known Lie group. The concept of charac-

teristic function for SO(3)-valued random variables is of

importance as it can be identified as the “Fourier trans-

form” of the probability density of the random variable.

It will also be of use in Section IV to provide a proba-

bility density estimator. The results presented here can

be found in various textbooks, for example [17], [18].

A. The rotation group SO(3)

The set of rotations in the 3D space forms a compact

Lie group denoted SO(3). An element x 2 SO(3) can be
parametrized in several ways [17, Chap. 3]. Using the

so-called ZYZ convention of Euler angles parametriza-

tion, any element x 2 SO(3) can be associated to a ma-
trix Rx = Rx(',μ,Ã) with 0· ',Ã < 2¼ and 0· μ · ¼.
With this convention, Rx(',μ,Ã) takes the form:

Rx(',μ,Ã) =

264cos' ¡sin' 0

sin' cos' 0

0 0 1

375
264 cosμ 0 sinμ

0 1 0

¡sinμ 0 cosμ

375

£

264cosÃ ¡sinÃ 0

sinÃ cosÃ 0

0 0 1

375
It is also possible to parametrize an element of

SO(3) in terms of its rotation axis and its rotation angle
[17, Chap. 3]. The rotation axis ´ is a unit vector in

R3, i.e., ´ 2 S2. The rotation angle, denoted !(x), is
given by:

cos!(x) =
Tr(Rx)¡ 1

2
(1)

Note that in this parametrization, the angle takes values

in: ¡¼ < !(x)· ¼. It is also possible to express this
angle !(x) in terms of the Euler angles:

!(x) = 2arccos

μ
cos

μ

2
cos

'+Ã

2

¶
(2)

The rotation angle is of particular interest as it is a metric
on SO(3). In fact, one can define the distance between

x 2 SO(3) and y 2 SO(3), denoted d(x,y), as:

d(x,y) = j!(yx¡1)j= arccos
μ
Tr(Ry(Rx)¡1)¡ 1)

2

¶
(3)

In the sequel, we will make use of the notation R(!(x),´)
for an element x 2 SO(3), keeping in mind that:

R(!(x),´) = exp(!(x)M) with

M=

0B@ 0 ¡´3 ´2

´3 0 ¡´1
¡´2 ´1 0

1CA (4)

where ´1,´2,´3 are the components of the vector ´, i.e.,

´ = [´1,´2,´3]
T and exp(:) the matrix exponential [17].

B. Fourier series on SO(3)

We now consider the Fourier series expansion of

functions taking values on the rotation group. Consider

the set of square integrable functions L2(SO(3),R). By
the Peter-Weyl theorem [18, Chap. III], a function f 2
L2(SO(3),R) can be expressed as:

f(x) =
X
`¸0

+X̀
n=¡`

+X̀
m=¡`

(2`+1)f̂`nmD
`
nm(x) (5)

for x 2 SO(3) and where D`nm(x) are the Wigner-D func-
tions [19] evaluated at position x. This infinite series ex-

pansion over ` has matrix coefficients f̂` of dimension

(2`+1)£ (2`+1) with elements f̂`nm. The matrix entries
f̂`nm are obtained by projection of f on the Wigner-D

functions:

f̂`nm = hf,D`nmiSO(3) =
Z
SO(3)

f(x)D`nm(x)d¹(x) (6)

where hf,hiSO(3) is the scalar product on L2(SO(3),R)
and d¹(x) the bi-invariant Haar measure on SO(3), i.e.,

d¹(x) = (8¼2)¡1 sinμd'dμdÃ when using the ZYZ Euler
angle parametrization (',μ,Ã) for elements x 2 SO(3).
We also mention that the corresponding norm is:

kfk2 =
q
hf,fiSO(3) (7)

With the chosen parametrization of SO(3), the pre-

viously introduced Wigner-D functions D`nm take the

form:

D`nm(',μ,Ã) = e
¡in'P`nm(cosμ)e

¡imÃ (8)

where P`nm(cosμ) are the generalized Legendre polyno-

mials. We have used the fact that the Wigner-D func-

tions D`nm form a complete set of orthogonal functions:

hD`nm,D`
0
n0m0 iSO(3) =

1

(2`+1)
±nn0±mm0±``0 (9)

This showsclearly that the set of functions
np
2`+1D`nm,

`¸ 0,¡`· n,m· `
o
form an orthonormal basis for

functions in L2(SO(3),R), allowing the decomposition
of functions taking values on the rotation group using

this basis. In the sequel, we may refer to f̂`nm (and

abusively to f̂`) as the Fourier coefficients of f.
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C. Parseval identity
It is also well known that the Parseval identity holds

for functions f 2 L2(SO(3),R). Using our normalization
convention, the following is true:

kfk22 = hf,fiSO(3)

=
X
`¸0

X̀
n=¡`

X̀
m=¡`

(2`+1)jf̂`nmj2 (10)

The left hand side of equation (10) is commonly re-

ferred to as the energy and the Parseval identity simply
states that the energy of f consists in the infinite sum

of its modulus squared Fourier coefficients.

D. Zonal functions on SO(3)
Zonal functions, sometimes also called conjugate in-

variant functions, are radially symmetric functions with
center g0 = e 2 SO(3) where e is the identity element
in SO(3). See for example [20] for more details on ra-

dially symmetric fonctions on SO(3). They will be at

the heart of the diffusive wavelets construction in Sec-

tion III. A function f : SO(3)!R is called zonal iff it
satisfies 8x,y 2 SO(3):

f(yxy¡1) = f(x)

Equivalentlty, f : SO(3)!R is zonal iff f(x) = f(x0)
8x,x0 2 SO(3) such that !(x) = !(x0), i.e., x and x0 have
the same angle. In fact, it simply means that f, evaluated
at x 2 SO(3), only depends on the rotation angle of x
introduced in (1). It is known [6], [20] that the subspace

of zonal functions is spanned by functions Â`, ` 2 N,
called the characters of SO(3), and given as:

Â`(x) =
X̀
n=¡`

D`nn(x) =
sin((`+ 1

2
)!(x))

sin
!(x)

2

(11)

= U2`
μ
cos

!(x)

2

¶
(12)

where U2`(:) are the Chebychev polynomials of sec-
ond kind and of (even) degree 2`. For these (even de-

gree) polynomials, the following orthogonality relation

stands: Z 1

¡1
U2`(t)U2`0(t)

p
1¡ t2dt= ¼

2
±``0 (13)

In terms of the characters Â`, and using the notation

!(x) = ! for simplicity, this integral becomes:Z 2¼

0

Â`(!)Â`
0
(!)sin2

³!
2

´
d! = ¼±``0 (14)

where the link with the orthogonality relation for U2`
comes with t= cos(!=2). As a consequence, the char-

acters Â` fulfill the following orthogonality relation:

hÂ`,Â`0 iSO(3) =
1

4¼2

Z
S2
d´

Z 2¼

0

Â`(!)Â`
0
(!)sin2

³!
2

´
d!

= ±``0 (15)

where we used the expression of the Haar measure

in terms of axis ´ and rotation angle ! for SO(3).

With this convention the Haar measure takes the form

d» = (1=4¼2)d´ sin2(!=2)d!. As a consequence, a zonal

function f 2 L2(SO(3),R) has a Fourier series expansion
that can be written like:

f(x) =
X
`¸0
(2`+1)f̂`Â`(x) (16)

where its Fourier coefficients f̂`. These Fourier coeffi-

cients f̂` are simply given by:

f̂` =
1

(2`+1)
hf,Â`iSO(3)

=
1

¼

1

(2`+1)

Z 2¼

0

f(!)Â`(!)sin2
³!
2

´
d! (17)

The Parseval identity for a zonal function f now reads:

kfk22 =
X
`¸0
(2`+1)2jf̂`j2 (18)

Zonal functions will be used in Section III in the defi-

nition of wavelets on SO(3).

E. Convolution

A very important feature of Fourier transformation

is its behaviour with respect to the convolution product.

In the case of functions taking values on SO(3), the

relation still holds. First, given f,h 2 L1(SO(3),R), their
convolution product is defined as:

(f ¤ h)(x) =
Z
SO(3)

f(g)h(g¡1x)d¹(g) (19)

where the group operation stands naturally for trans-

lation. Now, if the Fourier coefficients of f and h are

respectively f̂` and ĥ` (in matrix format), then the fol-

lowing stands: df ¤ h` = f̂`ĥ` (20)

Note that the right-hand side of the equation is a matrix

product.

F. Characteristic function of SO(3)-valued random
variables

The characteristic function of a random variable is

the Fourier transform of its probability transform. This

well known result extends to random variables on the

rotation group, thanks to the results on Fourier series

expansion introduced in the previous Section. We now

give some definitions and properties for characteristic

functions of random variables on SO(3) as it will be

used to define a probability density function estimator

in Section IV.

Consider the case of a random variable X 2 SO(3)
with density f. Such random variables X taking values

on the rotation group SO(3) can simply be thought of as
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random rotation matrices of dimension 3£ 3, classically
parametrized by Euler angles. Alternatively, one can

think of these random variables as unit quaternions from

the upper hemisphere of S3.
1) Definition: Given a rotation random variable X

with density fX , the sequence ©X = f©X(`)g`¸0 of (2`+
1)£ (2`+1) matrices given by:

©X(`) = E[D`(X)] (21)

is the characteristic function of X. The elements of the
matrix ©X(`) are denoted ©

`
nm and they read as:

©`nm =

Z
SO(3)

fX(x)D
`
nm(x)d¹(x) (22)

Thus the density f has the following Fourier series

expansion:

fX(x) =
X
`¸0

X̀
n,m=¡`

(2`+1)©`nmD
`
nm(x) (23)

One can see by comparison with Equation (5) that

the characteristic function of fX is the Fourier transform

of its density fX , i.e., ©
`
X = f̂

`
X .

2) Basic properties: The following properties can
easily be verified:

² Given two rotation random variables X and Y, then:

X = Y iff ©X =©Y

² If X and Y are two independent rotation random

variables and Z = XY, then:

©`Z =©
`
X©

`
Y

² A rotation random variable U 2 SO(3) is uniformly
distributed iff:

©`U = 0 8` > 0
² Consider n i.i.d. rotation random variables X1,X2,

: : : ,Xn, then the random variable consisting in the ac-

cumulated products of the Xn, denoted Y = X1X2 : : :Xn
has the following characteristic function:

©`Y = [©
`
X]
n

where ©`X is the characteristic function shared by

the Xn.

3) Zonal invariance; A rotation random variable X

with density fX is called zonal invariant if:

X
d
=RXR¡1 for all R 2 SO(3)

Now, if X is zonal invariant, then its characteristic

function is:

©`X = a`I`

where a` 2 R and I` is the (2`+1)£ (2`+1) identity
matrix. As a consequence, if X is zonal invariant, then
its density fX takes the form:

fX(x) =
X
`¸0
(2`+1)a`Â

`(x) (24)

as detailed previously when considering zonal functions

on SO(3) in II-D.

This last expression shows that the characteristic

function of zonal invariant random rotation variables are
scalar coefficients a`, as opposed to matrix coefficients

for random variables with no symmetries.

III. DIFFUSIVE WAVELETS ON SO(3)

We now introduce diffusive wavelets on the rotation

group. They will be used in Section IV to propose a

probability density estimator. Recently, Ebert and Wirth

[21] introduced diffusive wavelets on groups. We detail
in the sequel the special case of the rotation group in

3D, i.e., SO(3).

A. Heat wavelet family on SO(3)

Here, we follow the construction given by Ebert

[21]. First recall that on SO(3) the heat kernel is

given by:

·½(x) =
X
`¸0
(2`+1)e¡`(`+1)½Â`(x) (25)

for x 2 SO(3), and where Â` are the irreducible charac-
ters of SO(3) introduced previously in Section II. Note

that the Fourier series expansion of ·½ exhibits the fact

that ·½ is a zonal function with Fourier coefficients

·̂`½ = e
¡`(`+1)½.

Now, we introduce some of the properties of the heat

kernel. First, ·½(x) is an approximate identity as it fullfils
the following properties:

² k·̂`½k · C 8` ½ 2 R+
² lim½!0 ·̂`½ = Id 8`
² lim½!1 ·̂`½ = 0 8` > 0
² ¡(@=@½)·̂`½ is a symmetric positive definite matrix for
all ½ > 0 and `¸ 0

where Id denotes the identity operator. As the heat

kernel ·½ is an approximate identity, it follows that:

·½ ¤ h¡!
½!0

h 8h 2 L2(SO(3))

As detailed in [21], a family of wavelets correspond-

ing to the heat kernel on SO(3) is consequently of the

form:

ª½(x) =
1p
®(½)

X
`¸0
(2`+1)

p
`(`+1)e¡(`(`+1)=2)½Â`(x)

(26)

with ®(½) a normalizing factor to be detailed below.

Rephrasing this equation in terms of Fourier transform,
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noticing that the heat wavelet family is zonal, one can

write that:

ª½(x) =
X
`¸0
(2`+1)ª̂½Â

`(x) (27)

where the Fourier coefficients of ª½ are:

ª̂½ =
1p
®(½)

p
`(`+1)e¡(`(`+1)=2)½ (28)

As can be seen in Equation (26), the choice for the

normalization coefficients ®(½) has to be made. In order

to have a normalized/unitary wavelet family, we can use

the Parseval identity to choose ®(½). In fact, by (18), we

have that:

kª½k22 =
X
`¸0
(2`+1)2jª̂½j2 (29)

and imposing that kª½k22 = 1 8½, one obtains that:

®(½) =
X
`¸0
(2`+1)2`(`+1)e¡`(`+1)½ (30)

This choice for ®(½) will be made throughout the rest

of the paper. Notice also that the heat wavelet family

ª½ 2 L2(SO(3)) is a diffusive wavelet family as it satisfies
the admissibility condition:

·½(x) =

Z +1

½

( ²ªt ¤ªt)(x)®(t)dt

=

Z +1

½

Z
SO(3)

²ªt(g)ªt(g
¡1x)d¹(g)®(t)dt (31)

in which ·½(x) is an diffusive approximate convolu-

tion identity and where we used the notation ²ª½(g) =

ª½(g
¡1). The fact that ·½(x) is an approximate convolu-

tion identity ensures that the wavelet transform can be

inverted. Note that the approximate convolution identity

can be expressed using the Fourier coefficients. In the

case of ·½, it means that:

lim
½!0

·̂`½ = 1 8`

This means that an approximate convolution identity

is characterized by constant Fourier coefficients in the

limit.

With the diffusive wavelets introduced, we can now

introduce the wavelet transform for functions on the

rotation group.

B. Wavelet transform on SO(3)

Recall that we are interested in estimating proba-

bility density functions of SO(3)-valued random vari-

ables using the diffusive wavelet transform. In the se-

quel, we consider probability density functions f be-

longing to L2(SO(3),R)\L1(SO(3),R) with the addi-
tionnal condition that

R
SO(3)

fd¹(g) = 1 and that they are

non-negative. The diffusive wavelet transform for such

densities is as follows. Given a diffusive wavelet family

ª½ 2 L1(SO(3)) as defined in III-A, then the Wavelet
Transform (WT) of f 2 L2(SO(3),R)\L1(SO(3),R) is:

WT : f
SO(3)

¡! WTf
R+£SO(3)

with the following expression:

WTf(½,g) = (f ¤ ²ª½)(g) =
Z
SO(3)

f(x) ²ª½(x
¡1g)d¹(x)

(32)

and where we made use of the notation ²ª (x) =ª(x¡1).
Using scalar product on the rotation group, this expres-

sion can be written like:

WTf(½,g) =

Z
SO(3)

f(x)ª½(g
¡1x)d¹(x) = hf,T¤g ª½iSO(3)

(33)

with T¤g the following operator: T
¤
g :ª !ª (g¡1:). Equa-

tion (33) is a very general definition of wavelet trans-

form on SO(3). In the sequel, we will only make use of

the heat wavelet family given in (26) to define the heat

wavelet transform. One of the interesting properties of

the wavelet transform is that it is invertible. The density

f can thus be reconstructed in the following way:

f(x) =

Z
R+

Z
SO(3)

WTf(t,g)ªt(g
¡1x)d¹(g)®(t)dt

=

Z
R+

Z
SO(3)

(f ¤ ²ªt)(g)ªt(g¡1x)d¹(g)®(t)dt

=

Z
R+
(f ¤ ²ªt ¤ªt)(x)®(t)dt

= f ¤
Z
R+
( ²ªt ¤ªt)(x)®(t)dt

= f ¤
Z +1

½!0
( ²ªt ¤ªt)(x)®(t)dt

= lim
½!0
(f ¤·½)(x)

= f(x) (34)

where the last equality is obtained thanks to the fact

that ·t(x) is a convolution identity. This can be verified

in the Fourier domain, when denoting f̂` the Fourier

coefficients of f, by:

lim
½!0
(f ¤·½)(x) = lim

½!0

X
`¸0
(2`+1)e¡`(`+1)½f̂`Â`(x)

=
X
`¸0
(2`+1)f̂`Â`(x)

= f(x) (35)

An interesting property of the heat wavelet transform

as defined above is that it is unitary. This property reads

hWTf1 (½,g),WTf2 (½,g)iR+£SO(3) = hf1,f2iSO(3) (36)
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where we use the notation h: : :iR+£SO(3) for the scalar
product between wavelet transforms. This unitary con-

dition makes possible to compare densities in the wave-

let domain for example.

We have introduced the heat wavelet transform (also

called diffusive wavelet transform) for probability den-

sities of rotation random variables. In the next Section,

we will make use of this transform to define an estimator

for densities on SO(3).

IV. ESTIMATION

In this section, we consider the problem of estimat-

ing the probability density function of a SO(3)-valued

random variable given an independent sample of size

K: fX1,X2, : : : ,XKg. After presenting kernel estimators
as defined in [6], we show that the characteristic func-

tion estimator and the heat wavelet estimator are actually

kernel estimators. We provide the MISE of each of them

and explain their differences.

A. Kernel estimators on SO(3)

First, we recall some of the results given in [6] for

kernel estimators of probability density functions on

SO(3).

1) Definition: A kernel estimator, with kernel ¥ 2
L2(SO(3)) has the following expression:

³K(x) =
1

K

KX
k=1

¥(X¡1k x) (37)

This definition is the extension of the classical kernel

estimator known for densities of random variables on

the line (see [16] for details). Once again, we emphasize

that translation is made through the group action. Before

introducing different types of kernels ¥(:), we introduce

how to study their estimation performances.

2) Bias and variance: In order to characterize the
kernel estimator, we provide here the expression of its

Mean Integrated Square Error (MISE). This expression

is general for kernel estimators and will be of use later

to analyze the behaviour of the characteristic function

and the wavelet estimators.

In the sequel, we will make use of the following

notation in order to distinguish the different density

estimator. Every estimator, based on a simple sample

of size K, will be denoted ³¢K (:) with the superscript

¢ taking the following values: ¢= ® for the “general”

kernel estimator, ¢= ¯ for the characteristic function

estimator and ¢= ° for the heat wavelet estimator.

Associate quantities will exhibit the ®,¯,° values when

needed.

As known in the classical case [16] and as given for

the SO(3) case in [6], the MISE of the kernel estimator

³®K(x) is made of a bias and a variance term:

MISE(³®K(x)) = kf¡E[³®K]k22 +E[k³®K(x)¡E[³®K(x)]k22]
(38)

with the following fact:

E[³®K(x)] = E

"
1

K

KX
k=1

¥(X¡1k x)

#
=
1

K

KX
k=1

E[¥(X¡1k x)]

=
1

K

KX
k=1

Z
SO(3)

¥(y¡1x)f(y)d¹(y) = (¥ ¤f)(x)

(39)

This means that the mean value of the kernel consists in

the convolution of the density with the kernel. One can

also express the bias b® and the variance ¾
2
® as follows:

b2® = kf¡E[³®K]k22 = kf¡f ¤¥k22 (40)

and

¾2® = E[k³®K(x)¡E[³®K(x)]k22] =
1

K
(k¥k22¡k¥ ¤fk22)

(41)

Also, it is interesting to note that the following property

holds:

lim
K!1

³®K(x) = (¥ ¤f)(x) (42)

As a consequence, the MISE for the kernel estimator is:

MISE(³®K) = kf¡f ¤¥k22 +
1

K
(k¥k22¡k¥ ¤fk22) (43)

This general expression is useful for the study of ker-

nel estimator. Using results from representation theory

(Fourier series expansion), it is also possible to write the

MISE in terms of the Fourier coefficients of ¥ and f.

Remembering the Parseval identity and the convolution

property of the Fourier series expansion on SO(3), one

gets, just like in [6] but with a slight (2`+1) factor due

to our normalization choice, the following representa-

tion:

MISE(³®K)

=
X
`¸1

μ
(2`+1)(f̂`)2(1¡ ¥̂`)2 + (2`+1)

K
(¥̂`)2(1¡ f̂`2)

¶
(44)

where the following notation was used for the Fourier

coefficients of the probability density function f:

(f̂`)2 = (2`+1)¡1
X̀
n,m=¡`

jf̂`n,mj2 (45)

This expression of the MISE of a kernel estimator on

SO(3) will be used with a specific kernel, namely the De

La Vallée Poussin kernel, in Section V for comparison

purposes with the characteristic function estimator and

the wavelet estimator.

B. Characteristic function estimator on SO(3)

The characteristic function estimator presented here

was used for example in [5] to provide a non-parametric
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estimation of the density of a compound Poisson pro-

cess on the rotation group SO(3). Recall that our no-

tation is ³
¯
K(:) for this estimator. It is shown here that

this estimator is in fact a kernel estimator and use can

be made of the MISE expressions given in Section III-

A.2. Note that we consider the truncated version of the

estimator, with `max = L, given by:

³
¯
K(x) =

LX
`=0

X̀
n=¡`

X̀
m=¡`

(2`+1)
f̂
f`nmD

`
nm(x) (46)

and where: f̂
f`nm =

1

K

KX
k=1

D`nm(Xk) (47)

The use of truncated version of the Fourier expansion

is necessary for obvious computational reasons. Such a

truncation has effects on the performance of the esti-

mator as it only converges to a low-resolution version

of the density. However, it is well-adapted to naturally

band-limited functions. In the simulation in Section V,

we will investigate the influence of the bandwidth on

the estimation performances.

The definition of the characteristic kernel estimator

leads by simple calculation to:

³
¯
K(x) =

1

K

KX
k=1

X
`¸0
(2`+1)Â`(X¡1k x) (48)

This can be obtained thanks to the following prop-

erty (see [22] for example):

X̀
n=¡`

X̀
m=¡`

D`nm(x)D
`
nm(y) = Â

`(x¡1y) (49)

Note that this estimator indirectly estimates the density,

as it is designed to estimate its Fourier coefficients. The

estimator
f̂
f`nm is the characteristic function estimator.

From equation (48), one can see that the characteristic

function estimator is a kernel estimator, with the specific

kernel:

¥(:) =

`max=LX
`¸0

(2`+1)Â`(:)

From the expression of the MISE for a kernel esti-

mator given in Equation (44), one can directly deduce

the MISE for the characteristic function estimator. It

suffices to replace the Fourier coefficients ¥̂`, remem-

bering the linearity property of the Fourier expansion,

by the sum of the unit coefficients up to `max = L. This

make the characteristic function estimator a very “sim-

ple” kernel with constant Fourier coefficients. Illustra-

tion of its behaviour compared to other estimators will

be presented in Section V.

C. Linear diffusive wavelet estimator

Using the diffusive wavelet introduced in Section

III-B, it is possible to build an estimator of the density

f through its wavelet expansion. Recall that with our

notation, the wavelet estimator is denoted ³
°
K(:, :). Note

also that an extra scalar parameter is introduced when

using the wavelet estimator. This is the scaling param-

eter of the wavelet transform. The estimator based on

the wavelet transform consists in replacing the wavelet

transform WTf(½,x) in the inversion formula given in

Equation (34) by its empirical estimate, obtained from

the data sample. The wavelet coefficients are thus esti-

mated using:

gWTf(½,x) = 1

K

KX
k=1

²ª½(X
¡1
k x) (50)

The estimated density ³
°
K(x) takes the following expres-

sion when plugging the estimated coefficients in the in-

version formula:

³
°
K(x, t) =

1

K

KX
k=1

Z +1

t

Z
SO(3)

²ª½(X
¡1
k y)ª½(y

¡1x)d¹(y)®(½)d½

(51)

The ‘scaling’ coefficient ½ is a parameter for this esti-

mator. Ideal range should be 0 to +1. Obviously it is
not possible to reach the upper limit and one can only

numerically tend to very high values. As can be seen in

the Simulation section, it is not a limitation for the use

of the estimator. In the sequel, we will only keep the

t¸ 0 constraint and keep in mind the upper limit issue.
It can easily be shown that the wavelet estimator can

be expressed using the kernel ·t previsouly introduced

in Equation (31). The following equality thus stands:Z +1

t

Z
SO(3)

²ª½(X
¡1
k g)ª½(g

¡1x)d¹(g)

=

Z +1

t

Z
SO(3)

²ª½(g
0)ª½(g

0¡1X¡1k x)d¹(g
0)

=

Z +1

t

( ²ª½ ¤ª½)(X¡1k x)®(½)d½

= ·t(X
¡1
k x) (52)

which is obtained by simple change of variable g0 =
X¡1k g and using the fact that the Haar measure is bi-
invariant, inducing that d¹(Xkg

0) = d¹(g0). As a conse-
quence, the linear wavelet estimator is:

³
°
K(x, t) =

1

K

KX
k=1

·t(X
¡1
k x) (53)

where one can obviously see that this estimator is a

kernel estimator. In order to study this estimator, one

can look at its MISE with the bias and variance term.
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The bias term is:

E[³°K(x, t)]

= E

"
1

K

KX
k=1

Z +1

t

Z
SO(3)

²ª½(X
¡1
k y)

£ª½(y¡1x)d¹(y)®(½)d½
#

=
1

K

KX
k=1

Z +1

t

Z
SO(3)

Z
SO(3)

f(z) ²ª½(z
¡1y)

£ª½(y¡1x)d¹(z)d¹(y)®(½)d½

= f ¤
Z +1

t

( ²ª½ª½)(x)®(½)d½

= (f ¤·t)(x) (54)

Note that we have:

lim
t!0
E[³°K(x, t)] = f(x) (55)

Note that this is due to the fact that we used an approx-

imate convolution identity. Thus, the bias of the linear

wavelet estimator takes the following form:

b2°,t = kf¡E[³°K(t)]k22 = kf¡f ¤·tk22 (56)

It is noticeable that, asymptotically with t, the bias term

vanishes:

lim
t!0
b2°,t = 0 (57)

thanks to the definition of ·t. This makes the wavelet

estimator an unbiased estimator when t reaches 0. Now,

for the variance term, notice first that:

E[³°K(x, t)¡E[³°K(x, t)]]2 = var[³°K(x, t)]

=
1

K2

KX
k=1

var[·t(X
¡1
k x)]

(58)

It comes then naturally that the variance term takes

the form:

¾2°,t =

Z
SO(3)

var[³
°
K(x, t)]d¹(x)

=
1

K2

KX
k=1

Z
SO(3)

(E[·2t (X
¡1
k x)]¡E2[·t(X¡1k x)])d¹(x)

=
1

K2

KX
k=1

Z
SO(3)

Z
SO(3)

·2t (z
¡1x)f(z)d¹(z)d¹(x)

¡ 1

K2

KX
k=1

Z
SO(3)

(f ¤·t)2(Xk)d¹(Xk) (59)

where we made use of the bi-invariance of the Haar

measure and of the independence between the samples

Xk. Finally, it is possible to give the expression of the

variance as:

¾2°,t = E[k³°K(x, t)¡E[³°K(x, t)]k22] =
1

K
(k·tk22¡kf ¤·tk22)

(60)

As was noticed earlier, the wavelet estimator is a

kernel estimator. Using the general formula for the

MISE of kernel estimators and the expressions of the

bias and variance given above, one gets the following

expression for the MISE:

MISE(³
°
K , t) =

X
`¸1
((2`+1)(f̂`)2(1¡ e¡`(`+1)t)2

+
(2`+1)

K
e¡2`(`+1)t(1¡ (f̂`)2)) (61)

Using a first order approximation of the exp(:) func-

tion for small t, one gets an expression of the MISE of

the form:

MISE(³
°
K , t) =

X
`¸1

·
(2`+1)(1¡ 2`(`+1)t)

K

+(f̂`)2
(2`+1)

K
(2`(`+1)t(1+K)¡ 1)

¸
(62)

This expression will be used in Section V. It is of

interest to note that the behaviour of the MISE with

parameter t is as follows:

lim
t!0
MISE(³

°
K , t) =

X
`¸1

(2`+1)

K
(1¡ (f̂`)2) (63)

Also notice that as f is a probability density, then

f(x)¸ 0 almost everywhere and we have that f̂0 = 1
because f̂0 =

R
SO(3)

f(x)d¹(x).

The three studied estimators belong to the kernel es-

timator family, but they do have differences. The given

expressions allows to study and compare their behav-

iors. The following section highlights the differences

between them.

V. SIMULATIONS

In this section, we present some simulations that

illustrate the differences between the three considered

estimators studied in this paper. The comparison is

performed in terms of the respective MISE computed

in the context of estimation of a mixture of densities on

the rotation group SO(3).

A. Definition of a test function

First, we have to define a test function f on the

rotation group, which we take similar to the one studied

in [6]. This mixture takes the form:

f(x) = 0:2+0:7Ã30VP(R(e1,¼=6) ¢ x)
+0:1Ã45VP(R(e2,4¼=9) ¢ x), (64)
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Fig. 1. Kernels used in the simulations. From left to right: Heat kernel, La Vallée Poussin kernel and characteristic function kernel. Kernels

are displayed for different values of the “bandwidth” parameter.

where R(´,!) denotes the rotation of angle ! and axis ´,
and Ã·VP is the de La Vallee Poussin kernel. This kernel

has a closed form expression, which reads

Ã·VP(x) =
(2·+1)22·μ
2·+1

·

¶ cos2·
μ
!(x)

2

¶

=

μ
2·+1

·

¶¡1 ·X
`=0

(2`+1)

μ
2·+1

·¡ `
¶
Â`(x):

(65)

The parameter · can be understood as the analog of the

½ parameter in the heat kernel wavelet approach, that

is it plays the equivalent role of a bandwidth. Figure 2

illustrates the correspondence between different values

of · and ½ (log2 ½ actually).

B. Computing the MISE

We recall that the MISE can be expressed in the

Fourier domain for a kernel function ¥ by

MISE(¥)

=
X
`¸1

μ
(2`+1)(f̂`)2(1¡ ¥̂`)2 + (2`+1)

K
(¥̂`)2(1¡ (f̂`)2)

¶
:

(66)

The last expression of the MISE in terms of the Fourier

coefficients of both the test function f and the chosen

kernel ¥ allows us to compute the MISE in a simple

way. The Fourier coefficients of the kernel are in gen-

eral known, as it is the case here for the kernel used

(de la Vallée Poussin, Heat kernel, and characteristic

function kernel). However the coefficients of f have to

be computed with a numerical implementation of the

Fourier transform on the rotation group.

We used in our simulation an implementation of the

FFT on SO(3) as proposed by Kostelec and Rockmore

[23]. This FFT is based on a equiangular sampling

of the Euler angles. Since our test function f is a

linear combination of de la Vallée Poussin kernels, it

is bandlimited by the largest · value chosen, that is

in our case ·= 45. The FFT was thus performed up

to degree L= 49, leading to 166650 complex valued

Fourier coefficients f̂`nm. The energy per degree f̂
`2 can

be computed like:

(f̂`)2 =
1

(2`+1)

X̀
n,m=¡`

jf̂`nmj2: (67)

This expression, up to the maximum value of ` is then

plugged into the MISE expression.

C. Results

In figure 1 we have plotted the kernels used in our

simulations. We consider here only three kernel types,

the de La Vallée Poussin kernel, the Heat kernel (some-

times called the Gauss-Weierstrass kernel) and the char-

acteristic function kernel. For each of these kernels we

looked at different bandwidth parameters, respectively

·, ½, and L, the latter being the truncation order in

the characteristic function estimator. The plots in Fig-

ure 1 emphasize the role of the respective bandwidth,

as the concentration of the kernel functions increases

with larger bandwidths. We also note that the de La

Vallée Poussin and heat kernels are nonnegative kernels,

whereas the characteristic function kernel exhibits neg-

ative values. Such behaviour has drawbacks, especially

when the density to estimate exhibits narrow modes.

Before stepping into the MISE figures, we recall an

important result from Hielscher [6, theorem 3], which

gives the MISE optimal bound for the function f. It
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Fig. 2. Bandwidth (number of non-null coefficients in the Fourier

expansion) comparison for different values of · (de la Vallee

Poussin kernel) and ½ (Heat kernel).

reads explicitly as

MISEopt =

1X
`=1

(2`+1)
(f̂`)2(1¡ (f̂`)2)
(K ¡ 1)(f̂`)2 +1

(68)

where we have adapted the prefactor in (2`+1) due

to our normalization choice. This optimal MISE is

displayed on Figures 3, 4 and 5 (black solid line) for

comparison with the studied estimators. Recall also that

for comparison purpose, a comparison of parameters

½ and · with respect to the bandwidth is diplayed in

Figure 2.

We investigate now the behavior of each kernel and

its influence on the MISE for different values of band-

width parameters. It is important to note that in each

experiment, bandwidths were fixed, as opposed to what

was done in [6] were the bandwidths were chosen as

optimal with respect to the test function and the number

of observations. Our approach is indeed motivated by a

multiresolution approach, with the minimum amount of

information about the function f being incorporated in

the kernels.

In Figure 3 we have the MISE evaluated for de la

Vallée Poussin kernel with bandwidth parameter rang-

ing for ·= 5, 60, 115, 170, 225, 280, 335, 390, 445;

along the theoretical lower bound. In Figure 4 we have

the MISE evaluated for the heat kernel with bandwidth

parameter ranging from ½= 2¡1 to ½= 2¡9, (which cor-
responds to a dyadic scaling) along the theoretical lower

bound. Finally, in figure 5 we have the MISE evaluated

for the characteristic function kernel with bandwidth pa-

rameter ranging from L= 1 to L= 9, along the theoret-

ical lower bound.

Fig. 3. MISE computed for a de la Vallee Poussin kernel type, for

bandwidth values ·= 5, 60, 115, 170, 225, 280, 335, 390, 445

(from light yellow to dark red). The optimal MISE bound given in

Equation (68) is displayed in black for comparison.

Fig. 4. MISE computed for the heat kernel, for bandwidth values

½= 2¡j with j = 1,2, : : : ,9 (from light yellow to dark red). The

optimal MISE bound given in Equation (68) is displayed in black

for comparison.

As expected with a multiresolution approach, for a

given bandwidth the MISE reaches a lower threshold af-

ter a sufficient number of observations K. Moreover as

the bandwidth increases the threshold is lowered. Com-

paring the three kernel types, the de La Vallée Poussin

kernel seems to converge with various speeds for differ-
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Fig. 5. MISE computed for the characteristic function kernel, for

bandwidth values L= 1,2, : : : ,9 (from light yellow to dark red).The

optimal MISE bound given in Equation (68) is displayed in black

for comparison.

ent bandwidths, while the heat or characteristic function

kernel have a more regular rate of convergence with

respect to the bandwidth. Therefore, the de La Vallée

Poussin kernel seems slightly less appropriate for a mul-

tiresolution analysis. The heat kernel and characteristic

function kernel are performing better, with a slight ad-

vantage to the characteristic function kernel as it comes

closest to the MISE optimal bound. We note however

that the characteristic function kernel does not have the

nonnegative property of the heat kernel, which may be

critical when the density to estimate possesses sharp-

ened modes. Note that the nonnegativity can be handled

during estimation procedures using for example “square

root” estimators as in [24], and which thus require ex-

tra steps for the estimation. It is also noticeable that for

small sizes of samples (from 101 to 102) the wavelet es-

timator gets closer to the optimal bound. This suggests

that an adaptive choice of the parameter ½ could lead to

very good estimates in most of the situations.

VI. CONCLUSION

We have demonstrated that the characteristic func-

tion estimator and the linear heat wavelet estimator on

SO(3) both belong to the larger family of kernel estima-

tors for densities on SO(3). The characteristic function

estimator consists in a kernel estimator with constant

Fourier coefficients up to a maximum bandwidth, while

the wavelet estimator leads to a heat kernel with co-

efficients driven by the scaling parameter of the heat

wavelet family. The MISEs of the introduced estima-

tor have been presented and illustration of the differ-

ences between heat kernel, characteristic function and

De La Vallée Poussin kernels investigated. The diffusive

wavelet based estimator combines the nice property of

converging faster than the De La Vallée Poussin kernel

and of being strictly positive (as opposed to the char-

acteristic function kernel), allowing good performances

in many configurations. The heat wavelet kernel thus

combines naturally the advantages of both the De La

Vallée Poussin and characteristic function kernels, by

providing a nonnegative estimator with very good per-

formances in a wide range of bandwidths. The simu-

lation results presented demonstrate the advantage of

using the heat wavelet transform for probability density

estimation on the rotation group SO(3). Future work

should consist in studying the nonlinear (thresholded)

version of the heat wavelet estimator which is known to

perform better than linear wavelet estimator on the real

line. Validation on real datasets should also be investi-

gated to completely validate the proposed estimator.
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Uncertainty Propagation of
Correlated Quaternion and
Euclidean States Using the
Gauss-Bingham Density

JACOB E. DARLING
KYLE J. DEMARS

A new probability density function, called the Gauss-Bingham

density, is proposed and studied in the context of uncertainty prop-

agation. The Gauss-Bingham density quantifies the correlation be-

tween a quaternion and Euclidean states on the cylindrical manifold

on which these states naturally exist. The Gauss-Bingham density,

including its canonical form, is developed. In order to approximate

the temporal evolution of the uncertainty, an unscented transform

for the Gauss-Bingham density is first developed. The sigma points

are then transformed according to given (potentially) nonlinear sys-

tem dynamics, and the maximum weighted log-likelihood parame-

ters of the Gauss-Bingham density are recovered. Uncertainty prop-

agation using the Gauss-Bingham density does not rely on a small

angle assumption to project the uncertainty in the quaternion into

a three parameter representation as does the predictor of the mul-

tiplicative extended Kalman filter, so its accuracy does not suffer

when propagating large attitude uncertainties. Two simulations are

presented to show the process and efficacy of uncertainty propa-

gation using the Gauss-Bingham density and to compare it to the

multiplicative extended Kalman filter.
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I. INTRODUCTION

Consider the planar translation and rotation of a

body, which are quantified by Cartesian position co-

ordinates and heading angle, respectively. The position

of the body is typically assumed Gaussian-distributed

since it is not bounded to a given interval; however, the

heading angle cannot be assumed Gaussian-distributed

since it is required to be in the interval [¡¼,¼) and
the support of the Gaussian density is infinite. A cir-

cular density, such as the wrapped normal density or

von Mises density, which are defined on the interval

[¡¼,¼), can be used to quantify the heading angle. The
position and heading angle of the body are correlated in

general, but they are properly quantified by two differ-

ent densities; they must, therefore, be quantified under

a common state density in order to properly represent

their correlation.

Estimation approaches have been developed when

the state consists of only a von Mises- or wrapped
normal-distributed circular variable [1], [2]. The pre-

dictor step of these approaches, which propagates the

state uncertainty in time, calculates or approximates the

temporal evolution of the von Mises or wrapped normal

density; however, they do not extend to a state with both
a circular variable and other Euclidean (additive and un-

bounded) variables. Mardia and Sutton first proposed a

state density to quantify a circular and Euclidean vari-

able in which the state density is constructed as the

product of a von Mises density and a Gaussian density

conditioned on the von Mises-distributed variable [3].

The Gauss von Mises density is constructed in a similar

manner to quantify a state with both a circular variable

and other Euclidean variables as the product of a mul-

tivariate Gaussian density and von Mises density con-

ditioned on the multivariate Gaussian-distributed vari-

able [4].

A single circular variable can be used to quantify the

heading angle, or one-dimensional attitude, of a body.

Now consider the case when the three-dimensional at-

titude and other Euclidean states (such as position, ve-

locity, angular velocity, etc.) of a body are quantified

by an attitude quaternion and Cartesian coordinates, re-

spectively. The attitude quaternion exists on the unit hy-

persphere and is antipodally symmetric; that is, oppos-

ing quaternions represent the same attitude. The attitude

quaternion is a globally nonsingular attitude represen-

tation, and thus, it is a popular choice to represent the

three-dimensional attitude of a body [5]—[7].

The Bingham density can be used to quantify the

uncertainty of an attitude quaternion on the unit hyper-

sphere [8], [9]. The Bingham density is a zero-mean

Gaussian density conditioned on the unit hypersphere

and is antipodally symmetric, so it is a proper proba-

bilistic representation of the attitude quaternion because

antipodal quaternions represent the same physical atti-

tude and, therefore, must be equiprobable. Estimation

approaches have been developed for a state that consists
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only of an attitude quaternion [10]—[12]. In particular,

[12] leverages an unscented transform to propagate the

uncertainty of the Bingham-distributed attitude quater-

nion when the system dynamics are nonlinear. These

approaches, however, do not quantify the correlation be-

tween the Bingham-distributed attitude quaternion and

other Euclidean variables.

A state density that is similar to the Bingham den-

sity has been proposed to quantify the dual quaternion

representing the pose (position and attitude) of a body

[13]; however, this density does not extend to arbitrarily

high dimensions to include the velocity, angular veloc-

ity, and other Euclidean states since it is constructed

using a dual quaternion. The partially wrapped normal

density has recently been proposed, which wraps m co-

ordinates of an n-dimensional Gaussian density in order

to quantify the correlation between m angular and n¡m
Euclidean states [14]. This density applies to arbitrarily

high m and n, so it can potentially be used to represent

the uncertainty of a rotation sequence representing the

three-dimensional attitude and other Euclidean states of

a body. Because the temporal evolution of a rotation

sequence is potentially singular [5]—[7], the temporal

evolution of this uncertainty representation will be po-

tentially singular as well.

In order to avoid this potential singularity, this work

proposes a new state density, called the Gauss-Bingham

density, which can be used to represent the uncertainty

of an attitude quaternion and other Euclidean states of

a body. The Gauss-Bingham density, which is born as

the product of a Gaussian density and a Bingham den-

sity that is conditioned on the Gaussian-distributed ran-

dom variable, quantifies the correlation between an an-

tipodally symmetric s-dimensional unit vector and an

r-dimensional vector of Euclidean states on their natu-

ral manifold, the unit hypercylinder. To approximate the

temporal evolution of the Gauss-Bingham density given

(potentially) nonlinear system dynamics, an unscented

transformation [15]—[17] is developed for the Gauss-

Bingham density. The sigma points generated by the

unscented transform are transformed according to the

nonlinear system dynamics, and the maximum weighted

log-likelihood parameters of the Gauss-Bingham den-

sity are recovered from the sigma points. Uncertainty

propagation using the Gauss-Bingham density is devel-

oped for arbitrary dimensions r and s, and s can then be

specialized to s= 1 or s= 3 to represent the one- and

three-dimensional attitude quaternion, respectively.

In order to present the uncertainty propagation of a

Gauss-Bingham-distributed state vector, first a review

of the attitude representations used is presented in Sec-

tion II. A review of the Gaussian and Bingham densities

is then presented in Section III. The Gauss-Bingham

density, including the correlation structure between the

Gaussian and conditional Bingham densities, is devel-

oped in Section IV. Uncertainty propagation of a Gauss-

Bingham-distributed state vector is presented in Sec-

tion V, which includes the unscented transform and

maximumweighted log-likelihood parameter estimation

for the Gauss-Bingham density. Two simulations of un-

certainty propagation using the Gauss-Bingham density

are presented in Section VI. The first simulation prop-

agates the uncertainty of the one-dimensional attitude

quaternion and angular velocity of a body undergoing

torque-free motion where the Gauss-Bingham density

can easily be visualized in order to provide an intu-

itive example of this uncertainty propagation method.

The second simulation propagates the uncertainty of

the three-dimensional relative position, relative veloc-

ity, attitude quaternion, and angular velocity of a chase

spacecraft with respect to a target spacecraft. A Monte

Carlo approach and the predictor of the multiplicative

extended Kalman filter are also simulated in order to

evaluate the efficacy of uncertainty propagation using

the Gauss-Bingham density and to compare it to more

conventional methods.

II. ATTITUDE REPRESENTATIONS, KINEMATICS, AND
DYNAMICS

Many different representations can be used to pa-

rameterize the attitude of a body. The following sub-

sections provide a brief overview of the attitude rep-

resentations, quaternion kinematics, and angular veloc-

ity dynamics used in the subsequent sections; [5]—[7]

provide a comprehensive overview of these topics. The

attitude matrix, which is a nine-parameter attitude repre-

sentation, is used to fundamentally quantify the attitude

of a body. In practice, the attitude matrix is difficult to

quantify directly since it possesses six constraints, so a

three or four parameter attitude representation is typi-

cally used to parameterize the attitude matrix in order to

overcome this difficulty. Three parameter attitude rep-

resentations provide a one-to-one representation; how-

ever, they are potentially singular. To avoid this singu-

larity, a four parameter attitude representation, which

is globally nonsingular, is typically used. Four parame-

ter attitude representations are constrained in some way,

since three parameters are sufficient to define attitude.

Four parameter attitude representations also provide a

two-to-one representation of attitude; that is, two sets

of the same four parameter representation quantify the

same physical attitude.

A. Attitude Matrix

The attitude of a body is fundamentally quantified

by the attitude matrix, A. The attitude matrix is defined

as the orientation matrix that rotates the expression of

a vector in the “I” coordinate-frame to its expression

in the “B” coordinate-frame. This orientation matrix is

denoted by TBI and is defined according to

xB = TBI x
I ¢=AxI ,

where xI and xB denote the physical vector x 2 R3
expressed in the I and B frames, respectively, and Rn
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represents n-dimensional Euclidean space. Typically,

the I frame is taken to be an inertially-fixed frame and

the B frame is taken to be a body-fixed frame of interest,

but it is not required that the I frame be inertially fixed

for these attitude representations to be valid.

Orientation matrices exist in the n-dimensional spe-

cial orthogonal group, which is given by SO(n)
¢
=fT 2

Rn£n : TTT= I= TTT,detT= 1g, where det ¢ represents
the determinant operator. Because orientation matrices

are in SO(n), they satisfy the following properties:

TBI = T
B
CT

C
I and TIB = [T

B
I ]
¡1 = [TBI ]

T: (1)

These properties allow the rotation matrix relating a ref-

erence frame to the body frame, and thus quantifying the

attitude error between these frames, to be expressed as

±A
¢
=TBR = T

B
I T

I
R = T

B
I [T

R
I ]
T = AÂ

T
, (2)

where the “R” coordinate frame represents the refer-

ence frame and Â represents the attitude matrix of the

reference frame. As the attitude error approaches zero,

A! Â and ±A! I, where I represents the identity ma-

trix of appropriate dimension.

B. Axis-Angle

An intuitive four parameter representation of a rota-

tion in three dimensions is the axis-angle representation.

Euler’s theorem states that any rotation in three dimen-

sions can be accomplished by a single rotation. The axis

of this rotation is known as the Euler axis and is quanti-

fied by the unit vector e. Define the corresponding angle

of rotation about the Euler axis to be μ 2 [¡¼,¼). The
axis-angle representation of this rotation is then given

by the parameter set fe,μg. If the sign of both the Euler
axis and the rotation angle are changed, the rotation de-
fined by the axis-angle representation is unaffected and

the two-to-one representation of attitude using the axis-

angle representation is apparent. The attitude matrix is

given in terms of the Euler axis and rotation angle about

the Euler axis by

A= I¡ sinμ[e£] + (1¡ cosμ)[e£]2, (3)

where [a£] represents the skew-symmetric cross prod-
uct matrix of the arbitrary vector a 2 R3 and [e£]2 ¢=
[e£][e£].
C. Rotation Vector

A three parameter representation of a rotation in

three dimensions is born as the product of the Euler

axis and the rotation angle about the Euler axis as

μ = μe: (4)

This attitude parameterization is known as the rotation

vector. The rotation vector is a one-to-one represen-

tation of attitude, which is apparent since fe,μg and
f¡e,¡μg, which quantify the same rotation, result in

the same rotation vector. The rotation vector is sin-

gular due to the potential discontinuity that can occur

when propagating the rotation vector. The norm of the

rotation vector is constrained to be no greater than ¼

since μ 2 [¡¼,¼). During propagation, if the magnitude
of the rotation vector is equal to ¼ and has a positive

temporal derivative, then the rotation vector must in-

stantaneously change sign since fe,§¼g and f¡e,§¼g
represent equivalent rotations.

The axis-angle representation can be found from the

rotation vector according to

e=
μ

kμk and μ = kμk: (5)

It is apparent from (5) that the Euler axis is undefined if

the rotation angle is zero. This is not an issue, however,

since this corresponds to a rotation angle of zero and

A= I in this case. The attitude matrix in terms of the

rotation vector is given by substituting (3) into (5) to

give the attitude matrix as

A= I¡ sinkμk
·
μ

kμk£
¸
+(1¡ coskμk)

·
μ

kμk£
¸2
: (6)

D. Attitude Quaternion

The attitude quaternion is a four parameter attitude

representation and is defined by

q̄=

·
q

q

¸
2 S3,

where q
¢
=[qx qy qz]

T and q are the vector and scalar

parts of the quaternion, respectively, and Ss ¢=fz 2 Rs+1 :
zTz= 1g represents the s-dimensional unit hypersphere.
Two important quaternion operations are multiplication

and inversion, which are given for unit quaternions by

q̄− r̄=
·
rq+ qr¡ q£ r
qr¡ q ¢ r

¸
and q̄

¡1
=

·¡q
q

¸
,

where q̄− r̄ represents the quaternion product of q̄ and
r̄ and q̄

¡1
represents the inverse of q̄. The quaternion

multiplication is defined in this way such that succes-

sive rotations can be represented by multiplying quater-

nions in the same order as rotation matrices. Quaternion

multiplication is not commutative, i.e. q̄− r̄ 6= r̄− q̄ in
general.

The attitude quaternion is the most widely used atti-

tude representation because it is not singular and quater-

nion multiplication and inversion are used to represent

sequential and opposite rotations. Equivalent properties

as those given for orientation matrices in (1) can be

expressed using quaternions according to

q̄
B
I = q̄

B
C − q̄CI and q̄

I
B = [q̄

B
I ]
¡1:

The identity quaternion is defined as p̄
¢
=[0T 1]T and is

the quaternion representing zero rotation, such that

q̄= q̄− p̄= p̄− q̄ and p̄= q̄− q̄¡1 = q̄¡1− q̄:
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Using these relationships, the attitude error given in (2)

can be expressed using quaternions according to

±q̄= q̄− ˆ̄q¡1,
where ±q̄ is the quaternion representation of ±A and
ˆ̄q is the reference quaternion. As the attitude error

approaches zero, q̄! ˆ̄q and ±q̄! p̄.

The attitude quaternion is related to the axis-angle

attitude representation and rotation vector according to

q̄=

264esin
μ

2

cos
μ

2

375=
264

μ

kμk sin
kμk
2

cos
kμk
2

375 : (7)

The unit-norm constraint imposed on the attitude quater-

nion is apparent in (7) due to trigonometric identities.

It is also apparent in (7) that the attitude quaternion

is a two-to-one and antipodal attitude parameterization

since fe,μg and f¡e,¡μg, and therefore q̄ and ¡q̄, rep-
resent equivalent rotations. Equation (7) is solved for

the axis-angle attitude representation given the attitude

quaternion according to

μ = 2acosq and e= (1¡ q2)¡1=2q:
After finding the axis-angle attitude representation, (4)

can be used to find the equivalent rotation vector attitude

representation according to

μ =
2acosq

(1¡ q2)1=2 q: (8)

E. Quaternion Kinematics and Attitude Dynamics

If q̄ is used to represent the equivalent rotation as the

attitude matrix, A, the temporal evolution of the attitude

quaternion is given by

_̄q=
1

2

·
!

0

¸
− q̄, (9)

where ! is angular velocity of the B frame with respect
to the I frame expressed in the B frame. This is a

kinematic relationship defining the temporal evolution

of the attitude quaternion given the angular velocity of

the body and is the rotational equivalent of the kinematic

relationship between translational position and velocity.

If I is taken to be an inertial frame, the temporal

evolution of the angular velocity for a rigid body is

given by
JB _! = ¿B ¡!£ JB!, (10)

where JB is the inertia tensor of the body and ¿B is the
external torque acting on the body, both expressed in the

B frame. This is the dynamic relationship relating the

temporal evolution of the angular velocity to the inertia

tensor of the body and the net external torque acting on

the body. This relationship is the rotational analog to the

dynamic relationship relating the temporal evolution of

the translational velocity to the mass and net external

force acting on the body.

III. PROBABILITY DENSITY FUNCTIONS

Before constructing the Gauss-Bingham density, the

Gaussian and Bingham densities, which are used to con-

struct the Gauss-Bingham density, are first presented in

this section. Furthermore, some of their useful proper-

ties, including the applicability of probabilistically rep-

resenting the attitude quaternion with the Bingham den-

sity, are presented.

A. Gaussian Density

The Gaussian density is given for a random vector

x 2 Rr by
pg(x;m,P)

= j2¼Pj¡1=2 expf¡ 1
2
(x¡m)TP¡1(x¡m)g, (11)

where m 2Rr is the mean and P= PT > 0 2Rr£r is the
covariance of the Gaussian density.

B. Canonical Gaussian Density

The standard normal density, which is denoted as the

canonical Gaussian density for consistent nomenclature

with the canonical form of other densities, is introduced

by substituting the transformation

x= Sz+m where P= SST (12)

into (11), which yields the canonical Gaussian den-

sity as

p̃g(z) = pg(z;0,I) = (2¼)
¡r=2 expf¡ 1

2
zTzg,

where the tilde notation is used to denote the canonical

form of the density.

C. Bingham Density

The Bingham density is an antipodally symmetric

density on the unit hypersphere that is a zero-mean

Gaussian density conditioned on the unit hypersphere.

Because antipodal attitude quaternions (q̄ and ¡q̄) rep-
resent the same attitude, the Bingham density rigorously

quantifies the uncertainty in the quaternion representa-

tion of attitude without ambiguity between q̄ and ¡q̄.
The Bingham density is defined for a random unit vec-

tor q̄ 2 Ss and is given by [8], [9]
pb(q̄;M,Z) = F

¡1(Z)expfq̄TMZMTq̄g, (13)

where M 2 SO(s+1) is the orientation matrix describ-
ing the orientation of the density on the unit hyper-

sphere, Z 2 R(s+1)£(s+1) is a diagonal matrix of con-
centration parameters with nondecreasing diagonal ele-

ments Z1 · ¢¢ ¢ · Zs · Zs+1
¢
=0, and F(Z) is the normal-

ization constant that ensures that pb(q̄;M,Z) is a valid

probability density function. The Bingham density pos-

sesses the property that pb(q̄;M,Z) = pb(q̄;M,Z+ cI) for

all c 2R; thus, Zs+1 can be defined to be zero with an
appropriate choice of c for a given Bingham density

without any change to the characteristics of the density.
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An abuse of notation is used for q̄ because it is used

to represent both a generic antipodally symmetric unit

vector of arbitrary dimension s as well as the attitude

quaternion; when q̄ 2 S1 or q̄ 2 S3, q̄ is a valid attitude
quaternion representing the one- and three-dimensional

orientation of a body, respectively. Whether q̄ represents

a generic antipodally symmetric unit vector or the atti-

tude quaternion is clear in the surrounding context.

The parameters of Z control how tightly clustered

the Bingham density is around its mean direction, while

the orientation matrix, M, specifies the mean direction

itself. The normalization constant of the Bingham den-

sity is given by the hypergeometric function of a matrix

argument according to

F(Z) =

Z
Ss
expfq̄TZq̄gdSs

= jSsj1F1
μ
1

2
;
s+1

2
;Z

¶
, (14)

where jSsj represents the area of the unit hypersphere
Ss and ¢F¢(¢; ¢; ¢) represents the hypergeometric function
of a matrix argument. The normalization constant is in-

dependent of the orientation matrix, which is intuitive

since the orientation matrix simply changes the orienta-

tion of the density on the unit hypershpere. Many meth-

ods exist for calculating the normalization constant, in-

cluding series expansions [18], saddle point approxima-

tions [19], [20], the holonomic gradient method [21],

and interpolation of precomputed tabulated values [22].

In this work, the integral in (14) is numerically inte-

grated directly in order to obtain the normalizing con-

stant of the Bingham density.

Parallels between the parameters of the well-known

and well-understood Gaussian density and the parame-

ters of the Bingham density can be drawn in order to

better understand the Bingham density. The Bingham

density is a directional density; that is, it probabilis-

tically quantifies the direction of a unit vector in Ss.
The orientation matrix, M, is similar to the mean of

the Gaussian density, m, in that it specifies the mean

direction of the Bingham density, while m specifies the

mean location of the Gaussian density. The matrix of
concentration parameters of the Bingham density, Z, is

similar to the covariance matrix of the Gaussian density,

P, in that it specifies how tightly clustered the Bingham

density is about its mean direction. Making the elements

of Zmore negative leads to a more tightly clustered den-

sity about the mean direction for the Bingham density

similarly to how decreasing P leads to a more tightly

clustered density about the mean for the Gaussian den-

sity. It is important to note that Z is not the covariance of

the Bingham density; however, they are directly related,

as discussed in Section III-E.

Representing the uncertainty of an attitude quater-

nion using the Bingham density has three key advan-

tages as compared to other methods of attitude uncer-

tainty representation:

Fig. 1. Bingham densities on S1 forM= I and varying values of
Z1. (a) Z1 =¡50. (b) Z1 =¡10. (c) Z1 =¡2. (d) Z1 = 0.

– The Bingham density is antipodally symmetric; thus,

antipodal quaternions q̄ and ¡q̄ (which represent the
same physical attitude) are equiprobable,

– the Bingham density quantifies the uncertainty of

the attitude quaternion q̄ on its natural manifold S3

instead of projecting the attitude uncertainty into

a local tangent space, which can potentially incur

approximation errors, and

– the Bingham density possesses a simple represen-

tation of a uniformly distributed attitude quaternion

on this manifold when the Z matrix is null.

In order to visualize how the Bingham density repre-

sents the distribution of an attitude quaternion, the Bing-

ham density is illustrated in S1 and S2, where straightfor-
ward visualizations exist. The Bingham density is first

shown for one-dimensional attitude uncertainty quan-

tification, where the axis of rotation is defined to be the

z-axis. In this case, the attitude quaternion simplifies

to

q̄=

26664
0

0

qz

q

37775=
26664

0

0

sin(μ=2)

cos(μ=2)

37775 2 S1, (15)

where μ is the magnitude of the rotation about the z-axis.

Fig. 1 shows the Bingham-distributed one-dimensional

attitude quaternion for the identity orientation matrix

and different values of Z1. Observation of Fig. 1 shows

that the Bingham density is antipodally symmetric; that

is, q̄ and ¡q̄ are equiprobable. Further observation high-
lights that as Z1 becomes more negative, the uncertainty

in the attitude quaternion decreases. Similarly, as Z1 ap-

proaches zero, the uncertainty in the attitude quaternion

increases until Z1 = 0, in which case the attitude quater-

nion is uniformly-distributed.
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Fig. 2. Bingham densities on S2 for varying values of Z1 and Z2.
(a) Z1 =¡100, Z2 = 0. (b) Z1 =¡100, Z2 =¡10. (c) Z1 =¡25,

Z2 = 0. (d) Z1 =¡25, Z2 =¡10.

No valid attitude quaternion exists on S2; how-
ever, the Bingham density for the unit vector q̄=

[x1 x2 x3]
T 2 S2 is illustrated in Fig. 2 for the orien-

tation matrix

M=

266664
p
2

2

p
2

2
0

0 0 1p
2

2
¡
p
2

2
0

377775
and varying values of Z1 and Z2 to demonstrate how the

Z matrix affects the Bingham density in this dimension.

When Z1 = Z2 = 0, all q̄ are equiprobable. When Z2 is

zero, the q̄ along a great circle defined by the orientation

matrixM are equiprobable, as observed in Figs. 2(a) and

2(c). In this case, the Z1 parameter dictates how tightly

clustered the probability density of q̄ is along the great

circle. When Z2 decreases from zero, the probability

density of q̄ increases in the direction defined by the

orientation matrixM, as observed in Figs. 2(b) and 2(d).

No straightforward visualization of the Bingham

density exists in S3. Similar trends, however, are present
as the entries of Z change for the Bingham densities

in S3 as they do for the Bingham density in S1 and
S2. A uniformly distributed attitude quaternion is given
by the null Z matrix, and as Z1, Z2, and Z3 decrease,

the uncertainty in the attitude quaternion decreases.

If any of the Z1, Z2, and Z3 are equal to zero, then

the attitude quaternion becomes equiprobable around a

higher-dimensional circle or sphere, similar to Figs. 2(a)

and 2(c) for the Bingham density in S2.

D. Canonical Bingham Density

The canonical Bingham density is introduced by

substituting the transformation

q̄=Mp̄ (16)

into (13), which yields the canonical Bingham den-

sity as

p̃b(p̄;Z) = pb(p̄;I,Z) = F
¡1(Z)expfp̄TZp̄g:

The canonical Bingham density still depends on the

matrix of concentration parameters, Z; however, the

elements of p̄ are uncorrelated.

While the canonical Bingham density is only defined

on Ss, it is still possible to express its mean and covari-
ance in Rs+1. First, define the expected value operator as

Epff(x)g=
Z
−

f(x)p(x)dx,

where − represents the support of the probability den-

sity function p(x) and f(x) is an arbitrary (potentially)

nonlinear function defined on −. Due to the antipodal
symmetry of the canonical Bingham density, its mean

in Rs+1 is
Ep̃bfp̄g= 0:

Because the elements of p̄ are uncorrelated, the

covariance of the canonical Bingham density in Rs+1
is given by (2.9) from [8] as

Ep̃bfp̄p̄
Tg= diag[f1 f2 ¢ ¢ ¢fs+1], (17)

where the diagv operator constructs a matrix with diag-

onal entries defined by the arbitrary row vector v and

fi
¢
=F¡1(Z)

@F(Z)

@Zi
:

The fi terms satisfy several important properties, given

by

s+1X
i=1

fi = 1 (18a)

fi > 0, i= 1,2, : : : ,s+1 (18b)

lim
Zi!¡1

fi = 0
+, i= 1,2, : : : ,s (18c)

lim
Z1,Z2,:::,Zs!¡1

fs+1 = 1
¡: (18d)

These properties will be exploited when determining the

weights of sigma points of the unscented transform for

the canonical Gauss-Bingham density in Section V-B.

In order to obtain the @F(Z)=@Zi necessary to calculate

the fi, (14) is differentiated with respect to each Zi, and

the resulting integral expressions are evaluated numeri-

cally.
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E. Mean and Covariance of the Bingham Density

Like the canonical Bingham density, the mean of the

Bingham density is given in Rs+1 as

Epbfq̄g= 0
due to antipodal symmetry. The covariance of the Bing-

ham density in Rs+1 is defined by Epbfq̄q̄
Tg. In order to

calculate this expected value, its argument is first pre-

and post-multiplied by MMT = I, such that the covari-

ance can be expressed as

Epbfq̄q̄
Tg= EpbfMMTq̄q̄

T
MMTg: (19)

Introducing the transformation of variables defined in

(16) and noting that M is deterministic, (19) can be

expressed as

Epbfq̄q̄
Tg=MEp̃bfp̄p̄

TgMT: (20)

Ep̃bfp̄p̄
Tg is simply the covariance of the canonical

Bingham density, which is defined by (17). Substituting

(17) into (20) yields the covariance of the Bingham

density in Rs+1 as

Epbfq̄q̄
Tg=Mdiag[f1 f2 ¢ ¢ ¢fs+1]MT,

which is seen to be a similarity transformation of the

covariance of the canonical Bingham density according

to the orientation matrix of the Bingham density.

IV. GAUSS-BINGHAM DENSITY

The Gauss-Bingham density quantifies a state vec-

tor composed of a Gaussian-distributed vector, x 2 Rr,
and a Bingham-distributed unit vector, q̄ 2 Ss, on its
natural manifold defined by Rr£Ss. Before construct-
ing the Gauss-Bingham density, first consider the mo-

tivating example of manipulating two jointly Gaussian-

distributed random vectors given by x and y into the

product of the density of x and the density of y condi-

tioned on x. The joint density of [xT yT]T is Gaussian

and is given by

pg

Ã·
x

y

¸
;

·
mx

my

¸
,

"
Px Pxy

PTxy Py

#!
,

where m and P represent the mean and covariance of

their subscripted vector(s), respectively. The density of

y conditioned on x is Gaussian-distributed and is given

by [23]

pg(y j x;myjx(x),Pyjx)
= pg(y j x;my +PTxyP¡1x (x¡mx),Py ¡PTxyP¡1x Pxy),

where myjx(x) and Pyjx are the mean and covariance,
respectively, of y conditioned on x. It is interesting to

note the functional dependence of myjx on x. From the

definition of conditional probability, it follows that the

joint density of x and y can be expressed as

pg

Ã·
x

y

¸
;

·
mx

my

¸
,

"
Px Pxy

PTxy Py

#!
= pg(x;mx,Px)

£pg(y j x;my +PTxyP¡1x (x¡mx),Py ¡PTxyP¡1x Pxy): (21)

The conditional mean and covariance of p(y j x) are not
restricted to be

myjx(x) =my +P
T
xyP

¡1
x (x¡mx) (22a)

Pyjx = Py ¡PTxyP¡1x Pxy (22b)

for the definition of conditional probability to be valid;

however, (22) must hold for the result to be Gaussian-

distributed.

The left- and right-hand sides of (21) express the

joint Gaussian density of [xT yT]T in two different

forms. In the case where the vectors x and y are jointly

Gaussian-distributed, as they are in this example, little

if anything is gained by manipulating the left-hand side

of (21) into the ride-hand side of (21); however, in the

case when one or both of the jointly distributed vectors

are not Gaussian-distributed, correlation between the

vectors can be introduced in a similar fashion to (21) by

utilizing the definition of conditional probability. This

allows the density of two jointly distributed random

vectors, x1 and x2, to be written as the product of the

density of x1 and the density of x2 conditioned on x1; i.e.

p(x1,x2) = p(x1)p(x2 j x1):
Using the definition of conditional probability, the

Gauss-Bingham density is constructed as the product of

a Gaussian density and a Bingham density conditioned

on the Gaussian-distributed random variable as

pgb(x;m,P,M(z),Z)
¢
=pg(x;m,P)pb(q̄;M(z),Z), (23)

where x= [xT q̄T]T. The Bingham density is condi-

tioned on the Gaussian-distributed random variable x
through the orientation matrix M(z) using the transfor-
mation of variables that defines the canonical Gaussian

density, which is given by (12). The orientation matrix

is expressed using z (the random variable corresponding
to the canonical Gaussian density) instead of x for bet-
ter numerical stability since z is nondimensional. The
functional dependence of the orientation matrix on z is
discussed in Section IV-A.

The Gauss-Bingham density possesses the following

favorable properties for probabilistically quantifying the

attitude quaternion (when s= 1 or s= 3) and other

Euclidean states:

– The Gauss-Bingham density is antipodally symmet-

ric in the attitude quaternion; thus, antipodal quater-

nions q̄ and ¡q̄ (which represent the same physical
attitude) are equiprobable,
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Fig. 3. Gauss-Bingham densities on R1 £S1 for a linear and
quadratic correlation structure. (a) Linear correlation. (b) Quadratic

correlation. (c) Marginalized quaternion. (d) Marginalized

quaternion.

– the Gauss-Bingham density quantifies the uncer-

tainty of Euclidean states and the attitude quaternion

on their natural manifold Rr£Ss, and
– the Gauss-Bingham density possesses a simple rep-

resentation of an equiprobable attitude quaternion

for a given angular velocity when the Z matrix is

null.

In order to illustrate these properties, consider an

application of the Gauss-Bingham density to quantify

the uncertainty of the one-dimensional attitude quater-

nion and angular velocity of a body undergoing rota-

tion about the z-axis. In this case, the state vector is

defined as

x=

·
! 2R1
q̄ 2 S1

¸
2 R1£S1, (24)

where ! is the angular velocity about the z-axis and q̄

is the one-dimensional attitude quaternion of the body,

which is defined by (15). No correlation structure for

the orientation matrix, M(z), has yet been defined. Be-
fore formally defining this correlation structure, first

consider two types of correlation, which are introduced

into a set of parameters used to specify M(z): linear
and quadratic. Figs. 3(a) and 3(b) show examples of

the Gauss-Bingham density (with Z1 6= 0) for the lin-
ear and quadratic correlation structures, respectively.

The marginalized attitude quaternion for the linear and

quadratic correlation structures are shown in Figs. 3(c)

and 3(d), respectively. It can be observed in these figures

that the probability of the antipodal attitude quaternions

is equal for any given angular velocity, which is a de-

sirable property as these quaternions represent the same

physical attitude.

When Z= 0, the marginalized attitude quaternion
is equiprobable regardless of the correlation structure

Fig. 4. Gauss-Bingham density on R1£S1 for Z1 = 0.
(a) Gauss-Bingham density. (b) Marginalized quaternion.

used. This is illustrated in Figs. 4(a) and 4(b), which

show the Gauss-Bingham density in R1£S1 and the
marginal density of the attitude quaternion when Z1 = 0.

This property of the Gauss-Bingham density is ad-

vantageous for representing the attitude quaternion as

equiprobable when no prior attitude information is

available.

A. Correlation Structure

In order to define the correlation structure for the

orientation matrix M(z), it is important to note that
M(z) 2 SO(s+1) 8z 2 Rr. In order to ensure that this
condition is met, the correlation structure is introduced

into a minimum set of parameters necessary to spec-

ify the orientation matrix, denoted by Á(z), such that
the orientation matrix is given by M(Á(z)). A minimum

parameter set, which is comprised of s(s+1)=2
¢
=nÁ

parameters, is necessary to define the orientation ma-

trix; therefore Á(z) 2Rs(s+1)=2 [24], [25]. The method
for constructing the orientation matrix from the set of

minimum parameters depends on s and the parameter set

chosen. Methods for constructing the orientation matrix

for dimensions s= 1,2,3 are presented in this section.

1) s= 1: First consider the Gauss-Bingham density

specialized to s= 1. Only one parameter is necessary to

specify the orientation matrix in this dimension since

nÁ = 1. This parameter is chosen to be the magnitude

of the rotation about the known axis of rotation, which

is given by μ(z), such that Á(z) = μ(z). The orientation
matrix is then defined by

M(Á(z)) =M(μ(z)) =
·
cosμ(z) sinμ(z)

¡sinμ(z) cosμ(z)

¸
:

The angle of rotation, μ(z), is defined on the interval
[¡¼,¼) for all z. Since M(μ(z)) =M(μ(z) +2¼k) for all
k 2 Z, where Z is the set of integers, μ(z) can be bounded
to the interval [¡¼,¼) for all z by adding the appropriate
multiple of 2¼.

2) s= 2: Now consider the Gauss-Bingham density

specialized to s= 2. Three parameters are necessary to

specify the orientation matrix in this dimension. These

parameters are chosen to be the rotation vector, such
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that Á(z) = μ(z). The orientation matrix is then given
by (6) as

M(Á(z)) =M(μ(z)) = I¡ sinkμ(z)k
·
μ(z)
kμ(z)k£

¸

+(1¡ coskμ(z)k)
·
μ(z)
kμ(z)k£

¸2
:

If kμ(z)k= 0, M(z) = I, since the angle of rotation is
zero. The norm of the rotation vector, kμ(z)k, is de-
fined on the interval [¡¼,¼) for all z. Since M(μ(z)) =
M(μ(z) +2¼kμ(z)=kμ(z)k) for all k 2 Z, kμ(z)k can be
bounded to the interval [¡¼,¼) for all z by adding the
appropriate multiple of 2¼μ(z)=kμ(z)k.
3) s= 3: Finally, consider the Gauss-Bingham den-

sity specialized to s= 3. Six parameters are necessary to

specify the orientation matrix in this dimension. These

parameters are chosen to be two rotation vectors repre-

senting a left- and right-isoclonic rotation [26]. Let these

rotation vectors be denoted by μL(z) and μR(z), respec-
tively, such that Á(z) = [μTL (z) μ

T
R(z)]

T. The orientation

matrix is then defined using left- and right-isoclonic ro-

tations according to

M(Á(z)) =M
μ·

μL(z)

μR(z)

¸¶
= L(q̄(μL(z)))R(q̄(μR(z))),

where

L(q̄) =

26664
q ¡qx ¡qy ¡qz
qx q ¡qz qy

qy qz q ¡qx
qz ¡qy qx q

37775

R(q̄) =

26664
q ¡qx ¡qy ¡qz
qx q qz ¡qy
qy ¡qz q qx

qz qy ¡qx q

37775 ,
and q̄(μL(z)) and q̄(μR(z)) are defined by (7). The norm
of each of these rotation vectors, kμL(z)k and kμR(z)k,
is defined on the interval [¡¼,¼) for all z. Since

M

μ·
μL(z)

μR(z)

¸¶
=M

μ·
μL(z) +2¼kLμL(z)=kμL(z)k
μR(z)+2¼kRμR(z)=kμR(z)k

¸¶
for all kL,kR 2 Z, kμL(z)k and kμR(z)k can be bounded
to the interval [¡¼,¼) for all z by adding the appropriate
multiple of 2¼μL(z)=kμL(z)k and 2¼μR(z)=kμR(z)k to
μL(z) and μR(z), respectively.
Now that the functional dependence of the orien-

tation matrix, M(Á(z)), on the minimal set of param-
eters, Á(z), has been defined for s= 1,2,3, the func-
tional dependence of Á(z) on z needs to be defined.
Two choices for this functional dependence are consid-

ered: linear and quadratic. It is noted that the quadratic

form of this functional dependence is not used after it is

presented; however, it is a valid form of this functional

dependence and is presented to show the flexibility of

the Gauss-Bingham density.

First, consider the quadratic dependence of Á(z) on
z, which is defined by

Á(z) = Á0 +¯z

+[zT¡1z zT¡2z ¢ ¢ ¢zT¡nÁz]T, (25)

where Á0 2RnÁ , ¯ 2 RnÁ£r and ¡i 2 fRr£r : ¡i = ¡Ti g,
i= 1, : : : ,nÁ quantify the zeroth-, first-, and second-order

correlation, respectively, of z on Á(z). The choice of
implementing z instead of x in the correlation structure
results in nondimensional coefficients ¯ and ¡i, which
is preferred for numerical stability. Noting that the

orientation matrix M(z) is now explicitly defined by

z, Á0, ¯, ¡1, : : : ,¡nÁ and that z is explicitly defined by
x, m, and P, the orientation matrix using the quadratic
correlation structure is parameterized as

M(z) =M(x;m,P,Á0,¯,¡1, : : : ,¡nÁ),

and the Gauss-Bingham density is given by the special-

ization of (23) as

pgb(x;m,P,Á0,¯,¡1, : : : ,¡nÁ ,Z) =

pg(x;m,P)pb(q̄;M(x;m,P,Á0,¯,¡1, : : : ,¡nÁ),Z):

The number of parameters necessary to quantify the

quadratic correlation between z and Á(z) is 1
2
nÁ(2+2r+

r(r+1)), which increases quadratically with r. For one-

dimensional attitude (R1£S1), three-dimensional atti-
tude (R3£S3), and dynamic pose (R9£S3) quantifica-
tion, 3, 60, and 330 unique parameters are needed to

quantify the quadratic relationship between Á(z) and z.
Now, consider the linear correlation structure for

Á(z), which is given by a simplification of (25) as

Á(z) = Á0 +¯z:

Using the linear correlation structure, the orientation

matrix is parameterized as

M(z) =M(x;m,P,Á0,¯),

and the Gauss-Bingham density is given by the special-

ization of (23) as

pgb(x;m,P,Á0,¯,Z)

= pg(x;m,P)pb(q̄;M(x;m,P,Á0,¯,Z):

The number of parameters necessary to quantify the lin-

ear correlation between z and Á(z) is nÁ(1+ r), which
increases linearly with r. For one-dimensional attitude,

three-dimensional attitude, and dynamic pose quantifi-

cation, 2, 24, and 60 unique parameters are needed to

quantify the linear relationship between Á(z) and z. Be-
cause the number of parameters necessary to quantify

the linear correlation between z and Á(z) increases lin-
early (as opposed to quadratically) with r, it is used in

the remainder of this work.

194 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 2 DECEMBER 2016



B. Canonical Gauss-Bingham Density

The canonical Gauss-Bingham density is introduced

by substituting the transformations

x= Sz+m and q̄=M(z)p̄ (26)

into (23), which yields the canonical Gauss-Bingham

density as
p̃gb(z;Z) = p̃g(z)p̃b(p̄;Z),

where z= [zT p̄T]T. The elements of z are uncorrelated
and zero mean, such that the covariance of z is defined

by I and (17) and is given by

Ep̃gbfzzTg= diag[1 ¢ ¢ ¢1 f1 ¢ ¢ ¢fs+1]: (27)

V. UNCERTAINTY PROPAGATION

In order to propagate the uncertainty of a given

Gauss-Bingham-distributed state vector, an unscented

transform is used and the weighted maximum log-

likelihood parameters of the Gauss-Bingham density are

found. The unscented transform generates a set of deter-

ministically chosen sigma points that represent the given

Gauss-Bingham density. Each sigma point is then trans-

formed according to known (potentially) nonlinear sys-

tem dynamics. The weighted maximum log-likelihood

parameters of the propagated Gauss-Bingham density

are then recovered from the transformed sigma points.

A. System Dynamics

Assume that discrete-time nonlinear system dynam-

ics are given by
xk = f(xk¡1), (28)

where x= [xT q̄T]T, and define the state vector with
the antipodal attitude quaternion as x̃= [xT ¡ q̄T]T. Be-
cause q̄ quantifies an antipodally equivalent attitude rep-

resentation in which q̄ and ¡q̄ represent the same phys-
ical attitude, the antipodal symmetry of q̄ must be pre-

served by the system dynamics; that is, if

xk = f(xk¡1) and x̃k = f(x̃k¡1), (29)

then the quaternion elements of xk and x̃k remain an-

tipodal. Equation (29) defines an important property of

the system dynamics, f. This property states that the

system dynamics preserve the antipodal symmetry of

the quaternion, which is exploited to reduce the amount

of computation necessary to propagate the sigma points

representing the Gauss-Bingham density.

B. Unscented Transform

In order to select a set of weights and locations

for the sigma points of the unscented transform for the

canonical Gauss-Bingham density, the zeroth, first, and

second moments between the canonical Gauss-Bingham

density and the sigma points are matched in Rr£Rs+1.
The moments will be matched in Rr£Rs+1; however,
the sigma points will be parameterized such that they

remain on the manifold Rr£Ss. After finding sigma

points for the canonical Gauss-Bingham density, (26)

is then used to convert the locations of the sigma points

from the canonical Gauss-Bingham to the given Gauss-

Bingham density.

In order to reduce the number of sigma points, only

one of each pair of antipodal sigma points is considered

and propagated since the system dynamics preserve the

antipodal symmetry of the sigma points as shown by

(29). To illustrate this concept, consider the following

example antipodal sigma points in R1£S1 at tk¡1, Xk¡1
and X̃k¡1, that are antipodal in q̄ and given by

Xk¡1 =
·
3

1p
2

¡1p
2

¸T
and

X̃k¡1 =
·
3

¡1p
2

1p
2

¸T
:

These sigma points are propagated by some (poten-

tially) nonlinear function, f, that satisfies the property

given by (29). Assume that this propagation transforms

the sigma points to

Xk = [4 0 1]T and X̃k = [4 0 ¡ 1]T,
which are still antipodal in q̄; thus, the computational

expense can be lowered by considering only Xk¡1. Xk¡1
is transformed according to f to obtainXk, and antipodal
symmetry can be used to obtain X̃k, if desired.
In order to generate the sigma points for the Gauss-

Bingham density, motivation is drawn from the 2n+1

unscented transform. The 2n+1 unscented transform

for the canonical Gaussian density places two sigma

points at equal but opposite deviations from zero for

each of the n= r canonical Gaussian states. A central

sigma point is then placed at the origin. When generat-

ing sigma points for the canonical Gauss-Bingham den-

sity, which considers only one of each pair of antipodal

points in the attitude quaternion, a similar approach to

that of the 2n+1 unscented transform for the canonical

Gaussian density is used.

In order to generate the sigma points for the canon-

ical Gauss-Bingham density, first a set of sigma points

that quantify deviations from the origin in each state

of z are introduced as §± while p̄ is held constant as
the identity quaternion. The locations of these 2r sigma

points are given by

Z (1),(2) = [

2Rrz }| {
§± 0 ¢ ¢ ¢0

2Ssz }| {
0 ¢ ¢ ¢0 1]T

Z (3),(4) = [0 § ± ¢ ¢ ¢0 0 ¢ ¢ ¢0 1]T

...

Z(2r¡1),(2r) = [0 ¢ ¢ ¢0 § ± 0 ¢ ¢ ¢0 1]T,

with corresponding weights given by

w(1),(2) = w(3),(4) = ¢ ¢ ¢= w(2r¡1),(2r) = wg
4r
,
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where Z (i),(j) and w(i),(j) represent the locations and

weights of the ith and jth sigma points, respectively,

representing the canonical Gauss-Bingham density and

wg is a parameter used to specify the weights of these

sigma points. The braces are used to denote the portions

of Z which are the Euclidean and quaternion states,

respectively.

Next, angular deviations are introduced into the

quaternion state as §®` for `= 1,2, : : : ,s while z is held
constant at zero in order to guarantee that the perturbed

attitude quaternion remains on the unit hypersphere.

These 2s sigma points are given by

Z(2r+1),(2r+2) = [

2Rrz }| {
0 ¢ ¢ ¢0

2Ssz }| {
§S®1 0 ¢ ¢ ¢0 C®1 ]

T

Z(2r+3),(2r+4) = [0 ¢ ¢ ¢0 0 § S®2 ¢ ¢ ¢0 C®2 ]
T

...

Z(2r+2s¡1),(2r+2s) = [0 ¢ ¢ ¢0 0 ¢ ¢ ¢0 § S®s C®s]
T,

with corresponding weights given by

w(2r+1),(2r+2) =
wb1
4

w(2r+3),(2r+4) =
wb2
4

...

w(2r+2s¡1),(2r+2s) =
wbs
4
,

where wb` , for `= 1,2, : : : ,s, are parameters used to

specify the weights of these sigma points and S® and

C® represent the sine and cosine of ®, respectively.

Finally, a central sigma point is placed at z= 0
and in the “zero” direction of p̄, which is the identity

quaternion. This single sigma point is given by

Z (N) = [

2Rrz }| {
0 ¢ ¢ ¢0

2Ssz }| {
0 ¢ ¢ ¢0 1]T,

with corresponding weight given by

w(N) =
wc
2
,

where wc is a parameter used to specify the weight of

this sigma point and N = 2r+2s+1 is the total number

of sigma points.

In order to find the parameters ±, ®`, wc, wg, and

wb` , where `= 1,2, : : : ,s, which fully define the weights

and locations of the sigma points for the canonical

Gauss-Bingham density, the zeroth, first, and second

moments between the sigma points and the canonical

Gauss-Bingham density are matched. The zeroth and

first moments of the canonical Gauss-Bingham are 1

and 0, respectively. The second moment of the canonical
Gauss-Bingham density is given by (27). While only

one of each antipodal pair of sigma points is stored

and propagated, it is important to note that both of the

antipodal sigma points, which are equally weighted, are

considered when calculating the moments of the sigma

points. After accounting for the antipodal symmetry

of each of the sigma points, the first moment of the

sigma points is zero for any choice of the parameters.

Matching the zeroth and second moments of the sigma

points with the canonical Gauss-Bingham density yields

sX
`=1

wb` +wc+wg = 1 (30a)

±2wg

r
= 1 (30b)

wb` sin
2®` = f̀ , `= 1,2, : : : ,s (30c)

sX
`=1

wb` cos
2®`+wc+wg = fs+1, (30d)

where (30a) stems from the zeroth moment and (30b)—

(30d) stem from the second moment. Summing (30c)

for `= 1,2, : : : ,s and (30d) while noting the properties

in (18) yields (30a); thus, (30d) is redundant and may

be neglected. Solving (30b) and (30c) for ± and ®` gives

the locations of the sigma points as a function of their

weights as

± =

s
r

wg
and ®` = asin

s
f̀

wb`
, (31)

where `= 1,2, : : : ,s. Now, the weights must be selected

for the sigma points. In order for (31) to have real

solutions, wb` must be greater than or equal to f̀ for

all `= 1,2, : : : ,s. In order to ensure that this condition

is met, a somewhat nonintuitive choice for the weights

of the sigma points for the canonical Gauss-Bingham

density is chosen that parallels the choice of weights of

the sigma points for the Bingham density presented in

[12]. Noting the properties given in (18), the weights

of the sigma points representing the Gauss-Bingham

density which satisfy (30a) are chosen as

wb` = f̀ +(1¡¸¡·)
fs+1
s
, `= 1,2, : : : ,s (32a)

wc = ¸fs+1 (32b)

wg = ·fs+1, (32c)

where ¸ and · are positive tuning parameters such that

¸+· < 1. While choosing the weights according to (32)

is nonintuitive, this choice of weights satisfies (30a) and

provides real locations for the sigma points. ¸ and · are

chosen such that the weights of all the sigma points

approach an equal weight of 1=N as the uncertainty in

the states corresponding to q̄ approaches zero; that is,

Z1,Z2, : : : ,Zs!¡1. This choice of weights ensures that
the sigma points possess nearly equal weights, and thus

have nearly equal importance, when the uncertainty in

the attitude quaternion is small. Using the properties in

(18), the ¸ and · that yield equal weights for the sigma
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points as the uncertainty in the quaternion goes to zero

are given by

¸=
1

N
and ·=

2r

N
: (33)

The sigma points on the canonical Gauss-Bingham den-

sity, which are defined in terms of the parameters in

(31), (32), and (33), are transformed from the canonical

Gauss-Bingham density to the Gauss-Bingham density

of interest defined by pgb(x;m,P,Á0,¯,Z) according to

(26). These transformed sigma points and their associ-

ated weights are denoted by X (i) and w(i), respectively,

where i= 1,2, : : : ,N.

The sigma points representing the Gauss-Bingham

density at tk¡1, Xk¡1, are then transformed according to
the nonlinear system dynamics given by (28) to obtain

the sigma points representing the Gauss-Bingham den-

sity at tk, Xk. If the dynamical system is governed by

continuous-time dynamics, the nonlinear discrete-time

function in (28), f, is given by the integration of xk¡1
from tk¡1 to tk to obtain xk.

C. Maximum Weighted Log-Likelihood
Gauss-Bingham Parameters

In order to obtain the parameters of the best-fit

Gauss-Bingham density given the set of sigma points

and weights at tk, the parameters of the Gauss-Bingham

density that maximize the weighted log-likelihood of the

sigma points are found. To illustrate why the maximum

weighted log-likelihood parameters are sought, consider

the case when the unscented transform is used for a state

that exists in Rr. Given the sigma points and weights
from the unscented transform, the mean and covariance

are recovered from the weighted sample mean and

covariance of the sigma points. It can be shown that

the weighted sample mean and covariance of the sigma

points is the mean and covariance of the Gaussian

density that maximizes the weighted log-likelihood of

the sigma points.

In this spirit, the parameters of the Gauss-Bingham

density are recovered from the sigma points accord-

ing to

mk,Pk,Á0,k,¯k,Zk =

argmax
m,P,Á0,¯,Z

NX
i=1

w(i) lnpgb(X (i)
k ;m,P,Á0,¯,Z): (34)

This maximization can be performed analytically for

the mean and covariance of the Gaussian density, m

and P. First, note that the sigma points can be decom-

posed into their Euclidean and quaternion portions ac-

cording to Xk = [X T
x,k X T

q̄,k]
T. The mean and covariance

of the Gaussian density that maximizes the weighted

log-likelihood of the sigma points is given by the sam-

ple mean and covariance of the Euclidean portion of the

sigma points according to

mk = 2

NX
i=1

w(i)X (i)
x,k (35a)

Pk = 2

NX
i=1

w(i)(X (i)
x,k ¡mk)(X (i)

x,k ¡mk)T, (35b)

where the factor of two is included since only one of

each antipodal pair of sigma points in the quaternion

state is quantified.

After using (35) to determine mk and Pk, (34) be-

comes

Á0,k,¯k,Zk = argmax
Á0,¯,Z

J(Á0,¯,Z), (36)

where

J(Á0,¯,Z) =
NX
i=1

w(i) lnpgb(X (i)
k ;mk,Pk,Á0,¯,Z):

This maximization is carried out numerically to find Á0,
¯, and Z. In order to perform this numerical maximiza-

tion, it is first transformed into a root-finding problem

according to the first derivative conditions of a maxi-

mum, i.e.

@J(Á0,k,¯k,Zk)

@Á0,k
= 0 (37a)

@J(Á0,k,¯k,Zk)

@¯k
= 0 (37b)

@J(Á0,k,¯k,Zk)

@Zk
= 0, (37c)

where the explicit expressions for the derivatives are

omitted for brevity. A root-finding algorithm is used to

find the Á0,k, ¯k, and Zk that satisfy (37). To initialize
the root-finding algorithm, Á0,k¡1, ¯k¡1, and Zk¡1 are
used. By initializing the root-finding algorithm in this

way, if the propagation time step is chosen sufficiently

small, Á0,k¡1, ¯k¡1, and Zk¡1 remain close to the local
maximum and a gradient-based root-finding algorithm

will converge to Á0,k, ¯k, and Zk without excessive
iteration required or risk of diverging to a different root.

A number of root-finding algorithms can be used

to find the Á0,k, ¯k, and Zk that satisfy (37). The

Levenberg-Marquardt algorithm, a well-known opti-

mizer, is chosen to find these Á0,k, ¯k, and Zk [27], [28].
This algorithm is used to find the roots of an arbitrary

system of equations defined by g(x) = 0 by minimizing
the cost function gT(x)g(x) using x as the minimization

variable. The Levenberg-Marquardt algorithm was cho-

sen to find Á0,k, ¯k, and Zk since the cost function will
remain near the minimum if the time step is chosen

sufficiently small and Á0,k¡1, ¯k¡1, and Zk¡1 are used
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to initialize the algorithm. Applying the Levenberg-

Marquardt algorithm in this manner to find the roots

of (37) was found to be more computationally efficient

than applying it to the optimization problem in (36) di-

rectly.

D. Uncertainty Propagation Algorithm

In summary, the algorithm used to propagate the

Gauss-Bingham density is given by

– Given:

– A Gauss-Bingham-distributed state vector at t0
defined by pgb(x;m0,P0,Á0,0,¯0,Z0).

– System dynamics that preserve the antipodal

symmetry of the quaternion as defined by the

property given by (29).

– A sequence of times to which to propagate the

Gauss-Bingham density, t1, t2, : : : , tf .

1) Generate the sigma points and weights according to

pgb(x;m0,P0,Á0,0,¯0,Z0).

2) Set the time counter to k = 1

3) Propagate the sigma points from tk¡1 to tk according
to the given system dynamics.

4) Recover mk and Pk according to (35).

5) Recover Á0,k, ¯k, and Zk according to the root-

finding problem defined by (37) using Á0,k¡1 ,¯k¡1,
and Zk¡1 to initialize the root-finding algorithm.

6) If tk = tf , stop; if tk < tf , set k = k+1 and return to

step 3.

The sequence of times to which to propagate the

Gauss-Bingham density, t1, t2, : : : , tf , should be chosen

such that the time step is small enough that Á0,k¡1, ¯k¡1,
and Zk¡1 are close to Á0,k, ¯k, and Zk in order to ensure
that the root-finding algorithm converges to the proper

solution for Á0,k, ¯k, and Zk. The size of the time step is
a compromise between computational cost and ensuring

that the root-finding algorithm converges to the correct

root. Because the sigma points are not resampled at

each time step, no approximation error is introduced

by choosing the time step too small. Since the time

step chosen is problem dependent, general guidelines

for choosing this time step can not be imposed.

VI. SIMULATIONS

Two simulations are performed to illustrate uncer-

tainty propagation using the Gauss-Bingham density.

The first simulation propagates the uncertainty of the

planar attitude and angular velocity of a body in R1£S1,
where the Gauss-Bingham density can be visualized on

the unit cylinder. This simulation provides an intuitive

example of uncertainty propagation using the Gauss-

Bingham density. The second simulation propagates the

uncertainty in the dynamic pose (position, velocity, at-

titude, and angular velocity) of a chase spacecraft with

respect to a target spacecraft. This simulation com-

pares uncertainty propagation using the Gauss-Bingham

density to the predictor of the multiplicative extended

Kalman filter and a Monte Carlo approach in order to

show the efficacy of uncertainty propagation using the

Gauss-Bingham density.

A. Planar Attitude and Angular Velocity

Consider the attitude quaternion and angular veloc-

ity representing the one-dimensional attitude motion of

a body undergoing rotation about the z-axis. In this case,

the state vector of the body is defined by (24). The an-

gular velocity comprises the Gaussian-distributed por-

tion of the state vector, with initial mean and covariance

given by

m0 = 0 and P0 = (0:01
±=s)2, (38)

respectively. The attitude quaternion comprises the con-

ditional Bingham-distributed portion of the state vector,

and is initially uncorrelated with the angular velocity

(that is, ¯0 = 0). The parameters defining the orien-
tation and concentration of the conditional Bingham-

distributed portion of the state vector are given by

Á0 = 0 and Z1,0 =¡100,
respectively. The Gauss-Bingham density representing

the initial attitude quaternion and angular velocity of

the body, as well as the sigma points generated by

the unscented transform, are shown in Fig. 5(a). The

marginalized density of the initial attitude quaternion is

shown in Fig. 5(c).

The body undergoes torque-free motion, that is,

¿B = 0. The temporal evolution of the attitude quater-
nion and angular velocity are given by (9) and (10), re-

spectively. The uncertainty propagation algorithm sum-

marized in Section V-D is used to propagate the uncer-

tainty of the attitude quaternion and angular velocity

forward in time. A time step of one minute is used

to propagate the uncertainty, which is small enough

to ensure that the root-finding algorithm converges to

the proper Á0,k, ¯k, and Zk at each time step. Fig.
5 shows the evolution of Gauss-Bingham density and

sigma points representing the attitude quaternion and

angular velocity of the body, as well as the marginal-

ized density of the attitude quaternion over time. Table

I provides the corresponding parameters of the Gauss-

Bingham density over time. It is observed that the mean

and covariance of the angular velocity, m and P, respec-

tively, remain constant, which is expected since (10)

shows that the angular-velocity is constant under torque-

free motion.

The concentration parameter of the conditional Bing-

ham density, Z, remains constant (within numerical ac-

curacy of the root finding algorithm). The mean di-

rection of the Gauss-Bingham density, Á0, remains at
zero since the mean of the angular velocity is zero for

all time; however the linear correlation parameter, ¯
evolves in time in order to quantify the effect of the

uncertain angular velocity on the attitude quaternion.
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Fig. 5. Gauss-Bingham uncertainty propagation for

one-dimensional attitude motion. (a) Initial state density. (b) State

density at 15 minutes. (c) Initial quaternion density. (d) Quaternion

density at 15 minutes. (e) State density at 1 hour. (f) State density at

6 hours. (g) Quaternion density at 1 hour. (h) Quaternion density at

6 hours.

TABLE I

Gauss-Bingham Parameters over time

Time [hours] m [±=s] P [(±=s)2] Á0 ¯ Z1

0 0 (0:01)2 0 0.0000 ¡100
0.25 0 (0:01)2 0 0.0785 ¡100
1 0 (0:01)2 0 0.3142 ¡100
6 0 (0:01)2 0 1.8850 ¡100

It is interesting to note that ¯ evolves linearly in time
for this problem. The Gauss-Bingham density eventu-

ally wraps around its cylindrical manifold as it is prop-

agated, which causes the attitude quaternion to become

equiprobable as time increases, and is apparent in Fig.

5(h). This is an expected result for a body undergoing

one-dimensional attitude motion with an uncertain an-

gular velocity; as time increases, the uncertainty in the

attitude quaternion of the body grows until the attitude

quaternion becomes equiprobable.

Several important properties of the Gauss-Bingham

density and its utility in uncertainty propagation can be

observed in Fig. 5. The Gauss-Bingham density is an-

tipodally symmetric in the quaternion state for all time,

which is a necessary property to properly quantify the

uncertainty in the attitude quaternion. Since this exam-

ple quantifies the one-dimensional attitude motion in

R1£S1, N = 5 sigma points are required to quantify the
temporal evolution of the Gauss-Bingham density. The

attitude quaternion becomes equiprobable as the uncer-

tainty is propagated; however, the concentration param-

eter Z1 does not approach zero. As the uncertainty is

propagated, the attitude quaternion becomes equiproba-

ble due to the wrapping of the Gauss-Bingham density

around the cylinder, not because the concentration pa-

rameter approaches zero.

B. Spacecraft Relative Pose

Now consider an example in which a chase space-

craft is orbiting in close proximity to a target space-

craft. The state of the chase spacecraft is defined to be

[!T ±rT ±vT q̄
T
]T, where q̄ and ! represent the attitude

quaternion and angular velocity of the chase spacecraft,

respectively, and ±r and ±v represent the relative position

and velocity, respectively, of the chase spacecraft with

respect to the target spacecraft. The chase spacecraft

is taken to have an identity inertia tensor and under-

goes torque-free motion, with the temporal evolution

of the attitude quaternion and angular velocity given

by (9) and (10), respectively. Since the body undergoes

torque-free motion and has an identity inertia tensor,

(10) shows that the angular velocity is constant in time.

In order to quantify the temporal evolution of the

relative position and velocity, the Clohessy-Wiltshire

equations are used [29]—[31]. The Clohessy-Wiltshire

equations approximate the relative motion of the chase

spacecraft with respect to the target spacecraft under

the assumptions that the spacecraft are in close proxim-

ity and that the target spacecraft is in a circular orbit.

If these assumptions are valid, the Clohessy-Wiltshire

equations governing the temporal evolution of the rela-

tive position and velocity are

·
± _r

± _v

¸
=

26666666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 ¡2n 0 0

0 0 ¡n2 0 0 0

37777777775
·
±r

±v

¸
, (39)

where n is the mean motion of the target spacecraft

and ±r and ±v are expressed in a rotating coordinate

frame centered on the target spacecraft. The rotating
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coordinate frame is defined by the position and velocity

vectors of the target spacecraft. The target spacecraft

is taken to be in a geostationary orbit with an orbital

radius of 42164 km, which results in a mean motion of

the target spacecraft of 7:2920£ 10¡5 rad=s.
The Gauss-Bingham density is used to quantify the

uncertainty of the state vector of the chase spacecraft.

The Gaussian portion of the Gauss-Bingham density

quantifies the uncertainty of the angular velocity, rel-

ative position, and relative velocity, with initial mean

and covariance given by

m0 =

2666666666666666664

0:5±=s

0:8±=s

1:0±=s

0

10 km

0

0

0

0

3777777777777777775

and P0 = diag

2666666666666666664

0:12 (±=s)2

0:12 (±=s)2

0:12 (±=s)2

1 m2

1 m2

1 m2

0:012 (m=s)2

0:012 (m=s)2

0:012 (m=s)2

3777777777777777775

T

,

(40)

respectively. The attitude quaternion of the chase space-

craft comprises the conditional Bingham-distributed

portion of the state vector, and is initially uncorrelated

with the angular velocity, relative position, and rela-

tive velocity (that is, ¯0 = 0). The parameters defining
the initial orientation and concentration of the condi-

tional Bingham-distributed portion of the state vector

are given by

Á0 = 0 and Z1,0 = Z2,0 = Z3,0 =¡5000,
respectively.

The uncertainty propagation algorithm summarized

in Section V-D is used to propagate the uncertainty of

the angular velocity, relative position, relative velocity,

and attitude quaternion forward in time. A time step

of fifteen seconds is used to propagate the uncertainty,

which is small enough to ensure that the root-finding al-

gorithm converges to the proper Á0,k, ¯k, and Zk at each
time step. Uncertainty propagation using the Gauss-

Bingham density is compared to two other methods of

uncertainty propagation to evaluate its efficacy: a Monte

Carlo approach and the predictor step of the multiplica-

tive extended Kalman filter (MEKF) [5], [32], [33].

100,000 Monte Carlo samples are realized from the ini-

tial Gauss-Bingham density using an acceptance sam-

pling method, and are propagated forward in time to

quantitatively represent the true evolution of the initial

Gauss-Bingham density.

The predictor step of the MEKF quantifies the

“mean” using the attitude quaternion and relies on a

small angle assumption to project the uncertainty in the

attitude quaternion into a three parameter attitude rep-

resentation (the rotation vector is used in this analy-

sis). Quotation marks are used around “mean” for the

MEKF to indicate that it is not the mean as defined

by the first moment of the state vector; rather, it is the

“mean” quaternion as defined by one of the antipodal

pair used to quantify the quaternion estimate. In order

to find the equivalent “mean” and covariance for the

MEKF given the initial Gauss-Bingham density, it is

first noted that “mean” attitude quaternion is the iden-

tity quaternion since Á0 = 0 and ¯0 = 0; thus, the mean
for the MEKF is given by the concatenation of the mean

given in (40) and the identity quaternion. The equivalent

covariance of the MEKF state vector, which is expressed

using the rotation vector instead of the attitude quater-

nion, is found by converting the quaternion portion of

the initial Monte Carlo samples to their equivalent rota-

tion vector according to (8), and calculating their sample

covariance.

Since the angular velocity, relative position, and rel-

ative velocity are initially Gaussian-distributed, evolve

according to linear dynamics, and their temporal evolu-

tion is not a function of the attitude quaternion, they re-

main Gaussian-distributed for all time. Because of this,

both the Gauss-Bingham and MEKF uncertainty prop-

agation methods perfectly capture the evolution of the

uncertainty in these states, which is presented in Figs.

6—8 and shows the standard deviation of each compo-

nent of these states quantified by both the MEKF and

the Gauss-Bingham density over time. Furthermore, the

mean of these quantities is constant for all time since

their mean is a stationary solution to (10) and (39) un-

der torque-free motion with an identity inertia tensor.

Fig. 6 shows that the uncertainty of the angular velocity

is constant, as expected since the angular velocity is

constant. Fig. 7 shows that the uncertainty in the rel-

ative position grows as time increases. Fig. 8 shows

that the uncertainty in the x- and y-components of the

relative velocity increase, while the uncertainty in the

z-component decreases. This decrease in uncertainty is

expected due to the periodicity present in the Clohessy-

Wiltshire equations. If the uncertainty is propagated for

an entire orbit of the target spacecraft (approximately

24 hours), it would complete one cycle of its period.

Uncertainty propagation using the Gauss-Bingham

density does not require that the system dynamics gov-

erning the Gaussian-distributed states be linear nor that

their temporal evolution be functionally independent of

the attitude quaternion. These conditions are used in this

example to simplify the presentation and analysis of the

results of the uncertainty propagation. If nonlinear sys-

tem dynamics are used, or if the system dynamics are a

function of the attitude quaternion, the best-fit Gaussian

density that maximizes the weighted log-likelihood of

the sigma points as defined by (35) is found.

Because the attitude uncertainty quantified by the

Gauss-Bingham density and Monte Carlo samples are

200 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 2 DECEMBER 2016



Fig. 6. Gaussian-distributed angular velocity standard deviation

quantified by the Gauss-Bingham density (black) and the MEKF

(red).

Fig. 7. Gaussian-distributed relative position standard deviation

quantified by the Gauss-Bingham density (black) and the MEKF

(red).

expressed using the attitude quaternion and the uncer-

tainty quantified by the MEKF predictor is expressed

using the rotation vector, the uncertainty quantified by

the Gauss-Bingham density and Monte Carlo samples

are converted to rotation vector space in order to make

a direct comparison. The rotation vector space is chosen

for this comparison since it is a three parameter repre-

sentation of attitude. In order to convert the uncertainty

quantified by the Gauss-Bingham density and Monte

Carlo samples from the attitude quaternion representa-

tion to the rotation vector representation, first, 100,000

samples of the Gauss-Bingham density are generated

using an acceptance sampling method. The quaternion

portion of the Gauss-Bingham samples, as well as the

Monte Carlo samples, are then converted to their equiv-

alent rotation vector according to (8). Expectation max-

imization [34] is then performed for each set of samples

to fit a Gaussian mixture density to the x-y, y-z, and x-z

projections of the rotation vector portion of the respec-

Fig. 8. Gaussian-distributed relative velocity standard deviation

quantified by the Gauss-Bingham density (black) and the MEKF

(red).

tive samples. This process is used only to visualize the
uncertainty of the attitude quaternion quantified by the

Gauss-Bingham density and the Monte Carlo samples in

rotation vector space, and is not an element of the un-

certainty propagation using the Gauss-Bingham density.

Because the MEKF quantifies the mean and covariance

of the rotation vector and not its density, the density is

assumed to be Gaussian.

The attitude uncertainty quantified by the Gauss-

Bingham density, Monte Carlo samples, and MEKF at

a time of five minutes are presented in Fig. 9. Figs. 9(a)

and 9(b) show the x-y projection of the rotation vec-

tor for 1,000 of the Monte Carlo and Gauss-Bingham

samples, as well as the Gaussian mixture densities fit to

these samples to show the agreement between the sam-

ples and the densities. These plots are repeated with-

out the samples in Figs. 9(c) and 9(d) for clarity along

with the uncertainty quantified by the MEKF in red in

Fig. 9(d). Figs. 9(e) and 9(f) and Figs. 9(g) and 9(h)

show the y-z and x-z projections, respectively, of the

uncertainty quantified by the Gauss-Bingham density,

true density (as approximated from the Monte Carlo

samples), and MEKF. At the time of five minutes, the

Gauss-Bingham density agrees very well with the true

density. The MEKF quantifies the mean and covariance

of the true density as well, which is attributed to the

fact that the attitude uncertainty is still relatively small

at this time.

Fig. 10 shows the uncertainty quantified by the

Gauss-Bingham density, true density (as approximated

from the Monte Carlo samples), and MEKF at a time

of one hour in the same plots as Fig. 9. After propagat-

ing the uncertainty for one hour, the attitude uncertainty

quantified by the MEKF does not agree with the true

uncertainty, as it has outgrown the kμk 2 [¡¼,¼) bound
on the rotation vector. This uncertainty can potentially

be wrapped such that it is expressed in the appropri-

ate bounded region; however, this is not common prac-

tice when using the MEKF. The underlying small angle
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Fig. 9. True, Gauss-Bingham (GB), and MEKF attitude

uncertainties expressed in rotation vector space at a time of five

minutes. The MEKF density is shown in red. (a) True μx-μy density

and samples. (b) GB μx-μy density and samples. (c) True μx-μy
density. (d) GB and MEKF μx-μy densities. (e) True μy-μz density.

(f) GB and MEKF μy-μz densities. (g) True μx-μz density. (h) GB

and MEKF μx-μz densities.

assumption used to derive the predictor of the MEKF

becomes invalid when the attitude uncertainties become

large; thus, it is not well-suited to propagate large atti-

tude uncertainties. This can be observed by noting that,

even if the uncertainty were wrapped to the appropriate

Fig. 10. True, Gauss-Bingham (GB), and MEKF attitude

uncertainties expressed in rotation vector space at a time of one

hour. The MEKF density is shown in red. (a) True μx-μy density and

samples. (b) GB μx-μy density and samples. (c) True μx-μy density.

(d) GB and MEKF μx-μy densities. (e) True μy-μz density. (f) GB

and MEKF μy-μz densities. (g) True μx-μz density. (h) GB and

MEKF μx-μz densities.

boundary, it still will not posses the appropriate hour-

glass shape as the true density does.

After propagating the uncertainty for one hour, the

Gauss-Bingham density is still in close agreement with

the true density as is shown in Fig. 10. This is due
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to the fact that the uncertainty propagation using the

Gauss-Bingham density does not rely on a small an-

gle assumption. The uncertainty is also quantified on

the natural manifold of the attitude quaternion and the

other Euclidean states, R9£S3, so the uncertainty can-
not escape the bounded region on which it is defined.

Because of these reasons, uncertainty propagation us-

ing the Gauss-Bingham density remains well-suited to

quantify attitude uncertainty, even as the attitude uncer-

tainty becomes large.

VII. CONCLUSIONS

A new probability density function, called the Gauss-

Bingham density, was proposed that represents the

uncertainty of an attitude quaternion and other Eu-

clidean states of a body under a common probabilis-

tic framework. The proposed Gauss-Bingham density

is constructed as the product of a Gaussian density

and a Bingham density that is conditioned on the

Gaussian-distributed random variable, which quantifies

the correlation between the quaternion and Euclidean

states and exists on their natural manifold, Rr£Ss.
The Gauss-Bingham density quantifies a uniformly-

distributed quaternion when its concentration matrix is

null, which provides a convenient method to initialize

the uncertainty when no attitude information is avail-

able. Uncertainty propagation using the Gauss-Bingham

density was presented, which leverages an unscented

transformation and recovers the maximum weighted

log-likelihood parameters of the Gauss-Bingham den-

sity from the sigma points. The Gauss-Bingham den-

sity properly quantifies the uncertainty of the attitude

quaternion and other Euclidean states without relying

on a small-angle assumption to project the uncertainty

in the attitude quaternion into a three parameter atti-

tude representation, as does the predictor of the mul-

tiplicative extended Kalman filter (MEKF). Since the

uncertainty is quantified on its natural manifold, it is

not possible for the uncertainty propagated using the

Gauss-Bingham density to outgrow its bounds like the

predictor of the MEKF.

Two simulations were presented. The first simulation

showed how the Gauss-Bingham density can be used to

propagate the uncertainty of the one-dimensional atti-

tude quaternion and angular velocity of a body where

a convenient visualization of the uncertainty exists on

R1£S1. As the uncertainty was propagated, it wraps
around the cylinder defined by R1£S1, and the attitude
quaternion becomes equiprobable, as expected. The sec-

ond simulation showed how the Gauss-Bingham density

can be used to propagate the uncertainty of the three-

dimensional attitude quaternion, angular velocity, rela-

tive position, and relative velocity of a chase spacecraft

about a target spacecraft. This simulation compared un-

certainty propagation using the Gauss-Bingham to that

of the predictor of the MEKF and a Monte Carlo ap-

proach. When the attitude uncertainty became large,

the uncertainty quantified by the Gauss-Bingham den-

sity remained in close agreement with the true density,

where that of the MEKF did not.
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Multivariate Angular Filtering
Using Fourier Series
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GERHARD KURZ
UWE D. HANEBECK

Filtering for multiple, possibly dependent angular variates on

higher-dimensional manifolds such as the hypertorus is challenging

as solutions from the circular case cannot easily be extended. In this

paper, we present an approach to recursive multivariate angular es-

timation based on Fourier series. Since only truncated Fourier series

can be used in practice, implications of the approximation errors

need to be addressed. While approximating the density directly can

lead to negative function values in the approximation, this problem

can be solved by approximating the square root of the density. As

this comes at the cost of additional complexity in the algorithm,

we present both a filter based on approximating the density and

a filter based on approximating its square root and closely regard

the trade-offs. While the computational effort required for the fil-

ters grows exponentially with increasing number of dimensions, our

approach is more accurate than a sampling importance resampling

particle filter when comparing configurations of equal run time.
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I. INTRODUCTION

Periodic quantities are ubiquitous both in nature [1],

[2], [3] and technology [4], [5], [6]. The most common

periodic quantities are in the form of angles, such as the

orientation in a two-dimensional space, but a variety of

other periodic quantities exist, such as the phase of a

signal [7], [8]. When dealing with orientations, we are

usually only interested in the current orientation in our

coordinate system and do not aim to count how often the

object has revolved around the axis of rotation. While

neglecting the latter simplifies the task, estimators need

to be carefully crafted to properly account for the effects

of periodicity.

For recursive Bayesian estimation, uncertainties in

the system and measurement models have to be rep-

resented, e.g., via transition densities and likelihoods.

Filters on linear domains that assume the support of the

prior and posterior densities to be unbounded, such as

the Kalman filter, have underlying assumptions that are

incompatible with periodic manifolds. However, most

periodic domains are locally similar to linear ones when

regarding a very narrow region of the domain. Since

the importance of a region to the estimation problem

strongly depends on the probability mass in the region,

densities that are concentrated on a very narrow region

can still be handled with sufficient accuracy using ap-

proaches that rely on the linearity of the domain. There-

fore, problems featuring very little uncertainty can still

be handled properly using a modified Kalman filter or

an unscented Kalman filter [9].

However, the wider the probability mass is spread

on the domain, the less the estimation problem behaves

like on a linear domain. For higher uncertainties, fil-

ters assuming linearity of the domain degrade and can

become entirely misleading. In these cases, approaches

based on directional statistics specifically crafted for pe-

riodic domains become a necessity. Directional statistics

[10], [11] puts the focus on properly handling periodic

manifolds by providing many analogues to concepts

that are commonly used on linear manifolds. Fields in

which directional statistics is applied include, e.g., geo-

sciences [1], biology [2], [12], analysis of crystal struc-

tures [13], scattering theory [14], MIMO radar systems

[15], robotics [4], and signal processing [5], [6], [16].

The main focus of directional statistics is on two

classes of topologies. One of the two classes is the

Fig. 1. A mixture of two bivariate wrapped normal distributions

shown as a heatmap. The two modes are shown in dark red.
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hypersphere Sd, which is the surface of the unit ball

in Rd+1. The other important topology is the Cartesian
product of multiple circles S1£ ¢¢ ¢£ S1 called hyper-
torus, which will be the focus of this paper. The hy-

pertorus is the proper topology to use when dealing

with multiple, possibly stochastically dependent angles

in the range of [0,2¼). Examples featuring a hyper-

toroidal topology include angles at different points in

time or connected rotatory robotic joints. If the vari-

ates of the random vector are stochastically indepen-

dent, they can be treated as independent random vari-

ables and filters for circular topologies can be used. For

the circle, several filters have been proposed [17], [18],

[19], [20], [21], [22]. However, filters for multivariate

angular problems are necessary if the random vector

cannot be separated into multiple independent random

variables. For example, if the random variables x and y

are independent, the two variates of the vector [x x+ y]T

are (usually, but not necessarily) dependent. They can,

however, be easily transformed into a problem featur-

ing independent variates that can be estimated indepen-

dently. The obtained estimates can then be transformed

back for use in the original problem featuring dependent

variates. In practice, transforming the problem in a way

that causes the components to be independent is usually

nontrivial and frequently impossible.

On linear domains, an important filter is the Kalman

filter that scales well with increasing number of variates

and yields optimal estimation results if certain condi-

tions are met. The Kalman filter can handle correlations

and scales no more than cubically in the number of vari-

ates. For nonlinear system or measurement models, such

an efficient and optimal solution does not exist in gen-

eral. Therefore, even on linear domains, nonlinear esti-

mation is a challenging task, especially for multivariate

problems. On periodic domains, estimation problems

are inherently nonlinear and thus challenging to deal

with for higher numbers of variates.

For multivariate angular estimation, a recursive fil-

ter has been suggested in [23] for the two-dimensional

torus. However, due to the approximation with a single

bivariate wrapped normal distribution, multimodal bi-

variate posteriors, such as the one shown in Fig. 1, can-

not be modeled adequately. As an alternative for toroidal

and hypertoroidal estimation problems, the very general

concept of a sampling importance resampling (SIR) par-

ticle filter [24] that is popular on linear domains can be

adapted in a straightforward manner to periodic mani-

folds.

In this paper, we generalize a recursive Bayesian es-

timator based on Fourier series, which we proposed for

univariate densities on the circle in [21]. Our new ap-

proach to multivariate angular estimation problems on

the hypertorus is based on representing the density or

its square root using a multidimensional Fourier series.

Based on the representation used, we either call the fil-

ter the (angular) Fourier identity filter or the (angular)

Fourier square root filter and we abbreviate their names
as IFF and SqFF. We show that the prediction and filter

operations can be performed in computationally effi-

cient ways, never exceeding an asymptotic complexity

of O(n logn) for n Fourier coefficients and a fixed num-

ber of variates. However, for estimation problems with

a higher number of variates, it is advisable to use more

Fourier coefficients.

The rest of this paper is structured as follows. We

give a brief explanation on how to perform recursive

Bayesian estimation in general and lay out the required

operations in the next section. We introduce the basics

of Fourier series and directional statistics that are a

prerequisite for our proposed approach in the third and

fourth section. In the fifth section, we address related

work and explicate the key idea of our proposed filters.

In Sec. VI, we introduce an actual implementation of

the Fourier filters. A comparison of our proposed filters

and an evaluation comparing the Fourier filters with

other approaches is given in Sec. VII. A conclusion

and an outlook is provided in Sec. VIII. Finally, we

present some useful properties of the Fourier series

representations in the appendix.

II. RECURSIVE BAYESIAN ESTIMATION
While a lot of effort in estimation theory is geared

towards estimating the mean of the posterior density,

keeping track of the whole density is usually required

for accurate results over multiple time steps. The focus

on approximating the mean can be explained by the

fact that on linear domains, the mean of the posterior

density is the minimum mean squared error estimator

[25, Sec. 10.3]. However, if the density is to be reused in

future time steps, the mean of the posterior density itself

does in general not suffice for an accurate calculation of

the mean of the posterior density in future time steps. In

the case of linear systems with Gaussian noise on linear

domains, keeping track of the whole density is easy–

the resulting Gaussian posterior density is precisely

described by the mean vector and the covariance matrix.

For noise terms that are not exactly Gaussian dis-

tributed and especially for nonlinear models, describ-

ing the precise posterior density using a limited number

of parameters is challenging or impossible even on lin-

ear domains. Many estimators focus on approximating

the posterior density using a parameterized density of a

prespecified family of densities. For example, Gaussian

assumed density filters [26], [27], [28], [29] try to find

a suitable Gaussian approximation for the true posterior

density. To increase the accuracy of the approximation,

Gaussian mixtures [26] can be used but mixtures entail

further problems concerning component reduction [30].

Another popular approach is to use an SIR particle filter

[24]. While simple particle filters can be used to asymp-

totically approximate moments such as the mean over

multiple time steps, they are non-deterministic and do

not directly provide a continuous approximation of the

density.
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In the subsections of this section, we introduce the

general formulae that can be used for recursive Bayesian

estimation with given likelihoods and transition den-

sities and lay out the required operations for imple-

menting a recursive Bayesian estimator. The formulae

presented are suitable for manifolds with a topological

group structure, such as Rn and the hypertorus.

A. Prediction Step

Theprediction stepcanbedescribedby theChapman—

Kolmogorov equation

f
p
t+1(xt+1 j z 1, : : : ,z t)

=

Z
−x

fTt (xt+1 j xt)fet (xt j z 1, : : : ,z t)dxt,

in which −x denotes the sample space–for hypertori,

[0,2¼)d–fTt the transition density, f
e
t the posterior den-

sity, and f
p
t+1 the prior density based on measurements

up to the time step t. For identity models involving ad-

ditive noise on linear domains, we can write

x t+1 = x t+w t, (1)

with wt distributed according to f
w
t . On periodic do-

mains, this becomes

x t+1 = (x t+w t) mod 2¼,

which includes a nonlinear transformation. In the case

of additive noise, we can simplify the formula for f
p
t+1 to

f
p
t+1(xt+1 j z1, : : : ,z t)

=

Z
−x

fwt (xt+1¡ xt)fet (xt j z1, : : : ,z t)dxt

= (fwt ¤fet )(xt+1)
for both linear and circular domains and are able to

perform the prediction step by calculating a continuous

convolution.

B. Filter Step

If we obtain a measurement and know the corre-

sponding measurement likelihood, we can use Bayes’

formula for the filter step. This essential concept can be

formulated as

fet (xt j z1, : : : ,z t) =
fLt (z t j xt)fpt (xt j z1, : : : ,z t¡1)R

−x
fLt (z t j xt)fpt (xt j z1, : : : ,z t¡1)dxt

/ fLt (z t j xt)fpt (xt j z1, : : : ,z t¡1),
with the likelihood function fLt . It is important to note

that the denominator is independent of xt and can thus

be treated as a constant. Since we know that a proper

pdf integrates to one, we can ignore the denominator if

we have other means to normalize the density.

III. BASICS OF DIRECTIONAL STATISTICS

In this section, we introduce important concepts of

directional statistics. In directional statistics, there are

counterparts to many important concepts used in the

context of linear domains, some of which are addressed

in this section. We always assume that our periodic

region has a size of 2¼ along each dimension. While

most formulae given in this paper do not explicitly

depend on the precise region used, we say that our

periodic quantities are always in [0,2¼) in the scalar

case and in [0,2¼)d in the d-variate case.

In this paper, we use the von Mises distribution as

well as the wrapped normal distribution and generalize

the latter to an arbitrary number of variates. We chose

to use the multivariate wrapped normal distribution as it

can be trivially generalized from its bivariate definition.

Another important concept is that of trigonometric mo-

ments. While these moments are seldom used on linear

domains, they are a useful concept to employ instead

of power moments when dealing with periodic densi-

ties. We also introduce concepts for describing corre-

lations between the variates of a random vector on hy-

pertoroidal manifolds. For further reading, we recom-

mend the two classic books about directional statistics

[10], [11].

A. Von Mises Distribution

The von Mises distribution [10, Sec. 3.5], also called

the circular normal distribution [11, Sec. 2.2.4], is a

popular circular distribution. A useful property of this

distribution is that the product of two von Mises dis-

tributions yields an (unnormalized) von Mises distribu-

tion again. The density of the von Mises distribution is

given by

fVM(x;¹,·) =
e·cos(x¡¹)

2¼I0(·)
,

with I0(¢) being the modified Bessel function of the first
kind, ¹ 2 [0,2¼) being the location parameter, and ·¸ 0
describing its concentration.

B. Wrapped Normal Distribution

The wrapped normal distribution [10, Sec. 3.5] can

be, visually speaking, obtained by wrapping a Gaussian

distribution around the circle and summing up all prob-

ability mass at each point. The density is defined as

fWN(x;¹,¾
2) =

X
j2Z
N (x+2¼j;¹,¾2),

in which we parameterize the density based on the mean

¹ 2 [0,2¼) and the variance ¾2 of the underlying normal
distribution. We use the variance instead of the standard

deviation to provide a definition that is consistent with

the multivariate case introduced in the next subsection.

C. Multivariate Wrapped Normal Distribution

The concept of a wrapped normal distribution can

be generalized to higher dimensions, e.g., to the torus

as a bivariate wrapped normal (also called wrapped

bivariate normal) distribution [11, Sec. 2.3.2]. For the

d-variate wrapped normal distribution, we wrap a

208 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 2 DECEMBER 2016



d-variate normal distribution onto the d-dimensional

hypertorus. This leads to the formula

fWN(x;¹,CWN) =
X
j2Zd

N (x+2¼j;¹,CWN)

for the density of the d-variate distribution with the

vector-valued mean ¹ 2 [0,2¼)d and covariance matrix
CWN.

D. Trigonometric Moments

One important concept on linear domains are power

moments, usually simply referred to as moments. Mo-

ments describe useful properties of the distribution and

are important for estimators. As previously mentioned,

the first moment of the posterior density is the MMSE

estimator on linear domains. Distributions of certain

types can be parametrized by some of their moments,

e.g., for the Gaussian distribution, the combination of

the first moment and the second central moment (or

its root) is the most commonly used parameteriza-

tion.

On periodic manifolds, trigonometric (also called

raw) moments feature some of the properties that power

moments have on linear domains. The kth trigonometric

moment (k 2 N) for scalar random variables is given by

[11, Sec. 2.1]

mk = E(e
ikx) =

Z 2¼

0

f(x)eikxdx:

It is also common practice to write trigonometric mo-

ments as vectors instead of as a complex number. For

this representation, used for example in [10, Sec. 3.4.1],

the parts represented by the real and imaginary part are

calculated using separate integrals. However, using Eu-

ler’s formula, it can be shown that the conversion from

one representation to the other is straightforward.

Unlike power moments, trigonometric moments con-

sist of two values–either the real and complex parts or

the two components of the vector–and thus, a single

moment can describe multiple properties. For example,

the first trigonometric moment is not only a measure

of the density’s position but also of its dispersion. The

parameters for some distributions, such as the wrapped

normal and the von Mises distribution, can be derived

from the first trigonometric moment [18]. As trigono-

metric moments express a lot about the density, sev-

eral filters in the circular case approximate trigono-

metric moments and make use of them. Due to the

close relationship of some of the Fourier coefficients

to trigonometric moments, the Fourier filters are no ex-

ception.

For the kth moment of multivariate densities, we

simply stack all kth moments of all variates. Thus, in

the d-variate case, the kth moment is given by

mk =

266664
mk,1

mk,2

...

mk,d

377775=
266664
E(eikx1 )
E(eikx2 )
...

E(eikxd )

377775=
2666664

R
[0,2¼)d

f(x)eikx1dxR
[0,2¼)d

f(x)eikx2dx

...R
[0,2¼)d

f(x)eikxddx

3777775 :
(2)

E. Circular Mean Direction

The circular mean direction, which can be thought

of as an analogue to the linear mean, only describes the

density’s location and can be calculated from the first

trigonometric moment via [10, Sec. 2.2]

¹= atan2(I(m1),R(m1)): (3)

A useful property on linear domains is the linearity

of the expected value, which does not hold for the

circular mean direction [11, Sec. 2.2.1]. For the circular

mean direction in the d-variate case, we simply calculate

the circular mean direction for every component of the

moment vector according to (3), yielding

¹=

2664
atan2(I(m1,1),R(m1,1))

...

atan2(I(m1,d),R(m1,d))

3775 :
F. Angular Correlation Coefficients

A variety of measures of correlation of two angu-

lar random variables have been introduced in the liter-

ature. Examples include the correlation coefficients by

Jammalamadaka and Sarma [31], Johnson and Wehrley

[32], and Jupp and Mardia [33]. One of the correlation

coefficients is used by the only assumed density filter

for bivariate toroidal problems [23] that we know of. As

shown in Appendix D, a limited number of Fourier co-

efficients contain all information necessary to calculate

all correlation coefficients mentioned.

Key to this is the close relationship of the correla-

tion coefficients to a certain covariance matrix. In the

bivariate case, all of these correlation coefficients can

be calculated using entries of the covariance matrix

§ = E

0BBBB@
0BBB@
26664
cos(x1)

sin(x1)

cos(x2)

sin(x2)

37775¡¹c
1CCCA
0BBB@
26664
cos(x1)

sin(x1)

cos(x2)

sin(x2)

37775¡¹c
1CCCA
T
1CCCCA

with

¹
c
= E([cos(x1) sin(x1) cos(x2) sin(x2)]

T),

which can be calculated via

¹
c
= [R(m1,1) I(m1,1) R(m1,2) I(m1,2)]T:

Thus, efficient calculation of this matrix allows efficient

calculation of all correlation coefficients. It is easy to
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extend this covariance matrix to arbitrary multivariate

distributions by stacking the terms for all individual

variates, yielding

§ = E

0BBBBBBBB@

0BBBBBBB@

266666664

cos(x1)

sin(x1)

...

cos(xd)

sin(xd)

377777775
¡¹

c

1CCCCCCCA

0BBBBBBB@

266666664

cos(x1)

sin(x1)

...

cos(xd)

sin(xd)

377777775
¡¹

c

1CCCCCCCA

T
1CCCCCCCCA

with

¹
c
= E([cos(x1) sin(x1) ¢ ¢ ¢ cos(xd) sin(xd)]

T):

IV. BASICS OF FOURIER SERIES

In this section, we give a brief introduction to multi-

dimensional Fourier series, the second concept essential

to this paper. For details regarding Fourier series, we

refer the reader to the two-volume book series about

trigonometric series by Zygmund [34] and books about

harmonic analysis [35].

A. One-Dimensional Fourier Series

Using Fourier series, it is possible to approximate

functions on [0,2¼) using complex exponential func-

tions. The set of functions

feikx j k 2 Zg
is an orthogonal basis that can be used to represent

any square-integrable (also called square-summable)

complex function defined on [0,2¼) using a square-

summable sequence of Fourier coefficients [35, Sec. I-

5]. Since densities encountered in practice are usually

square-integrable, we can write their density f(x) as a

Fourier series

f(x) =

1X
k=¡1

cke
ikx, (4)

where the Fourier coefficients ck 2C fulfillX
k2Z
jckj2 <1:

The Fourier coefficients can be calculated from the

density according to

ck =
1

2¼

Z 2¼

0

f(x)e¡ikxdx:

For real functions, c¡k = c̄k holds [34, Ch. I], causing
imaginary parts to cancel out in (4). Furthermore, it is

also possible to use real basis functions and coefficients

to represent real functions. In this alternative represen-

tation, the series in (4) becomes a weighted sum of sine

and cosine functions of different frequencies.

B. Higher-Dimensional Fourier Series

The straightforward generalization of one-dimen-

sional Fourier series to the d-dimensional case is to use

functions of the orthogonal system

fei(k1x1+k2x2+¢¢¢+kdxd) j k 2 Zdg
to represent functions on the d-dimensional hypercube

[34, Ch. XVII] (or in our case hypertorus) [0,2¼)d. In

the following, we write the basis functions described

above using a dot product as eik¢x and use a vector-
valued index k 2 Zd to specify individual entries ck
of the d-dimensional Fourier coefficient tensor. Using

this notation, a multidimensional Fourier series can be

written as
f(x) =

X
k2Zd

cke
ik¢x:

The individual Fourier coefficients can then be calcu-

lated via

ck =
1

(2¼)d

Z
[0,2¼)d

f(x)e¡ik¢xdx: (5)

In this paper, our focus is on Fourier series for which

only n specific coefficients are nonzero and we only

consider sets of indices J that are subsets of the integer

lattice Zd with an equal subset of Z in each dimension.
If every subset of Z ranges from ¡kmax to kmax in each
dimension, the total number of Fourier coefficients is

n= (2kmax +1)
d. Similar to the one-dimensional case,

c¡k = c̄k holds for real functions.

REMARK 1. The formulae for the Fourier coefficients

bear a close resemblance to the trigonometric moments.

The kth trigonometric moment mk can be calculated

from the Fourier coefficients via

mk = (2¼)
d[c¡k,0,:::,0 c0,¡k,0,:::,0 ¢ ¢ ¢c0,:::,0,¡k]T:

Thus, all trigonometric moments and especially the first

trigonometric moment required for the calculation of

the circular mean direction can be calculated efficiently

from the Fourier coefficients. On the other hand, cal-

culating arbitrary Fourier coefficients from the trigono-

metric moments is, in general, only possible in the one-

dimensional case. For higher dimensions, many entries

of the Fourier coefficient tensor do not have correspond-

ing entries in the moment vectors as defined in (2). We

visualize this for the two-dimensional case in Fig. 2.

In Appendix D, we show that there is a relationship

between the covariance matrix described in Sec. III-F

and other entries of the Fourier coefficient tensor.

V. RELATED WORK AND KEY IDEA

For our approach, it is important to note that many

important multivariate densities–such as the multi-

variate wrapped normal density–are square-integrable

and thus lend themselves well to approximations using

Fourier series. Mardia also states this observation for the

univariate case in his book [10, Ch. 3—4], noting that if

the Fourier coefficients are square-summable, the cor-

responding density is equal to the Fourier series almost

everywhere.

Willsky discusses optimal filtering using non-

truncated Fourier series with an infinite number of co-
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Fig. 2. Visualization of the relationship between the Fourier

coefficients and the trigonometric moments of a bivariate

distribution. Fourier coefficients that are unrelated to all

trigonometric moments are shown in blue, coefficients that are

related to the first entry of a trigonometric moment vector are shown

in green, and coefficients that are related to the second entry are

shown in yellow. The zeroth coefficient in the middle determines

both entries of the zeroth trigonometric moment vector and is

identical for all (normalized) densities.

efficients in [6]. Since infinite series cannot be handled

computationally, he discusses practical implementations

in [16]. Willsky deems the performance of a filter work-

ing with truncated Fourier series to be insufficient for

few coefficients and suggests making the assumption

that the density is distributed according to a wrapped

normal distribution, which we believe is too restrictive.

Fernández-Durán [36] observes that when approxi-

mating densities using Fourier series, the truncation of

the coefficient vector can cause negative function values

and suggests a computationally expensive way to en-

sure nonnegativity. In the context of nonlinear filtering

for linear domains, Brunn et al. [37], [38] argue that ap-

proximating a transformed version of the pdf allows the

reconstruction of a valid density with only nonnegative

values in every time step.

Based on this idea, we have presented a filter for

univariate periodic densities in [21] that ensures the

validity of a density function

f : [0,2¼)!R+0
by approximating the square root of the density. Ap-

proximating the square root g(x) =
p
f(x) of the den-

sity is reasonable as the square root of every density is

square-integrable sinceZ
[0,2¼)

g(x)2dx=

Z
[0,2¼)

f(x)dx= 1

Fig. 3. Different representations that are used by the filters.

holds. Therefore, the Fourier coefficients are square-

summable and thus converge to zero, facilitating the

approximation via a Fourier series. Furthermore, if gk
max

denotes the truncated Fourier series respecting the co-

efficients from ¡kmax to kmax, the convergence of

gk
max

k
max
!1¡!
p
f also implies g2k

max

k
max
!1¡! f

almost everywhere. For this representation, we showed

in [21] how prediction and filter steps can be calculated

efficiently and accurately using the Fourier coefficients

for univariate estimation problems. In a scenario featur-

ing bimodality, the filter presented outperformed both a

grid filter and a particle filter.

In this paper, we generalize the approach presented

in [21] to higher dimensions and approximate multivari-

ate periodic densities or their square root using multi-

dimensional Fourier series. Based on these approxima-

tions, we describe how the prediction and filter steps

of a recursive Bayesian estimator can be calculated effi-

ciently in the multivariate case. Since run time is crucial

for high numbers of variates, we put emphasis on com-

paring configurations of equal run time. Furthermore,

we closely regard the IFF, which has disadvantages in

theory but features a lower run time when using an iden-

tical number of coefficients.

VI. RECURSIVE BAYESIAN ESTIMATION BASED ON
FOURIER SERIES

In this section, we present how a recursive Bayesian

estimator can be implemented based on approximating

the density or its square root using a Fourier series. For

the SqFF, we are dealing with a total of four representa-

tions that can be used to obtain values of the probability

density (see Fig. 3). These include the original func-

tion, the Fourier coefficients of the original function, the

square root of the function, and the Fourier coefficients

thereof. Only the first two representations are used in

the IFF. Deriving a Fourier series representation for a

function is commonly referred to as Fourier analysis

whereas reconstructing the function is frequently called

Fourier synthesis. As the different representations have

implications for the algorithmic implementation of the

operations, we will make a clear notational distinction

between Fourier coefficient tensors representing the ac-

tual density Cid and coefficient tensors representing the
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square root of the density Csqrt and apply the same no-
tation to the individual entries of the tensors denoted by

cidk and c
sqrt
k with the vector-valued index k.

For the upper two representations in Fig. 3, there

are important dualities that we make use of. The con-

volution of two functions corresponds to a Hadamard

(entrywise) product of their Fourier coefficient tensors.

Furthermore, the multiplication of two functions rep-

resented as a d-dimensional Fourier series can be per-

formed using a d-dimensional discrete convolution of

the coefficient tensors.

In order to perform (or at least approximate) the pre-

diction and filter steps described in Sec. II, we first need

to be able to transform arbitrary densities and likeli-

hoods into the two Fourier series representations. Sec-

ond, we need to be able to perform multiplications and

normalizations for the filter step in the respective rep-

resentation. Third, convolutions are necessary to per-

form prediction steps for an identity model with addi-

tive noise (1). While exact results for both operations

can be obtained in the IFF, an increase in the number of

coefficients would be inevitable. While we may allow

the number of coefficients to vary over time, parameter

reduction becomes inevitable in the long run. Parame-

ter reduction generally induces an approximation and is

also necessary for the SqFF. For our implementation of

the filters, we do not allow the number of coefficients

to vary over time and truncate to an identical number

of coefficients after each prediction and filter step.

In the following, we describe how the filter step,

the prediction step, and the parameter reduction can

be performed in O(n logn) for n Fourier coefficients.

Further properties that are useful to applying the filter in

practice but are not essential to the filter and prediction

step are given in the appendix.

A. Transforming Multivariate Densities

An efficient approach to Fourier analysis was pro-

posed by Cooley and Tukey [39]. This approach has

become widespread for calculating the closely related

discrete Fourier transform [40, Ch. 2] and is nowadays

known as the fast Fourier transform (FFT) [41], which

is also how we will refer to it and its higher-dimensional

generalizations for the remainder of this paper.

The complexity of the FFT is O(n logn) for a total

number of n coefficients. However, for a fixed kmax, the

number of coefficients still grows exponentially with

the dimensionality of the space. This is not a serious

problem for low numbers of variates and we have veri-

fied good filter results with fast run times for densities

with up to five variates. To obtain a Fourier series ap-

proximation of the square root of a density using the

FFT, there is (aside from calculating the square root of

each function value) no additional overhead involved.

In the one-dimensional case, we were able to derive

closed-form formulae for the coefficients for many im-

portant univariate densities [21]. In Appendix A of this

paper, we provide the formula for the Fourier coeffi-

cients of the multivariate wrapped normal distribution.

While closed-form formulae can lead to lower run times,

the cost of calculating n coefficients is always at best in

O(n) when at least n coefficients are required for an

exact representation of the density.

For identity system and measurement models with

independent, time-invariant additive noise terms, we can

reduce the computational effort involved in obtaining

the required Fourier coefficients. In these cases, it is not

necessary to transform the density of the system noise

and the likelihood in each time step. The density of the

system noise simply stays identical while the likelihood

is only influenced by the measurement via a shift.

For example, for an additive system noise that is

distributed according to a multivariate wrapped normal

distribution, the density of the system noise is

fwt (wt) = fWN(wt;¹,CWN)

in every time step. Similarly, we can avoid the need for

transforming the likelihood multiple times for additive

noise terms. If the likelihood is

fLt (z t j xt) = fWN(z t;xt,CWN) = fWN(xt;z t,CWN)
we can initially transform the likelihood when setting

z = 0 (meaning, fWN(x;0,CWN) in our case) and then
calculate the Fourier coefficients of the actual likelihood

respecting the current measurement z t from these coef-

ficients. The individual Fourier coefficients cshiftedk for a

function shifted by z can be calculated according to

cshiftedk = cke
¡ik¢z, (6)

which is a straightforward generalization of the shift-

ing operation for the scalar case (Theorem 1.1 (iv) in

[34, Sec. II-1]).

B. Filter Step

To implement the filter step, two operations have to

be performed for the two filters. The first operation is

a multiplication of the prior density f
p
t (xt j z1, : : : ,z t¡1)

and the likelihood fLt (z t j xt). The coefficient tensors for
the intermediate, unnormalized results will be called
³Ce,idt and ³Ce,sqrtt . In the second step, the densities are

normalized to yield the coefficient tensors Ce,idt and

Ce,sqrtt to be used in the next prediction (or filter) step.

The filter steps for the two Fourier filters are illustrated

in Fig. 4 and the necessary operations are explained in

detail in the following.

1) Multiplication of Two Densities: The first operation
necessary to perform the filter step of our Bayesian filter

is the multiplication operation. Let us now denote the

Fourier coefficient tensor of f
p
t (xt j z1, : : : ,z t¡1) as Cp,idt

and refer to the Fourier coefficient tensor of fLt (z t j xt)
(for a fixed measurement z t, depending only on the state

xt) as C
L,id
t . For the IFF, we can then directly obtain
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Fig. 4. Filter step of the IFF and the SqFF. (a) Illustration of the

filter step of the IFF. (b) Illustration of the filter step of the SqFF.

the coefficient tensor ³Ce,idt for the new Fourier series

representing the unnormalized multiplication of the two

functions via
³Ce,idt =Cp,idt ¤CL,idt ,

in which ¤ denotes the discrete convolution.
The discrete convolution can be performed in

O(n logn) using FFT-based convolution approaches or

by using alternative convolutions methods tailored to

the multidimensional tensor convolution [42]. Since the

discrete convolution of two tensors results in a larger

tensor, parameter reduction as explained in Sec. VI-C

becomes necessary.

The multiplication can be performed similarly for

the SqFF. Owing to the fact that for all functions f
p
t (xt j

z1, : : : ,z t¡1) and f
L
t (z t j xt) and for all vectors xt and z t

in the respective domainsq
f
p
t (xt j z1, : : : ,z t¡1) ¢

q
fLt (z t j xt)

=
q
f
p
t (xt j z1, : : : ,z t¡1)fLt (z t j xt)

holds, we can simply multiply the functions in the

square root representation. Thus, the multiplication can

be performed analogously to the IFF. For the Fourier

coefficient tensors Cp,sqrtt of
q
f
p
t (xt j z1, : : : ,z t¡1) and

CL,sqrtt of
p
fLt (z t j xt) (again, for a fixed measurement),

we can calculate the unnormalized coefficient tensor
³Ce,sqrtt in the square root representation using

³Ce,sqrtt =Cp,sqrtt ¤CL,sqrtt :

2) Normalization: The second operation necessary

for the filter step is the normalization. We use ³ct,k to

refer to an entry of the coefficient tensor to be nor-

malized, such as ³Ce,idt or ³Ce,sqrtt as obtained from the

multiplication above. For the normalization, we need to

integrate over the whole domain of the function, which

is easy when a Fourier series is used to represent a real

function. In the integral, all terms except the one stem-

ming from the first coefficient integrate to zero. This

is obvious since the exponential functions for all other

coefficients can be converted (pairwise) into sine and

cosine functions of differing (but nonzero) frequencies

using Euler’s formula. Integrating these trigonometric

functions over [0,2¼) always yields zero. Therefore, the

integral over the whole function can be calculated ac-

cording toZ
[0,2¼)d

X
k2Zd

³cidt,ke
ik¢xdx=

Z
[0,2¼)d

³cidt,0dx= (2¼)
d³cidt,0

in the non-rooted representation. Thus, we can normal-

ize the density by dividing all coefficients by (2¼)d³cidt,0,

which ensures that the coefficient with index 0 of the

new, normalized density is cidt,0 = 1=(2¼)
d.

For the square root version, we can calculate the

integral of the function by determining the Fourier co-

efficient with index 0 of the non-rooted representation.

The coefficient ³cidt,0 can be calculated from the coeffi-

cients ³c
sqrt
t,k of the square root representation via

³cidt,0 =
X
k2J

³c
sqrt
t,k
³c
sqrt
t,¡k =

X
k2J
j³csqrtt,k j2:

Based on this insight, we can ensure that the density

represented by the Fourier series integrates to one by

dividing all ³c
sqrt
t,k by

q
(2¼)d

P
k2J j³csqrtt,k j2. Since calcu-

lating the sum of the square of the absolute values is in

O(n) and the division of all coefficients is also in O(n),

normalization is possible in O(n) for both representa-

tions.

C. Parameter Reduction

The need for parameter reduction in the Fourier fil-

ters is reminiscent of nonlinear filters on linear domains.

Except for very simple problems, representing the exact

result of both convolution and multiplication operations

usually results in an increase in the number of parame-

ters. In the long run, parameter reduction becomes nec-

essary and usually requires approximations. A popular

example of nonlinear estimators are estimators based on

Gaussian mixtures. For mixtures, component reduction

is a non-trivial and expensive operation, in which the

density has to be approximated using a lower number

of components while preserving the shape of the density

as well as possible [30].

Parameter reduction is also essential for our pro-

posed approach using Fourier series. As described in

Sec. VI-B.1, the multiplication operation requires calcu-

lating a discrete convolution of the coefficient tensors,

resulting in an increase in the size of the tensor. As

common densities and especially their square roots are

square-integrable, the coefficients tend to zero in every

dimension. Therefore, the influence of the coefficients

on the shape of the function converges to zero for in-

creasing kkk and it is thus reasonable to use truncation
as an easy way for parameter reduction.

As can be seen in Sec. VI-B.2, renormalization is

necessary after truncation for the SqFF as the integral
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Fig. 5. Prediction step of the IFF.

depends on the sum of the squared absolute values of

the coefficients. For the IFF, the integral only depends

on cidt,0 and renormalization is thus not required.

D. Prediction Step

To perform the prediction step for an identity sys-

tem model with additive noise (1), we only need to be

able to convolve two densities. Convolving two func-

tions using their Fourier coefficient tensors is possible

very efficiently as this only involves a Hadamard prod-

uct. The prediction step for nonlinear system models

usually requires more than a convolution operation. An

approach for arbitrary transition densities that can easily

be extended to the multivariate case is laid out in [43].

1) Prediction Step of the IFF: As illustrated in Fig. 5,

we can directly use the rule for the convolution of

two functions to obtain the Fourier coefficient tensor

of the result. If Ce,idt and Cw,idt are the truncated Fourier

coefficient tensors of fet (xt j z1, : : : ,z t) and fwt (¢), we can
obtain the coefficient tensor Cp,idt+1 for

f
p
t+1(xt+1 j z1, : : : ,z t) = (fet ¤fwt )(xt+1)

via the use of the Hadamard product ¯ according to
Cp,idt+1 =C

e,id
t ¯Cw,idt :

2) Prediction Step of the SqFF:Matters are more com-
plicated when aiming to obtain the coefficient tensor

Cp,sqrtt representing the square root of the convolution

of the densities. Since we intend to obtain the Fourier

coefficients forq
f
p
t+1(xt+1 j z1, : : : ,z t) =

p
(fet ¤fwt )(xt+1),

we cannot simply use the Hadamard product of the

coefficient tensors Cp,sqrtt and Cw,sqrtt as this would yield

the coefficient tensor for the Fourier series representingq
fet (xt j z1, : : : ,z t) ¤

p
fwt (¢),

which is, in general, unequal top
(fet ¤fwt )(xt+1):

Instead, we first calculate the Fourier coefficient ten-

sor for (fet ¤fwt )(xt+1) and then determine the coeffi-
cients of the square root, which we lay out in the follow-

ing and illustrate in Fig. 6. First, we derive the Fourier

coefficients for the non-rooted densities fet (xt j z1, : : : ,z t)

Fig. 6. Prediction step of the SqFF. The colors indicate the

respective representation as laid out in Fig. 3.

and fwt (¢) from the square root representations. These

coefficient tensors are denoted by C̃e,idt and C̃w,idt to

emphasize that they contain more coefficients than the

original coefficient tensors Ce,sqrtt and Cw,sqrtt . We can use

the multiplication explained in Sec. VI-B.1 to derive the

formulae

C̃e,idt =Ce,sqrtt ¤Ce,sqrtt and C̃w,idt =Cw,sqrtt ¤Cw,sqrtt :

Based on this, we can use the discrete convolution to

obtain the Fourier coefficient tensor C̃p,idt+1 for f
p
t+1(xt+1 j

z1, : : : ,z t) via

C̃p,idt+1 = C̃
e,id
t ¯ C̃w,idt :

As the next step, we wish to obtain the Fourier

coefficient tensor for the square root representation with

a specified number of coefficients. For this, we first

calculate n function values of f
p
t+1(xt+1 j z1, : : : ,z t) on

an equidistant grid, take the square root these function

values, and then use the FFT to obtain the Fourier

coefficient tensor. To obtain the function values on an

equidistant grid, we could now naïvely evaluate the

Fourier series with coefficient tensor C̃p,idt+1 on all n grid

points. However, to achieve a good run time behavior,

we have to keep one more issue in mind. Unless there is

a reason to do otherwise, it is reasonable that the number

of coefficients to calculate for the result is linearly

dependent on the number of coefficients used in the

coefficient tensor C̃p,idt+1. Since each function evaluation

is in O(n), n function evaluations would be in O(n2).

Therefore, it is significantly cheaper to use the inverse
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FFT with a complexity of O(n logn) to calculate the

required n function values.

With the function values of f
p
t+1(xt+1 j z1, : : : ,z t) at

our disposal, we can calculate the square root of each

value toobtain n functionvaluesof
q
f
p
t+1(xt+1j z1, : : : ,z t).

These function values can then to be used to approxi-

mate n Fourier coefficients via the FFT. Since the most

expensive operations are the inverse FFT, the FFT, and

the discrete convolution, all of which are in O(n logn),

the total effort is in O(n logn).

In the step of calculating the square root, approxi-

mation errors are caused because taking the square root

induces higher frequencies that are not accounted for.

Furthermore, as the discrete convolutions used in the

calculation of C̃e,idt and C̃w,idt result in an increase in the

number of coefficients, we need to perform parameter

reduction if the coefficients should not be allowed to

increase with every prediction step. The parameter re-

duction can be performed as described in Sec. VI-C.

Afterward, a normalization step is required due to the

approximations performed.

VII. EXPERIMENTS AND EVALUATION

In this section, we compare our implementations

of the two Fourier filters to each other and to other

applicable filters. Both filters are available as part of

libDirectional [44], a Matlab toolbox for directional

statistics with a focus on recursive Bayesian estimation.

In Sec. VII-A, we lay out theoretical benefits of the

SqFF and describe an experiment to compare the filter

steps of the Fourier filters in the univariate case. In the

experiment, measurements are simulated regardless of

how likely they are. This means we simulate both very

likely measurements and unlikely measurements that we

would rarely obtain if all underlying assumptions of

the filter are correct. For all of these measurements,

we evaluate the circular mean direction (3) and the

approximation quality of the posterior density provided

by the IFF and SqFF.

In the second subsection, we evaluate the error in the

form of an angular distance for the two Fourier filters in

two bivariate scenarios and one trivariate scenario with

additive, wrapped normally distributed noise terms and

compare the results with those of other applicable filters

in these scenarios. While there is a bivariate wrapped

normal filter for toroidal manifolds [23], the only ap-

proach to the knowledge of the authors that is applicable

to arbitrary multivariate angular estimation problems is

the particle filter. Since the number of coefficients used

by the Fourier filters and the number of particles used

by the particle filter has a major impact on the filter per-

formance, we evaluated several possible configurations.

In the scenarios in the second subsection, the likelihoods

to be used in each time step can be efficiently calculated

using an initial transformation of the likelihood that is

shifted according to the measurement obtained.

In the third subsection, we simulate an application of

the filters to estimating the angles of a robotic arm based

on measurements of the position of the end effector.

This application shows that we can use our filter as

long as we have a likelihood function and do not require

a periodic measurement space. However, this scenario

requires more computational effort for the Fourier filters

as a Fourier series approximation of the likelihood has

to be performed in each time step.

Unlike our evaluation of the circular SqFF in [21],

we do not regard the quality of the pdfs and cdfs for the

multivariate cases. First, it is difficult to derive a con-

tinuous pdf from an SIR particle filter and comparing

the cdf becomes increasingly difficult for higher dimen-

sions, especially as a starting point of the integration

has to be chosen on periodic domains. Second, we do

not have any other filter to numerically approximate the

ground truth with at our disposal. In our current evalua-

tion, we also compare the run time of the filters and take

the run times into account when assessing the individual

filters.

A. Comparing the IFF and the SqFF for Varying
Measurements

Allowing the function approximating the density to

become negative has many inherent theoretic disad-

vantages as several useful concepts depend on valid

pdfs.1 Based on an approximation of the pdf with neg-

ative function values, no valid cdf can be derived. Fur-

thermore, sampling the density using equally weighted

samples may not be possible and sampling schemes

such as Metropolis—Hastings sampling [46] do not

work. Moreover, some measures of similarity between

two densities, such as the Kullback—Leibler divergence

[47, Sec. 8.5] and the Hellinger distance [48], cannot be

calculated due to the logarithm or square root involved.

In most cases, we observed the approximation qual-

ity of the prior density or likelihood function to be al-

ready superior for the square root representation when

compared with the non-rooted representation with an

identical number of coefficients. An example of this is

shown in Fig. 7. In the following, we regard the fil-

ter step of the Fourier filters and show how both filters

perform when comparing the posterior densities and cir-

cular mean directions obtained.

Even if no truncation is performed in the filter

operations described in Sec. II-B, the approximation

errors in the prior density and the likelihood function

cause errors in the filter result. The severity of this

effect strongly depends on the actual prior density and

likelihood function. One important factor influencing

the quality of the approximation of the posterior density

1Negative probabilities [45] can be a viable tool as long as they

only appear as intermediate results or if implications are made for

other properties that are unobservable simultaneously in the context

of physics. In our case, they have no special semantic but stem from

approximation errors and have a negative impact on our estimator.

MULTIVARIATE ANGULAR FILTERING USING FOURIER SERIES 215



Fig. 7. Von Mises distribution with ¹= ¼ and ·= 10 and

corresponding Fourier series approximations using 7 coefficients.

is the overlap of regions of high and low function values

of the prior density and the likelihood function.

To understand this effect, we have to take a closer

look at the convergence of the Fourier series. A Fourier

series converges in the L2 distance, which is a mea-

sure of the squared absolute deviation. Due to the close

relationship between the L2 distance and the Hellinger

distance, optimizing the L2 distance is reasonable when

regarding one density individually. However, when re-

garding the product of two functions, one also has to

regard the relative deviation to make statements about

the quality of the approximation of the (normalized)

multiplication result. Since the Fourier series converges

regarding the absolute deviation and not regarding the

relative deviation, we expect to see a higher relative de-

viation in regions of low density than in regions of high

density.

This has profound implications for the result of the

multiplication of two functions. Let us assume both

the prior density and the likelihood are unimodal and

are close to zero except for values §¼=2 around their
modes, such as the von Mises distribution with ·= 10

that we show in Fig. 7. The prior distribution shall now

have a mean of ¹= 3
4
¼ and the likelihood of ¹= 3

2
¼.

Then, as can be seen in Fig. 8, the relative error of the

approximation of the likelihood using 7 coefficients is

very high in regions far from the mode, especially when

approximating the function directly. When multiplying

the prior with the likelihood, the small deviations visible

in Fig. 7 are massively amplified in regions of high

relative deviation of the likelihood (and also the other

way around). This leads to a high deviation from the

actual posterior in total. In this example, we can see that

the approximation used in the SqFF is advantageous as

the relative error is significantly less.

However, there is another effect occurring in the fil-

ter step that strongly differs for the two filters. While

it is possible to efficiently ensure that a density repre-

sented by its Fourier coefficients integrates to one both

for the non-rooted and the square root representation

(see Sec. VI-B.2), the underlying pdfs that are integrated

differ substantially. For the square root representation,

Fig. 8. Approximations of the likelihood and the relative error of

the approximations when using Fourier series with 7 coefficients.

The likelihood follows a von Mises distribution with ¹= 3
2
¼ and

·= 10.

the integral is over nonnegative values, whereas negative

function values are possible for the non-rooted version.

Always normalizing to one induces a higher total devi-

ation from the abscissa for functions with negative parts

as positive and negative parts cancel out. Furthermore,

if more than half of the supposed density is negative,

normalization to one causes negative parts to become

positive and vice versa.

In Fig. 9, we show the filter results for different

distances between the modes when the prior density and

the likelihood are von Mises distributions with ·= 10.

Both the prior density and the likelihood function were

approximated using five Fourier coefficients for both

filters and the Fourier series for the posterior densities

were also truncated to five coefficients. Fig. 9a and

Fig. 9b show the posterior density for the two filters

when the modes of the prior density and likelihood

function are ¼=2 apart. While the normalized result of

the Fourier identity filter shows highly negative parts

and has the lowest probability density around the peak

of the true posterior, the main peak of the SqFF matches

that of the true posterior. Furthermore, the result of

the SqFF captures the circular mean direction of the

posterior density correctly, while the IFF is off by ¼.

Fig. 9c and Fig. 9d show the results when the modes of

the two functions are almost ¼ apart. In this case, the

true posterior is much flatter than the filter results that

bear more of a resemblance to a mixture of the original

densities. However, the mean is still correctly captured

by the SqFF, while the IFF is off by ¼.

In Fig. 10, we provide an evaluation depending on

the distance ® between the two modes of the von Mises

distributions. As the first criterion, we evaluate the

quality of the posterior density. Since we are unable to

use the Kullback—Leibler divergence and the Hellinger

distance to compare the result of the IFF to the ground

truth, we calculate the total variation [48] between the

true densities and the filter results according to

d(h1,h2) =

Z
[0,2¼)

jh1(x)¡ h2(x)jdx,
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Fig. 9. Examples for posterior densities provided by the two Fourier filters after a single filter step when using five coefficients. The circular

mean directions of the posterior densities are shown as a vertical line in the respective color. (a) Result obtained using the IFF when the

densities are at a distance of ¼=2. (b) Result obtained using the SqFF when the densities are at a distance of ¼=2. (c) Result obtained using

the IFF when the densities are at a distance of almost ¼. (d) Result obtained using the SqFF when the densities are at a distance of almost ¼.

in which h1 = f1f2=kf1f2kL1 denotes the true density af-
ter the filter step and h2 is the result obtained by the

respective variant of the filter. As the second criterion,

we regard the quality of the point estimates. For this, we

calculate the circular mean direction of the Fourier se-

ries approximation from the first trigonometric moment

that can be easily obtained as described in Remark 1.

Then, we calculate the shorter of the two arc lengths be-

tween the true circular mean direction ¯ and the circular

mean direction of the filter result ° via [11, Ch. 1.3.2]

dUV(¯,°) = min(¯¡ °,2¼¡ (¯¡ °)): (7)

A more in-depth discussion of metrics on the circle is

given in [49, Sec. 2.2.2].

In the experiment, we limit ourselves to the range

® 2 [0,¼¡ 0:01] as the true posterior for ®= ¼ is the
wrapped uniform distribution that does not have a circu-

lar mean direction. The plots clearly show the sensitivity

of the filters to larger distances between the modes. The

two filters tend to perform worse for ® 2 [¼=2,¼¡ 0:01]
than for ® 2 [0,¼=2] both regarding the circular mean
direction and the total variation. Comparing the two fil-

ters with each other, the total variation between the filter

result and the true posterior, as shown in Fig. 10a, can

be seen to be higher in most cases when using the IFF.

This was to be expected as negative function values are

possible for the result of the IFF. Both the negative parts

and the highly positive parts required to cancel out the

negative parts result in a higher total deviation. There-

fore, deviations that are higher than the usual maximum

of the total variation2 can be observed, e.g., in the case

shown in Fig. 9a. The circular mean direction shown

in Fig. 10b is correct for most distances between the

means for both filters. This is because the circular mean

direction of the result is calculated only from the first

trigonometric moment, which is approximated well. Er-

rors in the trigonometric moment usually occur over

multiple time steps as an incorrectly shaped density is

used for the next filter step, resulting in a wrong circular

mean direction. However, as apparent in Fig. 10b, the

circular mean direction can also become totally off in

a single filter step. Using this criterion, the IFF is also

more susceptible to errors than the SqFF. All in all, our

results suggest that the SqFF is more robust when un-

likely measurements are obtained. Furthermore, we can

see that results obtained by the IFF can become totally

unlike the true posterior density and can strongly violate

the properties of valid densities.

2The total variation usually cannot exceed the value of two for valid

densities.
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Fig. 10. Comparison of the performance of the IFF and the SqFF

depending on the distance between the modes of the functions

multiplied. (a) Total variation between the true posterior density and

the densities obtained by the two filters. (b) Distance dUV between

the true circular mean direction and the circular mean directions

provided by the filters.

REMARK 2. Approximating the square root of the den-

sity is not the only option. However, using the square

root ensures nonnegativity of the reconstructed density

while necessitating only few approximations to main-

tain this representation. An alternative would be to use

the logarithm, but the logarithm is highly nonlinear and

especially regions with density values close to zero (in

which the logarithm approaches ¡1) need to be treated
with caution. Nonetheless, we plan to consider other

transformations than the square root in future work.

B. Evaluation of the Circular Mean Direction

Having compared the two proposed Fourier filters

for one filter step in the previous subsection, we now

evaluate the Fourier filters against other state-of-the-

art approaches to multivariate angular filtering by com-

paring the estimation performance and run times when

multiple filter and prediction steps are performed. In all

scenarios, we initialized the filters using an approxima-

tion of the actual prior density used for the simulation.

We have simulated the entire system behavior and the

measurements for 50 time steps and performed alter-

nating prediction and filter steps. A total of 1500 runs

were performed and the true states and the estimation

results at each time step were saved for the calculation

of our evaluation criterion. As the regarded scenarios

feature multivariate estimation problems, we generalize

the distance dUV given in (7) to a vector of angles ¯ and

° as

dMV(¯,°) =

vuut dX
i=1

(min(¯i¡ °i,2¼¡ (¯i¡ °i)))2:

This distance measure is similar to the Euclidean dis-

tance but takes periodicity into account. We calculate

the distance between the ground truth vector and the

estimate provided by the respective filter as a measure

of the error of the estimator. To assess the estimation

quality over all time steps and runs, we calculate the

average of the errors over all time steps and all runs.

Comparing the two Fourier filters regarding the av-

erage error is also an important part of our evaluation.

While the results regarding the approximation of the

density in the previous subsection were much more

promising for the SqFF, the error in the circular mean

direction was identical when the modes of the prior den-

sity and the likelihood function were close, which is a

very common case. Furthermore, as the SqFF requires

more convolution and FFT operations in the prediction

step, the IFF can be used with more coefficients at an

identical run time. Therefore, it is not obvious a priori

which Fourier filter performs better when evaluating the

average error for configurations of equal run time.

All filters were implemented in Matlab without so-

phisticated optimizations and were compared on a lap-

top with an Intel Core i7-5500U processor, 12 GB of

RAM, and Matlab 2016b running on Windows 10. The

run times given are the average run times for each of

the 50 time steps. For all filters, multiple different num-

bers of parameters were used. As kmax was chosen to be

equal in every dimension, the numbers of parameters

for the Fourier filter were always odd integers taken to

the second (bivariate scenarios) or third (trivariate sce-

nario) power. In all evaluations in this subsection, the

likelihood at each time step can be obtained by shifting

an initially transformed likelihood and this was used to

reduce the effort necessary for the Fourier filters.

In the following, we provide evaluation results

for three scenarios. An identity model with additive

noise (1) is used as the system and the measurement

model in all scenarios. The first scenario features bivari-

ate, unimodal transition densities and likelihood func-

tions on the torus. The measurement and system noises

are additive noise terms distributed according to mul-

tivariate wrapped normal distributions. This scenario is

well suited for the use of the bivariate wrapped normal

filter. The second scenario evaluated is also a bivari-

ate scenario but features bimodal likelihoods instead of

unimodal ones. The bimodality is introduced by using
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Fig. 11. Average errors and run times for the different filters in the

bivariate scenario with unimodal likelihoods. (a) Error of the

different filters depending on the number of particles or coefficients

used. (b) Run times of the different filters for one time step

depending on the number of particles or coefficients used.

a mixture of two multivariate wrapped normal distribu-

tions at a distance of one radian in each dimension as

additive measurement noise. Both mixture components

are centered 0.5 radians away from the actual mean

of the density along each axis. Approximating an arbi-

trary likelihood function using a (potentially unnormal-

ized) wrapped normal distribution is no trivial matter

and therefore we have not used the bivariate wrapped

normal filter for this scenario and only compared our

filters with the particle filter. The third scenario features

trivariate densities on the three-dimensional hypertorus.

The likelihoods are bimodal again and consist of two

multivariate wrapped normal distributions at a distance

of one radian in each dimension.

1) Bivariate, Unimodal Scenario: The results shown

in Fig. 11 confirm our intuition that the bivariate

wrapped normal filter is well suited to this scenario.

However, as the results of the Fourier filters show, the

performance of the wrapped normal filter can be slightly

exceeded by the Fourier filters that approximate the

whole posterior density more accurately, facilitating bet-

ter performance in future time steps. While the Fourier

Fig. 12. Average errors and run times for the different filters in the

bivariate scenario with bimodal likelihoods. (a) Error of the different

filters depending on the number of particles or coefficients used.

(b) Run times of the different filters for one time step depending on

the number of particles or coefficients used.

filters already appear to reach their optimal accuracy

using approximately 100 coefficients, the particle filter

does not yet achieve as good of an accuracy for thou-

sands of particles.

When taking the run times into account, the Fourier

filters outperform the bivariate wrapped normal filter.

The quality of the result of the bivariate wrapped normal

filter can be surpassed with numbers of coefficients that

still compare favorably in terms of the run time. While

fast, the particle filter never comes close to the accuracy

of the Fourier filters and the Fourier filters achieve better

results using fast configurations with few coefficients.

The IFF and the SqFF have almost identical estimation

quality, but the IFF is faster. However, the filters achieve

a quality that is close to its optimal estimation quality

using only approximately 100 coefficients–a configu-

ration at which the two filters differ only little in their

run time.

2) Bivariate, Bimodal Scenario: In the results of this

scenario, as shown in Fig. 12, the SqFF can be seen

to provide better convergence when compared with
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the IFF with identical numbers of coefficients. How-

ever, one can argue that the IFF is significantly faster

and that, when comparing configurations with approxi-

mately equal run time, the IFF performs better than the

SqFF.

The results of the particle filter do not reach the ac-

curacy of the Fourier filters even for high numbers of

coefficients. The particle filter using over 2000 parti-

cles is outperformed by the SqFF with less than 500

coefficients in both accuracy and run time. Similarly,

this holds for the IFF, whose estimation quality quickly

surpasses that of the particle filter and which is sig-

nificantly faster, resulting in a better performance for

configurations with comparable run time.

This scenario shows that the run time performance

of the particle filter depends heavily on how fast the

likelihood can be evaluated and even a mixture of

two components instead of a single wrapped normal

distribution can make a clear difference. For the Fourier

filters, this does not hold for the identity model with

additive noise as the likelihood is only transformed once

and shifted afterward.

3) Trivariate, Bimodal Scenario: In the trivariate sce-

nario, the possible configurations of the Fourier filters

become more limited as we only use numbers of coef-

ficients that can be written as an odd integer taken to

the third power. However, as can be seen in Fig. 13, the

superiority of the SqFF over the particle filter is evident.

Its performance with corresponding numbers of param-

eters is better in terms of both the error and the run

time, yielding a significant advantage when comparing

configurations of comparable run time. Compared on

a run time basis, the IFF also outperforms the particle

filter since it can handle over 2000 coefficients with a

run time that is lower than that of the particle filter with

200 particles.

The bad run time performance of the particle filter

is caused by the high computational effort required for

evaluating the trivariate wrapped normal density used

as the likelihood. As the number of variates increases,

the effort involved in evaluating the wrapped normal

distribution grows exponentially. To the knowledge of

the authors, there is, in general, no other way to calcu-

late the density of a wrapped normal distribution with

an arbitrary number of variates other than to sum up

some of the addends of the infinite sum. The number of

addends required to approximate the density with suffi-

cient accuracy increases exponentially with the number

of variates. Thus, the particle filter not only requires

more particles for an increasing number of variates, the

evaluation of the likelihood also becomes exponentially

more expensive. If the filter is used for a large num-

ber of time steps, the problem is far less severe for the

Fourier filters. For an arbitrary number of time steps,

the likelihood and the noise density only have to be

approximated once if the likelihood is shifted in the

computationally efficient way given in (6) in each time

Fig. 13. Average errors and run times for the different filters in the

trivariate scenario with bimodal likelihoods. (a) Error of the different

filters depending on the number of particles or coefficients used.

(b) Run times of the different filters for one time step depending on

the number of particles or coefficients used.

step. Therefore, the expensive likelihood only has to be

evaluated on a grid once at the beginning.

C. Estimating the Joint Angles of a Robotic Arm
In this subsection, we estimate the joint angles of a

robotic arm based on measurements of the position of

the end effector that are perturbed by multivariate Gaus-

sian noise. Such a task could, e.g., arise when trying to

validate the proper functionality of the robotic arm using

external observations. The robotic arm, its joints, and

the angles to be estimated are illustrated in Fig. 14. For

simplicity, we assume that both joints can move freely

and attain any angle. Only point measurements of the

point in red on the end effector are obtained. As the end

effector can only attain positions on a two-dimensional

plane, the measurement is a vector comprising two com-

ponents. To simplify the measurement equation, we set

the zero coordinate of our coordinate system to the cen-

ter of the first joint indicated in green in Fig. 14.

Given the kinematics of the system, we obtain the

measurement equation

h(®) =

·
cos(®1)

sin(®1)

¸
l1 +

·
cos(®1 +®2)

sin(®1 +®2)

¸
l2
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Fig. 14. Illustration of the robotic arm modeled in the simulation.

for ®= [®1 ®2]
T. In our evaluation, we set the joint

lengths l1 = 2 m and l2 = 1 m. To simulate sensor noise,

the measurements are generated according to

z t = h(® t) + v t

with a multivariate Gaussian distributed noise term v t »
N (v;¹,C) with the parameters

¹=

·
0

0

¸
m and C=

·
0:2 0

0 0:2

¸
m2:

While the measurement noise is uncorrelated in the

measurement space, the likelihood function

fL(z t j ®t) =N (z t;h(®t),C)
is, as shown in Fig. 15 for z t = [0 2:3]

T m, asymmet-

ric and the estimation problem thus cannot be trivially

split up into univariate problems. Unlike in the previous

subsection, the measurement equation is nonlinear and

the likelihoods for differing measurements cannot be

obtained by shifting an initial approximation of the like-

lihood. Therefore, a Fourier series approximation has to

be performed in each time step, negatively affecting the

run times of the Fourier filters.

As the system model, we use a periodic analogue to

a random walk model. This means ®t evolves accord-
ing to

® t+1 =® t+w t mod 2¼,

with a time-invariant, multivariate wrapped normally

distributed additive system noise term w t and a modulo

operator that ensures that the angles are always between

0 and 2¼. The parameters ¹ and C of the system noise

w t are identical to those of the measurement noise but

the units are rad and rad2 instead of m and m2.

The scenario was simulated for 50 time steps with

alternating filter and prediction steps. As in Sec. VII-B,

we determine the error dMV in each time step and cal-

culate the average over all 50 time steps and over 1500

runs. The results are depicted in Fig. 16 and are in line

with the results obtained in the other bivariate scenar-

ios. Both Fourier filters outperform the particle filter as

configurations using only few coefficients provide bet-

ter results than the particle filter using 2000 particles.

Fig. 15. Likelihood when the measurement z
t
= [0 2:3]T m is

obtained.

Fig. 16. Average errors and run times for the different filters in the

scenario featuring a simulated robotic arm. (a) Error of the different

filters depending on the number of particles or coefficients used.

(b) Run times of the different filters for one time step depending on

the number of particles or coefficients used.

However, as expected, the run time of the Fourier filters

is slightly worse than in the previous scenarios as the ap-

proximation of the likelihood in every time step causes

additional overhead. The IFF is faster than the SqFF

with equal results, but the difference in the run time

is not that pronounced when using the lowest number

of coefficients necessary to obtain the highest accuracy

achievable for the Fourier filters in this scenario.
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VIII. CONCLUSION

In this paper, we have proposed filters based on

Fourier series for multivariate angular estimation prob-

lems that fill a gap in recursive Bayesian estimation on

hypertoroidal manifolds and allow for good estimation

results even when likelihood functions or densities oc-

curring are multimodal. In our evaluation of the error in

the circular mean direction, the proposed IFF and SqFF

achieve better results than the particle filter when com-

paring configurations of equal run time. The Fourier fil-

ters also outperform the bivariate wrapped normal filter

in a scenario for which the latter is well suited.

Out of the proposed Fourier filters, the SqFF tends

to perform better when comparing the error on a per

coefficient basis. However, compared on a run time ba-

sis, the IFF is superior when only the estimation quality

of the circular mean direction is evaluated. Since the

SqFF prevents negative function values in the result-

ing approximation of the posterior density, it has sig-

nificant theoretical advantages. As shown in Sec. VII-

A, the SqFF is clearly the better choice if an accurate

approximation of the posterior pdf is to be provided.

Based on these experiments, we also recommend using

the SqFF for additional robustness when the likelihood

and the prior density share only little common regions

of high function values (such as when an unlikely mea-

surement is observed). All in all, we advise the users to

employ the SqFF whenever feasible given the run time

constraints to benefit from its higher robustness and the

expressiveness of the pdf and to use the IFF when run

time constraints are tight.

In future research, we intend to inspect the differ-

ences between the IFF and the SqFF more closely to

be able to give recommendations for which filter to use

given the likelihoods, transition densities, run time re-

quirements, and measures of deviation to be minimized.

Furthermore, automatically finding the lowest number

of coefficients that results in close to optimal results

may help users that want to utilize the filter with high es-

timation quality while saving computational effort. The

number of parameters could be further reduced by us-

ing sparse representations of the Fourier coefficient ten-

sors. Additional insights could also result from consid-

ering other transformations than the square root. Finally,

using other basis functions or targeting other periodic

manifolds will also be a subject of future research.
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APPENDIX

In the following, we describe some useful formulae

and properties that, despite not being essential to our

filter, are important when working with filters and den-

sities in general. We only present the formulae for the

non-rooted representation. To use the formula for the

Fourier coefficients of the multivariate wrapped normal

distribution presented in Appendix A for the SqFF, the

approach to derive the Fourier coefficients of the square

root from the Fourier coefficients of the original density,

as presented in the prediction step in Sec. VI-D.2, can

be used. This, however, will not yield a higher accuracy

than directly evaluating the square root of the density

on a grid and then using the FFT. To use the formu-

lae and properties in Appendix B—D for coefficient ten-

sors representing the square root, we can simply derive

the coefficients for the non-rooted representation in the

computationally inexpensive way described in Sec. VI-

B.1.

A. Fourier Coefficients for the Multivariate Wrapped
Normal Distribution

Calculating Fourier coefficients for multivariate

wrapped normal distributions in the non-rooted repre-

sentation is possible using closed-form formulae. For

this, we show that we can use the characteristic func-

tion of a regular multivariate normal distribution to de-

rive the Fourier coefficients for the multivariate wrapped

normal distribution. The characteristic function 'x(k) of

a random vector x on Rd with density fx is defined as

'x(k) =

Z
Rd
eik¢xsfx(x)dx:

Now, let us assume that x is normally distributed.

Since eik¢x is 2¼-periodic in every dimension,

'x(k) =

Z
Rd
eik¢xN (x,¹,C)dx

=

Z
[0,2¼)d

eik¢x
X
j2Zd

N (x+2¼j,¹,C)dx (8)

holds. Aside from a constant factor and a difference in

a sign, the last line of the equation (8) is identical to the

formula for the Fourier coefficients (5) of a multivariate

wrapped normal distribution parametrized by ¹ and C.
Now, we write the formula for the Fourier coefficients of

the multivariate wrapped normal distribution depending

on the characteristic function of the multivariate nor-

mal distribution [50, Table C] to obtain a closed-form

solution. This leads to the formula

ck =
1

(2¼)d
'x(¡k) =

1

(2¼)d
e¡ik¢¹¡k

TCk=2:

B. Integrating Fourier Series over Hyperrectangles

For a density given as a Fourier series, it is possible

to efficiently calculate the integral over any axis-aligned
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hyperrectangle directly from the Fourier coefficients.

Let us first regard the one-dimensional case. In this case,

we can rewrite the integral over a (truncated) Fourier

series from l to r asZ r

l

k
maxX

k=¡k
max

cke
ikxdx=

k
maxX

k=¡k
max

ck

Z r

l

eikxdx| {z }
h
k

and regard each addend hk separately to obtain

h0 = ck[x]
r
l = ck(r¡ l)

and

8k 6= 0, jkj · kmax : hk = ck
1

ik
[eikx]rl

=¡ck
i

k
(eikr¡ eikl)

via common integration rules. We now use ck = c̄¡k and
obtain

hk + h¡k =¡ck
i

k
(eikr¡ eikl)¡ c̄k

i

¡k (e
¡ikr¡ e¡ikl)

=
i

k
(¡ck(eikr¡ eikl)+ ck(eikr¡ eikl))

=
2

k
I(ck(eikr¡ eikl)),

with I(¢) denoting the imaginary part of the term. As
expected, the sum of the pairs are real values. Based on

this, we can calculate the integral viaZ r

l

k
maxX

k=¡k
max

cke
ikxdx= ck(r¡ l) +

k
maxX
k=1

2

k
I(ck(eikr¡ eikl)):

The integration formula provided can easily be ex-

tended to higher dimensions. If we use J ½ Zd to de-
note the index set comprising all indices of the nonzero

Fourier coefficients,Z r

l

X
k2J

cke
ik¢x =

X
k2J

ck

Z r

l

eik1x1 ¢ ¢ ¢eikdxddx

=
X
k2J

ck

ÃZ r
1

l
1

eik1x1dx1 ¢ ¢ ¢
Z r

d

l
d

eikdxddxd

!

holds and we can thus split the integration up and use

the integration rule for the one-dimensional case to

obtain the result in O(nd).

C. Marginalizing Out Specific Dimensions

Calculating the Fourier coefficients for a marginal-

ized density is computationally inexpensive. Without

loss of generality, we marginalize the first dimension

out. We denote the index set of all nonzero Fourier

coefficients by J and rewrite the integral

Z 2¼

0

X
k2J

cke
ik
1
x
1 ¢ ¢ ¢eikdxddx1

=
X
k2J

cke
ik
2
x
2 ¢ ¢ ¢eikdxd

Z 2¼

0

eik1x1dx1

and then use that the integral is always zero for k1 6= 0

=

k
maxX

k
2
=¡k

max

¢ ¢ ¢
k
maxX

k
d
=¡k

max

eik2x2 ¢ ¢ ¢eikdxd c0,k
2
,:::,k

d

Z 2¼

0

1dx1

=

k
maxX

k
2
=¡k

max

¢ ¢ ¢
k
maxX

k
d
=¡k

max

2¼eik2x2 ¢ ¢ ¢eikdxd c0,k
2
,:::,k

d
:

Thus, we can calculate the new coefficient tensor by

discarding all entries for which the index of the respec-

tive dimension is unequal to zero and then multiplying

all remaining entries by 2¼.

D. Calculating the Covariance Matrix

The covariance matrix mentioned in Sec. III-F is

useful for calculating angular correlations and can be

calculated efficiently for densities in a Fourier series

representation. For higher dimensions, we first intro-

duce a notational trick for Fourier coefficients represent-

ing a density after certain dimensions have been margin-

alized out. We write ck
r
,k
t
= (2¼)d¡2c0,:::0,k

r
,0,:::0,k

t
,0,:::0 for

the Fourier coefficients of the density with all di-

mensions unequal to r 2 f1,2, : : :dg and t 2 f1,2, : : :dg
marginalized out and specify the exact coefficient via

ck
r
=a,k

t
=b for a 2 Z, b 2 Z. We use a similar notation to

index Fourier coefficients of densities with all dimen-

sions except one marginalized out and write them as

ck
r
= (2¼)d¡1c0,:::0,k

r
,0,:::0 and denote specific entries via

ck
r
=a. For additional brevity and clarity, we assign the

real and the imaginary part of the first trigonometric

moment the names p=R(m1) and q= I(m1).
The general term for entries of the covariance matrix

§ is
E((trig1(xr)¡ ur)(trig2(xt)¡ vt)),

in which trig1 and trig2 can be sine or cosine functions.

If trig1 is cos, then ur = pr, if trig1 is sin, then ur = qr
and the same applies to trig2 and vt. We present the

formulae for the individual entries of the covariance

matrix § without a derivation as the derivations are long
and not essential to this paper.

As higher coefficients are lost in the integral in-

volved in calculating the expectation value, only few

coefficients are necessary for each entry. Furthermore,

we can use the redundancy in the complex Fourier co-

efficients to arrive at even easier formulae depending on

the real and complex parts of the Fourier coefficients.

We further use

8i 2 f1, : : :dg : pi = 2¼R(ck
i
=1) and qi =¡2¼I(ck

i
=1)

to write the formulae in an even more compact manner.
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For the formulae for the individual entries of the
covariance matrix, keep in mind that § is a 2d£ 2d
matrix. In the covariance matrix, an odd column index
(i.e., 2r¡ 1) indicates that trig1 is the sine function,
while an even column index (i.e., 2r) indicates that
trig1 is the cosine function. The relationship is the same
between trig2 and the row index.
For all r 6= t, we obtain the formulae
¾2r¡1,2t¡1 = E((cos(xr)¡pr)(cos(xt)¡pt))

= 2¼2R(ck
r
=1,k

t
=1)+2¼

2R(ck
r
=1,k

t
=¡1)

¡prpt
and
¾2r¡1,2t = E((cos(xr)¡pr)(sin(xt)¡ qt))

=¡2¼2I(ck
r
=1,k

t
=1)+2¼

2I(ck
r
=1,k

t
=¡1)¡prqt

(9)

for the respective entries of the covariance matrix. Due
to the symmetry of the covariance matrix §, we can use
¾2r,2t¡1 = ¾2t¡1,2r to calculate these entries using (9). For
the terms with two sines, we obtain

¾2r,2t = E((sin(xr)¡ qr)(sin(xt)¡ qt))
=¡2¼2R(ck

r
=1,k

t
=1)+2¼

2R(ck
r
=1,k

t
=¡1)¡ qrqt

If r = t, other coefficients are involved in the calcu-
lation. In this case, we obtain

¾2r¡1,2r¡1 = E((cos(xr)¡pr)2)
= ¼R(ck

r
=2)¡p2r + 1

2
,

¾2r¡1,2r = E((cos(xr)¡pr)(sin(xr)¡ qr))
= ¼I(ck

r
=2)¡prqr: (10)

Again, we can use the symmetry of § to obtain
¾2r,2r¡1 = ¾2r¡1,2r, allowing us to use (10). Lastly, we
get

¾2r,2r = E((sin(xr)¡ qr)2)
=¡¼R(ck

r
=2)¡ q2r + 1

2
:
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Particle Filtering with
Observations in a Manifold:
A Proof of Convergence and
Two Worked Examples

SALEM SAID
JONATHAN H. MANTON

Particle filtering is currently a popular numerical method for

solving stochastic filtering problems. This paper outlines its appli-

cation to continuous time filtering problems with observations in a

manifold. Such problems include a variety of important engineering

situations and have received independent interest in the mathemat-

ical literature. The paper begins by stating a general stochastic fil-

tering problem where the observation process, conditionally on the

unknown signal, is an elliptic diffusion in a differentiable manifold.

Using a geometric structure (a Riemannian metric and a connection)

which is adapted to the observation model, it expresses the solution

of this problem in the form of a Kallianpur-Striebel formula. The

paper proposes a new particle filtering algorithm which implements

this formula using sequential Monte Carlo strategy. This algorithm

is based on an original use of the concept of connector map, which

is here applied for the first time in the context of filtering problems.

The paper proves the convergence of this algorithm, under the as-

sumption that the underlying manifold is compact, and illustrates

it with two worked examples. In the first example, the observations

lie in the special orthogonal group SO(3). The second example is

concerned with the case of observations in the unit sphere S2.
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1. INTRODUCTION

The language of differential geometry is increas-

ingly being used by engineers. This is due to the reali-

sation that, in many concrete situations, the most natural

mathematical model involves a nontrivial differentiable

manifold. Key differential geometric concepts (tangent

vectors, geodesics, etc.) have allowed for tasks such as

optimisation and stochastic modeling to be approached

in a unified and intuitive way [1].

This trend has lead to several variants of “particle

filtering on manifolds” proposed in the literature, (for

example, [2—9]). These involve discrete time filtering

problems where either the unknown signal or the ob-

servation process lie in a differentiable manifold. The

current paper outlines the application of particle fil-

tering to continuous time filtering problems where the

observation process takes its values in a differentiable

manifold, and the unknown signal is a hidden Markov

process. These are essentially different from problems

where the unknown signal is a diffusion in a differen-

tiable manifold and the observation process follows a

classical additive white noise model; see Section 2.

The choice of continuous time over discrete time

has technical and modeling advantages. It allows for

the machinery of stochastic calculus and differential

geometry to be applied. Also, the immense majority of

physical models do not immediately discretise the time

variable. Concretely, though, the difference between

continuous and discrete time is a convenience. The

question is to solve-then-discretise or discretise-then-

solve. The final product in this paper, the algorithm of

Section 4, is in discrete time and can be compared to

any other algorithm developed directly in discrete time.

Predominantly, the differentiable manifolds appear-

ing in engineering are classical matrix Lie groups and

their symmetric spaces. The general stochastic filtering

problem stated in Section 2 starts from an abstract dif-

ferentiable manifold. All subsequent constructions are

stated at this level of generality. It is hoped this will have

the advantage of providing a deeper overall understand-

ing. When (as a special instance of the general problem)

the manifold is specified to be a matrix manifold, this

allows for the complexity of differential geometric con-

structions to be reduced. This will be discussed again,

using two concrete examples, in Section 5.

A subtheme of this paper is to realise a transfer

of knowledge, from the mathematical field of stochas-

tic differential geometry to the engineering commu-

nity. Stochastic differential geometry was pioneered by

Schwartz and Meyer. Among the fundamental texts, it

is impossible to ignore the elegant and comprehensive

account by Emery [10]. A more recent highly readable

textbooks is the one by Hsu [11]. A recent account,

written specifically for engineers, is [12].

Stochastic differential geometry begins with a man-

ifold equipped with a connection. In differential ge-

ometry, connections are introduced to distinguish in
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an invariant way those differentiable curves which

are geodesics; in other words, zero acceleration lines.

Stochastic differential geometry uses a connection to

distinguish those pathwise continuous processes which

are martingales; in other words zero drift processes.

For the purpose of filtering, it is very useful to think

in terms of antidevelopment. The antidevelopment of
a differentiable curve in a manifold is a differentiable

curve in a Euclidean space, which could be identified

with the tangent space at the base point of the curve.

This can be visualised when the manifold is a two di-

mensional surface embedded in physical space, for in-

stance a sphere. The antidevelopment of a differentiable

curve drown on the sphere is the trace that it leaves on a

tangent plane while rolling without slipping (one could

imagine the curve is drawn in ink so it leaves a trace

on the plane). This visualisation is helpful for intuition,

but it is important to keep in mind the notion of an-

tidevelopment depends on a choice of connection. The

picture of rolling without slipping corresponds to the

connection inherited from the ambient space. Roughly

speaking, the relation between a connection and the cor-

responding antidevelopment is that antidevelopment of

a geodesic in a manifold is a straight line in Euclidean

space. Similarly, antidevelopment of a martingale in the

manifold is a martingale in Euclidean space. Required

background from stochastic differential geometry is pre-

sented in Section 3.

In terms of stochastic filtering with observations in

a manifold, the main problem considered in this paper,

antidevelopment plays an essential role. While the ob-

servation process is a diffusion in a given differentiable

manifold, its antidevelopment process takes its values

in a Euclidean space. Regardless of the choice of con-

nection, there is no loss of information in replacing the

observation process by its atidevelopment. Moreover,

see Proposition 1 of Section 3, an adequate choice of

connection (roughly, one which is adapted to the ob-

servation model) leads to an antidevelopment process

which depends on the unknown signal through a classi-

cal additive white noise model. Thus, antidevelopment

can be thought of as a preprocessing, reducing the initial

problem to a classical filtering problem defined by an

additive white noise model. This idea of reduction was

used in the engineering literature by Lo [13], in the case

of observations in a matrix Lie group. In a recent pa-

per [14], the authors were able to extend it to the general

case of observations in a differentiable manifold.

The role of stochastic differential geometry in prob-

lems of stochastic filtering with observations in a mani-

fold was exploited more extensively in the mathematical

literature. Several authors have used it in deriving Zakai

or filtering equations for these problems [15—17]. To the

author’s knowledge, on the other hand, few papers have

been devoted to their numerical solution. Note, however,

the paper by Pontier [18], which will be quite impor-

tant in the following. This proves the convergence of a

discrete time filter based on uniformly sampled obser-

vations to the solution of the continuous time problem.

The filtering problem is to compute the conditional

distribution of the unknown signal given the observa-

tions. In section 4, the solution of this problem is ex-

pressed in the form of a Kallianpur-Striebel formula

(see Proposition 4). This has a structure quite similar

to that of the classical Kallianpur-Striebel formula. It

is a Bayes formula where the prior distribution of the

unknown signal is given by its Markov nature, i.e., ini-

tial distribution and transition kernel, and the likelihood

function is an exponential functional of the observation

process.

The proposed particle filtering algorithm imple-

ments the Kallianpur-Striebel formula using sequential

Monte Carlo. There are at least two motivations for ap-

plying a sequential Monte Carlo approach. First, the fact

that it is suitable for real time situations. Second, the

computational stability which it provides in dealing with

noisy observations over a longer time.

The algorithm follows sequential Monte Carlo strat-

egy of sequential importance sampling with resampling.

At a higher level, its main steps are exactly the same

as for usual particle filtering. A fixed number of parti-

cles is used throughout. The interval of observation is

subdivided into subintervals of equal length. Over each

subinterval, the particles are propagated without inter-

action according to (an approximation of) the unknown

signal’s transition kernel. They are subsequently given

new weights corresponding to their likelihood and re-

sampled to eliminate particles with lower weight. For

a rigorous general discussion, see Del Moral’s mono-

graph [19].

The specific role of stochastic differential geome-

try only appears in the computation of particle weights.

This requires the use of connector maps. Under the
assumption that the underlying manifold is compact,

Proposition 3 of Section 3 shows that connector maps

yield “increments” which are approximately normally

distributed tangent vectors, conditionally on the un-

known signal. The computation of weights then takes

place as in the presence of additive normally distributed

noise. Simply put, the proposed algorithm is a classical

particle filter which employs the geometric concept of

connector maps to locally linearise the observation pro-

cess.

Proposition 5 of Section 4 states the convergence of

this discrete algorithm to the solution of the continu-

ous time problem. The convergence takes place as the

number of particles tends to infinity and the length of

of each subdivision interval tends to zero. It depends

on the quality of the approximation being used for the

unknown signal transition kernel and also on the one

described in Proposition 3. As several approximations

are involved, the compromise between complexity and

performance should be based on the most difficult one

to realise. This leads to a kind of bottleneck effect. See

discussion at the end of Section 4.
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Section 5 presents two examples illustrating the im-

plementation and performance of the proposed particle

filtering algorithm. In the first example, see 5.1, the ob-

servation process is a left invariant diffusion with values

in the special orthogonal group SO(3); conditionally on

the unknown signal. The fact that the observation model

is compatible with the Lie group structure of SO(3)

leads to a certain simplification of the notions of an-

tidevelopment and connector maps. Roughly speaking,

these just amount to application of the group logarithm

map (i.e., the matrix logarithm) and this can moreover

be replaced by a linear approximation, which reduces

computational complexity.

In the example of 5.2, the observation process has its

values in the unit sphere S2. Here, a detailed discussion

of the mathematical concepts introduced in the paper is

provided and, as in the first example, it is shown how the

particle filtering algorithm can be implemented in a way

that reduces the complexity of geometric constructions.

These two examples are representative of problems

where the observation process lies in a classical matrix

Lie group or in a related symmetric space. With some

adjustment, they could be extended in a straightforward

way to deal with general matrix Lie groups and their

symmetric spaces. This has not been possible in the

current paper, essentially for a reason of space. How-

ever, for the case where the observation process takes

its values in a Stiefel manifold, the reader is referred

to [20].

The particle filtering algorithm proposed in this pa-

per seems entirely new in the literature. It is encouraging

that, building directly on existing results (from [14, 18]

and [21]), the algorithm can be described and its conver-

gence proved. However, the current treatment still suf-

fers from certain drawbacks which should be addressed

in future work. For instance, the restriction to compact

manifolds is quite artificial and it should be possible to

drop it with some additional care. Also, the convergence

result of Proposition 5 does not explicitly provide a rate

of convergence (see discussion after the proposition).

2. GENERAL FILTERING PROBLEM

To state a filtering problem, it is sufficient to define

the signal and observation models [22]. In the follow-

ing, the unknown signal will be a hidden Markov pro-

cess x with values in some Polish (i.e., complete separa-

ble metric) space (S,S). Concretely, in most cases, this
space S is either a finite set or a Euclidean space. The

observation process Y will be a diffusion in a differen-

tiable manifoldM of dimension d (see [23] for required

background in differential geometry). Besides precisely

giving the definition of x and Y, this section aims to put

the resulting filtering problem into perspective. This is

done by comparing it to other filtering problems, both

classical and involving an observation process with val-

ues in a manifold, and by discussing how it can simu-

lated numerically.

Both x and Y are defined in continuous time. One

begins by introducing a complete probability space

(−,A,P) on which x and Y are defined.
The unknown signal x is a time invariant Markov

process. Let Cb(S) denote the space of bounded contin-

uous functions ' : S!R. The generator of x is an op-
erator A with domain D(A), a dense subspace of Cb(')

which contains the constant function 1. The generator

A is assumed to verify A1 = 0 and, for ' 2D(A),
d'(xt) = A'(xt)dt+ dM

'
t , (1)

where t¸ 0 is the time variable. The meaning of the
above equation is that

'(xt)¡'(x0)¡
Z t

0

A'(xs)ds=M
'
t ,

where M' is a martingale adapted to the augmented

natural filtration of x, denoted X [24]. The distribution

of x is determined by its generator A and its initial

distribution ¹; i.e., ¹ is the distribution of the initial

value x0.

Two typical examples of the above definition are

when x is a diffusion in some manifold N of dimension

l, possibly N =Rl, and when x in a finite state Markov
process. The first example may appear when the prob-

lem is applied to tracking the pose of a rigid body. The

second is generally considered within the framework of

change detection. It is usual to refer to x as a hidden

Markov process as it is unknown and only observed

through Y.

In order to define the observation process Y, assume

M is a C4 manifold. The signal x is encoded through

the sensor function H : S£M! TM, where TM de-

notes the tangent bundle ofM. For s 2 S, it is required
the application p 7!H(s,p) is a C1 vector field on M.

That is, H(s,p) 2 TpM where TpM is the tangent space

toM at p. Observation noise is introduced as follows.

Let (§r;r = 1, : : : ,m) be C
2 vector fields onM and B a

standard Brownian motion in Rm, which is independent
from x. The observation process Y is assumed nonex-

plosive (i.e., for p 2M, if Y0 = p then Yt is defined with

values inM for t¸ 0) and satisfying [25],
dYt =H(xt,Yt)dt+§r(Yt) ± dBrt : (2)

Here and in all the following, summation convention

is understood, (that is, a sum is understood over any

repeated subscripts or superscripts). Since the §r are

vector fields on M, the §r(Yt) are tangent vectors to

M at Yt. Moreover, the circle is the usual notation for

the Stratonovich differential [26]. The filtering problem

defined by (1) and (2) is more general than a classical

filtering problem where Y depends on x through an

additive white noise model. In (2) the observation noise

B is “carried” by the vector fields §r. In other words,

it is introduced in a way which depends on the current

observation. The model (2) reduces to a classical one

when M=Rd and i) m= d with §r(p) = er, where
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(er;r = 1, : : : ,d) is a canonical basis of Rd; ii)H(s,p) =
H(s) is given by a function H : S!Rd.
Intuitively, the classical problem is a limit of prob-

lems where the observation process is sampled at times

k± where k 2N and ± the sampling step size. Then, since
Y has values in Rd, it is possible to consider discrete
observations

(for observations in Rd) ¢Yk = Y(k+1)± ¡Yk±: (3)

Each one of these increments is normally distributed

conditionally on x. Therefore, the corresponding likeli-

hood function is known analytically. This last aspect is

what characterises a classical filtering problem. It is un-

affected if x is a diffusion in a manifold N . In practice,
whatever the state space S, what matters is the ability to

simulate the sample path distribution of x with sufficient

precision.

The chief difference between the classical filtering

problem, and the problem of filtering with observations

in a manifold, given by the observation model (2), is

that no formula similar to (3) is immediately available

in the latter case. As a result, it is difficult to arrive

at an analytic expression of the likelihood function. As

the standard analysis, based on the assumption that Y

depends on x through an additive white noise model,

does not apply to the observation model (2), it becomes

necessary to search for a well-defined generalisation of

(3). This generalisation, will be introduced as of the be-

ginning of Section 3, in the form of equation (6), based

on an original use of the concept of connector map. The
systematic use of connector maps constitutes the main

ingredient of the new particle filtering algorithm pro-

posed in the present paper.

In the mathematical literature, problems with obser-

vations in a manifold have been stated in two different

forms. In [14, 15] the problem statement is the same

as above, with the additional requirement that Y is an

elliptic diffusion. In fact, this same requirement will be

imposed in Section 3. In [16, 17], the diffusion Y is

specified in terms of its horizontal lift. The difference

between the two settings is that, in the latter one, there is

a choice of connection already included in the problem

statement. In the setting of (2), a metric and connection

need to be constructed from the vector fields §r. The

current paper differs from [15] in the way this construc-

tion is defined. See Section 3.

In a real world application, the issue of how to sim-

ulate Y numerically is irrelevant. Indeed, Y is itself ob-

served through some measurement device. However, in

order to carry out a computer experiment, it is necessary

to simulate Y given the model (2). In many cases, M
is embedded in a higher dimensional Euclidean space,

M½ RN , and the vector fields H and §r are restric-

tions of complete vector fields defined on all of RN . In
particular, this is true for all the examples in Section

5. Then, numerical simulation of Y is a matter of solv-

ing a stochastic differential equation. It is possible to

use Euler, Milstein or a higher order stochastic Taylor

scheme, according to desired precision [27]. All these

numerical schemes will suffer from the same problem of

producing an approximation which “falls off” the em-

bedded manifold. A simple way of dealing with this is to

project back onto the manifold once the approximation

has been computed. WhenM is presented as an abstract

manifold, a generally applicable numerical scheme is

the McShane approximation. This approximates Y by

processes Y± where ± is a discretisation step size. On

each interval [k±, (k+1)±[ for k 2 N, Y± is the solution
of an ordinary differential equation,

_Y±t =H(xt,Y
±
t )+§r(Yt)¢B

r
k, (4)

where the dot denotes differentiation with respect to

time and ¢Bk = ±
¡1(B(k+1)± ¡Bk±). When M is a com-

pact Riemannian manifold and Y±0 is taken to be the

same as Y0, the rate of local uniform convergence of the

paths of Y± to those of Y is given in [28],

P(sup
t·T
d(Y±t ,Yt)> ") =O(±), (5)

where d is the Riemannian distance and " > 0. Note that

this depends on T so the same precision " for larger T

requires smaller ±.

The numerical approximation (4) gives an intu-

itive interpretation of the stochastic differential equation

(2), whose rigorous definition may be found in [25].

Roughly, this approximation states that, over short time

intervals of the form [t, t+ ±], the observation process

Y moves along the integral curves of a random vector

field H+§r¢B
r. This motion has a deterministic com-

ponent H, which depends on the unknown signal, and

a stochastic or “noise” component §r¢B
r. These two

components are not observed independently, but rather

only through the observations Yt and Yt+±. From the point

of view of filtering, it is natural to search for a trans-

formation which takes these observations Yt and Yt+± to

a random vector of the form “H+normally distributed

noise.” This is the starting point of the following section.

3. STOCHASTIC DIFFERENTIAL GEOMETRY

The aim of this section is to generalise (3) so that

it can be applied for the observation model (2). This

is done by adopting the following point of view. In

(3), ¢Yk is a tangent vector to M=Rd at Yk±, de-
termined from two successive samples Yk± and Y(k+1)±.

Accordingly, in the general case of (2), a mapping

I :M£M! TM will be constructed with the follow-

ing properties. First, I(p1,p2) 2 Tp1M for all p1,p2 2M.

Second, if ¢Yk is defined as

¢Yk = I(Yk±,Y(k+1)±), (6)

then, in the limit ± # 0, the distribution of ¢Yk is approx-
imately normal, conditionally on the unknown signal x.

Such a mapping I is called a connector map, and it turns

out that, it is always possible to choose a connector map
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I which verifies the required properties. This is stated

precisely in Proposition 3, which is the main result in

this section.

Proposition 3 requires some basic concepts from

stochastic differential geometry. These are recovered in

3.1 which, in particular, gives the definition of the an-

tidevelopment process y of Y. The choice of connection

leading to I is given in 3.2. Finally, Proposition 3 is

stated and discussed in 3.3. Here, 3.1 and 3.2 are based

on [14].

3.1. Stochastic antidevelopment

In the filtering problem defined by (1) and (2),

the available information is a path of the observation

process Y, taken over some time interval t· T. An
observer is only able to compute functionals of the

process Y. These are processes, in practice real or vector

valued, adapted to the augmented natural filtration of Y;

which is denoted Y . Two classes of such functionals are
the building blocks for the following, the Stratonovich

and Itô integrals along Y. The notion of antidevelopment

is itself defined using these two kinds of integrals.

Assume a Riemannian metric h¢, ¢i and a compat-
ible connection r are defined on M. In the current

paragraph, these are not specified and can be chosen

arbitrarily.

To define the integrands involved in Stratonovich

and Itô integrals along Y, let F be the filtration where

Ft = X1 _Bt. Here, X1 = _t¸0Xt and B is the aug-

mented natural filtration of B. A stochastic integrand

μ is an F-adapted process with values in T¤M which is

above Y; this means μt 2 T¤YtM for t¸ 0.
Let (μt, ¢) denote the application of the linear form

μt. The Stratonovich and Itô integrals of μ along Y

are real valued F-adapted processes with the following
differentials,

(μt,±dY) = (μt,H)dt+(μt,§r) ±dBrt , (7)

(μt,dY) = f(μt,H)+ (1=2)(μt,r§r§r)gdt+(μt,§r)dBrt :
(8)

The Stratonovich differential does not involve the cho-

sen connection. On the other hand, the connection ap-

pears explicitly in the Itô differential. Note that Y is

called a r-martingale if H+(1=2)r§r§r ´ 0. In this
case, (μ,dY) is a martingale differential, as is the case

for a usual Itô differential.

Using the Riemannian metric h¢, ¢i, it is possible to
define Stratonovich and Itô integrals of vector fields.

A vector field along Y is a process E, F-adapted with
values in TM and which is above Y; in the sense

that Et 2 TYtM for t¸ 0. A corresponding process μ

in T¤M is then given by (μt, ¢) = hEt, ¢i. The resulting
differentials of (7) and (8) are written hEt,±dYi and
hEt,dYi.
In order to formulate the notion of antidevelopment,

it is necessary to define what it means for E to be paral-

lel (i.e., along Y). If the paths of Y were differentiable,

this would have the usual meaning from differential ge-

ometry. While this is not the case, due the presence

of Brownian terms, it is still possible to introduce a

stochastic covariant derivative of E and require this to

vanish. Thus E is said to be parallel if

r±dYEt = 0, (9)

where the left hand side is the stochastic covariant

derivative. In order to give this a precise meaning,

consider first the case where G is a C1 vector field on

M and E =G(Yt). Assuming the usual properties of a

connection, (2) would give

r±dYG(Yt) =rHG(Yt)dt+r§rG(Yt) ±dBrt : (10)

This is extended to a general vector field E along Y

by the following transformation. For a C2 function

f on M, let r2f be the Hessian of f with respect

to r. By definition, rHGf =HGf¡r2f(H,G) and
similarly for r§rG. Now, (μt, ¢) =r2f(¢,Et) is a process
in T¤M as in (7). Thus, (10) can be generalised by

writing

r±dYEtf = dEtf¡r2f(±dY,Et), (11)

which is taken as the definition of the stochastic covari-

ant derivative. In integral notation, (11) defines a vector

field
R t
0
r±dYEs along Y. For any C2 function f on M,

this verifiesZ t

0

r±dYEsf = Etf¡E0f¡
Z t

0

r2f(±dY,Es):

Recall the connection r is compatible with the metric

h¢, ¢i. Again, if the usual properties of a connection were
assumed, one would expect the following. If E,K are

vector fields along Y, then

dhEt,Kti= hr±dYEt,Kti+ hEt,r±dYKti: (12)

The proof that this identity indeed holds true is here

omitted. The main point is that it is possible to per-

form calculations involving r±dY jut like in differential
geometry, by treating ±dY as the tangent vector to the
process Y.

Now, it is possible to define the antidevelopment of

Y. This is a process y which has values in Rd. A parallel
orthonormal frame is a family (Ei)´ (Ei; i= 1, : : : ,d) of
vector fields along Y which verify (9) and hEi0,Ej0i= ±ij .
In this case, it follows from (12) that hEit ,Ejt i= ±ij
for t¸ 0. Given a parallel orthonormal frame (Ei), the
process y is defined by

yit =

Z t

0

hEis,±dYi: (13)

It seems this definition is arbitrary, due to the issue of

uniqueness of a parallel orthonormal frame. However,

the classical uniqueness result for linear stochastic dif-

ferential equations can be used to show y is essentially
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unique. In fact, (Ei) is determined by (Ei0) so that dif-

ferent choices of (Ei) only amount to y being multiplied

by an orthogonal matrix.

Stratonovich and Itô integrals along Y can be written

as classical Stratonovich and Itô integrals with respect to

y. For the Stratonovich integral, this is a straightforward

result of (13). For μ as in (7),

(μt,±dY) = μi(t) ± dyit , (14)

where μi(t) = (μt,E
i
t ). This follows by the chain rule of

Stratonovich calculus, since (μt, ¢) = μi(t)hEit , ¢i. Recall
that (Ei) is a basis of the the tangent space toM at Yt.

The case of the Itô integral is slightly more involved.

Here, it is necessary to realise that (13) can also be

written

yit =

Z t

0

hEis,dYi: (15)

In other words, since the vector fields Ei are parallel,

there is no difference between their Stratonovich and

Itô integrals. Expressing (13) as in (7), (the arguments

of H and §r are dropped for space)

hEit ,±dYi= hEit ,Hi+ hEit ,§ri ± dBrt :
In order to change the Stratonovich differential into an

Itô differential, note from (9) and (12)

dhEit ,§ri= hEit ,r±dYt§ri,
and from (10)

dhEit ,§ri= hEit ,rH§ridt+ hEit ,r§v§ri ±dBvt :
From this, it finally follows

hEit ,§ri ± dBrt = hEit ,§ridBrt +(1=2)hEit ,r§r§ridt, (16)
so that (15) follows from (8). Given (15), it is possible

to write
(μt,dY) = μi(t)dy

i
t , (17)

using a reasoning similar to the one that lead to (14).

At the beginning of this paragraph, it was claimed

that Stratonovich and Itô integrals along Y can be used

to obtain functionals of this process. Even when the

process μ is Y-adapted, this is not clear from (7) and

(8). For example, the right hand side in each of these

two formulae contains a stochastic integral with respect

to B. However, there is no reason to believe that B is
the same as Y . Indeed, the definition (2) of Y involves
both x and B.

It is possible to write (7) and (8) in an alternative

form, which makes it evident that the resulting integrals

are Y-adapted as soon as μ is Y-adapted. To do so,
assume M is embedded in a higher dimensional Eu-

clidean space,M½ RN . There is little loss of generality
in this assumption. Whitney’s theorem asserts such an

embedding exists ifM is C1, connected and paracom-
pact [10]. Such conditions are always verified in prac-

tice. Also, when M is embedded in RN , it is possible
to assume the vector fields H and §r are restrictions

of vector fields defined on all of RN . Under these two
assumptions, let ´1, : : : ,´N be canonical (i.e., rectangu-

lar) coordinates on RN and write μ(t) = μ®(t)d´
® where

®= 1, : : : ,N. Replacing in (7) and using the chain rule

of Stratonovich calculus,

(μt,±dY) = μ®(t) ± dY®t , (18)

where Y® are the coordinates of Yt. In other words, the

Stratonovich integral (7) is just the classical Stratonovich

integral. Moving on to (8), a similar formula will be

shown. Note that the coordinates ´® can be thought of as

C2 functions onM. Using the notation r2´®(§r,§v) =
H®
rv,

(μt,dY) = μ®(t)fdY®t ¡ (1=2)H®
rr(Yt)dtg: (19)

Thus, the Itô integral (8) is the sum of the classical Itô

integral, corresponding to μ®(t)dY
®
t , and of a correction

term depending on the connection r. It is possible that
the latter correction term vanishes identically, so the Itô

integral (8) is the same as the classical Itô integral. This

is for instance the case when the connectionr is the one
whichM inherits from RN . From the last two formulae,
it is seen that the Itô and Stratonovich integrals are Y-
adapted as soon as the process μ is Y-adapted. This
follows from the same property for classical Itô and

Stratonovich integrals.

The proof of (19) is as follows. Assume in (7) that

μt = ¿(Yt) for some differential form ¿ on M. Passing

from Stratonovich to Itô differentials,

(μt,§r) ± dBrt = (μt,§r)dBrt +(1=2)§r(μt,§r)dt:
Using the fact that r is compatible with h¢, ¢i and
comparing to (8), the following general rule is found,

(¿ (Yt),±dY) = (¿(Yt),dY) + (1=2)(r§r¿ (Yt),§r)dt: (20)
In order to obtain (19), it is enough to apply (20) with

¿ = d´® and recall the definition of r2´®, (as cited
before (11)).

In many cases, the embedding M½ RN is known

explicitly. For instance, M is often directly defined as

an embedded submanifold in Euclidean space. Then,

formulae (18) and (19) can be used to compute the Itô

and Stratonovich integrals. This is useful since the prop-

erties of classical stochastic integrals become available.

This situation will apply throughout the examples of

Section 5.

3.2. Le Jan-Watanabe connection

This paragraph describes the “right” choice for the

metric h¢, ¢i and the connection r. When this choice is
used to evaluate (13), the resulting antidevelopment y of

Y depends on the unknown signal x through a classical

additive white noise model. This reduces the initial

filtering problem defined by (1) and (2) to a classical

filtering problem. The precise statement is given in

Proposition 1.
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A usual simplifying assumption imposed on Y in

the literature is that, conditionally on x, it is an elliptic

diffusion in M. This means that, for each p 2M, the

subspace of TpM spanned by the §r(p) is equal to

TpM. Under this assumption, elementary linear algebra

implies there exists a unique Riemannian metric h¢, ¢i
such that

hE,Ki= hE,§r(p)ihK,§r(p)i, (21)

for E,K 2 TpM. This will be the choice of metric made

in this following. In [15], the corresponding Levi-Civita

connection is used in (13). Here, a different connection

is used. Namely, the connection r is taken to be the Le

Jan-Watanabe connection. Based on [29], this is here

defined as follows.

Let E be any C1 vector field on M. It results

from (21) that this can be written E = Er§r, where

Er = hE,§ri. For K 2 TpM, let

rKE = (KEr)§r(p): (22)

This defines a connection r compatible with h¢, ¢i. Pre-
cisely, for C1 vector fields E,G onM,

KhE,Gi= (KEr)Gr+Er(KGr)
= hrKE,Gi+ hE,rKGi, (23)

where (21) and (22) have been used.

With regard to the proof of Propostion 1, the only

necessary property of r is

r§r§r = 0: (24)

To obtain (24), replace (21) in (22). Since §r is a

derivation,

r§r§r =
§rh§r,§vi§v =
§rh§r,§wih§v,§wi§v + h§r,§wi§rh§v,§wi§v:

A simplification of the third line gives

r§r§r =
§rh§r,§wi§w+§wh§w,§vi§v =
r§r§r+r§w§w,

which immediately leads to (24).

PROPOSITION 1. Let (Ei) be a parallel orthonormal
frame and y given by (13), where the connection r is
defined by (22). Also, let Ȳ be the augmented natural
filtration of y. Then, y has its values in Rd. Moreover, for
t¸ 0, Ȳt = Yt and

dyt = htdt+ d¯t, hit = hEit ,Hi, (25)

where ¯ is a Brownian motion in Rd which is independent
from x.

PROOF By definition, y has its values in Rd. The proof
of the second claim, i.e., Ȳt = Yt, is identical to that

of the analogous claim made in [15], (Theorem IV.3

on page 135). More generally, this claim holds for any

connection r compatible with h¢, ¢i.
In order to obtain (25) define first

¯it =

Z t

0

hEis,§ridBrs : (26)

Clearly, ¯ is an F-local martingale. Moreover, (21)
implies Z t

0

hEis,§rihEjs ,§rids= ±ij
Z t

0

ds:

By Lévy’s characterisation, ¯ is an F-Brownian motion.
Since F0 = X1, it follows ¯ is independent from x.

Recall that y can be computed from (15). Replacing

the definition (8) of this integral, it follows

dyit = fhit+(1=2)hEit ,r§r§rigdt+d¯it :
However, (24) states the second term is identically zero.

This completes the proof of (25).

3.3. Connector maps

This paragraph is devoted to Proposition 3, which

is the main result in the current section. This theorem

states that the mapping I to be used in (6) is a connec-

tor map which verifies certain conditions, expressed in

terms of the Le Jan-Watanabe connection introduced in

(22) of the previous paragraph. Roughly, such a con-

nector map becomes the discrete counterpart of antide-

velopment. This is the content of Proposition 2 below.

As in 3.1, let h¢, ¢i be a Riemannian metric and r
a compatible connection. Consider first the definition

of a geodesic connector. Recall that, for each p 2M
and K 2 TpM there exists a unique geodesic curve ° :

]¡ ²,²[!M such that °(0) = p and _°(0) =K, where

² > 0. A geodesic curve is one satisfying the geodesic

equation
r _°
_°(t) = 0: (27)

If the manifold M is complete for the connection r,
then any geodesic curve ° can be extended to all t 2R,
(that is, ² can be taken arbitrarily large). Assuming

this is the case, consider the exponential mapping exp :

TM!M. For p and K as above, it is usual to write

exp(K) = expp(K) in order to distinguish the base point

p. By definition, expp(K) = °(1).

The exponential mapping is locally invertible. If two

points p,q 2M are close enough to each other, then

there exists a unique geodesic ° as above such that

°(1) = q. It is suitable to write K = logp(q), since then

“log is the inverse of exp.” Note that both expp and logp
are C2 mappings [23].

Let d(¢, ¢) denote the Riemannian distance associated
to h¢, ¢i. It will be assumed thatM has a strictly positive

radius of injectivity for the connection r. That is, there
exists r > 0 such that for all p,q 2M the inequality

d(p,q)< r implies logp(q) is well defined. The two
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assumptions of completeness of M with respect to r
and of a strictly positive radius of injectivity are note

very stringent. In particular, they are verified whenever

M is compact.

A geodesic connector is a mapping I defined fol-

lowing [15]. Let u < r and Á :R+! [0,1] a decreasing

C1 function such that Á(d) = 1 if d · u and Á(d) = 0 if
d ¸ r. Let I be given by

I(p,q) = Á(d(p,q)) logp(q): (28)

Now, I is essentially intended to be the mapping logp
where p is the first argument. The function Á is only

introduced as a cutoff, to avoid points q which lie

beyond the injectivity radius.

In the following, let k ¢ k denote Riemannian length,
(e.g., kGk2 = hG,Gi), and E expectation with respect

to P.

PROPOSITION 2. Assume M is compact. Let G be a
vector field along Y such that t 7! kGtk is bounded.
Then, for t¸ 0, the Itô integral R = R t

0
hGs,dYi is square

integrable (that is, EjRj2 <1). Moreover, if for ± > 0
R± =

X
k±<t

hGk±,I(Yk±,Y(k+1)±)i, (29)

then EjR± ¡Rj2! 0 as ± # 0.
Proposition 2, (exactly the same as Theorem 3:4:2

on page 55 in [30]), generalises the definition of a clas-

sical Itô integral as a limit in the square mean of Rie-

mann sums. In the classical definition, the increments of

the integrating process are given by (3). Proposition 2

shows that for an Itô integral as in (8), at least when the

manifold M is compact, the limit continues to hold if

the classical increments are replaced by those obtained

from a geodesic connector. That is, from (6) where I is

given by (28). Note that (3) is truely a special case of

(28), since geodesics inM=Rd are just straight lines.
The use of geodesic connectors seems natural from

a theoretical point of view. However, the mapping I of

(28) may be quite difficult to compute. It is important

to note that Proposition 2 continuous to hold, all other

hypotheses being the same, if I is any mapping with

the same property I(p1,p2) 2 Tp1M, as long as (this is

proved in Appendix A)

(I1) I is jointly C2 (as a mappingM£M! TM)

(I2) dI(p,p)(V) = V for all V 2 TpM
(I3) r2I(p,p)(V,V) = 0 for all V 2 TpM
Here, dI and r2I are the derivative and the Hessian

of I with respect to its second argument. When the first

argument p is fixed, I has its values in a fixed vector

space TpM. Therefore, it is possible to speak of its

derivative and Hessian. Conditions (I1-I3) are verified
by the mapping of (28). Intuitively, any mapping I

which verifies them is “geodesic connector up to second

order.”

It is now possible to state Proposition 3.

PROPOSITION 3. AssumeM is compact and the connec-
tion r is given by (22). Moreover, let y be given by (13).
For ± > 0, let ¢Yk be given by (6) and ¢yk = y(k+1)± ¡ yk±
where k 2N. Then,

Ej¢yik ¡¢Yik j2 = o(±), (30)

where ¢Yik = hEik±,¢Yki. In particular, as ± # 0, the distri-
bution of the vector ¢Yik conditionally on Fk± is approx-
imately normal. Precisely, as ± # 0,

L
n
±¡1=2(¢Yik ¡ ±£ hik±)

o
¡!Nd: (31)

Here, L denotes the law of the random vector whose
components are in brackets and Nd denotes a standard
normal distribution in Rd.

PROOF The order of magnitude given in equation (30)

is essentially a result of Proposition 2.

For (31), note from Proposition 1

¢yik =

Z (k+1)±

k±

hitdt+ f¯i(k+1)± ¡¯ik±g,

but then, as is clear by bounded convergence,

Lf±¡1=2(¢yik ¡ ±£ hik±)g ¡!Nd:

The proposition follows from (30) by noting that hk± is

measurable wit respect to Fk± and ¯ is an F-Brownian
motion, so ¯(k+1)± ¡¯k± is independent of Fk± with the
required covariance.

4. PARTICLE FILTERING ALGORITHM

This section is concerned with the numerical solu-

tion of the filtering problem defined by (1) and (2). In

4.1, Proposition 4 expresses the solution in closed form

using a Kallianpur-Striebel formula. In 4.2, a particle

filtering algorithm is proposed in order to numerically

implement this formula. The convergence of this algo-

rithm to the solution of the original filtering problem,

(i.e., that of (1) and (2)), is the subject of Proposition 5

in 4.3.

4.1. Kallianpur-Striebel formula

A Kallianpur-Striebel formula may be though of as

an abstract Bayes formula which expresses in closed

form the solution of a continuous time filtering prob-

lem. For classical filtering problems, where the obser-

vation process depends on the unknown signal through

an additive white noise model, the Kallianpur-Striebel

formula is quite well known [22]. The idea in this sec-

tion is to profit from Proposition 1 in order to obtain a

similar formula for the problem defined by (1) and (2).

The following Proposition 4 uses the notion of a

copy of the unknown signal independent from the ob-

servation process. This means a process x̃ with the same

law as the signal x, given by (1), but which is indepen-

dent from the observation process Y.
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Let ¼t be the conditional distribution of xt, given

past observations Yt. The aim of the filtering problem

is precisely to find ¼t(') for any function ' 2 Cb(S). By
definition, ¼ is a càdlàg process with values in the space
of probability measures on (S,S) and such that

¼t(') = E['(xt) j Yt]: (32)

From this, it is clear that the process ¼ is Y-adapted.
Thus it should be possible to write it down in terms of

some functional of the process Y (see the discussion at

the beginning of 3.1).

PROPOSITION 4. Let x̃ be a copy of x independent from
Y. Let H̃ be the process where H̃t =H(x̃t,Yt). For ' 2
Cb(S),

¼t(') =
½t(')

½t(1)
, ½t(') = E['(x̃t)Lt j Y1], (33)

where Y1 = _t¸0Yt and

Lt = exp

μZ t

0

hH̃s,dYi¡ (1=2)
Z t

0

kH̃sk2ds
¶
: (34)

Here the Itô differential hH̃s,dYi is computed using the
Le Jan-Watanabe connection defined by (22).

PROOF Recall that Proposition 1 states Y = Ȳ , where
Ȳ is the augmented natural filtration of y. If y is com-
puted using the Le Jan-Watanabe connection defined

by (22), then y depends on x using a classical additive

white noise model (25). The corresponding Kallianpur-

Striebel formula is the same as above, but with Lt given

by (this is the classical formula [22])

Lt = exp

μZ t

0

h̃i(s)dy
i
s¡
Z t

0

h̃i(s)h̃i(s)ds

¶
:

Here, h̃i(s) = hEis,H̃i, as in (25). Using the fact that
Y = Ȳ , the Proposition follows by (17) and (32).

4.2. Algorithm description

Numerical implementation of the Kallianpur-Striebel

formula, i.e., of (33) in Proposition 4, can proceed in at

least two ways [22]. First, it is possible to derive from

this formula the corresponding Zakai equation, whose

solution can be attempted using a finite difference or

spectral method. The Zakai equation is a stochastic dif-

ferential equation satisfied by the unnormalised distri-

bution ½. It was indeed found in [14], but it seems its

solution has not been specifically considered in the lit-

erature. Second, thinking of the Kallianpur-Striebel for-

mula as an abstract Bayes formula, it is possible to im-

plement it using sequential Monte Carlo strategy. Here,

this latter option is pursued. The result takes the form

of a particle filtering algorithm.

The proposed particle filtering algorithm and its

convergence are easily understood in the framework of

a discretised version of the original filtering problem

of (1) and (2). Note that, in (33), x̃ and Y are taken

to be independent. It is then natural to think of x̃ as a

computer simulated version of x. However, this is just an

idealisation. A computer experiment can only yield an

approximation of the model (1). Such an approximation

is obtained for a given discretisation step size ± > 0.

It is a process denoted x± with its value at time k±

written x±k± = x
±
k. The particle filtering algorithm will be

convergent when x± verifies the following conditions

(x1) fx±k;k 2 Ng is a time invariant Markov chain
(x2) x±0 has the same distribution as x0 (noted ¹)
(x3) fx±kg has strong order of convergence 0.5
(x4) the transition kernel q(s,ds0) of fx±kg is Feller
Conditions (x1-x2) are necessary for the statement of

the algorithm. Conditions (x3-x4) do not appear in the
algorithm, but are required in showing its convergence.

The meaning of (x3) is

E[d2S(xt,x
±
k)] =O(±), (35)

for k such that t 2 [k±, (k+1)±[, where dS(¢, ¢) is the
metric in the state space S. The Feller condition (x4)
is that for all ' 2 Cb(S), if q' is the function

q'(s) =

Z
S

q(s,ds0)'(s0),

then q' 2 Cb(S). Recall that q(s,ds0) is the transition
probability for going from s to the “neighborhood” ds0.
If x is a diffusion in Rl with bounded Lipschitz

coefficients and x0 square integrable, then the first order

Euler scheme gives an approximation x± verifying (x1-
x4). In fact, the assumptions on the coefficients of x can
be weakened to those of [27], (Exercise 9.6.3 on page

326). Of course, in this case the metric dS(¢, ¢) is just the
Euclidean metric of Rl.
If x is a diffusion in a compact Riemannian mani-

fold N , then conditions (x1-x4) are verified when x is
approximated using successive geodesic steps.

In a purely heuristic way, consider now a discrete

time filtering problem where the unknown signal is

the Markov chain fx±kg and the observations are the
sequence of increments f¢Ykg. Here, ¢Yk is obtained
from (6) where the connection r is that of (22).

Based on Proposition 3 and on (35), consider the

likelihood for the observations ¢Yk to be

l(x±k,¢Yk) = exp

μ
hH±

k ,¢Yki¡
±

2
kH±

k k2
¶
, (36)

where H±
k =H(x

±
k,Yk±). Applying the usual Bayes for-

mula for a discrete time filtering problem obtained in

this way, the resulting conditional distribution given the

first M +1 observations is

¼±M(') =
½±M(')

½±M(1)
, ½±M(') = E['(x̃

±
M)L

±
M j Y1], (37)
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for ' 2 Cb(S), where fx̃±kg is a copy of fx±kg independent
from Y and

L±M =

MY
k=0

l(x̃±k,¢Yk): (38)

This is really just Bayes formula in discrete time.

From (37),

½±M(') = ½
±
M¡1('M¡), (39)

where

'M¡(s) =
Z
S

l(s0,¢YM)'(s
0)q(s,ds0): (40)

This is the usual “prediction-measurement update” for-

mula, where prediction is according to the transition

kernel q(s,ds0) and measurement update is based on the
likelihood l(s0,¢YM).
It is important to note that ¼±M is a true proba-

bility measure on S conditionally on the increments

¢Y0, : : : ,¢YM . In particular, it makes sense to speak of

sampling from ¼±M once these increments are given. This

is the aim of the proposed particle filtering algorithm.

The algorithm has as its input the sequence of in-

crements f¢Ykg and is parameterised by the number of
particles N. The output after M +1 observations is a

family of N particles x̂iM , : : : , x̂
N
M 2 S which give a Monte

Carlo approximation ¼̂±M of ¼
±
M . This is

¼̂±M(') = (1=N)

NX
i=1

'(x̂iM): (41)

The implementation is the following,

² when ¢Y0 is available
1 generate i.i.d. particles x̃10, : : : , x̃

N
0 » ¹

2 compute normalised weights, wi0 / l(x̃i0,¢Y0)
3 generate (n10, : : : ,n

N
0 )»multinomial(w10, : : : ,wN0 ) and

replace x̃i0 by n
i
0 particles with same value

4 relabel new particles x̂10, : : : , x̂
N
0 ; set w

i
0 = 1=N

² when ¢Yk is available (k ¸ 1)
1 generate particles x̃ik » q(x̂ik¡1,ds)
2 compute normalised weights, wik / wik¡1l(x̃ik,¢Yk)
3 generate (n1k , : : : ,n

N
k )»multinomial(w1k , : : : ,wNk ) and

replace x̃ik by n
i
k particles with same value

4 relabel new particles x̂1k , : : : , x̂
N
k ; set w

i
0 = 1=N

These steps are very much the same as in the clas-

sical bootstrap filter. The geometry of the observation

process Y only appears through the use of a connector

map I, which provides the increments ¢Yk.

The bootstrap filter is the simplest, but the least

robust, particle filtering algorithm and there are many

improvements upon it known in the literature. These

can all be implemented in an equally direct way once

the ¢Yk have been obtained.

To summarise, a connector map I leads to incre-

ments ¢Yk with approximate likelihood given by (36).

Once this situation is accepted, it can be replaced into

any suitable algorithm. It is possible to say that the con-

nector map serves to linearise the observation process

Y locally, i.e., in the neighborhood of each sample Yk±
as in (6).

4.3. Convergence

The convergence of the particle filtering algorithm

proposed in the previous paragraph is here given in

Proposition 5. Precisely, what is meant by this is the

convergence of ¼̂±M to ¼t as the step size ± goes to zero

and the number of particles N goes to infinity, when M

is taken of the order of t=±. That is, the order of the

number of increments ¢Yk which can be constructed

from (6) up to time t.

An equally important question, not dealt with here,

is the convergence as t goes to infinity of the conditional

distribution ¼t or of its Monte Carlo approximation

obtained from the particle filtering algorithm. This is

related to the eventual ergodicity or mixing properties

of the unknown signal x.

Proposition 5 is based on two lemmas, which are

first given. Lemma 1 states the convergence of ¼±M to

¼t. Lemma 2 states the convergence of ¼̂
±
M to ¼±M for

any given value of ±. This latter limit is not shown to be

uniform in ±. Thus, in their form stated below, Lemmas

1 and 2 cannot be used to justify an approach where ±

is taken proportional to 1=N (or some other function of

N which converges to zero as N goes to infinity) and

¼̂±M is then computed for a large value of N.

It is possible to say that Proposition 5 only provides,

in a satisfactory way, the consistency of the approxima-

tion ¼̂±M . That is, the fact that it is possible to choose ±

and N to make this approximation arbitrarily close to ¼t.

For Lemma 1, the two following conditions are

required.

(H1) kHk is bounded (as a function S£M!R+)
(H2) kH(s,p)¡H(s0,p)k · CdS(s,s0) for all p 2M,

where the constant C does not depend on p

These are quite strong restrictions, however they

allow for straightforward proofs. Replacing them by

weaker conditions may lead to convergence in the

square mean being replaced by convergence in prob-

ability, (see the statement of the lemma), but it would

not introduce any more fundamental changes.

Assumption (H2) means that H is a Lipschitz con-

tinuous application from S to the space of continuous

vector fields onM, this latter space being equipped with

its topology of uniform convergence with respect to the

Riemannian metric.

LEMMA 1. Assume M is compact and conditions (x1-
x3), (H1-H2) hold. Let ' 2 Cb(S) be Lipschitz continuous,
such that ' 2D(A) and A' 2 Cb(S), (recall the notation
of (1)). Then, if M is the integer part of t=±,

Ej¼±M(')¡¼t(')j2 =O(±):

236 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 2 DECEMBER 2016



PROOF The proof is identical to the one in [15],

(Proposition 2.1 on page 292). Here, the main steps are

indicated.

Note first that it is possible to consider M± = t.

Indeed, the assumption that ' 2D(A) and A' 2 Cb(S)
guarantees

Ej¼t(')¡¼M±(')j2 =O(±):
This is since ¼t verifies the filtering equation given

in [14], which has bounded coefficients under condi-

tion (H1).
The proof follows from the identity

¼±M(')¡¼t(') = E['(x±M)¡'(xt) j Y1]
+E[(A¡ 1)('(x±M)¡¼±M(')) j Y1],

(42)

where A= L±M=Lt. This can be proved by using the

Kallianpur-Striebel formula (33) to express the condi-

tional expectations and then by developing the products.

Since ' is Lipschitz continuous, the square mean of

the first term is bounded by

Ej'(x±M)¡'(xt)j2 · CE[d2S(xt,x±k)] =O(±), (43)

where the second inequality uses (x3).
The bound for the second term is more delicate. The

idea is to note

L±M = exp

ÃX
k±<t

hH±
k ,¢Yki¡ (±=2)

X
k±<t

kH±
k k2
!

(44)

and compare this to Lt, given by (34), using Proposition

2. The detailed development requires condition (H2)
and gives

Ej(A¡ 1)('(x±M)¡¼±M('))j2 · 4k'k2E(A¡ 1)2 =O(±),
(45)

where k'k is the supremum of j'(s)j over s 2 S.
The proof is completed by applying Minkowski’s

inequality, (43) and (45).

LEMMA 2. Assume conditions (x1-x2), (x4) and (H1)
hold. For all ' 2 Cb(S) and any values of ± and M

Ej¼̂±M(')¡¼±M(')j2! 0 as N "1:

PROOF It is clear from (41) that ¼̂±M(') is bounded.

Note, moreover, that ¼±M(') is square integrable. By

dominated convergence, in order to show the Lemma,

it is enough to show that ¼̂±M(') converges to ¼
±
M(')

almost surely.

Almost sure convergence is a direct application of a

general theorem from [21], (Theorem 1, on page 742).

This requires that the transition kernel be Feller, which

is condition (x4), and that the likelihood function is
continuous, bounded and strictly positive.

Here, the likelihood function is the one correspond-

ing to (36). That is

l(s,¢Yk±) = exp

μ
hH(s,Yk±),¢Yki¡

±

2
kH(s,Yk±)k2

¶
:

That this is continuous, as a function of s, and strictly

positive is immediate. Boundedness follows since the

second term under the exponential is negative and

hH(s,Yk±),¢Yki · rkH(s,Yk±)k:
By Cauchy-Schwarz inequality, where r is as in the

definition (28) of the mapping I.

Finally, it is possible to conclude by condition (H1).
Now, it is possible to state Proposition 5 which

combines Lemmas 1 and 2.

PROPOSITION 5. Assume that M is compact and that
conditions (x1-x4), (H1-H2) hold. Let ' be as in Lemma
1. Then, if M is the integer part of t=±

lim
±#0
lim
N"1

Ej¼̂±M(')¡¼t(')j2 = 0:

PROOF The conditions of Lemmas 1 and 2 are united.

By Lemma 1

lim
±#0
Ej¼±M(')¡¼t(')j2 = 0,

where the expression under the limit does not depend

on N. By Lemma 2

lim
N"1

Ej¼̂±M(')¡¼±M(')j2 = 0,

for any values of ± and M. Thus, the proposition fol-

lows by adding together these two limits and applying

Minkowski’s inequality.

Proposition 5 does not explicitly provide the rate at

which ¼̂±M converges to ¼t. Obtaining this rate of conver-

gence requires a deeper analysis than provided here (in

Lemmas 1 and 2). This can be carried out on the basis

of the corresponding analysis for a classical filtering

problem [22], (Chapter 9), but still has not been pur-

sued in the literature. Clearly, this situation represents

an important drawback for practical application.

The information lacking from Proposition 5, i.e.,

the rate of convergence, can eventually be recovered

on a case by case basis. For the convergence of ¼±M
to ¼t, Lemma 1 can be used to obtain the precise rate

of convergence, (by expressing the various constants

appearing in the proof). Then, for any required values

of ± and M, the problem is to find a number of particles

N sufficiently large for a given precision. It is well

known that ¼̂±M converges to ¼±M at a rate of the order

of 1=N but where the involved constants depend on the

observations f¢Ykg. For an individual realisation of the
observations, this can be made precise either through

additional calculation or through computer experiments,

based on the specific model being studied, (that is, on

a particular instance of equations (1) and (2)).
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Regarding the convergence of ¼±M to ¼t, stated in

Lemma 1, it is useful to make the following remark.

The order of convergence in condition (x3) can often
be improved. For example [27], if x is a diffusion in

Rl, using the Milstein approximation instead of a first
order Euler scheme gives strong order 1 instead of 0:5.

However, this is not enough to improve the overall order

of magnitude given in the lemma. As can be seen from

the proof, this order of magnitude involves both (43)

and (45). While improving the order of convergence in

condition (x3) will accordingly improve the order of
magnitude in (43), it has no similar effect on (45). The

computer experiments presented in the following sec-

tion show that the proposed particle filtering algorithm,

when implemented with adequate values of ± and N,

performs in a sensibly satisfactory way for the chosen

examples.

5. EXAMPLES: OBSERVATIONS IN SO(3) AND S2

The stochastic filtering problem stated in Section 2

is of a quite general form. By specifying the state space

S, the manifold M and the various objects appearing

in (1) and (2), it is possible to recover a wide range

of problems. As already mentioned, these include the

classical ones defined by an additive white noise model.

Several natural and important observation models

also arise as special cases of the problem of Section 2.

Of particular interest in engineering is the case where

the manifoldM is a classical matrix manifold, (that is, a

matrix Lie group or a related symmetric space), and the

observation process Y, conditionally on the unknown

signal x, is an invariant diffusion.

In signal and image processing, classical matrix

manifolds such as Stiefel and Grassmann manifolds

are of widespread use and importance. Therefore, it is

natural to consider observation models compatible with

their underlying structure. Roughly speaking, these are

exactly the ones involving invariant diffusions.

To explain and optimise the implementation and per-

formance of the particle filtering algorithm of Section 4

in the special case of classical matrix manifolds should

be one of the main objectives for the present work.

Mainly for a reason of space, the current section has

a more modest scope dealing only with two individual

examples.

In 5.1, the problem is considered where the obser-

vation process Y is an invariant diffusion in the special

orthogonal group SO(3). In 5.2 a similar problem is

studied but where Y has its values in the unit sphere S2.

These two examples serve as case studies. They show

how, when faced with a problem of the kind given by

(1) and (2), to carry out the various steps leading to a

successful implementation of the particle filtering algo-

rithm of Section 4. These include, at least, specification

of the metric (21) and the connection (22), choice of

the connector map I to be replaced in (6) and choice of

the approximation fx±kg of the signal x.

It should be noted none of these steps is known

a priori, just by knowing the manifold M. They are

all carried out based on (1) and (2). In particular, the

geometric structure given by the metric and connection

of (21) and (22) is adapted to the observation model.

5.1. Observations in SO(3)

The first example considers the case where the ob-

servation process Y, conditionally on the unknown sig-

nal x, is a left invariant diffusion in the special orthogo-

nal group SO(3). This is the set of 3£ 3 real matrices g
which are orthogonal and have unit determinant. That is,

g¡1 = g†, det(g) = 1, (46)

where † denotes matrix transpose. As a subset of the

vector space R3£3 (space of 3£ 3 real matrices), SO(3)
is connected and compact. Furthermore, it is closed un-

der matrix multiplication and inversion. Thus, SO(3) is

a compact connected Lie group [31]. The 3£ 3 identity
matrix is denoted e; clearly e 2 SO(3).
Let so (3) denote the subspace of R3£3, consisting of

all antisymmetric matrices. That is, matrices ¾ 2R3£3
such that ¾+¾† = 0. It can be shown that, for ¾ 2R3£3
and °(t) = exp(t¾) where t 2 R, °(t) 2 SO(3) for all t 2R
if and only if ¾ 2 so (3). By definition, this means that
so (3) is the Lie algebra of the Lie group SO(3). For

this and other facts on compact Lie groups used in the

following, see [31].

It is not surprising that, being defined by the differ-

entiable constraints (46), SO(3) is a differentiable mani-

fold. Moreover, so (3) can be identified with the tangent

space TeSO(3).

The special orthogonal group SO(3) is quite impor-

tant in many applications. A matrix g 2 SO(3) defines
an orientation preserving rotation in R3. Furthermore,
SO(3) is often thought of as the typical example of a

nontrivial compact connected Lie group. The presen-

tation in the rest of this paragraph generalises to any

compact connected Lie group with very minor changes.

In terms of the general filtering problem of Section

2, the example considered here makes no restriction on

the signal model (that is, on (1)). The observation model

(2) is specified in the following way.

The sensor function H and the vector fields §r are

defined in terms of left invariant vector fields on SO(3).

For each ¾ 2 so (3), there is a corresponding vector field
§ on SO(3) where,

§(g) = g¾, g 2 SO(3): (47)

This means that for each g 2 SO(3), there exists some
differentiable curve °g :]¡ ²,²[! SO(3) such that

°g(0) = g and _°g(0) =§(g). In fact, it is quite straight-

forward to obtain such a curve. First, let °e be the curve

°e(t) = exp(t¾). This is defined for all real t and has

its values in SO(3) as mentioned above. By elemen-

tary properties of the matrix exponential, °e(0) = e and
_°e(0) = ¾. To obtain the curve °g for any g 2 SO(3), it is
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enough to put °g(t) = g°e(t). The meaning of the name

“left invariant vector field” is precisely that °g can be

obtained from °e by left multiplication.

Note that ¾ and § define each other uniquely. Any

left invariant vector field § is of the form (47) where

¾ =§(e).

It is required that for all s 2 S, the application g 7!
H(s,g) is a left invariant vector field. It follows that there

exists a mapping h : S! so (3) such that for g 2 SO(3)
H(s,g) = gh(s): (48)

The vector fields §r are also taken to be left invariant

vector fields. Let ¾1,¾2,¾3 be any basis of so (3). This

basis being fixed, let §1,§2,§3 be the corresponding

left invariant vector fields as in (47). In other words,

§r(g) = g¾r: (49)

Note that the number of vector fields §r is here equal to

3, the dimension of SO(3) (which is also the dimension

of so (3)). This was not assumed in the general problem

of Section 2.

Now that H and §1,§2,§3 have been defined, it is

possible to write down the observation model (2). From

(48) and (49), a simple rearrangement shows

dYt = Yt ± fh(xt)dt+ dB̂tg: (50)

Here B̂ is a process with values in so (3) defined from

a Brownian motion B in Rd, which is independent from
x, by

B̂t = B
1
t ¾1 +B

2
t ¾2 +B

3
t ¾3: (51)

The reader should be immediately aware equation (50)

is just a linear matrix stochastic differential equation. It

can be understood for each matrix element after writing

down the usual formula for matrix product. A process Y

satisfying an equation of this form, when x is assumed

known, is called a left invariant diffusion in SO(3). An

alternative way of writing equation (50) involves the

vector fields §1,§2,§3. This is

dYt =§r(Y) ± fhr(xt)dt+ dBrt g, (52)

where h= hr¾r for some functions h
r : S!R. note the

differentiability conditions of Seciton 2 are verified.

Indeed, as functions of g, H(s,g) and §r(g) are linear

and therefore smooth (C1).
In [13], Lo considered the observation model (50)

by itself (but for a general matrix Lie group, not just

SO(3)). It was proposed that this can be reduced to a

classical, additive white noise model by the following

simple transformation

yt =

Z t

0

Y¡1s ±dYs: (53)

By the chain rule of Stratonovich calculus, it is clear

that

dyt = h(xt)dt+ dB̂t: (54)

This result is strikingly similar to (25) in Proposition 1.

It is now shown that, in effect, it is a special case of that

proposition.

Following the approach of 3.2, the Le Jan-Watanabe

connection is now introduced. Note first the condition of

ellipticity is here verified. In fact, a sharper result holds

since for each g 2 SO(3) the vectors §1(g),§2(g),§3(g)
form a basis of TgSO(3).

Definition (21) amounts to introducing a Rieman-

nian metric on SO(3) such that this basis is orthonormal,

h§r(g),§v(g)i= ±rv: (55)

Using this metric, the Le Jan-Watanabe connection is

defined by (22) which gives

r§r§v = 0: (56)

This immediately implies (24). In fact, for any g 2
SO(3) and tangent vector K 2 TgSO(3), it follows by
linearity that rK§r = 0. Here, one says the vector fields
§r form a global parallel frame.

For the following, it is important to note the metric

(55) is left invariant. If g 2 SO(3) and E,K 2 TgSO(3),
hE,Ki= hg¡1E,g¡1Ki: (57)

That is, the left hand side is computed in the tangent

space TgSO(3) and the right hand side in TeSO(3),

which is so (3). This can be shown by putting ´ =

g¡1E 2 so (3) and ·= g¡1K 2 so (3) and considering the
corresponding left invariant vector fields as in (47). It

is then a straightforward result of (55).

Due to (57), the Riemannian metric (55) is com-

pletely determined by the basis ¾1,¾2,¾3. This can be

chosen in a completely arbitrary way. It is clear that the

following matrices form a basis of so (3)

!1 =

0B@ ¡1
1

1CA!2 =
0B@ 1

¡1

1CA!3 =
0B@ ¡1
1

1CA :
The general form of the basis ¾1,¾2,¾3 is therefore

¾r = bvr!v, (58)

where b is an invertible matrix.

It is possible that the Riemannian metric (55) will

not be biinvariant (i.e., both left and right invariant).

This is the case if and only if the matrix b is orthogonal.

In practice, there is no reason why this should be

the case. In rigid body mechanics [32], an orthogonal

matrix b may be chosen when studying the motion of a

spherically symmetric body. In general, b is given by the

inertia matrix of the body, reflecting its shape and mass

distribution. This can be far from spherical symmetry

(consider an airplane). The metric (55) is introduced

based on the observation model (52). In other words, it

is adapted to the observation model.

Furthermore, the connection defined by (56) is

known as the Cartan-Schouten (¡)-connection. Since it
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has nonzero torsion, it is not the Levi-Civita connection

of any Riemannian metric (in particular, of the metric

(55)). When the matrix b is orthogonal, the Levi-Civita

connection of the metric (55) is known as the Cartan-

Schouten (0)-connection (see [23, 33]).

In order to apply Proposition 1, it is necessary to

compute a parallel orthonormal frame (Ei). This turns

out to be especially simple. Applying (10) and (56),

r±dY§r(Yt) = 0:
Therefore, by (9) and (12),

dhEi,§ri= 0:
Since both (Ei) and (§r) are orthonormal families, this

implies the existence of an orthogonal matrix a= (air)

such that

Eit = a
ir§r(Yt):

Moreover, by a choice of initial condition, it is possible

to take a= e identity matrix.

Now, (13) gives

yit = a
ir

Z t

0

h§r(Ys),±dYi: (59)

To evaluate this Stratonovich integral, it is possible

to apply (18). Note that this states the Stratonovich

integral is the same as a classical Stratonovich integral.

Applying this prescription is easier than changing the

current notation to that of (18) and then changing back.

In short, it follows form (49) and (57),

yit = hair¾r,
Z t

0

Y¡1s ±dYsi:

This shows that (54) is the same as (59) up to a change

of basis. Thus (54) is indeed a special case of (25),

Proposition 1. It is interesting to note the Brownian

motion ¯ appearing in Proposition 1 turns out, in the

present case, to be the same as the original Brownian

motion B.

The transformation (54) taking Y into y can be

extended to any Lie group, not just compact and matrix.

It is known as the Lie group stochastic logarithm and

was generalised extensively by Estrade [34]. That is

coincides with a stochastic antidevelopment was first

pointed out in [35].

Going on with the programme of applying Section

4 in the current example, consider now the construction

of connector maps. Recall this was described in (6)

and (28). Moreover, it can be implemented using any

mapping I verifying conditions (I1-I3).
As in 3.3, the starting point is the notion of geodesic.

Finding the geodesics of the connection (56) is straight-

forward. Indeed, the definition of this connection sug-

gests geodesics are precisely the flow lines of left in-

variant vector fields. These are the curves of the form

°g discussed after (47). This is easily checked to be the

case by replacing (56) in the geodesic equation (27).

Thus, the mapping exp : TSO(3)! SO(3) is related

in a simple way to the matrix exponential. For g 2 SO(3)
and K 2 TgSO(3),

expg(K) = g exp(g
¡1K): (60)

Indeed, letting ¾ = g¡1K, it follows from (47) that

§(g) =K. Then, it is clear the right hand side is °g(1).

To specify the mapping I of (28) to the current

context, an estimate of the radius of injectivity of the

connection (56) would be needed. In (28), this is the

role played by r which is needed in constructing the

cut off function Á. With the considered geometry, the

group SO(3) is a manifold of constant (strictly) positive

curvature. The radius of injectivity is then known from

Riemannian geometry [23].

Here, a less elegant but simpler approach is taken.

For each g1 2 SO(3) and K 2 Tg1SO(3), let g2 =

expg1 (K). If jg¡11 g2¡ ej< 1, where j ¢ j stands for the
Euclidean matrix norm, then g¡11 g2 has a unique matrix
logarithm. Denote this log(g¡11 g2). Then by (60),

K = g1 log(g
¡1
1 g2):

For any g1,g2 2 SO(3) verifying jg¡11 g2¡ ej< 1, define
logg1 (g2) = g1 log(g

¡1
1 g2): (61)

According to (28), when it is possible, I(g1,g2) should

coincide with logg1 (g2). To take into account couples

g1,g2 for which this expression is not well defined,

let Á : SO(3)£ SO(3)! [0,1] be a C1 function such

that Á(g1,g2) = 0 if jg¡11 g2¡ ej ¸ 1 and Á(p,q) = 1 if
jg¡11 g2¡ ej · 1¡¸. Here, 0< ¸< 1 is fixed. Now, I can
be defined as

I(g1,g2) = Á(g1,g2) logg1 (g2): (62)

Computing a matrix logarithm, even for 3£ 3 matrices,
is a relatively involved task. It is possible to propose an

alternative mapping I, which does not involve a matrix

logarithm. Recall the first order Taylor expansion of the

matrix logarithm at e,

log(g¡11 g2) = g
¡1
1 g2¡ e+O(jg¡11 g2¡ ej2): (63)

Let ¦ be a linear projection from R3£3 to so (3). For
instance, ¦(¾) = (1=2)[¾+¾†] associates to the matrix

¾ its antisymmetric part. Instead of (62), it is possible

to use

I(g1,g2) = g1¦(g
¡1
1 g2¡ e): (64)

Of course, it is an abuse of notation to call both map-

pings (62) and (64) by the same name I. Still, this is

done since they serve the same purpose. Roughly, the

difference between (62) and (64) is that in the latter

expression the matrix logarithm is replaced by the first

term in its Taylor expansion. Moreover, in this same

expression (64), there is no need for a cut off factor

since all operations are well defined for g1,g2 2 SO(3).

240 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 2 DECEMBER 2016



Recall that any chosen mapping I is here required to

verify conditions (I1-I3). It is straightforward to show
this is the case for the mapping (64).

That condition (I1) is verified, follows from smooth-
ness of matrix inversion and multiplication; in addition

to the linear operation ¦. To verify conditions (I1-I2),
note that in the same notation used to state these condi-

tions,

dI(g1,g2)(§r) = g1¦(g
¡1
1 §r(g2)),

and, using (56) and the definition of the Hessian,

r2I(g1,g2)(§r,§v) =§r§vI(g1,g2)¡r§r§vI(g1,g2)
= 0:

These simply follow from the fact that (64) is linear in

g2. The latter formula immediately gives condition (I3),
since §1(g1),§2(g1),§3(g1) is a basis of Tg1SO(3). For

condition (I1), note by the same argument

dI(g1,g1)(K) = g1¦(g
¡1
1 K),

for all K 2 Tg1SO(3). However, ·= g¡11 K 2 so (3), so
that ¦(·) = ·. Then,

dI(g1,g1)(K) = g1·=K,

which is condition (I1). The mapping I of (64) is

especially easy to compute. Thanks to (46), the matrix

inverse is the same as the transpose.

All that is needed in order to apply the particle

filtering algorithm of Section 4 to the current example

is the mapping I. At each step of the algorithm, as

descried in 4.2, instructions 1,3 and 4 do not involve

the observation process Y. This only appears through

the increments ¢Yk in instruction 2. For this instruction,

each ¢Yk is computed using I as in (6) and replaced in

(36) in order to find particle weights.

To illustrate the above discussion, a computer ex-

periment is now presented. For the signal model (1),

the experiment considers S =R3. The unknown signal
x is taken to be an Ornstein-Uhlenbeck process,

dxt =¡ºxtdt+ dvt, x0 = (0,0,0), (65)

where º > 0 and v is a Brownian motion in R3 with
variance parameter ¾2 = 0:5. As discussed in 4.2, the

first step is to choose an approximation fx±kg of x. In
the following, only one value of ± is considered, ± = 0:1.

The x±k are constructed using a first order Euler scheme,

which verifies conditions (x1-x4).
The function h : R3! so (3) is taken to be a linear

isomorphism, mapping the canonical basis of R3 to the
basis !1,!2,!3 of so (3). In other words,

h(s) = s1!1 + s
2!2 + s

3!3, (66)

for each s= (s1,s2,s3) in R3. It should be noted that,
with this choice for h, the sensor function H of (48)

verifies condition (H2) but does not verify condition
(H1).

It was stated in 4.3 that conditions (H1-H2) are not
essential for the overall behaviour of the particle fil-

tering algorithm. The missing condition here is condi-

tion (H1), which requires the sensor function H to be

bounded. It can be shown by (48) and (57) that

kH(s,g)k2 = kh(s)k2 = jsj2,
where, as before, j ¢ j denotes the Euclidean norm. Thus,
condition (H1) is equivalent to the condition that the
function h be bounded. It is clear this does not hold for

the function h in (66). However, it should be noted that

the unknown signal x of (65) is a normal process. That

is, the distribution of xt is normal for each t¸ 0. Thus,
the distribution of h(xt) has exponentially decreasing

tales and finite moments of all orders. This compensates

for condition (H1) being dropped, since kh(xt)k2 = jxtj2
and this has an exponentially small probability of being

large.

In order to simulate a trajectory of the observation

process Y, a slight modification of the McShane approx-

imation (4) was used. Applied to (50), the McShane ap-

proximation gives an approximating process Y± which

satisfies a linear ordinary differential equation

_Y±t = Y
±
t fh(xt)+¢B̂kg, (67)

on each interval [k±, (k+1)±[; for k 2 N and where, as
in (4), ¢B̂k = ±

¡1(B̂(k+1)± ¡ B̂k±).
Equation (67) is a linear ordinary differential equa-

tion with time dependent coefficients. This is due to the

presence of h(xt) which contains the unknown signal.

Without changing the convergence rate (5), it is possible

to consider another approximating proces Ȳ± which sat-

isfies an equation with piecewise constant coefficients.

This has the advantage of having a straightforward an-

alytical solution. In effect, if Ȳ± satisfies the equation

_̄
Y
±

t = Ȳ
±
t fh(xk±) +¢B̂kg, (68)

on each interval [k±, (k+1)±[ for k 2 N, then
Ȳ±t = Ȳ

±
k± exp[(t¡ k±)(h(xk±)+¢B̂k)], (69)

on the interval [k±, (k+1)±[. Equation (68) is the same

as (67), but with h(xt) replaced by h(xk±).

Formula (69) is the one used in simulating a trajec-

tory of Y. The experiment was carried out with b = e

in (58). In this case (69) admits a simple interpretation

since, for s 2R3, if °(t) = exp[th(s)] then ° represents
a uniform rotation with angular velocity s. Thus, Ȳ±

consists in a sequence of successive uniform rotations

where the angular velocity is xk± +¢Bk on the interval

[k±, (k+1)±[.

Once a trajectory of Y has been simulated, the

particle filtering algorithm of Section 4 can be applied

immediately. The algorithm has as its input the sequence

of increments f¢Ykg. Here, these are obtained using the
mapping I of (64). With the choice of projection ¦
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discussed above, ¦(¾) equal to the antisymmetric part

of ¾, this mapping becomes

I(g1,g2) = g1[(1=2)(g
†
1g2¡ g†2g1)], (70)

where (46) was used in order to avoid matrix inversion.

In the particle filtering algorithm, the mapping I is

only used in instruction 2 which requires evaluating the

likelihood (36) (computation of normalised weights).

Here, it is important to note the factor g1 before the

bracket in the right hand side of (70) can be overlooked.

This is seen by replacing the invariance property (57)

and definition (70) in (36). As a result, an unnecessary

matrix multiplication can be avoided.

Figure 1 below is now used to illustrate the per-

formance of the particle filtering algorithm. With the

values of ± and ¾2 mentioned above, this figure shows

the estimation error jx̂t¡ xtj for t 2 [1,T] where T = 10.
Here, in the notation of (41), x̂t is the estimate

x̂t = (1=N)

NX
i=1

x̂iM , (71)

whereM is the integer part of t=±. This is the expectation

of the Monte Carlo approximation ¼̂±M obtained from

the particle filtering algorithm. Since ¼̂±M converges to

¼t, (as described in Proposition 5 of 4.3), x̂t should also

converge to the expectation of ¼t, say x
¤
t . That x

¤
t exists

follows from the fact that xt is normal and thus square

integrable, since ¼t is defined in (32) as the conditional

distribution of xt given past observations.

The notation x̂t obscures dependence on ± and N.

However, the values of ± and N essentially control the

estimation error when (65) is determined; i.e., when º

is given. Figure 1 considers º = 1 and º = 0:5. The es-

timation error in the present case can be understood as

combining a bias and a variance. By its very definition,

x¤t is an unbiased estimator of xt, whereas x̂t is con-
structed as an approximation of x¤t . The bias is then the
difference (in the square mean) between x̂t and x

¤
t . The

convergence result given in this paper, Proposition 5, is

only concerned with this difference and does not say

anything about the variance part of the estimation error.

The variance part of the error turns out to be the

variance of the conditional distribution ¼t. This is due

to the following important remark.

The filtering problem considered here (with x given

by (65) and Y by (50)) has a finite dimensional solution.

This is quite similar to a Kalman-Bucy filter. Proposi-

tion 1 states that the conditional distribution ¼t given

past observations of Y is the same as given past obser-

vations of y, (in the proposition, this is the statement

that Ȳt = Yt). Now, y is here given by (54). Replacing
(66) for the function h shows it is just a linear addi-

tive white noise model. Moreover, it is clear from that

Fig. 1. Influence of º and N on estimation errors

equation (65) satisfied by x is a linear stochastic differ-

ential equation. In particular, as already mentioned, x is

normal.

Thus, the conditional distribution ¼t is a normal

distribution with mean x¤t and covariance Pte where
Pt ¸ 0, (recall e is the 3£3 identity matrix). Moreover,
x¤ and P satisfy the Kalman-Bucy equations [36]

dx¤t =¡ºx¤t +Pt[dzt¡ x¤t dt], (72)

and
_Pt =¡P2t ¡ 2ºPt+¾2, (73)

where z is a process with values in R3 whose coordinates
are zrt = hyt,!ri.
The conditional distribution ¼t is the exact solution

of the current filtering problem. It can be computed by

integrating the Kalman-Bucy equations (72) and (73).

This can be done in a standard way after replacing dzt
in terms of dyt = Y

†
t ±dYt, which is (53). On the other

hand, ¼̂±M is an approximation of ¼t. In addition to being

unbiased, x¤t is an optimal estimator of xt in the sense of
mean square error. As x̂t converges to x

¤
t , the bias part

of the estimation error disappears and the optimal error

Pt is achieved in the limit.

From a practical point of view, there is no need here

to implement a particle filter. In fact, it is even com-

putationally less expensive to integrate (72) and (73).

However, as it is well know, the existence of finite di-

mensional solutions is the exception rather than the rule

in real situations. The connection between the present

example and rigid body mechanics has already been

mentioned. If Y is used to represent the pose of a rigid

body, then x is the angular velocity. The filtering prob-

lem appears as the problem of tracking angular velocity

based on observations of the pose alone. In general,

the angular velocity of a rigid body satisfies Euler’s

equation of rigid body mechanics, which is far more

complicated than (65) and in particular nonlinear [32].

Thus, when a realistic model is used for x, using a par-

ticle algorithm or some other approximation becomes

indispensable.

Before going on to the next example, note the be-

havior of the estimation error in Figure 1. While x0 =

(0,0,0), the particles were initialised at (4,0,0). Since

º > 0, this initial error is quickly overcome. However,
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the fact that º > 0 leads to nonzero asymptotic variance.

As t goes to infinity Pt goes to P1 =¡º +(¾2 + º2)1=2.
Thus, it is not possible to track x exactly. This prob-

lem appears since, when º > 0, the process x is ergodic.

In particular, its asymptotic distribution is normal with

mean 0 and variance ¾2=2º. This imposes a fundamental

limit on estimation error.

5.2. Observations in S2

In this second example, the observation process Y

lies in the unit sphere S2. Of course, S2 is the set

of p 2 R3 such that jpj= 1. In comparison with the
previous example, the current one will raise several

additional difficulties. Roughly, these are due to the fact

that S2 is not a Lie group but a symmetric space of the

compact Lie group SO(3).

The manifold structure of S2 is most easily under-

stood as inherited from R3. Precisely, S2 is a compact
embedded submanifold of R3. For p 2 S2, the tangent
space TpS

2 is the subspace of R3 consisting of those
vectors K such that (K,p) = 0. Here, (¢, ¢) denotes the
standard Euclidean scalar product in R3. In particular,
(p,p) = jpj2.
As in the previous example, no restriction is made

on the signal model (1). The sensor function H and the

vector fields §r are defined in terms of the action of

SO(3) on S2. This is now briefly discussed.

For each p 2 S2, consider the two following linear
mappings. First, the orthogonal projection ¦p : R3!
TpS

2. This is defined by

¦p(v) = v¡ (p,v)p= p£ v£p, (74)

for v 2R3, where £ denotes vector product.
The second mapping is §p :R3! TpS

2 defined as

follows. Let ¾1,¾2,¾3 be as in (58), with b = e. In other

words, ¾r = !r. Also, let ¾(v) = v
r¾r where v 2R3 (this

was called h(v) in (66)). The mapping §p is given by

§p(v) = ¾(v)p= v£p: (75)

This is related to the action of SO(3) on S2 in a sim-

ple way. Note that ¾(v) 2 so (3) for v 2 R3. If °(t) =
exp(t¾(v)) for t 2R then °(t) 2 SO(3) and

§p(v) =
d

dt

¯̄̄̄
t=0

°(t)p:

In other words, §p(v) is the velocity of the point p when

it is in uniform rotation with angular velocity v.

Unlike ¦p, the mapping §p is not a projection.

However, both mappings are surjective and have the

same kernel,

Ker(¦p) = Ker(§p) =NpS
2,

where NpS
2 is the normal space to S2 at p. This is a

one dimensional subspace of R3 consisting of vectors
¸p where ¸ 2 R.

Using the mappings ¦p and §p, the tangent bundle

of the sphere can be described in a covariant way. For

any p,q 2 S2 there exists k 2 SO(3) such that kp= q.
In fact, there are an infinity of such k. The following

relations hold

¦kp(kv) = k¦p(v), §kp(kv) = k§p(v), (76)

and can also be written

¦q(v) = (k¦pk
¡1)(v), §q(v) = (k§pk

¡1)(v): (77)

Returning to the filtering problem, a general observation

model where the observations lie on S2 can be defined

using either the mappings ¦p or §p for each p 2 S2. It
is preferable to use §p, since it is immediately related

to the action of SO(3) on S2.

The sensor function H will be assumed of the fol-

lowing form,

H(s,p) =§p(h(s)), (78)

where h : S!R3. The vector fields §r will be de-
fined by

§r(p) =§p(er), r = 1,2,3, (79)

where e1,e2,e3 is the canonical basis of R3.
As in the previous example, all the differentiability

conditions of Section 2 hold, since the operations used

to define H and §r are linear. Moreover, the condition

of ellipticity, required to introduce the metric (21) and

the Le Jan-Watanabe connection (22), is verified. This

is because, by construction, the mapping §p is surjective

for each p 2 S2. Replacing the definition (75) of §p in
(2) gives the observation model

dYt =¡Yt£fh(xt)dt+ ±dBtg, (80)

where B is a standard Brownian motion in R3.
In the current example, the number of vector fields

§r is equal to 3 whereas the dimension of S
2 is equal

to 2. As a result, there is no simple formula similar

to (53) that can be used to find the antidevelopment

process y of Y. Rather, it is necessary to consider a

parallel frame along Y. This is done after introducing the

metric (21) and the Le Jan-Watanabe connection (22).

It turns out these are the same as the Riemannian metric

that S2 inherits from R3 and its associated Levi-Civita
connection [29].

It is straightforward to show the Euclidean scalar

product (¢, ¢) verifies (21). Let p 2 S2 and K 2 TpS2. Note
that

(K,§r(p)) = (p£K)r,
where the right hand side is the rth component of p£K
in the canonical basis e1,e2,e3. Evaluating the right hand

side of (21) (with K = E) gives

(K,§r(p))(K,§r(p)) = jp£Kj2:
But this is

(p,p)(K,K)¡ (K,p)2 = (K,K),
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since (p,p) = jpj2 = 1 and (K,p) = 0. Thus, the metric
(21) is the same as (¢, ¢).
For the connection (22), note that by definition this

is given by

rKE =K(E,§r)§r(p),
for K 2 TpS2 and any C1 vector field E on S2. This can
also be written

rKE = §p((p£KE)),
where KE is the vector KE = (KE1,KE2,KE3). The last

formula follows from (75) and (79) by linearity. If (75)

is applied to it again, then it follows

rKE = p£KE£p=¦p(KE),
which is the definition of the Levi-Civitation connection

associated to (¢, ¢); see [23].
In order to construct a parallel frame along Y, let

E10 ,E
2
0 2 TY0S2 be orthonormal. Also, let E1,E2 be vector

fields along Y solving the equation of parallel transport

(9). Here, this reads

r±dYEit =¦Yt (dEit ) = 0,
for i= 1,2 and with initial conditions E10 ,E

2
0 . Another

way of writing this equation, based on (74), is

dEit =¡Yt(Eit ,±dYt): (81)

To obtain this, it is enough to replace in (74) the fact

that

d(Eit ,Yt) = (±dEit ,Yt) + (Eit ,±dYt) = 0:
If Y0,E

1
0 ,¡E20 is a positively oriented orthonormal basis

in R3, then Yt,E1t ,¡E2t will have this same property. It
is now assumed this is the case.

From its definition (13), the antidevelopment pro-

cess y of Y has its values in R2 and is given by

yit =

Z t

0

(Eis,±dYs): (82)

Let z be the process with values in R3,

zt = h(xt)dt+ dBt: (83)

It follows from (80) that

dyit =¡(Eit ,Yt£±dzt) =¡(Eit £Yt,±dzt):
Given the chosen orientation for Yt,E

1
t ,E

2
t , this yields

dyit = (E
j
t ,±dzt): (84)

From this, it is possible to recover (25) of Proposition

1. Namely,

dyit = h
i
tdt+ d¯t, (85)

where hit = (E
i
t ,h(xt)) and ¯ is a standard Brownian

motion in R2.
From (84),

dyit = h
i
tdt+(E

j
t ,±dBt):

Thus, it is enough to show

(E
j
t ,±dBt) = (Ejt ,dBt) = d¯it :

That the Stratonovich differential can be replaced by an

Itô differential follows from

(E
j
t ,±dBt) = (Ejt ,dBt)+ 1

2
(dE

j
t ,dBt),

where the last term denotes quadratic covariation. From

(80) and (81), this is

(dE
j
t ,dBt) =¡(Yt,dBt)(Ejt ,Yt£ dBt) = (Ejt ,Yt£Yt)dt,

which is identically zero. That ¯ is a Brownian motion

follows from the fact that E1,E2 are orthonormal.

Equation (80) can be rewritten in terms of the par-

allel frame E1,E2 and the antidevelopment process y.

Replacing in (80) the fact that Y,E1,E2 is an orthonor-

mal basis, it follows from (82) that

dYt = E
1
t ± dy1t +E2t ± dy2t : (86)

Similarly, (81) can be rewritten using (82),

dEit =¡Yt ± dyit : (87)

Now (86) and (87) form a system of linear stochastic

differential equations which can be solved knowing the

antidevelopment y. This shows that Y can be obtained

if y is known. This is in spite of the fact that y has its

values in R2 while Y has its values in R3.
In order to apply the particle filtering algorithm of

Section 4 to the current example, it is enough to specify

a mapping I verifying conditions (I1-I3) of 3.3. Two
such mappings are now considered. First, recall that I

can be given by (28) as a geodesic connector. Here, the

connection r is the Levi-Civita connection correspond-
ing to the Euclidean scalar product (¢, ¢). Thus, geodesics
are to be understood in the usual meaning of large cir-

cles. Accordingly, for p 2 S2 and K 2 TpS2 with jKj 6= 0,
expp(K) = cos jKjp+sin jKj(K=jKj): (88)

Moreover, when p,q 2 S2 and (p,q) 6=§1,
logp(q) = arcsin j¦p(q)j(¦p(q)=j¦p(q)j): (89)

Using this last formula, it is possible to implement (28).

However, this involves several nonlinear operations.

Another, simpler, mapping I can be guessed from (89).

Consider the following

I(p,q) =¦p(q): (90)

This is the first order approximation of logp(q) and is

well defined for any p,q 2 S2. To see that it verifies
conditions (I1-I3) note that

d¦p(q)(V) =¦p(V),

for all V 2 TqS2. Thus, if V 2 TpS2,
d¦p(p)(V) = V,
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which is condition (I2). Condition (I3) reads

r2¦p(p)(V,V) = 0:
By definition of the connection r, the left hand side is
the projection on TpS

2 of the acceleration at t= 0 of the

geodesic

°p(t) = cos(t)p+sin(t)(V=jVj),
but this acceleration is equal to ¡p, so its projection
on TpS

2 is zero. Finally, condition (I1) is easily verified
from (74).

The particle filtering algorithm of Section 4 can be

applied as before. In particular, instruction 2 is carried

out by replacing (78) and (90) into (36) in order to

compute particle weights.

Precisely, the likelihood function based on succes-

sive samples Yk± and Y(k+1)± becomes

l(s) = exp

μ
(h(s)£Yk±,Y(k+1)±)¡

±

2
jh(s)£Yk±j2

¶
: (91)

By (78) and (90), the first term under the exponential is

(H(s,Yk±),Y(k+1)±) = (H(s,Yk±),I(Yk±,Y(k+1)±)),

just like in (36). The second term can also be found

from (78).

The above discussion is now illustrated with a com-

puter experiment. For the signal model, consider S =R3.
The signal is simply a constant x¤=(0,0,1). The function
h of (78) is taken to be the identity function h(s) = s

for s 2R3. Just like in the previous example, it can be
noted that condition (H1) is not verified. Again, since x
is normal this condition can be overlooked.

With the function h chosen in this way, the observa-

tion model (80) becomes

dYt =¡Yt£fxt + ±dBtg: (92)

A trajectory of the observation process Y can be simu-

lated using a formula similar to (68). Precisely, consider

an approximating process Ȳ± where, (letting x̂¤ = x̂r¾r),

Ȳ±t = exp[(t¡ k±)(x̂¤+¢B̂k)]Ȳ±k±, (93)

on each interval [k±(k+1)±[. The value of ± used here

was ± = 0:1, (the same as in the previous example).

In order to ensure the process Ȳ± has its values

in S2 ½ R3, it is enough to take Ȳ±0 2 S2. This was
chosen to be Ȳ±0 = (0,0,1). The product appearing in

(93) is between the matrix exponential on the left, which

belongs to SO(3), and the vector Ȳ±k± on the right which

belongs to S2.

Unlike the case of the previous example, (see (72)

and (73)), there is here no known finite dimensional

solution for optimal estimation of x¤. Application of
particle filtering or of some other approximate solution

is thus necessary.

Figure 2 below shows the distribution of N = 1000

particles in the (x1,x2) and (x1,x3) planes at times T =

Fig. 2. Particles distribution (grey); estimate (±); true value (+)

1:5 (top row) and T = 3 (bottom row). Here, (x1,x2,x3)

are canonical coordinates in the basis e1,e2,e3. The

position of x¤ is designated by a + and the estimate

x̂t (arithmetic average of the particles as in (71)) by

±. The particles were initially generated from a normal

distribution ¹ with mean (0:5,0:5,1) and variance 1.

A large value of N was chosen for visualisation. It is

possible to use N = 100 with a similar performance.

Figure 2 shows the particle filtering algorithm of

Section 4 is able to recover x¤ within a relatively short
time. It is interesting to note the larger variability of the

particle distribution in the x3 direction, apparent in the

right column of the figure. This is because Y0 = (0,0,1)

(the same as Ȳ±0 ) so that, initially, the component of x
¤

along e3 has no effect on the position of Y.

Due to the presence of noise B, the observation pro-

cess Y rapidly explores a large area of S2 (theoretically,

Y is a recurrent process in S2). This allows for the initial

ambiguity in the x3 direction to be overcome.

In the absence of noise, Yt rotates uniformly around

x¤. If x¤ and Y0 are parallel, Yt = Y0 for all t¸ 0. Then, Y
contains no information regarding the magnitude of x¤.
Otherwise, x¤ can be recovered after an arbitrarily short
time (knowing the model (92)). Such a situation cannot

arise in the general case of noisy observations, since Yt
and x¤ do not remain parallel.
The computer experiment presented here shows that

the particle filtering algorithm of Section 4 is able to

successfully handle a filtering problem which is not

solvable by classical methods.

6. CONCLUSION

This paper considered continuous time filtering

problems where the observation process, conditionally

on the unknown signal, is an elliptic diffusion in a

differentiable manifold. In order to numerically solve

filtering problems of this kind, the paper proposed a

particle filtering algorithm which it also proved to be
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convergent under some additional technical conditions.

Roughly, this algorithm combines the well known se-

quential Monte Carlo structure of a classical particle fil-

ter with the geometric construction of connector maps,

used to locally linearise the observation process. To the

author’s knowledge, the proposed algorithm is entirely

new in the literature.

The filtering problems considered in the paper are of

a very general form. While this may have lead to some

unnecessary abstraction, it also has clear advantages.

When dealing with an applied problem, greater general-

ity in mathematical formulation allows additional free-

dom in choosing a realistic observation model which

includes sufficient a priori knowledge of the target ap-

plication. Also, since most physical phenomena are nat-

urally described in continuous time, the fact of starting

from a continuous time formulation should accommo-

date the majority of physical models.

The particle filtering algorithm proposed in this pa-

per leaves several choices open to the user wishing to

implement it. These include the choice of an approxi-

mation of the hidden Markov structure and the choice of

a connector map for local linearisation. This gives addi-

tional adaptability and allows for the trade-off between

complexity and performance to be optimised according

to applications. In any case, the paper gave precise con-

ditions which the chosen implementation should satisfy

in order to produce a consistent numerical solution.

This paper was only a first effort in the new direction

of particle filtering with observations in a manifold. It

was aimed at laying down a rigorous and adaptable gen-

eral framework. Hopefully, additional papers strength-

ening convergence results and exploring in detail impor-

tant engineering applications will be shortly submitted.

APPENDIX A

In 3.3, Proposition 2 was cited from [30]. However,

soon after, a more general claim was made without

proof. Namely, that Proposition 2 continues to hold if

the mapping I of (28) is replaced by any other mapping

which verifies conditions (I1-I3).
The proof of this claim is a repetition of the one

in [30], but does not seem to have been given explicitly

in the literature. For completeness, it is here provided.

In preparation, consider the following generalised

Itô formula. Let f be a C2 function on M and replace

¿ = df in (20). This gives

df(Yt) = (df,dYt) + (1=2)r2f(Yt)(§r,§r)dt: (94)

Let I :M£M! TM be any mapping which verifies

conditions (I1-I3). For ± > 0 and any k 2 N, let
Ik(q) = I(Yk±,q) q 2M:

Conditionally on Yk± = p, this is a C
2 function on M

with values in TpM. This is by condition (I1). In [37],

it was shown that the Itô formula (94) can be applied so

I(Yk±,Y(k+1)±) =Z (k+1)±

k±

(dIk,dYt) + (1=2)

Z (k+1)±

k±

r2Ik(Yt)(§r,§r)dt:

Here dIk and r2Ik denote differentiation component by
component of the vector valued function Ik after an

arbitrary choice of basis.

It will be useful to rewrite this using (17),

Ii(Yk±,Y(k+1)±) =Z (k+1)±

k±

dI
ij
k (Yt)dy

j
t +(1=2)

Z (k+1)±

k±

r2Iik(Yt)dt,

where Iik = hIk,Eii and
dI
ij
k = (dI

i
k,E

j), r2Iik =r2Iik(Ej ,Ej):
On the other hand

yi(k+1)± ¡ yik± =Z (k+1)±

k±

dI
ij
k (Yk±)dy

j
t +(1=2)

Z (k+1)±

k±

r2Iik(Yk±)dt:

This is because, by conditions (I2-I3),

dI
ij
k (Yk±) = ±ij , r2Iik(Yk±) = 0:

Note that, by (15),

dyit = hEi,H+(1=2)r§r§ridt+ d¯it :
Here, the drift coefficient appearing before dt is uni-

formly bounded and ¯ is a standard Brownian motion

in Rd.
Let, (this is the notation of (30) in Proposition 3),

¢yik = y
i
(k+1)± ¡ yik±, ¢Yik = I

i(Yk±,Y(k+1)±):

Then, by Itô isometry,

Ej¢yik ¡¢Yik j2 · Cmax
j

Z (k+1)±

k±

EjdIijk (Yt)¡dIijk (Yk±)j2dt

+

Z (k+1)±

k±

Ejr2Iik(Yt)¡r2Iik(Yk±)j2dt,

where C is some positive constant (which does note

depend on k).

By condition (I1) and the fact that the manifoldM
is compact, dI

ij
k and r2Iik are bounded and continuous.

Therefore, the expectations under the integral in each

term tend to zero as ± # 0.
This proves that

Ej¢yik ¡¢Yik j2 = o(±), (95)

by an extension of this result, it is straightforward to

establish Proposition 2. This is now done.

As in the proposition, formula (29), let

R± =
X
k±<t

hGk±,¢Yki=
X
k±<t

Gik±¢Y
i
k ,
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where Gik± = hEi,Gk±i.
By (17) and the definition of classical Itô integral,

the integral R =
R t
0
hGs,dYi is the limit in the square

mean of

r± =
X
k±<t

Gik±¢y
i
k:

Note as before

Gik±¢Y
i
k =Z (k+1)±

k±

Gik±dI
ij
k (Yt)dy

j
t +(1=2)

Z (k+1)±

k±

Gik±r2Iik(Yt)dt,

and

Gik±¢y
i
k =Z (k+1)±

k±

Gik±dI
ij
k (Yk±)dy

j
t +(1=2)

Z (k+1)±

k±

Gik±r2Iik(Yk±)dt:

By summing over k and using Itô isometry and the fact

that kGtk is bounded
EjR± ¡ r±j2 · C sup

s·t
kGk2£

X
k±<t

max
j

Z (k+1)±

k±

EjdIijk (Yt)¡ dIijk (Yk±)j2dt

X
k±<t

max
j

Z (k+1)±

k±

Ejr2Iik(Yt)¡r2Iik(Yk±)j2dt,

where C is some positive constant, possibly different

from before. Using again condition (I1) and the fact
that the manifoldM is compact it is seen that

lim
±#0
EjR± ¡ r±j2 = 0,

which, from the definition of r±, immediately gives

Proposition 2. It is enough to write

EjR± ¡Rj2 · 2EjR± ¡ r±j2 +2Ejr± ¡Rj2:
The first term has just been proved to converge to zero.

The second term converges to zero by definition of r±.

As already mentioned, this proof is similar to the one

in [30], but makes the additional remark that the only

required properties for the mapping I are conditions (I1-
I3). Accordingly, there is no need to restrict I to being
the geodesic connector mapping (28). In its above form,

the proof explicitly uses compactness ofM in order to

obtain convergence in the square mean. However, it is

clear that this can be replaced by a milder assumption.
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continue,

Annales de l’Institut Henri Poincaré (B), probabilités et
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Direct Position Determination
for TDOA-based Single Sensor
Localization
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In this paper, four different localization techniques based on

TDOA-measurements for single sensor passive emitter localization

are proposed. The use of signal structure information allows TDOA-

based localization with a single moving sensor node. A direct posi-

tion estimation scheme is derived for the single sensor TDOA local-

ization problem. The feasibility of the proposed method is shown in

simulations. The position estimation accuracy of the single sensor

TDOA and the direct technique are compared using simulation re-

sults and the Cramér-Rao Lower Bound. Field experiments using

an airborne sensor are conducted to prove the concept.
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I. INTRODUCTION

Passive emitter localization is a fundamental task

encountered in various fields like wireless communi-

cation, radar, sonar, seismology, and radio astronomy.

An airborne sensor platform is the preferable solution

in many applications. The sensor is typically mounted

e.g. on an aircraft, a helicopter, or an unmanned aerial

vehicle (UAV). Airborne sensors provide in comparison

to ground located sensors a far-ranging signal acquisi-

tion because of the extended radio horizon. Mostly for

localization issues, sensors are installed under the fuse-

lage or in the wings of the airborne sensor platform. In

case of hard payload restrictions only compact sensors

come into consideration.

Aspects of the two-dimensional and three-dimen-

sional localization problem examined in the literature

include numerous estimation algorithms, estimation ac-

curacy, and target observability [16], [3]. Typical local-

ization systems of interest obtain measurements like di-

rection of arrival (DOA), frequency difference of arrival

(FDOA), time difference of arrival (TDOA) or combi-

nations of the aforementioned measurements [6].

Commonly, the desired source locations are deter-

mined in multiple steps: the signal processing step

where the sensor data is computed from the raw signal

data, and the sensor data fusion step where the localiza-

tion and tracking task is performed. Alternatively, direct

position determination (DPD) approaches have been

proposed to compute the desired target parameters in a

single step based on the raw signal data without explic-

itly computing intermediate measurements like DOA,

FDOA, and TDOA [19], [18]. It has been shown that

this kind of data processing offers a superior perfor-

mance in scenarios with weak or closely-spaced sources

but requires a higher computational burden in compari-

son to the standard multi-step processing. For example

for TDOA-based localization, a direct approach based

on the raw signal data has been proposed in [19], [1],

and a standard approach based on TDOA/FDOA mea-

surements has been proposed in [15], [16], respectively.

In [10], a localization approach based on the complex

ambiguity function (CAF) has been introduced which

turned out to be a compromise between localization per-

formance and computational burden. Analysis of emitter

localization using a single moving observer based on

frequency measurements with context knowledge has

been introduced in [4]. The results show the advantage

of using a priori knowledge concerning the emitter’s

altitude (either known or using a terrain model) on the

performance of a localization system. In [2], a method

for single platform geolocation using joint Doppler and

AOA measurements is proposed. The combination of

these heterogeneous measurements can allow more ac-

curate position estimation. More recently, research on

the single receiver TOA/TDOA-based localization us-

ing the periodicity of emitted signals has attracted at-

tention. In [17], the single observer geolocation dealing
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Fig. 1. Comparison of non-direct and direct S4TDOA approach.

(a) S4TDOA approach. (b) DS4TDOA.

with oscillator instability is investigated. Experimental

results using a moving observer and Kalman filters for

the estimation of the local oscillator drift can be found

in [7], [11].

In our previous work, we proposed a DPD approach

for a moving antenna array sensor [9], [8]. Furthermore

in [13], we introduced a single element TDOA local-

ization approach using just a single omni-directional

antenna. In the following, this approach is referred to

as single sensor signal structure TDOA (S4TDOA) lo-

calization (Fig. 1(a)). Commonly, single-element ap-

proaches using a single directional antenna take the di-

rections in which local maximum power is received to

be the DOA estimates [12]. Since directional antennas

cannot simultaneously scan in all directions, some tran-

sient signals can escape detection and fluctuations of

the source signal strength and polarization during the

sequential lobing process may have a significant im-

pact on the DOA accuracy. However, these problems

are circumvented by the technique proposed in [13]

which is applicable when information about the sig-

nal structure is a priori known (e.g. communication and

radar emitters). The method does not require knowledge

of the contents of the emitted signal. The information

that is needed, is that the emitter sends message bursts

at a known repetition frequency. For the example of

GSM signals, the emitter sends data of a duration of

¼ 546:46 ¹s followed by a pause of ¼ 30:46 ¹s. The
knowledge of this repeated pattern of signal transmis-

sions and pauses is used for the single sensor signal

structure TDOA approach. In this paper, we assume the

transmission on/off structure to be known but never as-

sume the transmitted signal itself to be known to the

estimator during the simulations and real data evalua-

tion.

In [14], the single-element TDOA localization ap-

proach is extended by the key-idea of direct emitter

localization. For an airborne scenario with a single sta-

tionary source, we introduce a novel direct localization

approach based on the cross correlation function (CCF).

Our simulation and experimental measurement results

demonstrate that the proposed approach considerably

outperforms the standard single-element localization ap-

proach. This approach is named as direct S4TDOA ab-

breviated with DS4TDOA (Fig. 1(b)).

The block diagram given in Fig. 1 depicts the dif-

ferent approaches in the measurement/localization steps.

For the non-direct S4TDOA method, the signal received

at each observation step is correlated with the reference

signal. The maximum of this correlation yields the TOA

of the signal. By differentiating TOAs of two obser-

vation steps, a TDOA measurement is obtained (first

step: measurement step). These TDOA measurements

are used in the localization step (2nd step). The direct

method DS4TDOA omits the TDOA estimation step and

the correlation functions are input to the localization al-

gorithm (Direct Position Determination, single step lo-

calization).

This paper is based on the work presented in

[14]. Two slightly different (D)S4TDOA are described.

The newly introduced methods are called (D)S4TDOA¤

and do not rely on the explicit representation of the sig-

nal structure using a reference signal. All four

(D)S4TDOA(¤) approaches are compared using the

Cramér-Rao Lower Bound CRLB and Monte-Carlo

simulations.

This paper is organized as follows: In Section II, the

considered localization problem is stated. The Cramér-

Rao Lower Bounds on TDOA estimation and on TDOA-

based emitter localization are described in Section III.

In Section IV, we briefly review the S4TDOA local-

ization approach based on the CAF [13] as well as

the direct version DS4TDOA [14] and introduce the

two novel (D)S4TDOA¤ approaches. Monte-Carlo sim-
ulations and the comparison to the Cramér-Rao Lower

Bound are shown in Section V. Simulation results for a

real data scenario comparing S4TDOA and DS4TDOA

approaches are presented in Section VI. In Section VII,

the experimental measurement results proof the concept.

Finally, the conclusions are given in Section VIII.

The following notations are used throughout this

paper: f[k] is a discrete version of the function f(t),

f¤[k] is the conjugate complex of the function f[k],
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Fig. 2. Three-dimensional localization scenario.

f(¿ )[k] denotes the sampled version of f(t¡ ¿ ) and (¢)T
denotes transpose.

II. PROBLEM FORMULATION

We consider an omni-directional antenna sensor

mounted on an airborne platform moving along an ar-

bitrary but known sensor path observing a single sta-

tionary, ground-located source at position x. The tar-
get emits a coherent signal s(t) which is built up by

times, where information is transmitted and pause inter-

vals between those transmissions. The duration of each

transmissions and each pause intervals is assumed to

be constant and known. For example in the case of a

communication signals, the information is sent as bursts

during the transmission time and the pause times are

guard periods between consecutive bursts. The exact

modulation method or the content of the transmission

bursts doesn’t need to be known as long as a certain

level of signal-to-noise ratio results from the transmis-

sion.

During the movement, the sensor collects N signal

data batches. The nth received signal at some measure-

ment point reads

zn(t) = ans(t¡ te,n¡ tn)exp(jºnt)+wn(t), (1)

where an denotes a path attenuation factor, te,n denotes

the unknown signal emission time of the nth received

signal, tn denotes the time difference between signal

emission and signal acquisition, ºn is the signal Doppler

shift induced by the movement of the own sensor plat-

form, and wn denotes some additional receiver noise,

n= 1, : : : ,N. The transmitted signal s(t) and the received

signals zn(t) are assumed to be complex base-band sig-

nals.

In practice, the sensor collects data samples from the

received signal. In the considered scenario, the sampling

rate is assumed to be high enough that the sensor

location rn is approximately constant for each collected

data batch (Fig. 2). Then, tn and ºn are given by

tn(x) =
k4 rn(x)k

c
, (2)

ºn(x) =
vTn 4 rn(x)
k4 rn(x)k

f0
c
, (3)

respectively, where 4rn(x) = x¡ rn denotes the relative
vector between sensor and source, vn is the sensor
velocity vector, c is the signal propagation speed, and

f0 is the center frequency of the emitted signal.

Considering the time-discrete version of the received

signal in (1), the kth data sample of the nth data batch

is given by

zn[k] = ans(k4¡clkn¡ ¿n)exp(jºnk4)+wn[k], (4)

where4 is the sample interval, clkn is the known sensor

clock of the nth measurement, ¿n is the signal time

of arrival relative to the sensor clock. Please note that

clkn+ ¿n = te,n+ tn holds. The additional receiver noise

wn is assumed to be temporally uncorrelated and zero-

mean Gaussian.

For the single sensor TDOA estimation, a reference

signal s̃[k] is used which characterizes the repetition pat-

tern of the transmitted signal. For the ideal case, the

emitted signal would be known and thus s̃[k] = s[k].

Since usually, the emitted signal is unknown for al-

most all applications, the reference signal we employ

throughout this paper only characterizes the transmis-

sion on/off pattern of the emitted signal, which basi-

cally results in a comparison of the amplitudes of the

received signal with the reference signal. If the emit-

ted signal were known, much better localization per-

formance could be achieved. Throughout this paper, we

assume the transmission and guard interval periods to be

known. The method doesn’t require knowledge of the

contents of the emitted signal and we never assume the

signal to be known during the simulations or real data

evaluation (where in fact, we don’t know the emitted

signal).

Finally, the localization problem is stated as follows:

Estimate the source location x from the received signal

data batches zn = (zn[1], : : : ,zn[K])
T, n= 1, : : : ,N.

III. CRAMÉR-RAO LOWER BOUND

The CRLB provides a lower bound on the esti-

mation accuracy and its parameter dependencies re-

veal characteristic features of the estimation problem.

The parameters to be estimated from the measurements

z= (zT1 , : : : ,z
T
N)
T are given by the vector x. In this case,

the CRLB is related to the covariance matrix C of the

estimation error 4x= x¡ x̂(z) of any unbiased estima-
tor x̂(z) as

C= Ef4x4 xTg ¸ J¡1(x), (5)

where the inequality means that the matrix difference

is positive semidefinite and J is the Fisher Information

252 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 2 DECEMBER 2016



Fig. 3. Schematic representation of the received signals at

measurement step r and n.

Matrix (FIM) given by

J(x) = E

(μ
@L(z;x)
@x

¶μ
@L(z;x)
@x

¶T)
, (6)

where L denotes the log-likelihood function. If the

estimator attains the CRLB then it is called efficient.
The CRLB is given by the inverse Fisher Information.

In the following sections, CRLB for the TDOA

estimation (Section III-A) as well as for the localization

problem (Section III-B) are described.

A. CRLB on TDOA Estimation

The problem of estimating the TDOA ¿ of received

signals can be stated as follows. From a set of sig-

nals zn(t), estimate the corresponding TDOAs. A lower

bound on the achievable accuracy of this estimation pro-

cess is essential for the calculation of the achievable

localization accuracy described in Section III-B.

One of the most cited publication in this field is

the work of Stein [15]. A CRLB on TDOA/FDOA

estimation for the acoustic case is derived based on

signal parameters like the bandwidth, the integration

time and the signal-to-noise ratio of the received sig-

nals. The signals are assumed to be stationary Gaussian

random processes. A more clear distinction between

acoustic and electromagnetic signals was for example

introduced in [5]. A more generalized bound for deter-

ministic unknown signals was presented in [20]. The

bound is determined using a given realization of the

emitted signal itself. We use the Fisher Information J¿
for the CRLB on emitter localization in the following

section.

B. CRLB on Emitter Localization

The Fisher information for the TDOA-based local-

ization problem is

J(x) =
X
m

Ãμ
@¿m
@x

¶
J¿

μ
@¿m
@x

¶T!
, (7)

where m gives the TDOA measurement index and ¾2¿m
is the variance of the corresponding TDOA estimation

process modeled by the CRLB found in [20].

The CRLB for the position estimation accuracy is

then given by
¾2x = tr(J

¡1(x)): (8)

If TDOA measurements are temporally and spatially

uncorrelated, the addition of the Fisher information of

different measurement steps is possible.

IV. LOCALIZATION APPROACHES

In this section, approaches for the stated localization

problem are presented i.e. the localization of a source

with periodic coherent emission using a single moving

sensor. Four measurement approaches for the single

observer scenario are considered.

Firstly, an approach S4TDOA based on TOA mea-

surements is presented (Section IV-A). Then, a deriva-

tion of this method called DS4TDOA based on the CCF

and direct position determination is presented in Section

IV-B. For both methods, approaches without the use of a

representation of the reference signal s̃[k] are introduced

in Section IV-D. Those methods are called S4TDOA¤

and DS4TDOA¤ respectively. For the sake of simplic-
ity, only TOA/TDOA measurements are considered in

following and the Doppler is neglected. Nevertheless,

the following techniques could be generalized to full

CAF.

A. Two-step S4TDOA Approach [13]

Step 1: Commonly for a sensor network, TDOA
measurements are extracted from the CCF

CCF(4¿) =
KX
k=1

z¤1[k]z
(¡4¿)
2 [k], (9)

i.e. from the correlation of the two signals z1[k] and z2[k]

in time domain. The TDOA estimates are calculated by

detecting the peak in the CAF:

4¿̂ = argmax
4¿

CCF(4¿): (10)

However, since a single moving sensor is consid-

ered, the measurements are not taken simultaneously.

Thus in the following, the signal processing for the

single sensor case is presented (Fig. 1(a)). Due to the

known signal structure, a quasi-TDOA measurement

can be computed by considering the individual known

sensor clock clkn:

¿̂n = argmax¿
CCFn(¿) (11)
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with

CCFn(¿ ) =

KX
k=1

z¤n[k]s̃
(¡clkn¡¿)[k], (12)

where s̃[k] denotes a reference signal introduced in (4).

Then similar to (10), a quasi-TDOA measurement can

be calculated by taking the clock differences (Fig. 3)

4clkn,r =
μ»
clkn¡ clkr

T

¼
¡
¹
clkn¡ clkr

T

º¶
T (13)

into account, where the index r indicates some refer-

ence time. Then a quasi-TDOA measurement can be

extracted from the TOA estimates by

4¿̂n,r = ¿̂n¡ (¿̂r+4clkn,r), (14)

i.e. by the difference of the individual estimated TOAs

corrected by the clock difference. The correction of

the clock difference is mandatory because the measure-

ments are not taken simultaneously.

Step 2: The emitter localization problem can be

solved by searching the emitter location that most likely

explains the TDOA measurements calculated in (14).

Therefore, the emitter location can be calculated by

solving the following least-squares form:

x̂= argmin
x

NX
n=1
n 6=r

k4 ¿̂n,r ¡4¿n,r(x)k2
¾24¿ ,n,r

, (15)

where 4¿n,r(x) denotes the measurement function given
analog to (14) by

4¿n,r(x) = tn(x)¡ (tr(x) +4clkn,r), (16)

according to (2) and ¾24¿ ,n,r denote the TDOA measure-
ment variance, n= 1, : : : ,N. The solution in (15) can

be geometrically interpreted as the intersection of the

hyperbolae represented by the individual TDOA mea-

surements.

At this point it is worth to mention that in practice,

the measurement variances are unknown and vary dur-

ing the time. Consequently, the measurement variance

have to be estimated because otherwise one could use

an estimator with a reduced performance.

B. One-step DS4TDOA Approach [14]

The key-idea of direct localization approaches is to

avoid the decision for one TOA/TDOA/AOA measure-

ment in the first step of a localization algorithm. In the

case of the S4TDOA method as described in the previ-

ous section, this decision is represented by the process

of maximum determination of the CCF. The choice will

always falls on the highest peak of the CCF, but when

taking into account all measurement batches, this peak

might be wrong. In this case, f.e. the second highest

peak of the CCF would correspond to the sensor emitter

geometry and fit all other measurement batches. Thus,

leaving this decision open, allows the implicit evaluation

of multiple measurement hypotheses in one localization

step.

The intention is to create a cost function that has

to be optimized in the localization step, which takes

into account all measurement batches at the same time

without the explicit decision for TDOAs (Fig. 1(b)). By

calculating the CCF of the CCFr (CCF of zr and s[k])
and the CCFn (CCF of zn and s[k]), the choice for an
explicit TDOA can be postponed into the localization

step. We call this approach direct single-sensor signal

structure TDOA localization (DS4TDOA).

The choice of this approach is motivated by the

scheme used for the multi-sensor TDOA localization,

where the TDOA is not explicitly chosen in the first step

but the TDOA measurement function is directly used

as input for the localization step [1], [10]. Instead of a

TDOA estimation from two received signals, DS4TDOA

obtains the TDOA from two TOA measurements. The

equivalent DS4TDOA then relies on the CCF of the

TOA measurement functions, which are the CCFs of

the received signals with the reference signal.

The proposed cost function (cross correlation of

cross correlation functions) subject to the position x is
defined as

CCCFn,r(x) =
KX
k=1

CCF¤n[k]CCF
(¡4¿n(x))
r [k], (17)

with the CCF given in (12). The localization problem is

then stated by

x̂= argmax
x

NX
n=1
n 6=r

CCCFn,r(x): (18)

C. Discussion

The localization accuracy for both methods may

degrade, if the distance between two observer positions

is too big compared to the signal repetition duration T.

If 4¿n(x)¸ T=2 the wrong peak may be chosen in
the maximum determination of the CCFs in the case

of S4TDOA. This choice has a direct effect on the

localization accuracy using S4TDOA.

The influence on the localization for DS4TDOA is

smaller if 4¿n(x)< T=2 for almost all n. If 4¿n(x)¸
T=2 for a significant number of measurements, the

optimization of the localization function (18) may run

into the maximum that corresponds to the wrong time

slots. However this is unlikely, because the ambiguities

that are due to 4¿n(x)¸ T=2 are unlike to join in the
same spatial position unless more than one emitter is

present.

D. (D)S4TDOA without the use of s̃[k]

Both approaches described in the previous sections

use an additional signal s̃[k] representing the informa-

tion on the signal structure. This allows data reduc-

tion for the localization step. If processing power and
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data storage capacity and–in case of the use of the

methods with multiple sensors–communication band-

width is not an issue, the received signals can be stored

and used for the localization process. In this case, in-

stead of using TOA estimates calculated using s̃[k] for

S4TDOA and the CCCF for DS4TDOA, the cross cor-

relation function of two received signals is used to es-

timate the TDOA or in the cost function of the direct

method respectively. An additional shift factor accord-

ing to the signal repetition interval and the observation

time span has to be taken into account. We call these

methods S4TDOA¤ and DS4TDOA¤.

S4TDOA¤:

The first step of the localization process of S4TDOA¤

is to calculate the maximum of the cross correlation

function of two received signals at different time steps

n,r:

CCFn,r(¿) =

KX
k=1

z¤n[k]z
(¡clkn,r¡¿)
r [k]: (19)

The TDOA measurement is then given by

¿̂n,r = argmax¿
CCFn,r(¿ ): (20)

In the second step, the emitter position is estimated

by solving (15).

DS4TDOA¤:

Similar to (17), the cost function for DS4TDOA¤ is
given by

CCFn,r(x) =
KX
k=1

z¤n[k]z
(¡4¿n(x))
r [k]: (21)

The localization problem is then stated by

x̂= argmax
x

NX
n=1
n 6=r

CCFn,r(x): (22)

For the evaluation of the real measurement data

in this paper (sections VI and VII), S4TDOA¤ and
DS4TDOA¤ are not applicable since processing power
and storage capacity were limited. In the theoretical

simulation and the CRLB evaluation (see section V),

all four (D)S4TDOA(¤) methods are compared.

V. LOCALIZATION ACCURACY EVALUATION

A. Simulation Setup

To evaluate the four presented (D)S4TDOA(¤) local-
ization approaches, Monte-Carlo simulations and CRLB

analysis are conducted. A 2-dimensional scenario is in-

vestigated where one observer moves along a trajectory

from west to east as depicted in Fig. 4. For each obser-

vation time step n= 1 : : :12, a signal sn[k] that is emitted

from the target is simulated. We assume free space path

loss

FSPLdB = 10log10

μ
4¼k4 rn(x)k

¸

¶2
(23)

and, by taking the receiver sensitivity SdB into account,

calculate the corresponding SNR

SNRdB(n) = (PE +GE +GR¡FSPLdB)¡SdB, (24)

where ¸ is the wavelength of the signal, PE is the

transmitter power, GE and GR are antenna gain of the

emitter and receiver antennas. The received signal is

delayed by the time tn(x) the signal took to travel from
the emitter to the observer according to (2).

The signals for each observation step are simulated

as complex valued base-band signals at a sample rate

of fs = 400 kHz using the following parameters. The

duration of each observed signal is T = 1 ms composed

of repeated data transmission Tdata = 50 ¹s and guard

periods with duration Tguard = 10 ¹s. During the time

of data transmission, the emitted signal consists of a

chirp signal with bandwidth B = 200 kHz. During the

guard periods, no data is transmitted. White Gaussian

noise is then added to the signal according to the SNR

calculated using (24). The noise power is determined

over the whole observation bandwidth of 400 Khz. The

parameters for the path loss calculation are GE = 3 dB,

GR = 0 dB, SdB =¡90 dBm at a center frequency of

1800 MHz. The transmission power PE is varied for

different evaluations. The received signal is then given

by zn[k].

The reference signal s̃[k] which is used by

(D)S4TDOA has the same duration as the simulated re-

ceived signal. The data transmission period starts with

the first sample of s̃[k] and the same reference signal is

used at each time step. Since the TDOA and position

estimation using (D)S4TDOA in this special realization

rely on the amplitude comparison by correlating the re-

ceived signals zn with the reference signal s̃, the refer-

ence signal can be modeled as a real valued signal with

s̃[k] = 1 during data transmission periods and s̃[k] = 0

during guard periods.

TDOA measurements are taken between consecutive

observation steps resulting in a total of N=2 TDOAmea-

surements. The measurement set for each measurement

index m= 1, : : : ,N=2 is given by f¿̂1,2, : : : , ¿̂2m¡1,2mg.
The cost functions of (D)S4TDOA(¤) are maximized

using Nelder Mead simplex optimization under the as-

sumption of constant TDOAmeasurement variance. The

initial position estimate for the optimization process is

calculated by evaluating the cost functions on a grid of

possible emitter positions. The grid points are spaced

by 500£ 500 m. For the first TDOA measurement, no

position estimate is given, since the emitter location is

not observable with only one TDOA measurement.

Simulations with 500 Monte-Carlo runs are con-

ducted. For each run, the emitter position is chosen

uniformly at random from an area of interest (AOIx =
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Fig. 4. Scenario used for localization accuracy analysis including

results of (D)S4TDOA. Zoom of target area shows only

(D)S4TDOA¤ results. Transmission power PE = 30 dBm. CRLB is
depicted as 3¾ ellipse.

Fig. 5. Comparison of localization approaches to CRLB

(transmission power PE = 18 dBm).

¡5000, : : : ,5000 m, AOIy = 1000, : : : ,8000 m). The po-
sition is estimated using all four (D)S4TDOA(¤) methods
and the corresponding localization CRLB is calculated

according to (8).

B. Results

The simulations are carried out for different trans-

mission powers. Fig. 5 shows the results for PE =

18 dBm. For many emitter positions throughout the

area of interest, this results in low SNR values. Both di-

rect localization approaches are more robust against low

SNR, since ambiguities in the cross correlation func-

tions have less effect on the localization. The two step

localization methods need to chose one TDOA mea-

surement in the first step independently of all other ob-

servation steps whereas the direct technique postpones

Fig. 6. Comparison of localization approaches to CRLB

(transmission power PE = 30 dBm).

this decision into the localization step, where all mea-

surements are incorporated (see also Section IV-C). The

similar accuracy of DS4TDOA and DS4TDOA¤ is due to
the high repetition rate of transmission and guard peri-

ods. The correlation of the reference signal, having very

high SNR, and the received signal with low SNR, still

shows good cross correlation characteristics. The posi-

tion estimation accuracy of S4TDOA is out of the scale

of Fig. 5. The performance of S4TDOA¤ improves until
measurement index 4 and then degrades again. This is

due to the fact that the mean SNR for the given trajec-

tory and randomized emitter positions from the area of

interest is often lower at the last observation points and

thus the probability of choosing a wrong peak of the

CCF increases.

By increasing the signal transmission power to PE =

30 dBm and thus having higher SNR, the performance

of S4TDOA¤ is very similar to DS4TDOA¤ for all
measurement steps. The results are depicted in Fig. 6.

Again, DS4TDOA outperforms S4TDOA, which shows

the lowest localization accuracy.

To show the distribution of the position estimates of

all four (D)S4TDOA(¤) methods, a fixed emitter position
is chosen. For this scenario, again 500 Monte-Carlo runs

are conducted. The results of TDOAmeasurement index

6 are depicted in Fig. 4. The zoomed area shows only

the estimates of S4TDOA¤ and DS4TDOA¤. The CRLB
is given by a 3¾ error ellipse.

The advantages of (D)S4TDOA compared to

(D)S4TDOA¤ are given by less need for storage space
and a reduction of processing power (and commu-

nication requirements). A trade-off between localiza-

tion accuracy and sensor requirements is possible using

(D)S4TDOA.

VI. SIMULATION USING REAL DATA SCENARIO

The proposed localization approaches performances

are evaluated in Monte-Carlo simulations for a given
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Fig. 7. Simulation Scenario: Sensor trajectory and area of interest

(green box).

scenario. GSM base stations are chosen as emitter with

recurring signal structure. In this section, only S4TDOA

and DS4TDOA algorithms are evaluated.

A. Simulation Setup

The desired signal is sent on the broadcast channel

of a GSM base station and is divided into time slots.

Each time slot has a duration of 576:92 ¹s. A time slot

is divided into data transmission time and guard period

during which no transmission takes place. This time slot

signal structure is represented by the reference signal

s̃[k] introduced in (4).

The sensor trajectory remains the same over all

Monte-Carlo runs. The position of the emitter is chosen

uniformly at random from a given area of interest. The

localization accuracy is also evaluated w.r.t. the signal-

to-noise ratio (SNR). A sensor trajectory that is similar

to the one of the field experiments (Section VII) is used

for the simulations. Fig. 7 shows the trajectory as well

as the area of interest in which possible emitters are

located.

We use the following definition of SNR for the

simulations:

SNR[dB] = 10log10
Ps
Pn

(25)

with Ps being the mean signal power and Pn the mean

noise power. A total of 250 Monte-Carlo runs were per-

formed. Each Monte-Carlo run consists of the follow-

ing:

1) An emitter position is chosen at random from the

area of interest.

2) A random start drift of the broadcast signal is gen-

erated.

3) Signal noise for each sensor is generated.

4) For the given observer trajectory and emitter position

and time of measurement, corresponding TOAs are

calculated.

5) The broadcast signal is embedded into noise in ac-

cordance to the respective TOAs and scaled to meet

given SNR value.

6) Localization results are calculated using both esti-

mation methods

a) The initialization is done by evaluating a grid

of the respective cost functions for the area of

interest.

b) The position is estimated using Nelder Mead

simplex optimization.

7) Points 5 to 6 are repeated for all SNR values in

question.

B. Position Estimation

The position estimation for the S4TDOA method is

divided into two main steps. In the first step, the re-

ceived signal is correlated with the stored reference sig-

nal. The maximum of this correlation function yields

the TOA of each measurement. TOAs of two observa-

tion steps form one TDOA measurement. In the second

step, the emitter position is estimated based on a set of

TDOA measurements.

For the DS4TDOA localization, from the two obser-

vation steps that form the TDOA measurement in the

above described case, cross correlate the cross correla-

tion functions of the respective received signals and the

reference signal. Estimate the emitter position from a

set of those cross correlation functions.

For both methods, the respective cost functions are

minimized using Nelder/Mead simplex optimization.

The initialization problem is solved by evaluating the

cost functions of each method for a grid over the area

of interest. For the simulations, the grid points were

spaced by 100£100 m.

C. Results

Fig. 8 depicts the results of the simulations. For

each SNR value, the RMSE of the position estimation

over all 250 simulation runs is calculated. The red line

with red dots shows the RMSE using the S4TDOA,

DS4TDOA is plotted using red diamonds. The accuracy

of the DS4TDOA localization approach outperforms the

S4TDOA localization method.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

Field experiments were conducted to verify the pre-

sented method for real data. A GPS time-synchronized

sensor node was used to gather data from a GSMmobile

station. The sensors receiving antenna was mounted un-

der the wing of an aircraft. The sensor itself and a PC

for data processing were installed inside the aircraft.
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Fig. 8. Simulation results: Localization RMSE over SNR for

DS4TDOA (red diamonds) and S4TDOA (red dots).

Every five seconds, data from the broadcast channel of

the GSM base station was recorded at a sample rate of

fs = 1 MHz.

Along with the signal data, corresponding times-

tamps and position information from the GPS receiver

of the sensor are recorded. For each observation time

step n, the received signals are filtered and the CCF is

calculated. From this CCF the TOA ¿̂n of the signal is

estimated as described in Section IV. The CCF, the es-

timated TOA, the sensors position and time are used in

the localization step. The localization estimates for both

methods are calculated using the same initialization for

the optimization algorithm.

Fig. 9 depicts the sensors trajectory, the position of

the GSM base station as well as the localization results

using the presented S4TDOA and DS4TDOA method.

The presented localization approach is evaluated for

different levels of signal strength. Here, a threshold Pt is

applied to the measurements. If the mean received signal

strength Pzn[k] is below the threshold, the measurement

is not used in the localization step. The mean signal

strength of a signal zn[k] is defined as

Pzn[k] =
z¤n[k]zn[k]

K
(26)

with K being the total number of samples.

B. Results

Fig. 10 to Fig. 13 show the localization cost func-

tions evaluated for a grid of possible emitter positions.

The black line indicates the flight trajectory where the

black dots indicate the measurements that are taken into

account in the localization step according to the received

signal strength threshold. The true position of the emit-

ter is marked by a green dot. The position estimate of

the S4TDOAmethod is shown by a yellow x, the respec-

tive DS4TDOA estimate by a red circle. The achieved

localization accuracy is given in Table I.

Fig. 9. Scenario of field experiments. Sensor trajectory and

localization results.

TABLE I

Localization accuracy in [m] of field experiments data.

RSS S4TDOA DS4TDOA RSS S4TDOA DS4TDOA

¡80 4049 385 ¡69 1003 129

¡79 889 257 ¡68 2026 82

¡78 681 449 ¡67 1542 190

¡77 842 223 ¡66 186 166

¡76 1203 50 ¡65 161 179

¡75 1424 451 ¡64 170 268

¡74 1272 89 ¡63 312 141

¡73 1374 145 ¡62 458 404

¡72 1623 116 ¡61 258 66

¡71 1546 112 ¡60 199 119

¡70 901 332

As can be seen in Fig. 10, the minimum of the cost

function of the S4TDOA for a received signal strength

threshold level of Pt =¡74 dBm is not located at the

true emitter position due to the choice of one or more

faulty TOA values (maximum peaks of the CCF). This

results in a larger localization error. Here, the advantage

of the DS4TDOA approach can be seen. Fig. 11 depicts

the cost function of the DS4TDOA method for the same

scenario. As can be observed, the minimum of the

cost function is located near the true emitter position

and the localization result is more accurate. For this

scenario with a received signal strength threshold of Pt =

¡74 dBm, the 3-D localization error of the S4TDOA is
1272 m. Using the DS4TDOA localization algorithm,

the position estimation error is 89 m.

The cost function of the S4TDOA and a received

signal strength threshold of Pt =¡60 dBm is shown in

Fig. 12. Less measurements are used to localize the

emitter, but due to the higher signal level, the choice

of the peak of the CCF as TOA value tends towards

the correct peak. With more accurate TDOA estimation,

the localization result becomes more accurate. The cost

function using the direct localization method (Fig. 13) is
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Fig. 10. Normalized cost function for S4TDOA (signal threshold

¡74 dBm).

Fig. 11. Normalized cost function for DS4TDOA (signal threshold

¡74 dBm).

very similar to the afore mentioned, also the localization

results are nearly the same.

The localization accuracy for the S4TDOA improves

from 1272 m (Pt =¡74 dBm) to 199 m (Pt =¡60 dBm).
For the DS4TDOA location estimation method, a slight

degradation of accuracy from 89 m (Pt =¡74 dBm) to
119 m (Pt =¡60 dBm) is noticed.
Fig. 14 shows the comparison of the localization

errors of both methods over different signal strength

levels. It can be observed, that the DS4TDOA method

is more robust to smaller received signal strength and

outperforms the S4TDOA-based method. As the TOA

estimation using the signal structure information relies

on the amplitude of the signal, with lower SNR, the

TOA estimation becomes more and more noisy up until

peaks that do not correspond to the signal are chosen

as TOA. Since the DS4TDOA method does not require

choosing one peak of the CCF, the localization results

remain more stable for lower signal level values.

Fig. 12. Normalized cost function for S4TDOA (signal threshold

¡60 dBm).

Fig. 13. Normalized cost function for DS4TDOA (signal threshold

¡60 dBm).

Fig. 14. Localization accuracy for different received signal strength

thresholds of field experiment data.
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C. Discussion

A large amount of localization error of a real world

TDOA system can be caused by time and position inac-

curacies of the sensors. In our experiments, we used

GPS to determine the observers position during the

flight. Especially the elevation estimation of a GPS re-

ceiver is known to be imprecise. Although we employed

GPS disciplined oscillators, the time synchronization er-

ror might be the largest cause of localization error. In

the case of stationary observers, a synchronization to

UTC in the range of 25 ns is achievable. For in-flight

use, the accuracy of the local clock can degrade up to

200 ns. Even though an exact time stamp is not nec-

essary for the (D)S4TDOA(¤) methods, the employed
experimental system allows only processing of one sec-

onds of signal each five seconds. If continuous stream-

ing of data is possible, a stable oscillator without exact

time information is sufficient (the accuracy issue re-

mains the same). Another real world error lies in the

clock accuracy of the emitter which needs to be stable

enough for all (D)S4TDOA(¤) methods to be applica-
ble.

VIII. CONCLUSION

We evaluated four (direct) localization approaches

for the use with a single moving sensor. The meth-

ods are based on the S4TDOA found in [13]. The di-

rect localization solution DS4TDOA firstly introduced

in [14] is derived in Section IV-B. The performance

in means of emitter localization accuracy of S4TDOA

and DS4TDOA are evaluated in simulations (Section

VI). Field experiments dealing with the localization of

GSM base stations using a single airborne sensor are

presented in Section VII. Additionally, two methods

(D)S4TDOA¤ that do not require the explicit represen-
tation of the signal structure are introduced in Sec-

tion IV-D. All four approaches are evaluated in Monte-

Carlo simulations and compared to the CRLB (Sec-

tion V).

All presented methods allow emitter localization

with a light weight and small sensor node. Only one

reception channel combined with an omni-directional

antenna is needed. The requirements on the communi-

cation channel bandwidth between sensor and situation

display system are small. Even if the position estimate

is not determined at the sensor node but is calculated at

a control station on ground, for (D)S4TDOA only CCF

and corresponding time and position information need

to be transmitted. Classic TDOA approaches require the

transmission of raw signal data to a reference sensor

or control station, thus having higher demands on the

communication channel.

If processing power and storage capacity is not

a limiting factor, direct localization using DS4TDOA¤

is shown in simulations to give the best localization

results.

The feasibility of determining the position of an

emitter using (D)S4TDOA(¤) is shown. The proposed
DS4TDOA(¤) direct localization is more robust to

smaller SNR and outperforms the S4TDOA(¤) localiza-
tion in both simulations and field experiments.
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