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Game-Theoretic Defense of

Adversarial Distributed Support

Vector Machines

RUI ZHANG

QUANYAN ZHU

With a large number of sensors and control units in networked

systems, distributed support vector machines (DSVMs) play a fun-

damental role in scalable and efficient multi-sensor classification

and prediction tasks. However, DSVMs are vulnerable to adver-

saries who can modify and generate data to deceive the system to

misclassification and misprediction. This work aims to design de-

fense strategies for DSVM learner against a potential adversary. We

establish a game-theoretic framework to capture the conflicting in-

terests between the DSVM learner and the attacker. The Nash equi-

librium of the game allows predicting the outcome of learning al-

gorithms in adversarial environments, and enhancing the resilience

of the machine learning through dynamic distributed learning al-

gorithms. We show that the DSVM learner is less vulnerable when

he uses a balanced network with fewer nodes and higher degree.

We also show that adding more training samples is an efficient de-

fense strategy against an attacker. We present secure and resilient

DSVM algorithms with verification method and rejection method,

and show their resiliency against adversary with numerical experi-

ments.
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1. INTRODUCTION

Support Vector Machines (SVMs) have been widely

used in multi-sensor data fusion problems, such as mo-

tor fault detection [1], land cover classification [30], and

gas prediction [39]. In these applications, a fusion cen-

ter is required to collect data from each sensor and train

the SVM classifier. However, the computations in the

fusion center and its communications with sensors be-

come costly when the size of data and network becomes

large [11].

To solve the large-scale data fusion problems, sev-

eral methods have been developed to speed up SVMs.

For example, in [28], Tsang et al. have introduced an

approximation method to scale up SVMs. In [10], Dong

et al. have presented an efficient SVM algorithm using

parallel optimization. These methods only speed up the

computations in the fusion center, but the data transmis-

sions between fusion center and sensors still require a

significant amount of time and channel usages.

Efficiency is not the only drawback of the central-

ized SVM using fusion center. Sensors that collect sen-

sitive or private information to design the classifier may

not be willing to share their training data [13]. More-

over, a compromised fusion center attacked by an adver-

sary may give erroneous information to all the sensors

in the network. Furthermore, compromised sensors may

also provide misleading information to the fusion center,

and consequently affect uncompromised sensors [6].

Distributed support vector machines (DSVMs) draw

attentions recently as it does not require a fusion

center to process data collections and computations

[13, 23, 29]. Each node in the network solves decen-

tralized sub-problems themselves using their own data,

and only a small amount of data is transferred between

nodes, which makes DSVMs more efficient and private

than the centralized counterpart.

However, DSVMs are also vulnerable. For example,

misleading information can be spread to the whole

network, and the large number of nodes and complex

connections in a network makes it harder to detect

and track the source of the incorrect information [5].

Moreover, even though we can find the compromised

nodes, an adversary can attack other nodes and spread

misleading information.

Thus, it is important to design secure and resilient

distributed support vector machines algorithms against

potential attacks from an adversary. In this paper, we fo-

cus on a consensus based DSVM algorithm where SVM

problem is captured by a set of decentralized convex

optimization sub-problems with consensus constraints

on their decision variables [13, 34]. We aim to design

defense strategies against potential attacks by analyzing

the equilibrium of the game-theoretic model between a

DSVM learner and an attacker.

In our previous work [34], we have built a game-

theoretic framework to capture the conflict of interests

between the DSVM learner and the attacker who can
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modify the training data. In the two-person nonzero-

sum game, the learner aims to decentralize the compu-

tations over a network of nodes and minimize the error

with an effort to minimize misclassification, while the

attacker seeks to modify strategically the training data

and maximize the error constrained by its computational

capabilities.

The game formulation of the security problem en-

ables a formal analysis of the impact of the DSVM al-

gorithm in adversarial environments. The Nash equilib-

rium of the game enables the prediction of the outcome,

and yields an optimal response strategy to the adver-

sary behaviors. The game framework also provides a

theoretic basis for developing dynamic learning algo-

rithms that will enhance the security and the resilience

of DSVMs.

In this paper, we propose several defense strategies

for a DSVM learner against a potential attacker, and we

show the effectiveness of our defense strategies using

numerical experiments. The major contributions of this

work are multi-fold.

Firstly, we capture the attacker’s objective and con-

strained capabilities in a game-theoretic framework, and

develop a nonzero-sum game to model the strategic in-

teractions between an attacker and a learner with a set

of nodes. We then fully characterize the Nash equilib-

rium by showing the strategic equivalence between the

original nonzerosum game and a zero-sum game.

Secondly, we develop secure and resilient distributed

algorithms based on alternating direction method of

multipliers (ADMoM) [4]. Each node communicates

with its neighboring nodes, and updates its decision

strategically in response to adversarial environments.

We present a summary of numerical results in [34].

Lastly, we present four defense strategies against po-

tential attackers. The first defense strategy is to use bal-

anced networks with fewer nodes and higher degrees. In

the second defense strategy, we show that adding train-

ing samples to compromised nodes can reduce the vul-

nerability of the learning system. Adding samples to un-

compromised nodes at the beginning of the training pro-

cess also makes the learner less vulnerable. The third de-

fense strategy is to use verification method where each

node verifies its received data, and only accepts rea-

sonable information from neighboring nodes to prevent

misleading or illegitimate information sent to uncom-

promised nodes. The fourth defense strategy is to use

rejection method where each node rejects unacceptable

updates. Thus, not only misleading information is kept

from affecting uncompromised nodes, but also wrong

updates could be prevented in compromised nodes.

1.1. Related Works

Our work intersects the research areas on data fu-

sion, machine learning, cyber security and machine

learning. Machine learning tools have been used to

tackle data fusion problems, e.g., [9, 16, 31]. However,

machine learning systems can be insecure [2]. For ex-

ample, in [17], Huang et al. have shown that Spam-

Bayes and PCA-based network anomaly detection are

vulnerable to causative attacks. In [3], Biggio et al.

have shown that popular classification algorithms can

be evaded even if the attacker has limited knowledge of

learner’s system.

With distributed machine learning tools developed

for solving large-scale multi-sensor data fusion prob-

lems, each sensor solves sub-problems themselves and

transmits information with neighboring sensors [24].

However, cyber security becomes another problem as

an attacker may launch malicious cyber attacks to the

data fusion networks [7]. Thus, it is important for the

machine learning learner to analyze the equilibrium of

the game with an adversary and design defense strate-

gies against potential attacks.

Game theory is a natural tool to address this prob-

lem. It has been used in the study of the security of

machine learning. For example, in [21], Liu et al. have

modeled the interaction between a learner and an at-

tacker as a two-person sequential noncooperative Stack-

elberg game. In [19], Kantarcioglu et al. have used game

theory to analyze the equilibrium behavior of adversar-

ial learning.

Game theory has also been used widely in cyber

security as it provides mathematical tools for modeling

situations of conflicts and predicting the behaviors of

the attacker and defender in network security [22, 38,

40—43]. For example, in [26], Shen et al. have built an

adaptive Markov game model to infer possible cyber

attack patterns. In [18], Jiang et al. have presented an

attack prediction and optimal active defense method

using a stochastic game.

With game theory, we are able to analyze the game

between a distributed machine learning learner with

an adversary in a network, and further design defense

strategies for the learner against the attacker. In our

work, we focus on a class of consensus-based dis-

tributed support vector machines algorithms [13]. We

assume that the attacker has the ability to modify train-

ing data to achieve his objectives.

In our previous works [33—37], we have built a

game-theoretic model to capture the conflicts between

a DSVM learner and an adversary who can modify

training data or labels, and we have solved the game-

theoretic problem with ADMoM [4]. In this work, we

further analyze the equilibrium behaviors, and design

defense strategies for DSVMs against potential attacks.

We use numerical experiments to verify the effective-

ness of our strategies.

1.2. Organization of the Paper

The rest of this paper is organized as follows. Sec-

tion 2 outlines the consensus-based distributed sup-

port vector machines. In Section 3, we establish game-

theoretic models for the learner and the attacker. Sec-

tion 4 deals with the distributed and dynamic algorithms
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for the learner and the attacker. Section 5 summarizes

our previous numerical experiments. Section 6 presents

four different defense strategies and their corresponding

numerical experiments. Section 7 provides conclusion

remarks.

1.3. Summary of Notations

Notations in this paper are summarized as follows.

Boldface letters are used for matrices (column vectors);

(¢)T denotes matrix and vector transposition; (¢)(t) de-
notes values at step t; [¢]vu denotes the vuth entry of
a matrix; diag(X) is the diagonal matrix with X on its

main diagonal; k ¢ k is the norm of the matrix or vector;

V denotes the set of nodes in a network; Bv denotes the
set of neighboring nodes of node v; U denotes the action
set used by the attacker.

2. DISTRIBUTED SUPPORT VECTOR MACHINES

In this section, we present a distributed support vec-

tor machines learner in the network modeled by an undi-

rected graph G(V,E) with V := f1, : : : ,Vg representing
the set of nodes, and E representing the set of links
between nodes. Node v 2 V communicates only with

his neighboring nodes Bv μ V. Note that without loss
of generality, graph G is assumed to be connected; in
other words, any two nodes in graph G are connected
by a path. However, nodes in G do not have to be fully
connected, which means that nodes are not required to

directly connect to all the other nodes in the network.

The network can contain cycles. At every node v 2 V,
a labelled training set Dv := f(xvn,yvn) : n= 1, : : : ,Nvg
of size Nv is available, where xvn 2 Rp represents a
p-dimensional pattern, and they are divided into two

groups with labels yvn 2 f+1,¡1g. Examples of a net-
work of distributed nodes are illustrated in Fig. 1(a).

The goal of the learner is to design DSVM algo-

rithms for each node in the network based on its local

training data Dv, so that each node has the ability to
give new input x a label of +1 or ¡1 without com-
municating Dv to other nodes v0 6= v. To achieve this,
the learner aims to find local maximum-margin linear

discriminant functions gv(x) = x
Tw¤v + b

¤
v at every node

v 2 V with the consensus constraints w¤1 =w
¤
2 = ¢ ¢ ¢=

w¤V, b
¤
1 = b

¤
2 = ¢ ¢ ¢= b¤V, forcing all the local variables

fw¤v,b¤vg to agree across neighboring nodes. Variables
w¤v and b

¤
v of the local discriminant functions gv(x) can

be obtained by solving the following convex optimiza-

tion problem [13]:

min
fwv ,bv ,f»vngg

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 V , n= 1, : : : ,Nv;

s.t. »vn ¸ 0, 8v 2 V , n= 1, : : : ,Nv;
wv =wu, bv = bu, 8v 2 V , u 2 Bv:

(1)

Fig. 1. Network example. (a) There are 7 nodes in this network.

(b) Each node contains a labelled training set Dv := f(xvn,yvn) :
n= 1, : : : ,Nvg. Each node can communicate with its neighbors. In
each node, the learner aims to find the best linear discriminant line

(Black solid line).

In the above problem, slack variables »vn account for

non-linearly separable training sets. Cl is a tunable

positive scalar for the learner.

To solve Problem (1), we first define rv := [w
T
v ,bv]

T,

the augmented matrix Xv := [(xv1, : : : ,xvNv )
T,1v], the di-

agonal label matrix Yv := diag([yv1, : : : ,yvNv ]), and the

vector of slack variables »v := [»v1, : : : ,»vNv ]
T. With these

definitions, it follows readily that wv = (Ip+1¡¦p+1)rv,
where ¦p+1 is a (p+1)£ (p+1) matrix with zeros ev-
erywhere except for the (p+1,p+1)st entry, given by

[¦p+1](p+1)(p+1) = 1. Thus, Problem (1) can be rewrit-

ten as

min
frv ,»v ,!vug

1

2

X
v2V
rTv (Ip+1¡¦p+1)rv+VCl

X
v2V
1Tv »v

YvXvrv ¸ 1v ¡ »v, 8v 2 V; (2a)

s.t. »v ¸ 0v, 8v 2 V; (2b)

rv = !vu, !vu = ru, 8v 2 V , 8u 2 Bv: (2c)

(2)

Note that !vu is used to decompose the decision vari-

able rv to its neighbors ru, where u 2 Bv. Problem (2)

is a min-problem with matrix form coming from Prob-

lem (1).
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With alternating direction method of multipliers [4],

Problem (2) can be solved distributedly in the following

lemma [13],

LEMMA 1 With arbitrary initialization r(0)v , ¸
(0)
v , !

(0)
vu and

®(0)v = 0(p+1)£1, the iterations per node are given by:

¸(t+1)v 2 arg max
0·¸v·VCl1v

¡ 1
2
¸TvYvXvU

¡1
v X

T
vYv¸v

+(1v +YvXvU
¡1
v f

(t)
v )

T¸v, (3)

r(t+1)v =U¡1v (X
T
vYv¸

(t+1)
v ¡ f(t)v ), (4)

!(t+1)vu = 1
2
(r(t+1)v + r(t+1)u ), (5)

®(t+1)v = ®(t)v +
´

2

X
u2Bv

[r(t+1)v ¡ r(t+1)u ], (6)

where Uv = (Ip+1¡¦p+1)+2´jBvjIp+1, f(t)v = 2®(t)v ¡ 2´
£Pu2Bv !

(t)
vu .

The proof of Lemma 1 can be found in [13]. Itera-

tion (3) is a quadratic programming problem. ¸v are the

Lagrange multipliers per node corresponding to con-

straint (2a). Iteration (4) computes the decision vari-

ables rv, note that the inverse of Uv always exists and

easy to solve. Iteration (5) yields the consensus vari-

ables !vu. Iteration (6) computes ®v, e.g., the Lagrange

multipliers corresponding to the consensus constraint

(2c). Iterations (3)—(6) are summarized into Algorithm

1. Note that at any given iteration t of the algorithm,

each node v 2 V computes its own local discriminant

function g(t)v (x) for any vector x as

g(t)v (x) = [x
T,1]r(t)v : (7)

ALGORITHM 1: ADMoM-DSVM

Randomly initialize r(0)v , ¸
(0)
v , !

(0)
vu and ®

(0)
v = 0(p+1)£1.

1: for t= 0,1,2, : : : do

2: for all v 2 V do
3: Compute ¸(t+1)v via (3).

4: Compute r(t+1)v via (4).

5: end for

6: for all v 2 V do
7: Broadcast r(t+1)v to all neighbors u 2 Bv.
8: end for

9: for all v 2 V do
10: Compute !(t+1)vu via (5).

11: Compute ®(t+1)v via (6).

12: end for

13: end for

Algorithm 1 solves the DSVM problem using AD-

MoM technique. It is a fully decentralized network op-

eration, and it does not require exchanging training data

or the value of decision functions, which meets the re-

duced communication overhead and privacy preserva-

tion requirements at the same time. However, informa-

tion transmitted in the network not only helps improve

the performance of each node, but also increases the

damages from the attacker, as the misleading informa-

tion can be spread to every node. To design a secure

and resilient DSVM algorithm, we first build the attack

model to capture the attacker’s intentions of breaking

the training process of the learner.

3. DISTRIBUTED SUPPORT VECTOR MACHINES
WITH ADVERSARY

In this section, we present the game-theoretic frame-

work of a DSVM learner and an attacker who takes

over a set of nodes with the aim of breaking the train-

ing process of the learner. We assume that the attacker

has a complete knowledge of the learner’s Problem (1)

by Kerckhoffs’s principle: the enemy knows the sys-

tem [25], which enables us to anticipate the interac-

tions of the learner and the attacker in a worst-case

scenario. Moreover, the attacker can easily acquire the

complete knowledge of the learning systems in reality,

for example, by node capture attacks [27] and computer

worms [8], an attacker can compromise the whole net-

work through connections between neighboring nodes,

and thus obtain the private and sensitive information of

the learner.

To achieve the malicious goal, the attacker takes over

a set of nodes Va := f1, : : : ,Vag and changes xvn into
x̂vn = xvn¡ ±vn,

where ±vn 2 Uv, and Uv is the attacker’s action set at
node v. Note that we use Vl = f1, : : : ,Vlg to represent
nodes without the attacker. V = Va+Vl and V = Vl [
Va. A node in the network is either under attack or

not under attack. An example of the impact of the

attacker on the learner is shown in Fig. 2. This type

of attacks represents a challenge for the learner. On the

one hand, the learner will find the incorrect classifiers

at the compromised nodes, and communications in the

network may lead to unanticipated results as misleading

information from compromised nodes can be spread to

and then used by uncompromised nodes. On the other

hand, it is difficult for the learner to identify modified

data, and furthermore, in distributed settings, the learner

may not even be able to detect which nodes are under

attack. Potential real world examples of the attackers are

discussed as follows.

EXAMPLE 1 (Air pollution detection) [20].

Consider an air pollution detection system which

uses DSVM as the classifiers to determine whether cer-

tain areas have air pollution. An attacker can modify the

training data of the certain areas to let the system fail

to recognize the air pollution. Moreover, the attacker

can even modify other areas’ training data to achieve

his goal, since misleading information can be spread

among the whole system by the communications be-

tween neighboring nodes. However, with a large amount

of training data and areas, the learner will fail to detect
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the compromised data and areas, and the results of the

air pollution detection system will be untrustworthy.

EXAMPLE 2 (Distributed medical databases) [13].

Suppose several medical centers aim to find clas-

sifiers together on a certain disease using DSVM. An

attacker can modify the training data of one medical

center, which affects not only the compromised medi-

cal center, but also the uncompromised medical centers,

as the misleading information can be spread among the

network. As a result, all the medical centers might give

inaccurate diagnosis on the disease. To find out the com-

promised training data, the learner is required to exam-

ine all the training data from all the medical centers,

which is costly and sometimes even unrealistic.

Now Problem (1) changes to,

min
fwv ,bv ,f»vngg

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn

s.t.

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 Vl, n= 1, : : : ,Nv;

yvn(w
T
v x̂vn+ bv)¸ 1¡ »vn, 8v 2 Va, n= 1, : : : ,Nv;

»vn ¸ 0, 8v 2 V , n= 1, : : : ,Nv;
wv =wu, bv = bu, 8v 2 V , u 2 Bv:

(8)

By minimizing the objective function in Problem

(8), the learner can obtain the optimal variables fwv,bvg,
which can be used to build up the discriminant function

to classify the testing data. The attacker, on the other

hand, aims to find an optimal way to modify the data

using variables f±vng to maximize the same objective
function. The behavior of the attacker can thus be

captured as follows:

max
f±vng

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn¡Ca
X
v2Va

NvX
n=1

k±vnk0

s.t.

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 Vl, n= 1, : : : ,Nv;

yvn(w
T
v (xvn¡ ±vn) + bv)¸ 1¡ »vn, 8v 2 Va, n= 1, : : : ,Nv;

»vn ¸ 0, 8v 2 V , n= 1, : : : ,Nv;
wv =wu, bv = bu, 8v 2 V , u 2 Bv;
±vn 2 Uv, 8v 2 Va:

(9)

In above problem, the term Ca
P

v2Va
PNv
n=1 k±vnk0

represents the cost function for the attacker. l0-norm

is defined as kxk0 := jfi : xi 6= 0gj, i.e., a total number
of nonzero elements in a vector. Here, we use the

l0-norm to denote the number of elements which are

changed by the attacker. The objective function with

l0-norm captures the fact that the attacker aims to make

Fig. 2. Network with attacker. (a) Node 1 and 4 are under attack.

(b) In compromised node, for example, node 1, an attacker modifies

the training data which leads to a wrong linear discriminant line

(Black dotted line).

the largest impact on the learner by changing the least

number of elements. Constraint ±vn 2 Uv indicates the
action set of the attacker. In this paper, we use the

following form of Uv:

Uv =
(
(±v1, : : : ,±vNv )

¯̄̄̄
¯
NvX
n=1

k±vnk22 · Cv,±
)
,

which is related to the atomic action set Uv0 = f±v j
k±vk22 · Cv,±g. Cv,± indicates the bound of the sum of

the norm of all the changes at node v. A higher Cv,±
indicates that the attacker has a larger degree of freedom

in changing the value xvn. Thus, training these data will

lead to a higher risk for the learner. Notice that Cv,±
can vary at different nodes, and we use C± to represent

the situation when Cv,± are equal at every node. ±v 2Rp
from the atomic action set has the same form with

±vn, but ±v and (±v1, : : : ,±vNv ) are bounded by same Cv,±.

Furthermore, the atomic action set Uv0 has the following
properties [32].

(P1) 0 2 Uv0;
(P2) For any w0 2Rp :

max±v2Uv0 [w
T
0 ±v] = max±0v2Uv0 [¡wT0±0v]<+1:
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The first property (P1) states that the attacker can

choose not to change the value of xvn. Property (P2)

states that the atomic action set is bounded and sym-

metric. Here, “bounded” means that the attacker has the

limit on the capability of changing xvn. It is reasonable

since changing the value significantly will result in the

evident detection of the learner.

For the learner, the learning process is to find the

discriminant function which separates the training data

into two classes with less error, and then use the dis-

criminant function to classify testing data. Since the at-

tacker has the ability to change the value of original data

xvn 2 X into x̂vn 2 X̂ , the learner will find the discrimi-
nant function that separates the data in X̂ more accurate,
rather than the data in X . As a result, when using the
discriminant function to classify the testing data x 2 X ,
it will be prone to be misclassified.

Since the learner aims at a high classification ac-

curacy, while the attacker seeks to lower the accuracy,

we can capture the conflicting goals of the players as

a two-person nonzero-sum game by combining Prob-

lem (8) and Problem (9) together. The solution to the

game problem is described by Nash equilibrium, which

yields the equilibrium strategies for both players, and

predicts the outcome of machine learning in the ad-

versarial environment. By comparing Problem (8) with

Problem (9), we notice that they contain the same terms

in their objective functions and the constraints in the

two problems are uncoupled. As a result, the nonzero-

sum game can be reformulated into a zero-sum game,

which takes the minimax or max-min form as fol-

lows:

min
fwv ,bv ,f»vngg

max
f±vng

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn

¡Ca
X
v2Va

NvX
n=1

k±vnk0

s.t.

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 Vl, n= 1, : : : ,Nv;

yvn(w
T
v (xvn¡ ±vn) + bv)¸ 1¡ »vn, 8v 2 Va, n= 1, : : : ,Nv;

»vn ¸ 0, 8v 2 V , n= 1, : : : ,Nv;
wv =wu,bv = bu, 8v 2 V , u 2 Bv;
±vn 2 Uv, 8v 2 Va:

(10)

Note that the first and fourth constraints only con-

tribute to the minimization part of the problem, the fifth

constraint only affects the maximization part. The sec-

ond and third constraints contribute to both the min-

imization and the maximization part. The first term

of the objective function is the inverse of the dis-

tance of margin. The second term is the sum of all

the slack variables which captures the error penalties.

On one hand, minimizing the objective function cap-

tures the trade-off between a larger margin and a small

error penalty of the learner, while on the other hand,

maximizing the objective function captures the trade-

off between a large error penalty and a small cost

of the attacker. As a result, solving Problem (10) can

be understood as finding the saddle-point equilibrium

of the zero-sum game between the attacker and the

learner.

DEFINITION 1 Let SL and SA be the action sets for
the DSVM learner and the attacker, respectively. No-

tice that here SA = fUvgv2Va . Then, the strategy pair
(fw¤v,b¤v ,f»¤vngg,f±¤vng) is a saddle-point equilibrium so-

lution of the zero-sum game defined by the triple

Gz := hfL,Ag,fSL,SAg,Ki, if K(fw¤v,b¤v ,f»¤vngg,f±vng)·
K(fw¤v,b¤v ,f»¤vngg,f±¤vng)·K(fwv,bv,f»vngg,f±¤vng), 8v 2
V, where K is the objective function of Problem (10).

Based on the property of the action set and atomic

action set, Problem (10) can be further simplified as

stated in the following lemma [34].

LEMMA 2 Assume that Uv is an action set with corre-
sponding atomic action set Uv0. Then, Problem (10) is

equivalent to the following optimization problem:

min
fwv ,bv ,f»vngg

max
f±vg

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn

+
X
v2Va

(VaClw
T
v ±v ¡Cak±vk0)

s.t.

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 V, n= 1, : : : ,Nv;

»vn ¸ 0, 8v 2 V, n= 1, : : : ,Nv;
wv =wu, bv = bu, 8v 2 V, u 2 Bv;
±v 2 Uv0, 8v 2 Va:

(11)

PROOF See Appendix A.

In Problem (10), the second and third constraints are

the coupled terms with the second term of the objective

function. But in Problem (11), the only coupled term

is VaClw
T
v ±v, which is linear in the decision variables of

the attacker and the learner, respectively.

4. ADMOM-DSVM AND DISTRIBUTED ALGORITHM

In the previous section, we have combined Prob-

lem (8) for the learner with Problem (9) for the at-

tacker into one minimax Problem (10), and have showed

its equivalence to Problem (11). In this section, we

develop iterative algorithms to find equilibrium so-

lutions to Problem (11). Using a similar method in

Section II, Problem (11) can be rewritten into matrix
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form as

min
frv ,»v ,!vug

max
f±vg

1

2

X
v2V
rTv (Ip+1¡¦p+1)rv+VCl

X
v2V
1Tv »v

+
X
v2Va

(VaClr
T
v (Ip+1¡¦p+1)±v ¡Cak±vk0)

s.t.

YvXvrv ¸ 1v ¡ »v, 8v 2 V; (12a)

»v ¸ 0v, 8v 2 V; (12b)

rv = !vu,!vu = ru, 8v 2 V , 8u 2 Bv; (12c)

±v 2 Uv0, 8v 2 Va: (12d)

(12)

To solve problem (12), we use best response dy-

namics to construct the best response for the min-

problem and max-problem separately. The min-problem

and max-problem are archived by fixing f±vg and frvg,
respectively. With ADMoM [12], we can develop a

method of solving Problem (12) in a distributed way as

follows: The first step is that each node randomly picks

an initial r(0)v , ±
(0)
v and ®v = 0(p+1)£1, then solve the max-

problem with fr(0)v g, and obtainf±(1)v g. The next step is
to solve the min-problem with f±(1)v g and obtain fr(1)v g,
then we repeat solving the max-problem with frvg from
the previous step and the min-problem with f±vg from
the previous step until the pair frv,±vg achieves conver-
gence. The iterations of solving Problem (12) can be

summarized as follows [34].

LEMMA 3 With arbitrary initialization ±(0)v , r
(0)
v , ¸

(0)
v ,

!(0)vu and ®(0)v = 0(p+1)£1, the iterations per node are
given by:

±(t+1)v 2 arg max
f±v ,svg

VaClr
(t)T
v (Ip+1¡¦p+1)±v

¡ 1Tsv
Ca±v · sv, 8v 2 Va;

s.t. Ca±v ¸¡sv, 8v 2 Va;
±v 2 Uv0, 8v 2 Va:

(13)

¸(t+1)v 2 arg max
0·¸v·VCl1v

¡ 1
2
¸TvYvXvU

¡1
v X

T
vYv¸v

+(1v +YvXvU
¡1
v f

(t)
v )

T¸v, (14)

r(t+1)v =U¡1v (X
T
vYv¸

(t+1)
v ¡ f(t)v ), (15)

!(t+1)vu = 1
2
(r(t+1)v + r(t+1)u ), (16)

®(t+1)v = ®(t)v +
´

2

X
u2Bv

[r(t+1)v ¡ r(t+1)u ], (17)

where Uv = (Ip+1¡¦p+1)+2´jBvjIp+1, f(t)v = VaCl±(t)v +
2®(t)v ¡ 2´

P
u2Bv !

(t)
vu .

PROOF See Appendix B.

Iteration (13) corresponds to the attacker’s Max-

Problem (9), while iterations (14)—(17) correspond to

the learner’s Min-Problem (8). The Minimax Problem

(11) is solved by iterating them together. Note that,

iterations (14)—(17) differ from iterations (3)—(6) only

in fv. In (14)—(17), fv adds another term VaCl±v which

captures the attacker’s impact on the learner. Iterations

(13)—(17) are summarized into Algorithm 2.

ALGORITHM 2: DSVM under attack

Randomly initialize ±(0)v ,r
(0)
v ,¸

(0)
v ,!

(0)
vu and®

(0)
v = 0(p+1)£1.

1: for t = 0,1,2, : : : do
2: for all v 2 V do
3: Compute ±(t+1)v via (13).

4: end for
5: for all v 2 V do
6: Compute ¸(t+1)v via (14).

7: Compute r(t+1)v via (15).

8: end for
9: for all v 2 V do
10: Broadcast r(t+1)v to all neighbors u 2 Bv.
11: end for
12: for all v 2 V do
13: Compute !(t+1)vu via (16).

14: Compute ®(t+1)v via (17).

15: end for
16: end for

Algorithm 2 solves the Minimax Problem (11) using

ADMoM technique. It is a fully distributed algorithm

which only requires transmitting rv between each nodes.
The attacker’s behavior is captured as calculating ±v by

solving the linear programming Problem (13) with the

learner’s decision variable rv. The learner’s behavior
is captured as computing (14)—(17) with ±v from the

attacker. Since the learner transmits rv to each neigh-
boring nodes, misleading information will eventually

spread in the whole network, which leads to misclas-

sifications in all nodes.

5. NUMERICAL RESULTS

In this section, we summarize numerical results of

DSVM under adversarial environments. We use empir-

ical risk to measure the performance of DSVM. The

empirical risk at node v at step t is defined as follows:

R(t)v :=
1

Ñv

ÑvX
n=1

1

2
jỹvn¡ ŷ(t)vn j, (18)

where ỹvn is the true label; ŷ
(t)
vn is the predicted label; and

Ñv represents the number of testing samples in node

v. The empirical risk (18) sums over the number of

misclassified samples in node v, and then divides it by

the number of all testing samples in node v. Notice that

testing samples can vary for different nodes. In order

to measure the global performance, we use the global

empirical risk defined as follows:

R(t)G :=
1

Ñ

X
v2V

ÑvX
n=1

1

2
jỹvn¡ ŷ(t)vn j, (19)
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where Ñ =
P

v2V Ñv, representing the total number of
testing samples. Clearly, a higher global empirical risk

shows that there are more testing samples being mis-

classified, i.e., a worse performance of DSVM. We use

the first experiment to illustrate the significant impact

of the attacker.

Consider a network with 3 nodes, which can be

seen at the bottom right corner of Fig. 3(a). Each node

contains 80 training samples and 1000 testing samples

from the same global training dataset, which is shown

as points and stars in Fig. 3(a). Yellow stars and ma-

genta points are labelled as ¡1 and +1, respectively.
They are generated from two-dimensional Gaussian dis-

tributions with mean vectors [1,1] and [3,3], with the

same covariance matrix [1,0;0,1]. The learner has the

ability Cl = 1 and ´ = 1. The attacker has the atomic

action set parameter C1,± = 9,000,000, and the cost pa-

rameter Ca = 1. The attacker only attacks Node 1 and

the attack starts from the beginning of the training pro-

cess. Numerical results are shown in Fig. 3(b). No-

tice that the risks when there is an attacker are much

higher than the risks when there is no attacker, which

indicates that the attacker has a significant impact on

the learner. Also, we can conclude that the risks at

the node under attack are much higher than the risks

in nodes without attack, but both of them are higher

than the risks when there is no attacker in the net-

work. This shows that the attacker has the ability to

affect uncompromised nodes through network connec-

tions. We can also observe from Fig. 3(a) that the

solid lines, which represent the situation when there is

an attacker, cannot separate yellow stars and magenta

points.

It is clear that the attacker can cause disastrous re-

sults for the learner. In our previous work [34], we have

shown that results of the game between the DSVM

learner and the attacker are affected by both the at-

tacker’s ability and the network topologies. We sum-

marize our previous numerical results from [34] in the

following observations.

OBSERVATION 1

The attacker’s ability is captured by four measures,

i.e., (i) the time t for the attacker to take an action, (ii) the

atomic action set parameter Cv,±, (iii) the cost parameter

Ca, and (iv) the number of compromised nodes jVaj. The
impact of them is summarized as follows.

² The time t for an attacker to take an action does not
affect the equilibrium risks.

² A larger Cv,± increases the equilibrium risk, as a larger
Cv,± indicates that the attacker can make a larger

modification on training data.

² A larger Ca decreases the equilibrium risk, as a larger
Ca restricts the attacker’s actions to make changes.

Fig. 3. Evolution of the empirical risks of ADMoM-DSVM with

an attacker at a network with 3 nodes shown at the bottom right

corner of figure (a). The attacker only attacks red node 1 from the

beginning of the training process. Training data and testing data are

generated from two Gaussian classes. Dotted lines and solid lines

show the results when there is no attacker and there is an attacker,

respectively. Different colors represent risks or discriminant lines of

different nodes.

² A larger number of compromised nodes jVaj increases
the equilibrium risk as attacking more nodes gives the

attacker access to modify more training samples.

OBSERVATION 2 Denote the degree of node v as jBvj=
(jVj¡ 1) and the degree of a network as the average
degree of all the nodes. The impact of network topologies

are summarized as follows.

² Networks with higher degrees and fewer nodes are less
vulnerable to attackers.

² Balanced networks, i.e., nodes in these networks have
the same number of neighboring nodes, are more secure

than unbalanced networks.

Notice that here we assume that each node in the

network contains the same number of training samples.

OBSERVATION 3 For a specified network, assuming that

all the nodes contain the same number of training sam-

ples, the impact of a node is summarized as follows.

² Nodes with higher degrees are more vulnerable, i.e.,
attacking nodes with higher degrees leads to a higher

global equilibrium risk.
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² Attacking nodes with lower degrees can lead to a higher
global equilibrium risk if the network contains nodes

with higher degrees, comparing to networks without

high degree nodes but has the same average degree.

Observations 1, 2 and 3 summarize our previous

numerical experiments in [34]. From Observation 1, the

attacker makes a larger impact when he has a higher

capability, such as, he has a larger Cv,± and a smaller Ca,

or he can attack more nodes. From Observation 2, on the

one hand, the attacker can choose to attack unbalanced

networks with lower degrees and more nodes to make

a more significant impact on the learner, on the other

hand, the learner should select balanced networks with

higher degrees and fewer nodes to reduce potential

damages from attacker. From Observation 3, the attacker

benefits more from attacking nodes with higher degrees,

while the learner should avoid using high degree nodes.

These observations provide both players the strategies to

make a larger impact on the other ones. In the following

subsections, we present in detail how the attacker and

the learner can find better strategies against each other.

5.1. Attacker’s Strategies

Consider that a DSVM learner operates training data

on an unbalanced network. We assume that the attacker

knows the learner’s algorithm and the network topology.

We also assume that the attacker has the ability to attack

any nodes in this network with
PVa
v=1Cv,± · CVa,±, i.e., a

total sum of all changed values in the network should be

bounded by CVa,±. Notice that bounded CVa,± represents a

trade-off between attacking more nodes Va and attacking

each nodes with larger Cv,±. Since attacking different

nodes leads to different global equilibrium risks, and

the attacker prefers higher risks, there exists an optimal

strategy of selecting Va and fCv,±gv2Va for the attacker
which has the highest equilibrium global risk with a

bounded CVa,±. The optimal strategy can be found by

solving the following problem:

max
fVa ,Cv,±g

min
fwv ,bv ,f»vngg

max
f±vng

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn

¡Ca
X
v2Va

NvX
n=1

k±vnk0¡
X
v2Va

hv

s.t.

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 Vl, n= 1, : : : ,Nv;

yvn(w
T
v (xvn¡ ±vn) + bv)¸ 1¡ »vn, 8v 2 Va, n= 1, : : : ,Nv;

»vn ¸ 0, 8v 2 V , n= 1, : : : ,Nv;
wv =wu, bv = bu, 8v 2 V , u 2 Bv;
±vn 2 Uv, i.e.,

PNv

n=1
k±vnk22 · Cv,±, 8v 2 Va;PVa

v=1
Cv,± · CVa ,±:

(20)

Note that Problem (20) extends Problem (10) by

maximizing over variables Va and fCv,±g with a new
constraint

PVa
v Cv,± · CVa,± that captures a bound on the

attacker’s ability. The last term hv in the objective

function represents the cost of attacking node v.

Problem (20) is based on the assumption that the at-

tacker has the knowledge of the learner’s algorithm and

the network topology. The learner aims to minimize the

classification errors in Problem (10), while the attacker

aims to maximize those errors. In Problem (20), the at-

tacker has two components to maximize. Maximizing

over f±vng is the same as in Problem (10). Maximizing

over Va and fCv,±g indicates the objective of the attacker
to maximize the equilibrium risk of the original game

with a bounded CVa,± and a cost hv. By solving Problem

(20), the attacker can find the optimal strategy of Va and
fCv,±gv2Va , which has the maximized equilibrium risk.

However, solving Problem (20) can be a challenge as

the decision variables Va and Cv,± are coupled with the
decisions of the learner and the attacker. The attacker

is still able to make a larger impact on the learner

by Observation 1, 2 and 3. For example, instead of

randomly picking nodes to attack and assigning Cv,±,

the attacker can strategically attack high degree nodes,

which leads to a higher risk from our observations. One

numerical example is shown in Fig. 4.

Consider the learner operates on a network shown in

Fig. 4(a). We assume that the attacker can only attack

2 nodes with the bound CVa,± = 2£ 108, and the cost
of attacking node v, i.e., hv are the same for every

node. A naive attacker may randomly attack 1 node with

Cv,± = 2£ 108. However, a smart attacker will choose 2
nodes with higher degrees, and by modifying the value

of Cv,± in both nodes, he can make a larger impact on

the learner. Numerical results are shown in Fig. 4(b).

From Fig. 4, the attacker has four different strategies,

(i) the attacker only attacks Node 6, (ii) the attacker

only attacks Node 1, (iii) the attacker attacks Node 1,2

with balanced ability, and (iv) the attacker attacks Node

1,2 with unbalanced ability. We can see that when the

attacker choose Strategy (iii), the risk is the highest.

However, if we take the cost of attacking different nodes

into consideration, this strategy may not be the best

as attacking 2 nodes may cost too much. But from

the example, we can see that Observations 1, 2 and 3

provide us a way to find a better strategy for the attacker.

They also provide us tools of finding better strategies

for the learner.

5.2. Learner’s Strategies

A DSVM learner aims to find the best discriminant

functions with the least classification errors. Since an

attacker will increase the classification errors, a better

strategy of the learner is to reduce the attacker’s impact

as much as possible. In this section, we assume that

the learner is trying to find the strategy of network

topology that has a smallest risk with potential attacks.
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Fig. 4. Evolution of moving average of global empirical risks of

ADMoM-DSVM with the attacker on Spam dataset [14]. Each node

contains 40 training samples. Attacker has four strategies with same

CVa ,± = 2£ 108 and Ca = 0:01.

We assume that the learner has the ability to select any

kinds of network topologies and assign any number of

training samples in each node. The learner’s strategy

can be found by solving the following problem,

min
fV,Bv ,Nvg

min
fwv ,bv ,f»vngg

max
f±vng

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn

¡Ca
X
v2Va

NvX
n=1

k±vnk0¡
X
v2V

Tv(Nv)¡
X
v2V

Bv(Bv)

s.t.

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 Vl, n= 1, : : : ,Nv;

yvn(w
T
v (xvn¡ ±vn) + bv)¸ 1¡ »vn, 8v 2 Va, n= 1, : : : ,Nv;

»vn ¸ 0, 8v 2 V , n= 1, : : : ,Nv;
wv =wu, bv = bu, 8v 2 V , u 2 Bv;
±vn 2 Uv, i.e.,

PNv

n=1
k±vnk22 · Cv,±, 8v 2 Va:

(21)

Note that Problem (21) extends Problem (10) by

minimizing over variables V , Bv and Nv with new costs
Tv(Nv) and Bv(Bv). Tv(Nv) represents the cost of training
Nv samples in node v, Bv(Bv) represents the cost of
sending information from node v to his neighboring

nodes u 2 Bv. Problem (21) can be understood as the

learner’s objective of minimizing equilibrium risk of the

game with potential attacks by finding the best network

topology V , Bv and training samples’ assignments Nv.
Solving Problem (21) can be a challenge as V , Bv

and Nv are coupled with the decisions of the learner

and the attacker. But the learner can benefit from Ob-

servation 1, 2 and 3. For example, the learner should

select a balanced network with fewer nodes and higher

degree, which has a smaller equilibrium risk. However,

in reality, the learner may not be able to modify net-

work topologies as the connections between nodes can

be fixed, or it may not be possible to add connections

between nodes. Thus, to reduce the impact of the at-

tacker, the learner requires actionable defense strategies.

In the following sections, we present four different

defense strategies, and we verify their effectiveness with

numerical experiments.

6. DSVM DEFENSE STRATEGIES

In this section, we present four defense strategies

(DSs) for the DSVM learner. We show their effective-

ness with numerical experiments.

6.1. DSVM Defense Strategy 1: Selecting Network
Topology

DS 1 for the learner is to find a network topology

that has a smaller risk when there is an attacker. From

the last section, the learner can find the network topol-

ogy by solving Problem (21). However, Problem (21) is

difficult to solve. But we are still able to find a secure

network topology using Observation 2 and 3. The net-

work topology should be close to a balanced network

with fewer nodes and a higher degree. A numerical ex-

periment is shown in Fig. 5.

Consider that a DSVM learner trains 300 samples,

and he aims to select a secure network topology from

four topologies shown in Fig. 5(a). DS 1 indicates that

we should select network A or B as network A has

the smallest number of nodes among all the networks,

and network B has the highest degree among networks

B,C,D. Numerical results in Fig. 5(b) show that DS 1

has smaller risks.

Though selecting a network with fewer nodes re-

duces the vulnerability of the learner, but each node

is required to train more training samples, which takes

more time and memory usages. In addition, the learner

may not have the ability to select a proper network

topology as most networks are fixed. Moreover, improv-

ing the degree of the network may not be always appli-

cable as adding connections between nodes is costly.

Thus DS 1 is suitable for cases when the network con-

nections are convenient to modify.

Consider the application in which several wire-

less temperature sensors in the building aim to decide

whether to open their air conditioners or not. Since a

large building may have hundreds of sensors and the
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Fig. 5. Evolution of the global empirical risks of ADMoM-DSVM

with an attacker on a random dataset. The learner has four options

of network topologies which are shown in figure (a). Topology A is

a balanced network with 3 nodes and degree 1, each node in this

network contains 80 training samples. Network B is a balanced

network with 6 nodes and degree 1. Network C is a balanced

network with 6 nodes and degree 0.4. Network D is an unbalanced

network with 6 nodes and degree 0.4. Each node in network B,C

and D contains 40 training samples. Attacker attacks 1 node in

network A, but he attacks 2 nodes in network B,C,D, so the attacker

can modify the same number of training samples in different

network topologies. The attacker has Cv,± = 5£ 105 and Ca = 0:01.

temperatures are always changing with time, centralized

classifications may take a significant amount of time to

collect, transmit, and process the data. DSVMs can be

used here as each sensor operates on its own data, and

only a small amount of information is transmitted be-

tween sensors. But if there is an attacker who has the

ability to modify the training data in several sensors,

then the sensors in the building will lead to wrong de-

cisions. In this case, wireless temperature sensors can

adapt and modify their network topology. Thus, a secure

strategy here is to use DS 1 to create a balanced network

with fewer sensors and a higher average degree.

6.2. DSVM Defense Strategy 2: Adding Training
Samples

Since the attacker is limited to making modifications

on the training data, a higher volume of training data

will decrease the ratio of incorrect data at a node. As

long as most of the data are correct, the learner can

Fig. 6. Evolution of global empirical risks of ADMoM-DSVM

with an attacker at a balanced network with 6 nodes and degree 0.4

on random dataset, which is shown in Fig. 5(a) as Network C. Each

node contains 40 training samples. Attacker only attacks node 1

with C1,± = 10
6 and Ca = 0:01. (a) Defense starts from step 0.

(b) Defense starts from step 50.

find the discriminant function with small classification

errors. Thus adding more training samples becomes a

reasonable defense strategy. Numerical experiments are

shown in Fig. 6.

From Fig. 6, when we add training samples to net-

work, the risk is lower. Thus adding training samples is

a proper defense strategy. Note that more samples we

add, the lower the risk will be. Adding training sam-

ples to compromised nodes turns out to be more effi-

cient than adding to uncompromised nodes. However,

training more samples requires more time and mem-

ory usages, which sacrifices efficiency. Thus, DS 2 is a

trade-off between efficiency and security.

DS 2 is suitable for the case when the learner cannot

change the network topology, but the size of training

data is sufficiently large and each node has a strong

computing capability. For example, consider an applica-

tion where several environmental stations plan to detect

whether some areas are under pollution with a wired

communication network. DSVMs are suitable to pro-

cess a large amount of data computations and trans-

missions. However, if an attacker modifies the training

data, environmental stations may lead to misdetection.

In this case, DS 1 may not be applicable as the wired

connections between each station are fixed. However,

since each station can collect enough training data and
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Fig. 7. Evolution of the empirical risks of ADMoM-DSVM with

the attacker at a balanced network with 4 nodes degree 0.4 on

random dataset. Each node contains 60 training samples. Attacker

only attacks Node 1 with C1,± = 10
5 and Ca = 0:01. ¿ = 0:1.

(a) Attack starts from step 0. (b) Attack starts from step 60.

has a higher computation capability, DS 2 is more ap-

propriate and the learner can add more training samples

to each node to make the training process more secure.

Note that using more samples requires additional time

to train and more spaces to store data.

6.3. DSVM Defense Strategy 3: Verification Method

DS 1 suggests that the learner uses a balanced net-

work with fewer nodes and a higher degree. However,

using fewer nodes requires that each node trains more

training samples, which sacrifices the efficiency. In-

creasing the degree of the network requires creating

more connections between nodes, which are usually not

applicable as building new lines may incur a high cost.

DS 2 indicates that adding more training samples can

reduce the vulnerability of the network, which also sac-

rifices the efficiency. Thus, both DS 1 and DS 2 have

their limitations on securing a training process. In this

section, we present a verification method that reduces

the vulnerability without modifying the network topol-

ogy or adding training samples.

In ADMoM-DSVM Algorithm 1, each node in the

network receives ru from his neighboring nodes and it

also sends his rv to his neighboring nodes at each step.

Since ru from neighboring nodes of node v contributes

to the updates of rv, a wrong ru can lead to an incorrect

update of rv. As a result, if node v is protected from

receiving wrong ru from compromised nodes, it can

have a correct discriminant function.

Recall DSVM Problem (2), note that consensus con-

straints rv = !vu,!vu = ru force all the local decision

variables rv to agree with each other. Thus, r
(t)
1 ¼ ¢¢ ¢ ¼

r(t)V should hold for every step t during the training pro-

cess. Thus, if rv violates this, then the learner can tell

that node v is under attack. With Algorithm 1, if node

v finds ru is significantly different from rv, then he will

reject using ru to update himself. We call this method

as the verification method. The ADMoM-DSVM algo-

rithm with verification method can be summarized as

Algorithm 3.

ALGORITHM 3: DSVM with Verification

Randomly initialize r(0)v , ¸
(0)
v , !

(0)
vu , set ®

(0)
v = 0(p+1)£1, setcBv = Bv.

1: for t = 0,1,2, : : : do

2: for all v 2 V do
3: Compute ¸(t+1)v via (3) with cBv.
4: Compute r(t+1)v via (4) with cBv.
5: end for

6: for all v 2 V do
7: Broadcast r(t+1)v to all neighbors u 2 Bv.
8: end for

9: for all v 2 V do
10: Set B̂v =Ø.
11: for all u 2 Bv do
12: if

¯̄̄̄
¯1¡ kr(t+1)u k2

kr(t+1)v k2

¯̄̄̄
¯< ¿

13: Set u 2cBv.
14: end if

15: end for

16: end for

17: for all v 2 V do
18: Compute !(t+1)vu via (5) with cBv.
19: Compute ®(t+1)v via (6) with cBv.
20: end for

21: end for

Algorithm 3 differs from Algorithm 1 in the verifi-

cation method. Each node computes with information

only from trusted neighboring nodes u 2 B̂v. The veri-
fication method is based on the inequality in step 12 of

Algorithm 3. ¿ indicates the tolerance of indifference

from ru to rv, and ¿ ¸ 0. When ¿ is close to 0, node v
is very sensitive to the information from other nodes,

and it only uses ru that is very close to rv. Numerical

experiments are shown in Fig. 7 and Fig. 8.

We can see from Fig. 7 that the global risk has

decreased when there is a verification method. Note

that in uncompromised node 4, the risk is close to the

risk when there is no attacker, while in compromised

node 1, the risk is higher than the risk when there is
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Fig. 8. Evolution of the global empirical risks of ADMoM-DSVM

with the attacker at a balanced network with 4 nodes degree 0.4 on

Spambase dataset [14]. Each node contains 60 training samples.

Attacker only attacks node 1 with C1,± = 10
6 and Ca = 0:01.

(a) Attack starts from step 0. (b) Attack starts from step 120.

no defense. This indicates that, though the verification

method protects uncompromised nodes from receiving

misleading information, it also prevents compromised

nodes from receiving correct information.

Fig. 8 compares the global risks when the learner

uses different ¿ . We can see that when ¿ = 10, the risk

is higher than the risk when ¿ = 0:1, thus some of the

misleading information is still able to be spread in the

network. When ¿ = 0:001, we can see that the risk is

even higher than the risk when there is no defense. Also

note that when there is no attacker, the risk of DSVM

with ¿ = 0:001 does not converge to the risk of normal

DSVM. This indicates that when ¿ is close to 0, the

misleading information cannot be spread to other nodes,

but the useful information is also forbidden to transmit.

Thus DS 3 requires a proper selection of ¿ .

DS 3 is suitable for the case when training data are

used in a large network. Since it is difficult for the at-

tacker to attack many nodes at the same time, for a

network with a large number of nodes, all the uncom-

promised nodes can be kept from being affected by the

compromised nodes. Moreover, the learner can distin-

guish compromised nodes by their high local classifica-

tion risks, and thus, without revoking the training pro-

cess and retraining all the data in every node, the learner

is able to maintain the resilience of the training process

by deleting or correcting the compromised nodes. Com-

paring to DS 1 and 2, DS 3 does not sacrifice efficiency

to maintain security, but the compromised nodes may

result in worse performances.

6.4. DSVM Defense Strategy 4: Rejection Method

DSs 1, 2 and 3 have shown that with selecting proper

network topologies, adding training samples and ver-

ification method, DSVM learner can be less vulnera-

ble to attacks. However, DSs 1 and 2 will sacrifice ef-

ficiency. In DS 3, compromised nodes may result in

worse performances. In this section, we present the re-

jection method where each node rejects unreasonable

updates. With the rejection method, once there is an

attacker, the iteration will terminate to prevent further

damages caused by the attacker.

The rejection method relies on a combined residual,

which measures both the primal and dual error simulta-

neously:

J (t+1) = ´
X
v2V

X
u2Bv

k!(t+1)vu ¡!(t)vuk22 +
2

´

X
v2V
k®(t+1)v ¡®(t)v k22:

(22)

Note that the combined residual contains two terms.

The first term measures the dual residual. The second

term measures the primal residual. The combined resid-

ual has the following lemma [15].

LEMMA 4 Iterations (3)—(6) satisfy that J (t+1) · J (t),
which can also be rewritten as:

´
X
v2V

X
u2Bv

k!(t+1)vu ¡!(t)vuk22 +
2

´

X
v2V
k®(t+1)v ¡®(t)v k22

· ´
X
v2V

X
u2Bv

k!(t)vu ¡!(t¡1)vu k22 +
2

´

X
v2V
k®(t)v ¡®(t¡1)v k22:

(23)

A proof of Lemma 4 can be found in [15]. Lemma

4 indicates that the combined residual always decreases

over time. Since the attacker aims to break the train-

ing process, this inequality will not be satisfied when

there is an attacker. Note that computing Inequality

(23) requires !vu and ®v from every node, which can

be achieved by a fusion center in centralized machine

learning problems. However, since the learner uses a

fully distributed network without a fusion center, we

decentralize Inequality (23) into jVj distributed inequal-
ities, for v 2 V:

´
X
u2Bv

k!(t+1)vu ¡!(t)vuk22 +
2

´
k®(t+1)v ¡®(t)v k22

· ´
X
u2Bv

k!(t)vu ¡!(t¡1)vu k22 +
2

´
k®(t)v ¡®(t¡1)v k22:

(24)

Note that there is no guarantee that Inequality (24)

holds based on Inequality (23). As a result, we relax the
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distributed inequality with a parameter ½ > 1, which is

summarized in the following proposition.

PROPOSITION 1 Iterations (3)—(6) satisfy that J (t+1)v ·
½J (t)v , where

J (t)v = ´
X
u2Bv

k!(t)vu ¡!(t¡1)vu k22 +
2

´
k®(t)v ¡®(t¡1)v k22:

(25)

PROOF

Let us assume that J (t+1)v · ½J (t)v does not hold for

v = v0, we have J
(t+1)
v0

> ½J (t)v0 and J
(t+1)
v 6=v0 · ½J

(t)
v 6=v0 . As a

result, J (t+1)v0
> ½(t+1)J (0)v0

which increases exponentially

with ½ > 1. Since J (t)v is always larger than 0, Inequality

(23) will be violated eventually. Proposition 1 holds.

With the inequality in Proposition 1, the new DSVM

algorithm with rejection method can be summarized into

Algorithm 4. In Algorithm 4, if the inequality at Step

15 is satisfied, the current update will be rejected. J (0)v

should be set to be sufficiently large to pass the first

rejection test. Numerical experiments are shown in Fig.

9, Fig. 10, and Fig. 11.

ALGORITHM 4: DSVM with Rejection

Randomly initialize r(0)v , ¸
(0)
v , !

(0)
vu and ®(0)v = 0(p+1)£1,

set J (0)v very large.

1: for t= 0,1,2, : : : do

2: for all v 2 V do
3: Compute ¸(t+1)v via (3).

4: Compute r(t+1)v via (4).

5: end for

6: for all v 2 V do
7: Broadcast r(t+1)v to all neighbors u 2 Bv.
8: end for

9: for all v 2 V do
10: Compute !(t+1)vu via (5).

11: Compute ®(t+1)v via (6).

12: Compute J (t+1)v via (25).

13: end for

14: for all v 2 V do
15: if J (t+1)v > ½J (t)v
16: ¸(t+1)v = ¸(t)v , r

(t+1)
v = r(t)v ,

17: ®(t+1)v = ®(t)v , !
(t+1)
vu = !(t)v ,

18: J (t+1)v = J (t)v .

19: end if

20: end for

21: end for

From Fig. 9, we can see that the DSVM algorithm

with rejection method has a lower risk than the normal

algorithm when there is an attacker. And it has the same

performance when there is no attacker, which indicates

that when ½= 1:5, rejection method does not affect the

training process. Fig. 10 and Fig. 11 show the results

when ½= 1 and ½= 100, respectively. We can see from

Fig. 9. Evolution of the empirical risks of ADMoM-DSVM

Rejection with the attacker at a balanced network with 4 nodes of

degree 0.4 on Spambase dataset [14]. Each node has 60 training

samples. The attacker only attacks 1 node with C1,± = 10
5 and

Ca = 0:01. The rejection method has ½= 1:5. (a) Attack starts from

step 0. (b) Attack starts from step 60.

Fig. 10 that when ½= 1, the risk is lower when there is

an attacker, but convergence slows down when there is

no attacker. We can see from Fig. 11 that when ½= 100,

the risk with rejection method is even higher than the

risk of the standard algorithm, because wrong updates

can still be treated as a correct update and accumulates

as iteration goes.

From the numerical experiments, the value of ½ is

important to the rejection method. A smaller ½may slow

down the convergence of the DSVM algorithm without

attacker, a larger ½ does not prevent attacks. With a

properly selected ½, the training process becomes less

vulnerable to attackers.

DS 4 is suitable for a wide range of applications as

wrong updates will be rejected. Comparing to DSs 1 and

2, DS 4 does not sacrifice efficiency. Comparing to DS

3, compromised nodes in DS 4 has been kept from being

further damaged by the attacker. One possible drawback

of DS 4 is that it may require insights of the problem

to find a proper ½.

Each defense strategy is suitable for a different sce-

nario and applications. The choice of defense strategies

will depend on the applications and the constraints on

the defender’s actions. Though four defense strategies

have their own advantages and disadvantages, a combi-

nation of all the defense strategies can be used to secure

the training process of the learner.
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Fig. 10. Evolution of the empirical risks of ADMoM-DSVM

Rejection with the attacker at a balanced network with 4 nodes of

degree 0.4 on Spambase dataset [14]. Each node has 60 training

samples. The attacker only attacks 1 node with C1,± = 10
5 and

Ca = 0:01. The rejection method has ½= 1. (a) Attack starts from

step 0. (b) Attack starts from step 60.

Fig. 11. Evolution of the empirical risks of ADMoM-DSVM

Rejection with the attacker at a balanced network with 4 nodes of

degree 0.4 on Spambase dataset [14]. Each node has 60 training

samples. The attacker only attacks 1 node with C1,± = 10
5 and

Ca = 0:01. The rejection method has ½= 100. (a) Attack starts from

step 0. (b) Attack starts from step 60.

7. CONCLUSION

Distributed support vector machines are ubiquitous

but inherently vulnerable to adversaries. This paper has

investigated defense strategies of DSVM against po-

tential attackers. We have established a game-theoretic

framework to capture the strategic interactions be-

tween an attacker and a learner with a network of

distributed nodes. We have shown that the nonzero-

sum game is strategically equivalent to a zero-sum

game, and hence, its equilibrium can be character-

ized by a saddle-point equilibrium solution to a min-

imax problem. By using the technique of ADMoM,

we have developed secure and resilient algorithms that

can respond to the adversarial environment. We have

shown that a balanced network with fewer nodes and a

higher degree is less vulnerable to the attacker. More-

over, adding more training samples has been proved

to reduce the vulnerability of the system. We have

shown that verification method where each node ver-

ifies information from neighboring nodes can protect

uncompromised nodes from receiving misleading in-

formation, but compromised nodes are also prevented

from receiving correct information. We have shown

that rejection method where each node rejects un-

reasonable updates can stop global training process

from deterioration, thus wrong information is thwarted

from affecting the system. One direction of future

works is to extend the current framework to investi-

gate nonlinear DSVM and other machine learning algo-

rithms.

APPENDIX A: PROOF OF LEMMA 2

A detailed proof of Lemma 2 can be found in our

previous work [34]. By using hinge loss function, we

reformulate Problem (10) into the following problem:

min
fwv ,bvg

max
f±vng

1

2

X
v2V
kwvk22

+VlCl

X
v2Vl

NvX
n=1

[1¡ yvn(wTv xvn+ bv)]+

+VaCl

X
v2Va

NvX
n=1

[1¡ yvn(wTv (xvn¡ ±vn)+ bv)]+

¡Ca
X
v2Va

NvX
n=1

k±vnk0

s.t.

wv =wu, bv = bu, 8v 2 V, u 2 Bv;

(±v1, : : : ,±vNv ) 2 Uv, 8v 2 Va:
(26)
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Similarly, Problem (11) can be reformulated into the

following problem:

min
fwv ,bvg

max
f±vg

1

2

X
v2V
kwvk2

+VlCl

X
v2Vl

NvX
n=1

[1¡ yvn(wTv xvn+ bv)]+

+VaCl

X
v2Va

NvX
n=1

[1¡ yvn(wTv xvn+ bv)]+

+
X
v2Va

(VaClw
T
v ±v ¡Cak±vk0)

s.t.

wv =wu, bv = bu, 8v 2 V, u 2 Bv;
±v 2 Uv0, 8v 2 Va:

(27)

As a result, we only need to prove that problem (26)

is equivalent to problem (27). Since both of problems

are min-max problems with the same variables, we only

need to prove that we minimize the same maximization

problem. Moreover, since f±vng is independent in the
maximization part of (26), and ±v is independent in the

maximization part of (27), we can separate maximiza-

tion problem into Va sub-maximization problems, and

solving the sub-problems is equivalent to solving the

global maximization problem. As a result, we only need

to show that the following sub-problem

max
f±vng2Uv

S(f±vng)
¢
=VaCl

NvX
n=1

[1¡ yvn(wTv (xvn¡ ±vn) +bv)]+

¡Ca
NvX
n=1

k±vnk0 (28)

is equivalent to the following sub-problem

max
±v2Uv0

VaCl

NvX
n=1

[1¡yvn(wTv xvn+bv)]+

+VaClw
T
v ±v ¡Cak±vk0: (29)

We adopt the similar proof in [32], recall the properties

of sublinear aggregated action set, U¡v μ Uv μ U+v , where

U¡ ¢
=

n[
t=1

U¡t , U¡t
¢
=

½
(±1, : : : ,±n)

¯̄̄̄
±t 2 U0;

±i = 0, i 6= t:

¾
;

U+ ¢
=

½
(®1±1, : : : ,®n±n)

¯̄̄̄Pn
i=1®i = 1; ®i ¸ 0,
±i 2 U0, i= 1, : : : ,n

¾
:

Hence, fixing any (wv,bv) 2Rp+1, we have the follow-
ing inequalities:

max
f±vng2U¡v

S(f±vng)· max
f±vng2Uv

S(f±vng)· max
f±vng2U+v

S(f±vng)
(30)

We can show that (29) is no larger than the leftmost

term and no smaller than the rightmost term [34]. Thus,

the equivalence between (28) and (29) holds. Hence,

Lemma 2 holds.

APPENDIX B: PROOF OF LEMMA 3

We use best response dynamics to construct the best

response for the min-problem and max-problem sepa-

rately. The min-problem and max-problem are achieved

by fixing frv,»vg and f±vg, respectively. For fixed
fr¤v,»¤vg,

±¤v 2 argmaxf±vg

X
v2Va

(VaClr
¤T
v (Ip+1¡¦p+1)±v ¡Cak±vk0)

s.t. ±v 2 Uv0, 8v 2 Va: (31)

We relax l0 norm to l1 norm to represent the cost

function of the attacker. By writing the dual form of

the l1 norm, we arrive at

±¤v 2 arg maxf±v ,svg
VaClr

¤T
v (Ip+1¡¦p+1)±v ¡ 1Tsv

Ca±v · sv,
s.t. Ca±v ¸¡sv,

±v 2 Uv0:
(32)

For fixed f±¤vg, we have

min
frv ,!vu,»vg

1

2

X
v2V
rTv (Ip+1¡¦p+1)rv

+VaCl

X
v2Va

rTv (Ip+1¡¦p+1)±¤v +VCl
X
v2V
1Tv »v

YvXvrv ¸ 1v ¡ »v, 8v 2 V;
s.t. »v ¸ 0v, 8v 2 V;

rv = !vu, !vu = ru, 8v 2 V, 8u 2 Bu:
(33)

Note that term ¡Cak±¤vk0 is removed since it does not
play a role in the minimization problem. Based on

(32) and (33), we have the method of solving Problem

(12) as follows, first step is that we randomly pick

initial fr(0)v ,±(0)v g, and then we solve Max-problem (32)

with fr(0)v g to obtain f±(1)v g. In next step, we solve
Min-problem (33) to obtain fr(1)v g with f±(1)v g from
the previous step. We repeat solving the max-problem

with fr(t¡1)v g and solving the min-problem with f±(t)v g
until convergence. Furthermore, we use the alternating

direction method of multipliers (ADMoM) to solve

Problem (33).

The ADMoM is a distributed optimization algorithm

solving the following problem:

min
r,!
f(r) + g(!)

s.t. Mr= !, (34)

where f and g are convex functions [12].
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The augmented Lagrangian corresponding to (34) is

L(r,!,®) = f(r) + g(!) +®T(Mr¡!)+ ´
2
kMr¡!k2,

(35)

where ® denotes the Lagrange multiplier.

Then, the ADMoM solves problem (34) by the

update rules below:

r(t+1) 2 argmin
r
L(r,!(t),®(t)); (36)

!(t+1) 2 argmin
!
L(r(t+1),!,®(t)); (37)

®(t+1) = ®(t) + ´(Mr(t+1)¡!(t+1)): (38)

The objective here is to transform Problem (33) into

the form of (34), and then we can solve Problem (33)

by iterations (36), (37), and (38). We adopt a similar

method in [13], which leads to the following result.

REMARK 1 Each node iterates ¸(t)v ,r
(t)
v and ®

(t)
v , given by

¸(t+1)v 2 arg max
0·¸v·VCl1v

¡ 1
2
¸TvYvXvU

¡1
v X

T
vYv¸v

+(1v +YvXvU
¡1
v f

(t)
v )

T¸v, (39)

r(t+1)v =U¡1v (X
T
vYv¸

(t+1)
v ¡ f(t)v ), (40)

!(t+1)vu = 1
2
(r(t+1)v + r(t+1)u ), (41)

®(t+1)v = ®(t)v +
´

2

X
u2Bv

[r(t+1)v ¡ r(t+1)u ], (42)

where Uv = (Ip+1¡¦p+1)+2´jBvjIp+1, f(t)v = VaCl±
¤
v

+2®(t)v ¡2´
P
u2Bv !

(t)
vu.

By combining the above remark with Problem (32),

we can obtain Lemma 3.
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A belief combination rule for a

large number of sources
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The theory of belief functions is widely used for data from

multiple sources. Different evidence combination rules have been

proposed in this framework according to the properties of the

sources to combine. However, most of these combination rules are

not efficient when there are a large number of sources. This is due to

either the complexity or the existence of an absorbing element such

as the total conflict mass function for the conjunctive based rules

when applied on unreliable evidence. In this paper, based on the

assumption that the majority of sources are reliable, a combination

rule for a large number of sources is proposed using a simple idea:

the more common ideas the sources share, the more reliable these

sources are supposed to be. This rule is adaptable for aggregating a

large number of sources which may not all be reliable. It will keep

the spirit of the conjunctive rule to reinforce the belief on the focal

elements with which the sources are in agreement. The mass on the

empty set will be kept as an indicator of the conflict.

The proposed rule, called LNS-CR (Conjunctive combination

Rule for a Large Number of Sources), is evaluated on synthetic

mass functions. The experimental results verify that the rule can be

effectively used to combine a large number of mass functions and

to elicit the major opinion.
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I. INTRODUCTION

In recent years, Dempster-Shafer Theory (DST),

also called the theory of belief functions, has gained

increasing attention in the scientific community as it

allows to the deal with the imprecise and uncertain in-

formation. It has been applied in various domains, such

as data classification [2, 3], data clustering [4, 5], so-

cial network analysis [6], etc. In complex environment,

multiple stake-holders attempt to reach a decision by

combining several sources of information and aggre-

gating their points of view by stressing common agree-

ment. The theory of belief functions, which has pro-

vided many rules to combine information represented

by mass functions [7], are widely used for decision

making. In real applications, there are usually a large

number of sources. Most of the existing combination

rules are not applicable in this case, and cannot be used

to find the major opinion from many participants.

One of the most famous combination rule in belief

function framework is the Dempster’s rule [7]. Smets

[8] proposed a modification of Dempster’s rule, often

called “conjunctive rule,” where the empty set can be

assigned with a non-null mass under the Transferable

Belief Model (TBM) [9]. In fact, the conjunctive rule is

equivalent to the Dempster rule without the normaliza-

tion process. It has a fast and clear convergence towards

a solution. But this rule has a strong assumption that all

the sources are reliable. In real applications, it is dif-

ficult to be either satisfied or verified. Moreover, the

more sources there are, the more chance that there is

some unreliable evidence.

Smets [8] reasoned that the mass on the empty set

can play the role of alarm. When the global conflict

(the mass assigned to the empty set) is high, it indicates

that there is strong disagreement among the sources of

mass functions to combine. However, as observed in

[10, 11, 12], the mass on the empty set is not sufficient

to exactly describe the conflict since it includes an

amount of auto-conflict [13]. Sometimes when there

is only a small amount of concordant evidence, the

total conflict mass function, i.e. m(Ø) = 1 will be an

absorbing element. Consequently, when combining a

large number of (incompatible) mass functions using

the conjunctive rule, the global conflict may tend to 1.

This makes it impossible to reveal the cause of high

global conflict. We do not know whether it is due to the

sources to fuse or caused by the absorption power of the

empty set [10, 14]. In other words, even the combined

mass function by the conjunctive rule is m(Ø)¼ 1, the
proposition that the sources are highly conflicting may

be incorrect.

In order to rectify the drawbacks of the classical

Dempster’s rule and Smets’ conjunctive rule, many ap-

proaches have been made through the modification of

the combination rule. Some authors tried to find alter-

native repartitions of the conflict. A plethora of com-

bination rules have been brought forward in this way.
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For example, Yager [15] and Dubois and Prade [16]

suggested assigning the highly conflicting mass to the

whole set or a particular set. The Proportional Conflict

Redistribution (PCR) rule, which can distribute the par-

tial conflicts among the involved focal elements rather

than to their union, is developed in [13, 17]. Apart from

these approaches working directly on the combination

rule, some studies manage the conflict through evidence

discounting, where the reliability of sources is automat-

ically and adaptively taken into account [10, 16, 18, 19].

Most of the existing combination rules are not effi-

cient when applied on a large number of sources due

to the ineffective way to handle conflict or the high

complexity of the computation. Orponen [20] proved

that the complexity of the conjunctive rule is NP-hard,

but the complexity depends on the way to program the

belief functions [21]. Some rules can manage efficiently

the conflict but have large complexity [13, 16, 22, 23],

making them infeasible when applied to combine a large

number of mass functions.

In this paper, a conjunctive-based combination rule,

named LNS-CR (Large Number of Sources), is pro-

posed to aggregate a large number of mass functions.

Our perspective on belief function combination is that

combining mass functions from different sources is sim-

ilar to combining opinions from multiple stake-holders

in group decision-making [24], i.e. the more one’s opin-

ion is consistent with the other experts, the more reliable

the source is. We assume that all the mass functions

available are separable mass functions, which means

they can be expressed by a group of simple support mass

functions. In many applications, the mass assignments

are directly in the form of Simple Support Functions

(SSF) [25]. The advantage of SSFs is that we can group

the mass functions in such a way that sources in the

same group share the same viewpoint. Mass functions

in each small group are first fused and then discounted

according to the proportions. After that the number of

mass functions participating the next global combina-

tion process is independent of the number of sources,

but only depends on the number of classes. As a re-

sult, the problem brought by the absorbing element (the

empty set) using the conjunctive rule can be avoided.

Moreover, an approximation method when the number

of mass functions is large enough is presented. The main

contributions of this paper are as follows:

² A new conjunctive-based combination rule, named

LNS-CR rule, is brought froward. The property to

reinforce the belief on the focal elements with which

most of the sources agree is preserved in the proposed

rule;

² The assumption of the LNS-CR rule on the reliability
of the sources is more relaxed, as it does not require

all the sources are reliable, but only at least half of

them are reliable.

² LNS-CR can be used to combine mass functions from
a large number of sources, especially can be used to

elicit the major opinion;

² Derivation that the LNS-CR rule is within acceptable
complexity.

The rest of this paper is organized as follows. In Sec-

tion 2, some basic knowledge of belief function theory

is briefly introduced. The proposed evidence combina-

tion approach is presented in detail in Section 3. Numer-

ical examples are employed to compare different combi-

nation rules and show the effectiveness of LNS-CR rule

in Section 4. Finally, Section 5 concludes the paper.

II. BACKGROUND

A. Basic knowledge of belief function theory

Let £ = fμ1,μ2, : : : ,μng be the discernment frame. A
mass function is defined on the power set 2£ = fA : Aμ
£g. The mass function m : 2£! [0,1] is said to be a

Basic Belief Assignment (bba) on 2£, if it satisfies:X
Aμ£

m(A) = 1: (1)

Every A 2 2£ such that m(A)> 0 is called a focal

element, and the set of focal elements is denoted

by F . In a practical way of programming, the ele-
ment of 2£ can be arranged by natural order [26]:

μ1,μ2,fμ1,μ2g,μ3, : : : ,fμ1,μ2,μ3g,μ4, : : : ,£.
The frame of discernment can also be a focal ele-

ment. If £ is a focal element, the mass function is called

non-dogmatic. The mass assigned to the frame of dis-

cernment, m(£), is interpreted as a degree of ignorance.

In the case of total ignorance, m(£) = 1. This type of

mass assignment is vacuous. If there is only one focal

element, i.e. m(A) = 1, A½£, the mass function is cat-
egorical. Another special case of assignment is named

consonant mass functions, where the focal elements in-

clude each other as a subset, i.e. if A,B 2 F , A½ B or
B ½ A.
The credibility and plausibility functions are derived

from a bba m as in Eqs. (2) and (3):

Bel(A) =
X

BμA,B 6=Ø
m(B), 8Aμ£, (2)

Pl(A) =
X

B\A6=Ø
m(B), 8Aμ£: (3)

Each quantity Bel(A) measures the minimal belief on

A justified by available information on B(B μ A), while
Pl(A) is the maximal belief on A justified by information

on B which are not contradictory with A (A\B 6=
Ø). The commonality function q and the implicability

function b are defined respectively as

q(A) =
X
AμB

m(B), 8Aμ£ (4)
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and
b(A) = Bel(A) +m(Ø), 8Aμ£: (5)

A bba m can be recovered from any of these functions.

For instance,

m(A) =
X
B¶A
(¡1)jBj¡jAjq(B), 8Aμ£ (6)

and
m(A) =

X
BμA
(¡1)jAj¡jBjb(B), 8Aμ£: (7)

Belief functions can be transformed into a probabil-

ity function by Smets’ method [27], where each mass

of belief m(A) is equally distributed among the elements

of A. This leads to the concept of pignistic probability,

BetP. For all μi 2£, we have

BetP(μi) =
X

Aμ£jμi2A

m(A)

jAj(1¡m(Ø)) , (8)

where jAj is the cardinality of set A (number of elements
of £ in A). Pignistic probabilities can help make a

decision.

B. Consistency of mass assignments

The consistency between two bbas can be defined

in two different ways. Suppose the sets of focal ele-

ments for m1 and m2 are F1 and F2 respectively. Mass
functions m1 and m2 are called strong consistent if and

only if
\E2fF1[F2g 6=Ø: (9)

Meanwhile, bbas m1 and m2 are called weak consistent

if and only if

8A 2 F1, B 2 F2, A\B 6=Ø: (10)

Strong consistent evidence means that there is at

least one element that is common to all subsets [28].

It is easy to see that, when m1 and m2 are strong

consistent, they are sure to be weak consistent. This is

the definition of consistency between belief functions.

The inconsistency within an individual mass assignment

can be defined similarly [12].

C. Reliability-based discounting

When the sources of evidence are not completely

reliable, the discounting operation proposed by Shafer

[25] and justified by Smets [29] could be applied.

Denote the reliability degree of mass function m by ® 2
[0,1], then the discounting operation can be defined as:

m0(A) =
½

®£m(A) 8A½£,
1¡®+®£m(£) if A=£:

(11)

If ®= 1, the evidence is completely reliable and the bba

will remain unchanged. On the contrary, if ®= 0, the

evidence is completely unreliable. In this case the so-

called vacuous belief function, m(£) = 1, could be got.

It describes the total ignorance.

Before evoking the discounting process, the relia-

bility of each sources should be known. One possible

way to estimate the reliability is to use confusion ma-

trices [30]. Generally, the goal of discounting is to re-

duce global conflict before combination. One can as-

sume that the conflict comes from the unreliability of

the sources. Therefore, the source reliability estimation

is to some extent linked to the estimation of conflict

between sources.

Hence, Martin et al. [10] proposed to use a conflict

measure to evaluate the relative reliability of experts.

Once the degree of conflict is computed, the relative

reliability of the source can be computed accordingly.

Suppose there are S sources, S = fs1,s2, : : : ,sSg, the
reliability discounting factor ®j of source sj can be

defined as follows:

®j = f(Conf(sj ,S)), (12)

where Conf(sj ,S) quantifies the degree that source sj
conflicts with the other sources in S, and f is a de-
creasing function. The following function is suggested

by the authors:

®j = (1¡Conf(sj ,S)¸)1=¸, (13)

where ¸ > 0.

In [31], the authors considered to use those two

possible conflict origins, extrinsic measure and intrinsic

measure, to estimate reliability. In their opinion, conflict

may not only come from the source’s contradiction

(extrinsic measure), but also from the confusion rate of

a source (intrinsic measure). The reliability discounting

factor, called Generic Discounting Factor (GDF), is then

suggested to be a weighted sum of the two items:

®=
k±+ l¯

k+ l
, (14)

where k > 0, l > 0 are the weight factors. In the above

equation, ± denotes the internal conflict measure of the

treated source indicating its confusion rate while ¯ is

the average distance between the treated sources si and

sj where j 2 S, j 6= i. Different intrinsic and extrinsic
conflict measures can be adopted here.

There are some other methods to estimate the relia-

bility. In [32], the authors proposed to estimate the reli-

ability of sources based on a degree of falsity. The bbas

are sequentially and incrementally discounted until the

mass assigned to the empty set is smaller than a given

threshold k. After that the discounted mass functions

can be combined using the conjunctive rule since there

is little global conflict at this time. In [33], the source re-

liability is obtained by minimizing the distance between

the pignistic probabilities computed from the discounted

beliefs and the actual value of the data. In Samet et

al. [34], the authors proposed two different versions of

generic discounting approaches: weighted GDA and ex-

ponent GDA. A new degree of disagreement is proposed

by Yang et al. [35], where the reliability discounting fac-

tor can be generated. Klein and Colot [36] viewed the
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degree of conflict as a function of discounting rates and

introduced a new criterion assessing bbas’ reliability.

These reliability estimation methods either consider the

distance (or dissimilarity) between each pair of bbas, or

the mass assigned to the empty set after the conjunc-

tive combination. However, these methods are of high

complexity and not suitable for large data applications.

D. Simple support function

Suppose m is a bba defined on the frame of discern-

ment £. If there exists a subset Aμ£ such that m could
be expressed in the following form:

m(X) =

8><>:
w X =£,

1¡w X = A,

0 otherwise:

(15)

where w 2 [0,1], then the belief function related to bba
m is called a Simple Support Function (SSF) (also called

simple mass function) [25] focused on A. Such a SSF

can be denoted by Aw(¢) where the exponent w of the
focal element A is the basic belief mass (bbm) given

to the frame of discernment £, m(£). The complement

of w to 1, i.e. 1¡w, is the bbm allocated to A [37]. If

w = 1 the mass function represents the total ignorance,

if w = 0 the mass function is a categorical bba on A.

A belief function is separable if it is a SSF or if

it is the conjunctive combination of some SSFs [38].

In the work of [38], this kind of separable masses is

called u-separable where “u” stands for “unnormalized,”

indicating the conjunctive rule is the unnormalized ver-

sion of Dempster-Shafer rule. The set of separable mass

functions is not obvious to obtain. It is easy to see con-

sonant mass functions (the focal element are nested) are

separable [39]. Smets [37] defined the Generalized Sim-

ple Support Function (GSSF) by relaxing the weight w

to [0,1). Those GSSFs with w 2 (1,1) are called In-
verse Simple Support Functions (ISSF). Smets proved

all non-dogmatic mass functions are separable if one

uses GSSFs. For any non-dogmatic belief function m0,

the canonical decomposition method proposed by Smets

is as follows. First, calculate the commonality number

for all focal elements, which is given by

Q0(X) =
X
B¶X

m0(B): (16)

Secondly for any Aμ£, calculate wA value as follows:
wA =

Y
X¶A

Q0(X)
(¡1)jXj¡jAj+1 : (17)

Then the belief function m0 can be represented by the

conjunctive combination of all the functions AwA , i.e.

m0 =°\
Aμ£

AwA , (18)

where°\ denotes the conjunctive combination rule. For

fast computation, the Fast Möbius Transform (FMT)

method [40] can be evoked.

E. Some combination rules

How to combine efficiently several bbas coming

from distinct sources is a major information fusion

problem in the belief function framework. Many rules

have been proposed for such a task. Here we just briefly

recall how some most popular rules are mathematically

defined.

When information sources are reliable, the used fu-

sion operators can be based on the conjunctive combina-

tion. If bbas mj , j = 1,2, : : : ,S describing S distinct items

of evidence on £, the included result of the conjunctive

rule [9] is defined as

mconj(X) =

Ã
°\

j=1,:::,S

mj

!
(X) =

X
Y1\¢¢¢\YS=X

SY
j=1

mj(Yj),

(19)

where mj(Yj) is the mass allocated to Yj by expert j.

To apply this rule, the sources are assumed reliable and

cognitively independent.

Another kind of conjunctive combination is Demp-

ster’s rule [41]. Assuming that mconj(Ø) 6= 1, the result
of the combination by Dempster’s rule is

mDempster(X) =

8<:
0 if X =Ø,

mconj(X)

1¡mconj(Ø)
otherwise:

(20)

The item

·
¢
=mconj(Ø) =

X
Y1\¢¢¢\YS=Ø

SY
j=1

mj(Yj)

is generally called Dempster’s degree of conflict of the

combination or the inconsistency of the combination. As

the conjunctive rule is not idempotent, mconj(Ø) includes

an amount of auto-conflict [42], and it is called global

conflict to make the difference.

The conjunctive rule can be applied only if all the

experts are reliable. In the other case, the disjunctive

rule [43], which only assumes that at least one of

the sources is reliable, can be used. The disjunctive

combination of S sources can be defined as

mdisj(X) =

Ã
°[

j=1,:::,S

mj

!
(X) =

X
Y1[¢¢¢[YS=X

SY
j=1

mj(Yj): (21)

The conjunctive and disjunctive rules can be conve-

niently expressed by means of the commonality func-

tion q (Eq. (4)) and the implacability function b (Eq. (5))

[43]. Let qi and bi be the commonality function and

implacability function respectively (associated with mi),

then the commonality function of the conjunctive com-

bination of S bbas is

qconj(A) =

SY
i=1

qi(A), 8Aμ£ (22)
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while the implacability function of the disjunctive com-

bination of S bbas is

bdisj(A) =

SY
i=1

bi(A), 8Aμ£: (23)

Since functions m, q and b (as well as bel and pl)

are equivalent representations, the mass function m can

be recovered using the Fast Möbius Transform (FMT)

method given the functions q and b. The conversion

can be done in time proportional to n2n [44].1 For the

conjunctive combination of S sources, the S bbas should

be converted into commonality functions first. After

calculating the product of S commonality functions,

another transformation from m to q should be evoked.

Overall the total complexity is O(Sn2n+ S2n+ n2n), and

the time needed is proportional to Sn2n [44, 45].

The conflict could be redistributed on partial igno-

rance like in the Dubois and Prade rule (DP rule) [16],
which can be seen as a mixed conjunctive and disjunc-

tive rule. For all X μ£, X 6=Ø:

mDP(X) =
X

Y1\¢¢¢\YS=X

SY
j=1

mj(Yj)

+
X

Y1[¢¢¢[YS=X
Y1\¢¢¢\YS=Ø

SY
j=1

mj(Yj), (24)

where mj is the mass function delivered by expert j. In

a general case, this rule cannot be programmed with the

Fast Möbius Transform method because all the partial

conflict must be considered. If the implementation is

made like that in Ref. [46], it takes much more time

than the conjunctive rule.

Denœux [38] proposed a family of conjunctive and

disjunctive rules using triangular norms. The cautious
rule [47, 48] belongs to that family and could be used
to combine mass functions for which independence

assumption is not verified. Cautious combination of

S non-dogmatic mass functions mj , j = 1,2, : : : ,S is

defined by the bba with the following weight function:

w(A) =

Ŝ

j=1

wj(A), A 2 2£ n£: (25)

We thus have

mCautious(X) =°\
A6μ£

A

VS

j=1
wj (A), (26)

where Awj (A) is the simple support function focused on

A with weight function wj(A) issued from the canoni-

cal decomposition of mj . Note also that
V
is the min

operator. The time consumption of the cautious rule

1This is based on the assumption that the mass functions are arranged

in natural order. If not, the complexity is proportional to n22n. The

complexity analysis in this work all assumes that the bbas to be com-

bined are encoded using the natural order.

includes the canonical decomposition of non-dogmatic

mass functions and is therefore bigger than the con-

junctive rule. If this rule is implemented in Fast Möbius

Transform method, the complexity is proportional to

Sn2n.

Murphy [49] presented the average combination
rule and proposed to utilize the mean of the basic belief

assignments as the fusion of evidence. Therefore, for

each focal element X 2 2£ of S mass functions, the

combined one is defined as follows:

mAve(X) =
1

S

SX
j=1

mj(X), 8X μ£: (27)

The complexity of the average is proportional to S2n.

A family of fusion rules based on new Proportional

Conflict Redistributions (PCR) for the combination of

uncertainty and conflicting information have been de-

veloped in Dezert-Smarandache Theory (DSmT) frame-

work [50]. Among them, the fusion rule called PCR6

proposed by Martin and Osswald [13] is one of the

most popular one among the PCR rules. For the com-

bination of S > 2 sources, the fused mass is given by

mPCR6(Ø) = 0, and for X 6=Ø in 2£

mPCR6(X) =

mconj(X) +

SX
i=1

8>>>>><>>>>>:
(mi(X))

2
XTS¡1

k=1
Y¾i (k)\X´Ø

(Y¾i (1),:::,Y¾i (S¡1))2(2£)S¡1

£
Ã QS¡1

j=1 m¾i(j)(Y¾i(j))

mi(X)+
PS¡1

j=1 m¾i(j)(Y¾i(j))

!9>>>>>=>>>>>;
, (28)

where ¾i counts from 1 to S avoiding i:½
¾i(j) = j if j < i,

¾i(j) = j+1 if j ¸ i: (29)

As Yi is a focal element of expert/source i, we have

m(Yi)> 0. Then

mi(X) +

S¡1X
j=1

m¾i(j)(Y¾i(j)) 6= 0:

In Eq. (28), mconj is the conjunctive rule given by

Eq. (19). Here again, the Fast Möbius Transformmethod

to program the belief functions is not generally the best

way. If the implementation is made like that in Ref. [46],

the time consumption is very high.

III. A COMBINATION RULE FOR A LARGE NUMBER
OF MASS FUNCTIONS

The main idea of the conjunctive combination rule is

to reinforce the belief on the focal elements with which
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most of the sources agree. Martin et al. [10] showed

that the mass on the empty set, which is an absorbing

element, tends quickly to 1 with the number of sources

when combining inconsistent bbas. Consequently, when

using Dempster rule (Eq. (20)), the gap between ·

and 1 may rapidly exceed machine precision, even if

the combination is valid theoretically. In that case the

fused bba by the conjunctive rules (normalized or not)

and the pignistic probability are inefficient. Moreover,

the assumption that all the sources are reliable for the

conjunctive combination rule is difficult to reach in real

applications. The more sources there are, the less chance

that this assumption is valid.

The principle of the conjunctive rule with the rein-

forcement of belief and the role of the empty set as an

alarm are essential in the theory of belief functions. In

order to propose a rule which can be adapted to the

combination of a large number of mass functions and

keep the previous behavior, the following assumptions

are made:

² The majority of sources are reliable;
² The larger extent one source is consistent with others,
the more reliable the source is;

² The sources are cognitively independent [43].
These assumptions seem reasonable if we consider

combing mass functions as some kind of group decision

making problems. As a result, the proposed rule will

give more importance to the groups of mass functions

that are in a domain, and it is without auto-conflict

[13, 14]. In order to take into account this effect, this

rule will discount the mass functions according to the

number of sources giving bbas with the same focal

elements. The discounting factor is directly given by

the proportion of mass functions with the same focal

elements. This procedure is for the elicitation of the

majority opinion.

The simple support mass functions are considered

here. In this case, the mass functions can be grouped in

the light of their focal elements (except the frame £). To

make the rule applicable on separable mass functions,

the decomposition process should be performed to de-

compose each bba into simple support mass functions.

In most of applications, the basic belief can be defined

using separable mass functions, such as simple support

functions [2] and consonant mass functions [51, 52].

Hereafter we describe the proposed LNS-CR rule

for simple support functions, and then an approximation

calculation method of LNS-CR rule is suggested.

A. LNS-CR rule for simple support functions

Suppose that each evidence is represented by a SSF.

Then all the bbas can be divided into at most 2n groups

(where n= j£j). It is easy to see that there is no conflict
at all in each group because of consistency. The focal

elements of the SSF are singletons and £ itself. For the

combination of bbas inside each group, the conjunctive

rule can be employed directly. Then the fused bbas are

discounted according to the number of mass functions

in each group. Finally, the global combination of the

bbas of different groups is preformed also using the

conjunctive rule. Suppose that all bbas are defined

on the frame of discernment £ = fμ1,μ2, : : : ,μng, and
denoted by mj = (Ai)

wj , j = 1, : : : ,S and i= 1,2, : : : ,c,

where c· 2n. The detailed process of the combination
is listed as follows. Our proposed rule called LNS-CR

for Large Number of Sources rule is composed of the

four following steps:

1) Cluster the simple bbas into c groups based on their

focal element Ai. For the convenience, each class is

labeled by its corresponding focal element.

2) Combine the bbas in the same group. Denote the

combined bba in group Ak by SSF

m̂k = (Ak)
ŵk , k = 1,2, : : : ,c:

Let the number of bbas in group Ak is sk. If the

conjunctive rule is adopted, we have

m̂k = °\
j=1,:::,sk

mj = (Ak)

Qsk

j=1
wj : (30)

3) Reliability-based discounting. Suppose the fused bba

of all the mass functions in Ak is m̂k. At this time,

each group can be regarded as a source, and there

are c sources in total. The reliability of one source

can be estimated as compared to a group of sources.

In our opinion, the reliability of source Ak is related

to the proportion of bbas in this group. The larger

the number of bbas in group Ak is, the more reliable

Ak is. Then the reliability discounting factor of m̂k
can be defined as:

®k =
skPc
i=1 si

: (31)

In order to keep the mass function representing total

ignorance as a neutral element of the rule, in Eq. (31)

we let ak = 0 for the group with Ak =£. Another

version of the discounting can be given by a factor

taking into account the precision of the group by:

®k =
¯
´
k skPc

i=1¯
´
i si
, (32)

where

¯k =
j£j
jAkj

: (33)

Parameter ´ can be used to adjust the precision of the

combination results. The larger the value of ´ is, the

less imprecise the resulting bba is. The discounted

bba of m̂k can be denoted by SSF m̂
0
k = (Ak)

ŵ0
k with

ŵ0k = 1¡®k +®kŵk. As we can see, when the number
of bbas in one group is larger, ® is closer to 1. That is

to say, the fused mass in this group is more reliable.
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4) Global combine the fused bbas in different groups

using the conjunctive rule:

mLNS-CR = °\
k=1,:::,c

m̂0k = °\
k=1,:::,c

(Ak)
ŵ0
k : (34)

REMARKS

² The reliability estimation method proposed here is
very simple compared with the previous mentioned

methods in Section II-C, where usually the distance

between bbas should be calculated or a special learn-

ing process is required. In the LNS-CR rule, to eval-

uate the reliability discounting factor, we only need

to count the number of SSFs in each group. Note that

other reliability estimation methods can also be used

here.

² In the last step of combination, as the number of mass
functions that take part in the global combination is

small (at most 2n), other combination rules such as

DP rule and PCR rules are also possible in practice

instead of Eq. (34).

B. LNSa-CR rule for the approximated combination

If there is a large number of mass functions in

each group, an approximation method is suggested here

to calculate the combined mass in the given group.

Suppose the mass functions in group with focal element

Ak (k = 1,2, : : : ,c) are:

mj(A) =

8><>:
1¡wj A= Ak,

wj A=£,

0 otherwise,

0· wj < 1, j = 1,2, : : : ,sk: (35)

The combination of the masses in this group using the

conjunctive rule is

m̂k(A) =

8><>:
1¡Qsk

j=1wj A= Ak,Qsk
j=1wj A=£,

0 otherwise:

(36)

It is easy to get

lim
sk!1

m̂k(A) =

8><>:
1 A= Ak,

0 A=£,

0 otherwise:

(37)

This is an illustration of the conjunctive property. After

the discounting with factor ®k, the fused bba using for

the global combination is

lim
nk!1

m̂0k(A) =

8><>:
®k A= Ak,

1¡®k A=£,

0 otherwise:

(38)

It can be represented by SSF

m̂0k = (Ak)
1¡®k , (39)

where ®k is shown in Eq. (31) or (32). If the conjunctive

rule is adopted for the global combination at step 4, the

final bba we get is

mLNSa-CR =°\ (Ak)
1¡®k : (40)

In this approximate rule for the large number of

sources, the initial mass functions is no longer consid-

ered, and the combination process of the bbas inside

each group is not required any more. This can accel-

erate the algorithm to a large extent. The LNS-CR and

LNSa-CR rule provide different results when the num-

ber of sources is small. However, when the number of

sources is large enough, they can be regarded as equiv-

alent.

C. Properties

The proposed rule is commutative, but not associa-

tive. The rule is not idempotent, but there is no absorb-

ing element. The vacuous mass function is a neutral

element of the LNS-CR rule.

There are four steps when applying LNS-CR rule2:

decomposition (not necessary for simple support mass

functions), inner-group combination, discounting and

global combination. The LNS-CR rule has the same

memory complexity as some other rules such as con-

junctive, Dempster and cautious rules if all the rules are

combined globally using FMT method. Only DP and

PCR6 rules have higher memory complexity because of

the partial conflict to manage. Suppose the number of

mass functions to combine is S, and the number of ele-

ments in the frame of discernment is n. The complexity

for decomposing3 mass functions to SSFs is O(Sn2n).

For combining the mass functions in each group, due to

the structure of the simple support mass functions, we

only need to calculate the product of the masses on only

one focal element £. Thus the complexity is O(S). The

complexity of the discounting is O(2n). In the process

of global combination, the bbas are all SSFs. If we use

the Fast Möbius Transform method, the complexity is

O(n2n). And there are at most 2n mass functions partici-

pating the following discounting and global conjunctive

combination processes. Since in most application cases

with a large number of mass functions, we have 2n¿ S,

the last two steps are not very time-consuming. The total

complexity of LNS-CR is O(Sn2n+ S+2n+ n2n) and

so is approximately equivalent to O(Sn2n).

For the approximate method, we can also save the

time for inner combination and the discounting. The

fused mass in each group is calculated by the propor-

tions, and the complexity is also O(S). Although the

approximate method does not reduce the complexity,

2The source code for LNS-CR rule can be found in R package

ibelief [53].
3In the decomposing process, the Fast Möbius Transform method is

used.
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TABLE I

The combination of six masses. For the names of columns, μij is used to denote fμi,μjg.

Conjunctive Dempster Disjunctive DP PCR6 Cautious Average LNS-CR

Ø 0.49313 0.00000 0.00000 0.00000 0.00000 0.15200 0.00000 0.06849

fμ1g 0.02595 0.05120 0.00000 0.02595 0.04783 0.00800 0.11333 0.36408

fμ2g 0.45687 0.90136 0.00000 0.45687 0.56639 0.79800 0.15833 0.08984

fμ1,μ2g 0.00000 0.00000 0.00004 0.49313 0.00000 0.00000 0.00000 0.00000

fμ3g 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

fμ1,μ3g 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

fμ2,μ3g 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

£ 0.02405 0.04744 0.99996 0.02405 0.38578 0.04200 0.72833 0.47759

in the experimental part, we will show that it will save

some running time in applications when S is quite large.

We remark here that one of the assumptions of

LNS-CR rule is that the majority of sources are reliable.

However, this condition is not always satisfied in every

applicative context. Consider here an example with two

sensor technologies: TA and TB. The system has two

TA-sensors (S1 and S2), and one TB-sensor S3. Suppose

also a parasite signal causes TA sensors to malfunction.

In this situation, the majority of sensors are unreliable.

And we could not get a good result if the LNS-CR

rule is used directly as LNS-CR(S1,S2,S3) at this time.

Actually there is an underlying hierarchy in the sources

of information, LNS-CR rule could be evoked according

to the hierarchy, such as LNS-CR(LNS-CR(S1,S2),S3).

We will study that more in the future work.

IV. EXPERIMENTS

In this section, several experiments will be con-

ducted to illustrate the behavior of the proposed combi-

nation rule LNS-CR and to compare with other classical

rules. Some different types of randomly generated mass

functions will be used. The function RandomMass in R

package ibelief [53] is adopted to generate random mass

functions [54].

EXPERIMENT 1 (Elicitation of the majority opinion). In

some applications, the elicitation of the majority opinion

is very important. In this experiment, it is assumed

that reliable sources can provide some imprecise and

uncertain information, which is assumed to be in the

form of the mass functions mj (j = 1,2, : : : ,6) over the

same discernment frame £ = fμ1,μ2,μ3g:
m1 :m1(fμ1g) = 0:12, m1(£) = 0:88,

m2 :m2(fμ1g) = 0:16, m2(£) = 0:84,

m3 :m3(fμ1g) = 0:15, m3(£) = 0:85,

m4 :m4(fμ1g) = 0:11, m4(£) = 0:89,

m5 :m5(fμ1g) = 0:14, m5(£) = 0:86,

m6 :m6(fμ2g) = 0:95, m6(£) = 0:05:

As can be seen, the first five sources share similar

belief (supporting fμ1g) whereas the sixth one delivers
a mass function strongly committed to another solution

(supporting fμ2g). These six mass functions cannot

be regarded as conflicting, because the majority of

evidence shows the preference of fμ1g. Here, source 6,
is assumed not reliable since it contradicts with all the

other sources.

The combination results by conjunctive rule, Demp-

ster rule, disjunctive rule, DP rule, PCR6 rule, cautious

rule, average rule and the proposed LNS-CR rule4 are

depicted in Table I. As can be observed, the conjunc-

tive rule assigns most of the belief to the empty set,

regarding the sources as highly conflictual. Dempster

rule, DP rule, PCR6 rule and average rule redistribute

all the global conflict to other focal elements. The dis-

junctive rule gives the total ignorance mass functions.

The cautious rule and the proposed LNS-CR rule keep

some of the conflict and redistribute the remaining. But

the belief given to fμ2g is more than that to fμ1g when
using Dempster, DP, PCR6, cautious and the average

rules, which indicates that these rules are not robust to

the unreliable evidence. The obtained fused bba by the

proposed rule assigns the largest mass to focal element

fμ1g, which is consistent with the intuition. It keeps a
certain level of global conflict, and at the same time re-

flects the superiority of fμ1g compared with fμ2g. From
the results we can see that only the LNS-CR rule can

correctly elicit the major opinion.

The LNS-CR rule is a conjunctive based combi-

nation rule for mass functions with different reliabil-

ity degrees. As mentioned before, the principle of the

LNS-CR rule is similar that of Schubert’s method [32].

Table II lists the results by Schubert’s combination

method with different values of k. As can be seen, the

result by the use of the LNS-CR rule is similar to that

by Schubert’s method with a small value of threshold

k. When k is set small, the discounting process in Schu-

bert’s method needs more steps. And in each step, the

conjunctive rule should be evoked to calculate the fal-

sity. It is more complex compared with the reliability

estimation process of the LNS-CR rule in that sense.

4As the focal elements are singletons except £, parameter ´ has no

effects on the final results when using LNS-CR rule.
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TABLE II

The combination of six masses by Schubert’s method with different

values of k.

k 0.1 0.2 0.3 0.4 0.5

Ø 0.09776 0.19471 0.28680 0.37803 0.46444

fμ1g 0.32187 0.26219 0.19350 0.12081 0.04980

fμ2g 0.13521 0.23145 0.31033 0.37979 0.43871

fμ1,μ2g 0.00000 0.00000 0.00000 0.00000 0.00000

fμ3g 0.00000 0.00000 0.00000 0.00000 0.00000

fμ1,μ3g 0.00000 0.00000 0.00000 0.00000 0.00000

fμ2,μ3g 0.00000 0.00000 0.00000 0.00000 0.00000

£ 0.44516 0.31165 0.20937 0.12137 0.04704

TABLE III

The combination of six masses by Martin’s method with different

values of ¸.

¸ 0.1 0.5 1 1.5 2

Ø 0.00000 0.00350 0.10485 0.23330 0.31956

fμ1g 0.00000 0.21206 0.34700 0.26789 0.19410

fμ2g 0.00000 0.01272 0.12719 0.23219 0.30256

fμ1,μ2g 0.00000 0.00000 0.00000 0.00000 0.00000

fμ3g 0.00000 0.00000 0.00000 0.00000 0.00000

fμ1,μ3g 0.00000 0.00000 0.00000 0.00000 0.00000

fμ2,μ3g 0.00000 0.00000 0.00000 0.00000 0.00000

£ 1.00000 0.77172 0.42096 0.26661 0.18378

We also compare with another reliability discount-

ing based combination method proposed by Martin et al.

[10]. Same as Schubert’s method, after the reliability de-

gree of each source is estimated, the bbas are discounted

following with a conjunctive combination. There is a

parameter ¸ in the method to adjust the discounting

factor. The results varying with different values of ¸

are shown in Table III. We can see this rule is similar

to LNS-CR rule when ¸ is set to be around 1. When

¸ is not well set, the results are not good. Moreover,

in this method, the distance between bbas should be

calculated first. Consequently, it increases the complex-

ity and makes the method not feasible for combining a

large number of sources.

TABLE IV

The combination results by different rules.

Schubert’s method Martin’s method LNS-CR

k = 0:2 k = 0:3 k = 0:5 k = 0:7 ¸= 0:3 ¸= 0:4 ¸= 0:6 ¸= 1

Ø 0.19949 0.29860 0.49704 0.69306 0.00248 0.10019 0.60681 0.98649 0.15060

fμ1g 0.80051 0.70140 0.50296 0.30694 0.16901 0.56713 0.38729 0.01351 0.48612

fμ2g 0.00000 0.00000 0.00000 0.00000 0.01200 0.04995 0.00360 0.00000 0.08593

£ 0.00000 0.00000 0.00000 0.00000 0.81650 0.28274 0.00230 0.00000 0.27735

TABLE V

Time elapsed for Schubert’s method with different values of k.

1 2 3 4 5 6 7 8 9

k 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Time Elapsed (s) 46.81 21.64 13.46 9.28 6.64 4.88 3.67 2.73 1.79

EXPERIMENT 2 (The discounting mechanism). In this

experiment, we will discuss the reliability discounting

mechanism of the LNS-CR rule. Two reliability dis-

counting methods proposed by Shubert [32] and Martin

et al. [10] will be used to compare. Same as the LNS-CR

rule, after the discounting process by these two meth-

ods, the conjunctive rule is adopted to combine the new

mass functions. For simplicity, here we call the combi-

nation rule, where the Schubert’s discounting method

(or Martin’s discounting method) is first evoked and

then the conjunctive combination rule is used, “Schu-

bert’s method” (Martin’s method, correspondingly). A

set of 3 ¤ x bbas on a frame of discernment £ = fμ1,μ2g
are generated, x of them are unreliable while 2 ¤ x are
reliable. The reliable sources assign a large mass to the

singleton fμ1g. The unreliable sources assign a large
mass to the singleton fμ2g. The gain factor for sequen-
tial discounting in Schubert’s method is set to be 0.1

here. Schubert and Martin’s methods are evoked with

different values of k and ¸ respectively. Let x= 10, the

fused bbas by the use of different rules are listed in

Table IV.

From the table we can see, the behavior of Martin’s

discounting method is similar to that of LNS-CR rule

when ¸ is set around 0.4. The conjunctive combination

based on Schubert’s discounting does not give any

belief to fμ2g and £ = fμ1,μ2g at all although there are
1/3 of sources supporting fμ2g. Moreover, when k is
larger, most of the mass is assigned to the empty set

in this rule. From these results we can see that only

LNS-CR rule can give more belief on fμ1g which can
be regarded as the major opinion. The time elapsed for

Schubert’s method with different values of threshold

k is listed in Table V. The smaller the value of k is,

the more discounting steps are required in Schubert’s

method. Consequently, the time consumption becomes

larger. The running time for both LNS-CR rule and

Martin’s method is less than one second. Schubert’s

method is much more time-consuming.
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We have also tested the combination methods based

on the discounting factors proposed by Schubert [32]

and Martin et al. [10] on some simple support mass

functions with arbitrary focal elements. The results

are not shown here as we can get similar conclusions

from the results: The reliability estimation process of

these methods takes more time compared with that of

LNS-CR rule. The behavior of these two methods is

similar to that of LNS-CR rule when the parameter k

or ¸ is set to be in a fixed range. But they are much

more time-consuming compared with LNS-CR rule.

This confirms that the reliability discounting method in

LNS-CR rule is effective for the following conjunctive

combination.

EXPERIMENT 3 (The influence of parameter ´). We

test here the influence of parameter ´ in the LNS-CR

rule. Simple support mass functions are utilized in this

experiment. Suppose that the discernment frame under

consideration is £ = fμ1,μ2,μ3g. Three types of SSFs
are adopted. First s1 = 60 and s2 = 50 SSFs with focal

elements fμ1g and fμ2g respectively (the other focal
element is £) are uniformly generated, and then s3 = 50

SSFs with focal element μ23
¢
=fμ2,μ3g are generated.

The value of masses are randomly generated. Different

values of ´ (see Eq. (32)) ranging from 0 to 6 are

used to test. The mass values in the fused bba by

LNS-CR varying with ´ are displayed in Figure 1(a),

and the corresponding pignistic probabilities are shown

in Figure 1(b).

From these figures, we can see that ´ can have

some effects on the final decision. Figure 1.a shows

that with the increasing of ´, the mass assigned to

the singleton focal elements increases. On the contrary,

the mass given to the focal element whose cardinality

is bigger than one decreases. In fact parameter ´ in

LNS-CR aims at weakening the imprecise evidence

which gives only positive mass to focal elements with

high cardinality, and the exponent ´ allows to control

the degree of discounting. If ´ is larger, more weight is

given to the sources of evidence whose focal elements

are more specific, and more discount will be committed

to the imprecise evidence. As a result, in the experiment

when ´ is larger than 1.2, BetP(μ1)> BetP(μ2) (Figure
1(b)). At this time the mass functions with focal element

fμ2,μ3g make little contribution to the fusion process,
while the final decision mainly depends on the other two

types of simple support mass functions with singletons

as focal elements.

In real applications, ´ could be determined based

on specific requirement. This work is not specially

focusing on how to determine ´, thus in the following

experiment we will set ´ = 1 as default.

EXPERIMENT 4 (The principle for the global conflict).

The goal of this experiment is to show how Dempster’s

degree of conflict is dealt with by most of rules when

combining a large number of conflicting sources.

Fig. 1. Combination results for three types of SSFs using LNS-CR

rule. The mass functions are generated randomly, and LNS-CR rule

is evoked with different values of ´ ranging from 0 to 6. (a) bba.

(b) Pignistic probability.

In this experiment, the frame of discernment is set

to £ = fμ1,μ2g. Assume that there are only 2 focal
elements on each bba. One is the whole frame £, and

the other is any of the singletons (fμ1g or fμ2g). The
number of bbas which have the focal element fμ1g is
denoted by s1, while that with fμ2g is s2. We first fix the
value of s2, and let s1 = t ¤ s2, with t a positive integer.
We generate S = s1 + s2 such kind of bbas randomly,

but only withholding the bbas for which the mass value

assigned to fμ1g or fμ2g is greater than 0.5.
Four values of t are considered here: t= 1,2,3,4. If

t= 1, s1 = s2 = S=2. If t= 2, the number of mass func-

tions supporting fμ1g is two times of that supporting
fμ2g, and so on. The global conflict (mass given to the
empty set) after the combination with different values of

s2 for the four cases is displayed in Figures 2—5 respec-

tively. The mass assigned to the focal element fμ1g with
different combination approaches is shown in Figures

6—9.
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Fig. 2. The global conflict after the combination with s2 ranging

from [0,100] and s1 = s2.

Fig. 3. The global conflict after the combination with s2 ranging

from [0,100] and s1 = 2 ¤ s2.

It is intuitive that when t becomes larger, the global

conflict should be smaller and we should give more

belief to the focal element fμ1g. From Figures 2—9 we

can see that only the results by LNS-CR rule are in

accordance with this common sense. The simple average

rule assigns larger bba to fμ1g, but it does not keep
any conflict. In Figures 6—9, the mass given to fμ1g
by Dempster rule cannot be displayed when S is large

(and also for some small S), because in these cases the

global conflict is 1 and the normalization could not be

processed. As we can see, Dempster rule could not work

at all when s2 is larger than 20. Although the conjunctive

rule and cautious rule could work when combining a

larger number of mass functions, the obtained fused

mass function is m(Ø)¼ 1, which is useless for decision
in practical situations.

The results also confirm the equivalent of the

LNS-CR rule and LNSa-CR rule when the number of

sources is large, although the results provided by the

two rules are not the same when there are not many

Fig. 4. The global conflict after the combination with s2 ranging

from [0,100] and s1 = 3 ¤ s2.

Fig. 5. The global conflict after the combination with s2 ranging

from [0,100] and s1 = 4 ¤ s2.

mass functions to combine. From Figures 2—5 we can

see a kind of limit of the global conflict for the LNS-CR

rule. In fact, the mass on the empty set for this rule de-

pends on the size of the frame of discernment and more

directly on the number of groups created in the first step

of the rule. The limit value of the global conflict will

tend to 1 with the increase of the size of discernment

when considering only categorical bbas on different sin-

gletons.

EXPERIMENT 5 (The complexity). In this experiment,

the complexity of LNS-CR rule will be compared with

other combination rules in terms of time consumption.

Simple support mass functions defined on a frame of

discernment with eight elements are considered first.

The focal elements of each bba are set to be a random

subset of £ and £ itself. The time elapsed (and also

the log value of the time elapsed) with the number of

sources S varying from 10,000 to 100,000 is shown
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Fig. 6. The mass on fμ1g after the combination with s2 ranging
from [0,100] and s1 = s2.

Fig. 7. The mass on fμ1g after the combination with s2 ranging
from [0,100] and s1 = 2 ¤ s2.

in Figure 10.5 We can see that the running time of

LNS-CR is much smaller than that of the conjunctive

rule. LNSa-CR rule takes almost the same time as

cautious rule. Average rule is the best among the five

rules. As S increases, the application of LNSa-CR rule

can save more time compared with the use of LNS-CR

rule. The increment of time consumption with respect

to S is moderate. This tends to show that LNS-CR

rule is suitable for combining a large number of SSFs.

Remark that the decomposition process is not required

when the cautious rule or LNS-CR(a) rule is adopted

for combining SSFs.

As mentioned before, for the combination of general

separable mass functions (not SSFs), LNS-CR needs

four steps: decomposition, inner-group combination,

discounting and global combination. The difference be-

tween the combination of any kind of separable bbas

5The result of Dempster rule is the same as that of conjunctive rule.

Fig. 8. The mass on fμ1g after the combination with s2 ranging
from [0,100] and s1 = 3 ¤ s2.

Fig. 9. The mass on fμ1g after the combination with s2 ranging
from [0,100] and s1 = 4 ¤ s2.

and of SSFs is the decomposition process, which is

not necessary for the latter. We have designed another

experiment on consonant bbas6 over a frame of dis-

cernment with eight elements, and the number of focal

elements is set to 5. The focal elements are randomly

set to five nested subsets of £, and the mass values are

generated uniformly. The average running time (and the

log value of the running time) of 10 trials by the use

of different combination rules with different number

of sources S is displayed in Figure 11(a) (and Figure

11(b)).7 In order to show the complexity of LNS-CR

rule more clearly, the elapsed time in each of the four

steps is shown in Figure 12.

As we can see from these figures, the time consump-

tion of LNS-CR is significantly smaller than the cau-

6All consonant bbas are separable.
7The result of cautious rule is not displayed for large S, as it has been

already shown that cautious rule is significantly worse than the other

rules in terms of time consumption when S is small.
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Fig. 10. Time lapse for combining SSFs. (a) Time lapse by five

different rules. (b) The log value of Time lapse by five different

rules.

tious rule, but a little worse than the conjunctive rule

and the average rule. Although the complexity of cau-

tious rule is the same as LNS-CR rule and both of them

require a decomposition process, it takes more running

time than LNS-CR rule. The reason may be the differ-

ent combination approach for the mass functions in the

same group. The complexity of that process by cautious

rule is O(S2n) (The calculation is to find the minimum

of each row in a S£ 2n matrix), while for LNS-CR is
O(S). LNSa-CR is faster than LNS-CR when S is large.

Figure 12 shows that the most time-consuming step in

LNS-CR rule is the decomposition. Moreover as S in-

creases, the increase of time lapse for the inner-group

combination, discount, and global combination is lim-

ited. This is compliant with the complexity analysis of

each step for LNS-CR rule in Section III-C. In many ap-

plications the mass functions are directly SSFs in which

case there is no need to perform the decomposition, and

LNS-CR is the best choice to fuse a large number of

bbas.

Fig. 11. Time lapse for combining consonant bbas. (a) Time lapse

by five different rules. (b) The log value of Time lapse by five

different rules.

V. PERSPECTIVE ON APPLICATIONS

Pattern recognition is a class of problems where the

theory of belief functions has proved to allow increased

performances [2]. In such problems we can be facing

many bbas to combine. Denœux [2] proposed Evidential

KNN method (EKNN) as an extension of KNN in the

framework of the theory of belief functions to better

model the uncertainty in neighbor point interactions.

The Dempster rule is adopted to combine the mass

evidence from K neighbors in EKNN.

The problem considered here is to classify an input

pattern x into n categories or classes, denoted by £ =

fμ1,μ2, : : : ,μng. The available information is assumed to
consist of a training set L= f(x(1),μ(1)), (x(2),μ(2)), : : : ,
(x(N),μ(N))g of N patterns x(i) i= 1,2, : : : ,N with known

class labels μ(i) 2£. To classify pattern x, each pair
(x(i),μ(i)) constitutes a distinct item of evidence regard-

ing the class membership of x. If the K nearest neigh-

bors according to the distance measure are considered,

K items of evidence can be obtained. These bbas can
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Fig. 12. Time lapse of each step using LNS combination rule with

S varying from 10,000 to 100,000.

Fig. 13. A small data set.

be constructed according to a relevant metric between

pattern x and its jth neighbor x(i)

mi(fμqg) = ®Á(d(i)),
mi(£) = 1¡®Á(d(i)),
mi(A) = 0 8A 2 2£ n ffμqg,£g, (41)

where d(i) is the (Euclidean) distance between x and

its jth neighbor x(i) with class label μ(i) = μq, ® is a

discounting parameter and Á(¢) is a decreasing function
on R+ defined as

Á(d(i)) = exp(¡°q(d(i))2) (42)

with °q being a positive parameter associated to class

μq. It can be heuristically set to the inverse of the mean
Euclidean distance between training data belonging to

class μq. In EKNN, the K bbas for each neighbor are

aggregated using the Dempster rule to form a resulting

bba. A decision has to be made regarding the assign-

ment of sample x to one individual class. The maxi-

Fig. 14. Pignistic probability.

TABLE VI

The fused bba by different combination rules (K = 4).

Conjunctive Dempster Cautious Average LNS-CR

Ø 0.2009 0.0000 0.1473 0.0000 0.0377

fμ1g 0.6771 0.8473 0.7307 0.2195 0.1818

fμ2g 0.0279 0.0349 0.0205 0.0606 0.1339

£ 0.0941 0.1177 0.1015 0.7199 0.6466

TABLE VII

The fused bba by different combination rules (K = 5).

Conjunctive Dempster Cautious Average LNS-CR

Ø 0.2198 0.0000 0.1473 0.0000 0.0352

fμ1g 0.6582 0.8436 0.7307 0.1756 0.1404

fμ2g 0.0305 0.0391 0.0205 0.0541 0.1651

£ 0.0915 0.1172 0.1015 0.7703 0.6593

mum of pignistic probability can be used for decision-

making.

A. A small data set with noisy training sample

Figure 13 illustrates a simple two-class (red circle

and green triangle) data set, where there are seven

objects in each class. The pattern x marked by blue

star is the sample data to be classified. The K bbas

using the distance to its neighbor could be constructed

by Eq. (41), and the five nearest neighbors are denoted

by Ni orderly in the figure. Set ®= 0:95 and °i is the

inverse of the average distance between the points in

class μi, i= 1,2. The fused mass function by different
combination rules with K = 4 and K = 5 are listed in

Table VI and VII respectively.

As we can see from Figure 13, pattern x is closer
to class μ2. Among pattern xs five nearest neighbor Nj ,
j = 1,2, : : : ,5, four belong to class μ2 while only 1 to
class μ1. The real class of object N1 is μ1, but it is
located in the boundary of the class and far from the

other data points in the class. It may be a noisy item
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Fig. 15. Classification results with different values of K on UCI

data set. In the figure, the legend “Iris-DS” means it is the

classification rates on Iris data set using DS combination rule. Same

as the other legends.

of μ1. The standard KNN rule can correctly classify

object x to μ2 when K > 3. However, if the evidential
KNN model is applied, due to the existence of a such

neighbor, the behavior of the combination rules has

been affected. From Table VI we can see, when K = 4,

the fused bbas by all combination rules all assign more

mass to μ1 than to μ2. Consequently, pattern x will be
classified into class μ1 if the pignistic probability is
considered for making decision. The same phenomenon

also occurs when K is smaller than 4 (see Figure 14).

When K = 5 (Table VII), only the LNS-CR rule could

partition pattern x into class μ2, which seems more
reasonable. The pignistic probabilities (Figure 14) by

the Dempster, conjunctive, cautious and average rules

for class μ1 are significantly higher than those for class
μ2, even when K is large. These rules are not robust

to the noisy training data. Pattern x could be correctly
classified to μ2 by LNS-CR rule when K is between 5

and 10.

It is indicated that when there are some noisy data in

the training data set, the performance of the combina-

tion rule may become worse with small K. We should

increase K moderately to improve the performance of

the classifier. But as we analyzed before, the existing

combination rules do not work well for aggregating a

large number of mass functions. This is a limit of the

use of evidential classifier.

B. Real data sets

In this section, we consider some well known real

data sets from the UCI repository8 summarized in Table

VIII. The classification rates by using different com-

bination rules in evidential KNN model are displayed

in Figure 15. Note that the “leave-one-out” method is

adopted here to test the classifier.

8http://archive.ics.uci.edu/ml/datasets.html.

Fig. 16. Classification rates on Digits data set.

TABLE VIII

A summary of UCI data sets.

Data set No. of objects No. of cluster No. of attributes

Iris 150 3 4

Yeast 1484 10 8

Digits 5620 10 64

As we can see from Figure 15, for all the three data

sets, the performance is almost the same for the two

combination rules, LNS-CR and DS, in terms of clas-

sification rates. But there is a little improvement by the

use of LNS-CR rule when K is large. To make it clear,

we specially depict the results on Digits data set in Fig-

ure 16. It is shown that when K > 12, the classification

rates by the use LNS-CR rule are a little larger than

those through DS rule. We show the mass given to the

empty set (global conflict) after the combination using

conjunctive rule and LNS-CR rule with different values

of K in Figure 17. The y-axis is the maximal assignment

to Ø among all the mass functions for the test data.

As we can see, the global conflict tends to 1 quickly

as K increases, while LNS-CR rule keeps a moderate

degree of global conflict. As DS rule is a normalized

conjunctive rule, there is not sense to normalize a mass

assignment with high global conflict.

C. Perspective

The above two examples are just two perspectives on

the application of LNS-CR rule. In the first example,

there are some special noisy data in the training data

set. At this time, the sources should not be considered

with equal reliability. In this situation, using the DS rule

or the conjunctive rule in EKNN model could not get

good results. In the second example, it is shown that the

global conflict may tend to one quickly as K increases.

Sometimes we even could not do the normalization

process for DS rule because of the machine precision.
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Fig. 17. Global conflict using conjunctive rule and LNS-CR rule

varying with different values of K. In the figure, the legend

“Iris-DS” means it is the conflict on Iris data set using DS

combination rule. Same as the other legends.

In real world social networks, the available infor-

mation can be uncertain, or even noisy. At this time,

if we want to do a classification task such as for rec-

ommendation, the conjunctive rule could not be applied

as the sources are not all reliable. Even if the sources

are reliable, the global conflict may tend to 1 quickly if

the bbas are not consistent. At this time, LNS-CR rule

can be an alternative choice. In the future work, we will

study how Dempster’s degree of conflict is distributed

in the feature space, and to study what special informa-

tion contained in the moderate degree of global conflict

kept by LNS-CR rule.

VI. CONCLUSION

Uncertainty in big data applications has attracted

more and more attention. The theory of belief functions

is one of the uncertainty theories allowing a model to

deal with imprecise and uncertain information. This

theory is also well designed for information fusion.

However, despite that a lot of combination rules have

been proposed in recent years in this framework, they

are not able to combine a large number of sources

because of the complexity or the absorbing element.

In this paper, a new combination rule, named

LNS-CR rule, preserving the principle of the conjunc-

tive rule is proposed. This rule considers the mass func-

tions given by the sources and groups them according to

their set of focal elements (without auto-conflict). The

mass functions of each group can be summarized by

one mass function after combination. The reliability of

the source is estimated by the proportion of bbas in one

group. Therefore, after discounting the mass function

of each group by the reliability factor, the final com-

bination can be proceeded by the conjunctive rule (or

another rule according to the application). If the number

of sources in each group is high enough, an approxima-

tion method is presented.

The LNS-CR rule is able to combine a large number

of sources. The only existing method allowing to com-

bine a large number of mass functions is the average

rule. However, that rule may give more importance to

few sources with a high belief (even if the source is

not reliable) and cannot capture the conflict between

the sources. The proposed rule with a reasonable com-

plexity (lower than the DP and PCR6 rules) can provide

good combination results.

Overall, this work provides a perspective for the

application of belief functions on big data. We will study

how to apply LNS-CR rule on the problems of social

network and crowdsourcing in the future research work.
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[34] A. Samet, E. Lefèvre, I. Hammami, and S. Ben Yahia

“Reliability estimation measure: Generic discounting ap-

proach,”

International Journal of Pattern Recognition and Artificial

Intelligence, vol. 29, no. 07, p. 1559011, 2015.

[35] Y. Yang, D. Han, and C. Han

“Discounted combination of unreliable evidence using de-

gree of disagreement,”

International Journal of Approximate Reasoning, vol. 54,

no. 8, pp. 1197—1216, 2013.

[36] J. Klein and O. Colot

“Singular sources mining using evidential conflict analy-

sis,”

International Journal of Approximate Reasoning, vol. 52,

no. 9, pp. 1433—1451, 2011.

[37] P. Smets

“The canonical decomposition of a weighted belief,”

in 14th International Joint Conference on Artificial Intelli-

gence, vol. 95, 1995, pp. 1896—1901.

[38] T. Denœux

“Conjunctive and disjunctive combination of belief func-

tions induced by nondistinct bodies of evidence,”

Artificial Intelligence, vol. 172, no. 2, pp. 234—264, 2008.

38 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 14, NO. 1 JUNE 2019



[39] X. Ke, L. Ma, and Y. Wang

“Some notes on canonical decomposition and separability

of a belief function,”

in Belief Functions: Theory and Applications, ser. Lecture

Notes in Computer Science, F. Cuzzolin, Ed., vol. 8764.

Springer International Publishing, 2014, pp. 153—160.

[40] R. Kennes

“Computational aspects of the möbius transformation of
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Evaluation of Fusion Algorithms
for Passive Localization of
Multiple Transient Emitters

WENBO DOU
JEMIN GEORGE
LANCEM. KAPLAN
RICHARD W. OSBORNE, III
YAAKOV BAR-SHALOM

The problem of localizing an unknown number of stationary tran-

sient emitters using passive sensors in the presence of missed detec-

tions and false alarms is investigated. Each measurement is based on

one detection by a passive sensor and consists of a time of arrival and

a bearing. It is assumed that measurements within a short time inter-

val have to be associated before estimation. Both a Bernoulli mea-

surement model and a Poisson measurement model are considered

for each target. These two measurement models lead to two differ-

ent proposed problem formulations: one is an S-dimensional (S-D)

assignment problem and the other is a cardinality selection problem.

The former can be solved by the Lagrangian relaxation algorithm re-

liably when the number of sensors is small. The sequentialm-best 2-D

(SEQ[m(2-D)]) assignment algorithm, which is resistant to the ghost-

ing problem due to the estimation of the emitter signal’s emission time,

is developed to solve the problem when the number of sensors be-

comes large. Simulation results show that the SEQ[m(2-D)] assign-

ment algorithm is efficient for real-time processing with reliable asso-

ciations and estimates. In the cardinality selection formulation, a list of

measurements is modeled as either realizations of a random variable

with a uniform–Gaussian mixture (UGM) density or a Poisson point

process (PPP).Because of an efficient way of incorporating false alarm

rate, the UGM formulation is shown to be a useful alternative to the
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PPP formulation. Simulation studies show that both UGM and PPP

formulations, which are based on the expectation–maximization algo-

rithm, require the right initial estimates to yield reliable localization

results.

I. INTRODUCTION

This paper considers the problem of multiple tran-
sient emitter (target) localization using a group of pas-
sive sensors.One particular application is to utilize a net-
work of acoustic gunfire detection systems on a group
of soldiers to localize adversaries in a battlefield [12],
[20]. It is assumed that the targets are stationary during
the time window of interest but the number of targets is
unknown. The sensors can measure line of sight (LOS)
angles to the targets by detecting their emitted acoustic
signals and record the times of arrival of the detected sig-
nals.Missed detections and false alarms are present due
to the imperfection of the sensors. Furthermore, the as-
sociation between the measurements and the targets is
unknown; that is, each sensor does not know from which
target (or clutter) a particular measurement originates.
Before estimating the position of any target, one has to
associate the measurements from all the sensors. There-
fore, the quality of data association is critical to the over-
all localization performance.

The problem of data association has been studied ex-
tensively in tracking multiple targets. Methods includ-
ing multiple hypothesis tracking [6], joint probabilistic
data association filter [11], and probability hypothesis
density filter [16] are recursive algorithms that require
persistent measurements and provide solutions to a dy-
namic data association problem. Therefore, they cannot
be employed to solve the static data association problem
considered in the situation of multiple transient emitter
localization.

There are two different philosophies—hard data as-
sociation and soft data association (see [4, Sec. 2.4.3])—
in solving the static data association problem considered
in this paper.Hard data association either assigns a mea-
surement to one and only one target or condemns it as
a false alarm; in other words, the probability of a mea-
surement coming from a target is either 0 or 1 (discrete).
In contrast, soft data association assigns the event that a
measurement originates from a target to a (continuous)
probability, which can be any value between 0 and 1.

The hard data association for S lists of measurements
with one list from each sensor,1 assuming a Bernoulli
measurement model that the number of measurements
from each target received at each sensor is a Bernoulli
random variable with parameter equal to the probabil-
ity of detection, leads to an S-dimensional (S-D) assign-
ment problem, which can be formulated as a discrete

1In a multisensor localization application, as in this paper, the number
of lists is the same as the number of sensors.
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constrained optimization problem aiming to find out the
set of S-tuples of measurements that minimizes the over-
all association cost. The number of possible S-tuple sets
for T targets and S sensors in the absence of missed de-
tections and false alarms is (T !)S−1, from which it can be
seen that S-D assignment problem is nondeterministic
polynomial-time (NP) hard with S ≥ 3. Therefore, it is
of great interest and importance to find robust subopti-
mal algorithms.

The Lagrangian relaxation-based approach [8],
which is termed as the S-D algorithm in this paper, pro-
vides a measure of how close the final solution is to the
(unknown) optimal solution in terms of the association
cost. The application of the S-D assignment algorithm
on a multiple shooter localization problem using a small
number of sensors was presented in [19]. Although it
does not explore the entire space of the S-tuple sets, it
needs to calculate the cost of candidate S-tuples. The
cost calculation involves finding the maximum likeli-
hood (ML) estimate of the target locations and can take
most of the computational time. The number of candi-
date S-tuples for T targets and S sensors in the absence
of missed detections and false alarms is TS, which in-
creases exponentially with the number of sensors. Since
more sensors generate more accurate estimates in the
fusion center, computationally efficient algorithms are
required when a large number of sensors are deployed.

The S0-D + SEQ(2-D) algorithm [23], which per-
forms the S-D assignment algorithm on S0 lists of mea-
surements before applying the modified auction algo-
rithm [21] for 2-D assignments on the remaining lists
sequentially S − S0 times, is a more efficient algo-
rithm than the S-D assignment. The number of can-
didate associations increases quadratically (rather than
combinatorially/exponentially) with the number of sen-
sors. Because of the ghosting problem [4], the S0-D step
requires, in general, at least three lists to achieve reliable
association. However, since in the present problem one
also has arrival times, one can use S0 = 2.

The problem of multiple shooter localization using a
single sensor [13] or usingmultiple sensors [14] is formu-
lated as a cardinality (number of targets) selection prob-
lem that assumes a Poissonmeasurement model that the
number of measurements from each target received at
each sensor is a Poisson random variable with parameter
equal to the probability of detection. The measurements
at a single sensor fromall targets and the clutter aremod-
eled as a Poisson point process (PPP) [7]. For each pos-
sible selected cardinality, one solves a subproblem based
on the learning expectation–maximization (EM) algo-
rithm [9] to select the best cardinality based on an in-
formation criterion [1], [22]. During every iteration of
the EM algorithm, each measurement will be assigned
a probability of having originated from a target, which is
an example of the soft data association.

In this paper, we discuss two classes of algorithms,
each for a specific measurement model in the multiple
passive transient emitter localization problem. For the

Bernoulli measurement model, the SEQ[m(2-D)] algo-
rithm [2], the m-best version of the fastest sequential
algorithm SEQ(2-D), is shown to be able to yield as-
sociations as good as the S-D assignment. The ghost-
ing effect for a pair of sensors is no longer present
due to the estimation of the signal emission time, which
makes SEQ[m(2-D)] practical.For the Poissonmeasure-
ment model,we discuss both uniform–Gaussian mixture
(UGM) [5] and PPP modeling of the lists of measure-
ments for the cardinality selection formulation. In the
previous work on PPP [14], both the range and bearing
measurements are assumed available and the initializa-
tion in the EM-based algorithm uses a finite set includ-
ing target locations that are close to the truth. Since the
range measurement and prior information for a “good”
initialization is not always available in the real world,
this paper considers bearing and time of arrival mea-
surements and presents some measurement-driven ini-
tialization approaches for the EM-based algorithms. In
the UGM formulation, the probability of detection (as-
sumed not known) and the expected number of false
alarms per sensor (which can be known or unknown) are
incorporated into the mixture coefficients and the max-
imization step in the EM algorithm is developed such
that the constraint that the resulting probability of de-
tection is not larger than unity is always satisfied.

The remaining sections of this paper are organized
as follows. Section II describes the problem of localizing
an unknown number of transient emitters.Section III as-
sumes a Bernoulli measurement model for each target,
formulates an S-D assignment problem, and presents
two assignment algorithms. Sections IV and V present
the UGM and PPP formulations both of which assume
a Poisson measurement model for each target. Simula-
tion results are shown and analyzed in Section VI and
the conclusions are drawn in Section VII. For the con-
venience of the reader, the list of notations used in this
paper is given in Table I.

II. PROBLEM DESCRIPTION

Consider a scenario where there are N targets lo-
cated in R

2. The target locations (fixed) are denoted as

T = (T1, T2, . . . , TN ) =
([

Tx1
Ty1

]
,

[
Tx2
Ty2

]
, . . . ,

[
TxN
TyN

])
(1)

and the emission times are denoted as

te = (te1 , t
e
2 , . . . , teN ) . (2)

The number of targets and their locations are unknown
quantities of interest, to be estimated.A total number of
Ns stationary sensors with known locations at

S = (S1, S2, . . . , SNs ) =
([

Sx1
Sy1

]
,

[
Sx2
Sy2

]
, . . . ,

[
SxNs
SyNs

])
(3)

are able to observe transient acoustic events that oc-
curred at target locations at the emission times and
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TABLE I
List of Notations

Notation Definition

S Dimension of the assignment problem
T Set of target position vectors
Ti Position vector of target i
te Set of emission times
tei Signal emission time of target i
S� Position vector of sensor �

n� Number of measurements at sensor �

z� j jth measurement at sensor �

N Number of targets
Ns Number of sensors
Nfa Expected number of false alarms per sensor
T0 The clutter
� The range of the sensor field view
Z� Augmented measurement list at sensor �

z�0 Dummy measurement at sensor �

Zj1 j2 ... jNs
An Ns-tuple of measurements, one from each sensor

c j1 j2 ... jNs Cost of associating Zj1 j2... jNs
with a target

ρ j1 j2... jNs
Binary variable denoting whether Zj1 j2... jNs

is an
association in the final assignment

pd� Detection probability for sensor �

m Number of top solutions to be kept in the
SEQ[m(2-D)] assignment algorithm

K Set of all k� j
k� j Association variable of z� j in the UGM formulation
πi Mixing coefficient of the UGM
κ Set of all κ� j
κ� j Association variable of z� j in the PPP formulation

measure the bearings to these targets and the time of
arrival of the observed acoustic signals. For events and
measurements that are separated significantly in time,
there is no data association ambiguity, so it is assumed
that onlymeasurements fallingwithin a certain timewin-
dow of interest need to be associated. Let n� denote the
number of such measurements (one measurement is de-
fined as a vector consisting of both a bearing and a time
of arrival due to one acoustic signal in this context) ob-
tained by the �th sensor within the time window.

The jth measurement (a direction of arrival and time
of arrival) received by the �th sensor, if it corresponds to
the event at tei from the ith target, is

z� j(Ti, tei ) = h� (Ti, tei ) + w� j, i = 1, . . . ,N;
� = 1, . . . ,Ns; j = 1, . . . ,n� (4)

where w� j is a zero-mean white Gaussian measurement
noise with known covariance matrix R� and

h� (Ti, tei ) =
[
θ�i

t�i

]
=

⎡
⎢⎣ arctan

[
Tyi−Sy�
Txi−Sx�

]
tei +

√
(Txi − Sx�

)2 + (Tyi − Sy�
)2

c

⎤
⎥⎦ (5)

where tei is the unknown emission time of the acoustic
signal from Ti and c is the known speed of sound.

To incorporate false alarms, we denote a clutter tar-
get (with index 0) as T0. A false measurement detected
by the �th sensor consists of a bearing θ0, which is uni-
formly distributed in the field of view of the �th sen-
sor, and its arrival time t0, which is uniformly distributed

in the interval [0,W ]. The number of false alarms from
each sensor is assumed to be a Poisson random variable2

with mean
Nfa = λfa�W (6)

where � is the range of field of view and is assumed to
be the same for each sensor and λfa can be interpreted
as the temporal–spatial density.

The probability density function (pdf) of measure-
ment j from sensor �—the likelihood function [3] of the
target location and its emission time based on the mea-
surement3—is

p(z� j|T0) = p(θ0)p(t0) = 1
�W

� 	(T0; z� j) (7)

p(z� j|Ti, tei ) = |2πR�|− 1
2

· exp
{

− 1
2

[
z� j − h�(Ti, tei )

]′
R−1

�

[
z� j − h�(Ti, tei )

] }

� 	(Ti, tei ; z� j), i = 1, . . . ,N (8)

where (7) is the pdf of a measurement from the clutter
(a false alarm) and (8) is the pdf of a measurement from
a true target.

The problem is to estimate N and T = {Ti, i =
1, . . . ,N} given the complete set of observations Z =
{z� j, � = 1, . . . ,Ns; j = 1, . . . , n�} in the presence
of missed detections and false alarms and without the
knowledge of the true data association.

III. THE S-D ASSIGNMENT ALGORITHM

A. Formulation

The S-D assignment problem formulation assumes a
Bernoulli measurement model that the number of mea-
surements from a real target received by a sensor is
a Bernoulli random variable. Note that the number of
false alarms is modeled as a Poisson random variable.

An augmented list of measurements at the �th sensor
is defined as

Z� �
{
z�0, . . . , z�n�

}
(9)

where z�0 is a dummy measurement4 representing
missed detections. An association of Ns measurements
(Ns-tuple) consisting of one measurement from each
augmented list will be denoted as

Zj1 j2... jNs = {z1 j1 , z2 j2 , . . . , zNs jNs

}
(10)

where j� ∈ {0, 1, . . . ,n�} represents the index of themea-
surement from the augmented list Z�, which is included
in the association.5

2While for targets we consider two measurement models (Bernoulli
and Poisson), for clutter only a Poisson model is considered.
3If the source is clutter, it has no emission time, only an arrival time.
4Please see [20, Fig. 2] for the illustration of dummy measurement and
Ns-tuple.
5Recall that j� = 0 represents the dummy measurement, so (10) need
not containNs “real”measurements; i.e.,missed detections are allowed
in the association.
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Assuming that the measurements in Zj1 j2... jNs origi-
nated from the same target at the location Ti and emis-
sion time tei , the cost of this association will be given by
the (physically dimensionless) negative log-likelihood
ratio

c j1 j2... jNs = − ln
	(Ti, tei ;Zj1 j2... jNs )
	(T0;Zj1 j2... jNs )

(11)

where the numerator is calculated based on (8) and the
denominator (the likelihood that they are all false) is cal-
culated using (7).

Assuming themeasurements are (conditioned on the
true target locations) independent across the sensors, i.e.,
uncorrelated measurement noises, the likelihood func-
tion that the measurements in Zj1 j2... jNs originated from
the same target at the location Ti and emission time
tei is

	(Ti, tei ;Zj1 j2... jNs ) =
Ns∏
�=1

(1 − pd�)
1−u( j�)

· (pd� p(z� j� |Ti, tei ))
u( j�) (12)

where pd� is the probability of detection for the �th sen-
sor (assumed the same for each real target) and the in-
dicator function u( j�) is

u( j�) �
{
0, if j� = 0
1, otherwise . (13)

Since the target location Ti and the emission time tei are
unknown,we replace them by their ML estimates T̂i and
t̂ei that are obtained by maximizing (12), that is,

T̂i, t̂ei = argmax
Ti,tei

	(Ti, tei ;Zj1 j2... jNs ). (14)

Therefore, (11) is modified to a generalized negative log-
likelihood ratio given by

c j1 j2... jNs = − ln
	(T̂i, t̂ei ;Zj1 j2... jNs )
	(T0;Zj1 j2... jNs )

. (15)

The likelihood that all the measurements in Zj1 j2... jNs
are false alarms is

	(T0;Zj1 j2... jNs ) =
Ns∏
�=1

(
1

�W

)u( j�)
. (16)

The assignment problem is formulated as

min
ρ j1 j2 ... jNs

n1∑
j1=0

n2∑
j2=0

· · ·
nNs∑
jNs=0

c j1 j2... jNs ρ j1 j2... jNs (17)

subject to

n2∑
j2=0

n3∑
j3=0

· · ·
nNs∑
jNs=0

ρ j1 j2... jNs = 1, j1 = 1, 2, . . . ,n1 (18)

n1∑
j1=0

n3∑
j3=0

· · ·
nNs∑
jNs=0

ρ j1 j2... jNs = 1, j2 = 1, 2, . . . ,n2 (19)

...
...

n1∑
j1=0

n2∑
j2=0

· · ·
nNs−1∑
jNs−1=0

ρ j1 j2... jNs = 1, jNs = 1, 2, . . . ,nNs

(20)

where ρ j1 j2... jNs ∈ {0, 1} and ρ j1 j2... jNs = 1(0) means
Zj1 j2... jNs is (not) an association in the final assignment.

Note that if c j1 j2... jNs > 0, then Zj1 j2... jNs will not be an
association in the final assignment since the overall cost
will be smaller for the decision that all the real measure-
ments in Zj1 j2... jNs are false (cost = 0) than for the deci-
sion that they are from the same real target.

The �th constraint set in (18)–(20)
n1∑
j1=0

· · ·
n�−1∑
j�−1=0

n�+1∑
j�+1=0

· · ·
nNs∑
jNs=0

ρ j1 j2... jNs = 1,

j� = 1, 2, . . . ,n� (21)

enforces that each measurement (except the dummy) is
associated with a single measurement from each other
list, yielding a “target.” Once the minimization problem
(17) is solved, based on the assumption that each tar-
get is associated with one and only one measurement
in each sensor list (including the dummy measurement),
the number of associations will be equal to the number
of targets (some will be real and some false). Associa-
tions with less than τ real measurements will be con-
sidered as from the clutter. The remaining associations
will be deemed from real targets. The corresponding lo-
cations and emission times will be the ML estimates as
obtained in (14).

B. The Optimization via Lagrangian Relaxation

The optimization problem (17) is NP hard when
Ns ≥ 3. One suboptimal algorithm is the Lagrangian
relaxation-based S-D assignment algorithm as shown in
Fig. 1,which solves the original problem as a series of re-
laxed 2-D subproblems. The rth (r = Ns,Ns − 1, . . . , 3)
constraint set is successively relaxed and appended to
the cost with Lagrange multipliers ur. At stage r = 3,
one has a 2-D problem, which can be optimally6 solved
using the modified auction algorithm.

The constraint sets are then reimposed one at a time
(r = 3, 4, . . . ,Ns), and the corresponding Lagrange mul-
tipliers are updated to unewr ; at each stage, the cost Jr
of the resulting feasible solution is computed, until all
constraint sets are met. The duality gap—difference be-
tween the cost J∗

2 from the maximally relaxed problem

6Up to the rounding error, i.e., quasi-optimally.
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Fig. 1. Flow chart of the Lagrangian relaxation-based S-D assignment algorithm.

and JS from the fully constrained one—is calculated and
the iterations continue until this gap is small enough
(usually 5% of the cost from the fully constrained one).
See [8] and [21] for the detailed description.

C. The SEQ[m(2-D)] Assignment Algorithm

When Ns = 2, (17) becomes a 2-D assignment prob-
lem. By using Murty’s ranking algorithm [18], one can
find the top m best assignments instead of only the best
one. The SEQ[m(2-D)] assignment algorithm can be de-
scribed as follows. Initially, one selects two lists of mea-
surements and obtains the top m best 2-D assignments
with each assignment being a set of 2-tuples. Next, for
each of these one continues to solve an m-best 2-D as-
signment, which yields a set of 3-tuples, between any
one of the previous m association results and a third list
of measurement. After this second step, one has m2 as-
signments available, out of which the top m solutions in
terms of the association cost will be selected for the next
step. This procedure (shown in Fig. 2) is repeated until
all the Ns lists of measurements are processed and the
final assignment will be a set of Ns-tuples.

Note that it is possible to have an associationZj1 j2... jNs
with c j1 j2... jNs > 0 in the final assignment once the
SEQ[m(2-D)] algorithm terminates. Such associations
will be discarded before any association with less than
τ real measurements is removed.

IV. UGM FORMULATION

If one assumes a Poisson measurement model that
the number of measurements from a real target re-

ceived by a sensor is a Poisson random variable, then
one can model a list of measurements as realizations
of a random variable with a UGM density [5] or a
PPP. The UGM formulation is presented in this sec-
tion and the PPP formulation will be presented in
Section V.

A. Formulation

Assume (temporarily) the number of targets, N, is
given. Since the association between a measurement z
(without subscript, for simplicity) and the targets is un-
known, we introduce an (N + 1)-dimensional random
binary-valued association vector

k = [k0, k1, . . . , kN] (22)

to indicate the target from which the measurement z
originates. In our formulation, the random variable z is
observed. The random variable k is not observed, thus
is called a latent variable.7 The entries ki of the vector k
satisfy the following conditions:

N∑
i=0

ki = 1 (23)

ki ∈ {0, 1} ∀ i (24)

that is, there areN+1 possible values for the vector k.Let
us use ei to denote the (N + 1)-dimensional vector with
1 in its ith entry and zeros elsewhere. The event {k = e1},
which is the same as the event {k0 = 1}, means that z is

7Latent variables are random variables whose values we do not ob-
serve or measure.
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Fig. 2. Initial iteration of the SEQ[m(2-D)] assignment algorithm.

a clutter-originated measurement. The event {k = ei+1}
with i > 0, which is the same as {ki = 1}, means that the
measurement z originated from the ith target.

The prior probability that z originated from the
ith target given that the acoustic signal has been de-
tected (assuming that a detected acoustic signal origi-
nates equally likely from all the targets) is

p(k = ei+1) = p(ki = 1) � πi = pd(Ti)∑N
i=0 pd(Ti)

,

i = 0, 1, . . . ,N (25)

where pd(Ti) is the probability of detection for the real
target i (i �= 0) and is assumed to be the same at each
sensor and

pd (T0) = Nfa. (26)

With abuse of notation, (26) is the expected number of
false alarms at each sensor. The probabilities πi, there-
fore, satisfy the following two conditions:

0 ≤ πi ≤ 1 (27)

N∑
i=0

πi = 1. (28)

Because of (23) and (24), the prior probability in (25)
can be equivalently expressed, in the form of a probabil-

ity mass function, as

p(k = ei+1) = p(ki = 1) = πi =
N∏
i=0

π
ki
i (29)

where the last equality holds because only the exponent
ki is equal to 1 while all other exponents are equal to 0,
and thus do not affect the product.

From (7) and (8), the conditional pdf of a measure-
ment z (without subscript, for simplicity) obtained by the
�th sensor given that it is associated with the ith target
is

p�(z|k0 = 1,T, te) = 1
�W

(30)

p�(z|ki = 1,T, te) = N (z;h�(Ti, tei ),R�) ,

i = 1, . . . ,N. (31)

For notational simplicity, let us denote8

g�i(z) = p�(z|ki = 1,T, te), i = 0, 1, . . . ,N. (32)

In a similar way as we derived (29), using (23) and (24)
we have

p�(z|k = ei+1,T, te) = p�(z|ki = 1,T, te) = g�i(z)

=
N∏
i=0

(g�i(z))
ki . (33)

8g�i(z|T, te) will be used when the conditioning needs to be explicitly
indicated.
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The joint density of a measurement z from sensor � and
its association vector k is therefore

p�(z,k = ei+1|T, te) = p�(z|k = ei+1,T, te)p(k = ei+1)

=
N∏
i=0

(πi g�i(z))
ki = πi g�i(z)

(34)

where the first equality holds because of the conditional
probability definition, the second equality holds as a re-
sult of direct substitutions of p(k = ei+1) from (29)
and p�(z|k = ei+1,T, te) from (33), and the last equal-
ity holds because only the exponent ki is equal to 1 and
other exponents are zero. The marginal density of z is
then obtained by summing the joint density over all the
N + 1 values of k as

p�(z|T, te) =
N∑
i=0

p�(z,k = ei+1|T, te) =
N∑
i=0

πi g�i(z)

(35)
where the first equality holds because of the total prob-
ability theorem and the second equality holds as a result
of substitution of p�(z,k = ei+1|T, te) from (34). There-
fore, the marginal density of one measurement is a mix-
ture (termed as “uniform–Gaussian” mixture in this pa-
per) of one uniform density and N Gaussian densities
with the parameters πi being themixing coefficients.The
conditional density of k given z is obtained using Bayes’
theorem as

p�(k|z,T, te) = p�(z,k|T, te)
p�(z|T, te)

=
∏N

i=0 (πi g�i(z))
ki∑N

i=0 πi g�i(z)
(36)

which is equivalent to

P(ki = 1|z,T, te) = πi g�i(z)∑N
i=0 πi g�i(z)

. (37)

Let (with k indexed as in (4))

K = {k� j, � = 1, 2, . . . ,Ns; j = 1, 2, . . . ,n�} (38)

be the corresponding set of association vectors (or latent
variables) for Z and

π = {πi, i = 0, 1, . . . , N}. (39)

From (34), the conditional independence of measure-
ments across all the sensors yields the joint density of
Z and K

p(Z,K|T, te) =
Ns∏
�=1

n�∏
j=1

N∏
i=0

(πi g�i(z� j))
[k� j]i (40)

where
[
k� j
]
i is the ith component of the association vec-

tor k� j. The marginal density of Z is obtained by sum-
ming the joint density (40) over all possible values of K
as

p (Z|T, te) =
Ns∏
�=1

n�∏
j=1

(
N∑
i=0

πi g�i(z� j)

)
(41)

and the posterior density (actually probability mass
function (pmf) since K is discrete) of K conditioned on
Z is

p(K|Z,T, te) =
Ns∏
�=1

n�∏
j=1

∏N
i=0 (πig�i(z� j))

[k� j]i∑N
i=0 πi g�i(z� j)

. (42)

B. The EM Algorithm

We are interested in finding the ML estimates of T
and te that maximize p (Z|T, te) or ln p (Z|T, te). How-
ever, it is difficult to obtain these estimates since the
data association between Z and T is unknown; that is,K
is not observed. Mathematically, setting the derivatives
of ln p (Z|T, te) with respect to T and te does not lead
to a closed-form solution, which suggests an iterative
approach.

The EM algorithm [9] is a two-step iterative opti-
mization technique to find the ML estimate from in-
complete data. In this context, {Z,K} are the complete
data set and the observed data Z are the incomplete
data available since the association variables in K are
unknown.

Each iteration of the EM algorithm has an expecta-
tion step (E step) and a maximization step (M step). In
the E step,we use temporary estimates ofT and te to find
the posterior distribution in (42) to “learn” about K.We
then use this posterior distribution of K to find the ex-
pectation of the joint density of Z and K in (40). In the
M step, we maximize the expectation obtained in the E
step to obtain updated estimates of T and te [5].

C. Optimization

1) Initialization: The EM algorithm is an iterative
method. The first step is to initialize the parameters T,
te, and π. Here, we assume that the mixing coefficients
πi are scalar quantities that need to be estimated along
with Ti and tei .

The EM algorithm guarantees that p (Z|T, te) in-
creases at each iteration. However, a poor initialization
can cause convergence to a local maximum as opposed
to the global one. As shown later, because of the rela-
tionship between πi and pd(Ti) in (25), the iterative pro-
cedures depend on whether Nfa is known. In either case,
pd(Ti) is initialized to be 1 and the initial values of πi
will be calculated according to (25). In this paper, three
initialization approaches for T and te are considered and
will be discussed in Section VI.D.

2) E Step: Let T(n−1), te,(n−1), and π(n−1) denote the
estimates from the previous step. In the expectation
step, we compute p(K|Z,T(n−1), te,(n−1)) and evaluate
the expected value of ln p(Z,K|T, te) conditioned on
p(K|Z,T(n−1), te,(n−1)), which is given by

Q(T, te
∣∣T(n−1), te,(n−1))

= E[ln(p(Z,K |T, te))|p(K |Z,T(n−1), te,(n−1))]

= QT (T, te|T(n−1), te,(n−1)) +Qπ (π|T(n−1), te,(n−1))
(43)
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where

QT (T, te
∣∣T(n−1), te,(n−1)) =

Ns∑
�=1

n�∑
j=1

N∑
i=0

ln (g�i(z� j))w
(n−1)
� ji

(44)

Qπ (π
∣∣T(n−1), te,(n−1)) =

Ns∑
�=1

n�∑
j=1

N∑
i=0

ln (πi)w
(n−1)
� ji

(45)
where

w
(n−1)
� ji = π

(n−1)
i g(n−1)

�i (z� j)∑N
i=0 π

(n−1)
i g(n−1)

�i (z� j)
(46)

g(n−1)
�i (z� j) = p�(z� j|ki = 1,T(n−1), te,(n−1)) (47)

w
(n−1)
� ji is the posterior probability that the measurement

z� j originates from the ith target, given that the target
locations are T(n−1) and the emission times are te,(n−1).

3) M Step: In the maximization step, we maximize
Q(T, te

∣∣T(n−1), te,(n−1)) over all feasible T, te, and π. In-
spection of (43) reveals thatQT (T, te

∣∣T(n−1), te,(n−1)) de-
pends only on the locations T and Qπ (π

∣∣T(n−1), te,(n−1))
depends only on detection probabilities through
mixing coefficients. Therefore, maximization of
Q(T, te

∣∣T(n−1), te,(n−1)) can be done by maximizing
QT (T, te

∣∣T(n−1), te,(n−1)) and Qπ (π
∣∣T(n−1), te,(n−1))

separately.
We define QT (T, te

∣∣T(n−1), te,(n−1)) as

QT (T, te
∣∣T(n−1), te,(n−1)) =

N∑
i=0

QTi (Ti
∣∣T(n−1), te,(n−1))

(48)
where

QTi (Ti
∣∣T(n−1), te,(n−1)) =

Ns∑
�=1

n�∑
j=1

ln (g�i(z� j))w
(n−1)
� ji .

(49)
Note thatQT0 (T0

∣∣T(n−1), te,(n−1)) is a constant, and there
is no functional relation between Ti1 and Ti2 for i1 �= i2
Therefore, each target location Ti can be obtained sepa-
rately by maximizing QTi (Ti

∣∣T(n−1), te,(n−1)).
Next wemaximizeQπ (π

∣∣T(n−1), te,(n−1)) with respect
to πi, while accounting for the constraint that the mix-
ing coefficients sum to 1. This can be achieved using a
Lagrange multiplier λ and maximizing the following
quantity:

QL
π (π

∣∣T(n−1), te,(n−1)) =
Ns∑
�=1

n�∑
j=1

N∑
i=0

ln (πi)w
(n−1)
� ji

+ λ

(
N∑
i=0

πi − 1

)

(50)

which gives

πi
(n) =

∑Ns
�=1

∑n�

j=1 w
(n−1)
� ji∑Ns

�=1

∑n�

j=1

∑N
i=0 w

(n−1)
� ji

. (51)

When Nfa is unknown, one can set pd(Ti) and Nfa

based on (51) as follows:

j = argmax
i,i�=0

πi (52)

pd(Ti) = πi

π j
, i �= j (53)

Nfa = π0

π j
(54)

which guarantees the constraints

pd(Ti) ≤ 1, i > 0. (55)

However,whenNfa is known, it is not always possible
to find pd(Ti) ≤ 1 such that (51) holds. For instance, the
following may not hold for π0 from (51) and a givenNfa:

π0 = Nfa∑N
i=1 pd(Ti) +Nfa

≥ Nfa

N +Nfa
. (56)

We need to maximizeQπ (π
∣∣T(n−1), te,(n−1)) with respect

to pd(Ti) subject to (55).
The Karush–Kuhn–Tucker (KKT) conditions [15]

give rise to the following proposition (see Appendix A
for proof):

Proposition 1 Let

S =
{
i

∣∣∣∣∣
Ns∑
�=1

n�∑
j=1

w
(n−1)
� ji Nfa >

Ns∑
�=1

n�∑
j=1

w
(n−1)
� j0

}
(57)

which can be an empty set, and its cardinality is denoted
by |S|. The optimal values of pd(Ti) are given by

p(n)d (Ti) =⎧⎪⎨
⎪⎩
1, if i ∈ S∑Ns

�=1

∑n�

j=1 w
(n−1)
� ji (|S| +Nfa)∑

k>0,k∈S
∑Ns

�=1

∑n�

j=1 w
(n−1)
� jk +∑Ns

�=1

∑n�

j=1 w
(n−1)
� j0

, if i /∈ S .

(58)

Therefore, by (25)

πi
(n) = p(n)d (Ti)∑N

i=0 p
(n)
d (Ti)

(59)

which can be verified to be identical to (51) when the set
S is empty.

The EM algorithm is terminated when the likelihood
function (41) converges, that is,∣∣ ln p(Z|T(n), te(n)

)− ln p
(
Z
∣∣T(n−1), te,(n−1))∣∣ ≤ ε (60)

where ε is a small number (e.g., 10−3).
One can use a fixed π throughout the EM iterations

and skip the update process in (51) under the assumption
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that both the detection probabilities and the false alarm
density are known.

D. Use of the Information Criterion for Cardinality
Selection

So far, we have assumed that the number of targets
is given. Since the number of targets is unknown,we can
use the above described procedure to estimate the pa-
rameters π and T given a specific cardinality, i.e., the
number of targets N. Now we are faced with a cardi-
nality selection problem, or a model selection problem
where the dimensionality of a model is the number of
targets. One of the most widely used criteria for model
selection problems is the Bayesian information criterion
(BIC) [22].

Let Mk = {π̂k, T̂k, N̂k} denote the set of estimated
parameters based on the kth cardinality. According to
BIC, we choose the model for which the following is
largest:

ln p
(
Z
∣∣Mk)− 1

2
dk ln(Nz) (61)

where from (41)

p
(
Z
∣∣Mk) =

Ns∏
�=1

n�∏
j=1

⎛
⎝ N̂k∑

i=0

π̂k
i g�i(z� j|T̂k)

⎞
⎠ (62)

and Nz is the total number of measurements across all
the sensors; dk is the total number of parameters to be
estimated based on the kth cardinality. In our case, dk is
4N̂k + 1 (2N̂k position coordinates for a problem in 2-
D, N̂k emission times, N̂k + 1 UGM coefficients includ-
ing the expected number of false alarms) if it is assumed
the detection probabilities and the false alarm density
are unknown. If the detection probabilities and the false
alarm density are assumed to be known, then dk is 3N̂k.

V. PPP MODEL

A. Formulation

Assume the number of targets, N, is given. Let w =
{wi, i = 1, . . . ,N}, where

wi = pd(Ti) (63)

are the detection probabilities. The number of measure-
ments n� and {z� j, j = 1, 2, . . . ,n�} obtained at the �th
sensor are jointly modeled as a realization of a PPP. The
measurement set at the �th sensor is denoted as

ψ� = {n�, z�1, z�2, . . . , z�n�

}
. (64)

In this case, the points z� j occur in the space S = {(θ, t) :
θ ∈ [−π, π ) , t ∈ [0,W ]} and their order is irrelevant.
The PPP is fully parameterized by its spatial intensity
function

μ�(z|T, te) =
N∑
i=0

pd(Ti) g�i(z) (65)

where, similarly to (26),

pd (T0) = Nfa. (66)

The number of points in the PPP is a Poisson random
variable with rate

∫
S
μ�(z)dz; that is, the probabilitymass

function of n� is

p(n�) =
( ∫

S
μ�(z)dz

)n�

n� !
exp

{
−
∫

S

μ�(z)dz
}
. (67)

The n� points are defined as independent and identically
distributed (i.i.d.) samples of a random variable with
probability density function

p(z) = μ�(z)∫
S
μ�(z)dz

=
∑N

i=0 pd(Ti) g�i(z)∑N
i=0 pd(Ti)

. (68)

The joint pmf–pdf of ψ� is

p
(
ψ�
) = exp

(
−
∫

S

μ�(z
∣∣T, te)dz

) n�∏
j=1

μ�(z� j
∣∣T, te).

(69)
The factorial term n� ! in (67) is canceled out because
there are n� ! permutations of an ordered list ofmeasure-
ments.

Let � denote the set of all measurement sets (from
the Ns sensors), i.e.,

� = {ψ1, ψ2, . . . , ψNs

}
. (70)

The independence of the Ns measurement sets yields

p
(
�
∣∣T, te

) =
Ns∏
�=1

p
(
ψ�

∣∣T, te
)
. (71)

Since the intensity function is amixture of uniformor
Gaussian pdf and the association is unknown, we model
the latent association variables as conditionally indepen-
dent random variables

κ� j ∈ {0, 1, 2, . . . ,N} (72)

that identify which component spawned the jth mea-
surement in the �th sensor. Here, κ� j = 0 indicates that
the measurement is generated by the clutter. The set of
latent variables for the �th sensor is denoted as

κ� = {κ�1, . . . , κ�n�
} (73)

such that the full set is

κ = {κ1, . . . , κNs}. (74)

The latent association variables may be regarded as
“marks” associated with each of the points in the PPP.
Define a mark space

M � {0, 1, 2, . . . ,N}. (75)

Now

ψM
� = {n�, (z�1, κ�1), . . . , (z�n�

, κ�n�
)
}

(76)

denotes a realization of the marked PPP for the �th sen-
sor,where “M” indicates that the associations are known
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(“marked”). Based on the marking theorem [17], the in-
tensity function of ψM

� is

μM
� (z, κ|T, te) = μ�(z|T, te)p� (κ|z,T, te) (77)

where p� (κ|z,T, te) denotes the conditional probability
of κ given z (without subscript here, for simplicity) with
κ = i indicating the probability of z originating from tar-
get i. Using the same reasoning as for the derivation of
(25), we have the prior probability of κ

p�(κ|T, te) = wκ∑N
i=0 wi

. (78)

Given that a point z in the PPP is associated with the κth
mixture component, the conditional intensity becomes

μ�(z|κ ) = wκ g�κ (z) (79)

and the conditional density of z given κ is

p�(z|κ,T, te) = g�κ (z). (80)

Using Bayes’ theorem

p� (κ|z,T, te) = p�(z|κ,T, te)p�(κ|T, te)
p�(z|T, te)

= wκg�κ (z)
μ�(z|T, te)

.

(81)
Substituting (81) into (77) yields

μM
� (z, κ|T, te) = wκg�κ (z). (82)

The joint probability density function of ψM
� is, similarly

to (69), given by

p
(
ψM

�

) = exp

(
N∑

κ=0

−
∫

S

μM
� (z, κ

∣∣T, te)dz

)

·
n�∏
j=1

μM
� (z� j κ� j

∣∣T, te). (83)

Now let the complete data from (76) be

�M = {ψM
1 , ψM

2 , . . . , ψM
Ns

}
. (84)

The conditional independence of the Ns measurement
sets yields the pmf–pdf for the complete data

p
(
�M|T, te

) = exp

(
−Ns

N∑
i=0

wi

)

·
Ns∏
�=1

n�∏
j=1

wκ� j g�κ� j (z� j|T, te) (85)

where we have used the fact
N∑

κ=0

(∫
wκg�κ (z|T, te)dz

)
=

N∑
i=0

wi. (86)

Dividing (85) by (71) leads to the density of the marks
conditioned on the observed measurements and the un-
known parameters

p(κ|Z,T, te) =
Ns∏
�=1

n�∏
j=1

p� (κ� j | z� j,T, te) (87)

where

p� (κ� j | z� j,T, te) = wκ� j g�κ� j (z� j|T, te)
μ�(z� j|T, te)

. (88)

In this PPP formulation, the goal is find the ML esti-
mate of T by maximizing (71), which can also be solved
using the EM algorithm.

B. Optimization

1) Initialization: In this paper, three initialization ap-
proaches are considered and will be discussed in Section
VI.D.

2) E Step: Let w(n−1),T(n−1), and te,(n−1) denote the es-
timates from the previous step. In the expectation step,
we use them to find p(κ|Z,T(n−1), te,(n−1)) and com-
pute the expected value of p

(
�M|T, te

)
conditioned on

p(κ|Z,T(n−1), te,(n−1)); that is, we evaluate

Q(T, te|T(n−1), te,(n−1))

= E

[
ln
(
p(�M

∣∣T, te)
) ∣∣p(κ ∣∣Z, T(n−1), te,(n−1))

]
= Qw(w|T(n−1), te,(n−1)) +QT (T, te|T(n−1), te,(n−1))

(89)

where

Qw(w|T(n−1), te,(n−1)) = −Ns

N∑
i=0

wi

+
Ns∑
�=1

n�∑
j=1

N∑
i=0

ln (wi)α
(n−1)
� ji

(90)

QT (T, te|T(n−1), te,(n−1)) =
Ns∑
�=1

n�∑
j=1

N∑
i=0

ln (g�i(z� j))α
(n−1)
� ji

(91)
and

α
(n−1)
� ji = p�(κ� j = i | z� j,T(n−1), te,(n−1))

= w
(n−1)
i g(n−1)

�i (z� j)∑N
i=0 w

(n−1)
i g(n−1)

�i (z� j)
. (92)

The weight α
(n−1)
� ji is the probability that the point z� j is

generated by the ith target given T(n−1) and te,(n−1).

3) M Step: The M step maximizes
Q
(
T, te|T(n−1), te,(n−1)

)
over all feasible values

for T and te. Inspection of (90) reveals that
Qw

(
w |T(n−1), te,(n−1)

)
depends only on the values

of pd(Ti) because wi = pd(Ti) for i = 1, . . . ,N. Like-
wise, QT

(
T, te|T(n−1), te,(n−1)

)
depends only on the

target locations and emission times through g�i(z� j).
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Therefore, maximization of Q
(
T, te|T(n−1), te,(n−1)

)
is

accomplished by maximizingQw

(
w |T(n−1), te,(n−1)

)
and

QT
(
T, te|T(n−1), te,(n−1)

)
separately.

The value ofQT
(
T, te|T(n−1), te,(n−1)

)
in (91) decom-

poses as

QT (T, te|T(n−1), te,(n−1)) =
N∑
i=0

QTi (Ti |T(n−1), te,(n−1))

(93)
where

QTi (Ti |T(n−1), te,(n−1)) =
Ns∑
�=1

n�∑
j=1

ln (g�i (z� j))α
(n−1)
� ji .

(94)
For i = 0, QTi

(
Ti |T(n−1)

)
is constant with respect to Ti

since the density is assumed known for the clutter.When
i �= 0, g�i (z� j) depends only on Ti through h�(Ti, tei );
thus, T (n)

i is determined by maximizing (94) separately
for each value of i.

The values of w
(n)
i are determined by maximizing

(90) given the fact that pd(Ti) = wi for k = 1, . . . ,N
and the assumption that they are scalar quantities. The
detection probabilities are also constrained to less than
or equal to 1. By setting up the Lagrange multipliers, it is
easy to see that the KKT conditions are satisfied when

wi
(n) = min

⎧⎨
⎩1, 1

Ns

Ns∑
�=1

n�∑
j=1

α
(n−1)
� ji

⎫⎬
⎭ . (95)

The EM algorithm is terminated when the likelihood
function (71) converges, that is,

| ln p(� |T(n), te(n))− ln p(� |T(n−1), te,(n−1))| ≤ ε. (96)

One can use a fixed w throughout the EM iterations
and skip the update process in (95) under the assumption
that both the detection probabilities and the false alarm
density are known.

C. Use of the Information Criterion for Cardinality
Selection

The EM algorithm will eventually converge to ŵk

and T̂k given the number of targets N̂k. Let the setMk
p =

{ŵk, T̂k, N̂k} denote the estimation result based on the
kth cardinality. The BIC selects the set Mk

p that mini-
mizes

− 2 ln p
(
�
∣∣Mk

p

)
+ d lnNz (97)

where from (71)

p
(
�
∣∣Mk

p

)
= exp

⎛
⎝−Ns

N̂k∑
i=0

wk
i

⎞
⎠ Ns∏

�=1

n�∏
j=1

N̂k∑
i=0

wk
i g�i(z� j |T̂k)

(98)
and d is the total number of parameters to be estimated.

Fig. 3. Overhead view of a ten-sensor four-target scenario.

VI. SIMULATION RESULTS

A. Scenario

Assume there are four targets (N = 4). The emission
times of the acoustic events at the target locations are
0.2, 0.25, 0.3, and 0.35 s, respectively. The speed of the
acoustic signal is assumed to be 342 m/s. The measure-
ment noise covariance matrix is

R� =
[
7.6 × 10−5 0

0 2.5 × 10−5

]
(99)

i.e., the bearing standard deviation amounts to√
76mrad = 0.5o and the time of arrival measure-

ment standard deviation amounts to 5 ms, assumed
to be the same for all targets. The time window W is
chosen to be 1 s and the density of the false alarms is
set to be 0.32 s−1rad−1 such that the expected number
of false alarms at each sensor is 1. The field view of each
sensor is from 0 to π . Fig. 3 shows one example using ten
sensors to localize these four targets. In the simulation,
the targets and the sensors are arranged in the way such
that the angle between two LOS from two neighbor-
ing targets to any sensor is 2o, which is four times the
standard deviation of LOS measurement noise.

B. Performance Metrics

The performance metrics of interest for NMC Monte
Carlo runs include

1) ϕover: fraction ofNMC runs for whichN (the number
of targets) has been overestimated;

2) M̄over: average magnitude of estimation error for N
from NMCϕover runs;
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TABLE II
SEQ[m(2-D)] Assignment Performance Using Differentm for Known pd

pd 0.7 0.8 0.9
m 1 2 4 1 2 4 1 2 4

ϕover 1.6% 1.2% 0.9% 0.9% 0.8% 0.7% 0.6% 0.6% 0.4%
M̄over 1 1 1 1 1 1 1 1 1
TRMSE
over (m) 2.86 5.13 3.01 1.97 1.63 1.72 2.19 2.19 1.98

θRMSE
over (o) 0.289 0.460 0.298 0.255 0.251 0.262 0.272 0.272 0.274

ϕunder 3.2% 2.3% 2.1% 0.2% 0 0 0 0 0
M̄under 1 1 1 1.5 N.A. N.A. N.A. N.A. N.A.
TRMSE
under (m) 2.58 2.69 2.69 4.50 N.A. N.A. N.A. N.A. N.A.

θRMSE
under (o) 0.296 0.299 0.298 0.411 N.A. N.A. N.A. N.A. N.A.

ϕexact 95.2% 96.5% 97.0% 98.9% 99.2% 99.3% 99.4% 99.4% 99.6%
TRMSE
exact (m) 2.92 2.81 2.76 3.23 2.59 2.59 1.99 1.96 1.96

θRMSE
exact (o) 0.329 0.320 0.313 0.329 0.282 0.282 0.239 0.236 0.236

TRMSE
all (m) 2.91 2.85 2.76 3.23 2.58 2.58 1.99 1.96 1.96

θRMSE
all (o) 0.328 0.322 0.313 0.328 0.282 0.282 0.239 0.236 0.236
t (s) 0.068 0.142 0.310 0.077 0.166 0.353 0.084 0.186 0.394

3) TRMSE
over : root mean squared error (RMSE) of the tar-

get location estimate from NMCϕover runs;
4) θRMSE

over : RMSE of the bearing estimate from
NMCϕover runs;

5) ϕunder: fraction of NMC runs for which N has been
underestimated;

6) M̄under: averagemagnitude of estimation error forN
from NMCϕunder runs;

7) TRMSE
under : RMSE of the target location estimate from
NMCϕunder runs;

8) θRMSE
under : RMSE of the bearing estimate from
NMCϕunder runs;

9) ϕexact: fraction of NMC runs for which N has been
correctly estimated;

10) TRMSE
exact : RMSE of the target location estimate from
NMCϕexact runs;

11) θRMSE
exact : RMSE of the bearing estimate from
NMCϕexact runs;

12) TRMSE
all : RMSE of the target location estimate from

all NMC runs;
13) θRMSE

all : RMSE of the bearing estimate from allNMC

runs.
14) t: average processing time in a single run.

For all the simulations in this paper, NMC = 1000
unless otherwise specified. In the overestimation cases,
RMSE is calculated by mapping the best (yielding the
minimumRMSE) subset of estimated targets to true tar-
gets. In the underestimation cases, RMSE is calculated
by mapping the estimated targets to the best subset of
true targets. The bearing estimate is examined here, be-
cause in some applications (for instance, shooter local-
ization), bearing accuracy is more critical than location
accuracy.

C. Assignment Algorithms

The multidimensional assignment problem (17),
which is solved by the two assignment algorithms—the
S-D assignment algorithm and the SEQ[m(2-D)] algo-
rithm, assumes a Bernoulli measurement model that the
number of measurements from a real target received by
a sensor is a Bernoulli random variable whose parame-
ter equal to the probability of detection pd. For the eval-
uation of these two assignment algorithms in this sec-
tion, the target measurements are generated according
to this Bernoulli measurement model; specifically, one
measurement from each target is generated for each sen-
sor with a probability pd or nothing with a probability
1 − pd. The false alarms are generated for each sensor
according to the Poisson model (6) and (7).

Note that the values of the probability of detection,
pd, and the expected number of false alarms,Nfa, are re-
quired to generate the target measurements. The assign-
ment algorithms do not need to know the value of Nfa

but need to know the value of pd. However, the assign-
ment algorithms are shown to be robust to incorrect pd
(see Table IV).

Table II shows the effects of the algorithm param-
eter m, the number of best assignments to be kept at
each step, and pd, probability of detection, on the per-
formance of the SEQ[m(2-D)] assignment algorithm in
a scenario using ten sensors to locate four targets. The
true probability of detection is assumed to be known.
Once the assignment algorithm is finished, any associ-
ation with less than three (τ = 3) real measurements is
discarded. For each pd, keeping more (larger m) top as-
signments at each 2-D step makes it more likely to find
the best assignment; therefore, a larger m gives better
estimates for the number of targets, the locations of the
targets, and the directions to the targets (for counterfire).
In fact, if the association between themeasurements and
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Fig. 4. Two cardinality overestimation situations.

the targets is known, the values of θRMSE
all would be 2.50,

2.15, and 1.91 m in the three scenarios with pd varying
from 0.7 to 0.9. The sequential algorithm with m = 4
yields very good association accuracy since the values of
θRMSE
all are very close to these lower bounds. The perfor-
mance gain is at the expense of a higher computational
cost, which, however, is acceptable for real-time applica-
tions. For a fixed value ofm, the algorithm performs bet-
ter when the probability of detection increases. Lower
pd makes it more likely for the final association to have
fewer real measurements, which could fail in the real
threshold test; therefore, there are more cases when the
number of targets is underestimated at pd = 0.7. There
are two situations when the number of targets is over-
estimated. The first one is “target splitting”; that is, one
real target is perceived as two (or more) targets that are
close to each other as shown in Fig. 4a, where the targets
at location (−10, 99) are split into the targets at locations
(−14, 89) and (−21, 125). The second one is when three
(or more) false measurements are perceived to be from
a real target as shown in Fig. 4b at location (82, 4). Both
situations are more likely to occur at a lower pd, so there
are slightly fewer overestimation cases as pd increases,
as shown in Table II. When pd is higher, there could be
more real measurements available,which, if correctly as-
sociated, can lead to more accurate location and direc-
tion estimates. This is also at the expense of a slightly
longer processing time.

Table III shows how the performance of the
SEQ[m(2-D)] assignment algorithm with m = 4 varies
with the number of sensors for three levels of known pd
in the scenario with four real targets. For the threshold
test, any associations with less than three real measure-
ments are discarded.For each pd, it is observed that using

a smaller number of sensors leads to more cardinality
underestimation cases and fewer overestimation cases.
This is so because the chance that only one sensor de-
tects a real target is higher when a smaller number of
sensors are used. On the other hand, a larger number
of sensors in the presence of false alarms make it more
likely to associate false measurements into a ghost like
the situation in Fig. 4b. However, with a larger number
of sensors, the decrease in the occurrence of overestima-
tion cases is more significant than the increase in the un-
derestimation cases. In addition, deploying more sensors
could give rise to more measurements for a target,which
in return generate more accurate location and direction
estimates. In general, it is more beneficial to use a larger
number of sensors.

The calculation of the cost (11) requires the knowl-
edge of pd. In practical scenarios, the actual value of pd
may not be available, in which case one has to use an
estimated value of pd. Table IV shows that the perfor-
mance of the SEQ[m(2-D)] assignment algorithm is al-
most insensitive to the mismatch between the assumed
value and the true value of pd when they are close (up
to 0.1 difference) in the scenario where ten sensors are
used to locate four targets.

Fig. 5 shows the performance of the SEQ[m(2-D)]
assignment algorithm for a wider range of true pd. The
quality of cardinality, location, and bearing estimates is
almost independent of the assumed pd value when the
true pd is from0.6 to 0.9.When the true pd is as low as 0.5,
the quality of those estimates will vary with the assumed
pd value. A good location or bearing estimate requires
at least three real measurements to be associated cor-
rectly; however, the probability that at least three out of
ten sensors have detected the same target is only around
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TABLE III
SEQ[m(2-D)] Assignment Performance Using Different Ns for Known pd With m = 4

pd 0.7 0.8 0.9
Ns 6 8 10 6 8 10 6 8 10

ϕover 0.1% 0.4% 0.9% 0.2% 0.6% 0.7% 0.4% 0.5% 0.4%
M̄over 1 1 1 1 1 1 1 1 1
TRMSE
over (m) 4.37 4.50 3.01 3.90 2.87 1.72 4.21 2.98 1.98

θRMSE
over (o) 0.453 0.386 0.298 0.361 0.294 0.262 0.302 0.289 0.274

ϕunder 28.2% 7.8% 2.1% 7.8% 1% 0 0.4% 0 0
M̄under 1.12 1.01 1 1.04 1 N.A. 1 N.A. N.A.
TRMSE
under (m) 5.95 3.89 2.69 4.93 4.11 N.A. 4.64 N.A. N.A.

θRMSE
under (o) 0.402 0.344 0.298 0.347 0.328 N.A. 0.330 N.A. N.A.

ϕexact 71.7% 91.8% 97.0% 92% 98.4% 99.3% 99.2% 99.5% 99.6%
TRMSE
exact (m) 7.26 4.37 2.76 5.66 3.41 2.59 4.42 2.76 1.96

θRMSE
exact (o) 1.03 0.442 0.313 0.369 0.310 0.282 0.314 0.266 0.236

TRMSE
all (m) 6.99 4.35 2.76 5.62 3.42 2.58 4.42 2.76 1.96

θRMSE
all (o) 0.931 0.437 0.313 0.368 0.310 0.282 0.314 0.266 0.236
t (s) 0.132 0.212 0.310 0.158 0.274 0.353 0.183 0.277 0.394

TABLE IV
SEQ[m(2-D)] Assignment Performance Using Different Assumed Values for Unknown pd

True pd 0.7 0.8 0.9
Assumed pd 0.6 0.7 0.8 0.7 0.8 0.9 0.8 0.9 0.95

ϕover 1.0% 0.9% 0.8% 0.8% 0.7% 0.5% 0.5% 0.4% 0.2%
M̄over 1 1 1 1 1 1 1 1 1
TRMSE
over (m) 3.12 3.01 2.14 2.40 1.72 1.71 1.97 1.98 2.12

θRMSE
over (o) 0.314 0.298 0.252 0.315 0.262 0.249 0.263 0.274 0.270

ϕunder 1.7% 2.1% 2.2% 0 0 0.1% 0 0 0
M̄under 1 1 1 N.A. N.A. 1 N.A. N.A. N.A.
TRMSE
under (m) 2.80 2.69 2.79 N.A. N.A. 2.91 N.A. N.A. N.A.

θRMSE
under (o) 0.311 0.298 0.317 N.A. N.A. 0.325 N.A. N.A. N.A.

ϕexact 97.3% 97.0% 97.0% 99.2% 99.3% 99.4% 99.5% 99.6% 99.8%
TRMSE
exact (m) 2.76 2.76 2.80 2.60 2.59 2.60 1.96 1.96 1.96

θRMSE
exact (o) 0.313 0.313 0.318 0.284 0.282 0.282 0.236 0.236 0.236

TRMSE
all (m) 2.76 2.76 2.80 2.60 2.58 2.59 1.96 1.96 1.96

θRMSE
all (o) 0.313 0.313 0.317 0.284 0.282 0.282 0.236 0.236 0.236
t (s) 0.307 0.310 0.316 0.353 0.353 0.350 0.394 0.394 0.392

0.80 at true pd = 0.5. In other words, at true pd = 0.5 in
about 200 simulation runs either there is at least one tar-
get missing or there is at least a false association, which
could cause very different performances at different as-
sumed pd values. It gets worse at lower pd values such
as 0.4 and 0.3. Therefore, given a fixed number of sen-
sors, there is a lower bound on the true pd, below which
it is very difficult to achieve good location and bearing
estimates.

Fig. 6 shows the dependence of the performance of
the SEQ[m(2-D)] assignment algorithm on the expected
number of false alarms per sensor when ten sensors are
used to localize four targets with known pd values at 0.7,
0.8, and 0.9. In the final assignment, the least number
of real measurements required to be associated with a

real target is 3.As expected, the performance gets worse
when the false alarm rate is higher. When the true pd is
0.8 or 0.9, the localization results are reliable even for
Nfa = 4 (the total expected number of false alarms is
larger than the total expected number of real measure-
ments). When the expected number of false alarms per
sensor is very large (Nfa = 8), there aremore false targets
in the final assignment, leading to a worse performance.
Setting a higher number for the requiredminimumnum-
ber of real measurements reduces the number of false
targets but will also miss real targets in a scenario, espe-
cially for a low pd value.

Fig. 7a shows the processing time (averaged over 100
Monte Carlo runs) of the S-D assignment algorithm and
the SEQ[m(2-D)] (m = 4) assignment algorithm in
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Fig. 5. The performance (in terms of ϕexact,TRMSE
all , and θRMSE

all ) of the SEQ[m(2-D)] assignment algorithm using different assumed values of
unknown pd for true pd values ranging from 0.3 to 0.9.

scenarios with the probability of detection pd = 0.9
and the expected number of false alarms (per sensor)
Nfa = 1.When the number of targets,N, is 4, the process-
ing time using the S-D assignment algorithm with seven
sensors is around 20 s, which is too long as far as real-
time applications are concerned. This is due to the fact
that the processing time of the S-D assignment algorithm
scales exponentially with the number of sensors while
the sequential processing time scales quadratically with
the number of sensors in the worst case. In terms of the
localization performance, the S-D assignment algorithm
is also shown to be inferior to the sequential m-best as-
signment algorithm.

Wemust note that both algorithms are very different
suboptimal solutions to the problem (17).The sequential
m-best assignment algorithm makes efficient use of the
modified auction algorithm in a sequential manner. As
a greedy algorithm, it solves a locally optimal solution
based on two lists of measurements followed by consid-
ering one more list of measurements at a time until a
final solution is obtained for all lists of measurements. It
uses a suitably large value of the parameter m with the
hope that the optimal solution is kept in the search space
at all times and the final solution is close to optimal.

In contrast, the S-D assignment algorithm is a much
more sophisticated, iterative technique as shown in
Fig. 1. However, it was shown in [8] that the S-D assign-
ment algorithm could be underperforming in challeng-
ing localization scenarios where the association graph is
strongly connected and the number of candidate asso-
ciations is huge. In a scenario with pd = 0.9 where five
targets and seven sensors are placed such that the worst
angular intertarget separations as seen by the seven sen-
sors are 2, 3.5, 5, 6.5, 5, 3.5, and 2 standard deviations of
the bearingmeasurement noise, the association accuracy
of the S-D assignment algorithm is shown to be 74%.
In our simulation scenario, the worst angular intertar-
get separation is four standard deviations for every sen-
sor, which poses a similar challenging situation in terms
of the density of the association graph (or the number
of candidate associations). Therefore, the somewhat in-
ferior localization performance of the S-D assignment
algorithm at pd = 0.9 is not unexpected.

As suggested in [8], the algorithmic parameters are
selected such that the algorithm is terminated if the rela-
tive approximate duality gap is less than 5% or the num-
ber of iterations exceeds 100. Although the chance is
very small, it is still possible that the algorithm already
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Fig. 6. The performance (in terms of ϕexact,TRMSE
all , and θRMSE

all ) of the SEQ[m(2-D)] assignment algorithm in scenarios with different known
expected number of false alarms (0.25, 0.5, 1, 2, 4, and 8) for known pd values at 0.7, 0.8, and 0.9.

Fig. 7. Performance comparison between the S-D assignment algorithm and the SEQ[m(2-D)] assignment algorithm for pd = 0.9 and Nfa = 1.
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TABLE V
Comparison Between S-D Assignment and Sequentialm-Best (SmB)
2-D Assignment Performance for pd = 0.9 (Assumed Unknown)

S-D SmB(m = 4)
Assumed pd 0.8 0.9 0.99 0.8 0.9 0.99

ϕover 1.8% 2.0% 3.3% 0.4% 0.4% 0.2%
M̄over 1 1 1 1 1 1
TRMSE
over (m) 14.88 14.24 6.93 3.68 3.55 3.64

θRMSE
over (o) 0.714 0.640 0.459 0.309 0.306 0.241

ϕunder 9.7% 1.9% 0.8% 0.4% 0.3% 0.3%
M̄under 1.06 1 1 1 1 1
TRMSE
under (m) 30.67 18.14 8.72 3.08 2.91 2.91

θRMSE
under (o) 1.17 0.792 0.518 0.272 0.286 0.286

ϕexact 88.5% 96.1% 95.9% 99.2% 99.3% 99.5%
TRMSE
exact (m) 10.47 9.44 4.87 4.91 4.42 4.43

θRMSE
exact (o) 1.14 0.832 0.348 0.325 0.318 0.319

TRMSE
all (m) 13.14 9.74 4.98 4.90 4.42 4.42

θRMSE
all (o) 1.14 0.828 0.354 0.325 0.318 0.319
t (s) 0.549 0.568 0.541 0.166 0.162 0.160

terminates at the 100th iteration and the relative approx-
imate duality gap has not been reduced to 5%. Even if
the relative approximate duality gap is less than 5% long
before the 100th iteration, it is still possible that the al-
gorithm stops at a local minimum of the objective func-
tion (17) and, although it has a similar association cost to
the optimal solution, it yields different target locations.
In addition, the more false alarms the sensors detect, the
more likely that the algorithm terminates at a local min-
imum.

As the number of sensors increases, the association
graph becomesmore dense and the number of candidate
associations explodes combinatorially and it becomes
more difficult for the S-D assignment algorithm to solve
the association problem. Therefore, it is not practical to
apply the S-D assignment algorithm directly9 when the
number of sensors is large. We suggest the use of the
sequential m-best assignment algorithm in applications
with a large number of sensors.

For additional comparison, the performance of both
the S-D assignment and the sequential m-best assign-
ment algorithms for different pd in a scenario with four
targets and six sensors is listed in Tables V–VII.

D. EM-Based Algorithms

In Sections IV and V, we have considered the Pois-
son measurement model for each target, which leads to
either theUGMor the PPP formulation.Both are solved
using the EM algorithm. For the evaluation of these two
EM-based algorithms in this section, the target measure-
ments are generated according to this Poisson measure-

9One possible practice is to use the S-D assignment algorithm on a
subset of sensors followed by sequential processing as in [23].

TABLE VI
Comparison Between S-D Assignment and Sequentialm-Best (SmB)
2-D Assignment Performance for pd = 0.8 (Assumed Unknown)

S-D SmB(m = 4)
Assumed pd 0.7 0.8 0.9 0.7 0.8 0.9

ϕover 0.7% 0.6% 0.9% 0.4% 0.4% 0.4%
M̄over 1 1 1 1 1 1
TRMSE
over (m) 33.13 4.21 15.96 6.74 6.74 6.74

θRMSE
over (o) 0.882 0.302 0.829 0.421 0.421 0.421

ϕunder 31.1% 25.4% 11.8% 7.6% 7.5% 7.5%
M̄under 1.24 1.23 1.03 1.03 1.03 1.03

TRMSE
under (m) 31.40 30.12 20.52 5.46 5.49 5.88

θRMSE
under (o) 1.53 1.58 0.989 0.366 0.367 0.380

ϕexact 68.2% 74.0% 87.3% 92% 92.1% 92.1%
TRMSE
exact (m) 12.69 12.86 18.51 5.11 5.11 5.11

θRMSE
exact (o) 1.10 1.06 1.10 0.359 0.359 0.359

TRMSE
all (m) 19.08 17.49 18.67 5.14 5.14 5.16

θRMSE
all (o) 1.22 1.18 1.09 0.360 0.360 0.361
t (s) 0.415 0.420 0.413 0.142 0.141 0.150

ment model; specifically, if a sensor has a certain pd, the
number of measurements originated from a target is a
Poisson random variable with parameter pd. The clutter
follows a Poisson model with parameter Nfa.

Note that the values of the probability of detection,
pd, and the expected number of false alarms,Nfa, are re-
quired to generate the target measurements. However,
these EM-based algorithms do not need to know the val-
ues of Nfa and pd. They adapt to these values by “learn-
ing them.”

The EM-based algorithm starts with an initialization,
which determines whether the objective function can
converge to the global maximum or a local maximum.

TABLE VII
Comparison Between S-D Assignment and Sequentialm-Best (SmB)
2-D Assignment Performance for pd = 0.7 (Assumed Unknown)

S-D SmB(m = 4)
Assumed pd 0.6 0.7 0.8 0.6 0.7 0.8

ϕover 0.5% 0.3% 0.2% 0 0 0
M̄over 1 1 1 N.A. N.A. N.A.
TRMSE
over (m) 5.93 6.30 6.80 N.A. N.A. N.A.

θRMSE
over (o) 0.360 0.382 0.395 N.A. N.A. N.A.

ϕunder 62.6% 57.4% 52.2% 27.5% 27.5% 27.5%
M̄under 1.45 1.46 1.39 1.14 1.14 1.14
TRMSE
under (m) 35.39 35.24 34.48 6.93 6.97 6.59

θRMSE
under (o) 2.14 2.19 2.20 0.398 0.400 0.402

ϕexact 36.9% 42.3% 47.6% 72.5% 72.5% 72.5%
TRMSE
exact (m) 14.78 14.90 14.92 6.96 6.96 6.96

θRMSE
exact (o) 0.941 0.911 0.910 0.860 0.860 0.860

TRMSE
all (m) 27.41 26.29 24.99 6.95 6.96 6.88

θRMSE
all (o) 1.67 1.63 1.58 0.784 0.785 0.785
t (s) 0.318 0.318 0.322 0.131 0.127 0.131
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TABLE VIII
UGM/EM and PPP/EM Performance Using Different Initialization (“I:”) Approaches for Unknown pd = 0.7

I: Truth I: Clustering I: SmB(m = 1) I: SmB(m = 2)
UGM/EM PPP/EM UGM/EM PPP/EM UGM/EM PPP/EM UGM/EM PPP/EM

ϕover 0.1% 0 49.7% 50.5% 19.4% 19.3% 19.8% 19.7%
M̄over 1 N.A. 1.57 1.51 1.14 1.14 1.15 1.15
TRMSE
over (m) 4.96 N.A. 36.69 28.51 3.46 3.47 3.34 3.35

θRMSE
over (o) 0.535 N.A. 2.23 2.37 0.493 0.494 0.449 0.451

ϕunder 0.6% 0.7% 29.7% 30.5% 23.4% 23.4% 23% 22.9%
M̄under 1 1 1.52 1.48 1.10 1.10 1.09 1.08
TRMSE
under (m) 3.06 2.57 34.21 31.8 8.28 8.30 2.88 3.04

θRMSE
under (o) 0.403 0.352 3.66 3.30 0.442 0.449 0.347 0.357

ϕexact 99.3% 99.3% 20.6% 19% 57.2% 57.3% 57.2% 57.4%
TRMSE
exact (m) 3.05 3.01 70.95 52.96 5.56 5.54 5.53 5.55

θRMSE
exact (o) 0.351 0.347 5.38 5.27 0.615 0.615 0.615 0.620

TRMSE
all (m) 3.05 3.01 46.37 35.69 5.81 5.81 4.74 4.78

θRMSE
all (o) 0.351 0.347 3.49 3.38 0.563 0.564 0.543 0.548
t (s) 2.52 2.40 4.72 4.32 1.23 1.21 1.31 1.31

Three initialization approaches are considered in this pa-
per.

The first approach is to initialize the target locations
and the emission times using their true values. This ini-
tialization approach works well as shown later; however,
it critically depends on the truth,which is not available in
the real world.Nevertheless, it provides a benchmark on
how well the EM-based algorithms can perform. Since
the number of targets N is unknown, one needs to eval-
uate a range of values for N and the algorithm selects
the bestN based on BIC. Such possible values forN can
be selected based on the number of measurements ob-
tained at each sensor; five values (2–6) are chosen for
the four-target scenario considered here.When the eval-
uated number of targets is less than the true value, a sub-
set of the true targets is used for initialization.When the
evaluated number of targets is more than the true value,
auxiliary targets in addition to the true ones are used for
initialization.

The second approach is based on the k-means clus-
tering algorithm. Any two bearing (or LOS) measure-
ments from two different sensors can lead to a potential
target. In the absence of measurement noise, the LOS
measurements coming from the same target intersect at
a single point. In the presence of measurement noise,
the LOS measurements originating from the same tar-
get should intersect with each other in a close neighbor-
hood.Therefore, the points of intersection from the LOS
measurements of any two sensors are clustered and the
centroids of each cluster are used to initialize the target
locations. The emission times are initialized in the same
way. As in the first approach, five values are evaluated
for N.

The third approach is based on the SEQ[m(2-D)]
assignment algorithm. The associations with more than
two real measurements correspond to potential targets.
Let Nmax denote the number of such associations. These

associations are ranked in terms of the association cost.
A range of values from 1 toNmax will be evaluated forN,
and the top N associations will be used to initialize the
EM-based algorithm.

Tables VIII–X present the performance of the EM-
based algorithm with both UGM and PPP formulations
(UGM/EM and PPP/EM) using different initialization
approaches at three levels10 of pd with a known false
alarm rate (Nfa = 1) in a scenario where ten sensors are
used to locate four targets.

Initialization at the truth enables the EM-based al-
gorithm to estimate the number of targets, target loca-
tions, and target directions accurately and the estimation
becomes more accurate as pd increases. In this case, the
global maximum is attained.

The clustering-based initialization is very prone to
ghosting and therefore results in very large errors in
terms of the number of targets, target locations, and tar-
get directions. It also takes a longer processing time with
such a poor initialization. In this case, the algorithm ter-
minates at a local maximum.

The assignment-based initialization overcomes the
ghosting problem. With m = 2 in the SEQ[m(2-D)] as-
signment, the target direction errors are less than the
standard deviation of the bearing measurement noise
and the target location errors are close to those ob-
tained using initialization at the truth. At a higher pd,
the number of overestimation cases increases.This is due
to double counting of the same target by the assignment
algorithmwhen two acoustic events occur at the same lo-
cation. The assignment algorithm does not differentiate
the acoustic events that occurred at the same location.

10The probability of detection is set to be the same for each target in
the simulation studies only for simplicity; theEM-based algorithms can
deal with the case that the probabilities of detection for different tar-
gets are distinct.
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TABLE IX
UGM/EM and PPP/EM Performance Using Different Initialization (“I:”) Approaches for Unknown pd = 0.8

I: Truth I: Clustering I: SmB(m = 1) I: SmB(m = 2)
UGM/EM PPP/EM UGM/EM PPP/EM UGM/EM PPP/EM UGM/EM PPP/EM

ϕover 0 0 51.5% 54.8% 26.9% 27.1% 27.5% 27.8%
M̄over N.A. N.A. 1.53 1.52 1.21 1.21 1.23 1.23
TRMSE
over (m) N.A. N.A. 30.97 40.07 2.84 2.87 2.85 2.88

θRMSE
over (o) N.A. N.A. 2.14 2.17 0.391 0.405 0.394 0.409

ϕunder 0.1% 0.1% 29.6% 27.1% 14.2% 14.0% 14.1% 13.8%
M̄under 1 1 1.50 1.46 1.09 1.09 1.10 1.09
TRMSE
under (m) 0.69 0.74 33.60 29.94 2.58 2.57 2.57 2.57

θRMSE
under (o) 0.0886 0.0903 3.28 3.09 0.317 0.316 0.317 0.316

ϕexact 99.9% 99.9% 18.9% 18.1% 58.9% 58.9% 58.4% 58.4%
TRMSE
exact (m) 2.55 2.52 46.88 47.86 3.06 3.06 2.97 2.98

θRMSE
exact (o) 0.306 0.303 4.60 4.64 0.431 0.430 0.429 0.428

TRMSE
all (m) 2.55 2.52 35.44 40.07 2.95 2.96 2.89 2.91

θRMSE
all (o) 0.306 0.303 3.06 3.00 0.409 0.412 0.408 0.412
t (s) 2.17 2.16 4.51 4.62 1.69 1.71 1.85 1.84

TABLE X
UGM/EM and PPP/EM Performance Using Different Initialization (“I:”) Approaches for Unknown pd = 0.9

I: Truth I: Clustering I: SmB(m = 1) I: SmB(m = 2)
UGM/EM PPP/EM UGM/EM PPP/EM UGM/EM PPP/EM UGM/EM PPP/EM

ϕover 0 0 52.1% 53.8% 33.6% 33.6% 34.7% 34.7%
M̄over N.A. N.A. 1.60 1.59 1.26 1.27 1.26 1.27
TRMSE
over (m) N.A. N.A. 37.92 29.36 2.44 2.46 2.49 2.50

θRMSE
over (o) N.A. N.A. 1.99 1.89 0.321 0.321 0.331 0.331

ϕunder 0.3% 0.3% 28% 27.2% 9.9% 9.9% 8.9% 8.9%
M̄under 1 1 1.48 1.48 1.03 1.03 1.03 1.03
TRMSE
under (m) 1.41 1.40 27.82 25.97 2.55 2.58 2.29 2.36

θRMSE
under (o) 0.245 0.244 2.68 2.52 0.281 0.284 0.263 0.269

ϕexact 99.7% 99.7% 19.9% 19% 56.5% 56.5% 56.4% 56.4%
TRMSE
exact (m) 2.23 2.22 43.77 52.87 2.95 2.96 2.99 3.00

θRMSE
exact (o) 0.275 0.273 4.39 4.35 0.377 0.380 0.388 0.391

TRMSE
all (m) 2.23 2.21 37.59 35.14 2.76 2.77 2.77 2.79

θRMSE
all (o) 0.275 0.273 2.83 2.71 0.352 0.354 0.361 0.364
t (s) 2.22 2.22 4.88 4.92 1.97 1.95 2.21 2.19

Although it indicates that there are more targets than
the truth, all real targets have actually been identified.

Fig. 8 compares the performance of the EM-based
algorithm with both UGM and PPP formulations
(UGM/EM and PPP/EM) with initialization at the truth
for different known expected numbers of false alarms
(or false alarm rate) in a scenario where ten sensors are
used to locate four targets. The quality of the cardinality,
location, and bearing estimates using both formulations
is almost identical for the same pd value, which demon-
strates the effectiveness of the UGM formulation to in-
corporate the false alarm rate when it is known.

E. Assignment Algorithms and EM-Based Algorithms

In Sections VI-C and VI-D, the two types of
algorithms—the assignment algorithms and the EM-

based algorithms—were evaluated separately accord-
ing to their assumed target-originated measurement
models (Bernoulli and Poisson, respectively). Since the
Bernoulli measurement model is the more realistic one,
the target measurements are generated in the next eval-
uation according to this Bernoulli measurement model
for comparing all the algorithms. Therefore, there is no
measurement model mismatch for the assignment algo-
rithms, but there is a measurement model mismatch for
the EM-based algorithms.

Tables XI–XIII compare the assignment algorithms
andEM-based algorithmswith assignment-based initial-
ization. In this case, one may consider the EM-based al-
gorithms as postprocessing procedures. Such a process-
ing increases the entire processing time and only leads to
an insignificant improvement of the estimation accura-
cies. However, it reflects the capability of the EM-based
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Fig. 8. The performance (in terms of ϕexact,TRMSE
all , and θRMSE

all ) of UGM/EM and PPP/EM in scenarios with different known expected
number of false alarms (0.25, 0.5, 1, 2, 4, and 8) for true pd values at 0.7, 0.8, and 0.9.

TABLE XI
Performance Comparison Among S-D Assignment, Sequential m-Best (SmB) 2-D Assignment, and EM-Based Algorithms (With Different

Initializations “I:”) for pd = 0.9 (Ns = 6)

Assignment I: SmB(m = 2) I: SmB(m = 4)
S-D SmB(m = 2) SmB(m = 4) UGM/EM PPP/EM UGM/EM PPP/EM

ϕover 2.0% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4%
M̄over 1 1 1 1 1 1 1
TRMSE
over (m) 14.24 3.55 3.55 3.54 3.54 3.54 3.54

θRMSE
over (o) 0.640 0.306 0.306 0.307 0.307 0.307 0.307

ϕunder 1.9% 0.4% 0.3% 0.4% 0.4% 0.3% 0.3%
M̄under 1 1 1 1 1 1 1
TRMSE
under (m) 18.14 2.86 2.91 2.86 2.86 2.91 2.91

θRMSE
under (o) 0.792 0.279 0.286 0.279 0.279 0.286 0.286

ϕexact 96.1% 99.2% 99.3% 99.2% 99.2% 99.3% 99.3%
TRMSE
exact (m) 9.44 4.42 4.42 4.41 4.41 4.40 4.40

θRMSE
exact (o) 0.832 0.318 0.318 0.318 0.318 0.318 0.318

TRMSE
all (m) 9.74 4.41 4.42 4.40 4.40 4.40 4.40

θRMSE
all (o) 0.828 0.318 0.318 0.318 0.318 0.318 0.318
t (s) 0.568 0.096 0.162 0.181 0.190 0.249 0.247
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TABLE XII
Performance Comparison Among S-D Assignment, Sequential m-Best (SmB) 2-D Assignment, and EM-Based Algorithms (With Different

Initializations “I:”) for pd = 0.8 (Ns = 6)

Assignment I: SmB(m = 2) I: SmB(m = 4)
S-D SmB(m = 2) SmB(m = 4) UGM/EM PPP/EM UGM/EM PPP/EM

ϕover 0.6% 0.5% 0.4% 0.4% 0.3% 0.3% 0.3%
M̄over 1 1 1 1 1 1 1
TRMSE
over (m) 4.21 6.75 6.74 5.69 6.27 6.26 6.26

θRMSE
over (o) 0.302 0.423 0.421 0.367 0.395 0.396 0.395

ϕunder 25.4% 7.2% 7.5% 7.2% 7.2% 7.5% 7.5%
M̄under 1.23 1.03 1.03 1.03 1.03 1.03 1.03
TRMSE
under (m) 30.12 5.55 5.49 5.19 5.19 5.14 5.14

θRMSE
under (o) 1.58 0.369 0.367 0.359 0.359 0.358 0.358

ϕexact 74.0% 92.3% 92.1% 92.4% 92.5% 92.2% 92.2%
TRMSE
exact (m) 12.86 5.15 5.11 5.08 5.08 5.05 5.05

θRMSE
exact (o) 1.06 0.362 0.359 0.358 0.358 0.356 0.356

TRMSE
all (m) 17.49 5.18 5.14 5.09 5.09 5.06 5.06

θRMSE
all (o) 1.18 0.362 0.360 0.358 0.359 0.356 0.356
t (s) 0.420 0.070 0.141 0.151 0.148 0.231 0.237

TABLE XIII
Performance Comparison Among S-D Assignment, Sequential m-Best (SmB) 2-D Assignment, and EM-Based Algorithms (With Different

Initializations “I:”) for pd = 0.7 (Ns = 6)

Assignment I: SmB(m = 2) I: SmB(m = 4)
S-D SmB(m = 2) SmB(m = 4) UGM/EM PPP/EM UGM/EM PPP/EM

ϕover 0.3% 0 0 0 0 0 0
M̄over 1 N.A. N.A. N.A. N.A. N.A. N.A.
TRMSE
over (m) 6.30 N.A. N.A. N.A. N.A. N.A. N.A.

θRMSE
over (o) 0.382 N.A. N.A. N.A. N.A. N.A. N.A.

ϕunder 57.4% 27.6% 27.5% 27.6% 27.6% 27.5% 27.5%
M̄under 1.46 1.14 1.14 1.14 1.14 1.14 1.14
TRMSE
under (m) 35.24 7.10 6.96 5.69 5.68 5.65 5.65

θRMSE
under (o) 2.19 0.402 0.400 0.383 0.383 0.381 0.382

ϕexact 42.3% 72.4% 72.5% 72.4% 72.4% 72.5% 72.5%
TRMSE
exact (m) 14.90 7.44 6.96 7.27 7.27 6.88 6.86

θRMSE
exact (o) 0.911 0.872 0.860 0.864 0.864 0.851 0.851

TRMSE
all (m) 26.29 7.37 6.96 6.96 6.96 6.63 6.62

θRMSE
all (o) 1.63 0.795 0.785 0.786 0.786 0.775 0.775
t (s) 0.318 0.058 0.127 0.126 0.133 0.191 0.196

algorithm to solve the data association problem.Associ-
ating the measurements with a good degree of accuracy
requires a good initialization, such as the assignment ap-
proach. In this case, although there is a mismatch in the
measurement model, the EM-based algorithms estimate
the number of targets, target locations, and target direc-
tions quite accurately due to the fact that the initializa-
tion by the SEQ[m(2-D)] assignment algorithm is close
to the truth.

VII. CONCLUSION

This paper considers the problem of multiple tran-
sient emitter localization using a network of passive sen-

sors. It is assumed that the number of targets as well
as the association between measurements and targets
is unknown and in the presence of missed detections
and false alarms. Two different measurement models—
the Bernoulli measurement model and the Poisson mea-
surement model—are considered for each target and
two types of algorithms—assignment- and EM-based—
are presented, one for each measurement model. Sim-
ulation studies show that the SEQ[m(2-D)] assignment
algorithm has very promising performance and can be
employed in real-time applications.While the EM-based
algorithms have the capability of solving the data as-
sociation problem, simulation results suggest that they
require the right initial estimates to provide reliable
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localization results and the processing time could be
longer than required. The fusion algorithms discussed in
this paper assume that there is a fusion center to which
each sensor can communicate. Fusion algorithms, which
assume that no such fusion center exists and allow dis-
tributed processing and only single-hop communication,
are developed in [10].

APPENDIX A PROOF OF PROPOSITION 1

For notational simplicity, let us denote

ai =
Ns∑
�=1

n�∑
j=1

w
(n−1)
� ji , i = 0, 1, . . . ,N (100)

pi = pd(Ti), i = 1, 2, . . . ,N (101)

p = [p1, p2, . . . , pN] (102)

hi(p) = pi − 1. (103)

Substituting (25) into (45), the problem becomes

maximize
p

f (p) = a0 lnNfa +
N∑
i=1

ai ln pi

−
( N∑

i=0

ai

)
ln
( N∑

i=1

pi +Nfa

)

subject to hi(p) ≤ 0, i = 1, . . . ,N. (104)

Let μi be a Lagrange multiplier corresponding to pi ≤ 1
and μ = [μ1, μ2, . . . , μN]. The Lagrangian is

L(p, μ) = f (p) +
N∑
i=1

μi(0 − hi(p)). (105)

From the KKT conditions, the optimal values of p and
μ satisfy the following system of equations and inequal-
ities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = ∂ f
∂pi

− μi
∂hi
pi

= ai
pi

−
∑N

i=0 ai∑N
i=1 pi +Nfa

− μi,

i = 1, 2, . . . ,N (106)

0 = μihi(p) = μi(pi − 1), i = 1, 2, . . . ,N (107)

0 ≤ μi, i = 1, 2, . . . ,N. (108)

We need to break the analysis into cases according to
(107).

Case 1: If

μi = 0, i = 1, 2, . . . ,N (109)

then (106) is simplified to

pi =
ai
(∑N

k=1 pk +Nfa
)

∑N
i=0 ai

. (110)

Summing over i from 1 to N, we have

N∑
i=1

pi =
N∑
k=1

pk =
∑N

i=1 ai
(∑N

k=1 pk +Nfa
)

∑N
i=0 ai

(111)

which can be simplified to

N∑
k=1

pk =
∑N

i=1 aiNfa

a0
. (112)

Substituting (112) into (110), we have

pi = aiNfa

a0
. (113)

The feasibility of this solution depends on whether
aiNfa/a0 is greater than 1. Let

S = {i |aiNfa > a0}. (114)

If the set S is empty, (113) will be the optimal solution
for p. If the set S is not empty, then we must have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = μihi(p) = μi(pi − 1), i /∈ S (115)

0 ≤ μi, i /∈ S (116)

0 = pi − 1, i ∈ S (117)

0 < μi, i ∈ S. (118)

Case 2: If⎧⎪⎨
⎪⎩

0 = μi, i /∈ S (119)

1 = pi, i ∈ S (120)

then (106) is simplified to

pi = ai
(∑

k/∈S pk + |S| +Nfa
)

∑N
i=0 ai

, i /∈ S. (121)

Summing over i that is not in the set S and solving for∑
i/∈S pi, ∑

i/∈S
pi =

∑
i>0,i/∈S ai(|S| +Nfa)∑

i>0,i∈S ai + a0
. (122)

Substituting (122) into (121), we have

pi = ai(|S| +Nfa)∑
i>0,i∈S ai + a0

, i /∈ S. (123)

Since

aiNfa > a0, i ∈ S (124)

we have ∑
i>0,i∈S

aiNfa > |S|a0 (125)

∑
i>0,i∈S

aiNfa + a0Nfa > |S|a0 + a0Nfa (126)
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Nfa

a0
>

|S| +Nfa∑
i>0,i∈S ai + a0

. (127)

Since

aiNfa ≤ a0, i /∈ S (128)

we have

pi = ai(|S| +Nfa)∑
i>0,i∈S ai + a0

<
aiNfa

a0
≤ 1, i /∈ S (129)

which verifies the feasibility of the solution consisting of
(120) and (123).One can summarize the two cases as fol-
lows:

pi =
⎧⎨
⎩
1, if i ∈ S
ai(|S| +Nfa)∑
i>0,i∈S ai + a0

, if i /∈ S (130)

which is equivalent to (58) because of (100) and (101).
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Arabic Dynamic Gesture
Recognition Using Classifier
Fusion
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Sign language is a visual language that is the primary way used by

hearing-impaired people in order to connect and communicate with

each other and with their societies. Some studies have been conducted

on Arabic sign language (ArSL) recognition systems, but a practically

deployable system for real-time use is still a challenge.Themain objec-

tive of this paper is to develop a novel model that is able to recognize

the ArSL using Microsoft’s Kinect V2. This paper works on the dy-

namic gestures that are performed by both hands and body parts, and

introduces an effective way of capturing and detecting the hand and

skeleton joints from the depth image that is provided by Kinect. The

model used two supervised machine learning algorithms, support vec-

tor machine (SVM) andK-nearest neighbors (KNN), and then applied

Dezert–Smarandache theory (DSmT) as a fusion technique in order to

combine their results.We compared the results of the proposed model

with the Ada-Boosting technique and finally applied two most widely

usedmethods that are usedwith dynamic gesture recognition, dynamic

time warping (DTW) and hidden Markov model (HMM), to compare

their results with the previous classifier fusion. Finally, we applied the

model on ArSL dataset that is composed of 40 Arabic medical signs to

ease the communication between hearing-impaired patients and their

doctor. The accuracy of the model is improved when the classifier fu-

sion is applied compared to using each classifier separately.The overall

accuracies for SVM, KNN, DSmT fusion, and Ada-Boosting are 79%,

89%, 91.5%, and 90.2%, respectively. Also, DTW and HMM achieved

overall accuracies of 82.6% and 79.5%, respectively.

I. INTRODUCTION

Sign language is the most basic way for hearing-
impaired people to connect and interact with each other
and integrate with their societies. The main problem
is that most of the normal people do not understand
sign language [1]. Therefore, the need to develop an au-
tomatic system that is capable of translating sign lan-
guages into understandable words and sentences is be-
coming very necessary. There are two main approaches
to sign language recognition systems: vision-based ap-
proach and sensor-based approach. The main advantage
of the vision-based system is that there is no need to use
complex devices, so it has low cost and does not need
pre-setup, but this approach requires extra calculations
in the preprocessing stage, image processing, and artifi-
cial intelligence to recognize and interpret signs. Also, it
suffers from the background problems because it needs
subtraction techniques to subtract the signer from the
background and it may fail if the background changes.
Sensor-based systems provide robust, reliable, and more
accurate data, but they are not user-friendly like vision-
based systems because they require extra equipment like
data gloves. The user is required to wear the gloves in
order to collect the data, so this approach is not practi-
cal [2]. Microsoft Kinect is a motion sensing input de-
vice that is developed by Microsoft. It provides live
streams of depth information about the skeleton joints
and body motion. This information is essential to con-
struct the three-dimensional (3-D) view of the tracked
objects. It used to track standing skeleton with high-
depth fidelity, so compared with other depth sensors,
Kinect is the best choice in short-range environment [3].
Kinect also has an RGB camera, voice recognition ca-
pability, face-tracking capabilities, and access to the raw
sensor records. Once the data have been collected from
the user, the recognition system, whether it is sensor-
based or image-based, must use these data for process-
ing to recognize the signs [4]. Several approaches have
been proposed for sign recognition, the most important
and effective approach being that using machine learn-
ing algorithms. It can handle the complexity and the dif-
ferentiation of sign language gestures [5]. Also, it can
handle the different manners in which the people repeat
different signs [6]. Machine learning algorithms such
as neural networks, support vector machines (SVMs),
K-nearest neighbors (KNN), decision tree models, etc.
have been focused on the classification stage of recog-
nizing a gesture captured from the signer. The single
sign classifier assumes that signs are presegmented, and
it recognizes sign by sign rather than continuous sen-
tences. It is supposed to automate the process of split-
ting a sentence into words, which is called segmentation.
Segmentation is one of the major issues of information
processing in sign languages. Motion speed during cap-
turing of continuous sentences may be used as a seg-
menter. It is noticeable that the motion speed is changed
while performing the signs, and when the transition from
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one sign to another occurs, the motion speed is slowed
down.

The main aim of this paper is to develop an Ara-
bic sign language (ArSL) recognition system that iden-
tifies the Arabic signs captured by Microsoft Kinect
based on the data that represent body and hand mo-
tion. These data will be excluded from the depth im-
age information obtained from the Kinect sensor. How-
ever, Kinect cannot accurately detect the hand move-
ment and also the details of fingers, but we overcame
such limitations and introduced an effective and sim-
ple method for hand detection. We used two machine
learning algorithms, KNN and SVM, and introduced an
effective fusion method based on Dezert–Smarandache
theory (DSmT) to combine the classifier results and en-
hance the accuracy.Also,we applied two directmatching
algorithms, dynamic time wrapping (DTW) and hidden
Markov model (HMM), to compare the results of fusion
with other dynamic gesture recognition techniques. The
structure of this paper is organized as follows. Section II
presents the related work of the sign language recogni-
tion. The methodology is presented in Section III. The
experimental setup and results are presented in Section
IV. Section V contains conclusion and future work.

II. RELATED WORK

Sign language is a combination of words that are rep-
resented by using movements of different body parts
such as head, shoulders, elbow, wrist, etc. and finally
added to the hand signs to create a meaning [7]–[11].
Many researchers aimed to build an automated sys-
tem in order to translate ArSL to Arabic text or voice.
ArSL research works faced several difficulties; for ex-
ample, it is not defined well and the works in it started
in the last decade. However, in ArSL, there are more
than 9000 signs and it uses 26 hand postures and 5 dy-
namic gestures in order to represent the Arabic alpha-
bet. There is a variation in ArSL among the different
Arabic countries. Some Arabic countries have their own
sign language, such as Tunis, Gulf countries, Egypt, etc.
We are concerned with ArSL in Egypt. The organiza-
tion of ArSL in Egypt has started in 1983, and there are
7 million hearing-impaired persons till the last studies
performed by United Nations. This is a large number,
so they need to be merged with their societies as any
normal person. As explained earlier, there are mainly
two approaches for sign recognition: 1) vision-based ap-
proach and 2) sensor-based approach. For vision-based
approach, there are several ArSL recognition works,
such as an Arabic sign recognition model developed by
Mohandes et al. for Arabic alphabet recognition, using
SVMas a classifier with an accuracy of 87% [12].Ahmed
et al. also proposed a model for sign language recog-
nition. Several statistical analyses were performed on
the data extracted from the collected images to create
the feature vector that is input to an SVM. The model
was tested on ten letters and the accuracy was 83%.

They suggested building a real-time system that is able
to work on both dynamic and static signs [13]. Maraqa
and Abu-Zaiter developed a static and dynamic ArSL
recognition system by applying feedforward and recur-
rent neural networks on the features extracted from
the captured images. They tested the proposed system
on 30 gestures and achieved an accuracy of 95% [14].
Assaleh and Al-Rousan developed ArSL recognition
for alphabet signs based on polynomial classifiers; they
compared the results of the system with the previously
published results using Artificial Neural Network Fuzzy
Inference System (ANFIS)-based classification on the
same dataset and feature extraction method. The com-
parison showed significant improvement, and the mis-
classified patterns were reduced by 36% on the train-
ing set and by 57% on the test set [15]. Al-Jarrah and
Al-Omari developed an automatic system for Arabic
alphabet recognition with an accuracy of 97.5% [16].
Also, El-Bendary et al. proposed a sign language recog-
nition system for the Arabic alphabets, which dealt
with the images of bare hands that allow the user
to interact naturally with the system and achieved an
accuracy of 91.3% [17]. For a sensor-based approach,
Assaleh et al. proposed a low-complexity word-based
classification for ArSL recognition system using two
DG5-VHand data gloves, and the recognition rates
were 92.5% and 95.3% for user-independent and user-
dependent modes, respectively [18]. Mohandes pro-
posed an ArSL recognition system using CyberGlove
in order to track 100 two-handed signs with 20 sam-
ples and achieved an accuracy of 99.6% [19]. Sadek et
al. proposed a hand gesture recognition system using
a smart glove that was designed from a set of sensors;
the recognition was based on a statistical analysis of
the hand shape while performing the 1300 words of the
ArSL [20]. Hemayed and Hassanien (2010) presented
Arabic alphabets recognition system, the alphabets signs
were converted into speech but the system cannot op-
erate in real time, the model was built based on the
vision-based, the system take the colored images as in-
put also they used Prewitt edge detector in order to de-
tect the hand shape. KNN (K-Nearest Neighbour) was
used in the classification phase [21]. Recently, some re-
searchers used active devices such as Microsoft Kinect
and Leap Motion controller (LMC). Almasre and Al-
Nuaim proposed hand gesture recognition systems us-
ing supervised machine learning that predicts the hand
pose using two sensors, Microsoft Kinect and LMC, de-
pending on the depth images. They collected data re-
garding 28 letters from different signers and the results
achieved about 100% detection rate in recognizing 22
letters from 28 Arabic letters [22]. ElBadawy et al. pro-
posed a system that integrates a set of different types
of sensors to capture all sign features. They used LMC
in order to capture hands with finger movements, and
also used two digital cameras to capture face features
and body movement. They applied their system on 20
dynamic signs and the system achieved an accuracy of
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95% [23]. Aliyu et al. proposed a Kinect-based system
for ArSL recognition; the system was applied to 20 signs,
and they used linear discriminant analysis for feature re-
duction and sign classification.Furthermore, fusion from
RGB and depth sensor was carried out at feature and
the decision level and it achieved an overall accuracy of
99.8% [24]. Jmaa et al. proposed a new approach based
on hand gesture analysis for ArSL alphabet recognition
by extracting a histogram of oriented gradient features
from a hand image and then using them to train SVM
models.Their approach involved three steps: 1) hand de-
tection and localization using a Microsoft Kinect cam-
era; 2) hand segmentation; and 3) feature extraction us-
ing Arabic alphabet recognition. The results showed an
accuracy of about 90% [25]. Mohandes et al. developed
a new model for ArSL recognition in order to detect
and track at least one hand and one finger; two differ-
ent sensors in two different locations in a room generate
3-D interaction space. They used a classifier integrated
with two different sensors, LMC and Microsoft Kinect,
and 28 Arabic alphabet signs were performed in the in-
teraction space [26]. Almasre and Al-Nuaim proposed
a model to recognize the hand gestures of ArSL words
using two depth sensors. They examined 143 signs ges-
tured by 10 users for 5ArSLwords.The sensors captured
depth images of the upper human body, from which 235
angles (features) were extracted for each joint and be-
tween each pair of bones. The dataset was divided into a
training set (109 observations) and a testing set (34 ob-
servations). They used an SVM classifier with different
parameters in order to proceed with four SVM models,
with linear kernel (SVMLDand SVMLT) and radial ker-
nel (SVMRD and SVMRT) functions. The accuracy of
the words in the training set for the SVMLD, SVMLT,
SVMRD, and SVMRT models was 88.92%, 88.92%,
90.88%, and 90.884%, respectively. The accuracy of the
testing set for SVMLD, SVMLT, SVMRD, and SVMRT
was 97.059%, 97.059%, 94.118%, and 97.059%, respec-
tively [10]. Several sign language recognition research
works were performed based on data fusion. Rashid
et al. developed a multimodal system in order to com-
bine both gestures and postures for recognizing alpha-
bets and numbers; the fusion was done on the decision
level. The gesture recognition system was trained us-
ing HMM and was concerned with the dynamic mo-
tion. The posture recognition system was trained using
SVM and was concerned with the static hand at the
same time. They applied Gaussian distribution on the
captured 3-D depth information to detect and segment
gestures and postures. Then, feature vectors were con-
structed and extracted from spatial and temporal hand
properties. Finally, they used the rule of and/or combi-
nation to state the decision; the model achieved an ac-
curacy of 98% for alphabet and number gestures [27].
Song et al. introduced a model of gesture recognition us-
ing Microsoft Kinect. The 3-D position data regarding
all body skeleton joints were captured using Kinect, and
then the features of interest for each gesture were ex-

tracted. They segmented the gestures in real time and fi-
nally applied the data fusion approach on the decision
level by combining the decision of the trained Gaus-
sianmixturemodel andHMM.They applied their model
on seven common gestures and achieved an accuracy
of 94.36% [28]. Kishore and Rajesh Kumar presented
an Indian sign language recognition system. They ex-
tracted the features from the captured video using two
algorithms, Fourier descriptions and principal compo-
nent analysis, and finally performed fusion on the level
of features and applied a Sugeno-type fuzzy inference
system. The system was applied on 80 common Indian
signs and achieved an accuracy of 96% [29]. Penelle and
Debeir proposed a data fusion system using Leap Mo-
tion and Microsoft Kinect sensors to improve hand
recognition accuracy [30].ElBadawy et al.proposed a hy-
brid system using LMC and two digital cameras. They
used LMC for finger tracking and the digital cameras
for body movement tracking with facial emotions. The
proposed system was applied by a neural network on
20 Arabic signs with an accuracy of 95% [23]. Marin et
al. proposed a framework to recognize static American
signs. They used LMC for fingers and captured features
based on distance, while Kinect was used for capturing
features based on body and correlation. The proposed
system applied SVM with an accuracy of 91% [31]. Fok
et al. proposed a data fusion system based on two de-
vices. Kalman filter was used for fusion and HMM was
used for sign recognition.They applied the system on ten
American digits [32]. Yang et al. proposed an optimized
framework based on a tree structure classificationmodel
using three sensors, sEMG,ACC, and GYRO, to get the
best performance as a single sensor, two-sensor fusion,
and three-sensor fusion.The final recognition rates were
94.31% and 87.02% for 150 Chinese sign language sub-
words by two test scenarios [33]. Sadek et al. proposed
a hand gesture recognition using a smart glove that was
designed from a set of sensors; the recognition was based
on a statistical analysis of the hand shape while per-
forming the 1300 words of the ArSL [20]. Kumar et al.
proposed a multisensor fusion framework for sign lan-
guage recognition using a coupled HMM. They used
Microsoft Kinect and LMC [34]. Sun et al. proposed a
weighted fusion method based on Dempster–Shafer ev-
idence theory (DST). The proposed recognition method
depends onKinect and sEMG signal.The average recog-
nition rate was about 87% [35]. Mohandes et al. pro-
posed ArSL recognition for the Arabic alphabets using
two LMCs and applied DST. They tested the system us-
ing ten cross-validations. The first LMC achieved an ac-
curacy of 93.077% and the second LMC achieved an ac-
curacy of 89.907%. Then, they applied the DST on the
feature level and on the decision level. The achieved ac-
curacy reached 97.686% and 97.053%, respectively [26].
The main contribution of our proposed model is apply-
ing the data fusion on the decision level by combin-
ing the results of the two classifiers, KNN and SVM,
using an effective fusion technique (DSmT). This
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combination enhanced the accuracy of the system and
made it robust rather than depending on single classi-
fier. We have to mention that ArSL is not a unified lan-
guage and varies from one country to another, so we fo-
cused on the Egyptian ArSL that is most generally com-
prehended by Arabs. The works of data fusion in sign
language recognition, especially the ArSL, are very rare,
so our research introduces a way for improving the ex-
isting sign language recognition systems by applying the
concept of data fusion techniques that make the system
robust and more reliable.

III. METHODOLOGY

In this section, we will discuss the structure of our
proposed system for ArSL recognition using Microsoft
Kinect. We describe the various phases of our system
from capturing the gestures using Kinect till the ges-
ture recognition. The structure of the proposed model
is shown in Fig. 1. The first step in the proposed model is
the data acquisition phase that occurs when the Kinect
depth camera starts capturing the skeleton of standing
signer in front of the Kinect camera and infers his/her
skeleton positions; the system receives joint informa-
tion such as type and coordinates, bone orientation, and
motion velocity as a stream of frames. The preprocess-
ing phase includes extracting the features of interest for

both signer skeleton joints and signer hands. Normal-
ization is applied on the collected frames to overcome
mainly two problems: first, the variation of user posi-
tion; and second, the variation of users’ sizes. Feature in-
tegration is used for fusing the hand features with the
skeleton features in order to form the final feature vec-
tor. Two classifiers, SVM and KNN, are applied and each
one works separately on the feature vector; these classi-
fiers work as two sources of information and the results
of each classifier can be considered as the basic belief as-
signment (BBA). The late fusion is applied using DSmT
to combine the BBA of both SVM and KNN; this in-
cludes applying the BBA fusion, applying proportional
conflict redistribution 5 (PCR5) rule, calculating the pig-
nistic probability, and finally recognizing the performed
sign according to the pignistic probability.We compared
the results of theDSmTwith theAd-Boosting algorithm
and also applied the direct matching techniques (DTW
andHMM) instead of the fusion model as an alternative
method for recognition in order to compare between
the fusion model and other dynamic gesture recognition
techniques.

A. Data Acquisition

In this step, we used Microsoft’s Kinect Version 2.0
to track the skeleton joints of the standing signer.Kinect
provides the information regarding color, depth, and

Fig. 1. Proposed model structure.
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Fig. 2. Points of the upper human body joint: 1—spine, 2—shoulder
center, 3—head, 4—right shoulder, 5—right elbow, 6—right wrist,
7—right hand, 8—left shoulder, 9—left elbow, 10—left wrist, and

11—left hand.

joint coordinates using its open-source SDK. The depth
information is captured frame by frame.So,whenKinect
depth camera starts, we capture the coordinates of 20
skeleton joints with a rate of 30 frames per second. In
our system, we are interested in the upper human joint
points as shown in Fig. 2.

B. Preprocessing

In this step,we are concernedwith the feature extrac-
tion, preparation, and normalization for both skeleton
and hands of the signer.

1) Feature Extraction The feature extraction step has
a very important role in distinguishing between the cap-
tured signs. The features are extracted from the se-
quences of depth information. The extracted features
from Kinect frames are divided into two parts: 1) skele-
ton joint features and 2) hand features.

a) Skelton joint features Kinect has the ability to infer
the positions of the detected objects, after studying the
selected signs carefully.We found that only ten joints of
the skeleton are required to represent and describe the
sign.These joints are hand (left and right), shoulder (left
and right), elbow (left and right), wrist (left and right),
spinemid,and head center.All signs are represented and
performedwith the upper part of the body and the lower
part remains static while performing the sign. The cap-
tured frames are required to be normalized in order to
overcome the variation in signer’s position and signer’s
size.

Position normalization The signer can be in any po-
sition while performing the sign as shown in Fig. 3 and
this variation can make a conflict to the model, so we
performed the position normalization. The captured co-
ordinates (X,Y,Z) for any joint are scaled by subtracting
them from the spine-mid coordinates.

Fig. 3. Position normalization.

The coordinates of the selected joints will be con-
verted from Cartesian coordinates X, Y, and Z into
spherical coordinates that are represented by (φ, θ , r) as
shown in Fig. 4.

The computation of the spherical coordinates is illus-
trated in the following equations:

n∑
i=1

r (i)

=
√
(J(i)x − S_Mx)

2 +
(
J(i)y − S_My

)2
+ (

J(i)z − S_Mz
)2
(1)

n∑
i=1

θ (i) = a tan 2

×
(√

(J(i)x−S_Mx)
2+

(
J(i)y −S_My

)2
, J(i)z −S_Mz

)

(2)

n∑
i=1

φ (i) = a tan 2
((
J(i)y − S_My

)
, (J(i)x − S_Mx)

)
(3)

Fig. 4. Spherical coordinates.
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Fig. 5. Size normalization.

where
n is the number of joints from J, r is the radial distance,
S_Mx is the x coordinate of spine-mid joint,
S_My is the y coordinate of spine-mid joint, and
S_Mz is the z coordinate of spine-mid joint.

Size normalization To overcome the problem aris-
ing from the variation of user’s size as shown in Fig. 5,we
normalized all the distances that result from the position
normalization step by a factor; in our model, we chose
this factor as (rH,S_M), which is the distance between the
head and spine mid as given in the following equation:

n∑
i=1

rnorm (i) = r (i)
rH,S_M

(4)

where
n is the number of joints from J,
rnorm is the normalized radial distance of the joint, and
rH,S_M is the radial distance from head center to spine
mid.

Finally, we selected another subset feature added to
the spherical coordinates of the selected joints in order
to enhance the recognition process as the difference in
distance between hand (left and right) and shoulder (left
and right). The total number of Kinect features ( fS) is
about 32 in spherical coordinates. These features are de-
noted by ( f1, f2, f3, . . . , f32), where the feature vector
consists of two sets:

Fig. 7. Hand detection.

1) {r, ∅} of right, left {hand, wrist, elbow, shoulder}
position.

HandLeft r,HandRight r,WristLeft r,WristRight r,

ElbowLeft r,ElbowRight r,Shoulder_Leftr,

Shoulder_Rightr

HandLeft φ,HandRight φ
,WristLeft φ,WristRight φ

,

ElbowLeft φ,ElbowRight φ
,Shoulder_Leftφ,

Shoulder_Rightφ

2) {r} of separation between right and left {hand,
wrist, elbow, shoulder} as shown in Fig. 6.

b) Hand features Adding the hand features to the
skeleton features will give a complete view and accu-
rate description of the performed sign. The extraction of
the hand features is based on the algorithm in [36]. The
methodology of hand feature extraction starts by detect-
ing hand joints of the tracked human body; the detected
coordinates (x, y, z) for the hand represent the palm cen-
ter. The next step is to specify where the search area of
the hand lies; this 3-D area can be limited by the cap-
tured hand and tip position as shown in Fig.7.After spec-
ifying the search area,all depth values that do not belong
to the hand area can be excluded. The fingers can be de-
tected by applying the algorithm of the convex hull on
the search area; the edges of the convex hull above the
wrist represent the fingertips as shown in Fig. 8.

Fig. 6. Features of joint separation. (a) Hand separation. (b) Elbow separation. (c) Elbow separation. (d) Shoulder separation.
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Fig. 8. Convex hull detection.

Finally, the total number of hand features ( fH) is
about 30 in Cartesian coordinates. These features are
denoted by ( f1, f2, f3, . . . , f30) where the feature vec-
tor consists of fingertip direction that is composed of 3-
D data 〈xi, yi, zi〉. After fingertip positions are detected,
the fingers’ direction vectors can be easily calculated by
subtracting the tip position of each finger from the palm
centerPC (px, py, pz).The vectors that are pointing from
the palm center to fingers can be calculated using the fol-
lowing equation:

VDirection = (( fx − px) , ( fy − py) , ( fz − pz)) . (5)

c) Feature integration Feature integration is the process
of integrating the feature vectors of both skeleton joint
features ( fS) and hand features ( fH) in order to pro-
duce the fused vector fc = { fS, fH}. The resultant fused
feature vector has a dimension of 62. It should be men-
tioned that the data sequence is synchronized perfectly
because they are coming from the same device.

C. Classification

Once the gesture features have been extracted, the
descriptor of gestures that the system must classify will
be formed. The goal of our system is to recognize the
gestures, so after extracting the features, we applied two
classifiers: KNN with K = 1 and SVM with RBF ker-
nel function (gamma = 0.48 and cost = 0.5). We chose
these classifiers after applying different classifiers on
the test set. They gave us the best accuracy, are widely
used in many pattern recognition applications such as
the handwritten digit recognition [37], and are efficient
in dealing with multiclass nonlinear classification prob-

lems. These two classifiers work as two sources of infor-
mation. It is better to use two classifiers rather than using
one classifier in order to improve the overall accuracy.
The combination of information from different sources
is critical, especially when developing a system that de-
pends on conflicting, imprecise, and uncertain data. In
the proposed model, each classifier takes the sequence
of frames that formed the single presegmented gesture
and classifies each frame separately to predict the class
that frame belongs to.However, there are similarities be-
tween some gestures so that, for example, if frames of
gestures enter into the classifier, the output may be clas-
sified by 70%of frames as Sign_ID= “1”, 10%of frames
as Sign_ID= 4,and 20%of frames as Sign_ID= 8.These
values were considered as BBA that will enter the fusion
phase.

To define BBA, letX be the universe that represents
all possible states of a system under consideration. In the
evidence theory, the BBA assigns belief mass to each el-
ement of the power set formed from the underlying uni-
verse X.We can consider the functionm : 2x → [0, 1] as
a BBA, when two conditions occurred:

1) The mass of the empty set is 0 (i.e.,m (∅) = 0).
2) The masses of the remaining members of the power

set add up to a total of 1 (
∑

A⊆2X m(A) = 1).

D. Late Fusion

The late fusion occurs by combining the results of the
two classifiers (SVM and KNN) and applying the rules
of DSmT. The fusion of these classifiers was done on
the measurement level, which is more confident. The ev-
idence (results of the classifier) is considered as BBA.

1) Dezert–Smarandache Theory DSmT is an effective
fusion method. It can deal with the uncertainty and the
data coming from highly conflicting sources. It allows the
combination of information that is coming from differ-
ent independent sources; this information is represented
in terms of belief function. Dezert–Smarandache rules
combine the conflict evidence accurately, so it is very suc-
cessful in problems of object recognition [38].

DSmT is a theory of plausible and paradoxical rea-
soning; it overcame the limitations of DST [39]. We can
summarize the comparison between DST and DSmT as
follows.

Let ϑ = {θ1, . . . , θn} is a finite set of hypotheses.

� The DST considers a discrete and finite frame of dis-
cernment θ based on a set of exhaustive and exclusive
elementary elements θ .

� The bodies of evidence are assumed independent and
provide their own belief function on the power set θ

but with same interpretation for θ [39].

DSmT has two types of models: 1) a free model that
combines the evidence without taking the integrity con-
straint into consideration and 2) a hybrid model that

72 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 14, NO. 1 JUNE 2019



Fig. 9. Fusion framework.

includes all operators such as union and intersection and
the constraints that are required to build the class �, so
it is used in real applications.

Based on that model, the hyper-power set is given by
ϑ = {θ1, . . . , θn} as a finite set (called frame) of n ex-
haustive elements. The free Dedekind’s lattice denoted
hyper-power set Dθ is defined as

1) ∅, θ1, . . . , θn ∈ Dθ .
2) If A, B ∈ Dθ , then A ∩ B and A ∪ B belong to Dθ .
3) No other elements belong to Dθ , except those ob-

tained by using rules 1 or 2 [38].

2) Basic Belief Assignment For any finite discrete
frame ϑ , we define a belief assignment as a mapping
m(·): Gθ→ [0, 1] associated with a given body of evi-
dence,B, that satisfies the following conditions:

m (∅) = 0 and
∑
A∈Gθ

m (A) = 1 (6)

whereGθ is a hyper-power set of �, which is = {∅, θ1, θ2,
θ1 � θ2, θ1 � θ2}.

In (6), m(A) is the generalization of BBA/mass,
where the belief function is defined as

Bel (A) �=
∑
B⊆A
B∈Gθ

m (B) . (7)

In DSmT, there is a two-level process: credal (for
combination of evidences) and pignistic (for decision
making); i.e.,when we need to take a decision,we should
depend on a probability function. The classical pignistic
probability transformation is defined as [38]

BetP {A} =
∑
X∈2θ

|X ∩A|
|X | m (X ) (8)

where |x| denotes the cardinality of x (with conven-
tion |∅|/|∅| = 1, when defining BetP{∅}). Decisions are
achieved by computing the expected utilities of the acts
using the subjective/pignistic BetP{�} as the probability
function needed to compute expectations. It is easy to
show that BetP{�} is a proper probability function [38].

TABLE I
BBA: Stage 1

“1” “2” “3” “4” “5” “6” “7” “8” “9” “10”

BBA (S1/KNN) 0.8 0 0 0.2 0 0 0 0 0 0
BBA (S2/SVM) 0.75 0.25 0 0 0 0 0 0 0 0

3) Fusion Framework As introduced earlier, we used
the DSmT for the beliefs of each evidence, and then
applied the combination rule. We summarize the fusion
framework in Fig. 9.

The belief calculation is computed using (6) and (7)
and then the conflict is redistributed using PCR5 rule,
which is the mathematical form to redistribute the con-
flicting mass to nonempty sets; the conflict mass should
be distributed to the elements that are involved in the
partial conflict with respect to theirmass, considering the
canonical form of the partial conflict as in (9). Finally,
the pignistic probability is calculated using (8) in order
to decide the performed sign according to the highest
probability.

mPCR5 (X ) = m12 (X )

+
∑

Y∈Gθ {X }
X∩Y=∅

[
m1(X )2m2 (Y )
m1 (X ) +m2 (Y )

+ m2(X )2m1 (Y )
m2 (X ) +m1 (Y )

]
.

(9)

The dataset contains 40 signs, so it is divided into
four parts in order to simplify the calculation. Sign_ID=
“1” is chosen as a common sign between the divided
datasets in order to relate them to each other.When the
test sign enters into the system, it will pass four stages of
fusion with each divided dataset. The goal is to calculate
the ranked pignistic probability in order to recognize the
performed sign.

The following calculation represents “tested sign
with Sign_ID = 1” when entered into the fusion frame-
work. As mentioned earlier, the first step of the model
is applying the classification using the two classifiers
(SVM and KNN) as two sources of information. Table I
presents the results of the two classifiers, which are con-
sidered as BBA.The first stage of fusion is done with the
first dataset that contains the signs with ID = 1, 2, …, 10.

The second step is applying the classical DSM com-
bination rule. Table II presents the fusion results of the

TABLE II
Fusion Output: Stage 1

“1” “2” “4” “1 � 2” “1 � 4” “2 � 4”

mDSm 0.6 0 0 0.2 0.15 0.05
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TABLE III
PCR5 Output: Stage 1

“1” “2” “4” “1 � 2” “1 � 4”

mPCR5 0.6 0.025 0.025 0.2 0.15

beliefs after applying the fusion rules.

m12 (A) �=
∑

X1 ,X2 ,...,Xk ∫Dθ

(X1∩X2∩···∩Xk )=A

k∏
i=1

mi (Xi) (10)

(1) = m1 (1) ·m2 (1) = 0.8 × 0.75 = 0.6

(2) = m1 (2) · m2 (2) = 0 × 0.25 = 0

(4) = m1 (4) · m2 (4) = 0.2 × 0 = 0

(1 ∩ 2) = m1 (1) · m2 (2) +m2 (1) ·m1 (2) = 0.2

(1 ∩ 4) = m1 (1) · m2 (4) +m2 (1) ·m1 (4) = 0.15

(2 ∩ 4) = m1 (2) ·m2 (4) +m2 (2) ·m1 (4) = 0.05.

Consequently, redistribute the conflict factor using
PCR5 rule.

Redistribute: “2 � 4 = �”.
So, we will distribute this conflict proportionally.

m12 (2) = 0.025

m12 (4) = 0.025.

Table III presents the values of the beliefs after ap-
plying PCR5 rule.

The pignistic probability can be obtained from the
above beliefs using (8). Table IV presents the pignistic
probability.

CM (1) = 3, CM (2) = 2, CM (4) = 2,

CM (1 ∩ 2) = 1, and CM (1 ∩ 4) = 1

P (1) = 1
2

×m12 (2) + 1
3

×m12 (1)

+1
2

×m12 (4) = 0.225

P (2) = 1
2

×m12 (2) + 1
3

×m12 (1) = 0.2125

P (4) = 1
2

×m12 (4) + 1
3

×m12 (1) = 0.2125

P (1 ∩ 2) = 1
1

×m12 (1 ∩ 2) = 0.2

P (1 ∩ 4) = 1
1

×m12 (1 ∩ 2) = 0.15.

TABLE IV
Pignistic Probability Output: Stage 1

“1” “2” “4” “1 � 2” “1 � 4”

Probability 0.225 0.2125 0.2125 0.2 0.15

TABLE V
BBA: Stage 2

“1” “11” “12” “13” “14” “15” “16” “17” “18” “19” “20”

BBA 0.64 0 0 0 0.2 0.16 0 0 0 0 0
(S1/KNN)
BBA 0.7 0 0 0 0.2 0.1 0 0 0 0 0
(S2/SVM)

Again, reprocess the sign in the second stage with
the second dataset, where ID = 11, 12, …, 20. Table V
presents the BBA for the second group.

Apply the classical DSM combination rule as in (10).
Table VI presents the fusion results of the second group.

(1) = m1 (1) ·m2 (1) = 0.64 × 0.7 = 0.469

(14) = m1 (14) ·m2 (14) = 0.2 × 0.2 = 0.04

(15) = m1 (15) ·m2 (15) = 0.16 × 0.1 = 0.016

(1 ∩ 14) = m1 (1) ·m2 (14) +m2 (1) · m1 (14) = 0.268

(1 ∩ 15) = m1 (1) ·m2 (15) +m2 (1) ·m1 (15) = 0.176

(14 ∩ 15) = m1 (2) · m2 (4) +m2 (2) · m1 (4)=0.052.

Consequently, redistribute the conflict factor using
PCR5 rule. Table VII presents the beliefs of the second
group after redistributing the conflict using PCR5 rule.

Redistribute:� = “14 � 15”.
So, we will distribute this conflict proportionally.

m12 (14) = 0.04 + (0.72 × 0.052) = 0.07744

m12 (15) = 0.016 + (0.28 × 0.052) = 0.03056.

The pignistic probability can be obtained from the
above beliefs using (8). Table VIII presents the pignistic
probability.

CM (1) = 3, CM (2) = 2, CM (4) = 2,

CM (1 ∩ 2) = 1, and CM (1 ∩ 4) = 1

P (1) = 1
2

×m12 (14) + 1
3

×m12 (1)

+1
2

×m12 (15) = 0.203

P (14) = 1
2

×m12 (14) + 1
3

×m12 (1) = 0.18853

P (15) = 1
2

×m12 (15) + 1
3

×m12 (1) = 0.16447

P (1 ∩ 14) = 1
1

×m12 (1 ∩ 14) = 0.268

P (1 ∩ 15) = 1
1

×m12 (1 ∩ 15) = 0.176.

TABLE VI
Fusion Output: Stage 2

“1” “14” “15” “1 � 14” “1 � 15” “14 � 15”

mDSm 0.448 0.04 0.016 0.268 0.176 0.052
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TABLE VII
PCR5 Output: Stage 2

“1” “14” “15” “1 � 14” “1 � 15”

mPCR5 0.448 0.07744 0.03056 0.268 0.176

Again, reprocess the sign in the third stage with
the third dataset, where ID = 21, 22, …, 30. Table IX
presents the BBA of the third group.

Apply the classical DSM combination rule as in (10).
Table X presents the fusion results of the third group.

(1) = m1 (1) ·m2 (1) = 0.8 × 0.7 = 0.56

(24) = m1 (24) ·m2 (24) = 0.2 × 0.1 = 0.02

(26) = m1 (26) ·m2 (26) = 0 × 0.2 = 0

(1 ∩ 24) = m1 (1) ·m2 (24) +m2 (1) ·m1 (24) = 0.22

(1 ∩ 26) = m1 (1) ·m2 (26) +m2 (1) ·m1 (26) = 0.16

(24 ∩ 26) = m1 (2) ·m2 (4) +m2 (2) ·m1 (4) = 0.04.

Consequently, redistribute the conflict factor using
PCR5 rule. Table XI presents the beliefs of the third
group after redistributing the conflict using PCR5 rule.

Redistribute:= �“24 � 26”.
So, we will distribute this conflict proportionally.

m12 (24) = 0.02 + (0.04) = 0.06.

The pignistic probability can be obtained from the
above beliefs using (8). Table XII presents the pignistic
probability.

CM (1) = 3, CM (2) = 2, CM (4) = 2,

CM (1 ∩ 2) = 1, and CM (1 ∩ 4) = 1

P (1) = 1
2

×m12 (24) + 1
3

×m12 (1)

+1
2

×m12 (26) = 0.2167

P (24) = 1
2

×m12 (24) + 1
3

×m12 (1) = 0.217

P (26) = 1
2

×m12 (15) + 1
3

×m12 (1) = 0.1867

P (1 ∩ 24) = 1
1

×m12 (1 ∩ 14) = 0.22

P (1 ∩ 26) = 1
1

×m12 (1 ∩ 15) = 0.16.

TABLE VIII
Pignistic Probability Output: Stage 2

“1” “14” “15” “1 � 14” “1 � 15”

DSm 0.203 0.18853 0.16447 0.268 0.176

TABLE IX
BBA: Stage 3

“1” “21” “22” “32” “24” “25” “26” “27” “28” “29” “30”

BBA 0.8 0 0 0 0.2 0 0 0 0 0 0
(S1/KNN)
BBA 0.7 0 0 0 0.1 0 0.2 0 0 0 0
(S2/SVM)

Again, reprocess the sign in the fourth stage with the
fourth dataset, where ID = 31, 32, …, 40. Table XIII
presents the BBA of the fourth group.

Apply the classical DSM combination rule as in
(10). Table XIV presents the fusion results of the fourth
group.

(1) = m1 (1) ·m2 (1) = 0.9 × 0.95 = 0.855

(35) = m1 (35) ·m2 (35) = 0.05 × 0.03 = 0.0015

(39) = m1 (39) ·m2 (39) = 0.05 × 0.2 = 0.001

(1∩ 39) =m1 (1) ·m2 (39) +m2 (1) ·m1 (39) = 0.0655

(1∩ 35) =m1 (1) ·m2 (35) +m2 (1) ·m1 (35) = 0.0745

(39 ∩ 35) = m1 (39) ·m2 (35)

+m2 (39) ·m1 (35) = 0.0025.

Consequently, redistribute the conflict factor using
PCR5 rule. Table XV presents the beliefs of the fourth
group after redistributing the conflict using PCR5 rule.

Redistribute:� = “35 � 39”.
So, we will distribute this conflict proportionally.

m12 (39) = 0.001 + (0.001) = 0.002

m12 (35) = 0.0015 + (0.0015) = 0.003.

The pignistic probability can be obtained from the
above beliefs using (8). Table XVI presents the pignistic
probability.

CM (1) = 3, CM (2) = 2, CM (4) = 2,

CM (1 ∩ 2) = 1, and CM (1 ∩ 4) = 1

P (1) = 1
2

×m12 (39) + 1
3

×m12 (1)

+1
2

×m12 (35) = 0.2875

P (35) = 1
2

×m12 (35) + 1
3

×m12 (1) = 0.2865

P (39) = 1
2

×m12 (15) + 1
3

×m12 (1) = 0.286

TABLE X
Fusion Output: Stage 3

“1” “24” “26” “1 � 24” “1 � 26” “24 � 26”

mDSm 0.56 0.02 0 0.22 0.16 0.04
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TABLE XI
PCR5 Output: Stage 3

“1” “24” “26” “1 � 24” “1 � 26”

mPCR5 0.56 0.06 0 0.22 0.16

P (1 ∩ 39) = 1
1

×m12 (1 ∩ 14) = 0.0655

P (1 ∩ 35) = 1
1

×m12 (1 ∩ 15) = 0.0745.

Table XVII shows the results of pignistic probabili-
ties of the four stages by combining Tables IV,VIII,XII,
and XVI in which the Sign_ID is chosen by taking the
higher probability value. So, from Table XVII the per-
formed sign is Sign_ID = 1 with the highest probability
of 0.2875.

E. Ada-Boosting and Majority Voting

It is one of the fusion techniques that was first in-
troduced by Freund and Schapire in 1996. The ensem-
ble classifier is constructed from multiple weak classi-
fiers. The single classifier can act poorly, but the results

TABLE XII
Pignistic Probability Output: Stage 3

“1” “24” “26” “1 � 24” “1 � 26”

DSm 0.2167 0.2167 0.1867 0.22 0.16

TABLE XIII
BBA: Stage 4

“1” “31” “32” “33” “34” “35” “36” “37” “38” “39” “40”

BBA 0.9 0 0 0 0 0.05 0 0 0 0.05 0
(S1/KNN)
BBA 0.95 0 0 0 0 0.03 0 0 0 0.02 0
(S2/SVM)

of multiple classifiers are expected to be more accurate.
We applied the Ada-Boosting method on the two classi-
fiers (SVMandKNN) and becausewe deal with dynamic
gestures (i.e., the captured sign cannot be represented
by single frame), so after applying the Ada-Boosting on
the received frames, the result is finally selected by ma-
jority voting. The main idea of Ada-Boosting is to give
higher importance to the more accurate classifiers in the
sequence, so it starts by giving equal weights to each ob-
servation in dataset. If the prediction of the first classifier
is incorrect, then it gives the highest weight to the ob-
servation with incorrect prediction. Fig. 10 presents the
Ada-Boosting of two classifiers (SVM and KNN).

The algorithm of Ada-Boosting classifier is as
follows.

TABLE XIV
Fusion Output: Stage 4

“1” “39” “35” “1 � 39” “1 � 35” “35 � 39”

mDSm 0.855 0.001 0.0015 0.0655 0.0745 0.0025

Fig. 10. Ada-Boosting structure.
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TABLE XV
PCR5 Output: Stage 4

“1” “39” “35” “1 � 39” “1 � 35”

mPCR5 0.855 0.002 0.003 0.0655 0.0745

Input: Let {(x1, yy) , . . . , (xn, yn)} be a training set,
where n is the number of patterns.

Output: The ensembled classifier H(x) = sign
(
∑M

m=1 αmHm(x)), where m is the number of classifiers
(SVM, KNN).

a) Initialize the weights wi, wi = 1/n, where i ∈
{1, . . . ,n}.
From m = 1 toM

b) Train the weak classifier Hm with the new weighted
training data.

c) Calculate the error rate errm of the classifier.
d) Calculate the classifier contribution αm = 0.5 ×

log[(1 − errm)/errm].
e) Update the classifiers weights wi ← wi exp

(−αmI(yi �= Hm(xi))), where wi is the weight of each
input sequence and I is an indicator function:

I =
{−1, prediction incorrect, then increase wi

1, prediction correct, then decrease wi
.

f) Output the ensemble classifier

H(x) = sign
(∑M

m=1
αmHm(x)

)
.

F. Dynamic Time Wrapping

DTWis a pattern recognition algorithm that is widely
used with dynamic gestures. It applies a direct match-
ing technique because it tries to match the tested ges-
ture with the most similar stored sign in the training
set irrespective of the sign’s length depending on mea-
suring the distance between the two series. It tries to
find the optimal alignment between two time series se-
quences that are varying in their speed or their time
and also have different lengths. For our model, the sys-
tem receives the sign (test sign) as a set of frames and
DTW compares these sequences of frames with stored
signs’ sequences in the training set; the sequences that
are compared must be wrapped in the time dimension
to compute the DTW similarity coefficient. The similar-

Table XVI
Pignistic Probability Output: Stage 4

“1” “39” “35” “1 � 39” “1 � 35”

DSm 0.2875 0.286 0.2865 0.0655 0.0745

Fig. 11. DTW alignment process.

ity depends on the calculated distance for each sign and
then the test sign is matched with the sign that has least
distance. Fig. 11 presents the process of alignment for
two time-independent sequences. Given two time series
X = (x1, x2, x4, . . . , xn) with length n � N and Y =
(y1, y2, y4, . . . , yn) with lengthm�N and let F be a fea-
ture space where Xn,Ym � F . DTW will analyze the se-
quences in order to find the similarities between them
and finally find optimal alignment O(nm) [40]. To com-
pare x and y sequences,we need to find the local cost ma-
trix that represents the cost distribution between each
two elements in the two sequences as given in the fol-
lowing equation:

C : F × F . (11)

The value of C represents the similarity between the
stored sign (x) and the test sign (y); if they are similar,
this value must be small, else it must be large, to gener-
ate the local cost matrix with a dimension of (n × m) as
shown in Fig. 12.The cost of any position at the local cost
matrixM(i, j) can be determined as follows:

M (n,m) = d (n,m) + min{M(n− 1,m− 1),

M(n− 1,m),M(n,m− 1)}. (12)

This equation has two parts: the first part is the
Euclidean distance d(i, j) between the feature vectors

TABLE XVII
Pignistic Probability Output

Sign index “1” “2” “4” “1 � 2” “1 � 4” “14” “15” “1 � 14” “1 � 15”
BetP{�} 0.2875 0.2125 0.2125 0.2 0.15 0.18853 0.16447 0.268 0.176
Sign index “24” “26” 1 � 24”” 1 � 26”” “39” “35” “1 � 39” “1 � 35” –
BetP{�} 0.2167 0.1867 0.22 0.16 0.286 0.2865 0.0655 0.0745 –
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Fig. 12. Local cost matrix.

of the sequences X and Y, and the second part is the
minimum cost of the adjacent elements of the cost ma-
trix up to that point [41].

After getting the local cost matrix, we must find
the wrapping path through it by applying the following
equation to get the wrapping list:

wpn,m = min (cn−1,m−1, cn−1,m, cn,m−1) (13)

where C is the cost value of each element in the cost
matrix.

Finally, apply the following distance equation on the
wrapping list in order to calculate the DTW distance:

DTWd = 1
p

p∑
i=1

wi (14)

where w is the value of each element in the wrapping
path.

Fig. 13 is an illustrative example for applying DTW
in our model. Let us have a dataset of three stored signs,
and a new sign is performed. The DTW algorithm com-
putes the distance between the captured sign and each
sign in the training set. Finally, the algorithm matches
the sign with the stored sign that corresponds to the least
distance.

G. Hidden Markov Model

HMM is a statistical model and time-domain process.
It represents the statistical behavior for the observed se-
quence using a set of hidden states called “hidden net-
work.” The model can transition from one state to an-
other with probability assignment [41]. The expression
“hidden” comes from the fact that the Markov model
constructs a sequence of hidden states from the observed
sequence.HMMwas successful and achieved a good ac-
curacy with the applications of speech recognition and it
is noted that there are similarities between the nature of
speech and dynamic gestures [42].

Q = q1,q2,q3, . . . ,qn, a set of n states.
π = π1, π2 , π3 , . . . , πn, the probability distribution
over the states.

Fig. 13. DTW classification example.
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A = a01, a02, . . . , an1, . . . , ann, the matrix A of transi-
tion probability that contains the transition proba-
bility for the transition from one state to another.

B = bj(Ok), the observation probability from state j
and the observing sequence Ok.

O = o1,o2, . . . ,oT , a sequence of T observations.
q0, qF, start state and end (final) state.

There are two axioms in the HMM: 1) from the law
of probability, the sum of all values on the directed arcs
from a given state to other must equal 1 as in (15); and
2) the sum of all π probabilities must equal 1 as in (16).

Axiom #1:
n∑
i=1

ai j = 1 (15)

Axiom #2:
n∑
i=1

πi . (16)

The Markov model assumed two important assump-
tions: 1) the probability of each state depends only on
the previous state in the state sequence as in (17); and
2) the probability of any observation oi depends only on
the state qi that produced the observation and not on
any other states or any other observations as in (18).

Markov assumption #1:

P(qi|q1, . . . ,qi−1) = P(qi|qi−1) (17)

Markov assumption #2:

P(oi|q1, . . . ,qi, . . . ,qT ,o1, . . . ,oi, . . . ,oT )

= P(oi|qi). (18)

For our model, there are two phases:

1) Training phase: In this phase, we fed the model
with all gesture sequences and their feature vec-
tor to build the model for each sequence and then
re-estimate the probability distribution using the
Baum–Welch algorithm. Also,K-means clustering is
used to clusters all the 3-D sequence’s points in the
training set into n clusters. This will reduce the data
of the stored gestures to a set of discrete states and
symbols. Now each point in the training set is con-
verted to a specific symbol that is tightly related to
the clustered n states. Fig. 14 presents building of the
HMM states for one gesture “Injection/ ” as an
example.

2) Testing phase: In this phase, we used the Viterbi de-
coding algorithm to match the test sign sequence
with the stored sign that has highest likelihood L,
which is computed using the following equation:

L(S1, . . . , Sn |O1, . . . ,On ) =
n∏
i=1

P (Si|Oi) ·
n∏
i=1

P (Si|Oi−1) .

(19)

Fig. 15 presents the workflow of the system when us-
ing the HMM in dynamic gesture recognition.

IV. EXPERIMENTAL RESULTS

The experimental results have two aspects:

1) Recognition accuracy.
2) Latency (execution time).

First,we applied the proposedmodel usingMicrosoft
Kinect V2, which consists of an IR emitter, an RGB

Fig. 14. HMM state model for gesture.
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Fig. 15. HMMmodel for dynamic gesture recognition.

camera,an IRdepth sensor,and amicrophone array [42].
It is used to acquire signs and obtain the depth streams
with a rate of 30 frames per second.We connectedKinect
with a laptop that has a 64-bit architecture, Windows 8
operating system, 8 GB of physical memory, and Intel
Core i7-5500U and 2.40 GHz with x-64-based processor.
The proposed model is developed using Microsoft C#
program and Microsoft Kinect SDK library.

A. Arabic Sign Dataset

We chose 40 different gestures in the medical field.
They are listed in Table XVIII. We collected the data
from three different volunteers in different positions and
with different sizes.

B. Proposed Model Accuracy

For each sign, we collected 30 samples from three
different signers and divided them into 20 for the train-
ing set and 10 for the testing set. The total samples for
all signs were 1200 (800 for the training set and 400 for
the testing set). The collected signs were dynamic; i.e.,
the sign was performed by moving body joints such as
wrist,elbow,shoulder,and hands.Each sign’s stream con-
tained on average 120–200 frames, so the total number of
frames was around 40,000 for the training set and 32,500
for the testing set. The feature vector was formed from
the skeleton joint features and hand features that were
combined to form 62 features.We applied two classifiers
(SVM and KNN) in the classification phase. They were
applied on the separated frames,and the accuracies were
79% and 66%, respectively. Because the selected signs

Fig. 16. Classifiers’ accuracy comparison.

are dynamic in nature, we can apply the majority voting
on the classified frames for each sign in order to get the
accuracy of recognizing each sign. The KNN and SVM
were improved after majority voting to 89% and 79%,
respectively.After applying the DSmT fusion of the two
classifier results, the accuracy reached 91.5%. Also, the
accuracy of Ada-Boosting reached 90.2%. For the dy-
namic pattern recognition approach, the accuracies of
DTWandHMMreached 82.6%and 79.5%,respectively.
Fig. 16 presents the classifier accuracy before and after
applying the majority voting for each classifier without
applying the fusion. Fig. 17 presents the comparison be-
tween the accuracy of each classifier individually and af-
ter fusing their results.

It is noticed in Fig. 16 that the DSmT fusion of clas-
sifiers improves the model recognition accuracy com-
pared to the individual classifiers and the Ada-Boosting
technique. The misclassified signs using SVM reached
21% and using KNN reached 11%, while there were no
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TABLE XVIII
Medical Dataset

Index Arabic Sign Meaning in English Index Arabic Sign Meaning in English

1 Dysentery 21 Bleeding

2 X-Ray 22 Death

3 Reception 23 Orthopedic doctor

4 Two lungs 24 Physical therapy

5 liver 25 Injection

6 kidneys 26 Blurred vision

7 stomach 27 Cancer

8 Constipation 28 Pressure measuring 

device

9 analysis 29 A headache

10 Vaccination 30 Deafness

11 Paralysis 31 Pediatrician

12 Obstetrician 32 Doctor of nose and 

ear

13 Vomiting 33 Internist

14 Swelling 34 General Doctor

15 Wound 35 Broken bones

16 Pregnant 36 Vitamins

17 Fever 37 Kidney failure

18 Veins 38 ulcer

19 Allergic 39 The colon

20 Colic 40 laboratory

Fig. 17. Accuracy per sign comparison for classifiers versus Ada-Boosting and fusion model.
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Fig. 18. Accuracy per sign comparison for DTW,HMM, and fusion model.

TABLE XIX
SVMMisclassification

Misclassified signs Misclassification percentage

1 72%
5 98%
12 100%
17 67%
19 88%
31 51%
40 62%

misclassified signs after usingDSmT.TableXIXpresents
the misclassified signs using only SVM, and Table XX
presents the misclassified signs using only KNN.

For DTW and HMM, Fig. 18 presents the compari-
son between the achieved accuracy per sign using DTW,
HMM, and classifier fusion.

From Fig. 17, the DSmTmodel is more accurate than
both DTW and HMM and achieved higher recognition
accuracy over the 40 signs.

The system performance is a very important metric,
especially when the system works in real time, so the
computation latency was computed. We took into con-
sideration that the main processes in the system are per-
formed sequentially and also the frames of Kinect are
captured at the rate of 30 frames per second. Table XXI
lists the time in seconds as the average time for each
process,which was calculated over 30 experiments while
performing the selected signs from the dataset. Finally,
the total time will be the result of aggregating the times
of all processes.

TABLE XX
KNNMisclassification

Misclassified signs Misclassification percentage

12 64%
19 58%

TABLE XXI
Computation Latency

Process Time (s)

Sign capturing 6
Preprocessing (data normalization) 2
KNN classifier 8
SVM classifier 5
Late fusion + DSmT fusion 7
Total 28

Also, from the experiments we found that DTW is
faster than HMM. Over 30 experiments, DTW takes 5 s
on average for recognition and HMM takes 7 s on aver-
age. Fig. 19 presents the processing times for both DTW
and HMM for X-ray/“ ” over ten samples.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced an automatic system for
Arabic sign recognition using Microsoft Kinect V2. The
proposed model was applied and tested on 40 Arabic
signs that are related to the medical field. Each sign is
captured and represented as a depth stream.This stream
was analyzed and normalized to overcome the variation
of signer’s position and size, and then the features of
both skeleton (32 features) and hand (30 features) were
extracted and integrated in one feature vector with 62
features. The data with these features were used to train
the two classifiers (KNN and SVM). Finally, DSmT was
used to combine the results of these two classifiers.Three
different signers performed the signs in order to build
the required dataset. The number of collected samples
was 1200 (800 for the training set and 400 for the testing
set). The accuracy of the classifiers was 89% for KNN
and 79% for SVM. Classifiers’ accuracy was compared
with the fusion results, which reached 91.5%. Finally, we
compared the fusionmodel with theAda-Boosting tech-
nique, which achieved an accuracy of 90.2%, and other
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Fig. 19. DTW and HMM processing time comparison.

two algorithms that were widely used in dynamic gesture
recognition. These algorithms were DTW and HMM,
and they achieved an accuracy of 82.6% and 79.5%, re-
spectively, so our model was more accurate than them.
The suggested future work consists of increasing the
overall accuracy of the system, improving the model in
order to recognize the full sentences, and reducing the
computation latency in real time.Also, we suggested the
use of deep neural networks to improve the accuracy.
Deep learning-based systems can learn efficiently from
raw images or video sequences, so it is beneficial to pro-
cess multimodality data such as the RGB-D data, skele-
ton, finger points, etc. that can provide rich and wide in-
formation of signers’ movements. Finally, with the revo-
lution in Internet of Things (IoT), we suggest using IoT
devices like wireless wearable devices that will help in
monitoring hearing-impaired people to interpret their
signs and know their needs without delays.
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Tensor Decomposition-Based
Multitarget Tracking in
Cluttered Environments
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Many real-world applications of target tracking and state estima-

tion are nonlinear filtering problems and can therefore not be solved

by closed-form analytical solutions. In the recent past, tensor-based ap-

proaches have become increasingly popular due to very effective de-

composition algorithms, which allow a compressed representation of

discretized, high-dimensional data. It has been shown that by means of

a Kronecker format of the Fokker–Planck equation, the Bayesian re-

cursion for prediction and filtering can be solved for probability den-

sities in a canonical polyadic decomposition (CPD). In this paper, the

application of this approach on tracking multiple targets in a cluttered

environment is presented. It is shown that intensity or probability hy-

pothesis density-based filters can well be implemented using the CPD

tensor format.

I. INTRODUCTION

As sensors become more and more ubiquitous, pow-
erful and practical algorithms are required to extract
relevant information from noisy, contradicting, ambigu-
ous, or erroneous measurements. Often, the theory of
Bayesian state estimation is a good choice to develop
algorithms that cope with these challenges. Recent re-
sults of different research groups demonstrate that the
common recursion of filtering and prediction can also be
solved based on a decomposed tensor representation of
the underlying multivariate density function. It is well
known that by means of a CANDECOMP/PARAFAC
decomposition (CPD) of a discretized density, a com-
putationally effective representation can be achieved.
Despite the fact that there are still open challenges, we
might say thatCPD representations are themost promis-
ing candidates to beat the curse of dimensionality in
many research domains, including nonlinear filtering. In
this paper, we apply the CPD-based state estimation to
the problem of multitarget tracking in cluttered environ-
ments.We derive all update equations for a CPD tensor
in the case of a single target and multiple targets when
false measurements are present. An evaluation shows
the performance of the approach.

The theory of target tracking has exposed a grow-
ing family of algorithms to compute the probability den-
sity function (pdf) of a system state based on noise-
corrupted sensor observations. An estimate of the state
is then obtained by taking the mean of the pdf.1 The
corresponding covariance matrix additionally provides
a measure of accuracy for this estimate. Bayesian esti-
mation is the framework of recursive filtering method-
ologies that allow us to process a current measurement
by means of a prior or initial density and a measurement
likelihood function that statistically describes the perfor-
mance of the sensor.Thus, a tracking algorithm is an iter-
ative updating scheme for calculating a conditional pdf
p(xk|Zk) that represents all available knowledge on the
object state xk at some time tk, which typically is chosen
as the present time. The densities are explicitly condi-
tioned on the sensor data time series Zk. The iterative
scheme consists of two processing steps per update cy-
cle, referred to as prediction and filtering. The manipula-
tion of the probability densities is given by the following
basic equations (see [1], [2] for instance).

Prediction. Assuming the Markov property of
the underlying object state, the prediction density
p(xk|Zk−1) is obtained by combining the evolution
model p(xk|xk−1) with the previous filtering density
p(xk−1|Zk−1):

p(xk−1|Zk−1)
evolution model−−−−−−−−−→

constraints
p(xk|Zk−1)

p(xk|Zk−1) =
∫

dxk−1 p(xk|xk−1)︸ ︷︷ ︸
evolution model

p(xk−1|Zk−1)︸ ︷︷ ︸
previous filtering

. (1)

1Depending on the scenario, for instance, the expectation value, the
maximum value, the median, or other statistics of the pdf can be used.
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Filtering. The filtering density p(xk|Zk) is obtained
using the Bayes theorem by combining the sensor model
p(zk|xk), also called the “likelihood function,” with the
prediction density p(xk|Zk−1) according to

p(xk|Zk−1)
current sensor data−−−−−−−−−−→

sensor model
p(xk|Zk)

p(xk|Zk) = p(zk|xk) p(xk|Zk−1)∫
dxk p(zk|xk)︸ ︷︷ ︸

sensor model

p(xk|Zk−1)︸ ︷︷ ︸
prediction

. (2)

According to this paradigm, an object track represents
all relevant knowledge on a time-varying object state
of interest, including its history and measures that de-
scribe the quality of this knowledge.As a technical term,
“track” is therefore either a synonym for the collection
of densities p(xl |Zl ), l = 1, . . . ,k, . . ., or of suitably cho-
sen parameters characterizing them, such as estimates
and the corresponding estimation error covariance
matrices.

An analytical solution to a recursive computation of
these densities is given for instance by the Kalman filter
in the case of linear Gaussian models [3]. For nonlinear
scenarios, only approximate solutions are feasible. The
first-order Taylor approximation is called the extended
Kalman filter (EKF) that has low computation cost, due
to its analytic solution of the prediction and filtering
steps (see [1] for instance). The performance of the
linearization can be improved by means of determin-
istic samples chosen at the local neighborhood of the
current estimate. This algorithm is known as the un-
scented Kalman filter (UKF) [4]. The term particle filter
(PF) subsumes all kinds of numerical solutions with
nondeterministic samples. Here, knowledge about the
state typically is represented by a set of state samples,
which implies that the density is approximated by a
Dirac mixture. Because the process noise terms are
simulated by means of appropriately sampled random
vectors, these methods are also known as sequential
Monte Carlo (SMC) methods.

In the literature, a variety of particle filter algorithms
can be found [5]. Still, the basic sampling importance
resampling (SIR) particle filter [6] is often used due to its
robustness. The main drawback of the SIR-PF is that it
can suffer from impoverishment of the particle weights.
For numerical reasons, resampling has to be used in or-
der to avoid the particles to degenerate. More recently,
new algorithms have been proposed based on a log-
homotopy transition between the prior and the poste-
rior. For instance, the Daum–Huang filters (see [7] and
the references therein) model this transition phase in
terms of a physical flow that is determined by a “force”
induced by the measurement. This leads to a stochastic
differential equation (SDE) that then can be solved nu-
merically by introducing a discretized pseudotime evolv-
ing from the prior to the posterior pdf. However, the
computation time for solving the SDE is often quite high
for standard target tracking scenarios [8]. A different

homotopy approach is provided by the progressive fil-
ter that was published by Hanebeck in [9]. In the pro-
gressive filter, an incremental inclusion of the likelihood
function is achieved by a partition of the exponent of the
likelihood going from zero to one. This prevents particle
impoverishment by means of frequent resampling and
an appropriately chosen step size. A Kullback–Leibler
divergence-based approach to obtain the posterior par-
ticles is proposed in [10]. The resulting algorithm is sim-
ilar to the ensemble Kalman filter (EnKF)-based filter
proposed in [11], however, the additional noise term in
the Kalman-based update is different. The EnKF adds
some zero mean Gaussian-distributed noise to the mea-
surement of each sample and applies Kalman filter up-
date equations for each particle.As a consequence, a fast
filter results that is consistent and performs well in non-
linear scenarios. The EnKF also has been extended to
Gaussian mixtures in [12] and [13].

Instead of nondeterministic samples we can also use
a grid of equidistant space points to represent the pdf
in the field of view. The prior pdf is then obtained by
solving the Fokker–Planck equation (FPE), which is
equivalent to the integral formulation in (1). Challa and
Bar-Shalom for instance use finite differences in [14] to
obtain the solution of the FPE and show that a consis-
tent result is obtained even for highly nonlinear prob-
lems with large noise variances. This static approach has
not become as popular as the particle filters due to the
higher computational load. There is a notable change
in the way of thinking since it was discovered that sep-
arated representations of discretized multidimensional
functions have surprisingly good approximation prop-
erties [15]. Nowadays it may even be seen as the only
knownway to overcome the curse of dimensionality [16],
at least in cases, where the models can easily be approx-
imated by factorized functions. In other words, approx-
imations by separable functions are of particular inter-
est when the dimensionality of the problem becomes
large. To the authors’ knowledge, a first attempt to in-
tegrate the tensor decomposition into a Bayesian esti-
mation framework was given by Sun and Kumar [17].
Further development of the tensor-based approach and
some tracking examples were given in [18] and [19].

In this paper, we demonstrate the performance of
the tensor decomposition approach for realistic track-
ing problems with nonlinear measurement models. Fur-
ther, we show that it can also be applied to multitarget
tracking using the set theory-based approaches where
an intensity function is computed instead of a pdf. Mul-
tiple numerical evaluations are shown to demonstrate
that the tensor decomposition approach can achieve
convincing results in terms of estimation accuracy in
nonlinear filtering problems.

A. Structure

This paper is structured as follows. In Section II, we
review the basic concept of nonlinear filtering using the
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Fig. 1. Scheme of a tensor decomposition along its dimensions using
the Kronecker product of vectors for two and three dimensions.

Scheme taken from [21].

tensor decomposition approach.This is extended for the
handling of nondetections and clutter measurements in
Section III. The application on the set-based estima-
tion theory for multitarget tracking is given in Section
IV. Then, in Section V numerical examples are given to
demonstrate the performance of the approach. The pa-
per ends with conclusions in Section VI.

II. NONLINEAR STATE ESTIMATION BASED ON
TENSOR DECOMPOSITION

It was already discovered in 1927 byHitchcock that a
D-way tensor can be represented as a sum of outer prod-
ucts [20]:

Y =
L∑
l=1

y1,l ◦ · · · ◦ yD,l (3)

where L is the number of components. If for all
d ∈ {1, . . . ,D} yd,l are of a given size Nd × 1, in
other words a vector, this representation of the ten-
sor is called canonical polyadic decomposition or
CANDECOMP/PARAFAC decomposition.2 In this
case, the yd,l are called the loading vectors. This de-
composition of a tensor is visualized for D = 2 and
D = 3, respectively, in Fig. 1. It should be noted that this
decomposition of a two-way tensor (matrix) can easily
be obtained by the singular value decomposition (SVD).
For higher dimensions the problem of finding a decom-
posed representation becomes NP-hard [22]. However,
numerical solutions, such as the alternating least squares
(ALS) algorithm,exist [23],which yield satisfying results
for the problems addressed here in manageable time.
For a fixed dimension d, it is assumed that the state
space can be discretized into Nd grid points. These can
be uniformly spaced with a fixed step size of �xd or
chosen specifically for a numerical differentiation such
as Chebyshev polynomials [18]. The probability density
function restricted to the discretized state space points
yields a D-way tensor, which approximates the original
function:

p(xk|Zk) ≈ [p([xd]i|Zk)]n1,...,nD . (4)

2An explanation of the abbreviations involved can be found in [21] and
the references therein.

Throughout this paper, this tensor is represented in
a decomposed form. Thus, the pdf at time tk is approxi-
mated, again, by a CPD factorization:

[p([xd]i|Zk)]n1,...,nD ≈
L∑
l=1

ρ
(tk)
1,l ◦ · · · ◦ ρ

(tk)
D,l (5)

where L is the number of components, which usually
is a fixed user parameter and depends on the compu-
tational power of the fusion hardware and processing
time constraints, “◦” is the outer product and ρ

(tk)
d,l are the

so-called loading vectors of dimension Nd × 1 for each
d = 1, . . . ,D and l = 1 . . . ,L.

By means of an appropriate index function (see [19]
for instance), an equivalent representation of a tensor
can be achieved in its vectorized form:

p(xk|Zk) ≈
L∑
l=1

D⊗
d=1

ρ
(tk)
d,l (6)

where “⊗” is the Kronecker product. For the sake of no-
tational simplicity, the latter form will be used through-
out this paper.

It is assumed that the time evolution of the system is
described by a continuous-time stochastic system given
by

dx = f(x, t)dt + G(x, t)dw (7)

where f is the drift vector,G is the matrix of all diffusion
coefficients, and dw are the increments of a multivariate
Brownian motion with covariance Qt.

The measurement model is a general possibly non-
linear function h such that the observation at discrete
instants of time tk is given by

zk = h(xk, tk, vk) (8)

where vk is a random variable that represents the mea-
surement noise of the sensor.

It is well known that the posterior pdf conditioned
on all sensor data up to time tk can be computed recur-
sively by means of a prediction-filtering cycle. In recent
publications, a tensor decomposition-based state estima-
tion scheme has been proposed [17]–[19], which will be
summarized in the remainder of this section.

A. Initialization

For the initialization, it is assumed that the initial pdf
is given in a CPD form:

p(x0|Z0) =
L∑
l=1

D⊗
d=1

ρ
(t0 )
d,l . (9)

This can either be achieved by an analytical decompo-
sition into sums of products of a given pdf evaluated at
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the discretization points or numerically by the ALS for
instance.

B. Prediction

It is well known that the time evolution of the pdf
is described by the FPE, for which the drift and diffu-
sion parameters are given by the stochastic differential
equation in (7):

∂p
∂t

= −
D∑
i=1

∂([f]i p)
∂xi

+ 1
2

D∑
i, j=1

∂2([B]i, j p)
∂xi∂x j

(10)

where B = GQG� is the combined diffusion coefficient
matrix. In the above equation, [f]i denotes the ith entry
of the drift vector and [B]i, j is the entry in the ith row and
jth column of the diffusion matrix. It is assumed that all
components can be represented in a separable form such
that

[f]i(x) =
Ki∑
k=1

D∏
d=1

f id,k(xd) (11)

[B]i, j(x) =
Ki, j∑
k=1

D∏
d=1

Bi, j
d,k(xd) (12)

where Ki and Ki, j are the number of components of the
functions [f]i and [B]i, j, respectively. By means of differ-
entiation matrices and the FPE parameters in a separa-
ble form on the discretized grid we obtain an FPE oper-
ator L such that

∂p
∂t

= Lp (13)

where p is the pdf in a tensorized form. In the recent
literature, two different approaches have been proposed
to compute a numerical solution of the FPE for CPD
tensors.The first solution is based on the ALS,where the
FPE operator is augmented with a differentiationmatrix
Dt for the time dimension,which is accumulatedwith the
pdf [17]:

(Dt − L)p(x, t) = 0. (14)

Since the trivial solution p = 0 of (14) has to be avoided,
constraints are added to the least square optimization
such that the pdf is normalized andmatches the previous
pdf for the start time.

The second solution uses the tensor exponential of
the FPE operator since it holds that

p(x, tk) = exp {�t · L} p(x, tk−1) (15)

where �t is the time difference tk − tk−1. Here, the ten-
sor exponential is approximated by means of a Taylor
series [19].

C. Filtering

For the recursive prediction-filtering cycle, it is re-
quired to compute the posterior pdf, which incorporates
the information of a given observation zk at time tk. This
is achieved by means of the Bayes theorem

p(xk|Zk) = p(zk|xk) · p(xk|Zk−1)∫
dxk p(zk|xk) · p(xk|Zk−1)

(16)

where p(zk|xk) is the likelihood function. Since the
likelihood evaluated on the discretized state space is
a tensor, it is assumed that it is also given in a CPD
form:

p(zk|xk) =
L′∑
l ′=1

D⊗
d=1

λd,l ′ . (17)

As for the initial estimation pdf, this can be achieved by
numerical methods if the likelihood function cannot be
decomposed analytically. As a consequence, the poste-
rior is given by

p(xk|Zk) = 1
c

L∑
l=1

L′∑
l ′=1

D⊗
d=1

ρ
(k|k−1)
d,l 	 λd,l ′ (18)

=:
L̃∑
l=1

D⊗
d=1

ρ
(k|k)
d,l (19)

where “	” is the Hadamard (pointwise) product, L̃ =
L · L′, and c is the normalization constant [17]. In order
to keep the number of components L fixed, a mixture
reduction technique such as tensor deflation has to be
applied [21].

Note that the normalization constant of a CPD ten-
sor p can easily be computed by the following summa-
tion3: ∫

dx p(x) =
L∑
l=1

D∏
d=1

�xd

Nd∑
id=1

[ρd,l]id (20)

where �xd is the discretization size of the state space in
the dth dimension.

III. TRACKING IN CLUTTER

If the sensor produces multiple measurements at
time tk of a single target, the interpretation of the mea-
surement origins is ambiguous.Measurements that come
from unwanted objects or false detections are often re-
ferred to as clutter. If it is assumed that the target is de-
tected with probability pD, we have one additional in-
terpretation assuming that the target is not detected at
all. Therefore, let Zk denote the set ofmk measurements
z1k, . . . , z

mk
k produced at time tk.

3More details on implementation issues of the CPD tensor approach
are given in the Appendix.
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Let jk = 0 denote the data interpretation hypoth-
esis that the object has not been detected at all by the
sensor at time tk and so all measurements have to be
considered as clutter. A hypothesis denoted by jk ∈
{1, . . . ,mk} refers to the interpretation that the object
has been detected, z jkk ∈ Zk being the correspond-
ing measurement, and the remaining sensor data being
clutter. Evidently, the set {0, . . . ,mk} describes mutu-
ally exclusive and exhaustive data interpretations. Due
to the total probability theorem we have the following
equation [24]:

p(Zk,mk|xk) = pD p(Zk,mk|xk,O)

+ (1 − pD) p(Zk,mk|¬O) (21)

where pD is the probability of detection andO is the enu-
meration of a detection event. Often, it is assumed that
the clutter measurements can bemodeled statistically by
a Poisson distribution in the number of measurements,
which are uniformly distributed in the state space.There-
fore, we have

p(Zk,mk|¬O) = p(Zk|mk,¬O)p(mk|¬O)

= pF (mk) · |FoV|−mk (22)

pF (mk) = m̄mk

mk!
e−m̄ (23)

where m̄ is the mean number of false measurements, pF
its Poisson distribution, and |FoV| is the size of the field
of view. For the density conditioned on a detection, we
can enumerate the data interpretation that the jth mea-
surement is from the target:

p(Zk|xk,O) =
mk∑
j=1

p(Zk|xk,O, j)p( j|O, xk). (24)

Since hypothesis j implies that there are mk − 1 false
measurements, we have the following equation:

p(Zk,mk|xk,O, j) = p(Zk|mk, xk,O, j)p(mk|O)

= pF (mk − 1)|FoV|−(mk−1) · p(z jk|xk)
(25)

where p(z jk|xk) is the density describing the sensor statis-
tics for measuring a target with state xk. Furthermore, it
is assumed that all hypotheses have the same prior prob-
ability, which yields

p( j|O, xk) = 1
mk

. (26)

Together we obtain

p(Zk|xk) = pD
1
mk

pF (mk − 1)|FoV|−(mk−1)
mk∑
j=1

p(z jk|xk)

+ (1 − pD)pF (mk) · |FoV|−mk (27)

=pF (mk)|FoV|−mk ·
(
pD

|FoV|
m̄

mk∑
j=1

p(z jk|xk) + (1 − pD)

)

(28)

= pF (mk)|FoV|−mk

ρF
·
(
pD

mk∑
j=1

p(z jk|xk) + (1 − pD)ρF

)

(29)

where ρF = m̄
|FoV| denotes the clutter density.

Since it is sufficient to model the likelihood function
up to proportionality, we can neglect the constant factor
and obtains

p(Zk|xk) ∝ (1 − pD)ρF + pD
mk∑
j=1

p(z jk|xk). (30)

Again, it is assumed that a decomposed form of the sen-
sor statistics p(z jk|xk) is available:

p(z jk|xk) =
L′∑
l ′=1

D⊗
d=1

λ
j
d,l . (31)

This leads to a posterior pdf given by

p(xk|Zk) = 1
c

(
(1 − pD)ρF

L∑
l=1

D⊗
d=1

ρ
(k|k−1)
d,l

+ pD
mk∑
j=1

L∑
l=1

L′∑
l ′=1

D⊗
d=1

ρ
(k|k−1)
d,l 	 λ

j
d,l ′

)
.

(32)

Again, it is obvious that the posterior is already given in a
decomposed form, however, the number of components
has increased by a factor of 1+L′ ×mk and therefore a
deflation algorithm has to be applied for recursions with
a constant number of loading vectors.

IV. MULTITARGET TRACKING

For a multitarget scenario, Bayesian filters can be
derived by means of the theory of point set statistics.
In the case that all targets are significantly separated,
it is well possible to apply the single target filters from
above on individual clusters. In all other cases, proba-
bility hypothesis density (PHD) [25] or intensity-based
filters [26] have been proven particularly useful since
association-free implementations are available that are
easy to implement and of low computational complex-
ity. Since there is no free lunch, this comes with a loss of
target identities.However,methods have been proposed
to overcome this problem.

The basic idea of the PHD or intensity filter is to
model the conditional pdf of the set x1k, . . . , x

n
k of n tar-

get states as an inhomogeneous Poisson point process,
that is, the number of targets is assumed to be Poisson

90 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 14, NO. 1 JUNE 2019



distributed:

p(x1k, . . . , x
n
k,n) = p(x1k, . . . , x

n
k|n) p(n) (33)

where

p(n) = exp (−μ)
μn

n!
(34)

μ =
∫

dx f (x) (35)

p(x1k, . . . , x
n
k|n) = n! ·

n∏
j=1

p(x jk). (36)

The factor of n! in (36) comes from the summation over
all possible permutations of target identities, since the
set is order free. The function f is the so-called intensity
or PHD. Its integral μ is the mean number of targets and
the spatial distribution of a target can be obtained by
normalization of f :

p(x jk) = f (x jk)∫
dx f (x)

. (37)

Combining the above equations directly yields

p(x1k, . . . , x
n
k,n) = exp

{
−

∫
dx f (x)

} n∏
j=1

f (x jk). (38)

Therefore, f fully characterizes the point process.
In Bayesian set filters, it is sufficient to compute the

prior and posterior intensity function f , if the Poisson
assumption from above holds:

fk−1|k−1
prediction−−−−−→ fk|k−1 (39)

fk|k−1
filtering−−−−→ fk|k. (40)

In this section, it is shown that a recursive computa-
tion of themultitarget intensity function can be achieved
by means of a decomposed tensor representation. For
the initialization or previous filtering step, it is assumed
that the intensity is given in a decomposed form:

fk−1|k−1 =
L∑
l=1

D⊗
d=1

ρ
(k−1|k−1)
d,l . (41)

Due to the relationship (37), the time evolution of
the intensity function is described by the FPE:

∂ f
∂t

= −
D∑
i=1

∂([f]i f )
∂xi

+ 1
2

D∑
i, j=1

∂2([B]i, j f )
∂xi∂x j

. (42)

Another way to see this is the equivalence of the FPE
to the Chapman–Kolmogorov equation [27], which is a
more common way to compute the prior of a set theory-
based filter [26]. As a consequence, it is possible to use
one of the tensor propagators described in Section II-B.

Often, birth and death processes are modeled in ad-
dition to the system evolution to handle appearing or

disappearing targets. Let ν(x) be an intensity of a target
birth point process given in a CPD representation

ν(x) =
Lb∑
lb=1

D⊗
d=1

νd,lb (43)

and pTD(x) be the probability of target death such that
the probability of survival is given by

pS(x) = 1 − pTD(x) =
Ld∑
ld=1

D⊗
d=1

pSd,ld . (44)

If

f ′
k|k−1 =

L∑
l=1

D⊗
d=1

ρ
(k|k−1)′
d,l (45)

denotes the CPD tensor approximation of the intensity
after the application of the time propagator, then the
prior intensity is obtained by the superposition of the
birth and death processes [26]. The result again is a CPD
tensor, where deflation algorithms have to be applied to
keep the number of loading vectors constant:

fk|k−1 =
Lb∑
lb=1

D⊗
d=1

νd,lb +
Ld∑
ld=1

L∑
l=1

D⊗
d=1

pSd,ld 	 ρ
(k|k−1)′
d,l .

(46)

In many practical applications, it is sufficient to model
the birth process as a constant birth rate ν(x) = b and
analogously set a constant probability of target death
pTD(x) = d. In this case, the prior reduces to

fk|k−1 = b∏D
d=1 �xdNd

D⊗
d=1

1d

+ (1 − d)
L∑
l=1

D⊗
d=1

ρ
(k|k−1)′
d,l (47)

where 1d is the vector consisting of Nd ones.

A. Multitarget Filtering

Let Zk = z1k, . . . , z
mk
k be the set of observations pro-

duced at time tk. As shown by Mahler [25], it is possible
to approximate the posterior pdf of a multitarget Pois-
son point process by the following intensity function:

fk|k =
⎛
⎝(1 − pD) +

mk∑
j=1

p(z jk|x) pD
λ(z jk)

⎞
⎠ fk|k−1 (48)

λ(z jk) = λc(z
j
k) +

∫
dx p(z jk|x) pD fk|k−1(x) (49)

where λc(z) is the Poisson intensity of the clutter point
process. It is assumed that the prior intensity is given in
a CPD form where ρ

(k|k−1)
d,l are its loading vectors for

l = 1, . . . ,L and d = 1, . . . ,D. Using the sensor model
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from (31), we obtain the following update equation in a
tensorized form:

fk|k =
(
(1 − pD)

L∑
l=1

D⊗
d=1

ρ
(k|k−1)
d,l

+
mk∑
j=1

pD

λ(z jk)

L∑
l=1

L′∑
l ′=1

D⊗
d=1

ρ
(k|k−1)
d,l 	 λ

j
d,l ′

)
(50)

where the expected measurement likelihood λ(z jk) is
given by

λ(z jk) = λc(z
j
k) +

L∑
l=1

L′∑
l ′=1

pD
D∏
d=1

�xd

Nd∑
i=1

[ρ(k|k−1)
d,l ]i · [λ j

d,l ′ ]i.

(51)

Here, the PHD filter update equations were used. The
extension to higher order statistics filter for the number
of targets (CPHD) [28], the iFilter [29], or (generalized)
multi-Bernoulli filters [30] is straightforward.

V. NUMERICAL EVALUATION

In this section, we demonstrate the performance of
the described algorithms by means of numerical simu-
lations. It is divided into three parts describing the sim-
ulation setup and results of a nonlinear scenario (a), a
scenario with ambiguous measurements (b), and a mul-
titarget scenario (c), respectively. In all scenarios, a four-
dimensional state space was used such that

x = (x, y, ẋ, ẏ)�. (52)

The simulated target(s) move according to a discretized
almost constant velocity model where the transition and
process noise model is given by

xk+1 = Fk|k−1xk + wk|k−1 (53)

Fk|k−1 =
(
1 T
0 1

)
⊗ I2 (54)

wk|k−1 ∼ N (
O, Qk|k−1

)
(55)

Qk|k−1 = q ·
(
O O
O TI2

)
(56)

where the power spectral density was set to q = 0.1.

A. Nonlinear Example

In the nonlinear scenario, a single target is observed
bymeans of a bistatic radarwith one transmitter antenna
(Tx) and two receiving antennas (Rx1 and Rx2). Once a
second, the bistatic ranges |Tx−x|+|Rxi−x| for i = 1, 2
are measured with additive Gaussian noise with a stan-
dard deviation of σbr = 1.0m. The receivers were located
at (0, 8)�, and (0, 12)�, respectively, and the transmitter
was set in between at (0, 10)�.
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2D Position Marginal

Fig. 2. Exemplary initial pdf based on two bistatic range
measurements of a target (brown star) where the transmitter is

located at the center (red circle) of two receivers (purple circles). It
can be seen that the Gaussian approximation (green) does not
reflect the measurement uncertainty in an appropriate way, in
contrast to that the 2D marginal of the tensor representation

(blue/yellow color range) gives a precise approximation to the true
Bayes posterior.

The same measurements also were processed by an
EKF and a bootstrap PF using importance resampling.
The initial state and covariance for these filters was, re-
spectively, estimated by the first and second moment of
the likelihood function of the first measurement.The ini-
tial velocity was set to zero with a standard deviation of
2ms . The initial pdf of the position is shown exemplary in
Fig. 2.

The results of the numerical evaluation are shown
in Fig. 3. We have plotted the root mean squared error
(RMSE) of 50Monte Carlo simulations.Clearly, the ten-
sor approach reaches the performance of the PF, which
is close to the Cramer–Rao lower bound.
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Fig. 3. Root mean squared error (RMSE) of 50 Monte Carlo
simulations. It can be seen that the tensor decomposition-based
approach has equal or better estimation performance than the

extended Kalman filter or the particle filter.
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B. Multitarget Example

The multitarget scenario demonstrates the ability of
the tensor decomposition-based PHD filter as described
in Section IV to estimate the number of targets and their
respective states. Since the PHD intensity is a label-free
statistic, an evaluation of the estimation errors would re-
quire some state extraction algorithm,which is out of the
scope of this paper.As a consequence, the x–ymarginals
of the intensity function of an exemplary simulation are
presented.

In the multitarget scenario, two targets are initial-
ized with states x10 = (0, 0, 1, 1)� and (10, 10,−1,−1)�,
respectively.

Fig. 4 shows the intensity function in x–y coordinates
after the initialization and after 50 time steps of 0.1 s.

C. Filtering in High Dimensions

The third example scenario can be considered a toy
problem. It is specified to demonstrate the power of the
tensor decomposition approach in high-dimensional fil-
tering problems. These high dimensions can easily ap-
pear in practical scenarios such as SLAM-based [31] nav-
igation data fusion.

The scenario demonstrated here is a one-step fil-
tering of a given prior density using a linear measure-
ment. For various dimensions D, the prior is given by a
mean

x0|0 = (50, . . . , 50)� (57)

and a covariance matrix P0|0 = [P0|0]i, j for i, j =
1, . . . ,D, where

[P0|0]i, j = 100, if i == j (58)

[P0|0]i, j = 50, else. (59)
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Fig. 5. Root mean squared error (RMSE) for 100 Monte Carlo
simulations on a single measurement update for various dimensions.

The true state of the system is drawn randomly accord-
ing to the prior distribution. The measurement vector
is the true state corrupted by additive Gaussian noise,
where the covariance matrix is given by the unity ma-
trix ID. For the tensor approach,L = 2,000 components
were used and for the particle filter Npf = 10,000 par-
ticles were used.4 For each dimension 100 Monte Carlo
simulations were used.

It can be seen from Fig. 5 that the particle filter de-
grades due to the curse of dimensionality. The tensor
decomposition approach clearly outperforms the parti-
cle filter in higher dimensions where it is obvious that
the difference increases when the D grows. In Fig. 6, the
mean processing times for both filters are summarized.

4The number of particles and components, respectively, was chosen
such that the processing time is of equal magnitude.

Fig. 4. Multitarget intensity function after the initialization (a) and after 50 time steps (b).
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Fig. 6. Mean processing times for the tensor decomposition filter
and the particle filter.

VII CONCLUSION

In this paper, we have applied the CPD-based ap-
proach of nonlinear Bayesian filtering on practical mul-
titarget tracking problems with false measurements. By
means of the probabilistic data association (PDA) likeli-
hood, the update formula for single targets in cluttered
environments for CPD tensors was derived. Then, it was
shown that the CPD representation can also be used to
apply set theory-based filters such as the PHD filter. In
a numerical evaluation the performance was compared
to the existing methods for nonlinear filtering. In a toy
example it has been shown that the CPD is a powerful
representation of a density function in particular if the
problem is high dimensional.

APPENDIX

In the Appendix, we would like to provide some de-
tails and assistance for the interested reader who wants
to implement some of the algorithms above. Since most
engineers in data fusion and tracking work with Gaus-
sian mixtures, particles, and optimization algorithms, the
tensor decomposition-based data fusion can be consid-
ered quite new and unknown. This section should help
to start from the scratch to implement the CPD tensors
and the corresponding filters.

Implementation

A CPD tensor, which is given by

p(x) =
L∑
l=1

D⊗
d=1

ρd,l

is fully described by L loading vectors for each dimen-
sion d = 1, . . . ,D. It is useful to store these vectors
as matrices, called loading matrices, U1, . . . ,UD. For a
given dimension d, each loading vector ρd,l has by def-

inition Nxd entries, therefore, the loading matrix Ud is
of the size Nxd × L. In the following explanations, we
will use the following short notation for the above CPD
tensor:

p(x) = [U1, . . . ,UD] = [Ud]Dd=1.

The multiplication with an exemplary decomposed
likelihood function

�(z, x) =
D⊗
d=1

λd

then reduces to simple matrix multiplication:

p(x) · �(z, x) = [diag [λd]Ud]Dd=1.

If the likelihood function has multiple components as
in (17), the same operation is computed for each of the
components and the resulting matrices are appended
horizontally. Also it should be noted that likelihood
functions of lower dimensions can easily be incorporated
by setting λd = 1d for d > d′, where d′ is the dimension
of the likelihood.

Integration

The integral of a CPD tensor∫
dx

L∑
l=1

D⊗
d=1

ρd,l

can easily be computed by means of cheap computa-
tional operations. This can be seen by the fact that∫

dx
L∑
l=1

D⊗
d=1

ρd,l =
L∑
l=1

∫
dx

D⊗
d=1

ρd,l

=
L∑
l=1

∑
i1,...,iD

D∏
d=1

[ρd,l]id · �xd

=
L∑
l=1

D∏
d=1

�xd

Nd∑
id=1

[ρd,l]id .

Computing the Mean Vector

Again, it is assumed that the pdf is given in a CPD-
tensorized form:

p(x) =
L∑
l=1

D⊗
d=1

ρd,l .

The mean E [x] = x̂ = [x̂d]d is given by

x̂d =
∫

dx xd
L∑
l=1

D⊗
d=1

ρd,l .

Using the integration rule from above, we obtain

x̂d =
L∑
l=1

∏
j �=d

⎧⎨
⎩�x j

Nj∑
i j=1

[ρ j,l]i j

⎫⎬
⎭ �xd

Nd∑
id=1

[diag [[xd]] ρd,l]id .
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Computing the Covariance Matrix

Analogously, the covariance matrix cov [x] = P =
[Pi j]i, j can be computed by 1

2D(D+ 1) integration oper-
ations. For given i and j, the covariance is given by

Pi j =
∫

dx (xi − x̂i)(x j − x̂ j)
L∑
l=1

D⊗
d=1

ρd,l .

For i �= j, we have

Pi j =
L∑
l=1

∏
k �=i∧k �= j

⎧⎨
⎩�xk

Nk∑
ik=1

[ρk,l]ik

⎫⎬
⎭

· �xi

Ni∑
ii=1

[diag [[Tx̂ixi]] ρi,l]ii

· �x j

Nj∑
i j=1

[diag
[
[Tx̂ jx j]

]
ρ j,l]i j

where Tx̂ j is the affine translation such that [(x j− x̂ j)]i =
Tx̂ jx j. The diagonal elements similarly are given by

Pii =
L∑
l=1

∏
k �=i

⎧⎨
⎩�xk

Nk∑
ik=1

[ρk,l]ik

⎫⎬
⎭

· �xi

Ni∑
ii=1

[diag
[
[([xi]l − x̂i)2]l

]
ρi,l]ii .
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CRLB for Estimation of 3D
Sensor Biases in Spherical
Coordinates and Its Attainability

MICHAEL KOWALSKI
DJEDJIGA BELFADEL
YAAKOV BAR-SHALOM
PETERWILLETT

In order to carry out data fusion, it is crucial to account for the

imprecision of sensor measurements due to systematic errors. This re-

quires estimation of the sensor measurement biases. In this paper, we

consider a three-dimensional multisensor–multitarget maximum like-

lihood bias estimation approach for both additive and multiplicative

biases in the measurements.Multiplicative biases can more accurately

represent real biases in many sensors; however, they increase the com-

plexity of the estimation problem.By converting biasedmeasurements

into pseudo-measurements of the biases, it is possible to estimate bi-

ases separately from target state estimation. The conversion of the

spherical measurements to Cartesian measurements, which has to be

done using the unbiased conversion, is the key that allows estimation

of the sensor biases without having to estimate the states of the tar-

gets of opportunity. The measurements provided by these sensors are

assumed time-coincident (synchronous) and perfectly associated. We

evaluate the Cramér–Rao lower bound on the covariance of the bias

estimates, which serves as a quantification of the available informa-

tion about the biases. Through the use of the iterated least squares, it

is proved that it is possible to achieve statistically efficient estimates.

I. INTRODUCTION

Bias estimation and compensation are essential steps
in distributed tracking systems. The objective of sensor
registration is to estimate the biases in sensor measure-
ments, such as scale (multiplicative) and offset (additive)
biases in range, azimuth, and elevation measurements,
clock bias, and/or uncertainties in sensor positions [4].
Owing to this, much effort has been devoted in the last
few years to bias estimation procedures for multisensor–
multitarget tracking systems.Biases in sensors have been
approximated in several ways, including error in sensor
pointing and additive biases in the measurements. How-
ever, real sensor biases can be more complex than such
approximations. One reason is a combination of both
multiplicative and additive biases inmeasurements.That
is, a bias may cause increased error in a target that is fur-
ther away from the sensor or on the periphery of the sen-
sor’s field of view.

In [19] and [20], a joint track-to-track bias estima-
tion and fusion approach based on equivalent measure-
ments of the local tracks was proposed. In [14], an ap-
proach is used to carry out track-to-track association by
assuming additive biases in 2DCartesian coordinates. In
[11], another approach based on pseudo-measurements
along with expectation–maximization (EM) to perform
joint fusion and registration was proposed. A different
method that uses a multistart local search to handle
the joint track-to-track association and bias estimation
problem was introduced in [21]. The concept of pseudo-
measurement was used in [15] for exact bias estimation
with further extensions in [16] and [17]. In addition, these
methods require perfect knowledge about each local fil-
ter and its dynamic model. Also, as the number of sen-
sors increases, the bias estimation problem suffers from
the curse of dimensionality because of the commonly
used stacked bias vector implementation [10]. In [5], [7],
and [9], pseudo-measurements are used with maximum
likelihood (ML) to estimate a combination of rotational
biases, position biases, and additive measurement biases
in addition to presenting the hybrid Cramér–Rao lower
bound (HCRLB) as ametric for evaluating estimator ef-
ficiency. This is expanded upon in [6] and [8] with EM
methods used instead of ML.

In this paper, the novelty is to use the method and
Cramér–Rao lower bound (CRLB) derived in [13] com-
bined with an ML method using iterated least squares
(ILS) to solve the problem of estimating both multi-
plicative and additive biases for three-dimensional (3D)
spherical sensors. The primary novelty of this work is
to extend the work in [15]–[17] to 3D sensors includ-
ing an unbiased conversion of the measurement covari-
ance found in [18]. This work also builds on previous
bias estimation research in [5], [7], and [9] by using a
nonlinear weighted ML method to avoid the problems
with biased estimates and lack of statistical efficiency.
Additionally, multiplicative biases are used instead of
the combination of rotational biases, position biases, and
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additive measurement biases. The difficulty with this is
that it increases the complexity of the bias estimation
problem: now there are two sources of error in the mea-
surement other than noise and the error from the mul-
tiplicative bias varies depending on the location of the
target. More targets are required and it becomes neces-
sary for the targets to be spaced such that the multiplica-
tive bias can be differentiated from the additive bias.
Therefore, an analysis of the CRLB is made to deter-
mine whether this method can achieve accuracy in bias
estimates that is comparable to the error from noise.The
CRLB gives a lower bound on the accuracy of bias es-
timates when using the pseudo-measurements, allowing
analysis of performance when the measurement conver-
sion is used rather than the raw measurements. Through
the use of the pseudo-measurement model described in
[15]–[17], it is possible to avoid the need to estimate the
states of the targets and estimate only the sensor biases.
Once the sensor biases are estimated, they can be re-
moved from the measurements and the (nearly) bias-
free measurements can then be used in tracking systems.

An important metric when using pseudo-
measurements is the HCRLB that is discussed in [5], [7],
and [9] and evaluated using ML methods. The HCRLB
is the CRLB but calculated using all measurements and
a parameter vector including the bias variables and all
nuisance variables. In this case, the nuisance variables
that are included are the target states. The removal of
the target state in the calculation of the CRLB may
result in a higher metric than the true lower bound
that takes into account all the nuisance parameters
available to the estimator. This means that it is nec-
essary to include this metric in simulation results to
understand how much accuracy is lost using the pseudo-
measurement model. It is important to note that the
HCRLB is a lower bound and may not be achieved by
an estimator; however, EM approaches can be used to
improve results such that they are closer to the HCRLB
[6], [8]. Furthermore, estimating every nuisance variable
may be computationally intensive, which would make
the pseudo-measurement method attractive despite the
loss of accuracy. Finally, calculating the CRLB does not
require information about the target state, unlike the
HCRLB that requires an estimate of the target states.

The paper is structured as follows. The bias model
and the assumptions for bias estimation are discussed
in Section II. In Section III, a review of the exact bias
estimation method is given. The key to create the bias
pseudo-measurements in Cartesian coordinates, which
allows avoiding the need to estimate the states of the
targets of opportunity, is to use the unbiased transfor-
mation from spherical to Cartesian [18]. The pseudo-
measurement model is presented in Section III-A and
the ILS estimator is described in Section III-B. Sec-
tion III-C presents the calculation of the CRLB for
the proposed method. Section IV demonstrates the per-
formance of the method for synchronous sensors and
compares the root mean squared error (RMSE) of the

estimator with the CRLB. Conclusions are discussed in
Section V.

II. PROBLEM FORMULATION

A. Coordinate Frames and Measurement Space

In a typical 3D sensor, the measured values of posi-
tion are in spherical coordinates—range, azimuth, and
elevation. Assume there are NS synchronized sensors,
with known positions, reporting range, azimuth, and el-
evation measurements in spherical coordinates of t =
1, . . . ,NT targets in the common surveillance region
with K total time steps. The true range, azimuth, and
elevation are represented by rs,t (k), θs,t (k), and αs,t (k),
respectively. The noise- and bias-free measurements
originating from target t for sensor s at time k are

rs,t (k) =
√
xs,t (k)2 + ys,t (k)2 + zs,t (k)2

θs,t (k) = tan−1
(
ys,t (k)
xs,t (k)

)

αs,t (k) = tan−1

(
zs,t (k)√

xs,t (k)2 + ys,t (k)2

)
. (1)

Each sensor views the target using its own sensor refer-
ence frame; therefore,

xs,t (k) =

⎡
⎢⎣
xs,t (k)

ys,t (k)

zs,t (k)

⎤
⎥⎦ =

⎡
⎢⎣
xt (k) − xs(k)

yt (k) − ys(k)

zt (k) − zs(k)

⎤
⎥⎦

= xt (k) − xs(k) (2)

where xt (k) = [xt (k), yt (k), zt (k)] is the true position
in Cartesian coordinates of target t at time step k and
xs(k) = [xs(k), ys(k), zs(k)] is the true position in Carte-
sian coordinates of sensor s at time step k. Transforming
(1) to a Cartesian coordinate frame yields

xcs,t (k) = rs,t (k) cos (θs,t (k)) cos (αs,t (k))

ycs,t (k) = rs,t (k) sin (θs,t (k)) cos (αs,t (k))

zcs,t (k) = rs,t (k) sin (αs,t (k)) . (3)

For a given sensor, each measurement is modeled as a
function of the actual (true) target state, systematic er-
rors (biases), and random errors (noise). The model for
the measurements originating from a target with addi-
tive and multiplicative biases at time k in spherical coor-
dinates for sensor s is

zs,t (k) =

⎡
⎢⎣
rms,t (k)

θms,t (k)

αms,t (k)

⎤
⎥⎦

=

⎡
⎢⎣

[1 + εrs (k)] rs,t (k) + brs + wr
s(k)[

1 + εθ
s (k)

]
θs,t (k) + bθ

s + wθ
s (k)

[1 + εα
s (k)]αs,t (k) + bα

s + wα
s (k)

⎤
⎥⎦

s = 1, . . . ,NS, t = 1, . . . ,NT (4)
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where rms,t (k), θ
m
s,t (k), and αms,t (k) are the measured range,

azimuth,and elevation, respectively,brs,b
θ
s , and b

α
s are the

offset biases in the range, azimuth, and elevation, respec-
tively, and εrs (k), ε

θ
s (k), and εα

s (k) are the scale biases in
the range, azimuth, and elevation, respectively.The mea-
surement noises wr

s(k), wθ
s (k), and wα

s (k) in range, az-
imuth, and elevation are zero mean with corresponding
variances σ 2

r , σ
2
θ , and σ 2

α , respectively, and are assumed
mutually independent. The bias vector for sensor s is

βs = [brs bθ
s bα

s εrs εθ
s εα

s ]
T (5)

and is modeled as an unknown constant over a certain
window of scans (nonrandom variable). Consequently,
the ML estimator [2] or the least-squares estimator [1]
can be used for bias estimation. On the other hand, a
Gauss–Markov random model [22] can also be used, in
which case a Kalman filter can be adopted for bias esti-
mation.We model the measurement equation (4) as

zs,t (k) =

⎡
⎢⎣
rs,t (k)

θs,t (k)

αs,t (k)

⎤
⎥⎦ +Cs,t (k)βs +

⎡
⎢⎣

wr
s(k)

wθ
s (k)

wα
s (k)

⎤
⎥⎦ (6)

where

Cs,t (k)
�=

⎡
⎢⎣
1 0 0 rs,t (k) 0 0

0 1 0 0 θs,t (k) 0

0 0 1 0 0 αs,t (k)

⎤
⎥⎦ . (7)

Here, themeasured azimuth θms,t (k),elevation αms,t (k),and
range rms,t (k) can be utilized in (7) without any significant
loss of performance [15]–[17].

The problem is to estimate the bias vectors βs for
all sensors. After bias estimation, all the biases can be
compensated for to obtain the state estimates. Since
the motion equations of targets are naturally expressed
in Cartesian coordinates, if the spherical measurements
can be converted to Cartesian (via nonlinear trans-
formation) without introducing coordinate conversion
bias and obtaining the correct covariance for the con-
verted measurements, one can then perform the state
estimation within a completely linear framework. Then,
sensor s has the measurement equation in Cartesian co-
ordinates (with the sameHs(k) = H(k) for all sensors)

zcs,t (k) = H(k)xt (k) + Bs,t (k)Cs,t (k)βs + xs(k) + ws(k)

(8)

where the state vector is

xt (k) = [
xt (k) yt (k) zt (k)

]T (9)

and H(k) is the measurement matrix given by

H(k) =

⎡
⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎦ �= H. (10)

Using themeasured azimuth θms,t (k), elevation αms,t (k),
and range rms,t (k) from sensor s, the Jacobian of theCarte-
sian measurements with respect to the biases in each co-

ordinate, Bs,t (k), can be written (omitting subscripts s
and t, superscript m, and time step k for simplicity) as

Bs,t (k) =

⎡
⎢⎣
cos θ cosα −r sin θ cosα −r cos θ sinα

sin θ cosα r cos θ cosα −r sin θ sinα

sinα 0 r cosα

⎤
⎥⎦.

(11)

The transformation of themeasurements from spher-
ical to Cartesian coordinates that has to be used is the
unbiased one [18]. This was found necessary to ensure
the accuracy of the bias estimates and is discussed in
more detail at the end of the section.

The unbiased conversion converts the original mea-
surements with the following equations:

xc,ms,t (k) = λ−1
θ λ−1

α rs,t (k) cos θs,t (k) cosαs,t (k) + xs(k)

yc,ms,t (k) = λ−1
θ λ−1

α rs,t (k) sin θs,t (k) cosαs,t (k) + ys(k)

zc,ms,t (k) = λ−1
α rs,t (k) sinαs,t (k) + zs(k) (12)

zc,ms,t (k) =

⎡
⎢⎣
xc,ms,t (k)

yc,ms,t (k)

zc,ms,t (k)

⎤
⎥⎦ . (13)

The new (unbiased) covariance matrix of the mea-
surements in Cartesian coordinates (omitting indexesm
and k in the measurements for simplicity) is given by

Rs,t (k) =

⎛
⎜⎝
Rs,t
xx Rs,t

xy Rs,t
xz

Rs,t
xy Rs,t

yy Rs,t
yz

Rs,t
xz Rs,t

yz Rs,t
zz

⎞
⎟⎠ (14)

Rs,t
xx = (λ−2

θ λ−2
α − 2)r2s,t cos

2 θs,t cos2 αs,t

+1
4
(r2s,t + σ 2

r )(1 + λ′
θ cos 2θs,t )(1 + λ′

α cos 2αs,t )

Rs,t
yy = (λ−2

θ λ−2
α − 2)r2s,t sin

2
θs,t cos2 αs,t

+1
4
(r2s,t + σ 2

r )(1 − λ′
θ cos 2θs,t )(1 + λ′

α cos 2αs,t )

Rs,t
zz = (λ−2

α − 2)r2s,t sin
2
αs,t

+1
2
(r2s,t + σ 2

r )(1 − λ′
α cos 2αs,t )

Rs,t
xy = (λ−2

θ λ−2
α − 2)r2s,t sin θs,t cos θs,t cos2 αs,t

+1
4
(r2s,t + σ 2

r )λ
′
θ sin 2θs,t (1 + λ′

α cos 2αs,t )

Rs,t
xz = (λ−1

θ λ−2
α − λ−1

θ − λθ )r2s,t cos θs,t sinαs,t cosαs,tv

+1
2
(r2s,t + σ 2

r )λθλ
′
α cos θs,t sin 2αs,t

Rs,t
yz = (λ−1

θ λ−2
α − λ−1

θ − λθ )r2s,t sin θs,t sinαs,t cosαs,t

+1
2
(r2s,t + σ 2

r )λθλ
′
α sin θs,t sin 2αs,t (15)
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where

λθ = e−σ 2
θ /2

λ′
θ = e−2σ 2

θ = λ4
θ

λα = e−σ 2
α /2

λ′
α = e−2σ 2

α = λ4
α. (16)

The debiasing coefficients (16) are used in the cal-
culation of the converted covariance matrix and this
conversion bias interferes with the estimation of the con-
sistent measurement biases. If the debiasing coefficients
are zero, then the converted covariance matrix results
in negative values, which causes negative values in the
CRLB. Furthermore, the conversion bias adds to the er-
ror resulting from the measurement biases. The estima-
tor has difficulty in differentiating this error from the er-
ror from the biases. If there is no noise or extremely little
noise, it is possible to use the standard conversion to esti-
mate the biases, but without CRLB efficiency.This is un-
reliable though and results may vary depending on the
number of targets, their positions, and the magnitude of
the biases, and in any case, the unbiased conversion adds
little numerical complication.

Additionally, the calculation of the covariance ma-
trix is necessary for use inMLmethods in order to avoid
biased estimates and to generate the CRLB. If a least-
squares method is used but with identity noise rather
than an accurate measurement noise matrix, it is likely
to result in statistically inefficient estimates and poten-
tially biased estimates [5], [7], [9].

III. SYNCHRONOUS SENSOR REGISTRATION FOR
THE 3D CASE

In this section, the bias estimation method intro-
duced in [15]–[17] for synchronous sensors with known
sensor locations is reviewed and extended to the 3D case,
with various simulations and the calculation of the lower
bounds for bias estimation in multisensor–multitarget
scenarios.

The estimator uses a batch of measurements from
a number of time steps to estimate the biases. The pa-
rameter vector to be estimated consists of the biases,
and pseudo-measurements are used to measure the ef-
fect of the biases.The pseudo-measurements remove the
true target states in order to only measure the effect of
the biases. The target states are not estimated with this
estimator.

The dynamic equation for the target state is

x(k) = [
xt (k)T, ẋt (k)T, ẍt (k)T

]T
(17)

x(k+ 1) = F (k)x(k) + v(k) (18)

where F (k) is the transition matrix and v(k) is a zero-
mean additive white Gaussian noise with covariance
Q(k).

Because the local trackers are not able to estimate
the biases on their own, they yield inaccurate estimates
of tracks by assuming no bias in their measurements.
Hence, the state space model considered by local track-
ers for a specific target t and sensor s is

xt (k+ 1) = xt (k) + Ft (k)
[
ẋt (k)Tẍt (k)T

]T + v(k)

(19)

zs,t (k) = H(k)xt (k) + ws(k) (20)

where Ft (k) is a submatrix of F (k). In this method, the
transition matrix can be unknown as the target state is
not estimated. The difference between (4) and (20) is
that the latter has no bias term and, as a result, the lo-
cal tracks are bias-ignorant [15]–[17]. Note that this mis-
match should be compensated for.

A. The Pseudo-Measurement of the Bias Vector

In this subsection, a discussion on how to find an in-
formative pseudo-measurement by using the local tracks
for the case NS = 2 synchronized 3D sensors is pre-
sented, generalizing the method given in [15]–[17].

The pseudo-measurement of the bias vector is de-
fined as

zpt (k) � zc1,t (k) − zc2,t (k) (21)

In the above equation, the true position of the target is
eliminated because of cancellation since each such posi-
tion is multiplied by the same matrix (24). This results in
the following equation:

zpt (k) = B1,t (k)C1,t (k)β1 − B2,t (k)C2,t (k)β2

+w1(k) − w2(k). (22)

The pseudo-measurement of the bias vector can be writ-
ten as

zpt (k) = Ht (k)b + w̃(k) (23)

where the pseudo-measurement matrix H, the bias pa-
rameter vector b, and the pseudo-measurement noise
w̃(k) are defined as

Ht (k) �
[

(B1,t (k)C1,t (k))
T

(−B2,t (k)C2,t (k))
T

]T

(24)

b �
[
βT
1 , βT

2

]T (25)

and

w̃(k) � w1(k) − w2(k). (26)

The bias pseudo-measurement noises w̃ are additive
white Gaussian with zero mean, and their covariance is

Rt (k) = R1,t (k) + R2,t (k). (27)

The key property of (26) is its whiteness, which results
in an exact bias estimate. In this approach, there is no
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approximation in deriving (23)–(27) unlike the methods
previously proposed in [12], [23], and [24]. This was one
of the main contributions of [15].

B. The ILS Method

If the biases are constant for each measurement over
the batch of scans, then an ILS method can be used. This
estimator finds the ML estimate [3] of the bias vector b.
This estimator uses the Jacobian calculated previously in
(24) for the pseudo-measurements of the bias vector as
well as the noise covariance matrix (27). The measure-
ments and matrices must be stacked in a batch for the
estimator. The measurement batch is

zp = [
zp1 (1)

T, . . . , zp1 (K)T, zp2 (1)
T, . . . , zpNT

(K)T
]T

. (28)

The Jacobian matrix batch is defined for each estimator
iteration j as

H j = [H j
1(1)

T, . . . ,H j
1(K)T,H j

2(1)
T, . . . ,H j

NT
(K)T]T.

(29)

The noise covariance for the batch is a diagonal matrix
composed of the individual covariance matrices

R =

⎡
⎢⎢⎢⎢⎣
R1(1) 0 0 0 0

0 . . . 0 0 0
0 0 R1(K) 0 0
0 0 0 . . . 0
0 0 0 0 RNT (K)

⎤
⎥⎥⎥⎥⎦ . (30)

The equation for each iteration j of the estimator is

b j+1
e = b j

e + [H jTR−1H j]−1H jTR−1[zp − h(b j
e)]. (31)

At each iteration, the current state estimate is used to
generate a predicted measurement vector to compare to
the actual measurements

h(b j
e) = H jb j

e. (32)

When the state no longer changes significantly, then the
estimator stops and takes the final iteration as its esti-
mated parameter. To initialize the estimator, the biases
are assumed to be zero

b0e = [0, 0, . . . , 0]T. (33)

In order for the estimator to be observable, a bare min-
imum of measurements is needed to satisfy the require-
ment that therewill be at least one pseudo-measurement
per parameter vector element. This results in the follow-
ing inequality:

3KNT (NS − 1) ≥ 6NS. (34)

This inequality can be simplified to

KNT − KNT

NS
≥ 2. (35)

In practice, more measurements than this are required
together with measurement diversity to obtain satisfac-
tory accuracy. In order to have sufficient measurement

diversity, there must be targets spaced such that for one
target the error from themultiplicative bias is larger than
the error from the additive bias and for another target
the error from the additive bias is larger than the error
from the multiplicative bias.

C. CRLB for the Biases

To investigate the performance of the estimator, it is
necessary to calculate the CRLB. The CRLB is defined
[3] as the inverse of the Fisher information matrix.

CRLB = J−1 = [HTR−1H]−1. (36)

The CRLB is based on the batch of Jacobians that is cal-
culated in (29) and (24) as well as the batch of noise co-
variance matrices calculated in (30), (27), and (14). The
calculation of the CRLB does not require any knowl-
edge of the target state, although the spherical measure-
ments are used in calculating (11) and (7). It will be
shown in the next section that the covariance of the bias
estimates attains the CRLB; i.e., the ML estimator is ef-
ficient for this problem.

We additionally calculate the HCRLB that is a more
accurate lower bound as some of the information in the
3D spherical measurements has been eliminated to pro-
duce the pseudo-measurements. The HCRLB takes into
account the nuisance variables not originally estimated,
in this case the target positions.The parameter vector for
the HCRLB is

ψ = [
bT, xt1(1), . . . , xt1(K), . . . , xNt (K)

]T
. (37)

The HCRLB is defined as

HCRLB = [HT
ψR

−1
ψ Hψ ]−1 (38)

where the Jacobian and covariance associated with the
HCRLB are defined as

Hψ = ∇ψz

= ∇ψ

[
zs1,t1(1)T, . . . , zs1,t1(K)T, . . . , zNs,Nt (K)T

]T
(39)

Rψ =

⎡
⎢⎢⎢⎣

σ 2
r 0 0 . . .

0 σ 2
α 0 . . .

0 0 σ 2
ε . . .

. . . . . . . . . . . .

⎤
⎥⎥⎥⎦ . (40)

For brevity, the individual derivatives are not included.
The HCRLB is calculated using the true values of the
biases and target states.

In situationswhere the targetmotion is unknown, the
HCRLB tends not to deviate far from the CRLB as the
information about the target states is not very accurate
compared to the large amount of data contributing to
the biases.
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Figure 1. 125-target layout with projections. The × symbols
represent sensors and the ◦ symbols represent targets. (a) 3D plot. (b)

X–Y projection. (c) X–Z projection. (d)Y–Z projection.
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Figure 2. 27-target layout with projections. The × symbols represent
sensors and the ◦ symbols represent targets. (a) 3D plot. (b) X–Y

projection. (c) X–Z projection. (d)Y–Z projection.
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IV SIMULATION RESULTS

Simulations are made to test the performance of the
approach proposed. Estimation of the biases can be dif-
ficult as a number of distinct targets must be used in or-
der to differentiate the effects of the multiplicative and
additive biases. In our simulation, sensor 1 is fixed at
(0,0,0) km, sensor 2 is fixed at (25,100,0) km, and tar-
get velocity is (−300, 0, 0) m/s. The target positions are
set up in a cone extended from sensor 1. The ranges are
in [50, 500] km, the azimuths are in [−1, 1] rad, and the
elevations are in [0.1, 1.5] rad. The additive and mul-
tiplicative biases, as well as the noise variances, are in
range [20 m, 10−4, 100 m2], and in azimuth and eleva-
tion [3 mrad, 3 × 10−3, 1 mrad2].

The target positions include a swath of range, az-
imuth, and elevation that allows each bias to make its
effect apparent versus the other. In order to ensure this,
the targets are radially placed in a cone from one sensor.
In cases of high range, azimuth, and elevation values, the
multiplicative biases dominate, whereas in cases of low
range, azimuth, and elevation values, the additive biases
dominate. In our simulations, the targetsmove at 300m/s
across time steps with ten measurements at one mea-
surement per second. The sensor configuration is shown
in Fig. 1 for 125 targets and in Fig. 2 for 27 targets.

The results of the simulations include the CRLB,
RMSE from nMC Monte Carlo runs, and a probability
interval around the CRLB for each bias. The probabil-
ity interval is calculated for the 95% region using the
bias error samples from the Monte Carlo runs. The 95%

probability interval is calculated by the following equa-
tions where σSE is the standard deviation of the squared
error from the nMC Monte Carlo runs:

0.95 = P(a < RMSE < b) (41)

a =
√
CRLB − 1.96 · σSE√

nMC
(42)

b =
√
CRLB + 1.96 · σSE√

nMC
. (43)

A. Baseline Simulations

The first simulations are a baseline test to determine
the performance and efficiency of the estimator. To be-
gin, a simulation was performed with NT = 125 tar-
gets and K = 10 time steps, the results of which are
shown in Table III. In this simulation, it is shown that
it is possible to achieve RMSE values that are compat-
ible to the CRLB. The CRLB and RMSE are based
on the error in the final bias estimates. The RMSE
lies within the 95% probability interval around the
CRLB in all cases; thus, the estimator is proved to be
efficient [3]. Furthermore, the CRLB values are com-
pared to the true bias and the noise standard devia-
tion. Table III also contains the results that show that
the residual bias RMSE is consistently lower than the
noise standard deviation. Furthermore, the error from
RMSE is lower than the noise standard deviation for

TABLE I
nMC = 100 Runs,K = 10 Time Steps, and NT = 125 Targets

CRLB square HCRLB square 95% Probability interval Noise standard Uncorrected
Component root root RMSE around CRLB deviation bias

Sensor 1 range
additive

4.96 m 4.96 m 4.7 m [4.3, 5.5] m 10 m 20 m

Sensor 1 range
multiplicative

4.21 × 10−5 4.21 × 10−5 3.88 × 10−5 [3.66 × 10−5, 4.63 × 10−5] 10 m 10−4

Sensor 1 azimuth
additive

4.85 × 10−2 mrad 4.85 × 10−2 mrad 5.55 × 10−2 mrad [3.98 × 10−2, 5.45 × 10−2] mrad 1 mrad 3 mrad

Sensor 1 azimuth
multiplicative

7.89 × 10−5 7.89 × 10−5 7.56 × 10−5 [6.81 × 10−5, 8.80 × 10−5] 1 mrad 3×10−3

Sensor 1 elevation
additive

1.15 × 10−1 mrad 1.14 × 10−1 mrad 1.27 × 10−1 mrad [9.24 × 10−2, 1.33 × 10−1] mrad 1 mrad 3 mrad

Sensor 1 elevation
multiplicative

9.42 × 10−5 9.41 × 10−5 9.82 × 10−5 [7.74 × 10−5, 1.08 × 10−4] 1 mrad 3×10−3

Sensor 2 range
additive

5.67 m 5.67 m 5.4 m [5.0, 6.2] m 10 m 20 m

Sensor 2 range
multiplicative

4.43 × 10−5 4.43 × 10−5 4.33 × 10−5 [3.80 × 10−5, 4.92 × 10−5] 10 m 10−4

Sensor 2 azimuth
additive

8.44 × 10−2 mrad 8.44 × 10−2 mrad 9.32 × 10−2 mrad [6.65 × 10−2, 9.83 × 10−2] mrad 1 mrad 3 mrad

Sensor 2 azimuth
multiplicative

6.82 × 10−5 6.82 × 10−5 8.00 × 10−5 [5.33 × 10−5, 7.97 × 10−5] 1 mrad 3×10−3

Sensor 2 elevation
additive

9.66 × 10−2 mrad 9.66 × 10−2 mrad 1.00 × 10−1 mrad [8.18 × 10−2, 1.10 × 10−1] mrad 1 mrad 3 mrad

Sensor 2 elevation
multiplicative

9.58 × 10−5 9.56 × 10−5 9.65 × 10−5 [8.15 × 10−5 1.07 × 10−4] 1 mrad 3× 10−3
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TABLE II
nMC = 100 Runs,K = 10 Time Steps, and NT = 27 Targets

CRLB square HCRLB square 95% Probability interval Noise standard Uncorrected
Component root root RMSE around CRLB deviation bias

Sensor 1 range
additive

7.7 m 7.7 m 8.3 m [6.5, 8.7] m 10 m 20 m

Sensor 1 range
multiplicative

8.84 × 10−5 8.84 × 10−5 9.15 × 10−5 [7.59 × 10−5, 9.84 × 10−5] 10 m 10−4

Sensor 1 azimuth
additive

1.12 × 10−1 mrad 1.12 × 10−1 mrad 1.05 × 10−1 mrad [9.65 × 10−2, 1.23 × 10−1] mrad 1 mrad 3 mrad

Sensor 1 azimuth
multiplicative

1.81 × 10−4 1.81 × 10−4 1.73 × 10−4 [1.56 × 10−4, 2.02 × 10−4] 1 mrad 3 × 10−3

Sensor 1 elevation
additive

2.28 × 10−1 mrad 2.28 × 10−1 mrad 2.19 × 10−1 mrad [1.93 × 10−1, 2.59 × 10−1] mrad 1 mrad 3 mrad

Sensor 1 elevation
multiplicative

1.82 × 10−4 1.81 × 10−4 1.72 × 10−4 [1.49 × 10−4, 2.08 × 10−4] 1 mrad 3 × 10−3

Sensor 2 range
additive

11.1 m 11.1 m 11.4 m [9.5, 12.4] m 10 m 20 m

Sensor 2 range
multiplicative

9.64 × 10−5 9.63 × 10−5 1.01 × 10−4 [8.21 × 10−5, 1.08 × 10−4] 10 m 10−4

Sensor 2 azimuth
additive

2.00 × 10−1 mrad 2.00 × 10−1 mrad 2.03 × 10−1 mrad [1.70 × 10−1, 2.25 × 10−1] mrad 1 mrad 3 mrad

Sensor 2 azimuth
multiplicative

1.53 × 10−4 1.53 × 10−4 1.47 × 10−4 [1.32 × 10−4, 1.71 × 10−4] 1 mrad 3 × 10−3

Sensor 2 elevation
additive

1.76 × 10−1 mrad 1.76 × 10−1 mrad 1.77 × 10−1 mrad [1.52 × 10−1, 1.98 × 10−1] mrad 1 mrad 3 mrad

Sensor 2 elevation
multiplicative

1.82 × 10−4 1.82 × 10−4 1.79 × 10−4 [1.56 × 10−4, 2.03 × 10−4] 1 mrad 3 × 10−3

TABLE III
nMC = 100 Runs,K = 1 Time Steps, and NT = 125 Targets

CRLB square HCRLB square 95% Probability interval Noise standard Uncorrected
Component root root RMSE around CRLB deviation bias

Sensor 1 range
additive

16.4 m 16.4 m 17.5 m [13.3, 18.8] m 10 m 20 m

Sensor 1 range
multiplicative

1.36 × 10−4 1.36 × 10−4 1.24 × 10−4 [1.16 × 10−4, 1.52 × 10−4] 10 m 10−4

Sensor 1 azimuth
additive

1.53 × 10−1 mrad 1.53 × 10−1 mrad 1.59 × 10−1 mrad [1.25 × 10−1, 1.72 × 10−1] mrad 1 mrad 3 mrad

Sensor 1 azimuth
multiplicative

2.53 × 10−4 2.53 × 10−4 2.32 × 10−4 [2.21 × 10−4, 2.80 × 10−4] 1 mrad 3 × 10−3

Sensor 1 elevation
additive

3.66 × 10−1 mrad 3.65 × 10−1 mrad 3.61 × 10−1 mrad [3.13 × 10−1, 4.12 × 10−1] mrad 1 mrad 3 mrad

Sensor 1 elevation
multiplicative

3.01 × 10−4 3.01 × 10−4 2.83 × 10−4 [2.65 × 10−4, 3.31 × 10−4] 1 mrad 3 × 10−3

Sensor 2 range
additive

18.7 m 18.7 m 17.8 m [16.1, 20.8] m 10 m 20 m

Sensor 2 range
multiplicative

1.43 × 10−4 1.43 × 10−4 1.27 × 10−4 [1.24 × 10−4, 1.59 × 10−4] 10 m 10−4

Sensor 2 azimuth
additive

2.68 × 10−1 mrad 2.68 × 10−1 mrad 2.83 × 10−1 mrad [2.19 × 10−1, 3.08 × 10−1] mrad 1 mrad 3 mrad

Sensor 2 azimuth
multiplicative

2.19 × 10−4 2.19 × 10−4 2.28 × 10−4 [1.81 × 10−4, 2.50 × 10−4] 1 mrad 3 × 10−3

Sensor 2 elevation
additive

3.09 × 10−1 mrad 3.09 × 10−1 mrad 3.02 × 10−1 mrad [2.68 × 10−1, 3.47 × 10−1] mrad 1 mrad 3 mrad

Sensor 2 elevation
multiplicative

3.05 × 10−4 3.05 × 10−4 3.05 × 10−4 [2.59 × 10−4, 3.43 × 10−4] 1 mrad 3 × 10−3
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all cases except range multiplicative bias at the larger
ranges.

This initial simulation contains many targets; there-
fore, another simulation is made with 27 targets instead.
The results are displayed in same manner as before

in Table I. The results show that the performance is
not reduced much more than the 125-target case. The
estimator is still efficient and has error in the angle bi-
ases that is lower than the noise standard deviation and
the full bias.The range biases are significantly worse, and
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Figure 3. Comparing RMSE and CRLB with number of targets,K = 10 time steps.
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125 Target Random Placement 3D Plot
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Figure 4. 125 random target layout with projections. The × symbols
represent sensors and the ◦ symbols represent targets. (a) 3D plot. (b)

X–Y projection. (c) X–Z projection. (d)Y–Z projection.

the error in the range additive bias is almost equal to the
noise standard deviation. The range multiplicative bias
has RMSE that is nearly equal to the full bias, mean-
ing that the estimation of this bias is comparable to not
estimating it at all. Finally, a simulation is performed in
which only a single measurement is available from each
time step andwith 125 targets.These results are provided
in Table II. In this simulation, we see the results are very
similar to the previous simulation with 10 time steps and
27 targets. The range bias estimates have RMSE that
is poor and comparable to the full bias. The angle bias
RMSE values are still lower than the noise standard de-
viation. The estimator is efficient although the CRLB it-
self is very poor for the range biases.

The HCRLB values for these simulations are nearly
identical to the CRLB values, meaning that very little
accuracy has been lost by using pseudo-measurements
instead of the original measurements. This shows that
when little information is known about the nuisance pa-
rameters, then the pseudo-measurement method is ef-
fective for avoiding the need to estimate the target state.

Efficient estimates are possible with this estimator
and it is possible to reduce the CRLB to reasonable lev-
els of variance by using measurements from many tar-
gets. In the case of only a single time step, the error
is larger than the magnitude of the bias, meaning that
it is necessary to include more measurements in order
to achieve reasonable results. Furthermore, it is possible
through bias estimation to reduce the error from the bi-
ases to levels that are less than the standard deviation of
the noise, as shown in Tables I–III.

B. Comparing Performance Versus Number of Targets

Additionally, it is important to evaluate the bias es-
timation performance versus the number of targets. To
simulate this, the number of targets is varied from 5 to
125 targets, starting with low-range targets and slowly ex-
panding outward according to the target cone shown in
Fig. 1. This means that range measurements have poor
diversity and the estimates for the range biases are less
accurate for small numbers of targets. The results of this
simulation are given in Fig. 3. The results show that at
around 45 targets the CRLB and RMSE are near the
lowest point, and that further addition of targets contin-
ues to improve the results at a slow rate. Furthermore,
we see that in the case of angle biases once there are 30
targets the bias RMSE values are about one-tenth of the
full bias value. It is likely though that in a different tar-
get layout the results may differ, as this layout includes
different combinations of range, azimuth, and elevation
to ensure that the multiplicative biases can be estimated
and not confused with the additive biases. To observe
this difference, another simulation is made with random
target placement.

In each Monte Carlo run, the targets are placed uni-
formly in a cube around the cone previously used. An
example of this placement is given in Fig. 4. The same
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Figure 5. Comparing RMSE and CRLB with number of targets,K = 10 time steps.

simulation is made as earlier and the results are shown
in Fig. 5. The results are nearly the same as before,
except for the range additive bias. This is a result of
the poor range diversity, especially of low-range targets.
Overall, these results show that it is important to have
measurement diversity to reduce the CRLB to reason-

able levels and it is useful to have a large number of
targets for this reason.

V. Conclusion

In this paper, an ML method is used to accurately
estimate both multiplicative and additive biases in a
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two-sensor scenario. Measurement data are converted
into pseudo-measurements to isolate the effects of the
biases in order to estimate them while ignoring esti-
mation of the target state. The results show that de-
spite the 12 separate estimated biases it is possible to
match the RMSE and CRLB of the bias estimates by
using a sufficient number of targets positioned in a man-
ner to differentiate the biases. This proves the method
is statistically efficient, although CRLB values are sub-
ject to the sensor and target geometry. In good condi-
tions, the estimator can reduce the error from RMSE
in bias estimates to a fraction of the noise standard
deviation.
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Performance Improvement of
Measurement Association
Using a System with two 2D
Sensors and one 3D Sensor

CÉSAR CONTRERAS
JOHN LANGFORD
LARRY AMMANN
JOHN ZWECK
BRIAN MARKS

A measurement-to-measurement data association problem is

formulated for a target tracking system consisting of one or two

2D sensors and a 3D sensor. Operating conditions are identified

under which performance is improved by using two 2D sensors and

a 3D sensor instead of one 2D sensor and a 3D sensor. To facilitate

this study, two algorithms are introduced to compute near-optimal

solutions of the corresponding three-way assignment problem: a

single-step algorithm based on two independent two-way assignment

problems, and a related iterative algorithm that explicitly enforces

a compatibility condition between measurements made by the 2D

sensors. Simulation studies show that the position estimates obtained

with the three-sensor system are much more accurate than those

obtained with a two-sensor system whenever there is large uncertainty

in the 3D sensor in the dimension orthogonal to the plane of the 2D

sensor in the two-sensor system. Moreover, whenever there is large

uncertainty in the measurements from the 3D sensor in the common

dimension of the 2D sensors, the percentage of correct matches with

the the iterative assignment algorithm for the three-sensor system is

significantly better than that with a two-sensor system. The degree to

which the methods and results can be extended to more realistic 3D

radar and 2D camera models is discussed and inferences for aerospace

and missile defense applications are drawn.

I. INTRODUCTION

Multitarget, multisensor tracking systems for
aerospace and missile defense applications are typi-
cally based on a network of radars [1], [2], [6], [11].
In computer vision and robotics, tracking systems are
often based on a network consisting of cameras or
radars or both. These systems are used to track the
movement of people and robots, for perception systems
in autonomous vehicles, and for surveillance applica-
tions [15], [18]–[20]. Therefore, an important problem
is to associate and fuse tracks generated by networks
of heterogeneous 2D and 3D sensors. The simplest
such data association problem is the measurement-to-
measurement association (M2MA) problem, which is
that of associating measurements from different sensors
to form composite measurements that can then be used
by a centralized tracking system to generate a single set
of tracks using data from several sensors [3], [4]. In this
paper, we adopt the approach of [4] and [6] in which
target states and measurements are represented as ran-
dom vectors. However, recently a Bayesian inference
approach to target tracking based on message passing
and the sum–product algorithm has also been shown to
be particularly effective [12].

We classify data association problems, such as the
M2MA problem, by the number of sensors in the sys-
tem and the dimensions of the Euclidean spaces of the
data recorded by the sensors. For example, we will clas-
sify a systemwith one 3D radar and two 2D cameras as a
322-sensor system, and a system with one 3D radar and
one 2D camera as a 32-sensor system.

Since target tracking with three sensors is signifi-
cantly more complex than with two sensors, it is im-
portant to identify situations in which the addition of
a third sensor results in more accurate estimates of the
target positions. Deb et al. [7] studied the M2MA prob-
lem for 322-, 222-, and 32-sensor systems using target
scenarios that simulated a squadron of fighter jets flying
in formation. They found that ghosting and resolution
problems due to specific geometric configurations of the
targets were a major source of position errors, but that
these were smaller for a 322-sensor than a 222-sensor
system.

Themain contribution of this paper is to identify sen-
sor operating conditions under which the performance
of a target tracking system can be improved by us-
ing a 322-sensor system rather than a 32-sensor system.
Specifically, in the context of M2MA, we study how the
percentage of correct assignments and the average target
position error depend on the angle between the planes
of the two 2D sensors and on the orientation of the co-
variance ellipsoid of the 3D sensor with respect to the
camera planes. By contrast, the results of Deb et al. [7]
were obtained with fixed sensor orientations. In Sec-
tion VI, we show that the percentage of correct as-
signments with a 322-sensor system is significantly bet-
ter than that with a 32-sensor system whenever the

112 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 14, NO. 1 JUNE 2019



Fig. 1. The geometric configuration and coordinate systems for the
three-sensor system.

uncertainty in the measurements made by the 3D sen-
sor is large compared to that of the two 2D sensors
along the line of intersection of the planes of the two
2D sensors (i.e., along the x-axis in Fig. 1). We also
show that the root-mean-square error (RMSE) in the
estimated target positions is much smaller for the 322-
sensor system when the uncertainty in the 3D sensor
measurements is large in the dimension orthogonal to
the plane of the 2D sensor. In Section VII, we discuss
the implications of these results for aerospace and mis-
sile defense applications. In particular, our results sug-
gest that there can be a significant performance ad-
vantage to a target tracking system with two cameras
and a 3D radar as opposed to one camera and a 3D
radar.

The data association problems that arise in tar-
get tracking and sensor fusion can be formulated as
multidimensional assignment problems [16]. The prob-
lem of computing the most likely assignment of mea-
sured sensor data to a collection of unknown targets
involves optimizing a log-likelihood cost function sub-
ject to a collection of constraint equations that specify
the set of feasible assignments. The cost function de-
fined by Deb et al. [7] allows for realistic sensor mod-
els and includes spurious measurements and missed de-
tections.They formulated the resulting three-way assign-
ment problem as an integer linear program in which the
coefficients of the cost function are defined in terms of
unknown target positions. Since the number of coeffi-
cients is equal to the number of ways to select threemea-
surements, one from each sensor, the computation of the
coefficients involves solving a large number of nonlinear
least-squares problems for the target positions. Indeed,
Deb et al. found that up to 80% of the computational
time of the assignment algorithmwas taken upwith solv-
ing these least-squares problems.

Although multidimensional assignment problems
are NP-hard for N > 3 sensors, there are efficient

iterative algorithms to compute suboptimal solutions
based on greedy algorithms, simulated annealing, and
Lagrangian relaxation-based methods [14], [17]. For ex-
ample, in their work Deb et al. [7] employed a nearly
optimal three-way assignment algorithm grounded in
linear programming theory that trades off computa-
tional time for some loss of association accuracy. A key
step in their method is to incorporate one of the con-
straint equations into the cost function via Lagrange
multipliers and to solve the resulting two-way assign-
ment problem using Bertsekas’ auction algorithm [5]
or Munkres’ algorithm [13]. One advantage of this ap-
proach is that it provides upper and lower bounds
for the cost of the optimal solution. In a simulation
study, they found that the average gap between these
bounds can be reduced to less than 2%.Such Lagrangian
relaxation methods have been extended to N-way
assignments [8], [17].

Since we did not have access to an implementation of
a state-of-the-art assignment algorithm for the M2MA
problem [8], [17], to compare the performance of 322-
and 32-sensor systems we considered an idealized sit-
uation with simplified target-to-sensor transformations
and with no spurious measurements or missed detec-
tions. With these simplifying assumptions, we were able
to define a cost function whose coefficients do not de-
pend on unknown target positions, thus avoiding the
high computational cost of solving the nonlinear least-
squares problems in [7], [8], and [17].

Furthermore, to obtain near-optimal three-way as-
signments we used the simplified geometric configura-
tion of the sensors to devise two algorithms, each of
which reduces the 322-sensor assignment problem to
a sequence of 32-sensor problems that we solve us-
ing Munkres’ algorithm. We will refer to these algo-
rithms, which are described in Sections III and IV, as
the single-step four-dimensional (4D) algorithm and
the iterative five-dimensional (5D) algorithm.Although
we do not prove that the iterative 5D algorithm con-
verges to the optimal solution,we performed simulation
studies (not described here) verifying that the method
yields optimal assignments for small problems (≈10 tar-
gets) by comparing to results obtained by an exhaustive
search.

In Section VII, we will show that the simplified
target-to-sensor transformations we used are valid ap-
proximations of realistic radar and camera models for
applications in which the targets are located at a signifi-
cant distance from the sensors and are confined to a suf-
ficiently small region of the field of view. We will also
argue that the main conclusions obtained in Section VI
on the performance advantages of a 322-sensor system
over a 32-sensor system should remain valid if a state-
of-the-art method was used that incorporates spurious
measurements and missed detections.

In Section II,we introduce themodel we used for the
322-sensor association problem, and in Sections III and
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IVwe derive formulas for the cost function in the case of
orthogonal and nonorthogonal 2D sensor planes, respec-
tively. In SectionV,we derive a formula for the estimated
target positions. In SectionVI,we describe the numerical
simulations we performed to quantify the performance
of the methods we developed. In Section VII, we dis-
cuss the extent to which our methods and results can
be generalized to realistic 322-sensor systems. Finally, in
Section VIII, we present our conclusions.

II. SYSTEM MODEL

In this section, we describe the system models we
used to compare the performance of 322- and 32-sensor
systems.

We consider a target tracking scenario with three
sensors: two 2D sensors (A and B) and one 3D sen-
sor (C). We assume that all three sensors make N mea-
surements of the same N targets, and we assume that
there is no systematic bias in any of the sensors. How-
ever, mismatches can occur because of the inherent un-
certainty in the measurements made by each sensor.
We modeled the 2D sensors using parallel projections
rather than themore realistic perspective projections of-
ten used to model cameras. In addition, we assume that
the 3D sensor uses the identity transformation to map
each target to a measurement in a 3D rectangular co-
ordinate system, rather than employing a more realistic
radar model based on the transformation from XYZ to
RUV space, as is described, for example, in [9]. In Sec-
tion VII,we will explain why these simplifiedmodels are
reasonable.

In Fig. 1, we show a schematic diagram of the geo-
metric configuration of the three sensors. The planes of
the two 2D sensors intersect in a line, L, and we let θ

denote the angle between these two planes.We define a
coordinate system, (x, y, z), adapted to Sensors A and B
as follows. We choose the origin of the coordinate sys-
tem to be a point on L, the x-axis to be along the line
L, the y-axis to be perpendicular to the x-axis and in the
plane of SensorA, and the z-axis to be orthogonal to the
xy-plane.

We generate the N targets in the (x, y, z) coordinate
system, and suppose that each sensor records the mea-
sured positions of each target in a coordinate system
adapted to that sensor. Without any loss of generality,
we choose the coordinate systems (xA, yA) adapted to
SensorA, (xB,wB) adapted to SensorB, and (xC, yC, zC)
adapted to SensorC such that

[
xA yA

] = [
x y

]

= [
x y z

]⎡⎣1 0
0 1
0 0

⎤
⎦

= [
x y z

]
MA

(1)

[
xB wB

] = [
x cos(θ )y+ sin(θ )z

]

= [
x y z

]⎡⎣1 0
0 cos θ

0 sin θ

⎤
⎦ (2)

= [
x y z

]
MB,

and [
xC yC zC

] = [
x y z

]
R, (3)

for some 3×3 orientation-preserving orthogonal matrix
R. The projection matrices, MA and MB, in (1) and (2)
map the 3D vector

[
x y z

]
to the planes of Sensors A

and B.
We assume that the errors in the positions measured

by Sensors A, B, and C are independent Gaussian ran-
dom vectors with covariance matrices �A, �B, and �̃C,
where �A and �B are 2 × 2 matrices and �̃C is a 3 × 3
matrix.We assume that these variances are known from
sensor calibration measurements, and are given in the
coordinate system adapted to each sensor.For simplicity,
henceforth we suppose that the measurements made by
Sensor C have been transformed from (xC, yC, zC) to
(x, y, z) coordinates via (3) and that the covariance ma-
trix �̃C has been transformed to �C = R�̃CRT .

The notational conventions we use are summarized
in Table I. In addition, we use the following notation for
submatrices of an N × M matrix A. Let i = (i1, . . . , iK)
and j = ( j1, . . . , jL) be vectors of row and column
indices of A, respectively. Then, let A[i, j] denote the
K×L submatrix ofA consisting of the rows and columns
indexed by i and j, respectively. Also, let A[∗, j] =
A[(1, . . . ,N), j] and A[i, ∗] = A[i, (1, . . . ,M)].

Let
[
X Y Z

]
denote the N × 3 matrix of the

true positions of the N targets in the coordinate system
(x, y, z) adapted to Sensors A and B. Let Aerr and Berr

denote the N × 2 matrices of position errors for Sen-
sors A and B, respectively, and letCerr denote the N × 3
matrix of position errors for Sensor C. The rows of Aerr

are independent and identically distributed (i.i.d.) multi-
variate normal distributions with mean zero and covari-
ance matrix �A, Aerr[n, ∗] ∼ MN(0, �A), and similarly
for Sensors B andC. Then, the positions of theN targets
as measured by Sensors A,B, andC are given by[

X̂A ŶA
] = [

XA YA
] +Aerr ∈ RN×2 (4)

[
X̂B ŴB

] = [
XB WB

] + Berr ∈ RN×2 (5)

[
X̂C ŶC ẐC

] = [
XC YC ZC

] +Cerr ∈ RN×3 (6)

respectively. The matrix
[
XA YA

]
in (4) is obtained via

an unknown permutation, πA, of the rows of the matrix[
X Y Z

]
using the projection defined in (1). Similarly,

the matrix
[
XB WB

]
in (5) is obtained via an unknown

permutation, πB, of the rows of the matrix
[
X Y Z

]
using the projection defined in (2). These permutations
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TABLE I
Notational Conventions Used in This Paper

Variable Meaning

(xA, yA), (xB, wB), (xC, yC, zC) Coordinate systems adapted to Sensors A,B, andC
[X,Y,Z] N × 3 matrix of true target positions

[XA,YA], [XB,WB], [XC,YC,ZC] N ×K matrices of permuted true target positions for Sensors A,B (K = 2), andC (K = 3)
�A,�B,�C K ×K covariance matrices for Sensors A,B, andC
Aerr,Berr,Cerr N ×K matrices of position errors for Sensors A,B, andC

[X̂A, ŶA], [X̂B,ŴB], [X̂C, ŶC, ẐC] N ×K matrices of permuted measured target positions for Sensors A,B, andC

model the fact that the three sensors do not record the
data from the N targets in the same order.

Let SN denote the set of all permutations of N
symbols. With each permutation, π ∈ SN , we can as-
sociate an N × N matrix, also denoted by π , with
the property that left multiplication of a matrix by
π permutes the rows of that matrix. Specifically, the
permutation matrix corresponding to the permutation,
π (1, 2, . . . ,N) = (π (1), π (2), . . . , π (N)), is given by

π =

⎡
⎢⎢⎢⎣
eπ (1)
eπ (2)
...

eπ (n)

⎤
⎥⎥⎥⎦ (7)

where the row vector e j is the jth standard basis vector.
Therefore, by (4) and (5),[

X̂A ŶA
] = πA

[
X Y

] +Aerr (8)

[
X̂B ŴB

] = πB
[
X W

] + Berr (9)

whereW = π−1
B WB is N × 1.

Our goal is to determine the permutations, πA and
πB, that associate each of the N targets recorded by
Sensors A and B, respectively, with those recorded by
Sensor C. We formulate this association problem as a
combinatorial optimization problem that involves the
minimization of a cost function

� : SN × SN → [0,∞) (10)

where �(π̂A, π̂B) represents the cost of using permuta-
tions π̂A and π̂B to associate data from Sensors A and B
with those from SensorC, respectively.

In the following sections,we will define the cost func-
tion, �, in terms of a Mahalanobis distance using the re-
quirement that, in the absence ofmeasurement error, the
orthogonal projections of the target positions measured
by SensorC onto the planes of Sensors A and B should
match the target positions measured by Sensors A and
B, respectively. Specifically, the permutations πA and πB
should be chosen so that

π−1
A

[
XA YA

] = [
XC YC ZC

]
MA (11)

π−1
B

[
XB WB

] = [
XC YC ZC

]
MB. (12)

III. COST FUNCTION FOR ORTHOGONAL SENSOR
PLANES

To simplify the discussion, we first consider the spe-
cial case that the planes of Sensors A and B are orthog-
onal (θ = π/2). In the presence of measurement error,
by (4) and (6), the difference in the positions measured
by Sensors A andC is

π−1
A

[
X̂A ŶA

] − [
X̂C ŶC

]
= (

π−1
A πA

[
X Y

] + π−1
A Aerr

)
− ([

X Y
] +Cerr[∗, (1, 2)]

)
= Aerr −Cerr[∗, (1, 2)]

(13)

since the rows of Aerr are i.i.d. random variables

π−1
A Aerr

(d)= πAAerr
(d)= Aerr

where
(d)= denotes equality in distribution. Similarly,

π−1
B

[
X̂B ŴB

]− [
X̂C ẐC

] = Berr −Cerr[∗, (1, 3)]. (14)

Let DN×4(πA, πB) be the N × 4 data matrix

DN×4(πA, πB) = [
D1 D2 D3 D4

]
where

D1 = π−1
A X̂A − X̂C

D2 = π−1
A ŶA − ŶC

D3 = π−1
B X̂B − X̂C

D4 = π−1
B ŴB − ẐC.

By (13) and (14), the vector �x(πA, πB) ∈ R4N

obtained by concatenating the columns of the matrix
DN×4(πA, πB) is multivariate normally distributed with
mean zero and a 4N × 4N covariance matrix, �̃4D, that
is determined by �A, �B, and �C. Our goal then is to
determine the permutations (π̂A, π̂B) that maximize the
likelihood function

L((πA, πB)|�x) = exp
[−�x(πA, πB)T �̃−1

4D�x(πA, πB)
]
(15)

which is equivalent to minimizing the Mahalanobis
distance

�(πA, πB) = �x(πA, πB)T �̃−1
4D�x(πA, πB). (16)
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The advantage of defining DN×4 using differences of
measurements is that the unknown positions of the tar-
gets are removed, simplifying the computation of the
cost function �.

Since SN × SN has (N!)2 elements, an exhaustive
search for the global minimum of � is intractable for
N � 10. On the other hand, the simpler problem
of associating measurements made by two sensors can
be formulated as an optimization problem on SN for
which O(N3)-algorithms, such as Munkres’ algorithm,
exist [13]. To obtain an efficient, approximate solu-
tion to the 322-sensor assignment problem, we devised
two algorithms that use Munkres’ algorithm to solve
two-way assignment subproblems.We refer to these two
algorithms as the 4D and 5D algorithms.

Before describing these algorithms, we derive an al-
ternate formula for the Mahalanobis distance, �, in (16).
Recall that the definition of � was motivated by the re-
quirements, (8) and (9), that the projections of the mea-
sured data from Sensor C onto the planes of Sensors A
and B should be aligned with the data obtained from
Sensors A and B. We observe from (8) and (9) that,
in the absence of measurement error, the compatibility
condition

π−1
A XA = π−1

B XB (17)

must also hold for the optimal choice of permutations.
This condition will be used in the 5D algorithm to
further constrain the search for the optimal pair of
permutations.

By (4) and (5), we observe that in the presence of
measurement error the difference in the x-coordinate of
the measured positions of Sensors A and B is

π−1
A X̂A − π−1

B X̂B = Aerr[∗, 1] − Berr[∗, 1]. (18)

Then, we define an N × 5 data matrix by

DN×5(πA, πB) = [
DN×4(πA, πB) D5

]
(19)

where

D5 = π−1
A X̂A − π−1

B X̂B.

Let �̃5D be the 5N × 5N covariance matrix associated
with the data inDN×5. SinceD5 = D1−D3 for any set of
measurements, the covariance matrix �̃5D is not positive
definite but rather has rank 4N.A calculation shows that
�̃5D is the 5 × 5 block matrix whose (k, l)-block is the
N ×N matrix

(�̃5D)kl = (�5D)kl IN×N (20)

where IN×N is the N × N identity matrix and �5D is the
5 × 5 matrix given by

�5D =

⎡
⎢⎣

�AC CACBC CACAB

CT
ACBC �BC CBCAB

CT
ACAB CT

BCAB �AB

⎤
⎥⎦ (21)

whose entries are the matrices

�AC = �A + �C[(1, 2), (1, 2)]

�BC = �B + �C[(1, 3), (1, 3)]

�AB = �A[1, 1] + �B[1, 1]

CACBC =
[
�C[1, 1] �C[1, 3]
�C[1, 2] �C[2, 3]

]

CACAB = �A[∗, 1]

CBCAB = −�B[∗, 1].

Since �5D is singular, we can use the Moore–Penrose
pseudoinverse of �5D to define the distribution of each
row of D. Let

�5D = VEVT

denote the eigendecomposition of �5D, arranged so that
the last eigenvalue inE is 0 and the first four are positive.
LetV4 denote the first four columns ofV and let E4 de-
note the submatrix consisting of the first four rows and
columns of E. Then, the Moore–Penrose pseudoinverse
of �5D is

�−
5D = V4E−1

4 VT
4 .

Therefore, the log-likelihood function in (16) for param-
eters π̂A and π̂B can also be expressed as

l(π̂A, π̂B) =
n∑
i=1

Di(π̂A, π̂B)V4E−1
4 VT

4 D
T
i (π̂A, π̂B) (22)

where Di(π̂A, π̂B) denotes the ith row of DN×5(π̂A, π̂B).
The problem of simultaneously finding permutations

π̂A and π̂B that minimize the association cost is not a
standard association problem since � : SN × SN → R
rather than � : SN → R. Instead, we can treat the
problem as two separate association problems by using
columns 1 and 2 of DN×5 to associate the targets mea-
sured by A with those from C and using columns 3 and
4 of DN×5 to associate the measurements from B with
those from C. Specifically, the first association subprob-
lem is obtained by extracting columns 1 and 2 fromDN×5

to obtain the N × 3 data matrix

D(AC)(π̂A) = [
π̂AX̂A − X̂C, π̂AŶA − ŶC

]
(23)

which only depends on π̂A.The cost function for this sub-
problem is defined by

�AC(π̂A) =
n∑
i=1

D(AC)
i �−1

ACD
(AC)T
i . (24)

Similarly, the second subproblem, which is to associate
the data from B with those fromC, is determined by the
data matrix

D(BC)(π̂B) = [
π̂−1
B X̂B − X̂C, π̂−1

B ŴB − ẐC
]

(25)

and the corresponding cost function

�BC(π̂B) =
n∑
i=1

D(BC)
i �−1

BCD
(BC)T
i . (26)
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This approach is the essence of the 4D algorithm for
the 322-sensor association problem,which involves solv-
ing two independent matching problems: an A-to-C and
a B-to-C match, from which an A-to-B match can be in-
ferred. The 4D algorithm can be summarized as follows:

#initialize
π̂B = argmin(lBC(π̂B))
π̂A = argmin(lAC(π̂A))
end

In the 5D algorithm, we explicitly impose the ad-
ditional consistency condition encoded in column 5 of
DN×5 that represents the differences in the observed po-
sitions betweenA andB in their shared dimension.With
this iterative algorithm, we first use a current estimate
for the A-to-C match and optimize the B-to-C match.
The Mahalanobis distance objective function for this
B-to-Cmatch involves a 3N×3N covariance matrix that
incorporates the additional A–B consistency condition.
In the second stage of each iteration, we switch the roles
ofA and B and optimize theA-to-Cmatch.Given a rea-
sonable initial guess for the A-to-C match, only a few
iterations are typically required for the algorithm to con-
verge.

In detail, the 5D algorithm is given as follows. Sup-
pose we have available an initial permutation, π̂ (0)

B , for
Sensor B and wish to associate the measurements made
by Sensor A with those made by Sensor C given π̂

(0)
B .

This data association problem can be based on columns
1, 2, and 5 of (21) with π̂

(0)
B fixed

D(ABC)(π̂A|π̂ (0)
B

) = [D1, D2, D5] . (27)

The covariance matrix for D(ABC) is the submatrix con-
sisting of rows and columns 1, 2, and 5 of (21)

�ABC = �5D[(1, 2, 5), (1, 2, 5)]. (28)

The matrix �ABC is nonsingular and the objective func-
tion for π̂A given π̂

(0)
B is given by

�ABC
(
π̂A|π̂ (0)

B

) =
n∑
i=1

D(ABC)
i �−1

ABC

(
D(ABC)
i

)T
. (29)

Let π̂ (0)
A denote the permutation that minimizes this cost

function. Since �ABC : SN → R, an approximation to
π̂

(0)
A can be obtained using a two-way assignment algo-

rithm [10], [13]. Once we have an estimate for π̂
(0)
A , we

can then refine the initial estimate of πB using columns
3, 4, and 5 of (21)

D(BAC)(π̂B|π̂ (0)
A

) = [D3, D4, D5] . (30)

The covariance matrix for D(BAC) is

�BAC = �5D[(3, 4, 5), (3, 4, 5)]. (31)

The matrix �BAC is nonsingular and, as above, the cost
function for the new estimate π̂B is

�BAC
(
π̂B|π̂ (0)

A

) =
n∑
i=1

D(BAC)
i �−1

BAC

(
D(BAC)
i

)T
. (32)

Now let π̂
(1)
B denote the permutation that minimizes this

cost function. The process of solving these alternating
two-way assignment problems can be repeated using the
updated estimates from the previous step,continuing un-
til the estimates remain unchanged.

It remains to define an initial estimate for πB. This
can be obtained using columns 3 and 4 of DN×5

D(BC)(π̂B) = [
π̂BX̂B − X̂C, π̂BŴB − ẐC

]
(33)

to assign the data fromB to those fromCwithoutA. The
cost function for this problem is

�BC(π̂B) =
n∑
i=1

D(BC)
i �−1

BC

(
D(BC)
i

)T
. (34)

The resulting 5D algorithm can be expressed as follows:

#initialize
π̂

(0)
B = argmin(lBC(π̂B))

π̂
(0)
A = argmin(lABC(π̂A|π̂ (0)

B ))

#iterate
for i in 1 : maxiter
{

π̂
(i)
B = argmin(lBAC(π̂B|π̂ (i−1)

A ))
π̂

(i)
A = argmin(lABC(π̂A|π̂ (i−1)

B ))
if π̂

(i)
A == π̂

(i−1)
A and π̂

(i)
B == π̂

(i−1)
B

break
}

IV. COST FUNCTION FOR NONORTHOGONAL
SENSOR PLANES

Wenow consider themore realistic situation inwhich
the sensor planesA andB are not orthogonal, (θ �= π/2).
In this case, the N × 5 data matrix is given by

D = [
D1 D2 D3 D4 D5

]
(35)

where

D1 = π̂−1
A X̂A − X̂C

D2 = π̂−1
A ŶA − ŶC

D3 = π̂−1
B X̂B − X̂C

D4 = π̂−1
B ŴB − cos(θ )ŶC − sin(θ )ẐC

D5 = π̂−1
A X̂A − π̂−1

B X̂B.

Notice that the only column that is different from the
case of orthogonal sensor planes is D4, which corre-
sponds to the orthogonal projection of the measure-
ments made by SensorC onto the tilted plane of Sensor
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B. The associated N × 5 error matrix is given by

E = [
E1 E2 E3 E4 E5

]
(36)

where

E1 = Aerr[∗, 1] −Cerr[∗, 1]

E2 = Aerr[∗, 2] −Cerr[∗, 2]

E3 = Berr[∗, 1] −Cerr[∗, 1]

E4 = Berr[∗, 2] − cos(θ )Cerr[∗, 2] − sin(θ )Cerr[∗, 3]

E5 = Aerr[∗, 1] − Berr[∗, 1].

Since columns 1, 2, and 5 of (35) are the same as in the
nonorthogonal case, the covariance matrix �ABC is the
same as before. On the other hand, �BAC is now given
by

�BAC =
⎡
⎣ �BC(1) �BC(1, 2) −�B[1, 1]

�BC(1, 2) �BC(2) −�B[2, 1]
−�B[1, 1] −�B[2, 1] �AB(1)

⎤
⎦ (37)

where

�BC(1) = �B[1, 1] + �C[1, 1]

�BC(1, 2) = �B[1, 2] +Cθ�C[1, 2] + Sθ�C[1, 3]

�BC(2) = �B[2, 2] +C2
θ�C[2, 2] + �θ�C[2, 3]

+ S2θ�C[3, 3]

withCθ = cos θ , Sθ = sin θ , and �θ = 2SθCθ .

V. ESTIMATION OF TARGET POSITIONS

Once the target assignments have beenmade, the tar-
get positions can be estimated using a weighted combi-
nation of the positions measured by each sensor in each
coordinate,where the weights are inversely proportional
to the standard deviations of the sensor position errors.
For simplicity, in this section we assume that the sensor
planes are orthogonal and the covariance matrices �A,
�B, and �C are diagonal. In principle, it is possible to re-
lax these simplifying assumptions. Let

P̂ = (X̂A, ŶA, X̂B,ŴB, X̂C, ŶC, ẐC)T (38)

denote the positions of an arbitrary target as measured
by each sensor after assignments have been made for A
and B and let

σAX , σAY , σBX , σBW , σCX , σCY , σCZ (39)

denote the standard deviations of the position errors in
the respective coordinates. Then, the estimated target
positions are given by

X̂ = wXAX̂A + wXBX̂B + wXCX̂C

Ŷ = wYAŶA + wYCŶC

Ẑ = wZBŴB + wZCẐC

(40)

where wXA = σ−1
AX/δX , the other weights are defined

similarly, and

δX = (
σ−1
AX + σ−1

BX + σ−1
CX

)
δY = (

σ−1
AY + σ−1

CY

)
δZ = (

σ−1
BW + σ−1

CZ

)
.

Note that a sensor with higher relative variability will
have lower weight associated with its observed positions.

VI. RESULTS

In this section, we present the results of numerical
simulations designed to compare the performance of a
32-sensor system, in which target matching is performed
between pairs of measurements using Munkres’ algo-
rithm, to that of a 322-sensor system, in which target
matching is performed between triples of measurements
using the 5D algorithm. We also compare the perfor-
mance of the 4D and 5D algorithms for a 322-sensor
system. First, we study the percentage of correct assign-
ments with the different methods for six choices of the
covariance matrix of Sensor C in the special case that
the planes of the two 2D sensors are orthogonal. Sec-
ond, we investigate how the percentage of correct as-
signments for the 322-sensor system with the 5D algo-
rithm depends on the angle, θ , between the planes of
the two 2D sensors, and also on the orientation of the
3D sensor relative to that of the two 2D sensors. Third,
we compare the RMSE in the estimated target positions
obtained using a 32-sensor system, a 322-sensor system
with the 4D algorithm, and a 322-sensor system with the
5D algorithm. Finally, we present results that illustrate
how the execution time of the 5D algorithm depends on
both the number of targets and the average separation
between the targets.

A. Target and Sensor Simulation Scenarios

To evaluate how the performance of the 32- and 322-
sensor system M2MA algorithms depends on the aver-
age separation between the targets,we generated data by
simulating a collection of N targets with randomly dis-
tributed constant velocities that originate from the same
location, and move apart like a cluster of exploding fire-
works. The velocity, vn, of the nth target is given by

vn = vg + vnun (41)

where vg is a common group velocity and vnun is the drift
velocity of the nth target relative to the group. Here, vn
is the drift speed and un is a unit drift-direction vector.
The drift speeds, vn, are chosen from a gamma distribu-
tion with mean, μd, and standard deviation, σd, and the
drift directions are sampled from a uniform distribution
on the unit sphere. We ran the simulation of the target
trajectories for a total time T with time steps of size 	t.
We generated data in two target simulation scenarios, I
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TABLE II
Parameters Used to Generate Targets in Simulation Scenarios I and II

Parameter Meaning Scenario I Scenario II

N Number of targets 50 50
vg Group velocity of targets (1, 1,

√
2) m/s 100 (1, 1,

√
2) m/s

μd Mean speed for target drift 1 m/s 100 m/s
σd Standard deviation of speed for target drift 0.25 m/s 20 m/s
T Total target simulation time 1.4 s 1.4 s
	t Time step for target simulation 0.02 s 0.02 s

Table III
Sensor Parameters Used in the Simulations

Parameter Meaning Values

�A, �B Sensor covariance matrices I2×2
Sensor covariance matrices (cigars) diag[16, 1, 1], diag[1, 16, 1], diag[1, 1, 16]

�C
Sensor covariance matrices (pancakes) diag[1, 16, 16], diag[16, 1, 16], diag[16, 16, 1]

θ Angle between sensor planes A and B 0◦, 10◦, 60◦, 90◦
φ Rotation angle of SensorC 0◦, 30◦, 60◦, 90◦

and II. The parameter values for these two scenarios are
shown in Table II.

After each time step, the target positions were or-
thogonally projected onto the planes of the two 2D sen-
sors. The measurement uncertainty of Sensors A and B
was modeled by adding Gaussian white noise to these
target positions with mean zero and covariance matri-
ces �A and �B, respectively. To simulate measurements
from Sensor C, we added Gaussian white noise with
mean zero and covariance matrix �C to the computed
target positions. We replicated each target trajectory
simulationM = 1000 times, each with a different choice
of the random parameters, vn, un, and different noise re-
alizations in each sensor. The performance results we
present below were obtained by averaging over theseM
replications.

The parameter values we used to specify the geomet-
ric configurations and measurement uncertainties of the
sensors are summarized in Table III. For the results in
Sections VI-B, VI-C, and VI-E, the planes of the two
2D sensors were orthogonal (θ = 90◦). However, in
Section VI-D we also present results for nonorthogonal
sensor planes using the values of θ given in Table III. For
the two 2D sensors, the covariance ellipsoid was chosen
to be the unit sphere. We considered both cigar-shaped
and pancake-shaped covariance ellipsoids for the 3D
sensor. With cigar-shaped ellipsoids, the length of the
major axis was 4 and the other two axes were of length 1.
With pancake-shaped ellipsoids, the length of the minor
axis was 1 and the other two axes were of length 4. Un-
less otherwise noted, the covariance matrix, �C, of the
3D sensor was chosen to be diagonal. However, at the
end of Section VI-D, we present results for a nondiag-
onal covariance matrix obtained by rotating the matrix
diag[16, 1, 1] about the y-axis by the angles, φ, shown in

the last row of Table III. To illustrate how the choice of
covariance matrix is related to the measurement uncer-
tainty of a realistic 3D radar, we observe that a radar
that has a limited field of view, points in the z-direction,
and has high range resolution and low angular resolu-
tion corresponds to a 3D sensor with a pancake-shaped
covariance ellipsoid with �C = diag[α, α, β], where
α � β.

In Fig. 2a, we show the projection onto the xz-plane
of the actual trajectories of the 50 targets for one ran-
dom realization of the target trajectories in Scenario I.
The target tracks diverge more from each other in Sce-
nario II than in Scenario I. In Fig. 2b,we show the projec-
tion onto the xz-plane of these trajectories as measured
by Sensor C in the case that �C = diag[16, 1, 1], and in
Fig. 2c we show the targets in the xz-plane at the final
time as measured by Sensors B and C. For this result,
the planes of the 2D sensors were orthogonal.

At each time step,we computed the average distance
between pairs of targets. Since �A = �B = Id, we
plot the performance of each algorithm as a function of
the normalized average separation between the targets,
where the normalization factor is the square root of the
trace of �C.

B. Data Association With 32- and 322-Sensor Systems

In Fig. 3,we compare the performance of a 32-sensor
system, consisting of sensors X and C (X = A or B),
to that of the 322-sensor system by plotting the per-
centage of correct two-way assignments for the X -to-
C match as a function of the normalized average sepa-
ration between the targets. These results were obtained
in Scenario II in the case that the planes of Sensors A
and B were orthogonal, and for the six choices of co-
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variance matrix, �C, shown in Table III. The results for
the three cigar-shaped covariance ellipsoids are shown
in the top row of Fig. 3, and those for the pancake-
shaped ellipsoids are shown in the bottom row. In each
subfigure, we compare the results obtained using the
two 32-sensor systems to the 322-sensor system. For
the 32-sensor systems, we used Munkres’ algorithm to
solve the assignment problem, which we refer to as
the 2D algorithm in Fig. 3. Although the 5D algorithm
produces three-way A-to-B-to-C matches, to make fair
comparisons to the 32-sensor systems we only consider
the percentages of correct two-way A-to-C and B-to-C
assignments.

We begin with two preliminary observations. First,
due to the inherent symmetry, for the 2D algorithm the
percentage of correct B-to-C matches in Fig. 3b is sta-
tistically identical to the percentage of correct A-to-C
matches in Fig. 3c. However, for the 5D algorithm, the
A-to-C performance curve in Fig. 3b is slightly differ-
ent from the B-to-C performance curve in Fig. 3c since
this iterative algorithm is not invariant to the y-to-z
coordinate switch. (The first iteration always involves
a B-to-C match.) Second, in Fig. 3b, the performance
of both algorithms is significantly better for the B-to-
C match than for the A-to-C match since when �C =
diag[1, 16, 1], the projection of �C onto the plane of
Sensor A is diag[1, 16], whereas the projection onto the
plane of Sensor B is diag[1, 1].

Next,we compare the percentage of correct two-way
matches for the 2D and 5D algorithms. In Fig. 3, we
observe that the performance of the two algorithms is
comparable whenever the (1,1) entry of �C is compa-
rable to that of �A and �B (see Fig. 3b–d). The reason
is that when the uncertainty in the A–C and B–C data
in their common x-dimension is comparable to the un-
certainty in the A–B data, there is no advantage to be
gained by applying the A-to-B consistency check in the
5D algorithm. On the other hand, when the (1,1) entry
of �C is significantly larger than that of �A and �B, the

performance is generally much better with the 5D algo-
rithm (see Fig. 3a, e, and f).

C. 322-Sensor System: 4D Versus 5D Algorithm

In this subsection, we compare the performance of
the 4D and 5D algorithms for the 322-sensor system.
In Fig. 4, we plot the percentage of correct three-way
A-to-B-to-Cmatches as a function of the normalized av-
erage separation between the targets. By a correct as-
signment for the A-to-B-to-C match, we mean that the
A-to-C and B-to-C (and hence the A-to-B) matches are
all correct. As in Fig. 3, these results were obtained in
Scenario II in the case that the planes of Sensors A and
B were orthogonal, θ = 90◦.

First,we discuss how the percentage of correct three-
waymatches for the 4D algorithm depends on the choice
of �C. In Fig. 4a and b, we see that when the normal-
ized average separation is 10, the percentage of cor-
rect assignments is 75% with �C = diag[1, 16, 1] but
only 65% with �C = diag[16, 1, 1]. The reason for
the poorer performance when the uncertainty in the
Sensor C measurements is larger on the x-axis is that
this axis is common to both 2D sensors. Consequently,
the large uncertainty in the SensorC data remains when
the data are projected onto the xy-plane of SensorA and
onto the xz-plane of Sensor B. On the other hand, when
�C = diag[1, 16, 1] the large uncertainty in the SensorC
data only remains when the data are projected onto one
of these two planes, leading to better performance of the
4D algorithm in this case.

We now compare the percentage of correct three-
way matches with the 4D and 5D algorithms. For the
same reasons as in the discussion of Fig. 3, the 5D algo-
rithm significantly outperforms the 4D algorithm when
the (1,1) entry of�C is significantly larger than that of�A

and �B, while the performance of the two algorithms is
comparable in the other three cases. The reason the 5D
algorithm outperforms the 4D algorithm in some cases is
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Fig. 2. (a) Projection into the x–z plane of the actual trajectories of 50 moving targets for one random realization of the target trajectory
simulation in Scenario I. (b) Projection into the x–z plane of the trajectories of the same 50 moving targets as observed by SensorC after the
addition of Gaussian white noise with covariance matrix �C = diag[16, 1, 1]. (c) Measured targets in the x–z plane as observed by Sensor B
together with the projection into the x–z plane of the measured targets as observed by SensorC. The planes of the two 2D sensors were

orthogonal (θ = 90◦) and the measurements were taken at the final time.
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Fig. 3. Percentage of correct assignments for two-way matches as a function of the normalized average separation between the targets in
Scenario II with orthogonal 2D sensor planes (θ = 90◦) and φ = 0◦. The results shown are for the A-to-C match using the 5D algorithm (red
lines with crosses), the A-to-C match using Munkres’ algorithm (blue lines with circles), the B-to-C match using the 5D algorithm (green

dashed lines with stars), and the B-to-C match using Munkres’ algorithm (black dashed lines with diamonds). The results with cigar-shaped
covariance ellipsoids for SensorC are shown in the top row, and those with pancake-shaped ellipsoids are shown in the bottom row.
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Fig. 4. Percentage of correct assignments for the three-way A-to-B-to-C match as a function of the normalized average separation between
the targets in Scenario II with orthogonal 2D sensor planes (θ = 90◦) and φ = 0◦. The results shown were obtained using the 5D algorithm

(red line with crosses) and the 4D algorithm (blue line with circles). The results with cigar-shaped covariance ellipsoids for SensorC are shown
in the top row, and those with pancake-shaped ellipsoids are shown in the bottom row.
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that the application of theA–B consistency check in col-
umn 5 ofDN×5 rules out some incorrectA-to-Bmatches
made by the 4D algorithm.As a consequence, during the
iteration process the 5D algorithm also corrects for some
of the matching errors made by the poorer performing
of the A-to-C and B-to-C matches.

D. Relative Sensor Orientation Effects for 322-Sensor

Having identified situations in which the perfor-
mance with the 5D algorithm is significantly better than
that with the other two methods, we now focus on how
the percentage of correct three-way matches with the
5D algorithm depends on the relative orientation of the
three sensors. We begin by studying how the 5D al-
gorithm performs as the angle, θ , between the planes
of the 2D sensors decreases from θ = 90◦ to θ =
0◦. These results were obtained with target simulation
Scenario II. As θ → 0◦, the plane of Sensor B converges
to that of Sensor A and neither of the 2D sensors has
the ability to distinguish between two targets with the
same (x, y)-value but different z-values. Although this
observation suggests that the percentage of correct as-
signments should decrease as θ → 0◦, we will show that
inmany cases this decrease is slight.Moreover, in certain
situations the performance is actually significantly better
when the 2D sensor planes are parallel than when they
are perpendicular, due to the suppression of noise from
SensorC that is orthogonal to the common plane of the
2D sensors.

In Fig. 5a and d, the percentage of correct three-way
matches with the 5D algorithm is insensitive to the an-
gle,θ ,between the planes of SensorsA andB.The reason
for this performance insensitivity is that the covariance
ellipsoid for Sensor C has a circular cross section in the
yz-plane, and so the projection of �C onto the plane of
Sensor B is independent of θ . Consequently, the perfor-
mance of theB-to-Cmatch (not shown) is completely in-
dependent of θ . Nevertheless, we do not expect the per-
centage of correct three-way matches with the 5D algo-
rithm to be totally independent of θ , since the relative
alignment of the two 2D sensors changes as θ changes.

The scenario in Fig.5f, for which�C = diag[16, 16, 1],
closely corresponds to a 322-sensor system in which all
three sensors are mounted on a single platform with the
2D sensors pointing in similar directions (so that the
A-to-B match solves the stereopsis problem), with the
3D sensor being a radar with good range accuracy, and
with the 2D sensors having better angular measurement
accuracy than the radar. In Fig. 5b and f, the percentage
of correct three-way matches decreases more as θ → 0◦

than in Fig. 5a and d since in these cases the area of the
covariance ellipse of the projection of �C onto the plane
of Sensor B increases as θ → 0◦. As a consequence,
the performance of the B-to-C match (not shown) de-
grades as θ → 0◦. When θ = 0◦, the performance is
worse when �C = diag[16, 16, 1] than with the other
five covariance matrices, since the covariance ellipse of
the projection of �C onto the xy-plane is largest in this
case.
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(f) ΣC = diag[16, 16, 1]

Fig. 5. Percentage of correct assignments for the A-to-B-to-C match using the 5D algorithm as a function of the normalized average distance
between the targets in Scenario II with φ = 0◦. The different curves show the results for different values of the angle, θ , between the planes of
the two 2D sensor. The results with cigar-shaped covariance ellipsoids for SensorC are shown in the top row, and those with pancake-shaped

ellipsoids are shown in the bottom row.

122 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 14, NO. 1 JUNE 2019



In Fig. 5c and e, we see that rather than decreasing,
the percentage of correct three-way matches increases
significantly as θ → 0◦. The reason for this behavior is
that when θ is small the large uncertainty of the Sen-
sorCmeasurements in the z-dimension is (almost) com-
pletely suppressed when the SensorC data are (almost)
orthogonally projected onto the planes of both Sensors
A and B. Since the uncertainty in the z-dimension is rel-
atively large and affects all the measurements made by
Sensor C, its suppression plays a much larger role in in-
creasing the performance than the very minor reduction
in performance that occurs whenever two targets with
similar (x, y)-coordinates but different z-coordinates
cannot be distinguished by nearly horizontal 2D
sensors.

In Fig. 6a, we show the results we obtained when �C

is not diagonal. These results were obtained with tar-
get simulation Scenario II and θ = 90◦. Specifically,
we chose �C to be a rotation about the y-axis by an
angle, φ, of the matrix diag[16, 1, 1]. For these simula-
tions, we chose φ = 0◦, 30◦, 60◦, and 90◦, as in Table III,
so that when φ = 0◦, �C = diag[16, 1, 1], and when
φ = 90◦, �C = diag[1, 1, 16]. These results reproduce
the expected decrease in the percentage of correct three-
way matches that we see when comparing the θ = 90◦

plots in Fig. 5a and b, and therefore serve to verify the
correctness of the theory we developed for nondiagonal
covariance matrices.

E. Target Position Estimates

For each replication,we computed the estimated tar-
get positions using (40) for three different assignment
methods: Munkres’ algorithm using data from one 2D
sensor (A) and the 3D sensor, and the 4D and 5D algo-
rithms. In Fig. 7, we plot the normalized RMSE in the
estimated target positions as a function of the normal-
ized average separation for the three assignment meth-
ods. The RMSE is the square root of the trace of the
covariance matrix of the estimated target positions. In
Fig. 7, both the RMSE and the average separation be-
tween the targets are normalized by the square root of
the trace of the covariance matrix of SensorC. Since this

normalization factor equals the RMSE of the target po-
sitions as measured by Sensor C alone, when the nor-
malized RMSE is less than 1 the RMSE performance
of the algorithm is better than the RMSE performance
with SensorC alone. These results were obtained in tar-
get simulation Scenario I with θ = 90◦ and φ = 0◦.
(The targets are less well separated in Scenario I than in
Scenario II.)

In Fig. 7a, we show the results with �C =
diag[16, 1, 1]. The initial rapid rise of the RMSE oc-
curs simply because the distance between the targets
increases, thereby increasing the RMSE for any choice
of assignment. However, once the target separation ex-
ceeds the uncertainty in the Sensor C data, i.e., once
the normalized average separation is greater than 1,
the performance of all three algorithms is better than
the performance of Sensor C alone, and all three of
the RMSE curves decrease as the target separation in-
creases. Therefore, whenever the target separation ex-
ceeds the uncertainty in the SensorCmeasurements, it is
advantageous to use a 32- or 322-sensor system instead
of a 3D sensor alone, provided that the uncertainty of
the 2D sensor measurements is small compared to that
of the 3D sensor.When the average separation distance
is greater than 2, the performance is worst with the two-
sensor assignment method and best with the 5D algo-
rithm.On the other hand, when the normalized average
separation is less than 1, the 5D algorithm does not per-
form as well as the other two methods. This result holds
for essentially the same reasons we gave for the poorer
performance of the 5D algorithm for the A-to-C match
in Fig. 3e.

Finally, in Fig.7c,we see that with�C = diag[1, 1, 16],
the RMSE obtained using the two-sensor method re-
mains large irrespective of the average separation be-
tween the targets, since the z-coordinate of the estimated
target position in (40) is based only on the estimate, ẐC,
which has large uncertainty, σCZ = 4. This result demon-
strates that there can be a significant advantage to using
a second 2D sensor, especially in situations where there
is a large uncertainty in the measurements made by Sen-
sorC in the dimension that is orthogonal to the plane of
the first 2D sensor.
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Fig. 6. (a) Percentage of correct assignments for the 5D algorithm as a function of the normalized average separation between the targets in
Scenario II with orthogonal 2D sensor planes (θ = 90◦). The different curves show the results for covariance matrices,�C , obtained by rotating
the matrix diag[16, 1, 1] about the y-axis through different angles, φ. (b) Average execution time in milliseconds for N = 25, 50, and 100 targets.
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Fig. 7. Normalized RMSE in the estimated target positions as a function of normalized average distance between targets in Scenario I with
θ = 90◦ and φ = 0◦. The results shown are for position estimates obtained after matching data from two sensors,A andC, using Munkres’

algorithm (blue line with crosses), from all three sensors using the 4D algorithm (red lines with circles), and from all three sensors using the 5D
algorithm (black lines with diamonds). The results with cigar-shaped covariance ellipsoids for SensorC are shown in the top row, and those

with pancake-shaped ellipsoids are shown in the bottom row.

F. Execution Time of Algorithms

In Fig. 6b, we show how the execution time of the
5D algorithm scales as the number of targets and the
normalized average separation between the targets are
varied. For this study, we implemented the algorithm in
MATLAB on a MacBook Pro laptop with a 2.5 GHz
Intel Core I5 processor.The three curves in the plot were
obtained using N = 25, 50, and 100 targets. Each curve
shows the average execution time (in milliseconds) of
the 5D algorithm as a function of the normalized av-
erage separation between the targets. The increase in
the computational time as the normalized average sep-
aration decreases is due to the fact that Munkres’ al-
gorithm requires more iterations to obtain a two-way
match when the targets are more closely spaced. Indeed,
we found that the number of iterations of the 5D algo-
rithm is largely independent of the normalized average
separation. The mean of the ratio of the average exe-
cution times of the 5D and 4D algorithms, taken over
all values of the average separation, was 2.1 for 25 tar-
gets, 2.3 for 50 targets, and 3.2 for 100 targets. Since
the 4D algorithm involves two applications of Munkres’
algorithm, for 50 targets it is therefore about 4.6 times
as expensive to obtain an assignment for the 322-sensor
system using the 5D algorithm as it is for the 32-sensor
system using Munkres’ algorithm.

VII. DISCUSSION

In the previous sections, we used idealized sensor
models to investigate how the performance of 322- and
32-sensor systems depends on the relative alignment of
the 2D sensors and on the orientation of the covariance
matrix of the 3D sensor. In this section, we first discuss
the extent to which the theory we developed can be
generalized to more realistic 3D radar and 2D camera
models. Then, we summarize the main results from Sec-
tion VI and interpret them in the context of more real-
istic systems.

Let x = (x1, x2, x3) denote the position of a target in
R

3. In place of Sensor A, we consider a camera located
at the origin ofR

3 pointing in the x3-direction.Wemodel
camerameasurements using a perspective projection as

(ŵ1, ŵ2) = ŵ = ψ2D(x) + u = α

(
x1
x3

,
x2
x3

)
+ (u1,u2)

(42)
where α is the focal length and u ∼ MN(0, �2×2). In
place of Sensor C, we consider a 3D radar located at
y ∈ R

3 that makes measurements [16]

ẑ = ψ3D(x − y) + v (43)

where ψ3D is the rectangular to spherical coordinate
transformation and v ∼ MN(0, �3×3). As in (11), we
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transform the 3D radar measurement to the measure-
ment plane of the camera via

ξ̂ = �(̂z) (44)

where � = ψ2D ◦ ψ−1
3D is the transformation from the

space of radar measurements to the camera plane.
Since the main advantage of a third sensor is to re-

solve cluttered scenes [7], it is reasonable to assume that
the targets are confined to a sufficiently small region,R,
of R

3. Then

ξ̂ ≈ ψ2D(x − y) + Txv (45)

where Tx is the 2 × 3 matrix of the linearization of � at
ψ3D(x − y). If x denotes a nominal center for R, which
can be determined from radar measurements, then
Tx ≈ Tx, which is independent of the particular target.
As in (13), we take the difference of the measurements
(42) and (45) in the camera plane to obtain

ξ̂ − ŵ ≈ ψ2D(x − y) − ψ2D(x) + Txv − u. (46)

For aerospace and defense applications, we may assume
that R is at a large distance from the camera, so that
x3 = x3 + 	x3, with 	x3 � x3. Therefore,

(w1,w2) = ψ2D(x1, x2, x3) ≈ α

x3
(x1, x2) (47)

and so as in (13), we can eliminate the unknown target
location, x, to obtain

ξ̂ − ŵ ≈ −(y1, y2) + Txv − u. (48)

Similarly, in place of the compatibility condition (18) for
Sensors A and B, we have that

x3
αA

ŵA
1 − x2

αB
ŵB

1 = x3
αA

uA1 − x2
αB

uB1 . (49)

Using (48) and (49) and a formula for Tx, we can then
compute replacements for the covariance matrices, �4D

in (15) and �5D in (21). In this manner, the 4D and 5D
algorithms can be extended to the scenario described
above in which the targets are confined to a sufficiently
small region far from the sensors. Moreover, the results
in Section VI can also be applied to this scenario. These
results can be summarized as follows.

First, in Section VI-B we showed that whenever the
measurement uncertainty of the 3D sensor is large com-
pared to that of the 2D sensors along the common axis
of the planes of the 2D sensors, the percentage of correct
two-way matches for the 322-sensor system with the 5D
algorithm is significantly better than that of a 32-sensor
systemwith the 2D algorithm.Under the same operating
conditions, the percentage of correct three-way matches
for the 322-sensor system with the 5D algorithm is sig-
nificantly better than that with the 4D algorithm. With
other relative sensor orientations, the percentage of cor-
rect matches was mostly independent of the choice of
algorithm.

Second, with the aid of the bottom row of Fig. 5 we
can make some conclusions about the performance of a

322-sensor system that includes a 3D radar with higher
range resolution than angular resolution. Here, we also
suppose that the 2D cameras have better angular reso-
lution than the radar, and that the targets are confined
to a small region, R, as above. In this context, we re-
fer to the vector x − y as the pointing direction of the
radar. By the pointing direction of a camera, we mean
the normal vector to the camera plane.We first consider
a scenario in which all three sensors are mounted on
the same platform with one of the cameras pointing in
the same direction as the radar. In this scenario, the per-
centage of correct three-way matches decreases as the
pointing direction of the second camera is lined up with
that of the first (see Fig. 5f). On the other hand, for the
scenario in Fig. 5d, the percentage of correct three-way
matches is largely independent of the angle, θ , between
the pointing directions of the cameras, and is moreover
somewhat greater than for the scenarios in Fig. 5e and
f. The covariance matrix that yields the largest percent-
age of correct three-way matches, i.e., that in Fig. 5d, is
given by �C = diag[1, 16, 16]. This orientation of Sensor
C corresponds to a scenario in which the radar is point-
ing along the +x-axis, perpendicular to the pointing di-
rections of both cameras. Since all three sensors are ob-
serving the same small region,R, this configuration can
only be achieved if the sensors are viewing the targets
from different locations.

Finally, for the above scenario in which the pointing
direction of the radar is perpendicular to the pointing di-
rections of the cameras, the results in Fig. 7d and e show
that the RMSE in the estimated target positions is unac-
ceptably large for a 32-sensor system. This is so because
the large uncertainty in the radar measurements in the
pointing direction of the camera cannot be resolved by
the camera measurement.However,with the addition of
the second camera, the RMSE performance is greatly
improved.

Because we compare sensor measurements to sensor
measurements rather than sensor measurements to un-
known target locations, it is unlikely that the algorithms
we developed can be extended to deal with missed de-
tections as in [7] and [16].Nevertheless, if we were to use
the approach of [7], the above conclusions should still
hold with an unknown number of targets, missed detec-
tions, and spurious measurements. Indeed, we would ex-
pect the performance gains for the 322-sensor to be even
greater in this situation and/or when employing the La-
grangian relaxation assignment algorithm [17] in place
of the 5D algorithm.

VIII. CONCLUSION

We used idealized sensor models and a special-
purpose assignment algorithm for the M2MA problem
to investigate the potential advantages of target track-
ing based on a 322-sensor system rather than a 32-sensor
system. Depending on the relative alignment of the 2D
sensors and the orientation of the covariance ellipsoid
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of the 3D sensor, we found that position estimates ob-
tained with the 322-sensor system can be much more ac-
curate than those obtained with a 32-sensor system. Fur-
thermore, we identified cases in which the percentage of
correct assignments was significantly larger for the 322-
sensor with the 5D algorithm than for the 32-sensor with
Munkres’ algorithm. Finally, we discussed applications
of our results to specific scenarios based on realistic 3D
radar and 2D camera models.

The overarching conclusion from our simulation
study is that the performance of a 32- or 322-sensor sys-
tem in which the covariance ellipsoid of the 3D sensor
sensor is sufficiently aspherical can exhibit a strong de-
pendence on the relative directions from which the sen-
sors view the scene.Moreover, provided that the sensors
are appropriately aligned, there can be a significant per-
formance advantage to a target tracking systemwith two
cameras and a radar as opposed to one camera and a
radar.
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