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Statistical Efficiency of
Simultaneous Target State and
Sensor Bias Estimation

DJEDJIGA BELFADEL

YAAKOV BAR-SHALOM

PETER WILLETT

In this paper we provide a new methodology using an exoatmo-

spheric target of opportunity seen in a satellites borne sensor’s field

of view to estimate the sensor’s biases simultaneously with the state

of the target. Each satellite is equipped with an Infra Red (IR) sen-

sor that provides the Line Of Sight (LOS) measurements azimuth

and elevation to the target. The measurements provided by these

sensors are assumed to be noisy but perfectly associated, i.e., it is

known perfectly that they belong to the same target. The evaluation

of the Cramér-Rao Lower Bound (CRLB) on the covariance of the

bias estimates, and the statistical tests on the results of simulations

show that both the target trajectory and the biases are observable

and this method is statistically efficient.
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I. INTRODUCTION

A space-based tracking system provides many ad-

vantages for missile defense as well as space situational

awareness as a part of a system of systems that con-

tribute to an overall picture. It can cover gaps in ter-

restrial radar coverage and expand the capabilities of a

Ballistic Missile Defense System (BMDS), allow inter-

ceptors to engage enemy missiles earlier in their tra-

jectories, discriminate between warheads and decoys,

and provide warhead hit assessment. However, systemic

errors in sensing systems hinder accurate threat identi-

fication and target state estimation, and, in this way,

the space-based tracking systems present some unique

challenges [7].

Multisensor systems use fusion of data from multi-

ple sensors to form accurate estimates of a target track.

To fuse multiple sensor data the individual sensor data

must be expressed in a common reference frame. A

problem encountered in multisensor systems is the pres-

ence of errors due to sensor bias. Bias error in a space-

craft and sensors can result from a number of different

sources [8], including:

² Errors in spacecraft position (spacecraft navigation
bias).

² Errors in spacecraft attitude (wheel assembly con-
troller error, coordinate system translation round-off

error).

² Errors in sensor calibration (residual pointing error,
degradation of sensor alignment).

² Errors in timing caused by bias in the clocks of the
sensors.

In [9] time varying bias estimation based on a non-

linear least squares formulation and the singular value

decomposition using truth data was presented. However,

this work did not discuss the CRLB for bias estimation.

An approach using maximum a posteriori (MAP) data

association for concurrent bias estimation and data as-

sociation based on sensor-level track state estimates was

proposed in [10] and extended in [11].

For angle-only sensors, imperfect registration leads

to LOS angle measurement biases in azimuth and ele-

vation. If not corrected, the registration errors can se-

riously degrade the global surveillance system perfor-

mance by increasing the tracking errors and even intro-

ducing ghost targets. In [6] the effect of sensor and tim-

ing bias error on the tracking quality of a space-based IR

tracking system that utilizes a Linearized Kalman Filter

(LKF) for the highly non-linear problem of tracking a

ballistic missile was presented. This was extended in [7]

by proposing a method of using stars observed in the

sensor background to reduce the sensor bias error. In

[4] simultaneous sensors bias and targets position esti-

mation using fixed passive sensors was proposed. A so-

lution to the related observability issues discussed in [4]
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TABLE I

Symbols associated with coordinate systems and measurements:

Symbol Definition

r The range from the sensor to the target

®,² Azimuth and Elevation angles

b Bias vector

Á,Ã,½ Roll, pitch and yaw

! Orientation of a sensor

T A rotation matrix

x,y,z Target Positions in Cartesian coordinates

_x, _y, _z Target velocities in Cartesian coordinates

μ Parameters vector

z Measurements vector

»,´,³ Sensor Locations

R Covariance matrix

H Jacobian matrix

F Transition matrix

is proposed in [5] using space based sensors. In [3] a si-

multaneous target state and passive sensors bias estima-

tion was proposed. However, this work did not discuss

the statistical efficiency of the estimates. The new bias

estimation algorithm developed in this paper is validated

using a hypothetical scenario created using System Tool

Kit (STK) [1]. The tracking system consists of two op-

tical sensors (space based) tracking a ballistic target. We

assume the sensors are synchronized, their locations are

known, and the data association is correct and we esti-

mate their orientation biases (assumed constant during

the entire tracking time) while simultaneously estimat-

ing the state of the target (position and velocity). We

evaluate the Cramér-Rao lower bound (CRLB) on the

covariance of the bias estimates, which is the quantifi-

cation of the available information on the sensor biases,

and show via statistical tests that the estimation is sta-

tistically efficient–it meets the CRLB.

Section II presents the problem formulation and

solution in detail. Section III describes the simulations

performed and gives the results. Finally, Section IV

discusses the conclusions and future work.

II. PROBLEM FORMULATION AND ANNOTATIONS

A. List of Symbols and Acronyms

Table I is a list of the symbols used throughout the

paper. In many sections, symbols are given additional

subscripts or superscripts to make them more specific.

B. Problem Formulation

In order to fuse measurements from multiple sen-

sors, all the sensors measurements must be expressed

with respect to a common frame of reference. The fun-

damental frame of reference used in this paper is the

Earth Centered Inertial (ECI) Coordinate System.

The sensor reference frame associated with sensor

platform s (measurement frame of the sensor) is defined

by the orthogonal set of unit vectors (e»s ,e´s ,e³s). The

origin of the measurement frame of the sensor is a

Fig. 1. Optical sensor coordinate system with the origin in the

center of the focal plane.

translation of the ECI origin, and its axes are rotated

with respect to the ECI axes. The rotation between these

frames can be described by a set of Euler angles. We

will refer to these angles Ás+Á
n
s , ½s+ ½

n
s , Ãs+Ã

n
s of

sensor s, as roll, pitch and yaw respectively, where Áns
is the nominal roll angle, Ás is the roll bias, etc.

Each angle defines a rotation about a prescribed axis,

in order to align the sensor frame axes with the ECI

axes. The xyz rotation sequence is chosen, which is

accomplished by first rotating about the x axis by Áns ,

then rotating about the y axis by ½ns , and finally rotating

about the z axis by Ãns . The rotations sequence can be

expressed by the matrices

Ts(Ã
n
s ,½

n
s ,Á

n
s ) = Tz(Ã

n
s )Ty(½

n
s )Tx(Á

n
s ) (1)

The explicit expressions of the elements of (1) can be

found in [3]. Assume there are NS synchronized passive

sensors, with known positions in ECI coordinates,

»s(k) = [»s(k),´s(k),³s(k)]
0, s= 1,2, : : : ,NS ,

k = 0,1,2, : : : ,K (2)

where K is the final tracking time. The sensors get

biased noisy measurements for tracking a single target

at unknown positions

xp(k) = [x(k),y(k),z(k)]
0 (3)

also in ECI coordinates. With the previous convention,

the operations needed to transform the position of the

target location expressed in ECI coordinates into the

sensor s coordinate system (based on its nominal orien-

tation) is

xns (k) = T(!s(k))(xp(k)¡ »s(k)) s= 1,2, : : : ,NS ,

k = 0,1,2, : : : ,K (4)

where !s(k) = [Á
n
s (k),½

n
s (k),Ã

n
s (k)]

0 is the nominal ori-
entation of sensor s, T(!s(k)) is the appropriate rota-
tion matrix, and the translation (xp(k)¡ »s(k)) is the dif-
ference between the vector position of the target and

the vector position of the sensor s, both expressed in

ECI coordinates. The superscript “n” in (8) indicates

that the rotation matrix is based on the nominal sensor

orientation.
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Each passive sensor provides LOS measurements of

the target position. As shown in Figure 1, the azimuth

angle ®s(k) is the angle in the sensor xz plane between

the sensor z axis and the line of sight to the target,

while the elevation angle ²s(k) is the angle between the

line of sight to the target and its projection onto the xz

plane, i.e.,

·
®s(k)

²s(k)

¸
=

26664
tan¡1

μ
xs(k)

zs(k)

¶
tan¡1

Ã
ys(k)p

x2s (k)+ z
2
s (k)

!
37775 (5)

The model for the biased noise-free LOS measurements

is then ·
®bs (k)

²bs (k)

¸
=

·
h1(x(k),»s(k),!s(k),bs)

h2(x(k),»s(k),!s(k),bs)

¸
¢
=h(x(k),»s(k),!s(k),bs) (6)

where h1 and h2 denote the sensor Cartesian coordinates-

to-azimuth/elevation angle mapping that can be found

by inserting (8) and (5) into (6)·
h1(x(k),»s(k),!s(k),bs)

h2(x(k),»s(k),!s(k),bs)

¸

=

26664
tan¡1

μ
xbs (k)

zbs (k)

¶
tan¡1

Ã
ybs (k)p

(xbs (k))
2 + (zbs (k))

2

!
37775 (7)

and

xbs (k) = T(!
b
s (k))(xp(k)¡ »s(k)) s= 1,2, : : : ,NS,

k = 0,1,2, : : : ,K, (8)

where

!bs (k) = [Á
n
s (k)+Ás,½

n
s (k) + ½s,Ã

n
s (k) +Ãs]

0 (9)

is the biased orientation of sensor s, and the bias vector

of sensor s is
bs = [Ás,½s,Ãs]

0 (10)

At time k, each sensor provides the noisy LOS

measurements

zs(k) = h(xp(k),»s(k),!s(k),bs) +ws(k) (11)

Let z be an augmented vector consisting of the batch
stacked measurements from all the sensors up to time K

z= [z1(1),z2(1), : : : ,zNS (1), : : : ,z1(K),z2(K), : : : ,zNS (K)]
(12)

and
ws(k) = [w

®
s (k),w

²
s(k)]

0 (13)

The measurement noises ws(k) are zero-mean, white

Gaussian with

Rs =

·
(¾®s )

2 0

0 (¾²s)
2

¸
s= 1,2, : : : ,NS (14)

and are assumed mutually independent. The problem

is to estimate the bias vectors for all sensors and the

state vector (position and velocity) of the target of

opportunity, i.e.,

μ = [x(K),y(K),z(K), _x(K), _y(K), _z(K),b01, : : : ,b
0
NS
]0

(15)

from

z= h(μ) +w (16)

where

h(μ) = [h11(μ)
0,h21(μ)

0, : : : ,hNS1(μ)
0, : : : ,h1K(μ)

0,h2K(μ)
0,

: : : ,hNSK(μ)
0]0 (17)

w= [w1(1)
0,w2(1)

0, : : : ,wNS (1)
0, : : : ,w1(K)

0,w2(K)
0,

: : : ,wNS (K)
0]0 (18)

and the covariance of the stacked process noise (18) is

the (NsK £NsK) block-diagonal matrix

R =

266664
R1 0 ¢ ¢ ¢ 0

0 R2 ¢ ¢ ¢ 0

...
...

. . .
...

0 ¢ ¢ ¢ 0 RNS

377775 (19)

C. Space target dynamics

The state space model for a noiseless discrete-time

system1 is of the general form

x(k+1) = f[x(k),u(k)] k = 0,1,2, : : : ,K ¡ 1 (20)

With small time steps (· 10s) we can approximate
the motion model with the discrete-time dynamic equa-

tion

x(k+1) = Fx(k) +Gu(k) (21)

where

x(k) = [x(k),y(k),z(k), _x(k), _y(k), _z(k)]0,

k = 0,1,2, : : : ,K (22)

is the 6 dimensional state vector at time k, F is the state

transition matrix, and u is a known input representing

the gravitational effects acting on the target (given in

(25)). The state transition matrix for a target with accel-

eration due to gravity is

F =

26666666664

1 0 0 ¢t 0 0

0 1 0 0 ¢t 0

0 0 1 0 0 ¢t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

37777777775
(23)

1Since we are dealing with exoatmospheric motion it is reasonable to

assume that it is noiseless.
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and the known input gain matrix (multiplying the ap-

propriate components of the gravity vector) is

G =

26666666664

¢t2=2 0 0

0 ¢t2=2 0

0 0 ¢t2=2

¢t 0 0

0 ¢t 0

0 0 ¢t

37777777775
(24)

where ¢t is the sampling interval. The gravity term is

given by

u(k) = g
xp(k)

a(xp(k))
(25)

where xp is the position part of the state x in (22),

g = 9:8 m/s2, and

a=
p
x(k)2 + y(k)2 + z(k)2 (26)

is the distance from the target to the origin of the

coordinates system. For simplicity we assume g to

be constant. The ratio xp=a yields the time-varying

components of the gravity acting on the target and

provides the scaling factor for the gravity term. Note

that in view of (25), the state model (21) is not linear.

We shall obtain the maximum likelihood (ML) esti-

mate of the augmented parameter vector (15) consisting

of the (unknown) target position, velocity and sensor

biases, by maximizing the likelihood function (LF) of

μ based on z
¤(μ;z) = p(z j μ) (27)

where

p(z j μ) = j2¼Rj¡1=2 exp(¡ 1
2
[z¡h(μ)]0R¡1[z¡h(μ)])

(28)

and h is defined in (17)
The ML estimate (MLE) is then

μ̂(z)ML = argmax
μ
¤(μ;z) (29)

In order to find the MLE, one has to solve a nonlin-

ear least squares problem. This will be done using a

numerical search via the Batch Iterated Least Squares

(ILS) technique.

D. Bias Estimability

Intuitively, the observability of a system guarantees

that the sensor measurements provide sufficient infor-

mation for estimating the unknown parameters. As dis-

cussed in [3] the two requirement for bias estimability

are:

First requirement for bias estimability. Each sensor pro-
vides a two-dimensional measurement (the two LOS

angles to the target) at time K. We assume that each

sensor sees the target at all the times 0,1,2, : : : ,K. Stack-

ing together all the measurements results in an over-

all measurement vector of dimension 2KNS. Given that

the position, velocity of the target and bias vectors of

each sensor are three-dimensional, and knowing that the

number of equations (size of the stacked measurement

vector) has to be at least equal to the number of param-

eters to be estimated (target state and biases), we must

have

2KNS ¸ 3NS +6 (30)

This is a necessary condition but not sufficient because

(29) has to have a unique solution, i.e., the parameter

vector has to be estimable. This is guaranteed by the

second requirement.

Second requirement of bias estimability. This is the in-

vertibility of the Fisher Information Matrix (FIM). In

order to have parameter observability, the FIM must be

invertible. If the FIM is not invertible (i.e., it is singu-

lar), then the CRLB (the inverse of the FIM) will not

exist–the FIM will have one or more infinite eigenval-

ues, which means total uncertainty in a subspace of the

parameter space, i.e., ambiguity [2].

For the example of bias estimability discussed in

the sequel, to estimate the biases of 2 sensors (6 bias

components) and 6 target components (3 position and

3 velocity components), i.e., the search is in an 12-

dimensional space in order to meet the necessary re-

quirement (30). As stated previously, the FIM must be

invertible, so the rank of the FIM has to be equal to the

number of parameters to be estimated (6+6 = 12, in the

previous example). The full rank of the FIM is a nec-

essary and sufficient condition for estimability. There

exists, however, a subtle unobservability for this exam-

ple that will necessitate the use of more measurements

than the strict minimum number of measurements given

by (30).

E. Iterated Least Squares for Maximization of the LF of
μ

Given the estimate μ̂j after j iterations, the batch ILS
estimate after the (j+1)th iteration will be

μ̂j+1 = μ̂j +[(Hj)0R¡1Hj]¡1(Hj)0R¡1[z¡h(μ̂j)] (31)

where

h(μ̂j) = [h11(μ̂
j)0,h21(μ̂

j)0, : : : ,hNS1(μ̂
j)0, : : : ,h1K(μ̂

j)0,

h2K(μ̂
j)0, : : : ,hNSK(μ̂

j)0] (32)

where

Hj =
@h(μj)

@μ

¯̄̄̄
μ=μ̂j

(33)

is the Jacobian matrix of the vector consisting of the

stacked measurement functions (32) w.r.t. (15) evaluated

at the ILS estimate from the previous iteration j. In this

case, the Jacobian matrix is, with the iteration index

omitted for conciseness,

H = [H11 H21 HNS1 ¢ ¢ ¢H1K H2K HNSK]
0 (34)
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where

Hsk =

26664
h1s(k)

@x(k)

h1s(k)

@y(k)

h1s(k)

@z(k)

h1s(k)

@ _x(k)

h1s(k)

@ _y(k)

h1s(k)

@ _z(k)

h1s(k)

@b®1

h1s(k)

@b²1

h1s(k)

@b½1
¢ ¢ ¢ h1s(k)

@b®NS

h1s(k)

@b²NS

h1s(k)

@b½NS

h2s(k)

@x(k)

h2s(k)

@y(k)

h2s(k)

@z(k)

h2s(k)

@ _x(k)

h2s(k)

@ _y(k)

h2s(k)

@ _z(k)

h2s(k)

@b²1

h2s(k)

@b²1

h2s(k)

@b½1
¢ ¢ ¢ h2s(k)

@b²NS

h2s(k)

@b²NS

h2s(k)

@b½NS

37775
(35)

The appropriate partial derivatives with respect to the

target positions and the bias terms can be found in

[3], and the partial derivatives with respect to the target

velocity components are:

@h1s(k)

@ _xs(k)
=¢t

@h1s(k)

@xs(k)
(36)

@h1s(k)

@ _ys(k)
= 0 (37)

@h1s(k)

@ _zs(k)
=¢t

@h1s(k)

@zs(k)
(38)

@h2s(k)

@ _xs(k)
=¢t

@h2s(k)

@xs(k)
(39)

@h2s(k)

@ _ys(k)
=¢t

@h2s(k)

@ys(k)
(40)

@h2s(k)

@ _zs(k)
=¢t

@h2s(k)

@zs(k)
: (41)

F. Initialization

Assuming that the biases are null, the LOS measure-

ments from the first and the second sensor ®1(k), ®2(k)

and ²1(k) can be used to solve for each initial Cartesian

target position, in ECI coordinates, using (42)—(44). The

two Cartesian positions formed from (42)—(44) can then

be differenced to provide an approximate velocity. This

procedure is analogous to two-point differencing [2] and

will provide a full six-dimensional state to initialize the

ILS algorithm.

x(k)0 =
»2(k)¡ »1(k)+ ³1(k) tan®1(k)¡ ³2(k) tan®2(k)

tan®1(k)¡ tan®2(k)
(42)

y(k)0 =
tan®1(k)(»2(k)+ tan®2(k)(³1(k)¡ ³2(k)))¡ »1(k) tan®2(k)

tan®1(k)¡ tan®2(k)
(43)

z(k)0 = ´1(k)+ tan²1(k)

¯̄̄̄
(»1(k)¡ »2(k))cos®2(k) + (³2(k)¡ ³1(k))sin®2(k)

sin(®1(k)¡®2(k))
¯̄̄̄

(44)

G. Cramér-Rao Lower Bound

In order to evaluate the efficiency of the estimator,

the CRLB must be calculated. The CRLB provides a

lower bound on the covariance matrix of an unbiased

estimator as [2]

Ef(μ¡ μ̂)(μ¡ μ̂)0g ¸ J(μ)¡1 (45)

where J is the FIM, μ is the true parameter vector to be
estimated, and μ̂ is the estimate. The FIM is

J(μ) = Ef[rμ ln¤(μ)][rμ ln¤(μ)]
0gjμ=μtrue (46)

where the log-likelihood function is

¸(μ)
¢
=ln¤(μ) (47)

J(μ) =H 0R¡1Hjμ=μtrue (48)

where H is the Jacobian matrix (34). Since μtrue is not
available in practice, J will be evaluated at the estimate,

and, as it is shown later, the two results are practically

the same.

H. Statistical Test for Efficiency with Monte Carlo Runs

Another measure of performance involves weight-

ing the estimate error by the inverse of the covari-

ance matrix P. The normalized estimation error squared

(NEES) for the parameter μ under the hypothesis of ef-

ficiency, i.e.,

P = J¡1 (49)

is defined as

²μ = (μ¡ μ̂)0P¡1(μ¡ μ̂) = (μ¡ μ̂)0J(μ)(μ¡ μ̂) (50)

and is chi-square distributed with nμ (the dimension of

μ) degrees of freedom, that is,

²μ » Â2nμ (51)

The hypothesis test for efficiency whether (51) can

be accepted, as discussed in [2] and outlined next.

The NEES is used in simulations to check whether the

estimator is efficient, that is, the errors are statistically

consistent with the covariance given by the CRLB–this

is the efficiency check. Thus the efficiency check of

the estimator (in simulation–because this is the only

STATISTICAL EFFICIENCY OF SIMULTANEOUS TARGET STATE AND SENSOR BIAS ESTIMATION 7



Fig. 2. Target and satellite trajectories for the two-sensor case

situation where μ is available) consists of verifying

whether (51) holds. The practical procedure to check the

estimator efficiency is using the sample average NEES

from N independent Monte Carlo runs defined as

²̄μ =
1

N

NX
i=1

²iμ (52)

The quantity N²̄μ is chi-square distributed with Nnμ
degrees of freedom.

Let Q be the type I error probability of the test.

The 1¡Q two-sided probability region for N²̄μ is the

interval [²01,²
0
2].

²01 = Â
2
Nnμ

μ
Q

2

¶
(53)

²02 = Â
2
Nnμ

μ
1¡ Q

2

¶
(54)

where in view of the division by N in (52), one has

²i =
²0i
N

(55)

Thus, if the estimator is efficient, one has to have

Pf²̄μ 2 [²01,²02]g= 1¡Q (56)

III. SIMULATIONS
In this paper we used a hypothetical scenario to test

our new methodology. The missile and satellite trajec-

tories are generated using System Tool Kit (STK). The

sensor satellites are in a circular orbits of 600 km and

700 km altitude with 0±, 60± degrees inclination, re-
spectively. The target modeled represents a long range

ballistic missile with a flight time of about 20 min-

utes. STK provides the target and sensor positions in

three dimensional Cartesian coordinates at 1 s intervals.

The measurement noise standard deviation ¾s (identical

across sensors for both azimuth and elevation measure-

ments, ¾®s = ¾
²
s = ¾s) was assumed to be 30 ¹rad. The

target launch time was chosen so that the satellite sen-

sors were able to follow the missile trajectory through-

out its flight path. As shown in Figure 3, these satellite

orbits enabled maximum visibility of the missile tra-

jectory from multiple angles. The missile and satellite

trajectories displayed in Figure 3 represent 5 minutes

of flight time (exoatmospheric). In order to establish a

baseline for evaluating the performance of our method,

we also ran the simulations without biases and with bi-

ases, but without bias estimation. As discussed in the

previous section, the three sensor biases were roll, pitch

and yaw angle offsets. Table II summarizes the bias val-

ues (in mrad).

In order to test for the statistical efficiency of the es-

timate (of the 12 dimensional vector (15)), the NEES is

used, with the CRLB as the covariance matrix. The sam-

ple average NEES over 100 Monte Carlo runs calculated

using the FIM evaluated at the true bias values, target
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Fig. 3. Target and satellite trajectories for the two-sensor case

TABLE II

Sensor Biases (mrad).

Ã ½ Á

Sensor 1 5.7596 4.3633 ¡3:8397
Sensor 2 4.8869 5.4105 ¡5:0615

position, and velocity is approximately 11.52, and the

sample average NEES calculated using the FIM evalu-

ated at the estimated biases, target position and velocity

is approximately 11.63 and both fall in the interval given

below. According to the CRLB, the FIM has to be eval-

uated at the true parameter. Since this is not available in

practice, however, it is useful to evaluate the FIM also

at the estimated parameter, the only one available in real

world implementations [12]. The results are practically

identical regardless of which values are chosen for eval-

uation of the FIM. The 95% probability region for the

100 sample average NEES of the 12 dimensional param-

eter vector is [11.20, 12.81]. This NEES is found to be

within this interval and the MLE is therefore statistically

efficient. Table III shows the individual bias component

NEES. The 95% probability region for the 100 sample

TABLE III

Sample average bias NEES (CRLB evaluated at the estimate), for

each of the 6 biases, over 100 Monte Carlo runs.

Biases Ã1 ½1 Á1 Á2 Ã2 ½2

NEES 1.0326 0.9723 1.0239 1.0248 1.2009 0.8922

average single component NEES is [0.74, 1.29]. These

NEES are found to be within this interval.

The RMS errors for the target position and veloc-

ity are summarized in Table IV. In this table, the first

estimation scheme was established as a baseline using

bias-free LOS measurements to estimate the target po-

sition and velocity. For the second scheme, we used

biased LOS measurements but we only estimated target

position and velocity. In the last scheme, we used biased

LOS measurements and we simultaneously estimated

the target position, velocity, and sensor biases. Once

again, bias estimation yields significantly improved tar-

get RMS position and velocity errors in the presence of

biases.

Each component of μ should also be individually
consistent with its corresponding ¾CRLB (the square root

STATISTICAL EFFICIENCY OF SIMULTANEOUS TARGET STATE AND SENSOR BIAS ESTIMATION 9



TABLE IV

Sample average RMSE for the target position (m) and velocity

(ms¡1), over 100 Monte Carlo runs, for the 3 estimation schemes.

Scheme Position RMSE Velocity RMSE

1 107.44 5.16

2 47,161.10 25,149.32

3 494.49 19.55

TABLE V

Sample average bias (mrad) RMSE over 100 Monte Carlo runs and

the corresponding bias standard deviation from the CRLB.

RMSE ¾CRLB

Ã1 0.0326 0.0334

½1 0.0239 0.0211

Á1 0.0239 0.0261

Ã2 0.0248 0.0252

½2 0.0099 0.0096

Á2 0.0122 0.0122

of the corresponding diagonal element of the inverse

of FIM). In this case, the sample average bias RMSE

over 100 Monte Carlo runs should be within 15% of its

corresponding bias standard deviation from the CRLB

(¾CRLB) with 95% probability. The utmost limit (“exist-

ing information”) for the scenario considered is around

10—33 ¹rad standard deviation for the bias errors, i,e.,

of the order of ¾s. Table V demonstrates the efficiency

of the individual bias estimates.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new algorithm that uses

a target of opportunity for estimation of measurement

biases together with target state. The first step was for-

mulating a general bias model for synchronized space-

based optical sensors at known locations. The associa-

tion of measurements is assumed to be perfect. Based

on this, we used an ML approach that led to a batch

nonlinear least-squares estimation problem for simulta-

neous estimation of the 3D Cartesian position and ve-

locity components of the target of opportunity and the

angle measurement biases of the sensors. The bias es-

timates, obtained via ILS, were shown to be unbiased

and statistically efficient. For future work we plan to

relax the no process noise assumption, reformulate the

problem and again evaluate the statistical efficiency of

the algorithm.
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Distributed Fusion Algorithm
for Passive Localization of
Multiple Transient Emitters

WENBO DOU

YAAKOV BAR-SHALOM

LANCE KAPLAN

JEMIN GEORGE

This paper investigates the problem of deploying a network of

passive sensors to estimate the positions of an unknown number

of stationary transient emitters. Since a completely connected net-

work, which has a link between every pair of nodes, is not feasi-

ble because of the power and bandwidth constraints, we developed

a distributed algorithm that relies only on local communications

between neighboring sensors. This distributed algorithm requires

information diffusion within the network with the goal that every

node achieves all target location estimates as accurate as a fusion

center with centralized access to all information. The locations of

the emitters are not completely observable by any single sensor since

bearings and times of arrival with origin uncertainty are the only

available measurements. These measurements are modeled as a re-

alization of a Poisson point process at each sensor. The problem is

formulated as a constrained optimization problem, which is solved

via an alternating direction method of multipliers in a distributed

manner based on the expectation maximization and averaging con-

sensus algorithms. Consensus on the number of candidate targets

as well as the inter-node estimate association are addressed so that

the distributed algorithm converges to the maximum likelihood es-

timate. A likelihood function based approach using the estimated

probability of detection is presented to determine the number of

targets. Simulation results show that the distributed algorithm con-

verges very fast and the root mean square error of target locations

is almost as small as that obtained using the centralized algorithm.

It is also shown that one can accurately determine the number of

targets using the estimated probability of detection.
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1. INTRODUCTION

1.1. Background

This paper considers the problem of multiple tran-

sient emitter (target) localization using a wireless sensor

network (WSN). One particular application is to utilize a

network of acoustic gunfire detection systems mounted

on a group of soldiers to localize adversaries in a bat-

tlefield [16][17]. It is assumed that the targets are sta-

tionary during the time window of interest but the num-

ber of the targets is unknown. The sensors can measure

the line of sight (LOS) angles to the targets by detect-

ing their emitted acoustic signals and record the times

of arrival (TOAs) of the detected signals. This implies

incomplete target location observability for any single

sensor. Missed detections and false alarms are present

due to the imperfection of the sensors. Furthermore, the

associations between the measurements and the targets

are unknown, that is, each sensor does not know from

which target (or clutter) a particular measurement orig-

inates. Before estimating the position of any target, one

has to associate the measurements from all the sensors.

Therefore, the quality of data association is critical to

the overall localization performance.

Two different fusion algorithms developed in our

previous work [13] solved this problem using a cen-

tralized approach, i.e., we assumed that there is a fu-

sion center collecting all the information from individ-

ual sensors either directly or by multi-hop relay, typi-

cally by wireless communication. Centralized access to

all information can be difficult. For example, it requires

a high transmission power to deliver the information

from a single sensor directly to a fusion center in ap-

plications covering a large area. Moreover, the fusion

center based approach is not robust, i.e., if the fusion

center fails, the whole system fails. This has motivated

a lot of work on distributed fusion or distributed opti-

mization algorithms including the one presented in this

paper.

One straightforward distributed solution is flood-

ing, i.e., broadcasting the actual sensor measurements

through the links in the network. In [7], a commu-

nication strategy of broadcasting new measurements

was presented to allow distributed measurement fusion,

which produces the optimal estimate at each node given

all the measurements received up to any time for a linear

dynamic system. For the localization problem consid-

ered in this paper, one has a nonlinear static system. The

flooding approach still applies, by careful bookkeeping

and a number of iterations of information exchange,

each sensor would have all the information and can act

as a fusion center to find the same global solution as

a centralized approach. This method requires a large

amount of data communication, storage memory, and

bookkeeping overhead. For instance, it requires about

S (the number of sensors) times the memory storage of

the average consensus (AC) based approach.
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TABLE I

Classification of the various versions of the shooter localization

problem.

Single

target

Multiple

targets

No missed detections or false alarms P1 P5

Only missed detections exist P2 P6

Only false alarms exist P3 P7

Missed detections and false alarms exist P4 P8

When it is used for the localization problem, the

flooding approach is distributed in the sense that the

information (all the measurements) is communicated in

a distributed manner but it is centralized in the sense

that the estimation algorithm including all computations

is applied on all the information collected at every

node, i.e., the flooding approach is a multiple replica

of the centralized approach. In this paper, we present

a consensus based algorithm that is different from the

flooding approach and is distributed in the sense that

both communication and estimation are performed in a

distributed manner.

One of our approaches in [13] formulated the local-

ization problem as an optimization problem and solved

it using the expectation maximization (EM) algorithm.

We observe that two types of subproblem are solved

in the EM algorithm. One is to compute the average

of variables with one variable from one sensor and the

other is to solve a nonlinear least squares problem. Both

subproblems can be formulated to optimize a global

objective function, which can be written as a sum of

local objective functions. Such problems can be solved

using distributed optimization approaches whose goal

is to recover the optimal global solution without any

global coordination or interactions (like using a fusion

center). Their solutions often contain a step where the

sum or average of some quantity needs to be calculated

and this can be achieved by an average consensus (AC)

based approach.

The average consensus based approach with com-

munication only between the one-hop neighbors scales

well in that the communication overhead per sensor can

be kept at an affordable level as the size of the network

increases. Unlike the full flooding approach, which re-

quires the local variables labeled with their origins, the

average consensus approach does not need such la-

bels and therefore uses less storage. If new nodes join

the network, our consensus based distributed algorithm

does not need to restart the whole process because the

local variables can be updated following a (mini) flood-

ing of only the new information.

In this paper, we assume that centralized access of

all the information is not possible and we are interested

in solving the problem of multiple transient emitter lo-

calization using an alternative algorithm that is different

from the flooding approach and that is distributed in the

sense that both communication and estimation are per-

formed in a distributed manner. Since the goal is to have

each sensor obtain a global estimate (which is a vector

consisting of the number of targets and the position es-

timates of all targets) as good (or almost as good) as

can be obtained by a fusion center using a centralized

algorithm, information diffusion either in the form of

raw measurements or in the form of some intermediate

estimates (a function of raw measurements) within the

network is necessary. Instead of using the raw measure-

ment diffusion approach as in the flooding approach, we

diffuse the intermediate estimates using the average con-

sensus approach, i.e., the estimation is also performed

in a distributed manner.

Without a fully connected network (each node can

reach each other node via one or multiple “hops”), send-

ing raw measurements to all nodes in order to achieve

global optimal solution is a difficult task which re-

quires “subnetwork” coordination, which is beyond the

scope of this paper (multiple layers would be neces-

sary). Therefore, we assume that the network is fully

connected, i.e., there is a (not necessarily direct) path

between every two sensors. If the network is not con-

nected and has more than one connected subnetwork

due to node or link failures, each subnetwork can be

processed by our distributed algorithm independently.

In such case, the consensus is achieved within each con-

nected subnetwork.

Table I presents a classification of the various ver-

sions of the shooter localization problem. In view of

the above discussion, it is necessary to develop a dis-

tributed algorithm to solve the problem P8 in Table I

relying solely on local communications between one-

hop neighboring sensors. Problems P3, P4, P6 and P7

are special cases of P8, therefore can be solved by the

same distributed algorithm. Problem P1 is addressed in

Section 2.7. Problems P2 are P5 are special extensions

of P1 and will not be covered here.

1.2. Related Work

Distributed data fusion strategies, such as methods in

[6], [8], [9], [10], [14], and [21] among others, are avail-

able for joint state estimation and data association in

multi-sensor multi-target tracking scenarios. Since they

are recursive algorithms that require sequential mea-

surements and provide solutions to dynamic data associ-

ation problems, they cannot be employed to solve joint

parameter estimation and data association in a multi-

sensor multi-target localization scenario (with incom-

plete observability at each sensor) considered in this

paper. While most of the distributed estimation work

in the literature assumes linear measurement models,

our paper deals with nonlinear and incomplete target

location measurements (direction of arrival and delayed

arrival time). Although, one could imagine linearizing

the localization problem and sharing messages between

the nodes, we suspect that the linearization will probably
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cause more errors than the distributed ADMM and will

investigate this in our future work. Related work from

robotics can be found in [19]. A recent comparison of

optimal distributed estimation and consensus filtering

for dynamic systems was done in [7].

A multi-dimensional assignment formulation assum-

ing a Bernoulli measurement generation model that the

number of measurements from each target received at

each sensor is a Bernoulli random variable with pa-

rameter equal to the probability of detection as well

as a cardinality selection formulation assuming a Pois-

son measurement generation model that the number of

measurements from each target received at each sen-

sor is a Poisson random variable with parameter equal

to the probability of detection were considered in the

centralized fusion algorithms [13] to solve the same

problem of multiple transient emitter localization. This

paper only considers developing a distributed algorithm

to solve the cardinality selection problem assuming a

Poisson measurement generation model1 and leaves dis-

tributed multi-dimensional assignment algorithms for

future work. While a list of measurements at each sensor

was modeled as either realizations of a random variable

with a mixture density or a Poisson point process (PPP)

in [13], only PPP modeling is considered in this pa-

per due to its simpler mathematical solution expression.

Since the centralized algorithm solving the cardinality

selection problem, which combines expectation maxi-

mization (EM) algorithm to estimating target parameters

given a fixed number of targets and information crite-

rion for selection of the best possible number of targets,

is not amendable to a distributed implementation, it is

necessary to develop a distributed EM algorithm.

Distributed EM algorithms have attracted a lot of

attentions in sensor network applications for density es-

timation, data clustering and target tracking. For a fixed

number of target, the localization problem can be con-

sidered as a density estimation problem. An incremental

distributed EM algorithm presented in [23] is the first

known scheme for density estimation and clustering in

distributed sensor network. A distributed EM algorithm

based on the averaging consensus filtering was devel-

oped in [18] for particle filter based target tracking. A

distributed EM algorithm based on alternating direc-

tion method of multipliers (ADMM) was proposed in

[15] for distributed data clustering. However, all these

works assumes a linear generative model for their re-
spective applications, which does not apply to a non-
linear generative model (see the measurement model
in (78)) considered here due to the incomplete posi-

1The Bernoulli measurement generation model is more realistic than

the Poisson measurement generation model. Therefore, the Bernoulli

model is used to generate the synthetic data for the evaluation of the

developed algorithm, whereas the Poisson model is assumed in the

derivation of the developed algorithm. Using the Bernoulli model in

the algorithm would make it excessively complicated because of the

need to use multidimensional assignment.

tion measurement based on bearings and TOAs in the

emitter localization scenario considered in this paper.

Moreover, the parameters in these distributed EM algo-

rithms are initialized to be either fixed values (zeros) or

random values. This initialization approach was shown

to be useless for our centralized EM algorithm, which

requires an initialization based on the sequential m-best

2-D assignment algorithm applied on the lists of mea-

surements from all sensors for the convergence to the

global maximum.

1.3. Contributions

In this paper, we develop a distributed EM algorithm

to solve the same problem as considered in [13] but in

a distributed manner. The distributed processing intro-

duces a number of challenges.

Firstly, the convergence of an EM algorithm

(whether being centralized or distributed) depends

highly on the initialization step. Previous studies on

developing distributed EM algorithms assumed a lin-

ear measurement model and thus the initialization with

fixed values (such as zeros) or random values, which is

commonly used, works fine. This initialization does not

work in the problem considered in this paper where the

measurements (incomplete position observations) are

nonlinear functions of target locations. Our earlier work

shows that the assignment based initialization leads to

global convergence. However, due to limited connec-

tions in a distributed setting, each sensor can only ob-

tain a different EM initialization, which is a set of vec-

tors, using the sequential m-best 2-D assignment algo-

rithm on the measurement lists of its own and its neigh-

bors (a subset of all the lists of measurements). For the

global convergence of the EM algorithm, we developed

a distributed set consensus algorithm ensuring that ev-

ery node has the same initialization (the same number

of targets and the same target locations).

Secondly, the maximization step in the standard EM

algorithm has to be evaluated in a distributed manner.

Although the probability of detection can be estimated

by a distributed averaging consensus subroutine and the

locations of the targets can be estimated by a distributed

ADMM subroutine, this would result in a nested itera-

tive algorithm with two subroutines being iterative al-

gorithms themselves. Even more challenging, these two

subroutines are needed for a number of iterations and

at each iteration both of them requires local communi-

cations between sensors for a number of times, which

would result in a very high communication cost. In-

stead, we manage to formulate a constrained optimiza-

tion problem with equality conditions that force all local

variables to be identical and developed a new distributed

ADMM algorithm enabling a lower communication cost

at the expense of additional local computation. The EM

and AC based distributed ADMM algorithm is a gen-

eralization of previous distributed algorithms allowing
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the handling of the nonlinear and incomplete measure-

ment models such as bearings in the passive sensing

applications as here.

Last but not least, since we feel that a Bernoulli

measurement generation model is a more realistic as-

sumption and it reflects best the physical process of

measurement generation, we used a likelihood function

based thresholding approach to determine the number

of targets.

1.4. Paper Organization

The remaining sections of this paper are organized as

follows. Section 2 presents some preliminaries required

for the development of the desired distributed algorithm.

These include (i) graph modeling, (ii) a distributed

AC algorithm for both single parameter estimation and

multiple parameter estimation, (iii) data association test

for two estimates as well as two sets of estimates, (iv) an

algorithm of alternating direction method of multipliers

and (v) a distributed nonlinear least squares algorithm,

which can solve problem P1 in Table I. Section 3

formulates the problem by modeling each measurement

set as a realization of a Poisson point process. Section

4 reviews a recently developed centralized algorithm

that uses an EM algorithm to estimate the location

and emission time parameters for a fixed number of

targets. The distributed algorithm for problem P8 is

presented in Section 5. The initialization issues of this

algorithm–how to reach the consensus on the number

of targets and how to reach the consensus on the target-

estimate association–are discussed in Sections 5.1 and

5.2, respectively. An EM and AC based distributed

ADMM algorithm is developed in Section 5.3. Section

5.4 describes a thresholding approach to distinguish

real target estimates from false target estimates using

the estimated probability of detection values. Section 6

presents and analyzes simulation results and Section 7

concludes the paper.

2. PRELIMINARIES

2.1. Graph Model

A wireless sensor network with S nodes (sensors) is

deployed to collect data and perform data association

and parameter estimation task. Every node is only able

to communicate with its neighbors. Mathematically, this

network can be modeled as a graph G = (V,E) with the
set of nodes

V = fÀ1,À2, : : : ,ÀSg (1)

and the set of edges E , where an edge (Ài,Àj) 2 E is
an unordered pair of distinct nodes, representing a two-

way communication link between Ài and Àj . The graph

G is assumed connected, meaning that there is a path
between any two nodes. The set of neighbors of node

Ài is defined as

Ni = fÀj 2 V : (Ài,Àj) 2 Eg (2)

The degree of node Ài is defined as

di = jNij (3)

where j ¢ j denotes the set cardinality. The maximum
degree of the graph G is defined as

dmax = max
i
di (4)

The Laplacian matrix L of the graph G is defined as

Lij =

8><>:
¡1 if Àj 2Ni
di if j = i

0 otherwise

(5)

2.2. Distributed Averaging Consensus Algorithm

Suppose a wireless sensor network with S nodes is

deployed to estimate an unknown constant parameter

x 2Rn. Each node Ài makes a measurement
zi = x+wi (6)

where wi are independent, identically distributed, nor-

mal, zero mean, and with a known identity covariance

matrix I. The maximum likelihood estimate of x is

(1=S)
PS

i=1 zi, which is the mean vector of all measure-

ments zi. This estimate can be obtained by the following

distributed averaging consensus algorithm.

Let us denote an initial value (zi for the estimate

problem) at node Ài by ui(0) 2Rn at time t= 0. The
matrix formed by the column vectors at all nodes is

denoted as

U(0) = [u1(0) u2(0) : : : uS(0)]
T 2RS£n (7)

The goal of distributed averaging consensus is to make

every node obtain the mean vector (1=S)
PS

i=1 ui(0)

eventually after gradually updating its value with a lin-

ear combination of its previously stored value and the

values of its neighbors. One iteration of the process can

be represented with a weight matrix W as

ui(t+1) =Wiiui(t)+
X
j2Ni

Wijuj(t) i= 1, : : : ,S (8)

where t= 0,1, : : : is the discrete time index, and Wij is

the weight on uj at node Ài. Setting Wij = 0 for j =2Ni,
this iteration can be written in matrix form as

U(t+1) =WU(t) (9)

and W is selected such that

lim
t!1U(t) =

1

S
110U(0) (10)

The best constant edge weight matrix is given by [27]

W = I¡¯L (11)

with

¯ =
2

´1(L) + ´S¡1(L)
(12)

where ´1(L) and ´S¡1(L) are the largest and second
smallest eigenvalues of L, respectively.
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In some cases, each node only has the knowledge of

its neighbors rather than the connectivity of the entire

network. It is more suitable to use the Metropolis weight

matrix, which is defined as [28]

Wij =

8>>><>>>:
1

1+maxfdi,djg
if Àj 2Ni

1¡PÀk2Ni Wik if j = i

0 otherwise

(13)

2.3. Distributed Averaging Consensus Algorithm for
Multiple Parameter Estimation with Unknown
Data Association

Suppose a WSN with S nodes is used to estimate a

set of N unknown constant parameters

X = fx1,x2, : : : ,xNg (14)

with each xj 2Rn. Each node Ài has a set of N mea-

surements
Zi = fzi1,zi2, : : : ,ziNg (15)

with one for each xj . Let ¦N denote all permutations of

the set f1,2, : : : ,Ng, then the jth measurement of node
Ài is

zij = x¼i(j) +wi (16)

where ¼i 2¦N is a permutation2 at node Ài, and wi are
independent, identically distributed, normal, zero mean

measurement noises with a known identity covariance

matrix I.

Since the second index j of zij in the set Zi contains

no labeling information, one needs to perform data as-

sociation and weighted averaging update (8) simultane-

ously for multiple parameter estimation. Let us denote

the stacked vector at node Ài at time t as

ui(t) = [u
T
i1(t),u

T
i2(t), : : : ,u

T
iN(t)]

T (17)

and uij(0) is initialized as zij . At time t, node Ài calcu-

lates an optimal permutation3 ¼ji for each of its neighbor

nodes Àj as

¼ji = arg min
¼2¦N

NX
k=1

kuik(t)¡uj¼(k)(t)k2 (18)

Then node Ài updates each segment of its stacked vector

(17) as

uik(t+1) =Wiiuik(t) +
X
j2Ni

Wijuj¼ji(k)(t) (19)

where the index ¼ji(k) refers to the segment of the

stacked vector at node Àj that associates with the kth

segment of the stacked vector at node Ài according to

the permutation ¼ji (18), and the weight matrix is given

by (13).

2It is a one-to-one mapping function from an ordered set f1,2, : : : ,Ng
to a particular permutation of this set.
3The second index i of ¼ji indicates that the optimal permutation is

obtained with respect to ui(t).

2.4. Association Test for Two Estimates

Suppose that sensor Ài has an unbiased estimate

x̂i of the n-dimensional (unknown) parameter xi with

a covariance matrix Pi and sensor Àj has an unbiased

estimate x̂j of the n-dimensional (unknown) parameter

xj with a covariance matrix Pj . We are interested in

testing whether xi = xj . Let us denote the difference of

the two estimates as

¢̂ij = x̂i¡ x̂j (20)

which is the estimate of the difference of the parameters

¢ij = xi¡ xj (21)

Since the estimation errors

x̃i = xi¡ x̂i (22)

x̃j = xj ¡ x̂j (23)

are zero-mean, the estimation error of the difference of

the parameters

¢̃ij =¢ij ¡ ¢̂ij = x̃i¡ x̃j (24)

is also zero-mean and it has the covariance matrix

Tij = Ef¢̃ij¢̃Tijg= Ef(x̃i¡ x̃j)(x̃i¡ x̃j)Tg
= Pi+Pj ¡Efx̃ix̃Tj g¡Efx̃j x̃Ti g (25)

If x̃i and x̃j are independent, then we have

Tij = Pi+Pj (26)

Assuming that x̃i and x̃j are Gaussian, the normalized

estimation error squared (NEES) [2] for ¢

²ij
¢
=¢̃TijT

¡1
ij ¢̃ij (27)

is chi-square distributed with n degrees of freedom.

The null hypothesis that the two parameters are the

same and the alternative hypothesis are

H0 :¢= 0 (28)

H1 :¢ 6= 0 (29)

Under H0 (¢= 0), we have the following

¢̃ij =¡¢̂ij (30)

²ij = ¢̂
T
ijT

¡1
ij ¢̂ij (31)

Therefore, the test of H0 vs. H1 is as follows. If

¢̂TijT
¡1
ij ¢̂ij · F¡1Â2n (1¡®) (32)

where F¡1
Â2n
(¢) is the inverse of the cumulative distribu-

tion function (cdf) of a chi-square random variable with

n degrees of freedom, we will not reject H0 at a signif-

icance level of ®. Then it is likely that x̂i and x̂j are

estimates of the same parameter.
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2.5. Association Test for Two Sets of Estimates

Suppose that there are N unknown n-dimensional

constant parameters

X = fx1,x2, : : : ,xNg (33)

Sensor Ài has a set of Ni estimates with corresponding

covariance matrices

x̂i = fx̂i1, x̂i2, : : : , x̂iNig (34)

Pi = fPi1,Pi2, : : : ,PiNig (35)

Similarly, sensor Àj has Nj estimates with corresponding

covariance matrices

x̂j = fx̂j1, x̂j2, : : : , x̂jNjg (36)

Pj = fPj1,Pj2, : : : ,PjNjg (37)

We assume that each sensor has at most one estimate

for a particular parameter and the estimation errors are

independent.

If x̂ik and x̂j` are estimates of the same parameter,

then the NEES

dk` = (x̂ik ¡ x̂j`)T(Pik +Pj`)¡1(x̂ik ¡ x̂j`) (38)

can be regarded as a distance measure between x̂ik and

x̂j`. A small value of dk` indicates a high probability of

both being the estimates of the same parameter.

To deal with incomplete associations caused by

missed detections, we add dummy estimates x̂i0 and x̂j0
to the sets x̂i and x̂j , respectively [24]. The distance

involving a dummy estimate is defined as

dk0 = d0` = F
¡1
Â2n
(1¡®) (39)

for a small value (say, 0.01) of ®.

To associate the estimates in set x̂i with those in set

x̂j , we solve a generalized 2-D assignment problem

min
½k`

NiX
k=0

NjX
`=0

½k`dk` (40)

subject to

NjX
`=0

½k` = 1 8 k = 1,2, : : : ,Ni (41)

NiX
k=0

½k` = 1 8 `= 1,2, : : : ,Nj (42)

½k` 2 f0,1g k = 0,1, : : : ,Ni; `= 0,1, : : : ,Nj (43)

The modified auction algorithm [24] can be applied to

the above problem.

The association results of x̂ik are determined as

follows.

If
½k0 = 1 (44)

then x̂ik is assigned to the dummy estimate x̂j0, that is,

the probability that no estimate in x̂j comes from the

same parameter as x̂ik is 0.99 for ®= 0:01. In this case,

x̂ik is not associated.

If

½k` = 1 (45)

then x̂ik is associated with x̂j`.

The association results of x̂j` are determined in a

similar way.

2.6. The Alternating Direction Method of Multipliers
(ADMM) Algorithm

Consider the following equality-constrained opti-

mization problem

min
z,y
ff(z)+ g(y)g (46)

subject to

Az+By = c (47)

with variables z 2Rp and y 2Rq, where A 2Rm£p, B 2
Rm£q and c 2Rm are given.
The augmented Lagrangian of (46) is defined as

L½(z,y,¸) = f(z) + g(y) +¸
T(Az+By¡ c)

+
½

2
kAz+By¡ ck22 (48)

where ¸ is the dual variable or Lagrange multiplier and

½ > 0 is the penalty parameter.

The ADMM algorithm [5] solves (46) by iterating

the following 3 steps

zk+1
¢
=argmin

z
L½(z,y

k,¸k) z-minimization (49)

yk+1
¢
=argmin

y
L½(z

k+1,y,¸k) y-minimization (50)

¸k+1
¢
=¸k + ½(Azk+1 +Byk+1¡ c) dual update (51)

where ½ is used as the step size for the dual update and

the superscript is the iteration counter.

In the ADMM, the variables z and y are updated

in an alternating or sequential fashion instead of being

minimized jointly, which accounts for the term alternat-
ing direction. Separating the minimization over z and y
into two steps is precisely what allows for decomposi-

tion when f (or g) is separable with respect to a partition

of the variable z (or y) into subvectors.

2.7. Distributed Nonlinear Least Squares Algorithm

This subsection presents a distributed solution to the

problem P1 in Table I. We are interested in localizing

a single target using the network G without missed

detections or false alarms. Suppose each node Ài has a

scalar measurement ai from the target, we need to solve

the unconstrained optimization problem

min
x

SX
i=1

(h(x)¡ ai)2 (52)
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TABLE II

Averaging consensus based distributed ADMM algorithm.

1: Node Ài initializes x
1
i
and ¸1

i
= 0

2: Compute x̄1 =
1

S

PS

i=1
x1
i
via a distributed averaging consensus

algorithm

3: for k = 1,2, : : : do until convergence

4: for all Ài do

5: Compute xk+1
i

via (71)

6: Compute x̄k+1 =
1

S

PS

i=1
xk+1
i

via a distributed

averaging consensus algorithm

7: Compute ¸k+1
i

via (72)

8: end for

9: end for

where x 2R2 is the parameter to be estimated (or the
variable for the minimization), h(¢) is a nonlinear func-
tion of x (for instance, h(x) is an arctan function in a

bearing-only localization problem) and S is the number

of sensors.

Consider the constrained optimization problem,

which is equivalent to (52)

min
x1,x2,:::,xS

SX
i=1

(h(xi)¡ ai)2 (53)

subject to

x1 = x2 = : : := xS = w (54)

We can put (54) in the form of (47) by setting

z = [xT1 xT2 : : :x
T
S ]
T (55)

y = w (56)

f(z) =

SX
i=1

(h(xi)¡ ai)2 (57)

g(y) = 0 (58)

A= I2S (59)

B = [¡I2 ¡ I2 ¢ ¢ ¢ ¡ I2]T 2R2S£2 (60)

c= 0 (61)

Therefore, the augmented Lagrangian is

L½(x1,x2, : : : ,xS ,w,¸) =

SX
i=1

h
(h(xi)¡ ai)2 +¸Ti (xi¡w) +

½

2
kxi¡wk22

i
(62)

where

¸= [¸T1 ¸
T
2 : : :¸

T
S ]
T (63)

The z-minimization step (49) is

(xk+11 ,xk+12 , : : : ,xk+1S ) =

arg min
x1,x2,:::,xS

L½(x1,x2, : : : ,xS,w
k,¸k) (64)

which can be carried out in a distributed fashion as

xk+1i = argmin
xi
(h(xi)¡ ai)2 +¸kTi (xi¡wk)

+
½

2
kxi¡wkk22 i= 1,2, : : : ,S (65)

The y-minimization step (50) is

wk+1 = argmin
w
L½(x

k+1
1 ,xk+12 , : : : ,xk+1S ,w,¸k)

= argmin
w

SX
i=1

h
¸kTi (x

k+1
i ¡w) + ½

2
kxk+1i ¡wk22

i

=
1

S

SX
i=1

xk+1i +
1

S½

SX
i=1

¸ki (66)

The dual update step (51) is

¸k+1i = ¸ki + ½(x
k+1
i ¡wk+1) i= 1,2, : : : ,S (67)

If we carry out the summation of (67) over i and

substitute wk+1 from (66), then

SX
i=1

¸k+1i =

SX
i=1

¸ki + ½

SX
i=1

xk+1i ¡ S½wk+1 = 0 k 6= 0
(68)

which means that the dual variables have average value

zero after the first iteration. If the dual variables are

initialized such that

SX
i=1

¸1i = 0 (69)

then, the y-minimization step simplifies to

wk+1 =
1

S

SX
i=1

xk+1i

¢
= x̄k+1 (70)

The simplified ADMM steps, in a distributed form,

become

xk+1i

¢
=argmin

xi
[h(xi)¡ ai]2 +¸kTi (xi¡ x̄k)

+
½

2
kxi¡ x̄kk22 i= 1,2, : : : ,S (71)

¸k+1i

¢
=¸ki + ½(x

k+1
i ¡ x̄k+1) i= 1,2, : : : ,S (72)

Based on the above ADMM steps, we obtain an av-

eraging consensus based distributed algorithm as shown

in Table II. Each node Ài stores and updates two vectors

xi and ¸i. At iteration k = 1, each node initializes a local

parameter estimate x1i and obtains x̄
1 via a distributed

averaging consensus algorithm as discussed in Section

2.2. The dual variables ¸1i = 0 are also initialized. Dur-

ing the kth iteration, each node updates its local parame-

ter estimate xk+1i using (71). Next, each node reaches the

consensus on x̄k+1, and subsequently, updates its local

dual variable ¸k+1i using (72), which concludes the kth

iteration.
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Reformulations of (52) other than (53) include [26]

and [22], which result in a bridge-sensor based dis-

tributed ADMM and a coloring-scheme based dis-

tributed ADMM, respectively. However, either prior as-

signment of bridge sensors [26] or colors [22] is re-

quired for the respective algorithm to function properly.

However, in these versions it is difficult to make a new

assignment in case of node or link failures. Whereas,

the averaging consensus based distributed ADMM al-

gorithm does not require any feature assignment to in-

dividual nodes since it relies solely on information dif-

fusion across the network.

3. PROBLEM STATEMENT AND FORMULATION

3.1. Problem Statement

Consider a scenario where there are N stationary

targets located in R2. The target locations are denoted as

T= (T1,T2, : : : ,TN) =

μ·
Tx1

Ty1

¸
,

·
Tx2

Ty2

¸
, : : : ,

·
TxN

TyN

¸¶
(73)

The number of targets and their locations are unknown

quantities of interest, to be estimated. A wireless sensor

network consisting of S stationary nodes is deployed at

known locations

S= (S1,S2, : : : ,SS) =

μ·
Sx1

Sy1

¸
,

·
Sx2

Sy2

¸
, : : : ,

·
SxS

SyS

¸¶
(74)

to perform this estimation task. There is one transient

event occurring at each target location. Each node is

able to observe these transient events by detecting the

acoustic signals arising from them and measure the

bearings to the targets and the TOAs of the received

acoustic signals. The acoustic signal emission times are

denoted as
te = (te1, t

e
2, : : : , t

e
N) (75)

For notational simplicity, let us denote

©= [ÁT1 ÁT2 : : :Á
T
N]
T (76)

where
Ái = [Txi Tyi tei ]

T (77)

denotes the unknown 3-dimensional parameter of ith

target.

If the transient events are separated significantly

in time, the measurements from the same event will

be close in time and the measurements from differ-

ent events will also be separated significantly in time,

and then the target locations can be estimated one at a

time using the algorithm presented in 2.7. Therefore, we

assume a more challenging situation that the transient

events are close in time. In this case, the data association

between the measurements and the targets has to be ad-

dressed before the network can fuse the measurements

from a common origin to estimate the corresponding

target location.

It is assumed that all measurements fall within a

short time window W. Let m` denote the number of

measurements (one measurement is defined as a vector

consisting of both a bearing and a TOA due to one

acoustic signal in this context) obtained by the `th

sensor within the time windowW. The jth measurement

received by the `th sensor, if it is from the ith target at

tei , is

z`j = h`(Ái) +w`j i= 1, : : : ,N;

`= 1, : : : ,S; j = 1, : : : ,m` (78)

where w`j is a zero mean white Gaussian measurement

noise with a known diagonal covariance matrix R` and

h`(Ái) =

·
μ`i

t`i

¸
=

26664
arctan

·
Tyi ¡ Sy`
Txi ¡ Sx`

¸

tei +

q
(Txi ¡ Sx`)2 + (Tyi ¡ Sy`)2

c

37775
(79)

where tei is the unknown emission time of the acoustic

signal from ith target and c is the known speed of sound.

To incorporate false alarms, we denote a clutter tar-

get (with index 0) as Á0. A false measurement detected
by the `th sensor consists of a bearing μ0, which is uni-

formly distributed in the field of view of the `th sensor,

and its arrival time t0, which is uniformly distributed

in the interval [0,W]. The number of false alarms from

each sensor is assumed to be a Poisson random variable

with mean

Nfa = ¸fa©W (80)

where © is the range of the field of view and is assumed

to be the same for each sensor and ¸fa can be interpreted

as the spatial-temporal density.

The likelihood function [2] of the target parameter4

(location and emission time) based on the measurement

z`j is

¤(Á0;z`j)
¢
=p(z`j j Á0) = p(μ0)p(t0) =

1

©W
(81)

¤(Ái;z`j)
¢
=p(z`j j Ái) = j2¼R`j¡1=2

¢ expf¡ 1
2
[z`j ¡h`(Ái)]0R¡1` [z`j ¡h`(Ái)]g

i 6= 0 (82)

where (81) is the probability density function (pdf) of a

clutter-origin measurement (a false alarm), and (82) is

the pdf of a real measurement from a true target with

unknown Ái.
The problem is to estimate N and ©= fÁi, i=

1, : : : ,Ng (therefore knowing T= fTi, i= 1, : : : ,Ng)
given the complete set of observations Z= fz`j , `=
1, : : : ,S; j = 1, : : : ,m`g in the presence of missed detec-
tions and false alarms and without the knowledge of the

true data association.

4If the source is clutter, it has no emission time, only an arrival time.
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3.2. Poisson Point Process Measurement Modeling

Assume the number of targets, N, is given. The

number of measurements m` and fz`j ,j = 1,2, : : : ,m`g
obtained at the `th sensor is jointly modeled as a re-

alization of a Poisson Point Process (PPP) [11]. The

measurement set at the `th sensor is denoted as

Ã` = fm`,z`1,z`2, : : : ,z`m`g (83)

In this case, the points z`j occur in the space S= f(μ, t) :
μ 2©, t 2 [0,W]g and their order is irrelevant. The PPP
is fully parameterized by its spatial intensity function

¹`(z) =

NX
i=0

pdi g`i(z) (84)

where pdi is the probability of detection for the real target

i (i 6= 0) and is assumed to be the same at each sensor
and with abuse of notation

pd0 =Nfa (85)

is the expected number of false alarms at each sensor;

the density g`i(z) is the conditional
5 pdf of a measure-

ment z obtained by the `th sensor given that it is asso-
ciated with the ith target and is given by

g`i(z) =
1

©W
i= 0 (86)

g`i(z) =N (z;h`(Ái),R`) i= 1, : : : ,N (87)

For notational simplicity, we denote

pd = [pd0 pd1 : : :p
d
N]
T (88)

which is assumed to be unknown and therefore the

set of parameters to be estimated is expanded to μ =
[©T pdT]T for a given N.
The number of points in the PPP is a Poisson random

variable with mean
R
S¹`(z)dz, that is, the probability

mass function (pmf) of m` is

p(m`) =
(
R
S¹`(z)dz)

m`

m`!
exp

½
¡
Z
S
¹`(z)dz

¾

=

³PN
i=0p

d
i

´m`
m`!

exp

Ã
¡

NX
i=0

pdi

!
(89)

The m` points are defined as independent and identically

distributed (i.i.d.) samples of a random variable with

probability density function

p(z) =
¹`(z)R

S¹`(z)dz
=

PN
i=0p

d
i g`i(z)PN

i=0p
d
i

(90)

The joint pmf-pdf of Ã` from (83) is

p(Ã` j μ) = exp
Ã
¡

NX
i=0

pdi

!
mỲ
j=1

¹`(z`j j μ) (91)

5g`i(z j Ái) will be used when the conditioning needs to be explicitly
indicated.

where the conditioning (dependency) on μ will be ex-
plicitly indicated hereafter. The factorial termm`! in (89)

is canceled out because there are m`! permutations of an

ordered list of measurements. Let ª denote the set of

all measurement sets (from the S sensors), i.e.,

ª = fÃ1,Ã2, : : : ,ÃSg (92)

The conditional independence of the S measurement

sets yields

p(ª j μ) =
SY
`=1

p(Ã` j μ) (93)

Therefore, we can find the maximum likelihood esti-

mate (MLE) of μ by maximizing (93).

3.3. Data Association Modeling

Since the intensity function (84) is a mixture of uni-

form or Gaussian pdf and the association is unknown,

we model the latent association variables as condition-

ally independent random variables

·`j 2 f0,1,2, : : : ,Ng (94)

that identify which component generated z`j . Here ·`j =
0 indicates that the measurement is generated by the

clutter. The set of latent variables for the `th sensor is

denoted as
·` = f·`1, : : : ,·`m`g (95)

such that the complete set of latent variables for all

sensors is
·= f·1, : : : ,·Sg (96)

The latent association variables may be regarded as

“marks” associated with each of the points in the PPP.

If we define a mark space

M ¢
=f0,1,2, : : : ,Ng (97)

then the marked measurement set at the `th sensor

denoted by

ÃM` = fm`, (z`1,·`1), : : : , (z`m` ,·`m`)g (98)

represents a realization of the marked6 PPP for the `th

sensor on the product space S£M. It can be shown that
the intensity function of ÃM` is

¹M` (z,· j μ) = pd·g`·(z) (99)

The joint probability density function ofÃM` is, similarly
to (91), given by

p(ÃM` j μ) = exp
Ã
¡

NX
·=0

Z
S
¹M` (z,· j μ)dz

!

¢
mỲ
j=1

¹M` (z`j ,·`j j μ) (100)

6The superscript of ÃM
`
indicates that the associations are known, i.e.,

“marked.”
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TABLE III

Centralized EM algorithm.

1: Initializes μ(0)

2: for n= 1,2, : : : do until convergence

3: E step Evaluate

Q(μ j μ(n¡1)) =
X
·

p(· j Z,μ(n¡1)) lnp(ªM j μ) (106)

4: M step Evaluate μ(n) as

μ(n) = argmax
μ
Q(μ j μ(n¡1)) (107)

5: end for

Let us denote the marked measurement sets from all

sensors as

ªM = fÃM1 ,ÃM2 , : : : ,ÃMS g (101)

The conditional independence of these S marked mea-

surement sets yields the pmf-pdf for ªM as

p(ªM j μ) = exp
Ã
¡S

NX
i=0

pdi

!
SY
`=1

mỲ
j=1

pd·`j g`·`j (z`j j μ)

(102)

where we have used the fact

NX
·=0

μZ
S
pd·g`·(z j T,te)dz

¶
=

NX
i=0

pdi (103)

Dividing (102) by (93) leads to the density of the

marks conditioned on the observed measurements and

the unknown parameters

p(· j Z,μ) =
SY
`=1

mỲ
j=1

p`(·`j j z`j ,μ) (104)

where

p`(·`j j z`j ,μ) =
pd·`j g`·`j (z`j j μ)
¹`(z`j j μ)

(105)

4. CENTRALIZED ALGORITHM

4.1. Centralized EM Algorithm

Given the joint distribution p(ªM j μ) over observed
ª and latent variables ·, governed by the parameter μ,
the maximum likelihood estimate μ̂ of μ from the like-

lihood function p(ª j μ) can be found by the standard
(named as centralized hereafter) EM algorithm [12] as

shown in Table III.

Evaluation of the E step decomposes into two terms

Q(μ j μ(n¡1)) =Qp+QÁ (108)

where

Qp =Q(p
d j μ(n¡1)) =¡S

NX
i=0

pdi

+

SX
`=1

mX̀
j=1

NX
i=0

ln(pdi )®
(n¡1)
`ji (109)

QÁ =Q(© j μ(n¡1)) =
SX
`=1

mX̀
j=1

NX
i=0

ln(g`i(z`j j Ái))®(n¡1)`ji

(110)

where

®(n¡1)`ji = p`(·`j = i j z`j ,μ(n¡1))

=
pd(n¡1)i g`i(z`j j Á(n¡1)i )PN
i=0p

d(n¡1)
i g`i(z`j j Á(n¡1)i )

(111)

The M step involves two separate maximizations with

respect to pd and ©. From the Karush-Kuhn-Tucker

(KKT) conditions [20], we have

pd(n)i =

8><>:
1

S

PS
`=1

Pm`
j=1®

(n¡1)
`j0 if i= 0

min

½
1,
1

S

PS
`=1

Pm`
j=1®

(n¡1)
`ji

¾
if i 6= 0

(112)

Since QÁ in (110) can be further decomposed into N+1

terms, the parameters of each target can be estimated

independently as

Á(n)i = argmax
Ái

SX
`=1

mX̀
j=1

ln(g`i(z`j j Ái))®(n¡1)`ji (113)

5. DISTRIBUTED ALGORITHM

Note that it is possible to have a distributed imple-

mentation of the centralized EM algorithm if (i) every

node has the consensus on the initialization and (ii) ev-

ery node has the consensus on the parameter estimates

at the end of each M step. The second condition can

readily be satisfied if an averaging consensus based dis-

tributed ADMM is applied to solve (113), which is a

nonlinear least squares problem, and a distributed av-

eraging consensus algorithm is applied to obtain (112).

However, it is not trivial to have the same initialization

for μ = [©T pdT]T among all sensors, especially for the
component ©. Simulation results show that it is good

enough to initialize each pdi to be 1. Whereas, equal ini-

tialization at some pre-fixed values (for instance, zero

vectors) for © could result in the convergence of the

EM algorithm to estimates that are very different from

the desired MLE.

There are two possible initialization approaches in

a single target localization scenario. Assume that the

data association is known and no missed detections or

false alarms occur, we want to localize a single target

using the algorithm in Table II. The first approach is

to initialize the target location at each node using only

its bearing measurement. The average distance from the

wireless sensor network to the target is assumed to be

D. Given a range R (probably unknown in a real sce-

nario), each node initializes the target location along the

measured line of sight in the direction towards the target

randomly with a distance (between the initialized target

location and the node itself) being uniformly distributed
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TABLE IV

RMSE using different initializations for distributed localization of a

single target.

Centralized Intersection

Random

R = 30

Random

R = 60

RMSE (m) 1.7036 1.7733 3.2988 5.2915

in [D-0.5R, D+0.5R]. The second approach is to obtain

the LOS information (bearing and sensor location) from

one of its neighbors and use the intersection of two lines

of sight as the initial target location estimate.

Table IV lists the root mean square error (RMSE)

of the target location (averaged over 100 Monte-Carlo

runs) using different initialization approaches to localize

a single target at the location (8:7 m, 99:6 m) in a sce-

nario given in Section 6. It shows that the performance

of the distributed algorithm with LOS intersection ini-

tialization is almost as good as the centralized algorithm,

which assumes all bearing measurements available at a

fusion center and also uses intersection initialization.

With a random initialization based on some knowledge,

which is likely unavailable, the distributed algorithm

converges to local minimum point of (53) with h(x) be-

ing an arctan function.

For a multiple target localization scenario with un-

known data association, the random initialization ap-

proach will be worse. Therefore, in a similar way as

what we did at the fusion center in a centralized fusion

algorithm, each node obtains an initial position estimate

for each target that is very close to the final MLE, by

associating its local measurements with those from its

neighbors using the sequential m-best 2-D assignment

algorithm [1]. Another important reason that we choose

the sequential m-best 2-D algorithm over the random

initialization approach is that the position estimates ob-

tained are completely observable with corresponding

covariance matrices, which allows the use of the as-

sociation method described in Section 2.5 to reach the

consensus on the initialization.

If the probability of detection is low or the false

alarm rate is high, then it is possible that the initial

estimated numbers of targets at various nodes are dif-

ferent. Some nodes could have estimated more targets

than there actually are due to false alarms, whereas other

nodes could have estimated less due to missed detec-

tions. Section 5.1 discusses how to reach the consensus

on the number of candidate targets7 among all nodes.

Section 5.2 assumes that each node has an initial

set consisting of the same number of target estimates

which correspond to the same group of candidate tar-

gets, and discusses how to reach the consensus on on

target-estimate association, that is, for a given ordered

set of candidate targets, each node should know the as-

sociation between its estimates and the targets. Note that

7The concept of candidate target is discussed in detail in Section 5.1.

the initial estimated value of parameter © could still be
different from node to node. However, the consensus on

target-estimate association requires all the nodes have

exactly the same set of target estimates.

In Section 5.3, we develop a distributed algorithm

that assumes all the nodes have the same set of target

estimates. The consensus on target-estimate association

is required for convergence of the algorithm.

5.1. Consensus on the Number of Targets

If the probability of detection is low or the false

alarm rate is high, then it is possible that the initial es-

timated numbers of targets at various nodes are differ-

ent. Some nodes could have estimated more targets than

there should be, whereas other nodes could have esti-

mated less. In this subsection, we extend the problem

solved in Section 2.3 to the case when missed detections

and/or false alarms exist and develop a distributed set

averaging consensus algorithm to expand some or all

sets so that we end up with sets of estimates for the

same number of candidate (real or false) targets. Each

sensor gradually modifies its own set by performing the

association test presented in Section 2.5 with the sets of

its neighbors.

Let us denote the initial set of estimates with corre-

sponding covariance matrices at node Ài as

©̂i = fÁ̂i1, Á̂i2, : : : ,Á̂iNig (114)

Qi = fQi1,Qi2, : : : ,QiNig (115)

where each Á̂ik corresponds to one candidate target
and the number of candidate targets Ni is probably

distinct for different nodes Ài. Assume that there are

Nc candidate targets with parameters

©c = fÁ1,Á2, : : : ,ÁNcg (116)

of which only N parameters correspond to real targets

and the remaining Nc¡N parameters correspond to

false targets. The number Nc will only be known at the

end of the algorithm. For any target parameter in ©c,

there is at most one estimate Á̂ik at node Ài.
Figure 1 illustrates the concept of candidate target.

In this example, both sensors have detected true tar-

gets at coordinates (10 m, 10 m) and (20 m, 20 m),

therefore each of these is a candidate target. Sensors

1 and 2 each also have an additional estimated target

around (31 m, 31 m) and (29 m, 11 m), respectively.

In this case, we assume that these two estimates fail to

be associated. Therefore, two additional targets, which

are assumed to be at coordinates (30 m, 30 m) and

(30 m, 10 m), are also candidate targets.

Referring back to the same context in Section 2.5,

the sets ©c and ©̂i defined in (116) and (114) play the
same roles as X and x̂i in (33) and (34), respectively. The

independent estimation error assumption is valid only

when two estimates have no common source of error

[3]. In the case that two neighboring nodes each have
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Fig. 1. An illustrative example: each sensor has three estimates,

there are four candidate targets.

one estimate for the same target, it is quite likely that

these two estimates are obtained using some common

measurements and therefore they have correlated errors.

Since it is difficult to calculate the cross covariance, we

will use (26) as an approximation. This approximation

only applies to true target location estimates that are

supposed to be associated, and will not affect the deci-

sions involving estimates that belong to false targets. In

our approach, the independence assumption (of the er-

rors in the estimated target locations at different sensors)

is used only to build the consensus. We do not “fuse”

the corresponding covariances, which pertain to errors

that are dependent; fusing them under independence as-

sumption would indeed be optimistic and unreasonable.

One iteration of the distributed set averaging consen-

sus algorithm is described next. At iteration t, node Ài
expands ©̂i(t) sequentially with each neighboring node

Àj 2Ni.
Firstly, for a given significance level ®, the following

generalized 2-D assignment problem

min
½k`

NiX
k=0

NjX
`=0

½k`dk`(t) (117)

subject to

NjX
`=0

½k` = 1 for all k = 1,2, : : : ,Ni (118)

NiX
k=0

½k` = 1 for all `= 1,2, : : : ,Nj (119)

½k` 2 f0,1g for all k = 0,1, : : : ,Ni and `= 0,1, : : : ,Nj
(120)

where, similarly as in (38) and (39), with the addition

of a dummy estimate Á̂i0 at each node Ài, the distance
between two estimates are defined as

dk`(t) =

8>><>>:
(Á̂ik(t)¡ Á̂j`(t))T(Pik(t)+Pj`(t))¡1

¢(Á̂ik(t)¡ Á̂j`(t)) if k > 0 and ` > 0

F¡1
Â2n
(1¡®) if k = 0 or `= 0

(121)

Next, ©̂i(t) could be expanded based on the solution
½k` to the assignment problem. If

½0` = 1 (122)

which means that the estimate Á̂j`(t) is not associated

with any estimate at node Ài, then ©̂i(t) is expanded to

©̂i(t)[fÁ̂j`(t)g. If there are multiple estimates that are
not associated, then they are all used to expand ©̂i(t).
The algorithm terminates when every node set has

the same number of estimates and no set can be ex-

panded further.

Note that if a sensor does not have a position es-

timate for target i, it will “copy” a position estimate

for target i from one of its neighbors. If a sensor has a

position estimate for a false target, then all its neighbors

need to “copy” this estimate so that every sensor has a

position estimate for the same false target. Since the to-

tal number of target estimates across all the sensors is a

finite number
PS
i=1Ni, where S is the number of sensors,

and each iteration expands at least one set, the algorithm

will be terminated in a finite number of iterations.

5.2. Consensus on the Target-Estimate Association

Suppose that the initial sets of target estimates, either

obtained directly via the assignment algorithm across all

nodes or by means of the method described in Section

5.1, have the same number of target estimates.

The local variable of μ` has components ©` and p
d
` .

We initialize pd` as a vector of ones. The component

©` = [Á
T
`1 Á

T
`2 : : :Á

T
`N]

T will be initialized using the set

obtained via the sequential assignment algorithm de-

noted by

©` = f'`1,'`2, : : : ,'`Ng (123)

There are N! ways of initialization for node `. We want

to find a permutation for each set ©`

¼`(©`) = f'`¼`(1),'`¼`(2), : : : ,'`¼`(N)g (124)

such that for any k = 1,2 : : : ,N, the set of estimates

f'`¼`(k), `= 1,2, : : : ,Sg, one from each sensor, corre-

sponds to the same target. For this purpose, we can

apply the algorithm in Section 2.3 on the sets ©`, `=
1, : : : ,S, and when the algorithm terminates, we have all

the sets equal.

We initialize ©` as

©` = ['
T
`¼`(1)

'T`¼`(2) : : :'
T
`¼`(N)

]T (125)
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where, letting i= ¼`(k)

'`i = [Txi Tyi tei ]
T (126)

is ordered such that

Txi · Txj , 8 i· j (127)

Tyi · Tyj , 8 i· j and Txi = Txj (128)

The use of the ordering rules (127) and (128) to label

targets makes sense only when the sets of the estimates

from all nodes are the same.

5.3. The EM and AC Based Distributed ADMM
Algorithm

The centralized EM algorithm provides a method to

solve the following optimization problem

min
μ
f¡ lnp(ª j μ)g (129)

where

lnp(ª j μ) =
SX
`=1

lnp(Ã` j μ) (130)

To develop a distributed algorithm to solve the above

problem, we consider an equivalent formulation with

equality constraints between local variables μ` and a

global variable μ

min
μ1,μ2,:::,μS

SX
`=1

¡ lnp(Ã` j μ`) (131)

subject to

μ1 = μ2 = : : := μS = μ (132)

The augmented Lagrangian is

L½(μ1,μ2, : : : ,μS ,μ,¸) =
SX
`=1

h
¡ lnp(Ã` j μ`)

+ ¸T` (μ`¡μ)+
½

2
kμ`¡μk22

i
(133)

Following the similar derivations as presented in Section

2.7, we can obtain the ADMM steps, which are in a

distributed form, as

μk+1` = argmin
z

SX
`=1

h
¡ lnp(Ã` j μ`)

+ ¸kT` (μ`¡μk) +
½

2
kμ`¡μkk22

i
(134)

μk+1 =
1

S

SX
`=1

μk+1` (135)

¸k+1` = ¸k` + ½(μ
k+1
` ¡μk+1) (136)

TABLE V

EM and averaging consensus based distributed ADMM algorithm.

1: Node À` initializes μ
1
`
by a sequential m-best 2-D assignment

algorithm and ¸1
`
= 0

2: Compute μ1 =
1

S

PS

`=1
μ1
`
by a distributed averaging consensus

algorithm

3: for k = 1,2, : : : do until convergence

4: for all À` do

5: Compute μk+1
`

via (134) by a local EM algorithm

6: Compute μk+1 =
1

S

PS

`=1
μk+1
`

by a distributed

averaging consensus algorithm

7: Compute ¸k+1
`

via (136)

8: end for

9: end for

Based on the above ADMM steps, we obtain an EM

and averaging consensus based distributed algorithm as

summarized in Table V. Each node À` stores and updates

two vectors μ` and ¸`. At iteration k=1, each node
initializes a local parameter estimate μ1` and reaches the
consensus on the global variable μ1 via a distributed
averaging consensus algorithm. The local dual variable

is initialized as ¸1` = 0. During the kth iteration, each

node updates the local variable μk+1` via (134), which is

solved by the local EM algorithm as in Table VI because

of the term lnp(Ã` j μ`). Next, each node obtains μk

via a distributed averaging consensus algorithm, and

subsequently, updates its local dual variable ¸k+1i using

(136), which concludes the kth iteration.

In the local EM algorithm, the dual variable ¸` is

partitioned as

¸` =

·
¸Á`

¸p`

¸
(143)

with respect to the components ©` and p
d
` of μ`.

5.4. Determination of the Number of Real Targets

The Bayesian information criterion (BIC) was used

in our previous paper [13] for the Poisson measurement

generation model assumption because this assumption

leads to a cardinality selection problem formulation,

which is similar to the K-means clustering problem and

BIC is one of the widely used and trusted approaches

[25] to determine the number of clusters (the number

of targets in the present paper).

In the present paper, we assume a Bernoulli mea-

surement generation model, which is more realistic than

the Poisson model in the multiple transient emitter lo-

calization problem. Therefore, we used the likelihood

function (binomial, in view of the Bernoulli model)

based thresholding approach to determine the number

of targets.

In the distributed algorithm, the estimated probabil-

ity of detection p̂di will converge to the value in (112) for

n= 10. Assume that the true probability of detection is

high (say, above 0.9) and the number of nodes is large,

we expect that most of the nodes have a measurement

associated with a particular target. Therefore, for a real
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Fig. 2. The probability that a target is detected by at least Sth (3 or 4) sensors for varied values for the number of sensors and the

probability of detection (pd).

TABLE VI

Local EM algorithm at node À` to find μ
k+1
`
.

1: Initialization

μ(0)
`
= μk` (137)

2: for n= 1,2, : : : do until convergence

3: E step

®
(n¡1)
`ji

= p`(·`j = i j z`j ,μ(n¡1)`
) =

p
d(n¡1)
i`

g`i(z`j j Á(n¡1)i`
)PN

i=0
p
d(n¡1)
i`

g`i(z`j j Á(n¡1)i`
)

(138)

Q(μ` j μ(n¡1)`
) =
X
·`

p(·` jÃ`,μ(n¡1)`
) lnp(ÃM` j μ`) =Q(pd` ) +Q(©`)

Q(pd` ) =¡
NX
i=0

pdi`+

mX̀
j=1

NX
i=0

ln(pdi`)®
(n¡1)
`ji

(139)

Q(©`) =

mX̀
j=1

NX
i=0

ln(g`i(z`j j Ái`))®(n¡1)`ji
(140)

4: M step

p
d(n)
`

= argmin
pd
`

¡Q(pd` ) +¸kTp` (pd` ¡pdk) +
½

2
kpd` ¡pdkk22 (141)

©(n)
`
= argmin

©`
¡Q(©`) +¸kTÁ` (©`¡©k) +

½

2
k©`¡©kk22 (142)

5: end for

target estimate, p̂di is likely to end up with a value close

to 1. For a false target estimate, p̂di is likely to end up

with a value close to 0, since only a few nodes have a

measurement associated with a false target (which is the

“same” across sensors, i.e., approximately at the same

location). Based on this difference between real targets
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Fig. 3. A scenario with 10 targets and 4 sensors.

Fig. 4. The graph model of the wireless sensor network in Figure 3.

and false targets, it is reasonable to assume that there

is a threshold value of p̂di that can be used to classify

targets into either real or false.

If the number of sensors is known and the probabil-

ity of detection is also known, then one can calculate

the probability that a target is detected by at least Sth
sensors. Figure 2 plots this probability for a range of

values for the number of sensors and the probability of

detection. Since even at pd=0.7, the probability that a

target is detected by at least 3 sensors is greater than

0.995 in most cases. We use the threshold value Sth=3.

The corresponding threshold value of p̂di is

pdth = 0:3 (144)

when S = 10 as in the simulation study. Therefore, we

classify the targets with p̂di greater than 0.3 as real

targets and otherwise the targets are deemed as false.

6. SIMULATION RESULTS

6.1. Scenario

Assume there are four targets (N = 4). The emission

times of the acoustic events at the target locations are

0.4 s, 0.3 s, 0.1 s and 0.2 s, respectively. The speed

of the acoustic signal is assumed to be 342 m/s. The

measurement noise covariance matrix is

R` =

·
7:6£10¡5 0

0 1£ 10¡4
¸

(145)

i.e., the bearing standard deviation is
p
76 mrad = 0:5±

and the TOA measurement standard deviation amounts

to 10 ms, assumed to be the same for all sensors. The

probability of detection for the targets is assumed to be

0.9 at all sensors. The time windowW is chosen to be 1 s

and the field of view of each sensor is from 0 to ¼. The

density of the false alarms is set to be 1:27 s¡1radian¡1

such that the expected number of false alarms (Nfa) at

TABLE VII

CRLB and MSE with and without TOA measurements.

Bearing Bearing and TOA

CRLB (m2) 2.6655 2.6464

MSE (m2) 2.6396 2.6290

each sensor is 4, which is equal to the number of real

targets. Figure 3 shows one example using a wireless

sensor network with 10 sensors numbered from left to

right in an ascending order, which is represented by

the graph model shown in Figure 4, to localize these 4

targets. Each node has three neighbors.

In the simulation, the targets and the sensors are

located such that the angle between two LOS from two

neighboring targets to any sensor is 5±, which is 10
times the standard deviation of LOS measurement noise,

i.e. there are no unresolved measurements.

6.2. The significance of TOA measurements

The TOA measurements play an important role in

the data association. The ghosting effect using bearing-

only measurements is no longer present due to the

additional estimation of a common signal emission time

for the measurements associated with a single target.

Here, we look at the improved estimation accuracy

provided by the TOA measurements on top of the

bearing-only measurements.

Assume that the data association is known and no

missed detection or false alarms occurs, we want to lo-

calize a single target at the location (8:7 m, 99:6 m)

with all measurements available at a fusion center. Table

VII shows the Cramér-Rao lower bound (CRLB) and

MSE of the target location using bearing-only measure-

ments and bearing with TOA measurements. It shows

that the improvement of the location estimation due to

the additional TOA information is insignificant.

This implies that the TOA information should be

only used in the sequential m-best assignment algorithm

to obtain initial target estimates. Within the local EM

algorithm, we can use only bearing measurements to

reduce computational workload without significantly

degrading the estimation accuracy.

6.3. Performance Metrics

In the following sections, we evaluate our distributed

algorithm by two real-valued metrics for each Monte-

Carlo run instead of averaging over all Monte-Carlo

runs. These two metrics are the cardinality error for

the number of targets and the root mean square (RMS)

position error averaged over all targets. The latter is

obtained by globally associating each location estimate

to the nearest targets.

1) The cardinality error for the number of targets:
Given the true number of targets Nt and the estimated

number of targets N̂, the cardinality error is defined as

Ñ =Nt¡ N̂ (146)

DISTRIBUTED FUSION ALGORITHM FOR PASSIVE LOCALIZATION OF MULTIPLE TRANSIENT EMITTERS 27



Fig. 5. The initially estimated number (the truth is 4) of targets by individual sensors, the centralized EM algorithm and the EM and AC

based distributed ADMM algorithm.

2) The RMS position error:
Given the set of true positions of Nt targets

f(x1,y1), (x2,y2), : : : , (xNt ,yNt )g (147)

and the set of estimated positions of N̂ targets

f(x̂1, ŷ1), (x̂2, ŷ2), : : : , (x̂N̂ , ŷN̂)g (148)

there are three cases. Let ¦N denote all permutations of

the set f1,2, : : : ,Ng.
Case 1: Nt = N̂. The RMS position error is defined as

RMSp = min
¼2¦Nt

vuut 1

Nt

NtX
i=1

[(xi¡ x̂¼(i))2 + (yi¡ ŷ¼(i))2]
(149)

Case 2: Nt < N̂. The RMS position error is defined as

RMSp = min
¼2¦

N̂

vuut 1

Nt

NtX
i=1

[(xi¡ x̂¼(i))2 + (yi¡ ŷ¼(i))2]
(150)

Case 3: Nt > N̂. The RMS position error is defined as

RMSp = min
¼2¦Nt

vuut 1

N̂

N̂X
i=1

[(x̂i¡ x¼(i))2 + (ŷi¡ y¼(i))2]
(151)

Note that we need to combine these two real-valued

metrics (146 and one of 149—151) in order to have a

complete evaluation of the algorithm performance.

6.4. Performance of the EM and AC based distributed
ADMM algorithm

For the algorithm evaluation, the target measure-

ments are generated according to a Bernoulli measure-

ment model, specifically, one measurement from each

target is generated for each sensor with a probability pd
or nothing with a probability 1¡pd. The false alarms
are generated for each sensor according to the Poisson

model (80) and (81).

Note that the values of the probability of detection,

pd, and the expected number of false alarms, Nfa, are

required to generate the target measurements. However,

the EM and AC based distributed ADMM algorithm do

not need to know the values of Nfa and pd. They adapt

to these values by “learning them.”

We used 100 Monte-Carlo runs to evaluate the per-

formance of our distributed algorithm and make com-

parisons with a modified version of the centralized al-

gorithm in [13]. Both used the same threshold (144) to

determine the number of targets.

Figure 5 shows the number of targets initially esti-

mated by each sensor using the sequential m-best 2-D

assignment algorithm on the measurements of its own

and its one-hop neighbors. It can be observed that this

number is different from sensor to sensor because of the

missed detections and false alarms, which is the moti-

vation for the development of the distributed set con-

sensus algorithm described in the Sections V-A and V-

B. In the same plot, the centralized algorithm (denoted

by “Centralized”) obtained the initial estimated number

of targets by using the sequential m-best 2-D assign-

ment algorithm on the measurements from all sensors.

In contrast, the distributed algorithm obtained the ini-

tial estimate (the same for all sensors) of the number of

targets via the distributed set consensus algorithm and

this estimate is also the estimated number of candidate

targets. Since the centralized and distributed algorithms
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TABLE VIII

Evolution of each sensor’s target location estimates (each row represents a target location estimate) at key stages of the initialization

consensus process.

consensus on the number of targets consensus on the estimates

sensor

index

initial estimates

by SEQ[m(2-D)]

after 1 iteration after 3 iterations after 1 iteration after 25 iterations

1

"¡5:45 106:09

7:16 94:15

26:82 101:02

# 2664
¡27:05 91:42

¡5:45 106:09

7:16 94:15

26:82 101:02

¡104:90 ¡21:35

3775
2664
¡27:05 91:42

¡5:45 106:09

7:16 94:15

26:82 101:02

¡104:90 ¡21:35

3775
2664
¡27:05 91:42

¡5:89 104:59

7:19 94:37

26:03 99:83

¡104:90 ¡21:35

3775
2664
¡25:86 95:19

¡7:83 103:36

8:28 96:08

25:65 98:66

¡104:90 ¡21:35

3775
2

"¡5:45 106:09

7:16 94:15

26:82 101:02

# 2664
¡27:05 91:42

¡5:45 106:09

7:16 94:15

26:82 101:02

¡104:90 ¡21:35

3775
2664
¡27:05 91:42

¡5:45 106:09

7:16 94:15

26:82 101:02

¡104:90 ¡21:35

3775
2664
¡27:05 91:42

¡5:89 104:59

7:19 94:37

26:03 99:83

¡104:90 ¡21:35

3775
2664
¡25:86 95:19

¡7:83 103:36

8:28 96:08

25:65 98:66

¡104:90 ¡21:35

3775
3

"¡6:05 105:04

6:21 92:11

23:71 96:02

# "¡6:05 105:04

6:21 92:11

23:71 96:02

# 2664
¡27:05 91:42

¡6:05 105:04

6:21 92:11

23:71 96:02

¡104:90 ¡21:35

3775
2664
¡26:72 94:12

¡6:29 104:05

7:04 93:26

25:84 99:59

¡104:90 ¡21:35

3775
2664
¡25:85 95:22

¡7:86 103:37

8:29 96:08

25:64 98:64

¡104:90 ¡21:35

3775
4

2664
¡27:05 91:42

¡6:63 101:14

8:24 97:05

26:75 101:26

¡104:90 ¡21:35

3775
2664
¡27:05 91:42

¡6:63 101:14

8:24 97:05

26:75 101:26

¡104:90 ¡21:35

3775
2664
¡27:05 91:42

¡6:63 101:14

8:24 97:05

26:75 101:26

¡104:90 ¡21:35

3775
2664
¡26:72 94:12

¡5:89 101:15

7:78 99:08

26:21 99:98

¡104:90 ¡21:35

3775
2664
¡25:85 95:22

¡7:86 103:37

8:29 96:08

25:64 98:64

¡104:90 ¡21:35

3775
5

"¡8:22 98:99

7:64 92:64

26:01 100:30

# 264¡25:73 102:20

¡8:22 98:99

7:64 92:64

26:01 100:30

375
2664
¡25:73 102:20

¡8:22 98:99

7:64 92:64

26:01 100:30

¡104:90 ¡21:35

3775
2664
¡25:83 97:86

¡6:92 98:83
7:51 97:09

24:78 98:37

¡104:90 ¡21:35

3775
2664
¡25:79 95:33

¡7:98 103:42

8:35 96:10

25:63 98:58

¡104:90 ¡21:35

3775
6

264¡25:73 102:20

¡6:02 91:28

8:56 110:96

24:45 96:61

375
2664
¡25:73 102:20

¡6:02 91:28

8:56 110:96

24:45 96:61

¡104:90 ¡21:35

3775
2664
¡25:73 102:20

¡6:02 91:28

8:56 110:96

24:45 96:61

¡104:90 ¡21:35

3775
2664
¡25:11 96:95

¡7:50 98:81

8:69 99:10

25:70 98:53

¡104:90 ¡21:35

3775
2664
¡25:79 95:33

¡7:98 103:42

8:35 96:10

25:63 98:58

¡104:90 ¡21:35

3775
7

"¡24:83 95:60

¡7:40 100:00

24:94 100:57

# 264¡24:83 95:60

¡7:40 100:00

7:64 92:64

24:94 100:57

375
2664
¡24:83 95:60

¡7:40 100:00

7:64 92:64

24:94 100:57

¡104:90 ¡21:35

3775
2664
¡25:51 98:36

¡10:26 105:19

8:97 94:20

25:53 98:47

¡104:90 ¡21:35

3775
2664
¡25:73 95:44

¡8:10 103:47

8:41 96:12

25:61 98:52

¡104:90 ¡21:35

3775
8

264¡21:92 91:96

¡9:15 103:81

10:31 95:76

25:59 95:97

375
264¡21:92 91:96

¡9:15 103:81

10:31 95:76

25:59 95:97

375
2664
¡21:92 91:96

¡9:15 103:81

10:31 95:76

25:59 95:97

¡104:90 ¡21:35

3775
2664
¡24:78 97:45

¡10:15 104:22

9:87 99:56

25:30 96:40

¡104:90 ¡21:35

3775
2664
¡25:73 95:44

¡8:10 103:47

8:41 96:12

25:61 98:52

¡104:90 ¡21:35

3775
9

"¡25:74 97:82

¡12:72 110:89

25:58 96:51

# 264¡25:74 97:82

¡12:72 110:89

10:31 95:76

25:58 96:51

375
2664
¡25:74 97:82

¡12:72 110:89

10:31 95:76

25:58 96:51

¡104:90 ¡21:35

3775
2664
¡24:56 95:80

¡10:50 106:40

9:64 94:98

25:43 97:39

¡104:90 ¡21:35

3775
2664
¡25:72 95:47

¡8:13 103:49

8:43 96:12

25:61 98:50

¡104:90 ¡21:35

3775
10

"¡25:74 97:82

¡12:72 110:89

25:58 96:51

# 264¡25:74 97:82

¡12:72 110:89

10:31 95:76

25:58 96:51

375
2664
¡25:74 97:82

¡12:72 110:89

10:31 95:76

25:58 96:51

¡104:90 ¡21:35

3775
2664
¡24:56 95:80

¡10:50 106:40

9:64 94:98

25:43 97:39

¡104:90 ¡21:35

3775
2664
¡25:72 95:47

¡8:13 103:49

8:43 96:12

25:61 98:50

¡104:90 ¡21:35

3775
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Fig. 6. The number of iterations of the distributed set consensus algorithm, the centralized EM algorithm and the EM and AC based

distributed ADMM algorithm.

TABLE IX

Evolution of the target location estimates (same for each sensor)

throughout the distributed EM algorithm.

Initial estimates (final

from initialization

consensus, 60

iterations)

After 2 iterations

(converged)

After removing false

targets2664
¡25:79 95:33

¡7:98 103:42

8:35 96:10

25:63 98:58

¡104:90 ¡21:35

3775
2664
¡25:29 97:01

¡7:56 100:05

8:95 98:45

25:19 98:32

¡104:90 ¡21:35

3775
264¡25:29 97:01

¡7:56 100:05

8:95 98:45

25:19 98:32

375

use different initialization approaches, the initially es-

timated number of targets is different for the two al-

gorithms. False targets appear in 40 runs, where the

estimated number of candidate targets is greater than

the true number of targets. Tables VIII and IX illustrate

the consensus and distributed EM processes.

Figure 6 shows the number of iterations required

for the convergence of the different iterative algorithms

presented in this paper. All the algorithms terminate

in a few iterations. The EM and AC based distributed

algorithm, being itself an iterative algorithm, consists

of three steps, two of which are iterative algorithms

themselves (steps on Lines 5 and 6 in Table V). By

close examination, we found that average number of

iterations for these two algorithms is around 3 and 9,

respectively. Since local communication only occurs at

the AC step (Line 6 in Table V), the average number of

communications for each sensor is approximately 50.

Figure 7 plots the number of targets estimated by

the centralized and distributed algorithms before and

after thresholding. Since the initialization is different

for these two EM algorithms, the estimated number of

targets is slightly different. In the shooter localization

application, the priority is to avoid any missed target and

then try to avoid as many false targets as possible. There

are two possible sources for the false targets in the final

solution. One is that the false alarm rate is high, which

can inevitably cause the presence of some false targets.

The other is that a target is split into two close targets

due to the association test. While the former may cause

confusion in the decision making, we may prioritize the

targets based on the estimated pd such that the low p̂d

targets have the low priority. The latter may be solved by

looking at whether two close targets with low estimated

probabilities of detection have their sum close to 1.

The top plot in Figure 8 shows the RMS position er-

ror (averaged over all targets) for different cases before

we remove the predicted false targets. The “Known As-

sociation,” which refers to the situation when we know

the number of targets and the association between mea-

surements and targets, is meant to serve as a baseline

or a lower bound (which is unachievable). In this case,

the position estimates can be obtained separately for

each target by solving a nonlinear least squares prob-

lem, and subsequently the position error can easily be

obtained. From the same plot, it can be observed that

the distributed algorithm yields the same position error

as the centralized algorithm most of the time. While the

baseline serves as a lower bound in most cases, it is in-

teresting to note that the performance of the centralized

algorithm or the distributed algorithm is better than the

baseline in a few situations, which is due to “useful”

false measurements.

The bottom plot in Figure 8 shows the RMS posi-

tion error (averaged over all targets) for different cases
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Fig. 7. The number of targets (the truth is 4) estimated by the centralized and distributed algorithms before (top plot) and after (bottom

plot) removing false targets using the threshold (144).

Fig. 8. The RMS position error per target evaluated by assuming known target-measurement association, using the centralized EM

algorithm and the EM and AC based distributed ADMM algorithm before and after removing the false targets.

after we remove the low p̂d false targets. This is also

a measure of accuracy of the final position estimates

provided by the centralized and distributed algorithm.

For a clearer comparison, the range of the RMS ratio of

the distributed algorithm over the centralized algorithm

is also shown as in Table X. While the distributed al-

gorithm can produce a higher error than the centralized

algorithm occasionally, in most cases (84%), it yields

practically the same localization result as the centralized

algorithm. It is interesting to note that the distributed

algorithm can be slightly better than the centralized al-

gorithm due to a different initialization.

7. CONCLUSION

This paper considers passive localization of multi-

ple transient emitters using a wireless sensor network

and develops a distributed algorithm, which relies solely

on local communications between one-hop neighboring
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TABLE X

The final (after removing low pd targets) RMS ratio among assuming known association (KA), the centralized algorithm (C) and the

distributed algorithm (D).

Interval (0:9,0:99) [0:99,1:01] (1:01,1:1) [1:1,1:3) [1:3,1:5) [1:5,8]

D versus C 3 84 3 6 1 3

C versus KA 12 75 3 4 2 2

D versus KA 15 60 6 9 6 4

sensors. A distributed implementation of the centralized

EM based algorithm is not possible unless the consen-

sus on the initial set of estimates can be reached among

all sensors. It is shown by simulation that even with

the knowledge of data association, we need to carry out

the initialization carefully because of the bearing mea-

surements. Random initializations based on individual

sets of bearing measurements could converge to a local

minimum, therefore it is necessary to use the bearing

measurements from neighboring sensors. As in the cen-

tralized EM based algorithm, each node uses a sequen-

tial m-best 2-D assignment algorithm on measurements

from itself and its neighbors to obtain an initial set of

target estimates.

Since initially estimated target set can be different

from node to node in terms of both the cardinality (this

happens when the probability of detection is low or the

false alarm rate is high) and the values of estimates

(since each sensor uses different measurements for ini-

tialization), we developed a distributed set consensus

algorithm to reach consensus on the number of candi-

date targets before each node can reach consensus on

the target-estimate association so that a proper initial-

ization is obtained for the EM and AC based distributed

ADMM algorithm. Since a Bernoulli measurement gen-

eration model is a more realistic assumption as it reflects

best the physical process of measurement generation,

we presented a likelihood function based thresholding

technique to determine the number of targets.

Simulation results show that the EM and AC based

distributed ADMM algorithm converges very fast and

yields the target location estimates that are almost as

good as those of the centralized algorithm. The esti-

mated probability of detection is shown to be able to

effectively distinguish real targets from false targets.
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Maneuvering Target Tracking
Using Continuous Wave
Bistatic Sonar with Propagation
Delay
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Acoustic propagation delay has not been investigated for a con-

tinuous wave multistatic sonar tracking system except for the recent

study conducted by Jauffret et al. [6], which estimates the trajectory

of a constant velocity target. The results showed that the estimate

bias caused by the propagation delay is not negligible, especially

for a bistatic system. This paper develops an interacting multi-

ple model unscented Gauss-Helmert filter with numerical Jacobian

(IMM-UGHF-NJ) to track a maneuvering target with propagation

delay using a bistatic sonar system. The IMM-UGHF-NJ can over-

come the two tracking challenges introduced by the delay, namely,

implicit state transition model and lack of analytical expression of

the Doppler shifted frequency in the measurement model. Simula-

tion tests have been conducted, and the results show that the IMM-

UGHF-NJ can reduce the estimation error significantly, especially

for long range or fast moving targets.
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I. INTRODUCTION
Continuous active sonar (CAS), also known as high

duty cycle (HDC) sonar, with multistatic setup has at-

tracted the research interest recently. In such a system,

the signal is transmitted almost in a full duty cycle.

Compared to the commonly used pulse active sonar

(PAS) system, which transmits only a short pulse in

a cycle, the CAS system has continuous detection ca-

pability. Furthermore, a CAS usually uses low intensity

signal, so it is less disturbing to underwater fauna.

There are two main types of CAS systems according

to the signal waveforms transmitted, namely, frequency

modulated (FM) waveforms and continuous constant

frequency waveforms (CW). The FM-CAS can provide

good target bistatic range information, whereas the CW-

CAS has good Doppler shifted frequency measurement

(linked to target range rate). The FM-CAS needs to sep-

arate indirect path signal from strong direct path signal

via methods, such as m-sequence modulation [3] and

Dopplergram [10]. The FM-CAS has a frequency band-

width limitation issue in multistatic system, as broad-

band waveforms are transmitted repeatedly [5]. The

CW-CAS transmits a single fixed frequency waveform,

so that it has no frequency bandwidth limitation problem

as the FM-CAS. However, due to lack of range informa-

tion, the observability of a target trajectory in CW-CAS

is not as good as FM-CAS, especially for bistatic (a

single transmitter-receiver pair) system.

We focus on target tracking using CW-CAS in this

paper. A few approaches to this problem have been pro-

posed in literature. A Gaussian mixture probability hy-

pothesis density (GMPHD) filter was developed in [5].

It tracks multiple constant velocity (CV) targets using

bearings and Doppler frequencies detected by multi-

static CW-CAS. Results show that CV targets can be

tracked using more than two transmitter-receiver pairs

when target range is not available. This research does

not take signal propagation delay into consideration.

The effect of propagation delay of CW-CAS has been

studied in [6] recently. An exact Doppler frequency

model with propagation delay was proposed. and a max-

imum likelihood (ML) estimator based on this model

was developed to perform batch estimation1 for a CV

target. The simulation results showed that the estimation

bias induced by the propagation delay is not negligible,

especially for a bistatic system.

In this paper, the propagation delay problem raised

in [6] is studied further. We extend the target CV tra-

jectory estimation using a batch parameter estimation

technique to the dynamic recursive estimation, which

can handle not only CV motion but also maneuvering

motion. This extension faces two challenges. Firstly, the

“target time” tk and target position (xk,yk) in the state

1The batch estimation estimates target parameter using a batch of

measurements received in a certain duration. The target parameter

describes the target motion, for example, target initial position and its

velocity (assumed constant for the duration of the batch).
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[defined later in (1) and (2)] are highly correlated after

propagation delay is introduced. This leads to a state

transition equation in an implicit form instead of the

commonly used explicit form in [11][12]. Secondly, the

Doppler shifted frequency (one of the measurements)

does not have an analytical expression in terms of the

target state. This is because the Doppler frequency is

a function of the bistatic range rate which cannot be

described analytically after propagation delay is intro-

duced. Details will be given later in Section II-B. The

two challenges mentioned above were overcome in [6]

by solving a 2nd order polynomial equation for CV tar-

get. However, the approach in [6] cannot be applied to a

maneuvering target with coordinated turn (CT) motion,

and the new approach in this paper will be shown to

handle this.

A dynamic estimation problem uses two basic mod-

els, namely, the state transition model and the measure-

ment model. The state transition model describes the

evolution of the target state with time, and it is (in most

cases) an explicit expression of the state at the current

time in terms of the state at the previous time. The mea-

surement model relates the measurement to the state.

The two challenges of the dynamic estimation problem

considered in this paper are: (i) the implicit state tran-

sition model; (ii) the lack of an analytical measurement

model. These make this problem impossible to solve

using existing filters.

We will develop an interacting multiple model un-

scented Gauss-Helmert filter with numerical Jacobian

(IMM-UGHF-NJ) to cope with the challenges men-

tioned above. The IMM [2] is a well known hybrid al-

gorithm to handle motion model uncertainty in maneu-

vering target tracking. The UGHF [11][12][14][15] is a

recently developed algorithm for bearings-only tracking

(BOT) with implicit state transition model introduced

by the acoustic propagation delay. It can be applied to

our problem. For the measurement model without an-

alytical form, the NJ (numerical Jacobian) algorithm,

which computes the Jacobian numerically, can be uti-

lized [8][13][9]. The Doppler shifted frequency is a

function of the bistatic range rate, _r, which has no an-

alytical form due to the unknown time delay. We can

compute _r (derivative of range r) using the NJ.

The structure of the rest of paper is as follows.

Section II formulates the problem. Section III presents

the IMM-UGHF-NJ. Simulation results and conclusions

are in Sections IV and V, respectively.

II. PROBLEM FORMULATION

The problem is illustrated in Fig. 1. At dynamic

estimation cycle k, the transmitter emits a CW signal

with constant frequency fT at time tTk , and the receiver

receives the Doppler shifted frequency fR at time tRk
via the target reflection at time tk. We assume the

transmitter and receiver are stationary and located at

(xT,yT) and (xR,yR), respectively. The target is moving

Fig. 1. Signal transmission of CW bistatic sonar.

Fig. 2. Time sequences of continuous wave bistatic sonar.

and its location is [x(tk),y(tk)] at reflection time tk. The

ranges between the target at tk to the transmitter and

the receiver are rTk and r
R
k , respectively. We also assume

that sound propagation is straight with a nearly constant

speed among the transmitter, target and receiver.

The target states to be estimated for the CV and CT

models at time tk are

xCV(tk) = [x(tk) y(tk) _x(tk) _y(tk) tk]
0 (1)

xCT(tk) = [x(tk) y(tk) _x(tk) _y(tk) !(tk) tk]
0 (2)

where x, y, _x and _y are the target positions and velocities

in the x and y coordinates, respectively, ! is the target

turn rate, and tk is the target time (or reflection time)

corresponding to the emission time tTk and the reception

time tRk of the transmitter and receiver, respectively. The

measurement vector at time tRk is

z(tRk ) = [b(t
R
k ) fR(tRk )]

0 (3)

where b is the target bearing from the receiver at time tRk
to the target at time tk, measured clockwise from True

North, and fR is the Doppler shifted frequency at the

receiver.

A. State transition models

The state transition model describes the evolution

of the target state with time. For a generic discrete

problem, it is an explicit form given by

x(tk) = f[x(tk¡1)] +¡v(tk¡1) (4)

where k is the discrete estimation cycle index, v(tk¡1)
is the process noise, and ¡ is the process noise gain.

However, there is no explicit state transition model for
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our problem. It can be seen from Fig. 2 that the target

time, tk, is unknown due to the unknown propagation

delay ¿R. There is an implicit constraint between the

known tRk and unknown tk given by

tk = t
R
k ¡ ¿Rk (5)

where

¿Rk =

p
[x(tk)¡ xR]2 + [y(tk)¡ yR]2

cp
(6)

and cp is the signal propagation speed in the medium. It

can be seen that tk is on the both sides of the constraint

equation (5), since x(tk) and y(tk) are functions of tk. It is

difficult to obtain an explicit express of tk. This leads to

use a Gauss-Helmert (GH) state transition model, which

describes an implicit constraint systemically [11][12].

The GH model is given by

g[x(tk),x(tk¡1)] +¡v(tk¡1) = 0 (7)

The GH models for the CV motion2 and CT motion

are given next.

1) Constant velocity Gauss-Helmert model: The GH

model for CV motion is given by

gCV[xCV(tk),x
CV(tk¡1)] +¡

CVvCV(tk¡1) = 05 (8)

where 05 is a column vector with 5 elements, g
CV[¢]

is the implicit GH state transition function, which com-

bines the CV motion constraints and the delay constraint

between x(tk) and x(tk¡1). It is given by

gCV(¢) = [gCV1 (¢) gCV2 (¢) gCV3 (¢) gCV4 (¢) gCV5 (¢)]0 (9)

where

gCV1 (¢) = x(tk)¡ [x(tk¡1)+ _x(tk¡1)¢k] (10)

gCV2 (¢) = y(tk)¡ [y(tk¡1)+ _y(tk¡1)¢k] (11)

gCV3 (¢) = _x(tk)¡ _x(tk¡1) (12)

gCV4 (¢) = _y(tk)¡ _y(tk¡1) (13)

gCV5 (¢) = tk ¡ (tRk ¡ ¿Rk ) (14)

with ¿Rk given in (6) and

¢k = tk ¡ tk¡1 (15)

Based on the discrete white noise acceleration

(WNA) model [2], the gain matrix ¡CV and the zero-

mean white Gaussian process noise vCV in (8) compen-

sate for small accelerations and the uncertainty of the

2Although an explicit state transition model for the CV motion can

be obtained through solving a 2nd order polynomial equation [6], the

GH model is a systematical way which is suitable for both CV and

CT motions.

sound speed. The noise gain matrix ¡CV is given by

¡CV =

26666664

1
2
(¢k)

2 0 0

0 1
2
(¢k)

2 0

¢k 0 0

0 ¢k 0

0 0 1

37777775 (16)

The covariance of vCV is

qCV = diag(¾2ẍ ¾2ÿ ¾2t ) (17)

where ¾2ẍ and ¾2ÿ are the variances on small target

accelerations in the x and y coordinates respectively,

and ¾2t is the process noise variance on the target time.

The covariance of the error in the model (8) is given by

QCV(¢k) = ¡
CVqCV(¡CV)0 (18)

2) Coordinated Turn Gauss-Helmert model: The GH

state transition model for the CT motion is given by

gCT[xCT(tk),x
CT(tk¡1)] +¡

CTvCT(tk¡1) = 06 (19)

where

gCT(¢) = [gCT1 (¢) gCT2 (¢) gCT3 (¢) gCT4 (¢) gCT5 (¢) gCT6 (¢)]0

(20)

with

gCT1 (¢) = x(tk)¡
·
x(tk¡1)+

sin[!(tk¡1)¢k]
!(tk¡1)

_x(tk¡1)

¡1¡ cos[!(tk¡1)¢k]
!(tk¡1)

_y(tk¡1)
¸

(21)

gCT2 (¢) = y(tk)¡
·
y(tk¡1)+

sin[!(tk¡1)¢k]
!(tk¡1)

_y(tk¡1)

+
1¡ cos[!(tk¡1)¢k]

!(tk¡1)
_x(tk¡1)

¸
(22)

gCT3 (¢) = _x(tk)¡fcos[!(tk¡1)¢k] _x(tk¡1)
¡ sin[!(tk¡1)¢k] _y(tk¡1)g (23)

gCT4 (¢) = _y(tk)¡fsin[!(tk¡1)¢k] _x(tk¡1)
+ cos[!(tk¡1)¢k] _y(tk¡1)g (24)

gCT5 (¢) = !(tk)¡!(tk¡1) (25)

gCT6 (¢) = tk ¡ (tRk ¡ ¿Rk ) (26)

The noise gain matrix ¡CT is given by

¡CT =

26666666664

1
2
(¢k)

2 0 0 0

0 1
2
(¢k)

2 0 0

¢k 0 0 0

0 ¢k 0 0

0 0 ¢k 0

0 0 0 1

37777777775
(27)
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qCT = diag(¾2ẍ ¾2ÿ ¾2! ¾2t ) (28)

where ¾2! is the variance of the Gaussian process noises

of !. The covariance of the error in (19) for the (nearly)

CT motion, QCT(¢k), is computed by

QCT(¢k) = ¡
CTqCT(¡CT)0 (29)

B. Measurement model

The measurement model relates the state at time tk
to the measurement at time tRk , which is given by

z(tRk ) = h[x(tk)]+w(t
R
k ) (30)

where w(tRk ) is the measurement noise, and

h(¢) = [h1(¢) h2(¢)]0 (31)

with

h1(¢) = b(tRk ) = tan¡1
·
x(tk)¡ xR
y(tk)¡ yR

¸
(32)

h2(¢) = fR(tRk ) = fT(tTk )
·
1¡ _r(tRk )

cP

¸
(33)

The challenge is how to obtain _r(tRk ) in (33). We know

r(tRk ) = r
T
k + r

R
k

=

q
[x(tk)¡ xT]2 + [y(tk)¡ yT]2

+

q
[x(tk)¡ xR]2 + [y(tk)¡ yR]2 (34)

and

_r(tRk ) =
d[r(tRk )]

d(tRk )

=
_x(tk)[x(tk)¡ xT]+ _y(tk)[y(tk)¡ yT]

rTk

dtk
d(tRk )

+
_x(tk)[x(tk)¡ xR]+ _y(tk)[y(tk)¡ yR]

rRk

dtk
d(tRk )

(35)

When the signal propagation delay is negligible (for

example, for a radar signal), one has tk = t
R
k and

dtk
d(tRk )

= 1 (36)

The analytical form of _r(tRk ) is then

_r(tRk ) =
_x(tk)[x(tk)¡ xT]+ _y(tk)[y(tk)¡ yT]

rTk

+
_x(tk)[x(tk)¡ xR]+ _y(tk)[y(tk)¡ yR]

rRk
(37)

However, the acoustic signal in our problem has sig-

nificant propagation delay and tk 6= tRk . The analytical
function

tk = f(t
R
k ) (38)

is impossible to obtain for a target in CT motion. This

causes a major challenge for mapping the state to the

measurement. An appropriate filter to cope with this

challenge will be developed next.

III. INTERACTING MULTIPLE MODEL UNSCENTED
GAUSS-HELMERT FILTER WITH NUMERICAL
JACOBIAN

The IMM estimator [2] is the most commonly used

hybrid approach to handle model uncertainty in target

tracking. This section describes an IMM-UGHF-NJ fil-

ter with the implicit CV and CT models described in

Section II and lack of analytical expression for the mea-

surement function.

Similarly to the original IMM estimator, the IMM-

UGHF-NJ performs the state estimation in four steps:

mixing, mode-matched filtering, mode probabilities up-

dating and final state combination:

1) In the mixing step, the m hypotheses (where m is

the number of models in the filter) at time k¡ 1 ex-
pand to m2 hypotheses using the mixing probabilities

based on the mode Markov chain, which is governed

by the m£m mode probability transition matrix ¦

consisting of the mode transition probabilities, pij .

The m2 hypotheses are then merged into m hypothe-

ses based on the mixture equations [2].

2) In the mode-matched filtering step, the mixed state

estimates are updated by UGHF-NJs (given later) in

parallel.

3) The mixing probabilities are obtained, and the up-

dated mode probabilities are computed based on

the innovations in the mode-matched UGHF-NJs.

The updated mode probabilities together with the

mode-conditioned estimated states and covariances

are brought to the next step.

4) The final state estimate and its covariance for the

current time cycle are computed based on the mix-

ture equations using the latest mode probabilities in

the combination step.

Since the states in the CV and CT models described

in Section II have different dimensions, the unbiased

mixing approach [16] is applied in the IMM filter to

increase the CV state from 5 to 6. Before the mixing

step, the CV state estimate and its error covariance are

augmented with the turn rate information from the CT

model.

The IMM-UGHF-NJ differs from the standard IMM

in the mode-matched filters, which are UGHF-NJ.

The UGHF-NJ handles the implicit GH state transition

model and evaluates fR(tRk ) in the measurement vec-

tor (3) numerically. The UGHF-NJ prediction, state-to-

measurement mapping and update steps are given in

Algorithms 1—3, respectively. In these algorithms, the

model superscripts “CV” and “CT” for the states and

GH functions are omitted for simplicity.
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ALGORITHM 1 UGHF-NJ prediction

Generate (2nx+1) sigma points for x̂(tk¡1):
[fx̂i(t̂ik¡1)g,fwig] = SigPt[x̂(t̂k¡1),P(t̂k¡1),·]

Predict sigma points using Gauss-Newton algo.:
for all x̂i(t̂ik¡1), i 2 f1, : : : ,2nx+1g do
x0 = x̂

i(t̂ik¡1)
³xi(t̂ik j t̂ik¡1) = GaussN[g(x1,x0)]

end for
Regen sigma points with process noise:

x̂(t̂k j t̂k¡1) =
2nx+1X
i=1

wi³xi(t̂ik j t̂ik¡1)

P(t̂k j t̂k¡1) =
2nx+1X
i=1

wix̃i(t̂ik j t̂ik¡1)(x̃i(t̂ik j t̂ik¡1))0+Q(¢k)

[fx̂i(t̂ik j t̂ik¡1)g,fwig] =
SigPt[x̂(t̂k j t̂k¡1),P(t̂k j t̂k¡1),·]

where
x̃i(t̂ik j t̂ik¡1) = ³xi(t̂ik j t̂ik¡1)¡ x̂(t̂k j t̂k¡1)
· is a spread scalar of the sigma points.

Algorithm 1 predicts the state x̂(t̂k¡1) from time t̂k¡1
to an unknown target time, tk, corresponding to the
signal reception time tRk . The relationship between tk and
tRk is given by the implicit constraint (5). An unscented
Gauss-Helmert approach is used for the state prediction
with the implicit constraint. Firstly, 2nx+1 sigma points
of x̂(t̂k¡1) are generated using SigPt(¢) (given in the
Appendix), where nx is the dimension of the state vector.
Secondly, each sigma point is predicted to t̂ik using
the Gauss-Newton algorithm GaussN(¢) (also given in
the Appendix) based on the Gauss-Helmert function
g(x1,x0), where i is the index of the sigma points.
The 2nx+1 GaussN(¢) find x1 = ³xi(t̂ik j t̂ik¡1) from x0 =

x̂i(t̂ik¡1) iteratively. Thirdly, the predicted sigma points
are re-generated with considering also the process noise
(with the approprate larger prediction covariance).

ALGORITHM 2 UGHF-NJ mapping the predicted state
to measurement

[ftR,jk g,fwjg] = SigPt[tRk ,¾tR
k
,·]

for all x̂i(t̂ik j t̂ik¡1), i 2 f1, : : : ,2nx+1g do
x0 = x̂

i(t̂ik j t̂ik¡1)
for j = 1 : 3 do
x̂i,j(t̂

j
k j t̂ik¡1) = GaussN[g(x1,x0)jtR

k
=t

R,j

k

]

r̂i,j(tRk )Ã x̂i,j(t̂
j
k j t̂ik¡1)

end for

_̂r
i

(tRk ) = NJ[ftR,jk g,fr̂i,j(tRk )g,fwjg]
f̂R,i(tRk )Ã using (33)

b̂i(tRk )Ã using (32)

zi(tRk ) = [b̂
i(tRk ) f̂

R,i(tRk )]
0

end for

ẑ(tRk ) =

2nx+1X
i=1

wiẑi(tRk )

Algorithm 2 maps the predicted state to the mea-

surement space. The challenge here is that we cannot

obtain the Doppler shifted frequency fR(tRk ) in the mea-

surement from the predicted state directly. The range

rate _r(tRk ) in (33) cannot be derived from the bistatic

range r(tRk ), which has no analytical form in terms of

tRk . We use a numerical approach, called numerical Ja-

cobian (NJ), to obtain _r(tRk ) from r(tRk ). It is known that

the slope of the tangent line is the derivative of a non-

linear function at a point of interest. The principle of the

NJ(¢) (given in the Appendix) is to find the best linear fit
to a nonlinear function based on a few weighted points

around the point of interest. If we can provide these

weighted points around [tRk ,r(t
R
k )], its derivative _r(t

R
k ) can

then be computed using NJ(¢). Firstly, we generate the
reception time set around tRk using SigPt(¢), i.e.,

ftR,jk g= ftRk , tRk ¡¾tR
k
, tRk +¾tR

k
g j = 1,2,3 (39)

where ¾tR
k
is a very small shift from tRk . Its weight

set is fwjg. Secondly, we use GaussN(¢) to obtain the
predicted state set fx̂i,j(t̂k j t̂k¡1)g corresponding to the
reception time set ftR,jk g for the ith sigma point of
the predicted state (obtained from Algorithm 1). The

bistatic range can then be computed using (34). The

set of bistatic ranges corresponding to ftR,jk g for the ith
sigma point of the predicted state is

fr̂i,j(tRk )g= fr̂i(tRk ), r̂i(tRk ¡¾tR
k
), r̂i(tRk +¾tR

k
)g j = 1,2,3

(40)

Thirdly, we use these two sets, ftR,jk g and fr̂i,j(tRk )g,
which form three points around [tRk , r̂

i(tRk )] to evaluate

the range rate _̂r
i

(tRk ) using NJ(¢). Once _̂r
i

(tRk ) is obtained,

fR,i(tRk ) can be computed using (33), and the predicted

measurement zi(tRk ) follows.

ALGORITHM 3 UGHF-NJ update

x̂(t̂k) = x̂(t̂k j t̂k¡1)+Kkº(tRk )
P(t̂k) = P(t̂k j t̂k¡1)¡KkS(tRk )K0k
where

º(tRk ) = z(t
R
k )¡ ẑ(tRk )

Kk = PxzS(t
R
k )
¡1

S(tRk ) =R+Pzz

Pxz =

2nx+1X
i=1

wix̃i(t̂ik j t̂ik¡1)z̃i(tRk )0

Pzz =

2nx+1X
i=1

wi[z̃i(tRk )z̃
i(tRk )

0]

z̃i(tRk ) = ẑ
i(tRk )¡ ẑ(tRk )

x̃i(t̂ik j t̂ik¡1) = x̂i(t̂ik j t̂ik¡1)¡ x̂(t̂k j t̂k¡1)

Algorithm 3 updates the predicted state based on

the measurement z(tRk ). This step is the same as in the

conventional UKF.
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Fig. 3. Test scenarios.

IV. SIMULATION RESULTS

The IMM-UGHF-NJ is tested with simulated data

in this section. The simulated scenarios are shown in

Fig. 3. Twelve targets move in CV-CT-CV motion with

different speeds and ranges. They are categorised into

four groups based on the ranges (or distances) to the

transmitter and receiver, which are between 0—5 km,

5—10 km, 10—15 km and 15—20 km. Each category has

three targets with speeds 10 m/s, 20 m/s and 30 m/s,

respectively. All targets have two CV legs linked by a

CT arc. The durations of the first CV, CT and the sec-

ond CV are 90 s, 45 s and 90 s, respectively. The CT

arc is a 90± right turn with turn rate 2±/s. The trans-
mitter and receiver are located at (¡3500 m,0 m) and
(3500 m,0 m), respectively. The transmitter emits a CW

signal with frequency 1000 Hz. The sampling inter-

val of the receiver is T = 1 s. The measurement errors

of bearing and Doppler shifted frequency at receiver

are assumed Gaussians with standard deviations ¾b = 1
±

and ¾f = 0:25 Hz, respectively. The sound propagation

speed in water is cp = 1484 m/s.

The following two algorithms are used in testing:

² IMM-UKF: The mode-matched filters are UKF. They
estimate target position and velocity only. The prop-

agation delay is not taken into consideration at all.

The Doppler shifted frequency in the measurement

model is based on (37) which is commonly used in

multistatic radar tracking system. The target times are

taken as the signal reception times by the receiver.

² IMM-UGHF-NJ: This is the new algorithm proposed

in this paper. The propagation delay is taken into

consideration in the state estimation, and the target

times attached to the target trajectory are estimated

from multiple UGHF-NJs.

One CV model and two CT models (CT-L and CT-

H) are used in both IMM estimators. The CT-L and CT-

H have low and high turn rate process noises, respec-

tively. This setup can provide a fast turn rate adaptation

during model switching [4]. The initial mode proba-

bilities for the three models are 1/3. The probability

transition matrix ¦3 is

¦3 =

2640:950 0:025 0:025

0:025 0:950 0:025

0:025 0:025 0:950

375 (41)

The measurement error covariance R is

R= diag[(1±)2 (0:25 Hz)2] (42)

In the IMM-UGHF-NJ, the process noise covariances

qCV, qCT-L and qCT-H are, respectively,

qCV = diag[(0:1 m/s2)2 (0:1 m/s2)2 (0:1s)2] (43)

qCT-L = diag[(0:1 m/s2)2 (0:1 m/s2)2 (0:1±=s)2 (0:1s)2]
(44)

qCT-H = diag[(0:1 m/s2)2 (0:1 m/s2)2 (1±=s)2 (0:1s)2]
(45)

and · is set to 1 in all SigPt(¢) (see the Appendix),
and ¾tR

k
is set to 0.1s in Algorithm 2. The initial state

estimates are

x̂CV(t0) = [r̂0 sinb0 r̂0 cosb0 _̂x0 _̂y0 t̂0]
0 (46)

x̂CT-L(t0) = [r̂0 sinb0 r̂0 cosb0 _̂x0 _̂y0 0:1
±=s t̂0]

0 (47)

x̂CT-H(t0) = x̂
CT-L(t0) (48)

where

r̂0 »N (rR0 ,¾2r ) (49)

b0 = b(t
R
0 ) (50)

_̂x0 »N ( _x0,¾2_x ) (51)

_̂y0 »N ( _y0,¾2_y ) (52)

t̂0 = t
R
0 ¡ r̂0=cp (53)

with rR0 the true value of the range from the target at

time t0 to the receiver at time t
R
0 , ¾r = 400 m, and b(t

R
0 )

is the measured bearing at time tR0 , _x0 and _y0 are the true

target velocities, and ¾ _x = ¾ _y = 4 m/s. The initial state

error covariances for the three models are

PCV(t0) =

266666664

Pxx Pxy 0 0 0

Pyx Pyy 0 0 0

0 0 ¾2_x 0 0

0 0 0 ¾2_y 0

0 0 0 0 (¾r=c
p)2

377777775
(54)
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PCT-L(t0) = P
CT-H(t0)

=

26666666664

Pxx Pxy 0 0 0 0

Pyx Pyy 0 0 0 0

0 0 ¾2_x 0 0 0

0 0 0 ¾2_y 0 0

0 0 0 0 (0:02±=s)2 0

0 0 0 0 0 (¾r=c
p)2

37777777775
(55)

where

Pxx = (r̂0¾b cosb0)
2 + (¾r sinb0)

2 (56)

Pyy = (r̂0¾b sinb0)
2 + (¾r cosb0)

2 (57)

Pxy = Pyx = (¾
2
r ¡ r̂20¾2b)sinb0 cosb0 (58)

The parameters in the IMM-UKF, including the process

noise covariances, initial states and initial state error

covariances are the same as the IMM-UGHF-NJ, but the

elements corresponding to the target time are removed.

The simulation results present the root mean square

errors (RMSE) of the estimated target positions and

speeds obtained from 100 Monte Carlo runs. The es-

timated position and speed errors at time t̂k are com-

puted by

poserr(t̂k) =

q
[x̂(t̂k)¡ x(t̂k)]2 + [ŷ(t̂k)¡ y(t̂k)]2 (59)

sperr(t̂k) =

q
[ _̂x(t̂k)¡ _x(t̂k)]2 + [ _̂y(t̂k)¡ _y(t̂k)]2 (60)

where x̂(t̂k), ŷ(t̂k), _̂x(t̂k) and _̂y(t̂k) are the estimated tar-

get positions and velocities in the x and y coordinates

respectively, x(t̂k), y(t̂k), _x(t̂k) and _y(t̂k) are the true tar-

get positions and velocities in the x and y coordinates

respectively, and t̂k is the estimated target time in esti-

mation cycle k.

Tables I and II show the averages of position and

speed RMSE for the two algorithms for the twelve

simulated targets from the four categories displayed in

Fig. 3. Figs. 4—7 show the position RMSE versus time

of the two algorithms for four simulated targets, one

from each category, respectively. They are the targets

in the range between 0—5 km with speed 30 m/s, range

between 5—10 km with speed 10 m/s, range between

10—15 km with speed 20 m/s and range between 15—

20 km with speed 30 m/s. It can be seen that the IMM-

UGHF-NJ outperforms the IMM-UKF for all targets.

The accuracy improvement is target range and speed

dependent. A faster and longer range target has more

improvement than a slower one at a shorter range.

This is because that estimation error of the IMM-UKF

depends on the target speed and propagation delay ¿Rk
(details can be found in Section V-C of [12]). The range

from the target to the receiver is proportional to the

propagation delay. From the results we can say that the

TABLE I

Averages of position RMSE

Target Target

Range Speed IMM-UKF IMM-UGHF-NJ Improv.

(km) (m/s) (m) (m) (m)

0—5 10 412.6 411.9 0.7

20 397.9 375.4 22.5

30 319.3 281.8 37.5

5—10 10 406.5 400.8 5.7

20 387.4 336.0 51.4

30 438.4 325.2 113.2

10—15 10 413.1 401.5 11.6

20 489.9 428.2 61.7

30 523.0 369.7 153.3

15—20 10 436.8 412.7 24.1

20 481.0 407.5 73.5

30 614.2 399.5 214.7

TABLE II

Averages of speed RMSE

Target Target

Range Speed IMM-UKF IMM-UGHF-NJ Improv.

(km) (m/s) (m/s) (m/s) (m/s)

0—5 10 1.9 1.8 0.1

20 2.4 2.0 0.4

30 2.9 2.4 0.5

5—10 10 2.0 1.8 0.2

20 2.7 1.9 0.8

30 3.8 2.1 1.7

10—15 10 2.4 1.9 0.5

20 3.5 1.9 1.6

30 5.0 2.2 2.8

15—20 10 3.0 2.4 0.6

20 4.3 2.0 2.3

30 6.2 2.1 4.2

estimation error without considering propagation delay

is significant, especially for a long range target or a fast

target (such as a speed boat or torpedo).

The maneuvering mode probabilities of the two

IMM filters are also investigated. Figs. 8—11 show the

sum of the mode probabilities of the two CT models

(which represents the target maneuvering probability)

versus time for the four targets, respectively. It can be

seen that the maneuvering probability for both filters

increases when the target is maneuvering. The IMM-

UGHF-NJ reacts faster than the IMM-UKF. A delay in

the model switching for a long range target (> 5 km)

is observed. However, the mode probability does not

match the ground truth very well when the target is

in CV motion. This is because the turn rate ! in CT

models can adapt to a small value when the target is in

CV motion.

To evaluate the consistency of the IMM-UGHF-NJ

and IMM-UKF, the average normalized estimation error

squared (NEES) is evaluated. The average (2D) position
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Fig. 4. Position estimate RMSE versus time for the target with

speed = 30 m/s and range less than 5 km.

Fig. 5. Position estimate RMSE versus time for the target with

speed = 10 m/s and range 5—10 km.

Fig. 6. Position estimate RMSE versus time for the target with

speed = 20 m/s and range 10—15 km.

Fig. 7. Position estimate RMSE versus time for the target with

speed = 30 m/s and range 15—20 km.

Fig. 8. Maneuvering probability versus time for target with

speed = 30 m/s and range less than 5 km.

Fig. 9. Maneuvering probability versus time for target with

speed = 10 m/s and range 5—10 km.
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Fig. 10. Maneuvering probability versus time for target with

speed = 20 m/s and range 10—15 km.

Fig. 11. Maneuvering probability versus time for target with

speed = 30 m/s and range 15—20 km.

NEES at time t̂k for N Monte Carlo runs is [1]

²̄(t̂k) =
1

2N

NX
i=1

x̃i1:2(t̂k)
0[Pi1:2,1:2(t̂k)]

¡1x̃i1:2(t̂k) (61)

where i the run index, Pi1:2,1:2(t̂k) is the position estimate

error covariance submatrix at the estimated target time

t̂k, and

x̃1:2(t̂k) = x̂1:2(t̂k)¡ x1:2(t̂k) (62)

The two-sided 95% probability region for a 200 degrees

of freedom (N = 100, dimension of x1:2 = 2) chi-square

random variable is [162,241:2]. Dividing by 200, the

average NEES interval is [0:81,1:21].

Fig. 12 shows the average position NEES versus

time of the IMM-UGHF-NJ for the four targets with

expected value 1. It can be seen that most of the position

NEES are within the interval [0:81,1:21]. There are

two exception cases out of the interval. One is at the

model switching times which are around 90 s and 135 s.

Fig. 12. Four targets position NEES versus time for the

IMM-UGHF-NJ.

Fig. 13. Four target position NEES versus time for the IMM-UKF.

Another one is at the ending part of the near range

target (0—5 km, 30 m/s). When the target is switching

between the CV and CT motions, the IMM-UGHF-

NJ cannot adapt to the correct model immediately,

and this causes short delay in the maneuver start and

maneuver end, but these delays are shorter than for

the IMM-UKF. For the near range target (0—5 km,

30 m/s), the NEES is below the lower bound 0.81 at

the ending part (t > 160 s). We can observe from Fig. 8

that the maneuvering probability is greater than 0.24

when t > 160 s. It is apparently worse than for the

other three targets shown in Figs. 9—11. This is caused

by the marginal observability of the CV motion model

from the measurements, and results in the maneuvering

probability (sum of the probabilities of CT models) not

small enough. The error covariance of the combined

estimate is too large (pessimistic) when the contribution

of the incorrect models (the maneuvering models with

probability around 0.25) cannot be overlooked. The

small NEES is therefore caused by this large error
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Fig. 14. Position estimate RMSE versus time of the

IMM-UGHF-NJ using two-model and three-model for the target

with speed = 20 m/s and range 10—15 km.

Fig. 15. Position estimate RMSE versus time of the

IMM-UGHF-NJ using two-model and three-model for the target

with speed = 30 m/s and range 15—20 km.

covariance.

Fig. 13 shows the NEES of the IMM-UKF for the

same four targets. All of them are above the upper

bound 1.21. Obviously, the IMM-UKF provides biased

estimation without considering propagation delay.

We also compare the results of using three models

and two models in the IMM-UGHF-NJ. The models

and parameters in the three-model configuration have

been defined before. The two-model IMM-UGHF-NJ

uses one CV model and one CT model. Their initial

mode probabilities are 1/2, and the probability transition

matrix ¦2 is

¦2 =

·
0:95 0:05

0:05 0:95

¸
(63)

The process noises the initial states in the two-model

estimator are set as the same for the CV and CT in the

three-model case, except the process noise variance on

turn rate is set as (0:5±=s)2 (intermediate value between
those in the CT-L and CT-H models). Figs. 14 and 15

show the position estimate RMSE versus time of us-

ing two models and three models for the two targets

(10—15 km, 20 m/s and 15—20 km, 30 m/s). It can be

seen that there is no difference in the first leg (t < 90 s)

between two-model and three-model IMM-UGHF-NJs.

Once the targets start maneuvering, the three-model

IMM-UGHF-NJ outperforms the two-model version.

This is due to the model CT-H with high process noise

on the turn rate. It allows the turn rate to adapt to the

correct value quickly during model switchings. Mean-

while, the CT-L model with slow change in turn rate

can balance the CT-H after model switching.

V. CONCLUSIONS

This paper developed the IMM-UGHF-NJ filter to

track maneuvering targets using bistatic CW-CAS in

the presence of propagation delay. The IMM-UGHF-

NJ can overcome the two challenges of this tracking

problem, namely, the implicit state transition model and

absence of analytical expression of the Doppler shifted

frequency in the measurement model. Simulation tests

were conducted on targets with different ranges and

speeds. Results show that the IMM-UGHF-NJ outper-

forms the IMM-UKF which does not take the propaga-

tion delay into consideration. It is also found that the

estimate accuracy improvement of the IMM-UGHF-NJ

over the IMM-UKF is more significant for a longer

range or a higher speed target. Such a target (for ex-

ample a speed boat or a torpedo) needs an appropri-

ate filter (IMM-UGHF-NJ) to handle the propagation

delay. A statistical study of the results was also con-

ducted through the NEES. The results show that the

IMM-UGHF-NJ is a consistent filter in most of the

cases, except the situations when the target motion un-

certainty cannot be well observed from measurements.

The NEES results of the IMM-UKF are far above the

upper bound because of its biased estimation due to

ignoring the propagation delay.

Although the IMM-UGHF-NJ is developed based on

the stationary transmitter and receiver, it can be applied

to a moving transmitter and receiver if their positions are

known accurately. Further study will be conducted to

cope with inaccurate transmitter and receiver positions.

APPENDIX

The three algorithms SigPt(¢), GaussN(¢) and NJ(¢)
used in IMM-UGHF-NJ are given next.

a) SigPt(¢) generates the sigma points for a random
variable x with covariance Px [7].

[xi,wi] = SigPt(x,Px,·) i= 1, : : : ,2nx+1 (64)
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where

x1 = x (65)

xi = x+
hp
(nx+·)Px

i
i¡1

i= 2, : : : ,nx+1 (66)

xi = x¡
hp
(nx+·)Px

i
i¡nx¡1

i= nx+2, : : : ,2nx+1 (67)

w0 =
·

nx+·
i= 1 (68)

wi =
1

2(nx+·)
i= 2, : : : ,2nx+1 (69)

where nx is the dimension of x,
£p
(nx+·)Px

¤
i¤ indi-

cates the i¤th column of the matrix [¢], and · is a scalar
that determines the spread of sigma points.

b) GaussN(¢) is a Gauss-Newton algorithm to ob-

tain the solution of an implicit equation g(¢) = 0 itera-
tively [11][12] and yields

x̂1 = GaussN[g(x1,x0)] (70)

where x0 is known. The iteration procedure is

x̂
j+1
1 = x̂

j
1¡ (Aj)¡1g(x̂j1,x0) (71)

where j is the iteration index, Aj is the Jacobian matrix

defined by

Aj =
@g[(x̂

j
1,x0)]

@x̂
j
1

(72)

c) NJ(¢) calculates the Jacobian (or derivative) H of

a function

z= h(x) (73)

at a point of interest x0 numerically [8][13][9]. There

is no analytical form for h(¢), but z can be obtained
through numerical method from a given x. The Jaco-

bian is

H=NJ[fxig,fzig,fwig] (74)

where fxig is the sigma point set around x0 generated
from a very small covariance, fzig is its corresponding
set after transformation and fwig is the set of weights.
The NJ is implementing through the following steps:

1) Form the sigma point set

X̄=

·
x1 x2 ¢ ¢ ¢ x2nx+1

1 1 ¢ ¢ ¢ 1

¸
¡
·
x1

0

¸
(75)

Z=

266664
z̄1

z̄2

...

z̄l

377775= [z1 z2 ¢ ¢ ¢ z2nx+1] (76)

where x1 = x0, and l is the dimension of z.

2) Estimate H using the weighted least squares

(WLS) algorithm

aj = (X̄WX̄0)¡1X̄W(z̄j)0 (77)

ˆ̄
H= [a1 a2 ¢ ¢ ¢ al]0 (78)

Ĥ=
ˆ̄
H(1 : l,1 : nx) (79)

whereW= diag(fwig), j 2 f1, : : : , lg, and Ĥ is ˆ̄Hwithout
the last column.
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Approaches to Obtain a Large
Number of Ranked Solutions
to 3-Dimensional Assignment
Problems
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A generalized 3-dimensional assignment problem is a decision-

making process that involves allocating limited resources to a set

of tasks over time, where the objective is to optimize a cost func-

tion subject to a set of generalized assignment constraints. The 3-

dimensional (3-D) assignment problems are known to be NP-hard.

In this paper, we propose a novel approach to efficiently solve an

m-best 3-D assignment problem with non-unity right-hand side con-

straints (also referred to simply as 3-D assignment problem), where

m may be large (as many as 104 solutions), by decomposing it into

two sequential phases. In phase I, we partition the original prob-

lem space into a series of subproblems via Murty’s m-best search

space decomposition procedure. Modifications previously proposed

in the literature for the 2-dimensional (2-D) assignment problem

are applied to optimize the search space decomposition for the 3-

D assignment problem. In phase II, we solve each subproblem by

using Lagrangian relaxation and solving the 3-D assignment prob-

lem as a combination of relaxed 2-D assignment problems and 2-D

transportation problems. The 2-D assignment problem is solved by

the JVC or auction algorithms, and the 2-D transportation prob-

lem is solved by the simplex-based transportation, Transauction or

RELAX-IV algorithms. The sequence of relaxed 2-D problems are

interchangeable, while adhering to the relaxed constraints. We vali-

date and compare the performance and utility of the proposed algo-

rithms and search space decomposition optimizations via extensive

numerical experiments. Overall, the fully optimized algorithm took

less than 50 seconds, on average, to obtain 104 soutions for a tensor

of dimension 30£ 30£ 8.
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1. INTRODUCTION

1.1. Motivation

Assignment problems are applicable to a diverse ar-

ray of real world problems [1]—[3]. This set of prob-

lems takes the form of how best to assign a number of

items or objects to some (possibly different) number of

machines or people during different time periods. As-

signment problems are of a combinatorial nature, each

requiring some form of an objective function to indi-

cate the value or utility of individual assignments. A

sampling of how diverse and widely applicable such

assignment problems are can be seen from the follow-

ing: multi-target tracking, quadratic assignment prob-

lems, traveling salesman problems, or vehicle routing

problems. Such problems also occur in academia or the

military, where a set of military troops [1] or teach-

ers [2] must be assigned to locations or classrooms that

are temporally dependent in value or utility. Assignment

problems have even been motivated from a telecommu-

nications standpoint, where a set of satellites must be

launched from a set of locations to maximize their cov-

erage [1].

A 2-dimensional (2-D) assignment problem may be

viewed as a weighted bipartite graph matching problem,

where arcs must link two sets of nodes together such

that an objective function is optimized, while satisfying

a set of one-to-one constraints. The 3-dimensional (3-

D) extension of this problem has been proven to be NP-

hard [4]—[6]. In particular, one application that we focus

on in this paper is a nuclear fuel assembly (FA) loading

pattern optimization. The core of a nuclear reactor is

formed by large sets of elongated, rectangular FAs

arranged in a cylindrical fashion, as shown in Fig. 1.

Fig. 1. The core of a nuclear reactor is formed by large sets of fuel

assemblies where position, type, and rotation/orientation must be

chosen for each one. Illustrated here is a nuclear fuel assembly

loading operation at Fangchenggang nuclear power plant in China’s

Guangxi province [7].

The nuclear fuel assembly loading pattern optimiza-

tion problem involves choosing: 1) the position of the

FA in the nuclear reactor core, 2) the type of FA to put
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in the chosen position, and 3) the rotation/orientation

of the chosen FA type in the chosen position. Each di-

mension of the 3-D assignment corresponds to each of

the decision variables above. In general, this problem is

treated as a multiple objective combinatorial problem,

but what separates it from the traditional 3-D assign-

ment problems is the requirement for a dense set of

new discrete loading patterns though a dynamically es-

timated probability distribution (represented by a reward

tensor). This conversion to a 3-D assignment problem

is a completely new approach for nuclear fuel loading

pattern optimization. The reward tensor is dynamically

updated based on the “best” solutions taken from the

multi-objective Pareto front. “Best” in this case may not

necessarily refer to the optimal, but one of a large num-

ber of solutions (assignments). By “large,” we mean on

the order of 104 solutions. Evaluation of each loading

pattern by reactor-physics-based external code may be

very time consuming (¼ 0:1 to 10 minutes, depending
on the required accuracy of loading pattern response

evaluation), so there exists a need to evaluate only new

(unique) loading patterns (assignments).

In such scenarios, an m-best 3-D assignment prob-

lem is needed, wherein a large set of solutions is gener-

ated in a reasonable amount of time (< 10 minutes for

104 solutions), so that the set of assignments may be

externally evaluated (each of which, in turn, may take

0.1 to 10 minutes). It may also be a viable approach to

obtain a dense set of solutions that are near-optimal and

satisfy the decision maker (such as in the case of re-

source allocation or military troop allocation problems)

or customer preferences (as in [2], where they attempt to

satisfy both student and tutor requirements or requests).

Having a large set of solutions offers a range of options

that may be of interest to a decision maker attempting to

optimize with respect to multiple, possibly conflicting,

objectives.

This paper offers an effective solution approach

for finding a large number of m-best solutions to the

3-D assignment problems with non-unity right-hand

side constraints with application to many real world

challenges. The problem space may be decomposed into

multiple partitions based on the optimal assignment,

as detailed in [8]. Through a two-phase approach, we

offer a method for rapidly generating large numbers of

solutions to the 3-D assignment problems.

1.2. Related Research

There exist a number of well-known algorithms to

obtain the optimal solution to a 2-D assignment prob-

lem, including the Hungarian algorithm [9], the Jonker-

Volgenant-Castañón (JVC) algorithm [10], [11], the

auction algorithm [12], and the signature method [13].

However, the assignment problem becomes NP-hard

when a third dimension is added [4]—[6]. One of the

first approaches for solving the 3-D assignment problem

was developed by Pierskalla [1], where he proposed a

tri-substitution algorithm based on the simplex method.

Hansen [14] proposed a primal-dual implicit enumera-

tion algorithm, while [15], [16] proposed branch-and-

bound approaches to obtain the optimal solution to such

3-D assignment problems. However, branch-and-bound

methods suffer from exponential computational com-

plexity and are unsuitable for large-scale real-world ap-

plications where accurate bounds cannot be obtained.

In order to overcome the 3-D assignment prob-

lem’s inherent computational intractability, a wide range

of algorithms have been developed to obtain subopti-

mal solutions, including greedy heuristics, genetic al-

gorithms, simulated annealing, tabu search, neural net-

works, and Lagrangian relaxation approaches [2], [17]—

[20]. Mazzola [17] proposed a heuristic branch-and-

bound method to reduce the computation time. In con-

trast, Frieze and Yadegar [2] applied Lagrangian relax-

ation theory to a more general 3-D assignment problem

with application to teaching practice scheduling. The

Lagrangian relaxation method of obtaining solutions to

3-D assignment problems has become extremely preva-

lent in data association applications due to the real time

computation speed and solution quality [3], [18], [19].

Poore [20] combined these two approaches, proposing

a hybrid branch-and-bound and Lagrangian relaxation

algorithm to the 3-D assignment problem.

In this paper, we seek to solve the aforementioned

3-D assignment problem, but instead of finding a single

solution, we aim to provide a large set of ranked solu-

tions. The process of finding the first best, second best,

third best, and so on, solution is known as the m-best

optimization problem. The m-best optimization prob-

lem occurs in a variety of contexts, including the short-

est path [21]—[23], spanning tree [24]—[26], traveling

salesman [27], directed network [28], multi-target track-

ing [29]—[33] and many other problems. The general

approach to the m-best optimization problem involves

partitioning the solution space into smaller subspaces,

which are subproblems of the original problem. Murty’s

search space decomposition [8] is the most common and

widely used technique, where the best solution is found

for each partitioned subproblem, given a modified solu-

tion subspace. Lawler [34] applied Murty’s search space

decomposition procedure within a more general frame-

work for a discrete optimization problem. Pascoal [35]

proposed a variant of Murty’s search space decomposi-

tion to reduce the algorithm’s complexity. This variant

involved solving the partitioned subsets in reverse order.

Miller et al. [36] proposed modifications to optimize

Murty’s search space decomposition procedure to the

2-D assignment problem via: 1) inherited dual variables

and partial solutions from the initial subproblems; 2)

sorting the subproblems based on lower bounds on the

optimal reward before solving the assignment problem;

and 3) partitioning in an order based on lower bounds

on cumulative reward. These modifications substantially

reduce the complexity of Murty’s search space decom-

position and are implemented in this paper.
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Another alternative way to solve the m-best opti-

mization problem is by Gabow’s [24] binary heap par-

tition method. Similarly, Hamacher [37] also proposed

using a binary search tree procedure, while also com-

bining an approach developed by Carraresi and Sodini

[38] to rank the paths. Chegireddy and Hamacher [39]

extended this work further and developed an m-best per-

fect matching algorithm based on the binary partition of

the solution space to apply to a bipartite matching prob-

lem in O(kn3) time. Recently, a modified version of the
Chegireddy and Hammacher’s algorithm was developed

for large datasets [40]. We suggest comparison of our

algorithm with those in [40] as future research.

1.3. Paper Organization

The primary focus of this paper is on combining

a Lagrangian relaxation method and m-best optimiza-

tion to obtain a very large number of ranked solutions.

Motivated by an approach developed by Pattipati [18],

we apply the Lagrangian relaxation approach that suc-

cessively solves a series of 2-D problems, since a key

advantage of using the Lagrangian relaxation method is

that it prunes the solution space by computing the up-

per and lower bounds. The first 2-D problem is a bipar-

tite graph matching problem (2-D assignment problem),

which can be solved using either the auction algorithm

or the JVC algorithm [10]; the latter is more efficient

for dense problem spaces [11]. The feasible solution is

obtained by solving a 2-D transportation problem (via

a simplex algorithm or Transauction algorithm) recon-

structed from the relaxed solution of the 2-D assign-

ment problem. The second step corresponds to imposing

the originally relaxed constraint on the first subprob-

lem’s solutions. As in [33], we generate m-best solu-

tions by exploiting Murty’s search space decomposition

procedure; however, unlike the formulation in [33], the

present 3-D formulation has general constraints that re-

quire a transportation problem to be solved. Moreover,

we optimize Murty’s search space decomposition via

Miller’s [36] proposed modifications, resulting in fur-

ther speedup and improved computational performance.

An alternate Lagrangian relaxation method involves first

solving a 2-D transportation problem at each iteration

of the 3-D assignment algorithm using either a sim-

plex algorithm or the Transauction algorithm, and sub-

sequently reconstructing the feasible solution via a 2-D

assignment problem. We will show that the former La-

grangian relaxation method is two orders of magnitude

faster than the latter.

This paper is organized as follows. We begin by in-

troducing the problem formulation in Section 2. In Sec-

tion 3, we solve the m-best 3-D assignment problem via

Murty’s search space decomposition and the Lagrangian

relaxation method. In Section 4, we detail Miller et al.’s

[36] search space optimizations and extend them to the

3-D assignment problem. We provide the pseudocode

of the fully optimized m-best 3-D assignment solution

TABLE I

Summary of Notation

wijk Reward of allocating resource i to task j at time k

xijk Binary decision variable for the primal problem

yij Binary decision variable for the 2-D assignment

problem

zjk ,zik Binary decision variables for the 2-D transportation

problem

i Resource index

j Task index

k Time index

mk Maximum number of assignment allowed for each k

W Reward tensor

N Total number of tasks/resources

R Total number of time units

¹ Lagrange multiplier

q Upper bound found from the relaxed 2-D assignment

problem (dual)

f Lower bound found via simplex-based transportation

or Transauction problem (primal)

g Gradient vector for the subgradient update

P0 Original problem space

A Solution space

S Feasible assignment in solution space A

X Solution tensor

© Column for row solution

Á Optimal reward from the 2-D assignment problem

− Layer for row solution

! Optimal reward from the 2-D transportation problem

B Slack value for upper bound reward computation

C Relaxed 2-D reward matrix in the 2-D assignment

problem

T 2-D reward matrix for the transportation problem

algorithm in Section 5. In Section 6, we present the

results of the m-best 3-D assignment algorithm and the

performance of each different optimization technique.

Finally, we provide concluding remarks in Section 7.

2. PROBLEM FORMULATION

The notation used in the remainder of this paper is

listed in Table I.

2.1. Problem Formulation

Given a 3-D reward tensor W = [wijk] of dimension

N £N £R, our problem is the following:

max
xijk2f0,1g

NX
i=1

NX
j=1

RX
k=1

wijkxijk (1)

s:t:

NX
j=1

RX
k=1

xijk = 1, i= 1, : : : ,N (2)

NX
i=1

RX
k=1

xijk = 1, j = 1, : : : ,N (3)

NX
i=1

NX
j=1

xijk ·mk, k = 1, : : : ,R (4)
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Fig. 2. Network flow view of the 3-D assignment problem,

originally presented in [42].

where xijk is a binary decision variable such that xijk = 1

if resource (row) i is assigned to task (column) j at time

(layer) k, and 0 otherwise. Constraints (2) and (3) ensure

that each resource i is allocated to exactly one task j and

vice versa. Constraint (4) requires that there may be no

more than mk assignments at each time k and makes this

assignment problem non-standard.

Figure 2 shows the 3-D assignment problem as a

network flow problem. Consider the first set, indexed

by i, and the second set, indexed by j, each consisting of

N nodes. Also, consider a third set, indexed by k, with a

total of R nodes. There are a total of N assignments that

may be made between sets i and j based on constraints

(2) and (3). We view this as a 2-D assignment problem

(indicated by the solid box in Fig. 2). Additionally,

each node in set j must be assigned to one of the

nodes in set k (indicated by the dashed (blue) box in

Fig. 2). Due to constraint (4), for every k, there may

be no more than mk assignment pairs of (i,j) mapped

to each layer. This may be viewed as an unbalanced

transportation problem, where the nodes in set (i,j) are

the sources and the nodes in set k are the sinks. Note that

fmk : k = 1,2, : : :Rg should be such that
PR
k=1mk ¸N so

that each (i,j) can be assigned to a node k.

2.2. Special Cases

Note that our 3-D assignment problem formulation

covers a wide range of problems.

2.2.1. Tri-index Assignment problem: The problem

in (1)—(4) may be viewed as a traditional tri-index

assignment problem by setting mk = 1 and R =N [1].

2.2.2. Scheduling problem: By setting mk =m, the

problem in (1)—(4) is related to some resource-con-

strained assignment scheduling problems [41].

2.2.3. Transportation problem: Note that our prob-

lem formulation is a special case of the transportation

problem. The general transportation problem involves

altering the unity constraint to some non-unity values.

2.2.4. Nuclear Fuel Loading Pattern Optimization:

In some nuclear reactor fuel assembly loading pattern

optimization problems, mk =N on the right hand side

of the constraint (4). In this case, the problem can be re-

duced to the traditional 2-D assignment problem, since

constraint (4) can be subsumed under constraints (2)

and (3) and is, thus, unnecessary. The 3-D assignment

problem posed in (1) then devolves to a 2-D assignment

problem, detailed later in Section 3.1.4. An m-best 2-D

assignment problem is adequate for this version of the

problem.

3. SOLUTION APPROACH
In order to solve this NP-hard problem, we propose

a two-phase solution approach. In phase I, we utilize

Murty’s search space decomposition to partition the

original problem space into a series of subproblems.

Each subproblem is then relaxed and solved by a 3-D

assignment algorithm in phase II.

3.1. 3-D Assignment Relaxations
We adopt the solution approach of the 3-D assign-

ment problem in [18] by relaxing one of the three con-

straints and solving the 3-D assignment problem as a

series of 2-D subproblems. Since sets i and j have the

unity constraint, a similar solution approach can be ap-

plied to the 3-D assignment problem here by relaxing

either of the two sets of constraints. We then denote Re-

laxation Method I and Relaxation Method II as the solu-

tion approaches for the 3-D assignment problem when

constraints (4) or (2)/(3) are relaxed, respectively.

3.1.1. Relaxation Method I: Relaxation Method I is

developed by relaxing constraint (4) via a set of La-

grange multipliers f¹k : k = 1,2, : : : ,Rg. The result is the
Lagrangian function

L(x,¹) = max
xijk2f0,1g

0@ NX
i=1

NX
j=1

RX
k=1

(wijk ¡¹k)xijk

1A
+mk

RX
k=1

¹k (5)

Equation (5) is then a relaxed 2-D assignment problem

of the form,

max
yij2f0,1g

NX
i=1

NX
j=1

max
k
(wijk ¡¹k)yij (6)

s:t:

NX
i=1

yij = 1, j = 1, : : : ,N (7)

NX
j=1

yij = 1, i= 1, : : : ,N (8)
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where,

yij =

RX
k=1

xijk; i,j = 1, : : : ,N: (9)

The upper bound q of the relaxed 2-D assignment prob-

lem is easily solvable via a 2-D assignment algorithm.

To obtain a feasible solution, we reimpose constraint

(4) by reconstructing the reward tensor and viewing the

asymmetric bipartite graph as a transportation problem

based on the solution of the relaxed 2-D assignment

problem. For each hi¤,j¤i of the relaxed 2-D assignment
problem at each iteration, the reward matrix is dynam-

ically updated for each layer k. Given a new reward

matrix w̃hi,jik, the transportation variation of the problem
is as follows.

max
zjk2f0,1g

NX
j=1

RX
k=1

w̃hi,jikzjk (10)

s:t:

NX
j=1

zjk = 1, k = 1, : : : ,R (11)

RX
k=1

zjk ·mk, j = 1, : : : ,N (12)

Through this sequence, we obtain a feasible solution and

a lower bound f. The upper and lower bounds serve as

measures of the solution quality. The distance between

these bounds is referred to as the approximate duality

gap (because it is overestimated by (f¡f¤), where f¤
is the optimal solution). For discrete 3-D assignment

problems, the duality gap may be nonzero. The relative

approximate duality gap is given by

gap=
jq¡fj
f

, (13)

where q and f are the upper and and lower bounds,

respectively, obtained by solving the series of 2-D

subproblems. The 3-D assignment algorithm termi-

nates for a sufficiently small gap, which implies that

a near-optimal solution has been obtained. In scenar-

ios where the duality gap is large, the 3-D assign-

ment algorithm updates its Lagrange multipliers via the

method proposed in Pattipati [18]. Let us denote g as

an R-dimensional subgradient vector with components

given by

gk = R¡
NX
i=1

NX
j=1

Xijk k = 1, : : : ,R, (14)

where X is the solution tensor related to the optimal

value of the relaxed 2-D assignment variables fy¤ijg via

Xijk =

½
y¤ij , if k = argmin®(wij®¡¹®)
0, otherwise

We then update the Lagrange multipliers by

¹k =max

Ã
¹k ¡

(p¡f)
kgk22

gk,0

!
: (15)

After updating the Lagrange multipliers, the algorithm

iterates back to the relaxation step. The process con-

tinues until either the maximum number of iterations

is reached or the duality gap is sufficiently small. The

flow diagram of the 3-D assignment algorithm when the

constraint in (4) is relaxed is shown in Fig. 3.

3.1.2. Relaxation Method II: Note that a relaxed

problem is also obtainable by interchanging the se-

quence of 2-D subproblems. In other words, we may

apply the Lagrangian relaxation on constraints (2) or

(3). When constraint (3) is relaxed via Lagrange multi-

pliers ¹j , the Lagrangian function is:

L(x,¹) = max
xijk2f0,1g

0@ NX
i=1

NX
j=1

RX
k=1

(wijk ¡¹j)xijk

1A
+

NX
j=1

¹j (16)

The 3-D assignment problem is then relaxed into a 2-D

transportation problem of the form

max
zik2f0,1g

NX
i=1

RX
k=1

max
j
(wijk ¡¹j)zik (17)

s:t:

RX
k=1

zik = 1, i= 1, : : : ,N (18)

NX
i=1

zik ·mk, k = 1, : : : ,R, (19)

where

zik =

NX
j=1

xijk; i= 1, : : : ,N; k = 1, : : : ,R (20)

The upper bound q can be obtained by solving the re-

laxed 2-D transportation problem. The 2-D assignment

problem is obtained by reimposing constraint (3) and

reconstructing the reward tensor based on the solution

of the relaxed 2-D transportation problem. The assign-

ment variation of the problem is as follows.

max
yij2f0,1g

NX
i=1

NX
j=1

w̃hi,kijyij (21)

s:t:

NX
i=1

yij = 1, j = 1, : : : ,N (22)

NX
j=1

yij = 1, i= 1, : : : ,N (23)

A feasible solution and a lower bound f can be obtained

through this sequence. The duality gap is then computed

and compared for algorithm termination. The subgradi-

ent is updated in a similar fashion to the first relaxation
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Fig. 3. Flow diagram of the 3-D assignment algorithm when

relaxing constraint (4).

method, except that it is with respect to dimension j and

uses binary decision variables fzikg.
3.1.3. Algorithm selection for 2-D subproblems: To

optimize the 3-D assignment algorithm, state-of-the-art

2-D assignment and transportation algorithms were se-

lected for comparison purposes. The JVC and auction

algorithms were selected for comparison when solving

the 2-D assignment problem. We solve the 2-D trans-

portation problem via three approaches. The first algo-

rithm utilizes the Transauction algorithm developed by

Bertsekas and Castañón [43], which solves the trans-

portation problem by mapping it to an assignment prob-

lem and obtains a solution via a modified auction algo-

rithm. In the second algorithm, we exploit the findings

in [6], [44], [45], where the transportation problem was

found to be equivalent to the minimum cost network

flow problem, and solve the 2-D transportation prob-

lem via a (strongly polynomial) simplex-based method.

We refer to this simply as simplex-based transportation.

The third algorithm is the RELAX-IV algorithm devel-

oped by Bersekas and Tseng [46] and further detailed in

[47]. It is one of the most efficient algorithms to solve

problems of the network flow type.

3.1.4. Solution approach for a variant of the nuclear

FA loading pattern optimization problems: for this

problem, constraint (4) is such that mk =N. In this case,

the summations over sets i and j are always less than

or equal to N for each k, and, consequently, constraint

(4) is always satisfied. This implies that the constraints

in (4) are inactive and the Lagrange multipliers ¹k = 0

for k = 1,2, : : : ,R. Consequently, the 3-D assignment

problem takes the form,

max
yij2f0,1g

NX
i=1

NX
j=1

max
k
(wijk)yij (24)

s:t:

NX
i=1

yij = 1, j = 1, : : : ,N (25)

NX
j=1

yij = 1, i= 1, : : : ,N (26)

This problem can be easily solved by an m-best 2-D

assignment algorithm. Furthermore, the approach is the

same for the general case when mk ¸N.

3.2. m-best 3-D Assignment

Let P0 be the original problem in equations (1)—

(4) and let A be the corresponding assignment solution

space. Further, let A¤0 be the best feasible assignment
found by the 3-D assignment algorithm detailed in Sec-

tion 3.1. In general, to find the (n+1)th best solution,

we have to partition the (n+1)th problem space, Pn,
into N subproblems, denoted by Pnr, 1· r ·N. Then,
the complete solution space corresponding to problem

space Pn is

An =

N[
r=1

Anr = A¡
n¡1[
i=0

A¤i for n= 1,2, : : : ,m (27)

Anr \Ans =Ø for r,s= 1,2, : : : ,N r 6= s, (28)
where Anr denotes a set of tuples in which each i and

j appear exactly once, but k may be repeated. Equation

(27) is a formalization of the constraint that the solution

space An for the (n+1)th best solution will not contain

any of the best solutions obtained for the previous n

problems. Here, a complete feasible solution is assumed

to be a set of tuples. Hence, some solutions may have a

similarity, however, as seen in (28), the set of solution

tuples as a whole are unique, differing by at least one

element for each of the previous n problems. Let an

assignment Anr consist of multiple tuples (in this paper,

triples), where we index the triples within by t. Let `nrt
be the individual reward of the tth triple, sub-indexed

as hinrt ,jnrt ,knrti, in the solution space Anr. We can then
augment the triple into a 4-tuple and write a feasible

assignment in Anr as

Snr = fhinrt ,jnrt ,knrt ,`nrtig for t= 1, : : : ,N: (29)

The primal value of the corresponding assignment Snr
is denoted by fnr, which can be obtained by summing

`nrt over t= 1,2, : : : ,N.

fnr =

NX
t=1

`nrt (30)
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The best assignment A¤nr with the corresponding primal
value f¤nr in the solution space Anr is found via the 3-
D assignment algorithm described earlier and pertains

specifically to partition r. The best assignment A¤n is
found by iterating over all active partitions and finding

the argument r¤ which has the maximum primal value.

A¤n = A
¤
nr¤ (31)

r¤ = argmax
r
f¤nr (32)

Given the original problem space and its optimal

assignment, denoted by P0 and A¤0, respectively, we
partition P0 into N problem subspaces P11 to P1N
in order to find the next best solution. To generate

subproblem P11, we remove the first of N tuples in

the assignment A¤0. We then use the 3-D assignment

algorithm to obtain the best possible solution A¤11 to
problem P11. To partition the subspace P1s, 2· s·N,
we remove the sth tuple in A¤0 as a feasible assignment
in P1s, while fixing the first (s¡1) triples to those
in the original assignment A¤0. Thus, as the solution
and problem spaces are reduced at every search space

decomposition, the complexity of the problem decreases

substantially, since the first (s¡1) triples are reused
from the previous assignments. We then only need to

find assignments for the remaining N ¡ s assignments,
such that the sth triple from the original assignment A¤0
is not contained in the solution, while satisfying the

constraints. The enforcement of tuples to be either in or

be removed from the problem spaces P11 to P1N during
partitioning ensures the disjointness of the individual

subproblems, as in equation (28).

Each of the best solutions A¤11 to A
¤
1N is saved into

a heap and accordingly sorted based on the respective

primal values, f¤11 to f¤1N . The best solution within

the heap is then removed and saved as the second

best solution. The problem corresponding to the second

best solution is then partitioned into the subproblems

P21 to P2N . The best assignment from the top of the

heap is then marked as the third best assignment with

respect to the original problem P0. We continue to apply
this process until the mth best solution is found or,

alternatively, the heap becomes empty.

Murty’s search space decomposition is an ingenious

way of decomposing the search space, and has a num-

ber of applications in combinatorial optimization [34],

[48]. Optimizations of the decomposition technique to

improve the computational efficiency are discussed in

Section 4.

REMARK For small size problems and large m, if we

apply the Lagrangian relaxation on constraint (4), the

transportation problem reconstructed from the best (i,

j) pair of the 2-D assignment problem may contain too

many removed arcs and, thus, no feasible solution may

exist. In this case, by interchanging the sequence of re-

laxed problems solved (i.e., solve the 2-D transportation

problem first, as opposed to the assignment problem

(normally solved first)), we can obtain a feasible solu-

tion to the 3-D assignment problem. This situation arises

in small size problems (e.g., of dimension 3£ 3£ 2).
However, since the tensor dimensions used in this pa-

per are large, the solution space is vast and this anomaly

did not arise.

4. OPTIMIZED IMPLEMENTATION OF MURTY’S
SEARCH SPACE DECOMPOSITION

We extend the 2-D optimization modifications in

[36] to the 3-D assignment problems. These include: 1)

inheriting the dual variables and partial solutions from

the subproblems being decomposed; 2) sorting the sub-

problems by an upper bound on reward before solving;

and 3) partitioning the subproblems in an optimized or-

der. All three modifications exploit the primal-dual as-

pects of the JVC algorithm. The following sections ex-

plain each modification in detail for the case when the

constraints in (4) are relaxed in the m-best 3-D assign-

ment algorithm. Similar optimization techniques can be

applied for the case when the constraints in (3) are re-

laxed.

4.1. Inheriting dual variables and partial solutions
during partitioning

Solving the 3-D assignment problem via the JVC al-

gorithm provides dual variables u and v, which can be

inherited by the partitioned subproblem using Murty’s

search space decomposition. The solution tensor Xn, for

the problem space Pn and the reward tensor W, con-
tains N solution triples hi¤,j¤,k¤i. During each step of
Murty’s search space decomposition, a new subproblem

Pnr is generated, associated with a new reward tensor

W0. Removing the triple hi¤,j¤,k¤i from the subproblem
space Pnr is equivalent to setting whi¤,j¤,k¤i =¡1. This
implies we may skip the initialization step for the JVC

algorithm and go directly to the augmentation step with

only one arc left to assign in the 2-D assignment prob-

lem, following the procedure outlined in Algorithm 1. In

this case, the initialization step is only required for the

first feasible solution to the 3-D assignment problem.

ALGORITHM 1 Upper bound reward calculation when
inheriting dual variables

1: for each hi¤,j¤,k¤i 2 A do
2: whi¤,j¤,k¤i =¡1
3: u0 = u, v0 = v,
4: X 0 Ã X ¡Xhi¤,j¤,k¤i
5: end for

Note that we can not inherit the Lagrange multipliers

¹k from the previous problem Pn in the process of
partitioning the subproblems. The Lagrange multipliers

from the previous problem Pn may be too large for
the subproblems Pnr, r = 1,2, : : : ,N. This may cause the
duality gap to remain above the threshold value required
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to terminate. Thus, the algorithm will continue to run

until the maximum iteration limit is reached.

4.2. Sorting subproblems via an upper bound

The upper bound reward of individual subproblems

is easily obtainable and can be used to avoid solving

subproblems that are unlikely to produce the next best

solution. For an m-best assignment problem, the best

solution from problem Pn is always better than the best
solution obtained from the subproblems obtained by

partitioning Pnr, r = 1,2, : : : ,N. Therefore, for an m-best
2-D assignment problem, the objective function of the

solution to Pn can be used as an initial upper bound
on the objective function value of the best solution to

its corresponding subproblems. Since 3-D assignment

problems may have a nonzero duality gap, the com-

putation of the upper bound can be determined using

either the dual value (denoted by Á) or the primal value

(denoted by !) as initial upper bounds to the partitioned

subproblems.

When a subproblem Pnr is created by removing a
triple hi¤,j¤,k¤i from a copy of P, we can compute
the upper bound objective function value by finding

the best slack (i.e., next possible best assignment) of

all the alternative assignments for a row i. The upper

bound objective function value will be the sum of the

initial upper bound and the row slack, denoted by Br.

The calculation of the upper bound is shown in detail

in Algorithm 2.

ALGORITHM 2 Upper bound reward calculation when
sorting subproblems

1: for each row i do

2: whi¤,j¤,k¤i =¡1
3: Br =maxj,kfwijk ¡ u(i¤)¡ v(j)¡¹(k)g
4: f 0 = f+Br
5: end for

A similar procedure can be followed for column j

to find the column slack, Bc. By combining both the

row and the column slack, a tighter upper bound can be

obtained. The heap of subproblems can be modified to

sort its elements (in descending order) based on each

element’s respective upper bound reward. This implies

that the problems located at the top of the heap are most

likely to have the best solutions.

In this optimization method, the initial problem is

partitioned into a series of subproblems when it is

solved by the 3-D assignment algorithm. Both the orig-

inal problem and its corresponding subproblems are

saved into a heap. During each iteration of Murty’s

search space decomposition, if the top problem Pn re-
moved from the heap has a feasible solution, then the

solution will be saved as the mth best assignment. If Pn
has not yet been solved (i.e., it has a partial solution),

then we find its best solution A¤n using the 3-D assign-

ment algorithm and add it back into the heap. A new

partitioning process is then invoked on Pn and its solu-
tion A¤n. The process is repeated until the heap is empty
or a total of m solutions are obtained. This method al-

lows us to eliminate subproblems by focusing on their

corresponding upper bounds, thus reducing the number

of problems needed to be solved by the 3-D assignment

algorithm.

4.3. Partition in an optimized order

The third optimization method proposed here is to

carefully select the order in which the partitioning is
performed. This modification maximizes the probability

that the subsequent smaller subproblems (with a greater

number of fixed arcs) have better solutions. For problem

Pn with solution A¤n that contains N triples, we first

compute each upper bound reward that would result

from excluding each individual arc. These upper bounds

are computed via the method explained in Section 4.2.

We then select the triple that corresponds to the lowest

upper bound reward computed and exclude it from the

current subproblem, while fixing the corresponding arc

in the next subproblem.

In this modification, the heuristic tends to ensure that

the largest problem (maximum number of unassigned

arcs) has the lowest upper bound. In other words, the

largest problem has the highest probability of containing

the worst solution and to be pushed to the bottom of

the heap (and in turn, will most likely remain unsolved

upon algorithm termination). The next worst problem

will tend to be the second largest subproblem, and so on.

By doing this, we increase the chance that the smallest

problem (that which has the least amount of unassigned

arcs) contains the best solution.

5. PSEUDOCODE

The following variants were used and/or combined

for different optimization methods:

(A) Inheritance of the dual variables and partial solu-

tions during partitioning

(B) Sorting subproblems by an upper bound reward

before solving, where the upper bound is calculated via:

i !+Br
ii !+Br+Bc
iii Á+Br
iv Á+Br+Bc

(C) Partitioning the problem in an optimized order

These variants are denoted as listed for the remain-

der of the paper and may be combined, e.g., when com-

bining variant A with variant B(ii) and variant C, the al-

gorithm variant will be categorized as A+B(i)+C. The

pseudocode for Murty’s modified search space decom-

position, optimized via variants A, B(ii), and C, is de-

tailed in Algorithm 3. These variants assume JVC and

Transauction to be applied in the m-best 3-D assignment

algorithm.
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ALGORITHM 3 m-best 3D assignment algorithm

1: HÃfg Initialize binary heap

2: UÃ [ ] Initialize solution list

3: hA¤0,P0,f¤0 i=3DASSIGN(wijk)
4: PARTITION(H,P0,A¤0) Invoke PARTITION method

5: HÃ hA¤0,P0,f¤0 i Add to the heap

6: counter=0

7: while counter ·m¡ 1 and H 6=Ø do
8: hA¤n,Pn,f¤n i=H:pop
9: if A¤n is feasible then
10: counter=counter+1

11: UÃ A¤n,f
¤
n

12: else

13: hA¤n,Pn,f¤n i=3DASSIGN(wijk,hA¤n,Pn,f¤n i)
14: if 9 solution then
15: PARTITION(H,hA¤n,Pn,f¤n i)
16: HÃ hA¤n,Pn,f¤n i
17: end if

18: end if

19: end while

1: function PARTITION(H,hA¤n,Pn,f¤n i,wijk)
2: for each hi¤,j¤,k¤i 2 A¤n do
3: wi¤,j¤,k¤ =¡1
4: end for

5: for each hi¤,j¤,k¤i 2 A¤n do
6: for each row i¤ 2 A¤ do
7: Br =maxj,kfwijk ¡ u(i¤)¡ v(j)¡¹(k)g
8: Bc =maxi,kfwijk ¡ u(i)¡ v(j¤)¡¹(k)g
9: Bi¤ = Br+Bc
10: end for

11: (B, i¤) = min(Bi¤ 6=¡1)
12: hi¤,j¤,k¤i= A¤n(i¤)
13: f¤nr = f

¤
n +B

14: A¤nrÃ A¤n¡hi¤,j¤,k¤i
15: PnrÃPn¡hi¤,j¤,k¤i
16: HÃ hA¤nr,Pnr,f¤nri
17: A¤n(r+1):FixListÃ hi¤,j¤,k¤i
18: for each j,k do

19: w[i¤,j,k] =¡1
20: end for

21: for each row 6= i¤,k do
22: w[row, j¤,k] =¡1
23: end for

24: end for

25: end function

1: function 3DASSIGN(wijk,hA¤n,Pn,f¤n i)
2: f¤ =¡1; lb=¡1; q¤ =1; maxIter= 20
3: MAX= true,n3 = R

4: FixList,v,©Ã A¤n
5: for curIter= 1 to maxIter do

6: C =maxk(wijk ¡¹k)
7: for hi¤,j¤,k¤i 2 A¤n:FixList do
8: C[i¤,j¤] = w[i¤,j¤,k¤]
9: end for

10: if ©==Ø then

11: (©,u,v,Á) =JVC(C, MAX)

12: else

13: (©,u,v,Á) =Augment(C,©,v, MAX)

14: end if

15: q¤ =min(q,Á+ n3 ¤
P
k(¹k))

16: for each row do

17: T[row] = w[row, ©[row], k] 8k
18: end for

19: (−,!) =Transportation(T, MAX)

20: if ! ¸ lb then
21: lb= !

22: f¤ =lb
23: end if

24: gap=
jq¤ ¡f¤j
jf¤j

25: if gap · 0:05 then
26: return

27: end if

28: Update Lagrangian multiplier

29: end for

30: end function

6. RESULTS

The proposed m-best 3-D assignment algorithm was

implemented in the MATLAB 2016b and runs on an

Intel Core i7-4712HQ CPU processor @2.30 GHz with

16 GB RAM. In all experiments, the top 104 ranked

solutions were computed.

6.1. Relaxation Method I vs. Relaxation Method II

We first performed 10 Monte Carlo runs to com-

pare the simulation runtimes of the 3-D assignment

algorithm when relaxing either constraint (3) or con-

straint (4). The reward tensor elements were uniformly

distributed in the interval [0,1] and of dimension 60£
60£ 8. The JVC and Transauction algorithms were im-
plemented to solve the 2-D assignment and the trans-

portation problems, respectively. As shown in Table II,

speedup of as much as 2.28 and an average speedup of

1.63 were observed when comparing the two relaxation

methods. In general, solving a 2-D assignment problem

is significantly faster than solving a transportation prob-

lem. The transportation problem obtained from relaxing

constraint (3) is complex, and thus takes a longer time

to solve compared to the transportation problem recon-

structed from the best 2-D assignment solution when

constraint (4) is relaxed. Relaxing constraint (4) also

consistently resulted in a smaller duality gap compared

to when constraint (3) was relaxed due to the fact that

jkj= R < N = jjj. This implies that when constraint (4)
is relaxed, a smaller number of elements in the 3-D

reward tensor are removed when constructing the 2-D

subproblem, i.e., since a smaller number of elements

are removed, there is a higher likelihood that a better
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TABLE II

10 Monte Carlo Runs for different Lagrangian Relaxation methods

Relaxation on constraint (3) Relaxation on constraint (4)

Objective Objective

Function Runtime Function Runtime

MC Gap Values (CPU s) Gap Values (CPU s) Speedup

1 0.015 59.021 0.065 0.003 59.627 0.040 1.628

2 0.010 59.281 0.064 0.004 59.599 0.045 1.422

3 0.013 59.100 0.054 0.003 59.618 0.038 1.413

4 0.011 59.219 0.053 0.002 59.664 0.033 1.613

5 0.011 59.209 0.053 0.001 59.764 0.031 1.692

6 0.010 59.249 0.053 0.002 59.699 0.032 1.664

7 0.009 59.335 0.070 0.002 59.719 0.031 2.279

8 0.013 59.124 0.057 0.005 59.513 0.034 1.700

9 0.012 59.184 0.053 0.008 59.347 0.034 1.563

10 0.010 59.290 0.049 0.003 59.632 0.036 1.344

Fig. 4. Example objective function values for a tensor of dimension

30£ 30£ 8 with values uniformly distributed on the interval [0,1].

solution remains. For these reasons, the remaining ex-

periments used the m-best 3-D assignment algorithm

with the relaxation of constraint (4) only.

6.2. JVC vs. Auction Algorithm

To measure and quantify which algorithms best

solve the 2-D assignment and transportation problems

within the 3-D assignment problem, we compared the

runtimes of the 3-D assignment algorithm when us-

ing the JVC or the auction algorithms for the 2-D as-

signment problem, and Transauction or simplex-based

transportation algorithms for the transportation prob-

lem. A tensor was generated with elements sampled

from a uniform distribution in the interval [0,1] for ten-

sor sizes ranging from 30£30£ 8 to 60£ 60£ 8 with
increments of N = 5. Any combination of the 2-D as-

signment algorithms with the transportation algorithms

resulted in the same assignments and objective function

values. An example of the objective function values of

a sample tensor of dimension 30£ 30£ 8 is shown in

Fig. 5. The CPU runtime for the JVC and auction algorithms were

compared as a function of varying tensor dimensions. The JVC

algorithm consistently outperformed the auction algorithm.

Fig. 4 when the algorithm was run to obtain the top

104 solutions. As shown in Fig. 4, even when 104 as-

signments were obtained, the maximum and minimum

objective function values obtained from the assignment

solutions had minimal variation and the difference was

relatively small for all tensor dimensions tested; how-

ever, as shown in Fig. 5, the m-best 3-D assignment

algorithm, which invoked the JVC algorithm was, on

average, 3 times faster when compared to the case when

the auction algorithm was used. The RELAX-IV algo-

rithm was used to solve the transportation problem in

this experiment.

6.3. Transportation vs. Transauction vs. RELAX-IV
Algorithm

Similar tests were performed to evaluate the best

algorithm to solve the transportation problem. Assum-

ing that the JVC algorithm would be invoked to solve

the 2-D assignment portion of the problem, Fig. 6
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Fig. 6. The CPU runtime for the Transauction and simplex-based

transportation algorithms were compared as a function of differing

tensor dimensions. The Transauction algorithm remained relatively

unaffected by the increase in the reward tensor size, while the

transportation algorithm took orders of magnitude more time to find

the same assignments.

demonstrates that the simplex-based transportation al-

gorithm was significantly slower compared to both the

Transauction and RELAX-IV algorithms. In general,

the RELAX-IV algorithm had the fastest runtime speed.

The maximum observed speedup of RELAX-IV in com-

parison to the simplex-based transportation and the

Transauction algorithms was 21.4 and 2.4, respectively.

Overall, the RELAX-IV algorithm dominated both the

simplex-based transportation and the Transauction ap-

proaches to the transportation problem, on average solv-

ing it nearly 17 and 1.6 times faster, respectively. Based

on these findings, the JVC and RELAX-IV algorithms

were selected to solve the 2-D assignment and trans-

portation problems within the m-best 3-D assignment

problem, respectively, for the remaining computational

experiments. We optimized the m-best 3-D assignment

algorithm via the methods detailed in Section 4.

6.4. Solution quality evaluation for decomposition
methods

A sample test tensor of dimension 30£ 30£ 8 with
elements uniformly distributed in the interval [0,1] was

used to measure the solution quality and to compare

the simulation runtimes of the m-best 3-D assignment

algorithm when exploiting different combinations of

the search space decomposition optimization methods.

As shown in Fig. 7, the optimization combinations

of A+B(iii) and A+B(iv) resulted in approximately a

10% reduction in the solution quality compared to the

original Murty’s proposed search space decomposition

method. This is because the dual value in our problem

setup did not serve as an accurate estimate of the initial

upper bound. All other combinations of optimization

Fig. 7. Objective function values for tensor size 30£ 30£ 8 with
various optimization combinations.

methods were comparable to the Murty’s search space

decomposition. Therefore, optimization method combi-

nations A+B(iii) and A+B(iv) were removed from the

remaining tests.

6.5. Runtime comparison for decomposition methods

Similar tests were performed on all the remaining

combinations of optimization methods for tensor sizes

varying from 30£30£ 8 to 60£ 60£ 8 with an incre-
ment of N = 5. Table III shows the simulation run-

time in CPU seconds for 104 solutions and for the

various search space optimization combinations, given

a sample test tensor for each incremented dimension.

Methods A, A+B(i) and A+B(ii) on average ran 20%,

52% and 32% slower, respectively, within the m-best

3-D assignment algorithm, as compared to the origi-

nal Murty’s search space decomposition. As shown in

Fig. 8, methods A+B(i)+C and A+B(ii)+C were able

to obtain speedups with very minimum variation in the

objective function values originally found by Murty’s

search space decomposition for all tensor sizes except

that of dimension 60£ 60£ 8. The reason for such a
slow down is explained later in Section 6.6. Further-

more, combinations A+B(i)+C and A+B(ii)+C were

able to obtain objective function values slightly better

(higher) than the proposed method by Murty (on the or-

der of 10¡6). This phenomenon is due to the Lagrangian
relaxation algorithm’s approximation of the 3-D assign-

ment problem. The search space decomposition method

is suboptimal when applied to the 3-D assignment prob-

lem (due to the suboptimal nature of the Lagrangian

relaxation algorithm), and so from our analysis we ob-

served that, through the particular optimization method

combinations of A+B(i)+C and A+B(ii)+C, better fea-

sible solutions were found. These methods were also

significantly faster, offering an average of 2.1 and 2.4
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TABLE III

Simulation runtime in CPU seconds for various combinations of decomposition methods

Decomposition Methods

Tensor Size Original Murty A A+B(i) A+B(ii) A+B(i)+C A+B(ii)+C

30£ 30£ 8 139.17 157.32 193.45 124.30 51.69 44.96

35£ 35£ 8 189.03 230.78 400.78 284.66 74.95 62.67

40£ 40£ 8 235.56 293.40 429.86 391.12 76.85 73.50

45£ 45£ 8 178.70 226.16 398.22 337.41 102.21 87.33

50£ 50£ 8 288.11 370.07 803.69 491.81 99.15 79.73

55£ 55£ 8 244.75 303.14 489.72 477.44 207.71 204.60

60£ 60£ 8 152.72 209.78 463.33 427.37 309.65 232.06

Fig. 8. Percentage error compared against the speedup for the

combinations of optimization methods tested for all tensor sizes,

varied from 30£ 30£ 8 to 60£ 60£ 8 with an increment of N = 5.

speedup, respectively, as illustrated in Fig. 8. To investi-

gate these combinations more thoroughly, Monte Carlo

runs were performed on these two combinations only.

6.6. Scalability with N

To measure both the overall scalability and consis-

tency, 10 Monte Carlo runs were performed for each

tensor size varying from 30£ 30£ 8 to 60£ 60£ 8
in increments of N = 10 and using the two specific

optimization method combinations of A+B(i)+C and

A+B(ii)+C. Each test tensor was generated with ele-

ments uniformly distributed in the interval [0,1] and 104

solutions were obtained for each tensor. In each run, the

objective function values and the simulation runtime,

were monitored and compared against both combina-

tions, as well as with respect to Murty’s decomposition

method. Fig. 9 shows the percentage error of the two op-

timization methods as compared to the original Murty’s

search space decomposition. The average percentage

error increased with each increment in the tensor di-

mensions. Overall, the optimization method combina-

tion of A+B(ii)+C had a lower median compared to the

combination of A+B(i)+C; however, the combination

Fig. 9. Box plot for the average percentage error (as compared to

the original Murty search space decomposition method) for the

optimization method combinations A+B(i)+C and A+B(ii)+C.

of variants A+B(i)+C had less variation with respect

to the average percentage error. Table IV details the

minimum, maximum, and average runtimes observed

in CPU seconds for the Monte Carlo runs. The method

A+B(ii)+C had the fastest runtime, as shown in Fig.

10, with an observed maximum average of 3.1 speedup

over Murty’s search space decomposition method, while

having 2.14 speedup on average, when averaged over all
Monte Carlo runs. The tensor of dimension 60£ 60£ 8
resulted in a slow down of 32% and 25%, respectively,

with optimizations A+B(i)+C and A+B(ii)+C.

In the fully optimized m-best 3-D assignment algo-

rithm, there exists a tradeoff (when N ¼ 55) in compu-
tation time between obtaining a feasible solution and

the m-best optimization methods (e.g., partitioning or

sorting), as seen in Fig. 10. The increase in dimension

N does not necessarily mean an increase in the com-

putation time of the 3-D assignment algorithm, since

both optimization methods A+B(i)+C and A+B(ii)+C

reduce the frequency of calling the 3-D assignment al-

gorithm; however, partitioning and/or sorting the larger

subproblems may become more difficult. A more favor-

able speedup may be observed if the algorithms were to

be implemented in a fast object oriented-programming
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TABLE IV

Minimum, maximum, and average runtimes in CPU seconds to

obtain 104 solutions

30£ 30£ 8 Original Murty A+B(i)+C A+B(ii)+C

Min 111.84 53.72 45.01

Mean 146.03 63.50 49.64

Max 195.41 76.68 53.55

40£ 40£ 8 Original Murty A+B(i)+C A+B(ii)+C

Min 147.44 78.07 69.83

Mean 245.27 103.74 79.19

Max 284.48 128.17 92.61

50£ 50£ 8 Original Murty A+B(i)+C A+B(ii)+C

Min 151.15 98.25 80.24

Mean 247.28 155.13 139.05

Max 320.79 271.20 243.48

60£ 60£ 8 Original Murty A+B(i)+C A+B(ii)+C

Min 142.19 226.88 203.46

Mean 214.01 314.57 284.93

Max 294.43 586.10 542.90

Fig. 10. The average CPU runtimes for 10 Monte Carlo runs for

the two optimization method combinations tested.

language. Overall, for a 30£30£ 8 tensor, the m-best
3-D assignment algorithm utilizing optimization method

A+B(ii)+C took an average of 4.9 milliseonds to obtain

a single solution to the 3-D assignment problem.

6.7. Scalability with R

As mentioned in Sections 2.1 and 3.1.4, the value

of mk should be such that
PR

k=1mk ¸N. For problems
where mk = R ¸N, the 3-D assignment problem re-

duces to a 2-D assignment problem. We analyze the

scalability of the algorithms with respect to increment-

ing R by performing 10 Monte Carlo runs for each in-

crement and requesting 104 solutions with tensor size

N = 30 and R = 6, 10, 15, 20, 25, 29 (R = 30 is omit-

ted because, as mentioned earlier, this devolves into

TABLE V

Minimum, maximum, and average runtimes in CPU seconds to

obtain 104 solutions

30£ 30£ 6 Original Murty A+B(i)+C A+B(ii)+C

Min 83.33 78.24 62.51

Mean 103.77 93.48 79.00

Max 119.63 108.27 93.91

30£ 30£ 10 Original Murty A+B(i)+C A+B(ii)+C

Min 161.03 56.47 42.03

Mean 232.45 65.78 51.33

Max 276.15 73.7 56.32

30£ 30£ 15 Original Murty A+B(i)+C A+B(ii)+C

Min 477.91 87.00 68.20

Mean 640.89 102.21 75.71

Max 886.40 113.97 84.40

30£ 30£ 20 Original Murty A+B(i)+C A+B(ii)+C

Min 747.44 133.35 108.31

Mean 1077.13 150.95 115.24

Max 1587.85 172.55 125.67

30£ 30£ 25 Original Murty A+B(i)+C A+B(ii)+C

Min 1519.77 186.74 162.13

Mean 1902.02 218.85 176.63

Max 2507.46 230.53 187.83

30£ 30£ 29 Original Murty A+B(i)+C A+B(ii)+C

Min 1704.44 265.57 235.14

Mean 2572.39 298.28 249.87

Max 3343.91 330.11 268.99

a 2-D assignment problem). Fig. 11 shows the rela-

tive percentage error of the two optimization methods,

as compared to the original Murty’s search space de-

composition. The average percentage error is zero for

R ¸ 10, since the problem constraint (4) is less likely to
be violated, and therefore, the duality gap is zero. The

minimum, average and maximum runtimes are listed in

Table V. As shown in Fig. 12, the speed of the original

m-best 3-D assignment algorithm increases significantly

with R. A maximum speedup of 10.8 and an average

speedup of 7.5 were observed when comparing the op-

timization method A+B(ii)+C with the original m-best

3-D assignment algorithm. The total number of arcs in-

put to the RELAX-IV algorithm is bounded above by

R3; hence increasing R has an exponential impact on

the complexity of the problem solved by the algorithm

and, in turn, the CPU runtime of the original m-best 3-

D assignment. On the other hand, the optimized m-best

3-D assignment is able to reduce the need for the 3-

D assignment routine invocation and, therefore, is able

to obtain 104 solutions in a relatively short amount of

time (< 5 minutes). The tensor of dimension 30£ 30£ 6
had an increase in average CPU runtime compared to a

tensor of dimension 30£30£ 10 when considering the
optimized methods A+B(i)+C and A+B(ii)+C. This is

due to nonzero duality gap which impacts the partition-

ing procedure and subsequently requires more subprob-
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Fig. 11. Box plot for the average percentage error (as compared to

the original Murty search space decomposition method) for the

optimization method combinations A+B(i)+C and A+B(ii)+C,

where N = 30.

Fig. 12. The average CPU runtimes for 10 Monte Carlo runs with

each increment of R for the two optimization method combinations

tested.

lems to be solved before obtaining all m-best solutions.

Intuitively, due to the nature of the problem, a tensor

of dimension 30£ 30£ 6 is more likely to violate con-
straint (4).

7. CONCLUSION

In this paper, we formulated a 3-D assignment prob-

lem and developed an efficient method to solve the

problem, including 1) a rigorous mathematical formu-

lation that is applicable to multiple domains; 2) a novel

two-phase solution approach to obtain a large number

of ranked solutions. The first phase of our solution ap-

proach involves partitioning the original problem space

into a series of subproblems via Murty’s m-best decom-

position procedure, while in the second phase, we solve

each of these subproblems using a combination of re-

laxed 2-D assignments through reformulation into either

a transportation problem. The solution converges with

a sufficiently small duality gap.

We compared the simulation runtime of the m-best

3-D assignment algorithm when relaxing either the as-

signment constraints or the transportation constraints.

We also compared the performance of different com-

binations of 2-D assignment algorithms with a given

transportation algorithm and found the combination of

JVC and RELAX-IV algorithms, while relaxing the

transportation constraints, to be the best performing

combination when one is interested in solving the m-

best 3-D assignment problem for a large number of so-

lutions (in this paper, we were interested in obtaining

104 ranked solutions).

We also evaluated different decomposition methods

and compared their scalability and consistency with

Murty’s search space decomposition. From our analy-

sis, it can be seen that, when solving for a large number

of solutions within a 3-D assignment problem, utiliz-

ing dual variable inheritance, tight upper bounds on the

feasible reward, and partitioning in an optimized order

offer the best performance, solving for all m-best solu-

tions in a fraction of the time of the original Murty’s

decomposition method, with little to no sacrifice in so-

lution quality. These optimizations offered a maximum

speedup of 10.8 over Murty’s search space decomposi-

tion. On average, it took 49.64 s to obtain 104 solutions

for a tensor of dimension 30£ 30£ 8 required for the
nuclear fuel loading problem, which was well within

the 10 minute time limit placed on the algorithm.
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General Multivariate
Polynomial Target Localization
and Initial Estimation

DAVID FREDERIC CROUSE

Target localization and track initiation for any combination of

measurement components can be performed by solving systems

of simultaneous multivariate polynomials, utilizing cubature inte-

gration for covariance estimates. The solutions are approximate

minimum mean squared error (MMSE) estimates. Measurement

components can be monostatic/bistatic range as well as direction

cosines, types of range-rate (Doppler), time delay of arrival (TDOA),

and measured frequencies. Combinations of different measurement

types are also considered. Results are compared to an approximate

Cramér-Rao lower bound (CRLB). No previous work has addressed

initial state estimation and localization in such a wide range of prob-

lems. Simulations include three specific problems that do not appear

to be solved anywhere in the literature.
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1. INTRODUCTION

In this paper, the general problem of starting a tar-

get track given a diverse mixture of monostatic/bistatic

range, time delay of arrival (TDOA), direction of ar-

rival (DOA), and various types of range-rate and/or fre-

quency measurements from multiple sensors, which are

not necessarily synchronized, is considered. The min-

imum amount of information needed to start a target

track is a target position estimate and an associated co-

variance matrix. More desirable, however, is a state es-

timate consisting of a position and velocity vector as

well as an associated covariance matrix.

No previous work has addressed initial state estima-

tion and localization in such a wide range of problems.

The track initiation approach in this paper express the

problem as a problem of solving a system of simul-

taneous multivariate polynomials. This expands upon

methods for localization in [66], [72] and Doppler-only

track initiation in [46]. It is shown that a measurement-

conversion approach to the problem is dramatically less

computationally demanding than a least-squares solu-

tion. Moreover, the polynomial solutions are combined

with a cubature integration technique to obtain approx-

imate minimum mean squares error (MMSE) estimates

with associated covariance matrices. This use of cuba-

ture integration for unbiased estimation and covariance

matrix approximation fills a gap in the literature as most

similar polynomial-based methods such as those in [46],

[66], [72] do not consider covariance matrix estimation

at all, making them unsuitable for use with many com-

mon tracking algorithms. This paper only considers the

use of measurements after detection, as many practi-

cal networks will not always have sufficient bandwidth

to send the raw or filtered antenna outputs to a fusion

center. The work here can be viewed as a prerequisite

for formulating a cost function for associating a diverse

mixture of measurements between sensors.

The ability to start a track–to obtain a (hopefully

unbiased) mean and a consistent covariance matrix or

possibly a Gaussian mixture to represent the position

or state (position, velocity, etc.) of a target given a set

of measurements–is a necessary part of any target-

tracking algorithm. Though active radar and sonar sys-

tems might be able to provide full 3D range and DOA

measurements, a great many applications will offer a

larger diversity of measurements.1

Additionally, the demand for starting tracks using

diverse measurement types is likely to increase with the

proliferation of digital multifunction radars. Many such

systems can work in both active and passive modes, as

1For example, numerous countries are requiring that cell phone carri-

ers be able to localize users to high accuracies and cell towers typically

do not measure DOA. In the United States, the FCC is requiring a 50 m

horizontal localization accuracy [30]. Similarly, aviation authorities in

the United States [29] and the European Union [28] have been im-

plementing passive tracking systems (via multilateration [DOA-only])

for civilian aircraft to augment transponder data from aircraft.
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one can see by searching through radars in Jane’s On-

line [37]. As digital radars are able to form increasingly

many simultaneous receive beams, one would expect

that a radar network would produce a greater diversity

of measurements to use for target track initiation.

Much of the literature for target tracking using a

diversity of measurements (not just range and DOA)

tends to focus on using only one or two types of mea-

surements and usually either try to find an explicit con-

version for simultaneous measurements from the mea-

surement domain into the domain of the state, or they

perform some type of exact or approximate maximum

likelihood (ML) or least squares (LS) estimation using

various techniques depending on how difficult the prob-

lem is. For example, when considering Doppler-only

tracking of an emitter, an explicit solution is available

for the position and velocity of the emitter in a spe-

cific 2D scenario [71]. Additionally, a large number of

2D or 3D position and velocity estimation algorithms

use a brute-force grid search of some type such as in

[1], [16]—[18], [34], [40]—[42], [44] and (in Turkish)

[43] or a grid search plus a refinement step as in [15],

[39], [51]. In [47] an approximate global optimization

is attempted using the (not optimal) Nelder-Mead algo-

rithm.2 A few authors tackle the problem using semidef-

inite programming in [50], [57] (which can be subject

to finite-precision errors), while others try to integrate

the initiation and detection directly into the tracking al-

gorithms using particle filters, or Gaussian mixtures and

linearization methods coupled with random finite set

theory [33], [49], [54], [58], (such papers focus on the

bistatic Doppler case and tend to be very complicated).

A couple of papers solve systems of simultaneous mul-

tivariate polynomials as in [45], [46], [60], [61]. Similar

approaches are used for other measurement types. This

paper focusses on the final approach: utilizing simul-

taneous multivariate polynomials for target localization

and/or target-state estimation, but with a diverse mixture

of not necessarily simultaneous measurements.

The task of solving systems of simultaneous mul-

tivariate polynomials for localization and/or target-state

estimation is not just limited to Doppler-only estimation,

as in [45], [46], [61]. Such an approach is also suggested

for solving time of arrival (TOA)-only, TDOA-only, and

DOA-only localization problems in [66] as well as for

solving TDOA-only estimation problems in [72].

The basic idea behind the track initiation techniques

in this paper is similar to that in [26]: An estimator is ob-

tained that provides an error-free estimate in the absence

of noise (in this case by solving a system of simulta-

neous multivariate polynomials). Given noisy measure-

ments, the mean and covariance matrix of the estimator

(as obtained via cubature integration) is used as a mean

2It is worth noting that the dividing rectangles (DIRECT) algorithm of

[38] can be used for globally optimal optimization without the same

possibility of getting stuck at a suboptimal point as in the Nelder-

Mead algorithm.

and covariance matrix for target track initiation. The

assumption is that the estimator is unbiased, so that the

covariance matrix is an accurate representation of the

mean squares error (MSE) of the estimate.

Section 2 describes the measurement models used

in this paper. A basic assumption in this paper, and in

the tracking literature in general, is that measurements

are corrupted with Gaussian noise in the measurement

domain (not in global Cartesian coordinates), where it

is noted that all measurement types can be expressed

as multivariate polynomials, sometimes with the help

of additional variables. Section 3 then reviews basic as-

pects of cubature integration, which plays a pivotal role

in obtaining unbiased estimates and covariance matri-

ces for the estimates. Using cubature integration, one

can evaluate the integrals necessary for determining the

Cramér-Rao lower bound (CRLB), which is described

in Section 4. The CRLB can often be used to deter-

mine whether combinations of measurements of differ-

ent types from various sensors might be able to produce

usable estimates (sufficiently accurate) without having

to run Monte Carlo simulations.

Section 5 discusses algorithms for solving simulta-

neous multivariate polynomials. Available solvers are

fast for many practical problems, and are even faster

with parallelization. In some instances, one might use

a “track-initiation” routine like in this paper to fuse

passive measurements before passing them to a target-

tracking algorithm, (i.e. via track function or by treating

the fused measurements as a single “measurement”). If

in such an instance, one finds that the track-initiation

algorithm is slightly too slow for real-time use, it is

worth noting that the delayed tracks/ measurements can

be treated as out-of-sequence measurements, and meth-

ods for making use of such measurements in Kalman

filters [3], [62], [74], interacting multiple model filters

(IMMs) [2], and particle filters [11], [52], among many

others, exist.

Section 6 discusses the use of 2D assignment algo-

rithms for clustering estimates. This algorithm is needed

to handle instances in Sections 7 and 1 where multiple

solutions are obtained.

Section 7 combines the results of the previous sec-

tions to provide the efficient measurement-conversion

algorithm that is the main topic of this paper. The al-

gorithm tries to find the expected value of the target

state (or just target position) given the minimal set of

measurements needed to make the state or position ob-

servable. Multivariate polynomial expressions to han-

dle many different scenarios are provided and simu-

lations demonstrate the effectiveness of the estimation

algorithm for three localization scenarios that are not

currently present in the literature.

As in [66], it is also possible to perform track initi-

ation with redundant information using ML/LS track-

initiation routines. Section 1 discusses how this can
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be done in general. However, the computational com-

plexity is significantly higher than the measurement-

conversion approach. Hope at real-time use of such

methods necessitates more efficient multivariate poly-

nomial solving routines than are used in this paper. The

results are summarized in Section 9.

In [23] and [24] target track initiation given bistatic

range and DOA measurements in without and with the

effects of atmospheric refraction are considered. This

paper solves track initiation and localization problems

using a wider variety of measurements than are present

in the literature, producing approximate MMSE esti-

mates and covariance matrices. However, the effects of

atmospheric refraction are neglected, though the results

of this paper are still useful. When refractive effects

matter, the estimates produced by the algorithms in this

paper can be used as initial estimates in iterative al-

gorithms with refraction, and the systems of equations

derived in (5) can be used as start systems in homotopy

algorithms for solving more difficult problems involv-

ing refraction. One type of homotopy solver is given

in [26].

2. THE MEASUREMENT MODELS

The measurements considered in this paper are

transformations of the target state x. The measurements
are assumed to be of the form

Ẑ= h(x,w) (1)

where w is a Gaussian random variable corrupting the

measurement and h is a deterministic function. Though

most results of this paper can be used with non-additive

noise, in all simulation examples presented here, it is

assumed that the measurement noise is additive, so (1)

can be reduced to

Ẑ= h(x) +w (2)

If h is bijective (invertible) with respect to x and Ẑ

such that there exists an inverse function x= h¡1(Ẑ,w),
then the measurement-conversion method of Section

7 should be used. Otherwise, the ML/LS method of

Section 8 can be used. The cubature routine used by

both is in Section 3.

An example of a bijective function would be the

transformation of a Cartesian position to range and di-

rection cosines. An example of a non-bijective function

would be the transformation of a Cartesian position to

three TDOAs. This transformation is non-bijective, be-

cause multiple solutions for a position can exist when

given an arbitrary set of TDOAs. However, Section 7

provides ad-hoc approaches to be able to handle the
case of having more than one or zero solutions.

In [23], expressions for the non-relativistic (Newto-

nian mechanics) bistatic range, range, rate, and DOA in

terms of direction cosines ignoring atmospheric effects

and target motion during the time it takes the signal to

travel from the transmitter to the target and then to the

receiver, are given and are used here. However, to be

able to use non-simultaneous measurements for track

initiation, a few minor changes are made.

Let x be the n-dimensional state of the target. The
state is assumed to contain at least position components.

Let H be a matrix such that Hx extracts the position
components of the state and Hv a matrix that extracts

any velocity components of the state (this is only needed

when considering range-rate/frequency-shift measure-

ments and a state with velocity components). For ex-

ample, when considering tracking in 3D, and one has

a state consisting of both position and velocity com-

ponents with position components coming first, then

H= [I3,3,03,3] and Hv = [03,3,I3,3] where I and 0 denote
identity and zero matrices of the given dimensions.

For purposes of track initiation using non-simul-

taneous measurements, process noise in the dynamic

model of the target shall be ignored. Additionally, only

discrete-time dynamic models are considered. Let F be

an n£ n state transition matrix that propagates the tar-
get state from the time at which it is to be estimated to

the time of a measurement. State transition matrices for

some basic discrete-time dynamic models are provided

in [4, Ch. 6]. The product Fx is taken to be the target
state at the time of a measurement under consideration.

For example, if one has a 3D state with position compo-

nents before velocity components, then a standard lin-

ear propagation model just multiplies the velocity com-

ponents by the time interval of propagation, T, adding

them to the position components, so

F=

26666666664

1 0 0 T 0 0

0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

37777777775
(3)

Note that T can be negative if one wishes to have a

target estimate at the end of a batch rather than at the

beginning. Define

Fh
¢
=HF (4)

Fv
¢
=HvF (5)

to simplify notation later on.

We shall now provide expressions for the compo-

nents of measurements considered in this paper. Mea-

surements may consist of one or more simultaneous

components, all of which will be considered to be

corrupted with (possibly correlated) additive Gaussian

noise. A bistatic range measurement without noise is

given by
rB = kFhx¡ l1k+ kFhx¡ l2k (6)

the l2 norm (the square root of the sum of the squares

of the components of the argument) is given by k : : :k,
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l1 is the Cartesian location of the transmitter, and l2
is the location of the receiver. A monostatic (round-

trip) range measurement would have l1 = l2. A TDOA

measurement between two sensors is very similar. In

such an instance, one can measure the time of arrival of

a signal at two sensors, time just being distance divided

by speed c. Thus, a TOA measurement at the ith sensor

would be

¿ =
1

c
kFhx¡ lik+ ¿0 (7)

where ¿0 is the unknown transmission time of the emit-

ter. A TDOA measurement thus cancels the unknown

transmission time resulting in

TDOA=
1

c
(kFhx¡ l1k¡kFhx¡ l2k) (8)

if Sensor 1 is used as the reference sensor.3

Another measurement type considered is DOA. Usu-

ally, as discussed in [23], it is preferable if direction

cosine measurements are used (when considering mea-

surements in 3D).4 The local coordinate system of the

receiver is aligned such that the third (unused) compo-

nent is normal to the surface of the receiver. As it is

assumed that the target is in “front” of the receiver, the

third component is not needed (it is assumed positive).

Let l be the 3£ 1 Cartesian location of the receiver. Let
M be a matrix that rotates a position vector from the

global coordinate system into the local coordinate sys-
tem of the receiver. Define Hu to be a 2£ 3 matrix that
extracts the u¡ v components from the rotated matrix.

For example, if as in [23], the z-axis is chosen to be

the one pointing out from the radar, and the position

components are in order (x,y,z), then

Hu =

·
1 0 0

0 1 0

¸
(9)

such that Huu is a vector containing the (x,y) compo-
nents of the unit vector u. Define

Mu =HuM (10)

Thus, a u¡ v direction cosine measurement u can be
written as

uuv =
1

kFhx¡ lk
Mu(Fhx¡ l) (11)

The final types of measurements that are to be

considered are related to the range-rate/Doppler shift

of the target. In [23], the non-relativistic (Newtonian

mechanics) bistatic range-rate (ignoring atmospheric

effects) of a target is given. For a receiver at l1 and

3Note that one does not always “measure” a TDOA. Often, two times

are measured and then the difference is taken. In such an instance, if

one assumes that each measurement is corrupted with Gaussian noise,

then the difference will also be Gaussian distributed and thus can be

treated as a single measurement.
4In 2D, this means that one component of a direction vector in the lo-

cal coordinate system of the receiver is used. However, for simplicity,

the discussion here only considers the 3D case.

transmitter at l2 traveling at velocities
_l1 and

_l2, the

bistatic range rate is

_r =

μ
Fhx¡ l1
kFhx¡ l1k

¶0
(Fvx¡ _l1)

+

μ
Fhx¡ l2
kFhx¡ l2k

¶0
(Fvx¡ _l2): (12)

If one is observing a range-rate measurement from a

transmitter, then the target is the transmitter and the

second half of the equation is eliminated, so the range

rate reduces to

_r =

μ
Fhx¡ l1
kFhx¡ l1k

¶0
(Fvx¡ _l1): (13)

Now, however, that range-rate measurements must

be derived from frequency offsets. If the transmitter

broadcasts at a frequency of fTx, the actual frequency

received due to Doppler shifts resulting from the given

range rate is [31, Ch. 34-6]5

f =

μ
1¡ _r

c

¶
fTx (14)

where c is the speed of propagation of the waves. How-

ever, if one is passively observing a target, then fTx will

be unknown. Thus, we shall also consider using the

ratio of received frequencies. That is, individual sen-

sors cannot measure “Doppler” or “range rate” because

the transmission frequency of the emitter is unknown.

Rather, they measure the (average) received signal fre-

quency. Based on (14), one can use the ratio of fre-
quency measurements from multiple sensors to help lo-

calize a target. For example, if one gets frequency mea-

surement at Sensors i and j, the frequency ratio is given

in (15).6

fi
fj
=
1¡ _ri

c

1¡
_rj

c

=
kFhx¡ ljk(Fhx¡ li)0(Fvx¡ _li)¡ ckFhx¡ likkFhx¡ ljk
kFhx¡ lik(Fhx¡ lj)0(Fvx¡ _lj)¡ ckFhx¡ likkFhx¡ ljk

(15)

All of the above measurement models along with

the frequency ratio are not polynomial even though the

point of this paper is that one can use multivariate poly-

nomial solving routines along with cubature integration

5This is under Newtonian mechanics, meaning that the range rate is

far lower than the speed of light.
6Note that one typically needs many digits of precision to make

good use of frequency measurements. As another example, a radio

emitter moving at a range rate of 10 m/s causes a 2 GHz transmis-

sion frequency to shift by less than 67 Hz. That is a shift of about

3:3£ 10¡6%. Frequency ratios are generally never measured. Rather,
individual frequencies are measured (and can be approximated as

being corrupted by additive Gaussian noise–an approximation that

would probably be very bad for the ratio).
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to obtain mean and covariance estimates to start target

tracks. However, all of them can be made polynomial

either by manipulating the equations as in Section 7

for the measurement-conversion approach, or through

the introduction of additional variables/equations, as is

suggested in Section 8 for LS estimation. For example, a

term of the form kFhx¡ lik can be replaced by a variable
ri while adding the equation

r2i ¡kFhx¡ lik2 = 0, (16)

which is a polynomial equation. Similarly, a term of the

form 1=kFhx¡ lik can be placed by a variable r̃i where
either

r̃2i kFhx¡ lik2¡1 = 0 (17)

or if ri is already needed,

r̃iri¡ 1 = 0: (18)

3. CUBATURE INTEGRATION FOR MEAN AND
COVARIANCE ESTIMATION

Given an estimator g(Z), we would like to obtain a
mean and covariance matrix for use in a target-tracking

algorithm. The basic idea in this paper is to use the

numerically computed mean and covariance matrix of

the estimator, assuming that the estimator is unbiased

and the covariance matrix is an accurate representation

of the actual target mean-squared error.

The mean and covariance matrix of an estimator

g(Z) are defined to be

x̂
¢
=Efg(Z) j Ẑg

=

Z
Z2RnM

g(Z)p(Z j Ẑ)dZ (19)

P= Ef(g(Z)¡ x̂)(g(Z)¡ x̂)0g

=

Z
Z2RnM

(g(Z)¡ x̂)(g(Z)¡ x̂)0p(Z j Ẑ)dZ (20)

where the stacked set of measurements is nM-dimen-

sional. The measurement is Ẑ and Z represents the

“noise-free” measurement. Under the assumption that

the conditional probability distribution function (PDF)

of the noise-free measurement is multivariate Gaussian

distributed with mean Ẑ and covariance matrix R the

integrals can be evaluated to a high precision with rel-

atively low computational cost using cubature integra-

tion.

As discussed in [23] with respect to target track-

ing and measurement conversion, cubature integration is

based on the fundamental theorem of Gaussian integra-

tion. Basically, the multivariate integral of a multivariate

function f(x) of an n-dimensional variable x, weighted
by a Gaussian PDF with mean ¹ and covariance matrix
§ can be evaluated exactly asZ

x2Rn
ffxgNfx;¹,§gdx=

NcX
i=0

!igf»ig, (21)

N is the multivariate normal evaluated at the first pa-

rameter, with mean and covariance matrix given by

the second and third parameters; and !i are cubature

weights and »i are n-dimensional cubature points. The
assumption for perfect equality is that f(x) is a mul-

tivariate polynomial function and the cubature points

and weights have been designed such that equality is

possible for all functions up to a certain degree. As the

solutions to simultaneous multivariate polynomials used

in this paper are not polynomials themselves, the use of

cubature integration is just an approximation. However,

if a high enough degree of precision is chosen, it can be

a very good approximation. The fundamental theorem

of Gaussian integration basically says that a suitable set

of cubature points and weights exists. Note that cuba-

ture formulae for weighting functions other than just the

normal distribution also exist.

Many tables of cubature points can be found in [65]

and an online collection of formulae is described in

[19] and found at http://nines.cs.kuleuven.be/ecf/. Mat-

lab code for generating cubature points and weights

of various degrees and dimensionalities is provided

as part of the Tracker Component Library online at

https://github.com/DavidFCrouse/Tracker-Component-

Library/. Formulae for cubature points used in the ex-

amples in this paper are given in Appendix B.

4. THE CRAMÉR-RAO LOWER BOUND

This paper offers multiple ways in which to assem-

ble estimation algorithms. However, it is not always

clear what combinations of measurement types might be

best or whether one has sensors that can even achieve

the needed accuracy to produce meaningful estimates

given a diversity of measurement types. The CRLB pro-

vides a lower bound on the attainable accuracy of an un-

biased estimator given a specific set of measurements,

without simulation. The integral involved in the CRLB

can be approximated using cubature integration as in

Section 3. The use of cubature integration for CRLB

computation is discussed in [23]. Here, we review the

basic idea and provide expressions needed for each of

the measurement types used.

As given in [4, Ch. 2.7.2], under certain regularity

conditions (which are expanded in [5]), the CRLB for

non-random vector parameters is given by the inverse

of the Fisher information matrix. Specifically,

Ef(x0¡ x̂fZg)(x0¡ x̂fZg)g ¸ J¡1 (22)

where x0 is the true value of the quantity being esti-

mated, Z is a set of observations, x̂fZg is an estimator
and J is the Fisher information matrix. The expected

value is over the conditional PDF of Z given x0. As the

inequality involves matrices, it has to be considered in

terms of the eigenvalues of the matrices. The trace of

the CRLB and be used as a lower bound on the MSE

of an unbiased estimator. If the Fisher Information ma-
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trix is singular, then the full state of the target is unob-

servable, even though individual components might be

observable.

For non-random vector parameters, the Fisher infor-

mation matrix is given by

J= Ef(rx lnp(Z j x))(rx lnp(Z j x)) j Zgjx=x0 (23)

=

Z
Z

(rx lnp(Z j x))(rx lnp(Z j x))jx=x0p(Z j x0)dz

(24)

where rx is the gradient operator with respect to x. It
creates a column vector of partial derivatives of its argu-

ment (here, lnp(Z j x)) with respect to the components
of x. Under the assumption that p(Z j x) is Gaussian, the
results in Section 3 can be used to numerically solve the

integrals.

Thus, to compute the CRLB for the examples in this

paper, the remaining part that must be determined is

rx lnp(Z j x). To simplify the analysis of the following
sections, it is assumed that the components of the mea-

surements used are independent. Under such an assump-

tion, the Fisher information matrix of multiple measure-

ments is just the sum of the Fisher information matrix

matrices for each individual measurement. However, it

can sometimes before more convenient to apply the in-

dependence assumption just to the gradient to get

rx lnp(Z j x) =
NX
i=1

rx lnp(zi j x) (25)

where zi is the ith measurement component. In the case
of a direction-cosine DOA measurement in 3D, we shall

take both components together. Thus, to consider the

combined effect of different measurement types, we

need but evaluate rx lnp(zi j x) for each measurement
type and sum them together. The rest of this section

provides expressions for these gradients.

4.1. Range Measurements

Assuming a bistatic range measurement of the form

in (6) corrupted with zero-mean Gaussian noise having

variance ¾2r , the logarithm of the likelihood is

lnp(uuv j x) =¡
1

2
ln(2¼¾2r )

¡ 1

2¾2r
(rB ¡kFhx¡ l1k¡kFhx¡ l2k)2

(26)

and thus the gradient necessary for the CRLB is

rx lnp(rB j x) =¡
1

¾2r
(rB ¡kFhx¡ l1k¡kFhx¡ l2k)

¢
μ
F0hl1¡F0hFhx
kFhx¡ l1k

+
F0hl2¡F0hFhx
kFhx¡ l2k

¶
(27)

4.2. TDOA Measurements

Assuming a TDOA measurement of the form in

(8) corrupted with zero-mean Gaussian noise having

variance ¾2TDOA, the logarithm of the likelihood is

lnp(uuv j x) =

¡ 1
2
ln(2¼¾2TDOA)

¡ 1

2¾2TDOA

μ
TDOA¡ 1

c
(kFhx¡ l1k¡kFhx¡ l2k)

¶2
(28)

and thus the gradient necessary for the CRLB is

rx lnp(TDOA j x)

=¡ 1

c¾2TDOA

μ
TDOA¡ 1

c
(kFhx¡ l1k¡kFhx¡ l2k)

¶
¢
μ
F0hl1¡F0hFhx
kFhx¡ l1k

¡ F
0
hl2¡F0hFhx
kFhx¡ l2k

¶
(29)

4.3. DOA Measurements

Assuming a DOA measurement of the form in (11),

which consists of two components corrupted with zero-

mean Gaussian noise having (symmetric) covariance

matrix Ruv, the logarithm of the likelihood is given

in (30).

lnp(uuv j x) =¡
1

2
ln(j2¼Ruvj)

¡ 1
2

μ
uuv ¡

1

kFhx¡ lk
Mu(Fhx¡ l)

¶0
¢R¡1uv

μ
uuv ¡

1

kFhx¡ lk
Mu(Fhx¡ l)

¶
(30)

=¡1
2
ln(j2¼Ruvj)¡

1

2
u0uvR

¡1
uv uuv

¡ 1

2kFhx¡ lk2
(x0F0h¡ l0)M0

uR
¡1
uvMu(Fhx¡ l)

+
1

kFhx¡ lk
(x0F0h¡ l0)M0

uR
¡1
uv uuv (31)

Thus, the gradient necessary for the CRLB is

rx lnp(uuv j x)

=
(x0F0h¡ l0)M0

uR
¡1
uvMu(Fhx¡ l)

kFhx¡ lk4
(F0hFhx¡F0hl)

¡ 1

kFhx¡ lk2
F0hM

0
uR

¡1
uvMu(Fhx¡ l) (32)

¡ (x
0F0h¡ l0)M0

uR
¡1
uv uuv

kFhx¡ lk3
(F0hFhx¡F0hl)

+
1

kFhx¡ lk
F0hM

0
uR

¡1
uv uuv (33)
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4.4. Emitter Range-Rate Measurements

Assuming an emitter range-rate measurement of the

form in (13) corrupted with zero-mean Gaussian noise

having variance ¾2_r , the logarithm of the likelihood

assuming that the emitter is stationary (the only case

considered in the examples) is

lnp(_r j x) =¡1
2
ln(2¼¾2_r )¡

1

2¾2_r

Ã
_r+

(Fhx¡ l1)0_l1
kFhx¡ l1k

!2
:

(34)

Thus, the gradient necessary for the CRLB is

rx lnp(_r j x) =
1

¾2_r

Ã
_r+

(Fhx¡ l1)0_l1
kFhx¡ l1k

!

¢
Ã

F0h
_l1

kFhx¡ l1k
+
(Fhx¡ l1)0_l1
kFhx¡ l1k3

(F0hl1¡F0hFhx)
!
:

(35)

4.5. Frequency (Ratio) Measurements

In this instance, the measurement components are

frequencies (e.g. single frequency tones or the center

frequencies of more complex signals) measured from

moving sensors, assuming a stationary emitter. Each

receiver will measure a different tone due to the Doppler

shift associated with its movement with respect to the

emitter.

Even though (15) provides an expression for the ra-

tio of two such frequencies, and Section 7.3.4 shows

how to create multivariate polynomial equations that

(with others) can be used to localize such an emitter.

It is easier to compute the CRLB from the individual

frequencies, which will presumably be the actual mea-

surements, rather than the ratio. Similarly, the cubature

integration in Section 3 when used to estimate the mo-

ments of the converted measurements would have to be

done using the actual frequencies rather than the ratio

as it cannot be assumed that the ratio is Gaussian dis-

tributed.

However, if the individual frequencies are used, then

the unknown transmit frequency fTx must be added to

the “state” for purposes of estimating the CRLB. Thus,

in this section, we provide the gradient with respect to

x, the typical state one would think of, as well as with
respect to fTx, which must be included just for purposes

of computing the CRLB.

Assuming a frequency measurement of the form in

(14) corrupted with zero-mean Gaussian noise having

variance ¾2f , the logarithm of the likelihood assuming

that the emitter is stationary is

lnp(f j x,fTx) =¡
1

2
ln(2¼¾2f)

¡ 1

2¾2f

μ
f¡
μ
1+

1

c

μ
Fhx¡ l1
kFhx¡ l1k

¶0
_l1

¶
fTx

¶2
(36)

Thus, the gradient with respect to the state x and the par-

tial derivative with respect to the unknown transmission

frequency fTx, necessary for the CRLB, are

rx lnp(f j x,fTx) =
fTx
c¾2f

μ
f¡
μ
1+

1

c

μ
Fhx¡ l1
kFhx¡ l1k

¶0
_l1

¶
fTx

¶

¢
Ã

F0h
_l1

kFhx¡ l1k
+
(Fhx¡ l1)0_l1
kFhx¡ l1k3

(F0hl1¡F0hFhx)
!
(37)

@

@fTx
lnp(f j x,fTx) =

1

¾2f

μ
f¡
μ
1+

1

c

μ
Fhx¡ l1
kFhx¡ l1k

¶0
_l1

¶
fTx

¶

¢
μ
1+

1

c

μ
Fhx¡ l1
kFhx¡ l1k

¶0
_l1

¶
(38)

5. SOLVING SIMULTANEOUS MULTIVARIATE
POLYNOMIALS

A key step in the track-initiation routines in this pa-

per is the solution of simultaneous multivariate poly-

nomial systems. Here, we are only interested in sys-

tems where all solutions are “zero dimensional.” Zero

dimensional solutions are individual points. The alterna-

tive, “positive-dimensional” solutions, represent curves,

surfaces, volumes, etc., and thus represent an infinite

number of solutions. For example, the bivariate system

of polynomials

0 =¡1880+1176x¡ 240x2 +16x3¡ 1780y
+1156xy¡ 240x2y+16x3y¡ 420y2 +284xy2

¡ 60x2y2 +4x3y2 (39)

0 = 1974¡ 1780x+578x2¡ 80x3 +4x4

+882y¡ 840xy+284x2y¡ 40x3y+2x4y (40)

has two zero-dimensional solutions, (3,¡2) and (7,¡2),
as well as one positive dimensional solution,

y =
¡47+20x¡ 2x2
21¡ 10x+ x2 (41)

Though positive dimensional solutions can be numeri-

cally investigated using tools such as Bertini real [12],

available from http://bertinireal.com, which relies on

Bertini [8], available from https://bertini.nd.edu, only

unique solutions are of interest here.

Many believe that solving even moderate-sized mul-

tivariate polynomial systems is too computationally de-

manding. This is true if one uses the oldest algorithms,

which are based on the computation of Gröbner bases,
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which arise in the field of abstract algebra.7 However,

the field of numerical algebraic geometry has produced

better techniques.

The field of algebraic geometry studies the zeros

of multivariate polynomials. Of interest to engineers is

the related field of numerical algebraic geometry, which

studies numerical techniques for finding the roots of

multivariate polynomial systems.8 A number of meth-

ods of solving simultaneous multivariate polynomials

exist in the literature. Notable ones are:

1) Utilizing a standard homotopy algorithm in the com-

plex domain. Such an algorithm uses a start polyno-

mial system g(x) with known zeros to solve the de-
sired polynomial system f(x). It does this by writing
differential equations in terms of a “helper” variable

of some sort. For example, a linear homotopy will

often have the form

0 = °(1¡¸)g(x)+¸f(x) (42)

where ¸ starts at 0 and is integrated to 1 (sometimes

1¡¸ is used instead of ¸) and ° is a random com-

plex number. The choice of the start system as well

as the type of homotopy and the ability to deal with

finite-precision errors and “path jumping” makes this

a difficult problem. Algorithms to solve this problem

tend to be broken into two categories: practical nu-

merical algorithms, which tend to use adaptive step

sizes, and primarily theoretical algorithms that guar-

antee global convergence with a hard bound on the

number of steps, but which often fail in practice as

their proofs assume unlimited numerical precision.

Notable open-source, practical algorithms include

² Bertini, which is online at https://bertini.nd.edu
and is well-documented in the book [8]. An inter-

face for Matlab is described in [7] and is available

for download from http://www.mathworks.com/

matlabcentral/fileexchange/48536-bertinilab.

Version 1.5 of the software is written in C. Ver-

sion 2 is under development in C++. Version 1.5

of the program is used in the examples in this

paper.

² PHCpack, which is available online at http://

homepages.math.uic.edu/ ˜ jan/download.html is

documented in [67] and also online at http://

homepages.math.uic.edu/ ˜ jan/phcpack doc html

/index.html and which includes a Matlab inter-

face, which is documented in [32]. The soft-

ware is written in Ada. As Ada is not com-

monly used, it is worth noting that free and

7An introduction to Gröbner bases is given in [13] and notes that

examples of Gröbner basis computations for polynomials in three or

four variables may fail to terminate in a reasonable amount of time

or may exceed the available memory of a computer.
8An introduction to the field is given in [63]. An introduction to some

of the most common practical and theoretical aspects of the area can

be found in the book documenting the Bertini solver [8] and in Part

III of [14].

commercial Ada compilers can be obtained from

http://libre.adacore.com. Version 2.4.14 of the

program is used in the examples in this paper.

² HomLab, which is online at https://www3.nd.
edu/ ˜ cwample1/HomLab/main.html. The solver

is not entirely free as the terms of the license

require that one purchase the associated book

[64]. The software is written in Matlab. It is not

used in the examples in this paper.

The less practical but more theoretically “nice” ho-

motopy algorithms for solving simultaneous multi-

variate polynomials are “certified” algorithms. Being

certified assures convergence to an exact solution as-

suming infinite precision algebra. The first such al-

gorithm is described in [10], though one might wish

to consult the book [14] to fully understand the req-

uisite math used.

2) A different type of homotopy algorithm is the “prob-

ability 1” homotopy. This type of algorithm can

be used both for polynomial and non-polynomial

systems. It is used for difficult polynomial and

non-polynomial target-track-initiation problems in

[26], though the results there must be considered as

heuristic as the implementation in [26] does not trace

its paths in the complex domain and the proofs for

the “probability 1” success of the algorithm are only

valid in the complex domain.9 Probability 1 homo-

topy algorithms for solving polynomials were not

used in this paper as later literature indicates that it

is inferior to newer homotopy algorithms.

3) Transforming the problem of solving multivariate

polynomials into a generalized eigenvalue problem

through the use of Sylvester or Macaulay matrices

to get all real and complex solutions. This method

is used in [72] for TDOA-only estimation. A very

understandable description of such an approach is

in [27].10

4) All of the previous algorithms find all real and com-

plex solutions to simultaneous multivariate polyno-

mials. An alternative method is the Khovanskii-Rolle

continuation for real solutions described in [9], for

which an implementation in Maple is available on-

line at https://www3.nd.edu/ ˜ dbates1/Rolle/. The al-

gorithm is appealing as it could, in theory, be sig-

nificantly faster than methods that must search the

entire real and complex space. However, the cur-

9Implementations of such probability 1 algorithms for polynomials

are described in [69], [70], [73] and the source code associated with

those papers is available in Fortran at http://netlib.org/toms/.
10A more efficient implementation of such an approach, “A Maple/

Matlab/C Resultant-Based Solver,” is documented in [68] and avail-

able online at http://gamma.cs.unc.edu/MARS/. The algorithm is im-

plemented in a combination of Maple, Matlab and C. The algorithm

depends on being able to accurately determine the rank of very large

sparse matrices, which can pose finite-precision issues. This algorithm

was not considered in the examples in this paper.
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rent version of the algorithm can only solve bivariate

polynomial systems.

Due to the time and difficulty in implementing a nu-

merically stable simultaneous multivariate polynomials

solver, this paper simply uses Bertini, PHCpack, and

the certified polynomial solver in Macaulay2.11 For the

simulations in this paper, all of the programs were (in-

efficiently) called from Matlab using scripts that wrote

input to disk, had the programs read the files, and wrote

their results to disk, which were then read back into

Matlab.

When using the solver algorithms, it will often be-

come necessary to shift and scale the equations so that

various convergence criteria become relatively scale in-

variant. In the simulations implemented for this paper,

this was done in three ways:

1) The mean sensor location was subtracted from all

sensor locations (and then added back to the estimate

in the end). This increases precision if, for example,

one is tracking in a coordinate system with the center

of the Earth as the origin, but all sensors are within

a small area on the surface.

2) The sensor locations are then scaled so that the most

distant sensor location has magnitude 1. Addition-

ally, the speed of propagation c used for TDOA

and frequency measurements is scaled accordingly.

Range measurements are also scaled. In the end be-

fore removing the mean sensor location shift, the

entire state vector must be scaled back.

3) After the equations are formed, the coefficients for

the equations are normalized so that the magnitude

of the largest coefficient is 1.

The complexity of these algorithms is related to the

number of zeros of the polynomial system that must

be found, which is related to Bézout’s theorem, given

in [14, Ch. 16.5]. Assuming that a polynomial system

has a finite number of solutions (no positive dimen-

sional solutions) Bézout’s theorem says that the maxi-

mum possible number of solutions equals the total de-

gree of the system. The degree of each equation in a

polynomial systems equals the degree of the highest

monomial term. Given a term consisting of a constant

times the product of variables of the form xa11 x
a2
2 : : :x

an
n

with a1,a2, : : : ,an > 0, the degree of the term is the prod-

uct a1a2 : : :an. This is the same definition used for the

degree or order of a polynomial equation when choosing

a cubature formula as in Section 3. The measurement-

conversion-based estimation method of Section 7 is sig-

nificantly faster than the ML based approach in Section

11All three polynomial solving routines used are open source, though

the terms of their licenses do not necessarily allow one to transfer

the desired subroutines into commercial radar software. However, all

of the solvers can be run as separate processes without any copyleft

clauses being forced into the calling program.

8, because Bézout’s number is much lower for equiva-

lent problems.12

In some simple instances, explicit solutions are

available, though there can sometimes be a minor loss

in precision compared to using a homotopy solver.

Appendix A demonstrates this by providing a direct

method of solving simultaneous bivariate equations and

showing that one loses a few digits of precision with the

direct solution versus using PHCpack, which is fixed

precision.

Finally, though the ML/LS solutions in Section 8 are

often too complex to solve in real time using standard

multivariate polynomial solvers, it is worth noting that

one can often find the value of the minimum, or an
approximation of it, very efficiently using semidefinite

programming. This is because the LS cost function

can be factored into a sum-of-squares polynomial, as

described in [56]. Related details on the theory are given

in [55].13

6. ASSIGNMENT OF MULTIPLE SOLUTIONS FOR
CLUSTERING
The cubature method of obtaining a mean and co-

variance matrix given multiple measurements outlined

in Section 3 is ignorant of the case where a finite num-

ber of solutions > 1 to the localization or state estima-

tion problem is possible. That is, when the evaluation of

gf»ig in (21) produces multiple solutions for each cuba-
ture point. In such an instance, if gf»ig always produces,
for example, two solutions, then In such an instance, one

might want to start a track with two hypotheses, one at

each location. However, one cannot put two solutions

into the integral (21) to obtain mean and covariance

components necessary to initialize a Kalman filter-like

algorithm. However, if one could associated which of

the solutions for each cubature point comes from the

same “hypothesis,” then one could evaluate the integrals

twice, once with each set of converted points.

This section presents a clustering algorithm for as-

sociating converted cubature points. The primary con-

tribution of this section is the formulation of an appro-

priate cost function that allows the clustering problem

to be expressed as a multidimensional assignment prob-

lem, which can be solved using already existing solvers.

A problem arises if one does not always find the

same number of solutions for every converted cubature

point. We shall assume that such an occurrence is un-

likely and will simply discard clusters that do not have

12In many instances, it is possible to accelerate the speed of the solvers

by solving a similar problem once, and then using the results to cre-

ate the best possible start system for the homotopy solver that can be

reused for many variants of the problem in question. That is, many

algorithms can take advantage of the so-called “cheater’s homotopy,”

described in [48]. The tool Paramotopy [6], which is available on-

line at http://www.paramotopy.com, can help parallelize the use of a

cheater’s homotopy to solve multiple variants of a particular problem.
13Free software for performing such an optimization is SOSTOOLS,

which can be downloaded from http://www.cds.caltech.edu/sostools/.
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a full set of points at the end of the assignment. In the

simulations, the failure rate for when the true target is

not in any cluster is computed to show that this is a rare

event.

To associate the solutions of converted cubature

points, we have to establish a cost function. One would

like to cluster solutions of converted cubature points

that are “close” together. However, one cannot simply

take the magnitude of the difference of the computed

points, which will generally represent target states, be-

cause the l2 norm of the difference will mix position

components having incompatible units (e.g. mix posi-

tion and velocity components). Thus, the solution cho-

sen here is to only perform the clustering using the

position components. Such an approach has also been

used in minimum mean-optimal subpattern assignment

(MMOSPA) algorithms for the display of uncertain tar-

gets as in [21], [22].

Assume that we are given a set of NC cubature points

»i with associated weights wi so as to perform numerical

integration as in (21). Define »̃i,s to be the sth solution
produced by the function gf»ig. Let the number of
solutions produced by the ith converted cubature point

be ÑC,i. It is assumed that all converted points produced

at least one solution or else the attempt at producing

any results from the integral in (21) fails. Let the matrix

H be such that H»̃i,s extracts the position components

of converted point »̃i,s. The pairwise cost function for
points is

d((i1,s1), (i2,s2))
¢
=

8><>:
kH»̃i1,s1 ¡H»̃i2,s2k i1 6= i2 and i2 6=Ø

1 i1 = i2

cmax i2 = Ø

(43)

where Ø represents an empty set (assigned to nothing)

and cmax is an upper bound for the allowable distance

between »̃i,s and anything one would consider assigning
it to. The1 costs say that we do not wish to assign two

converted points originating from the same »i together.
For simplicity, we assume that the cubature points are

ordered such that point i= 1 produces the least solu-

tions.

To start we will initially consider the case where

NC = 2 and then present two approaches to generalize

the results. To simplify things, we shall assume that

the cubature points are sorted such that »1 is the cu-

bature point that produced the most solutions. The two-

dimensional cost matrix is given in (44).

C
¢
=

266666666664

Assignment Costsz }| {
d((1,1),(2,1)) : : : d((1,1), (2,NC,2))

d((1,2),(2,1)) : : : d((1,2), (2,NC,2))

...
. . .

...

d((1,NC,1), (2,1)) : : : d((1,NC,1), (2,NC,2))

Non-Assignment Costsz }| {
d((1,1),Ø) 1 : : : 1

1 d((2,1),Ø) : : : 1
...

...
. . .

...

1 1 : : : d((NC,1),1),Ø)

377777777775
(44)

Let the cost value in row i and column j of the cost

matrix be ci,j . The 2D assignment problem for clustering

with NC = 2 is

X¤ = argmin
X

NC,1X
i=1

NC,2+NC,1X
j=1

ci,jxi,j (45)

subject to

NC,2X
j=1

xi,j = 1 8i

Every row is assigned to a column.

(46)
NC,1X
i=1

xi,j · 1 8j

Not every column is assigned to a row.

(47)
xi,j 2 f0,1g 8xi,j
Equivalent to xi,j ¸ 0 8i,j, (48)

where the matrix X is the set of all of the xi,j . If xi,j = 1,

then the item in row i is assigned to the item in column

j. Implicitly, the cost of not assigning a column to a row

is zero. This is a standard 2D assignment problem and

can be solved in strong polynomial time as described

in [20], where Matlab code is also provided in an

appendix.

The assignment set X tells us which rows are as-

signed to which columns. Because the assigned pairs

always originate from different »i, they can be used in

(21) to get different estimates. If no pairs assign, then

there are no solutions. For the simulations in this pa-

per, we just assume that d((NC,1),1),Ø), so there is no

possibility of declaring two solutions too far apart to as-

sign. In such an instance, one can just reduce the upper

limit of the second cost function to NC,2. In the fol-

lowing discussion, it is assumed for simplicity that no

non-assignment costs are present.
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For NC = k cubature points, a natural extension of

the problem is (again letting »1 be the cubature point
with the fewest converted solutions),

X¤ = argmin
X

NC,1X
i1=1

NC,2X
i2=1

: : :

NC,kX
ik=1

ci1,i2,:::,ik xi1,i2,:::,ik (49)

subject to

NC,2X
i2=1

: : :

NC,kX
ik=1

xi1,i2,:::,ik = 1 8i (50)

NC,1X
i1=1

NC,3X
i3=1

: : :

NC,kX
ik=1

xi1,i2,:::,ik · 1 8j (51)

... (52)

NC,1X
i1=1

: : :

NC,k¡1X
ik¡1=1

xi1,i2,:::,ik · 1 8j (53)

xi1,i2,:::ik 2 f0,1g 8i1, i2, : : : , ik (54)

where the cost hyper-matrix, consisting of the elements

of ci1,i2,:::ik has yet to be specified. A particular value

ci1,i2,:::ik represents the cost of having »̃1,i1 , »̃2,i2 , : : : , »̃k,ik
in one cluster. One possible choice for the values of

ci1,i2,:::ik is the sum of all pairwise distances for cubature

points in a common cluster:

ci1,i2,:::ik =

NCX
n=1

NCX
m=n+1

kH»̃n,in ¡H»̃m,imk: (55)

Another option is to take the distance of the points from

their mean value, where here the “mean” value is the

weighted mean as would be used in the numeric integral

in (21)

ci1,i2,:::ik =

NCX
n=1

kH»̃n,in ¡H¹n,i1,i2,:::,ikk, (56)

where

¹n =

NCX
n=1

wn»̃n,in : (57)

Unfortunately, the optimization problem for Nc > 2

in (49) is a multiframe assignment problem, which is

NP complete [53, Ch. 15.7]. That means that no known

polynomial time algorithms exist to solve it, and it is

unlikely one will be found. Thus, as in [22] a low-

complexity approximation shall be used. This approx-

imation will produce globally optimal results if all of

the different solutions of the converted measurements

are far apart.

The approximate algorithm is just sequential 2D

assignment. The cubature points are arranged in order

of an increasing number of solutions. Then:

1) Create a cost matrix as in (44) and perform assign-

ment of solutions originating from »1 to those of »2.

2) Create a cost matrix as in (44) and perform assign-

ment of solutions originating from »2 that were as-
signed to those in »1 to those of »3.

3) Continue assigning solutions originating from »i that
were assigned to those in »i¡1 to those in »i+1 until
a complete set of assignments is obtained.

The above sequential algorithm is used in the sim-

ulations. One would expect it to bias the estimates if

multiple solutions are close together. Also, there are cer-

tain scenarios where one can, in theory, get bad results

depending on the reliability of the multivariate polyno-

mial solver. For example, suppose that a polynomial has

two solutions, but the solver only finds one. If it finds a

different solution for different cubature points, then the

final result can be useless. Note that other clustering al-

gorithms might also work, such as that used in contact

sifting for sonar in [35].

7. ESTIMATION VIA MEASUREMENT CONVERSION

This section describes the primary technique for

track initiation in this paper: using the minimum number

of measurement components needed for target observ-

ability, and inverting the measurement function. Com-

bined with the cubature moment estimation method of

Section 3 this provides the conditional mean and covari-

ance matrix of the target state given the measurements.

However, a heuristic approximation has to be made for

such an approach to be viable.

Section 7.1 describes the basic algorithm assuming

that the measurement function h in (1) is bijective. How-

ever, as demonstrated in Section 7.2, the measurement

function is generally not bijective. Thus, a heuristic al-

gorithms is used in practice, which deals with h having

no real solutions or multiple real solutions.

Subsection 7.3 provides expressions for estimating

the position of a target given bistatic range and/or

TDOA measurements. Assuming that the target is a sta-

tionary emitter and the receivers are mobile, expressions

for Doppler measurement and frequency ratios (usually,

the measurements are frequencies but the frequency ra-

tio is used in the inverse function) are also provided.

The use of frequency ratios for polynomial-based track

initiation appears to be new. Frequency ratio-based es-

timation of any type is not as prevalent in the literature.

It is used in an aircraft-tracking problem in the expired

patent [59]. The techniques in this section differ from

the polynomial-based localization methods of [66] as

the algorithms are not optimizing a LS cost function and

are thus significantly faster, though they cannot make

use of redundant information. Also note that [66] does

not provide any means of obtaining a covariance matrix

for the estimates. Simulations are provided showing the

performance of the estimator.

Subsection 7.4 then provides expressions for mea-

surement equations where the measurements are not all

simultaneous for reference. Bistatic range, TDOA, and

DOA are considered. It is also worth highlighting the
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Fig. 1. A monostatic range measurement in 2D defines a circle around a sensor. Depending on the target location, there can be 2 or 1

solutions, as in (a) and (b). However, if measurements are noisy, there can be no real solutions if one tries to invert the measurement into

Cartesian space as in (c). Conditioned on range measurements, the value of the noise that could be contained in the measurement must be

constrained so that the measurement, after accounting subtracting the noise, can be converted into a real solution in Cartesian coordinates.

(a) Two Real Solutions. (b) One Real Solution. (c) No Real Solutions.

special solutions [45], [46] for initiating a track consist-

ing of position and velocity in 3D given six simulta-

neous Doppler measurements (with stationary sensors).

Simulations are not given for this section, though the

correctness of the polynomial equations was verified by

solving a number of individual test cases.

7.1. The Measurement-Conversion Algorithm

Suppose that one would like to compute Efx j Ẑg,
where Ẑ is the set of all available measurements and

everything is in the real domain. This can be done by

evaluating the integral

Efx j Ẑg=
Z
x2Rn

xp(x j Ẑ)dx (58)

where p(x j Ẑ) is the conditional distribution of x given
Ẑ. Assume that the measurements have the form of (1)

and that the measurement function h is bijective. In such

an instance, using the total probability theorem, one can

write

p(x j Ẑ) = p(x jw)p(w)
= ±(x¡ h¡1(Ẑ,w))p(w) (59)

where ± represents the Dirac delta function. Assuming

that the noise w is also n-dimensional, (58) becomes

Efx j Ẑg=
Z
w2Rn

Z
x2Rn

x±(x¡ h¡1(Ẑ,w))p(w)dxdw
(60)

=

Z
w2Rn

h¡1(Ẑ,w)p(w)dw (61)

where the simplification comes from the fact that a def-

inite integral involving the Dirac delta function times

a function equals the function evaluated where the ar-

gument of the Dirac delta function is zero.14 For all

of the examples in this paper, the noise corrupting the

measurement is assumed to be additive as in (2). This

means that
x= h¡1(Ẑ¡w): (62)

Additionally, it is assumed that the noise corrupting the

measurements is distributed multivariate Gaussian with

14Note the addition of the extra integral over w in (60) made necessary

by the total probability theorem.

zero mean and covariance matrix R (which will be block

diagonal if the measurements are independent). Thus,

the integral in (61) can be simplified to

x̂= Efx j Ẑg=
Z
Z2Rn

h¡1(Z)NfZ; Ẑ,RgdZ (63)

where Nfa,b,cg represents the univariate or multivari-
ate normal distribution with mean b and covariance ma-

trix (or variance) c evaluated at point a. Thus, the esti-

mator here is the inverse of the measurement function,

and when using the cubature method of Section 3 with

a high enough degree set of cubature points, one ob-

tains the conditional mean and a conditional covariance

matrix can also be found.

Next the question arises how one constructs the

inverse measurement function h¡1. This is done by
formulating the expression for each measurement type

(TDOA, DOA, etc) within the measurement function

as a multivariate polynomial. Given enough, one can

solve the system using one of the off-the-shelf solvers

mentioned in Section 5. However, one will quickly

find that there are often no real solutions, or there

are multiple solutions to the polynomials. This violates

the assumption that h is bijective. Thus, the key to

the algorithm in this paper is the use of the following

heuristic approximation when no solutions are present.

Additionally, multiple solutions shall be clustered and

handled separately.

7.2. The Heuristic Approximation for Viability

Unfortunately,themeasurement-conversionapproach

described in the previous section usually fails. As an

example, consider the simple problem of estimating the

location of a target in two dimensions given (one-way)

monostatic range measurements from two sensors. For

simplicity, both sensors are assumed to be located on

the y-axis and each at a distance of lx from the origin.

Thus, the equations to be solved are

z1 =

q
(x¡ lx)2 + y2 (64)

z2 =

q
(x+ lx)

2 + y2 (65)
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Inverting the system of equations, one gets the two

solutions

x=
z22 ¡ z21
4lx

(66)

y =§ 1

4lx

q
8l2x(z

2
1 ¡ z22)¡ 16l4x (67)

These two solutions can either be unique, coincide,

or be imaginary. All three examples are illustrated in

Fig. 1. If the solutions are always real, then the 2D
assignment algorithm of Section 6 can be used to sort

each of the two solutions for the cubature points (in

the integrals in Section 7.1) into clusters and a separate

mean and covariance matrix can be found for each.

This also applies if only one solution is occasionally

obtained as that single solution is really two solutions

(a repeated root). For example, PHCpack will repeat a

solution when there is a repeated root.

However, even that somewhat heuristic approach

fails if there ever fails to be any real solutions. On

the other hand, a simple, heuristic fix is to compute

complex solutions that are “nearly” real, and discard the

imaginary part. In (66), it is clear that no matter how

the measurements z1 and z2 are perturbed, the resulting

x component will always be real. In (67), it can be seen

that if the true target has a y component close to 0, then

small perturbations in z1 and z2 will either slightly push

the solutions apart in y, cause them to come completely

together, or cause them to become imaginary. However,

if the perturbation makes the solutions imaginary, then it

can be seen that the real component of y is zero, which

is actually the LS real estimate (as seen in Fig. 1c, the

place where the two circles come closest for any fixed

value of x1. Thus, just computing the imaginary solution

and taking the real part works quite well.

Thus, the heuristic solution in this paper is to keep

some complex solutions, discarding the imaginary part,

and when computing the integrals in Section 7.1, cluster

multiple solutions to the measurement conversion as in

Section 6.

7.3. Equations for Static Estimation

This section provides equations for different mea-

surements types when localizing a target (or an emitter

in the case of the Doppler/frequency measurements).

The 2D or 3D target-location vector is denoted by t to

differentiate it from a full target state, which is consid-

ered in Section 7.4. It is noted how manipulations to

the equations might induce false solutions that must be

discarded when using certain measurement types. Sim-

ulation results then follow.

7.3.1. TDOA Measurements: The basic formulation

for solving TDOA measurement-conversion problems

using multivariate polynomial rooting is given in [72].

When considering TDOA measurements, the same gen-

eral procedure is used for the derivation, with a minor

correction to the sign used in the definition of y.

For a single received signal, let l1 be the Cartesian

location of the first receiver (in 2D or 3D) and l2 be the

Cartesian location of the second receiver. The model for

a TDOA measurement is

1

c
(kt¡ l1k¡kt¡ l2k) = TDOA (68)

where c is the speed of propagation in the medium.

Making the following substitutions

u=
1

2
(l1 + l

Rx
2 ) v=

1

2
(l1¡ l2) (69)

y= t¡u ± =
TDOAc

2
(70)

and substituting into (68), one gets

ky¡ vk¡ky+ vk= 2±: (71)

This can be turned into a polynomial by isolating ky¡
vk on one side, squaring the result, and then isolating
ky+ vk and squaring the result:
ky¡ vk2 = (2±+ ky+ vk)2 (72)

y0y+ v0v¡ 2y0v= 4±2 +4±ky+ vk+ y0y+ v0v+2y0v
(73)

y0v+ ±2 =¡±ky+ vk (74)

(y0v+ ±2)2 = ±2ky+ vk2 (75)

(y0v)2 + ±4 +2±2y0v= ±2(y0y+ v0v+2y0v) (76)

(y0v)2¡ ±2(y0y+ v0v)+ ±4 = 0: (77)

In order to solve the problem, one must substitute the

t values back in, because the y terms are different for

each equation in the polynomial system that must be

solved. Thus, one gets

((t¡u)0v)2¡ ±2(kt¡uk2 + kvk2)+ ±4 = 0 (78)

(t0v)2¡ ±2ktk2 + t0
l̃z }| {

(2±2u¡2(u0v)v)

+

c̃z }| {
(±4¡ ±2kvk2 + (u0v)2¡ ±2kuk2) = 0 (79)

In two dimensions, (78) expands in terms of monomi-

als to

0 = c̃+ l̃1t1 + l̃2t2 +2v1v2t1t2 + t
2
1(v1¡ ±)(v1 + ±)

+ t22(v2¡ ±)(v2 + ±) (80)

and in three dimensions, (78) expands to

0 = c̃+ l̃1t1 + l̃2t2 +2v1v2t1t2 + l̃3t3 +2v1v3t1t3

+2v2v3t2t3 + t
2
1(v1¡ ±)(v1 + ±)

+ t22(v2¡ ±)(v2 + ±) + t23(v3¡ ±)(v3 + ±) (81)
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The squaring of the equation to remove the square

roots can introduce false solutions. That is, solutions

where the TDOA computed from them is not equal to

the true TDOA. Consequently, an estimation algorithm

utilizing TDOA equations should look for such incon-

sistencies and discard extra solutions.

7.3.2. Bistatic Range Measurements: The procedure

for using bistatic range-only measurements is very sim-

ilar to that for using TDOA-only measurements. Let l1
be the location of the transmitter and l2 be the location

of the receiver. The measurement equation is

kt¡ l1k+ kt¡ l2k= r, (82)

which has essentially the same form as (68) for the

TDOA case, except the sign of one of the norms is

flipped. Hence, the problem can be solved in the same

manner. Define

u=
1

2
(l1 + l2) v=

1

2
(l1¡ l2) (83)

y= t¡u ± =
r

2
: (84)

Substituting into (82), one gets

ky¡ vk+ ky+ vk= 2±: (85)

This equation has the same form as (71), but with a

flipped sign on the second term. The simplification

proceeds as in Section 7.3.1:

ky¡ vk2 = (2±¡ky+ vk)2 (86)

y0y+ v0v¡ 2y0v= 4±2¡ 4±ky+ vk+ y0y+ v0v+2y0v
(87)

y0v+ ±2 = ±ky+ vk: (88)

The square of (88) has the same form as (75). The final

solution has the same form as (77):

(y0v)2¡ ±2(y0y+ v0v) + ±4 = 0: (89)

Substituting the t values back in, one gets (79), where

as in the TDOA case, the 2D and 3D simplifications are

(80) and (81), respectively.

The equations used for a range measurement are

the same as those for a TDOA measurement, except

the definitions of u, v, and ± are different. The same

equations apply for monostatic measurements. In such

an instance v= 0. Also, though there is squaring in

the range equations, no sign flips can occur as in the

TDOA case. Thus, bistatic range-only estimation will

often have more solutions than TDOA-only estimation.

7.3.3. Emitter Doppler Measurements: In this instance,

we are considering measuring the Doppler offset ob-

served by a moving receiver picking up a signal from a

stationary emitter that broadcasts at a known frequency.

Let l and _l be the location and velocity vectors of the

receiver. As discussed in the measurement model in Sec-

tion 2, the measured range rate simplifies to

_r =¡
μ
t¡ l
kt¡ lk

¶0
_l: (90)

This equation can be turned into a multivariate polyno-

mial as

(_rkt¡ lk)2 = (t0_l¡ l0_l)2 (91)

_r2(ktk2 + klk2¡ 2t0l) = (t0_l)2 + (l0_l)2¡2(t0_l)(l0_l):
(92)

Consequently, the final polynomial equation is

_r2ktk2¡ (t0_l)2 + t0
l̃z }| {

(2_l(l0_l)¡ 2_r2l)+
c̃z }| {

_r2klk2¡ (l0_l)2 = 0:
(93)

In two dimensions, (93) expands to

0 = c̃+ l̃1t1 + (_r
2¡ _l21)t21 + l̃2t2¡ 2_l1_l2t1t2 + (_r2¡ _l22)t22 :

(94)

In three dimensions, (93) expands to

0 = c̃+ l̃1t1 + (_r
2¡ _l21)t21 + l̃2t2¡ 2_l1_l2t1t2 + (_r2¡ _l22)t22

+ l̃3t3¡ 2_l1_l3t1t3¡ 2_l2_l3t2t3 + (_r2¡ _l23)t23 : (95)

The scaling method described in Section 5 is particu-

larly important when using Doppler measurements in

3D. Due to the squaring of the equations, one can also

expect there to be added solutions that must be elimi-

nated as described in Section 7.3.1.

7.3.4. Emitter Frequency-Ratio Measurements: In the

case of a stationary emitter, taking Sensor 1 in the nu-

merator, the measurement model in Section 2, simpli-

fies to

fRi,j =
rj(t¡ li)0_li+ crirj
ri(t¡ lj)0_lj + crirj

(96)

where the r terms are given by the polynomial equation

r2i = kt¡ lRxi k2 = ktk2 + klik2¡ 2t0li: (97)

Equation (96) can be written as a polynomial that must

be zeroed as

0 = fRi,jrit
0_lj ¡ rjt0_li¡fRi,jr1(lj)0_lj + rj(li)0_li

+(fRi,j ¡ 1)crirj : (98)

In 2D, the two equations to consider expand to

0 =¡l2i,1¡ l2i,2 + r2i +2li,1t1¡ t21 +2li,2t2¡ t22 (99)

0 =¡fRi,j(_lj,1lj,1 + _lj,2lj,2)ri+(_li,1li,1 + _li,2li,2)rj
+ c(fRi,j ¡ 1)rirj +fRi,j _lj,1r1t1¡ _li,1rjt1
+fRi,j

_lj,2rit2¡ _li,2rjt2 (100)
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and in 3D, they are

0 =¡l2i,1¡ l2i,2¡ l2i,3 + r2i +2li,1t1¡ t21 +2li,2t2
¡ t22 +2li,3t3¡ t23 (101)

0 =¡fRi,j(_lj,1lj,1 + _lj,2lj,2 + _lj,3lj,3)ri
+(_li,1li,1 +

_li,2li,2 +
_li,3li,3)rj

+ c(¡1+fRi,j)rirj +fRi,j _lj,1rit1¡ _li,1rjt1
+fRi,j

_lj,2rit2¡ _li,2rjt2 +fRi,j _lj,3rit3¡ _li,3rjt3:
(102)

Due to the squaring of the equations, one can also expect

there to be added solutions that must be eliminated as

described in Section 7.3.1.

In practice, one will generally measure frequencies

and not ratios. However, taking the ratio can be consid-

ered to be the first step in computing the measurement

function.

7.3.5. Simulation Examples: To demonstrate the re-

sults, we consider a simulation where the polyno-

mial solving algorithms of the previous subsections are

solved using the algorithms of Section 5. Complex solu-

tions are mapped to the real domain as in Section 7.2, so

that the measurement-conversion algorithm of Section

7.1 can be used, whereby multiple polynomial solutions

for each cubature point in the integrals are clustered into

different sets as in Section 6. The cubature points of

Appendix B are used.

Allowing slightly complex solutions, as is the heuris-

tic in Section 7.2, can increase the number of useless

solutions. However, one can discard many of them by

making sure that h(x̂) does not differ “too much” from

the true solution in any one component. Such solutions

will arise due to the squaring of equations in the pre-

vious sections. In such circumstances, these false so-

lutions, when converted into the measurement domain,

will produce measurements with components having the

wrong sign. Again, a simple comparison of the con-

verted solutions to the actual measurements can help

eliminate such false solutions.

In the simulations, we assess the root mean squared

error (RMSE) of the estimates and the normalized esti-

mation error squared (NEES), which, as mentioned in

[23], is a common method of assessing the consistency

of covariance estimates. The RMSE is compared to the

CRLB to determine how well the estimator approaches

the bound. However, if there truly are, for example, two

solutions, then the likelihood function would be bimodal

and the mean would be between the solutions. If the so-

lutions are far apart, then the mean might be far from

either one. Choosing the solution closest to the truth

for analysis effectively introduces a bias and it can be

possible to have RMSE values below the CRLB.

Three scenarios are considered. Sensors considered

in the scenarios are placed at the following latitudes

(degrees), longitudes (degrees) and World Geodetic

System-1984 (WGS-84) ellipsoidal altitudes (meters):

Name Latitude ± Longitude ± Altitude m

s1 20.265901 ¡155:857544 8000

s2 19.878939 ¡155:107727 7500

s3 19.661825 ¡156:091003 6000

s4 20.069960 ¡155:434570 5000

The sensors are in the air around the northern part

of the island of Hawaii. The conversion between the

WGS-84 ellipsoidal coordinates and global Cartesian

coordinates is described in [25]. Also provided are

expressions for unit vectors in the direction of local

East-North and up, which can help when establishing

the heading of the sensors.

In all three scenarios, the true target position is var-

ied over a grid in latitude in the range (18:5±,19:75±) and
longitude in the range (¡156±,¡154:75±). The altitude
of the true target is fixed at 4205 m, which, ignoring

geoid undulations, is approximately the height of the

tallest mountain on Hawaii. It is assumed that all sen-

sors always have direct lines of sight to the target and

atmospheric refraction and diffraction over the terrain

are neglected. Of course, Scenarios 2 and 3 would be

more realistic if the target were fixed to the ground as

the target is assumed to be a stationary emitter in such an
instance. However, the inclusion of terrain data would

needlessly complicate the example.

Three scenarios are considered:

1) The first scenario is representative of multiple air-

craft working to localize a cooperative stationary

emitter. In this instance, only Sensors s1 and s2 are

used. However, now a velocity for Sensor 2 is pro-

vided and the emitter is assumed stationary. The

range measurements are to and from Sensor s1 (a

round-trip monostatic measurement) and from Sen-

sor s1 to s2. The range-rate measurement is made by

Sensor s2, which is traveling 300 m/s in level flight

45± East of North. The unit vectors for the directions
can be obtained as in [25]. The standard deviation of

the range measurements is 1 m and the standard devi-

ation of the range-rate measurement is 0.1 m. There

might be a scenario where a sensor pings a target

with a repeater and the target pings back. In such

an instance, the measured ranges would be assumed

to be derived from measured time delays minus the

time it takes the repeated to respond. Fifty Monte

Carlo runs are performed and the grid of target lo-

cations used for the plots is 15£ 15 in latitude and
longitude.
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Fig. 2. The RMSE in meters and NEES of the simulations in Scenario 1 (range and emitter range-rate measurements) on a 15£ 15 grid
shown on top of a map after 50 Monte Carlo runs using Bertini. Also, the square root of the trace of the approximate CRLB (in meters, on a

fine grid) is shown for comparison to the RMSE. The yellow dots represent locations of the sensors. The island is about 120 kilometers

wide. The color bar for the NEES is clipped. The color scale for the CRLB and RMSE are the same. (a) RMSE. (b) NEES. (c) CRLB.

2) The second scenario is a slight variant on an “easy”

scenario. All four sensors are used. Three of them

produce TDOA measurements, while a bistatic path

is given between a pair of them. A standard devi-

ation of 10 m is used for the range measurement.

For TDOA measurements, a standard deviation of

3:3356£ 10¡8 s is used; this equals 10 m/c seconds,
where c= 299,792,458 m/s is the speed of light in a

vacuum, which was used as the transmission speed

in the simulation. The TDOA measurements are be-

tween Sensors s1 and s2 and between Sensors s1 and

s3. The bistatic range measurement is between Sen-

sors s3 and s4. This scenario might occur when one

tries to fuse measurements of an emitter from passive

sensors with an active radar range measurement. The

altitudes of the aircraft imply detections taken by air-

craft. Two hundred Monte Carlo runs are performed

and the grid of target locations used for the plots is

15£ 15 in latitude and longitude.
3) The final scenario is a case where all four sensors

are moving and only make frequency measurements

as they are assumed to not know the transmission

frequency of the target, which is an emitter. All sen-

sors are moving level with respect to the WGS-84

reference ellipsoid. Sensors 1 and 2 are moving at

300 m/s with Sensor s1 going 45
± west of North and

Sensor s2 going 45
± East of North. Sensors 3 and 4

are traveling, respectively, East and North at 250 m/s.

The transmission frequency of the emitter is 8 GHz

(X-Band) and the standard deviation of the measure-

ments is 1 Hz. Note that it does not matter which fre-

quency ratios from the four frequency measurements

are used in the multivariate polynomial solver (given

the individual frequency measurements) as long as

none of the ratios are redundant. Fifty Monte Carlo

runs are performed and the grid of target locations

used for the plots used is 15£ 15 in latitude and
longitude.

The three scenarios do not appear to be solved by

algorithms that are already present in the literature,

even though they represent simple uses of multivariate

polynomial solving algorithms and cubature integration.

The shortest augmenting path 2D assignment algo-

rithm of [20] was used for clustering converted cuba-

ture points, as discussed in Section 6. Bertini, PHCpack

and the certified solver in Macaulay2, called from Mat-

lab, were considered as polynomial solvers. However,

Macaulay2’s certified solver tended to be too slow and

failed much more than the others, so it was not used

in any of the simulations plotted here (failure being de-

fined as no solutions being produced or the only solu-

tion being over 1000 km from the true target). PHC-

pack was used for Scenario 2, as it is easier to par-

allelize in Matlab. Bertini was used for the other two

scenarios. When using Bertini, the options Security-
MaxNorm, EndpointFiniteThreshold and PathTrun-
cationThreshold were all set to 109 to improve relia-
bility and FinalTol was set to 10¡14.
Figure 2 shows the RMSE, NEES, and CRLB of

Scenario 1. Bertini was used as the polynomial solver

as PHCpack was found to occasionally fail. The 95%

bounds for the NEES are 0.787 and 1.239 (based on the

inverse cumulative distribution function [CDF] of the

chi-squared distribution with 150 degrees of freedom).

Averaging the MSE over all of the cells in the plot and

then taking the square root, one gets an accuracy of

1512 m, whereas averaging the trace of the CRLB over

the same points and taking the square root, one gets

a bound of 1276 m, indicating that the estimates are

good, but do not quite hit the CRLB. The median of

the NEES values in all the cells is 0.9931, indicating

good covariance consistency, though the mean is 1.58.

This discrepancy is explained by two outlier points, one

having a value of 103.18 and another a value of 14.43.

The RMSE, NEES, and CRLB of Scenario 2 are

shown in Fig. 3. PHCpack was used as the polynomial

solver. The 95% bounds for the NEES are 0.890 and

1.116, which as discussed in [23] represent the solution

of the inverse CDF of the chi-squared distribution with

600 degrees of freedom evaluated at 0.025 and 0.0975
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Fig. 3. The RMSE in meters and NEES of the simulations in Scenario 2 (TDOA and range measurements) on a 15£ 15 grid shown on top
of a map after 200 Monte Carlo runs using PHCpack. Also, the square root of the trace of the CRLB (in meters, on a fine grid) is shown for

comparison to the RMSE. The yellow dots represent locations of the sensors. The NEES is generally within the 95% bounds for consistency.

The color scale on the CRLB was capped at 2£ 104 m even though it goes much higher. The RMSE is below the CRLB in some instances,

because the true likelihood is multimodel and by choosing the solution nearest the truth for analysis, we bias the estimator as seen in Figure

4. (a) RMSE. (b) NEES. (c) CRLB.

Fig. 4. The magnitude of the bias of the estimates in Scenario 2.

The bias is caused by only selecting the closest hypothesis for

comparison to the RMSE. The true distribution is multimodal and as

the modes separate, the bias becomes larger. Additionally, due to the

estimator itself not being guaranteed unbiased (due to the projection

of complex results into the real domain as in Section 7.2), the

estimator (independent of the different modes) is not completely

guaranteed to be unbiased. This complicates the analysis of the

results.

and divided by 600 (the dimensionality times the num-

ber of Monte Carlo runs). Averaging the MSE over all

of the cells in the plot and then taking the square root,

one gets an accuracy of 803 m, whereas averaging the

trace of the CRLB over the same points and taking the

square root, one gets a bound of 143,773 m, with most

of the contribution coming from the lower-left part of

the viewing region. Initially, one would have to assume

that something is wrong as the RMSE of an unbiased

estimator cannot be lower than the CRLB. However, as

seen in Fig. 4, one can see that the estimator is very

biased. The maximum bias of the estimator is 1,214 m.

This is an artifact of only choosing the best estimate

to use for the analysis, whereas the true distribution is

multimodal.

The median NEES of the estimates is 1.28, which is

slightly inconsistent, though not very much so. On the

other hand, the mean is 5,955. Again, as in Scenario 1,

this is caused by a number of outliers, in this case 13

out of the 225 grid points.

The RMSE, NEES, and CRLB of Scenario 3 are

shown in Fig. 5 . The third scenario is the most difficult:

received frequency-only localization. This is a problem

that is subject to finite-precision errors due to the num-

ber of digits that must be carried in frequency mea-

surements that go into frequency ratios. This is also the

slowest scenario for the multivariate polynomial solvers.

A single solution of the polynomial system without any

type of threading/parallelization takes about 1.25 s in

PHCpack and 64 s in Bertini.

Despite the difficulty of the problem and the slow

run times of the solvers, one can see in Fig. 5 that

over much of the region, estimates better than 10 km

accuracy are possible. This suggests that with additional

refinement and optimization, one should be able to

obtain a usable estimation routine.

7.4. Equations for Dynamic Estimation

We provide equations for different measurement

types when estimating the state of a target using non-

simultaneous measurement. These measurements will

typically consist of position and velocity components,

though other components can be included as well. The

state is denoted by x.

Due to the number of terms present, the equations

are written in vector form rather than expanded into

individual terms as in the previous section. It is noted

how manipulations of the equations might induce false

solutions that must be discarded.

7.4.1. TDOA Measurements: For non-simultaneous

TDOA measurements, the measurement equation is es-

sentially the same as in (68), except the state x must be
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Fig. 5. The RMSE in meters and NEES of the simulations in Scenario 3 (only frequency measurements—unknown carrier frequency) on a

15£ 15 grid shown on top of a map after 50 Monte Carlo runs using PHCpack, which did fail on a single Monte Carlo run. On a few test
points, Bertini was much slower, but also performed better. Also, the square root of the trace of the CRLB (in meters, on a fine grid) is

shown for comparison to the RMSE. Color bars in all three plots are clipped. Though the RMSE is often less than 10 km, possibly providing

usable estimates, it is worse than the CRLB and there are often bad estimates. However, it is the first instance of frequency-only track

initiation in the literature when the transmission frequency is completely unknown to the receivers. Using a better polynomial solver along

with higher-order cubature points is expected to improve performance. (a) RMSE. (b) NEES. (c) CRLB.

used in the equations, taking into account the propaga-

tion of the state to the time of the measurement. Using

the notation of Section 2, this is

TDOA=
1

c
(kFhx¡ l1k¡kFht¡ l2k): (103)

The same simplifications can be performed as in Section

7.3.1, except in this case y= Fhx¡u. This means that
(79) becomes

0 = ((Fhx¡u)0v)2¡ ±2((Fhx¡u)0(Fhx¡u) + kvk2)
+ ±4 (104)

0 = (x0F0hv¡u0v)2¡ ±2x0F0hFhx+2±2u0Fhx¡ ±2kuk2

¡ ±2kvk2 + ±4 (105)

0 = (x0F0hv)
2¡2(x0F0hv)(u0v)¡ ±2x0F0hFhx

+2±2u0Fhx¡ ±2kuk2¡ ±2kvk2 + ±4 + (u0v)2:
(106)

Again, as in Section 7.3.1, the squaring involved in

manipulating the equations can add extra solutions that

must be eliminated.

7.4.2. Bistatic Range Measurements: Including the ef-

fects of non-simultaneous measurement times, the range

measurement equation is as in (82):

r = kFhx¡ l1k+ kFhx¡ l1k: (107)

As with non-simultaneous TDOA measurements, the

non-simultaneous range measurements are the same as

in Section 7.3.2 except y= Fhx¡u. The final equation
thus is thus (106), where it is noted that ± = r=2 unlike

in the TDOA case which includes scaling with c.

7.4.3. DOA Measurements: Given u¡ v components
forming a DOA measurement, the measurement equa-

tion of (11) is

uuv =
1

kFhx¡ lk
Mu(Fx¡ l): (108)

As in the previous sections, various manipulations and

squaring can eliminate the non-polynomial terms. Here,

we use a Hadamard product (element-by-element mul-

tiplication) via the binary operator ± to help eliminate
the square root term:

uuvkFhx¡ lk=Mu(Fx¡ l) (109)

uuv ±uuv(Fx¡ l)0(Fx¡ l) = (MuFx¡Mul)

± (MuFx¡Mul): (110)

The final two equations are expressed in vector form as

0= (uuv ±uuv)x0F0Fx¡ (MuFx) ± (MuFx)

¡2(uuv ±uuv)x0F0l+2(MuFx) ± (Mul)

+ (uuv ±uuv)klk2¡ (Mul) ± (Mul): (111)

8. MAXIMUM-LIKELIHOOD/LEAST-SQUARES TRACK
INITIATION

Unlike in Section 7, the case where the measure-

ment function Z= h(x) is not bijective is considered.

This can either occur if not enough measurements are

available for the target to be observable (an instance

that is not considered here) or if extra (redundant) mea-

surements are given. For example, two simultaneous

non-collocated bistatic range and DOA measurements

offer more degrees of freedom than are necessary to

uniquely specify the target position. In such an instance,

we would like to find the ML/LS estimate.

The likelihood of the measurements is assumed

Gaussian distributed, NfZ; Ẑ,Rg in the local coordinate
system of the receiver. As is most common, we shall as-

sume that the different measurements are independent,

though this only affects the indexation used below and

not the final solution. Let ẑi denote the ith measurement

and Ri the covariance matrix associated with the ith
measurement. Thus, the ith measurement is distributed

Nfz; ẑi,Rig. The joint PDF of the measurements is the
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product of the individual independent distributions. The

ith distribution conditional distribution of x is

p(x j ẑi) = j2¼Rij¡1=2e¡(1=2)(hi(x)¡ẑi)
0R¡1
i
(hi(x)¡ẑi) (112)

where zi = hi(x) is the transformation of x from the

state domain into the measurement domain of the ith

measurement. This transformation is assumed to be

unique. The total likelihood for N measurements is

p(x j ẑi) =
nY
i=1

p(x j ẑi): (113)

To obtain the ML estimate, we can take the logarithm

of the likelihood, discard constant terms and flip the

sign of the result to get the following LS optimization

problem in terms of the sum of Mahalanobis distances

x̂ML = argminx

NX
i=1

(hi(x)¡ ẑi)0R¡1i (hi(x)¡ ẑi): (114)

The minimum of the right-hand side of the cost function

is at a point where the gradient with respect to x is

zero. This leads to the equation for the ith component of

the gradient, which corresponds to the partial derivative

with respect to the ith component of x to be

0 =

NX
i=1

(hi(x)¡ z)0R¡1i
μ
@

@xi
hi(x)

0
¶
: (115)

If hi(x) is a polynomial, then all N equations (115) rep-

resent a system of multivariate polynomials. In Section

2, it is shown how common seemingly non-polynomial

measurement equations, such as range and DOA, can

be transformed into polynomials by adding additional

variables and equations to the system.

However, the polynomial systems arising from these

types of LS problems are much more difficult than

those arising from simple measurement conversion as in

Section 7. This can be demonstrated just by considering

the use of range-only measurements.

One term in the sum in (114) for a bistatic range-

only measurement between Sensors i and j, designated

as Ci,j , when estimating a full target state is given by

Ci,j =
1

¾2r
(rM ¡kFhx¡ lik¡kFhx¡ ljk)2 (116)

where ¾2r is the variance of the measurement. The

gradient with respect to the elements of x is

rxCi,j =¡
2

¾2r
(rM ¡kFhx¡ lik¡kFhx¡ ljk)

¢
Ã
F0hFhx¡F0hli
kFhx¡ lik

+
F0hFhx¡F0hlj
kFhx¡ ljk

!
:

(117)

Introducing the additional equations in terms of ri, rj , r̃i
and r̃j , one gets

r2i ¡kFhx¡ lik2 = 0 (118)

r2j ¡kFhx¡ ljk2 = 0 (119)

r̃iri¡ 1 = 0 (120)

r̃jrj ¡ 1 = 0 (121)

and one can write (117) as

rxCi,j =¡
2

¾2r
((F0hFhx¡F0hlj)(r̃j(rM ¡ ri)¡ 1)

+ (F0hFhx¡F0hli)(r̃i(rM ¡ rj)¡ 1)) (122)

which is a set of simultaneous multivariate polyno-

mial equations. of order three. For a simple localization

problem, where the target state only consists of posi-

tion components in 3D, the gradient (122) represents

three equations plus an additional two to four equations

depending on whether previous measurements share a

common transmitter or receiver in the bistatic path.

For the worst-case scenario, where each measurement

takes a different bistatic path without any common re-

ceivers or transmitters, there is a total of three third-

order equations and six second order equations lead-

ing to a Bézout’s number of 1728. In contrast, using

the measurement-conversion approach of Section 7.3.2,

one simply has three second-order equations, leading to

a Bézout’s number of 6. Due to the high computational

complexity of the ML/LS method of target-state estima-

tion, detailed examples are not considered here, though

a number are presented in [66].

As an example of the difference in speed of the

measurement-conversion approach versus the LS

method, in [66] a TDOA localization problem was given

with

l1 =

264¡9:088503107295082¡3:592899795686701
11:379375304771440

375 (123)

l2 =

264¡8:73707188457857212:184039601570143

0:461252502515841

375 (124)

l3 =

264¡10:997619107424038¡0:372458566000544
10:193804421541278

375 (125)

l4 =

264¡12:099924003565013¡2:341482530709476
8:550397573582972

375 (126)
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where ½i,j = TDOAi,j=c is the range difference between

Sensor i and Sensor j and

½1,2 =¡6:634727887894795 (127)

½1,3 =¡1:197770770524833 (128)

½1,4 =¡2:553916244191934: (129)

That is, they use the LS estimation method even though

they could use the measurement-conversion method of

Section 7.3.1. They reported that it took about 3 s for

their program, HOM4PS-2 to solve the problem on

a computer with a 3 GHz Intel Core 2 Duo proces-

sor. However, when we solved the same polynomial

system using the measurement-conversion method of

Section 7.3.1 with the PHCpack solver in black-box

mode as called from Matlab without parallelization on a

2.93 GHz Intel Xeon processor, the problem was solved

in approximately 0.04 s, not counting the time it takes

to formulate the problem within Matlab. That is a 7.5-

fold improvement in speed just by reformulating the

problem, even though a purportedly slower polynomial

solver was used.

9. CONCLUSIONS

Track initiation utilizing all common (range, DOA,

TDOA, range-rate, frequency-ratio) refraction-free (or

corrected) measurement types from one or more sensors

can be performed utilizing simultaneous multivariate

polynomial solving algorithms. Though many authors

focus on directly solving ML/LS problems, as described

in Section 8, the systems of multivariate polynomials re-

sulting from such an approach have very high Bézout’s

numbers and thus are very slow to solve. This paper

presents a less computationally demanding approach via

the heuristic measurement-conversion algorithm of Sec-

tion 7, which with the use of cubature integration can

produce covariance matrices that are often consistent,

barring occasional outliers. Previous polynomial-based

techniques have not addressed as wide a variety of prob-

lems and have overlooked the computation of covari-

ance matrices, which are essential in multivariate track

initiation.

Accurate measurement conversion for track initia-

tion in 3D was demonstrated in three simulation sce-

narios that do not appear to exist in the literature. These

are

1) The use of two bistatic range measurements and

one emitter range-rate measurement by two moving

sensors to localize a stationary emitter.

2) The use of two TDOA measurements and one

bistatic range measurement to localize a cooperative

target with both active and passive measurements.

3) The use of four frequency measurements by four

moving sensors to localize a non-cooperative station-

ary emitter.

Multivariate polynomial expressions for equations

needed for full target-state estimation (position and

velocity) using a number of dynamic scenarios were

also provided. It is worth noting that despite occasional

outliers for covariance matrix estimates, the algorithms

never failed when using Bertini as the multivariate

polynomial solver. Thus, the approach in this paper is

significantly better suited for use in real systems than the

more general heuristic probability-1 homotopy method

of [26], which occasionally failed in simulation.

Whereas multivariate polynomial solvers have tradi-

tionally been primarily of interest to the robotics com-

munity, it is clear that such algorithms have wide ap-

plication for active and passive target-track initiation.

With optimization and parallelization of such methods,

it is likely that target-track initiation with generic com-

binations of multistatic measurement types can be per-

formed in real time at significantly lower hardware cost

than using brute-force techniques.
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APPENDIX A SOLVING A BIVARIATE PAIR OF
SECOND-DEGREE EQUATIONS

Here, we present a direct method of solving simulta-

neous second-order bivariate equations. Though faster,

it is often slightly less numerically accurate than using

a homotopy-based algorithm for solving for the roots of

such a system.

Given a general pair of second-order bivariate poly-

nomials,

a6 + a5x+ a4x
2 + a3y+ a2xy+ a1y

2 = 0 (130)

b6 +b5x+ b4x
2 + b3y+ b2xy+ b1y

2 = 0, (131)

one can eliminate x to get a univariate equation of the

form

c0 + c1y+ c2y
2 + c3y

3 + c4y
4 = 0 (132)

having coefficients (pay attention to parentheses)

c0 = a
2
6b
2
4 + b6(a

2
5b4¡ a4a5b5 + a24b6)

+ a6(¡a5b4b5 + a4(b25 ¡ 2b4b6)) (133)

c1 = a
2
5b3b4 + a6b4(2a3b4¡ a2b5) +2a24b3b6
¡ a5(a6b2b4 + a4b3b5 + a3b4b5 + a4b2b6¡ 2a2b4b6)
+ a4(¡2a6b3b4 +2a6b2b5 + a3b25 ¡ 2a3b4b6¡ a2b5b6)

(134)
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c2 = b4(a
2
5b1 + (a

2
3 +2a1a6)b4¡ a5(a3b2¡ 2a2b3 + a1b5)

¡ a2(a6b2 + a3b5) + a22b6) + a24(b23 +2b1b6)
¡ a4(¡a6b22 + a5b2b3 +2a6b1b4 +2a3b3b4 + a5b1b5
¡ 2a3b2b5 + a2b3b5¡ a1b25 + a2b2b6 +2a1b4b6)

(135)

c3 = 2a
2
4b1b3¡ a4(a5b1b2¡ a3b22 + a2b2b3 +2a3b1b4

+2a1b3b4 + a2b1b5¡ 2a1b2b5)
+ b4(¡a1a5b2 + a22b3 +2a1a3b4
+ a2(2a5b1¡ a3b2¡ a1b5)) (136)

c4 = a
2
4b
2
1 + b4(a

2
2b1¡ a1a2b2 + a21b4)

+ a4(¡a2b1b2 + a1(b22 ¡ 2b1b4)): (137)

Though explicit formulae are available for solving

fourth-order polynomial equations, one would expect

many of them to be numerically unstable, because, as is

shown in [36, Ch. 24.3.3], the explicit solution of cubic

polynomial equations is numerically unstable. For sim-

plicity, we solve the equation using the roots function in

Matlab, which finds the eigenvalues of a matrix whose

eigenvalues coincide with the roots of the equation.

Given y, one can substitute back into (130) to get x

via the quadratic formula:

x=
¡a5¡ a2y§

p
(a5 + a2y)

2¡ 4a4(a6 + a3y+ a1y2)
2a4

:

(138)

Substituting into (131), one similarly gets

x=
¡b5¡ b2y§

p
(b5 + b2y)

2¡ 4b4(b6 + b3y+ b1y2)
2b4

:

(139)

The correct value of x to use with y solved from (132)

is the one that is common to both equations. With

finite precision, just choose the pair of solutions that

are closest and average them. Note, however, that such

a method will fail to find all roots if there are repeated

roots in y. For example, if (1,2) and (2,2) were both

solutions, then only one of them would be found, even

if it is known that the root in y is repeated, because both

y values would map to the same x value with the above

method. Thus, if two y values are equal, there must be

a special case where the repeated one takes the second

closest pair of solutions.

As an example, consider the system of equations

0 =¡x2 +2xy+ y2 +5x¡ 3y¡ 4 (140)

0 = x2 +2xy+ y2¡ 1: (141)

The exact roots are (4,¡5), (1,0), (3,¡2), (0,¡1). Us-
ing the above method in Matlab (which uses double-

precision arithmetic), one obtains the correct solutions,

where the greatest magnitude difference in any com-

ponent from the true value is about 7:1£ 10¡15. When
solving using PHCpack, which unlike Bertini does not

offer the option of extended precision arithmetic, the

greatest magnitude difference in any component from

the true value is about 2:8£ 10¡17.

APPENDIX B THE CUBATURE POINTS USED IN THE
SIMULATIONS

As mentioned in Section 3, cubature points and

weights are needed to efficiently numerically evaluate

integrals involving polynomials to a high degree. Here,

we choose to use the cubature points of Er
2

n 5-3 on page

317 of [65]. The points scaled for a standard normal

distribution are also used in [23]. Here, we reproduce

the listing of the points from [23] for the standard

normal distribution:

Fifth-Order Cubature Points and Weights

Weight (!i) Point (»i)

4

(d+2)2
[§a]

(d¡2)2
2d(d+2)2

(§b,§b, : : : ,§b)

The points are given as shown above, where

a=

r
d+2

2
b =

r
d+2

d¡ 2 , (142)

and d is the dimensionality of the points generated. The

§ indicates that all possible combinations of negative

and positive elements should be used. The bracket no-

tation for the first set of points indicates that all pos-

sible vectors with that single nonzero element should

be generated. There are 2d points of the first type and

2d points of the second type. These points can be used

for integrals involving an arbitrary Gaussian weighting

with d > 2.

To use the above points and weights with a normal

distribution having mean ¹ and covariance matrix §,
each of the points should be transformed using

»transformedi = ¹+§1=2»i (143)

where the square root of the covariance matrix is taken

to be a lower-triangular Cholesky decomposition of the

matrix rather than a true square root (the chol command
in Matlab with the ‘lower’ option).
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Dynamic asset allocation in financial investment with an optimal

equity growth principle based on mutual information in communi-

cation theory is considered. Specifically, the asset allocation formula

using Kelly’s criteria derived from channel capacity of a binary

symmetric channel is developed. The goal is to determine the opti-

mal fraction of equity to be invested between a risk-free asset and a

risky asset in a repeated trading activity. The analytical operating

curve to predict trading performance is provided. An extension for

dynamic multi-asset allocation is also presented. An out-of-sample

simulation based on historical market data demonstrates the effec-

tiveness of the methodology.
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1. INTRODUCTION

In modern financial investment world, dynamic asset

allocation allows frequent rebalancing of portfolio over

time in order to achieve certain objectives. Investors

have to sift through a large amount of data in order

to analyze the market behavior, predict future market

directions, and make sound trading decisions. Given the

complexity of the markets and the high stake of trading

decisions, financial engineering and risk analysis have

emerged as an important research field [1—2].

In particular, one of the critical questions is how to

allocate the capital optimally among various correlated

risky assets in order to achieve the highest overall

return under a defined risk level. This type of portfolio

management has become one of the most important

elements in practical investment management. The main

goal of asset allocation is to develop a long-term risk

and return expectation curve for the portfolio and to

establish an operating point for each individual investor

to balance between the expected return and risk based

on his or her own preferences. Traditionally, the process

of asset allocation is to identify fundamentally different

core asset classes (stocks, bonds, real estate, commodity,

etc.) and decide what portion of the capital to invest

in each class in order to compose an overall balanced

portfolio.

To model and analyze financial data, many math-

ematical and statistical methods have been applied

for quantitative analysis, such as time series analy-

sis, regression analysis, machine learning methods, and

Monte Carlo simulations [1—2]. In the financial mar-

kets, there are two main traditional approaches for mar-

ket analysis and stock selection. Fundamental analysis

looks into economic factors such as financial statements

and market competitiveness to make subjective judg-

ments on the qualitative relationship between equity

values and expected market returns, whereas technical

analysis uses quantitative historical data of a security

such as trading patterns and volume to predict its future

price movement [3—8].

Alternative to these traditional approaches, mod-

ern quantitative analysis applies complex mathematical

models to analyze portfolio risk and develop algorithm

trading and arbitraging strategies [2]. This paper adopts

the concept of the classical modern portfolio theory

(MPT) [9—11], which provides a foundation for explicit

risk-reward trade-off analysis. In MPT, a portfolio is

consisted of a set of correlated assets each with its own

expected return (defined as annual average percentage

return) and risk (defined as equity return standard de-

viation on an annual basis). The goal of this “mean-

variance” (MV) approach is to allocate equity among

the assets optimally so that the expected portfolio re-

turn can be maximized given a defined risk level or

vice versa (the overall portfolio risk can be minimized

given a desired return level). MPT develops a set of opti-

mal asset allocation policies by optimizing the allocation
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among available assets subject to risk constraints. These

policies form an “efficient frontier” which allows the

decision maker to select his/her own operating point on

the curve to trade off between risk and return. When an

asset is selected with a certain allocation, it implies that

specific trading actions for the underlined asset would

be taken.

Traditionally MPT-based performance prediction is

made based on some idealized dynamic model for the

volatility of the underlying asset [11—12], which does

not work well in real world. Another approach de-

veloped originally by Kelly [13] shows that the opti-

mal long run asset allocation strategy can be obtained

by maximizing the expected logarithm of the portfo-

lio value over each time step. This strategy has been

proven in different ways [14—15] and has been success-

fully applied in financial markets [16—17]. An explicit

connection between Kelly’s criterion and the informa-

tion theory has also been discussed in [18].

In real world financial market, characteristics of

asset returns change rapidly over time such that an

investor needs to develop a dynamic asset alloca-

tion/rebalancing strategy adaptive to the market envi-

ronment [5, 19]. In portfolio rebalancing, when an as-

set is selected with a certain allocation, it implies that

specific trading actions for the underlined asset would

be taken. Typically, equity-trading strategies are simple

buy or sell actions, which are often used for short-term

trading.

To account for the complex dynamics of modern

market behavior, this paper presents an approach for

performance prediction and evaluation by incorporat-

ing historical market data in simulated trading. Specif-

ically, the equity index futures and options (S&P 500)

data from 1990 to 2016 are used to test the allocation

strategy and trading decisions. In addition, instead of

defining risk using volatility as in MPT, a different risk

metric based on probability of ruin or “draw down” is

computed to derive the corresponding efficient frontier.

In this paper, we advocate the development of op-

timal asset allocation strategies using Kelly’s formula

that was derived based on mutual information of a bi-

nary symmetric channel in communication theory. For

clear exposition, we start with a simple trading scenario

where the entire equity is allocated between two assets:

the risk-free asset (money market or fixed income) and

a risky equity asset (S&P index futures and options). In

fact, the trading choices examined here are intentionally

simplified so that we can clearly illustrate the analytical

performance prediction with tradeoffs between risk and

return.

The goal is to identify the optimal fraction of the

equity to be allocated for trading in order to achieve the

highest long-term return given a risk constraint. The re-

sults based on extended simulated trading with index

options are compared with the analytical performance

prediction. In the trading process, in order to obtain a

more realistic options price, we develop an analytical

model based on “implied volatility”1 and adjust the op-

tion price accordingly. The results have been validated

against the historical market data and proved to be rea-

sonably accurate.

The preliminary version of this paper was presented

in the 19th International Conference on Information Fu-

sion [20]. We have thoroughly re-organized and revised

the original paper with additional contributions. In par-

ticular, we develop a dynamic asset allocation strategy

for portfolio with multiple correlated assets. Similar to

Kelly’s approach for single asset, the goal is to maxi-

mize the long-run portfolio growth rate over many in-

vestment cycles. In addition, we conduct extensive out-

of-sample simulations and show that the resulting strat-

egy outperforms the traditional MV approach in ex-

pected return but with higher volatility. This strategy

can be considered as an alternative approach for the

investor to trade off between risk and reward.

The paper is organized as follows. Section 2 de-

scribes the optimal asset allocation methodologies and

the implications on risk and return. Section 3 presents

the selected trading strategies and the options pricing

model. Section 4 summarizes the simulation results and

the performance analysis for single asset allocation.

Section 5 presents Kelly’s approach as a multi-asset dy-

namic allocation strategy and compares its performance

with a naïve strategy and MV tangency portfolio. Con-

clusions and future research are presented in Section 6.

2. OPTIMAL ASSET ALLOCATION
The goal of constructing an optimal portfolio is

to maximize the investor’s return with a given risk

level. Consider a portfolio consisting of multiple assets.

The log return of each asset in the portfolio over an

investment period is defined as ´i(k) = log[Ai,k=Ai,k¡1]
where Ai,k is the value of the asset i at time k. Assume

that the single period log returns are independent and

normally distributed. Then the return of the asset,

Ri(k) = (Ai,k ¡Ai,k¡1)=Ai,k¡1 = e´i(k)¡ 1 (1)

is log-normally distributed.

2.1. Mean-Variance Approach
In modern portfolio theory (MPT) [21—22], a port-

folio consists of a set of correlated assets each with its

own expected return (defined as annualized percentage

return) and risk (defined as equity standard deviation

on an annual basis). For example, let R= [R1 ¢ ¢ ¢RN]T be
the return ofN correlated assets, E(R) = ¹= [¹1 ¢ ¢ ¢¹N]T
be their expected return over an investment period,

and § be the covariance matrix of R. Denote ! =
[!1 ¢ ¢ ¢!N]T as the asset weights in the portfolio such
that

PN
i=1!i = 1

T! = 1. The expected portfolio return is

therefore
PN

i=1!i¹i = !
T¹ and the corresponding vari-

ance is ¾2P = !
T§!.

1The volatility of the option implied by the market price with a the-

oretical option value model.
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Fig. 1. A Binary Symmetric Channel

Typical investment goal is to allocate capitals among

the assets optimally so that the expected portfolio re-

turn can be maximized given a defined risk level; or

alternatively, the overall portfolio risk can be minimized

given a desired return level. For example, if there is no

risk-free asset, a typical asset allocation problem can

be formulated as the following constrained optimization

problem:

Min! !
T§! subject to !T1= 1 and !T¹= ¹P (2)

With this “mean-variance” (MV) approach, an efficient

frontier can be constructed where for each return level a

portfolio can be derived with minimum risk (variance).

2.2. Binary Symmetric Channel and the Kelly Criteria

In communication theory, a binary symmetric chan-

nel (BSC) is defined in Figure 1, where the binary input

experiences a cross-over probability (probability of er-

ror) p to yield the binary output. In BSC, the channel

capacity is defined by

CBSC = 1¡H(p) = 1+p log(p) + (1¡p) log(1¡p)
(3)

which is equivalent to the maximum mutual information.
The Kelly criterion was originally developed [13]

based on the channel capacity concept in communica-

tion theory. Start with a single asset portfolio, the spe-

cific question addressed was how to allocate the asset

optimally for an investment/betting opportunity in order

to maximize the expected long-term equity growth rate.

The only requirement is that the investment opportunity

needs to have a positive expected return (i.e., with a

winning edge).

Consider a specific investment (bet). Let p represent

its winning probability, b represent the expected return

per unit bet for a winning trade, f represent the fraction

of the equity allocated to the investment (the remaining

1¡f sits on the side line). The number of winning

and losing trades over n bets is denoted by W and

L respectively, with W+L= n. Apparently, W and L

approach pn and (1¡p)n respectively when n is large.
Let X0 and Xn denote the initial and the final amount

of the equity after n bets, where Xn=X0 is called the

terminal wealth ratio (TWR). Then the expected log

growth rate of the equity per trade can be written as [20],

g(f) = E

(
log

·
Xn
X0

¸1=n)

= E

½
W

n
log(1+ bf) +

L

n
log(1¡f)

¾
(4)

It can be easily shown that the optimal f that maximize

g(f) is,

f¤ =
bp¡ (1¡p)

b
(5)

which is called the Kelly’s formula. Specifically, when

b = 1, f¤ = 2p¡ 1, Equation (4) converts to (3), the
BSC channel capacity or the maximum mutual informa-
tion [14—15]. In other words, with the optimal fraction
allocation based on the Kelly’s formula (5), the expected

log growth rate of the equity per trade with a winning

probability p converges to the maximum mutual infor-

mation of a binary symmetric channel.

2.3. Return and Risk Trade-off

Equation (4) shows that the log equity of a portfolio

is expected to grow at a rate of g(f) on a per-trade

basis. For example, if b = 1, p= 0:6, then the optimal

Kelly’s fraction is f¤ = 0:2 and the highest expected
gross return per unit bet per trade is bp¡ (1¡p) = 0:2.
The corresponding expected growth rate of the equity

is R = eg(f
¤)¡ 1 = 0:02 on a per-trade basis. In other

words, with the optimal Kelly criterion, the equity is

expected to grow on an average of 2% after each trade

if 20% of the equity is allocated for each trade where the

amount of potential gain or loss are the same for each

trade and the winning probability of each trade is 0.6.

While the Kelly’s formula provides an optimal allo-

cation for each trade to maximize the long-term TWR,

the potential risk could also be high. Traditionally, trad-

ing risk is assessed by the volatility (STD) of the equity

return [9]. However, it has been recognized that a more

appropriate measure of risk for an investment is draw

down (DD) or probability of ruin. Draw down is de-

fined as the percentage of the equity loss from a peak

to a subsequent bottom within an investment cycle and

the probability of ruin is defined as the probability of

losing a certain percentage of the equity at the end of

an investment cycle. While return and risk go against

each other, it is obviously desirable for an investment

strategy to achieve a high return with a limited draw

down or low probability of ruin.

It has been shown that with Kelly’s investment strat-

egy, the probability of ruin at the terminal stage (having

a draw down of d = 1¡ d̄) after an extensive trading
period can be approximated by [15]

Pf(Xn=X0)· d̄g= d̄(2=c)¡1 (6)

where the allocation for each trade is f = cf¤ with 0<
c < 2. For example, with f¤ = 0:5, c= 1, and d̄ = 0:33,
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Fig. 2. Risk and Return Trade-off as a function of Investment

Fraction

Pf(Xn=X0)· 0:33g= 0:33 when nÀ 1. Namely, there

is a 33% chance that the terminal equity after a large

number of trades is less than 33% (a draw down of

more than 67%) of the initial equity if 50% (optimal

Kelly fraction) of the equity was allocated for each

trade. On the other hand, if c= 0:5, f = 0:5f¤ = 0:25
(half of Kelly), then the probability of ruin reduces to

Pf(Xn=X0)· 0:33g= 0:333 ¼ 0:036.
For example, with p= 0:75, b = 1, and f¤ = 0:5,

Figure 2 compares the normalized rate of return to the

risk of ruin over the range of fraction f from 0 to

1 for equity allocation in each trade [20]. As can be

seen from the figure, when the allocation follows the

Kelly’s suggestion (namely, f = 0:5), the rate of return

is at maximum (0.13) while the probability of ruin (with

d̄ = 0:33), is about 0.33. When half of Kelly (0.25) is

applied, the rate of return lowers to 0.095 while the risk

of ruin reduces to under 0.04. This also suggests that a

systematic approach can be developed for an investment

strategy where a system operating curve (SOC) can

be established to predict risk and reward performance

at different operating points and ultimately allow an

investor to choose a specific point to fit his/her own

risk preference.

To illustrate, Figure 3 shows the corresponding SOC

curve derived from Figure 2 [20]. Each point on the

curve represents an operating point with a specific

fraction of equity being allocated for each trade, where

the peak of the curve corresponds to the suggested

optimal Kelly’s fraction (50%). The left portion of

the curve represents the operating points where higher

return can be achieved by taking a higher risk. They

can be considered as the “investment efficient frontier”

where investors could pick and choose an operating

point based on their own preference. It can be seen

from the figure that beyond the efficient frontier, taking

higher risk will negatively reduce the expected rate

of return. This is due to the “over aggressiveness” by

Fig. 3. System Operating Curve (SOC) for Return vs. Risk

investing more than the optimal Kelly’s fraction on each

trade and is clearly not desirable.

3. TRADING STRATEGIES WITH SINGLE ASSET
ALLOCATION
Having explained the basic principle of Kelly’s for-

mula, this section demonstrates how it can be applied for

optimal allocation with a single asset in practice where

a number of statistical characteristics of the trading as-

set need to be acquired first. Specifically, the winning

probability, the average gain of winning trades, and the

average loss of the losing trades need to be estimated.

3.1. Trading S&P Futures and Options

S&P futures and their options are selected as the

asset for the portfolio. They are traded in many financial

markets, including the Chicago Mercantile Exchange

(CME) [23] and the CME electronic GLOBEX platform

[24]. They are one of the most liquid equity index

products traded in the world. The two most commonly

traded options are the plain vanilla put and call options.2

Both S&P futures and the corresponding options are

extremely liquid and popular.

One could long or short the futures contracts or

the option contracts depending on the goals of his/her

trading strategies. By writing (selling) the put options

when the market is expected to go higher would result

in the options expiring worthlessly and therefore the

seller could keep the collected premium. Similarly, the

seller could keep the premium collected by writing the

call options if the market does not move up beyond the

strike price. However, while the potential loss of buying

2A put option gives the owner of the option the right, but not the

obligation, to sell an asset (the underlying) at a specific price (the

strike), by a pre-determined date (the expiration or maturity date) to

the seller (or “writer”) of the option. A call option gives the buyer of

the option the right, but not the obligation, to buy an agreed quantity

of the underlying from the seller of the option before the expiration

date at a given strike price.
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Fig. 4. Implied Volatility Index and the Implied Volatility Smile

options is limited by the premium paid, shorting options

could be very risky because the loss is only limited by

the market actions. For example, shorting a call option

while the market continues moving up could result in a

severe loss.

3.2. Options Pricing Model

To derive the fair option price, a common practice is

to assume that the underlying asset follows a certain

dynamic model such as geometric Brownian motion

(GBM) with constant drift and volatility, described by

the following stochastic differential equation:

dS = ¹Sdt+¾SdW (7)

where S is the asset price, ¹ is the drift parameter, ¾ is

the volatility, and W is a Wiener process or Brownian

motion. With the assumed model, a closed-form options

pricing model has been developed as a function of the

current asset price, the option strike price, the time to

maturity, and the asset volatility [12, 25]. This popu-

lar Back-Scholes-Merton (BSM) option pricing model

developed in 1973 had revolutionized the derivative in-

dustry for the last several decades.

As mentioned above, an important assumption be-

hind the derivation of the BSM pricing model is that the

price of the underlying asset follows a GBMmodel with

constant drift and volatility. However, since the stock

market crash of October 1987, the volatility of stock

index options implied by the market prices has been

observed to be “skewed” in the sense that the volatility

became a function of strike and expiration instead of

remaining a constant. This phenomenon, referred to as

the “volatility smile,” has since spread to other markets

[26]. Because the original BSMmodel can no longer ac-

count for the smile, investors have to use more complex

models to value and hedge their options. In this paper,

for the purpose of evaluating the trading performance,

we will emulate the option prices subject to the smile

phenomenon by utilizing the historical implied volatility

index (VIX) data and approximate the volatility smile

with a quadratic function of moneyness3 [25]. Figure 4

shows the historical VIX data from 1990 to 2015 and

the corresponding volatility smile based on normalized

strike price used in the simulated trading.

3.3. Trading Process
We employ a simple trading strategy, called “stran-

gle,” by simultaneously writing both out-of-money4

(OTM) weekly put and call options. With an expiration

cycle of 4 weeks, the options are written repeatedly on

a weekly basis. The trading equity is allocated over the

4 weeks period where at the end of each week, a por-

tion of the options expires and a new set of options is

initiated/written. We use historical end-of-the-day S&P

settlement prices and the options pricing model (Section

3.2) to emulate the filled-prices of the transactions. We

assume no transaction cost and no slippage. Note that

since the strategy does not produce substantial amount

of trading as will be clearly described in the next Sec-

tion, this assumption does not affect the validity of re-

sults.

4. TEST AND SIMULATION
In order to estimate the optimal Kelly’s fraction, we

first apply the “strangle” strategy with various parame-

ters such as different out of the money (OTM) strikes

and maturity dates to test the performance. Specifically,

for each set of parameters, the winning probability, the

average gain of winning trades, and the average loss of

3Moneyness is the relative position of the current price of an under-

lying asset with respect to the strike price of derivative.
4The strike of a call option is above the market price or the strike of

a put option is below the market price of the underlying asset.
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Fig. 5. S&P Index (1990—2015)

the losing trades are computed. The results are then used

to obtain the optimal Kelly’s fraction based on Eqn. (5).

The resulting fraction is then applied to allocate equity

in the simulated trading process.

4.1. Options Writing Strategy

With the strangle strategy, we simultaneously short

the OTM S&P put and call options regardless of the

market conditions. We will keep the option positions

open until expiration before repeating the same process

again in the next trading cycle. To compare the perfor-

mance, we vary the strike prices of the options from

at-the-money (ATM) to 6% OTM with a 1% increment.

Note that the options could expire OTM, and there-

fore become worthless. In that case, the premium col-

lected by the seller becomes the profit and the positions

will be closed automatically by the exchange. On the

other hand, if the options expire in the money (ITM),

the options will have to be settled in cash in the sense

that the sellers have to pay the market price at the expi-

ration time to “buy” back the options they sold. In that

case, if the market price deviates more than the premium

collected, the seller will incur a loss.

4.2. Simulated Trading

Figure 5 shows the historical S&P data from 1990

to 2015. Since there are only limited historical options

prices with specific strikes and expirations available

in the public domain, we simulate the options filled-

prices based on the model described earlier. Specifically,

options prices are obtained by utilizing the BSM model

given the S&P price, risk-free interest rate, volatility,

and an expiration time of 4 trading weeks after writing

the options. The S&P prices are based on historical data

and served as the ATM strike prices. Risk-free interest

is based on historical 3-month LIBOR data [27] and

volatility is based on the historical implied volatility

index (VIX).

Fig. 6. Options Writing with 6% OTM Strangle (1990—2005)

However, as mentioned earlier, it is well known

that true volatility is not a constant but a function of

strike and expiration (volatility smile and surface, see

Figure 4) [28]. To obtain a more realistic options price,

we develop a smile model and adjust the option price

accordingly as described in Section 3.2. The results have

been validated against the available market data and

proved to be reasonably accurate.

4.3. Performance Results
To estimate the Kelly parameters, we use 16 years

(1990—2005) of historical data to test the weekly stran-

gle options writing strategy. To be conservative, a 30%

margin5 is assumed to be required for each option con-

tract. In addition, a VIX threshold of 35 is set to avoid a

potential catastrophic loss.6 In other words, all position

will be closed when the VIX goes beyond the thresh-

old and new positions will not be written until VIX

moves below the threshold. To test the performance,

the strike prices are varied from 0% ATM to 6% OTM.

For example, Figure 6 shows that with 6% strangle writ-

ing, the option strategy produces fairly smooth equity

curve with some minor drawdowns. Note that the top

left panel of Figure 6 shows that the number of positions

drop to zero in several occasions [20]. This is due to the

VIX based closing criterion mentioned above.

The detailed resulting performances are summarized

in Figure 7. For example, with a 6% OTM strike, the

rate of winning is around 80% and the draw down is

about 24%. The average amount of winning7 is 2.2

5Margin is the amount of capital needed to initiate and maintain an

option position. Typically, for S&P options, the margin requirement

could be as low as 10% of the underlying asset value.
6The historical average of VIX is below 20.
7Note that for e-mini S&P futures market, each point corresponds

to $50.
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Fig. 7. Performance Summary–Strangle Writing (1990—2005)

Fig. 8. S&P and VIX–2006—2015

per winning trade and ¡4:2 for a losing trade. This
corresponds to a Kelly’s fraction of

f¤ =
bp¡ (1¡p)

b
=

2:2
4:2
(0:8)¡0:2
2:2=4:2

¼ 0:418: (8)

The results indicate that, based on the historical perfor-

mance, the Kelly’s formula recommends an allocation

of about 42% of the equity for each trade in order to

achieve the highest possible long-term gain. Note that

Figure 7 also shows that the average S&P annual re-

turn (Buy and hold) during the same period was less

than 9%.

We apply the Kelly criterion to test the S&P data

from 2006 to 2015. Figure 8 shows the corresponding

S&P and VIX data over the 10-year period. Note that a

42% Kelly also implies that at most 42% of the equity

can be lost in a single trade. In order to ensure that,

a stop loss needs to be in place to determine the total

number of option positions that could be written. For

example, with an initial capital of $1M, a 42% Kelly

and a $4k stop loss per contract, the maximum number

of positions is $1M¤0:42=$4k = 105.
Figure 9 shows the trading performance with a 6%

strangle and the optimal Kelly’s fraction. The option

strategy produces an average of 40+% annual return

and a draw down of around 40%. The detailed perfor-

mances are shown in Figures 10—11 and also summa-

rized in Table 1. In the table, two sets of performance

results, one with the optimal Kelly and the other with a 1
2

Kelly, are given for comparison. It can be seen from the

table that, with the optimal Kelly, the strangle strategy

generally produces much higher rate of return than the

naïve buy-and-hold (B&H) policy, at the expense of a

higher risk (DD) [20].

For example, Table 1 shows that over the 10-year

period, the B&H strategy produces an average annual

return of 5.73% with a DD of 56.24%, while a 2% OTM

strangle produces a 26.39% annual return with a DD of

74.56%. On the other hand, with a 5% OTM strangle,

the annual return reach the highest value of 44.82% with

a draw down of 50.02%. This relatively “conservative”

strategy8 produces much better return than the naïve

B&H strategy while with a smaller drawdown.

8A strangle selling strategy with higher OTM strikes is more con-

servative than the one with lower OTM strikes in the sense that it is

expected to achieve a lower rate of return with a smaller DD.
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Fig. 9. Options Writing Performance with 6% OTM Strangle and Optimal Kelly Fraction (2006—2015)

Fig. 10. Performance Summary–Strangle Writing with Optimal Kelly Fraction (2006—2015)

With 1
2
Kelly, both annual rate of return and maxi-

mum drawdown are much lower due to lower leverage

as shown in Figure 11 and Table 1. For example, with a

4% strangle, the annual rate of return reduces to 23.28%

while the draw down also drops to 30.75%. A 6% stran-

gle reduces the DD to 22.48% and an average annual

return of 21.22%. It is clear from the table that by se-

lecting different leveraged options writing policies, the

performance can be adapted to fit individual investor’s

risk aptitude.

Figure 12 shows the trade-off between risk and re-

turn with different OTM strangles and different invest-
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Fig. 11. Performance Summary–Strangle Writing with 1
2
Kelly fraction (2006—2015)

Fig. 12. Performance Summary vs. Theoretical Predictions

TABLE 1.

Performance Comparison with optimal Kelly fraction

Annual RR Max DD Annual RR Max DD

2006—2015 1 Kelly 1 Kelly 1
2
Kelly 1

2
Kelly

Buy—Hold 5.73% 56.24% 5.73% 56.24%

Strangle 0% 9.62% 86.49% 11.92% 48.44%

Strangle 1% 14.88% 83.38% 14.45% 47.10%

Strangle 2% 26.39% 74.56% 18.64% 42.86%

Strangle 3% 37.09% 66.56% 21.88% 36.30%

Strangle 4% 43.50% 58.00% 23.28% 30.75%

Strangle 5% 44.82% 50.02% 22.72% 26.82%

Strangle 6% 43.23% 42.41% 21.11% 22.48%

ment fractions [20]. The left panel of Figure 12 shows

that, for the simulated trading during the 10-year pe-

riod, the highest rate of return could be achieved with

around 4—5% OTM strangles regardless of the choice

of Kelly’s fractions. The right panel shows the theo-

retical prediction using Equations (4) and (6) based on

the probability of winning and average gain and loss

per trade obtained from the simulation results for 4%

and 5% OTM strangle options writing. As expected, the

“efficient frontier” peak at the optimal Kelly’s fraction.

With the SOC curves given in Figure 12, an operat-

ing point can be chosen to satisfy almost any desired

risk aptitude, should that be defined as drawdown or

probability of ruin. For example, an aggressive investor

might decide to employ a higher Kelly leverage ratio

and a higher OTM strike price with an expectation of

better return and an understanding of the accompanying

higher risk as indicated by the predictions.

5. MULTI-ASSET ALLOCATION

With the “mean-variance” (MV) approach described

in Section 2.1, an efficient frontier can be constructed

for multi-asset allocation where for each return level a
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Fig. 13. (a) Efficient Frontier for a Two Risky Asset Portfolio; (b) Efficient Front Edge and Tangency Portfolio

portfolio can be derived with minimum risk (variance).

For example, with two risky assets, ¹= [0:14,0:08]T

and § = diag[0:22,0:152], Figure 13 (a) shows the “ef-

ficient frontier” portfolios on a mean-STD (standard de-

viation) chart. Each optimal portfolio consists of a com-

bination of the two assets where at the top right end of

the frontier, the entire 100% of the capital is allocated

to asset 1 while at the bottom, all capital is allocated

to asset 2. Any portfolio below the return level of MVP

(minimum variance portfolio) is not considered efficient

due to its lower expected return. Therefore, an efficient

frontier is constructed from MVP to the top right of the

curve.

With the efficient frontier, an investor could choose

a portfolio on the curve depending on his/her own

risk aptitude. For example, a conservative investor may

choose a portfolio close to MVP while an aggressive

investor may choose a portfolio close to R1.
9 Note that

when risk-free asset10 is available, an “efficient front

edge” can be constructed by connecting the risk-free

asset and the tangency portfolio on the mean-variance

chart11 (see Figure 13(b) with risk-free rate rf = 0:06).

The MV tangency portfolio (MVTP) can be shown

to maximize the risk-adjusted return (Sharpe ratio12)

and is a desirable choice of optimal portfolio on the

frontier13 [9].

5.1. Kelly’s Approach

As in (2), we consider a portfolio consisting of a set

of correlated assets with weights ! = [!1 ¢ ¢ ¢!N]T such

9If short-selling or borrowing/leverage are allowed, an investor could

choose a portfolio beyond R1 where higher expected return together

with higher risk can be achieved.
10Cash or Treasuries with interest rate rf and with little or no risk.
11It’s also called the capital market line (CML).
12Sharpe ratio is the risk-adjusted return defined as (¹P ¡ rf )=¾P
13When the portfolio includes all assets in the market, the tangency

portfolio converges to the market portfolio by the equilibrium argu-

ment [11].

Fig. 14. Tangency Portfolio and the Kelly’s Portfolio

that
PN
i=1!i = 1

T!¡ 1. Then the portfolio value for the
following investment period becomes,

P(k) = P(k¡ 1)
Ã
1+

NX
i=1

!iRi(k)

!
= P(k¡ 1)(1+RP(k)) (9)

where P(k) is the portfolio value at time k and RP(k) is

the portfolio return.

According to Kelly, in order to maximize the in-

vestment growth rate in the long run, it is equivalent

to maximize the logarithm of the equity after each time

step [13, 29—30]. Therefore, to construct Kelly’s portfo-

lio, with no short selling and no leverage, it is necessary

to solve the following optimization problem,

Max! E

"
ln

Ã
1+

NX
i=1

!iRi(k)

!#
subject to !T1= 1;!i ¸ 0

(10)

For example, the Kelly’s portfolio (KP) for the two risky

assets example given in Figure 13 turns out to be the one

with 100% allocation on asset #1 as shown in Figure 14.
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Fig. 15. (a) The Four Core Asset Index Funds: 1996—2016; (b) Core Asset Returns: 1996—2016

Fig. 16. Efficient Frontier and the Kelly’s Portfolio

5.2. Test and Simulation

For evaluation purpose, we compose an artificial

portfolio with a few “core assets” selected from the Van-

guard index-based mutual fund family. Specifically, four

core asset classes, including the US total stock market

index (VTSMX), total bond index (VBMFX), interna-

tional stock index (VGTSX), and the real estate index

(VGSIX), are selected to construct the portfolio. The 20-

year historical prices obtained from finance.yahoo.com

and their log returns of the four assets from 1996 to

2016 are shown in Figure 15.

As mentioned earlier, the goal of constructing an

optimal portfolio is to maximize the investor’s return or

minimizing the risk. Under a given capital constraint,

portfolios are constructed and dynamically rebalanced

by allocating the capital over the four core assets using

different strategies. With no shorting and no leverage

assumptions, the allocation fraction of each asset is

subject to !T1= 1 and !i ¸ 0.
The three strategies to be compared include MV

tangency portfolio (MVTP), Kelly’s portfolio (KP), and

the portfolio based on a Naïve strategy. The Naïve

strategy is a simple allocation scheme served as the

baseline for comparison, in which the portfolio is simply

rebalanced uniformly among all the core assets at the

beginning of each investment period. The historical data

of the four core assets are used to train the model.

Specifically, a sliding window of 18 months of data is

used to estimate the asset returns, volatilities, and the

correlations between the assets. Based on the results,

optimal portfolios under each strategy will be formed

and rebalanced accordingly on a monthly basis from

2000 to 2016. During the test period (2000—2016), a

total of 204 months is available for portfolio rebalancing

and performance evaluation. For example, Figure 16

shows a snap shot of the efficiency frontier and the

corresponding locations of the three strategies for Nov.

2016. The history of the dynamic allocation fractions

of the four core assets in the portfolio based on MVTP

and KP are shown in Figure 17. As can be seen, KP

tends to take a more extreme allocation than that of the

MVTP.

5.3. Performance Results

With the three strategies, the portfolio is dynami-

cally rebalanced monthly during the investment period

from 2000 to 2016. In the process, we assume no trans-

action cost and no slippage for the rebalancing trades.

The resulting portfolio equity curves for the three strate-

gies are shown in Figure 18 and the overall perfor-

mances are summarized in Table 2. The Naïve portfolio

has the lowest annualized return (5.33%) with highest

volatility (12.80%) and worst drawdown (49.94%) due

to its simplicity and the inability to deal with the 2008
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Fig. 17. (a) Asset Allocation Fractions–MVTP; (b) Asset Allocation Fractions–KP

TABLE 2.

Performance Summary: 2000—2016

2000—2016 MVTP Baseline KP

Annual Return 7.44% 5.33% 9.90%

Annual Risk 6.65% 12.80% 12.53%

Sharpe Ratio 1.044 0.377 0.750

Drawdown 14.78% 49.94% 23.27%

credit crisis. As expected, Kelly’s portfolio (KP) is an

aggressive strategy and it produces the highest annu-

alized return (9.90%) while suffers a noticeable draw-

down (23.27%). Not surprisingly, the MVTP strategy

produces the highest Sharpe ratio of 1.044. This is ex-

pected by the nature of the tangency portfolio. In addi-

tion, it’s necessary to point out that the MVTP is able to

weather the 2008 credit storm with a fairly small port-

folio volatility (6.65%) and a manageable drawdown

(14.78%). Note that MVTP and KP represent two com-

plementary strategies that allow an investor to make a

tradeoff between risk and return according to his/her

own preferences.

6. SUMMARY AND CONCLUSION

An optimal asset allocation strategy to support in-

vestment and trading decisions is developed. First, a

simple yet practical trading scenario where the entire

equity is allocated between a risk-free asset and a risky

asset is considered. The goal is to identify the opti-

mal fraction of the equity to be allocated for trading

in order to achieve the highest long-term return with a

limited risk. The allocation is based on Kelly criterion

derived from the concept of mutual information in bi-

nary symmetric communication channels. The resulting

model is applied to dynamically allocate equity for writ-

ing S&P futures options. Several trading strategies are

Fig. 18. Equity Curves Comparison

implemented based on the decision makers’ risk apti-

tude.

Similar to the classical portfolio theory, a system

operating curve is developed for each trading strategy

where each operating point on the curve representing an

expected trade-off between risk of ruin and return. An

investor can choose any operating point to satisfy a de-

sired risk and return aptitude. An extended simulation

was conducted for performance prediction and evalu-

ation by incorporating historical market data of S&P

index futures and options. The results of the simulated

trading using these strategies over a 10-year period sig-

nificantly outperform the buy-and-hold strategy. They
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are also consistent with the analytical performance pre-

dictions.

The single asset allocation strategy is then extended

to portfolio rebalancing with multiple correlated assets.

As in the single asset case, the goal is to maximize the

long-run portfolio growth rate over many investment

cycles. We compare three strategies including MV tan-

gency portfolio (MVTP), Kelly’s portfolio (KP), and the

Naïve strategy. Through extensive out-of-sample simu-

lations, we show that the resulting KP strategy outper-

forms the traditional MVTP approach in annual return

but with higher volatility. As expected, KP can be con-

sidered as an alternative approach for investor to trade

off between risk and reward.

While the preliminary results shown in this paper

are promising, one of the critical future step is to

develop and integrate a dynamic model [31—32] into the

allocation strategies so that we would be able to apply

the expected future returns of the chosen assets into the

optimization process. Another potential future research

direction is to integrate the quantitative data with the

qualitative information by utilizing the data fusion and

machine learning technologies.
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Semi-Blind Secure
Watermarking based on
integration of AES and ECC
in DCT Domain

VINEET MEHAN

Copyright protection and integrity of digital images have become

one of the vital issues in crucial watermark applications like Cheque

Truncation System (CTS), Patient record management system and

e-document verification etc. This paper illustrates an integrated wa-

termarking and encryption technique to safeguard copyright of im-

ages and to offer security to the watermarked image contents. Wa-

termarking technique based on combination of Advanced Encryp-

tion Standard (AES) and Elliptic Curve Cryptography (ECC) in

Discrete Cosine Transform (DCT) is proposed in this work. 25 sets

of watermark are classified for embedding owner details with a size

variation of 256—3328 bits. Watermark sequence and the secret keys

are the prime requisite in the semi-blind approach for the extraction

purpose. Peak Signal to Noise Ratio (PSNR), Structural similar-

ity index measure (SSIM), Correlation Coefficient (CC), Net Pixel

Change Rate (NPCR) and Entropy are specified in the objective

function to identify noise, structural match, association, variation

and imperceptibility factors. The experimental results display that

the projected watermarking scheme offers better quantitative pa-

rameter outcomes in comparison with previous related techniques.
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1. INTRODUCTION

Unauthorized distribution and protection of intellec-

tual digital property raised the need of Watermarking

techniques. Watermarking has emerged as a prominent

practice in the last decade. Digital data subversion has

generated a number of concerns around digital authen-

tication, reliability and copyright defence.

Unrestricted and easy transmission of information

is also one of its greatest weaknesses, leading to the

copying and outright theft of information, particularly

images. Increase in use of digital images brings about

the necessity for individuals to safeguard their digital

assets. Given the motivation to protect intellectual prop-

erty by ownership definition and security concerns; a

watermarking with AES and ECC for digital images

has been suggested as a form of secure watermarking

scheme for images.

An expert crafts a digital image with due exertions

along with a price. When illegitimate imitation of the

image is found on the web, then the proprietorship

correlated with the image is to be determined. Due

to this delinquent, a practice called watermarking was

announced to defend the copyright of digital images

with its creative holder. The system of implanting data

into digital image is labelled as digital watermarking

[1]. Data to be injected into the image is called a

watermark. Inserted watermark can be mined in future

for the tenacity of proof of identity and verification [2].

Amendment triggered by entrenching the watermark is

controlled to preserve visual resemblance amongst the

host and the watermarked image [3]. The watermarking

scheme can be represented symbolically by

Iw = E(Io,W) (1)

(1) where Io, W and Iw denote the original image, the

watermark containing the owner information, and the

watermarked image, respectively. For watermark recog-

nition, a perceiving function P is used. This operation

is represented by

W0 = P(Iw,I0) (2)

The extracted watermark sequence W0 is then com-
pared with the original W using a correlation measure

μ given as

μ(W,W0) =
½
1, if t > °

0, otherwise
(3)

where t is the value of the correlation and y0 is a positive
threshold. One bit watermarking is aimed to identify the

existence or the lack of the watermark in the discernable

object. Multiple bit watermarking includes a message

(M) with n-bit long stream

M = f0,1gn (4)

such that (m=m1,m2, : : :mn, with n= jmj)
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Fig. 1. Perceptible Watermarking Model

Watermarking is categorized into subsequent two

classes as per visual insight [4]: Perceptible watermark-

ing and Imperceptible watermarking. Perceptible water-

marks work is of assertion of proprietorship and ori-

gin [5]. Figure 1 shows the perceptible watermarking

model. Observable watermarks decrease the value of an

image for an offender devoid of dropping its value for

genuine legal tenacities [6]. Imperceptible watermarks

are also termed as invisible watermarks [7], as in this the

watermarks are not apparent on the image. Watermarks

are implanted in the digital image such that visible mod-

ification amongst the cover and watermarked image is

not perceived [8].

Imperceptible watermarking is categorized as: Frag-

ile watermarking and Robust watermarking. Fragile wa-

termarking is castoff for image certification [9] to attest

that acknowledged image was not altered in the course

of communication. Even a minor alteration of the im-

age, eliminates the implanted watermark. Fragile water-

marking turn into semi-fragile watermarking if a defi-

nite boundary is fixed for amendment [10]. Robust wa-

termarking is castoff for safeguarding copyright [11]. In

robust watermarking, the inserted evidence is not aloof

when the image is altered. Even an enormous extent

of alteration does not eradicate the watermark that has

been implanted [12].

Figure 2 shows robust watermark detection where

s is a vector signal such that s= (s1,s2, : : : ,sn) 2 Sn of
n-dimensional multimedia host signal; k is an integer

from an index set K = f1,2, : : : ,kg where K is total

number of messages; x is an authenticated signal such

that x 2 Sn without hosting perceptible visual distortion;
p is a probability density function; and y is the channel

output.

Watermarking is classified into two groups [13] de-

pending upon the processing realm : Spatial domain wa-

termarking and Frequency domain watermarking Spa-

tial domain watermarking changes the content of the

Fig. 2. Robust watermark detection

TABLE 1.

Comparative Analysis of DFT, DWT and DCT.

S. No. Parameter DFT DWT DCT

1. Computational

Complexity

High High Low

2. Coefficients Real and

Imaginary

Real and

Imaginary

Real

3. Energy

Compaction

Property

Low Moderate High

4. Block Artifacts More Less Less

5. Periodicity More

Discontinuous

Discontinuous Less

Discontinuous

image pixels unswervingly based on the watermark that

has to be implanted [14]. The key benefit of this sys-

tem is reduced computational complexity and less time

[15]. Frequency domain system transforms an image

from spatial domain to frequency domain. Watermark

is injected into the frequency coefficients. Inverse trans-

form is then smeared to transmute it back into spatial

domain. Frequency domain practice is more robust than

spatial domain system. Commonly used frequency do-

main transforms are Discrete Fourier Transform (DFT),

Discrete Cosine Transform (DCT) and Discrete Wavelet

Transform (DWT) [16—22]. DCT has been widely used

for watermarking applications among all the transforms

due to low computational complexity, less block arti-

facts and high energy compaction property as shown in

Table 1.

2. LITERATURE SURVEY
Potdar et al. in 2005 [23] recommended three diverse

types of watermarking on the basis of mining prereq-

uisite of the watermark. These include: Non-blind wa-

termarking, semi-blind watermarking and blind water-

marking [24]. In non-blind watermarking original im-

age is essential for the abstraction of the watermark.

In semi-blind watermarking, only the watermark sig-

nal is vital for the removal of the watermark. In blind

watermarking no other evidence is required apart from

the watermarked image. In our proposed work an effi-

cient semi-blind watermarking scheme is perceived by

retrieving the watermarks from the watermarked image.

In semi-blind approach only the watermark sequence

and the secret keys are needed for the extraction pur-

pose. As in most of the watermark applications original

image is not available to the detector, thus the approach

exhibits to be more advantageous than the non-blind ap-

proach. A semi blind watermarking notation is given as

Dd : Ī£ I£W Í£ Ẃ[f ?g and
Xx : Ī£ I£ Ẃ Ḿ £ Ḱ [f ?g (5)
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where D is detection function; X is extraction function

and W is a watermark.

A combination of robust and fragile watermarking

scheme is designed by Zhang et al. in 2008 [25]. In

the robust process watermark is encrypted using AES.

DCT is applied to the blue component of the image for

embedding watermark. In the fragile process red com-

ponent of the image is hashed using SHA-256 and then

encrypted using ECC key and finally embedded using

LSB technique. Our paper used AES with 256 bit key

using frequency coefficients rather than in spatial do-

main. Key generated in our approach is using ECDHP

which is immune to attacks and can be used for copy-

right protection, image integrity certification and iden-

tity authentication.

A multipurpose image watermarking with public

key cryptography is proposed by Ding et al. in 2008

[26]. A blend of copyright protection is done with

content authentication using error correcting codes. In

our proposed approach watermarks are implanted into

separate DCT coefficients as per image block size. To

build up security, the watermarking process makes use

of the ECC, ECDHP and AES instead of RSA algorithm

as is used in this paper.

3. WATERMARKING APPLICATIONS OF PROPOSED
MODEL

Watermarking finds enormous interesting applica-

tions in the field of multimedia, image processing and

e-commerce etc. Some of the key applications associ-

ated with the proposed work are given as:

3.1. Cheque Truncation System

Cheque Truncation System (CTS) is a practice of

averting physical crusade of cheque by switching it

with a digital image, with an intention for secure and

quicker clearance [27]. Watermarking can be applied in

the domain of cheque truncation where the cover image

is a scanned cheque image. Watermarks to be implanted

into the image may encompass user and cheque details.

Embedded watermark can be detached later for the

purpose of credentials and validation to be exploited

for making transactions.

Progression in technology leads to development of

novel algorithms and standards by substituting with pre-

vious security standards. Standards must take account of

aspects like authentication and dependability with the

sharing of images in CTS for making transactions. The

projected method applies new principles and processes

to CTS which tends to be highly consistent and targets

at achieving the standardized practice. Watermarking

methodology and secure algorithms assistance to offer

data reliability, security, and certification solutions to

CTS. Watermarking has been proposed as a standard

system to solve the anomalies concomitant with CTS.

Comparative Analysis of Reserve Bank of India (RBI)

TABLE 2.

Comparative Analysis of RBI based CTS [26] with our proposed

approach.

Parameter RBI-CTS Proposed CTS

Key Generation DH ECDHP

Asymmetric Encryption RSA ECC

Symmetric Encryption Triple DES AES

Image Specification Gray Scale Color Image

based CTS with our proposed approach is shown in Ta-

ble 2.

The proposed effort will corroborate advantageous

for the CTS systems being activated in developing coun-

tries and will also aid the developed countries to weigh

up their prevailing CTS procedures.

3.2. Copyright Protection and Owner Identification of
Digital Images

Digital watermarking system allows an individual to

add copyright notices and other verification messages

to image signals. Such a message is a group of bits

describing information pertaining to the owner of the

image. The messages can be easily detached by crop-

ping the image part that has the identification. Digital

watermarking helps to overcome this problem by em-

bedding the watermark in the form of bits that forms

an integral part of the content. In the case of dispute

over ownership of the host data, embedded watermark

can be used as a proof to identify the true owner of the

host data. Image selling portals like imagesbazaar.com

carry over one million digital images of Indian visuals.

Images at this portal cost substantially depending upon

the theme and the style. Proposed technique helps in

securing the digital image present online by inserting

copyright details.

3.3. Patient Record Management System

Digital watermarking is useful in the e-health envi-

ronment for tele-consulation and tele-diagnosis purpose

[28] Medical images encompass diagnostic information

which can be used for timely detection of the diseases. It

is useful to safeguard patient data, content certification

and medical image reliability. Images are watermarked

to prove the integrity by confirming that the image was

not altered by illicit person [30]. Watermarking is also

applied to determine the authenticity by confirming that

the image belongs to the right patient and exact source.

The proposed approach can play an effective role

in the management of patient’s record. Using this tech-

nique vital information related to patient like name, pa-

tient id, disease name and patient’s photo can be em-

bedded in the medical image. This will prevent the error

of mismatching records of patients.

3.4. Certification of Electronic Passport

Certification is a substantial staple for documents,

such as electronic passports. Fortification of validity in
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passport raised the necessity for the implementation of

electronic passport [31]. Electronic Passport is alike to

the regular passport with addition of a slight integrated

circuit to store digital image [32]. The proposed method

permits secure and imperceptible storing of passport

details which may include passport number, name of

passport owner and other important passport credentials

within a digital image. Any variation done to the stored

image will result in authentication failure which can be

easily identified using the proposed approach.

Usual exercise of programmed passport authoriza-

tion contests the image existent in the chip with the

appearance of the passport holder [33]. The scheme

deportment limits when the modifications are not per-

ceived in the image. Prevailing method does not observe

the swapping of the passport image with an alternative

image. The foremost facet of this verification method is

to introduce an orientation between passport’s particu-

lars and implanted image insides. Application of digital

signature tools legalizes the precision of the evidence

retained in the image. It defends passport’s genuineness

opposing to fraud and security crevices.

The exploration effort proposed by this research

work can be used for automatic verification mechanism

of passport to be used for immigration clearance sys-

tem installed at airports. The proposed scheme can also

be applied to other important certification documents

which include driving licence, identification cards, in-

stitute certificates, university degrees and official gov-

ernment documents.

4. SECURE WATERMARKING COMPONENTS

Secure watermarking integrates ECC, ECDHP and

AES properties to solve key distribution problem and

security concerns for watermarking.

4.1. ECC based Encoding

Elliptic curve cryptography is an asymmetric key

cryptosystem which relies on the computational hard

discrete logarithm of an elliptic curve [34]. ECC tech-

niques do not perform encryption and decryption of ac-

tual data rather they encrypt and decrypt points on the

curve. Encoding translates a message into points de-

fined by the elliptic curve, while decoding translates the

points back to the original message [35].

ECC operations use multiplication operations in-

stead of exponentiation operations. This makes ECC

much faster than other public key cryptosystem like

RSA. The security level specified by RSA can be de-

livered by reduced key size of ECC. For example, the

1024 bit security strength of a RSA can be obtained by

only 163 bit security strength of ECC [36]. In the pro-

posed work ECC’s small key size, high security and re-

duced computational complexity characteristics are in-

tegrated with digital watermarking for improved own-

ership protection.

Fig. 3. Adding points such that P1 6= P2

Fig. 4. Adding points such that P1 = P2

Elliptic curves are customarily signified usingWeier-

strass [37—39] devising in the most common form. An

elliptic curve Ec on a prime field Fp is specified as

Ec(Fp) : y
2 = x3 + ax+ b (p > 3) (6)

where a,b 2 Fp and ¢=¡16(4a3 +27b2) 6= 0. Different
choice of a and b gives different elliptic curves. A true

condition of Discriminant (¢) forms Group Law [40—

44]. There can be three cases in this situation.

Case 1: To add two separate points P1 and P2 such that
P1 6= P2. For an equation y2 = x3¡ x the elliptic curve is
shown in Figure 3.

Step 1. Join the two points i.e. P1 and P2 on an elliptic

curve.

Step 2. The line will also intersect the elliptic curve at

P 03 .
Step 3. Reflect the line to get point P3.

Case 2: To add two points P1 and P2 such that P1 = P2.
For the same equation y2 = x3¡ x the elliptic curve is
shown in Figure 4.

Step 1. Find the tangent line to pint P1 on an elliptic

curve.

Step 2. Find the second point of intersection i.e. P 03
Step 3. Reflect P3 to get point P

0
3 .

Case 3: In case of parallel lines it is assumed that the
line from P1 to P2 will intersect the curve at 1. In this
case the elliptic curve is shown in Figure 5.

In order to find the coordinates of third point using

Group Law the line equation (7) is computed with
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Fig. 5. Adding vertical lines

elliptic curve equation.

y =mx+ b (7)

Let m= ¸ and b = ¯ be substituted in equation (7) such

that

y = (¸x+¯) (8)

y2 = (¸x+¯)2 (9)

(¸x+¯)2 = x3 + ax+ b

¸2x2 +¯2 +2¸x¯ = x3 + ax+ b

x3¡¸2x2¡ 2¸x¯+ ax+ b¡¯2 = 0 (10)

For a cubic equation (5) let x1, x2 and x3 are the three

roots such that

x1 + x2 + x3 = ¸
2

x3 = ¸
2¡ x1¡ x2 (11)

Using point slope form between points (x1,y1) and

(x3,y3)

¸=
y2¡ y1
x2¡ x1

y3 = y1 +¸(x2¡ x1) (12)

Our contribution in this work is to apply logical non-

linear ECC curve points to safeguard watermark inser-

tion against active content identification attacks. The

proposed algorithm performs selective encoding on the

transform coefficients. Encoding converts owner details

into points defined by the elliptic curve in order to be

suitable for encryption. Decoding converts the points

into the original message at the time of retrieval.

4.2. Key generation with ECDHP

Traditional digital rights management (DRM)

schemes involve a twofold structure consisting of only

owner and the buyer. With the ascendable rise in digital

industry multi-level distributors and sub-distributors are

needed to support and circulate the digital content [45].

A native distributor can identify the possibly unfamiliar

marketplace to the owner and make strategies as per the

requirement of the trade. But at the same time, a selfish

distributor can pass on the digital content to other con-

sumers without the consent of the owner. ECDHP solves

this content packaging mechanism by generating key

among all the owners, distributors and sub-distributors.

ECDHP is a deviation smeared to Diffie Hellman tech-

nique through ECC [46]. The method allows members

without any former consociate, to reciprocally gener-

ate a shared key above a susceptible network [47]. The

content packaging system is handled without the need

of a license granting authority [48]. The key is used in

encrypting the credentials of all the persons involved

in the chain. The owner then passes the watermarked

content containing the embedded encrypted credentials

to the next level for distribution. Key generation (KG)

by ECDHP prevents the illegal circulation of digital

content among multiple owners, distributors and sub-

distributors.

NIST based elliptic curves are challenging to solve

as the discrete log problem is strong. Key created by the

system can be castoff by cryptographic organizations

to defend the legitimacy and cover up of the informa-

tion [49]. Trustworthy heralds can tangibly distribute

the secret key, but as the reckoning of key exchange

upsurges, the power involved in the distribution of keys

grows quickly. Programmed key establishing arrange-

ment based on ECDHP assistances in the conservation

of the cryptographic schemes applied in current domin-

ions [50]. The procedure is appropriate to covenant with

exclusivity, authorization, key agreement and accelera-

tive concealment.

Key generation using ECDHP involves:

1. Al and Bb agree publicly on elliptic curve (Ep) over

a large finite field.

2. Al and Bb each privately choose large random integer

as secret key Ak and Bk.

3. Using elliptic curve point addition, Al computes

(AkG) on Ep and sends it to Bb.

4. Similarly, Bb computes (BkG) on Ep and sends it to

Al.

5. Both Al and Bb can now compute the point (AkBkG).

6. Shared secret key computed by both Al and Bb is the

same.

ECDHP forms efficient arithmetic with shorter key

length. ECC provides enhanced security based on dis-

crete logarithm problem. NIST prime curve is compu-

tationally efficient as it significantly reduces the total

number of multiplies in an exponentiation. To protect a

256 bit symmetric key, RSA algorithm would require

15360 bit key size which is approximately 30 times

greater than the size of elliptic curve with 521 bits.

4.3. Secure Watermark Encryption with AES in DCT
Domain

AES is a symmetric block cipher algorithm. It uses

iterated block cipher, supporting a static length block
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TABLE 3.

AES algorithm parameters.

Algorithm

Key Length

(words)

Block Size

(words)

Number of

Rounds

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

TABLE 4.

AES with ECC prime fields.

Symmetric Length Algorithm Prime Field Binary Field

80 SKIPJACK kpk= 192 m = 163

112 Triple-DES kpk= 224 m = 233

128 AES Small kpk= 256 m = 283

192 AES Med. kpk= 384 m = 409

256 AES Large kpk= 521 m = 571

of 128 bits [51, 52]. The AES algorithm primarily

comprises of three phases: round change, turns and

key expand. Each round conversion includes non-linear

layer, linear mixture layer and add round key layer. AES

algorithm properties are depicted in Table 3. Three key

sizes of 128 bits, 192 bits and 256 bits specify different

number of repetitions of transformation rounds.

Watermark security is safeguarded by encrypting

owner details by means of AES with 256 bits key. En-

crypted owner details are generated in multiple of 128

bits as per the block size specification of AES. En-

crypted watermark is then implanted into the digital

image. AES algorithm delivers watermark security as

only a legitimate owner can retrieve and decrypt the in-

serted stuffing. AES is the preeminent recognized sym-

metric algorithm for encrypting information, but it suf-

fers from the delinquent of key distribution [53—56].

The key distribution concern is elucidated using ECC

by using ECDHP. A hybrid encryption algorithm of

AES and ECDHP ensures the content security in digital

watermarking. AES provide fast computing speed and

encrypts lengthy data while ECDHP handles the key

management issues. The projected scheme inhibits the

confidentiality of owner data by conjoining encryption

with watermarking. Table 4 gives the sizes of the var-

ious underlying fields. kpk is the length of the binary
expansion of the integer p.

Encrypted details are embedded in digital image us-

ing the DCT methodology. Only an authenticated user

with secret key can retrieve the inserted watermarks

from the specified positions within the watermarked im-

age. DCT transforms the image from spatial domain to

transform domain [57]. 2-D DCT of an N £N real sig-

nal matrix f(x,y) (x,y = 0,1,2, : : : ,N ¡ 1) is defined as

C(u,v) = ®(u)®(v)

N¡1X
x=0

N¡1X
y=0

f(x,y)cos

·
¼(2x+1)u

2N

¸

£ cos
·
¼(2y+1)v

2N

¸
(13)

®(u)®(v) =

8>><>>:
r
1

N
u= 0, v = 0r

2

N
u 6= 0, v 6= 0

(14)

where

C(u,v): DCT coefficient at frequency (u,v)

f(x,y): Original image pixel at location (x,y)

x,y = 0,1,2, : : : ,N ¡ 1
u,v = 0,1,2, : : : ,N ¡1
®(u) and ®(v) are the scale factors needed to make

DCT orthogonal

2-D inverse DCT of N £N image matrix is defined

by the equation (10) [58] as shown below:

f(x,y) =

N¡1X
u=0

N¡1X
v=0

®(u)®(v)cos

·
¼(2x+1)u

2N

¸

£ cos
·
¼(2y+1)v

2N

¸
(15)

Matrix and image data define the necessary coefficients

for implanting the watermark content. Mid frequency

coefficients at [2,0] position are altered within each 4£
4 quantised block. Separability [59] and Symmetry [60]

characteristics of DCT are exploited to create a 4-point

DCT in matrix form. If two 1D elementary functions

are same, the transform is said to be symmetric.

Ak,l(m,n) = ak(m)bl(n) = ak(m)al(n) (16)

This expression allows a notation in terms of the anal-

ysis matrix A associated with the 1D Transform

Y = A ¤XAH (17)

where,

X =0BBBBBB@

x(0,0) ¢ ¢ ¢ x(0,n) ¢ ¢ ¢ x(0,N ¡ 1)
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

x(m,0) ¢ ¢ ¢ x(m,n) ¢ ¢ ¢ x(m,N ¡ 1)
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

x(M ¡ 1,0) ¢ ¢ ¢ x(M ¡ 1,n) ¢ ¢ ¢ x(M ¡ 1,N ¡ 1)

1CCCCCCA
(18)

and

Y =0BBBBBB@

y(0,0) ¢ ¢ ¢ y(0,n) ¢ ¢ ¢ y(0,N ¡ 1)
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

y(m,0) ¢ ¢ ¢ y(m,n) ¢ ¢ ¢ y(m,N ¡ 1)
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

y(M ¡ 1,0) ¢ ¢ ¢ y(M ¡ 1,n) ¢ ¢ ¢ y(M ¡ 1,N ¡ 1)

1CCCCCCA
(19)
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TABLE 5.

Owner watermarks embedded in Q1.

Label W. Content W. Size (in bits)

W1 OID1 256

W2 W1 + ON1 384

W3 W2 + OHN1 512

W4 W3 + OSE1 640

W5 W4 + OC1 768

W6 W5 + OST1 896

W7 W6 + OMN1 1024

W8 W7 + OEM1 1152

W9 W8 + OID2 1280

W10 W9 + ON2 1408

W11 W10 + OHN2 1536

W12 W11 + OSE2 1664

W13 W12 + OC2 1792

W14 W13 + OST2 1920

W15 W14 + OMN2 2048

W16 W15 + OEM2 2176

W17 W16 + OID3 2304

W18 W17 + ON3 2432

W19 W18 + OHN3 2560

W20 W19 + OSE3 2688

W21 W20 + OC3 2816

W22 W21 + OST3 2944

W23 W22 + OCY3 3072

W24 W23 + OMN3 3200

W25 W24 + OEM3 3328

2-D DCT, configuration and disintegration are separa-

ble processes, consequently resizing of images can be

consummate by applying 1-D operations successively in

horizontal and vertical directions. Our resizing method

with 1-D sequence includes a factor of S=T where S

and T are relatively large prime numbers greater than

1. A total of U successive N-point DCT blocks are pre-

requisite. Each DCT block is zero padded to a size of

SN and then decomposed into SN-point DCT blocks.

Consequently, T disintegrated N-point DCT blocks are

collected into a single TN-point DCT block. Each com-

posed TN-point DCT block is then trimmed to a size

of N.

Integration of AES with RSA to safeguard the water-

mark confidentiality consequences in intake of large key

size grounded on integer factorization. Computation-

ally proficient key exchange contrivance built on ECC

can substitute this security constraint with smaller key

size. AES is the finest recognized symmetric key cryp-

tographic algorithm for encrypting information. It guar-

antees comprehensive safekeeping of the watermark by

smearing block cipher methodology with fixed length

blocks of 128 bits. For improved safety a concentrated

key length of 256 bits is engendered by employing

ECDHP. Energy compaction scrutiny of DCT produces

the essential transform coefficients. Using this charac-

teristic a reduced fraction of coefficients is attained with

big magnitude. Quantizing auxiliary coefficients root

for analogous re-construction. Re-watermarking model

uses the sequential inclusion approach by providing in-

sertion flexibility to the owner of image.

5. PROPOSED MODEL, EXPERIMENTAL RESULTS
AND DISCUSSION

5.1. Experimental Environment

A total of one hundred test images are taken for

embedding watermarks. Color images of .jpeg for-

mat form the test images. Four different image di-

mensions are identified for embedding which includes:

512£ 512, 640£ 480, 800£ 600 and 1024£ 768. Each
dimension includes 25 different images. Owner wa-

termarks embedded are are shown in Table 5. Size

of watermark varies from 256—3328. Owner details

include Owner Identification Number (OID), Owner

Name (ON), Owner House Number (OHN), Owner

Sector (OSE), Owner City (OC), Owner State (OST),

Owner Mobile Number (OMN), Owner E-mail (OEM)

and Owner Country (OCY). Multiple owner details are

generated by assigning the owner details sequentially.

Encrypted owner details are generated in multiple of

128 bits as per the block size specification of AES.

Watermark embedding is achieved by combining

different owner details. In re-watermarking multiple

watermarks are implanted in a sequential manner.

Re-watermarking model uses the successive insertion

method to deliver flexibility by defining the number of

watermarks to be inserted in the image.

5.2. Proposed Model

For embedding and extracting watermark content

(Ec) from cover Image (I), various operations performed

are depicted in Figure 6 and Figure 7. Mid Frequency

Coefficients (MFC) are quantized using DCT in Block

Size (Bs) of 4£4. Partial IDCT and second DCT are
applied for block determination (BD). The RGB color

space is converted to YUV color space for each 4£ 4
block using equations (20).

Y = 0:299£R+0:587£G+0:114£B
U = 0:596£R¡ 0:275£G¡ 0:321£B
V = 0:212£R¡ 0:523£G¡ 0:311£B (20)

5.3. Experimental Results

Quantitative parameters are analyzed for identifying

the effectiveness of the proposed approach. The pa-

rameters include Peak Signal to Noise Ratio (PSNR),

Structure Similarity Index (SSIM), Correlation Coeffi-

cient (CC), Entropy (E), Embedding Processing Time

(EPT) and Retrieval Processing Time (RPT). The sta-

tistical analysis data SAD containing minimum (MN),

maximum (MX) and mean (ME) values are evaluated

for each parameter.

Quantitative parameters are mathematically defined

image quality measures which play a vital role depend-

ing upon the image processing applications they are ap-

plied in. The quality measures are independent of the

perceptual conditions and specific observers. PSNR is
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Fig. 6. Watermark Embedding Algorithm
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Fig. 7. Watermark Retrieval Algorithm

created on pixel difference based measure. In this orig-

inal and watermarked images are compared in terms of

undistorted reference signal and error signal. SSIM on

the other hand is based on Human Visual System mea-

sure. This measure is closely related to the perception

of human eye in terms of luminance, contrast and com-

parative structure of two images. In CC correlation of

pixels is used as a measure of the image quality mea-

sure. Entropy is used to predict the image coding quality

for different embedding rates. It measures the disorga-

nized occurrence of watermarked pixels in each row and

column and to increase the image visibility.

1) PSNR PSNR is a commonly used measure for de-

termining the quality of images. PSNR computes the

peak signal to noise ratio between two images. The ra-

tio factor is used for quality determination among cover

image and watermarked image. PSNR for image is cal-

culated in decibels (dB) using the equation [61] (21).

PSNR= 10log10
(2N ¡ 1)2
MSE

(21)

N is the maximum bit size for a pixel, MSE is Mean

Square Error.

PSNR is calculated for all image dimensions with

varying watermark size. High values of PSNR obtained

imply that the generated image contains less noise.

Inverse relation exists between MSE and PSNR such

that a lower value of MSE results in high PSNR whereas

a higher value of MSE results in low PSNR.
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Fig. 8. % Increase in PSNR for different image dimensions.

TABLE 6.

Comparative analysis of PSNR obtained with previous approaches.

Image

Dimensions

Proposed

Approach

Previous

Approach % Increase

512£ 512 50.69 48.5 [62] 4.52

640£ 480 51.28 49.09 [63] 4.46

800£ 600 53.17 43.48 [64] 22.29

1024£ 768 55.22 44.6 [65] 23.81

Average PSNR results obtained are: 50.69 for 512£
512 images, 51.28 for 640£480 images, 53.17 for
800£ 600 images and 55.22 for 1024£ 768. The re-
sults ascertain creation of good quality watermarked

images. It is also observed that with increasing image

dimensions PSNR is also getting increased. Compara-

tive analysis of PSNR obtained using our proposed ap-

proach with other approaches identified from literature

is shown in Table 6.

MX PSNR % increase of 23.81 is observed for

1024£ 768 images while MN PSNR % increase of

4.46 is observed for 640£ 480 images. The results

obtained using the proposed approach delivers a PSNR

higher than the existing techniques, thereby displaying

a significant improvement. % increase in PSNR for

different image dimensions is shown in Figure 8.

2) SSIM SSIM calculates the similarity among two

images. It is based on the notion of HVS that measure

the variation of structure between the original and the

watermarked image. It matches luminance, contrast and

structure among two images. Maximum value of 1 is

attained if the two images are completely alike. SSIM

is defined by the equation [9] (22).

SSIM(x,y) =
(2¹x¹y +C1)(2¾xy +C2)

(¹2x +¹
2
y +C1)(¾

2
x +¾

2
y +C2)

(22)

Fig. 9. % Increase in SSIM for different image dimensions.

TABLE 7.

Comparative analysis of SSIM obtained with previous approaches.

Image

Dimensions

Proposed

Approach

Previous

Approach % Increase

512£ 512 0.99894 .99600 [67] .30

640£ 480 0.99908 .99250 [68] 5.17

800£ 600 0.99932 .99000 [69] .94

1024£ 768 0.99957 .99710 [70] .25

where, x, y are the image pixel positions; ¹x, ¹y are

the mean values w.r.t. x and y; ¾x, ¾y are the standard

deviation values w.r.t. x and y; C1 and C2 are the stabil-

ity constants. SSIM is calculated for all image dimen-

sions varying watermark size. Comparative analysis of

SSIM obtained using proposed approach with previous

approaches identified from literature is shown in Ta-

ble 7.

Structural data present in an image have strong

inter-pixel dependencies among spatial content. It lies

in the range of ¡1 and 1. These dependencies carry
significant evidence about the structure of the objects

in the image. MX SSIM % increase of 5.17 is observed

for 640£ 480 images whileMN SSIM % increase of .25

is observed for 1024£ 768 images. Experimental results
state an improvement of SSIM index in comparison to

the previous approaches. If two images are alike by

SSIM then perceptual quality of watermarked image is

considered to be of good quality. % Increase in SSIM

for different image dimensions is shown in Figure 9.

3) CC CC parameter identifies the association among

two images. A positive correlation creates a CC value

close to +1 while a negative correlation creates a CC

value close to ¡1. The CC between original image

and watermarked image computes image deformation at
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Fig. 10. % Increase in CC for different image dimensions.

TABLE 8.

Comparative analysis of CC obtained with previous approaches.

Image

Dimensions

Proposed

Approach

Previous

Approach % Increase

512£ 512 .99969 0.9074 [72] 10.17

640£ 480 .99978 0.9389 [71] 6.48

800£ 600 .99985 0.99166 [73] 0.83

1024£ 768 .99985 0.9992 [74] 0.07

pixels level. CC is calculated by the equation [71] (23).

Cab =

1

r ¤ c
PP

(Ai,j ¡ Ā)(Bi,j ¡ B̄)r
1

r ¤ c
PP

(Ai,j ¡ Ā)2
r

1

r ¤ c
PP

(Bi,j ¡ B̄)2
(23)

Ai,j and Bi,j are the pixels in the ith row and jth column

of images A and B; Ā is the mean of A while B̄ is mean

of B; r and c are the width and height of an image.

CC is measured for all image dimensions with varying

watermark size. Comparative analysis of CC obtained

with previous approaches is shown in Table 8.

The closer CC value is to one, the better it is. Our

approach generates a high positive CC which reveals a

strong association among host image and watermarked

image. MX CC % increase of 10.17 is observed for

512£ 512 images while MN CC % increase of .07 is

observed for 1024£768 images. Experimental results
state an improvement of CC in comparison to the pre-

vious approaches. % Increase in CC for different image

dimensions is shown in Figure 10.

4) NPCR NPCR determines the total number of pixels

altered between original image (I) and watermarked

image (I0). It calculates the percentage of dissimilar
pixel quantities between images. NPCR is calculated by

equation [75] (24)

NPCR=

Pm
i=1

Pn
i=1pi,j

m ¤ n ¤ 100% (24)

Fig. 11. % Increase in NPCR for different image dimensions.

TABLE 9.

% Increase in NPCR for different image dimensions.

Image Dimensions % Increase

512£ 512 0.42

640£ 480 1.94

800£ 600 0.47

1024£ 768 0.33

where,

pi,j = 0, if Ii,j = I
0
i,j

1, if Ii,j 6= I 0i,j
m, n are the width and height of the image; pi,j is an

array of same size as I and I0. NPCR is evaluated for all
image dimensions with varying watermark size. Aver-

age NPCR results obtained are: .11282 for 512£ 512
images, 0.10254 for 640£ 480 images, 0.07732 for
800£ 600 images and 0.05803 for 1024£ 768. Com-
parative ratio proportion reveals % increase in NPCR

obtained using proposed approach with previous image

encryption approaches [76—79]. % Increase in NPCR

for different image dimensions is shown in Table 9.

NPCR parameter is used commonly in image en-

cryption. The parameter identifies the number of pix-

els change rate between two ciphered images. For good

NPCR encrypted image the change rate should be close

to 100. For the first time NPCR parameter is explored

in the field of watermarking. Since watermarking aims

at prevention of image distortion between original and

the watermarked image, so a good NPCR watermarked

image will give value close to 0. Our average NPCR

outcome for different image dimensions reveals a good

assessment. MX NPCR % increase of 1.94 is observed

for 640£ 480 images while MN NPCR % increase of

.09 is observed for 1024£ 768 images. % Increase

in NPCR for different image dimensions is shown in

Figure 11.
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Fig. 12. % Variation in Entropy between original images and complete watermarked images for dimensions. (a) 512£ 512; (b) 640£ 480;
(c) 800£ 600; (d) 1024£ 768.

5) Entropy Entropy is a statistical measure of uncer-

tainty defined by the equation [80] (25)

EG =

nX
x2G

p(x) log

μ
1

p(x)

¶
(25)

G is the data raised from a particular domain and p(x)

is the probability of sample in the group G. Entropy

parameter ascertains existence of watermarks’ imper-

ceptibility. A watermarked image having high entropy

has less perceivable distortion to human eye than an

image with low entropy.

Entropy is estimated for all image dimensions with

varying watermark size. Average Entropy results ob-

tained are: 7.3847 for 512£ 512 images, 7.3653 for
640£ 480 images, 7.4225 for 800£ 600 images and
7.4733 for 1024£ 768 images. % Variation in Entropy

between original images and complete watermarked im-

ages for all image dimensions are shown in Figure 12.

Results show that the watermarks embedded in the im-

age are highly imperceptible as the entropy values ob-

tained are slightly more than the original image entropy.

A higher disorder implies that more information can be

embedded in the image without being perceived.

6) EPT and RPT EPT is the total computational time

taken by the proposed watermarking scheme. It is

Fig. 13. % EPT for various image dimensions.

measured in milliseconds (ms). The processing time

achieved using the proposed approach depicts a small

embedding time complexity as shown in Figure 13.

RPT is the total computational time taken by the

proposed watermarking scheme. It is measured in mil-

liseconds (ms). The processing time achieved using the

proposed approach depicts a small retrieving time com-

plexity as shown in Figure 14.

7) Robustness In order to test the robustness of the

proposed approach, various attacks are launched against
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TABLE 10.

NC for various attacks.

Attack Previous Approach 512£ 512 512£ 512 640£ 480 800£ 600 1024£ 768
Salt and Pepper Noise .9805 .9857 .9887 .9896 .9912

Gaussian Noise .9800 .9859 .9873 .9894 .9921

Cropping .9177 .9265 .9289 .9345 .9412

JPEG Compression .9898 .9917 .9939 .9947 .9986

Median Filtering .9112 .9225 .9312 .9319 .9418

Fig. 14. % RPT for various image dimensions.

the watermarked image. These attacks include Salt and

Pepper Noise, Gaussian Noise, Cropping, JPEG Com-

pression and Median Filtering. Normalized Correlation

(NC) performance of proposed algorithm against attacks

on watermark embedded for a set of all image dimen-

sions is shown in Table 10.

6. CONCLUSIONS

This paper proposes the problem of semi-blind and

secure digital watermarking for authentic cation of im-

ages. It generates solution by providing confidential-

ity, integrity, and authenticity to the watermarked im-

age. The objective is achieved by integrating digital wa-

termarking & cryptography together in order to insert

the secret information to gain a high level of privacy

& efficiency. AES encrypted watermark with a secret

key bundle makes it very challenging for the attacker

to identify and hinder the watermark saved inside host

image. ECDHP generates secret key based on discrete

logarithm for solving key distribution problem among

multiple owners and distributers. Insertion and removal

of secure watermark using DCT domain provides low

computational complexity and fast speed. The perfor-

mances of the secure watermarking technique are com-

pared on the basis of PSNR, SSIM, CC, NPCR and En-

tropy values. Quantitative analysis of image quality pa-

rameters reveals effectiveness of the proposed approach.

REFERENCES

[1] M. H. Pi, C. H. Li, and H. Li

A novel fractal image watermarking

IEEE Transactions on Multimedia, Vol. 8, No. 3, 2006, pp.

488—499.

[2] Y. Hu and B. Jeon

Reversible Visible Watermarking and Lossless Recovery of

Original Images

IEEE Transactions on Circuits and Systems for Video Tech-

nology, Vol. 16, No. 11, 2006, pp. 1423—1429.

[3] D. M. Thodi and J. J. Rodriguez

Expansion Embedding Techniques for Reversible Water-

marking

IEEE Transactions on Image Processing, Vol. 16, No. 3,

2007, pp. 721—730.

[4] P. Y. Lin, J. S. Lee, and C.C. Chang

Dual Digital Watermarking for Internet Media Based on

Hybrid Strategies

IEEE Transactions on Circuits and Systems for Video Tech-

nology, Vol. 19, No. 8, 2009, pp. 1169—1177.

[5] T. Y. Liu and W. H. Tsai

Generic Lossless Visible Watermarking–A New Approach

IEEE Transactions on Image Processing, Vol. 19, No. 5,

2010, pp. 1224—1235.

[6] L. Kocarev, Z. Galias, and S. Lian

Intelligent Computing Based on Chaos

Springer, 2009.

[7] A. K. Parthasarathy and S. Kak

An Improved Method of Content Based Image Watermark-

ing

IEEE Transactions on Broadcasting, Vol. 53, No. 2, 2007,

pp. 468—479,

[8] L. O. M. Kobayashi, S. S. Furuie, and P. S. L. M. Barreto

Providing Integrity and Authenticity in DICOM Images: A

Novel Approach

IEEE Transactions on Information Technology in Biomed-

icine, Vol. 13, No. 4, 2009, pp. 582—589.

[9] C. Chin-Chen and H. Chou

A New Public-Key Oblivious Fragile Watermarking for

Image Authentication Using Discrete Cosine Transform

In Second International Conference on Future Generation

Communication and Networking Symposia, 2008, pp. 11—

14.

[10] C. Fei, R. H. Kwong, D. Kundur, and F. Chuhong

A Hypothesis Testing Approach to Semifragile Watermark-

Based Authentication

IEEE Transactions on Information Forensics and Security,

Vol. 4, No. 2, 2009, pp. 179—192.

[11] K. C. Liu and C. H. Chou

Robust and transparent watermarking scheme for colour

images

IET Image Processing, Vol. 3, No. 4, 2009, pp. 228—242.

[12] T. Jen-Sheng, H. Win-Bin, and K. Yau-Hwang

On the Selection of Optimal Feature Region Set for Robust

Digital Image Watermarking

IEEE Transactions on Image Processing, Vol. 20, No. 3,

2011, pp. 735—743.

[13] P. S. Huang, C. S. Chiang, C. P. Chang, and T. M. Tu

Robust spatial watermarking technique for colour images

via direct saturation adjustment

IEE Proceedings–Vision, Image and Signal Processing,

Vol. 152, No. 5, 2005, pp. 561—574.

118 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 1 JUNE 2018



[14] S. K. Singh, S. Kumar, M. Srivastava, A. Chandra, and S.

Srivastava

Wavelet Based Robust Digital Watermarking Technique

Using Reverse Additive Algorithm (RAA)

In Third UKSim European Symposium on Computer Mod-

eling and Simulation, 2009, pp. 241—244.

[15] S. P. Mohanty, E. Kougianos, and N. Ranganathan

VLSI architecture and chip for combined invisible robust

and fragile watermarking

IET Computers & Digital Techniques, Vol. 1, No. 5, 2007,

pp. 600—611.

[16] G. Karakonstantis, N. Banerjee, and K. Roy

Process-Variation Resilient and Voltage-Scalable DCT Ar-

chitecture for Robust Low-Power Computing

IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 18, No. 10, 2010, pp. 1461—1470.

[17] W. C. Chu

DCT-based image watermarking using subsampling

IEEE Transactions on Multimedia, Vol. 5, No. 1, 2003, pp.

34—38.

[18] X. Jun and W. Ying

Multiple Watermarking Based on Spread Transform

In 8th International Conference on Signal Processing, 2006,

pp. 1—4.

[19] Z. Dong, W. Sha, and Z. Jiying

RST Invariant Image Watermarking Algorithm with Math-

ematical Modeling and Analysis of the Watermarking Pro-

cesses

IEEE Transactions on Image Processing, Vol. 18, No. 5,

2009, pp. 1055—1068.

[20] Z. Ying, X. Jun, and W. Ying

Side informed image watermarking algorithm with high

security

In IEEE Youth Conference on Information, Computing and

Telecommunication, 2009, pp. 395—398.

[21] Y. Tan, L. Tang, Z. Gao, P. Sun, X. Yang, and Y. Li

A Rotation Resistant Image Watermarking Algorithm via

Circle

In Eighth International Conference on Computational In-

telligence and Security (CIS), 2012, pp. 461—463.

[22] P. Viswanathan, and P. V. Krishna

A Joint FED Watermarking System using Spatial Fusion

for Verifying the Security Issues of Teleradiology

IEEE Journal of Biomedical and Health Informatics, Vol.

18, No. 3, pp. 753—764, 2014.

[23] V. M. Potdar, H. Song, and E. Chang

A survey of digital image watermarking techniques

In 3rd IEEE International Conference on Industrial Infor-

matics, 2005, pp. 709—716.

[24] T. Stutz, F. Autrusseau, and A. Uhl

Non-Blind Structure-Preserving Substitution Watermarking

of H.264/CAVLC Inter-Frames

IEEE Transactions on Multimedia, Vol. 16, No.5, pp. 1337—

1349, 2014.

[25] L. Zhang, F. Qian, Y. Gao, and Y. Zhu

A New Integration Scheme of Robust and Fragile for

Secured Digital Watermarking

International Colloquium on Computing, Communication,

Control, and Management, 2008, pp. 312—316.

[26] Y.-W. Ding, Z. Lin, and L. Wang

A Multipurpose Public-Key Cryptosystem Based Image

Watermarking,

In 4th International Conference on Wireless Communica-

tions, Networking and Mobile Computing, 2008, pp. 1—4.

[27] RBI

FAQ on Cheque Truncation Project in the National Capital

Region

Department of Payment and Settlement Systems, 2010.

[28] RBI

Payment and Settlement Systems and Information Technol-

ogy

Reserve Bank of India Annual Report 12-13, 2013. pp.

128—139

[29] R. Eswaraiah, and E. Sreenivasa Reddy

Robust medical image watermarking technique for accurate

detection of tampers inside region of interest and recovering

original region of interest

IET Image Processing, Vol. 9, No. 8, 2015, pp. 615—625.

[30] X. Li, X. Sun and L. Quansheng

Image Integrity Authentication Scheme Based on Fixed

Point Theory

IEEE Transactions on Image Processing, Vol. 24, No. 2,

2015, pp. 632—635

[31] A. B. Jeng and C. Lo-Yi

How to enhance the security of e-Passport

In International Conference on Machine Learning and Cy-

bernetics, 2009, pp. 2922—2926.

[32] S. Kundra, A. Dureja, and R. Bhatnagar

The study of recent technologies used in E-passport system

In IEEE Global Humanitarian Technology Conference–

South Asia Satellite (GHTC-SAS), 2014, pp. 141—146.

[33] M. Q. Saeed, A. Masood, and F. Kausar

Securing ePassport system: A proposed Anti-Cloning and

Anti-Skimming Protocol

In 17th International Conference on Software, Telecommu-

nications & Computer Networks, 2009, pp. 90—94.

[34] K. D. Akdemir, D. Karakoyunlu, and B. Sunar

Non-linear error detection for elliptic curve cryptosystems

IET Information Security, Vol. 6, No. 1, 2012, pp. 28—40.

[35] L. Jyu-Yuan and H. Chih-Tsun

Energy-Adaptive Dual-Field Processor for High-Perfor-

mance Elliptic Curve Cryptographic Applications

IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 19, No. 8, 2011, pp. 1512—1517.

[36] D. M. Schinianakis, A. P. Fournaris, H. E. Michail, A. P.

Kakarountas, and T. Stouraitis

An RNS Implementation of an Elliptic Curve Point Multi-

plier

IEEE Transactions on Circuits and Systems, Vol. 56, No.

6, pp. 2009, 1202—1213.

[37] NIST

Digital Signature Standard

In Federal Information Processing Standards Publications

FIPS PUB 186-2, 2000, pp. 1—73.

[38] NIST

Mathematical routines for the NIST prime elliptic curves

In National Security Agency, 2010, pp. 1—43.

[39] NIST

Recommended Elliptic Curves for Federal Government

Use http://csrc.nist.gov/groups/ST/toolkit/documents/dss/

NISTReCur.pdf, Date of Accession 19-11-2013.

[40] K. Ananyi, H. Alrimeih, and D. Rakhmatov

Flexible Hardware Processor for Elliptic Curve Cryptogra-

phy Over NIST Prime Fields

IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 17, No. 8, 2009, pp. 1099—1112.

[41] O. S. Althobaiti and H. A. Aboalsamh

An enhanced Elliptic Curve Cryptography for biometric

In 7th International Conference on Computing and Conver-

gence Technology (ICCCT), 2012, pp. 1048—1055.

[42] L. Tawalbeh, M. Mowafi, and W. Aljoby

Use of elliptic curve cryptography for multimedia encryp-

tion

IET Information Security, Vol. 7, No. 2, 2013, pp. 67—74.

SEMI-BLIND SECURE WATERMARKING BASED ON INTEGRATION OF AES AND ECC IN DCT DOMAIN 119



[43] A. Cilardo, L. Coppolino, N. Mazzocca, and L. Romano

Elliptic Curve Cryptography Engineering

Proceedings of the IEEE, Vol. 94, No. 2, 2006, pp. 395—

406.

[44] M. Amara and A. Siad

Elliptic Curve Cryptography and its applications

In 7th International Workshop on Systems, Signal Process-

ing and their Applications (WOSSPA), 2011, pp. 247—250.

[45] A. Sachan, S. Emmanuel, A. Das, and M. S. Kankanhalli

Privacy Preserving Multiparty Multilevel DRM Architec-

ture

In 6th IEEE Consumer Communications and Networking

Conference, 2009, pp. 1—5.

[46] D. Mishra and S. Mukhopadhyay

Privacy preserving hierarchical content distribution in mul-

tiparty multilevel DRM

In World Congress on Information and Communication

Technologies (WICT), 2012, pp. 525—530.

[47] L. Harn, W. J. Hsin, and M. Mehta

Authenticated Diffie-Hellman key agreement protocol us-

ing a single cryptographic assumption

IEE Proceedings–Communications, Vol. 152, No. 4, 2005,

pp. 404—410.

[48] G. P. Biswas

Diffie-Hellman technique: extended to multiple two-party

keys and one multi-party key

IET Information Security, Vol. 2, No. 1, 2008, pp. 12—18.

[49] M. Abid and H. Afifi

Secure E-Passport Protocol Using Elliptic Curve Diffie-

Hellman Key Agreement Protocol

In Fourth International Conference on Information Assur-

ance and Security, 2008, pp. 99—102.

[50] J. R. Vacca

Computer and Information Security

1st ed.: Morgan Kaufmann Publishers, 2009.

[51] X. Li, J. Chen, D. Qin, and W. Wan

Research and realization based on hybrid encryption algo-

rithm of improved AES and ECC

In International Conference on Audio Language and Image

Processing (ICALIP), 2010, pp. 396—400.

[52] NIST

Advanced Encryption Standard

In Federal Information Processing Standards, 2001, pp. 1—

47.

[53] W. E. Burr

Selecting the Advanced Encryption Standard

IEEE Security & Privacy, Vol. 1, No. 2, 2003, pp. 43—52.

[54] M. Mozaffari-Kermani and A. Reyhani-Masoleh

Efficient and High-Performance Parallel Hardware Archi-

tectures for the AES-GCM

IEEE Transactions on Computers, Vol. 61, No. 8, 2012, pp.

1165—1178.

[55] R. Banu and T. Vladimirova

Fault-Tolerant Encryption for Space Applications

IEEE Transactions on Aerospace and Electronic Systems,

Vol. 45, No. 1, 2009, pp. 266—279.

[56] L. Bin and B. M. Baas

Parallel AES Encryption Engines for Many-Core Processor

Arrays

IEEE Transactions on Computers, Vol. 62, No. 3, pp. 2013,

536—547.

[57] R. Setchi, I. Jordanov, R. J. Howlett, and L. C. Jain

Knowledge-Based and Intelligent Information and Engi-

neering Systems

Springer, 2010.

[58] S. P. Noolu and M. S. Baghini

Comments on An Analog 2-D DCT Processor

IEEE Transactions on Circuits and Systems for Video Tech-

nology, Vol. 20, No. 8, 2010, pp. 1162—1163.

[59] T. Dutoit and F. Marques

Applied Signal Processing

Springer, 2009.

[60] E. L. Tan, W. S. Gan, and S. K. Mitra

Fast arbitrary resizing of images in the discrete cosine

transform domain

IET Image Processing, Vol. 5, No. 1, 2011, pp. 73—86.

[61] E. Walia and A. Suneja

Fragile and blind watermarking technique based on We-

ber’s law for medical image authentication

Computer Vision, Vol. 7, No. 1, 2013, pp. 9—19.

[62] J. Hammerle-Uhl, C. Koidl, and A. Uhl

Multiple blind re-watermarking with quantisation-based

embedding

In 18th IEEE International Conference on Image Process-

ing (ICIP), 2011, pp. 265—268.

[63] R. Rosenbaum, G. Fuchs, and H. Schumann

Region-wise meta-data in JPEG2000-encoded imagery

In 5th International Conference on Visual Information En-

gineering, 2008, pp. 741—746.

[64] E. Halici and A. A. Alatan

Watermarking for depth image based rendering

In IEEE International Conference on Image Processing

(ICIP), 2009, pp. 4217—4220.

[65] T. Hui Li, L. Zhengguo, T. Yih Han, S. Rahardja, and Y.

Chuohuo

A Perceptually Relevant MSE-Based Image Quality Metric

IEEE Transactions on Image Processing, Vol. 22, No. 11,

2013, pp. 4447—4459.

[66] T. Hui Li, L. Zhengguo, T. Yih Han, S. Rahardja, and Y.

Chuohuo

A Perceptually Relevant MSE-Based Image Quality Metric

IEEE Transactions on Image Processing, Vol. 22, No. 11,

2013, pp. 4447—4459.

[67] A. Kunhu and H. Al-Ahmad

Multi watermarking algorithm based on DCT and hash

functions for color satellite images

In 9th International Conference on Innovations in Informa-

tion Technology (IIT), 2013, pp. 30—35.

[68] H. Heechul and S. Kwanghoon

Automatic illumination and color compensation using mean

shift and sigma filter

IEEE Transactions on Consumer Electronics, Vol. 55, No.

3, pp. 2009, 978—986.

[69] R. F. Lopes, C. D. M. Regis, W. T. A. Lopes, and M. S. de

Alencar

AdaptVoD–An Adaptive Video-on-Demand Platform for

Mobile Devices

In 5th FTRA International Conference on Multimedia and

Ubiquitous Engineering (MUE), 2011, pp. 257—262.

[70] D. V. S. X. De Silva, W. A. C. Fernando, S. T. Worrall, and

A. M. Kondoz

A novel depth map quality metric and its usage in depth

map coding

In 3DTV Conference: The True Vision–Capture, Trans-

mission and Display of 3D Video (3DTV-CON), 2011, pp.

1—4.

[71] S. Philipp, K. Stephan, E. Wolfgang, and T. Niels

Semi-automatic registration of videos for improved water-

mark detection

In Proceedings of the first annual ACM SIGMM conference

on Multimedia systems Phoenix, Arizona, USA: ACM,

2010, pp. 23—34.

[72] H. A. Al-Otum and A. O. Al-Taba’a

Color image copyright ownership protection based on a

multi-spectral selective pixel-wise watermarking technique

In 3rd International Symposium on Communications, Con-

trol and Signal Processing (ISCCSP), 2008, pp. 544—549.

120 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 1 JUNE 2018



[73] L. Cheng-Liang and C. Yi-Shiang

The application of intelligent system to digital image foren-

sics

In International Conference on Machine Learning and Cy-

bernetics, 2009, pp. 2991—2998.

[74] S. Kwong, H. Yuan, J. Liu, and J. Sun

A Novel Distortion Model and Lagrangian Multiplier for

Depth Maps Coding

IEEE Transactions on Circuits and Systems for Video Tech-

nology, Vol. 25, No. 99, 2014, pp. 443—451.

[75] A. Umamageswari and G. R. Suresh

Security in medical image communication with arnold’s cat

map method and reversible watermarking

In International Conference on Circuits, Power and Com-

puting Technologies (ICCPCT), 2013, pp. 1116—1121.

[76] M. S. El-Mahallawy, E. A. Hagras, A. Z. Eldin, and M. W.

Fakhr

Robust Blind and Secure Biometric Watermarking Based

on Partial Multi-Map Chaotic Encryption

In 4th IFIP International Conference on New Technologies,

Mobility and Security (NTMS), 2011, pp. 1—5.

Vineet Mehan received the B.Tech. degree in Information Technology from Kuruk-

shetra University in 2003. He received the M.E. degree in Computer Science and

Engineering from NITTTR, Panjab University in 2008. He completed Ph.D. degree

in Computer Science and Engineering from Dr. B.R. Ambedkar National Institute

of Technology, Jalandhar in 2016. His research interests include Image Processing,

Watermarking and Cryptographic Algorithms.

[77] K. P. Narendra, P. Vinod, and K. S. Krishan

Diffusion-substitution based gray image encryption scheme

Digital Signal Processing, Vol. 23, No. 3, 2013, pp. 894—

901.

[78] N. K. Pareek, V. Patidar, and K. K. Sud

Substitution-diffusion based Image Cipher

International Journal of Network Security & Its Applica-

tions, Vol. 3, No. 2, 2011, pp. 149—160.

[79] S. M. Seyedzadeh and Y. Hashemi

Image encryption algorithm based on Choquet Fuzzy Inte-

gral with self-adaptive pseudo-random number generator

In 11th International Conference on Intelligent Systems

Design and Applications (ISDA), 2011, pp. 642—647.

[80] Y. Qiu, Z. Yana, Y. Cheng, and L. Wei

Information Entropy Used in Digital Watermarking

In Symposium on Photonics and Optoelectronics (SOPO),

2012, pp. 1—4.

SEMI-BLIND SECURE WATERMARKING BASED ON INTEGRATION OF AES AND ECC IN DCT DOMAIN 121





JAIF
Journal of Advances in Information Fusion

A semi-annual archival publication of the
International Society of Information Fusion

Volumes 1—12 Index



A

Adurthi, N., see Salerno, E., JAIF, 10, 1 (June 2015), 58—72.
Ala-Luhtala, J., see Raitoharju, M., JAIF, 11, 1 (June 2016), 3—14.
Alford, M., see Salerno, E., JAIF, 10, 1 (June 2015), 58—72.
Ali-Löytty, S., see Raitoharju, M., JAIF, 11, 1 (June 2016), 3—14.
Alsun, M., Lecornu, L., Solaiman, B., Possibilistic Medical Knowledge Repre-

sentation Model, JAIF, 7, 2 (December 2012), 101—113.
An, W., Singh, S., Pattipati, K. R., Kleinman, D. L., and Gokhale, S. S., Dynamic

Scheduling of Multiple Hidden Markov Model-Based Sensors, JAIF, 3, 1
(July 2008), 33—49.

Anderson, S. L., see Stone, L. D., JAIF, 10, 1 (June 2015), 3—12.
Andler, S. F., see Karlsson, A., JAIF, 6, 2 (December 2011), 150—166.
Aravinthan, A., see Habtemariam, B. K., JAIF, 7, 2 (December 2012), 114—130.
Areta, J., Bar-Shalom, Y., and Pattipati, K. R., T2T and M2T Association with

Combined Hypotheses, JAIF, 4, 1 (July 2009), 40—51.
Areta, J., Bar-Shalom, Y., and Rothrock, R., Misassociation Probability in

M2TA and T2TA, JAIF, 2, 2 (Dec. 2007), 113—127.
Areta, J., Bar-Shalom, Y., Levedahl, M., and Pattipati, K. R., Hierarchical Track

Association and Fusion for a Networked Surveillance System, JAIF, 1, 2
(Dec. 2006), 144—157.

Arnborg, S., see Brynielsson, J., JAIF, 1, 2 (Dec. 2006), 108—121.
Arnborg, S., Robust Bayesianism: Relation to Evidence Theory JAIF, 1, 1 (July

2006), 75—90.

Aughenbaugh, J. M. and La Cour, B. R., Measurement-Guided Likelihood Sam-

pling for Grid-Based Bayesian Tracking JAIF, 5, 2 (Dec. 2010), 108—127.
Avasarala, V., Mullen, T., and Hall, D., A Market-based Approach to Sensor

Management, JAIF, 4, 1 (July 2009), 52—71.

B

Bab-Hadiashar, A., see Hoseinnezhad, R., JAIF, 1, 1 (July 2006), 52—62.
Balasingam, B., see Choi, S., JAIF, 8, 2 (December 2013), 143—155.
Balasingam, B., see Pasupuleti, D., JAIF, 12, 1 (June 2017), 41—57.
Bar-Shalom, Y., see Areta, J., JAIF, 1, 2 (Dec. 2006), 144—157.
Bar-Shalom, Y., see Areta, J., JAIF, 2, 2 (Dec. 2007), 113—127.
Bar-Shalom, Y., see Areta, J., JAIF, 4, 1 (July 2009), 40—51.
Bar-Shalom, Y., see Belfadel, D., JAIF, 9, 2 (December 2014), 59—74.
Bar-Shalom, Y., see Belfadel, D., JAIF, 10, 2 (December 2015), 101—112.
Bar-Shalom, Y., see Belfadel, D., JAIF, 12, 1 (June 2017), 58—72.
Bar-Shalom, Y., see Bordonaro, S., JAIF, 12, 2 (December 2017), 228—242.
Bar-Shalom, Y. and Chen, H., Covariance Reconstruction for Track Fusion with

Legacy Track Sources JAIF, 3, 2 (Dec. 2008), 107—117.
Bar-Shalom, Y. and Chen, H., Multisensor Track-to-Track Association for

Tracks with Dependent Errors JAIF, 1, 1 (July 2006), 3—14.
Bar-Shalom, Y. and Chen, H., Track-to-Track Association Using Attributes

JAIF, 2, 1 (July 2007), 49—59.
Bar-Shalom, Y., see Crouse, D. F., JAIF, 8, 1 (July 2013), 73—89.
Bar-Shalom, Y., see Dou, W., JAIF, 10, 2 (December 2015), 163—182.
Bar-Shalom, Y., see Huang, H. A. J., JAIF, 12, 1 (June 2017), 110—124.
Bar-Shalom, Y., see Osborne, R. W., III, JAIF, 7, 1 (June 2012), 3—15.
Bar-Shalom, Y., see Osborne, R. W., III, JAIF, 9, 2 (December 2014), 75—89.
Bar-Shalom, Y., seeOsborne, III, R. W., JAIF, 10, 2 (December 2015), 199—210.
Bar-Shalom, Y., see Ravindra, V. C., JAIF, 5, 2 (Dec. 2010), 88—107.
Bar-Shalom, Y., see Rodningsby, A., JAIF, 4, 2 (Dec. 2009), 117—145.
Bar-Shalom, Y., see Romeo, K., JAIF, 10, 2 (December 2015), 113—124.
Bar-Shalom, Y., see Tharmarasa, R., JAIF, 7, 1 (June 2012), 46—60.
Bar-Shalom, Y., see Tian, X., JAIF, 4, 2 (Dec. 2009), 146—164.
Bar-Shalom, Y., see Tian, X., JAIF, 5, 1 (July 2010), 3—17.
Bar-Shalom, Y., see Tian, X., JAIF, 5, 2 (Dec. 2010), 128—138.
Bar-Shalom, Y., see Yang, R., JAIF, 12, 1 (June 2017), 3—19.
Bar-Shalom, Y., see Yuan, T., JAIF, 6, 2 (December 2011), 131—149.
Bar-Shalom, Y., see Zhang, S., JAIF, 6, 1 (June 2011), 3—23.
Bar-Shalom, Y., see Zhang, S., JAIF, 9, 1 (July 2014), 38—46.
Baum, M., see Bordonaro, S., JAIF, 12, 2 (December 2017), 228—242.
Baum, M., see Faion, F., JAIF, 10, 1 (June 2015), 13—30.
Baum, M., see Granström, K., JAIF, 12, 2 (December 2017), 139—174.
Baum, M., see Pasupuleti, D., JAIF, 12, 1 (June 2017), 41—57.
Belaroussi, R., Prevost, L., and Milgram, M., Algorithms Fusion for Face Lo-

calization, JAIF, 1, 1 (July 2006), 35—51.
Belfadel, D., Osborne, R. W., III, Bar-Shalom, Y., Bias Estimation and Observ-

ability for Optical Sensor Measurements with Targets of Opportunity, JAIF,
9, 2 (December 2014), 59—74.

Belfadel, D., Osborne, R. W., III, Bar-Shalom, Y., Bias Estimation for Mov-

ing Optical Sensor Measurements with Targets of Opportunity, JAIF, 10, 2
(December 2015), 101—112.

Belfadel, D., Osborne, III, R. W., Bar-Shalom, Y., Pattipati, K., Space Based

Sensor Bias Estimation in the Presence of Data Association Uncertainty,

JAIF, 12, 1 (June 2017), 58—72.
Benaskeur, A. R., Rhéaume, F., and Paradis, S., Target Engageability Improve-

ment through Adaptive Tracking, JAIF, 2, 2 (Dec. 2007), 99—112.
Biermann, J., Hörling, P., Snidaro, L., Experiences and Challenges in Auto-

mated Support for Intelligence in Asymmetric Operations, JAIF, 8, 2 (De-
cember 2013), 101—118.

Blair, W. D. and Miceli, P. A., Performance Prediction of Multisensor Tracking

Systems for Single Maneuvering Targets JAIF, 7, 1 (June 2012), 28—45.
Blasch, E., see Chen, G., JAIF, 2, 1 (July 2007), 35—48.
Blasch, E., see Duník, J., JAIF, 11, 1 (June 2016), 91—109.
Blasch, E., Kadar, I., Salerno, J., Kokar, M. M., Das, S., Powell, G. M., Corkill,

D. D., and Ruspini, E. H., Issues and Challenges in Situation Assessment

(Level 2 Fusion), JAIF, 1, 2 (Dec. 2006), 122—143.
Blasch, E., see Kahler, B., JAIF, 6, 2 (December 2011), 101—118.
Blasch, E., see Yang, C., JAIF, 3, 1 (July 2008), 14—32.
Blasch, E., see Zheng, Y., JAIF, 9, 2 (December 2014), 124—135.
Bloem, E. A., see Blom, H. A. P., JAIF, 1, 1 (July 2006), 15—34.
Blom, H. A. P. and Bloem, E. A., Joint Particle Filtering of Multiple Maneu-

vering Targets From Unassociated Measurements JAIF, 1, 1 (July 2006),
15—34.

Bordonaro, S., Willett, P., Bar-Shalom, Y., Baum, M., Luginbuhl, T., Extended

Object Tracking with Exploitation of Range Rate Measurements, JAIF, 12,
2 (December 2017), 228—242.

Bossé, É., see Valin, P., JAIF, 5, 1 (July 2010), 32—40.
Braca, P., see Vivone, G., JAIF, 12, 2 (December 2017), 189—210.
Brynielsson, J. and Arnborg, S., An Information Fusion Game Component

JAIF, 1, 2 (Dec. 2006), 108—121.
Bubalo, A., see Salerno, E., JAIF, 10, 1 (June 2015), 58—72.
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Integrate
Integrate ideas from various approaches for information fusion, and look for common threads and themes– 
look for overall principles, rather than a multitude of point solutions. Serve as the central focus for coordinat-
ing the activities of world-wide information fusion related societies or organizations. Serve as a professional 
liaison to industry, academia, and government.

Disseminate
To propagate the ideas for integrated approaches to information fusion so that others can build on them in 
both industry and academia.
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The Journal of Advances in Information Fusion (JAIF) seeks original 
contributions in the technical areas of research related to information 
fusion. Authors are encouraged to submit their manuscripts for peer 
review http://isif.org/journal.
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The success of JAIF and its value to the research community is 
strongly dependent on the quality of its peer review process. Re-
searchers in the technical areas related to information fusion are en-
couraged to register as a reviewer for JAIF at http://jaif.msubmit.net. 
Potential reviewers should notify via email the appropriate editors of 
their offer to serve as a reviewer.
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