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From the Editor-in-Chief:
December 2018

Paulo. C. G. Costa Anne-Laure Jousselme

Pieter de Villiers

Guest Editorial: Foreword to the Special Issue on
Evaluation of Uncertainty Representation and Reason-

ing Techniques

In an era characterized by increasingly pervasive
sensors, availability of large volumes of heterogeneous
data and complex interactions between information sys-
tems, the problem of uncertainty representation and rea-
soning in high-level fusion information (HLIF) systems
has attracted interest that extends beyond the Informa-
tion Fusion (IF) community. For instance, fusing hard
and soft information from diverse sensor or source types
and the associated uncertainty is a task that still relies
heavily on human intervention, creating a scalability co-
nundrum that current technologies are incapable of solv-
ing. Despite the widespread acknowledgment that HLIF
systems must support automated knowledge representa-
tion and reasoning in the presence of uncertainty, there
is no consensus on the the appropriate approach to adopt
(which theory, uncertainty function, fusion rule, etc), on
the performance criteria that should guide the design of
an HLIF system in terms of uncertainty handling, and
on how to assess such criteria.
This special issue of JAIF aims at providing an

overview of the most current efforts on evaluation of
uncertainty representation and reasoning techniques in
information fusion systems. In the opening paper of this
issue, Costa et al. provide an overview of the Uncer-
tainty Representation and Reasoning Evaluation Frame-
work (URREF), which is currently in development by
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the ISIF Evaluation of Techniques for Uncertainty Rep-

resentation Working Group (ETURWG). As an evalu-

ation framework, the URREF is comprised of different

components designed to provide support to researchers,

developers, and other practitioners of high-level infor-

mation fusion systems in the task of assessing and

characterizing how choices on uncertainty representa-

tion and reasoning impact their performance. This is a

multi-facet problem whose comprehensive and exhaus-

tive coverage is challenging, but whose most basic and

common facets are addressed here. This paper estab-

lishes the basic concepts and definitions, together with

their links, as common grounds to be considered.

Jousselme and Pallota, in the second paper of this

special issue, explore one of the most critical facets of

the problem, which is how to identify performance cri-

teria for uncertainty evaluation. They frame the com-

parison of six uncertainty representation and reasoning

techniques in the URREF, with an illustrative example

of HLIF on maritime anomaly detection. Next, Locher

and Costa propose an overarching discussion on the dif-

ficulties in understanding where and how each criterion

is applicable across a general fusion process environ-

ment, including a generic fusion system model. In the

process, they provide some insight to the URREF on-

tology, a key component of the framework that offers

a formal structure for representing the semantics of un-

certainty evaluation.

In the fourth paper of this issue, De Villiers et al.

discuss the role of uncertainty evaluation in the life-

cycle of HLIF systems, while emphasizing how un-

certainty impacts modeling and decision-making within

these systems. In the discussion, the flow of abstraction

in fusion system inception, design and implementation

is contrasted to the flow of information and the flow of

decisions/actions during the routine operation of a fu-

sion system. This contrast is a good lead to the subject

of the following paper, by Dragos et al., which explores

an issue that pervades all the information flow: how

to estimate trust in information received by and out-

put from HLIF systems. The paper emphasizes how the

URREF ontology can be used to characterize and track

uncertainties arising within the development of HLIF

systems, focusing on how trust can be estimated in the

process.

The next papers emphasize key aspects of uncer-

tainty representation and reasoning in HLIF systems,

setting the stage for a discussion on the application of

the URREF to different domains and techniques. An

example of the latter is shown by Josang in the sixth

paper of this special issue, which addresses the im-

portance of selecting a belief fusion operator that ad-

equately matches the situation to be modeled and ana-

lyzed. Moving the discussion from technique to appli-

cations, the last two papers of this special issue illustrate

the role of uncertainty evaluation in two different appli-

cation domains, Avionics (Insaurralde and Blasch) and

Situational Assessment (Hintz and Darcy). The first pro-

poses an Avionics Analytics Ontology (AAO) to bring

together different types of uncertainties including se-

mantic from operators, sensing from navigation, and

situation from weather modeling updates. The approach

is aligned with the URREF via its use of some of the

URREF ontology concepts. Finally, Hintz and Darcy

close the special issue by presenting the problem of

measuring uncertainty over time to control the knowl-

edge entropy in a situation awareness system.

As it can be inferred from the papers presented in

this special issue and their associated reference lists, the

problem of evaluating uncertainty representation and

reasoning techniques in HLIF is still far from being

solved. Yet, the IF community is clearly moving ahead

towards that goal and its research on the key topics is

starting to bear fruits.

Paulo C. G. Costa

George Mason University

Fairfax, VA, USA

E-mail: pcosta@gmu.edu

Anne-Laure Jousselme

NATO STO Centre for Maritime Research and

Experimentation

La Spezia, IT

E-mail: anne-laure.jousselme@cmre.nato.int

Pieter de Villiers

University of Pretoria

Pretoria, South Africa

E-mail: pieter.devilliers@up.ac.za
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Uncertainty management is a key aspect of any information fu-

sion (IF) system. Evaluation of how uncertainty is dealt with within

a given IF system is distinct from, although closely related to, evalu-

ation of the overall performance of the system. This paper presents

the Uncertainty Representation and Reasoning Evaluation Frame-

work (URREF), which is developed by the ISIF Evaluation of Tech-

niques for Uncertainty Representation Working Group (ETURWG)

for evaluating the uncertainty management aspects of IF systems.

The paper describes the scope of the framework, its core element–

the URREF ontology, the elementary fusion process it considers,

and how these are related to the subjects being evaluated using the

framework. Although material about the URREF has been previ-

ously published elsewhere, this work is the first to provide a com-

prehensive overview of the framework, establishing its scope, core

elements, elementary fusion process considered, and relationship

between these and the subjects they are designed to evaluate. We

also briefly describe a few use cases of the framework, discussing

how URREF can be applied in their evaluation.
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I. INTRODUCTION

Evaluating how well an Information Fusion (IF) sys-

tem performs requires defining the relevant criteria to be

assessed and testing the IF system’s fusion algorithm,

data model, and architecture against that criteria. Empir-

ical evaluation techniques are effective when assessing

the latter two, but face a major limitation when address-

ing the former. More specifically, they often require em-

bedding some uncertainty representation and its associ-

ated reasoning scheme within the fusion method, which

serves as an enabler and becomes often the subject of

evaluation itself. Inherently, it is not a trivial problem to

isolate the uncertainty representation from either its rea-

soning scheme or the fusion algorithm, which prevents

an effective assessment of the IF system since current

methods cannot capture the impact of these in the over-

all IF system’s performance. The work described in this

paper focuses on addressing this limitation, providing a

principled method for evaluating how the uncertainty

representation and reasoning aspects of an Information

Fusion impact its overall performance.

IF applications typically must deal with information

that is incomplete, imprecise, inconsistent and other-

wise in need of a sound methodology for representing

and managing uncertainty. Complex and dynamic use

cases make such tasks even more difficult, as appar-

ently minor differences in how uncertainty is handled

may drastically affect the output of the IF process. In

short, it is fair to state that uncertainty management is

a key aspect in most–if not all–IF systems. Despite

this importance, the IF community still does not have a

standardized framework for evaluating how uncertainty

is represented and managed in IF systems. IF systems

typically perform uncertainty reasoning to achieve their

goals, which means they would benefit from a frame-

work to evaluate how well they are performing on it.

The lack of an uncertainty evaluation framework

for IF systems tends to be more widely acknowledged

at higher levels of the Joint Directors of Laboratories

(JDL) model [1]—[3]. More specifically, Low-Level In-

formation Fusion (LLIF) systems (i.e., below JDL level

2) tend not to represent semantics explicitly. Semantics

is commonly understood among theoreticians and al-

gorithm developers, and is typically implicitly encoded

in algorithms through devices such as variable naming

conventions. LLIF systems tend to rely exclusively on

probability theory as the paradigm for uncertainty repre-

sentation and reasoning. This is justified by the typically

large amount of available data, which justifies the use

of statistical models to address the fusion problems at

hand. Tools and techniques for evaluating probabilis-

tic inference systems are well-understood. In contrast,

because of the complexity and variety of semantic cat-

egories for High-Level Information Fusion (HLIF), ap-

plications usually require making semantics explicit and

accessible to formal reasoning tools. Furthermore, HLIF

systems make use of a variety of theories and methods
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to represent and reason with uncertainty. For example,

deciding whether three different radars receiving echos

from the same location are seeing one, two, or three

tracks is a problem for which uncertainty is well under-

stood and for which standard evaluation methods are

well established. On the other hand, deciding whether

the incoming fighter formation poses a danger to a radar

installation may involve a multiplicity of sources of un-

certainty, and may require consideration of complex se-

mantic concepts such as enemy doctrine, the spatial con-

figurations associated with hostile and innocuous for-

mations, how danger should be defined, and the like.

Uncertainty analysis is even more critical for sys-

tems relying on multiple types of data and different

uncertainty paradigms. Soft data is unstructured and in-

trinsically ambiguous [4], and tracking its uncertainty

[5] often requires explicit semantics [6]. Heterogeneous

fusion combines data of different natures, and uncer-

tainty propagation for heterogeneous fusion still lacks

a well-established and widely agreed upon theoretical

foundation [7].

Clearly, a system that can reason about these and

other HLIF problems must consider complex seman-

tics, and may be required to employ multiple uncer-

tainty formalisms (e.g., a fuzzy membership function

might be used to transform verbal danger categories

into a quantitative representation, which might be com-

bined with a probability distribution on events leading

to different levels of danger). The design of a HLIF sys-

tem would definitely benefit from an uncertainty eval-

uation framework that would guide the selection of the

most suitable uncertainty representation and reasoning

technique. An ability to compare uncertainty handling

approaches would enable exploitation of semantically

rich representations to help assess its performance when

facing an uncertain input. With the emergence of alter-

native uncertainty theories in addition to probabilities

(see for instance [8] for a survey) came the question of

which approach is the best suited for uncertainty han-

dling in a specific problem setting. The question has

been addressed both theoretically (e.g., [9]—[12]) and

in practical implementation of fusion solutions (e.g.,

[13]—[15]). Handling uncertainty in fusion problems is

indeed a major challenge for algorithm designers as it

generates many questions, such as what “uncertainty”

means, where it comes from, on what it bears, how

to interpret the associated numerical values or mea-

sures, how to distinguish between its different varieties,

etc. Acknowledging the existence of different types or

facets of information quality provides partial answers

(e.g., [16]—[18]). Nevertheless a deep understanding of

the different uncertainty representation and reasoning

techniques, their underlying mathematical frameworks,

and associated hypotheses and semantics, is necessary

to guide a fusion system’s designer in making informed

choices about the most suitable technique to the problem

at hand. Such a deep understanding provides clearer ex-

planations of the algorithms to the user for an improved

synergy between the human and the machine [19].

The International Society of Information Fusion

(ISIF) recognized this problem, and created a work-

ing group to address it. The ISIF Evaluation of Tech-

niques for Uncertainty Representation Working Group

(ETURWG) [20], [21] was created in the ISIF Board of

Directors meeting just after the Fusion 2011 conference

(Chicago, IL, USA) to specifically address this issue.

The ETURWG’s main goals are (1) to establish features

required for any quantitative uncertainty representation

to support the exchange of soft and hard information

in a net-centric environment; (2) to develop a set of

use cases involving information exchange and fusion re-

quiring reasoning and inference under uncertainty; and

(3) to define evaluation criteria supporting principled

comparisons among different approaches applied to the

use cases. As of this writing, the group has convened

104 general meetings spanning its 7 years of activities,

and resulted in 43 peer-reviewed articles on the subject.

The group’s website1 provides comprehensive informa-

tion about its activities, including agendas and minutes

of the meetings, datasets used, documentation on case

studies and discussions, as well as a large amount of

information related to the research efforts by the group.

This paper provides an overview of the Uncertainty

Representation and Reasoning Evaluation Framework

(URREF). It not only updates but also substantially en-

hances a similar paper published in the Proceedings of

the Fusion 2012 conference [22]. After this brief intro-

duction, Section II provides an overview of recent and

current efforts in evaluating uncertainty in IF systems.

Section III introduces the framework, which supports

assessment of the impact of uncertainty representation

on a fusion system. This is followed by a section cov-

ering the relationship between the framework elements

and the subjects it is evaluating. Section V presents a

brief description of case studies applying the frame-

work. The final section contains discussion and con-

clusion.

II. EVALUATING UNCERTAINTY IN FUSION SYSTEMS
The evaluation of how uncertainty is dealt with

within a given IF system is distinct from, although

closely related to, the evaluation of the overall perfor-

mance of the system [23], [24]. Figure 1 shows the el-

ements of a generic IF model. The figure distinguishes

between processes associated with low-level and high-

level IF, a distinction dating to the seminal fusion model

developed by the Joint Directors of Laboratories (JDL)

[1]—[3]. Evaluation criteria and associated metrics for

the overall system include the effects of the uncertainty

representation, but there are also effects of other aspects

of the fusion system that can affect the performance of

the system. These are more encompassing in scope than

1http://eturwg.c4i.gmu.edu, free registration required for full access
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Fig. 1. The principal processing components of the IF process

include both high level and low level processing components. Low

level fusion processes include detection, association, state estimation

and attribute classification, whereas high level fusion processes

include behavioural pattern estimation, association, behaviour

prediction and situation classification.

those focused on the uncertainty handling within the

system. Metrics focused on uncertainty handling should

address the contribution of uncertainty handling to the

overall system performance.

For example, fusion-system-level metrics include

timeliness, accuracy and confidence. Clearly, different

choices in uncertainty representation approaches will

affect the achievable timeliness, accuracy, and confi-

dence of a system, and therefore must be considered

when evaluating both the system’s performance as a

whole and the specific impact of the uncertainty han-

dling approach. Yet, when evaluating timeliness (or any

other system-level metrics), one will likely find some

factors not directly related to the handling of uncer-

tainty itself, such as object tracking and classification

report updates (i.e., Level 1 fusion), situation and threat

assessment relative to scenario constraints (i.e., Level

2/3 fusion), overall system architecture (e.g., central-

ized, distributed, etc.), data management processes and

feedback/input control processes (i.e., Level 4 fusion

considerations), and user-machine coordination based

on operating systems (i.e., Level 5 fusion), and others.

The IF community envisions effortless interaction

between humans and computers, seamless interoperabil-

ity and information exchange among applications, and

rapid and accurate identification and invocation of ap-

propriate services. As the complexity of fusion solu-

tions grows, we end up with a mixture of components

handling different types of uncertainties, often by using

different methods.

Here, the term “uncertainty” is intended to encom-

pass a variety of aspects of imperfect knowledge, in-

cluding incompleteness, inconclusiveness, vagueness,

ambiguity, and others. The term “uncertainty reason-

ing” is meant to denote the full range of methods de-

signed for representing and reasoning with knowledge

when approaches based on Boolean algebra (e.g. propo-

sitional logic) are not applicable (e.g. when Boolean

truth-values are unknown, unknowable, or inapplicable.

Commonly applied approaches to uncertainty reason-

ing include probability theory, fuzzy logic, subjective

logic, Dempster-Shafer theory, DSmT, and numerous

other methodologies.

The problem of representing and reasoning with

complex and heterogeneous data was addressed by a

working group of the World Wide Web Consortium

[25]. The working group’s findings are relevant to the

challenge considered in this paper. Information fusion

under uncertainty is an intrinsic requirement for many

of the problems in the World Wide Web domain. A full

realization of the World Wide Web as a source of pro-

cessable data and services demands formalisms capable

of representing and reasoning under uncertainty.

² Automated agents are used to exchangeWeb informa-
tion that in many cases is not perfect. Thus, a stan-

dardized format for representing uncertainty would

allow agents receiving imperfect information to in-

terpret it in the same way as were intended by the

sending agents.

² Data often are intrinsically uncertainty-laden. Exam-
ples include weather forecasts or gambling odds.

Canonical methods for representing and integrating

such information are necessary for communicating it

in a seamless fashion.

² Non-sensory collected information is also often in-
correct or only partially correct, raising concerns re-

lated to trust or credibility. Uncertainty representation

and reasoning helps to resolve tension amongst infor-

mation sources having different confidence and trust

levels.

² Dynamic composability of Web Services will re-

quire runtime identification of processing and data

resources and resolution of policy objectives. Uncer-

tainty reasoning techniques may be necessary to re-

solve situations in which existing information is not

definitive.

² Information extracted from large information net-

works such as the World Wide Web is typically in-

complete. The ability to exploit partial information is

very useful for identifying sources of service or in-

formation. For example, that an online service deals

with greeting cards may be evidence that it also sells

stationery. It is clear that search effectiveness could

be improved by appropriate use of technologies for

handling uncertainty.

These problems all require IF, both low and high

level. They bear an obvious relationship to the kinds of

problems found in the sensor, data, and IF domain.

III. UNCERTAINTY REPRESENTATION AND
REASONING FRAMEWORK

This section describes an evaluation framework to

support assessment of how the choice of uncertainty
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Fig. 2. URREF Boundary. This figure depicts the world being sensed on the left, the role of uncertainty representation and reasoning

within a fusion system in the center, and the world being perceived on the right. The evaluation framework boundary encompasses the fusion

system input, uncertainty representation, uncertainty reasoning and the fusion system output. Everything inside the evaluation framework

boundary is known as the Uncertainty Representation and Reasoning Framework (URREF). The uncertainty representation and uncertainty

reasoning are the primary subjects of evaluation, whereas the input and output are secondary subjects of evaluation.

representation and reasoning impacts the performance

of an IF system. The scope of the framework is the main

focus of the first sub-section, which is followed by an

overview of its main component, the URREF ontology.

Finally, an elementary fusion process is presented, as a

means to identify the primary evaluation subjects of the

evaluation methodology envisioned for the framework.

A. The URREF Scope

The basic idea behind the framework is to analyze an

abstract fusion system and define its input data and out-

put products. In a hypothetical IF system of the future,

the uncertainty representation approach would be “plug-

and-playable.” That is, one might run the system with

a Bayesian approach, then switch to a Dempster-Shafer

approach, and then a Fuzzy Random Set approach. Al-

ternatively, one might use a combination of uncertainty

reasoning methods, as best suited for different aspects

of the problem. The input data are the same in each case,

as are the output products (but not necessarily the spe-

cific contents of the output products). Figure 2 depicts

the uncertainty representation and reasoning evaluation

framework (URREF) and its role in the overall fusion

process.

There are two elements in the picture that are exoge-

nous to the evaluation framework, named in the picture

as “World being sensed” and “World being reported.”

Between these two external elements, the boundary of

the evaluation framework encompasses the way uncer-

tainty is handled when data is input to the system, during

the processes that occur within it, as well as when the

final product is delivered to the IF system’s users. The

uncertainty representation and uncertainty reasoning are

the primary subjects of evaluation, whereas the input

and output are secondary subjects of evaluation.

The first external element refers to the events of

interest to the IF system that happen in the world and are

perceived by the system sources. Note that the implicit

definition of sources in this case encompasses anything

that can capture information and send it to the system.

That is, both hard sources (e.g., imaging, radar, video,

etc.) and soft sources (HUMINT reports, software alerts,

etc.) are considered external to the evaluation system

with respect to their associated sensorial capabilities,

while the way they convey their information is within

the scope of the system [24], [26], [27].

This reflects an important distinction between the

evaluation of an IF system and the evaluation of its

handling of uncertainty. To illustrate the distinction,

consider the Input element in Figure 2. This element

addresses the system’s ability to represent uncertainty

as an intrinsic part of the information being captured.

As an example, information regarding trust of the input

from a given sensor is important to evaluating how the

overall system handles uncertainty, although it might not

be as critical for its overall performance. A key question

for evaluating uncertainty representation is what the

uncertainty characteristics of the input data are, and how

they affect the use of different uncertainty schemes.

On the other hand, the format of the input might be

important to evaluation of system interoperability, but

is not included in Figure 2 because it does not relate

to uncertainty handling. In general, the elements inside

the evaluation framework boundary in the figure are

important to evaluation of uncertainty handling, but

not necessarily to evaluation of other aspects of fusion

system performance. Likewise, elements that are critical

to overall evaluation but not important to uncertainty

handling are not included here.

In the ideal system model, having the appropriate

data characteristics is critical. If the characteristics do
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not span the range of uncertainty techniques, then the

model may not give meaningful results about the opera-

tionally significant differences between the techniques.

Correctly identifying the desired input data characteris-

tics will shape the future development of use cases and

modeling data sets for those use case.

Once information is in the IF system, it will be pro-

cessed to generate the system’s deliverable that requires

uncertainty characterization and reporting in the Output

step. This process involves fusion techniques and al-

gorithms that are directly affected by the uncertainty

handling technique being used, as well as its impact on

the system’s inferential process. In this case, the UR-

REF evaluation criteria focus on aspects that are spe-

cific to the way uncertainty is considered and handled

within the fusion process. This is not an evaluation of

the system’s performance as a whole. We want to under-

stand how the uncertainty representation affects system

performance, and whether different uncertainty repre-

sentation schemes are more or less robust to variations

in the remaining parts of the IF system architecture. We

want to focus specifically on the uncertainty representa-

tion aspects, and attempt, as best as possible, to separate

those aspects from the overall system performance and

architecture concerns.

After the information is fused and properly treated,

then it is conveyed to the system’s users. In Figure 2,

these are represented by an image depicting decision-

makers who would likely be supported by the IF system

in their tasks. The URREF output step involves the as-

sessment of how information on uncertainty is presented

to the users and, therefore, how it impacts the quality

of their decision-making process.

B. The URREF Ontology

The word “framework” in URREF’s name reflects

the conclusion we reached during the early ETURWG

meetings, as we discussed how uncertainty in IF systems

should be evaluated. From the very beginning, it became

clear to us that we were not developing a tool to measure

a set of metrics related to uncertainty in a given system.

After all, because uncertainty is embedded in practically

all aspects of the process, each application would have

so many nuances that designing a “one-size-fits-all”

evaluation tool would either be too specific for use

in diverse IF systems, or too generic to be useful. In

other words, we soon realized that what was needed

to move the state-of-the-art in uncertainty evaluation

was not a monolithic evaluation program or tool, but

a set of standards, best practices, guidelines, and other

development tools that provides coherent and consistent

support for those tasked with evaluating uncertainty

in information systems. We call this set an evaluation

framework.

The reasons behind this view of URREF as a frame-

work instead of a system, program, or tool, also implied

that the diversity and complexity of the IF systems to be

evaluated would require this framework to be flexible

and adaptable enough to be used by developers with dis-

tinct backgrounds and requirements. We soon realized

that defining common terminology was an enormous

challenge, as a given term might have different mean-

ings to different people, whereas a common idea might

be given different names by different people. Designing

a “mother of all evaluation taxonomies” was not an op-

tion, as it would be useless to various use cases, such

as existing systems with already established semantics.

Thus, when designing the framework we were naturally

inclined to adopt ontology as a knowledge representa-

tion technique, as an ontology provides embedded sup-

port for reasoning and allows for explicit semantics that

could be aligned, adapted, or reused when developing

evaluation systems.

Designing an ontology for URREF proved to be a

tall order though. Within the ETURWG we have peo-

ple with distinct backgrounds, so it was natural to see

some “semantic misalignment” regarding concepts such

as data quality, accuracy, precision, etc. These differ-

ences in understanding proved to be challenging to deal

with, but an accurate preview of the challenges that arise

when using a framework that invariably includes con-

cept definitions that may not fully match the views of

different users. Not surprisingly, it took a considerable

amount of time to arrive at a stable version of the UR-

REF ontology, and while all in the group would prefer

one or more specific concepts to be defined in a differ-

ent way, the group agreed that the current version of the

ontology is sufficient to support the evaluation of uncer-

tainty in IF systems consistently and coherently. Most

of the concepts used have been drawn from seminal

work in related areas such as uncertainty representation

(e.g., [27]—[35], evidential reasoning (e.g., [36]—[38]),

and performance evaluation (e.g., [9], [39]—[41]). We

now describe the main aspects of the URREF ontology,

including its classes, properties, and key concepts. The

reader would benefit from actually accessing the files,

and even following the work of the ETURWG group.

In addition to the information provided in the group’s

website, as indicated earlier in this paper, the ontology

itself can be downloaded or opened directly from an on-

tology editor (e.g., Protégé [42]) via its official URL.2

Alternatively, cloning the group’s GitHub repository3

would provide access to not only the current version of

the ontology but also previous versions, references, and

other related working documents.

Figure 3 depicts the main classes of the URREF on-

tology, which were identified by the ETURWG group

as pertinent to the evaluation of uncertainty within an

IF system. These classes represent concepts meant to

be sufficient to support the design of evaluation pro-

cesses that follow the same semantic constraints and

2http://eturwg.c4i.gmu.edu/files/ontologies/URREF.owl
3https://github.com/paulocosta-gmu/urref/tree/master
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Fig. 3. Main classes of the URREF ontology

abide by the same principles of mathematical sound-

ness. To emphasize the pragmatic aspect of the work

of the ETURWG, it can be noted that these concepts

capture the main aspects the group agreed upon when

developing the use cases described in Section V. In fact,

a brief comparison between these concepts and those of

the first version of the ontology (cf. [22]) will show

that many classes had to be added as a result of both

the evolving discussions and the requirements elicited

from the use cases.

The eighteen main classes of the URREF criteria

focus on aspects that are specific to the way uncertainty

is considered and handled within the fusion process.

Figure 3 was built using the Protégé OWLviz plugin.4

The classes are depicted as collapsed at the first level.

Classes with a small black arrow head at the right have

subclasses which can be shown in an expanded view.

One example is the class TypeOfScale, which is depicted
in its entirety in Figure 4. Its individuals correspond to

4https://github.com/protegeproject/owlviz

Fig. 4. URREF TypeOfScale class

specific scales used in quantifying the metrics employed

when evaluating an IF system according to a given cri-

teria, and its subclasses aggregate the types of quan-

tification adopted. For instance, assume the precision

of a given sensor (i.e., using the subclass Precision as
evaluation criterion) would be evaluated using

upre =
nX
t=1

L(rt,at), (1)

where n is the number of measurement trials, and L is a
loss function with parameters r for reported value and
a for actual value. In this case, the range of the loss
function will dictate which type of scale should be used

in that evaluation (e.g., a loss function returning a ratio

between the two parameters would be classified under

the associated type of scale). In the URREF framework,

this class provides a way of mapping evaluation subjects

and criteria chosen to the potential metrics and associ-

ated quantification types that can be used in a given

evaluation.

While the type of scale defines how to quantify the

metrics used to assess a given criterion in an evaluation,

the EvaluationMetrics class defines what metric is being
used (i.e., what is) the parameter being assessed. In the

example of Eq. (1), the criterion being assessed is per-

formance and the formula itself can be seen as the met-

ric used to assess that criterion. Currently, the ontology

only includes examples from NATO’s Standardization

Agreement 2511 (STANAG 2511) effort, which incor-

porates categories of reliability and credibility. Reliabil-

ity has traditionally been assessed for physical machines

to support failure analysis. Source reliability of a human

can also be assessed. Credibility is associated with a

machine process or human assessment of collected evi-

dence for information content [43]. As the group work

progresses, further standards are likely to be included

as well.

Another example is the EvaluationCriterion class,
depicted in Figure 5 and is at the core of any evaluation

procedure. Not surprisingly, it is the larger class of the

URREF ontology and the one with more levels. When

looking at its main sub-classes, the more detail-oriented

readers would be able to establish a parallel between

these subclasses and the items within the Evaluation

Framework Boundary framework depicted in Figure 2.

More specifically, the Uncertainty Representation and

Uncertainty Reasoning boxes can be mapped directly
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Fig. 5. EvaluationCriterion class

to the equally named sub-classes, while the classes

InformationHandlingCriterion and InformationCriterion
can be associated with the flow of information between

Input and Output boxes.

The above classes form the structure of the UR-

REF ontology, and were meant to collectively support

the evaluation of uncertainty of an IF system. This is

the third version of the URREF ontology, and at the

time of this writing the group is now focusing on the

case studies, which provide the necessary testbed for its

ideas–and might force changes in the above classes.

This approach privileges the pragmatism of having a

good solution against having an “ideal” but unattainable

solution. For instance, a definitive reference would in-

volve having universally accepted definitions and usage

for terms such as “Precision.” This is unfeasible in any

field of research that is not tightly controlled by a unique

authoritative entity. The ETURWG approach also takes

into consideration that more important than naming a

concept is to ensure that it is represented clearly and

distinctly within the ontology so to ensure the consis-

tency of the latter.

Ontology reasoning requires axioms and properties

to be defined, formally exposing the relationships be-

tween the above concepts that ultimately drive the logi-

cal reasoning that makes ontologies a very flexible and

powerful technique. As an example, the object prop-

erty HasDerivationOfUncertainty is used to map indi-
viduals of class Evidence (i.e., the domain of the prop-
erty hasDerivationOfUncertainty) to individuals of class
UncertaintyDerivation (i.e., the range of the property).
The reasoner would use this relationship between these

classes to support queries, automated classification, and

other features the URREF could provide to its users.

A comprehensive description of the URREF ontol-

ogy, with its classes, properties, and other elements is

not within the scope of this paper. For a comprehen-

sive overview of the URREF ontology, interested read-

ers should refer to the ETURWG Github repository and

the ETURWG website already mentioned in this paper.

C. The URREF Elementary Fusion Process

The elements of the Uncertainty Representation and

Reasoning (URR) techniques to be assessed and com-

pared will be referred within the URREF framework as
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Fig. 6. An approximate hierarchy of fusion system components as

possible evaluation subjects.

evaluation subjects. Owing to the complex and multiple
connections between elements it seems difficult (if at

all possible) to separate the uncertainty representation

(e.g., an instantiated probability distribution) from its

associated reasoning scheme (e.g., Bayes’ rule), from its

underlying uncertainty theory or mathematical frame-

work (e.g., probability theory), from an underlying se-

mantic representation (e.g., possible worlds, Ontology

Web Language (OWL)), from the fusion method, from

the fusion algorithm processing information (e.g., a spe-

cific implementation possibly involving some approxi-

mation), from a higher-level fusion system possibly in-

cluding some human interaction.

Figure 6 illustrates some system components to as-

sess and which interact to build a complete fusion sys-

tem. As far as the URREF is concerned, the elements of

an Uncertainty Representation and Reasoning scheme

are the main evaluation subjects (thick lines in Figure

6), while the uncertainty theory, fusion method and fu-

sion algorithm are of secondary focus. It is not the main

purpose of the URREF to address the assessment of the

fusion system nor the data model nor the architecture

(dotted lines in the figure). Empirical evaluation tech-

niques often require embedding some uncertainty repre-

sentation and its associated reasoning scheme within the

fusion method, which serves as an enabler and becomes

often the subject of evaluation itself. Inherently, it is not

a trivial problem to isolate the uncertainty representation

from either its reasoning scheme or the fusion algorithm

which may implement other contributing aspects, albeit

minor.

For each evaluation subject, a series of evaluation

criteria of interest is then defined in the URREF on-

tology [22] (see Section IV). It happens that the same

criterion applies to different subjects with thus possible

different associated metrics (or measures). For instance,

Accuracy can be a quality criterion of information and
of a source of information.

The fusion method is further detailed here by defin-

ing a generic procedure that highlights the main elemen-

tary constructs of uncertainty representation and reason-

ing that are the primary URREF evaluation subjects to

be further defined in Section IV. The fusion method

may be very complex, involving possibly several uncer-

tainty representations, combination or inference rules,

possibly framed in different uncertainty theories. Here,

we abstract away complexities that are inessential to our

purpose to obtain a simple, albeit quite general, fusion

method aimed at clarifying the information flow. The

result can be considered as an “atomic” fusion process.

The elementary constructs of a fusion process are

shown in Figure 7, and illustrated with corresponding

human intelligence fusion and multiple radar fusion

examples in Table I:

1 S is a source of information;

2 Á is a piece of information provided by (or extracted

from) S. It can be as simple as a measurement but

could also be a natural language statement, a proba-

bility distribution, or in general a piece of informa-

tion with some uncertainty already represented in a

specific uncertainty theory;

3 h is the uncertainty representation process by which

Á is transformed into a dedicated mathematical func-

tion conveying some notion of uncertainty. The pro-

cess h is typically the choice of the solution de-

signer who selects the way incoming information

may be converted into a mathematical object. It can

be learned from data when available or it can be gen-

eral to all POIs, specified by type of source, by type

of information, etc. Prior information on source’s

quality (e.g., reliability), source’s self-confidence in

statement, contextual information, comparison with

other POIs, etc, may be captured by h;

4 h(Á) is the instantiated mathematical representation

as built by h and expresses either the self-assessment

of the source, an external assessment by the designer

based on prior source’s quality knowledge or an

aggregation of both;

5 ½ is the inference process which transforms h(Á) into

another h©(Á) within the same uncertainty theory.
At this point, a series of POIs from other sources

fh(Á)gi=1,:::,N are combined, where other POIs are

deduced, predicted, revised, etc;

6 h©(Á) is the resulting piece of information built from
h(Á) and other related information;

7 l is the decision process which transforms h©(Á) to
provide the decision, i.e., the output information Á0;

8 Á0 is the information output, to be possibly sent
other systems. It can be a formal representation,

i.e., an uncertainty function (such as a probability

distribution), or a single measurement estimated after

the decision process (soft versus hard decision). It

can thus contain or not contain some uncertainty;

9 the reasoning process is l ± ½;
0 the Atomic Decision Procedure (ADP) is l ± ½ ± h.
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TABLE I

Elementary fusion process constructs illustrated at the hand of a) a human intelligence fusion example and b) a multiple radar centralized

fusion example

Element Example

1 S a) Human observer

b) Radar sensor

2 Á a) Human report,

b) Radar range velocity measurement

3 h a) Convert a natural language statement to a belief function over locations,

b) convert a range and angle measurement and associated Root Mean Square Error (RMSE) error value to a Gaussian

distribution with mean and variance

4 h(Á) a) Belief function

b) Gaussian probability distribution

5 ½ a) Dempster’s combination rule (combine multiple reports)

b) Bayes’ rule (combine multiple measurements form different radars)

6 l a) Maximum of plausibility rule

b) Find expected value of posterior distribution

7 Á0 a) Element with maximum plausibility (or complete plausibility distribution over singletons)

b) Expected value of the posterior distribution

Fig. 7. Basic information flow and evaluation subjects.

Figure 7 illustrates this process and depicts each

of the above 10 items in its appropriate place in the

process.

As further detailed in [44], the method can distin-

guish between:

a) information processors (providing POIs): Elements

1, 3, 5, 7, 9;

b) the provided: Elements 2, 4, 6, 8;

c) the pairs (process; output information): (1,2);

(3,4); (5,6); (7,8); (9,8); (0,8)=(1,2)

From an algorithmic standpoint, we may want to

assess each of the 10 items above. However, based on

the following observations some simplifications arise:

² Each information processor can be assessed through
the information it provides, so it is natural to consider

the pairs (processor; output information);

² The pair (1,2), (source; input information), is de-
fined as a secondary evaluation subject and its previ-

ous characterization should be considered in the as-

sessment of the primary subjects (see Section IV);

² In some cases, the reasoning process (l ± ½) may be
considered as a whole, without separating the combi-

nation from the decision.

Thus the most important pairs (i.e., primary subjects)

are:

² (3,4)–the uncertainty representation process h to-
gether with its output;

² (9,8)–the reasoning process together with its out-
put;

² (0,8)–the pair (representation, reasoning) together
with its output.

IV. URREF EVALUATION SUBJECTS

Following the previous detailed description of an el-

ementary fusion process, this section defines the differ-

ent evaluation subjects and identifies the corresponding

criteria of the URREF ontology.

DEFINITION 1 (Evaluation subject) An Evaluation
Subject is an item which can be assessed through the

Uncertainty Representation and Reasoning Evaluation

Framework according to the criteria defined in the UR-

REF ontology.
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Evaluation subjects correspond to design choices to

assess for an enlightened solution design. The identifi-

cation of the evaluation subjects helps to better specify

and communicate the goal of the URREF ontology but

also better focus the effort on the primary subjects that

are uncertainty representations and reasoning schemes

embedded in fusion algorithms. In the following we thus

specify what is understood by “uncertainty representa-

tion” and by “reasoning.”

The Joint Directors of the Laboratory (JDL) or up-

dated version of the Data Fusion Information Group

(DFIG) model fusion model (e.g., [45]) is a functional

description of a series of fusion problems organized

along levels. In order to solve these problems, a mod-

eling step is required which isolates the real world en-

tities and processes (RWEPs [46]) of interest, identi-

fies the corresponding (uncertain) variables, possible

sources of information, makes some assumption of the

world’s dynamics and states, represents the underlying

uncertainty and finally designs the reasoning scheme

by either merging, updating, revising information for

an estimation (or prediction) of the variables states.

DEFINITION 2 (Fusion problem) A fusion problem cor-
responds to some unknown states or dynamics of the

real world and for which several sources of information

are available. Fusion problems typically correspond to

the different levels of the JDL/DFIG model and encom-

pass as subclasses for instance tracking, target classi-

fication, anomaly detection, threat assessment and re-

source management.

Note that the notion of source depends on the mod-

eling and does not necessarily mean several sensors.

Features in a classification problem could be considered

as “sources.” A fusion problem is solved by a fusion

method.

DEFINITION 3 (Fusion method) A fusion method is a
set of rules encoding a solution to the fusion problem at

hand, involving several sources of information. It imple-

ments some uncertainty representations and reasoning

schemes.

For instance, a Kalman filter is a fusion solution to a

multi-sensor filtering problem in tracking applications.

It implements an updating scheme involving a predic-

tion step followed by a revision step within a proba-

bilistic framework [47]. A naive Bayes classifier is a

fusion solution to a classification problem, which is im-

plemented as a naive Bayes (i.e. probabilistic) model

where features (possibly provided by different sources)

are assumed to be independent, followed by a maximum

a posteriori (MAP) decision rule.

DEFINITION 4 (Uncertain variable) An uncertain vari-
able represents a feature of the real world for which
the state is unknown, partially known or uncertain. It

describes the fusion problem and its state has to be es-

timated by the fusion method.

The concept of uncertain variable generalizes the

one of random variable itself representing a random

phenomenon (and generally expressed by a probability

distribution), to encompass the cases of epistemic un-

certainty where uncertainty is not due to the variability

of the phenomenon, but to a lack of knowledge. We

can define thus two types of variables relative to the na-

ture of uncertainty (see class UncertaintyNature of the
URREF ontology [22]): Random variable and epistemic

variable.

For instance, in a Kalman filter the uncertain (ran-

dom) variables correspond to the position and the speed

of the target at time t and t+1, usually gathered into
(random) state vectors xt and xt+1, but also to the mea-
surements received by the sensors represented by a state

vector yt. In a vessel classification problem, the uncer-
tain (epistemic) variable would be the class of the spe-

cific vessel observed.

The primary purpose of the URREF is to assess how

uncertainty is handled in a given fusion method, with

a specific focus on the uncertainty representation and

the reasoning components. In a formal uncertainty han-

dling, both components abide to rules and constraints

defined by the uncertainty theory considered.

DEFINITION 5 (Uncertainty theory) An uncertainty
theory is a set of axioms and rules describing uncertainty
representation and reasoning. Two components can be

distinguished, although possibly strongly connected:

1) The representation which defines uncertainty rela-
tions (or functions) through established sets of ax-
ioms;

2) The reasoning which defines inference (or belief
change) rules to manipulate uncertainty functions
and create new ones.

Uncertainty functions and inference rules can be

assigned different semantics.

Examples of quantitative uncertainty theories are

probability theory, evidence theory, fuzzy sets theory,

random sets theory, possibility theory, and imprecise

probability theory. Some qualitative theories are pos-

sibilistic logic, fuzzy logic or probabilistic logic.

A Kalman filter is framed into probability theory

which itself defines probability functions to convey

uncertainty notions. Probability functions must satisfy

the three axioms of P(Ø) = 0 for the impossible event,
P(−) = 1 for the certain event and P(A) +P(Ā) = 1 for
any event (where Ø denotes the empty set, − denotes

the universe and Ā denotes the complement event of

A). The most classical inference rule is Bayes’ rule
which defines the posterior probability of an event based

on the occurrence of another one as P(A j B) = P(B j
A)P(A)=P(B). Several interpretations (or Uncertainty-
Derivations [22]) can still be assigned to probability val-

ues, roughly either objective (e.g., frequentist) or sub-

jective (e.g., degree of belief).

146 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 2 DECEMBER 2018



DEFINITION 6 (Uncertainty relation) An uncertainty
relation is a mathematical or logical object conveying
some notion of uncertainty. It can be an uncertainty
function if each subset of the frame is related to a
value between 0 and 1 or a binary relation such as an

accessibility relation in modal logic.

The uncertainty relation covers uncertainty functions

such as probability functions but also equivalence rela-

tions between states defining for instance rough sets.

Uncertainty relations are the core representation of un-

certainty, and express how much or how we or/and the

sources are uncertain. They are defined over sets of vari-

ables, which themselves represent what we are uncertain
about.

DEFINITION 7 (Uncertainty Modeling Scheme) An
Uncertainty Modeling Scheme (UMS) is a theoretical
concept that provides a mapping between (i) domain

independent mathematical concepts and (ii) classes of

fusion problems. A UMS

(1) introduces types of uncertain variables and the types
of relations between these variables that are relevant
for the modeling of a specific type of problem;

(2) provides semantics for a selection of uncertain rela-
tion types;

(3) formulates assumptions about the represented prob-
lem type;

(4) defines uncertainty functions over these variables.

For example, the UMS defining representations used

by Kalman Filters introduce random variables repre-

senting the states of a dynamic process and observa-

tions. Moreover, it relates covariance matrices to the

normally distributed process dynamics and observa-

tions, respectively. This model is based on the assump-

tions that the represented dynamic processes are linear

and normally distributed. The UMS for causal Bayesian

Networks associates basic conditional probabilities with

uncertain causality. This model assumes Markov prop-

erty, conditional independence theoretically captured by

d-separation concepts and Markov Blankets. A UMS

typically corresponds to a specific type of reasoning

scheme. A UMS represents a theoretical basis for the

solution of a specific use case (see Def. 8).

DEFINITION 8 (Uncertain Domain Model) An Uncer-
tain Domain Model (UDM) is an artifact defined through
(i) a set of uncertain variables and (ii) uncertainty re-

lations which encode some assumptions about the real-

world dynamics and states in a specific application. An

UDM is a specific instantiation of a representation of the

uncertainty associated with a specific real-world prob-

lem itself framed into an uncertainty theory and thus

constrained by the rules and axioms. Such framing is

provided by a suitable UMS (see Def. 7).

UMS defines the form of h and ½, i.e. types of vari-
ables and functions in combination with a suitable un-

certainty theory. The UDM defines the specific constel-

lations of the variables and specific parameters used in h
and ½. The UMS supports theoretical analysis that facil-
itates (i) comparison of uncertainty representations and

reasoning in a class of applications and (ii) an evaluation

of the adequacy of a specific technique in a specific ap-

plication (use case). The evaluation of a UDM supports

the engineering process in the development of a spe-

cific fusion solution. An uncertain domain model could

be the graphical part of a Bayesian network together

with the instantiated joint probability distribution defin-

ing uncertainty over the set of variables. An uncertain

domain model describes uncertainty about states of the

variables and relations between variables and expresses

thus some assumptions about either

(1) uncertain knowledge of possible states and dynam-

ics of the world (generic knowledge/information/

uncertainty);

(2) uncertain evidence about the current state of the

world (singular information/uncertainty).

Although it is more common to associate singular

evidence to a source of information, generic knowledge

can also itself be derived from some source. For in-

stance, a statistical model representing the maritime traf-

fic and linking kinematic variables through some (possi-

bly conditional) probability distributions (e.g. see [48])

can be interpreted as an uncertainty function derived

from a specific AIS dataset covering a particular area

during a given period of time, the source of this model.

DEFINITION 9 (Uncertainty reasoning scheme) An un-
certainty reasoning scheme encodes some inference un-
der uncertainty aiming at solving the fusion problem, by

means of rules defined for several uncertainty functions.

For instance, Bayes’ rule can be used “both for pre-

diction from observations and revision of uncertain in-

formation” [49]. It can be used as a merging (fusion)

rule performing a conjunction (product) of likelihoods

provided by different sources. Dempster’s rule itself en-

codes merging of (singular) testimonies for independent

sources [50]. The combination rules have also different

semantics and maybe thus dedicated to solve different

types of problems (e.g., [49]).

DEFINITION 10 (Source (of information)) A source
of information is any entity providing some piece of
information.

A source of information is a relative notion and cov-

ers anything from where information can be extracted,

i.e. a dataset, a database, an image, a video, a witness,

etc, or the device providing it, i.e. a radar, a camera,

an expert, etc. It can provide either generic or singular

information.
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Fig. 8. URREF evaluation subjects, with sample instances (purple diamond bullets)

DEFINITION 11 (Piece of information) A piece of infor-
mation is an item possibly conveying some information,
and provided by a source.

The term “piece of information” is used in this paper

in its most general meaning covering other notions such

as evidence, knowledge and/or data. A piece of infor-

mation can be as simple as a measurement (on the scale

of real numbers) but could be a fact (i.e., an observa-

tion, known to be true), an uncertain statement already

modeled into a given mathematical formalism (i.e., a

probability distribution), an unstructured statement in

natural language, etc.

Figure 8 lists the URREF evaluation subjects. Ele-

ments within rectangles with yellow circle bullets are

classes. Examples of instance for each class are pro-

vided in rectangles with purple diamond bullets. The

meaning of the relationship is displayed on arrows. N-
ary relationships are displayed with blue arrows con-

taining a triangle.

We identify the primary evaluation subjects of the
URREF as:

² the uncertainty representation, which is either in-
stantiated or theoretical: a particular probability dis-

tribution or probabilities in general; it may include in-

stantiated uncertainty representations of processes in

the real-world and how those processes are observed;

² the associated reasoning (or calculus) that comprises
the combination, conditioning, updating, inference,

decision, transformation rules. The calculus may be

assessed while instantiated within a fusion method or

theoretically, regardless any application or algorithm,

focusing on the semantics for instance (e.g., Bayes’

rule in general).

In URREF, the first is represented by the classes

UncertaintyTheory and UncertaintyModel, while class
UncertaintyReasoning represents the latter.
It is expected that a preliminary assessment of theo-

retical objects, either uncertainty representations or rea-

soning rules, is performed in the initial design phase

(inception phase [51]), relying mainly on the literature

and on the expertise of the fusion method designer. This

pre-screening should provide guidance on the selection

of appropriate models or reasoning schemes to be im-

plemented which best suit the fusion problem at hand

as far as uncertainty handling is concerned. In a second

step, the assessment of instantiated representations and

reasoning schemes should be assessed through a spe-

cific implementation of the fusion solution in a fusion

algorithm, processing data. Then, output data analysis

should provide some assessment on the implemented

uncertainty handling method.

Secondary evaluation subjects of the URREF encom-
pass other elements which either support or can be de-

rived from the assessment of the primary subjects, but

which are not the main concern of the URREF ontology:

² the fusion method, making use of instantiated uncer-
tainty representations embedding pieces of informa-
tion Á built according to a specific uncertainty repre-
sentation process h and associated calculus l ± ½, and
implemented by the fusion algorithm;
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Fig. 9. In an EVALUATION PROCEDURE, EVALUATION SUBJECTS are

assessed by EVALUATION CRITERIA, which are measured by

EVALUATION METRICS.

² the source of information which provides the differ-
ent and which quality may impact the whole fusion

process. It can be expected that an uncertainty repre-

sentation is able to properly capture and handle the

meta-information about the source quality;

² the pieces of information input, processed and out-
put throughout the process. Input and output infor-

mation are only two special cases but others can be

considered provided by internal steps such as for in-

stance the aggregated information. The information

assessment is at the core of the assessment of the un-

certainty representation and reasoning. However, the

development of such information quality criteria is

not currently the main purpose of the ETURWG;

² the uncertainty theory (or framework) for uncer-
tainty representation and reasoning (e.g., probabil-

ity, fuzzy set, belief function theories). It can be as-

sessed either theoretically, based on axioms, proper-

ties and original semantics as reported in the literature

or through the assessment of the output provided by

a specific fusion algorithm implementing the fusion
method and specific instantiated uncertainty repre-
sentations.

The fusion algorithm may be assessed either as a

whole (assessing only the output) or through its dif-

ferent components that are the instantiated uncertainty

representation (process and output information), and

instantiated calculus (process and output information).

Equivalently, the uncertainty theory can be assessed

considering the theoretical uncertainty representation

(i.e., general uncertainty function such as a probability

or a belief function) on the one hand or/and the theoret-

ical calculus apparatus (i.e., the set of reasoning tools

available to this framework) on the other hand.

For each evaluation subject, there exists a corre-

sponding set of evaluation criteria within the ontology,

as illustrated in Figure 9. The quality of the source is as-

sessed by QualityCriterion, the provided are assessed by
InformationCriterion, the uncertainty representation part

of the fusion method is assessed through Representa-
tionCriterion and the reasoning part is assessed through
ReasoningCriterion.

A. Source criteria

Criteria about the source of information are neces-

sary to characterize information input to the fusion pro-

cess (other said, output by the source). The use of these

criteria is rather informative than “judgmental.” We as-

sume that these initial assessments are known prior to

processing the information and the question is if and
how the fusion method, and especially the uncertainty
representation and reasoning scheme are able to han-

dle the different source quality dimensions. They are

directly linked to the criteria on expressiveness (i.e.,

class ExpressivenessCriterion). As such, the source is
a secondary evaluation subject and impacts the other

subjects.

B. Information Criteria

Pieces of information (POIs) appear at different

steps of the fusion process and include in particular,

input data, measurement or declaration before any mod-

eling of uncertainty (i.e., input information or dataset),

the instantiated uncertainty representation (after uncer-

tainty has been modeled), aggregated information (after

the combination or inference process) and output infor-

mation to be consumed by the user. Each of these POIs

should be characterized according to the same subset of

criteria although the expectations in their respect may

differ. For instance, it is not expected that the input in-

formation be precise, nor true. Yet, it would be expected

at the output. Also, comparing pieces of information at

several steps of the process provides assessment of rel-

evance (if one has an impact on the other one). There-

fore, the same set of evaluation criteria should be used

to assess input information, uncertain information (af-

ter h), combined information, and output information. If
the same measure is used to capture this criterion, only

the values (and the user’s expectations) may change,

not the criteria themselves. For input information, the

assessment is rather a characterization, while for the

other POIs during the process, the assessment criteria

can be turned to optimization criteria to further tune the

algorithm (e.g., maximize the Accuracy).

C. Representation Criteria

The Representation criteria (class RepresentationCri-
terion) are aimed at assessing the primary subject of
evaluation within the URREF. Unsurprisingly, expres-

siveness is the main one. Indeed, at the inception phase

[51], i.e. before any instantiation of an uncertainty rep-

resentation, we are interested in the expressive power

provided by its underlying uncertainty theory. This is

a prior (theoretical) assessment driven by the problem
at hand which mainly relies on analyzes of (1) the ax-

iomatic constraints of the framework and (2) the current
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literature about the development of the approaches and

tools to support the representation of concepts of inter-

est as identified within the expressiveness list of criteria.

The instantiated uncertainty representation should also

be assessed along with the subset of criteria. An instan-

tiated uncertainty representation is a piece of informa-

tion and as such, will be assessed using the information

criteria described above.

D. Reasoning criteria

This subset of criteria is so far not very detailed

within the URREF ontology of criteria. Several inter-

related elements must be considered:

a) the calculus and mathematical apparatus of the un-

certainty theory, i.e., the set of reasoning tools avail-

able within this mathematical framework,

b) a particular instantiation of use of one of these rules,

and

c) the fusion method making use of this apparatus.

For a more detailed analysis, these three subjects

should be clearly distinguished, although the same cri-

teria may be applicable and relevant to all of them. For

instance, if we consider the Consistency criterion:

a) a particular rule of combination could be assessed

according to its theoretical ability to provide consis-

tent results,

b) a specific use of the rule which relies on other ele-

ments such as the universe of discourse selected or

the type of uncertainty function to be combine, could

be assessed according to the consistency criterion,

and

c) a method embedding the rule with the uncertainty

function and associated universe of discourse within

a higher-level reasoning scheme (e.g., nearest neigh-

bors approach, back-propagation) may also be as-

sessed according to the same criterion of consistency.

V. CASE STUDIES

The URREF framework and its ontology component

were developed through an iterative process, an essen-

tial part of which was to apply the framework to of

a set of use cases. The use cases were selected to re-

flect a range of considerations relevant to evaluation of

uncertainty representation within the context of an over-

all fusion application. Applying the framework to use

cases grounds the ideas in concrete application areas,

and helps to uncover requirements that emerge as the

framework is applied to a concrete problem.

The requirements of the use cases in development

are the main driver dictating what properties are needed

within the URREF ontology. As such, the work on

developing these use cases has been generating new

insights and requirements for the URREF (e.g., [51]—

[55]). The three use cases are described briefly below,

with emphasis on how URREF was applied to the use

case, what was learned through this process, and how

the framework evolved in response to applying it to the

use case.

A. Maritime Domain Awareness

We consider a use case of maritime surveillance

where a harbor area is monitored by a set of sources

mixing sensors and humans: After being informed of the
loss of the AIS contact with a particular fishing vessel one
hour ago (at time 0), the Watch Officer (WO) now (at time
t) needs to recover the track and locate the vessel. The
locations of two unidentified tracks, called Vessel A and
Vessel B, are provided as the only two possible locations
for the missing vessel. The Watch Officer has to match
the known features of the missing vessel, as reported by
its last AIS contact, with the ones of the two unidentified
tracks, as reported by the on-site sources. Hence, its name,
MMSI, IMO, type, length, width, etc., must be known with
a very high confidence to the Watch Officer.
The sources of information available to the Watch

Officer combine a variety of sensors both cooperative

(e.g., Automatic Identification System (AIS)) and non-

cooperative (e.g., radar, camera), whose measurement is

processed either by automatic algorithms (e.g., tracker,

Automatic Target Recognition (ATR) algorithm) or hu-

man analysts (e.g., camera analyst, cargo vessel’s cap-

tain). The radar covers the whole area, the Infra-Red

(IR) camera covers only the area around Track A, a
cargo vessel is in the vicinity of Track B but too far

from Track A for visual identification, and Synthetic

Aperture Radar (SAR) imagery covering the whole area

has been taken 30 minutes ago. Sources are imper-

fect and provide information which can be uncertain
(the source itself is uncertain about its estimation or

statement), imprecise (the source provides several pos-
sible values for the attribute estimated) and/or false (the
value provided by the source does not correspond to the

true value). Consequently, when combining the different

POIs, the Watch Officer may face conflicting informa-

tion.

In order to solve that fusion problem, several so-

lutions can be designed. In [56], we illustrated how

the URREF can support the designer in the decision of

which uncertainty representation and reasoning method

for fusion should be used. Two different fusion methods

are compared: One framed into probability theory using
Bayes’ rule, and another one framed into evidence theory
using Dempster’s rule. The URREF criteria defined in

classes UncertaintyType, UncertaintyDerivation and Un-
certaintyNature are used to categorize the input infor-
mation highlighting the importance of the derivation of

uncertainty values, as it has a direct impact on the inter-

pretation of the output uncertainty. We stressed how the

elements supporting uncertainty (e.g., variables, links

between variables, uncertainty expression) crossed with

the type of information (generic knowledge versus sin-

gular evidence) help in clarifying that Dempster’s rule
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does not use generic knowledge but uncertain singu-

lar information (evidence), while Bayes’ rule relies on

generic information (knowledge).

B. Counter Rhinoceros Poaching Decision Support

The rhino poaching use case involves a decision sup-

port system that directs the patrol effort of the rangers to

the areas with elevated risk of poaching [57], [58]. The

central part of such a system is a set of Bayesian threat

models, each with context evidence instantiated to cor-

respond to a specific area or cell. A threat model is im-

plemented as a Bayesian Network (BN) that captures the

correlations between various context factors influencing

the poaching (facilitators/inhibitors) as well as observ-

able phenomena that might indicate an imminent threat.

The system outputs a probability heat map that indicates

the suitability for poaching at a specific point in space

and time. The first attempt at applying the URREF on-

tology to the counter rhino poaching decision support

system is presented in [59]. Given information in such

a probability heat map, the rangers can position scarce

resources distributed over large surface areas, such that

the chance of preventing poaching is improved. Thus,

the decision support system for counter rhino poaching

operations covers all of the components of the OODA

loop. The use of URREF concepts is demonstrated in

[60] with reference to the OODA loop applied to the

rhino decision support use case. Additional sources of

information include human intelligence (HUMINT) re-

ports of the field operations as well as the current status

of the international rhino trafficking agencies.

Uncertainty may enter into a fusion system dur-

ing both the design/modeling and routine operational

phases. Selective application of the URREF to the anti-

rhino poaching use case is demonstrated to characterize

uncertainty during the design/modeling phase in [46]

and during routine fusion system operation in [51], [60].

In particular, the URREF criteria are applied within the

context of a fusion system development and deployment

life cycle, as demonstrated on a high level context driven

fusion approach to tracking poachers [51].

C. Cyber Threat Models

Systems for threat analysis enable users to under-

stand the nature and behavior of threats and to under-

take a deeper analysis for detailed exploration of threat

profile and risk estimation. Models for threat analysis

require significant resources to be developed and are

often relevant to limited application tasks. In the Cyber

Threat Use Case we presented and discussed a model

for cyber threats which comprises an expert model and

its translation into a Bayesian network (BN) as a tool for

the development of practical scenarios for cyber threats

analysis [61]. The BN for cyber threats is automatically

generated from the expert model, highlighting vulner-

abilities of systems along with threat-specific patterns,

actors, actions and indicators [62]. For this use case,

the goal of using the URREF ontology was to capture

the quality of the knowledge. While the expert model

was created manually by domain experts, by following

a time consuming and expensive process, the BN was

created thanks to an automatic procedure. Thus, the re-

sulting models have different characteristics and gran-

ularity levels, and the question of their accuracy has to

be addressed. For this purpose, the main URREF class

considered for analysis was RepresentationCriterion, a
general class regrouping several criteria explaining how

uncertainty is characterized, captured and stored during

modeling and representation stages, and introducing the

most specific concepts of Simplicity, Adaptability and
Expressiveness [52]. To analyze the model underlying
the cyber threat application, Simplicity and Expressive-
ness criteria were considered. Simplicity is important
since the expert model has to be created manually; Ex-
pressiveness is regarded to assess whether the knowl-
edge encoded in the models is sufficient. Moreover,

metrics were defined for those criteria, based on the

characteristics of the models created (number of nodes

in the model, density of connections). Several experi-

ments carried out with different configurations of the

model showed how the quality level of the knowledge

representation, as captured by means of Simplicity and
Expressiveness, is impacted by parameters of the model
but also a complementary evolution of those criteria, as

increasing the Simplicity goes hand in hand with de-
creases in Expressiveness. Future work is planned to
carry out a complete assessment of knowledge repre-

sentation using URREF criteria, to apply them to dif-

ferent BNs of different sizes and granularities, and to

correlate the criteria for knowledge representation with

other criteria of the URREF ontology.

VI. DISCUSSION AND CONCLUSION

Evaluation of IF systems presents intrinsic chal-

lenges due to the complexity of fusion systems and

the sheer number of variables influencing their perfor-

mance. In LLIF systems, the impact of uncertainty rep-

resentation is well understood, and generally quantifi-

able. However, at higher levels of IF the approach cho-

sen for representing uncertainty has an overall impact

on system performance that is hard to quantify or even

to assess from a qualitative viewpoint. This issue was

recognized by the Fusion community when creating the

ETURWG, with the main goal of providing an unbiased

framework for evaluating the impact of uncertainty in

IF systems. From the beginning, it became clear that

the various approaches and technical considerations de-

mand a common understanding that is only achievable

by a formal specification of the contrasting semantics

and pragmatics involved. As a result, the group devel-

oped the methodology for evaluation, the elements of

the framework supporting it, a set of formal definitions

of the distinct subjects under evaluation, as well as the
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linkage between these and the key aspects of the frame-

work. As explained in this work, URREF is not a system

or software application that can be “directly applied” to

a use case. Yet, the use cases described here were es-

sential for the group to achieve an understanding of all

the nuances and idiosyncratic aspects of the process of

evaluating techniques that are fundamentally different

in their assumptions and views of the world. They pro-

vided the grounding for establishing the URREF con-

cepts and mechanisms needed to mitigate the effects the

underlying assumptions of each theory have in biasing

the design of evaluations–each usually geared towards

the strengths of one technique at the expense of the

others. URREF does not completely remove the sub-

jectivity and biases involved in evaluating uncertainty

representation techniques, but is a strong step towards

that direction.
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“The Protégé Project: A Look Back and a Look Forward,”

AI matters, vol. 1, no. 4, pp. 4—12, June 2015. [Online].
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC4883684/.

[43] E. Blasch, K. B. Laskey, A.-L. Jousselme, V. Dragos, P. C.

Costa, and J. Dezert

“URREF reliability versus credibility in information fusion

(STANAG 2511),”

2013.

[44] A.-L. Jousselme, A.-C. Boury-Brisset, B. Debaque, and

D. Prévost

“Characterization of hard and soft sources of information:

A practical illustration,”

in Proceedings of the International Conference of Informa-
tion Fusion, Salamanca, Spain, 2014.

[45] A. N. Steinberg and C. L. Bowman

“Rethinking the JDL data fusion levels,”

in National Symposium on Sensor and Data Fusion, 2004.
[46] J. P. de Villiers, K. Laskey, A.-L. Jousselme, E. Blasch,

A. de Waal, G. Pavlin, and P. Costa

“Uncertainty representation, quantification and evaluation

for data and information fusion,”

in Information Fusion (Fusion), 2015 18th International
Conference on. IEEE, 2015, pp. 50—57.

[47] S. Benferat, D. Dubois, and H. Prade

“Kalman-like filtering and updating in a possibilistic set-

ting,”

in Proc. 14th European Conf. on Artificial Intelligence (ECAI
2000). Berlin, Germany: IOS Press, 2000, pp. 8—12.

URREF: UNCERTAINTY REPRESENTATION AND REASONING EVALUATION FRAMEWORK FOR INFORMATION FUSION 153



[48] B. Ristic, B. La Scala, M. Morelande, and N. Gordon

“Statistical analysis of motion patterns in AIS Data:

Anomaly detection and motion prediction,”

in Proc. of the 11th Conference on Information Fusion,
Cologne, Germany, 2008.

[49] D. Dubois and T. Denœux

“Conditioning in Dempster-Shafer theory: prediction vs.

revision,”

in Proc. of the Conference on Belief Functions (BELIEF
2012), ser. Advances in Intelligent and Soft Computing,
T. Denoeux and M.-H. Masson, Eds., vol. Belief Functions:

Theory and Applications 164, Compiègne, France, 2012,
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Dissecting uncertainty handling
techniques: Illustration on
maritime anomaly detection
ANNE-LAURE JOUSSELME
GIULIANA PALLOTTA

Detecting and classifying anomalies for Maritime Situation
Awareness highly benefits from the combination of multiple sources,
correlating their output for detecting inconsistencies in vessels’ be-
haviour. Adequate uncertainty representation and processing are
crucial for this higher-level task where the operator analyses in-
formation in conjunction with background knowledge and context.
This paper addresses the problem of performance criteria identifi-
cation and definition for information fusion systems in their abil-
ity to handle uncertainty. In addition to the classical algorithmic
performances such as accuracy, computational cost or timeliness,
other aspects such as the interpretation, simplicity or expressiveness
need to be considered in the design of the technique for uncertainty
management for an improved synergy between the human and the
system. The Uncertainty Representation and Reasoning Evaluation
Framework (URREF) ontology aims at connecting these criteria to
other uncertainty-related concepts. In this paper, we dissect six clas-
sical Uncertainty Representation and Reasoning Techniques (UR-
RTs) in their basic form framed into three uncertainty models of
probability, belief functions and fuzzy sets, and addressing a fusion
problem for maritime anomaly detection. We introduce the Uncer-
tainty Supports as a means to capture what is the carrier of un-
certainty and distinguish between three types of supports, that are
single variables, sets of variables and uncertainty representations.
The latter type indeed captures second-order uncertainty. The dif-
ferent URRTs are qualitatively evaluated according to their expres-
siveness along the uncertainty supports, and quantitatively evalu-
ated according their accuracy and conclusiveness (uncertainty and
imprecision) when processing real AIS data with pseudo-synthetic
anomalies. This study illustrates a possible use of the URREF for
the assessment and comparison of uncertainty handling methods in
fusion systems. The framework provides solid basic foundations for
a formal assessment to guide further development and implemen-
tation of fusion schemes, as well as for the definition of associated
criteria and measures of performance.
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I. INTRODUCTION

In the field of Maritime Situation Awareness (MSA),

detecting and classifying vessels’ abnormal behaviour is

a challenging and crucial task at the core of the com-

pilation of the maritime picture [32, 31]. It requires not

only the extraction of relevant contextual patterns-of-life

information shaped for instance as maritime routes or

loitering areas [42], but also the real time monitoring

of the maritime traffic by a set of sensors mixing co-

operative self-identification systems (such as the Auto-

matic Identification System (AIS)) and non-cooperative

systems such as coastal radars or satellite imagery, to

overcome the possible spoofing of the AIS signal [44].

In many cases, intelligence information is of great help

to refine and guide the search in the huge amount of

data to be processed, filtered and analysed.

In order to take informed decisions, the operator

needs to get good quality information. Furthermore,

he/she needs to understand additional characteristics of

the provided information, including for instance, how

that information has been obtained, processed, or what

was the context of its creation. In particular, understand-

ing how an anomaly detector came up with an alert is

of great importance to the Vessel Traffic System (VTS)

operator. More specifically, the operator would bene-

fit from knowing which were the reference data used,

which were the sources processed, if the information

and associated uncertainty were obtained in objective

or subjective manner, whether the decision process con-

sidered the sources’ quality and how, if the contex-

tual information was considered in the decision, what

was the meaning of numerical output values express-

ing uncertainty, and what was the underlying logical

reasoning providing the answer. Second-order informa-

tion quality may also be highly valuable. For example,

probability maps about possible threats could be sup-

plemented by uncertainty assessments about the valid-

ity of the probability values, represented as intervals

or error estimations on algorithms performance. The

benefit of including these different information qual-

ity dimensions is twofold: on the one hand, they in-

crease the operator’s situation awareness and, on the

other hand, they improve trust in the use of the sys-

tem.

To characterise the outputs provided to operators by

some information system, the standard performance cri-

teria of algorithms such as precision, accuracy, False

Alarm Rate (FAR), Area Under the Receiver Oper-

ating Characteristic (ROC) curve (AUC), timeliness

or computational cost [1, 33, 11] may not be suffi-

cient and should be complemented by others to cover

the interaction of humans and systems. For instance,

some criteria such as explanation, adaptability, sim-

plicity, expressiveness could be considered as well.

The Evaluation of Techniques for Uncertainty Repre-

sentation (ETUR) working group of the International

Society of Information Fusion (ISIF) addresses since
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2011 the definition and articulation of assessment cri-

teria for uncertainty models and frameworks, uncer-

tainty types, uncertainty derivation, uncertainty nature

[8]. Outcomes of this work provide guidance for the

selection and design of adequate tools for reasoning

support, uncertainty traceability and understandability

(e.g., [5, 10, 43]). It is also a first step towards some

standardisation of the characterisation and assessment

of uncertainty management techniques and, by extent,

of fusion schemes.

Evaluating or comparing uncertainty calculi in the
absolute is not trivial task because these make differ-

ent fundamental assumptions about the nature and in-

terpretation of uncertainty they aim at representing or

processing (see for instance [29, 19]). Fundamental and

global formal evaluation and analysis have been in par-

ticular presented in [48, 55, 56, 17, 29, 52] and more

recently in [19]. For instance, probability, possibility

and fuzzy set theory are non comparable since they are

appropriate to deal with different types of uncertainty.

Rather than competitors, they appear to be “complemen-

tary theories of uncertainty that utilise distinct types of

uncertainty for expressing deficient information” [29].

Belief functions [47, 54] are “[: : :] aimed directly at
modeling incomplete evidence, but certainly not incom-

plete knowledge,” and designed to handle singular un-

certainty [47, 19]. Fusion rules have their own mean-

ing and application constraints as well. While being an

updating rule, Bayes’ rule is also widely used for fu-

sion purposes (e.g., [34, 7]). However, Bayes’ rule is

not applicable in case of probable knowledge, unan-

ticipated knowledge and introspective knowledge [15].

In Shafer’s view, Dempster’s rule is specifically dedi-

cated to combine uncertain and imprecise singular in-

formation, such as testimonies. Dempster’s rule should

also be applied only to independent and reliable sources

[47, 53]. It appears thus that rather than competitors the

different models for uncertainty representation and as-

sociated reasoning schemes are dedicated to different

problems and different types of information. As a step

toward a formal analysis of uncertainty representation

and reasoning techniques, the work presented in this pa-

per aims at bringing the comparisons and descriptions of

the classical uncertainty models under the Uncertainty

Representation and Reasoning Evaluation Framework

(URREF).

In this paper, we compare six (6) different ap-

proaches (hereafter called Uncertainty Representation

and Reasoning Techniques, URRTs) to combine pieces

of information from a set of heterogeneous sources

(hard and soft) as the core of a maritime anomaly de-

tector for route deviation. In complement to compar-

ative analyses (e.g., [26, 2]), this paper identifies ad-

ditional comparison elements which may have an im-

pact on the behaviour (and performances) of the fusion

schemes. The maritime anomaly detection problem is

first introduced in Section II, covering route extraction

and route association problems together with some as-

sociated uncertainty-related challenges. In Section III,

we briefly review the current state of the URREF on-

tology and introduce the uncertainty support as part of
possible refinement of the EXPRESSIVENESS criterion. Six

URRTs are introduced in Section IV as alternative ba-

sic fusion schemes to solve the above defined problem,

with an emphasis on the uncertainty representation. The

six URRTs are compared in Section V in a qualitative

way regarding their expressiveness (relatively to their

uncertainty support and imperfection type captured) but

also in a quantitative manner through more classical

but complementary quality criteria, processing a real

AIS dataset augmented with pseudo-synthetic anoma-

lies. We conclude in Section VI on future work and

further challenges to be addressed in the coming years

by the Evaluation of Techniques for Uncertainty Rep-

resentation working group.

II. MARITIME ANOMALY DETECTION

We illustrate the discussed methods via a real-world

example of maritime anomaly detection. Although a

unique definition of anomalies in the maritime domain

is not available yet, we here use the term “maritime

anomaly” to indicate a deviating behaviour from traf-

fic normalcy, which we learn from spatio-temporal data

of ships at sea. More specifically, the analysis of traf-

fic spatio-temporal data streams provided by the AIS, a

cooperative self-reporting system allows detecting and

characterising inconsistencies or ambiguities, which can

be ultimately transformed into usable and actionable

knowledge [40]. We briefly introduce in this section the

problem of route extraction, which builds the normalcy

models, in our case, traffic normalcy, in such a way that

these models can be further exploited for anomaly de-

tection. We then introduce the problem of associating a

vessel to a pre-defined route selected from the extracted

system of routes which represents the traffic normalcy

functional to the anomaly detection. We conclude this

section with some uncertainty challenges related to the

way we represent the maritime routes which affects the

maritime anomaly detection.

A. Route extraction

The Traffic Route Extraction and Anomaly Detec-

tion (TREAD) tool presented in [42] implements an

unsupervised classification approach which we here use

to derive a dictionary of the maritime traffic routes by

processing spatio-temporal data streams from terrestrial

and satellite AIS receivers. The analysis and synthe-

sis of the activity at sea as patterns of life is referred

to as maritime routes and summarises the normal mar-
itime traffic over a given period of time, a given area

and a specified set of employed sensors (or sources).

The AAP-6-2014 NATO glossary of terms defines a

route as “The prescribed course to be travelled from
a specific point of origin to a specific destination.” A
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TABLE I

Examples of source statements expressed by Á about different vessel attributes.

Attribute i Á Type of statement

SOG (knots) 10.3 Single measurement (precise and certain)

Type [Type1 Type2 Type3 Type4 Others] [0.2 0.1 0 0.7 0] Probability vector

Size “Big vessel” Natural language

TREAD route is then defined by a starting point and
an ending point, together with a subset of intermediate

waypoints, describing a physical path on a portion of

the sea. If the area under surveillance is captured by a

big enough bounding box, the route starting and end-

ing points are the centroids of stationary areas, either

coastal areas such as ports, either offshore areas such

as islands, either offshore platforms, or open-sea areas

such as fishing areas. The TREAD algorithm first re-

constructs the single-vessel trajectories by linking the

vessels’ contacts and then clusters the trajectories fol-

lowed by vessels into groups having the same starting

and ending points. Each of these clusters represents

a maritime route. The average path along a route is

called synthetic route. The basic uncertainty around this
path is computed using the trajectories of all the ves-

sels which transited along that route in the given time

window.

While only temporal streams of positional informa-

tion is processed to extract the set of maritime routes,

they can be further characterised by additional attributes

representing the traffic of vessels composing it, such

as speed, type or heading distributions. The associated

uncertainty characterisation of the route along these at-

tributes can be more or less complex, ranging from sim-

ple average values, to added variance parameters, to his-

tograms, to estimated complete probability distributions,

to sets of distributions (see Section II-C). The maritime

traffic, and thus the set of routes, may be influenced by

meteorological conditions (some areas may be avoided),

season, economical context (ships may decide their des-

tination based on the current stock market linked to their

cargo) or areas of conflict. Also, in order to derive the

average path (i.e., synthetic route) from the route cluster

an extent parameter is included in the TREAD algorithm

which allows adjusting the search range radius dynam-

ically, thus enhancing the computation of intermediate

waypoints while still avoiding issues such as land cross-

ing.

The set of routes summarises thus some kinematic

patterns of life of vessels over a given period of time

and region, possibly layered by specific vessel types

(e.g. fishing vessels, tankers, passenger vessels). This

synthetic information and associated uncertainty char-

acterises part of the context or background knowledge

for the problem of route association and detection of

anomalies at sea. It provides a reference or normalcy
against which the current vessel contacts will be com-

pared, and the anomalies detected.

B. The route association problem

A route deviation detector is to be designed to

help the Vessel Traffic System (VTS) operator to (1)

associate vessels to existing routes (and possibly predict

their destination), and (2) detect abnormal behaviours to

be further investigated.

We consider a vessel V observed by a series of het-
erogeneous sources S = fs1, : : : ,sNg such as a coastal
radar and its associated tracker, a SAR (Synthetic Aper-

ture Radar) image with associated either ATR (Auto-

matic Target Recognition) algorithm or a human ana-

lyst, a visible camera operated by a human analyst, the

AIS information sent by the vessel itself or some intel-

ligence source. Let A be the set of features of interest,

either observed and thus about which information is ei-

ther provided by or extracted by some sources of S, or
to be inferred. For solving our problem of route asso-

ciation, we consider attributes such as the position (lat-

itude, longitude), Course Over Ground (COG), Speed

Over Ground (SOG), Type, Length, and also the mar-

itime route followed by the vessel. Let denote by A
the set of features of interest, by X the set of uncer-

tain variables corresponding to features of A, by Xi
the variable of X corresponding to feature i 2 A and

by U a subset of variables of X . We further denote by
−i the domain of definition of Xi containing the set of
its possible values, by xi 2 −i a singleton of −i and by
Ai μ −i a subset of −i. Let − be the corresponding space,
defined as the Cartesian product of the −i correspond-
ing to vessel features of interest at a given timestamp

t. Also, xt = fÁ(Xi,s, t)g(i2A,s2S) denotes a set of infor-
mation items jointly provided by some sources from S
about some features in A at a specific instant in time t.
This notation of information item encompasses the gen-

eral case where sources provide some uncertainty about

their statement and thus Á denotes a source statement
either as a single measurement (precise and certain), ei-

ther as a probability vector (expressing some uncertainty

interpreted as provided by the source itself), either as a

natural language expression (possibly vague), etc. Ta-

ble I lists some examples. In the specific case of precise

and certain measurements defined over a scale of real

numbers, xt would simply be a vector of real values
of −. For the purpose of the discussion in this paper,
we consider that each feature estimation is provided by

a single source (while in general several sources may

provide information about the same feature). Moreover,

we focus on the fusion of all (singular) observations

obtained at the same instant in time t. Thus for the sake
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of simplicity of the exposure, the index t and s will
be omitted, and information items will be denoted sim-

ply by Á(Xi) or Ái. Uncertainty about state transitions
xt! xt+1 will be considered in further extension of this
work.

Let −R = fR0,R1, : : : ,RKg be the finite set of possi-
ble routes followed by the vessel V for the given area
of interest, where Rk for k = 1, : : : ,K is a pre-computed

route and R0 represents “none of the K routes”: Rk, for
k = 1, : : : ,K, is the label to be output by the fusion pro-
cess corresponding to the event “The vessel V follows
route Rk” and R0 is a rejection class corresponding to the
vessel following no specific pre-computed route. This

class gathers the events of “The vessel is physically off-

route,” “The vessel is in the reverse traffic on the route,”

“The speed is not compatible with the route followed,”

“The type of the vessel is not compatible with the route

followed,” representing some Maritime Situational In-

dicators of possible interest to the VTS operator. In the

following, we consider a quite simple reasoning scheme

according to which an anomaly is detected based on a

joint assessment (fusion) of the 5 features of Position,

COG, SOG, Length, Type provided by the AIS report

of the vessel and describing the route. Other said, the

behaviour of a vessel V is detected as being abnormal
if the set of its estimated features is not compatible with
any existing route. Compared to [40], the nature of the

anomaly will not be specified. However, identifying the

features which contribute the most to the disbelief to-

ward any of the routes would provide information about

the nature of the anomaly.

For convenience, we partition − into the observa-

tion space, say −o and decision space −R. The fusion
scheme to be designed aims thus at establishing a map-

ping ª :−o!−R such that R̂ =ª(x) is the route la-
bel assigned to V represented by x (at time t). The
underlying reasoning is that any observed feature at t
combined with possible background knowledge con-

tributes to a global belief (disbelief) that V is follow-

ing a pre-established route from −R. Indeed, if all the
observed (measured) features match the corresponding

feature values of a specific existing route, then the cor-

responding route label is assigned to the vessel. If some

“inconsistency” or “conflict” exists between the set of

observed features and the routes features (e.g. if the dis-

tance between x and each of the Rk is too high, or if the
set of compatible routes according to the speed does

not match the equivalent set according to the type) then

V is assigned to no route and an anomaly is reported

(label R0).
The same set of pieces of information would then

be used for two purposes:

(1) Associating a vessel to route, under the assumption

that the sources are reliable and

(2) detecting anomalies, under the assumption that an

inconsistency among the set of estimated features

would reveal a possible behaviour of interest.

Fig. 1. Historical route prototypes extracted via the TREAD

algorithm [42] in the area between La Spezia and Livorno, Italy,

from AIS data (Jan 1—Feb 20 2013).

However, on the one hand, information is inherently

imperfect (incomplete or imprecise, uncertain, gradual,

granular [19]–See Section III-B) and on the other hand

inconsistencies may arise either from sources limita-

tions (e.g. gaps in or weak coverage of sensors, limited

reasoning abilities, storage limitations, false detections

or identifications), and lack of reliability in general) or

malevolent behaviour of the vessel such as deception.

The appropriate detection and identification of anoma-

lies highly relies on the technique for fusing the differ-

ent pieces of information and detecting inconsistencies,

which include the handling of uncertainty.

C. Uncertainty in Maritime Anomaly Detection

Figure 1 illustrates the set of maritime routes pre-

viously extracted with TREAD algorithm [42] from a

large number of AIS contacts for the area between La

Spezia and Livorno in Italy. The used AIS data are part

of a reference dataset published at CMRE [41].

As computed by TREAD, a maritime route is a clus-

ter of vessel detections (positions from AIS contacts)

with label Rk and identifies the geographical area where
vessels have been observed travelling between a pre-

defined entry point and exit point in the past tempo-

ral window. From this set of contacts (cluster) several

synthetic representations can be extracted more or less

complex, more or less rich, more or less precise. As an

example, each route is represented in a synthetic way

by a series of intermediate waypoints with associated
average headings. Additional features characterising the

traffic can be further extracted such as the distribution

of speed, length and type of vessels traveling on this

route. As a matter of fact, routes are, by nature, un-

certain objects and the characterisation and representa-

tion of their uncertainty is of primary importance for
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TABLE II

Dictionary of routes and examples of simple associated uncertainty representations

Route Label Synthetic route r(k) Traffic information statistics

R¡Origin¡ to¡Destin POSITION § width [km] COG§STD SOG [KNOTS] LENGTH [M] TYPE [FREQUENCY]

R1 R PO 1 to PO 2 fWPg(1)§ 2:77 297§ 85± N (10,4) [80 : 100];[260 : 300] [0:8 0:1 0 0 0:1]

R2 R PO 2 to PO 1 fWPg(2)§ 3:01 140§ 49± N (11,4) [0 : 130];[250 : 300] [0:37 0:13 0 0 0:5]

R3 R PO 2 to EX 27 fWPg(3)§ 1:19 185§ 11± N (12,2) [120 : 250] [0:75 0 0 0 0:25]

R4 R PO 2 to EX 4 fWPg(4)§ 2:86 221§ 31± N (15,4) [100 : 200];[260 : 350] [0:97 0 0 0 0:03]

R5 R PO 2 to EX 5 fWPg(5)§ 5:08 209§ 19± N (11,1) [100 : 300];[200 : 210] [1 0 0 0 0]

R6 R PO 1 to EX 5 fWPg(6)§ 1:91 255§ 18± N (13,4) [0 : 25];[110 : 300] [0:82 0:09 0 0:09 0]

R7 R PO 1 to EX 14 fWPg(7)§ 1:25 210§ 90± (N (10,2);N (18,2)) [50 : 100];[120 : 200] [0:93 0 0 0:07 0]

R8 R PO 1 to EX 8 fWPg(8)§ 0:86 225§ 14± (N (11,2);N (19,2)) [100 : 150];[190 : 240] [0:38 0:24 0 0:38 0]

R9 R PO 1 to PO 18 fWPg(9)§ 0:98 244§ 21± N (11,3) not reported [0 0 0 1 0]

Fig. 2. An example of multi-dimensional uncertainty representation

for Route R6 with label R PO 1 to EX 5 reported in Table II.

a proper use of this information for the anomaly de-

tection task. Figure 2 gives an example of how some

dimensions of uncertainty for a specific route can be

represented: top panel–the geographical displacements

of vessel positions with respect to the synthetic (av-

erage) route; middle left panel–distribution of COGs;

middle right panel–distribution of SOGs; bottom left

panel–distribution of ship length; middle right panel–

frequency of types of the ships which transited along

that route in the given time window).

Table II lists several examples of simple uncertain

representations for the different routes in the derived

dictionary and illustrates how this multi-dimensional

uncertainty of the routes can be encoded in a compact

way.1

For instance, each route Rk may be represented by
a prototype r(k) corresponding to the mean or most fre-

1The field ‘TYPE’ in Table II corresponds to the following encoding:

[T1 T2 T3 T4 T5]=[Cargo Tanker Fishing Passenger Others]

quent trajectory of the cluster. Those features are precise
and certain values to which some imprecision or uncer-
tainty can be added for a richer representation, based
on the statistical information from the raw AIS mes-

sages which contain many additional fields of interest.

The route width w(k) is defined as the maximum of the

distances of each route point (i.e., vessel positions as-

sociated to the route) to the closest waypoint on the

synthetic route. It defines an area where the transited

vessels have been observed in the past.

The statistics extracted from the raw AIS dataset

may serve two purposes: On the one hand, they can

be used as the basic ingredient for the generic uncer-

tainty representation captured by the route objects and,

on the other hand, they are possibly transferred to ex-

press some uncertainty about new singular measure-

ments. The histograms of the different features (SOG,

COG, Length, Type) can be further interpreted as like-

lihood functions p(Xi = x j Rk) (see Section IV-C) and
approximated by different models. For instance, the dis-

tribution of the speed variable XS for Route R1 can

defined by the couple (s̄1;¾
(s)
1 ) representing the mean

and standard deviation of speed values estimated on the

training dataset used to build R1. With the additional
assumption of a Gaussian (normal) model, these two

parameters would completely define one estimation of

a probability distribution for XS . A Mixture-of-Gaussian
(MoG) model could be used for the conditional likeli-

hoods of the SPEED and LENGTH for instance, as well as

more sophisticated techniques of joint density estima-

tion, or models of dynamics of vessels, considering as

well the interaction between speed and position (e.g.,

[46, 38]).

However in some cases, the amount of data (e.g.,

number of trajectories) building the cluster may not be

large enough to estimate reliable distributions and con-

sidering second-order uncertainty could be appropriate

(see Sections IV-E and IV-F). Also some AIS fields,

especially the ones entered manually, are often missing

or miss-spelled. For instance, the destination may not

be specified or may not be valid, the Estimated Time of

Arrival (ETA) may not be updated. The positional and
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Fig. 3. Excerpt of the URREF ontology for the EVALUATIONCRITERION classes. UNCERTAINTYTYPE can be used to refine the EXPRESSIVENESS

criterion. Displayed with the Protégé software [39]. The full and last version of the ontology is available at

eturwg.c4i.gmu.edu/files/ontologies/URREF.owl. (a) Top-level concepts of the URREF ontology. (b) URREF EVALUATIONCRITERION class

with subclasses. EXPRESSIVENESS is a subclass of UNCERTAINTYREPRESENTATIONCRITERION. PRECISION and ACCURACY are subclasses of

DATAQUALITYCRITERION.

kinematic information being automatically sent is more

reliable but can suffer from incompleteness to due a lack

of coverage of the AIS receivers resulting in missing

reports for a certain period of time. The non-reception

of the AIS signal may arise as well from an intentional

manipulation, either simply to conceal some activity ei-

ther legal (e.g., fishing) or illegal (e.g., smuggling), or to

keep hidden from pirates. Finally, the AIS signal can be

spoofed for instance shifting the positional information

to another area, or by modifying the MMSI or IMO

identifier of the vessel for instance [44]. Previous stud-

ies have demonstrated that roughly 5% of AIS data is

generally inconsistent (see e.g. [35]).

The consideration of these different imperfections of

information is crucial in the design of maritime anomaly

detection solutions. However, it requires a prior proper

understanding of the origins of uncertainty, of the kinds

of imperfection, of the type of information (be it rele-

vant to a population of situations or to a single one–

generic or singular) to provide a meaningful solution

and to properly interpret the estimates output by the

algorithms and made available to the user. In the fol-

lowing we provide a brief overview of the URREF on-

tology which aims at capturing assessment criteria on

the one hand, and relevant uncertainty-related concepts

that impact the solution assessment on the other hand.

III. THE UNCERTAINTY REPRESENTATION AND
REASONING EVALUATION FRAMEWORK
(URREF)

The URREF ontology [8] identifies, defines and

links uncertainty-related concepts which come into play

when evaluating the uncertainty representation and rea-

soning approaches underlying information fusion

schemes. As the work is still on-going and some ele-

ments are currently under discussion within the ETUR

group, this section only provides a partial description

of the ontology focusing on the concepts relevant to

this paper. The reader is referred to the ETUR working

group collaboration website for an up-to-date descrip-

tion of the URREF ontology.2

The top level concept THING (see Figure 3(a)) con-

tains concepts such as UNCERTAINTYNATURE (epistemic

vs aleatory), UNCERTAINTYTYPE, UNCERTAINTYTHEORY

(mathematical framework), UNCERTAINTYDERIVATION (ob-

jective vs subjective), SOURCE (of information),

EVALUATIONSUBJECT and associated EVALUATIONCRITER-

ION. The EVALUATIONCRITERION class is further split into

DATACRITERIA, DATAHANDLINGCRITERION, REPRESENTA-

TIONCRITERION and REASONINGCRITERION classes (see Fig-

ure 3(b)).

A. Evaluation subjects
Evaluation subjects are the elements composing the

URRT which assessment through the URREF is mean-

ingful [25]. An evaluation subject is any item which can

be compared and evaluated through the URREF ontol-

ogy according to a series of corresponding criteria. The

uncertainty representation process (that we denote here

by h) corresponds to the abstraction process of mod-
elling [9] and aims at capturing the uncertainty (i.e. im-

perfection) arising from (in particular but not only):

2eturwg.c4i.gmu.edu/files/ontologies/URREF.owl
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² the measurements, including the links between the
variables, the mapping from the measurement space

to the decision space, and finally the uncertainty over

the decision space, including the route definition (i.e.,

the normalcy definition);

² the source quality, either provided by the source itself
(i.e., self-confidence) which expresses some doubt

about the estimated value or testimony provided, or

estimated by the algorithm designer (or user) based

on past experience with the source (i.e., reliability). If

we relate reliability to the ability of the source to con-

sistently provide correct outputs, then self-confidence

and reliability differ in the sense that the source may

have a low confidence in its declaration (singular in-

formation) while being still highly reliable (generic

information), or being highly confident while being

always wrong (low reliability).

The uncertainty representation is assessed by the

REPRESENTATIONCRITERION of the URREF ontology.

The fusion method builds a series of uncertainty

functions over the space −, that we split for conve-
nience between the measurement and decision spaces,

i.e. − =−o£−R, and involves at least one instance of
the following elements: (1) a combination function ½
acting over (possibly some subsets of) −, (2) a mapping
function g from −o to −R, and (3) a decision mapping
l from an uncertainty function over −R to a singleton
of −R.
The Atomic Decision Procedure (ADP) underlying

the fusion method ª is thus composed of the elements

fh,g,½, lg. The scheme ª before decision (l), outputs an
uncertainty function over −R representing some belief
degrees we may have at time t regarding the different
hypotheses of −R, based on a set of pieces of infor-
mation (either singular measurements received by the

sources at t or generic information extracted from his-

torical data or background knowledge and can formally

be denoted as:

ª(Á(U,S)) = Á(XR,ª ) (1)

where U μ X , S μ S and Á is an information item

provided by S over U. Equation (1) expresses that ª
processes some pieces of information defined over a

subset U of variables from X , provided by a subset
S of sources S and including some uncertainty, and
outputs another piece of information defined over −R,
then provided by Ã as a source. As we will illustrate
in Section IV, the order of the elements of ª is not

fixed, since the fusion operation ½ can be performed
within different subsets of − or −o (e.g., URRT#1,
URRT#2, URRT#3) or solely within −R (e.g., URRT#4,
URRT#6), the fusion can occur after the decision step

(e.g., majority vote in classifier combination), etc. The

reasoning scheme is assessed by the REASONINGCRITERIA

of the URREF ontology.

B. Information deficiencies

In the current state of the URREF ontology, some in-

formation quality dimensions are covered by the UNCER-

TAINTYTYPE class (Ambiguity, Incompleteness, Vague-

ness, Randomness, Inconsistency). Alternative categori-

sations of information deficiencies could be considered

instead, such as either Smets’ structured thesaurus of

imperfection of information [51], either Klir and Yuan’s

typology [30], or the typology of defects of information

of Dubois and Prade [19]. In this paper, we will refer

to the later one, and following the authors we will dis-

tinguish between the four information defects of incom-
pleteness (or yet imprecision), uncertainty, graduality,
and granularity.

² Imprecision–Refers a set of possible values, regard-
less how they have been obtained: The bigger the size

of the set, the higher the imprecision. It represents the

inability of the source to provide a single value or to

discriminate between several values. Imprecision is

interpreted as a type of incompleteness as it arises

from a lack of information. For instance, the state-

ment “The vessel is following either route R1 or R2”
is imprecise and provides only incomplete informa-

tion not allowing to answer the question “What is the

route followed by the vessel?”.

² Uncertainty–Arises when an agent does not know
(or partially knows) if a proposition is true or false. It

can be expressed by a degree (or a set of degrees) of

confidence assigned to a specific (or set of) value(s) to

be “true.” Its nature can either correspond to a lack of

knowledge (epistemic uncertainty) or to the variabil-

ity of an underlying process (aleatory uncertainty).

When assigned by the source itself it corresponds to

“self-confidence.” Uncertainty can also be expressed

at the output of the fusion process itself with an equiv-

alent interpretation, meaning that the fusion process

does not provide a maximal confidence toward its out-

put. For instance, the probability distribution over the

set of possible types of vessels Ci as output by some
classifier can be interpreted as an uncertainty expres-

sion, i.e., expressing a set of (normalised) degrees of

confidence in the truth of the proposition “The vessel

is of class Ci.”
² Graduality (or gradualness)–Arises usually from lin-
guistic expressions and induces propositions with

some possible degrees of truth (i.e., non Boolean).

That kind of imperfection allows a proposition to be

more or less true or false. For instance, “The vessel

is fast” is a gradual information item, using the grad-
ual predicate “fast,” and is typically represented by
fuzzy sets. As we will illustrate later, “on-route” can

be considered as a gradual predicate making maritime

routes ill-defined objects.

² Granularity–Refers to the support over which the
proposition is defined, i.e. to the set of pre-established

possible values. Granularity refers to the partition

granules used in the definition of a set. For instance,
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the set −1 = fFISHING VESSEL;NOT FISHING VESSELg
describing exhaustively the types of vessels has a

rougher granularity than the set−2 = fFISHING VESSEL;
CARGOS;TANKERS;OTHERSg covering also exhaustively
the possible types of vessels. The change of granu-

larity is done through the operations of refinement or

coarsening (see for instance [47]).

Not a defect per se, we also consider the dimension
of “trueness” (vs falseness):

² Trueness–It is considered here as the criterion relat-
ing a piece of information (either input or output) to

truth or to some reference value. It is defined in [22]

as the “closeness of agreement between the expec-

tation of a test result or a measurement result and a

true value.” The notion of trueness covers two dif-

ferent aspects that are how close the results are to
truth, especially in case on measurements on contin-

uous scales or how frequently the results correspond
to truth, especially in case of nominal scales such as

output of classifiers.

Usually, on the one hand, imprecision (or precision)

and uncertainty (or certainty) are opposed [51]: “I’m

certain that the speed of the vessel is between 3 and

6 knots” (Imprecise but certain statement) versus “I’m

not certain that the speed of the vessel is 5 knots”

(Precise but uncertain statement). On the other hand,

precision and trueness are often associated in perfor-

mance assessment of systems, and are gathered under

the term accuracy in ISO 5725 [22], referring to a se-

ries of independent tests. The way these information

deficiencies relate to the concepts of UNCERTAINTYTYPE,

UNCERTAINTYDERIVATION and DATACRITERIA is still under

discussion within the ETUR working group and is not

addressed in this paper.

These five deficiencies (or imperfections) introduced

above will be used in the following to characterise both

input and output information of the fusion method. We

will denote in the following by ´ the imperfection to be
captured by the uncertainty representation process h.

C. Type of information

Following [19], we distinguish between generic and
singular information. Generic information refers to a
population of situations such as statistical models, phys-

ical rules, logical rules or commonsense knowledge. It

is a synthesis of previous knowledge. Singular infor-

mation is about the current state of the world such as

an observation, a testimony or a sensor measurement.

This distinction is similar to the one sometimes made

between knowledge and evidence: According to Pearl

(as cited in [16]) knowledge is understood as “judg-

ments about the general tendency of things to happen,”

whereas evidence refers to the description of a specific

situation.”

Therefore, as a matter of convention in this paper,

the notions of data, knowledge, evidence and informa-

tion are all covered by the single term information. This
is driven only by the need to avoid confusion between

the terms and by no means to deny any existence of

distinction between these notions. Consequently, “in-

complete knowledge,” “uncertain evidence,” “erroneous

data,” etc, are all covered by the general term “imperfect
information.”
Moreover, we reserve the term uncertainty to the def-

inition introduced in Section III-B. Indeed, uncertainty
may be used sometimes abusively to cover the different

types of imperfection (or information defects) as they all

induce some uncertainty in the decision maker’s mind.

Note that uncertainty is also considered as the dual of in-
formation as classically understood in the field of Gener-
alised Information Theory (GIT) [28]: To some increase

of information corresponds equivalent reduction of un-

certainty, as captured for instance by Shannon entropy

measure. Hence, instead of uncertainty, we rather use

the general terms of imperfect information, imperfection,
information defects, information deficiencies, uncertainty
being one of them.

D. Uncertainty theory

The UNCERTAINTYTHEORY class contains the mathe-

matical theories for the representing and reasoning with

uncertainty. It typically includes, but is not limited to,

probability theory, fuzzy set theory, possibility theory,

belief function theory, rough set theory, imprecise prob-

ability theory (see [19] for a survey). In the following,

we will consider the three mathematical frameworks of

probabilities, belief functions and fuzzy sets. Although

geometry is not traditionally considered as an uncer-

tainty theory, contrary to probabilities, belief functions

or fuzzy sets, we also provide in this section the de-

scription of distance measures together with some jus-

tifications for its consideration.

Let us denote by − a set of hypotheses which could

correspond either to the joint space (−o£−R), either to
the measurement space only −o, either to the decision
space only −R or to any other subset of it.
A Probability Mass Function (PMF) p satisfies the

following properties:

(p.1) p : −! [0;1]

(p.2)
P
x2− p(x) = 1

A probability measure P satisfies the following

properties:

(P.1) P : 2− ! [0;1]

(P.2) P(Ø) = 0 and P(−) = 1

(P.3) P(A) =
P
x2A p(x), 8Aμ − and p the PMF

(P.4) P(A[B) = P(A) +P(B) if A\B =Ø
We have that P(fxg) = p(x). The additivity property

(P.4) constrains in particular P(A)+P(Ā) = 1, if Ā de-
notes the negation (or complement) of A, i.e., Ā= −nA.
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A state of complete ignorance about the value of x is
usually represented by a uniform distribution over −
such that P(x) = 1=j−j, for all x 2−, where j:j denotes
the cardinality. The additivity property is what distin-

guishes probability measures from other non-additive

measures such as belief functions.

Dempster-Shafer theory, or evidence theory, or be-

lief function theory [12, 47], is often described as an

extension of probability theory in which the axiom of

additivity is relaxed for an axiom of sub-additivity on

belief functions. In other words, the underlying distri-

bution of a belief function is no longer defined over the

singletons of − but rather over its powerset 2− .

A Basic Probability (or Belief) Assignment (BPA or

BBA) is a function m such that

(m.1) m : 2− ! [0;1]

(m.2)
P
Aμ−m(A) = 1

(m.3) Closed-world assumption: m(Ø) = 0 OR Open-

world assumption: m(Ø) 6= 0
A belief function is a function Bel such that:

(Bel.1) Bel : 2− ! [0;1]

(Bel.2) Bel(Ø) = 0 and Bel(−) = 1

(Bel.3) Bel(A) =
P
BμAm(B), 8Aμ −.

(Bel.4) Bel(A[B)· Bel(A)+Bel(B) for all A,B μ −
such that A\B =Ø

A plausibility function is a function Pl such that:

(Pl.1) Pl : 2− ! [0;1]

(Pl.2) Pl(Ø) = 0 and Bel(−) = 1

(Pl.3) Pl(A) =
P
B\A6=Øm(B), 8Aμ −.

(Pl.4) Pl(A[B)¸ Pl(A) +Pl(B) for all A,B μ − such

that A\B =Ø
The belief function Bel and plausibility function Pl

are thus respectively sub-additive (Bel(A)+Bel(Ā)· 1)
and super-additive (Pl(A) +Pl(Ā)¸ 1). The uncertainty
functions Bel and Pl are dual of each others (Bel(A) =
1¡Pl(Ā)) and can be interpreted (under Dempster’s
statistical view [12]) as respectively lower and upper

bounds of an (unknown) probability of A: Bel(A)·
P(A)· Pl(A), 8Aμ −. The open-world assumption [54]
relaxes the exhaustivity of the original Dempster-Shafer

model, allowing the empty set to have a non-null mass.

That means that other hypotheses than the ones initially

considered in − can actually be true. It is interesting in

our practical case of route association as this empty set

would then act as a rejection class for “off-route” vessels

(see Section IV-F). Evidence theory “includes exten-

sions of probabilistic notions (conditioning, marginali-

sation) and set-theoretic notions (intersection, union, in-

clusion, etc.)” [13]. The conjunctive rule is based on the

intersection between sets (see (10)). A non-null mass to

the empty set denotes thus a conflict (or inconsistency)

between the two belief functions combined and may be

interpreted as an indicator to an anomaly. A state of

complete ignorance is represented by the vacuous BPA

m(−) = 1 (or equivalently by [Bel(A);Pl(A)] = [0;1] for
all Aμ −, A 6=Ø and A 6=−), which is distinct from the
uniform distribution.

A fuzzy set ¹ satisfies the following properties [57]:

(f.1) ¹ :−! [0;1]

(f.2) maxx ¹(x) = 1

(f.3) ¹(A[B) = max(¹(A),¹(B))
(f.4) ¹(A\B) = min(¹(A),¹(B))
Compared to probabilities and belief functions

which define degrees of belief regarding the occurrence

(or truth) of an event, being itself either true or false,

fuzzy sets define degrees of truth for events which are

thus allowed to be more or less true.

Geometric distances are not an uncertainty model

per se. However, they are at the basis of the computation
of trueness, precision or accuracy in measurement data

(e.g. [22]) which all convey notions of uncertainty.

Moreover, pattern matching techniques (see Sections

IV-A and IV-B) rely on distances computation. Finally,

uncertainty may be derived from distance measures

as the farther to a route the vessel, the higher our

uncertainty that it follows that route (see Section IV-D).

For these reasons we include here the basic properties

of distance measures.

A (metric) distance function d satisfies the following
properties:

(d.1) d :−£−! [0;1]

(d.2) 0· d(x1,x2)· 1
(d.3) d(x1,x2) = d(x2,x1)

(d.4) d(x,x) = 0

(d.5) d(x1,x2) = 0) x1 = x2
(d.6) d(x1,x2)· d(x1,x3)+ d(x3,x2)
All these properties define metric distances, but re-

laxing some of them lead to weaker forms of distances

such as pseudo-metrics or semi-metrics. The properties

of the functions introduced here correspond to some

desirable behaviours of the uncertainty handling mod-

els within the fusion method to be designed. One of

the tasks of the designer is to identify and select the

uncertainty representation together with the associated

mathematical framework in order to meet the require-

ments of the expected underlying logic of the method.

To sum up, and referring to the basic information qual-

ity dimensions identified in Section III-B, probabilities

convey the notion uncertainty only, belief functions con-

vey both uncertainty and imprecision, while fuzzy sets

convey the notion of graduality which can be assessed

using distance measures.

E. Uncertainty supports

In order to refine the assessment of uncertainty rep-

resentations, we introduce the concept of uncertainty
support as an item about which some uncertainty (or
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TABLE III

Examples of pieces of information for different uncertainty supports and generic and singular information

Uncertainty Support Generic uncertainty (“0”) Singular uncertainty (“t”)

(us.1) Xi ´(Xi,s,0) ´(Xi,s, t)

Uncertainty about the type of vessels deduced
from past AIS records

Uncertainty about the type of a specific vessel, as
provided by an ATR classifying a SAR imagery

XR ´(XR ,s,0) ´(XR ,s, t)

Prior uncertainty about the routes followed Uncertainty about the route followed by the vessel at t

(us.2) (Xi,Xj) ´((Xi,Xj),s,0) ´((Xi,Xj),s, t)

Uncertainty linking type and speed of vessels, in general Uncertainty about the type of the vessel given the current
speed

(Xi,XR) ´((Xi,XR),s,0) ´((Xi,XR),s, t)

Uncertainty linking the speed and the route Uncertainty about the route followed by a specific vessel at t
given its speed

(us.3) ´(:,0) ´(´(:,s2,0),s1,0) ´(´(:,s2,0),s1, t)

Uncertainty about the prior distribution over the routes as
lower and upper bounds

Uncertainty at t about the routes previously extracted

´(:, t) ´(´(:,s2, t),s1,0) ´(´(:,s2, t),s1, t)

Uncertainty about the source s2 declaration provided at t
(e.g., prior reliability)

Uncertainty about the current source s2 statement itself
including some uncertainty

imperfection in general) needs to be captured and rep-

resented (in other words, what “we are uncertain about”)

and distinguish between:

(us.1) Individual states of the world as represented by
any single variable of X

(us.2) links between states as represented by subsets of
variables from X

(us.3) uncertainty expression ´ over the above supports
(us.1) or (us.2).

Supports (us.1) are a special case of (us.2). The

supports of type (us.3) correspond to abstract states

covering for instance uncertainty or imprecision about

a probability distribution, about a probabilistic model

linking several variables, etc. The joint distribution of

length and types of vessels can be itself the support

of some uncertainty or imprecision since its estimation

may not reflect the real distribution (due to a lack of

data for instance). This is a HIGHERORDERUNCERTAINTY

(i.e. second-order uncertainty), which a subclass of

EXPRESSIVENESS criteria captured in the URREF ontol-

ogy under the REPRESENTATIONCRITERION class (see Fig-

ure 3(b)). Advantages of considering second-order un-

certainty are for instance discussed in [45, 34, 7, 2]. One

of the purposes of the URREF is to analyse and capture

these features of second-order uncertainty.

Table III lists examples of uncertainty supports (for

both generic and singular information) together with the

notation and meaning.

The examples of uncertainty supports provided in

Table III are for two variables only, although these cover

any subsets of variables. To distinguish between generic

and singular information, we will use the indexes 0 and

t respectively to the corresponding uncertainty supports.

Moreover, we assign the symbol of the information

source s from which the imperfection has to be captured.
For instance:

´(XT,AIS dataset,0)

denotes the imperfection of the type of vessels observed

in the past pertaining to the AIS dataset of interest.

In Section V-A, the URRTs will be compared ac-

cording to their ability to capture the different imper-

fection types of our problem at hand as exemplified by

Table III.

F. Evaluation criteria

We will focus in Section V-A on the EXPRESSIVENESS

criterion of the REPRESENTATIONCRITERION class of the

URREF ontology. Expressiveness is defined as the

power of an uncertainty representation technique to

convey relevant aspects of a given fusion problem

[8]. The uncertainty supports are a “relevant aspect”

of the problem as they are able to convey the idea

of DEPENDENCY (between variables), HIGHER-ORDER UN-

CERTAINTY, (source) SELF-CONFIDENCE and extend to the

source’s reliability. Note that this assessment along

the expressiveness criterion is not be ordinal in the

sense that the methods are not be ordered accord-

ing to their expressiveness. It is rather a comparative

assessment where the methods are characterised ac-

cording to their expressiveness. Instead of establish-

ing some ranking of the URRTs, the expressiveness

assessment is aimed at improving the understanding

of the semantics of the different approaches. We fur-

ther expand the EXPRESSIVENESS criterion to cover the

ability of the URRTs to capture the different types
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of imperfection as defined in Section III-B.3 Figure

3(b) displays the EVALUATIONCRITERION class split into

REPRESENTATIONCRITERION, REASONINGCRITERION, DATACRITERION

and DATAHANDLINGCRITERION. EXPRESSIVENESS is a subclass

of REPRESENTATIONCRITERION, having itself other subclasses

such as HIGHERORDERUNCERTAINTY or DEPENDENCY.

Additionally inSectionV-B,wealsoassess theURRTs

globally on their outputs through the DATACRITERION-

QUALITY. Notions of TRUENESS (or Falseness),

IMPRECISION and UNCERTAINTY are quantitatively evalu-

ated when the fusion scheme solving the route associa-

tion problem is implemented processing real AIS data.

IV. UNCERTAINTY REPRESENTATION AND
REASONING TECHNIQUES
Six different uncertainty representation and reason-

ing techniques (URRTs) are presented below, as six in-

stantiations of the fusion scheme ª , to be further as-
sessed through the URREF. The URRTs presented here

are very basic and simple schemes far less complete

than the ones reported in the literature addressing the

problems of maritime anomaly detection or route as-

sociation. However, this deliberate simple exposure is

aimed at “dissecting” the underlying uncertainty repre-
sentation and reasoning, as a first step for comparison

and improved understanding.

A. URRT#1: Pattern matching–Euclidean
Intuitively, the closer the observed vessel under con-

sideration is to the centroid of the routes, the more likely

it is to belong to the route. A pattern matching approach

captures this basic reasoning. Prototype matching dif-

fers from template matching (such as 1-nearest neigh-

bour) in a way that a perfect match is not expected.

It provides better flexibility and allows some tolerance

to handle uncertainty. A standard pattern (prototype)

matching approach computes the Euclidean distances

between x and each of the routes of −R as:

d(E)(x,Rk) =
p
(x¡ r(k))0(x¡ r(k)) (2)

=

sX
i2A
(xi¡ r(k)i )2

where r(k) is the prototype corresponding to route Rk
(see Table II), defined in the feature space − and x0

is the transpose vector of x. The ith components of x
and r(k) are denoted by xi and r

(k)
i respectively. The

quantity (d(k)i )
2 = (xi¡ r(k)i )2 can be interpreted as an

inverse degree of match of the observation xi to the
equivalent prototypical element of Rk, that we denote

as r(k)i : The lower the square distance, the higher the
degree of membership of the vessel to that route. Let

us define by ¹(k)i the degree of membership of x to Rk
according its feature xi. Then, adopting a similarity view

3Note that this link between EXPRESSIVENESS and UNCERTAINTYTYPE

is not currently implemented in the URREF ontology and is at a stage

of proposal for inclusion.

of fuzzy sets [3, 18], ¹(k)i can be defined through d(k)i as,

for instance:

¹(k)i = exp(¡(d(k)i )2)
which tends toward 0 whenever the distance tends to-

ward infinity and equals to 1 if the distance is null.

Equation (2) can then be written as:

d(E)(x,Rk) =
s
¡
X
i2A
log(¹(k)i ) (3)

where ¹(k)i 2]0;1] is a normalised degree of member-
ship. Eq. (3) is a bisymmetrical continuous strictly

monotonous mean [6]. The fusion operator in (2) is a

sum (disjunction) which averages local dissimilarities

with Rk along the different features. It acts as a compro-
mise between min (conjunctive) and max (disjunctive)

operators.

We then consider the following decision rule:

R̂ =

½
argmink d

(E)(x,Rk) if d(E)(x,Rk)< ²1
R0 otherwise

(4)

where ²1 is a threshold to be set according to the opera-
tor’s needs or expectations, representing some tolerance

over the global distance over the 5 features. In practice,

²1 can be deduced from some aggregation of the in-

dividual thresholds ²i1 for each feature. This decision
rule allows some imprecision in the decision space as

it can lead to a set of possible routes, without identify-

ing a single one. An anomaly is detected if it does not

match any route. Many anomaly detection approaches

are based on distances computation as an implemen-

tation of the notion of “closeness to normalcy” (e.g.

[11]). Semantic distances can also be used to assess the

different meanings between attributes (e.g. [4]).

B. URRT#2: Pattern matching–Mahalanobis

A modified version of the Euclidean pattern (proto-

type) matching scheme is obtained by using the Maha-

lanobis distance:

d(M)(x,Rk) =
p
(x¡ r(k))0§¡1(x¡ r(k)) (5)

where § is the covariance matrix of the random vec-

tor X associated to x, whose coordinates are r.v. Xis.
The superscript ¡1 denotes the inverse matrix. The ele-
ment ¾i,j of § is the covariance of Xi and Xj defined as
E(Xi,Xj)¡E(Xi)E(Xj) where E is the expectation op-
erator such that E(X) =

P
xp(X = x) for a discrete ran-

dom variable X. The same decision rule (4) than for the
Euclidean pattern matching is used. However, another

threshold ²2 must be used instead of ²1, based on the
covariance matrix.

As in (2), the fusion operator in (5) is a disjunction

but including weights which would discount the local

individual dissimilarities relatively to the variance of

their corresponding feature, and pairs of errors relatively

to their covariance.
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The Euclidean and Mahalanobis distances in (2) and

(5) are well suited to features defined over numerical

and continuous scales while they reduce to logical AND

for nominal variables such as the type. Better suitable

distance measures are usually used based on the aggre-

gation of individual for each feature, possibly using dif-

ferent definitions than the square difference (e.g. [21]).

Other distances such as the log-normal probability den-

sity (e.g. [1]) would account for the routes statistics as

well. Mahalanobis distance is used in [36] to associate

vessel tracks to maritime routes.

C. URRT#3: Probability-based–Bayesian

In the standard Bayesian approach to fusion, the

function p(X= x j Rk) represents the likelihood of ob-
serving a specific set of values x on a given route Rk,
and is usually derived from past observations used to

compute the routes. The different observations are com-

bined following Bayes’ rule:

P(Rk j x)/ p(Rk)
Y
i2A
p(xi j Rk), 8Rk 2−R (6)

under the assumption of independent and identically dis-
tributed observations. p(Rk) is some prior probability
that the vessel follows a specific route. The resulting

posterior probability P(Rk j x) represents some belief
that the route followed by the vessel of interest is Rk
given that we currently observe x. A normalisation fac-
tor ensures that a probability distribution is obtained.

Equation (6) is known as Naïve Bayes model in clas-

sification. This combination rule (6) can be written us-

ing the individual posterior probabilities as P(Rk j x)/
p(Rk)

¡(j−
R
j¡1)Q

i p(Rk j xi)p(xi). The decision rule is the
Maximum A Posteriori (MAP) probability:

R̂ =

½
argmaxk p(Rk j x) if p(Rk j x)> ²3

R0 otherwise
(7)

where ²3 is a threshold: if the posterior probability
is too uniformally distributed among the routes, then

no clear matching is detected and an anomaly is re-

turned. The Bayesian reasoning scheme is at the basis

of the Bayesian network approach proposed for instance

in [23].

The fusion operator is a conjunctive operator, i.e. the

product of individual likelihoods. It has the property of

decreasing very fast to 0 as the number of features to

be combined increases. Also, the result is exactly 0 if

only one likelihood is null.

D. URRT#4: Probability-based–Non-Bayesian

In a still probabilistic but non-Bayesian approach,

each measured feature is considered providing some

evidence about the membership of x to a given route Rk.
For instance, ps(Rk) = p(Rk j xs) is the contribution of
the speed observation to the membership of the vessel V
to Rk and is interpreted as the probability that V belongs

to Rk given (or according to) the estimated speed. Then,
the observations are aggregated by a weighted sum as:

p(Rk j x) =
X
i2A
®ip(Rk j xi), 8Rk 2 −R (8)

where ®i 2 [0,1] is a weight reflecting either the confi-
dence in the soft decision values computed by the in-

dividual sources, and possibly be deduced from p(xi),
or the relevance of the features to the fusion problem

(for instance, the position and heading may be given

a higher weight than the type). This rule is derived in

[27] from (6) under the assumption of uniform p(Rk).
Contrary to the Bayesian approach, the posteriors are

combined. The decision rule is then (7).

The fusion operator is a disjunctive operator, as in

(2) and (5), but probabilities are combined rather than

distances.

E. URRT#5: Transferable Belief Model (TBM)
model-based

The reasoning scheme considered here is the one

proposed in [45, 14] within the Transferable Belief

Model (TBM) framework and making use of the Gen-

eralised Bayes Theorem (GBT) [50] as the combination

rule, given by the following plausibility measure for a

subset of routes A:

Pl(A j x) = 1¡
Y
R
k
2A
(1¡Pl(x j Rk)), 8Aμ −R (9)

where Pl(A) =
P
A\B 6=Øm(B) is the plausibility of Aμ

−R, with m being a Basic Belief Assignment (see Sec-

tion III-D). Pl(A j x) is the conditional plausibility of A
and is interpreted as the maximum confidence that can

be assigned to A (i.e., that the route followed belongs
to the subset A) given that x has been observed. As
proposed in [45], Pl(x j Rk) is the least committed plau-
sibility function corresponding to the probabilistic like-

lihood function considered as the pignistic probability.

For a BBA m, the pignistic probability [49] is defined
for any singleton of −R as BetP(Rk) =

P
R
k
2Am(A)=jAj.

As introduced in Section III-D, pairs of plausibility and

belief values can be interpreted as intervals over the

probability of any subset of routes Aμ −R. However, if
we restrict to singletons only, (9) reduces to the prod-

uct of plausibility under the independence assumption.

The decision rule requires then two steps: (a) the trans-

formation of the Pl measure into a probability distribu-

tion over −R (e.g. the pignistic probability) such that (b)
the MAP rule (7) can be applied (with the appropriate

threshold).

The fusion operator is again a conjunctive operator

with similar properties than the ones described in Sec-

tion IV-C.

F. URRT#6: Belief functions–Database query

Similarly to the probabilistic non-Bayesian URRT#4,

each observed feature xi of x is assumed to provide
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some evidence about route Rk being followed by V. The
uncertainty is modeled by belief functions rather than

probabilities. Each observation xi is regarded as a query
to −R such that only the items (i.e. routes) satisfying
the associated criterion are retrieved, to form a set of

possible routes Ai according to xi. Ai is the subset of
routes satisfying the query xi:

Ai = fR 2 −R j xi 2−ig
For instance, A1 is the set of routes compliant with a
measured speed of 5 knots. The multivalued mapping

between the observation space − and decision space −R
assigns to any singleton of − a subset of −R. Let us
consider that some singular information about the ob-

servation xi under the form of a probability, provided

for instance by a classifier: p(T)(XT =Cargo) = 0:4 is
the probability that the observed vessel is a Cargo

type, as estimated based on current observations. Let

pT = [0:4 0:3 0 0:3 0]
0 be the uncertainty of the classifier

(source) expressed as a probability distribution about

the type of the vessel. This uncertainty is transferred

to the corresponding subsets of −R previously defined
by the multivalued mapping, defining thus a BBA mi
over −R, where the numerical weight mi(Ai) = pi(xi)
is interpreted as the degree of belief that can be as-

signed to Ai and to none other subset of Ai. Then,
ACargo = (R1,R2,R3,R4,R5) is the set of routes possibly
followed by cargo vessels and is assigned a weight of

0.4. Equivalently, ATanker = (R2,R3,R5) and m(ATanker) =
0:3 and APassenger = (R2,R5) and m(APassenger) = 0:3. This
multivalued mapping does not induce a probability dis-

tribution over −R but a BBA.
The resulting BBA m over −R is obtained by com-

bining the individual contributions of each feature by

the conjunctive rule, where weights are assigned to con-

junctions of sets of routes Ai and Aj:

m(A) =
X

A
i
\A

j
=A

mi(Ai)mj(Aj), 8Aμ −R (10)

The rule (10) defines a conjunctive fusion based on the

intersection between sets. The decision rule is similar to

(7) but considers the conflict measure as a criterion for

anomaly:

R̂ =

½
argmaxkBetP(Rk) if m(Ø)< ¯

R0 otherwise
(11)

where BetP is the pignistic transformation of m. The
quantity m(Ø) is the BBA of the empty set after combi-
nation and represents the global weight of conflict be-

tween all the sources (or features).

V. ASSESSMENT OF URRTS

We now characterise the different approaches previ-

ously described through the URREF and its associated

ontology, EXPRESSIVENESS, in Section V-A and output

QUALITY criteria in Section V-B.

A. Expressiveness assessment
Table IV summarises the comparative description of

the 6 URRTs presented in Section IV as candidate solu-

tions to the same problem of maritime route detection.

The expressiveness of the URRTs relatively to different

uncertainty supports identified in Section III-E is first

assessed in a binary way, so that an empty cell means

that the technique (as actually defined in the previous

section) does not account for the uncertainty on the cor-

responding support. The types of imperfection (gradu-
ality, uncertainty, imprecision) are mentioned in case the
URR technique captures them, together with the corre-

sponding notation. The granularity is kept constant for
all the methods and is just reported as the list of possible

values for all variables in the first rows. In the third part

of the table the reasoning schemes are compared along

their respective uncertainty representation, marginalisa-

tion, decision elements.

1) URRTs analysis:
The uncertainty supports introduced in Section III-

E are mentioned for each method in Table IV. We thus

refer the reader to Table IV for details on the uncertainty

supports about the URRTs analysis.

URRT#1–We observe that the standard pattern

matching approach (URRT#1) does not account for

many uncertainty supports: The route representation is

considered as precise and certain since the prototypes

are defined by single values (either the mean, or the

mode for the type); the dependency between variables is

not considered, nor is the possible links between routes;

sources’ uncertainty (or self-confidence) about their sin-

gular declaration at t is not considered; sources’ relia-
bility is not represented, nor is any second-order un-

certainty. URRT#1 captures a single imperfection type

as a notion of graduality through a distance measure,
the route prototype being considered as a reference: the

distance to route can be interpreted as a degree of mem-

bership of x to Rk. From this generic information, a

singular imperfection is further derived as ´(XR, t) com-
bining with the observation of the vessel at t. The fusion
is performed through the distance definition by a sum

operator acting as an average of inverse of similarities

along the different features of A: The higher the local
similarities, the lower the global distance and the higher

the membership of x to Rk.
URRT#2–The extension of URRT#1 using the Ma-

halanobis distance as described by URRT#2, accounts

for both the spread of the routes along the different fea-

tures (through the individual standard deviations ¾is)
and the dependency between variables (through the co-

variances ¾i,js). The variance can be interpreted as a
measure of imprecision regarding Xi. The covariance de-
scribes how the variables vary with each other, measures

the dependency between them, and expresses then some

statistical uncertainty on the link between Xi and Xj .
Compared to URRT#1, URRT#2 considers some im-

perfection about the reference objects (the routes). Still,
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TABLE VI

Expressiveness comparison of Uncertainty Representation and Reasoning Techniques based on Uncertainty Support.

there is no consideration of singular uncertainty about

the observations at t, excepted the graduality measured
by the distance to the prototype route.

URRT#3–As in URRT#1, the independence as-
sumption between variables applies to the Bayesian ap-

proach presented in URRT#3. No consideration for ei-

ther the source’s reliability nor self-confidence and the

measurement itself is assumed both certain and precise

by the source. Rather uncertainty is considered over
the mapping between − and −R where the likelihoods
p(xi j Rk) describe how likely it is to obtain some spe-

cific measurement given that the vessel follows route Rk.
Prior uncertainty about routes is explicitly considered by
p(Rk) which could be based on other contextual infor-
mation such as meteorological or seasonal. The fusion

is done through a product operator which has the draw-

back of decreasing very rapidly to 0 once one of the

likelihoods is very low. This rule is named “severe” for

that reason [27], since it is very sensible to one source’s

negative opinion. The product is a conjunctive operator

(corresponding to a logical AND) making the under-

lying assumption either that all the measurements are

correct, or that all the sources are reliable. Although

the independence assumption between features is in our

case wrong, this naive Bayesian fusion rule is however

shown to provide good (accurate) results. This can be

explained by the randomness of likelihood estimates,

the low variance mitigating the obvious bias [20]. In-

cluding the source’s reliability about measurements is a

direct extension of URRT#3 (see for instance [34]), as

well as considering the dependencies between variables.

The final assessment ´(XR, t) expresses some uncertainty
degree that the vessel is actually following route Rk.

URRT#4–In the probabilistic non-Bayesian ap-

proach of URRT#4, the individual probabilities are as-

sumed to provide local belief degrees toward each route.

They are summed up to give a global belief so that the

higher the belief degree according to each feature, the

higher the global belief. URRT#4 does not consider the

dependency between features. However, some notion of

source’s reliability can be captured by the weights !i
that can be derived from some likelihood measures ex-

tracted from a confusion matrix. This expresses some

second-order uncertainty about the source’s declaration
at t. The combination rule is a disjunction (logical OR)

and is known to be less sensitive to estimation errors

(unreliable sources), and to single source’s opinion [27]

making the approach more robust. This is a more cau-

tious rule to be used in case of less reliable sources.

URRT#5–URRT#5 may be seen as an extension of
URRT#3 within the TBM model, where non-additive

functions (i.e., plausibility functions) are used rather

than probabilities. The plausibility function Pl(x j Rk)
models some imprecision about the (assumed precise
but unknown) likelihood function p(x j Rk) (itself cap-
turing some uncertainty) used in URRT#3. Equation (9)
is obtained under the assumption of a vacuous prior on

−R, meaning that no prior uncertainty on routes is con-

sidered. The output of the GTB expressed by ´(XR, t)

being also a plausibility function, assigns plausibility
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values to subsets of routes and captures thus some impre-
cision over −R. ´(XR, t) defines then second-order uncer-
tainty by means of a couple belief-plausibility measure
expressing some uncertainty about the posterior event

(Rk j x). This second-order uncertainty is not considered
in the traditional Bayesian approach where the probabil-

ity estimations are considered certain. Other equivalent

approaches exist framed into imprecise probability or

robust Bayesian frameworks.

URRT#6–In URRT#6, the uncertainty output by
the sources about the measurement provided at t is
considered. Rather than a single (precise and certain)

measure, each source outputs a probability distribution

over the set of values of their respective feature which

induces as many multivalued mappings over −R when
querying the dictionary of routes. The multivalued map-

pings define some imprecision over the set of routes,
since to a single value in −i corresponds a subset A
of −R. The prior imperfection on the links within −
or between −i and −R is characterised as sets of routes
(imprecision) satisfying some criteria about the features.

This imprecision is further combined with the singular
uncertainty of the source at time t defining the resulting
BBA ´i(XR, t). The main characteristic of this scheme
is to deal with subsets of routes, in a qualitative way,

with an additional quantification. The explicit notion of

conflict is a way to detect inconsistencies between the
subsets of routes compatible with each feature. The fu-

sion is performed through a conjunctive rule, assuming

the independence between sources as well as totally re-

liable sources.

2) Interpretation:
The type of imperfection handled by URRT#1 and

URRT#2 is graduality meaning that the route is consid-

ered as an “ill-defined object,” with fuzzy boundaries,

to which vessels belong more or less. The distance mea-

sure provides an aggregated inverse degree of member-

ship of the vessel to a given route: If the distance is low

then the vessel belongs to the route with a high degree

of membership. Contrarily, the other methods (URRT#3

to URRT#6) express a “degree of belief” that the vessel

is following the route. This is a difference between a

binary event (URRT#3 to URRT#6) and a fuzzy event

(URRT#1 and URRT#2). This semantic aspect high-

lights the need for a clear semantics for the concept

of maritime route, whether it means either “following a
specific path and thus ending in a specific destination”

(binary event) or “being positioned on a portion of the

sea with ill-defined boundaries” (fuzzy event).

3) Enrichment of basic URRTs:
Each of the URRT above could be enriched to ac-

count for more uncertainty supports. As examples only,

the reliability of the sources is classically considered

in URRT#6 by introducing discounting (or reinforce-

ment) operations for belief functions such as described

in [37]. Also, the reasoning scheme of Equation (6) in

URRT#3 can be enriched by considering the reliability

of the sensors in providing accurate measurements, and

introducing factors p(Zi j Xi) where Zi is the measure-
ment provided by the source while the true value was

Xi, as proposed in [34] for instance. URRT#3 can be
easily implemented as a Bayesian network (e.g., [23])

where the dependency between variables is considered.

A Bayesian network has the advantage of a better trans-
parency in the reasoning for the user, which could also
be an interesting assessment criterion to be considered

in the URREF ontology. Moreover, the computational
cost is improved by local computations.

B. Output quality assessment
The qualitative analysis above is now complemented

by a quantitative analysis based on more standard cri-

teria. We provide below a series of possible criteria for

quantitative assessment of the six URRTs discussed in

this paper, that we implement to discover abnormal be-

haviours of vessels within a real AIS dataset comple-

mented by pseudo-synthetic anomalies.

1) Output criteria:
We consider the output quality criteria of TRUENESS

(or falseness), PRECISION (or imprecision) and CERTAINTY

(or uncertainty). The Trueness notion captures how

correct the results are after decision. To measure this

criterion we use the standard F̄ -score (or measure),
classically defined as:

Tru(ª) = F̄ (ª ) =
(1+¯2)TP

(1+¯2)TP+¯2FN +FP
(12)

where ¯ 2 [0;1] is a parameter weighting the two types
of errors, TP, FN and FP are the number of true

positives, false negatives and false positives respectively,

N is the number of negative samples and P is the

number of positive samples.

The IMPRECISION and UNCERTAINTY are assessed before
the final decision (labelling to a single route) is taken,

and quantify how much the URRT is non-specific and

uncertain before the labelling, respectively. They are

assessed through the Hartley measure and Shannon

entropy4:

Imp(ª ) =
1

log2(j−Rj)
log2(jAj) (13)

Unc(ª ) =¡ 1

log2(j−Rj)
X
R2−

R

p(R) log2(p(R)) (14)

where j:j denotes the cardinality of sets and p is the
probability distribution over the set of routes before de-

cision is taken. The equations above are normalised ver-

sions of the measures. In (13), A is the set of compatible
routes according to the corresponding decision criteria.

4In (14), the distances in URRT#1 and URRT#2 are transformed into

probability distributions over the set of routes, with thus a different

meaning. Shannon entropy may not be an adequate measure in this

case.
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Fig. 4. Examples of simulated anomalies starting from the real data in [41]: the blue track is the normal track derived from the trajectories

belonging to the subset of 8 routes, the red one is the synthetic anomalous track, reproducing a specific anomalous behaviour. (a) Positional

anomaly: shifted track. (b) Directional anomaly: reverse flow track. (c) Kinematic anomaly: high speed track.

2) Dataset of anomalous tracklets:
The six URRTs are tested on a reference data set

of AIS data developed at CMRE. The tracklet dataset

consists of raw positional data collected for research

purposes via the ground-based Automatic Identification

System (AIS) receiver located in Castellana (La Spezia—

Italy) owned by CMRE. The dataset contains the reports

of the vessels equipped with AIS transponders, which

were transiting over a section of the Northern Tyrrhe-

nian Sea framing La Spezia harbour during the time

period which goes from January 1st through February

20th 2013. The dataset contains both real tracklet data

(labelled as “normal tracklets”) and pseudo-synthetic

tracklet data (labelled as “anomalous tracklets”). The

original Castellana dataset [41] which has to be consid-

ered the source of the current dataset, is in the form of

terrestrial AIS (T-AIS).

Two classes are considered: Class R1 corresponds to
normal trajectory segments and Class R0 corresponds to
anomalous trajectory segments. The normal trajectory

segment of each evaluation trajectory is constructed by

first selecting a random tracklet from the set of normal

evaluation trajectories of a given length of 5 consecu-

tive points: 95 tracklets are extracted from the system

of pre-computed routes. Each route is decomposed into

single-vessel trajectories and then further divided into

tracklets of 5 consecutive points. The anomalous trajec-

tory segment of each evaluation trajectory is constructed

by first selecting a random tracklet from the set of nor-

mal evaluation trajectories of a given length of 5 points,

replicating it and then altering its features. More specif-

ically, a total of 275 anomalous tracklets were generated

as follows:

² Positional anomalies: 80 Off-route tracks were created
by shifting either the LONGITUDE or LATITUDE

sequence (of a given magnitude);

² Directional anomalies: 108 high-speed tracks were
created by increasing the initial instant speed of the

track and by using a Near-Constant-Velocity Model

to derive the new coordinates (LONGITUDE, LATI-

TUDE), given the observed reported course;

² Kinematic anomalies: 87 opposite-flow tracks were

created by changing the initial heading of the track

and by using a Near-Constant-Velocity Model to

derive the new coordinates (LONGITUDE, LATI-

TUDE), given the observed reported speed SOG.

Figures 4 shows examples of the three types of

simulated anomalous tracklets. As the traffic normalcy,

we considered a subset of 8 routes as displayed in

Figure 1.

3) Results and discussion:
We present here results of anomaly detection, thus

considering two classes only, R0 the class of anoma-
lous tracklets containing three kinds of anomalies as

described above and R1, the class of normal tracklets
belonging to the subset of 8 routes. Figure 5 displays the

output quality results on a spider (radar) graph, with the

three criteria of TRUENESS (F1-score), UNCERTAINTY (re-
verse entropy) and IMPRECISION (reverse non-specificity).

The best method is the one covering the widest area

in the graph. The ranges of the criteria are indicated

in brackets. The TRUENESS criterion as measured by F1
aggregates the TP and FN and hides thus the contri-

bution of each corresponding type of errors. Table V

expands the criterion of TRUENESS by displaying addi-

tional measures to the TPR, as the TNR, the F1, F2 and
F0:5 measures. While F1 assigns equal weights to false
negatives and true positives, F2 gives more emphasis on
false negatives and F0:5 attenuates the influence of false
negatives.

Through these criteria and associated performance

measures, we observe that URRT#1 provides excellent

results in terms of TRUENESS and PRECISION. That means

that URRT#1 was able to correctly detect the anoma-

lies and the on-route vessels. Moreover, before deci-

sion the set of compatible routes was minimum (a sin-

gleton). However, the entropy was quite high meaning

some UNCERTAINTY before decision. The extension of

DISSECTING UNCERTAINTY HANDLING TECHNIQUES: ILLUSTRATION ON MARITIME ANOMALY DETECTION 173



Fig. 5. Spider graph of three output quality criteria for the six URRTs.

TABLE V

Trueness measures for the six URRTs.

TPR TNR F1 F2 F0:5

URRT#1 1.00 1.00 1.00 1.00 1.00

URRT#2 1.00 0.91 0.88 0.95 0.83

URRT#3 1.00 0.64 0.66 0.83 0.55

URRT#4 0.21 0.97 0.33 0.25 0.48

URRT#5 1.00 0.64 0.66 0.83 0.55

URRT#6 0.77 0.76 0.62 0.70 0.56

URRT#1 to the Mahalanobis distance provides slightly

lower results in terms of TRUENESS though, especially

regarding the TNR (some anomalies have been missed)

as we can see in Table V. Indeed, it appears that con-

sidering the dependency between the attributes in the

observation space, although more correct than the naive

independence assumption under URRT#1, leads to a

slight decrease in the performances. In both URRT#1

and URRT#2, the uncertainty representation is based

on the distance of the tracklet to the routes, computed

by a Hausdorff distance. If the set of points of the track-

let belongs to the set of points of the routes, then the

distance will be very low, or null.

The Bayesian approach URRT#3 and its evidential

extension URRT#5 provide similar performance results.

Compared to the pattern matching approaches, the TPR

is still maximum while the TNR is only 60%. How-

ever the UNCERTAINTY is lower meaning that the deci-

sions could be taken with a quite high confidence. How-

ever, combined with the low TNR, this is not a desirable

behaviour as this apparent confidence of the algorithm

may be miss-interpreted by the decision maker. These

two approaches use the likelihoods extracted from the

routes’ statistics as a basis for uncertainty representa-

tion. No probability distribution estimation method was

applied and the likelihoods were simply extracted from

the histograms. The evidential approach based on the

Generalised Bayes Theorem (URRT#5) uses plausibility

functions instead of probabilistic likelihoods and allows

by that to account for some IMPRECISION on the probabil-

ity distributions. It is particularly interesting when the

amount of data available does not guarantee a reliable

estimation of the probability distribution. Indeed, as il-

lustrated in Table II, some routes are built upon only a

few trajectories and their uncertainty may be better rep-

resented by lower and upper bounds of unknown proba-

bility distributions (as provided by belief and plausibil-

ity measures respectively) or simply by crisp intervals.

The weighted average of probabilities (URRT#4)

provides the worse results along the three criteria, while

the TNR is actually better than most of the other ap-

proaches. From Table V, it appears that the bad perfor-

mance of URRT#4 is mainly due to a very low TPR

(around 20%). That means that on-route vessels are sel-

dom detected and wrongly detected as anomalies in-

stead. The disjunctive operator (+) averages the poste-

rior probabilities and a very low probability along one

feature (denoting an anomaly) would be diluted among

other higher probabilities. It would thus be more diffi-

cult to detect the directional and kinematic anomalies.

As mentioned previously, the disjunctive operator is a

rather cautious fusion operator, more suited to a con-

sensus. We should not however conclude that URRT#4

is not a good approach, as its strength is to be robust

to errors and unreliable sources, something that was not

reflected in our dataset.

The evidential approach using the conjunctive rule

(URRT#6) provides mediocre TPR and TNR while this

pair of values is actually better than all the approaches

expected the pattern matching ones. The UNCERTAINTY

and IMPRECISION are both quite high meaning that the

decision was taken with still a high hesitation. URRT#6
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is the only method which rejection criterion is based

on a measure of conflict (here Dempster’s conflict).

The conflict is represented by the empty set between

subsets of routes. The core of the reasoning relies thus

on the intersection of the subsets of routes compatible

with the features. In case this intersection is empty,

no route is actually detected as compatible and the

tracklet is classified as abnormal. The BBA was set to

represent the uncertainty originating from the source’s

quality, which acts as a discounting over the categorical

BBA of the set of compatible routes. However, in case

the source expresses some (lack of) SELF-CONFIDENCE

about its declaration, this singular uncertainty could be

considered as well with this approach.

Finally, note that all the URRTs but the URRT#6

rely on generic imperfection only. URRT#6 is the only
approach (again, as currently implemented) which ac-

counts for the uncertainty expressed at the current in-

stant in time t. All the other approaches rely on un-
certainty, imprecision or graduality derived from past

observations.

REMARK The results presented here should be read

as an instantiation of the exploitation of the URREF

mainly, as the application of such techniques to mar-

itime anomaly detection requires deeper work. In par-

ticular, the synthetic anomaly generation technique may

have a high impact on the results. The fact that the tech-

nique essentially shifts tracklets from their original po-

sition in the feature space may explain why the pattern

matching approaches provide better results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we dissected six (6) uncertainty and

reasoning techniques (URRTs) to information fusion

and proposed detailed description and comparison in

their ability to handle uncertainty, in representation and

fusion. We selected a variety of classical and simple

schemes from (or adapted from) the literature which

are all good candidates to solve the two problems

of maritime route association and anomaly detection.

We introduced the uncertainty support as an element
conveying uncertainty, which allowed to make clearer

which uncertainty is actually captured in the different

reasoning schemes. We distinguished between uncer-

tainty over individual variables or links between them,

as well as second-order uncertainty. We framed our

discussion within the Uncertainty Representation and

Reasoning Evaluation Framework (URREF) and illus-

trated that considered jointly with the type of informa-

tion either generic (from historical data or prior knowl-

edge) or singular (at the time of the observation), the

uncertainty support concept covers some elements of

EXPRESSIVENESS of the URREF ontology (DEPENDENCY,

HIGH-ORDER UNCERTAINTY, SELF-CONFIDENCE) and could

expand to other criteria such as RELIABILITY.

The implementation of the URRTs to detect anoma-

lies of a real AIS dataset allowed us to illustrate that

the expressiveness criterion should not be assessed in

isolation and that it is the joint assessment of the vari-

ous criteria that makes the URREF powerful. Indeed for

instance, a lack of expressiveness about the dependency

between variables may still provide a good overall ac-

curacy of the algorithm through some natural balance

process.

Rather than identifying a “winner” approach, the

comparison between the URRTs presented herein aimed

at highlighting the differences and possible complemen-
tarity in uncertainty representation and reasoning. The
approaches have been kept simple for a clearer under-

standing and in future works we will build upon this thin

characterisation of the basic techniques together with

the quality of the data available, taking advantage of

the diversity of the different approaches, to design an

efficient algorithm with easily interpretable results for

detecting the anomalies at sea.
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Assessing uncertainty handling
representations of HLIF
systems with URREF

MARK LOCHER
PAULO COSTA

Researchers have extensively explored uncertainty issues in Low

Level Information Fusion (DFIG L0/L1 process levels) systems, and

predominately use probabilistic uncertainty representations. How-

ever, this prominence does not happen in High-Level Information

Fusion (HLIF) systems. One reason for this discrepancy is that

HLIF systems ingest a wider range of evidence, with its associated

uncertainties, and execute a broader scope of inferential reasoning

than LLIF systems. Researchers developed multiple techniques to

address these uncertainties and reasoning needs, but it is not clear

when and where in a specific fusion system a particular technique

should be applied. ISIF established the Evaluation of Technologies

for Uncertainty Reasoning Working Group (ETURWG) to provide

some clarity on this issue. As a first step, the ETURWG created the

Uncertainty Representation and Reasoning Evaluation Framework

(URREF). The framework formally represents concepts and cri-

teria needed to evaluate the uncertainty management capabilities

of HLIF systems. It provides 26 criteria for evaluating the effec-

tiveness and resource efficiency of a fusion system’s uncertainty

management capabilities. However, given the recency of the frame-

work and the complexity of the issues it addresses, practitioners

face difficulties in understanding where and how each criterion is

applicable across a general fusion process environment, including

a generic fusion system model. This paper’s primary contribution

is to address this gap by providing a discussion of the significant

application factors and considerations regarding the usage of the

framework, while providing examples of such usage in the process.
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1. INTRODUCTION
This paper describes the use of the Uncertainty Rep-

resentation and Reasoning Evaluation Framework (UR-

REF) in evaluating an information fusion system’s abil-

ity to appropriately handle the various uncertainties that

arise in the fusion process. Information fusion trans-

forms information from different sources and different

points in time into a unified representation that sup-

ports human or automated decision-making [8]. This

decision-making focus demands that information fusion

results are sound. Unfortunately, data sources used are

often “inconclusive, ambiguous, incomplete, unreliable

and dissonant” [59]. It is important to evaluate the dif-

ferent forms of uncertainty a fusion system has to deal

with, where and how they occur, and the impact they

have on the fusion processes and system outputs. The

URREF provides a set of uncertainty definitions and

evaluation criteria to support such an evaluation.

High Level Information Fusion (HLIF) is defined as

the situation (L2) and impact (L3) levels of the Data

Fusion and Information Group (DFIG) model [72], [5].

It is distinguished from L0/1, which is called Low Level

Information Fusion (LLIF). LLIF has been widely ex-

plored and issues of uncertainty determination and prop-

agation are extensively documented. It typically uses

crisp data from homogenous, credible sources. Classi-

cal probabilistic uncertainty representations with fixed

probabilities, rather than belief functions or imprecise

probabilities, predominate in LLIF [31]. HLIF involves

more complex environments, reasoning about complex

situations, with a diversity of entities and multiple rela-

tionships between those entities. HLIF uses more di-

verse information sources, with significant evidential

vagueness or ambiguity, and incompleteness and incon-

sistencies between evidence items. The credibility of in-

dividual sources may vary significantly. The community

has developed a range of techniques and models to ad-

dress these issues, but there is no consensus on how to

compare their effectiveness and system impacts.

The International Society for Information Fusion

(ISIF) chartered the Evaluation of Technologies for

Uncertainty Reasoning Working Group (ETURWG) to

provide a forum to collectively address this common

need in the ISIF community, coordinate with researchers

in the area, and evaluate techniques for assessing, man-

aging, and reducing uncertainty [25]. The group de-

veloped the Uncertainty Reasoning and Representation

Evaluation Framework (URREF) as a first step towards

sound evaluation of uncertainty representations in HLIF

systems. First documented in [13], the current ver-

sion and associated documentation can be found at the

ETURWG website.1 These criteria focus on evaluating

the effectiveness and resource efficiencies of the un-

certainty representation(s) within a fusion system. The

ETURWG does not expect URREF to identify a “silver

bullet” technique that will adequately address all the

1Use of an ontology editor such as Protégé suggested.
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Fig. 1. URREF Top-Level Model

significant relevant uncertainties in a fusion system’s

environment but will assist designers in incorporating

the appropriate range of techniques to meet their spe-

cific requirements.

This paper’s primary contribution is to provide a

discussion of the significant application factors and con-

siderations regarding the usage of the framework, while

providing examples of such usage in the process. Sec-

tion 2 highlights the URREF and provides the criteria.

Section 3 defines the key characteristics of the over-

all fusion process environment, including fusion system

model, that affect uncertainty representation. Section 4

maps the URREF evaluation criteria to this environment

and discusses how they are used to understand the un-

certainty representation capabilities of a fusion system.

2. THE URREF

Figure 1 shows the URREF’s top-level model. Un-

certainty Factor provide a core description of the type,

nature, derivation and models of the uncertainties that

can be found in the fusion process. The Fusion Process

includes the source, fusion system (in both a component

and process view) and evidence/information.2 These

will be the subjects of an uncertainty handling evalu-

ation. The Uncertainty Handling Criteria are measures

useful for evaluating how well a specific fusion process

handles its uncertainties. The ETURWG grounded the

URREF on earlier work done by the W3C Incubator

Group for Uncertainty Reasoning [47]. This work pro-

vides a basic framework of world/agent/sentence where

an agent makes a statement about some aspect of the

world using a logical sentence format. A logical sen-

tence is a statement stated precisely enough that it can be

assigned a truth value. This truth value may be binary,

qualitative or numerical. The ETURWG identified three

basic uncertainty characteristics: the nature, derivation

and type of uncertainty, described in Table 1.

Although uncertainty has been understood qualita-

tively since the Greek philosophers of the early 5th

Century BCE, an understanding of the different types

of uncertainty began with the development of quan-

titative probability, addressing randomness, started by

Fermat, Pascal and Huygens in the 17th century [3].

In 1921, Knight distinguished between problems with

known probabilities (which he called risk) from those

with unknown probabilities (called uncertainty–also

2This paper will use the terms evidence and information interchange-

ably.

TABLE 1

URREF Uncertainty Factors

Uncertainty
Nature

Uncertainty is either inherent in the
phenomenon expressed by the sentence or is
result of lack of knowledge about that

phenomenon.

Aleatory Uncertainty is inherent property of the world.

Epistemic Uncertainty from lack of complete knowledge

Uncertainty
Derivation

Uncertainty derivation refers to the way it can
be assessed. That is, how the uncertainty

metrics can be derived.

Objective Assessed in a formal way, e.g., via a repeatable

derivation process.

Subjective Assessed via a subjective judgment. Even if one

uses formal methods for this assessment, if the

assessment involves subjective judgment, the

Uncertainty Derivation is subjective.

Uncertainty
Type

Underlying characteristics of the information
that make it uncertain.

Ambiguity Sentence has multiple possible interpretations

Vagueness No precise correspondence between terms in the

sentence and referents in the world

Randomness The information comes from a process whose

outcomes are non-deterministic.

Inconsistency No world exists that satisfies the sentence.

Incompleteness Occurs when information is missing.

a form of ignorance) [41]. The concepts of vague-

ness and ambiguity were given formal form by Black

in 1937 [4]. Since that time, numerous taxonomies

of uncertainty have been developed, both for general

use and for specific fields. Jousselme et al. reviewed

six taxonomies for potential application in fusion sys-

tems [35]. The two most comprehensive characteriza-

tions they identified were by Smithson [68] and by

Krause and Clark [43]. Both use the classic randomness

(probability)/vagueness/ambiguity classification. Smith-

son also included knowledge incompleteness and dis-

tortion as types of uncertainty. Distortion occurs when

biases/inaccuracies in one’s knowledge or when the

knowledge transformation process introduces confusion

in the knowledge [68]. Krause and Clark’s taxonomy

made two important distinctions. The first was between

uncertainty induced by the classic sources and uncer-

tainty induced by conflict. Second was the need to

distinguish between uncertainty in a single informa-

tion item and uncertainty in a set of information items.

Conflict (also called inconsistency) most often occurs

in an information set, although equivocation is iden-

tified as an internal conflict in a single item. Incom-

pleteness is also primarily a characteristic of a set, al-

though a single item may have missing information as

well [43].
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Fig. 2. Fusion Process Environment Model

Finally, the ETUWG identified the most common

uncertainty representations (models):

² Belief functions3
² Fuzzy methods
² Probabilistic methods
² Random set

² Rough set
Additional choices can be found in Khaleghi et al.

[40] or Castanedo [12]. The uncertainty handling cri-

teria and their definitions are given in Table 2 below.

The criteria are in four categories. Data criteria assess

how a fusion process’s design, including its uncertainty

model(s), address aspects of uncertainty in data, both

for individual items and for the collective set. Data Han-

dling criteria focus on the effect of the uncertainty rep-

resentation on explaining the reasoning used to create

the output, and to maintain a record of what data was

used in the process. Reasoning Criteria assess the over-

all approach to uncertainty handling in two areas:

² The correctness and consistency criteria assess the
effects on the system outputs.

² The remaining criteria assess the effects on the overall
system performance. These highlight the resource

demands made by an uncertainty handling approach.

Representation Criteria assess internal characteris-

tics of the uncertainty handling representation(s) and its

integration with the fusion process.

It is an irony that the literature on uncertainty has

a significant amount of ambiguity, redundant or over-

lapping terms, and conflicting definitions to describe

aspects of uncertainty. In identifying these criteria, the

ETURWG often had to select one term out of a range of

choices for that aspect of uncertainty. In this paper, we

generally do not attempt to identify synonymous terms

or conflicting meanings.

3. FUSION PROCESS ENVIRONMENT
To apply the URREF criteria, one needs a model of

the overall fusion process environment. We derived the

model in Figure 2 from the DFIG model [5]. The main

extension was to subsume the user in a larger group

3Belief functions encompass approaches derived from Evidential

Reasoning (Dempster-Shafer [62]). It includes Transferable Belief

Model [66], Dezert-Smarandache Theory (DSmT) [18], and Subjec-

tive Logic [33].

we call stakeholders, for reasons discussed below. This

section describes each component, providing the context

and key considerations for applying the URREF criteria.

3.1. Stakeholders/User

Any fusion system has a group of stakeholders, who

collectively have an influence on the design and oper-

ation of the fusion system. The focus, scope and ex-

tent of a fusion system is driven by stakeholders’ ob-

jectives, values and plans (collectively “stakeholders’

interests”). A key subset of this group are the system

users. These are the decision-makers, operators, and

analysts who are the primary interactors with the sys-

tem. Other stakeholders manage or influence aspects of

the fusion process. For example, many fusion system

users do not control the sources that provide evidence to

their system. They submit information requests to one

or more centralized management groups. Other stake-

holders may require that the fusion process maintain

records on how it created its outputs and the uncertain-

ties associated with it. For example, the law of armed

conflict requires a military commander to gather a rea-

sonable amount of information to determine whether the

target was a military objective and whether incidental

damages to non-military targets are proportionate [48].

Uncertainties in the gathered information are a consid-

eration in judging whether a commander acted properly.

For such a system, the military legal community (as a

stakeholder) may require that a fusion system be able

to identify and trace the uncertainties in the evidence

and how they were addressed in the fusion process to

support a judgment of the legality of a commander’s

planned actions.

3.2. World Segment of Interest

The world segment is those aspects of a “real” world

that stakeholders of the fusion system are interested in.

Their points of view define the world segment. A world

segment is defined as an area in the real world or cyber

domain and possibly a time frame of interest (Figure 3).

The stakeholders’ information needs define theworld

segments aspects of interest, including boundaries, key

characteristics and entities of interest along with their at-

tributes and relationships with other entities. In the same

ocean area, a fusion system supporting a naval comman-

der will focus on different entities than one supporting

biologists studying marine mammals. The entities in the

world segment generate observables, features detectable

and reported by some source. Some entities may have

a very limited set of observables, which may require a

very specific approach to detect and collect the observ-

able.

This is distilled into a world segment model using

an ontological structure [9]. Entities should be catego-

rized broadly, such as using Sowa’s ontological cate-

gories. This allows for both concrete and abstract en-

tities, with either time-stable (objects) or time vary-

ing (events) characteristics. It also allows for modeling
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TABLE 2

Uncertainty representation handling criteria
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Fig. 3. World Segment of Interest defined by stakeholders/users

needs and interest. Defines relevant observables,

entities/attributes/relationships (captured in an ontology) and key

dependencies that can infer new information

complex structures or situations, along with assigning

attributes like purpose to them [70]. The world segment

model generally becomes part of the fusion system, and

mismatches between the world and model can result in

significant errors and uncertainties. A key part of the

world segment model is the dependencies. These are

linkages between the attributes and relationships of en-

tities, both within an entity and between entities. They

have an “If A, then B” structure. The dependency be-

tween A and B is established from prior knowledge (in-

clude expert elicitation) or learned from collected evi-

dence. The core of HLIF reasoning hinges on depen-

dencies; when we have good reasons to believe A ex-

ists, then our understanding of B’s existence, attributes

or relationships change. Dependencies are expressed as

rules, clauses (for logic programs) or graphical models

(e.g. Bayesian networks, Markov networks).

A system may have multiple world segments within

it (e.g. a global health epidemic system may be divided

into regions or countries) or it may have multiple system

copies, each with a different world segment. A system

may also be deployable and load different world seg-

ments models as needed.

3.3. Source and Evidence

A source gathers observables and transforms them

into evidence on some aspect of a world segment,

through new observation or analysis of previously col-

lected data (Figure 4). Source here means a specific

mode of accessing data (e.g. panchromatic imagery,

communications intercept, seismic detection, human re-

porting, database searches, etc.). When humans are part

of the source process, at least some of the functions

in Figure 4 are done mentally. Some source systems

Fig. 4. Source process model

are multi-mode (e.g. radar with both Synthetic Aperture

Radar and Surface Moving Target Indication modes) or

multi-sensor (e.g. imaging and signals intercept on the

same platform). Uncertainty should be assessed for each

mode. A source may be dedicated to a specific fusion

system or provide data to multiple fusion systems. A

source may perform L0 fusion of observable samples

(e.g. SAR change detection) using either internally gen-

erated data or integrating externally provided data. A

source system may also conduct Level 1 fusion, using

either self-generated or externally provided evidence.

When data from those different sources are fused, the

overall fusion process must be aware of this to avoid

multiple counting of the same evidence.

A common source differentiator is the hard/soft dis-

tinction, which aligns with the URREF Uncertainty

Derivation criterion of objectively or subjectively de-

rived evidence. Technical sensors are considered to pro-

vide hard or objective evidence, based on a repeatable

derivation process. They generally provide consistent

data with little possibility of source-generated untruth-

fulness, bias or deception. Evidence developed from

human reporting is considered soft or subjective, with

issues of source credibility, including deception; signif-

icant use of vague or ambiguous terms, or inconsistent

application of terms between individual human sources

[37]. The distinction is useful but benefits from be-

ing refined. Many sources have a machine/human part-

nership, where the extraction of useful information is

done by humans. Imagery and communications inter-

cepts sources are two examples. Such sources are gen-

erally classified as hard sources. In classifying a source

as hard or soft, there are at least four considerations:

² Degree of calibration. Almost all technical sources
undergo some type of calibration prior to employ-

ment, to ensure a level of accuracy and consistency.

For some sources, human data exploiters undergo

training to provide a level of consistency across dif-

ferent individuals. This consistency may not be tight

as for a technical source.

² Use of source quality standards and reporting reviews
prior to evidence release.

² Source recording. If the source maintains a record
of the data that generated the evidence, it can be
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TABLE 3

Classes of Evidence

Unequivocal

testimony

Statement from a source (written, verbal)

Equivocal

testimony

Hedged source statement (“I think I saw: : : .”)

Tangible Evidence that may be physically examined: e.g.

objects, documents, images, recordings

Missing

evidence

Evidence one expects to find but does not.

Accepted facts Statements whose truthfulness as evidence is not

questioned (e.g. gold has a higher density than

iron).

reviewed in cases where there are questions about the

evidence.

² Source quality improvement efforts to identify and
correct deficiencies, adjusting their accuracy and

credibility over time.

Each source has its own characteristics that define

how it gathers and processes its data. The source model

describes, to some level of detail, how the source gathers

and processes its data. An accurate model for each

type of source is necessary for doing an uncertainty

assessment on that source.

Sources generate evidence that is used in the fu-

sion process. Evidence can be expressed using logical

sentences with an uncertain truth value (which include

“100% true” and “0% true”). Evidence can take a vari-

ety of forms. Table 3 provides a classification scheme

[61]. Testimony is a statement made by a source. The

statement may be based on direct observation, or on sec-

ondhand sourcing/hearsay. The statement may be either

unequivocal (“It is the case that: : :”) or equivocal (“I
think that: : : .”, “I’m not positive, but: : :”). An equivocal
assertion may include a reason for the equivocation (“It

was dark, but I’m pretty sure I saw: : :”). Opinion is a
form of equivocal testimony. It is defined as “A view

or judgement formed about something, not necessarily

based on fact or knowledge” or “A statement of ad-

vice by an expert on a professional matter.” [53]. The

key here is whether an opinion statement comes from

a competent and knowledgeable source, able to support

that statement. Expert judgment is a form of opinion

that is a valid form of evidence. Missing evidence is

not negative evidence, which is evidence that something

does not exist at a point in time one is interested in. In

some cases, missing evidence can be significant. For

example, evidence intentionally destroyed can have a

negative connotation for the destroyer.

Evidence may be at any level of the DFIG model,

and it does not have to come from a process that moves

sequentially through the levels. While sensor-derived

data goes through L0 processing, human derived data

often does not (although some may go through a form

of preprocessing, such as summation or statistical pro-

cessing). Evidence, especially from human or communi-

cations intercept sources, can also be about relationships

between entities, situation or structure identification, or

intentions (specific plans and objectives).

3.4. Fusion System

Understanding how to apply the URREF criteria to

a HLIF process benefits from a generic system fusion

model allows aligning the criteria with fusion system

processes/components. After initially exploring the lit-

erature, we established these model requirements:

² Identifies key functions within a fusion process.
² Maps the flow between the functions, including feed-
back and reevaluation requests.

² Allows varying human/machine divisions of effort.
² Is not bound to a specific uncertainty representation
or fusion methodology.

² Uses general domain-independent terminology.
According to Salerno, over 30 fusion process mod-

els had been proposed by 2002 [58]. Several teams have

reviewed selected subsets, including Esteban et al. [24],

Bedworth and O’Brien [2], Whitney, Posse and Lei [78]

and Roy et al. [57]. Foo and Ng published an updated

review in 2013 [26]. We found most of the models be-

fore 2005 very limited in their functional description.

These included Pau’s Model [55], Intelligence Cycle

model [2], Thomopoulos’ model [74], JDL model [30],

Dasarathy model [16], Waterfall model [2], Extended

OODA loop [63], Omnibus model [2] and the Gen-

eral Data Fusion Architecture [11]. Although they also

had limited functional details, models that incorporated

humans as part of the fusion process included the Vi-

sual Data-Fusion model [39], JDL level 5 [7], Ends-

ley’s situation awareness model [22], [23] and Lam-

bert’s Unified Data Fusion Model [44]. Four models

published between 2002 and 2016 included significant

details about their functions, shown in Figure 5. They

were by Salerno [58], Steinberg [71], Lambert [45] and

García, Snidaro, and Llinas [27]. There is a high degree

of commonality in the functions described. All have

some form of data ingest function that performs ref-

erence base alignment and semantic (ontological) regis-

tration. Some models explicitly depicted entity extrac-

tion from unstructured information sources (e.g. free

text reporting). García et al.’s model was the only one

to explicitly depict an uncertainty characterization pro-

cess, while Steinberg’s model discussed it in the text de-

scribing the model. Salerno’s model explicitly depicted

a number of information development activities to sup-

port the overall fusion process, including

² Data mining activities, including link analysis, pattern
learning and pattern matching.

² Model development support, including pattern iden-
tification and model generation. Models may be built

ahead of time, or created from the data stream.
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Fig. 5. Functional process/component elements of four major fusion system models

The other three models call out these functions as

data association. For example, at level 2 HLIF, Steinberg

model focused on finding and estimating relationships

in the data, expressed as possible hypotheses. This

is done by three subfunctions: hypotheses generation,

hypotheses evaluation and hypotheses selection.

All four models had state estimation or state mod-

eling. For HLIF, this process can use a variety of tech-

niques, including link analysis, graph matching, tem-

plating methods, belief networks, compositional meth-

ods for model detection and development, and various

algorithmic techniques [71].

Lambert’s model differed from the others in using

state transitions as a focusing element. This concept ex-

tends the idea of a Kalman filter to observing, predicting

and updating state data, including tracking which sce-

nario is being executed (L3 fusion) [45].

Because of differences between soft and hard sen-

sors García et al.’s model have data from each type flow

through a distinct path designed for the characteristics

of that data [27]. They also explicitly include the use

of context information. In the last five years, there has

been significant work done on incorporating contextual

information such as map data, weather, and procedural

data (e.g. traffic rules, doctrinal concepts, patterns of

life, hierarchies) for HLIF. Such non-sensor information

can be used to both constrain and explain behaviors seen

in sensor data [27] [67] [69].

To identify where to apply the various criteria, we

merged these four models together to create the generic

fusion system model shown in Figure 6. Based on our

criteria, we realized that we needed to explicitly include

several processes that one or more models discussed in

their text but did not include in their visual model. The

model assumes that input data may be L1, L2 or L3 data,

including contextual data. The model has eight basic

processes. Many source systems transmit free text re-

ports, not structured text. Some form of entity and rela-

tionship extraction is required to transform those reports

into machine-understandable data. The Data Extrac-
tion/Alignment/Registration process does this, including
named entity recognition, coreference resolution, rela-

tionship extraction, and event extraction [56]. It also

aligns the incoming data to a common reference base

and ontological structure, appropriate for follow-on use.

If the data is already structured according to an under-

stood ontology, then this process is unnecessary.

For incoming evidence, Source Uncertainty manages
all aspects of source uncertainty, as described in section

4.3. The Data Store captures all incoming evidence for
access by the various processes. This includes both cur-

rent and historical source evidence and reference infor-

mation such as maps and equipment capability records.
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Fig. 6. HLIF fusion system model

An important aspect of this model is that not all the

information is assumed to be in an immediately usable

form for high level fusion processing in the State Esti-

mation module. Data Association provides one or more
services in which some or all of evidence, include con-

text information, undergo to have the appropriate in-

formation extracted from them. For example, a fusion

reasoning process may require relationship information.

But the raw level 2 data may be a series of people as-

sociation data, which must be combined into a social

network analysis to reveal the full extent of the rela-

tionships. A key distinction between LLIF and HLIF

is the significantly broader range of information in a

HLIF, requiring a diverse set of data association pro-

cesses to create that information [58], [24], [14], [71].

These processes can be implemented via middleware

services [69].

Fusion Management involves all activities necessary
to marshal information for the various fusion processing

components and to sequence the fusion processes. This

function can use multiple schemes to arrange the infor-

mation to best provide insights into potential reason-

ing arguments and output hypotheses. It also identifies

what additional information is needed to in the fusion

process, and requests it [60].

The State Estimation process is the core of the fusion
process. This process can take one or both of two forms.

In less complex HLIF systems, it takes some form of

direct symbolic reasoning, often a model-based process.

To account for the uncertainty in the data and process,

current models often take the form of Bayesian net-

works [71], [15], [46], although alternative approaches

have been proposed using graphical belief models [1]

and general-purpose graphical modeling using a vari-

ety of uncertainty techniques [64]. For more complex

situation assessments, such as forensic reconstruction,

the reasoning management process is a meta process,

responsible for constructing the model used to provide

the response. As such, there is a close interaction be-

tween reasoning management and output management.

The seventh process is Output Management. This
process maintains the active hypotheses under consider-

ation. It provides the output interpretation process (how

did system arrive at this conclusion) and the traceability

function (what evidence and functions did it use). It also

is involved in generating hypotheses and in the pruning

of hypotheses [32], [49].

The final process is the User Interface, which pro-
vides the information output and accepts user queries.

4. UNCERTAINTY ASSESSMENT

This section describes where and how the URREF

criteria in Section 2 are applied to the process described

in Section 3. The focus is on HLIF systems, but the cri-

teria can also be applied to Level 0/1 systems as well.

They do not cover the fusion management process levels

(L4/5/6). These criteria guide fusion system develop-

ers and assessors through a comprehensive assessment

of how well their uncertainty representations addresses

the uncertainties both embedded in the evidence and

generated by the fusion system’s processes. Of the 26

criteria, thirteen can be specified as quantitative uncer-

tainty measures, while the other thirteen are qualitative

measures.

4.1. Stakeholder/User Uncertainty Tolerance
Assessment

Identifying the stakeholders’ concerns should drive

the overall system uncertainty assessment. The first

need is to understand their sensitivities to different kinds

of uncertainties in the system. This focuses the main ar-

eas of evaluation, including the relative importance of

different types of uncertainty. A second consideration is

the uncertainty–system effects trade-off of addressing

the various uncertainties via different uncertainty han-

dling representations. Collectively, this information will

focus and scope the uncertainty handling assessment.

4.2. World Segment Uncertainty Assessment

A fusion system uncertainty evaluation assesses the

world segment to understand two important items:

² The uncertainties inherent in the observables.
² The uncertainties in the world segment model.
Uncertainties exist as variability in the world seg-

ment’s observables and can propagate to the accuracy

and precision of the collecting source. One needs to
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know the types and nature of these uncertainties. For

any fusion system assessment, one must assume the

world segment has a factual state. It is possible that

the ground truth of that state may never be completely

known, but it must be estimable well-enough to conduct

meaningful assessments on the overall performance of

a fusion system. The key component here is the world

segment model. This model is a central part of fusion

system, used both in data association and state estima-

tion. Any model is an abstraction of a reality, and the fit

with reality is imperfect. The key question is whether

the fit is good enough. This is part of an overall as-

sessment of the suitability and acceptability of a fu-

sion system. For the uncertainty assessment, the primary

question is whether the world segment model incorpo-

rates the key uncertainties inherent in the world seg-

ment. These will propagate through the source and into

the fusion model, affecting both the correctness of the

output and the demands placed on the fusion system’s

resources to address those uncertainties [17].

Second, epistemic uncertainties exist in world seg-

ment model and affect both the fusion system’s out-

put’s correctness and consistency criteria and the data

input’s relevance criterion. In addition, limits on the ex-

pressiveness of the world segment model can induce

uncertainty. The three characteristics are dependency

uncertainty, higher order uncertainty and relational un-

certainty. Dependency uncertainty occurs when there is

significant doubt about the existence of or strength of

the dependency between two or more world segment el-

ements. This is a problem encountered during the model

building effort. While the exact degree of dependency is

often uncertain, the issue here is when is the uncertainty

significant enough to affect the outcome (often detected

by a sensitivity analysis). This leads to epistemic uncer-

tainty because one does not know whether the model

should include the dependency, or what strength value

should be assigned to dependencies that are possible but

not required (e.g. a probabilistic dependency). Higher

order uncertainty is when one has significant doubt

about the quantification values assigned in the model.

All uncertainty representations require some form of

quantification (e.g. basic probability assignments, mem-

bership functions). It is very possible to have uncertain-

ties about the specific quantification scheme. This also

leads to an epistemic uncertainty about the outcomes.

Relational uncertainties occur in world segment models

that allow for a varying number of entities and rela-

tionships. If so, then sources may make mistakes in as-

signing observables to entities. The evidence, including

extracted information, will then have relational uncer-

tainties. This can also occur in the fusion system when

associating multiple evidence from different sources, or

from the same source at different time periods. These

are also a significant form of epistemic uncertainty in

HLIF systems. There are five types of relational uncer-

tainty:

Fig. 7. Source errors and distortions combine with the uncertainty

in the observables to create relevance, quality and credibility

uncertainty

² Existence uncertainty for a key relationship or en-
tity [28].

² Reference uncertainty is a dependency between two
entities, but which specific entity has the dependency

is uncertain (from a choice of several possible enti-

ties) [28].

² Type uncertainty is when one has determined the ex-
istence of an entity, but its reference class is uncer-

tain [42].

² Identity uncertainty occurs when one is not certain
if an entity is a new instance or one that has been

previously identified [54].

² Number uncertainty occurs when the number of pos-
sible entities varies in a specific situation [52].

The primary effects of these uncertainties are seen

when comparing the outputs of the fusion system to

ground truth estimates in the world segment. This will

be taken up in Section 4.4.2.

4.3. Source Uncertainty Assessment

Source uncertainty assessment focuses on the un-

certainty in the evidence. The source ingests the vari-

ability, vagueness and ambiguity inherent in the ob-

servable. In the process, it often reduces the effects

of variability, but can add uncertainty via process

errors/distortions/limitations, especially for human-

involved sources (Figure 7). For example, vagueness

occurs when the source cannot apply a quantitative

value to the observable. The discussion below follows

Schum’s classic work on evidence analysis and effects

in probabilistic reasoning [59]. There are two basic

questions when assessing uncertainties regarding evi-

dence from a source:

² Is it relevant to the issues of interest to the fusion
system’s users?

² Is the evidence right?
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Fig. 8. Robbery Scenario

We use the example in Figure 8 to illustrate applying

the criteria. John is accused of committing a robbery. If

he did so, he would not have been at home when it oc-

curred. If he did not do it, then he may or may not have

been at home. This makes knowledge of John’s where-

abouts relevant to whether he committed the crime. A

useful definition of relevance comes from the US Rules

of Evidence [76]:

“Evidence is relevant if:

(a) it has any tendency to make a fact more or less

probable than it would be without the evidence; and

(b) the fact is of consequence in determining the

action.”

Relevance measures the force of an item of evidence

on some intermediate or final output of reasoning pro-

cess. Probabilistically, relevance means that for a spe-

cific hypothesis H and any information E that could

affect the belief in that hypothesis:

Relevance
def
= P(H)<> P(H j E) (1)

Relevance, as force of evidence, is always condi-

tional on a particular hypothesis. It is not an inherent

source characteristic. But we introduce it here because

source uncertainty can modify the force of the evidence,

sometimes in surprising ways. Relevance assumes a

piece of evidence is true. There are several relevance

measures in the literature [21]. The Bayes factor is one

measure of the force of evidence:

Relevance =
P(E jH)
P(E j H̄) , (H̄)is the complement of H

(2)

In Figure 8, we have a testimonial statement from Mike

that he saw John at home at the robbery. Is his statement

right? This is assessed by the Credibility and Quality

criteria.

Credibility assesses the source’s ability to under-

stand the information in the observables. Although

Credibility is most applicable to human sources, there

are elements that may occur with technical sources. It

TABLE 4

Credibility measures

Credibility

Objectivity uo(Source Understood State j Competence, Bias)
Observational

Sensitivity

uos(Source Understood State j
Environment, sensor factors)

Self Confidence usc(Source Understood State j
Source Equivocation)

has three subcriteria: Objectivity, Observational Sensi-

tivity, and Self Confidence. Table 4 provides mathe-

matical measures for each, where u is a general un-
certainty measure which assigns a value between 0 to

1. This measure represents common measures of un-

certainty (probability, belief, fuzzy or possibility mea-

sures). These measures represent a dependency, where

“j” is “Given” or “If”, modeling “If B, then A.” If ux
is a probability measure where A and B have discrete

states, “j” becomes the conditioning operator, and ux is
measured via a conditional probability table on A and

B’s states (e.g. a confusion matrix). Observe that these

measures focus on what the source understands from

the observable, not what it reports. Objectivity has two

elements: competence and bias. Competence addresses

two areas. One, did the source have the access and abil-

ity to observe what the source reported? Ability in this

case refers to the source’s general capabilities. Two, in

the case where the source is providing an opinion, does

the source has the competence and data necessary to

make the judgment expressed in the opinion. Incompe-

tent sources cannot make an objective statement. Bias is

any source characteristic that affects the source’s abil-

ity to objectively understand the received data and in-

fluences them to ignore or misinterpret the data. Both

human and technical bias are well-documented in the

literature. Both can be hard to detect, especially if one

is not looking for them. Bias can also be dependent on

what is being reported on.

Observational sensitivity complements objectivity

by noting when adjustments need to be made for

situation-specific differences. For example, descending

darkness near the time of the robbery could impair

Mike’s ability to correctly identify John. Technical sen-

sors can also suffer from transient environmental effects

that impair but not eliminate the ability to detect an ob-

servable. Self-confidence is the criterion that assesses

equivocal evidence. This is evidence where the source

specifically casts doubt on the accuracy of what it is

reporting. Human sources may use vague or nonspe-

cific phrases such as “It was getting dark, so I’m not

sure: : :” or “I think it was him.” Technical equivocation
occurs when a source reports using abnormal sensor

settings, system limitations or releasing below normal

quality standards. Both human and technical equivo-

cation affect the fusion system’s understanding of the
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TABLE 5

Quality measures

Quality

Accuracy uacc(Reported State jActual State)
Precision upre =

P
trials

Loss Function (Reported, Actual

Veracity uver(Reported State j Source Understood State)

source’s accuracy and requires an adjustment for that

specific evidence.

Quality recognizes that even trustworthy sources

makes mistakes. Quality has three subcriteria: Accuracy,

Precision and Veracity. Quality measures are in Table

5. In these measures, the focus is on what the source

reports.4

Accuracy assesses how close the reported informa-

tion is to what is true in the world segment. It recognizes

that no source is infallible. Whether technical or human,

there is always the possibility that a source makes a mis-

take, with no intention to do so. Confusion matrices,

Receiver Operating Characteristics, or Precision/Recall

are all measures of accuracy. The Precision criterion

complements Accuracy by assessing the degree of mea-

surement variability between repeated observations of

the same or similar entities under similar conditions.

It is a measure of the consistency of the observation.5

Precision is related to variability in the sensing environ-

ment, which can change a sensing measurement over

time. A source with low precision will vary significantly

more than a high precision source, decreasing the confi-

dence one may have in the evidence. Veracity measures

whether the source believes it is telling the truth (even

if the evidence statement itself is not true). As such,

Veracity is applicable to sources that have humans in a

significant judgment role.

The evidential force of a source report as a stand-

alone item depends on a function of its relevance, cred-

ibility and quality. The predominant understanding of

credibility and quality is that they reduce (discount) the

evidential force. But not always. Schum’s explorations

of the effects of veracity and credibility show that under

some circumstances, knowledge about credibility and

veracity factors can give more evidential force than the

evidence contents themselves [59].

Figure 9 extends the model in Figure 8 to demon-

strate this, giving two approaches to modeling veracity

effects. In both, the prior probability of John’s guilt is

10%. If John is guilty, he could not have been home at

the time of the robbery. If not guilty, there is still a 70%

4Which is why Veracity was classified as a quality criterion, not a

credibility criterion
5The term Precision has at least three different uses in uncertainty

discussions. The one given is the most common. Other uses include

the proportion of true positives out of the total items classified as

true in a confusion matrix (precision/recall), and the value of the least

significant digit in a measurement.

TABLE 6

Results of two different credibility models

Common data Guilty Not Guilty

Initial Belief (priors) 0.10 0.90

At Home–Yes 0 1

At Home–No 0.14 0.86

Single Thread

Truthful–Source “Seen” 0.02 0.98

Truthful–Source “Not Seen” 0.13 0.87

Liar–Source “Seen” 0.09 0.91

Liar–Source “Not Seen” 0.11 0.89

Multi-Thread (Mike may know John’s role in robbery)

Truthful–Source “Seen” 0.02 0.98

Truthful–Source “Not Seen” 0.13 0.87

Liar–Source “Seen” 0.17 0.83

Liar–Source “Not Seen” 0.06 0.94

chance he was not at home at the time of the robbery.

Finally, if Mike is a truthful witness, his accuracy is

95%.

Figure 9A gives a classical discounting approach,

using a single thread model. Here, the source Mike is a

suspected liar, and the probability of his evidence being

true in either case is assessed at 60%. In Figure 9B, one

suspects that Mike has some knowledge about whether

John committed the robbery, and that he is willing to

lie to protect John if John is guilty. If he has some

knowledge that John is not guilty, he will tell the truth

about what he observed (he will not risk perjury in this

case). If John did commit it, Mike has only a 60%

chance of telling the truth (we are not certain he will

lie). Because Mike’s statement has a dependency on

whether John is guilty or not, as well on whether John

was at home, this is a multi-thread model. Table 6 gives

the results of the two models. First, see the effect of

knowing for certain whether John was at home or not.

If he was, then he is not guilty. If he wasn’t, then the

probability that he is guilty increases from 10% to 14%.

Second, in both models, a truthful source has the

same result: 2% guilty if Mike says he saw John at

home, 13% if he says he did not. This is a dilution

of the 0%/14% result of John’s actual state and results

from the 95%/5% accuracy distribution. Now look at

the liar results. In the single thread model (Mike has

60% of telling the truth in any case), one sees a further

dilution of the relevance. It stays closer to the 10%

prior probability than the case where the source is

credible. But there is a surprise in the multi-thread case.

If Mike lies when he knows John committed the robbery

and says that he saw John at home, the probability

of being guilty climbs to 17%. This is opposite of

what happens in the truthful case. This is because
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Fig. 9. Simplified robbery scenario with a suspected lying witness

if we think that someone who has knowledge about

the ultimate hypothesis we are seeking will lie under

certain circumstances, then telling the lie increases our

probability of the ultimate hypothesis being true if the

lie is told. There are many subtleties like this in doing

source evidence assessments. See Schum [59] for an

in-depth discussion on this issue.

The bottom line is that all source uncertainty assess-

ment must determine to what these quality and credibil-

ity issues exist in their sources and select an uncertainty

model and associated representation that address all the

significant issues.

4.4. Fusion Model Uncertainty Assessment

Fusion model assessments focus on uncertainty rep-

resentation in three areas: input evidence, output infor-

mation, and the components of the fusion system. Fig-

ure 10 maps the URREF criteria in Section 2 to the

fusion model in section 3.

4.4.1. Input Uncertainty Assessment Criteria
The input uncertainty assessment criteria can be di-

vided into two categories: criteria applicable to indi-

vidual evidence items and those for the collective set

of evidence. For individual evidence items, the criteria

are Credibility, Quality, and Assessment (an Expressive-

ness criterion). Credibility and Quality were discussed

in the previous section. Assessment evaluates whether

the fusion system can appropriately address the range

of uncertainty types in the evidence. Uncertainty types

identifies the basic uncertainty introduced by the world

segment uncertainties and the specific characteristics of

the source’s process. In the fusion model, the character-

istics of source evidence establish the uncertainty mod-

els needed for the source uncertainty, data association

and state estimation modules. For individual evidence

items, the source uncertainty module has the primary

responsibility, since it establishes the credibility and ve-

racity of each item.

In addition to uncertainty in the individual items of

evidence, there is also uncertainty associated with the

collective set of evidence. There are three criteria that

apply: Assessment, Relevance, and Weight of Evidence.

Assessment evaluates the fusion’s system’s ability to ad-

dress the uncertainty types of incompleteness and incon-

sistency. Incompleteness is missing data, either partial

(missing fields in a piece of evidence) or entirely. The

most likely causes often are lack of source resources

to obtain the evidence, observational problems in col-

lection (e.g. cloud obscured image) and failure to re-

quest the evidence. When missing data is not available

in time, the fusion process needs to be robust enough

to provide its best estimate without the data, and able

to identify what data was missing and its effects on the
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Fig. 10. Application of URREF evaluation criteria to different components of the generic fusion system model

output (see Traceability in section 4.4.2). Understanding

how the system provides default values is important in

these cases.

Inconsistency occurs when two or more inputs are

contrary (they support different outputs in the fusion

process) or contradictory. This is also called conflict and

is a common issue in fusion systems. Conflict generally

decreases the overall evidential force, as the conflicting

items favor different outcomes. Conflict also increases

uncertainty about source credibility and veracity, espe-

cially when one item of evidence favors an outcome sig-

nificantly different that the remaining relevant evidence

from different sources. Conflict has multiple causes, in-

cluding non-source-initiated deception, source credibil-

ity/veracity issues, world segment model mismatches,

and incomplete or uncertain model specification. Sub-

ject to available time, the desired approach is for the

fusion process to alert the users to conflicts and allow

them to conduct the necessary investigations to identify

and resolve the root cause of the conflict. If resolution

is not possible, then the system must be able to form a

judgment based on the credibility of the evidence. Con-

flict can result in a significant amount of uncertainty that

hinders decision making. Conflict modeling is usually

addressed via probabilistic [59] or a belief function-type

approach [62] [33] [36] [65].

Relevance, as an assessment of the force of an in-

dividual piece of true (from a credible and truth-telling

source) evidence, is often dependent upon the related

pieces of evidence. In many cases, evidence can be

synergistic, either positively or negatively; its force is

greater or lesser than its force when considered individ-

ually. Evidential relevance for additional like evidence

tends to decrease if the multiple items provide limited

or no additional new information. The synergy needs to

be accounted for in the modeling.

Weight of Evidence (WOE) is an assessment of

the totality of the available data and its effects on

the output of the fusion. It is a holistic measure. It

assesses the completeness of the evidence in supporting

the fusion system output. It involves both the input

evidence and the reasoning processes within the fusion

system. There are multiple approaches to establishing

the weight of evidence [77] [6]. Consider a physics

analogy–weight is a function of the force of gravity

and the mass of an object. Here, we will use effective

force of evidence. This force results from the collective

effects of Credibility and Quality on Relevance for each

piece of evidence.

WOE= f(Credibility, Quality, Relevance, Mass) (3)

The first three have already been discussed. Mass as

used here is a measure of the comprehensiveness of the

evidence–how many possible outputs are ruled out by

the data. This makes Mass more than a simple count of

how many items of evidence the system has. Rather,

it focuses on the reasoning process in the fusion. A

fusion process making a situation or impact assessment

works as much by eliminating possible outputs as by

supporting a specific output. Outputs that are neither

positively or negatively supported remain as doubt in
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the system. WOE is also a useful tool in explaining the

fusion system’s output results.

4.4.2. Fusion Outputs Uncertainty Assessment Criteria
The Reasoning criteria of Correctness and Consis-

tency are the core criteria for assessing uncertainty in

the fusion system’s output. How well the output mir-

rors the reality of the world segment it models is the

primary measure of goodness of a fusion system. This

makes output Correctness the central URREF criterion.

However, this criterion is different than the Accuracy

criterion for input information. Fusion system outputs

normally come with an uncertainty hedge. Most often,

this hedge is presented probabilistically–“There is a

90% chance this ship is the ship of interest.” If a Cor-

rectness measures does not account for the probabilistic

nature of the output, it will provide an incorrect view of

the system’s performance. Correctness can be assessed

quantitatively using scoring rules [51], [29]. The orig-

inal scoring rule is the Brier score. There are several

versions; the most common applies to cases where the

predicted outcome occurred or did not occur.

BS =
1

N

nX
i=1

(fi¡ ai)2 (4)

Where N is the total number of outputs for which both

a forecast probability (fi) and an actual outcome (ai) are
available [10].

Closely following is the Consistency criterion. There

are two considerations in this criterion:

² How repeatable are the results, when the same kind

of evidence is provided?

² How sensitive is the output to minor changes in the

input conditions?

Within the Brier score, there is a measure of the con-

sistency of the forecasts. This assesses whether some-

thing predicted to be true 80% time actually occurs 80%

of the time. It is also called reliability or calibration in

the literature. It is

1

N

JX
k=1

nk(fk ¡ ōk)2 (5)

Where N is the total number of outputs for which both

a forecast probability (fk) and an actual outcome are
available, J is the number of forecast probabilities (as-
sumed finite), nk is the number of forecast probabilities
in bin k, fk is the forecast probability of bin k, and is the
observed frequency of the outcomes predicted to occur

in bin k. Both fk and ōk are vector quantities.
As with the Accuracy criterion, in those cases where

there is no ground truth to establish a correct answer (in-

cluding a simulated ground truth), the reasoning process

can still be evaluated in terms of how its answers cor-

respond to a gold standard (e.g. SMEs, documentation,

etc.) [34].

In addition to providing the users with correct and

consistent outputs, users benefit from understanding

how and why the fusion system generated those out-

puts [74]. The data handling criteria of Interpretation

and Traceability qualitatively assess this capability. In-

terpretation is the ability of a fusion system to support a

coherent explanation of its conclusions. This is a sum-

mary explanation of the key evidence and reasoning

process that supports the output. It is a justification for

using the output in decision making. Interpretation can

be assessed in at least two ways:

² Operationally via a user/stakeholder assessment that
a representative range of output interpretations satisfy

their information needs.

² Developmentally via fusion system experts’ assess-

ment that the interpretation captures the essential in-

formation input into or created by the system

Traceability is a diagnostic capability allowing users

to follow the system’s processes. It assesses the ability

of a fusion system to provide an accurate and unbroken

historical record of its inputs and the chain of opera-

tions that led to its conclusions. It is useful when the

user wants an in-depth understanding of how the sys-

tem came to its conclusions, or when the user suspects

something is wrong or out of the ordinary in the output

and its interpretation and wants to investigate further.

Few fusion systems log intermediate results. But if the

system records all inputs, including user requests, and

the initial system states, and allows access to intermedi-

ate products during execution, system traceability can be

conducted off-line. Traceability also applies to knowing

exactly what evidence was used. Some sources occa-

sionally find they need to retract evidence that turns out

to be in error. Tracing what evidence items exist in one’s

data base supports this retraction process.

4.4.3. Effects of Fusion System Processing Uncertainty
Assessment Criteria

In assessing the uncertainty representation within

a fusion system, one must consider the overall ability

of the system in reducing the total uncertainty on the

reported outputs, the errors introduced by the fusion

process, and the cost and fusion limitations imposed by

the selected uncertainty representation approach. This

is an area where significant work is required to fully

understand where and how uncertainty is generated and

propagated through the various fusion processes.

4.4.3.1. Uncertainty reduction and introduction of
errors and uncertainty reduction

A fusion system is designed to reduce uncertainty by

integrating the evidence, using one piece of evidence to

reduce uncertainty in another. This requires (at least)

conditional independence between the evidences. That

is, the only dependencies between the evidence are

mediated by the output whose uncertainty one wants to

reduce. There are no other causes of correlation between

192 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 2 DECEMBER 2018



the evidence items. With increasing efforts to increase

the degree of L1/L2 fusion at source systems, such

as the US Air Force’s Distributed Common Ground

System [75], It is important for fusion system designers

to understand the possibility of multiple counting of

common source evidence.

The fusion process can also introduce errors, which

can increase the uncertainty in the output. Common

errors are in the data extraction/alignment/registration

process through incorrect classification/assignments,

rounding, and misalignment [56] [20]. Information de-

velopment processes can introduce errors through mis-

association, misclassification, or unwarranted elimina-

tion of embedded uncertainty in the source evidence.

The uncertainty representational scheme used plays a

significant role in establishing the kinds of uncertain-

ties that can be assessed in the information development

process. For example, if the incoming data is heavily

ambiguous, but the process has no mechanism for rep-

resenting that ambiguity, the evidence output may be

specified as being more definitive than the data war-

rants. Fusion reasoning elements need to account for

possible accuracy, precision and veracity errors in ex-

tracted information [38]. For the reasoning processes,

expressiveness of the chosen representations is an im-

portant consideration. These are:

² Assessment: Establishes what kinds of uncertainties
can be addressed in the fusion system.

² Outcomes: Determines whether the outputs can in-
corporate the residuals of the types of uncertainties

in the input data and created by the fusion process.

² Configurality: Determines the range over which a
particular uncertainty representation needs to operate.

² Dependency: Determines whether the world segment
model and source models incorporate all the depen-

dencies necessary for the fusion model to correctly

represent the uncertainties in the world segment and

the sources.

² Higher order uncertainty: Determines if the uncer-
tainty representation can include uncertainty about

one’s uncertainties. This is especially the case for un-

certainty about probabilities that are used in reasoning

models.

4.4.3.2. Effects on Fusion System Resources
In addition to assessing the range of needed uncer-

tainty representation capabilities, there are a set of cri-

teria to evaluate the effects of the uncertainty represen-

tation capabilities on the resource costs and range of

capabilities for the fusion system. The first set of crite-

ria identify the effects of different uncertainty represen-

tation approaches on the design of the fusion system.

They are:

² Computational costs. Different representation

schemes have varying demands on the fusion sys-

tem’s computational resources. Truth-functional ap-

proaches of possibilistic representations or probabilis-

tic approaches that use canonical models [19] gen-

erally have the lowest cost, while random set ap-

proaches [50] have the highest. The computational

cost will also depend on whether exact or approxi-

mate techniques are used, which have their own ef-

fects on output uncertainty.

² Performance (sub criteria–throughput and timeli-

ness): Assesses the upper limit on system volume and

velocity, determining if the selected uncertainty rep-

resentation schemes significantly affect the ability of

the system to meet the users’ needs. These two sub-

criteria are intertwined with the computational cost

criteria.

² Scalability: Effect of the representation to scale the
model used. This is of especial interest when the

world segment model allows for a significantly vary-

ing number of entities with different relationships be-

tween them.

The second set look at the constraints the uncertainty

representation models place on the use of the system:

² Adaptability: Degree of change allowed to the con-
figuration of the uncertainty representation, allowing

it to model variations in the world segment or source

models.

² Compatibility: how well the representation allows

the use of common data standards within the do-

main within which the fusion system works (e.g.

STANAGS for NATO systems, NIST IT standards for

US systems, etc.).

² Knowledge handling: The effect of a particular un-
certainty representation on the fusion system’s infor-

mation management capabilities.

² Simplicity: the degree of complexity of the user in-
terface, especially with regards to the system’s output

explanation capabilities.

The assessment results on the effects on system re-

sources should be incorporated into a larger system per-

formance analysis. This enables a proper trade-off anal-

ysis between resource demand and uncertainty handling

representation with the context of the overall system re-

quirements.

5. CONCLUSION

This paper provided a broad examination of how

the URREF uncertainty handling criteria can be applied

to typical HLIF applications. We ground the discussion

with a Fusion Process Environment Model to identify

where the criteria should be applied. The application of

the Framework’s criteria to the evaluation of the uncer-

tainties and their representations in a fusion system is

shown from different perspectives. As noted, as an un-

certainty evaluation framework, URREF must be seen in
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its current state as a first output of an effort to better un-

derstand the representation and effects of uncertainties

in a HLIF system. As HLIF technologies advance, un-

derstanding and correctly addressing uncertainties will

play an important part. Based on the points raised in

this paper, we forecast two major directions for this

effort in the future. First, comprehensive quantitative

and qualitative comparisons among different represen-

tation approaches are important to better understand the

appropriate applicability of each approach and guide

HLIF developers in their design decisions. As proba-

bilistic, possibilistic, and evidential approaches evolve,

they gain new capabilities and provide new insights that

can be shared across approaches. Second, a deeper un-

derstanding of real-world fusion processes is required

to select and apply the most appropriate fusion models

and systems for each specific situation.
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In this paper, the uncertainties that enter through the life-cycle
of an information fusion system are exhaustively and explicitly con-
sidered and defined. Addressing the factors that influence a fusion
system is an essential step required before uncertainty representa-
tion and reasoning processes within a fusion system can be eval-
uated according to the Uncertainty Representation and Reasoning
Evaluation Framework (URREF) ontology.
The life cycle of a fusion system consists primarily of two

stages, namely inception and design, as well as routine operation and
assessment. During the inception and design stage, the primary flow
is that of abstraction, through modelling and representation of real-
world phenomena. This stage is mainly characterised by epistemic
uncertainty.
During the routine operation and assessment stage, aleatory

uncertainty combines with epistemic uncertainty from the design
phase as well as uncertainty about the effect of actions on the
mission in a feedback loop (another form of epistemic uncertainty).
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and the evaluation of how these uncertainties are represented and
reasoned about in the fusion system using the URREF ontology,
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I. INTRODUCTION

The characterisation of uncertainty is required for

pragmatic decision making when sensor data and other

forms of information from several sources are fused

in decision support systems. Uncertainty characterisa-

tion requires implicit and explicit forms of abstraction

to model the problem, represent entities and concepts

within the world, associate entities to uncertainties, and

to reason about decision consequences. Uncertainties

propagate through the life cycle of an information fu-

sion system (hereafter referred to as a fusion system),

from the problem statement and modelling phases to

design and implementation. Ideally a fusion system life

cycle should include:

a) the exhaustive characterisation of uncertainties

throughout the life cycle of a fusion system;

b) the explicit (i.e., direct, solvable) representation of

these uncertainties within the fusion system; and,

c) the implicit (i.e., indirect, iterative) evaluation of

these uncertainties.

Two life cycle stages which have been previously

considered are the modelling phase [1] (representing un-
certainty) and the operation phase (performing the de-
cision loop) [2]. This paper will consolidate the uncer-

tainty evaluation of these phases, as well as include the

inception and design phase, presented in [3]. Although
subsets of uncertainties are considered during the de-

sign and use of all fusion systems, in this paper, and for

the first time, all uncertainties that enter throughout the

complete fusion life cycle are jointly and comprehen-

sively considered.

This paper provides concepts that, in combination

with the evaluation criteria defined in the Uncertainty

Representation and Reasoning Evaluation Framework

(URREF) [4], facilitate the development of verifiable

operational fusion systems. Entity abstraction provides

a clear mapping between the physical phenomena of in-

terest and the abstract models used in the fusion system.

The development process (or flow of abstraction) is par-

titioned into activities that focus on isolation abstraction,

process abstraction, data generation abstraction, datum

abstraction and agent abstraction. The flow of informa-

tion, on the other hand, introduces a taxonomy of oper-

ational elements, which facilitate the development of a

system that satisfies the functional and performance re-

quirements. The concepts introduced by abstraction and

information flows support both, the analysis in the in-

ception phase (where the problem statement is defined)

and the development of concrete solutions in the design

phase of a URREF driven development life cycle [3]

shown in Fig. 1. Fig. 1 defines the system partitions that

enable logical allocations of various URREF evaluation

criteria.

Although preliminary works [1], [2] classify several

types of uncertainty, there are two types of uncertainty

prevalent in the literature. The two types are epistemic
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Fig. 1. URREF roles in a development life cycle [3] depicting the

inception phase, the design implementation and testing phase, and

the operation phase.

and aleatory uncertainty [5], [6]. Epistemic uncertainty is
derived from the Greek word “episteme” and relates to

uncertainty owing to a lack of knowledge or ignorance

about the modelled process or entity. Therefore this

uncertainty lies outside of the entity or process being
modelled. Aleatory uncertainty is derived from the Latin
word “alea” which refers to the casting of dice. Aleatory

uncertainty refers to random events within the entity
or process being modelled. As such, both epistemic

and aleatory uncertainties are encountered throughout

the life cycle of an information fusion system. The

focus of this paper will be to unify uncertainties that

enter during abstraction, design, and modelling [1], [3]

with those during explanation, operation, and decision

making [2].1

There exists a significant body of knowledge on the

quantification of uncertainty inherent in models of phys-

ical processes [5]—[9]. In these works, uncertainty classi-
fication is organized as being forward or inverse [9]. On
the one hand, forward uncertainty quantification consid-

ers how uncertainty propagates through a model from

the input to the output of the model. On the other hand,

inverse uncertainty quantification involves not only the

characterisation of the discrepancy between the exper-

imental results and the predictions of the mathematical

model, but also the estimation of parameter values [10].

The ISIF Evaluation Techniques for Uncertainty

Representation Working Group (ETURWG) investi-

gates challenges associated with uncertainty reasoning,

analysis, and usability in information fusion processes.

An ongoing effort of the working group is the design of

the URREF ontology, which captures primary and sec-

ondary concepts that relate to uncertainty representation

and reasoning in information fusion systems, as well as

the links between the concepts [4]. The evolution of the

concepts, links and definitions of the URREF ontology

1Note the duality between: abstraction, design, modelling; and expla-

nation, operation, decision-making.

Fig. 2. The two main phases of a fusion system, namely the

inception and design phase (input/output loop), and the routine

operation phase (decision loop) are depicted. The double arrows

depict where uncertainty enters the two phases, and the dashed

arrows depict implementation and design refinement. Apart from

aleatory and epistemic uncertainty, decision uncertainty captures the

uncertainty of the effect of an action on the world.

has reached a stable form and is utilised to evaluate un-

certainty related aspects in a variety of fusion problems

e.g., [11]—[17].

Over the years, a comprehensive “joint uncertainty”

formulation (or a globally complete consideration of un-

certainty) has been identified as a need by several In-

ternational Society of Infomation Fusion (ISIF) panels

[18]. The purpose of this paper is to define, within the

context of the URREF ontology, all the stages at which

there is potential for uncertainty to enter the full life cy-

cle of an information fusion system as well as to classify

these uncertainties. These uncertainties are referred to

as the subjects of evaluation of the URREF ontology, as
discussed in [19]. Siloed approaches to uncertainty rep-

resentation and reasoning (traditional approaches) could

fail in many applications. Table I (column 3) provides

some examples of processes of abstraction (modelling)

that could fail if the joint uncertainty is not consid-

ered. For example, in [20] the author focused on the

scheduling based on the time available. Time available

is a good choice, but uncertainty is also needed to get

to a “value” function. If one radar’s performance starts

decreasing (meaning possibly more uncertainty), then

scheduling needs to adapt. Furthermore, different types

of uncertainty (described semantically) can affect the

end utility/policy.

The rest of the paper is ordered as follows. Section II

presents the information fusion life cycle. Section III ar-

ticulates details of an information fusion system design.

Section IV complements Section III with the informa-

tion fusion operation. Section V contains a discussion

on use cases and Section VI a discussion of evaluation
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using the URREF within the context of atomic decision

processes. Section VII concludes the paper.

II. INFORMATION FUSION SYSTEM LIFE CYCLE

According to the taxonomy presented in this paper,

there are two phases where uncertainty can enter into a

fusion system. These are the inception/design and op-

eration/assessment phases. These phases are presented

in the subsections below, and Fig. 2 provides further

clarification.

A. Inception and design–Abstraction flow

The first phase of an information fusion system is

the Inception and Design (IAD) during which the archi-

tecture is specified and the mathematical models are as-

sembled. The IAD process is concerned with the flow of
abstraction, i.e., where real world entities and processes
(RWEPs) are modelled, and epistemic and aleatory un-

certainties are represented in a mathematical formalism.

The abstraction flow takes place on a relatively large

time scale (e.g., months), while feedback spiral pro-

cesses in the systems engineering requirements speci-

fication and design can result in incremental improve-

ments in the system in shorter time scales (e.g., days).

B. Routine operation and assessment–Information
flow

The second phase of an information fusion systems

is the Routine Operation and Assessment (ROA) during

which the system functions as a decision process, akin

to the Observe, Orient, Decide and Act (OODA) loop

of Boyd [21]. The ROA phase is mainly concerned

with the flow of information, where the information is
collected from transducers (sensors) that convert real-

world observable phenomena into categorical quantities,

associated uncertainties, and representation processes

(such as probability, fuzzy logic, belief functions, etc.).

The objective of the information fusion system is to

reduce uncertainty and improve inference for informed

decision making.

III. FUSION SYSTEM INCEPTION AND DESIGN

The modelling of fusion systems involve abstract-

ing RWEPs and the mechanisms whereby they generate

observable phenomena, to result in mathematical and

uncertainty models of RWEPs of interest. These observ-

able phenomena are, for example in a multisensor radar

tracking system, the electromagnetic characteristics of

the skin of moving aircraft and how it interacts with

radar pulses to form a series of detections, whereby the

first objective is to determine the state vector of all the

aircraft in some area of regard. The second objective

is to make informed decisions, using the inferred state

vectors, such as in the case of air traffic control.

Fig. 3 is a symbolic depiction of the process of

modelling with the objective of performing information

fusion. Fig. 3 has been extended when compared to

Fig. 1 in [1] in that the uncertainties that enter during

the abstraction and modelling of the decision process

resulting in the “Decision Model” have been appended.

The objective of presenting such a detailed view, is to

provide the fusion system designer with an explicit and

exhaustive view of where uncertainties enter the design

and modeling process through the adoption of several

assumptions.

There is a clear flow of abstraction from left to right.

The real world is depicted by the shaded cloud as a se-

ries of RWEPs that generate observable phenomena. To

be explicit, the nth RWEP denoted by RWEPn generates
a real world datum Dn,k at time instant k. A datum is de-
fined as an observable real-world effect, such as a radio

frequency transmission, a visible light reflection off a

target, etc. The nth real world process has physical prop-
erties that are represented by the symbol −n. The way
in which observable effects are generated by the RWEP,

is represented by the transformation fDn j −ng, and can
be read as Dn given −n, analogous to as if it would
have been conditioned on −n in the statistical sense.
Furthermore, these real world entities can interact with

each other, forming the situation and impact levels of the
Joint Director of the Laboratory/Data Fusion Informa-

tion Group (JDL/DFIG) fusion models [22]—[25]. The

different types of uncertainties that enter through the ab-

straction process are represented by different variables,

which are summarised in the first column of Table I.

A. Isolation Abstraction

If the objective of a specific fusion system is consid-

ered, then there are typically only a few RWEPs that are

of interest for a specific decision making problem. For

example, in the air traffic control application, the con-

troller is only interested in air targets within a certain

area of regard, and also not surface targets, unless these

are at an airport. This is the first element of abstraction

that takes place, and is referred to as isolation abstrac-
tion. Uncertainties enter during this type of abstraction
whereby assumptions are made that outside influences

are ignored or simplified, and boundary conditions are

specified. These uncertainties are labeled isolation un-

certainties and are denoted by °. Since all models and
processes downstream from this decision are influenced

by °, and to simplify notation, dependence on ° will not
be explicitly shown, although it should be kept in mind.

Isolation abstraction uncertainty ° is epsitemic in nature
(indicated by † in Fig. 3).

B. Process Abstraction

Typically, RWEPs contain some properties that are

hidden or latent, but which are needed for decision

making purposes. It is for this reason that models are

needed to describe as accurately as possible how these

processes and entities behave and evolve over time.

The procedure for assembling such models is labeled

as process abstraction, and result in a process or plant
model (PM) for the nth RWEP. Such models are time
dependent, and describe the stochastic evolution of cur-
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Fig. 3. The modelling (abstraction) of a fusion system making a measurement at time k is depicted. The principal components depicted are

a) real world entities and processes (RWEPs), b) agents acting in the world (a specific type of RWEP), and c) models/abstractions of these

RWEPs. Solid arrows indicate how data is generated. Dotted arrows indicate that real world or model processes influence each other. Dashed

arrows indicate the flow of abstraction during the modelling process. Ribbons indicate processes of abstraction (i.e. representing RWEPs as

mathematical objects). The symbol † indicates epistemic uncertainty, whereas the symbol ¤ indicates aleatory uncertainty. The shaded bar in
the lower right of the figure shows that the uncertainty representation cross-cuts the modelling and implementation of a fusion system. The

index i denotes the sensor index and n is the nth real-world entity/process being modelled.

rent (and future) states xk:k+N based on past states

x0:k¡1 and model parameters μ, which are time invari-
ant. These states and parameters are typically abstrac-

tions of the real world physical attributes contained in

−n. In traditional Bayesian tracking, the evolution of
the uncertainty relation in the PM is represented by

p(xk j xk¡1,μn). The modelling of how RWEPs generate
data, and as such, how observed phenomena relate to

hidden (unobserved) processes, are encapsulated by the

sensor/data model.2 Hidden uncertainty processes are

discussed in the next section.

A process model relates parameters and states to

each other over time. Epistemic uncertainty enters into

the PM through incomplete knowledge about the cor-

responding RWEP. Aleatory uncertainty enters into the

2This is also known as a measurement or observation model.

model through random perturbations in the time evo-

lution of the model. Consider, for example, a discrete

time varying equation xk = f(xk¡1)+ ², where xk is the
system state at discrete time step k and ² some random
quantity. In many cases both epistemic and aleatory un-

certainties are (possibly incorrectly) lumped together in

a single random quantity ². The framework presented
here provides for their explicit separation via an addi-

tional variable ±n to capture epistemic uncertainty.

C. Data Generation Abstraction

Data generation abstraction involves the modelling

of how observable effects relate to unobservable (hidden

or latent) processes with states xk and parameters μn. The
output of data generation abstraction is both a model of

how a specific measurement is related to an unobserved

parameter or state, and also a sensor/data model, which
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TABLE I

Different types of abstraction in the modelling process, their descriptions and examples

Abstraction

Type/Related

Uncertainty Abstraction

Variable Process Description Example

Isolation

°

Choosing system

boundaries, making

assumptions

Isolating the RWEP or multiple RWEPs by

choosing the domain, processes and entities of

interest in the real world

The features, dynamics and sensing of multiple

targets that are observable or can be inferred

indirectly from measurements within the

coverage area of multiple radars. This isolation

could explicitly be represented by an ontology.

Datum

®

Define mathematical

variable type and

uncertainty

representation

Choosing a mathematical or numeric

representation of a measurement zk and
associated uncertainty to represent a real world

datum Dn,k or data

Integer, natural number, real number, vector,

matrix, complex number, tensor, norm, first

order logic expression, etc.

Data

generation

¯i

Define data/sensor

model

Choosing a mapping between RWEPs, and data

and an uncertainty representation for

representing uncertainty in the data generation

process as well as characterising the real world
data generation process

Choosing a probabilistic uncertainty

representation and specifying a Gaussian model

of data generation with mean and covariance

parameters to model the generation of range

and Doppler measurements by a radar.

Process

±n

Define process

model

Choosing states, parameters, a mapping

between parameters and states* and an

uncertainty representation for states, parameters

and mappings

Choosing a hidden Markov model to represent

the time evolution of a target state, where the

plant noise captures both uncertainties in

knowledge of the motion model and real world

randomness such as air pockets, and imprecise

control inputs by the pilot of an aircraft.

Action

Ân

Define model of

actions

Define the actions available to an agent. Define

a mapping between available actions, and the

evolution of world (and agent) states.

Defining the available scan patterns and

tracking tasks in an Active Electronically

Scanned Array (AESA) radar, and how these

tasks influence future tasks of the radar.

Utility

Ãn

Define a

utility/reward model

Choosing a mapping between agent/world states

and their desirability as perceived by the

agent/system user

Define a reward function which balances the

effort spent by the AESA radar tracking

existing targets as opposed to scanning for

possibly undetected targets.

Policy

¢n

Define a policy

representation

Choose a mapping between the world state as

perceived by the agent and the most appropriate

action for being in that perceived state

Choose a pre-defined rule for time spent on

tracking vs scanning, which maximises the

expected sum of future discounted rewards.

*An example of a mapping between parameters and states is how a probability distribution over target mass maps to a probability distribution

over accelerations.

specifies how data are generated and transduced by the

ith sensor. These are two sides of the same coin. In

the case of traditional probabilistic modelling, these re-

lations are characterised by the quantity pi(zk j xk,μn).
If the measurement zk is known and xk,μn are vari-
able, the function pi(zk j xk,μn) represents the likelihood
Lz(xk,μn) and is a function, not a probability distribu-
tion. However if x,μn are known and zk is the variable,
then pi(zk j xk,μn) represents the probabilistic model of
data generation, and it is a proper probability distribu-

tion. Note that p(zk j xk,μn) typically includes the sen-
sor model or the model of perception, as the sensor

forms part of the RWEPs and also generates data. There-

fore, pi(zk j xk,μn) could serve as both a model for es-
timation/inference (for example maximum likelihood)

which is related to inverse uncertainty quantification or

a model for data generation (a generative model) which

is related to forward uncertainty quantification.

The uncertainty in data generation abstraction for

sensor i is denoted by the symbol ¯i. The procedure
of data generation abstraction causes epistemic uncer-

tainty, since there may be lack of knowledge about the

nature of the transformation from a RWEP to a datum.

In addition to epistemic uncertainty, aleatory uncertainty

(denoted by a ¤ in Fig. 3) is expressed through the ran-
dom nature by which data are generated and sensed.

Hence the measurement process is depicted in Fig. 3 to

contain both epistemic and aleatory uncertainties.

D. Datum Abstraction

The datum Dn is a real world effect that is observed.
It cannot be used in any kind of reasoning, since a

process of abstraction is needed to convert it into a

mathematical quantity such as a integer, real number,

complex vector, a first order logic statement, etc. This

process is labelled datum abstraction. In some cases,
a datum may already be abstracted, such as output of
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another fusion process (such as the output of a filter),

and as such, dependencies exist between data points. In

a subset of these cases, datum abstraction may not be

needed, unless some form of conversion takes place. A

datum should also not be confused with a measurement
(in this taxonomy denoted by zk) which has already
been transduced by a sensor into an instantiation of a

mathematical quantity.

Uncertainties that enter with the process of datum

abstraction (i.e., the numerical, ordinal or logical rep-

resentation of observable physical phenomena), are de-

noted by the symbol ® and is epistemic in nature (indi-
cated by † in Fig. 3.). An example would be for ® to rep-
resent the fact that a continuous variable is discretised,

and as such may not sufficiently capture the important

or relevant properties of the datum, resulting in signifi-

cant quantisation noise. Epistemic uncertainties associ-

ated with representing the uncertainty relations/functions
(probability densities, belief functions) of a datum Dn
are also contained within ®, and a loss may occur if,
for example, an imprecise language statement is repre-

sented by a discrete probability distribution. This is an

example of second order uncertainty (uncertainty about

uncertainty).

E. Agent abstraction
The decision process, fusion resource management,

and mission actions need to be modelled if a fusion sys-

tem needs to be automatically steered to produce desired

states of the world. In Fig. 3, a model is depicted as

an agent. Although an agent is simply another type of

RWEP, whose actions and influences can be observed

as data by sensors, they merit explicit mention, as being

an integral part of the decision loop. An agent in the real

world is motivated by some utility or reward, which cap-

tures the desirability of a world state at a time instance.

If all time is considered, a (discounted) accumulation of

utilities (sum of rewards) over all time is of relevance.

The agent would then act according to a general set

of rules (or policy) which would ideally maximise the

discounted accumulation of utilities/rewards over a pos-

sibly infinite time horizon. Agent actions are the gen-

eral premise of the fields of linear Gaussian quadratic

(LGQ) control [26], [27], reinforcement learning [28],

Markov decision processes (MDPs) [28], [29], partially

observed Markov decision processes (POMDPs) [28],

[30], and model predictive control [31]. Being central

to the decision making process, this setting needs to

be modelled–first mathematically and then be instan-

tiated algorithmically, for automated decision making.

These processes of abstraction are depicted in Fig. 3,

which capture the main components of the agent. The

processes include: action abstraction ¹n, which models
the effect of actions on the evolution of world states,

utility abstraction Ãn, which models the desirability of
world states, and policy abstraction ¢n, which models
the rule set by which to act given a world state. Ac-

tion abstraction may introduce aleatory and epistemic

uncertainty–“aleatory” owing to how actions may in-

fluence the world state in a “noisy” sense, and “epis-

temic” owing to lack of knowledge how actions are

represented and how they influence the world state.

The utility and policy abstraction processes typically

exhibit epistemic uncertainty, since the uncertainty per-

tains to how the desirability of states, and the mapping

of perceived states (otherwise known as belief states)

to actions are modelled (represented by some function).

Owing to the vastness of policies for most belief state

spaces, several methods exist to compress these policies,

leading to epistemic uncertainty owing to representation

approximations. These include belief compression [32],

certainty equivalence [28], and symbolic policy approx-

imation [33] to name a few. Current and recent research

has, for example, looked to extend the scalability [34] of

these approaches and apply them in pertinent contexts

such as automotive applications [35].

F. Association Uncertainty

The association problem in information fusion is

concerned with knowing which entity or process gener-

ated which observable datum Dn,k at some time k. This
ambiguity is depicted as the diagonal dotted lines be-

tween different RWEPs and D’s. The association un-
certainty will also be assigned a symbol, and will be

denoted by ·. Association uncertainty · is epistemic in
nature, because it is due to a lack of knowledge.

G. The Computer Model

The final layers of abstraction, when proceeding

from the mathematical model to a computer model is

very briefly discussed here, and quotes the discussion

in [1]. “In the case of digital computers, the use of es-

tablished scientific libraries and vector-matrix mathe-

matical programming environments make variable ab-
straction fairly well characterised. Uncertainties may en-
ter through algorithmic abstraction in the form of pos-

sible incorrect implementation, numerical instabilities

or strange behaviour in untested states. However, most

cases of numerical instabilities in digital computer code

are well characterised [36], and examples include the in-

version of an ill-conditioned matrix, or numerical insta-

bilities owing to Euler numerical integration. In this case

incorrect implementation would be owing to oversight

by the programmer. Uncertainty abstraction is charac-
terised by pseudo number generators and Taylor series

expansions to represent continuous probability distribu-

tions. Uncertainties for this type of abstraction are also

well characterised in the literature. If on the other hand,

analogue computers were used, this abstraction would

have needed particular care in characterising uncertain-

ties, as the results would be noisy.”

H. Towards a full data, process and decision model

Epistemic modelling uncertainties (i.e., those that

occur when going through the different processes of
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abstraction) are sometimes not sufficiently accounted

for or explicitly modelled in traditional models. Tradi-

tional models are depicted as “Trad World Model” and

“Trad Decision Model” in Fig. 3. Explicit consideration

of modelling uncertainties are thus accounted for as in

Ch 3 of [37]). A full data, process and decision model

is therefore proposed, extended from [1]. Although it

might be that the fusion system designer may choose to

discount some of the uncertainties in Fig. 3, it is better

that it is a conscious decision with consideration for the

implications thereof, rather than an act of omission.

In traditional statistical modelling, zk is considered
to be the “datum” and p(z j x,μn) is considered to be
the complete uncertainty model of z. However, zk is
itself an abstraction of Dn,k, and similarly p(z j x,μn)
is an abstraction of fDn j −ng. As such, any uncertain-
ties associated with these abstraction processes are ig-

nored in traditional models. This steers the discussion

towards higher order uncertainty (uncertainty about un-

certainty). Higher-order uncertainty is modelled by im-

precise probability models, belief functions or credal

sets. For instance: rather than a single probability dis-

tribution, a set of probability distributions is considered,

and the probability of an event is defined by upper and

lower bounds.

A complete model of data generation must have the

form p(¡ j xk,μn,®), where ¡ = fzk,®g is a mathemat-
ical model for zk as well as the uncertainties associ-
ated with constructing zk, denoted by ®. Furthermore,
the uncertainty representation denoted by p(¢ j xk,μn,¯)
must be a mathematical model of both the data gener-

ation process, as well as the uncertainties ¯ associated
with its construction. Such an uncertainty representation

analogous to the generalised likelihood in [37].
The complete process model p(xk j xk¡1,μn,±) (which

describes the time evolution of the world state) should

encapsulate the aleatory uncertainty in the evolution of

states as well as the epistemic uncertainties ± associ-
ated its construction. This is opposed to the traditional

process model p(xk j xk¡1,μn) which is not conditioned
on ±.
A similar approach should be followed for the deci-

sion model, where epistemic and aleatory uncertainties

should be explicitly considered and incorporated into

models where appropriate.

IV. FUSION SYSTEM OPERATION

In contrast with the inception, design and implemen-

tation of a fusion system in Fig. 3, the system oper-

ation at runtime is depicted in Fig. 4. Fig. 4 depicts

the operation of the fusion system within the context

of a decision loop. There are two principal flows that

are identified in Fig. 4. The first is the flow of infor-

mation, from RWEPs which generate observable phe-

nomena, observed by sensors (or sources in general),

combined in the fusion system, resulting in inference

of world states and parameters. The second flow, the

flow of decisions/actions involves the interpretation of

inferences of the fusion system through a system which

balances uncertainties with risks, rewards and utilities

(such as Bayes’ risk). The result of this process is a de-
cision which is fed to a resource management algorithm,
which in turn generates actions or controls that instruct
sensors and mission actors to execute instructions. The

principal taxonomies of such a decision process are ad-

dressed in [38], [11] and [19] as elementary constructs

of conceptually indivisible atomic decision processes or
ADPs.

The following sections will make the uncertainties

that propagate through the fusion system explicit, so

that each of them can be addressed if necessary. These

sections are organised in the same order as the OODA

loop, and Fig. 4 depicts the fusion decision loop. This

loop contains the fusion system, which in turn com-

prises the conceptual fusion elements (FEs). These ele-
ments are conceptual, since in certain fusion methods

they may all be present but not necessarily separable–

for example a certain uncertainty representation cannot

be separated from its inference method. Furthermore, it

shows where different types of uncertainties enter the

fusion system and propagate through the system. Fig. 4

is adapted from [2], where the elements of the fusion

system, denoted by FE-1 to FE-4 have replaced ADP-1

to ADP-4 that were presented in [2]. The fusion ele-

ments include information source (FE-1), the instanti-

ated model (FE-2), the inference and prediction (FE-3)

as well as the decision method and resource manage-

ment (FE-4).

A. Observe

Clues to the state of the world can be obtained by

observations. Such observations can be obtained using

sensors in the form of electronic transducers or human

observers. Observations are required under the premise

that “all decisions are based on observations of the

evolving situation tempered with implicit filtering of the

problem being addressed” [21]. In the subsections be-

low a distinction is made between a) physical effects

that could be observed by humans or sensors (observ-
able real world data), and b) source reports by either

humans or transducers (sensor data) that have observed
the aforementioned physical effects.

1) Observable real world data:
Referring to Fig. 4, as in Fig. 3 observations origi-

nate from observable phenomena generated by RWEPs

that interact with each other. A part of the world is iso-

lated for which decisions are to be made (as in the case

of modelling phase). Sensors make measurements of

phenomena in the isolated area of interest. Reports from

these sensors could assist in making inferences that may

inform decisions. In the taxonomy of the decision loop

in Fig. 4, not only the nth RWEP generates a datum Di,k
which is sensed by sensor i, but Di,k may also be influ-
enced by other RWEPs. An example is the use case of a
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Fig. 4. The fusion decision (e.g., OODA) loop depicting the flow of information through sensors (observe) and the Fusion Method (FM)

(orient), and the flow of decisions (decide) and actions (act) out of the decision method and resource management block. These actions in

turn influence the real world. Although this figure looks similar to Fig. 3, it has some distinct and important differences. It describes

uncertainties that enter the FM during runtime (routine operation phase), as opposed to Fig. 3, which describes uncertainties that enter during
modelling (inception and design phase). The flow of abstraction in Fig. 3 takes place on a large time scale (months/years), whereas the flow

information/decisions/actions takes place on a relatively short time scale (seconds or less).

single radar sensor i sensing multiple targets (RWEPs)
in an area of regard. Thus, the datum Di,k might be
composite and represents the set of observable effects

by all RWEPs visible to sensor i. As assumed in [2],
this is a generalisation of what is presented in Section

III and [1]. Specifically, we let the datum Di,k be con-
ditioned upon !i μ f−1,k, : : : ,−n,kg since the observable
datum depends on the properties of the physical entities

which sensor i can observe. Consequently the datum
conditioned upon its physical properties, !, is written
as fDi,k j !ig or Di,k given !i.

2) Sensor data:
Consider real word data fD1,k, : : : ,Dn,kg. Measure-

ments are made of fD1,k, : : : ,Dn,kg by sensors 1 to i and
converted into mathematical representations, which not

only represent the quantities themselves (z1 to zi), but

also supplement them with an uncertainty representa-

tion Z1 to Zi, and associated uncertainty relations h1(¢)
to hi(¢). Examples for quantities z1 to zi include inte-
gers, real numbers, vectors, complex numbers, tensors,

norms, logic expressions, etc. Examples for uncertainty

representations Z1 to Zi include probabilistic, eviden-
tial or fuzzy based representations. Examples of uncer-

tainty relations h1(¢) to hi(¢) include probability density
functions, belief functions or fuzzy membership func-

tions An uncertainty representation could be defined as
a set containing an uncertainty nature (aleatory or epis-

temic), uncertainty theory (e.g., Bayesian probability

theory, evidence theory, fuzzy set theory), an uncer-

tainty model (e.g., Markov model, Bayesian network,

Kalman filter), a semantic interpretation (e.g., causal-

ity, frequentist), uncertain variables (e.g., random vari-

ables, fuzzy variables) and joint uncertainty relations
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over these variables as described above (e.g,. probability

distribution functions, belief functions, fuzzy member-

ship functions).

It is noted that sensors have a broad definition and

may include transducers, humans that enter language

statements into a computer, and also information from

other fusion systems, along the lines of the distributed

fusion architectures of [39], [40]. Note that a distinction

should be made between uncertainty representations

from the sensors, Z1 to Zi, which may differ from each

other (in the case of heterogeneous sensors) and the

uncertainty representation internal to the FM, which is

typically common to all variables in the engine.

Relation to the ADPs: The “observe” part of the de-
cision loop may influence the universe of discourse el-
ementary construct of the ADP [38], [19] within the

modelling phase, as the definition of the universe of dis-

course for uncertain variable of interest may be guided

not only by some design concern fixing the granularity

of the problem (i.e., to ensure fast computation) but also

by the limitation of the sensors.

B. Orient

According to [21], the orient part of the loop serves

“as the repository of our genetic heritage, cultural tradi-

tion, and previous experiences.” In a semi-autonomous

or autonomous fusion system, the orient phase would be

the internal model of the fusion system (our understand-

ing of the functioning of the world), which contains

representations of RWEPs (process models, agents, re-

wards and policies), representations of data generation

(data/sensor models), representations of quantities in the

real world (variables), and a representation of uncertain-

ties, both of the model (epistemic) and of the RWEPs

and sensors (aleatory). In addition, the “orient” part of

the decision loop also involves making inferences from

the sensor data. The orient part of the decision loop

corresponds to the FM in Fig. 4. To summarise, the

FM contains mathematical models and algorithms for

the purpose of data association, data and information

fusion, and inference.

In the subsections below, the overarching system

model M is described followed by a discussion on

the distinction between physical models and uncertainty

models. Uncertain variables and the relations between

them are then discussed, followed by the concepts of

a composite uncertainty model and second order uncer-

tainty. The process and data models are then considered.

The “orient” phase of the decision loop is concluded by

a subsection discussing inference and prediction in a

fusion system.

1) Fusion System Model:
Considering the FM in more detail, we define the

model M as the overarching fusion system model,

which contains several sub models for RWEPs (object

models), models for their observation (sub-object mod-

els), models for groups of RWEPs (situation models),

models for the current and future impact of situations

(impact models) and models for agents (process refine-

ment models). Sub-object models correspond to level

0 of the JDL/DFIG taxonomy [22]—[24], [41], object

models of level 1, situation models of level 2, impact

models of level 3 and process refinement models of

level 4.

Inside the FM, the combined sensor measurement

vector of all sensors at time k are collected together
in a composite variable zk, which may be an array,
vector, set, etc. and their uncertainty relations in the

composite variable h. It is important to note that zk and
h are distinct from z1 to zi and h1(¢) to hi(¢) respectively,
since heterogeneous sensor reports may have different

uncertainty representations, whereas zk and h would
have typically been converted to a single uncertainty

representation UR such that an specific uncertainty

calculus can be applied within the FM. The uncertainty

of such a conversion is a component of the variable

® introduced earlier. This removes the necessity of the
uncertain variable ½ in [2], since by definition in Section
III-D, it is contained in the uncertain variable ®.

2) Physical and uncertainty models:
In the taxonomy of Fig. 4, a distinction is made be-

tween physical models, which explain RWEPs and the
data, and uncertainty models, which represent uncertain-
ties that enter into the FM, either during design or during

routine operation (runtime). The physical models con-

sist of a process model f(¢) and a sensor/data model g(¢),
which are characterised by uncertainties during mod-

elling, and encompasses several processes of abstraction

as explained in [1]. A discussion on the uncertainty rep-

resentation UR follows, after which the effect of these

uncertainties upon the physical models f(¢) and g(¢) are
discussed. FE-2 refers to the collection of the physical

and uncertainty models, i.e., the overarching modelM.

3) Uncertainty representation and relations:
Following the definition of [2], consider an explicit

set ´ of all known uncertain variables (see Table II)
that represent different types of uncertainty (e.g., in a

probabilistic representation, these may be random vari-

ables). The uncertainty representation UR is the internal
characterisation of all uncertainty elements of the fu-

sion system (uncertainty natures, theories, relations, se-

mantic interpretations), for a subset of ´, i.e., UR(½ ´)
since not all sources of uncertainty may be explicitly

represented within the fusion system model M. Simi-

larly, uncertainty relations U(¢) (e.g., probability density
functions, or belief functions) may be defined for a sub-

set of ´, i.e., U(½ ´). For example, in a fusion system
implementing Bayesian reasoning, a joint distribution

might not be available for all random variables, since

in a traditional model, many sources of uncertainty are

typically omitted.
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The notation U(´) indicates as the most general
case a joint uncertainty relation over all uncertain vari-
ables in the FM. An example is a joint probability

distribution if the uncertainty representation is prob-

abilistic. At the very least, most traditional Bayesian

based fusion systems will represent an uncertainty re-

lation over inputs xk,zk,¯a and ±a and outputs x̂k, μ̂, i.e.
U(xk,zk,¯a,±a, x̂k, μ̂,·).

4) Composite (joint) uncertainty variable–´:
The first, second and third components of ´ repre-

sent the uncertain hidden state xk of the process model to
be inferred, the uncertain measurement zk, and the com-
posite process model parameter variable μ respectively.
The variables f®,¯,±,°g are the abstraction uncertainty
variables as defined before, and the subscripts e and a in
Fig. 4 make a distinction between epistemic and aleatory

components of the underlying variable. Note that there

may be distinct ¯e and ¯a variables for every sensor,
unless the sensors and processes generating the data are

identical. Similarly there may be distinct ±e and ±a vari-
ables for every RWEP of interest and Âe and Âa for the
actions of agent RWEPs of interest, unless the entities

and processes in the real world can be explained us-

ing a single model. The variable Âe represents epistemic
uncertainty about how sensor controls sk and the mis-
sion controls uk influence the fusion system and the real
world respectively. The variable Âa represents aleatory
uncertainty about how world states evolve because of

sk and uk owing to random effect inherent to the world.

The following subsections explain the components of ´
that follow from the modelling (abstraction) processes.

Finally, ° represents association uncertainty. i.e. uncer-
tainty about which RWEP generated which datum Dn,k.

5) Second order uncertainty:
Although second order uncertainty is not repre-

sented explicitly in Fig. 4, this concept warrants a brief

discussion. There will be uncertainty about whether the

uncertainty representation UR and its corresponding re-
lation U adequately represent all the uncertainties listed
in Table II. This is a second order uncertainty (un-

certainty about uncertainty) and cannot be represented

within the modelM, since it involves a shortcoming of

the uncertainty representation UR.

6) Process model:
Consider the equation for the process model in the

FM of Fig. 4. The state evolution of RWEPs is governed

by the function f(¢). In Fig. 4 the evolution is first order
(i.e., the current state xk is a function of only the previ-
ous state xk¡1 and the previous control input uk¡1). The
Markovian state evolution may be generalised to higher

orders if required. The current state is also a function of

the uncertain static parameters μ of the sub-world and
the aleatory uncertainties associated with the state evo-

lution (e.g., the process noise). Since f(¢) is influenced
by epistemic uncertainties associated with the modelM,

the subscripts ±e and ° in f±e,° indicate that the model is
influenced by uncertainties in the abstraction of how

RWEPs operate (±e), and the abstraction of isolating
part of the world (°). In Fig. 4, f±e,° is not shown to
explicitly consider them (i.e., they are not explicitly a

function of these epistemic uncertainties), since most

typical systems do not; however in a complete model

of Fig. 3, they should be considered. Most models typi-

cally take aleatory uncertainty ±a (randomness or noise)
in the state evolution equation f(¢), and hence f±e,° is a
function of ±a.

7) Data/sensor model:
In Fig. 4, the data/sensor model is given by a func-

tion g(¢) under the heading “Data Model” in the FM.
The measurement or observation vector zk at discrete
time k, is a function of the hidden state xk, the sen-
sor control vector3 sk, aleatory measurement uncertainty
(e.g., sensor noise) ¯a and association uncertainty ·. The
influences of epistemic uncertainties such as the datum

uncertainty ®, data/sensor model uncertainty ¯e and iso-
lation abstraction uncertainty ° are again not typically
considered in most models, unless a full model is used.

As such g®,¯e,°(¢) is not shown to explicitly consider
these uncertainties (i.e. it is not shown as a function of

them). As with the process model, aleatory measure-

ment uncertainty ¯a (for example measurement noise)
typically does form part of g(¢), and as such, g®,¯e,°(¢) is
a function of ¯a.

8) Inference and Prediction:
Models are mathematical representations of reality

and uncertainties owing to inherent randomness in real-

ity or incomplete knowledge of humans. These models

are used to infer hidden states and parameters that are

needed for informed decision making. In Fig 4, inferred

or estimated states and parameters of some modelM by

an inference engine I are denoted by x̂k and μ̂ respec-
tively, and are obtained by inference procedures such

as Bayesian filtering in time varying systems [42]—[44]

(i.e., Kalman, particle, or Poisson point process). The

parameter inference procedure is denoted by »(zk,M)

and the state inference procedure by ½(z0:k,M), where

the subscript 0 : k indicates that all measurements up to
time k are used. In the probabilistic case, the outputs of
the fusion system are probability distributions, meaning

that U takes the form of a joint probability distribution

over system inputs zk and outputs x̂k, μ̂, i.e., U(x̂k, μ̂,zk).
This corresponds to the joint uncertainty relations be-

tween different inputs, different outputs, and also be-

tween inputs and outputs as in [15]. Often state and pa-

rameter inference is performed jointly, and as such the

functions »(¢) and ½(¢) are conflated. The inference part
of the fusion system, corresponds to FE-3, which are

3The sensor control vector sk is a set of sensor controls that can change
the measurement function g(¢). In a networked radar system, sk could
be a vector of several azimuth and elevation values to steer the beams

of multiple radars.
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the inference or reasoning parts of the atomic decision
process.

C. Decide

Inferences may take the form of multiple compet-

ing hypotheses of world states and parameters, but in

the end a single final decision needs to be made, which

balances the costs/rewards/utilities of making a decision

with probabilities of certain outcomes. The “Decision

Method/Resource Management” block in Fig. 4 repre-

sents the balancing of competing decisions, actions and

outcomes. The outputs of the inference engine at time

k are the inferences about RWEPs, situations and im-
pacts and their uncertainties, and are represented by ỹk.
This quantity is fed into the decision method D. In a
system where the uncertainty representation is frequen-

tist (non-Bayesian) statistics, the decision involves the

thresholding of some uncertainty relation to end up with

a non-probabilistic estimate of the world states and/or

parameters (i.e., a single hypothesis of states and pa-

rameters). In the case of using Bayes risk for decisions,

the decision method and resource management blocks

combine, since sk and uk are optimised directly such that
a utility function is optimised. The decision method is

then concerned with balancing the reward/cost of events

with the probability of them occurring, for example by

maximising the expected reward (or minimising the ex-

pected cost). The decision method and its output corre-

spond to FE-4 in the atomic decision process, namely

the decision method and output information. The model
M will be used to make predictions under different ac-

tions sk and uk with the inferred x̂k, μ̂ in order to opti-
mise the decision and maximise some utility/reward r,
or alternatively minimise some cost/loss function. The

utility/reward function ºÃ(xk is a function which maps
a state xk to a reward r, and is characterised by the
epistemic utility uncertainty Ã. In a reinforcement learn-
ing or model predictive control setting, a policy Á¢(¢)
would be defined/learned which would maximise the

discounted sum of rewards over a (possibly infinite)

time horizon. The uncertainty associated with a particu-

lar policy representation would be characterised by the

epistemic policy uncertainty variable ¢.
The fusion system user might sensibly consider a

different abstraction in making a decision to that which

was used to provide inferences of the current situation

awareness picture. For example, “belief compression”

[32] a technique for summarising probability distribu-

tion functions (lowering their dimensionality) in the

rollout over a sliding window into the future. More gen-

erally, there are different requirements placed on the

models used here than in the “Orient” part of the de-

cision loop. Therefore, D and the associated decision

mapping º(¢) may be rooted in a different formalism
than the FM. As such another form of uncertainty may

be introduced through, for example, dimensionality re-

ductions, which may be easily overlooked.

TABLE II

Table of variables representing currently known forms of uncertainty

that enter or exist within the Fusion Method (the elements of ´ and

uncertainties pertaining to the utility and policy models)

Uncertain

variable Description

xk State at time k

zk Measurement at time k

μ Time invariant parameters of process model

sk Sensor controls at time k with uncertain effect

uk Mission controls at time k with uncertain effect

® Datum abstraction variable (pertaining to

quantities, associated uncertainty

representations and relations)

¯e Epistemic data/sensor model variable,

representing that the process of generating data

is poorly understood (one for each sensor type)

¯a Aleatory data model variable, for noisiness of

the data source (sensor or uncertainty in the

way the RWEP generates Dn,k). Typically one

exists for each sensor type and/or mechanism

which generates data in the real world)

±e Epistemic process model variable (one per

process representation, unless different models

for different processes are used)

±a Aleatory process model variable (one per

process, unless different models for different

processes are used)

° Isolation abstraction variable

· Association uncertainty variable, capturing

uncertainty about which RWEP generated

which datum Dk,n
Âe Epistemic action uncertainty variable, capturing

uncertainty about how state evolution is

modelled because of actions sk and uk
Âa Aleatory action uncertainty variable, capturing

uncertainty about state evolution because of

some inherent random effects of actions sk
and uk

Ã Epistemic utility uncertainty variable, capturing

uncertainty about the proper representation of

the agent’s mapping from a perceived state to a

utility or reward

¢ Epistemic policy uncertainty variable, capturing

uncertainty about the proper representation of

the agent’s mapping from a perceived state to

appropriate actions sk and uk that maximises,
for example, the discounted sum of future

rewards

D. Act

Once a decision is made, it is converted to action by

some resource management function in Fig. 4. It affects

controls sk over sensors and controls uk over missions.
As discussed, there will be uncertainty in how decisions

and actions will influence RWEPs in the real world.

These are represented by Âe and Âa and are considered
in the PM, which models world state evolution. It should

be noted that although the information fusion system

(including the sensors) is explicitly indicated in Fig. 4

as being separate from the real world, this is not actually

the case. In a real setting, the fusion system is part of

208 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 2 DECEMBER 2018



the real world. However, in the presented formulation, it

is assumed that the fusion system affects the real world

only through the quantities sk and uk, and that all other
effects are deemed to be negligible. Whether this is the

case depends on the accuracy of the understanding of

the effect of sk and uk on the real world in the model
M, the decision method D and resource management

function R, through an understanding of ±e and Âe.
V. EXAMPLE USE CASES
For the sake of brevity, a single example use case

is presented (the same as in [2]), which demonstrates

the fusion uncertainty evaluation taxonomy presented

here. RWEPs represent aircaft that can be sensed by a

network of radars (for example as in [20] and [45]).

The radars are intelligent sensors, in that they already

provide processed information to the fusion system

in the form of target tracks and associated filtering

covariances. Consequently, the FM combines the tracks

from several radars to result in one fused track for

each target, all contained within the joint inferred state

vector x̂k. This vector and its associated uncertainty
support is used in the decision method and resource

management functional blocks to a) to search an area

and detect targets, b) balance the search requirement

with the requirement to direct the radars through sk
to minimise (for example) the sum of covariances of

all existing tracks and c) to decide and communicate

through uk whether to scramble fighters to intercept
targets deemed to be serious threats based on some

cost/benefit analysis. The reader can consult [2] for an

additional anti-rhino poaching use case example. The

example (captured in Table III) should hopefully be self

explanatory, but for a brief description, the reader can

consult [2].

VI. EVALUATION USING THE URREF ONTOLOGY
The Uncertainty Representation and Reasoning

Evaluation Framework (URREF) includes an ontology,

the URREF ontology, that captures primary and sec-

ondary concepts related to uncertainty representation

and reasoning in information fusion systems, the crite-

ria for their evaluation, as well as the links between the

concepts.4 One of the main objectives of the URREF

ontology is to define and articulate the criteria which

enable the systematic reasoning about and evaluation
of uncertainty representation (instantiated or theoreti-
cal, for example a specific probability distribution or

the underlying uncertainty formalism e.g., probability,

belief based representations, fuzzy representations) and

reasoning (inference in general e.g., Bayes’ rule, Demp-
ster’s combination rule) in information fusion systems.

These are the primary subjects of evaluation [19]. The

4The latest version of the ontology can be viewed at the webpage

with the following URL: http://eturwg.c4i.gmu.edu/?q=URREFv3.

The OWL file of the URREF ontology can be opened using the free,

open-source ontology software “protégé.”

TABLE III

Table of symbols together with examples from multi-sensor

multi-target tracking with track fusion use case.

Symbol Example

RWEP An aircraft that can be sensed by radars

Isolated

sub-world

Area that is within range of radar network

Di,k All EM returns at time k from targets sensed by

radar i

Sensor i The ith radar in a network of air surveillance

radars

−n,k Dynamical characteristics (mass, powerplant,

airfoil etc.) of the nth aircraft

!i Dynamical characteristics (mass, powerplant,

airfoil etc.) of all aircraft, as well as dynamical

characteristics owing to interactions between

aircraft, all observed by sensor i

zi All radar tracks at time k from radar i

Zi Bayesian probability (sensors), Fuzzy natural

language (human report)

hi(¢) Probability density function of filtering densities

parameterised by means and covariances

xk Combined state of all targets after track fusion

zk Combined state vectors of all tracks before

fusion

f±e,°(¢) Almost constant velocity dynamical model

g®,¯e ,°(¢) Gaussian filtering probability densities for radar

tracks

½ N/A, since Z and UR are both probabilistic

uk Message to fighter to intercept target

sk Message to increase scan rate of a radar

μ New track density

® Uncertainty associated with quantisation error

in radar digital to analog converter

¯e Uncertainy owing to Gaussian approximation of

measurement noise in rectangular coordinates

¯a Measurement noise

±e Uncertainy owing to Gaussian approximation of

plant noise to represent target manoeuvres

±a Plant noise

° Uncertainty owing to ignoring targets out of

range of the radar network

UR Bayesian probabilistic representation

U Probability distribution

μ̂ Inferred new track density

x̂k:N Inferred distribution of the states of all targets

after fusion at time k, and state distribution

predictions from time k+1 up to a future

horizon of k+N

ºÃ(¢) A mapping from a perceived state to a

utility/reward. In a target tracking system, this

could be the reciprocal of the sum of track

covariances.

Á¢(¢) A mapping from a perceived state and predicted

future states to actions. In the case of a target

tracking example, this could be a function

which defines the amount of time spent by

radars on scanning as opposed to tracking,

given the sum of track covariances and the

recency of scan coverage of an area. This

would be to balance current and future track

accuracy as opposed to detecting possibly

undetected targets at a time and into the future.
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primary subjects cannot stand on their own, and as such,

the evaluation of secondary subjects is also catered for
in the URREF ontology. The secondary subjects are de-

fined as the source of information (sensors), the piece of

information (sensor output), the fusion method (imple-

mented by the fusion algorithm) and the mathematical

model (the process and sensor/data model, both repre-

sented byM).

A. FE-1 (sources of information)

Sources (sensors) that produce information, whether

they are humans or transducers should be evaluated ac-

cording to source criteria. These are secondary subjects

of evaluation, and fall under DataCriterion the current
view of the ontology, with the relevant subclasses be-

ing Quality (specifically relating to source quality dis-
tinct from information quality) and Credibility. Note that
since in this paper FE-1 to FE-4 replace ADP-1 to ADP-

4 that was presented [2], the criteria specified are dif-

ferent.

B. FE-2 (input information and model)

Here the information criteria are relevant for the in-

put information, and representation criteria are relevant

for the modelM and uncertainty representation UR and
associated uncertainty relations U . In the URREF ontol-
ogy the information criteria are under the classes Dat-
aCriterion and DataHandlingCriterion. The associated
subclasses can be used to evaluate the input information.

Quality can also be used, but here relate to information
quality as opposed to source quality used in FE-1. The

model M and uncertainty representation UR and as-

sociated uncertainty relations U can be evaluated using
the class RepresentationCriterion and all the associated
subclasses.

C. FE-3 (reasoning and combined information)

This element of the FM (the inference engine I
in Fig. 4), is evaluated according to ReasoningCriteria,
which consist of ComputationalCost, Scalability, Perfor-
mance and Consistency. The output of the reasoning
component (or inference engine) can again be evaluated

according to the DataCriteria, as with the input of the
FM. The output of a FM may form the input of another

FM in the case of distributed fusion.

D. FE-4 (decision method and output information)

The uncertainty about the effect of actions sk and
uk on the real world in the modelM is a form of epis-

temic process abstraction uncertainty, represented by Âe.
It reduces the optimality of the decision process. This

is epistemic uncertainty may be evaluated according to

RepresentationCriteria, and is the uncertainty owing to
imperfect modelling contained in the model M. Fur-

thermore, the decision process is a form of reasoning

(through optimisation), and can be therefore be eval-

uated according to ReasoningCriteria. Maximising the

expected utility combines uncertainty with utility, and

the utility part carries an element of subjectivity related

to a desired outcome. In many cases, a desired outcome

is the combination of conflicting and competing ob-

jectives with relative weightings. Therefore, some Dat-
aCriteria such as Objectivity, RelevanceToProblem and

WeightOfEvidence may be used.

VII. CONCLUSIONS

In this paper, the flow of abstraction in fusion

system inception, design and implementation is con-

trasted to the flow of information and the flow of de-

cisions/actions during the routine operation of a fusion

system. Without a complete list of uncertainties that en-

ter during these two phases of the fusion system life

cycle, the fusion system practitioner might not consider

the implications of certain design choices relating to

chosen variables of interest, uncertainty representations,

reasoning formalisms, and simplifying assumptions. As

mentioned in [3], engineers and system designers are

biased towards a default uncertainty representation or

reasoning methods, namely the methods they know and

are comfortable with. As such, the cost for them to learn

new formalisms that could possibly be better suited to

a particular application should also be evaluated. Con-

sulting a list of explicit uncertainty types that are a re-

sult of fusion system development and routine opera-

tion, would minimise errors of omission and oversight,

and simplifying assumptions and design choices can be

properly characterised.
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Tracking uncertainty
propagation from model to
formalization: Illustration on
trust assessment
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This paper investigates the use of the URREF ontology to char-

acterize and track uncertainties arising within the modeling and

formalization phases. Estimation of trust in reported information,

a real-world problem of interest to practitioners in the field of se-

curity, was adopted for illustration purposes. A functional model of

trust was developed to describe the analysis of reported information,

and it was implemented with belief functions. When assessing trust

in reported information, the uncertainty arises not only from the

quality of sources or information content, but also due to the inabil-

ity of models to capture the complex chain of interactions leading to

the final outcome and to constraints imposed by the representation

formalism. A primary goal of this work is to separate known ap-

proximations, imperfections and inaccuracies from potential errors,

while explicitly tracking the uncertainty from the modeling to the

formalization phases. A secondary goal is to illustrate how criteria

of the URREF ontology can offer a basis for analyzing performances

of fusion systems at early stages, ahead of implementation. Ideally,

since uncertainty analysis runs dynamically, it can use the existence

or absence of observed states and processes inducing uncertainty to

adjust the tradeoff between precision and performance of systems

on-the-fly.
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I. INTRODUCTION

A key element when designing information fusion

systems is the way the system designer isolates and ana-

lyzes real world phenomena. A model is abstracted into

a simpler representation, in which components, mod-

ules, interactions, relationships and data flows are easier

to express. Uncertainty tracking highlights approxima-

tions induced by model construction and its formaliza-

tion, as well as providing a checklist to ensure that all

uncertainty factors have been identified and considered

ahead of system implementation.

This paper illustrates the use of the uncertainty rep-

resentation and reasoning framework (URREF) ontol-

ogy [13] to identify and assess uncertainties arising dur-

ing the modeling and formalization phases of an in-

formation fusion system intended to estimate trust in

reported information.

Trust assessment is a real-world problem grounded

in many applications relying on reported items, with dif-

ferent persons observing and then reporting on objects,

individuals, actions or events. For such contexts, using

inaccurate, incomplete or distorted items can result in

unfortunate consequences and analysts need to ensure

the consistency of reported information by collecting

multiple items from several sources.

From the perspective of an information analyst, trust

can be analyzed along two dimensions: the subjective

evaluation of items reported by the source itself, called

self-confidence, and the evaluation of source by the an-

alyst, called reliability. While self-confidence encom-

passes features of subjectivity, the reliability of a source

is related to the quality of previously reported items, the

competence of the source for specific topics, and the

source’s capacity for misleading intentions. Trust esti-

mation aims at capturing, in an aggregated value, the

combined effects of self-confidence and reliability on

the perceived quality of information. The model is rep-

resented with belief functions, a formalism which offers

a sound mathematical basis to implement fusion opera-

tors which estimate trust by combining self-confidence

and reliability.

The model developed for trust assessment focuses

on the global characterization of information and pro-

vides a better understanding of how trust is to be es-

timated from various dimensions. The overall process

has humans as a central element in both the production

and the analysis of information.

Trust in reported information offers a good illustra-

tion for tracking uncertainty: the phenomenon is com-

plex, so any model adopted is generally a simplifica-

tion of the real world interactions. Uncertainties can be

made explicit not only for static elements of the model,

such as sources or items, but also for the dynamic pro-

cesses of combining items with one another. Moreover,

adopting belief functions as representation formalism

will have an impact on the way an information system

could be implemented and on the accuracy of its results.
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The contribution of this paper is twofold: first, it

presents a trust estimation model which combines the

reliability of sources and self-confidence of reported

items, and, second, the paper analyzes types of uncer-

tainty occurring during modeling and formalization by

relating elements of the model to uncertainty criteria

defined by the URREF ontology.

The remainder of this paper is divided into 8 sec-

tions: section II discusses related approaches for trust

modeling and uncertainty assessment. The problem

tackled in this paper in presented in section III. Sec-

tion IV describes the model developed for trust estima-

tion, while its implementation with belief functions is

presented in section V. The analysis of uncertainty is

discussed in VI, while examples and scenarios for trust

assessment are presented in section VII. Strengths and

limitations of belief-based formalization are discussed

in section VIII and section IX concludes this paper.

II. RELATED APPROACHES
The work presented in this paper is related to ap-

proaches for trust modeling and assessment as well as

solutions for uncertainty analysis for information fusion

systems. Trust modeling is not a new research topic;

it spans diverse areas such as agent systems [30] and

logical modeling and argumentation [50]. The Internet

and social media offer new application contexts for trust

assessment; this topic is addressed in relation to service

provision on the Internet [36], social networks analysis

[57], and crowdsourcing applications [64]. Trust anal-

ysis is also of interest in the military field where tech-

niques have been developed in order to identify clues

of veracity in interview statements [63].

The concept of trust in these communities varies in

how it is represented, computed and used. Although

having an obvious social dimension, trust is not only un-

derstood with regard to other humans, but also towards

information pieces [64], information sources [44], Inter-

net sites [21], algorithms for data and knowledge fusion

[20], intelligent agents [30], and services for the Internet

of things [31].

While definitions of trust vary from one domain to

another, there are some common elements. The first

commonality for all research areas cited above is to

consider trust as a user-centric notion that needs to be

addressed in integrated human-machine environments

which rely heavily on information collected by humans,

even if further processing can be executed automati-

cally. Moreover, all definitions associate some degree of

uncertainty with trust, which is then captured by con-

cepts such as subjective certainty [27] and subjective

probability [10].

Trust goes hand in hand with the concepts veracity

[4] and deception. [45] addresses veracity along the di-

mensions of truthfulness/deception, objectivity/subject-

ivity and credibility/implausibility. The authors devel-

oped a veracity index ranging from true/objective/cred-

ible to untrustworthy/subjective/implausible to char-

acterize texts in the context of big data analysis. Decep-

tion is defined as a message knowingly transmitted with

the intent to foster false beliefs or conclusions. The topic

is addressed in studies from areas such as interpersonal

psychology and communication [9], [33] and it is also

considered in the field of natural language processing,

as part of a larger research direction tackling subjectiv-

ity analysis and the identification of private states (emo-

tions, speculations, sentiments, beliefs). These solutions

stem from the idea that humans express various degrees

of subjectivity [55] that are marked linguistically and

can be identified with automatic procedures [54].

Contributions on trust estimation keep the distinction

between analyzing the source of information, the item

reported and reasoning about trust. Approaches devel-

oped for trust in information sources consider that trust

is not a general attribute of the source but rather re-

lated to certain properties: competence [29], sincerity

and willingness to cooperate [50]. On this basis, it be-

comes possible to consider the competence of a source

not in general but with respect to specific topics [28].

Trust can be also analyzed in relation to roles, categories

or classes [34].

Research efforts on reasoning about trust analyze

information sources from past behaviors rather than di-

rectly from their properties [46], or they infer trust from

estimations already computed for a set of properties [1].

These approaches generally focus on building trust by

using argumentation [62] or beliefs functions [26], or

investigating the joint integration of those techniques

[52]. Taking this work a step further, [51] identified

several patterns for reasoning about trust and its prove-

nance while the notion of conflict in handling trust is

discussed in [65].

As shown by approaches above, trust is a multi-

faceted concept and, in practice, this complex notion

can be decomposed into two components: communica-

tion or interaction trust, and data trust [48]. The model

developed deals with data trust and keeps the distinction

between sources and items provided by those sources,

although several approaches consider these elements as

a whole [26], estimating the trust of information sources

[1], [65] rather than information items. The model does

not require statistical data to infer the behavior of the

source [46] and introduces reliability to characterize the

source. More specifically, reliability encompasses not

only competence [34], [29] and reputation [28]–two

attributes already considered by previous approaches–

but also intentions which constitute an original aspect

of the model. Intention is of important significance in

the context of human-centered systems, including open-

sources, and supports the analysis of emerging phenom-

ena such as on-line propaganda or disinformation. An-

other original aspect of the model is consideration of

the characterization of items by the source itself, thus

overcoming a main limitation of the solution presented

in [12]. Our approach can be considered as partially

overlapping solutions investigating trust propagation in
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direct and indirect reporting [51], [62], and the model

enables a particular kind of trust estimation, based both

on more or less complete characterizations of the source

by the analyst, and more or less accurate characteriza-

tions of the items by the source. The model also ad-

dresses disagreement and the fusion of diverging opin-

ions, not in a panel of experts as described in [52], but

rather between items showing high levels of confidence

according to the source and sources having low relia-

bility according to the analyst. By ascribing characteri-

zations to both information sources and reported items,

the model allows analysts to make use of both prior ex-

perience and their own beliefs in order to assess various

degrees of trust.

From a different perspective, the evaluation of un-

certainty regarding the inputs, reasoning and outputs of

the information fusion is the goal of Evaluation Tech-

niques for Uncertainty Representation Working Group1

(ETURWG). The group developed an ontology for

this purpose [13]. The URREF ontology defines the

main subjects under evaluation [18], such as uncer-

tainty representation and reasoning components of fu-

sion systems. Furthermore, the frame also introduces

criteria for secondary evaluation subjects: sources and

pieces of information, fusion methods and mathemati-

cal formalisms. URREF criteria have generic definitions

and therefore can be instantiated for applications with

coarser or finer granularity levels. This means evalua-

tion metrics can be defined for data analysis [17], in-

creased particularity for data specific types [22] or at-

tributes, reliability and credibility [7], self-confidence

[8] or veracity [5].

In addition to allowing a continuous analysis of

uncertainty representation, quantification and evalua-

tion, as described in [15], URREF criteria are detailed

enough to capture model-embedded uncertainties [37],

imperfection of knowledge representations [25], and

their propagation in the context of the decision loop

[16]. The frame also offers a basis to compare different

fusion approaches [24]. URREF criteria were used for

uncertainty tracking and investigation in several appli-

cations: vessel identification for maritime surveillance

[38], activity detection for rhino poaching [43] and im-

agery analysis for large area protection [6].

Beyond developing a model for trust estimation, this

paper also fills a gap within the ETURWG community

by illustrating how uncertainty analysis tracks imper-

fections occurring from problem definition to model

abstraction and formalization.

III. HUMAN SOURCES AND REPORTED
INFORMATION
Many applications rely on human sources which are

used to continuously supply observations, hypotheses,

subjective beliefs and opinions about what they sense

or learn. In such applications reports are often wrong,

1http://eturwg.c4i.gmu.edu/

Fig. 1. Assertions and opinions in human messages.

due to environment dynamics, simple error, malicious

act or intentions, [58]. From the analyst standpoint, de-

cisions have to be made based on indirect reporting and

trust relies upon the in-depth investigation of items and

sources, thus the analysis of reported items is a criti-

cal step. This analysis is a multilevel process, relying

on the ability of analysts to understand the content of

messages and assess their quality from additional clues.

The use cases described below highlight levels of indi-

rection occurring when collecting information and their

with impact on trust estimation.

A. Assertions, opinions and reported information

For illustration, let’s consider X, the analyst receiv-
ing information provided by a human source Y.
Case 1: direct reporting X is an analyst collecting

evidence in order to decide whether or not an individual

is involved in terrorist activities. In particular, he takes

into account reports submitted by Y, a human source.
Those reports usually consist on a mixed set of asser-

tions (e.g., descriptions of events or states observed by

Y) and opinions (i.e., judgments, assessments, or be-
liefs) expressed by Y about assertion which give the

analyst an insight into how strongly the source commits

to the assertion, see Fig. 1.

In the statement contained in Fig. 1, the source Y lets
us know that she does not commit her full belief to the

assertion that John is a terrorist, otherwise the reporter
would have used phrasing such as I am completely
convinced or it is without doubt or simply reported John
is a terrorist as an unadorned statement.
The information item is the sentence, which contains

the assertion John is a terrorist and the uncertainty
degree to be assigned because the analyst knows that

Y is not completely certain about her own statements.
The analyst must make a judgment about the veracity

of John being a terrorist based upon factors such as

previous experience with Y’s assessments in the past,
or, perhaps, on the fact that other sources are relating

the same information.

Case 2: indirect reportingAgain, let X be an analyst
collecting evidence in order to decide whether or not an

individual is involved in terrorist activities. In this case,

he takes into account reports submitted by Y, a human
source who is herself relating information obtained from

a secondary source named Mary, see Fig. 2.

The source Y does not report on her direct observa-
tions or her deductions or beliefs, but conveys informa-

tion received from a second source, in this case Mary,

in the statement in Fig. 2.
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Fig. 2. Hearsay, assertions and opinions in human messages.

In this report the information item is again the

sentence containing the assertive part John is a terrorist
but this use case introduces more levels of complexity

in uncertainty to deal with. The information that the

assertion comes from Mary, who has added her own

opinion, is a distancing mechanism on the part of the

source Y as (unlike in Fig. 1), she is neither claiming
the opinion nor the assertion.

This case introduces yet more layers of uncertainty.

How sure can we be that the reporter Y has accurately
repeated what Mary said? For example, did Mary really

say it is likely or did the reporter insert this (intentionally
or unintentionally) based upon the reporter’s assessment

of the reliability of Mary as a source of information?

Or perhaps, subtly, Y is expressing her own uncertainty
by putting words in Mary’s mouth. Furthermore, it is

possible Mary made this statement under circumstances

which would strengthen or weaken this statement, but

those conditions have not been passed on by the re-

porter.

The goal of the analyst is to take this assertion into

account, but also to encode his own belief about the

quality of the source further in the analysis. All these

different attitudes have to be evaluated by the analyst,

who may have additional background information or

prior evaluation of the source that have to be considered.

In both cases discussed above, the outcome of the

analyst is the assertive part of the information item,

augmented with a coefficient that helps to measure

and track the different levels of trust for their future

exploitation. For the purpose of this work, this quality

is called trust in reported information.

B. Concepts and notions for trust assessment

This section introduces several notions that are rel-

evant for trust analysis.

Trustworthiness of information sources is considered,
for the purpose of this work, as confidence in the ability

and intention of an information source to deliver correct

information, see [3]. Trustworthiness is an attribute

of information sources who have the competences to

report information, and who can be relied upon to share

sincerely and clearly their beliefs on the uncertainty

level of reported information. An item provided by such

a source is then trusted by analysts.

Self-confidence [8] captures the explicit uncertainty
assigned to reported assertions by the source. State-

ments may include the source’s judgments when lack-

ing complete certainty; these judgments are generally

identified through the use of various lexical clues such

as possibly, probably, might be, it is unlikely, undoubt-
edly, etc., all of which signal the source’s confidence

(or lack thereof) in the veracity of the information be-

ing conveyed. It should be noted that self-confidence,

in our usage understood as the linguistic dimension of

the certainty degree that the source assigns to reported

items, is an aspect exhibited by the source, but it will

be considered from the analyst’s standpoint during trust

analysis.

Reliability of sources indicates how strongly the an-
alyst is willing to accept items from a given source at

their face-value. As an overall characterization, reliabil-

ity is used in this work to rate how much a source can

be trusted with respect to their reputation, competence

and supposed intentions.

Reputation of sources [11] captures a commonly ac-
cepted opinion about how the source performs when

reporting information, and is generally understood as

the degree to which prior historical reports have been

consistent with fact. For human sources, reputation is

considered by the analyst for each source based on pre-

vious interactions with the source and on the source’s

history of success and failure in delivering accurate in-

formation. Reputation relies, to a large extent, upon neg-

ative and positive experiences provided to the analyst by

the source in the past.

Competence of sources [29] is related to a source’s
possession of the skills and knowledge in reporting on

various topics: This aspect defines to what extent a

human source can understand the events they report on,

whether the source has the ability to accurately describe

those events, and how capable the source is of following

the logic of processes producing the information.

Intentions correspond to specific attitudes toward the
effect of one’s actions or conduct. Reporting informa-

tion can become more a means to manipulate others than
a means to inform them [14] and thus can be carried out
with the express purpose of inducing changes in another

person’s beliefs and understanding. Intentions are spe-

cific to human sources as only humans have the capacity

to deliberately provide false or misleading information.

Sensors may provide erroneous data due to a number

of factors such as device failure or environmental con-

ditions, but never due to intention.

In addition to the above facets, credibility of informa-
tion and reliability of sources are two notions introduced
by the STANAG 2511 [49], which standardizes the ter-

minology used in analysis of intelligence reports used

by NATO Forces with distinct focus on sources and in-

formation provided. STANAG reliability is understood

with respect to the quality of information that has been

delivered by sources in the past. STANAG credibility

relies on the intuition that a joint analysis of items in

combination with each other will likely reveal inconsis-

tencies, contradictions or redundancies. Reliability and

credibility are independent criteria for evaluation. Defi-

nitions for both reliability and credibility are in natural

language.
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Fig. 3. Model for trust analysis.

Attributes of sources and information items adopted

for the model of trust are related to the notions intro-

duced by the STANAG 2511 but are addressed differ-

ently: reliability of sources is understood here in terms

of source competence, reputation and intentions, while

credibility is restricted to features of self-confidence as

described above.

IV. A FUNCTIONAL MODEL OF TRUST

This section introduces the model developed to es-

timate trust in reported information by taking into ac-

count the reliability of the source and the source’s own

characterization of reported items. The advantage of this

distinction is to better dissociate the impact of both be-

liefs of sources and opinions of analysts on the source

on the information provided.

Even if the primary function of a source is to provide

information, we keep the distinction between the source

and the information by considering separate dimensions

for each element. The rationale behind this is the obser-

vation that even reliable sources can sometimes provide

inaccurate or imprecise information from one report to

another, which is even more plausible in the case of

human sources.

The model, illustrated in Fig. 3., is composed of a

source which provides an information item augmented

with a degree of uncertainty captured by self-confidence

to an analyst. Based upon his direct assessment of the

reliability of the source, the analyst constructs his own

estimation of trust in the item reported.

In the following section, the model is discussed

using a granularity that is detailed enough to describe its

elements, but still rough enough to avoid the adoption

of a representation formalism.

A. Elements of the trust model

The model is composed of two elements: an infor-

mation source and reported items from that source. The

analyst is considered to be outside the model, although

she has multiple interactions with its elements.

Definition of information source: an information
source is an agent who provides an information item

along with a characterization of its level of uncertainty.

“Source” is a relative notion, depending on the per-

spective of analysis. In general, information is propa-

gated within a chain relating real world information to

some decision maker, and agents along the path can be

both trained observers, whose job is to provide such

reports, as well as witnesses or lay observers who may

add items, in spite of not being primarily considered as

information sources, but rather as opportunistic ones.

The notion of source is central in many informa-

tion fusion applications and numerous research efforts

aimed at modeling the properties of those applications.

A general analysis of sources is undertaken by [32],

who identify three main classes: S-Space, composed of

physical sensors, H-Space for human observers and I-

Space for open and archived data on the Internet. In

[39], a unified characterization of hard and soft sources

is described, along with a detailed description of their

qualities and processing capabilities.

Processing hard sensor information is widely cov-

ered [42] in the research community, and can be con-

sidered quite mature, while the integration of human

sources brings many new challenges. Our model ad-

dresses human sources, and reported items can refer to

actions, events, persons or locations of interest.

Information reported by humans is unstructured,

vague, ambiguous and subjective, and thus is often

contrasted with information coming from physical sen-

sors, described as structured, quantitative and objective.

While humans can deliberately change the information

or even lie, sensors are also prone to errors and therefore

hard information items are not always accurate.

For human agents, the source is part of the real

world, (a community, a scene, an event) and can be

either directly involved in the events reported, or just

serving as a witness.

Definition of reported information: Reported in-
formation is a couple (I,Â(I)), where I is an item of

information and Â(I) the confidence level as assigned
by the source. Items are information pieces that can be

extracted from natural language sentences, although the

extraction and separation from subjective content are

out of the scope for the model developed. Each item I
has assertive ia and subjective is components conveying
factual and subjective contents respectively.

The analysis of reported information continues to

be an open topic as the fusion of information from soft

sources receives increasing attention in recent years. Al-

though some authors have developed logic-based ap-

proaches for modelling distortions of items exchanged

between agents who have both the intention and the

ability to deceive [12], there are still more challenges

arising when the information is analyzed in its textual

form.

Features of uncertainty, as expressed in natural lan-

guage statements, are analyzed in [2] while [23] pro-

vides a broader discussion of pitfalls and challenges re-

lated to soft data integration for information fusion.
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B. Functions of the trust model

The model introduces several functions estimating

features of reliability, self-confidence and trust, as de-

scribed hereafter.

Definition of a reliability function: a reliability
function is a mapping which assigns a real value to an

information source.

This real value is a quantitative characterization of

the source, inferred with respect to the source’s previous

failures, its reputation and the relevance of its skills for

specific domains. For this model, the reliability of hu-

man sources combines three features: competence, rep-

utation and intention. Competence captures the intuition

that the quality of information reported by a source de-

pends on the level of training and expertise, which may

be designated as satisfactory or not, depending upon

the task. Reputation is the overall quality of a source,

estimated by examination of the history of its previ-

ous failures. Intentions refer to attitudes or purposes,

often defined with respect to a hidden purpose or plan

to achieve.

Reliability is a complex concept and, from a prac-

tical standpoint, it is difficult to have complete infor-

mation about the global reliability of a source. Thus,

this model describes reliability along the three attributes

(competence of a source, its reputation and its inten-

tions) described above. In practical applications, this

solution allows for compensation for insufficient infor-

mation on one or several aspects of reliability and to

conduct, if necessary, the analysis of reliability based

on just one attribute.

Evaluation of reliability Assessing reliability is of
real interest when opportunistic sources are considered

because the analyst has neither an indication of how

the source might behave nor the ability to monitor or

control either the human providing the information or

the environment in which the source operates. Various

methods can be developed to estimate competence, rep-

utation and intentions of the source. For example, com-

petence is closely related to the level of training of an

observer or can be defined by domain knowledge. Val-

ues can be expressed either in a linguistic form (bad,
good, fair, unknown) or by a number. Reputation is an
attribute which can be constructed not just by examining

previous failures of the source but also by considering

its level of conflict with other sources; this too can be

expressed by numeric or symbolic values.

While reputation and competence can be, at least in

some cases, estimated from prior knowledge, charac-

terizing the intentions of a source is subject to human

perception and analysis. Judgment of human experts is

needed not just because there usually is no a priori char-
acterization of the source with respect to its intentions

but also because it is important to assess those aspects

from the subjective point of view of an expert in the

form of binary values only.

From a practical standpoint, it is suitable to provide

an expert with a description of source competence, rep-

utation and intentions as assessed independently. This

way, experts can have the opportunity to develop dif-

ferent strategies of using reliability: they can decide

to assign different importance to those attributes un-

der different contexts or can use their own hierarchy

of attributes. For instance, an expert may consider as

irrelevant the information provided by a source whose

competences is lower than a specific threshold or if he

suspects the source of having malicious intentions.

Definition of a self-confidence function: a self-
confidence function is a mapping linking a real value

and an information item. The real value is a measure

of the information credibility as evaluated by the sensor

itself and is of particular interest for human sources,

as often such sources provide their own assessments of

the information conveyed. Identifying features of self-

confidence requires methods related to a research task

of natural language processing: the identification of as-

sertions and opinions in texts. In this field, the com-

monly adopted separation of those notions considers

assertions as statements that can be proven true or false,

while opinions are hypotheses, assumptions and theo-

ries based on someone’s thoughts and feelings and can-

not be proven.

Evaluation of self-confidence: Estimation of self-
confidence aims at assigning a numerical value which

captures how strongly the author stands behind asser-

tions in the statement, on the basis of lexical clues he has

included in the utterance. More generally, markers of an

author’s commitment are in the form of hedges, modal

verbs and forms of passive/active language. A hedge is

a mitigating word that modifies the commitment to the

truth of propositions, i.e., certainly, possibly. Its impact

can be magnified by a booster (highly likely) or weak-

ened by a downtoner (rather certain).

Modal verbs indicate if something is plausible, pos-

sible, or certain (John could be a terrorist, you might
be wrong). Moreover, in some domains sentences mak-
ing use of the passive voice are considered as an in-

dicator of uncertainty, in the sense that author seeks

to distance himself from the assertions in the items re-

ported through use of passive voice. Quantifying self-

confidence is a topic of particular interest for intelli-

gence analysis, and it was early addressed by Kent in

1962, [40] who created a standardized list of words of

estimative probability which were widely used by intel-

ligence analysts. This list has continued to be a common

basis to be used by analysts to produce uncertainty as-

sessments.

Kesselman describes in [41] a study conducted to

analyze the way the list was used by analysts over the

past, and identifies new trends to convey estimations and

proposes a new list having the verb as a central element.

Given the variety of linguistic markers for uncertainty,
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the estimation of a numerical value based on every pos-

sible combination seems unrealistic, as the same sen-

tence oftencontains not just one but multiple expressions

of uncertainty. Additionally, assigning numerical values

to lexical expressions is not an intuitive task, and Rein

shows that there are no universal values to be associated

in a unique manner to hedges or other uncertainty mark-

ers, see [53]. As the author argues further, it is, however,

possible to order those expressions and use this relative

ordering as a more robust way to compare combinations

of uncertainty expressions, and thus highlight different

levels of uncertainty in natural language statements.

Using the model for trust analysis: The model pro-
posed in this work proposed in this work combines var-

ious attributes of the source (discussed previously under

“reliability”) with “self-confidence” in order to capture

trust of information as conveyed by the human. The

model is source-centric predominantly focused on the

source’s ability to correct, alter or qualify the informa-

tion report Although the rules for ranking, prioritizing

and combining the attributes introduced by the model

can be drafted empirically, the estimation of a trust value

requires a formal representation of the model.

A possible solution for estimating a unified value

for trust is to consider reliability and self-confidence

within the framework of an uncertainty theory and to

rely on the set of combination rules the theory defines–

for example, those developed in probability theory, in

possibility theory, or in belief functions theory. All these

theories provide various operators to combine reliability

and self-confidence in order to estimate trust.

In the following the model is represented by using

belief functions and several scenarios are used to illus-

trate trust estimation.

V. TRUST FORMALIZATION WITH BELIEF
FUNCTIONS

The aim of trust formalization is to provide a formal

representation of the model, combining the capability

to exploit the structure and relationship of elements of

the model with the ability to express degrees of uncer-

tainty about those elements. Of particular interest to this

paper is the observation that the developed model intro-

duces a cognitive view of trust as a complex structure of

beliefs that are influenced by the individual’s opinions

about certain features and elements, including their own

stances. Such a structure of beliefs determines various

degrees of trust, which are based on personal choices

made by analyst, on the one hand, and the source, on the

other hand. Therefore, the formalization requires a for-

malism that is more general than probability measures

or fuzzy category representation, which are more suit-

able for applications considering trust in the context of

interactions between agents. Moreover, the limitations

of using subjective probabilities to formalize trust from

this cognitive standpoint are clearly stated in [10]. As a

result, the model was represented with belief functions,

a formalism that is consistent with the cognitive per-

spective of trust adopted by the model. This belief-based

representation provides the most direct correspondence

with elements of the model and their underlying un-

certainty, while being able to quantify subjective judg-

ments.

After introducing main concepts of belief functions,

this section shows how the formalism is used to repre-

sent the trust model.

A. Basic Belief Assignment

Belief Functions (BF) have been introduced by

Shafer in his his mathematical theory of evidence [56],

also referred to Dempster-Shafer Theory (DST), to

model epistemic uncertainty. The frame of discern-

ment (FoD) of the decision problem under considera-

tion, denoted £, is a finite set of exhaustive and mu-
tually exclusive elements. The powerset of £ denoted

2£ is the set of all subsets of £, empty set included.
A body of evidence is a source of information char-

acterized by a Basic Belief Assignment (BBA), or a

mass function,which is the mapping m(:) : 2£! [0,1]

that satisfies m(Ø) = 0, and the normalization conditionP
A22£ m(A) = 1. The belief (a.k.a credibility) Bel(:) and

plausibility Pl(:) functions usually interpreted as lower
and upper bounds of unknown (subjective) probability

measure P(:), are defined from m(:) respectively by

Bel(A) =
X

BμAjB22£
m(B) (1)

Pl(A) =
X

B\A6=ØjB22£
m(B) (2)

An element A 2 2£ is called a focal element of the

BBA m(:), if and only if m(A)> 0. The set of all focal
elements of m(:) is called the core of m(:) and is denoted
K(m). This formalism allows for modeling a completely
ignorant source by taking m(£) = 1. The Belief Interval
(BI) of any element A of 2£ is defined by

BI(A)
¢
=[Bel(A),Pl(A)] (3)

The width of belief interval of A, denoted U(A) =
Pl(A)¡Bel(A) characterizes the degree of imprecision
of the unknown probability P(A), often called the uncer-
tainty of A. We define the uncertainty (or imprecision)
index by

U(m)
¢
=
X
A2£

U(A) (4)

to characterize the overall imprecision of the subjective

(unknown) probabilities committed to elements of the

FoD bounded by the belief intervals computed with the

BBA m(:).
Shafer proposed using Dempster’s rule of combi-

nation for combining multiple independent sources of

evidence [56] which is the normalized conjunctive fu-

sion rule. This rule has been strongly disputed in the
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BF community after Zadeh’s first criticism in 1979, and

since the 1990s many rules have been proposed to com-

bine (more or less efficiently) BBAs; the reader is ad-

vised to see discussions in [59], in particular the propor-

tional conflict redistribution rule number 6 (PCR6). To

combine the BBAs we use the proportional conflict re-

distribution (PCR) rule number 6 (denoted PCR6) pro-

posed by Martin and Osswald in [59] because it pro-

vides better fusion results than Dempster’s rule in sit-

uations characterized by both high and low conflict as

explained in detail in [19], [35].

The PCR6 rule is based on the PCR principle which

transfers the conflicting mass only to the elements in-

volved in the conflict and proportionally to their indi-

vidual masses, so that the specificity of the information

is entirely preserved. The steps in applying the PCR6

rule are:

1) apply the conjunctive rule;

2) calculate the total or partial conflicting masses; and

3) redistribute the (total or partial) conflicting mass

proportionally on non-empty sets.

The general PCR6 formula for the combination of

n > 2 BBAS is very complicated (see [59] Vol. 2, Chap.
2). For convenience’s sake, we give here just the PCR6

formula for the combination of only two BBAs. When

we consider two BBAs m1(:) and m2(:) defined on the
same FoD £, the PCR6 fusion of these two BBAs is
expressed as mPCR6(Ø) = 0 and for all X 6=Ø in 2£
mPCR6(X)

=
X

X1,X222£
X1\X2=X

m1(X1)m2(X2)+

X
Y22£nfXg
X\Y=Ø

·
m1(X)

2m2(Y)

m1(X) +m2(Y)
+
m2(X)

2m1(Y)

m2(X) +m1(Y)

¸
(5)

where all denominators in (5) are different from zero.

If a denominator is zero, that fraction is discarded. A

very basic (not optimized) Matlab code implementing

the PCR6 rule can be found in [59] and [61], and also

in the toolboxes repository on the web.2

Instead of working with quantitative (numerical)

BBA, it is also possible to work with qualitative BBA

expressed by labels using the linear algebra of re-

fined labels proposed in Dezert-Smarandache Theory

(DSmT), [59] (Vol. 2 & 3).

B. Trust formalization model
Because beliefs are well defined mathematical con-

cepts in the theory of belief functions, we prefer to use

self-confidence terminology to represent the confidence

declared by a source Y on its own assertion A. Let’s de-
note by A the assertion given by the source, for instance

2http://bfaswiki.iut-lannion.fr/wiki/index.php/Main Page

A=John is a terrorist. With respect to elements of the
model, A (the assertion) corresponds to ia, the assertive
part of the item I and v(A) is a numeric estimation of
the subjective is component of I.
The valuation v(A) made by the source Y about

the assertion A can be done either quantitatively (by

a probability or a BBA) or qualitatively (by a label

associated to a linguistic form). This paper considers

quantitative representation of v(A) for simplicity.3

The basic information items provided by a source

Y consists of A (the assertion), and v(A) (its valua-
tion). To be as general as possible, we suppose that

v(A) is a basic belief mass assignment defined with re-

spect to the very basic frame of discernment £A
¢
=fA, Āg

where Ā denotes the complement of A in £A, that is

v(A) = (m(A),m(Ā),m(A[ Ā)). Note that only two val-
ues of the triplet are really necessary to define v(A)
because the third one is automatically derived from

the normalization condition m(A)+m(Ā) +m(A[ Ā) =
1. So one could also have chosen equivalently v(A) =
[Bel(A),Pl(A)] instead of the BBA. In a probabilistic
context, one will take m(A[ Ā) = 0 and so v(A) = P(A)
because Bel(A) = Pl(A) = P(A) in such a case.
The self-confidence of the source Y is an extra factor

®Y 2 [0,1] which characterizes the self-estimation of the
quality of the piece of information (A,v(A)) provided by
the source itself. ®Y = 1 means that the source Y is 100%
confident in his valuation v(A) about assertion A, and
®Y = 0 means that the source Y is not at all confident in
his valuation v(A). In the theory of belief functions, this
factor is often referred as the discounting factor of the

source because this factor is usually used to discount the

original piece of information (A,v(A)) into a discounted
one (A,v0(A)) as follows [56]:

m0(A) = ®Y ¢m(A) (6)

m0(Ā) = ®Y ¢m(Ā) (7)

m0(A[ Ā) = ®Y ¢m(A[ Ā)+ (1¡®Y) (8)

The idea of Shafer’s discounting technique is to

diminish the belief mass of all focal elements with

the factor ®Y and redistribute the missing discounted

mass (1¡®Y) to the whole ignorance A[ Ā. Note that
the valuation of the discounted piece of information is

always degraded because its uncertainty index is always

greater than the original one, that is, U(m0)>U(m),
which is normal.

The reliability factor r estimated by the analyst X
on the piece of information (A,v(A)) provided by the
source Y must take into account both the competence
CY, the reputation RY and the intention IY of the source
Y. A simple model to establish the reliability factor

3Without loss of generality one can always map a qualitative rep-

resentation to a quantitative one by a proper choice of scaling and

normalization (if necessary).
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r is to consider that CY, RY and IY factors are repre-
sented by numbers [0,1] associated to select subjec-

tive probabilities, that is CY = P(Y is competent), RY =
P(Y has a good reputation) and RY = P(Y has a good
intention (i.e. is fair)). If each of these factors has equal

weight, then one could use r = CY£RY£ IY as a sim-
ple product of probabilities. However, in practice, such

simple modeling does not fit well with what the analyst

really needs to take into account epistemic uncertainties

in Competence, Reputation and Intention. In fact, each

of these factors can be viewed as a specific criterion in-

fluencing the level of the global reliability factor r. This
is a multi-criteria valuation problem. Here we propose

a method to solve the problem.

We consider the three criteria CY, RY and IY with
their associated importance weights wC, wR, wI in [0,1]
with wC +wR +wI = 1. We consider the frame of dis-
cernment £r = fr, r̄g about the reliability of the source
Y, where r means that the source Y is reliable, and r̄
means that the source Y is definitely not reliable. Each
criteria provides a valuation on r expressed by a corre-
sponding BBA. Hence, for the competence criteria CY,
one has (mC(r),mC(r̄),mC(r[ r̄)), while for the reputa-
tion criteria RY, one has (mR(r),mR(r̄),mR(r[ r̄)) and for
the intention criteria IY, one has (mI(r),mI(r̄),mI(r[ r̄)).
To get the final valuation of the reliability r of the

source Y, one needs to efficiently fuse the three BBAs
mC(:), mR(:) and mI(:), taking into account their im-
portance weights wC , wR, and wI . This fusion prob-
lem can be solved by applying the importance dis-

counting approach combined with PCR6 fusion rule

of DSmT [60] to get the resultant valuation v(r) =
(mPCR6(r),mPCR6(r̄),mPCR6(r[ r̄)) from which the deci-

sion (r, or r̄) can be drawn (using BI distance, for in-
stance). If a firm decision is not required, an approx-

imate probability P(r) can also be inferred with some
lossy transformations of BBA to probability measure

[59]. Note that Dempster’s rule of combination cannot

be used here because it does not respond to the impor-

tance discounting, as explained in [60].

The trust model consists of the piece of information

(A,v(A)) and the self-confidence factor ®Y provided

by the source Y, as well as the reliability valuation
v(r) expressed by the BBA (m(r),m(r̄),m(r[ r̄)) to infer
the trust valuation about the assertion A. For this, we
propose using the mass m(r) of reliability hypothesis r
of the source Y as a new discounting factor for the BBA
m0(:) reported by the source Y, taking into account its
self-confidence ®Y. Hence, the trust valuation vt(A) =

(mt(A),mt(Ā),mt(A[ Ā)) of assertion A for the analyst
X is defined by

mt(A) =m(r) ¢m0(A) (9)

mt(Ā) =m(r) ¢m0(Ā) (10)

mt(A[ Ā) =m(r) ¢m0(A[ Ā) + (1¡m(r)) (11)

or equivalently by

mt(A) =m(r)®Y ¢m(A) (12)

mt(Ā) =m(r)®Y ¢m(Ā) (13)

mt(A[ Ā) =m(r)®Y ¢m(A[ Ā)+ (1¡m(r)®Y) (14)
The DSmT framework using the PCR6 fusion rule

and the importance discounting technique provides an

interesting solution for the fusion of attributes having

different degrees of importance while making a clear

distinction between those attributes.

The discounting method proposed in this work is

directly inspired by Shafer’s classical discounting ap-

proach [56]. In our application, the classical discounting

factor that we propose integrates both the mass of relia-

bility hypothesis m(r) and the self-confidence factor ®Y.
It is worth noting that more sophisticated (contextual)

belief discounting techniques [47] exist and they could

also have been used, in theory, to refine the discounting

but these techniques are much more complicated and

they require additional computations. The evaluation of

contextual belief discounting techniques for such types

of application is left for further investigations and re-

search works.

VI. UNCERTAINTY ANALYSIS UNDER URREF
CRITERIA

Tracking uncertainties from problem description to

model construction and formalization is done under

criteria of the uncertainty representation and reasoning

evaluation framework.

The goal of URREF is to place the focus on the

evaluation of uncertainty representation and reasoning

procedures. The URREF ontology defines four main

classes of evaluation criteria: Data Handling, Represen-

tation, Reasoning and Data Quality. These criteria make

distinctions between the evaluation of the fusion system,

the evaluation of its inputs and outputs, and the eval-

uation of the uncertainty representation and reasoning

aspects.

Listing all criteria is an extensive task and in this

paper the authors will provide one piece of the puzzle

by considering criteria that relate to the evaluation of

uncertainty induced by the proposed model. In the

model developed in this paper, uncertainty is due to

imperfections of information gathering and reporting as

well as constraints of the representation formalism.

Uncertainty analysis is carried out by assigning un-

certainty criteria to elements and functions of the trust

model in order to make explicit the uncertainty arising

when the problem is abstracted by the model and the

model is then simplified in order to fulfill constraints of

specific formalism, Fig. 6.

The URREF criteria selected are subclasses of two

main concepts: Credibility, a subconcept under DataCri-
teria, and EvidenceHandling, a subconcept of Represen-
tationCriteria.
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Fig. 4. Trust estimation from source to analyst

To summarize, uncertainties of the model will be

captured by the following URREF criteria:

² Objectivity, subconcept of Credibility: indicates a
source providing unbiased information;

² ObservationalSensitivity, subconcept of Credibility:
characterizes the skills and competences of sources;

² SelfConfidence, subconcept of Credibility: measures
the certainty degree about the piece of information

reported, according to the source;

² Ambiguity, subconcept of EvidenceHandling: cap-
tures if the sources provide data supporting different

conclusions;

² Dissonance, subconcept of EvidenceHandling: cap-
tures the ability of formalism to represent inconsistent

evidence;

² Completeness, subconcept of EvidenceHandling: is
a measure of how much is known given the amount

of evidence; and

² Conclusiveness, subconcept of EvidenceHandling:
indicates how strong the evidence supports a conclu-

sion;

Besides selecting uncertainty criteria relevant for

trust estimation, the analysis also discusses the mapping

of URREF criteria to attributes of the model and sheds

a light on imperfect matchings. This mapping offers a

basis for identifying the limitations of the URREF on-

tology, by emphasizing those elements whose character-

izations in terms of uncertainty are out of the ontology’s

reach or beyond the ontology’s intended scope.

A. Uncertainties from problem definition to model
abstraction

Let M be the model for trust estimation, with ele-

ments introduced in paragraph IV: the source Y, the re-
ported item I with its assertive ia and subjective is parts,
and Â(I) the confidence level assigned by the source Y
to I.
From an information fusion standpoint, inputs of

the model are the source and the information items,

along with their uncertainty, captured with the follow-

ing URREF criteria:Objectivity, ObservationalSensitivity
and SelfConfidence. These criteria are subclasses of the
concept InputCriteria.
Objectivity is an attribute of the source, related to

its ability to provide factual, unbiased items, without

adding their own points of view or opinions. For a

source Y providing information item i, having is and

Fig. 5. Mapping of model attributes to URREF criteria

ia as the subjective and factual parts respectively, objec-
tivity can be expressed as:

Objectivity(Y,I) = Ão(is, ia) (15)

where Ão(is, ia) represents the mathematically quantified
expression of the subjective over the factual content of i.
ObservationalSensitivity is an attribute of the source

which represents the source’s ability to provide accurate

reports. In the proposed model, this criterion is an

aggregation of competence C and reputation R, two
attributes of the model.

ObservationalSensitivity(Y, i) = Ãos(C,R) (16)

where Ãos(C,R) is a function aggregating values of
competence and reputation.

Information items entering the system are described

by SelfConfidence. Again, considering is and ia as the
subjective and factual items conveyed by I, SelfConfi-
dence can be expressed as:

SelfConfidence(I) = Ãsc(is) (17)

with Ãsc(is) a function quantifying the subjective content
of item I.
Fig. 5 shows the mapping between the elements

of the model and the set of relevant URREF uncer-

tainty criteria. The mapping shows a perfect match be-

tween SelfConfidence as introduced by the model and
the eponymous URREF criterion as well as several im-

perfect matches described later in this paper.

At source level, URREF criteria are not able to

capture in a distinct manner the features of competence,

reputation and intentions, the main attributes of the

sources added by the model under Reliability. To some

extent, competence and reputation can be related to

ObservationalSensitivity, but intentions clearly remains
out of reach for URREF criteria.

B. Uncertainties from model to formal representation

Let F be the DST formalization of the trust esti-

mation model, with parameters introduced in paragraph

V. The formalism induces two types of uncertainty re-

lated to its capacity to handle incomplete, ambiguous

or contradictory evidence. The uncertainty of evidence

handling is captured by Ambiguity, Dissonance, Conclu-
siveness and Completeness. Those criteria are subclasses
of the concept EvidenceHandling.
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Ambiguity measures the extent to which the formal-
ism can handle data sets which support different con-

clusions.

Ambiguity(F) = Áa(®Y,RY) (18)

where the function Áa(®Y,RY) considers the self-confi-
dence factor ®Y provided by the source Y and the

reliability of Y provided by the analyst RY to estimate
the degree of ambiguity. The measure is of particular

interest in the case where items having high values of

self-confidence are provided by unreliable sources.

Dissonance captures the ability of the formalism to

represent inconsistent evidence. For BBA representa-

tions, dissonance can be related to the capacity of the

formalism to assign belief mass to an element and its

negation, and can therefore be assessed for every BBA

representation build for the model. For example, the dis-

sonance for a source’s competence can be in the form:

Dissonance(F) = Ád(mC(r),mC(r̄)) (19)

where Ád(mC(r),mC(r̄)) is a function combining the

belief mass assigned to whether the source is considered

to be competent or incompetent, respectively.

Dissonance is useful for highlighting situations in

which there are significant differences in belief masses

assigned at the attribute level, such as when a source is

considered to be incompetent (low mC(r), high mC(r̄))
but has a good reputation (high mR(r), low mR(r̄)).
Conclusiveness is a measure expressing how strongly

the evidence supports a specific conclusion or unique

hypothesis:

Conc.(F) = Ácc(mt(A),mt(Ā),mt(A[ Ā)) (20)

where Ácc(mt(A),mt(Ā),mt(A[ Ā)) is a function combin-
ing the belief masses estimated for truthful, untruthful

and unknown qualifications of assertion A respectively.
This measure indicates to which extent the result of in-

ferences can support a conclusion, in this case whether

the hypothesis that the assertion under analysis is trust-

worthy or not. It can be used during the inference pro-

cess to show how taking into account additional ele-

ments such as the competence of the source, its reputa-

tion or intentions impact the partial estimations of trust.

Completeness is a measures of the range of the avail-
able evidence, and captures the ability of formalism to

take into account how much is unknown. The measures

is somewhat similar to Dissonance, as is can be assessed
for every BBA representation build for the model. Thus,

completeness of source’s reliability is described as:

Completeness(F) = Ácp(m(r[ r̄)) (21)

where Ácp(m(r[ r̄)) is a function depending on the belief
mass assigned to unknown.

The measure is used for estimation and analysis be-

fore entering the fusion process, in order to have a pic-

ture of how complete the evidence describing the vari-

ous elements of the model is, and to avoid performing

Fig. 6. Mapping of formalism uncertainties to URREF criteria

fusion on highly incomplete data sets. Both Evidence-
Handling and KnowledgeHandling are subclasses of Rep-
resentationCriteria.
This section has analyzed the nature of uncertainties

arising when going from problem to model definition

and then on to formalization with belief functions. The

next section shows how uncertainties can be highlighted

for particular scenarios of trust estimation.

VII. UNCERTAINTY ANALYSIS FOR TRUST
ESTIMATION

A. Running example and method for uncertainty
tracking

As a running example, let’s consider an assertion

A and its valuation v(A) provided by the source Y
as follows: m(A) = 0:7, m(Ā) = 0:1 and m(A[ Ā) = 0:2.
Its self-confidence factor is ®Y = 0:75. Hence, the dis-
counted BBA m0(:) is given by

m0(A) = 0:75 ¢ 0:7 = 0:525
m0(Ā) = 0:75 ¢ 0:1 = 0:075

m0(A[ Ā) = 1¡m0(A)¡m0(Ā) = 0:4
Let’s assume that the BBAs about the reliability

of the source based on Competence, Reputation and

Intention criteria are given as follows:

mC(r) = 0:8,mC(r̄) = 0:1,mC(r[ r̄) = 0:1
mR(r) = 0:7,mR(r̄) = 0:1,mR(r[ r̄) = 0:2
mI(r) = 0:6,mI(r̄) = 0:3,mI(r[ r̄) = 0:1

with importance weights wI = 0:6, wR = 0:2 and wC =
0:2.
After applying the importance discounting technique

presented in [60] which consists of discounting the

BBAs with the importance factor and redistributing the

missing mass onto the empty set, then combining the

discounted BBAs with PCR6 fusion rule, we finally get,

after normalization, the following BBA

m(r) = 0:9335

m(r̄) = 0:0415

m(r[ r̄) = 1¡m(r)¡m(r̄) = 0:025
The final trust valuation of assertion A reported by

the source Y taking into account its self-confidence
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®Y = 0:75 and the reliability factor m(r) = is therefore

given by Eqs. (12)—(14) and obtaining

mt(A) = 0:4901

mt(Ā) = 0:0700

mt(A[ Ā) = 1¡mt(A)¡mt(Ā) = 0:4399
Note that if mC(r) =mR(r) =mI(r) = 1, then we will al-
ways get m(r) = 1 regardless of the choice of weight-
ings factors, which is normal. If there is a total conflict

between valuations of reliability based on Competence,

Reputation and Intention criteria, then Dempster’s rule

cannot be applied to get the global reliability factor m(r)
because of 0/0 indeterminacy in the formula of Demp-

ster’s rule. For instance, if one has mC(r) =mR(r) = 1
and mI(r̄) = 1, then m(r) is indeterminate with Demp-
ster’s rule of combination, whereas it corresponds to the

average value m(r) = 2=3 using PCR6 fusion rule (as-
suming equal importance weights wC = wR = wI = 1=3),
which makes more sense.

The following subsections explore several scenarios

for trust assessment, corresponding to different situa-

tions of BBAs distributions, and track the uncertainty

according to URREF criteria. Each scenario illustrates

specific instances of the model developed for trust esti-

mation.

The method adopted to track uncertainty defines the

following measures to estimate URREF criteria:

SelfConfidence= ®Y

Ambiguity= j®Y¡m(r)j
Objectivity=mI(r)

ObservationalSensitivity=min(mC(r),mR(r))

As shown in previous formulas, URREF criteria are esti-

mated based on features of the BBA formalization and

are assigned to the static elements of the model, i.e.,

the source and the information item. While Objectivity
and ObservationalSensitivity captures imperfections of
observations, SelfConfidence and Ambiguity reflect in-
accuracies in reporting information to analysts. These

criteria are assessed before entering the fusion phase,

and describe the initial uncertainty present in the system

before inferences.

In addition, Dissonance, Conclusiveness and Com-
pleteness will be estimated at the scenario level by

adopting the following formulas:

Dissonance= 1¡ jmt(A)¡mt(Ā)j
Conclusiveness= jmt(A)¡mt(Ā)j
Completeness= 1¡m(A[ Ā)

Criteria above will be assessed for elements im-

pacted by the fusion process: the reliability of the

source, the updated BBAs of the initial assertion and

estimated trust. In the following subsection we illustrate

TABLE I.

Consensus: input uncertainty

Uncertainity of inputs

Observation Objectivity 1

ObservationalSensitivity 1

Reporting SelfConfidence 1

Ambiguity 0

TABLE II.

Consensus: fusion uncertainty

Fusion uncertainty Dissonance Conclusiv. Complet.

Updated BBAs 0 1 1

Reliability 0 1 1

Trust 0 1 1

several scenarios for trust estimation and the uncertainty

analysis underlying each scenario.

B. Scenarios for trust assessment and uncertainty
analysis

Scenarios introduced below provide examples of

trust construction using various operators and highlight

the uncertainty assigned to elements of the model and

its propagation during the fusion process.

Scenario 1–Consensus: Suppose that Y provides

the assertion A, while stating that A certainly holds and

that X considers Y to be a reliable source.

In this case, the trust will be constructed on the basis

of two consensual opinions: the analyst X that considers

Y as a reliable source, and the source’s conviction

that the information provided is certain. In this case,

m(A) = 1, ®Y = 1 and m(r) = 1, so that m
0(A) = 1 and

mt(A) =m(r) ¢m0(A) = 1. The result will be in the form
(A,v(A)) initially provided by the source.

This scenario illustrates an ideal situation for trust

assessment, where the source is trustworthy and well

known to the analyst, and observations are reported

in perfect conditions. As shown in table I, there is no

uncertainty induced by the source, and once fusion is

performed the items impacted show high values for

conclusiveness and completeness, while dissonance is

0 for the updates BBAs for values, source’s reliability

and estimated trust, as shown in table II.

Scenario 2–Uncertain utterances: Y is considered
by X to be a reliable source and reports the assertion A,

while showing a low level of certainty v(A) about the

veracity of A. This example is relevant for situations

where a reliable source provides (possibly) inaccurate

descriptions of events due to, say, bad conditions for

observation. This scenario corresponds by example to
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TABLE III.

Uncertain uttering: Input uncertainty

Uncertainty of inputs

Observation Objectivity 0.3

ObservationalSensitivity 0.9

Reporting SelfConfidence 0.6

Ambiguity 0.38

TABLE IV.

Uncertain utterance: fusion uncertainty

Fusion uncertainty Dissonance Conclusiv. Complet.

Updates BBAs 0.3 0.7 0.9

Reliability 0.02 0.98 0.98

Trust 0.59 0.41 0.54

the following case for inputs: ®Y = 0:6

m(A) = 0:8,m(Ā) = 0:1,m(A[ Ā) = 0:1
mC(r) = 0:9,mC(r̄) = 0,mC(r[ r̄) = 0:1
mR(r) = 0:9,mR(r̄) = 0,mR(r[ r̄) = 0:1
mI(r) = 0:3,mI(r̄) = 0:3,mI(r[ r̄) = 0:6

and wC = 0:5, wR = 0:5 and wI = 0. This results in

m0(A) = 0:48,m0(Ā) = 0:06,m0(A[ Ā) = 0:46
and

m(r) = 0:9846,m(r̄) = 0,m(r[ r̄) = 0:0154
Therefore, one finally obtains the trust valuation

mt(A) = 0:47,mt(Ā) = 0:05,mt(A[ Ā) = 0:46
This case shows that self-confidence has an impor-

tant impact on the values of discounted BBA, as m0(A)
is decreased from 0.8 to 0.48, and thus the remaining

mass is redistributed on m0(A[ Ā).
The combination of competence, reliability and in-

tention are in line with the assumption of the scenario,

which states that Y is a reliable source. After normaliza-
tion, values for trust assessment clearly highlight the im-

pact of uncertain utterances, as the BBA shows a mass

transfer from mt(A) to mt(A[ Ā). Still, values of trust
are close to BBA integrating the self-confidence, which

confirms the intuition that when the analyst X considers
Y to be a reliable source, the assertion A is accepted with
an overall trust level almost equal to the certainty level

stated by the source.

This scenario illustrates uncertainty induced by ob-

servations failures, as Objectivity, and SelfConfidence are
low, see table III.

While the quality of the source is highlighted by

high values of Conclusiveness and Completeness, show-
ing the analyst’s confidence in the reports analyzed, the

impact of imperfect observation is shown in the over-

all estimation of trust, through a combination of Dis-
sonance, Conclusiveness and Completeness which have
values close to 0.5, see table IV.

Scenario 3–Reputation: Suppose that Y provides
A and v(A) and X has no global description of Y

in terms of reliability. As the reliability of Y is not

available, Y’s reputation will be used instead, as derived

from historical data and previous failures. This scenario

corresponds by example to the following case for inputs:

®Y = 1

m(A) = 0:8,m(Ā) = 0:1,m(A[ Ā) = 0:1
mC(r) = 0:1,mC(r̄) = 0:1,mC(r[ r̄) = 0:8
mR(r) = 0:9,mR(r̄) = 0:1,mR(r[ r̄) = 0
mI(r) = 0:1,mI(r̄) = 0:1,mI(r[ r̄) = 0:8

and wC = 0:1, wR = 0:8 and wI = 0:1. Hence, one gets

m0(A) = 0:8,m0(Ā) = 0:1,m0(A[ Ā) = 0:1

and

m(r) = 0:94,m(r̄) = 0:01,m(r[ r̄) = 0:03

Therefore, one finally obtains the trust valuation

mt(A) = 0:75,mt(Ā) = 0:09,mt(A[ Ā) = 0:14

For this scenario, the source is confident about their own

assertions, and therefore

m(A) = 0:8,m(Ā) = 0:1,m(A[ Ā) = 0:1

and

m0(A) = 0:8,m0(Ā) = 0:1,m0(A[ Ā) = 0:1

have identical BBA distributions. The reliability of the

source is built namely on its reputation, as there are

clues about the competence and intentions of the source.

Hence, the overall BBA

m(r) = 0:9449,m(r̄) = 0:0196,m(r[ r̄) = 0:0355

is close to the initial reputation distribution

mR(r) = 0:9,mR(r̄) = 0:1,mR(r[ r̄) = 0

Values of trust show the impact of using not completely

reliable sources, which decreased the certainty level of

the initial BBA

m0(A) = 0:8,m0(Ā) = 0:1,m0(A[ Ā) = 0:1

to

mt(A) = 0:75,mt(Ā) = 0:09,mt(A[ Ā) = 0:14
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TABLE V.

Reputation: input uncertainty

Uncertainty of inputs

Observation Objectivity 0.10

ObservationalSensitivity 0.10

Reporting SelfConfidence 1

Ambiguity 0.60

TABLE VI.

Reputation: fusion uncertainty

Fusion uncertainty Dissonance Conclusiv. Complet.

Updated BBAs 0.30 0.70 0.90

Reliability 0.07 0.93 0.95

Trust 0.34 0.66 0.84

They also support the intution that the trust assigned by

the analyst to A will have an upper limit equal to the
reputation of the source.

This scenario is similar the previous one as, in

both cases, there are incomplete descriptions of the

source. For this particular case, a historical recording of

source’s failures offers a basis to overcome the missing

pieces and, in spite of low values for Objectivity and
ObservationalSensitivity (see table V), the final trust
evaluation is improved with respect to the previous

scenario and shows a better combination of Dissonance,
Conclusiveness and Completeness, as shown in table VI.
Scenario 4–Misleading report: In this case, Y pro-

vides the assertion A, while stating that it certainly holds
and X considers Y to be a completely unreliable source.
For this case, the analyst knows that the report is some-

how inaccurate, for example, it cannot be corroborated

or it contradicts, at least in part. information from other

(more reliable) sources. The analyst suspects the source

of having misleading intentions, and can therefore as-

sign a maximal uncertainty level to the information re-

ported. This scenario corresponds by example to the

following case for inputs: ®Y = 1

m(A) = 1,m(Ā) = 0,m(A[ Ā) = 0
mC(r) = 0:1,mC(r̄) = 0:1,mC(r[ r̄) = 0:8
mR(r) = 0:1,mR(r̄) = 0:1,mR(r[ r̄) = 0:8
mI(r) = 0:1,mI(r̄) = 0:8,mI(r[ r̄) = 0:1

and wC = 0:1, wR = 0:1 and wI = 0:8. Hence, one gets

m0(A) = 1,m0(Ā) = 0,m0(A[ Ā) = 0
and

m(r) = 0:02,m(r̄) = 0:91,m(r[ r̄) = 0:06
Therefore, one finally obtains as trust valuation

mt(A) = 0:023,mt(Ā) = 0,mt(A[ Ā) = 0:976

TABLE VII.

Misleading report: input uncertainty

Uncertainty of inputs

Observation Objectivity 0.10

ObservationalSensitivity 0.10

Reporting SelfConfidence 1.00

Ambiguity 0.97

TABLE VIII.

Misleading: fusion uncertainty

Fusion uncertainty Dissonance Conclusiv. Complet.

Assertion 0 1 1

Source 0.11 0.89 0.93

Trust 0.76 0.23 0.03

The values for this scenario reflect the high self-

confidence of the source and high accuracy of the asser-

tion provided; therefore, the initial BBA is unchanged

after fusion with self-confidence. Nevertheless, the im-

pact of having misleading intention is visible first on the

mass distribution assigned to reliability and then on the

overall values of trust. With respect to the initial values

m(A) = 1,m(Ā) = 0,m(A[ Ā) = 0
and the partially fused ones

m0(A) = 1,m0(Ā) = 0,m0(A[ Ā) = 0
the integration of a misleading source transfers the mass

assignation almost exclusively to mt(A[ Ā). Intuitively,
the assertion A will be ignored, as the reliability of

the source is dramatically decreased by a high mass

assignment on misleading intentions.

This scenario illustrates the impact of misleading

sources on trust estimation. Hence, the use case has

very good values for reporting induced uncertainty,

with high SelfConfidence and low Ambiguity (see table
VII)), but the overall trust characterization shows strong

Dissonance, corroborated with low Conclusiveness and
near zero Completeness, as shown in table VIII.
Scenario 5–Ambiguous report: The source Y pro-

vides A and v(A), the uncertainty level. Suppose that
v(A) has a low value, as the source is not very sure

about the events reported, and that X considers Y to be
unreliable. This scenario corresponds by example to the

following case for inputs: ®Y = 0:3

m(A) = 0:6,m(Ā) = 0:2,m(A[ Ā) = 0:2
mC(r) = 0:1,mC(r̄) = 0:8,mC(r[ r̄) = 0:1
mR(r) = 0:1,mR(r̄) = 0:8,mR(r[ r̄) = 0:1
mI(r) = 0:1,mI(r̄) = 0:1,mI(r[ r̄) = 0:8

and wC = 0:2, wR = 0:4 and wI = 0:4. Hence, one gets

m0(A) = 0:18,m0(Ā) = 0:06,m0(A[ Ā) = 0:76
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TABLE IX.

Ambiguous report: input uncertainty

Uncertainty of inputs

Observation Objectivity 0.10

ObservationalSensitivity 0.10

Reporting SelfConfidence 0.30

Ambiguity 0.27

TABLE X.

Ambiguous report: fusion uncertainty

Fusion uncertainty Dissonance Conclusiv. Complet.

Assertion 0.6 0.4 0.8

Source 0.583 0.417 0.47

Trust 0.973 0.027 0.006

and

m(r) = 0:02,m(r̄) = 0:43,m(r[ r̄) = 0:53
Therefore, one finally obtains the trust valuation

mt(A) = 0:0040,mt(Ā) = 0:0013

and
mt(A[ Ā) = 0:9946

This scenario is an illustration for the worst practical

case and is relevant when the analyst receives a report

provided by a source that lacks the skills or competence

to provide accurate descriptions of events. In this case,

the reports are incomplete, ambiguous, or even irrele-

vant. In addition to low competence and reliability, the

source himself is also unsure about the statement.

The first modification of BBA shows the strong

impact of self-confidence, which changes drastically the

BBA of the initial assertions, from

m(A) = 0:6,m(Ā) = 0:2,m(A[ Ā) = 0:2
to

m0(A) = 0:18,m0(Ā) = 0:06,m0(A[ Ā) = 0:76
Unsurprisingly, the overall reliability is low:

m(r) = 0:0223,m(r̄) = 0:4398,m(r[ r̄) = 0:5379
and the results of the final combination show an im-

portant mass assigned to mt(A[ Ā) = 0:9946. Intuitively,
the information provided is useless, and considered as

highly uncertain.

This scenario shows the combined effects of un-

certain reporting and incomplete source description for

trust estimation. First, the outcome is affected by high

values of uncertainty induced during observation and

reporting passes, table IX. Then, fusion leads to a trust

estimation having high values of Dissonance, and very
low values of Conclusiveness and Completeness.
The same criteria estimated for reliability show the

main difference with respect to the previous case, which

was also based on unreliable sources. While in scenario

4 the source still has important Completeness, this mea-
sure is drastically decreased for this scenario, as shown

in table X.

VIII. STRENGTHS AND LIMITATIONS OF
BELIEF-BASED FORMALIZATION FOR TRUST
ASSESSMENT

This section discusses the strengths and limitations

of the belief-based perspective in trust modeling in the

light of results shown by previous scenarios. The main

advantage of using belief functions is that the formal-

ism is consistent with the cognitive perspective of trust

adopted by the model, thanks to the notion of belief.

It also captures uncertainties both of the analyst with

respect to the source and of the source with respect to

their own statements with different mechanisms. First,

self-confidence is implemented thanks to a discounting

coefficient, as, in practice, the values of self-confidence

may rely upon linguistic clues of certainty/uncertainty

that can be translated into numerical values. Second,

the formalization introduces weighting factors in order

to offer a flexible solution, which allow for situations in

which the analyst has more or less complete knowledge

about distinct attributes of the source, or wishes to em-

phasize one particular attribute. Moreover, the formal-

ization is able to handle ignorance on various aspects,

including missing data. The overall fusion mechanism

performs trust estimation in several steps, which allows

for a better traceability of the outcome and the mapping

at different processing stages using URREF criteria. The

results of these scenarios are in line with their specific

hypotheses, reflecting the intuition that the fusion tech-

nique is appropriate for estimating trust.

As with any user-centric approach, the main limita-

tion of the solution discussed in this paper is the lack of

guidance for choosing the set of numerical values with

which to instantiate the model. For example, two differ-

ent analysts may choose differing mass distribution and

weight coefficients with respect to the same source, and

they may also use slightly different approaches to infer

a numerical value from linguistic clues when handling

self-confidence. Thus, the outcome depends crucially

on the interventions of users and their ability to build a

model able to capture the situation under analysis. Also,

the solution requires preexisting knowledge about the

source’s reputation, competence, and intention, indeed,

in practice, it is difficult to have access to information

on those aspects. Provided that there is no other meta-

data or domain knowledge available for use, the model

is likely to fail to produce an accurate trust evaluation

in some contexts due to the shortage of knowledge on

critical aspects.

As such, the belief-based formalization has limited

capabilities to explain the outcome. To overcome this

limitation, a mapping to URREF uncertainty criteria is

used. The mapping highlights when uncertainties are
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added into the system and which partial results and

affected. It facilitates the interpretation of results by

adding additional information as to why the item is

to be trusted or no; for example, whereas the fusion

process outputs low values of trust for a given item,

the mapping to URREF criteria allows to underline

problems related to evidence collection or reporting,

dissonance or incompleteness during the fusion stages.

As shown in previous scenarios, using a belief-

oriented formalism and URREF criteria mapping offers

a pragmatic approach to develop a more comprehensive

and easy to interpret solution for trust estimation.

IX. CONCLUSION

This paper presents a computational model by which

an analyst is able to assess trust in reported informa-

tion based on several possible unknown attributes of

the source as well as additional characterization of the

informational content by the source itself. The paper

also illustrates the use of URREF criteria to track un-

certainty affecting the results, from model construction

to its formalization with belief functions. First, a model

for trust estimation has been developed that combines

several attributes of sources and their own assessment

of the items reported. The model is implemented using

belief functions, and takes advantage of its mathematical

background to define fusion operators for trust assess-

ment. Several scenarios are presented to illustrate uncer-

tainty analysis, illustrating when uncertainty occurs and

how it affects partial results for different applications.

Tracking uncertainty is suitable for fusion systems

in which various human sources send observations of

questionable quality and there is a need to continuously

update the trust associated with reports to be analyzed.

The set of URREF criteria offers a unified basis to an-

alyze inaccuracies affecting trust estimation during dif-

ferent phases: observation, reporting, and fusion. Select

use cases clearly illustrated the benefits of managing

uncertainties arising during the modeling and formal-

ization phases, with the twofold analysis offering addi-

tional details on results and improving their interpreta-

tion.

The general approach taken in this paper could be

adapted to investigate the general mechanisms by which

fusion processes integrate information from multiple

sources. The solution is especially useful for comparing

different fusion approaches with respect to their impli-

cations for uncertainty management.
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Categories of belief fusion

AUDUN JØSANG

Belief Fusion consists of merging beliefs about a domain of inter-

est from multiple separate sources. No single belief fusion method

is adequate for all categories of situations, hence the challenge is to

determine which belief fusion method is the most appropriate for a

given situation. The conclusion to be drawn from this discussion is

that the analyst must first understand the dynamics of the situation

at hand in order to find the best fusion method for analysing it.

The aim of this article is first to demonstrate that there are ap-

propriate situations to use belief fusion, and that different math-

ematical fusion operators are required for the different situations.

Secondly we propose criteria than can be applied to identify the

various categories of fusion situations, and describe specific belief

fusion operators that are suitable for modeling the fusion situations

in each category.
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1. INTRODUCTION

When analyzing hypotheses about specific domains

of interest there is often a need to combine evidence

from multiple sources. This principle belongs to infor-

mation fusion in general, and is called belief fusion

when the evidence is represented as belief. It is impor-

tant to realise that there is no single fusion method that is

suitable for analyzing all situations of belief fusion. It is

also quite challenging to determine the best belief fusion

method for a specific situation, and there has been con-

siderable confusion around this issue in the literature.

It is therefore crucial to have a consistent method for

categorising different situations of belief fusion, and to

apply this method for selecting the most suitable belief-

fusion operator for each category of situations.

Beliefs are represented as subjective opinions

throughout this article. A subjective opinion generalises

the traditional representations of belief functions by in-

cluding a base rate distribution over the values of the

domain variable. A domain of interest contains the pos-

sible hypotheses or states that the analyst is interested

in, e.g. for identifying the hypothesis which correspond

best with reality. A subjective opinion is denoted !CX ,
where C represents the source of the opinion and X
represents the variable of the opinion’s object/target do-

main.

In general, the source of an opinion can be a hu-

man, or it can be a sensor which produces data which

in turn can form the basis an opinion. Multiple separate

sources, e.g. denoted C1,C2, : : :CN , can produce different

and possibly conflicting opinions !C1X ,!
C2
X , : : :!

CN
X about

the same variable X. In this situation, source fusion
consists of merging the different sources into a single

source that can be denoted ¦(C1,C2, : : :CN), and math-
ematically fusing their opinions into a single opinion

denoted !¦(C1,C2,:::CN )X which then represents the opinion

of the merged sources. The source merger function is

here denoted by the symbol ‘¦’, and the general belief-
fusion principle is illustrated in Figure 1.

Fig. 1. Belief-fusion principle
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Different belief fusion situations can vary signifi-

cantly and semantically depending on the purpose and

nature of the fusion process, and hence require dif-

ferent fusion operators. However, it can be challeng-

ing to identify the correct or most suitable fusion op-

erator for a specific situation. In general, a given fu-

sion operator is unsuitable when it produces wrong re-

sults in some instances of a situation, even if it pro-

duces correct results in most instances of the situation.

A fusion operator should produce sound and intuitive

results in all realistic instances of the situation to be

analysed.

In order to see the importance of using the correct

belief fusion method in a given fusion situation it is

instructive to consider other situation types where the

effect of applying the correct or incorrect formal model

and method is more obvious. First, consider the situa-

tion of predicting the physical strength of a steel chain,

where the classical and correct model is that of the

weakest link. Then, consider the situation of determin-

ing the competitive strength of a relay swimming team,

for which an adequate model is the average strength of

each swimmer on the team, in terms of how fast each

swimmer can swim.

Applying the weakest-link model (i.e. the slowest

swimmer) to predict the overall speed of the relay swim-

ming team is an approximation which might give a rel-

atively good prediction in most instances of high-level

swimming championships. However, it is obviously an

incorrect model and would produce rather unreliable

predictions if there are large variations in speed between

the swimmers in a relay swimming team.

Similarly, applying the average strength model for

assessing the physical strength of the steel chain repre-

sents an approximation which would produce relatively

good strength predictions in most instances of high-

quality steel chains where the link strength is highly

uniform. However, it is obviously a very poor model

which would be unreliable in general, and which could

have fatal consequences if life depended on it.

These examples illustrate the inadequacy of anecdo-

tal examples for determining whether the weakest-link

model is suitable for predicting the strength of relay

swimming teams. Similarly it is insufficient to simply

use a few anecdotal examples to test whether the aver-

aging principle is adequate for modelling the strength

of steel chains. Without a clear understanding of the

situation to be modelled, the analyst does not have a

basis for selecting the correct and appropriate model.

The selection of appropriate models might be obvious

for the simple examples above, but it can be challeng-

ing to judge whether a fusion operator is suitable for a

specific situation of belief fusion [1].

The conclusion to be drawn from this discussion is

that the analyst must first understand the dynamics of

the situation at hand in order to find the best model for

analysing it.

The aim of this article is first to demonstrate that

there can be many different categories of situations of

belief fusion, and that different mathematical fusion op-

erators are required for the computation of belief fusion

in the different categories of belief-fusion situations.

Secondly we propose criteria for identifying the various

categories of fusion situations, and describe specific be-

lief fusion operators that are suitable for belief fusion

in each category.

This work forms part of the effort to define “Eval-

uation of Techniques for Uncertainty Representation”

under the ETUR Working Group [2] where the UR-

REF ontology is one of the reference documents [3],

[4]. Previous work on defining categories for belief fu-

sion is described in [1], [5]. The contribution of the

current work is to generalise and define new operators

for belief fusion, and to clarify the understanding of

fusion categories. Belief fusion belongs to the domain

of high-level fusion [6] in contrast to other types of

low-level data fusion.

Section 2 describes a set of belief-fusion categories

The criteria defined in Section 3 then describe how

a given fusion situation can be understood and cate-

gorised. Section 6 describes corresponding fusion op-

erators for the respective categories. Section 7 provides

numerical examples to compare the different fusion op-

erators, and Section 8 discusses the implications of the

categories of belief fusion presented in this article.

2. CATEGORIES OF FUSION SITUATIONS

Situations of belief fusion take belief arguments

from multiple sources through a fusion process to pro-

duce a single belief argument. More specifically, a fu-

sion situation is characterised by a domain of two or

more state values, and the various sources’ different be-

lief arguments about these values. The domain of state

values can be interpreted as a set of competing hypothe-

ses, where it is assumed that only one value/hypothesis

is TRUE at any one time. Each belief argument can as-

sign belief mass to one or several state values, which

thereby represents support for those values in terms

of which values are believed to be TRUE. The pur-

pose of belief fusion is to produce a new belief ar-

gument that reflect the sources’ collective set of be-

lief arguments in the most fair or correct way. It is

then assumed that the fused belief argument supports

the most correct, acceptable or most preferred value,

when seen from the perspective of the collective set of

sources.

It is often challenging to determine the correct or

the most appropriate fusion operator for a specific sit-

uation. Our approach of addressing this challenge is to

define categories of similar situations according to their

typical characteristics, which then allows to determine

a suitable belief fusion operator for each category. Four
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Fig. 2. Procedure for selecting a suitable belief-fusion operator for each category

distinct categories as well as one hybrid category of

fusion situations are described below.

² Belief Constraint Fusion (BCF) is suitable when as-
suming that: 1) belief arguments must not be wrong

(sources are totally reliable), and 2) there is no

compromise in case of totally conflicting arguments,

hence the fusion result is not defined in that case.

In some situations these properties are desirable. An

example is when two persons try to agree on seeing a

movie at the cinema. If their preferences share com-

mon movies they can decide to watch one of them.

Yet, if their preferences have no movies in common

then there is no solution, with the rational conse-

quence they will not watch any movie together. BCF

is described in Section 6.1.

² Cumulative Belief Fusion (CBF) is suitable when as-
suming that the amount of independent evidence in-

creases by including more and more sources. For ex-

ample, when different independent biometric sensors

(e.g. fingerprint, voice, face) are being used to authen-

ticate a person, the results from each sensor can be

fused with CBF, which produces an opinion with de-

creasing uncertainty (increased assurance) about the

identity of the person. CBF has the vacuous opin-

ion as neutral element, but is not idempotent. CBF is

described in Section 6.2. A modification of CBF is

when it is assumed or desired that the fusion process

produces uncertainty maximised opinions. It is then

possible to apply uncertainty maximisation after CBF,

which is called CBF-UM for short. This could e.g. be

when witnesses express their opinions about whether

Oswald shot Kennedy, which when fused with CBF-

UM produces an epistemic opinion about who shot

him. CBF-UM is described in Section 6.5.

² Averaging Belief Fusion (ABF) is suitable when de-
pendence between sources is assumed, so that includ-

ing more sources does not necessarily add more evi-

dence behind the fused belief, it just changes the av-

erage distribution of evidence. In case of equal belief

arguments, the fused result should be the same, which

means that idempotence is assumed. An example of

this type of situation is when a jury tries to reach a

verdict after having observed the court proceedings.

It is also assumed that a vacuous belief argument does

have an influence on the fused result, which means

that ABF does not have a neutral element. This is in-

terpreted in the sense that the source of the vacuous

belief argument says: “I do not see any evidence and
therefore do not have any belief about this, and I want
my vacuous argument belief to be reflected in the fused
output belief”. ABF is described in Section 6.3.

² Weighted Belief Fusion (WBF) is also suitable when
dependence between sources is assumed, so that

adding more sources does not necessarily add more

evidence in total. Equal belief arguments should pro-

duce equal fused belief, meaning that idempotence
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is assumed. However, it is assumed that a vacuous

belief argument has no influence on the fused result,

meaning that WBF does have a neutral element in

the form of vacuous belief. This is interpreted in the

sense that the source of a vacuous belief argument

says: “I do not see any evidence and therefore do not
have any belief about this, and I will let the sources
that do have evidence and belief about this determine
the fused belief without me”. An example of this type
of situation is when experts (e.g. medical doctors) ex-

press multinomial opinions about a set of hypothesis

(e.g. diagnoses). WBF is described in Section 6.4. In

case of hyper-opinions WBF does not identify shared

(vague) belief on overlapping (composite) values in

the domain, and simply computes the weighted aver-

age.

² Weighted Belief Fusion with Vagueness Maximisa-
tion (WBF-VM) can be used when the analyst nat-
urally wants to preserve shared beliefs from dif-

ferent sources, and to transform conflicting beliefs

into vague belief. In this way shared belief is pre-

served when it exists, and compromise vague belief is

formed when necessary. In the case of totally conflict-

ing beliefs, then the resulting fused belief becomes

vague. WBF-VM is probability-idempotent, commu-

tative and has the vacuous belief argument as neutral

element. Probability-idempotence means that the pro-

jected probability distribution is preserved when fus-

ing equal opinions, but the fused opinion will in gen-

eral have different vague belief. A situations where

WBF-VM is suitable is when experts (e.g. medical

doctors) express hyper-opinions about a set of hy-

pothesis (e.g. diagnoses). WBF-VM takes into ac-

count shared (vague) belief on overlapping (compos-

ite) values, and is therefore suitable for preserving

shared beliefs when fusing hyper-opinions. WBF-VM

is described in Section 6.6.

The subtle differences between the fusion situations

above illustrate the challenge of modelling them cor-

rectly. For instance, consider the task of determining

the location of a mobile phone subscriber at a specific

point in time by collecting location evidence from a

base station, in which case it seems natural to use belief

constraint fusion. If two adjacent base stations detect

the subscriber, then the belief constraint operator can

be used to locate the subscriber within the overlapping

region of the respective radio cells. However, if two base

stations far apart detect the subscriber at the same time,

then the result of belief constraint fusion is not defined

so there is no conclusion. With additional assumptions,

it would still be reasonable to think that the subscriber is

probably located in one of the two cells, but not which

one in particular, and that the case needs further investi-

gation because the inconsistent signals might be caused

by an error in the system. Some method of trust revision

[7] can be applied in this situation.

3. CRITERIA FOR IDENTIFYING FUSION
CATEGORIES

While having multiple fusion categories can help in

scoping the solution space, there is still the issue of

determining which category a specific situation belongs

to. In order to select the correct or most adequate fusion

method the analyst must consider a set of assumptions

about the fusion situation to be analysed and for each

assumption judge whether it is applicable. The most ad-

equate fusion method is then identified as a function of

the set of assumptions that applies to the situation to

be analysed. This procedure for identifying and select-

ing the most appropriate fusion operator is illustrated

in Figure 2. The steps in the selection procedure are

further described below.

(a) The analyst first needs a good understanding of the

situation to be modelled in order to select the most

suitable fusion operator. This includes being able

to make the binary choices of (b), (d), (f) and (h)

below.

(b) Shall it be possible to fuse totally conflicting be-

liefs?

(c) In case it is assumed that two totally conflicting be-

lief arguments should leave no room for compro-

mise, then BCF (Belief Constraint Fusion) is prob-

ably the most suitable operator. BCF is not defined

in case of totally conflicting belief or preference ar-

guments, which reflects the assumption that there is

no compromise solution in case of total conflict.

(d) Is idempotence assumed, i.e. should two equal be-

lief arguments produce the same output belief?

(e) In case idempotence is not assumed, then CBF (Cu-

mulative Belief Fusion) is probably the most suit-

able operator. CBF is suitable when non-idempotent

is assumed, meaning that equal belief arguments

represent independent support for specific values of

the variable, which thereby contribute to reducing

the uncertainty in the output belief. In addition to

being non-idempotent, CBF can handle totally con-

flicting opinions, as required for this category.

(f) Should a vacuous belief argument have any influ-

ence on the output fusion result?

(g) In case it is assumed that a vacuous belief arguments

shall influence the output, then no neutral element

exists, which indicates that ABF (Averaging Belief

Fusion) is a suitable operator. ABF can be mean-

ingful e.g. for making a survey of opinions where

vacuity (lack of belief) in a belief argument shall

be reflected as less confidence in the output fused

belief.

(h) How should conflicting belief be handled?

(i) The simplest belief conflict management principle

is to compute the weighted average of conflicting
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belief mass. WBF (Weighted Belief Fusion) is suit-

able for fusing multinomial opinions, but less so for

fusing hyper-opinions because the operator is blind

to common belief between two vague belief argu-

ments which assign belief mass to partially overlap-

ping composite values.

(j) In case it is assumed that conflicting belief mass

should be transformed into compromise (vague) be-

lief then WBF-VM is suitable, i.e. it would be ad-

equate to apply vagueness maximisation (VM) af-

ter the weighted belief fusion (WBF). In contrast

to simple WBF, the post-processing with vagueness

maximisation takes into account and reflects com-

mon belief aspects between different opinion argu-

ments, which often better reflects human intuition.

It can be difficult to tell which category a specific

situation belongs to. In addition, the choice of fusion

operator can also be influenced by the type of fusion

result the analyst wants to obtain, which e.g. could

be to have an uncertainty-maximised or vagueness-

maximised fused opinion.

The various belief fusion operators corresponding

to each category in Figure 2 are described in Section 6

below. Before delving into the the formalism of belief

fusion operators it is necessary to first describe the rep-

resentation of subjective opinions and the corresponding

Dirichlet PDF (Probability Density Function).

4. SUBJECTIVE OPINIONS

This section describes subjective opinions which

represent beliefs over random variables in subjective

logic.

In the formalism of subjective logic, a domain is a
state space of values which can represent e.g. observable

or hidden states, events, hypotheses or propositions [5].

A variable X associated with a domain X can take

values x 2X. A variable with an associated probability

distribution over its domain is called a random variable.
The different values of the domain are assumed to

be mutually exclusive and exhaustive, which means that

the variable can take only one value at any time, and

that all possible values of interest are included in the

domain.

Available evidence may indicate that the variable

takes a value in a given subset of values, but it is unclear

which specific value in particular. For this reason it is

meaningful to consider subsets as composite values,

where the hyperdomain contains all the singletons as
well as composites values. It is then possible to have

a belief mass distribution over all these values, instead

of only having a probability distributions over singleton

values.

A subjective opinion distributes a belief mass over
the values of the hyperdomain. The sum of the belief

masses is less than or equal to 1, and is complemented

with an uncertainty mass which reflects the opinion’s
confidence level. Subjective opinions also contain a base

rate probability distribution expressing prior knowledge
about the specific class of random variables, so that in

case of significant uncertainty about a specific variable,

the base rates provide a basis for default likelihoods.

We give formal definitions of these concepts in what

follows.

Let X be a variable over a domain X= fx1,x2, : : : ,xkg
of cardinality k, where xi (1· i· k) represents a spe-
cific value from the domain. Let P(X) be the powerset
of X. The hyperdomain is the reduced powerset of X,
denoted by R(X), and defined as:

R(X) = P(X) n fX,Øg: (1)

All proper subsets of X are values of R(X), but X and Ø
are not, because they are not considered as possible ob-

servations to which belief mass can be assigned. Since

X and Ø are excluded the hyperdomain has cardinality
2k ¡ 2. We use the same notation for the values of a
domain and its hyperdomain, and say that X is a hyper-
variable when it takes values from the hyperdomain.

Let A denote a source which can be a human, a

sensor, etc. A subjective opinion !AX of the source A on
the variable X is a tuple

!AX = (b
A
X ,u

A
X ,a

A
X), (2)

where bAX :R(X)! [0,1] is a belief mass distribution,

the parameter uAX 2 [0,1] is an uncertainty mass, and
aAX : X! [0,1] is a base rate probability distribution

satisfying the following additivity constrains:

uAX +
X
x2R(X)

bAX(x) = 1, (3)

X
x2X
aAX(x) = 1: (4)

In the notation of the subjective opinion !AX , the su-
perscript is the source A, while the subscript is the object
target variable X. An explicit source notation makes is
possible to express the fact that different sources pro-

duce different opinions on the same variable. The source

can be omitted in the opinion notation whenever the

source is implicit or irrelevant, for example when there

is only one source in the modelled situation.

The belief mass distribution bAX has 2
k ¡ 2 param-

eters, whereas the base rate distribution aAX only has k
parameters. The uncertainty parameter uAX is a simple
scalar. A general opinion thus contains 2k + k¡1 pa-
rameters. However, given that Eq. (3) and Eq. (4) re-

move one degree of freedom each, an opinion over a

domain of cardinality k only has 2k + k¡ 3 degrees of
freedom. Note that it is possible to express base rates

over composite values as expressed by Eq. (5) below.

aX(xi) =
X
xj2X
xjμxi

aX(xj), 8xi 2R(X): (5)

A subjective opinion in which uX = 0, i.e. an opinion
without uncertainty, is called a dogmatic opinion. A

CATEGORIES OF BELIEF FUSION 239



Fig. 3. Example trinomial opinion

dogmatic opinion for which bX(x) = 1, for some x, is
called an absolute opinion. In contrast, an opinion for
which uX = 1, and consequently, bX(x) = 0, for every
x 2R(X), i.e. an opinion with total uncertainty, is called
a vacuous opinion.
Every subjective opinion ‘projects’ to a probability

distribution PX over X defined through the following

function:

PX(xi) =
X

xj2R(X)
aX(xi j xj)bX(xj) + aX(xi)uX , (6)

where aX(xi j xj) is the relative base rate of xi 2 X with
respect to xj 2R(X) defined as follows:

aX(xi j xj) =
aX(xi \ xj)
aX(xj)

, (7)

where aX is extended on R(X) additively. For the rel-
ative base rate to be always defined, it is enough to

assume aAX(xi)> 0, for every xi 2 X. This means that
everything we include in the domain has a non-zero

probability of occurrence in general.

Binomial opinions apply to binary random variables

where the belief mass is distributed over the two val-

ues in a binary domain. Multinomial opinions apply to

random variables in n-ary domains, and where the be-
lief mass is distributed over the values of the domain.

Figure 3 visualises a ternary multinomial opinion as a

point inside a tetrahedron.

General opinions, also called hyper-opinions, apply
to hypervariables where belief mass is distributed over

values in a hyperdomain which is the reduced powerset

of an n-ary domain. Given a hyper-opinion, it is possible
to project it onto a multinomial opinion. Assume a hyper

opinion !X and let b. X be the belief mass distribution
defined by the sum in Eq. (6), i.e.

b. X(x) =
X

x02R(X)
aX(x j x0)bX(x0), (8)

then it is easy to check that b. X :X! [0,1], and that

b. X together with uX satisfies the additivity property

in Eq. (3). The multinomial opinion denoted !. X =

(b. X ,uX ,aX) is the projected opinion from the hyper-

opinion of !X . By defining the unary operator #. to rep-
resent hyper-to-multinomial projection we can write:

Hyper-to-Multinomial Projection: !. X = #. (!X): (9)

From Eq. (6) and Eq. (8) we obtain P(!X) = P(!. X).
This means that every hyper-opinion can be approxi-

mated with its projected multinomial opinion which by

definition has the same projected probability distribu-

tion as the initial hyper-opinion.

A binomial opinion is equivalent to a Beta probabil-

ity density function, a multinomial opinion is equivalent

to a Dirichlet probability density function, and a hyper-

opinion is equivalent to a Dirichlet hyper-probability

density function [8]. Binomial opinions thus represent

the simplest opinion type, which can be generalised to

multinomial opinions, which in turn can be generalised

to hyper-opinions. Simple visualisations for binomial

and trinomial opinions are based on barycentric coordi-

nate systems as illustrated in Figures 3 and 4.

Consider a domain X with its hyperdomain R(X)
and powerset P(X). Recall that fXg 2 P(X). Let x de-
note a specific value of R(X) or of P(X).
In DST (Dempster-Shafer Theory) [9], the belief

mass on value x is denoted m(x), and the belief mass
distribution is called a basic belief assignment (bba). It
is possible to define a direct bijective mapping between

the bba of DST and the belief mass distribution and

uncertainty mass of subjective opinions, as expressed

by Eq. (10):

Mapping between the

bba of DST and the

belief/uncertainty masses

of subjective opinions:

½
m(x) = bX(x), 8x 2R(X),
m(X) = uX:

(10)

Technically, the bba of DST and the belief/uncer-

tainty representation of subjective opinions are thus

equivalent. Their interpretations however are different.

Subjective opinions can not assign belief mass to the

domain X itself. This interpretation corresponds to the
(hyper-) Dirichlet model, where only observations of

values of X (or R(X)) are counted as evidence. The do-
main X itself can not be an observation in the (hyper-)
Dirichlet model, and hence can not be counted as ev-

idence. The difference between the belief representa-

tion in DST and the opinion representation in SL is

that the DST belief representation does not take base

rates into account. As a result the projected (called ‘pig-
nistic’) probability in DST [9] can only be computed
with default base rates equal to the relative cardinalities

of (hyper) values in the domain, whereas the projected

probability of subjective opinions can be computed with

any base rate distribution.

5. DIRICHLET REPRESENTATION OF BELIEFS

A hyper-opinion is equivalent to a Dirichlet HPDF

(hyper probability density function) over a hyperdomain
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R(X), according to the bijective mapping described in
Section 5.2. For self-containment, we briefly outline the

Dirichlet hypernomial model below, and refer to [10] for

details about the Dirichlet model, and to [5] for details

about the Dirichlet HPDF. The Dirichlet HPDF can be

projected to a Hyper-Dirichlet PDF [11] which is useful

for visualisation, but the Hyper-Dirichlet PDF is out of

the scope of this presentation.

5.1. The Dirichlet Hypernomial Model
Multinomial probability density over a domain X of

cardinality k is expressed by the k-dimensional Dirichlet
PDF, where the special case of a probability density

over a binary domain (where k = 2) is expressed by the
Beta PDF. As a generalisation, hypernomial probability

over the hyperdomain R(X) of cardinality ·= 2k ¡2 is
expressed by the ·-dimensional Dirichlet HPDF [11].
The set of input arguments to the Dirichlet HPDF

overR(X) then becomes a sequence of strength parame-
ters of the · possible (composite) values x 2R(X) repre-
sented as · positive real numbers ®X(xi), i = 1 : : :·, each
corresponding to one of the possible values x 2R(X).
Because this is a Dirichlet PDF over a hypervariable, it

is called a Dirichlet Hyper-PDF, or Dirichlet HPDF for

short.

DEFINITION 1 (Dirichlet HPDF). Let X be a domain
consisting of k mutually disjoint values, where the cor-
responding hyperdomainR(X) has cardinality ·= (2k ¡
2). Let ®X represent the strength vector over the · values
x 2R(X). The hyper-probability distribution pHX and the
strength vector ®X are both ·-dimensional. The Dirich-
let hyper-probability density function over pHX , called
Dirichlet HPDF for short, is denoted DirHX(p

H
X ;®X), and

is expressed as

DirHX(p
H
X ;®X) =

¡
¡P

x2R(X)®X(x)
¢Q

x2R(X)¡ (®X(x))

Y
x2R(X)

pHX(x)
(®X (x)¡1),

(11)

where ®X(x)¸ 0, with the restrictions that pHX(x) 6= 0 if
®X(x)< 1.

The strength vector ®X represents the prior as well
as the observation evidence, now assumed applicable to

values x 2R(X).
Since the values of R(X) can contain multiple sin-

gletons from X, a value of R(X) has a base rate equal to
the sum of the base rates of the singletons it contains, as

expressed by Eq. (5). The strength ®X(x) for each value
x 2R(X) can then be expressed as

8x 2R(X),
®X(x) = rX(x) + aX(x)W,

where

8><>:
rX(x)¸ 0,

aX(x) =
P

xjμx
xj2X

a(xj),

W = 2:

(12)

The Dirichlet HPDF over a set of · possible states
xi 2R(X) can thus be expressed as a function of the

observation evidence rX and the base rate distribution
aX(x), where x 2R(X). The constant W represents the

non-informative prior weight which as a convention is

set to W = 2 [5] (p.33). The superscript ‘eH’ in the

notation DireHX indicates that it is expressed as a function

of the evidence parameter vector rX (not the strength
parameter vector ®X), and that it is a Dirichlet HPDF

(not a traditional Dirichlet PDF). The evidence-based

Dirichlet HPDF is expressed as

DireHX (p
H
X ;rX ,aX) =

¡
¡P

x2R(X)(rX(x) + aX(x)W)
¢Q

x2R(X)¡ (rX(x) + aX(x)W)

£
Y

x2R(X)
pHX(x)

(rX (x)+aX (x)W¡1),

(13)

where (rX(x) + aX(x)W)¸ 0, with the restriction that
pHX(x) 6= 0 if (rX(x) + aX(x)W)< 1.
DireHX in Eq. (13) is the expression for probability

density over hyper-probability distributions pHX , where

each value x 2R(X) has a base rate according to Eq. (7).
Because a value xj 2R(X) can be composite, the

expected probability of any value x 2X is not only a

function of the direct probability density on x, but also

of the probability density of all other values xj 2R(X)
that contain x. More formally, the expected probability

of x 2 X results from the probability density of each

xj 2R(X) where x\ xj 6=Ø.
Given the Dirichlet HPDF of Eq. (13), the expected

probability of any of the k values x 2 X can be written as

EX(x) =

P
xi2R(X) aX(x j xi)r(xi)+WaX(x)

W+
P
xi2R(X) r(xi)

8x 2 X:
(14)

The mapping between the hyper-opinion and the

Dirichlet HPDF is based on defining the expected prob-

ability distribution of a Dirichlet HPDF expressed by

Eq. (14) to be equal to the projected probability of

hyper-opinions expressed by Eq. (6), i.e. EX = PX .

5.2. Mapping Between a Hyper-opinion and a
Dirichlet HPDF

Figure 4 is a screenshot of the visualisation of the

mapping between binomial opinions !C1X and !C2X on the

left and the corresponding Beta PDFs on the right.

In general, a hyper-opinion is equivalent to a Dirich-

let HPDF according to the mapping defined below.

DEFINITION 2 (Mapping: Hyper-opinion $ Dirichlet
HPDF). Let X be a domain consisting of k mutually

disjoint values, where the corresponding hyperdomain

R(X) has cardinality ·= (2k ¡ 2), and let X be a hy-

pervariable in R(X). Let !X be a hyper-opinion on X,
and let DireHX (p

H
X ;rX ,aX) be a Dirichlet HPDF over the

hyper-probability distribution pHX . The hyper-opinion !X
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Fig. 4. Mapping opinions !
C1
X and !

C2
X to Beta PDFs

and the Dirichlet HPDF DireHX (p
H
X ;rX ,aX) are equivalent

through the following mapping:

8x 2R(X)

8>><>>:
bX(x) =

rX(x)
W+

P
xi2R(X) rX(xi)

,

uX =
W

W+
P
xi2R(X) rX(xi)

,

,

0BB@
For uX 6= 0 : For uX = 0 :8<: rX(x) =

WbX(x)
uX

,

1 = uX +
P
xi2R(X)bX(xi),

½
rX(x) = bX(x) ¢1,
1 =

P
xi2R(X)bX(xi):

1CCA
(15)

The advantage of the Dirichlet HPDF is to provide

an interpretation and equivalent representation of hyper-

opinions.

This equivalence is very powerful because tools and

methods used in Bayesian statistics can be applied to

subjective opinions. In addition, the operators of subjec-

tive logic, such as conditional deduction, the subjective

Bayes’ theorem [12] and abduction, can be applied to

statistical representations of data based on the Dirichlet

model.

6. BELIEF FUSION OPERATORS

There are different categories of belief fusion situa-

tions, and each category requires its own operator for the

computation of belief fusion [1]. In this article we focus

on five different fusion categories, namely constraint fu-
sion, cumulative fusion, averaging fusion, weighted fusion
and weighted fusion with vagueness which are described
below.

6.1. Belief Constraint Fusion

A typical application of belief theory in the literature

is belief fusion with the classical Dempster’s rule [9].

There has been considerable confusion and controversy

around the adequacy of belief fusion operators, espe-

cially regarding Dempster’s rule [13]. The confusion

started with Zadeh’s example from 1984 [14] where

Dempster’s rule is applied to a situation for which it

is unsuitable and therefore produces erratic results. The

controversy followed when authors failed to realise that

it is not a question of whether Dempster’s rule is correct

or wrong, but of recognising the type of situations for

which Dempster’s rule is suitable.

As an analogy of the controversy around Dempster’s

rule, imagine a world where the swim vest (analogy of

Dempster’s rule) has been invented as a safety device

(analogy of a belief fusion operator). Then somebody

demonstrates with an example that swim vests provide

very poor protection in a car crash (analogy of Zadeh’s

example). Some researchers explain this by saying that

swim vests perform poorly only in the case of high

speed (analogy of high conflict) car crashes, and suggest

to reduce the driving speed to make swim vests perform

better. Other researchers propose the seat belt as an

alternative safety device because it works well in car

crashes, but this proposal is met with criticism by people

who claim that seat belts provide poor protection in a

sinking boat, in which case swim vests provide good

protection. Many other safety devices are invented, and

each device is promoted with an anecdotal example

where it provides relatively good protection. In this

confusing discussion nobody seems to understand that

different safety hazards require different safety devices

for protection, and that there is no single safety device

that can provide adequate protection in all situations.

In an analogous fashion, the fact that different belief

fusion situations require different belief fusion operators

has often been ignored in the belief theory literature,

and has been a significant source of confusion for many

years [13]. There is nothing wrong with Dempster’s rule

per se; there are situations where it is perfectly appro-
priate, and there are situations where it is clearly inap-

propriate. No single belief fusion operator is suitable in

every situation.

Dempster’s rule is traditionally presented as a

method for (cumulative) fusion of beliefs from different

(independent) sources [9] with the purpose of identify-

ing the most ‘correct’ hypothesis value from the do-

main. However, many authors have demonstrated that

Dempster’s rule is not an appropriate operator for this

type of fusion [14]. Motivated by the apparent inconsis-

tency of results produced by Dempster’s rule numerous

authors have proposed alternative belief fusion opera-

tors [15], [16], [17], [18], [19], [20], [21], [22], but the

authors often fail to specify which type of situations

they model.

We argue that Dempster’s rule is better suited as a

method for belief constraint fusion [13], [23], as shown
in Figure 2. Situations of this type are e.g. when agents

express different preferences with regard to a common

decision that the agents must agree on [23] or when

the analyst is presented with specific hints that are

guaranteed to be valid [24], which is expressed by

saying that the sources are ‘reliable’.

It is common to see situations where people with

different preferences try to agree on a single choice, or

situations where evidence is presented as factual hints.
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This must not be confused with fusion of belief from

different agents to determine the most likely correct hy-

pothesis or actual event, because the beliefs can not be

taken as factual. Multi-agent preference combination as-

sumes that each agent has already made up her mind,

and then that they together want to determine the most

acceptable decision or choice for all. Similarly, the fu-

sion of hints assumes that the truth is known to the

sources, but that they only reveal parts of the truth in

the form of hints. Preferences and hints over a variable

can be expressed in the form of subjective opinions.

The constraint fusion operator of subjective logic can

be applied as a method for merging preferences and

hints from multiple sources into a single conclusion for

the group of sources. This operator is expressive and

flexible, and produces perfectly intuitive results. Pref-

erence can be represented as belief mass, and indiffer-

ence can be represented as uncertainty mass. Positive

and negative beliefs are considered as symmetric con-

cepts, so they can be represented in the same way and

combined using the same operator. Vacuous belief has

no influence on the conclusion, and thereby represents

the neutral element.

6.1.1. Method of Belief Constraint Fusion
The BCF (Belief Constraint Fusion) operator de-

scribed next is an extension of Dempster’s rule. The

notation is also generalised to cover multiple sources,

not only two sources.

DEFINITION 3 (The Constraint Fusion Operator). As-
sume the domain X and its hyperdomain R(X), and as-
sume the hypervariable X which takes its values from

R(X). Let C= fC1,C2, : : :CNg denote a set of N inde-

pendent sources. Let C 2 C denote a specific source,

and let !CX denote its opinion about the variable X.

The respective opinions can be mathematically

merged using the BCF (Belief Constraint Fusion) op-

erator denoted ‘¯’ which can be expressed as
!&(C)X =

C̄2C
(!CX )

= !C1X ¯!C2X ¯ ¢¢ ¢!CNX : (16)

Source combination denoted ‘&’ thus corresponds to

belief fusion with ‘¯’. The multi-source expression for
BCF is given by Eq. (17):

8x 2R(X), !&(C)X :8>>>>>>>>>>><>>>>>>>>>>>:

b&(C)X (x) =
Har(x)

(1¡Con) ,

u&(C)X =

Q
C2Cu

C
X

(1¡Con) ,

a&(C)(x) =

P
C2C a

C
X(x)(1¡ uCX)

N ¡PC2Cu
C
X

, 9uCX < 1,

a&(C)(x) =

P
C2C a

C
X(x)

N
, 8uCX = 1:

(17)

The term Har(x) represents the relative harmony be-
tween the constraint opinion !CX (in terms of overlap-

ping belief mass) on x. The term Con represents the

relative conflict between constraints (in terms of non-
overlapping belief mass) between the constraint opin-

ions !CX . DST’s notation m(x) for belief-mass of x 2
P(X) given by Eq. (10) gives the most compact notation
for computing ‘Har’ and ‘Con’:

Har(x) =
X
\xC=x
xC2P(X)

Y
C2C

mC
X(x

C), (18)

Con =
X

\xC=Ø
xC2P(X)

Y
C2C

mC
X(x

C): (19)

The divisor (1¡Con) in Eq. (17) normalises the
belief mass and uncertainty mass; i.e. it ensures their

additivity. The application of the BCF operator is math-

ematically possible only if the constraint opinions !CX
are not totally conflicting, i.e., if Con 6= 1.
The BCF operator is commutative and non-idempo-

tent. Associativity is preserved when the base rate is

equal for all agents. Associativity in case of different

base rates requires that all preference opinions be com-

bined in a single operation which requires that Eq. (17)

is applied for all input arguments in a single operation,

which then represents semi-associativity.

The base rates of the two arguments are normally

equal, but different base rates can be used in case of

base rate disagreement between the sources, in which

case the fused base rate distribution is the confidence-

weighted average base rate.

Associativity in case of different base rates requires

that all arguments opinions be combined in a single

operation according to Definition 3. A totally indifferent

opinion acts as the neutral element for constraint fusion,

formally expressed as

IF (!AX is indifferent, i.e. u
A
X = 1)

THEN (!AX ¯!BX = !BX): (20)

Having a neutral element in the form of the totally

indifferent (i.e. vacuous) opinion can be useful when

modelling situations of preference combination.

The rich format of subjective opinions makes it sim-

ple to express positive and negative preferences within

the same framework, as well as indifference/uncertainty.

Because preferences can be expressed over arbitrary

subsets of the domain, this is in fact a multi-polar model

for expressing and combining preferences. Even in the

case of totally conflicting dogmatic opinions the belief

constraint fusion operator produces meaningful results,

namely that the preferences are incompatible. Examples

in Sections 6.1.2—6.1.5 demonstrates the usefulness of

this property.
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TABLE 1

Example preferences and corresponding subjective opinions

Example Type Domain & Opinion Expression

“Ingredient x is
mandatory”

Binary domain X= fx, x̄g

Hard positive Binomial opinion !x : (1,0,0,
1
2
)

“Ingredient x is
totally out of the
question”

Binary domain X= fx, x̄g

Hard negative Binomial opinion !x : (0,1,0,
1
2
)

“I prefer x with
rating 0.3”

Binary domain X= fx, x̄g

Quantitative Binomial opinion !x : (0:3,0:7,0:0,
1
2
)

“I prefer x or y,
but z is also
acceptable”

Ternary domain £ = fx,y,zg

Qualitative Trinomial opinion !£ : (b(fx,yg) = 0:6,
b(z) = 0:3, u= 0:1,

a(x1),a(x2),a(x3) =
1
3
)

“I like x, but I like
y even more”

Binary domains X= fx, x̄g and Y= fy, ȳg

Positive rank Binomial opinions !x : (0:6,0:3,0:1,
1
2
),

!y : (0:7,0:2,0:1,
1
2
)

“I don’t like x, and
I dislike y even
more”

Binary domains X= fx, x̄g and Y= fy, ȳg

Negative rank Binomial opinions !x : (0:3,0:6,0:1,
1
2
),

!y : (0:2,0:7,0:1,
1
2
)

“I’m indifferent
about x, y and z”

Ternary domain £ = fx,y,zg

Neutral Trinomial opinion !£ : (u£ = 1:0,

a(x1),a(x2),a(x3) =
1
3
)

“I’m indifferent but
most people prefer
x”

Ternary domain £ = fx,y,zg

Neutral with bias Trinomial opinion !£ : (u£ = 1:0, a(x) = 0:6,

a(y),a(z) = 0:2)

6.1.2. Expressing Preferences with Subjective
Opinions

Preferences can be expressed as soft or hard con-

straints, qualitative or quantitative, ordered or partially

ordered, etc. It is possible to specify a mapping between

qualitative verbal tags and subjective opinions, which

enables easy solicitation of preferences [25]. Table 1 de-

scribes examples of how preferences can be expressed.

All the preference types of Table 1 can be interpreted

in terms of subjective opinions, and further combined

by considering them as constraints expressed by differ-

ent sources/agents. The examples which comprise two

binary domains could equally well have been modelled

with a quaternary product domain with a corresponding

quatronomial product opinion. In fact, to compute prod-

uct opinions over product domains is an alternative ap-

proach of simultaneously considering preferences over

multiple variables.

TABLE 2

Fusion of film preferences

Belief preferences of: Fusion results:

Alice Bob Clark A&B A&B&C

!AX !BX !CX !A&BX !A&B&CX

b(x1) 0.99 0.00 0.00 0.00 0.00

b(x2) 0.01 0.01 0.00 1.00 1.00

b(x3) 0.00 0.99 0.00 0.00 0.00

b(fx2,x3g) 0.00 0.00 1.00 0.00 0.00

Default base rates are specified in all but the last

example, which indicates total indifference, but with

a bias that expresses the average preference in the

population. Base rates are useful in many situations,

such as for default reasoning. Base rates influence the

computed results only in case of significant indifference

or uncertainty.

6.1.3. Example: Going to the Cinema, First Attempt
Assume three friends, Alice, Bob and Clark, who

want to see a film together at the cinema one evening,

and that the only films showing are Black Dust (x1),Grey
Matter (x2) and White Powder (x3), represented as the
ternary domain X = fx1,x2,x3g. Assume that the friends
express their preferences in the form of the opinions of

Table 2.

Alice and Bob have strong and conflicting prefer-

ences. Clark, who strictly does not want to watch Black
Dust (x1), and who is indifferent about the two other
films, is not sure whether he wants to come along, so Ta-

ble 2 shows the results of applying the belief/preference

constraint fusion operator, first without him, and then

when including him in the party.

By applying belief constraint fusion, Alice and Bob

conclude that the only film they are both interested in

seeing is Grey Matter (x2). Including Clark in the party
does not change that result because he is indifferent to

Grey Matter (x2) and White Powder (x3) anyway, he just
does not want to watch Black Dust (x1).
The belief mass values of Alice and Bob in the

above example are in fact equal to those that Zadeh

[14] used to demonstrate the unsuitability of Dempster’s

rule for fusing beliefs by showing how they produce

counter-intuitive results. Zadeh’s example describes a

medical case where two medical doctors express their

expert opinions about possible diagnoses, which typi-

cally should not have been modelled with Dempster’s

rule (BCF), but with the weighted belief fusion (WBF)

operator [1], and possibly followed by vagueness max-

imisation (WBF-VM). In order to select the appropri-

ate operator, it is crucial to fully understand the nature

of the situation to be modelled. The failure to under-

stand that Dempster’s rule does not represent an opera-

tor for cumulative or averaging belief fusion, combined

with the unavailability of the general cumulative, aver-

aging and weighted fusion operators during that period
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TABLE 3

Fusion of film preferences with indifference and non-default base

rates

Belief preferences of: Fusion results:

Alice Bob Clark A&B A&B&C

!AX !BX !CX !A&BX !A&B&CX

b(X1) 0.98 0.00 0.00 0.490 0.000

b(x2) 0.01 0.01 0.00 0.015 0.029

b(x3) 0.00 0.98 0.00 0.490 0.961

b(fx2,x3g) 0.00 0.00 1.00 0.000 0.010

u 0.01 0.01 0.00 0.005 0.000

a(x1) 0.6 0.6 0.6 0.6 0.6

a(x2) = a(x3) 0.2 0.2 0.2 0.2 0.2

(1976 [9]—2013 [1]), has often led to inappropriate ap-

plications of Dempster’s rule to cases of belief fusion

[13]. However, when specifying the same numerical val-

ues as in [14] in a case of preference constraints such

as in the example above, the belief constraint fusion op-

erator (which is a simple extension of Dempster’s rule)

is the correct fusion operator which produces perfectly

intuitive results.

6.1.4. Example: Going to the Cinema, Second
Attempt

In this example Alice and Bob soften their prefer-

ence with some indifference in the form of u= 0:01, as
specified by Table 3. Clark has the same opinion as in

the previous example, and is still not sure whether he

wants to come along, so Table 3 shows both the results

without him, and with his preference included.

Having some indifference in the preferences would

mean that Alice and Bob should pick film Black Dust
(x1) or White Powder (x3), because in both cases, one
of them actually prefers one of the films, and the

other finds it acceptable. Neither Alice nor Bob prefers

Grey Matter (x2), they only find it acceptable, so it
would be a bad choice for both of them. When taking

into consideration the base rates a(x1) = 0:6 for Black
Dust and a(x3) = 0:2 for White Powder, the expected
preference levels according to Eq. (6) are such that

PA&BX (x1)> P
A&B
X (x3): (21)

More precisely, the preference probabilities from

Eq. (6) are

PA&BX (x1) = 0:493, PA&BX (x3) = 0:491: (22)

Because of the higher base rate, Black Dust (x1) also
has a higher expected preference than White Powder
(x3), so the rational choice would be to watch Black
Dust (x1).
However, when including Clark, who does not want

to watch Black Dust (x1), the base rates no longer dictate
the result. In this case constraint fusion with Eq. (6)

produces PA&B&C(x3) = 0:966 so the obvious choice is
to watch White Powder (x3).

TABLE 4

Combination of film preferences with hard and conflicting

preferences

Belief preferences of: Fusion results:

Alice Bob Clark A&B A&B&C

!AX !BX !CX !A&BX !A&B&CX

b(x1) 1.00 0.00 0.00 UndefinedUndefined

b(x2) 0.00 0.00 0.00 UndefinedUndefined

b(x3) 0.00 1.00 0.00 UndefinedUndefined

b(fx2,x3g) 0.00 0.00 1.00 UndefinedUndefined

6.1.5. Example: Not Going to the Cinema
Assume now that Alice and Bob have totally con-

flicting preferences as specified in Table 4, i.e. Alice has

a hard preference for Black Dust (x1) and Bob has a hard
preference for White Powder (x3). As before, Clark still
does not want to watch Black Dust (x1), and is indifferent
about the other two films.

In this case, the belief constraint fusion operator can

not be applied because Eq. (17) involves a division by

zero. The conclusion is that the friends will not go to

the cinema to see a film together that evening. The

test for detecting this situation is to observe Con= 1
in Eq. (19). It makes no difference to include Clark

in the party, because a conflict can not be resolved

by including additional preferences. However it would

have been possible for Bob and Clark to watch White
Powder (x3) together without Alice.

6.2. Cumulative Belief Fusion

Cumulative Belief Fusion (CBF) is when it is as-

sumed that the amount of evidence increases by includ-

ing additional sources of independent evidence. An ex-

ample of this type of situation is when different wit-

nesses express their opinions about whether they saw

the accused at the crime scene, and where their inde-

pendent testimonies can be fused to produce an opinion

about whether the accused really was there.

Assume a hyperdomain R(X) and a process where
the outcome variable X takes values fromR(X). Assume
further that the outcome can be observed by different

independent sources which can be expressed as C=
fC1,C2, : : :CNg. Let C 2 C denote a specific source, and
let !CX denote its opinion about the variable X. Assume
that the sources in C produce independent opinions

about the same variable X.
Observations can be vague, meaning that sometimes

the sources observe an outcome which might be one of

multiple possible singletons in X, but the sources are
unable to identify the observed outcome uniquely.

For example, assume that sources C1 and C2 observe
coloured balls being picked from an urn, where the balls

can have one of four colours: black, white, red or green.

Assume further that the observer C2 is colour-blind,
which means that in poor light conditions he is unable

see the difference between red and green balls, although
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he can always tell the other colour combinations apart.

As a result, his observations can be vague, meaning

that sometimes he perceives a specific ball to be either

red or green, but is unable to identify the ball’s colour

precisely. This corresponds to the situation where X
is a hypervariable which can take composite values

from R(X).
The symbol ‘¦’ denotes the fusion of independent

sources C 2 C into a single cumulative merged source
denoted ¦(C).
Let C= fC1,C2, : : :CNg be a frame of N sources with

the respective opinions !C1X ,!
C2
X , : : :!

CN
X over the same

variable X. Let C denote a specific source C 2C. The
cumulative merger of all the sources in the source frame

C is denoted ¦(C). The opinion !¦(C)X ´ (b¦(C)X ,u¦(C)X ,a¦(C)X )

is the cumulative fused opinion expressed as:

Case I: uCX 6= 0, 8C 2 C:

b¦(C)X (x) =

P
C2C(b

C
X(x)

Q
Cj 6=C u

Cj
X )P

C2C
³Q

Cj 6=C u
Cj
X

´
¡ (N ¡ 1)QC2Cu

C
X

,

u¦(C)X =

Q
C2Cu

C
XP

C2C
³Q

Cj 6=C u
Cj
X

´
¡ (N ¡ 1)QC2Cu

C
X

,

a¦(C)X (x) =

P
C2C

³
aCX
Q
Cj 6=C u

Cj
X

´
¡PC2C a

C
X ¢
Q
C2Cu

C
XP

C2C
³Q

Cj 6=C u
Cj
X

´
¡NQC2Cu

C
X

,

a¦(C)X (x) =

P
C2C a

C
X

N
, 8uCX = 1, (23)

Case II: 9uCX = 0, defineCdog = fC where uCX = 0g:
b¦(C)X (x) =

X
C2Cdog

°CXb
C
X(x),

u¦(C)X = 0,

a¦(C)X (x) =
X
C2Cdog

°CXa
C
X(x), (24)

where

°CX = lim
uC
dog

X
!0

uCXP
Cj2Cdog u

Cj
X

, 8C 2 Cdog: (25)

The notation uC
dog

X ! 0 means that uCX ! 0 for each

C 2Cdog. The cumulative fused opinion !¦(C)X results

from fusing the respective opinions !CX of the sources
C 2C. The symbol ‘©’ denotes the cumulative belief
fusion operator, hence we define

!¦(C)X ´ ©
C2C
(!CX ) (26)

´ !C1X ©!C2X ©¢¢ ¢!CNX : (27)

It can be verified that the cumulative fusion opera-

tor is commutative, associative and non-idempotent. In

Case II of Eq. (24), the associativity depends on pre-

serving the relative weights of intermediate results with

the additional weight parameter °. In this case, the cu-

mulative fusion operator is equivalent to the weighted

average of probabilities.

The argument base rate distributions are normally

equal. When that is not the case the fused base rate

distribution over X is specified to be the evidence-

weighted average base rate.

In case of N dogmatic arguments !CX where C 2C
it can be assumed that the limits in Eq. (24) are defined

as °CX = 1=N.

6.2.1. Justification for the Cumulative Fusion Operator
The cumulative belief fusion operator of Eq. (23)

is derived by mapping the argument belief opinions

to evidence parameters through the bijective mapping

of Eq. (15). Cumulative fusion of evidence opinions

simply consists of summing up the evidence parame-

ters, where the sum is mapped back to a belief opinion

through the bijective mapping of Eq. (15). This expla-

nation is in essence the justification of the cumulative

fusion operator of Eq. (23). A more detailed explanation

is provided below.

Let the sources C 2 C have respective belief opin-

ions expressed as !CX . The corresponding Dirichlet PDFs

DireX(pX ;r
C
X ,a

C
X) contain the respective evidence vec-

tors rCX .
The cumulative fusion of these evidence vectors

consists of vector summation of rCX where C 2C, ex-
pressed as

r¦(C)X =
X
C2C

rCX: (28)

For each value x 2R(X) the evidence sum r¦(C)X (x) is

r¦(C)X (x) =
X
C2C

rCX(x) (29)

=
X
C2C

WbCX(x)
uCX

(30)

=
W
P

C2C(b
C
X(x)

Q
Cj 6=C u

Cj
X )Q

C2Cu
C
X

: (31)

The cumulative fused belief opinion !¦(C)X of Eq. (23)

results from mapping the fused evidence belief mass

of Eq. (28) back to a belief opinion by applying the

bijective mapping of Eq. (15).

b¦(C)X (x) =
r¦(C)X (x)

W+
P

x2R(X) r
¦(C)
X (x)

(32)

=

P
C2C(b

C
X(x)

Q
Cj 6=C u

Cj
X )Q

C2Cu
C
X +
P

x2R(X)

³P
C2C(b

C
X(x)

Q
Cj 6=C u

Cj
X )

´
(33)
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=

P
C2C(b

C
X(x)

Q
Cj 6=C u

Cj
X )P

C2C

³Q
Cj 6=C u

Cj
X

´
¡ (N ¡ 1)Q

C2Cu
C
X

,

9uCX 6= 0: (34)

The transition from Eq. (32) to Eq. (33) results from

inserting Eq. (31) into Eq. (32). The transition from

Eq. (33) to Eq. (34) results from applying Eq. (3).

u¦(C)X =
W

W+
P

x2R(X) r
¦(C)
X (x)

(35)

=

Q
C2C u

C
XQ

C2C u
C
X +
P

x2R(X)

³P
C2C(b

C
X(x)

Q
Cj 6=C u

Cj
X )

´
(36)

=

Q
C2C u

C
XP

C2C

³Q
Cj 6=C u

Cj
X

´
¡ (N ¡ 1)Q

C2Cu
C
X

,

where 9uCX 6= 0: (37)

The transition from Eq. (35) to Eq. (36) results from

inserting Eq. (31) into Eq. (35). The transition from

Eq. (36) to Eq. (37) results from applying Eq. (3).

6.3. Averaging Belief Fusion

Averaging Belief Fusion (ABF) is when dependence

between sources is assumed. In other words, including

more sources does not mean that more evidence is

supporting the conclusion. An example of this type of

situations is when a jury tries to reach a verdict after

having observed the court proceedings. The assumption

is that the correctness of the verdict does not increase

as a function of the number of jury members, because

the amount of evidence is fixed by what was presented

in court.

Let C denote a group of N separate sources which

can be expressed as C= fC1,C2, : : :CNg. Assume that
the sources in C produce separate opinions based on the
same evidence about the same variable, so their opinions

are necessarily dependent. Still, their perceptions might

be different, e.g. because their cognitive capabilities are

different. For example, assume that sources C1 and C2
together observe the picking of coloured balls from an

urn, where the balls can have one of four colours: black,

white, red or green. Assume that observer C2 is colour-
blind, which means that sometimes he has trouble dis-

tinguishing between red and green balls, although he

can always distinguish between the other colour com-

binations. Observer C1 has perfect colour vision, and
normally can always tell the correct colour when a ball

is picked. As a result, when a red ball is picked, observer

C1 almost always identifies it as red, but observer C2
identifies it as green relatively frequently. This can lead

to C1 and C2 having different and conflicting opinions
about the same variable, although their observations and

opinions are totally dependent. The averaging belief fu-

sion operator is perfectly suitable for this fusion situa-

tion.

Let C= fC1,C2, : : :CNg be a frame of N sources with
the respective opinions !C1X ,!

C2
X , : : :!

CN
X over the same

variable X. Let C denote a specific source C 2 C. The
averaging merger of all the sources in the source frame

C is denoted ¦(C). The opinion !¦(C)X ´ (b¦(C)X ,u
¦(C)
X ,a¦(C)X )

is the averaging-fused opinion expressed as:

Case I: uCX 6= 0, 8C 2C:

b¦(C)X (x) =

P
C2C

³
bCX(x)

Q
Cj 6=C u

Cj
X

´
P

C2C
³Q

Cj 6=C u
Cj
X

´ ,

u
¦(C)
X =

N
Q
C2Cu

C
XP

C2C
³Q

Cj 6=C u
Cj
X

´ ,
aA¦BX (x) =

P
C2Ca

C
X(x)

N
, (38)

Case II: 9uCX = 0, defineCdog = fC where uCX = 0g:
b¦(C)X (x) =

X
C2Cdog

°CXb
C
X(x),

u
¦(C)
X = 0,

a¦(C)X (x) =
X
C2Cdog

°CXa
C
X(x), (39)

where

°CX = lim
uC
dog

X
!0

uCXP
Cj2Cdog u

Cj
X

, 8C 2Cdog: (40)

The notation uC
dog

X ! 0 means that uCX ! 0 for each

C 2 Cdog. The averaging-fused opinion !
¦(C)
X results

from averaging fusion of the respective opinions !CX of
the sources C 2 C. By using the symbol ‘©’ to designate
the averaging belief fusion operator, we define

!
¦(C)
X ´ ©

C2C
(!CX ): (41)

It can be verified that the averaging belief fusion op-

erator is commutative, idempotent, and non-associative.

The non-associativity means that

(!C1X ©!C2X )©!C3X 6= !C1X ©(!C2X ©!C3X ): (42)

However, semi-associativity exists as expressed by

Eq. (41) where the argument order is irrelevant because

all the arguments are fused in one single operation.

The only way to apply averaging fusion to more than

two arguments is thus by fusing all arguments in one

operation as described in Eq. (38) and expressed by the

notation of Eq. (41). For three argument sources, this is

expressed as:

!
¦(C1,C2,C3)
X ´©(!C1X ,!C2X ,!C3X ): (43)

The argument base rate distributions are normally

equal. When that is not the case the fused base rate
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distribution is specified to be the average base rate

distribution. In case the opinions of the N sources in

C are all dogmatic opinions, then the limits in Eq. (39)
can be set to °CX = 1=N.

6.3.1. Justification for the Averaging Fusion Operator
The averaging belief fusion operator of Eq. (38)

is derived by mapping the argument belief opinions

to evidence opinions through the bijective mapping of

Eq. (15). Averaging fusion of evidence opinions sim-

ply consists of computing the average of the evidence

parameters. The fused evidence opinion is then mapped

back to a belief opinion through the bijective mapping

of Eq. (15). This explanation is in essence the justifi-

cation of the averaging fusion operator of Eq. (38). A

more detailed explanation is provided below.

Let the sources C 2C have respective belief opin-

ions expressed as !CX . The corresponding Dirichlet PDFs

DireX(pX ;r
C
X ,a

C
X) contain the respective evidence vec-

tors rCX .
The averaging fusion of these evidence vectors

consists of vector averaging of rCX where C 2C, ex-
pressed as

r¦(C)X =

P
C2C r

C
X

N
: (44)

For each value x 2R(X) the average evidence

r¦(C)X (x) is

r¦(C)X (x) =

P
C2C r

C
X(x)

N
=

P
C2CWb

C
X(x)=u

C
X

N
(45)

=
W
P

C2C
³
bCX(x)

Q
Cj 6=C u

Cj
X

´
N
Q
C2Cu

C
X

: (46)

The averaging-fused belief opinion !
¦(C)
X of Eq. (38)

results from mapping the fused evidence belief mass

of Eq. (44) back to a belief opinion by applying the

bijective mapping of Eq. (15).

b¦(C)X (x) =
r¦(C)X (x)

W+
P

x2R(X) r
¦(C)
X (x)

(47)

=

P
C2C

³
bCX(x)

Q
Cj 6=C u

Cj
X

´
N
Q

C2C u
C
X +
P

x2R(X)

³P
C2C

³
bCX(x)

Q
Cj 6=C u

Cj
X

´´
(48)

=

P
C2C

³
bCX(x)

Q
Cj 6=C u

Cj
X

´
P

C2C

³Q
Cj 6=C u

Cj
X

´ ,

where 9uCX 6= 0: (49)

The transition from Eq. (47) to Eq. (48) results from

inserting Eq. (46) into Eq. (47). The transition from

Eq. (48) to Eq. (49) results from applying Eq. (3).

u
¦(C)
X =

W

W+
P

x2R(X) r
¦(C)
X (x)

(50)

=
N
Q

C2Cu
C
X

N
Q

C2C u
C
X +
P

x2R(X)

³P
C2C

³
bCX(x)

Q
Cj 6=C u

Cj
X

´´
(51)

=
N
Q

C2C u
C
XP

C2C

³Q
Cj 6=C u

Cj
X

´ ,
where 9uCX 6= 0: (52)

The transition from Eq. (50) to Eq. (51) results from

inserting Eq. (46) into Eq. (50). The transition from

Eq. (51) to Eq. (52) results from applying Eq. (3).

6.4. Weighted Belief Fusion

The weighted belief fusion (WBF) operator pro-

duces averaging beliefs weighted by the opinion con-

fidences.

The confidence cX of an opinion !X is computed as:

cX = 1¡uX: (53)

WBF is suitable for fusing source opinions in situa-

tions where the confidence should determine the opin-

ion weight in the fusion process, which e.g. means that

a vacuous opinion (i.e. an without confidence) has no

effect on the fusion result.

When the arguments are conflicting multinomial

opinions the fused result will be a dissonant multinomial

opinion. This property could be seen as counter-intuitive

when fusing opinions from human expert sources, be-

cause humans would tend to leverage belief on overlap-

ping values and prefer vagueness over dissonance [26].

WBF is therefore best suited for frequentist situations

where dissonance is preferred over vagueness. When

vagueness is preferred the WBF-VM operator described

in Section 6.6 can be used because it transforms disso-

nance into vagueness.

The definition of 2-source WBF specified in [5]

was extended to multi-source WBF in [27] which is

expressed below.

DEFINITION 4 (The Weighted Belief Fusion Opera-
tor). Assume a hyperdomainR(X) and a situation where
the variable X takes values from the domain R(X). As-
sume further that the different sources from a frame of

N sources C= fC1,C2, : : :CNg have their respective in-
dependent opinions on X. A specific source is denoted
by C 2 C, and its opinion about the variable X is de-

noted !CX .

Let !¦̂(C)X be the opinion such that

!¦̂(C)X = (b¦̂(C)X ,u¦̂(C)X ,a¦̂(C)X ), where (54)
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Case I: (8C 2 C : uCX 6= 0)^ (9C 2 C : uCX 6= 1):

b¦̂(C)X (x) =

P
C2Cb

C
X(x)(1¡ uCX)

Q
Ci2C
Ci 6=C

uCiXμP
C2C

Q
Ci2C
Ci 6=C

uCiX

¶
¡NQC2Cu

C
X

,

u¦̂(C)X =

¡
N ¡PC2Cu

C
X

¢Q
C2Cu

C
XμP

C2C
Q

Ci2C
Ci 6=C

uCiX

¶
¡NQC2Cu

C
X

,

a¦̂(C)X (x) =

P
C2C a

C
X(x)(1¡ uCX)

N ¡PC2Cu
C
X

, (55)

Case II: 9C 2 C: uCX = 0. Let Cdog = fC 2C : uCX =
0g:

b¦̂(C)X (x) =
X
C2Cdog

°CXb
C
X(x),

u¦̂(C)X = 0,

a¦̂(C)X (x) =
X
C2Cdog

°CXa
C
X(x), (56)

where

°CX = lim
uC
dog

X
!0

uCXP
Cj2Cdog u

Cj
X

, 8C 2 Cdog:

Case III: 8C 2 C : uCX = 1:
b¦̂(C)X (x) = 0,

u¦̂(C)X = 1,

a¦̂(C)X (x) =

P
C2C a

C
X(x)

N
: (57)

The notation uC
dog

X ! 0 means that uCX ! 0 for each

C 2Cdog. !¦̂(C)X denotes the WBF (Weighted Belief Fu-

sion) opinion resulting from the opinions !CX provided
by the sources C 2 C. By using the symbol ‘©̂’ to denote
this belief operator, we define

!¦̂(C)X ´ ©̂
C2C
(!CX ): (58)

It can be verified that WBF is commutative, idem-

potent and has the vacuous opinion as neutral element.

Semi-associativity requires that three or more arguments

must first be combined together in the same operation.

The argument base rate distributions are normally

equal among the sources. When that is not the case the

fused base rate distribution over X is specified to be

the confidence-weighted average base rate distribution.

In case of dogmatic arguments assume the limits in

Eq. (56) to be °CX = 1=N where N = jCj.
The WBF operator is equivalent to updating Dirich-

let PDFs as the confidence-weighted average of source

agents’ evidence to produce posterior Dirichlet PDFs.

The derivation of the confidence-weighted fusion op-

erator is based on the bijective mapping between the

belief and evidence notations described in Eq. (15).

THEOREM 1 The weighted belief fusion operator of Def-
inition 4 is equivalent to confidence-weighted averaging
of the evidence parameters of the Dirichlet HPDF in
Eq. (14).

PROOF 1. The weighted belief fusion operator of Defi-

nition 4 is derived by mapping the argument belief opin-

ions to evidence opinions through the bijective mapping

of Eq. (15). Weighted belief fusion of evidence opinions

simply consists of computing the confidence-weighted

average of the evidence parameters. The fused evidence

opinion is then mapped back to a belief opinion through

the bijective mapping of Eq. (15). This explanation is

in essence the proof of Theorem 1. A more detailed

explanation is provided below.

Let the N sources C 2 C have the respective be-

lief opinions !CX . The corresponding evidence opinions
DireHX (p

H
X ;r

C
X ,a

C
X) contain the respective evidence param-

eters rCX .
The weighted fusion of these bodies of evidence

simply consists of weighted vector averaging of the

parameters in the evidence opinions DireHX (p
H
X ;r

C
X ,a

C
X):

DireHX (p
H
X ;r

¦̂(C)
X ,a¦̂(C)X ) = ©̂

C2C
DireHX (p

H
X ;r

C
X ,a

A
X): (59)

More specifically, for each value x 2R(X) the confi-
dence-weighted fusion evidence r¦̂(C)X (x) is computed as

r¦̂(C)X (x) =

P
C2C r

C
X(x)(1¡ uCX)

N ¡PC2Cu
C
X

: (60)

The weighted fusion opinion !¦̂(C)X of Definition 4

results from mapping the fused evidence belief mass of

Eq. (59) back to a belief opinion as defined in Defini-

tion 4 by applying the bijective mapping of Eq. (15).

6.5. Uncertainty Maximisation

Uncertainty maximisation consists of transforming

belief mass of an opinion !X into uncertainty mass while
preserving the projected probability distribution PX .
Given a specific multinomial opinion !X , the cor-

responding uncertainty-maximised opinion is denoted

!̈X = (b̈X , üX ,aX). Obviously, the base rate distribution
aX is not affected by uncertainty-maximisation.
The theoretical maximum uncertainty mass üX is de-

termined by converting as much belief mass as possible

into uncertainty mass, while preserving consistent pro-

jected probabilities. This process is illustrated in Fig-

ure 5 which shows an opinion !X as well as the corre-
sponding uncertainty-maximised opinion !̈X .
The projector line defined by the equations

PX(xi) = bX(xi) + aX(xi)uX , i= 1, : : :k, (61)

which by definition is parallel to the base rate director

line, and which joins PX and !̈X in Figure 5, defines
possible opinions !X for which the projected probability
distribution is constant. As the illustration shows, the

opinion !̈X is the uncertainty-maximised opinion when
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Fig. 5. Uncertainty-maximised opinion !̈X of multinomial opinion

!X

Eq. (61) is satisfied and at least one belief mass of !̈X is
zero, since the corresponding point would lie on a side

of the simplex. In general, not all belief masses can be

zero simultaneously, except for vacuous opinions. The

example of Figure 5 shows the case where b̈X(x1) = 0.
The candidate maximum uncertainty mass ²uX(xi) at

each point where the projector intersects a side plane

defined by bX(xi) = 0 can be determined by Eq. (62):

²uX(xi) =
PX(xi)
aX(xi)

: (62)

All belief masses determined according to Eq. (65)

must be non-negative, which is satisfied through the

constraint of Eq. (63):

²uX(xi)·
PX(x)
aX(x)

, 8x 2 X: (63)

Under the constraint of Eq. (63) the maximised

uncertainty üX is the minimum candidate uncertainty

from Eq. (62):

üX =min
xi2X

[²uX(xi)]: (64)

The belief masses under uncertainty maximisation

emerge from Eq. (65) which is simply a transformation

of Eq. (6):

b̈X(x) = PX(x)¡ aX(x)üX: (65)

The uncertainty-maximised opinion consists of the

components denoted !̈X = (b̈X ,aX , üX). By defining "̈ to
be the unary operator for uncertainty maximisation we

can write:

Uncertainty Maximisation: !̈X = "̈(!X): (66)

A natural application of uncertainty maximisation is

to produce epistemic opinions during opinion fusion.

For that it is necessary to first generate a fused opin-

ion, and subsequently to apply vagueness maximisa-

tion. In the case of e.g. CBF (Cumulative Belief Fusion)

the combination with uncertainty maximisation is called

CBF-UM (Cumulative Belief Fusion with Uncertainty

Maximisation). An situation where it would be natural

to apply CBF-UM could be when different witnesses ex-

press highly confident and highly conflicting opinions

about whether Oswald shot Kennedy in 1968, which

when fused with e.g. CBF would produce an opinion

with high confidence. Since the combined testimonies

in this case would be inconclusive it could be natural

to apply uncertainty maximisation to the result of CBF

to produce CBF-UM, as shown in the example of Sec-

tion 7.

6.6. Vagueness Maximisation

In situations where people give different hypotheses

it is fair to acknowledge that anyone can be wrong, and

that a good consensus might be to agree that one of

the hypotheses probably is right. This would typically

be the situation in Zadeh’s example [14] where two

medical doctors give different diagnoses to explain a

patient’s symptoms, so that it would be natural for the

doctors to agree that one of the diagnoses is correct,

but that they are unable to identify which diagnosis in

particular is correct. In this situation the combination of

the two doctors result in a vague diagnosis.
Composite values x 2R(X) are state values contain-

ing multiple singleton values which e.g. can be different

hypotheses such as medical diagnoses. Vague belief is

belief mass assigned to a composite value, meaning that

the belief mass applies to multiple singletons simultane-

ously. Vague belief mass thus reflects that the source be-

lieves that one of the singletons in the composite value

is TRUE, without being able to identify which singleton

in particular is TRUE. Vagueness is relevant for belief

fusion, especially for WBF because vagueness can ex-

press compromise belief between conflicting sources.

Vagueness maximisation consists of transforming belief

masses on multiple singleton values into belief mass on

a composite value, while preserving the projected prob-

ability distribution of Eq. (6).

In case the fused opinion !X is hypernomial we

need to first apply Eq. (8) to compute the projected

multinomial opinion !. X .
Vagueness maximisation consists of transforming

belief masses on multiple singleton values into a vague

belief mass on the composite value containing the sin-

gletons. In case !. X has belief mass on every single-
ton x 2 X then a transformation into belief mass on X
would not be meaningful because this is the same as un-

certainty mass, and the transformation would break the

assumption of preserving the amount of belief mass. We

must identify the value(s) xi 2X that should not be sub-
ject to vague belief mass, which can be done by comput-

ing the uncertainty-maximised opinion !̈X as described
in Section 6.5 above.

The method of uncertainty maximisation described

above forms the basis for the computation of vagueness-

maximised opinions which is described below in the

form of 4 consecutive steps. Note that this method of

vagueness maximisation applies to multinomial opin-

ions. Hence, if the goal is to apply vagueness maximi-

sation to a hyper-opinion, a necessary preliminary step
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is to first project it to a multinomial opinion according

to Eq. (9)

Step 1:
Compute üX according to the procedure for uncertainty-
maximisation described in Section 6.5. Let X[1]cut be the
cut-out set of values xi for which ²uX(xi) = üX with

reference to Eq. (62) and Eq. (64). Note that X[1]cut may
contain a single or multiple values.

Case A: jX[1]cutj= 1. Keep the singular belief mass
bX(x) of the singleton value x 2X[1]cut and proceed to
Step 2.

Case B: 1< jX[1]cutj< jXj. The composite value

x[1]vag = fx 2X[1]cutg gets assigned the vague belief mass
bX(x

[1]
vag) according to Eq. (67).

bX(x
[1]
vag) =

X
x2X[1]cut

bX(x): (67)

Then proceed to Step 2.

Case C: jX[1]cutj= jXj: Split X into two exclusive

sets X[1]res and X[2]res for which the respective sums of
projected probability P(X[1]res) and P(X[2]res) are (approx-
imately) equal. While this is a form of the knapsack

problem we propose to simply sum up the greatest pro-

jected probabilities until the sum is greater than 0.5,

and assign the corresponding set of values to X[1]res,
and the remaining values to X[2]res. Define the compos-
ite values x[1]vag = fx 2 X[1]resg and x[2]vag = fx 2 X[2]resg. As-
sign the vague belief masses bX(x

[1]
vag) =

P
x2X[1]res bX(x)

and bX(x
[2]
vag) =

P
x2X[2]res bX(x). Proceed to the Final Step.

Step 2:
We exclude X[1]cut to produce the residual set X[2]res:

X[2]res =X nX[1]cut: (68)

Case A: jX[2]resj= 0. Proceed to the Final Step.
Case B: jX[2]resj= 1. Keep the singular belief mass

bX(x) on the singleton value x 2X[2]res. Proceed to the
Final Step.

Case C: jX[2]resj ¸ 2. Now we focus exclusively on

values xi 2 X[2]res when applying the constraint of Eq. (63).
The next synthetic maximum uncertainty mass is:

ü[2]X = min
xi2X[2]res

[²uX(xi)]: (69)

Eq. (70) gives the corresponding synthetic belief

masses:

b̈[2]X (x) = PX(x)¡ aX(x)ü[2]X , 8x 2 X[2]res: (70)

We define the composite value x[2]vag = fx 2 X[2]resg.
The vague belief mass bX(x

[2]
vag) can then be assigned

according to Eq. (71)

bX(x
[2]
vag) =

X
x2X[2]res

(bX(x)¡ b̈[2]X (x)): (71)

Let the iterative step index be denoted ´. Set ´ = 3
and proceed to Step ´.

Step ´:
Let X[´¡1]cut be the set of values xi for which ²uX(xi) =

ü[´¡1]X with reference to Eq. (62) and Eq. (64). We ex-

clude X[´¡1]cut from X[´¡1]res to produce the residual set X[´]res:

X[´]res =X
[´¡1]
res nX[´¡1]cut : (72)

Case A: jX[´]resj= 0. Proceed to the Final Step.
Case B: jX[´]resj= 1. Keep the singular belief mass

bX(x) on the singleton value x 2X[´]res. Proceed to the
Final Step.

Case C: jX[´]resj ¸ 2. Now we focus exclusively on

values xi 2X[´]res when applying the constraint of Eq. (63).
The next synthetic maximum uncertainty mass is:

ü[´]X = min
xi2X[´]res

[²uX(xi)]: (73)

The computation of the belief masses emerges from

Eq. (74):

b̈[´]X (x) = PX(x)¡ aX(x)ü[´]X : (74)

We define the composite value x[´]vag = fx 2 X[´]resg.
The vague belief mass bX(x

[´]
vag) can then be assigned

according to Eq. (75)

bX(x
[´]
vag) =

X
x2X[´]res

(b̈[´¡1]X (x)¡ b̈[´]X (x)): (75)

Increment the step index ´ as ´ := ´+1, then repeat
Step ´.

Final Step:
Finally, the components of the vagueness-maximised

opinion _!X = (bX ,uX ,aX) can be assembled, consisting
of the computed vague belief masses bX(x

[´]
vag), and

whenever applicable the singular belief masses bX(xi),
in addition to the original uncertainty mass uX and base
rate distribution aX . This ends the process of vagueness
maximisation.

By defining the unary operator _" to represent vague-
ness maximisation we can write

Vagueness Maximisation: _!X =
_"(!X): (76)

A natural application of vagueness maximisation is

to produce compromise belief when fusing opinions

from multiple (conflicting) sources. To this end it is nec-

essary to first generate a fused opinion with WBF, and

subsequently to apply vagueness maximisation. This

combination is called WBF-VM (Weighted Belief Fu-

sion with Vagueness Maximisation) and is denoted ‘ _̂©’.
As an alternative to WBF-VM for belief fusion with

compromise, the belief fusion operator CCF (Consen-

sus & Compromise Fusion) has been described with a

simple two-source version [5] as well as with a multi-

source version [27]. The definition of multi-source CCF

is rather complex [27], whereas multi-source WBF-VM

is rather simple in comparison. In situations where it
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TABLE 5

Zadeh’s numerical example applied to belief constraint fusion (BCF), cumulative belief fusion (CBF), cumulative belief fusion with

uncertainty maximisation (CBF-UM), averaging belief fusion (ABF), weighted belief fusion (WBF) and weighted belief fusion with

vagueness maximisation (WBF-VM)

Source opinions: Fused opinions resulting from applying:

A B BCF CBF CBF-UM ABF WBF WBF-VM

bX (x1) = 0.99 0.00 0.00 0.495 0.485 0.495 0.495 0.000

bX (x2) = 0.01 0.01 1.00 0.010 0.000 0.010 0.010 0.010

bX (x3) = 0.00 0.99 0.00 0.495 0.485 0.495 0.495 0.000

bX (x1,x2) = 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000

bX (x1,x3) = 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.990

bX (x2,x3) = 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000

uX = 0.00 0.00 0.00 0.000 0.030 0.000 0.000 0.000

TABLE 6

A variation of Zadeh’s example applied to belief constraint fusion (BCF), cumulative belief fusion (CBF), cumulative belief fusion with

uncertainty maximisation (CBF-UM), averaging belief fusion (ABF), weighted belief fusion (WBF) and weighted belief fusion with

vagueness maximisation (WBF-VM)

Source opinions: Fused opinions resulting from applying:

A B BCF CBF CBF-UM ABF WBF WBF-VM

bX (x1) = 0.98 0.00 0.889 0.890 0.880 0.882 0.889 0.806

bX (x2) = 0.01 0.01 0.011 0.010 0.000 0.010 0.010 0.010

bX (x3) = 0.00 0.90 0.091 0.091 0.081 0.090 0.083 0.000

bX (x1,x2) = 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000

bX (x1,x3) = 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.166

bX (x2,x3) = 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000

uX = 0.01 0.09 0.009 0.009 0.039 0.018 0.018 0.018

is suitable to apply a fusion operator with belief com-

promise, the most practical choice is therefore to ap-

ply WBF-VM which is included in the example of Sec-

tion 7.

7. COMPARISON OF FUSION OPERATORS

The fusion example in Table 5 takes as input ar-

guments the numerical belief masses from Zadeh’s ex-

ample [14]. In this example, the sources are two med-

ical doctors who each have an opinion about the hy-

pothesis space of three possible diseases, and Demp-

ster’s rule (called BCF (Belief Constraint Fusion) in

subjective logic) is applied for fusing the two opin-

ions. The counter-intuitive results produced by Demp-

ster’s rule (BCF) demonstrate that Dempster’s rule is

unsuitable for this particular category of situations. A

more suitable operator for the situation of the two doc-

tors is WBF-VM (Weighted Belief Fusion with Vague-

ness Maximisation), because it preserves common belief

and produces compromise belief from conflicting belief

sources.

Exactly the same pair of argument opinions can of

course occur in other fusion situations as well. Table 5

shows the results of fusion with each operator described

in the previous sections, where the the fused result opin-

ion produced by a given operator is sound and intuitive

according to the corresponding situation category de-

scribed in Section 2.

On an abstract level, sources A and B provide opin-
ions about the hypothesis space X= fx1,x2,x3g with
variable X. The base rate distributions are assumed to
be equal and uniform, expressed as aAX = a

B
X = f 13 , 13 , 13g.

Each operator produces intuitive results given re-

spective relevant situations for which the operators are

suitable. For example, in the medical situation of the

original Zadeh’s example where two medical doctors A
and B have conflicting opinions about the diagnosis of a
patient, WBF-VM produces vague belief in the form of

bA _̂¦BX (x1,x3) = 0:99 which seems natural until the doctors
can agree on a single diagnosis for the patient. The BCF

operator produces a sound and intuitive fused opinion

with the same argument opinions when e.g. assuming

a situation where two friends express preferences for

watching a film at the cinema.

Fusion of dogmatic conflicting opinions, i.e. where

uX = 0, is defined for all operators except for BCF. If
the fusion situation is determined to be in the BCF cat-

egory the interpretation of fusing dogmatic conflicting

opinions is that there is no solution, which is perfectly

logic. See Section 6.1.5 for an example of this situation.

Zadeh’s example as in Table 5 does not clearly ex-

pose the difference between the various belief fusion

operator because many fusion operators produce equal

results when the sources are dogmatic as in this case.

The modified example in Table 6 brings greater differ-

entiation in the fusion results by introducing unbalanced
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levels of uncertainty in the argument opinions. The dif-

ference between the arguments of Table 5 and Table 6

can be interpreted and explained through the assump-

tions of the various belief-fusion categories with regard

to how conflicting belief arguments are handled in the

belief fusion process.

8. DISCUSSION AND CONCLUSION
We argue that the main research question in belief

fusion is not about finding the single most correct belief

fusion operator, because no single operator is suitable

for all situations. Instead, the interesting question and

the biggest challenge is how to select the most suitable

belief fusion operator for a given situation of belief fu-

sion. For this purpose we propose to classify situations

of belief fusion into different categories, where a set

of belief-fusion assumptions can be used as criteria for

selecting the category to which a specific belief fusion

situation belongs.

This article illustrates the importance of selecting a

belief fusion operator that adequately matches the sit-

uation to be modelled and analyzed. It is scientifically

misguided to follow the approach of always applying

the favourite belief fusion operator with which the an-

alyst or scientist happens to be familiar, without regard

to the nature of the situation to be modelled. By using

the selection criteria to categorise a given belief-fusion

situation and applying the corresponding belief fusion

operator the analyst is able to obtain sound and useful

results more consistently than by simply making an un-

informed choice when selecting a belief fusion operator

for a given application.
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Uncertainty in avionics
analytics ontology for
decision-making support

CARLOS C. INSAURRALDE
ERIK BLASCH

With the growing congestion in the airspace, Air Traffic Man-

agement (ATM) requires advances in massive data processing, so-

phisticated avionics techniques, coordination with weather updates,

and assessment of multiple types of uncertainty. The complex situ-

ation overwhelms pilots and ATM controllers. To provide depend-

able artificial decision-making support for ATM and Unmanned

Aerial System Traffic Management (UTM) systems, ontologies are

an attractive knowledge technology. This paper proposes an Avion-

ics Analytics Ontology (AAO) to bring together different types of

uncertainties including semantic from operators, sensing from navi-

gation, and situation from weather modeling updates. The approach

is aligned with the Uncertainty Representation and Reasoning Eval-

uation Framework (URREF), that develops an uncertainty ontology.

The degree of uncertainty to improve effectiveness in ATM/UTM

decision-making processes quantifies information veracity; in ad-

dition to accuracy, timeliness, and confidence. Application exam-

ples are presented that involves two ATM/UTM operation scenarios

where Unmanned Aerial Vehicles (UAVs) fly nearby commercial

aircraft and/or airports which requires situation awareness safety

response. As compared to a baseline approach without Automatic

Dependent Surveillance-Broadcast (ADS-B), results from recorded

ADS-B data demonstrate a over 0.75 veracity improvement) from

Newark Liberty International Airport.
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1. INTRODUCTION

There has been a growth in the use of ontologies

for communities such as medical diagnostics, target as-

sessment, and chemical composition. An area that can

benefit from an unified ontology is that of avionics;

with only limited reporting for groups interested in sup-

porting the the Federal Aviation Administration (FAA)

Next Generation Air Transportation System (NextGen)

and the Single European Sky ATM Research (SESAR)

systems. The use of ontologies would enhance the coor-

dination between physics-based sensing (e.g., positing

and navigation), human-derived communications (e.g.,

call sign and Notice to Airmen–NOTAMS), and situa-

tion reporting (e.g., weather map updates on the cockpit

displays). The ontologies support a common taxonomy

for reporting to help pilots and Air Traffic Controllers

(ATC) make difficult decisions in the context of data,

feature, and information uncertainty.

Air Traffic Management (ATM) is growing in com-

plexity as avionics systems are getting sophisticated,

airspaces are densely occupied, and air transport is fly-

ing in more adverse weather conditions. Overwhelmed

aviators, air traffic controllers, and air transport busi-

nesses have to prioritize dependability (safety, security,

reliability, etc.) in aviation procedures while sharing

the airspace with other types of aircraft such as un-

manned aerial vehicles (UAVs). Due to the emergence

of inexpensive UAVs, accessible from a diverse set of

users from the scientific, recreational, commercial, civil

and military aviation communities, there is need for

a common set of rules (or procedures) for Unmanned

aerial system Traffic Management (UTM). ATM/UTM

aerospace information management systems need be (1)

efficient with larger amounts of data, (2) effective with
combining information from different sources such as

weather forecasts, flight profiles, airports, and UAVs,

and (3) relevant through reducing uncertainty in deci-
sion support systems (DSS).

An attractive approach to support decision making in

advanced ATM/UTM systems is the implementation of

Ontologies for NextGen Avionics Systems (ONAS). On-
tologies are meant to model cognitive processes by rep-

resenting and reasoning on knowledge. Following this

direction, a proof of concept for an ONAS solution was

proposed [1], which has a knowledge-based ATM/UTM

architecture for avionics analytics. In this Avionics Ana-
lytics Ontology (AAO), an ontological database captures
information (data along with meaning) as to concepts,

entities, and relations in order to build knowledge re-

lated to weather, flights, and airspace. The ontology en-

ables artificial reasoning to make decisions based on the

knowledge stored and the current situation estimates.

The AAO supports Decision-Support System (DSS)

for ATM/UTM to dependably minimize human inter-

vention by making decisions simultaneously based on

multiple information inputs. A key issue when design-

ing DSSs is the credibility, reliability, and veracity of the
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Fig. 1. Big Data Constructs and Uncertainty Metrics

gathered information. Veracity is an element of big data

that assesses the truthful of the data and is include in

the 4 V’s of big data: volume, variety, velocity, and ve-

racity; while other options include value, volatility, and

visualization. Veracity can be used to assess the truth

of data for such cases are aircraft sensor failures [2].

The alignment of the big data V’s and the Uncertainty

Representation and Reasoning Evaluation Framework

(URREF) are shown in Fig. 1.

This paper proposes to endow the above AAO with

semantic uncertainty for input information to improve

DSS effectiveness in the decisions taken. The pro-

posed approach is based on the Uncertainty Represen-

tation and Reasoning Evaluation Framework (URREF).

It deals with the URREF input criterion (i.e., weight

of evidence, relevance to problem, and credibility). The

ontology development presents veracity as part of in-
formation credibility. The AAO construct captures not

only information on concepts, entities, and relations;

but also uncertainty of the input information as to its

veracity for metadata information. The AAO considers

the degree of uncertainty by means of quantitative met-

rics of throughput, timeliness, confidence, and accuracy.

Veracity then includes qualitative metrics such as relia-

bility, credibility, and quality mapped to precision and

recall. The URREF assessment enhances avionics DDS

analytics when considering semantic and physical data

sources. Ultimately, it will enhance Situation AWare-

ness (SAW) as well as Situation Assessment (SA) in

information fusion [3].

This paper presents application examples that in-

volve two ATM/UTM operation scenarios where UAVs

are flying nearby commercial aircraft and/or airports.

The closeness of UAV proximity has an impact on the

ATM/UTM decisions taken by the DSS. The DSS pro-

vided by the URREF-based AAO takes into account se-

mantics from updates of weather maps, airport maps,

and route maps as well as information uncertainty (ve-

racity of the above updates, in particular from flights).

The scenarios are meant to represent realistic flight sit-

uations since they make use of real-time airspace in-

formation provided by a flight tracking service (Flight-

radar24 [4]).

The rest of the paper is organized as follows. Sec-

tion 2 recalls existing approaches for ATM. Section 3

reviews supporting and existing technologies and con-

cepts regarding SAW and SA. Section 4 introduces the

URREF. Section 5 discusses the AAO foundations for

ontological decision-making support in avionics, and

the uncertainty scope and considerations for veracity

metrics. Section 6 presents applications examples by

means of three application examples. The final section

presents the conclusions and future research steps.

2. EXISTING APPROACHES FOR AIR TRAFFIC
MANAGEMENT

Air Traffic Management evolved with air services

and current incorporates three methods: Air Traffic

Control (ATC), Air Traffic flow Management (ATFM),

and aeronautical information services (AIS).

The approaches to decision support improved with

technology, collaboration, visualization, and mandates.

For example, in 1982, Pararas developed a modu-

lar system using Mixed Integer Linear Programming

Language (MILP) modular automation approach for

ATM/C that afforded aircraft dynamics, a flexible con-

troller interface, and a real-time terminal area simulation

[5]. Many approaches in the 90s sought to use automa-

tion for optimization of airspace data to support visu-

alization. In 2000, Ball et al [6] reported on efforts for

collaborative decision making using the distribution of

the National Airspace System (NAS) status information

and the management of en-route traffic flow through

optimization with a ground delay program, convective

weather forecast, and LAADR (Low Altitude Arrival

and Departure Routes) for congestion avoidance. The

FAA methods were documented to include decision

making, capacity performance, traffic flow, and weather

support [7]. Access to the information services in a uni-

fied display assists controllers, pilots and dispatchers

for a flight management system, as demonstrated by

the NASA Multi Aircraft Control System (MACS) [8].

A key element for ATM is the International Civil Avi-

ation Organization (ICAO) air traffic management [9]

information that includes traffic flow requirements, sep-

aration rules, flight information, coordination routines,

message format, phraseology, ADS services, and Con-

troller/pilot Data Link Communications (CPDLC).

ATM decision support systems design sought ad-

vances in airspace dynamics developed for monitoring,

capacity flow, and scheduling for system wide infor-

mation management (SWIM), that did not focus on the

information services. In 2008, the Sky-Scanner project

sought to develop LIDAR sensing for monitoring as

an improved decision support system for ATM [9].

The data was utilized with a risk-based approach from

the airspace rules to augment capacity flow [10]. Fur-

ther, the Next Generation Air Traffic Management (NG-

ATM) operational concepts were sought for the Sin-

gle European Sky Air Traffic Management Research

(SESAR) and the United States’ Next Generation of

Air Transportation System (NextGen) programs which
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included a 4-Dimensional Trajectory Negotiation and

Validation System [11]. The system was to support

safety, capacity, efficiency, and the environment. An

optimization method for spatial-temporal airspace use

was developed to assist in scheduling for intent negoti-

ation. Efforts continue to provide techniques for ATM

including: performance based operations, capacity and

flow control, efficiency and environmental impact, de-

parture and arrival management, Terminal area (TMA)

and surface operation interactions, complexity manage-

ment, and planning quality.

An analysis of text messages was conducted using

a Conflict Probe which predicts potential airspace im-

pending separation violations and a Trajectory Predic-

tor suggesting a more accurate aircraft position [12]

The Common Message Set (CMS) relays flight plan,

altitude, radar tracking and other data. The message

data includes: Flight Plan Information (FH), Flight Plan

Amendment (AH), Cancellation Information (CL), In-

terim Altitude Information (LH), Departure Information

(DH), and Converted Route Information (HX). A Java

En Route Development Initiative (JEDI) software was

used to translate the message types for separation error

prediction [13]. However, researchers have yet to focus

on the semantic analysis of the meaning of the messages

as an information service. The need for an ontology was

highlighted by Koelle and Strijland [14]. NASA sought

to development an otology as evidenced in the slides

[15] and the current version is released as the NASA

Air Traffic Management Ontology (atmonto) [16]. To

the best of our knowledge, no reports can be found of a

literature publication using the NASA ATM ontology.

3. DECISION-MAKING SUPPORT IN AVIONICS
ANALYTICS

This section reviews supporting and existing tech-

nologies and concepts regarding SAW and SA in sup-

port of the analysis towards the URREF.

A. Situation Awareness

The decision-making process is based on the four-

stage loop called Observe-Orient-Decision-Act (OODA)

[17]. The OODA loop is essential for situation aaware-

ness assessment in information fusion [18]. Fig. 2 shows

a SAW model.

SAW allows systems to understand dynamic and

complex environments, and operate with them. Cog-

nitive SAW can be divided into three separate levels:

perception of the elements in the environment, compre-

hension of the current situation, and projection of future

status [18].

The concepts of the OODA loop enable a process-

ing of information. The Observation stage is the SAW

perception level. The Orientation stage takes into ac-

count the information acquired from the Observation

stage and the knowledge represented by the ontology,

to understand the situation (SAW comprehension level).

Fig. 2. Situation Awareness (SAW) Model

Fig. 3. Data Fusion Information Group (DFIG) model

The Decision stage is carried out at the SAW projection

level. The Action stage closes the OODA loop by car-

rying out actions according to the adaption made in the

previous stage.

SAW involves the events, states, condition, and ac-

tivities of the environment dynamics as to time and

space from which some situations arise (in particular

those changes that occurred in the environment over

some time interval). A situation is defined by a spe-
cific state after a sequence of events (with intermediate

states, and activities with pre and post conditions). The

situation is concerned with the comprehension of the

environment features, and with the evolvement of these

features over time.

SAW decision making mechanisms are critical for

problem-solving processes that are preformed every

time step for a situation from which data is collected at

level 0 information fusion according to the Data Fusion

Information Group Model [19], [20].

B. Situation Assessment

Situation assessment takes place at level 2 (SAW

comprehension) in data fusion models. The Data Fusion

Information Group Model levels include (Fig. 3):

In the DFIG model, the goal was to separate the

information fusion (IF) (L0—L3) and resource manage-

ment (RM) functions (L4—L6) [21], [22].
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Fig. 4. Situation Uncertainty

Fig. 5. URREF Categories

For UTM systems, there is both the resource man-

agement across sensors, users, and the mission (SUM)

to coordinate with the objects, situations, and threats.

The elements of the airspace need to be provided to air

traffic controllers for enhanced SAW. Two integral con-

cepts for Level 5 “User Refinement” information fusion

are displays to support usability [23] and information

management systems that are trustworthy [24].

Uncertainty of a situation is based on information,

assessment, and knowledge (shown in Fig. 4).

A binding element between the levels of fusion

to reduce uncertainty is an ontology [25], [26]. The

URREF model provides an ontology that supports the

interaction between low-level information fusion (LLIF)

and high-level information fusion [27].

4. UNCERTAINTY REPRESENTATION AND
REASOING EVALUATION FRAMEWORK

The URREF was developed and used for analysis

over imagery [28], detection [29], and text data [30].

The URREF supports uncertainty analysis [31] such as

for trust [32] applications. The URREF can advance

methods for image quality [33], object recognition [34],

and object tracking [35]. Inherently, it is the ontology

of metrics of uncertainty that can support DSS.

Recent efforts include applications for rhino poach-

ing assessment [36], maritime anomaly detection [37],

and cyber analytics [38]. The URREF developments are

meant to support decision making [39] and context [39].

The ontology can resolve the decades old problem of

Fig. 6. Use of Ontologies for avionics analytics

relevance metrics in Simultaneous Tracking and Identi-

fication (STID) methods [40, 42].

A. URREF Ontology

The key elements from the URREF include data

quality issues of accuracy, precision, and veracity (as

shown in the current categories of the URREF in

Fig. 5) within an OODA architecture. While accu-

racy and prediction have been explored, veracity re-
quires further inspection. More details on the UR-

REF are available at the Evaluation of Technologies

for Uncertainty Representation (ETUR) working group

(http://eturwg.c4i.gmu.edu/).

B. Ontologies for Air Traffic Management

There is an emergence of interest of the use of

ontologies for ATM and aerospace technologies [43—

48]. Examples include the Federal Aviation Adminis-

tration (FAA) Next Generation Air Transportation Sys-

tem (NextGen) [49] and the Single European Sky ATM

Research (SESAR) [50] systems. In order to frame the

discussion, Fig. 6 highlights an example of how on-

tologies are included in an avionics system analysis.

Using the incoming data from weather, flight profiles,

and airports; that data needs to be accessed and nor-

malized. Structuring the data is enabled with templates

and ontologies. The structured ontology organizes the

information (including syntactic and semantic meta-

data) for analytic tools. The resulting analytics supports

visualization for aviators and Air Traffic Controllers

(ATCs). Examples include mandates, current reports,

and airspace information. Hence, ontologies afford a

common method to organize, process, and share data.

For air traffic management, System Wide Informa-

tion Management (SWIM) including the ATM Infor-

mation Reference Model (AIRM) [51], the Informa-

tion Service Reference Model (ISRM), and the SWIM

Technical Infrastructure (SWIM-TI) are being devel-

oped [52]. The concept of SWIM is an emerging con-

cept to manage information for aviation systems for

various ATM networks [53]. The SWIM approach de-

fines concepts for ATM as well as specifies what kind
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Fig. 7. Main OWL components of the AAO

of information has to be shared, and what stakeholders

have to share such information [54]. An AIRM example

requiring ontologies is semantic filtering of notices to

airmen [55].

Key developments for SESAR and NextGen include

the potential for ontological capabilities.

5. ONTOLOGY AND UNCERTAINTY

This section presents foundations of the AAO and

the integration of URREF in the AAO to include uncer-

tainty.

A. Avionics Analytics Ontology

The syntax (symbols and rules) of the Avionics An-

alytics Ontology (AAO) is based on the Description

Logic (DL) syntax structure. However, the implemen-

tation language for the ontology ultimately defines the

syntax to semantically specify and describe ontology el-

ements. The OWL and the Protégé tool [56] are selected

to realize the ontology for the approach proposed.

The main OWL components to be created are the

concepts (classes), properties for individuals, and in-

stances of classes (individuals) are shown in Fig. 7.

These components are set for AAO as follows:

² Classes (concepts). They are conceptually defined as
classes (special datatype) in object-oriented program-

ming languages. Thus, they can be atomic classes

(stand-alone ones) or associate classes (subclasses)

along with “is-a” links. The main AAO classes are:

vehicle (aircraft), radar, criteria, pilot, route, airport,

runway, status, airspace, weather, and metrics. Fig. 5

shows the above is-a relations between classes.

² Properties (roles). They are basically relationships be-
tween classes (or eventually individuals). The OWL

allows for properties on objects (based on classes)

or data (specific values). The first version of AAO

only includes properties for objects as follows: has-

Radar, hasPilot, hasRoute, hasTakeoff, hasLanding,

hasAirspace, hasRunnay, hasStatus, hasVeracity, and

hasWeather.

² Individuals (instances). They are instances of classes
(objects), e.g. a Boeing 747-800 is an individual

(instance of the class “aircraft”).

The main AAO classes are:

² Aircraft (as a subclass of Vehicle): any type of air-
craft falls into this category, including manned and

unmanned fixed-wing or rotatory-wing air vehicles.

² Route: all the air corridors (as a collection of way-
points) for different airspace regions for aircraft falls

into this category. They are defined by departure point

to arrival point. However, no specification of way-

points is required for this first version of AAO.

² Airport (as a subclass of Aerodrome): all the aero-
dromes mostly for commercial air transport fall into

this category. They are distinct from aviation airfields

and military airbases.

² Runway: any runway from aerodromes falls into this

category, runways have an identification code.

² Status: the class “Status” in the AAO is only defined
to define the condition of runways.

² Airspace: any aerial region above a territory (portion
of the atmosphere) controlled by a country.

² Weather: all weather conditions falls into this cate-
gory.

² Criteria: the criteria defined in section 4.B is notated
in this category. This class is from the URREF and it

is actually the link between the AAO and the URREF.

A subclass of Criteria is Veracity.
² Radar: all types of radar used in aeronautics falls into
this category.

² Metrics: the metric assessment as defined in section
4.B falls into this category.

Table I presents AAO classes, examples of their in-

stances, and some properties associated to them. Ap-

pendix A shows details of the hierarchical structure of

the AAO.

DL operators are considered as different types of

property restrictions in ontologies: quantifier restric-

tions such as existential and universal restrictions, has-

Value restrictions (counting operators such as “less than

or equal to” and “more than or equal to”), as well as car-

dinality restrictions such minimum and maximum cardi-

nality restrictions. Also, complex classes can be created

by means of simpler classes described based on logical

operators like “or” and “and”.
Property restrictions along with classes and individ-

uals are the building block to define axioms. Termi-

nological axioms (usually based on operators such as

inclusion, equivalence, etc.) are in the TBox, e.g., “Air-

craft A subclass of AircraftcannotLand and Aircraftcan-
Takeoff”, and “ClearSky subclass of GoodWeather and
VeryGoodWeather”. A set of assertional axioms (facts

or assertions) are in ABox, e.g., “AircraftcanLand equiv-
alent to Aircraft and (hasRoute only Landing)”, and
“VeryBadWeather equivalent to Weather and (Tornado
or microburst)”.
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TABLE I.

Examples of the AAO Classes, Instances, and Properties

Property

Class Subclass Instance Class Instance

Vehicle Aircraft (Aircraft x is a

subclass of Aircraft)

e.g. B787 is an instance

of Aircraft x

hasRoute

hasPilot

hasPeople

hasRadar

hasSystem

hasWingspanValue

Route Route A e.g. LAX-DWF is an

instance of Route A

hasAirspace

hasTakeoff

hasLanding

hasNearbyAirport

hasAirport

Airport Airport II e.g. LAX is an instance

of Airport II

hasRunway

Runway Runway IA e.g. 18L/36R is an

instance of Runway IA

hasStatus

hasLanding

hasTakeoff

hasAirspace

Status Available

Unavailble

Airspace Airspace IV e.g. USAAirspace

airspace is an instance of

Airpace IV

hasWeather hasSeparation

Weather BadWeather e.g. NewarkWeather

Criteria Veracity e.g. Very low veracity hasVeracity

Radar LWRS

SWRS

AWRS

T-KFJK

F-KNEL

F-KEWR

e.g. JFKRadar hasStatus hasSensitivity

Metrics WeatherAvoidance

AircraftAvoidance

AircraftManagment

AircraftSeparation

hasWingspanValue

The ABox and the TBox form the AAO knowledge

base and are shown in Fig. 8. Details of the TBox and

ABox axioms are shown in Appendix B.

Reasoners are the engine for the knowledge-based

queries. They not only apply inference rules but also

check semantic consistency on ontologies. These rea-

soning engines are able to deduce logical questions from

axioms defined in ontologies. Fig. 9 shows the asserted

classes of the AAO, including the added concepts (Cri-

teria and Radar) and their relations.

Aircraft have radars (that detect them) which in turn

have veracity for the information provided by them.

Aircraft also have aairports and routes.

Fig. 10 shows the inferred classes of the AAO as

result of executing the reasoner. This figure shows some

example of AAO inferences as follows (from top to

bottom). Airport I, II, and III are take-off and landing

airports (aircraft can take off and land). Airspace I, II,

and IV are flying airspace. Route C and D have landing.

However, Route D has no take-off. Aircraft C and D

can land in their corresponding airports. Bad weather

includes storms and thunderstorms.

B. Semantic Uncertainty

Semantic uncertainty in the context of this paper

is achieved by means of endowing the AAO with the

URREF. Thus, the AAO is combined with the URREF

ontology. The focus is on the input information coming

from the ATM sensing systems (in particular, the land

radars) which is taken into account through the URREF

InputCriteria concept. The approach particularly targets
Veracity (in sensed data) as one of the key concept from
the URREF to establish the Credibility concept (URREF
class).

The DSS provides ATC operators with ontological

decision-making support based on the sensed data and
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Fig. 8. AAO knowledge base: TBox and Abox (only new axioms

and facts)

Fig. 9. Asserted AAO classes

processed information. The veracity of the input has

an impact on decision outcomes, and it is the main

driver for right decisions to be taken. Hence, veracity

is important to be researched for valid analysis in the

AAO. Thus, the URREF-endowed AAO is expected to

improve DSS accuracy, and ultimately DSS effective-

ness when decisions are taken by the AAO to support

ATC operators.

Veracity metrics are based on the confusion matrix.

This matrix is a “true” table that allows for definition

and specification of true positives, false positives, true

negatives, and false negatives when classifying possible

outcomes from a process. Confusion matrices are useful

for assessment of sensing systems, in particular for de-

tection of objects/targets, e.g. radars detecting aircraft.

The above statistical classification approach is well

known and used in other domains such as machine

learning to analyse system accuracy by deferring and

identifying elements. Hence, the confusion matrix ap-

proach of veracity assessment is attractive for predic-

tive analytics and its statistical measures utilizing well-

known attributes of: Sensitivity, Accuracy, Precision,

Credibility, and Timeliness.

Typically, these statistical metrics include correla-

tion and normalization for a probabilistic measure. Us-

ing probability theory affords Bayesian estimation, and

filtering techniques.

Fig. 10. Inferred AAO classes

The metric approach considered in this paper only

focus on the source sensitivity (i.e., the sensor’s which

comes along with proximity range to the target) to es-

timate veracity. Thus, the veracity of the sensed data

is estimated based on the sensor’s sensitivity (Obser-
vationalSensitivity subclass of the URREF Credibility
class), and the range (distance between the sensor and

the weather condition). A radar is the sensor in question

in this paper. The spectrum defined for Observation-

alSensitivity is as follows:

² 0—5%, Very low sensitivity.
² 5—25%, Low sensitivity.
² 25—70%, Regular sensitivity.
² 70—95%, High sensitivity.
² 95—100%, Very high sensitivity.
The radar’s range is as follows:

² < 50 Km, Very close range.
² 50—150 Km, Close range.
² 150—250 Km, Medium range.

² 250—400 Km, Far range.
² > 400 Km, Very far range.
The above radar’s sensitivities are combined with

the radar’s ranges as radars are located at different dis-

tances from what is sensed. This combination allows for

the estimation of the veracity of the gathered informa-

tion. This actually has an impact on the veracity metrics.

The veracity metric is calculated as follows:

VR = SR£RR (1)

Where VR is the veracity, SR is the sensitivity, and RR
is the range of the radar. This veracity is notated in the

AAO in the URREF class Veracity by means of the fol-
lowing subclasses: VeryLowVeracity, LowVeracity, Reg-
ularVeracity, HighVeracity, and VeryHighVeracity. Like-
wise, the individual veracity for each radar is assigned

to the property (object property) hasVeracity.

6. APPLICATION EXAMPLES

This section presents application examples of the

approach proposed in this paper. They are based on

realistic scenarios.
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Fig. 11. Area of interest in the US airspace

A. Operation Context

The case study is meant to be as realistic as possi-

ble. It involves a dataset from a flight tracking service

(Flightradar24 [4]). The dataset records all flights of air-

craft with ADS-B transponders. It has 390,607 records

generated between 17:00 and 18:00 UTC on 1st April

2017 (approx. 109 records streamed per second). Nev-

ertheless, there is about a revisit rate of 30 second on

every aircraft.

The airspace area of interest (Fig. 11) is that from

the US airspace, entailing arrivals/departures from the

north of Newark Liberty International Airport (code

EWR). Three radar systems are considered for the case

study: the F-KNEL1 radar from Lakehurst Maxfield

Field Airport (code NEL), the T-KJFK16 radar from

John F. Kennedy International airport (code JFK), and

the F-KEWR1 radar from EWR.

Each of the above radars can cover the above area.

However, they usually track aircraft depending on how

far aircraft are from the radars and what is the destina-

tion of the flights. F-KNEL1 belongs to a military air-

field in New Jersey and usually tracks aircraft approach-

ing from or departing to the US east coast. T-KJFK16

tracks landed or arriving/departing flights in JFK. F-

KEWR1 tracks landed or arriving/departing flights in

EWR. Additionally, EWR has weather updates (from

weather forecast and radars) to assist aircraft when lad-

ing or departing.

The case study considers Flight BA185, a British

Airways flight from London Heathrow (code LHR)

to EWR, that is planned to land in EWR. The FAA

defines airplane design groups according to aircraft

wingspans. The BA185 airplane is a Boeing 777-200,

which belongs to group V (52—65 m of wingspan).

Table II presents the details for Flight BA185 obtained

from the Automatic Dependent Surveillance-Broadcast

(ADS-B) dataset.

Two airspace situations are considered when Flight

BA185 is approaching EWR: Scenario 1 entails weather

conditions ahead of Flight BA185, and Scenario 2 en-

tails potential collision of Flight BA185 with UAVs.

TABLE II.

FLIGHT BA185 DETAILS

Dataset Record

Time

(UTC) Latitude Longitude Altitude Heading Speed Radar

17:01:59 40.7683 ¡74:5569 5675 177 299 F-KNEL1

17:03:56 40.6111 ¡74:543 5100 168 269 F-KNEL1

17:07:57 40.4859 ¡74:348 3075 62 183 F-KNEL1

17:10:09 40.5561 ¡74:251 2900 25 173 F-KNEL1

17:10:24 40.5667 ¡74:2442 2650 25 170 F-KNEL1

17:11:00 40.5925 ¡74:228 2075 26 161 F-KNEL1

17:11:27 40.6088 ¡74:2176 1700 25 135 F-KNEL1

17:11:54 40.6248 ¡74:2076 1375 25 138 F-KNEL1

17:12:40 40.651 ¡74:191 800 26 133 T-KJFK16

17:16:01 40.6991 ¡74:1669 0 275 30 F-KEWR1

B. Scenario 1: Aircraft in Weather

The first scenario considers Flight BA185 approach-

ing EWR for landing (17:01:59—17:10:09 UTC in Table

I). The airplane has descended (altitude 5675 feet) down

to 2900 feet in such a period. Flight BA185 took off

from LHR and is scheduled to land in EWR. Weather

conditions are assumed to be deteriorated in the north

of the US east coast. However, the weather is good for

landing in EWR.

The information provided by the weather forecast

from Satellite Weather Radar Systems (SWRSs) and

Land Weather Radar Systems (LWRSs) are considered

accurate and true. They have a high sensitivity although

the later are considered to have slightly lower sensitiv-

ity than the former. Additionally, commercial airplanes

are equipped with an Airborne Weather Radar systems

(AWRSs) (located in the aircraft nose) which allows

for detection of the intensity of convective weather

conditions such as massive hails, powerful lighting,

and excessive precipitation (strong downdraft), e.g. mi-

crobursts. This alternative weather radar source is con-

sidered to have the highest sensitivity (of the three

weather radars) when the weather in question comes

from the area ahead the airplane. Thus, it is used as

a very credible reference for the calculation of verac-

ity metrics and the sensitivities for weather forecast are

assumed as follows:

² AWRS sensitivity (SAWRS = 0:99)
² SWRS sensitivity (SSWRS = 0:75)
² LWRS sensitivity (SLWRS = 0:55)
The above weather radar sensitivities are combined

with the radar ranges as radars are located at different

distances from the weather condition. Thus, veracity

metric is calculated as follows:

VxWRS = SxWRS£RXwrs (2)

Where VxWRS is the veracity, SXwrs is the sensitivity, and

RxWRS is the range of the type of radar x (A: airborne,

S: satellite, and L: land).

262 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 2 DECEMBER 2018



Fig. 12. Scenario 1 in the airspace area of interest

Absolute weights (100) for radar ranges are consid-

ered in scenario 1 depending on their distance to the

weather condition. The following weights are assumed

for AWRS range (the closest to the weather condition).

RAWRS = fVery close = 100,Close = 0,Medium = 0,
Far = 0, Very Far = 0g
Then,

VAWRS = SAWRS£RAWRS = 0:99£ 100 = 99%
Therefore, for AWRS 99% (True) and 1% (false).

The following weights are assumed for SWRS range

(the closest to the weather condition).

RSWRS = fVery close = 0, Close = 100, Medium = 0,
Far = 0, Very Far = 0g
Then,

VSWRS = SSWRS£RSWRS = 0:75£ 100 = 75%
Therefore, for SWRS 75% (True) and 25% (false).

The following weights are assumed for LWRS range

(the closest to the weather condition).

RLWRS = fVery close = 0, Close = 0, Medium = 100,
Far = 0, Very Far = 0g
Then,

VLWRS = SLWRS£RLWRS = 0:55£ 100 = 55%
Therefore, for LWRS 55% (True) and 45% (false).

Scenario 1 also supposes Flight BA185 and the ATC

in EWR are concerned about the weather condition

(microburst) when approaching the EWR airport from

the northeast. Fig. 12 shows the above scenario 1.

The information provided by the AAO can be visu-

alized by ATCs to support their decisions on the above

situation (also, aviators and pilots of remotely-piloted

aircraft could make use of this information). They can

run AAO queries as to the weather condition in prox-

imity (ahead) of Flight BA185 airway. This also pro-

vides suggestions about what to do with Flight BA185

to avoid any potential risk that jeopardize the flight

safety. The query is regarding possibilities for an air-

plane (Flight BA185 in this case) to encounter adverse

weather conditions that make aircraft change their route.

The rerouting possibilities are:

² Very low chances of re-routing (0—19%),
² Low chances of re-routing (20—39%),
² Medium chances of re-routing (40—59%),

² High chances of re-routing (60—79%), and
² Very high chances of re-routing (80—100%).
The above rerouting possibilities are directly related

with the radar veracities as calculated for VxWRS. Thus,

VAWRS means a very high chance of re-routing, VSWRS
means a high chance of re-routing, and VLWRS means a

medium chance of re-routing if a microburst is detected

by the above radars.

Fig. 13 shows AAO query results including verac-

ity metrics (top of the figure) for scenario 1 along

with AAO queries for each of the radars that de-

tects the weather condition (bottom of the figure).

The weather information is provided by three weather

radars: AWRS (onboard the Boeing 777-200, i.e. Flight

BA185), SWRS (weather forecast), and LWRS (from

EWR). AWRS is the most veracious radar (SAWRS =

0:99 and RAWRS = 100; very close)) for this weather
condition (NewarkWather 1) since such a radar is

closely placed near the weather situation. SWRS is less

sensitive and is further (from the weather condition)

than AWRS (SSWRS = 0:75 and RSWRS = 100; close),
and LWRS is the least sensitive and the furthest one

(from the weather condition) of the three weather radars

(SLWRS = 0:55 and RLWRS = 100; Medium). Therefore,
the veracity of the query is 100% when the weather

information is from AWRS, the veracity of the query

is 75% when the weather information is from SWRS,

and the veracity of the query is 55% when the weather

information is from LWRS.

The query inference results (from Fig. 14) suggest

that (from left to right):

1. Flight BA185 must slightly change route (to avoid

weather condition; NewarkWather 1) on its way to

EWR for landing (very high chance of rerouting).

The veracity of this query is based on a veracity

of 99%, i.e., when AWRS detects the microburst

weather condition ahead of Flight BA185. This sug-

gestion is the most veracious out of the three sug-

gestions.

2. Flight BA185 should slightly change route on its

way to EWR for landing (high chance of rerouting).

The veracity of this query is based on a veracity

of 75% when SWRS detects the microburst weather

condition ahead of Flight BA185. This suggestion is

less veracious than suggestion 1.

3. Flight BA185 could slightly change route on its way

to EWR for landing (high chance of rerouting). The

veracity of this query is based on a veracity of

55% when LWRS detects the microburst weather
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Fig. 13. Querying results to assess situation in scenario 1

condition ahead of Flight BA185. This suggestion

is most less veracious of the three suggestions.

Fig. 14 shows the reasoning path (in green colour)

followed by the reasoner to determine the AAO query

results (“aircraft chance of Rerouting” and (“weather

chance of Rerouting”).

C. Scenario 2: UAVs in AirSpace

The second scenario considers the approach of

Flight BA185 to EWR for landing as in scenario

1, although a different time segment is considered

(17:11:27—17:16:01 UTC in Table I). The airplane has

descended (altitude 1700 feet) down to 0 feet in such

a period. The weather condition (microburst) from sce-

nario 1 has been left behind. However, Flight BA185

is supposed to face a new challenge (before landing

in EWR) which is airspace invasion due to three Un-

manned Air Vehicles (UAVs) flying nearby EWR.

The three drones are: a small UAV (sUAV) that

is a small-unmanned quadcopter which wheelbase is

0.5 m, a medium UAV (mUAV) that is a medium-

unmanned airplane with 1.5 m of wingspan, and a huge

UAV (hUAV) that is a large-unmanned airplane which

wingspan is 20 m. The UAVs are flying at different alti-

tudes and locations around the EWR airport during the

landing of Flight BA185. These UAVs fly high enough

to dangerously come close to Flight BA185 while de-

scending from 1700 down to 0 feet in about four and a

half minutes. The sUAV has a non-contactable remote

pilot, and it is less than 300 m away from Flight BA185.

The mUAV is more than 1100 m away from Flight

BA185. The hUAV is less than 900 m away from Flight

BA185. The mUAV and the hUAV have contactable re-

mote pilots.

The information provided by the dataset for F-

KNEL1, T-KJFK16, and F-KEWR1 radars (as specified

in the ADS-B) dataset) is considered fully accurate and

true since they come from real measurements. These

radars are used as a very credible reference for the cal-

culation of veracity metrics. Hence, the sensitive of the

above radars is 0.99 when they manage to track the air-

craft of interest. The remaining radars (that do not track

the aircraft in the dataset) are considered to have smaller

sensitivities. This makes sense since they do not track

the above aircraft. Such a sensitivity difference along

with the range of the radar has an impact on the veracity

metrics.

The sensitivities for aircraft detection are assumed

as follows (from 17:01:59 to 17:11:54 where F-KNEL1

tracks Flight BA185):

² F-KNEL1 sensitivity (SF-KNEL1 = 0:99)
² T-KJFK16 sensitivity (ST-KJFK16 = 0:80)
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Fig. 14. Reasoning behind the queries for airspace situation in scenario 1

² F-KEWR1 sensitivity (SF-KEWR1 = 0:60)
The following weights are assumed for radar ranges:

RF-KNEL1 = fVery close = 100, Close = 0, Medium = 0,
Far = 0, Very Far = 0g
RT-KJFK16 = fVery close = 0, Close = 100, Medium = 0,
Far = 0, Very Far = 0g
RF-KNWR1 = fVery close = 0, Close = 0,Medium = 100,
Far = 0, Very Far = 0g
The calculation of the veracity metric is based on

equation (1), similar to the calculation in scenario 1.

The above three radars track Flight BA185 in the

period considered by the case study (Table I). They have

SBA185 = 0:99 (when they track Flight BA185) so they
are a fully-truthful source for both radars. However, the

tracking of the UAVs (i.e., sUAV, mUAV, and hUAV)

is assumed to be done by any of the above radars that

have difference veracities (VsUAV, VmUAV, and VhUAV).

The combination of two or more veracities given by

the multiplication of the veracities. Table III shows

examples of the impact of having different veracities

when detecting aircraft based on the radar used for

detection.

Fig. 15 shows the above scenario 2.

The information provided by the AAO can be visu-

alized by ATCs to support their decisions on the above

situation (also, aviators and pilots of remotely-piloted

aircraft could make use of this information). They can

run AAO queries as to the impact of the proximity of

the UAVs on Flight BA185. This also provides sug-

gestions about what to do with Flight BA185 or the

Fig. 15. Scenario 1 in the airspace area of interest

UAVs to avoid any potential air collision. The query is

regarding chances for air collision: very low risk of col-

lision (0—19%), low risk of collision (20—39%), medium

risk of collision (40—59%), high risk of collision (60—

79%), and very high risk of collision (80—100%). These

collision possibilities are directly related with the radar

veracities as calculated for VBA185 and VxUAV.

Scenario 2 considers six different airspace situations

(veracities are taken from Table III):

1. F-KNEL1 detects the three UAVs, and Flight BA185.
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TABLE III.

VERACITY METRICS (TRUES IN %)

SxUAV (solo) SsUAV, SmUAV & ShUAV (all)

KNEL1 KJFK16 KEWR1 KNEL1 KNEL1 KNEL1

& & & & & &

SBA185 KNEL1 KJFK16 KEWR1 KNEL1 KJFK16 KEWR1 KJFK16 KEWR1 KEWR1

& & & & & &

KNEL1 KJFK16 KEWR1 KJFK16 KJFK16 KEWR1

F-KNEL1 98 79.2 59.4 96.06 51.2 21.38 62.73 47.05 35.28

T-KJFK16 79.2 64 48 80 40.96 17.28 50.69 38.02 28.52

F-KEWR1 59.4 48 36 60 30.72 12.96 38.02 28.52 21.38

The veracity of this query is 98% (VxUAV = 99 ¤
VBA185 = 99). The most veracious radar from the

ADSB dataset.

2. F-KJFK16 detects sUAV, mUAV and hUAV, and

KNEL1 detects Flight BA185. The veracity of this

query is 51.2% (VxUAV = 51:72 ¤VBA185 = 99).
3. F-KEWR1 detects sUAV, mUAV and hUAV, and

KNEL1 detects Flight BA185. The veracity of this

query is 21.38% (VxUAV = 21:6 ¤VBA185 = 99).
4. F-KNEL1 detects the sUAV and Flight BA185, F-

KJFK16 detects the mUAV and the hUAV. The ve-

racity of this query is 62.73% (SsUAV and SBA185 =

98 ¤SmUAV and ShUAV = 64).
5. F-KNEL1 detects the sUAV and Flight BA185, F-

KEWR1 detects the mUAV, and F-KJFK16 detects

the hUAV. The veracity of this query is 47.05%

(SsUAV and SBA185 = 98 ¤SmUAV = 60 ¤ShUAV = 80).
6. F-KNEL1 detects the sUAV and Flight BA185, F-

KEWR1 detects the mUAV and the hUAV. The ve-

racity of this query is 35.28% (SsUAV = SBA185 =

98 ¤SmUAV and ShUAV = 36).
Fig. 16 shows the inferred AircraftChanceofCollision

class (top) and AAO query results (bottom) for each of

the radars that detects the UAVs for airspace situation

1, 2, and 3, including veracity metrics for scenario 2.

Fig. 17 shows AAO query results for airspace situation

4, 5, and 6.

The query inference results suggest that (from left

to right):

1. sUAV and hUAV have clear chances of collision

(very high risk of collision) and the veracity of this

query is based on a sensitivity of 99% (and prox-

imity of the radar to the aircraft) when F-KNEL1

detects the UAVs and Flight BA185 (top-left query

in Fig. 16). Detection makes by means of NELRadar

(F-KNEL1), bottom-left query in Fig. 16. These in-

ference and query suggestion are the most veracious

out of the six suggestions. Actually, the real one.

2. sUAV and hUAV have some chances of collision

(medium risk of collision) and the veracity of this

query is based on a sensitivity of 51.2% (and prox-

imity of the radar to the aircraft). This veracity is

not high enough to make a trusted decision when

F-KJFK16 detects the UAVs and F-KNEL1 detects

Flight BA185 (top-center query in Fig. 13). De-

tection makes by means of JFKRadar (T-KFJK16),

bottom-center query in Fig. 16.

3. Bottom-right query in Fig. 16: sUAV and hUAV have

low chances of collision (low risk of collision) and

the veracity of this query is based on a sensitivity of

21.6% (and proximity of the radar to the aircraft).

This veracity is very low to make a trusted decision

when F-KEWR1 detects the UAVs and F-KNEL1 de-

tects Flight BA185 (top-right query in Fig. 16). De-

tection makes by means of EWRRadar (F-KEWR1),

bottom-right query in Fig. 16.

4. sUAV and hUAV have some chances of collision

(medium risk of collision) and the veracity of this

query is based on a sensitivity of 64% (and proximity

of the radar to the aircraft). This veracity is not

high enough to make a trusted decision when F-

KNEL1 detects the sUAV and Flight BA185, F-

KEWR1 detects the mUAV, and F-KJFK16 detects

the hUAV. Query on the left of Fig. 17.

5. sUAV and hUAV have some chances of collision

(medium risk of collision) and the veracity of this

query is based on a sensitivity of 48% (and proximity

of the radar to the aircraft). This veracity is not

high enough to make a trusted decision when F-

KNEL1 detects the sUAV and Flight BA185, F-

KEWR1 detects the mUAV, and F-KJFK16 detects

the hUAV. Query on the left of Fig. 17.

6. sUAV and hUAV have some chances of collision

(medium risk of collision) and the veracity of this

query is based on a sensitivity of 51.2% (and prox-

imity of the radar to the aircraft). This veracity is

not high enough to make a trusted decision when

F-NEL1 detects the sUAV and Flight BA185, F-

KEWR1 detects the mUAV and the hUAV. Query

on the left of Fig. 17.

Query on the right of Fig. 17 suggests the mUAV

has no risk of collision. The inference and query results

make sense since the chance of collision is diminished

as the veracity of the radars is decreased. However, the

real chance of collision is very high (the one suggested

in 1.), and it is actually the most veracious.
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Fig. 16. Querying results and inferred classes to assess situation 1, 2, and 3.

D. Bayes’ Risk Assessment

The assessment as to determine whether to alert the

pilot is based on the information fusion analysis of

Bayes’ risk. The Bayesian estimate a posterior is the

measurement given a possible collision.

P(μj j x) =
P(x j μj)P(μj)

P(x)
(1)

where P(μj) is the prior sensitivity of the radar con-
figurations for each case j = 1, : : :6 (as those shown
from left to right in Table III for multiple detection

of all the UAVs, i.e., SsUAV, SmUAV & ShUAV), and the

conditional likelihood P(x j μj) is for a collision or no-
collision given the radar measurements. To determine

whether to send a semantic alert a pilot is based on the

measurement, the potential range (distance), and type of

the UAV. To determine the Bayes’ risk, a loss function

L was developed if no action (e.g., send an alert) was
taken.

R(®j j x) =
6X
j=1

L(®j j μj)P(μj j x) (2)

where L(®j j μj) represents the three cases for loss if the
range is j = fclose, near, farg. The results were normal-
ized. Given scenario 2, if there is a chance of collision,

the best action is to alert the pilot. If there is lower

chance of collision, the results still suggest sending a

warning to the pilot of a potential collision.

Fig. 17. Querying results to assess situation 4, 5, and 6 in

scenario 2.
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TABLE IV.

LOSS FUNCTION

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

High Medium Low Medium Medium Medium

Close 0 1 8 0 1 1

Near 0 2 1 3 3 3

Far 10 7 1 7 6 6

TABLE V.

BAYES’ RISK

Collision No collision

Close 0.494548297 1.579050007

Near 1.416107104 2.413458212

Far 8.089344598 5.825970614

Sum 10 9.818479

From the first row of Table III f0.9606, 0.512,
0.2138, 0.273, 0.4705, 0.3528g, they total up 3.1364.
Then, the prior probabilities (sensitivity/veracity) for the

six cases are (by dividing each of them by the total):

P(μj) = f0.306083, 0.163244, 0.068167, 0.200006,

0.150013, 0.112486g.
The likelihood P(x j μj) for collision are f0.9606,

0.512, 0.2138, 0.273, 0.4705, 0.3528g, and for no colli-
sion is f0.0394, 0.488, 0.7862, 0.3727, 0.5295, 0.6472g.
The prior probabilities (Bayes denominator) P(x) =

P(μj). P(x j μj) for collisions are f0.2938, 0.08358,
0.01457, 0.1255, 0.0706, 0.03968g which total up

0.627725, and for no collision is f0.0122, 0.07966,
0.0536, 0.0745, 0.0794, 0.0728g which total up

0.372275.

Theposterior probabilitiesP(μj j x) = P(x)=0:627725
for collisions are f0.4681, 0.1331, 0.0232, 0.1999,
0.1124, 0.0632g, and P(μj j x) = P(x)=0:372275 for no
collisions are f0.0329, 0.2140, 0.1440, 0.2002, 0.2134,
0.1955g.
The loss function L(®j j μj) is defined in Table IV.
The Bayes’ risk R(®j j x) (which formula is (2)) for

the three cases for loss are shown in Table V.

Presenting the information in a semantically mean-

ingful way by normalizing them based on the sum 10

and 9.818479 for collision and no collision, the Bayes’

risk was inverted so as to represent the results as shown

in Fig. 18.

For case collision assessments, the results are used

as (1 is high, 2, 4, 5, 6 is medium, and 3 is low). The

Bayes risk assessment is consistent with the ontology

from which > 0:95% would be a collision confirmed;

0.95—0.85 for collision likely, and < 0:85 for collision
possible. For values < 0:5, it is unlikely there would be
a collision. From Fig. 18, when a collision is detected

within a close range, the best action (reduce risk) is to

confirm an alert. Likewise, when the UAV is near, a

collision is likely, so a warning should be sent. If a col-

lision range is detected far away, the normalized action

is that there is enough time for future measurements to

Fig. 18. Bayes’ risk assessment results.

determine if a collision would result. On the other hand,

the case of a no-collision also presents a semantically

interesting result, as if the radars are sensitive and detect

a UAV in close proximity to the pilot, a likely warning

would result.

7. CONCLUSION AND FUTURE WORK

The paper proposed an Avionics Analytics Ontol-

ogy (AAO) based on the Uncertainty Representation

and Reasoning Evaluation Framework (URREF). The

AAO is developed to provide situation awareness up-

dates for aviators, air traffic controllers, and airport

security personnel in support of ATM/UTM decision-

making processes. The congestion of the airspace with

UAVs was presented as use cases to demonstrate the

workload reduction through an information fusion on-

tology methodology. Veracity was the measured degree

of uncertainty to support credible reporting and airspace

collisions. Examples involving two ATM/UTM oper-

ation scenarios where F-KNEL1, T-KJFK16, and F-

KEWR1 radars (as specified in the ADS-B) determine

the commercial aircraft (Flight BA185) collision analy-

sis from a set of UAVs. The AAO results present a use-

ful approach towards providing an integration method

among uncertainties including semantic from operators,

sensing from navigation, and situation from weather

modeling updates.

Future research work will involve methods to im-

prove veracity metrics. One of the relevant approach

as an interesting veracity metric to be considered for

further investigation is the big data veracity index [57].

It is based on three main dimensions to define veracity:

objectivity (subjectivity), truthful (deception), and cred-

ibility (implausibility). The index approach deserves

attention, but some research is required to deal with

artificial autonomy (DSS) since the potential tools to

support such a metric index are too human-oriented.

The challenge is to develop supporting tools that allow

for machine veracity metrics, e.g. radars. On the other

hand, some future refinement on the integration of ve-

racity (uncertainty) into the AAO will enhance useful-

ness. One of the inspiring methodologies (to deal with
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Fig. 19. Structure of hierarchy of the AAO
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probabilistic uncertainty when making decision) is the

Bayesian networks, e.g. BasesOWL [58] which is suit-

able for ontologies.

Future methods would also include physics-based

and human-derived (PHIF) graphical information fusion

methods where graph ontologies can be matched, asso-

ciated, and extended for narratives [59, 60]. The applica-

tion scenarios discussed in this paper are meant to easily

demonstrate the benefits of the AAO-based DSS pro-

posed. They are simple but realistic. However, further

development of the AAO will consider demonstrations

involving and targeting ATM operational performance

indexes as those discussed by Civil Air Navigation Ser-

vices Organisation (CANSO) [61] and SESAR Key Per-

formance AREA [62]. For example, capacity and effi-

ciency are listed are listed as operational metrics; while

less defined metrics of societal metrics include safety,

security, and environmental sustainability [63].

APPENDICES

APPENDIX A: AAO HIERARCHICAL STRUCTURE

Fig. 19 shows the structural hierarchy of the classes

in the AAO.

APPENDIX B: TBOX AND ABOX

The axioms of the AAO TBox are shown below.

Aircraft (subclass of Vehicle)

Aircraft K subclass of AircraftcannotLand and AircraftcanTakeoff

Aircraft L subclass of AircraftcannotLand and AircraftcanTakeoff

Aircraft M subclass of AircraftcanLand and AircraftcanTakeoff

Aircraft N subclass of AircraftcannotLand and AircraftcannotTakeoff

AircraftcanLand subclass of Aircraft

AircraftChanceofCollision subclass of Aircraft

AircraftChanceofRerouting subclass of Aircraft

Route

Route A subclass of Landing and Takeoff

Route B subclass of NoLanding and Takeoff

Route C subclass of Landing and Takeoff

Route D subclass of Landing and NoTakeoff

Airport

Airport I subclass of LandingAirport and TakeoffAirport

Airport II subclass of LandingAirport and TakeoffAirport

Airport III subclass of NoLandingAirport and NoTakeoffAirport

Airport IV subclass of LandingAirport and TakeoffAirport

Airspace

Airspace I subclass of FlyingAirspace

Airspace II subclass of FlyingAirspace

Airspace III subclass of NoFlyingAirspace

Airspace IV subclass of FlyingAirspace

Weather

ClearSky subclass of GoodWeather and VeryGoodWeather

CloudedSky subclass of VeryBadWeather

Hurricane subclass of VeryBadWeather

Rain subclass of GoodWeather

Storm subclass of BadWeather

Thunderstorm subclass of BadWeather

Tornado subclass of VeryBadWeather

Microburst subclass of VeryBadWeather

Metrics

AircraftAvoidance subclass of Metrics

AircraftManagment of Metrics

AircraftSeparation subclass of Metrics

WeatherAvoidance subclass of Metrics

Criteria

ImputCriteria subclass of Criteria

Credibility subclass of ImputCriteria

Veracity subclass of Credibility

VeryLowVeracity subclass of Veracity

LowVeracity subclass of Veracity

RegularVeracity subclass of Veracity

HighVeracity subclass of Veracity

VeryHighVeracity subclass of Veracity

Radar

AWRS subclass of hasVeracity only VeryHighVeracity and Radar

SWRS subclass of hasVeracity only HighVeracity and Radar

LWRS subclass of hasVeracity only RegularVeracity and Radar

F-KNEL1 subclass of hasVeracity only VeryHighVeracity and Radar

F-KJFK16 subclass of hasVeracity only HighVeracity and Radar

F-KNEW1 subclass of hasVeracity only RegularVeracity and Radar

The facts of the AAO ABox are shown below.

Aircraft

AircraftChanceofCollision equivalent to Aircraft and (RiskofCollision

and (hasRadar only Detecting)

AircraftChanceofRerouting equivalent to Aircraft and (ChanceofRerouting

and (hasRadar only Detecting)

AircraftcanLand equivalent to Aircraft and (hasRoute only Landing)

AircraftcannotLand equivalent to Aircraft and (hasRoute only NoLanding)

AircraftcanTakeoff equivalent to Aircraft and (hasRoute only Takeoff)

AircraftcannotTakeoff equivalent to Aircraft and (hasRoute only NoTakeoff)

Route

Landing equivalent to Route and (hasLanding only LandingAirport)

NoLanding equivalent to Route and (hasLanding only NoLandingAirport)

Takeoff equivalent to Route and (hasTakeoff only TakeoffAirport)

NoTakeoff equivalent to Route and (hasTakeoff only NoTakeoffAirport)

Airport

LandingAirport equivalent to Airport and (has Airspace only FlyingAirspace)

NonLandingAirport equivalent to Airport and (has Airspace only NonFlying-

Airspace)

TakingoffAirport equivalent to Airport and (has Airspace only FlyingAirspace)

NonTakingoffAirport equivalent to Airport and (has Airspace only NonFlying-

Airspace)

Airspace

FlyingAirspace equivalent to Airspace and (not (NonFlyingAirspace))

NonFlyingAirspace equivalent to Weather and (hasWeather only VeryBad-

Weather)

Weather

VeryGoodWeather equivalent to Weather and (ClearSky or CloudedSky)

GoodWeather equivalent to Weather and (CloudedSky or Rain)

BadWeather equivalent to Weather and (Storm or ThuderStorm)

VeryBadWeather equivalent to Weather and (Hurrican or Tornado)

Metrics

RiskofCollision equivalent to (ManagedAircraft and ((hasWingspanValue

some xsd:short[> 00200ˆˆxsd:short]) and (hasWingspanValue some xsd:

short[<= 003000ˆˆxsd:short])) and (hasSeparation some xsd:short[<= 00100000

ˆˆxsd:short])) or (NonManagedAircraft and (hasSeparation some xsd:

short[<= 0050000ˆˆxsd:short]) and (hasWingspanValue some xsd:short[<=
00200ˆˆxsd:short]))
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Criteria

VeryLowVeracityequivalent tohasVeracity somexsd:short[>= 00500ˆˆxsd:short]
LowVeracity equivalent to (hasVeracity some xsd:short[> 00500ˆˆxsd:short])
and (hasVeracity some xsd:short[< 002500ˆˆxsd:short])
RegularVeracity equivalent to (hasVeracity somexsd:short[> 002500ˆˆxsd:short])
and (hasVeracity some xsd:short[< 007000ˆˆxsd:short]))
HighVeracity equivalent to (hasVeracity some xsd:short[> 007000ˆˆxsd:short])
and (hasVeracity some xsd:short[< 009500ˆˆxsd:short]))
VeryHighVeracity equivanlent to hasVeracity some xsd:short[> 009500ˆˆxsd:
short]

Radar

Detecting equivalent to Radar and (hasVeracity only VeryHighVeracity)

NoDetecting equivalent to not(Detecting)

DECLARATION

The Avionics Analytics Ontology (AAO) used in

this paper has been developed for specific airspace

situations. It is based on intuitive knowledge gathered

from an investigation done on trusted sources such FAA

regulations. The AAO is at its early development stage

(prototype) and it is a living approach as it is been

continuously updated. It has not been validated yet.

However, there is a plan to integrate the NASA ontology

into the AAO, which will require validation for further

development.
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Temporal Bayes net
information & knowledge
entropy

KENNETH J. HINTZ
STEVEN DARCY

Various information measures have been defined on Bayes Nets
(BN) with the assumption that the Bayes Net is stationary. Our
interest is in the utilization of a BN as a component of a real-time,
information-based sensor management system wherein the dynam-
ics of the situation cause changes both in the structure and underly-
ing probabilities of the nodes in the BN. If a BN is used to represent
the situation assessment (SA) of an environment as a result of our
observations of that environment, we can say that the BN repre-
sents our knowledge about the situation in the form of a temporal
Bayes net (TBN). If one were to not observe the processes in an
environment with additional sensor observations, then the underly-
ing probabilities of at least some of the BN nodes diffuse at a rate
dependent on the dynamics of the process whose uncertainty is rep-
resented by that node, hence the use of the modifier temporal. This
loss of knowledge in the form of increasing uncertainty results in
information flow from the TBN, or, as we refer to it here, temporal
information loss. In order to compensate for this temporal informa-
tion loss and maintain or improve our knowledge of an environment,
the environment needs to be observed by obtaining data. We focus
in this paper on choosing a global TBN information measure In
doing so, we differentiate between aleatory nodes with stationary
uncertainties and epistemic nodes with temporal uncertainties, as
well as formulate a dynamic representation of these temporal un-
certainties. We provide several examples of temporal information
loss under different dynamic assumptions.
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1. INTRODUCTION

This document introduces the concept of informa-

tion loss over time from Bayes nets (BN) due to the dy-

namics associated with epistemic nodes in a BN. Epis-

temic and aleatory uncertainties will be defined in the

sequel and adapted to BN. We call this phenomenon

temporal Bayes information (TBI) loss to distinguish it
from the term dynamic used in dynamic Bayes nets
(DBN) by Kjaerulff [1] and Chang & Sun [2]. DBN

can also have a temporal component by incorporating

changes in the network structure itself over time rather

than just changes in the uncertainty. Furthermore, it will

be shown that the decision as to which epistemic node

to update in order to maximize the information rate can

change with time. This is due to the fact that the un-

certainties associated with the processes represented by

different epistemic nodes do not change at the same rate.

We will relate the concept of TBI to two different inter-
pretations of Bayes nets, one of which is purely aleatory

in that it provides a graphical representation of the joint

probability distribution of random variables, and one

used in target detection and tracking problems which is

composed of both epistemic and aleatory nodes. There

are two examples presented later in this paper which

differentiate between aleatory (yellow) and epistemic

(blue) nodes as shown in Figure 2 and Figure 4. The

latter BN is representative of a causal Bayes net as in-

troduced by Pearl in his fundamental book [3].

Our interest in TBI is intimately tied with our use
of a BN as an underlying component of our method of

information based sensor management (IBSM). IBSM

will not be discussed further here as it is has been pre-

sented in previous papers by Hintz & McVey [4], and

Hintz & Kadar [5]. Briefly, the IBSM situation informa-

tion expected value net (SIEV-net) takes an information

measure defined on a situation assessment Bayes net

and combines it with mission values and the probabil-

ity of obtaining information to compute the expected

situation information value rate. We use the resulting

expected situation information value rate (EIVRsit) to

choose from among the several situation information

needs that information request which will yield the high-

est value of EIVRsit. Our interest in TBI stems from
the fact that the predictable loss of information from a

BN will yield different values of the maximum EIVRsit
depending on the delay in fulfilling that information re-

quest. The different values of EIVRsit at different times

results in different choices of which information to re-

quest.

As a brief preliminary example of how TBI can af-
fect the amount of information which could be obtained

from mutually exclusive sensing actions which could be

taken at two different times in the future, let’s assume

that we are tracking 2 targets, the state of each one being

represented as individual nodes in a BN. Let’s further

hypothesize that one has highly dynamic kinematics,

e.g., a fighter aircraft, with a large process noise, and
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Fig. 1. BN showing the use of the target kinematic state produced

by an external K-filter fusion process to populate nodes of a BN in

order to estimate whether a contact is a threat.

a second target with slow dynamics, e.g., a helicopter,

and smaller process noise. If we extrapolate the Kalman

filter (K-filter) error covariance matrix of each of these

to some proximate time in the future, it may be that we

will obtain more situation information if we choose to

observe the helicopter rather than the fighter, as in the

case where we may have just detected the helicopter

and started tracking it. However, if we were to wait to

make an observation to some later time, then the high

kinematic dynamics of the fighter may, through the ex-

trapolation of both the helicopter and fighter error co-

variance matrices to this later time, result in the fact that

more situation information will be gained by observing

the fighter.

This loss of information over time has been recog-

nized, but not explicitly evaluated by Ciftcioglu et al.

[6] in dealing with maximizing information from mul-

tiple sensors. They say that “[t]he main property of QoI

[Quality of Information] is that it is a composite metric

which deteriorates with age and increases with time due

to additional information gathered. The amount of in-

formation that sensors collect varies randomly through-

out time, which leads to uncertainty in the QoI utility

evolution.”

1.1. Aleatory vs epistemic definitions

Winkler [7] states that “[a]t a fundamental level, un-

certainty is uncertainty, yet the distinctions [aleatory and

epistemic, reducible and irreducible, stochastic and sub-

jective] are related to very important practical aspects

of modelling [sic] and obtaining information.” Costa,

et al. [8], state that “Uncertainty Type is a concept

that focuses on underlying characteristics of the infor-

mation that make it uncertain. Its subclasses are Am-

biguity, Incompleteness, Vagueness, Randomness, and

Inconsistency: : :” Shafer [9], in discussing the distinc-
tion between belief and chance, provides a simple ex-

ample by writing that “[c]hances arise only when one

describes an aleatory (or random) experiment, like the

throw of a die or the toss of a coin.” We focus on

two particular uncertainties, aleatory and epistemic, as

they apply to BN in order to differentiate between those

nodes that participate in an information measure and

those that don’t.

Aleatory and epistemic are terms used in seismic

hazard analysis, reliability engineering, system safety,

structural reliability, and risk analysis, but are not com-

mon in the information fusion literature. The general

meaning of aleatory and epistemic can be taken from

the Oxford English Dictionary as:

aleatory: Dependent on uncertain events or occurrences;
haphazard, random [10]

epistemic: Of or relating to knowledge, or to its extent,
linguistic expression, or degree of validation [11]

Unfortunately these are not very satisfying defini-

tions for our intended use in information fusion and, in

particular, situation assessment utilizing BN.

To facilitate the discussion we first make clear what

we mean by aleatory and epistemic by quoting from Der

Kiureghian and Ditlevsen [12] in the field of structural

reliability or risk analysis:

The word aleatory derives from the Latin alea,
which means the rolling of dice. Thus, an aleatoric

uncertainty is one that is presumed to be the intrin-

sic randomness of a phenomenon. Interestingly, the

word is also used in the context of music, film and

other arts, where a randomness or improvisation in

the performance is implied. The word epistemic de-

rives from the Greek "¼¶¾¿"¹" (episteme), which
means knowledge. Thus, an epistemic uncertainty

is one that is presumed as being caused by lack of

knowledge (or data).

In Abrahamson’s paper related to seismic hazard

analysis we find [13]

Aleatory variability is the natural randomness in

a process. For discrete variables, the randomness is

parameterized by the probability of each possible

value. For continuous variables, the randomness is

parameterized by the probability density function.

Epistemic uncertainty is the scientific uncertainty

in the model of the process. It is due to limited data

and knowledge. The epistemic uncertainty is char-

acterized by alternative models. For discrete random

variables, the epistemic uncertainty is modelled [sic]

by alternative probability distributions. For contin-

uous random variables, the epistemic uncertainty

is modelled [sic] by alternative probability density

functions. In addition, there is epistemic uncertainty

in parameters that are not random by have [sic] only

a single correct (but unknown) value.

While other authors have presented alternative views

of these two terms, we believe that Abrahamson’s mean-

ing best serves our purposes in the field of information

fusion and situation assessment.

276 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 2 DECEMBER 2018



Fig. 2. Bayesian network representing enemy intent showing both

aleatory (shown in yellow) and epistemic (shown in blue) nodes.

After Buede, et al. [22].

According to DK&D [12], “[a]ny discussion on the

nature and character of uncertainties should be stated

within the confines of the model universe.” They further

suggest this determination should be a pragmatic choice

based on how the modeler intends to use the uncertainty

in the model. Since BN situation models in the informa-

tion fusion world are quite diverse, it would seem that

the allowance for both aleatory and epistemic chance

nodes is appropriate. Furthermore, there is the possi-

bility that the nodes change from aleatory to epistemic

over time as the model is used. For example, DK&D

[12] use the concept of the strength of concrete in a

building having a known statistical uncertainty before

the building is built (aleatory); however, after the build-

ing is built, measurements of the strength can be taken

over the time the concrete is curing leading to an epis-

temic statistical uncertainty. Note that the process is the

curing of the concrete with an associated uncertainty

which can be reduced if measured, but remains the same

or increases in uncertainty if not measured. In the case

of situation assessment, an example is converting from

the probability that a target is going to enter a volume

of space (aleatory) to the probability that a target has

been detected (epistemic) once a detection is made. The

fact that there has been a detection does not mean that

there is a target in that volume with absolute certainty

since each detection has associated with it a probabil-

ity of detection less than 1 (Pd < 1) and a probability
of false alarm of greater than zero (Pfa > 0). The uncer-
tainty about whether a target is actually in the volume is

reduced with repeated measurements. Another example

is shown in Figure 2 wherein the weather is an explicit

aleatory node during mission planning, but becomes an

epistemic node during its use when particular values of

the weather can be acquired as evidence.

If we relate the above to Pearl’s causal networks

[14] [3] which require a directed relation between

nodes, epistemic is a straightforward uncertainty which

is added to either the linear or nonlinear functional re-

lation between nodes as in the linear relationship below

with the additive aleatory random variable ui:

xi =
X
k 6=i
®ikxk + ui i= 1, : : : ,n (1)

The nodal value of interest, xi, is epistemic as its
uncertainty can be refined with repeated measurements

thereby reducing the uncertainty introduced by the ran-

dom additive component, ui.

1.2. Aleatory or epistemic: stationary or
nonstationary?

Aleatory uncertainties may change, but cannot be

improved with repeated measurements as they are asso-

ciated with a naturally occurring randomness. A counter

argument to this, which we will ignore without loss of

generality, can be best exemplified by the probabilities

associated with the roll of a die. Mathematically, a fair

die has equal probability of the single event comprised

of a face of a die. No amount of experiments on this

mathematically fair die will change that. In reality, no

physical die is perfect and hence, not fair. That is, re-

peated rolling of the die will show that some faces will

occur more than others due to the imperfections in the

physical die. This is not to be confused with the typical

gambler’s mistake most easily associated with the flip

of a coin. If the coin toss results in an unusually long

run of heads or tails, one wants to think that the next toss

will be the opposite even though we know that there is

equal probability of the two faces of the coin occurring

as a result of the next toss.

Aleatory uncertainties may change over time, but

not due to measurements. In the case of weather and

whether or not it is going to rain, the aleatory uncer-

tainty changes if there are observed clouds, but repeated

measurements to determine if clouds are present do not

change the uncertainty about whether it is going to rain

or not.

Epistemic uncertainties can be non-stationary or

changing over time due to observations of, or changes

in, the process dynamics. An interesting example is a

situation assessment node which represents the kine-

matic state of a target in track. If this nodal estimate

is derived from a Kalman filter, then we can see both

aleatory and epistemic statistics depending on how the

modeler utilizes the K-filter. The equations from the dis-

crete K-filter are [15]

system model,

~xk =©k¡1~xk¡1 +wk¡1, wk »N(0,Qk) (2)

in which ©k¡1 is the state transition matrix and wk¡1 is
the process noise, both having subscripts indicating that

they are non-stationary and may change over time,

measurement model,

~zk =Hk~xk + vk, vk »N(0,Rk) (3)

in which ~zk is the observation vector, Hk is the obser-
vation matrix, and vk is the additive, white, Gaussian
measurement noise, all having subscripts indicating that

they are non-stationary and may change over time,
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state estimate extrapolation,

~̂x
¡
k =©k¡1~̂x

+

k¡1 (4)

error covariance matrix extrapolation,

P¡k =©k¡1P
+
k¡1©

T
k¡1Qk¡1 (5)

Kalman gain matrix,

Kk = P
¡
k H

T
k [HkP

¡
k H

T
k +Rk]

¡1 (6)

state estimate update,

~̂x
+

k = ~̂x
¡
k +Kk[~zk ¡Hk~̂x

¡
k ] (7)

and, error covariance matrix update.

P+k = [I¡KkHk]P¡k (8)

Notice the similarity in form of the K-filter equations

(2) and (3) to (1) of Pearl in that there is an additive ran-

dom component to both the system model (2), and the

measurement (3) which ripples through the other state

estimator equations. The random variable in the system

equation, (2), ~w(t), generally called the process noise,
represents the unmodeled uncertainties (Pearl’s latent

variables) associated with the process dynamics includ-

ing the random maneuvers of the target. The random

variable in the measurement equation, ~v(t), represents
the additive noise due to the fact that no observation is

perfect and there are uncertainties associated with it.

As an example of using the state estimate produced

by a K-filter to populate or update the parameters of a

node in a BN, we present the simple BN of Figure 1.

This network shows how the various uncertainties in the

components of the kinematic state vector can affect the

uncertainty in a situation assessment node which is not

directly determined by the kinematic state.

In these most general K-filter equations (2) through

(8) ©k¡1, wk¡1, ~zk, Hk, and vk all have subscripts indi-
cating that they are non-stationary and may change over

time, indicating that the process and the resulting state

estimates are not stationary. The system model propa-

gates based on the previous state with a time-dependent

random component added to it and a reduction in un-

certainty based on noisy observations. It is important

for our purpose here to note that if an observation of

the system is not taken, then the uncertainty of the

extrapolated state variable, ~̂x
¡
k , as represented by the

extrapolated error covariance matrix, P¡k , grows. The
uncertainty in the extrapolated state estimate is repre-

sented by some norm of the error covariance matrix. The

trace will not do as a norm as it is dimensionally non-

conformal; the determinant, while dimensionally con-

formal, and monotonically related to information, does

not have meaningful dimensions but may still be a use-

ful norm. Alternatively, the error covariance matrix can

be normalized to meaningful spatial units by pre- and

post-multiplying by a dimension conforming matrix.

It can be seen from the error covariance extrapola-

tion (5) that the state estimate (7) depends on the propa-

gation of the previous state estimate (4) plus the Kalman

gain (6), K(t), multiplying the difference between the
previous estimate and the observation. If there is no

observation (3), ~z(t), then the uncertainty continues to
grow. This is our first hint that without continual obser-

vations of the state of a process corrupted by random

process (latent variable) noise (2), our uncertainty about

its state (5) grows, and hence its entropy.

Whether the elements of the K-filter are treated as

stationary or non-stationary depends on the modeler’s

understanding of the process and how the model is to be

used. One might consider the state propagation matrix in

(2), ©k¡1, representing the physics of the target’s trajec-
tory, to be stationary and unchanging over time yielding

a constant ©. If the same sensor is used to obtain a mea-
surement of the target, then the observation matrix of (3)

also becomes a constant, Hk =H. Even with this simpli-
fying assumption, we still need to deal with the additive

random components in (2) and (3), the process noise,

wk, and the measurement noise, vk which are character-
ized in (2) and (3) by their covariance matrices, Qk and
Rk, respectively. Typically target trackers include multi-
ple model (e.g., IMM, Interacting Multiple Model [16])

methods with different process noise covariances Qk at
different stages in the target tracking process. Since Qk
is directly involved in the computation of the extrapo-

lated error covariance matrix of (5), P¡k , which is used
to compute the error covariance matrix update of (8),

P+k , the amount of information change associated with
target observations under different model assumptions

will change independently of the observation noise.

The measurement noise covariance matrix in (3), Rk,
also directly affects the amount of information associ-

ated with the computation of the state estimate update

as well as the Kalman gain of (6), Kk, which is used
to compute the error covariance matrix update of (8),

P+k . Of course, the measurement covariance may change
from observation to observation, but let’s assume it is

constant for the sake of discussion. The point here is to

show that while the process and measurement noises can

be considered stationary and hence aleatory, the result-

ing uncertainties in the target state updates as measured

by the updated error covariance matrix are epistemic.

1.3. Aleatory and epistemic BN nodes

Concerning the modeler’s view of the K-filter state

estimate of a target in track as part of a BN representing

the situation assessment, the random components can

be viewed as either aleatory or epistemic. Continuing

with our K-filter example which uses observation data

of (3), ~zk, to reduce our uncertainty about the kinematic
state of a target in track, we can look at the sources of

randomness and see that they are, in the general model,

non-stationary as they are all functions of time.
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We do not discuss here the choices made by the

modeler, but will, in our example later, show how

evolving process dynamics of a target model affect

the amount of information that one can extract from

a measurement. We do recognize that in a situation

assessment there will be a combination of both aleatory

and epistemic nodes. Our concern with respect to a

global entropy of a BN is limited to the epistemic nodes

since there is no change in uncertainty in the aleatory

nodes.

As we will see in the sequel, entropy changes reflect

a gain or loss of information. We will extend this

epistemic entropy change to a BN and see that there

is a global gain or loss of information over time but

only due to epistemic nodes.

Section 1 is the introduction which provides some

necessary background information. Section 2 differen-

tiates and makes clear the distinction among data, infor-

mation, and knowledge. Section 3 investigates proper-

ties of hard (i.e., physics based) and soft (i.e., human-

derived) data to conclude that there exist probabilistic

measures which can be used to compute entropy of both

hard and soft data. In section 4 we present sample com-

putations which may help to clarify some of the newly

introduced concepts.

2. DATA, INFORMATION, AND KNOWLEDGE

Waltz [17] distinguishes among three levels of ab-

straction of knowledge: data, information, and knowl-

edge.

² Data are “individual observations, measurements, and
primitive messages [which] form the lowest level.

Human communication, text messages, electronic

queries, or scientific instruments that sense phenom-

ena are the major sources of data.”

² Information is “organized sets of data: : :The organi-
zation process may include sorting, classifying, or

indexing and linking data to place data elements in

relational context for subsequent searching and anal-

ysis.”

² Knowledge or foreknowledge (predictions or fore-
casts) is “information once analyzed, understood, and

explained: : :”

For our purposes we take a slightly different ap-

proach by considering information to be a change in our
uncertainty about processes in the environment which

result from temporal changes, an observation, or the

acquisition of relevant data (evidence). Knowledge in
our context is expressed in the form of a Bayes net

because the BN contains both the causal processes in

the environment as well as the uncertainties associated

with them. Furthermore, the fact that BN uncertainty in-

creases over time is already known as Singhal & Brown

[18] note in their discussion of dynamic Bayes nets,

“[a] decay function is associated with the PDFs that

increases the variance of the beliefs when they have

not been updated for a period of time.” They also rec-

ognize that observations do not have to be regular or

synchronous. “To relax synchronization issues and con-

straints, we employ an asynchronous update policy that

uses dynamic Bayesian networks to create new proba-

bility density functions (PDF).” [18]

If we consider the BN as the repository of knowl-

edge about the situation, then the changes in uncertainty

associated with the BN can be considered as information

gain or loss. It is common to think about information

gain as a result of obtaining data, but it is less common

to think about the information loss associated with in-

creases in our uncertainty about a process as the process

evolves over time. Generally the BN is considered to be

stationary until more data, i.e., evidence, are obtained

to decrease the remaining uncertainty, but that is not

the case when we are dealing with processes. As we

saw in the K-filter target tracking example previously

presented in Figure 1, our uncertainty about the kine-

matic state estimate grows as time advances if we do not

observe the process due to the additive process noise. In

the case of K-filters, the loss of information can be com-

puted as a change in the entropy of our state estimate

over time [4]. If we make an observation and obtain

data, then the difference in uncertainties represented by

the entropies of a norm of the extrapolated error co-

variance matrix (5), P¡k , and the norm of the error co-

variance update (8), P+k , is a measure of the amount of
information gain. This information gain represents the

increase in knowledge as a result of obtaining data and

decreases the uncertainty in the BN.

2.1. Bayes net information

We can extend this concept from the kinematic state

of a single target in track to the global knowledge

of a situation as represented in a BN [18]. Situation

information and sensor information are differentiated by

the authors [19], and we only focus here on situation

information as represented by the global change in

uncertainties in a BN, namely entropy changes among

the situation assessment nodes. The Shannon entropy

[20], H, of a discrete random variable, X, with possible
values fx1,x2, : : :xng and probability mass function P(X)
is computed in the usual manner as

H(X) = E[I(X)] (9)

H(X) = E[¡ ln(P(X))] (10)

with E being the expectation operator and I being the
information content of the RV. Alternatively, and letting

the RV, X, be a BN node, Nj , the node entropy can be
computed as follows

H(X) =
nX
i=1

P(xi)I(xi) (11)

H(Nj) =¡
nX
i=1

P(xi) logb P(xi) (12)
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here n is the number possible values that can be taken
on by a single node of a BN, Nj , and b is the radix of the
logarithm used. Utilizing the radix 2 yields the entropy

measured in bits.

After an observation which changes the probability

distribution associated with node Nj , the single node BN

information, I+j , [19] is, therefore,

I+(Nj) =H
¡(Nj)¡H+(Nj) (13)

where j is the index number of a single node of the
BN, the superscript “+” indicates the values associated

with the jth node after the effects of the observation
have changed the probability within the jth node (the
a posteriori value), and the superscript “¡” reflects the
probability of the jth node before the observation (the
a priori value).
The global BN information gain or loss is the sum

of the information gain/loss of all the nodes. Since we

assume a mixture of aleatory and epistemic nodes in

the BN, and furthermore that the aleatory nodes are

stationary, there is no information gain/loss associated

with them. That is, we only have to sum the informa-

tion gain/loss of epistemic nodes. Without observations,

there will be a net increase in our uncertainty of each

process node with an associated loss of information over

time. Assuming mutually exclusive sensor observation

opportunities, there may be either a net global gain or

net global loss of information in the situation assess-

ment BN with the observation of a single node. For the

observed node, there may be either a gain or a loss of

information based on whether the observation decreases

the uncertainty more than it had increased since the last

observation. For the non-observed process nodes there

may be a loss of information since they are not being

observed and their uncertainty may have grown since

their last observation.

The global temporal Bayes net information at the kth
observation is

ITBNk =
X

all epistemic
nodes

[Hk ¡Hk¡1] (14)

which can be reduced to

ITBNk =

mX
j¡1
I+(Nj) (15)

where m is the number of epistemic nodes in the BN

and I+(Nj) is defined in (13).

2.2. Hard/soft knowledge and information

The implication until now in this paper is that the

situation assessment in the form of a BN represents

only kinematic uncertainty of processes in the domain

of concern. We take a more egalitarian view of situation

assessment in that nodes can represent kinematic uncer-

tainties as well as intentional (not purposeful, but rather
motivational as in the node contact A is threat of Figure

Fig. 3. Relational diagram representing enemy intent. After Buede,

et al. [22].

1) uncertainties about hypotheses such as whether the

enemy is going to attack or not. Hypothesis nodes like

this can be partially resolved if there is overt physical

action or observable preparatory action on the part of the

enemy; however, it is more likely that actionable intel-

ligence is derived from the interception and analysis of

communications intelligence (COMINT) or other auto-

matically processed natural language communications,

i.e., soft data. According to Dragos, [21] “[s]oft data are

a mix of both facts and opinions” the difference between

the two being the source and the probability associated

with each.

Yet it doesn’t matter whether the source of data is

hard or soft, but rather whether the acquisition of data

changes our uncertainty about a particular aspect of

the situation being assessed as reflected by a changed

probability in one or more nodes of the BN.

2.3. Changing BN structure, information gain/loss?

Since we consider a BN as a knowledge represen-

tation structure with uncertainties associated with each

node, the addition of another node, be it aleatory or epis-

temic, does not inherently add any information unless
the addition of the node connects to other nodes which

are conditioned on it. The addition of a node may affect

the amount of temporal information that is gained or

lost as time progresses or observations are made since

the BN information is the sum of the information lost

over time and likely regained with observations.

But the question arises as to how much knowledge
is contained in a BN and whether adding or deleting a

node changes that amount of knowledge. If we take the

entropic view of uncertainty and the information the-

oretic view of information being a change in entropy,

then we can consider the maximum uncertainty, the total

entropy, in a BN to be the sum of the entropies of all

the nodes as if each of these entropies were at its maxi-
mum uncertainty. If we measure the entropy of a node,

we can view this as its potential information (PI) since
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Fig. 4. Example BN containing uniform probabilities (no evidence) and both aleatory (yellow) and epistemic (blue) nodes, KEn= 7.

it represents the amount of uncertainty that can be re-

solved through measurements if it is an epistemic node.

The maximum PI of a BN node occurs when all values
are equally probable and represents the maximum infor-

mation that can be obtained from a BN node resulting

in perfect knowledge of that node since the entropy of

a node with no uncertainty is zero. If we extend this

to the BN itself, then we can talk about the maximum

potential information of a BN as the sum of the maxi-

mum PIs of the individual nodes. Note, however, that
the probabilities of a node may not be at their maximum

uncertainty since we may have some a priori knowledge
which skews the probabilities. In this case, the PI is the
entropy of that skewed distribution associated with the

node.

Since we have made a distinction in this paper be-

tween aleatory and epistemic nodes, we need to define

which nodes need to be included in our definition of po-

tential information. We assert that only epistemic nodes

should be included as, by definition, the uncertainty in

aleatory nodes cannot be reduced by measurements and

those in epistemic nodes can. The decision between

which ones are epistemic nodes and which ones are

aleatory nodes is a modeling decision and can change

with point of view and over time and there is no general

rule that can be applied other than whether observations

of any other node in the network changes a node’s prob-

abilities.

We also can view the observing of a node to reduce

its uncertainty as gaining information about the node.

We call this kinetic information (KI) because it results
from a physical or cyber action and a change in the

BN as well as a reduction in the potential information

yet available to be gained. We can actively observe

the process associated with a node to obtain kinetic

information. Alternatively, by not observing a random

variable related to a dynamic process represented by a

node, the BN can leak KI over time which increases
its PI.
Currently, there is no unit for the uncertainty of

knowledge in a BN. We propose to use units of Knowl-
edge Entropy (KEn) to represent the uncertainty in a BN.

Zero KEn results when there is no uncertainty in any of
the epistemic nodes. There is precedence for this new

use of an old (if not archaic) word if one examines defi-

nitions found in the Oxford English Dictionary (Oxford

English Dictionary, 2017) which defines ken as:

² ken, v.1, 11. a. To know (a thing); to have knowl-

edge of or about (a thing, place, person, etc.), to be

acquainted with; † to understand. Now chiefly Sc.
² ken, v.1, 12. a. intr. or absol. To have knowledge (of
or about something). † Also with inf.: To know how
to, to be able to (obs.).

So we can refer to the KEn of a BN at any time

as measured in bits of uncertainty in our situation

knowledge. The KEn can change over time due to
the leakage of KI or the acquisition of KI through
observations, and can be computed as the sum of the

entropies of all epistemic nodes in the BN. Formally,

the knowledge entropy of a BN, KEn, is

KEn(t) =
X

all epistemic
nodes

H(t) (16)

and the amount of temporal Bayes information, TBI,
which results from a change in nodal probabilities or

network structure from time t0 to t1, is

TBI(t1) =KEn(t0)¡KEn(t1) (17)

As previously mentioned, TBI may be zero, positive,
or negative. Zero TBI means that no network informa-
tion was gained or lost over the time period although

there could be individual nodal information changes

whose net sum is zero. Positive or negative TBI indi-
cates a gain or loss of information respectively with a

concomitant change in our situation knowledge as rep-

resented by the temporal BN.

One would like to hypothesize that there is a con-

servation of knowledge law associated with BN, i.e.,

the KNowledge Entropy (KEn) is conservative, and that
there is a one-for-one exchange between KI and PI, but
this does not appear to be the case due to the conditional

probabilities relating nodes. Increasing or decreasing the
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TABLE 1.

Entropy of uniformly distributed probabilities based on the number

of bins.

# of bins in X Uniform

probability

log2(pi) PI =H(X) (bits)

2 0.500 ¡1:000 1.000

4 0.250 ¡2:000 2.000

5 0.200 ¡2:322 2.322

8 0.125 ¡3:000 3.000

uncertainty in one node may increase or decrease the en-

tropy in other nodes, but our preliminary investigations

lead us to conjecture that the gain in KI is not offset
by an equal loss in PI. This is a topic that bears further
investigation but is not the main point of this paper so

we leave it for now.

KEntotal 6=
X

PI+
X

KI (18)

We can now answer the question about what to do

about a node which is added to, or deleted from, a

dynamic BN and that is to simply consider it to be

adding or deleting potential information to or from

the knowledge represented in the BN. Adding a node

will increase the KEn, but by less that the PI of the
node if its connections affect the other probabilities.

Furthermore, the loss of information, KI, results in
an increase in the PI although not on an equivalent
basis. The acquisition of information, KI, by observing
a relevant RV decreases the PI. The total knowledge,
the KEn, in a structurally stationary BN is knowable

and computable. As with the question of conservation

of information in a BN, we defer this topic to a later

paper.

3. BN HARD/SOFT INFORMATION

We have already described the uncertainty asso-

ciated with kinematic state estimates utilizing the K-

filter formulation. This epistemic uncertainty is fully de-

scribed by the increase in a norm of the error covariance

matrix as it propagates over time or decreases with an

observation. Other similar physical state estimates have

continuous or discretized uncertainties that are straight-

forward to work with. Soft knowledge in BN, on the

other hand, requires additional explanation since it in-

cludes other forms of uncertainty as noted by Dragos

[21] namely

² Intrinsic uncertainties such as ambiguity, vagueness,
and precision

² Source related uncertainties which are a mixture of
facts and opinions

² Relational uncertainties which are concerned with in-
accuracies, overlappings, and contradictions in anal-

ysis

TABLE 2

Conditional Probability Table (CPT) of the TrackA Classification

node.

TrackA Int Obscured Combatant NonCombatant

Hostile Clear 75 25

Hostile Obscured 50 50

Not Hostile Clear 25 75

Not Hostile Obscured 50 50

Dragos [21] continues with methods for estimating

all of these uncertainties which will not be repeated

here. For our purposes, we will assume that soft un-

certainties can be estimated allowing us to compute en-

tropies of soft data.

The suitability of uncertainty in any form: : :hard or
soft, social or physical, quantitative or fuzzy: : :has been
shown by Kjaerulff [23] to be applicable to formula-

tion as a BN. “Note, that the method in this paper can

be applied to other evidential frameworks where inde-

pendent pieces of evidence are combined into a joint

evidence e.g., Bayesian combination. For more high-

dimensional problems, i.e., when it could be more suit-

able to utilize a graph structure for modeling depen-

dencies e.g. Bayesian Networks,: : :” That is, relations
among aleatory and epistemic processes such as the ex-

ample of Buede et al., [24] as shown in Figure 2, can

be represented in a causal BN, also from Buede, et al.,

as shown in Figure 3.

4. EXAMPLE GLOBAL TEMPORAL BN
COMPUTATIONS

The following simplified examples will demonstrate

some of the concepts introduced in this paper. First,

looking at an individual node and computing the en-

tropy of a uniform distribution of discrete values in ac-

cordance with (11), we see as exemplified in Table 1 that

the potential information of the jth node is simply the
log2(number of bins in jth node) and the potential infor-
mation of the BN consisting of m nodes each having kj
values associated with each nodes.

PI(Nj) =
mX
j=1

¡ log2 kj bits (19)

If each node were a true/false hypothesis node, then

there would be one bit of PI/node resulting in an m-
node BN containing an upper bound of m-bits of PI
since the connectivity of the BN reduces the actual

amount of information that is available. Clearly as one

changes the number of uniformly distributed bins/node,

the summation of PI is easily calculated as well as the
amount of PI if a node is added or deleted.

4.1. Simple BN PI and KI example for epistemic
nodes

In order to instantiate some of the concepts in-

troduced here, we perform PI, KI, and KEn com-
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Fig. 5. Classification evidence at time T0.

Fig. 6. Classification evidence at time T30 showing a change in the BN’s initial knowledge with a KEn= 5:58 and the result of a loss of

information in the TrackA Classification node resulting in an increase in KEn to 5.95.

putations on a simple 8-node BN as shown in Fig-

ure 4, with all the nodes being epistemic and uniform

probability nodes, except one (Obscuration) which is

aleatory. Associated with the TrackA Classification and

TrackB Classification nodes is a Conditional Probabil-

ity Table (CPT) as shown in Table 3.

For our numerical example, we use the sensitivity

as computed in Norsys Netica [25] BN program. The

mathematical formulations utilized by Netica are docu-

mented in their on-line documentation [26]) and are the

same as (19) above. Furthermore, we have done sample

calculations outside of Netica utilizing the net of Fig-

ure 4 without the aleatory “obscurations” node and the

results of our calculations match those produced by the

Netica sensitivity analysis.

Referring to Figure 4, the initial entropy of the

Adversary Intention node at time t0 is the expected
1.0 bits with uniform distributions in the other two

nodes. If the TrackA Classification node of Figure 4

is set to 100% as shown in Figure 5 and Figure 6,

the Adversary Intention changes to 65% Hostile/35%

Non-Hostile and the BN KEn changes from 7 to 5.58

indicating a global network decrease in uncertainty (or

increase in KI) of 1.42 bits as a result of the sensing

action which provided the Combatant classification with

100% certainty.

We demonstrate the temporal increase in uncer-

tainty in the TBN by changing the probabilities of the

TrackA Classification node. At some later time, t30, we
assume the uncertainty has decreased from 100% Com-

batant to 95% Combatant/5% Non-Combatant. This

temporal loss of information results in the Adver-

sary Intention changing to 63.5% Hostile/36.5% Non-

Hostile and the BN KEn increasing from its t0 of 5.58
to its t30 value of 5.95 of a KI loss of 0.07 bits.
As an example of an alternative type of information

loss related to a different sensing node, TrackA Activity,

Figure 7 and Figure 8 shows the BN of Figure 4 with

initial, non-uniform uncertainties in the TrackA Activity

node of 100% Hostile/0% non-hostile. With this ini-

tial condition, the Adversary Intention becomes Hostile

74%/Non-Hostile 26% for an initial KEn at t0 of 5.06
bits.

We model the temporal change in our certainty of

the TrackA Activity node by decreasing the uncertainty

at some later time, t30, from 100% Hostile to 80%/20%

as shown in Figure 7 and Figure 8. This temporal loss of

information results in the Adversary Intention changing
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Fig. 7. Activity evidence at time T0.

Fig. 8. Activity evidence at time T30 showing a change in the BN’s initial knowledge with a KEn= 5:06 and the result of a loss of

information in the TrackA Activity node resulting in an increase in KEn to 6.41.

TABLE 3

Table summarizing the results of information loss over time due to

decreased uncertainty in classification and, alternatively, identity. No

obscuration in the aleatory node.

Scenario with no obscuration Total Knowledge Entropy

(epistemic only)

No evidence 7.00

Classify TrackA, t0 5.58

Classify TrackA, t30 5.95

Identify Activity TrackA, t0 5.06

Identify Activity TrackA, t30 6.41

to 64.4% Hostile/35.6% Non-Hostile and the BN KEn
increasing from its t0 of 5.06 to its t30 value of 6.41 of
a KI loss of 1.35 bits. The loss in KEn with time is
summarized in the table of Table 3.

This example shows that if we were to use a BN

with no evidence and a KEn of 7.0 with the expected
information gains at t0 of 1.42 bits if we choose to clas-
sify as opposed to 1.94 bits if we choose to identify, we

would choose to classify since it yields the maximum

information. If, on the other hand, if we chose to wait

until t30 the expected information gain from the initial

KEn of 7.0 would yield 1.05 bits for classify and 0.59
bits for identify showing that accounting for the tempo-

ral loss of information from t0 to t30 results in a different
choice of which sensor function to use.

Other findings have been computed which result

in higher losses of information while most result in a

positive flow of KI into the BN.

4.2. Information in the presence of aleatory node

Remembering that the computation of KEn only in-
cludes epistemic nodes, the question arises as to the ef-

fect of an aleatory node on the amount of information

gain and choice of sensor function if one makes differ-

ent assumptions about the probabilities in an aleatory

node. If the aleatory Obscuration node is changed from

its 100% clear as used for the previous example to 75%

clear/25% obscured, the following results. The results

are shown in Table 4.

Referring to Figure 4, the initial entropy of the Ad-

versary Intention node at time t0 is still the expected 1.0
bits with uniform distributions in the other two nodes.

If the TrackA Classification node is set to 100%, the

Adversary Intention changes to 61.3% Hostile/38.8%

Non-Hostile and the BN KEn changes from 7 to 5.77
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TABLE 4

Table summarizing the results of information loss over time due to

decreased uncertainty in classification and, alternatively, identity.

Twenty-five percent obscuration in the aleatory node.

Scenario with 25% obscuration Total Knowledge Entropy

(epistemic only)

No evidence 7.00

Classify TrackA, t0 5.77

Classify TrackA, t30 6.10

Identify Activity TrackA, t0 5.12

Identify Activity TrackA, t30 6.43

indicating a global network decrease in uncertainty (or

increase in KI) of 1.23 bits as a result of the sensing
action which provided the Combatant classification with

100% certainty.

As before, we model the temporal change in our cer-

tainty of the TrackA Classification node by decreasing

the uncertainty at some later time, t30, from 100% Com-

batant to 95%/5%. This temporal loss of information

results in the Adversary Intention changing to 60.1%

Hostile/39.9% Non-Hostile and the BN KEn increasing
from its t0 of 5.77 to its t30 value of 6.10 of a KI loss
of 0.33 bits.

As an example of an alternative type of infor-

mation loss under aleatory uncertainty related to a

different sensing node, the TrackA Activity, node is

changed to 100% Hostile/0% non-hostile. With this ini-

tial condition, the Adversary Intention becomes Hostile

74%/Non-Hostile 26% for an initial KEn at t0 of 5.12
bits.

Again, modeling the temporal change in our cer-

tainty of the TrackA Activity node by decreasing the

uncertainty at some later time, t30, from 100% Hos-

tile to 80%/20%. This temporal loss of information

results in the Adversary Intention changing to 64.4%

Hostile/35.6% Non-Hostile and the BN KEn increasing
from its t0 of 5.12 to its t30 value of 6.42 of a KI loss
of 1.30 bits. The loss in KEn with time is summarized
in Table 4.

This aleatory example, Table 4, shows that if we

were to use a BN with no evidence and a KEn of 7.0,
choosing to classify would yield an expected informa-

tion gains at t0 of 1.23 (7:0¡ 5:77). If, instead, choosing
to identify would yield 1.88 bits (7:0¡ 5:12). Because
of this expected differential information gain, would

choose to identify since it yields the maximum infor-

mation. If, on the other hand, we choose to wait until

t30 the expected information gain from the initial KEn
of 7.0 would yield 0.9 bits (7:0¡ 6:1) for classify and
0.57 bits (7:0¡ 6:43) for identify, leading us to choose
to classify as the maximum information choice. That is,

accounting for the temporal loss of information from

t0 to t30 results in a different choice of which sensor
function to use in order to maximize the information

gain for a single observation.

For this example of changes in our a priori assump-
tion about the probabilities associated with an aleatory

node, there is a change in the expected information gain

even though the entropy of the aleatory node is not in-

cluded in the information measure. This shows that our

model assumptions about the unmeasurable causal prob-

abilities can affect our choice of sensing actions since

they may affect our expected situation information ex-

pected value rate (EIVRsit).

5. CONCLUSION

The differentiation between aleatory and epistemic

nodes in Bayes nets has been defined and illustrated. It

is also shown that BN are not limited to hard data as the

analogy to Kalman-filter shows, but soft data nodes can

be included since there exist soft data entropy measures.

The fact that both hard and soft data uncertainty mea-

sures can be expressed as entropies allows one to put the

two types of knowledge in the same BN and apply in-

formation measures based on entropy changes. Potential

information and kinetic information are defined and it is

conjectured that a conservation of knowledge law exists,

but the details of this will be the subject of further re-

search. Finally, a simple example of a temporal BN was

presented showing how the leakage of information over

time could lead to increases in entropy over time which

could affect the choice of expected situation informa-

tion gain when utilizing an information based sensor

measurement (IBSM) approach to sensor management.
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