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From the Editor-in-Chief:
December 2019

Chee-Yee Chong Stefano Coraluppi

Jason Williams

Guest Editorial: Foreword to the Special Issue on
Multiple-Hypothesis Tracking

Welcome to the December 2019 issue of the Jour-
nal of Advances in Information Fusion (JAIF) published
by the International Society for Information Fusion.
Multitarget tracking (MTT) is an important technical
challenge that has featured prominently in these pages
since the inception of JAIF in 2006. Of course, the field
has a much longer history. Ignoring the earlier foun-
dational mathematical developments, we can perhaps
identify the start of the field with the seminal advances
to recursive estimation theory due to Kalman [1] and
early work on the data association problem due to Sittler
[2].

In a paper at the 1978 IEEE Conference on Deci-
sion and Control,Donald Reid presented a contribution
on multiple-hypothesis tracking (MHT) [3]. The subse-
quent journal article that appeared the following year,
in the December 1979 issue of the IEEE Transactions
on Automatic Control, gave visibility to the approach
and has been cited widely [4]. MHT is well established
as the leading operational methodology for MTT and
is at the core of many successful, fielded surveillance
systems.

Forty years on, C.-Y. Chong and S. Coraluppi held
a special session titled Forty Years of MHT at the
2018 International Conference on Information Fusion
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(FUSION) that received great interest and participation
[5].This success encouraged us to propose a JAIF special
issue on MHT: this December 2019 issue.

So, what has happened in the field from December
1979 toDecember 2019?We encourage readers to exam-
ine the paper by C.-Y. Chong et al. for a panoramic view
of many developments, including track-oriented MHT
and distributed MHT. The paper by S. Coraluppi et al.
focuses on recent graph-based extensions that lead to
significant computational gains in certain multisensor
settings. The paper by L. Stone focuses on the target-
to-measurement association hypothesis, which is differ-
ent from the measurement-to-measurement hypothe-
sis in standard MHT, showing that this definition pro-
vides an exact Bayesian solution to the MTT problem
under very general assumptions. The paper by Mori
et al. explores alternative mathematical formalisms for
MHT.

As with other MTT paradigms, there are limitations
to what can be achieved with MHT. A particular chal-
lenge is that of merged measurements, for which con-
nections to theoretical physics are explored in the paper
byW.Koch. In recent years, a popular formulation of the
MTT problem in the research community has emerged
via the random finite set (RFS) machinery. The paper

by Y. Xia et al. explores multiscan processing in the
RFS framework, thus offering an alternative approach
to multiple-hypothesis reasoning.

We hope that the readers of this issue will find the
contributions to be valuable to review some of the key
advances in MTT over the past 40 years, to clarify the
theoretical basis for MHT, and to identify new results
and directions for promising research.
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Forty Years of Multiple
Hypothesis Tracking

CHEE-YEE CHONG
SHOZOMORI
DONALD B. REID

Multiple hypothesis tracking (MHT) addresses difficult associa-

tion problems in multiple target tracking by forming and evaluating

data association hypotheses with multiple scans or frames of data.

This paper reviews 40 years of MHT research and development since

publication of the measurement-oriented MHT journal paper in 1979.

It covers hypothesis-oriented and track-oriented MHT, distributed

MHT, graph-based association, other MHT research, and the relation-

ship with multitarget filters using random finite sets. It also reviews use

of MHT in surveillance and other applications.

I. INTRODUCTION

Data association is a key component of multiple tar-
get tracking (MTT) [1]–[10]. In fact, early papers [11],
[12] in MTT frequently include “association” or “corre-
lation” in their titles. The need to utilize multiple frames
or scans of data for tracking multiple targets in difficult
scenarios was recognized long ago, but early work fo-
cused on single target tracks, according to the survey in
[1]. The use of multiple data association hypotheses to
explain the origins of all measurements first appeared in
the late 1970s, with batch solution of the best hypothesis
by 0–1 integer programming [13], and recursive evalu-
ation of multiple association hypotheses by computing
their probabilities [14], [15]. Almost immediately, mul-
tiple hypothesis tracking (MHT) became the standard
approach for tracking multiple targets when data associ-
ation is difficult due to high target density, dense clutter,
low probability of detection, etc.

Over the past 40 years, much research has been per-
formed to generalize MHT [16] and address the inher-
ent combinatorial growth in the number of hypothe-
ses [17], [18]. The original measurement-oriented MHT,
commonly called hypothesis-orientedMHT (HOMHT),
is made practical by efficient algorithms to find the top-
ranking hypotheses [19]–[23] and compute the bounds
for the highest probabilities [24]. Track-oriented MHT
(TOMHT) [17], [25]–[29] has been proposed as a more
efficient alternative to the original HOMHT by main-
taining association hypotheses at the individual track
level and finding the best hypothesis only when needed,
using integer programming, multidimensional (MD) as-
signment, or other methods [30]–[37]. Techniques for
finding the top-ranking hypotheses are also available
[38], [39].

When sensors are physically distributed, communi-
cating measurements to a centralized tracker is often
not feasible due to network bandwidth constraints. A
distributed tracking system consists of trackers process-
ing local sensor measurements and sending the results
to another tracker for further processing. A distributed
version of MHT that communicates hypotheses was
proposed in [40]–[43]. Even though communicating
hypotheses is not practical, this research identifies issues
and techniques for associating tracks with dependent
state estimation errors caused by prior communica-
tion or common process noise [44]. A more practical
approach is communicating tracks from local trackers
[45]. When MHT is performed on multiple platforms,
the track pictures have to be consistent for distributed
decision making [46]. For tracking with a single sensor,
MHT is frequently used in a multistage architecture
[47], with the first stage removing clutter to generate
tracklets [48] of measurements that can be associated
with individual targets without ambiguity, and the
second stage associating tracklets [49].

Modern fusion systems utilize many sensors to
track large numbers of targets. For large-scale tracking
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problems, even the most efficient TOMHT implementa-
tion suffers from combinatorial explosion. Association
graphs have been proposed for implicit representation
of all association ambiguities,with tracks represented by
paths in the graph, and association hypotheses as sets of
feasible paths [50]–[52]. When the track likelihoods sat-
isfy a Markov property, a track likelihood is a product of
pairwise association scores and the best hypothesis can
be found by efficient graph algorithms [53]–[62]. How-
ever, MHT is most useful when the Markov property is
not satisfied, e.g., when target feature data are present.
Adapting graph-based algorithms for feature-aided as-
sociation and non-Markov likelihoods is nontrivial
[63]–[68].

Standard MHT assumes one-to-one association be-
tween measurements. Since this assumption is not valid
for some tracking problems, MHT has been adapted
to handle unresolved measurements [69], [70], multi-
ple measurements from a single target [71], [72], ex-
tended objects [73], and merging and splitting targets
[74], [75]. MHT requires data association to be con-
sistent; i.e., measurements in a single scan/frame can-
not be associated independently. Probabilistic MHT
(PMHT) [76], [77] assumes independent measure-
ment associations even though it has MHT in its
name.

The computation complexity of MHT has resulted in
much research to investigate other solution techniques.
These include Markov chain Monte Carlo (MCMC) for
data association [78]–[84] and message passing/belief
propagation based on a graphical model of the tracking
problem [85]–[88].

Displaying the output of MHT to an operator has to
address track switching and jitter resulting from changes
in the best or most likely hypothesis. Although MHT
output display has not received as much attention as
algorithm research, there is some progress in this area
[89]–[92].

Detecting a target from a single frame of measure-
ments is difficult when the signal-to-noise ratio is low.
Using multiple frames to consider possible target trajec-
tories can increase the probability of detecting targets
and reduce false alarm rates.Multiple frame detection is
basically track initiation or extraction and has been per-
formed using MHT [93], [94], or with sequential proba-
bility ratio tests (SPRTs) [95]–[98].

Random finite set (RFS) for multitarget filtering has
been a very active research area in recent years [99],
[100]. Since the goal is finding themultitarget state prob-
ability density function (pdf), there is no explicit associ-
ation in the model and filter equations. Thus,RFS-based
filters appear to be different from MHT and cannot be
used for tracking or forming trajectories, at least in the
earlier forms [101]–[104]. Recent research has revealed
MHT-like structures [105]–[114] in random set multitar-
get filters. In addition,MHT can be shown to have a solid
theoretic foundation using random set formalisms [115],
[116].

MHT is used primarily in defense and security ap-
plications where data association is difficult due to the
nature of the targets. In particular, MHT is widely used
in ocean, maritime, ground, air, and space surveillance
[117]–[160]. Sensors include sonar, radar, electro-optical,
seismic,etc.Each application domain has different target
and sensor characteristics, resulting in different data as-
sociation problems that MHT has to address.Because of
the proliferation of video cameras,video tracking has be-
come a very active area of research [161]–[188]. The na-
ture of the association problem is amenable to efficient
solution by graph-based methods. Other applications
of MHT involve meteorology, astronomy, text messag-
ing, cyber security, and biological and medical imaging
[189]–[202].

This paper reviews key developments in MHT over
the past 40 years. It may be viewed as a continuation
of the tutorial in 2004 [17], and supplements the MHT
chapters in books on tracking and fusion [2]–[10]. A re-
view of this type reflects the limited knowledge and in-
evitable biases of the authors, especially given the large
number of papers related to MHT published in diverse
journals and conference proceedings. As of November
2019, [15] had 1530 citations according to IEEE Xplore
and 3434 citations according toGoogle Scholar.Sincewe
cannot include or read all references carefully, we apol-
ogize for omissions or misinterpretations and would ap-
preciate any corrections or comments on this paper.

The structure of this paper is as follows. Section II
presents target and sensor models, and defines hypothe-
ses and tracks. Sections III and IV present the HOMHT
and TOMHT. Section V discusses distributed MHT
for single and multiple sensors. Section VI presents a
graph model for data association and efficient solutions
under the Markov assumption. Section VII discusses
relaxation of assumptions and extensions to MHT.
Section VIII presents the relationship between MHT
and RFS approaches. Section IX lists some applications,
and Section X concludes the paper by discussing possi-
ble research directions.

II. MULTIPLE HYPOTHESIS TRACKING

MHT uses target and sensor models to form associa-
tion hypotheses for the origins of all measurements and
computes their probabilities. We use MHT to stand for
bothmultiple hypothesis tracking andmultiple hypothe-
sis tracker. The specific meaning should be obvious from
the context.

A. Target and Measurement Models

The number of targets at time t isNt . Each target has
a hybrid (continuous–discrete-mixture-valued) state xt .
Given Nt , the target states are independent and identi-
cally distributed (i.i.d.)Markov processes with transition
probability ft|t ′ (x|x′).
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Suppose there areK frames or scans of data taken at
t1 ≤ · · · ≤ tK. Each frame consists of mk measurements
Zk = (z jk)

mk
j=1, where a measurement z is independently

generated from the target state x by the pdf pM(z|x) that
may depend on time and the reporting sensor. A target
at state x is independently detected according to a prob-
ability pD(x). For each k, the number of false alarms is
NFAk with some probability distribution density pFA(z)
for their values.

B. Tracks and Hypotheses

A track τ is a sequence of measurement indices

( jk)Kk=1 of cumulative measurements Z1:K
�= (Zk)Kk=1 hy-

pothesized to originate from the same target,where jk =
0 indicates no measurement or that the target hypothe-
sized by τ is undetected. A data association hypothesis
λ is a collection of tracks that explains the origins of all
measurements. In theMHT literature, it is commonprac-
tice to refer to data association hypothesis as hypothesis.
If the sensor resolution is such that two targets cannot
generate one measurement, then two tracks in the same
hypothesis cannot share the same measurement.

The definitions of track and hypothesis first appear
in [13], which also views a hypothesis as a partition of
the cumulative measurements.Data association hypoth-
esis is sometimes called global hypothesis to distinguish
it from track hypothesis that concerns only association of
measurements with individual targets. We prefer to use
global hypothesis to represent the association hypothe-
sis that results from fusing local association hypotheses
in distributed tracking.

III. HYPOTHESIS-ORIENTED MHT

HOMHT recursively generates hypotheses on the
origins of measurements and computes the probability
of each hypothesis. In the 1970s, there was a lot of in-
terest in correlation techniques for naval ocean surveil-
lance,where association with kinematic data only is diffi-
cult because observations or contacts are sparse. Thus, it
is useful to use MHT to delay association decisions until
good feature data are available. HOMHT consists of re-
cursive generation, evaluation, and management of hy-
potheses [14], [15].

A. Hypothesis Generation

Let λk−1 be a hypothesis on the cumulative data
Z1:k−1. Multiple new hypotheses λk on Z1:k are gener-
ated by hypothesizing different associations of the mea-
surements in Zk with the tracks in λk−1. A measurement
z jk may be associated with an existing track τ ik−1 in λk−1,
with a newly detected target, or be hypothesized as a
false alarm. A target hypothesized by an existing track
τ ik−1 in λk−1may not be detected in Zk. This approach is
called measurement oriented in [15] because it uses pos-

sible origins of measurements to generate new hypothe-
ses. It is commonly called hypothesis-oriented MHT be-
cause of the recursive generation of hypotheses.

B. Hypothesis Evaluation

LetZ and Z̄ representZ1:k andZ1:k−1, and λ and λ̄ be
hypotheses on Z and Z̄ such that λ̄ is the unique prede-
cessor of λ. For a track τ in λ and any frame index k′ ∈ K,
let Zk′|τ be the measurement in Zk′ specified by τ . If τ

has no measurement in Zk′ , then we say Zk′|τ
�= θ , repre-

senting a hypothesized nondetection. Let Z|τ be the se-
quence of measurements specified by τ . Then, the prob-
ability of the hypothesis is evaluated recursively by

P(λ|Z) = C(Z)−1P(λ̄|Z̄)LFA
k (Zk|λ)

∏
τ∈λ

Lk(Zk|τ |Z̄|τ̄ ),

(1)
where C(Z) is a normalization constant, LFA

k (Zk|λ) is
the likelihood ofNFT hypothesized false alarms given by

LFA
k (Zk|λk) = β

NFT
FAk (2)

with constant false alarm density βFAk, and Lk(Zk|τ |Z̄|τ̄ )
is the likelihood of associating Zk|τ = z jk with the prede-
cessor track τ̄ in λ̄. There are three types of Lk(z

j
k|Z̄|τ̄ ).

1) Likelihood of z jk from a previously detected target:

Lk(z
j
k|Z̄|τ̄ ) = pDkN(z jk −Hkx̄τ ,B

j
kτ ), (3)

where N(x,P) is the zero-mean normal density with co-
variance P, Hk is the measurement matrix, and x̄τ and
Bj
kτ are the predicted estimate and corresponding error

covariance, respectively.
2) Likelihood of previously detected target being un-

detected:

L(θ |Z|τ̄ ) = 1 − pDk. (4)

3) Likelihood of the hypothesized number NNT of

newly detected target (τ̄ �= φ):

L(z jk|Z|φ ) = βNTk. (5)

Equations (1)–(5) define the algorithm in [14] and
[15], using Poisson–Gaussian models for target dynam-
ics and sensor measurements. Those likelihoods (2)–(5)
are reformulated in [16] for more general target and sen-
sor models, without linearity or Gaussian assumptions.
When the number of targets is constant and Poisson
distributed, the target states are i.i.d. random processes,
and the number of false alarms is Poisson but not uni-
formly distributed, then the likelihoods are given by the
following:

1) False alarm likelihood:

LFA
k [Zk|λ] = e−ν̄FAk

∏
j∈JFAk(λ)

βFAk(z
j
k), (6)

where JFAk(λ) is the set of measurement indices for
the false alarms as hypothesized by λ, and ν̄FAk =∫
EM

βFAk(z)μM(dz) is the expected number of false
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alarms in frame k, with the measure μM on the measure-
ment space.

2) Likelihood of z jk originating from a previously de-
tected target (τ̄ �= φ):

Lk(z
j
k|Z̄|τ̄ ) =

∫
X
pMk(z

j
k|x)pDk(x)pk(x|Z̄|τ̄ )μ(dx). (7)

3) Likelihood of τ̄ �= φ being undetected:

Lk(θ |Z̄|τ̄ ) =
∫
X
(1 − pDk(x))pk(x|Z̄|τ̄ )μ(dx). (8)

4) Likelihood of zjk originating from a newly detected
target:

Lk(z
j
k|Z̄|φ ) =

∫
X
pMk(z

j
k|x)pDk(x)βNT (x)μ(dx), (9)

where βNTk(x) = ν̄NTkpk(x|Z̄|φ ) is the density of unde-
tected targets.

In (7) and (8), pk(x|Z|τ ) is the track state probability
distribution determined by the predecessor track τ̄ and
Z. When x is Gaussian, this distribution is represented
by means and covariances. The hybrid measure μ is in-
troduced to handle the hybrid statewith both continuous
and discrete variables.For discrete random variables, the
integral becomes a summation.

The expected number νNT of targets that remain
undetected through k frame is calculated from the ex-
pected number ν̄NT of undetected targets in Z̄ as

νNTk = ν̄NTk

∫
X
[1 − pDk(x)]pk(x|Z̄|φ )μ(dx). (10)

The state distributions for the tracks are updated by

pk(x|Z|τ ) = d−1pMk(z
j
k|x)pDk(x)pk(x|Z̄|τ̄ ) (11)

for a track τ with a detection z jk, and

pk(x|Z|τ ) = d′−1(1 − pDk(x))pk(x|Z̄|τ̄ ) (12)

for a track τ with no detection at frame k. Equation (12)
is also used to compute βNTk(x), the density of unde-
tected targets. In (11) and (12), d and d′ are normaliz-
ing constants. The likelihoods (2)–(5) are a special case
with linear and Gaussian models, and uniform detection
probability.

C. Hypothesis Management or Implementation

Since the number of hypotheses grows rapidly with
the number of frames, hypothesis management tech-
niques are needed tomake recursiveMHTpractical [15],
[17]. Common techniques are pruning low-probability
hypotheses, combining hypotheses with similar tracks,
and decomposing targets and measurements into clus-
ters [18] that can be solved independently.

Hypothesis pruning requires finding the hypotheses
with the highest probabilities. At first, heuristic meth-
ods and search techniques were used, but results were
frequently not satisfactory. HOMHT became practical

only after efficient techniques for generating them-best
hypotheses were developed [19]–[21] using Murty’s al-
gorithm [22]. A reformation of the HOMHT [15] with
Murty’s algorithm is discussed in [23]. A method for es-
timating the bounds to the hypothesis probabilities is
given in [24]. These bounds are useful for validating the
correctness of the implementation.

When needed, the probability of a track can be com-
puted as the sum of the probabilities of all hypotheses
containing the track. Since it may be very difficult to
enumerate and evaluate all hypotheses, track probability
calculation is almost always approximate.

IV. TRACK-ORIENTED MHT

TOMHT is usually claimed to be more efficient than
HOMHT because it recursively generates only tracks
and finds the best association hypothesis only when
needed [17], [25]. Even though [25] is one of the earliest
references on the implementation of TOMHT, the con-
cept of TOMHT first appeared in [13], which uses inte-
ger programming to find the best hypothesis over a batch
of data, and a design for implementation is presented in
[26].

A. Batch Hypothesis Evaluation

The probability of a hypothesis λK on the cumulative
data Z1:K can be computed [40] as

P(λK|Z1:K) = C(Z1:K)−1lFAK (Z1:K|λK)
∏
τ∈λK

lK(τ,Z1:K),

(13)
whereC(Z1:K) is a normalizing constant, lFAK (Z1:K|λK) is
the likelihood of false alarms, and lK(τ,Z1:K) is the like-
lihood of the track τ given by

lK(τ,Z1:K) = ν̄

K∏
k=1

{∫
gk(Zk|τ |x)pk(x|Z1:(k−1)|τ )μ(dx)

}
(14)

with the generalized likelihood gk(z|x) accounting for
detection probability, i.e.,

gk(z|x) =
{
pMk(z|x)pDk(x), if z �= θ,

1 − pDk(x), if z = θ.
(15)

Equation (13) assumes that the number of targets
is Poisson distributed. Hypothesis evaluation for non-
Poisson number of targets is discussed in [27]. This for-
mulation assumes that there are no target births and
deaths. Target appearance and disappearance are due to
entry into and exit from the sensor field of view.Ref. [28]
presents a model with target births that are never de-
tected. The dimensionless scoring of MHT is discussed
in [29].
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B. Finding the Best Hypothesis

By suppressing the time index K, and using the ap-
propriate normalization, (13) becomes

P(λ|Z) = C(Z)−1
∏
τ∈λ

l(τ ), (16)

where C(Z) is a normalization constant. The best hy-
pothesis is then the maximum a posteriori (MAP) so-
lution for (16).

1) 0–1 Integer Linear Programming Formulation:
Taking the negative logarithm of (16) and ignoring the
normalization constant results in the following additive
cost:

J(λ|Z) �=
∑
τ∈λ

c(τ ), (17)

where c(τ ) = − ln l(τ ). The optimization problem is
thenminimizing (17) subject to the constraint that λ does
not have tracks sharing the same reports.

LetM be the number of tracks and c = [c1, ..., cM]T

be the M-dimensional vector with c j = c(τ j). A hy-
pothesis λ is represented by the M-dimensional vector
x = [x1, ..., xM]T , where x j = 1 if track τ j ∈ λ, and x j = 0
otherwise. Then, the MAP solution is given by the inte-
ger linear programming problem

minimize cTx
subject to Ax ≤ b
and x j ∈ {0, 1} for all j ∈ {1, ...,M},

(18)

where A is an N × M matrix with Ai j = 1 if the report
zi is included in the track τ j, and b is a vector of 1’s with
dimensionN being the number of reports.The constraint
Ax ≤ b states that tracks in a single hypothesis cannot
share the same reports.

The integer linear programming formulation first
appeared in [13], with an NP-hard exact solution. A so-
lution is usually found by relaxing the integer value con-
straint of x j and solving the standard linear program-
ming problem [30]. When the solution is noninteger,
branch-and-bound techniques are used.

2) MD Assignment Formulation: The MAP solution
can be reformulated as anMDassignment problem [31]–
[33]. Let jk be the index of measurement z jkk in frame k
and z0k be a dummy measurement representing nonde-
tection. A track hypothesis τ can be represented by an
indicator function τ j1... jK , where

τ j1... jK =
{
1, if τ = ((1, j1), . . . , (K, jK)),

0, otherwise,
(19)

and a measurement (index) not in any track is a false
alarm.

Let c j1... jK = c(τ ) be the cost of the track τ . Then, the
minimization of (17) is equivalent to the following MD

assignment problem:

minimize
m1∑
j1=0

· · ·
mK∑
jK=0

c j1... jKτ j1... jK (20)

subject to
m1∑
j1=0

· · ·
mk−1∑
jk−1=0

mk+1∑
jk+1=0

· · ·
mK∑
jK=0

τ j1... jK = 1 (21)

for all jk = 1, 2, .....,mk and k = 1, 2, .....,K. Con-
straints (21) specify that each measurement can belong
to only one track. The cost c00...0 is defined to be zero. If
y is defined to be the vector formed from all τ j1... jK , then
(20) and (21) have the form of minimize cTy subject to
By = 1, which is an integer linear program.

Since the exact solution of MD assignment is NP-
hard, approximate solutions are needed.Although there
are differences in the specific steps, most approximate
MD assignment techniques are based upon Lagrangian
relaxation.

TOMHT can be formulated as the maximum weight
independent set partition (MWISP) problem [34] with
a hypothesis represented by a partition. This approach
is not as popular as integer linear programming or MD
assignment because the best partition is usually found by
a greedy search procedure [35], [36].

C. Track Management or Implementation

Even though TOMHT is more efficient than
HOMHT, the number of tracks still grows rapidly
with the number of frames. Since the likelihood and
state estimate must be generated for each track, efficient
track management is essential. In addition to HOMHT
hypothesis management techniques,N-scan pruning is a
common method used in almost all TOMHT algorithms
[17], [30]. After a best hypothesis is found, the tracks
in the hypothesis are used to prune tracks that do not
share ancestor nodes with them. As in HOMHT, clus-
tering decomposes the data association problem into
independent problems. An approach for clustering for
MD assignment is described in [37].

Unlike HOMHT, TOMHT does not require hypoth-
esis evaluation at each frame. Still it is useful to esti-
mate the probability of the best hypothesis. Techniques
for finding the m-best hypotheses have been developed
for both MD assignment [38] and integer programming
algorithms [39].The probabilities of them-best hypothe-
ses can be used to compute the probability of a track.

V. DISTRIBUTED MHT

When sensors are physically distributed, communi-
cating all measurements to a central tracker is often not
feasible due to bandwidth constraints. In a distributed
tracking system, the local trackers process the local sen-
sor measurements and send the processing results to be
fused by another tracker. Even when the sensors are co-
located, it is sometimes desirable for each sensor to have
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its own tracker to distribute and simplify processing, es-
pecially when the sensors are of different types, such as
radar and electro-optical.

A. Distributed MHT for Multiple Sensors

Distributed tracking must address issues such as
what information should be communicated between lo-
cal trackers, and how trackers process results from other
trackers. The first distributed MHT assumes local track-
ers communicate and fuse local hypotheses and tracks
[40]–[43]. Although the approach was demonstrated on
a small distributed sensor network and validated using
real flight data, communicating multiple hypotheses is
not practical because it requires more bandwidth than
sending sensor measurements. However, this research
addresses the key issues for distributed tracking, such
as removal of redundant information in tracks and eval-
uation of track-to-track association likelihoods. Almost
all practical distributed MHT communicate a single hy-
pothesis consisting of high-quality tracks.

The potential of usingMHT in a hierarchical tracking
architecture was recognized in the early days ofMHT. In
fact, the ocean surveillance correlation problem thatmo-
tivated MHT research involves contact reports that are
outputs from other systems. If these reports can be con-
verted into measurements with independent errors, then
MHT can process them in the usual manner. Otherwise,
some form of decorrelation is needed to remove this
dependence. The All Source Track and Identity Fuser
(ATIF) [30] uses MHT to fuse tracks from multiple sen-
sors. The first version avoids the temporal correlation
in the track reports by processing the measurements in
the tracks instead of the state estimates. The second ver-
sion decorrelates the tracks to form equivalent measure-
ments with independent errors. Let x̂s,ik1|k1 , P

s,i
k1|k1 , x̂

s,i
k2|k2 ,

and Ps,ik2|k2 be the state estimates and error covariances
of a track i by sensor s at times k1 and k2 with k2 > k1.
Then, the equivalentmeasurement ys,ik2 and its covariance
Vs,i
k2

are given by

(Vs, j
k2

)−1yk2 = (Ps,ik2|k2 )
−1x̂s,ik2|k2 − (Ps,ik1|k1 )

−1x̂s,ik1|k1 , (22)

(Vs, j
k2

)−1 = (Ps,ik2|k2 )
−1 − (Ps,ik1|k1 )

−1. (23)

The equivalent measurement represents the new in-
formation contained in the measurements of the track
between k1 and k2, and is called tracklet in [48]. In this
paper, we will follow the more common definition of
tracklet as a short track consisting ofmeasurements from
the same target. This equivalent measurement of (22)
and (23) is only approximate when the target dynamics
have nonzero process noise [44]. The distributed MHT
in [45] uses equivalent measurements from passive and
active sensors to score association hypotheses.

The concept of data frame or scan is essential to
HOMHT or recursive MHT. Since tracklets are not de-
fined at a single observation time, there is no obvi-

ous way of organizing them into frames or scans. Thus,
TOMHT is more appropriate for processing tracklets
[49]. In particular, TOMHT has a natural formulation as
graph-based association discussed in Section VI.

Due to processing differences, communication de-
lays, and failures, the MHT on multiple platforms may
produce different results. Conflicting track pictures are
problematic when they are used for distributed decision
making.An approach formaintaining a single integrated
air picture for multiple platforms is developed in [46].

B. Multistage MHT for Single Sensor

Multistage processing for single sensor tracking is ba-
sically a data compression technique with a front-end
tracker that processes the sensor measurements to re-
move clutter and generate tracks as inputs for the back-
end tracker. The back-end tracker usually does some
pre-processing such as checking the quality of input
tracks and breaking them if necessary [47].

When the front-end tracker generates pure track-
lets with little association uncertainty, the inputs to the
back-end tracker can be represented by an association
graph [50]. Then, the MHT can be solved efficiently if
some Markov assumptions are satisfied, as discussed in
Section VI.

VI. GRAPH-BASED ASSOCIATION

Advances in sensing and communication technolo-
gies have resulted in surveillance systemswithmany sen-
sors collecting data on large numbers of targets. For ex-
ample, ground-based or airborne video sensors are used
to track moving vehicles in urban environments. Track-
ing with kinematic measurements alone is difficult due
to high target density,occlusion from buildings, and large
amounts of measurements. Thus, target feature observa-
tions are needed for accurate association and sparse fea-
ture data necessitate the use of MHT to maintain multi-
ple hypotheses until feature observations are received
to select the correct hypothesis. The “big data” prob-
lem is usually addressed with a hierarchical architecture
with sensors generating pure tracklets and a high-level
tracker associating the tracklets to form target tracks.
The MHT problem can then be represented as an as-
sociation graph [50], which has efficient solutions under
some assumptions [51], [52].

A. Association Graph

Representation of tracks as paths over a trellis first
appears in [53] and an efficient solution is given in [54].
However, it did not receive much attention in the tra-
ditional tracking community until recently even though
graph representation of data association is quite stan-
dard in video tracking (Section IX-E). The nodes of an
association graph are sensor reports that may be indi-
vidual measurements or tracklets (sequence of measure-
ments associatedwith same target with high confidence).
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Each node is associatedwith a probability distribution of
the state given measurements in the tracklet.

An edge connects two nodes when the reports can
be associated with the same target.Two temporally over-
lapping tracklets from the same sensor cannot be associ-
ated.The weight of the edge represents the likelihood of
association. Since association is a bidirectional relation-
ship, the association graph is in general undirected. If the
tracklets are from the same sensor, the graph is directed
with a direction defined by the start or end times of the
nodes.

An association graph provides an efficient implicit
representation of tracks and hypotheses inMHT.A track
is a path in the track graph and an association hypothesis
is a set of consistent tracks,where consistencymeans that
no two tracks in a hypothesis can share a single report.
If there are no false reports, a hypothesis is a partition of
all the reports or a nonoverlapping path cover of all the
nodes.

B. Solution for Markov Association Likelihoods

Let τ = (y1, ...., yk) be a track with a tracklet τi rep-
resented by its measurements yi. The likelihood of the
track τ is

l(τ ) = γS(y1)pE(yk)
k−1∏
i=1

l(yi+1)
k−1∏
i=1

l(yi, yi+1), (24)

where pE(yk) is the probability of the track ending after
yk, γS(y1) depends on the density of the new report y1,

yi �= (y1, ..., yi) is the partial track with reports up to yi,
l(yi) is the likelihood of yi, and l(yi, yi+1) is the likelihood
of associating yi+1 with yi.

1) Markov Likelihoods: The association likeli-
hood satisfies the Markov property if p(yi+1|yi) =
p(yi+1|y1, ...., yi) = p(yi+1|yi). Then, (24) becomes

l(τ ) = γS(y1)pE(yk)
k−1∏
i=1

l(yi+1)
k−1∏
i=1

l(yi, yi+1). (25)

The likelihood of a track is now the product of pair-
wise association likelihoods given by (25). The Markov
property is also called the path-independent property
because the association of nodes with a path depends
only on the last node in the path and is independent of
the rest of the path.

The Markov or path-independent property implies
p(x|y1, ...., yi) = p(x|yi); i.e., the previous reports in a
track cannot improve the estimate based only on the
current report. This is true in tracklet stitching problems
with very accurate sensors and fast target dynamics rela-
tive to the length of the tracklet [55], e.g., video tracking.
The Markov property is not satisfied when the previous
reports can improve the estimate computed using only
the current report. Examples include raw sensor mea-
surements, feature data,andmultisensor reports that can
be fused to improve the state estimate.

2) Bipartite Matching Formulation: An association
hypothesis λ on the track graph can be represented by
xi j ∈ {0, 1}, i = 1, ...,N, j = 1, ...,N, so that xi j = 1 if
the directed edge (yi, y j) is in λ and 0 otherwise. With
the Markov assumption, taking the negative logarithm
of (16) and ignoring the normalization constant, the cost
function for the MAP solution becomes

J(x) =
∑

(i, j)∈E
ci jxi j, (26)

where ci j = − ln(l(yi, y j)/(γS(y j)pE(yi))) and E is the
set of edges.

The best hypothesis is obtained by finding xi j ∈ {0, 1}
that minimizes (26) subject to the constraints that each
node i can be associated with at most one node j. This
is a bipartite matching or assignment problem.Many ef-
ficient algorithms [56] have been developed to find the
best matching or assignment. In addition, the K-best so-
lutions can be found by Murty’s algorithm [22].

3) Minimum Cost Network Flow Formulation: The
bipartite matching formulation can be converted into
the minimum cost network flow (MCNF) formulation.
In fact, theMCNF solution first appeared in [54] for find-
ing the best hypothesis for a trellis with the nodes rep-
resenting radar measurements. However, this approach
was ignored for many years because the Markov prop-
erty does not hold for problems of interest at that time.

This approach was rediscovered with video tracking,
which frequently uses a two-level architecture. The first
or low level processes video data to form tracklets and
the second or high level stitches the tracklets across oc-
clusions or confusions. The tracklet stitching problem
usually uses a track graph representation. Since the like-
lihood of associating a video tracklet with a video track
usually depends only on the last tracklet in the track,
the Markov property is satisfied and MCNF or bipartite
matching algorithms can be used to solve the problem.

Because of this nice computational property, the
Markov property is sometimes assumed in problems
where it is clearly not valid. For example, [57] uses it for
tracking with radar measurements and proposes an iter-
ative approach to improve the solutions generated un-
der the Markov assumption. Another example is multi-
ple sensor track stitching where the path independence
assumption is not valid [58]. Graph-based tracking sys-
tems with the Markov assumption have been developed
and tested on real data involving a graph with several
hundred thousand nodes.

The Viterbi data association approach of [53] is fur-
ther developed for tracking [59]–[61]. A comparison
of Viterbi-based and multiple hypothesis-based track
stitching is investigated in [62].

C. Solution for Non-Markov Likelihoods

MHT is most useful when the data from later scans
can significantly change the track likelihoods and reduce
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the association ambiguity. This is clearly not possible
with Markov association likelihoods. The performance
of graph-based techniques for track stitching is analyzed
in [63].

Graph-based solution for MHT is an active area of
research because traditional MHT cannot handle the
data volume of modern surveillance systems. While the
graph is a good representation of the association prob-
lem, standard graph analytic solutions require restrictive
assumptions such as theMarkov property.Solution of as-
sociation graphs that violate the Markov assumption is
an active research area [52], [64]–[68].

VII. OTHER MHT RESEARCH

A. Relaxing Measurement to Target Association
Assumptions

StandardMHT assumes that a measurement in a sin-
gle frame/scan cannot originate from two targets, and
a target can generate at most one measurement in a
frame/scan.This assumption is violated when low sensor
resolution results in unresolved measurements, or high
sensor resolution results in multiple measurements per
target.

1) Unresolved Measurements: One way to handle
association of unresolved measurements with multiple
tracks is by modeling the unresolved measurements.
HOMHT is used in [69] to track closely spaced aircraft
with measurements from acoustic sensors. Before mea-
surements are associated with the predicted tracks, track
merging hypotheses are formed. The likelihood of as-
sociating a measurement with two tracks is computed
from the probabilities of trackmerging and detecting the
merged track, and the likelihood of associating the mea-
surement with the detected merged track. The probabil-
ity of unresolved targets is also a key component in [70],
which addresses multiple hypothesis track maintenance
for targets flying in close formation.

Unresolved measurements introduce merged track
or unresolved track hypothesis in addition to measure-
ment to track association hypothesis. Sophisticated hy-
pothesis management techniques are necessary to make
MHT practical for unresolved measurements.

2) Multiple Measurements: The sensors in some
tracking systems generate multiple measurements per
target. One such sensor is the over-the-horizon radar
(OTHR), which generates multiple detections arriving
over different propagation paths from the same target.
Another example is passive coherent localization,which
uses a single receiver to detect multiple measurements
bouncing off the target from multiple transmitters.

DifferentMHTmodifications have been proposed to
address themultiplemeasurement problem.In [71],mul-
tiple measurements are viewed as detections of different
modes, with a different measurement equation for each
mode. A multiple detection multiple hypothesis tracker

(MD-MHT) is developed to associate themeasurements
and estimate the mode. The MD-MHT uses MD assign-
ment and its performance is demonstrated for OTHR
tracking.

Ref. [72] addresses multiple measurements that are
modeled by the same measurement equation. The mul-
tiple measurement MHT is based on a generalization of
TOMHT recursion to handle repeated measurements.
Tracking of multiple extended objects by Poisson multi-
Bernoulli mixture (PMBM) filter, which has an MHT-
like structure (Section VIII-A.2), is discussed in [73].

3) Split and Merged Targets: The targets in some
tracking problems may split and merge, resulting in
split and merged measurements. An example is track-
ing clouds that merge and split. Handling target merge
and split requires modification of the standard MHT.
In addition to new target from birth or first detec-
tion, extension of existing track, and false alarms, [74]
also considers track split and track merge as possi-
ble origins of measurements. A different approach is
used in [75], which decomposes the target state into
kinematic/attribute state and event. The possible events
are birth, death, split, and merge. The MHT has two
steps: generating event hypotheses and data association
hypotheses.

4) Probabilistic MHT: MHT assumes that a target
can generate at most one measurement per scan. PMHT
[76] uses an assignment model that violates this as-
sumption, and allows measurement/target association
to be independent across measurements. With this as-
sumption, the optimization problem is changed from
a combinatorial problem requiring solution by integer
programming or MD assignment to a continuous opti-
mization problem that can be solved by expectation–
maximization algorithms. Even though MHT is in its
name, solving the data association problem is not the pri-
mary objective of PMHT, which also assumes the num-
ber of targets is known. The problems and some solu-
tions of PMHT are discussed in [77].

B. MCMC Data Association

It is well known that finding the best hypothesis of
TOMHT by 0–1 integer linear programming (18) orMD
assignment (20), (21) is an NP-hard combinatorial prob-
lem. Since MCMC methods [78], [79] can provide poly-
nomial time algorithms to solve the NP-hard problem
with sufficient accuracy, it is natural for MCMC to be
used for target tracking [80].

In [81] and [82], the MC transition is defined
as a combination of five “moves”: 1) birth/death, 2)
split/merge, 3) extension/reduction, 4) track update, and
5) track switch. Simulation results show that perfor-
mance is better than commonly used TOMHT algo-
rithms. MCMC is used to solve a multiple-intelligence
(multi-INT) surveillance problem with good reported
performance [66].

138 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 14, NO. 2 DECEMBER 2019



In [83], three MCMC sampling designs, Metropolis
sampling, Metropolis sampling with Boltzmann accep-
tance probability, and Metropolis–Hasting sampling, are
directly applied to the 0–1 linear programming formu-
lation (18) of TOMHT. The results in terms of conver-
gence speed are not very impressive when compared
with an open-source mixed-integer linear programming
package combining the primal–dual methods with the
backup branch-and-boundmethod.At the suggestion by
the late Dr. Jean-Pierre Le Cadre, another sequential
Monte Carlo method known as cross entropy method
was proposed in [84]. However, no definitive conclusion
on the performance improvement was obtained.

C. Graphical Models for Data Association

Graphical models [85] are efficient representations
of joint probability distributions of many random vari-
ables by exploiting factorization such as Markov prop-
erties.Given such a representation, inference algorithms
are used to compute probabilities of specific variables or
maximize some probabilities. By representing the MTT
with a graphical model, message passing or belief prop-
agation techniques can be used to solve the data associ-
ation problem.

Ref. [86] presents message passing algorithms for
solving a class of MTT problems. Ref. [87] uses a fac-
tor graph to represent the TOMHT and variational mes-
sage passing to estimate the track probabilities. Empir-
ical evaluation shows that track probabilities computed
throughmessage passing compare favorably to those ob-
tained by summation over the k-best hypotheses

Ref. [88] uses an MWISP formulation of TOMHT
and represents it by a graphic model. Max-product be-
lief propagation is then used to find the MAP solution.

D. MHT Output

Designing a good display for a tracking system is
always difficult because the information to display de-
pends on the information needs of the operator. Dis-
playing MHT output is particularly challenging. There
are two choices:displaying the best (MAP) hypothesis or
a combination of hypotheses. Usually the best hypothe-
sis is displayed because finding alternative hypotheses is
not easy.However, the tracks in the best hypothesis may
change abruptly as the MAP hypothesis changes. This
hypothesis hopping is very disconcerting to the opera-
tor as it results in track switching and jitter.

One way to generate smooth track estimates is by
retrodiction [89], [90]. By introducing a delay and using
a “smoothed” hypothesis, the track estimates will have
fewer discontinuities. The retrodiction approach is ac-
ceptable if the delay is small enough for the mission.

Another approach [91] finds the real-time display of
the target state estimates without any delay by mini-
mizing the mean optimal subpattern assignment metric,
which is defined in terms of the optimal subpattern as-

signment metric [92]. Since the display involves multiple
hypotheses, the target estimates will be smoother.

E. Multiple Frame Detection and Track
Initiation/Extraction

Detecting a target from a single frame of measure-
ments is difficult when the signal-to-noise ratio is low
and clutter is high. Multiple frame detection considers
multiple candidate trajectories over the multiple frames
and selects the best trajectories to detect or extract a tar-
get track. Since MHT performs track initiation in addi-
tion to track maintenance, it is a natural approach for
multiple frame detection. The performance of MHT for
track initiation and extraction is assessed in [93] and [94],
with probability of establishing a track and number of
false tracks as performance metrics.

The detection of small moving objects in a sequence
of images is addressed in [95] by multistage hypothesis
testing, which is also abbreviated as MHT. To avoid the
complexity of standard MHT for target tracking, a se-
quential probability ratio test (SPRT) [96] is used to se-
quentially compare the statistics of two decision thresh-
olds. A similar approach is used in [97] to extract tracks
of weak but well-separated targets from high interfer-
ence. More recently, [98] derives a Bayesian SPRT with
new target density for track initiation based on the orig-
inal HOMHT [15] and compares its performance with
the classical SPRT [97], both theoretically and with sim-
ulations.

VIII. RELATIONSHIP TO RFSs

Multitarget filtering using random set formalism has
been a very active area of research in recent years [99],
[100]. In the random set approach, both the multitarget
state and measurements are modeled as random sets.
More specifically, the multitarget state at time tk is the
random set Xk = {x1k, ...., xnkk } and the measurements,
which may be vectors, are the set Zk = {z1k, ...., zmk

k }. Al-
though RFSs are basically finite point processes allow-
ing repeated elements, the RFS formalism, which does
not allow repeated elements, is much more popular than
the finite point process formalism. An appropriate con-
cept of a pdf of an RFS X = {x1, ...., xn} is the nth-order
Janossy measure density function

f ({x1, ...., xn}) =n!p(n) fn(x1, ..., xn), (27)

where p(n) is the probability distribution on the num-
ber of elements, and fn(x1, ...., xn) is the joint pdf given
n elements, which is symmetric or permutable, i.e.,
for any permutation π on {1, ...,n}, fn(x1, ...., xn) =
fn(xπ (1), ...., xπ (n)).

Let fk|k−1(Xk|Xk−1) be the RFS state transition pdf,
and fM(Zk|Xk) be the RFS measurement likelihood.
Then, the multitarget filter can be expressed by the
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prediction step

f (Xk|Z1:k−1) =
∫

fk|k−1(Xk|Xk−1) f (Xk−1|Z1:k−1)δXk−1,

(28)
where the integral in (28) is the set integral over themea-
surable space of all the finite sets, and the update step

f (Xk|Z1:k) = [ f (Z1:k|Z1:(k−1))]
−1 fM(Zk|Xk) f (Xk|Z1:k−1).

(29)

A. MHT-Like Structures in RFS Filters

Since explicit target trajectories or tracks are needed
in many applications, there has been much research on
deriving MHT from RFS. In particular, RFS filters are
shown to have MHT-like structures.

1) Cardinalized Probability Hypothesis Density
(CPHD) Filter: The Probability Hypothesis Den-
sity (PHD) is the density of the measure defined as the
expected number of targets within any measurable set
in the target state space. The PHD filter approximates
the predicted RFS pdf by a Poisson RFS pdf, at each
updating stage, while the CPHD filter approximates it
by an i.i.d. cluster RFS, without the Poisson assumption
on the number of targets. The PHD filter provides the
best Poisson RFS approximation in a Kullback–Leibler
divergence sense [101]. Similarly, the CPHD filter
provides the best i.i.d. cluster RFS approximation in
Kullback–Leibler divergence sense, as proved in [102]
and [103].

Neither PHD nor CPHD provides state pdf for each
target, and the single-target state pdf cannot be inferred
from the peaks of the posterior PHD.There are attempts
to relate PHD or CPHD to MHT. For example, [104]
shows that the Gaussian mixture CPHD filter is equiv-
alent to MHT for single targets. Each Gaussian compo-
nent has a predecessor and the sequence of predecessors
forms a track.

2) PMBMFilters: ABernoulli RFS is specified by the
probability of existence for an element and a “spatial”
pdf for the element if it exists. A multi-Bernoulli RFS is
the union of independent Bernoulli RFS components.

The multi-Bernoulli mixture in the PMBMfilter rep-
resents the posterior density f (Xk|Z1:k) over the targets
that have ever been detected, with each Bernoulli com-
ponent representing a track and each mixture compo-
nent representing a data association hypothesis. The ad-
dition of Poisson component represents targets that re-
main undetected.Thus, it is reasonable to expect that the
PMBM filter will have structure similar to MHT [105].

In particular, [106] shows that the hypothesis evalu-
ation equation (3) can be derived from the PMBM filter
under the same assumptions of [15], includingGaussian–
linear kinematics and no target death, and interpreting
the new target density βNT as the unknown target den-
sity in [105]. The derivation is based on representation
by multi-Bernoulli mixtures. The relationship between

HOMHT and PMBM filter is further analyzed in [107]
by representing the multitarget pdf as a mixture of data
association hypotheses that generalize the hypotheses of
[15] by including undiscovered targets. In addition, new
target density is viewed as a birth density. The resulting
filter has essentially the same structure as the HOMHT,
and the hypothesis probability recursion equation is (3)
multiplied by a factor that represents undiscovered tar-
gets.

A Gaussian implementation of the PMBM is pro-
vided in [108],which also introduces the multi-Bernoulli
mixture (MBM) filters. The difference between PMBM
filters and MBM filters is that in PMBM filters the birth
model is a Poisson point process, while in MBM filters,
the birth model is multi-Bernoulli or multi-Bernoulli
mixture. The prediction and update equations are anal-
ogous with a minor difference in the prediction step.

The PMBM filter does not establish explicit track
continuity, which is desirable for MTT. By formulating
the MTT problem as an RFS of trajectories [109], [110]
derives PMBM trackers that estimate the trajectories,
thus providing continuity and structure similar to MHT.
Implementation of the trajectory PMBM filter is dis-
cussed in [111] and [112].

3) Labeled Multi-Bernoulli Filters: By adding a la-
bel to an individual target state, RFS-based filters ex-
plicitly maintain track continuity from entire trajecto-
ries of consecutive target states with the same label. If
one labels the Bernoulli components in the MBM fil-
ter, which is a particular case of the unlabeled case, one
gets a labeled MBM filter. If the labeled MBM filter
is written with (data association) hypotheses in which
target existence is deterministic rather than probabilis-
tic, one gets the δ-generalized labeled multi-Bernoulli
(δ-GLMB filter) [108, Sec. IV]. Having deterministic ex-
istence in each hypothesis implies an exponential in-
crease in the number of hypotheses (and therefore in the
number of data associations to be solved),and is thus not
desirable.

δ-GLMB RFS filters [113], [114] have been used to
developmultitarget tracking filters with structure similar
to MHT. For example, the update equation for detected
targets [86, eqs. (105) and (106)] can be used to illustrate
the similarity to MHT.More specifically,

f (Xk|Z1:k) = ∑
ck
P(ck) fLMB

ck (Xk)

= ∑
ck
P(ck)

∏
l∈Lk

f (l,c
l
k)(Xl

k),
(30)

where Lk is the set of detected targets, Xl
k is {(xik, lik)},

f (l,c
l
k)(Xl

k) is a Bernoulli pdf for each label l in Lk, and
ck is a data association vector with entries clk, l ∈ Lk,
and probability P(ck). According to (30), the RFS pdf
is the sum of LMB fLMB

ck (Xk) representing the RFS pdf
for each data association ck, weighted by P(ck), and
f (l,c

l
k)(Xl

k) is the track RFS pdf.
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B. RFS Formalisms for MHT

There are some concerns that MHT does not have a
solid mathematical foundation because the derivations
in [13]–[16] do not use complicated mathematics. In fact,
there were even criticisms that MHT is heuristic. These
concerns are addressed in [115] and [116], which intro-
duce mathematical formalisms to support a theory for
MHT.

In particular, [116] models the set of targets as (i) a
random finite sequence, (ii) a finite point process, and
(iii) a random finite set, of stochastic processes on the
target state space over a given continuous-time interval
[t0,∞). Viewing an individual target as a stochastic pro-
cess is similar to the use of target trajectories in [110].

Using the standard assumptions on the measure-
ments, the hypothesis evaluation equation is

P(λK|Z1:K) = P(Z1:K)−1LFAK(λK)LNDTK(#(λK))

×
( ∏

τ∈λK

LK(τ )

)
, (31)

where LK(τ ) is the likelihood of a track similar to (14).
However, LFAK(λK), the likelihood of false alarms, and
LNDTK(#(λK)), the likelihood of the cumulative num-
ber of detected targets, are more complicated unless the
number of targets and number of false alarms satisfy the
Poisson assumption.Note that the hypothesis evaluation
equation (31) is the same for all three formalisms.

IX. APPLICATIONS

MHT has been applied to target tracking problems
that require sophisticated methods for data association.
Many of these applications are in defense and secu-
rity, where government regulations and company poli-
cies restrict publications, especially on deployed systems.
Our review will focus primarily on those published in
the open literature. Applications of MHT for tracking
ground targets, aircraft, and missiles are already dis-
cussed in [17]. We will discuss other applications such
as ocean and maritime surveillance, space situational
awareness, airborne video surveillance, video tracking,
and some unconventional areas.

A. Ocean and Maritime Surveillance

1) Ocean Surveillance: Ocean surveillance is charac-
terized by a huge surveillance region that may cover the
entire world. Relative to the size of the surveillance re-
gion, there are few targets and they do not move very
fast.The tracking problemwould be easy except that few
sensors provide persistent coverage, resulting in sparse
measurements. Since kinematic measurements are not
useful for association in many occasions, feature or at-
tribute observations are valuable but not always avail-
able. The tracking problem is even more challenging for

submarines because they are designed for stealthy oper-
ations.

Naval ocean surveillance was a very active area of
research in 1979,with [117] documenting the state of the
art around that time. Ref. [118] discusses using MHT of
[15] for ocean surveillance with a target state that in-
cludes a continuous component representing position,
velocity, and emitter parameters, and a discrete compo-
nent representing attributes such as platform or radar
identifications.An architecture for fusion of multisensor
ocean surveillance data using MHT is proposed in [119].

Submarine tracking relies largely on acoustic sensors.
A multiple hypothesis approach is proposed for concur-
rentmapping and localization for autonomous underwa-
ter vehicles [120]. The MHT approach for tracking with
passive and active sonar is discussed in [121]–[124].

2) Maritime Surveillance: Maritime surveillance is
characterized by a smaller surveillance region and many
more sensors than ocean surveillance. However, there
are more targets with high maneuverability. Maritime
domain awareness requires tracking targets and moni-
toring their behaviors [125].

One system for port surveillance fuses video and
radar data with automatic identification system (AIS)
transponder data to form composite fused tracks for
all vessels in and approaching the port using MHT.
Rule-based and learning-based pattern recognition al-
gorithms are then used to generate alerts [126], [127].

Ref. [128] discusses an MHT at the NATO Under-
sea Research Centre.AnMHT that fuses radar and AIS
data is described in [129].While the targets of interest for
ocean and maritime surveillance are surface and subsur-
face vessels,MHT has been used to estimate the number
of beaked whales [130].

B. Ground Surveillance

Ground surveillance targets include vehicles, people,
and animals, with movements in rural or urban environ-
ments. Sensors include radar, electro-optical, and others
on airborne platforms, as well as ground-based sensors
such as seismic.

1) Ground Moving Target Indicator: The utility of
airborne ground moving target indicator (GMTI) radar
for ground surveillance was demonstrated in the first
Gulf War of 1991 [131]. The large amount of data pro-
duced by GMTI radar overwhelms manual analysis and
requires automated tracking algorithms.

Ground target tracking is characterized by large
number of targets that may be close to each other. The
targets are highly maneuverable with move–stop–move-
type behavior and on-road/off-road modes. Because of
the observation geometry, the targets may be obscured
by terrain. Furthermore, the MTI radar detects targets
only when their radial velocities are above the mini-
mum detectable velocity. Coverage gaps and highly ma-
neuverable targets make data association difficult. The
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challenges of ground target tracking and available algo-
rithms are discussed in [132].

Ref. [133] describes aU.S. program to developGMTI
tracking algorithms around 2000. The initial phase
involved four contractors using HOMHT [134] and
TOMHT. The two winning contractors later became the
main tracking algorithm developers for ground surveil-
lance in the United States. Other research in GMTI
tracking includes [135]–[138].

2) Airborne Video: The targets for tracking with air-
borne video have similar characteristics to those in
GMTI tracking. In addition, airborne video is often used
to track people. Some airborne platforms such as the
Predator have steerable sensors with narrow field of
view, while other platforms have wide-area motion im-
agery (WAMI) sensors.Since steerable sensors have nar-
row field of view, accurate tracking is crucial to control
the sensor to observe the targets. Thus, MHT is part of
a closed-loop system with both tracking and sensor con-
trol [139], [140].

A WAMI sensor can detect many targets because
of its wide field of view. When used for urban surveil-
lance, occlusion from buildings and high target density
makes data association very difficult. Furthermore, the
goal of tracking is to produce tracks (trajectories), and
not just estimating the locations, which would be very
easy for video sensors. Thus,MHT is widely used for air-
borne video tracking.Approaches include TOMHTwith
integer programming [141]–[143],MD assignment [144],
and graph-based approach [145], [146].Graph-based ap-
proach is particularly applicable because theMarkov as-
sumption is valid.

C. Air and Missile Target Tracking

Air and missile targets have mostly well-defined mo-
tion models based on physics, even during maneuvers.
Furthermore, sensors such as radar or infrared search
and track do not have to contend with the occlusion
problem in ground target tracking. However, military
targets can fly in close formation, and are designed to es-
cape detection with the help of countermeasures. These
are challenges for air and missile target tracking.

The benefit of using MHT for sensor fusion in air-
borne surveillance systems was recognized very early
[147], with performance assessments made in [93] and
[94]. MHT algorithms are developed for infrared [148],
electronically scanned radar [149], and multisensor air
defense [150]. Interacting multiple models are used with
MHT to handle target maneuvers [151], [152]. Targets
flying in formations are addressed in [153]. More recent
research uses MHT with active and passive sensors for
the sense and avoid problem [45] and air surveillance
system [154], extending earlier MHT work for air traf-
fic control [155].

Missile defense is an important application for MHT
[17] because of the high target density, difficult associa-

tion problem for angle-only measurements from space
base sensors, and the need for continuous birth to death
tracking.However, very little research and development
is reported in the open literature.An exception is boost-
phase ballistic missile defense using MHT [156].

D. Space Situational Awareness

Space situational awareness (SSA) is important but
difficult due to the large number of satellites and space
debris in various orbit regimes. SSA has to discover new
objects, catalog and track resident objects, and charac-
terize tracked objects [157]. Since sensors observe space
objects with large time gaps, data association is nontriv-
ial.MHT has been recognized as a promising solution to
the space object problem [158]–[160].

E. Video Tracking

Due to the availability of low-cost video cameras,
video tracking has been a very active application area for
computer vision researchers. The goal of video tracking
is to maintain continuous tracks of targets, called objects
in the video tracking community, and infer activities and
intentions. Object tracking has to address abrupt object
motion, changing appearance patterns, nonrigid struc-
tures for humans or animals, and occlusions.Association
is usually more important than estimation because users
can locate the objects on the image.

The association problem among image frames is
called correspondence in the computer vision commu-
nity. Due to object crossing, appearance change, and oc-
clusion, correspondence using only two frames may re-
sult in incorrect correspondence. Better tracking results
can be obtained if the correspondence is performed over
several frames.Thus,MHT is a natural approach for solv-
ing the correspondence problem in video tracking.

A Bayesian multiple hypothesis approach for con-
tour grouping, edge and contour segmentation [161],
[162] leads to an efficient implementation of HOMHT
for video tracking [163], based on finding ranked assign-
ments [20], [21]. This is followed by other research on
using MHT for video tracking [164]–[187]. Besides us-
ing standardMHT, e.g., [183],most research assumes the
Markov assumption to build a track graph and uses effi-
cient solutions such as MCNF. It is interesting to note
that most of the research is performed in universities,
unlike MHT applications in defense and security per-
formed mostly in companies and government labora-
tories. The shifting of research to academia is due to
easy access to data for algorithm development and test-
ing from community datasets [188] and low-cost camera
systems.

F. Other Nontraditional Applications

In addition to tracking traditional targets such as
ships, vehicles, planes, and people, MHT has been used
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in other applications where good data association per-
formance requires using multiple frames/scans of data.
The following are some examples:

1) Ocean eddy current tracking [189].
2) Cloud tracking [74], [75].
3) Associating asteroid observations [190].
4) Solar events tracking [191], [192].
5) Tracking text messages and information [193], [194].
6) Detection of internet worms [195].
7) Cyberattack tracking [196].
8) Cellular traffic in living cells [197].
9) Tracking in biology and medical images [198]–[202].

X. CONCLUSION

We have reviewed the main research and develop-
ment inMHT over the last 40 years. SinceMHT is based
on a sound mathematical formulation of a real MTT
problem, research has focused on relaxing the assump-
tions ofMHT,developing efficient implementations, and
applying to problems that require association using mul-
tiple frames or scans of data. It is interesting to note
that while almost all early research was performed in
industry or government laboratories, most recent re-
search is now performed in academia without a strong
application focus. We believe future research should be
driven by applications, since new problems may require
relaxing other assumptions, which in turn requires new
algorithms.

Most MHT algorithms assume targets have i.i.d.mo-
tion models. The independence assumption is violated
when targets move as a group,or when vehicles are mov-
ing on a single-lane road. Exploiting this dependence
should improve association performance.

MHT is designed to address difficult data association
problems by maintaining association hypotheses over
multiple frames of data. Experience with real data has
shown that when data association is too easy, MHT is
not needed, and when data association is too difficult,
MHT does not help.Research is needed to predict when
MHT is useful,which is related to computing the hypoth-
esis probability distributions.RelatingMHT toRFSmay
also result in algorithms that do explicit data association
only when the data are good enough for association to
make sense.

Some tracking problems cannot be solved without
using sophisticated (or full-fledged) MHT. An exam-
ple is tracking targets with frequent kinematic measure-
ments and sparse feature observations. In such situa-
tions, MHT has to maintain multiple hypotheses until
feature data are available for association.Efficient main-
tenance of hypotheses for long durations is an active
area of research.
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Multiple-Hypothesis Tracking
and Graph-Based Tracking
Extensions

STEFANO P. CORALUPPI
CRAIG A. CARTHEL
ALAN S.WILLSKY

This paper reviews key elements in the development ofmultiple-

hypothesis tracking (MHT), a leading paradigm for multitarget track-

ing, as well as graph-based tracking (GBT), a scalable version of

MHT that has proven effective in kinematic track stitching applica-

tions. We introduce a novel MHT/GBT algorithm that we denote as

multi-INT GBT (MI-GBT). It provides computational benefits over

classical MHT, while allowing for static components of the target state

that classical GBT does not. Thus, the MI-GBT provides an effective

method for multisensor feature-aided track fusion with disparate sen-

sors. We quantify the improved performance over the MHT solution

in Monte Carlo studies.

I. INTRODUCTION

Many approaches have been developed to address
the multitarget tracking (MTT) problem, whereby an
unknown and time-varying set of objects is to be
tracked while contending with unknown measurement
origin, missed detections, and false alarms [1].Multiple-
hypothesis tracking (MHT)was first posed in hypothesis-
oriented form [2] and was later shown to admit hypoth-
esis factorization (assuming Poisson-distributed births
and clutter) and amore efficient track-oriented formula-
tion [3], consistent with the integer linear program (ILP)
framework of theMTT problem that had been proposed
previously [4].

The ILP can be solved via relaxation approaches [5]–
[7], and distributed processing can provide performance
and robustness advantages inmany settings [8]–[10].The
MHT paradigm has been generalized to consider ob-
ject births without detection, enabling improved perfor-
mance in dim-target settings [11]. More recently, exten-
sion to allow for multiple measurements per target per
scan has been developed to deal with extended objects
and multipath phenomena [12], [13].

When a simplifyingMarkovian (path-independence)
assumption may be invoked, significant computational
gains can be achieved. In the hypothesis-oriented MHT
(HO-MHT) context, the simplified formulation may be
solved by use of the Viterbi algorithm on an expanded
trellis [14]. The more general treatment, with missed de-
tections and clutter, was addressed in a series of pa-
pers culminating in [15]. Application of the approach to
track-level inputs is discussed in [16]. While these are
valuable contributions, unfortunately these approaches
do not scale well when the numbers of measurements
and targets are large. Also, these papers do not contend
with target birth and death phenomena, which appear
somewhat cumbersome to include.

Shortly after the publication of [14], the same simpli-
fication was introduced in the track-orientedMHT (TO-
MHT) context [17]. This established the graph-based
tracking (GBT) paradigm for MTT. The approach is not
generally adopted for remote-sensing applications (e.g.,
sonar or radar tracking), since the Markovian assump-
tion is too strong in these settings.Nonetheless,GBT for
track maintenance with missed detections and clutter is
developed in [18]. Perhaps more significantly, applica-
tion of GBT to track-level inputs is discussed in [19]; this
represents an important contribution in that, for track-
level kinematic data, the Markovian assumption is quite
appropriate.

In some settings, the Markovian assumption inher-
ent in both Viterbi and GBT methods is not appro-
priate. Indeed, some elements of the target state vec-
tor, e.g., object size, color, etc., may be fixed or slowly
varying. In such cases, measurement sequences do not
exhibit a path-independence property, except when
these slowly varying elements are always observed. Ac-
cordingly, when feature measurements are temporally
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TABLE I
Assumptions and Some Solution Approaches for MTT

Partially Markov
Assumptions General Markov data data

General HO-MHT [2] Not investigated Viterbi [14]
Poisson targets
and clutter TO-MHT [3] MI-GBT [22] GBT [17]

sparse, until recently it was necessary to resort to MHT
solutions.

Recent work has extended theGBTapproach to deal
with feature states. In [20], a novel GBT multicommod-
ity flow approach is discussed. The approach assumes
a known number of objects, a unique object of each
type, single-sensor data, and a batch-processing formu-
lation. The methodology is promising in that it leads
to a much smaller ILP than with an MHT approach.
In [21] and [22], we develop a similar approach—the
multi-INT GBT (MI-GBT)—for the general multisen-
sor MTT problem, with a temporally sparse identity
sensor and one or more kinematic sensors. Refs. [21]
and [22] discuss as well a Markov chain Monte Carlo
(MCMC) approach for the multi-INT (i.e., disparate-
sensor) track fusion problem that builds on the work
in [23]; for our application with sparse identity data,
MCMC provides a promising approach to solution re-
finement. Related investigations of generalized GBT
methods include [24] and [25].

Most recently, in [26] we relax the unique-type as-
sumption in the MI-GBT, allowing for multiple objects
of each type, and explore performance for multitarget
track maintenance. Here, we discuss a sliding-window
approach to ILP formation and resolution, enabling
scalable processing of lengthy scenarios that are oth-
erwise computationally prohibitive with earlier, batch-
processing solution methods.

Table I provides a summary view of some paradigms
for the MTT problem, focusing on hard data association
and labeled target tracking. (See [1] and [27] for a discus-
sion of other methods.) Given the computational advan-
tages of the TO-MHT approach that avoids the global-
hypothesis enumeration inherent in HO-MHT, we have
chosen not to investigate a hybrid HO-MHT/Viterbi ap-
proach. This paper makes further progress on the MI-
GBT that provides a hybrid TO-MHT/GBT paradigm
that exploits path independence when possible, and in-
troduces hypothesis branching when necessary to con-
tend with identity data.

This paper is organized as follows. In Section II, we
review salient elements of MHT. Section III discusses
both MHT and MI-GBT for the multi-INT track fusion
problem with sparse identity data, allowing for multi-
ple objects of each type and with sliding-window pro-
cessing. Section IV describes performance results for
MI-GBT compared to the MHT baseline solution. We
establish the superior performance characteristics of

MI-GBT over both GBT and MHT. Conclusions are
provided in Section V.

II. MULTIPLE-HYPOTHESIS TRACKING

InMTT,we seek a set of trajectories over a sequence
of times tk = (t1, . . . , tk) that we may denote compactly
by Xk. Each trajectory in this set has a time of birth, an
evolution in target state space, and (possibly) a time of
death. Hence, we are interested in identifying the time
evolution of an unknown (and time-varying) number
of objects. We observe a sequence of sets of measure-
mentsZk = (Z1, . . . ,Zk).The usual simplifying assump-
tion in the MTT problem formulation is that, with each
sensor scan, each target gives rise to at most one mea-
surement. It is not knownwhichmeasurement originates
from which object, and there are as well false measure-
ments that are not target originated.

A. MAP Estimation and Hypothesis-Oriented MHT

In statistical estimation theory, it is well established
that minimization of the Bayes risk with an underlying
cost function that penalizes all estimation errors uni-
formly is achieved with the conditional mode. Stated an-
other way, the minimum probability of error estimator
is given by the maximum a posteriori (MAP) estimator
[28]. However, use of the MAP criterion for the MTT
problem, when applied directly to p(Xk|Zk), is concep-
tually problematic [29, pp. 494–500].

One may explicitly consider an explanation for the
data, i.e., to specify which measurements are to be re-
jected as false and how target-originated measurements
are to be associated. Let us denote by qk one such
global hypothesis or explanation. This leads to a proba-
bilistic conditioning approach and the following expres-
sion for the multitarget posterior probability distribu-
tion p(Xk|Zk)1:

p
(
Xk|Zk) =

∑
qk

p
(
Xk|Zk,qk

)
p

(
qk|Zk) . (1)

Note that, for any MTT problem of reasonable size,
the space of global hypotheses—and hence the summa-
tion in Eq. (1)—is enormous.

The MHT paradigm addresses both the conceptual
difficulty associated with MAP estimation applied to
p(Xk|Zk) and the computational difficulty associated
with the representation given by Eq. (1). In particular,
MHT seeks the MAP global hypothesis q̂k and condi-
tions on this global hypothesis to estimate the set of tar-
get trajectories while discarding competing global hy-
potheses. This is captured in the following equations:

q̂k = arg maxqk p
(
qk|Zk) , (2)

1Equation (1) is a conceptual expression; a more rigorous treatment
with the random finite set formalism may be found in [30].
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X̂ k = arg maxXk p
(
Xk|Zk, q̂k

)
. (3)

Note that Xk is representative of a set of trajecto-
ries, each with a time of birth, an evolution in state space,
and (possibly) a time of death. We will not discuss here
the random finite set treatment of theMTT problem; see
[29] and [30] for more details.

SolvingEq.(3) entails the solution to a set of smooth-
ing problems. Most MTT approaches include recur-
sive filtering but do not focus on trajectory smooth-
ing. Indeed, while useful for output reporting, trajectory
smoothing does not aid in data association; i.e., it does
not contribute to solving Eq. (2).

Though solving Eq. (2) is not conceptually problem-
atic, it remains computationally prohibitive. In practice,
most MHT implementations consider a sliding-window
formulation and resolve (i.e., select) global hypotheses
with some delay. Having solved Eq. (2), solving Eq. (3)
amounts to solving a set of filtering problems with no
measurement-origin uncertainty. It is often beneficial
to decouple data association and track extraction (see
[31]).

Computational and real-time constraints require that
we adopt a recursive formulation of p(qk|Zk). The fol-
lowing expression may be derived:

p
(
qk|Zk) = p

(
Zk|Zk−1,qk

)
p

(
qk|qk−1

)
p

(
qk−1|Zk−1

)
p (Zk|Zk−1)

.

(4)
This is the global-hypothesis recursion that expresses
p(qk|Zk) as a function of p(qk−1|Zk−1) and the current
scan of data Zk.

B. Track-Oriented MHT

Though useful, the recursion in Eq. (4) is generally
intractable in the sense that the space of global hypothe-
ses is quite large.Fortunately, under some simplifying as-
sumptions, namely, a Poisson-distributed number of tar-
get births and false alarms at each scan, the posterior
probability of a global hypothesis p(qk|Zk) may be ex-
pressed as a product over local (or track) hypotheses as-
sociated with qk.

The Poisson assumption is reasonable in many set-
tings. We consider a continuous-time process with ex-
ponentially distributed target interarrival (birth) times
with parameter λb, and exponentially distributed tar-
get lifetime with parameter λχ . Discrete-time statistics
may be readily obtained, leading to a Poisson distributed
number of births with mean μb(t) and death probability
pχ (t) over an interval of duration t:

μb (t) = λb

λχ

(
1 − e−λχ t

)
, (5)

pχ (t) = 1 − e−λχ t . (6)

For simplicity, in the following we will omit the time
interval t and use the birth rate and death probability

μb and pχ , respectively. Note that the Poisson birth pro-
cess has an intuitively appealing independence property,
whereby the numbers of births in temporally nonover-
lapping intervals are independent random variables
[32]. Similarly, the Poisson false alarm assumption (with
mean �) characterizes clutter statistics in many appli-
cation domains. For target-originated measurements, we
assume that, at each scan, each target is detected with
probability pd.

Let τ be the number of tracks in the parent global
hypothesis qk−1 at time tk−1, let r = |Zk| be the num-
ber of measurements in the current scan at time tk, and
let b,χ , and d be the number of target births, deaths, and
measurement updates in global hypothesis qk at time tk,
respectively.

We now express the global-hypothesis recursion
given by Eq. (4) in detail. First, let us consider the fac-
tor p(qk|qk−1). For this, we introduce the auxiliary vari-
ableψk that specifies the number of births b, the number
of target deaths χ , and the number of targets with mea-
surement update d. We use the following conditioning
approach that relies on ψk:

p
(
qk|qk−1

)
= p

(
ψk|qk−1

)
p

(
qk|qk−1, ψk

)
. (7)

The first factor in Eq. (7) denotes the probability of
observing b target births, χ deaths, and d measurement
updates from τ targets, and r − d − b false alarms (to
account for all remaining measurements). This may be
written as follows, noting that we rely on 1) the Pois-
son distribution to account for b (detected) births and
r − d − b false alarms, as well as 2) the binomial dis-
tribution for the probability of observing some num-
ber of successes in a set of independent trials—this is
relevant to the factors that account for χ deaths from
τ targets and d detections from the surviving τ − χ

targets:

p
(
ψk|qk−1

)
=

(
τ

χ

)
pχ

χ (1 − pχ )
τ−χ ·

(
τ − χ

d

)

× pdd(1 − pd)
τ−χ−d · (pdμb)

b exp (−μb)
b!

·�
r−d−b exp (−�)
(r− d − b)!

. (8)

The second factor in Eq. (7) denotes the probabil-
ity of a particular global hypothesis, conditioned on the
parent hypothesis and on the cardinalities associated
with ψk. As all association probabilities have the same
a priori probabilities, this factor can bewritten as follows.
Note that the denominator terms quantify the number of
ways of selecting the target deaths, the number of ways
of selecting which tracks to update, the number of ways
of selecting measurements and assigning them to tracks
(where ordering matters), and the number of ways of se-
lecting birth measurements among the remaining r − d
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measurements.

p
(
qk|qk−1, ψk

)
= 1(

τ

χ

)(
τ − χ

d

)(
r!

(r−d)!
) (

r− d
b

) .

(9)
Combining Eqs. (8) and (9) according to Eq. (7)

yields

p
(
qk|qk−1

)
=

{
exp (−μb − �)�r

r!

}
pχ

χ

·((1 − pχ )(1 − pd))τ−χ−d
(
(1 − pχ ) pd

�

)d

×
( pdμb

�

)b
. (10)

The factor p(Zk|Zk−1,qk) in Eq. (4) accounts for the
probability of observing a set of measurements given
a global hypothesis. It is a product over filter residual
scores; hence, it may be written as follows, where, under
qk, Jd is the set of track update measurements, Jfa is the
set of false alarms, Jb is the set of target birth measure-
ments, f (·|Zk−1,qk) is the conditional probability distri-
bution of a target measurement (with no conditioning in
the case of object birth), and ffa(·) is the distribution of
false alarms in measurement space:

p
(
Zk|Zk−1,qk

)
=

∏
z j∈Jd

f
(
z j|Zk−1,qk

) ∏
z j∈Jb

f (z j)

·
∏
z j∈Jfa

ffa (z j) . (11)

Equations (10) and (11) may be substituted into
Eq. (4), resulting in the following TO-MHT recursion,
in which we denote by C the factor that is common to
all global hypotheses. (This common factor need not be
computed for MAP estimation, and indeed its evalu-
ation would rely on p(Zk|Zk−1), requiring summation
over all global hypotheses.) The restriction that each
measurement be used at most once in track formation,
and that all measurements be accounted for, is captured
in Eq. (12c), where JZ is the set of indices for measure-
ment set Zk.

p
(
qk|Zk) = pχ

χ ((1 − pχ ) (1 − pd))
τ−χ−d

·
∏
j∈Jd

(1 − pχ ) pd f
(
z j|Zk−1,qk

)
� ffa (z j)

·
∏
j∈Jb

pdμb f (z j)
� ffa (z j)

·C · p
(
qk−1|Zk−1

)
, (12a)

C =
{
exp(−μb−�)�r

r!

}∏
z j∈Zk

ffa (z j)

p (Zk|Zk−1)
, (12b)

Jd∩Jb = �, Jd∩Jfa = �, Jb∩Jfa = �, Jd∪Jb∪Jfa = JZ.

(12c)

Equation (12) is of fundamental importance in that it
factors the global hypothesis score into (dimensionless)
track scores. Accordingly, it is unnecessary to consider
each global hypothesis probability explicitly. Indeed, up
to the hypothesis-independent factorC, a global hypoth-
esis probability may be evaluated as a product over local
hypothesis factors. This in turn allows the determination
of q̂k, the solution to Eq. (2), without explicit enumera-
tion of global hypotheses.

Thus, the TO-MHT formalism results in an ILP, with
an objective function that may be expressed compactly
by Eq. (13), where the cost ci associated with track hy-
pothesis xi results from statistics-associated targets and
sensors; the variable xi ∈ {0, 1} may be understood as an
indicator variable that corresponds to selecting a track
hypothesis when setting xi = 1. The sum is over all track
hypotheses within a hypothesis reasoning window:

J =
∑
i

cixi, (13)

Ax ≤ b. (14)

In addition to the objective, the ILP includes con-
straints captured by Eq. (14) that require that each mea-
surement be used at most once in track formation, and
that each resolved track from the start of the reasoning
window be accounted for.

III. MULTI-INT TRACK FUSION

Section II described TO-MHT (hereafter,MHT) for
detection-level MTT. We now consider the MTT prob-
lem, downstream of single-sensor trackers. That is, up-
stream association decisions have been made, and we
assume negligible residual false alarms. The challenge
is to perform correct track association over time and
across sensors. We assume that tracks are composed of
sequences of measurements, so that optimal filtering can
be performed without the need to contend with corre-
lated state estimates due to common target process noise
[27]. We are interested in both real-time and forensic
settings. The principal challenge is how to contend with
temporally sparse identity information that is crucial to
exploit for high-performance association decisions. Af-
ter providing some modeling details, we will first discuss
the conventional MHT solution and then describe the
MI-GBT approach.

A. Some Modeling Details

As noted earlier, we model target existence via a
Poisson birth–death process; see Eqs. (5) and (6). For
simplicity, we will discuss our work in the context of
linear Gaussian dynamics and measurements, though
the solution methodologies are applicable more broadly.
(The model described here is what we use for the sim-
ulation results in Section IV.) Specifically, we will as-
sume independent target dynamics according to a stable,
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stationary generalization to nearly constant velocity
(NCV) motion, as given by a second-order Ornstein–
Uhlenbeck (OU) process [33].

Each object is of a fixed type, with a probability
distribution over the finite set of types given by the
vector ptype, with element ptype(i) being the probabil-
ity that an object is of type i. We may handle unique
objects of type i by using a small value for ptype(i).
This modeling approach is more robust than disallow-
ingmultiple objects, as themultiplicity is sometimes nec-
essary to contend with potentially erroneous sliding-
window association decisions. Also, all objects must be
of some type; hence, we generally include the type
“other” to include all those that are not of specific
interest.

Kinematic tracks are composed of linear measure-
ments with additive Gaussian noise with vk ∼ N(0,Rk):

yk = Ckxk + vk. (15)

As noted earlier in theMHT derivation, at each scan
targets are detected with probability pd. For simplicity,
we do not consider motion-dependent (or, more gener-
ally, state-dependent) detection statistics. Further,we do
not consider identity-dependent detection statistics, as
when objects of certain types are easier to detect than
others.

We assume that identity sensors differ from kine-
matic sensors in two key respects. First, we assume a
low revisit time between scans; hence, the identity de-
tections are not associated over time. Second, detections
include both kinematic information and precise target-
type information. The type information is highly infor-
mative but does not provide association information, as
there may be multiple objects of the same type. De-
tection and localization quality (pd and Rk) differ for
kinematic and identity sensors.We do not consider false
alarms from the identity sensor; this is reasonable in set-
tings where automatic target recognition is performed to
provide object-type information and to reject spurious
detections.

B. MHT Approach

The detection-level TO-MHT recursion given by
Eq. (12) yields a dimensionless likelihood ratio associ-
ated with each track hypothesis. Normalization is with
respect to a null hypothesis whereby all measurements
are false alarms. For a track with index i, the negative
log of this score yields the coefficient ci in the objective
function to be minimized, as given by Eq. (13).

For track-level association, since all tracks (includ-
ing identity singleton tracks) are assumed to be target
originated,we do not normalize with respect to the same
null hypothesis. We may still utilize dimensionless track
scores by normalizing with respect to another null hy-
pothesis, whereby all tracks are unassociated.

Let z j represent a track (i.e., a sequence of previ-
ously associated measurements) and let L(zn) denote

the track likelihood associated with a sequence of tracks
zn = (z1, . . . , zn).Note thatL(zn) is the (unnormalized)
local hypothesis contribution to the global hypothesis
probability. If this sequence corresponds to the ith track
hypothesis, we may express the coefficient ci in Eq. (13)
as follows:

ci = − log L (zn) . (16)

The likelihood L(zn) accounts for target birth, a
sequence of detection and missed-detection events,
and (possibly) a target death. This score can be com-
puted recursively based on the following probabilistic
conditioning:

L (zn) = L (z1)
∏

j=2,...,n

L
(
z j|z j−1

)
. (17)

We may alternatively adopt a dimensionless track
score as given by the following. This is advantageous
when solving Eq. (13) with fast greedy track selection
methods, in lieu of a relaxation approach.

ci = − log
L (zn)∏

j=1,...,n L (z j)
. (18)

As with detection-level MHT, most nontrivial track
fusion problems entail hypothesis-space reduction via
sliding-window processing. That is, with some temporal
delay, we resolve ambiguity and identify a single global
hypothesis by solving an appropriately defined ILP as
in Eq. (13). Then, we ingest further data for processing,
and solve a new ILP. The hypothesis tree depth is gen-
erally identified as the number of scans of data (n-scan)
between the resolved time and current time [12], [31].
Global nearest-neighbor (GNN) processing corresponds
to n-scan = 0 [27].

TheMHT track fusion capability is quite general and
allows for an arbitrary number of kinematic and iden-
tity sensor inputs. Key assumptions include target in-
dependence (both existence and dynamics) and correct
(but not necessarily complete) upstream association de-
cisions. Hence, we may associate multiple tracks from
the same sensor, provided there is no scan withmeasure-
ments from more than one track.

C. GBT Approach

Computational simplifications may be achieved if lo-
cal (track) hypotheses satisfy a path-independence as-
sumption, whereby the track likelihood may be factored
with pairwise contributions to the likelihood.

The fundamental path-independence assumption
that we introduce is appropriate for single-sensor kine-
matic track-level data.Again, let zi represent a track (i.e.,
a sequence of previously associated measurements) and
let L(zn) denote the track likelihood associated with a
sequence of tracks. The path-independence assumption
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amounts to the following:

L (zn) = L (z1)
∏

i=2,...,n

L
(
zi|zi−1

)

≈ L (z1)
∏

i=2,...,n

L (zi|zi−1) . (19)

The path-independence assumption enables a graph-
based representation of theMTT problem with pairwise
costs derived from conditional likelihoods.

Under theGBT formalism,we consider a set of kine-
matic tracks that we represent by a set of nodes V . We
consider also source and sink nodes, denoted by v0 and
v∞, respectively. We define the augmented set of nodes
by V̄ = V ∪ {v0, v∞}. We consider a directed graph
G = (V̄ ,A), where A is a set of edges. For each feasible
edge (i, j) ∈ A, i.e., with no temporal overlap between
the corresponding tracks, we define the cost ci j by the
negative log conditional likelihood:

ci j = − log L (v j|vi) . (20)

Note that the likelihood c0 j = L(v j|v0) = L(v j) ac-
counts for target birth. As all track likelihoods account
already for target death, we have L(v∞|vi) = 1.

The kinematic GBT formulation leads to the follow-
ing ILP:

J =
∑

(i, j)∈A
ci jxi j, (21)

xi j ∈ {0, 1} ∀ (i, j) ∈ A, (22)

∑
i:(i, j)∈A

xi j = 1 ∀v j ∈ V, (23)

∑
j:(i, j)∈A

xi j = 1 ∀vi ∈ V. (24)

We seek the solution that minimizes the objective
(21) subject to constraints (22)–(24).Equations (23) and
(24) ensure that all nodes be used exactly once, and that
flow balance be achieved.

The resulting MAP estimation problem for global
hypothesis qk is over a smaller space than MHT. Indeed,
here a second form of factorization is invoked in ad-
dition to that of TO-MHT, based on Eq. (19). By ex-
ploiting this factorization, we avoid the enumeration of
track hypotheses; rather, the ILP is posed over pairwise-
association variables.

A nice feature of the single-sensor GBT formulation
is that it results in an ILPwith special structure: it may be
expressed as a min-cost network flow (MCNF) problem
or, equivalently, as a bipartite matching problem. Thus,
the problem admits an integer solution and faster solu-
tion than a general ILP [34].

As with MHT, we may wish to define dimensionless
scores analogous to Eq. (18). Here, we may adopt the

Fig. 1. Tracks z1 and z3 cannot originate from the same target, as
there is a scan where both have a measurement (shown in red).
Avoiding the association in GBT requires a strict condition for

pairwise-association feasibility.

following in lieu of Eq. (20):

ci j = − log
L (v j|vi)
L (v j)

= − log
L (vi, v j)

L (v j)L (vi)
. (25)

Note that the requirement for association feasibil-
ity mentioned above—no temporal overlap between
the corresponding tracks—is stricter than that in MHT.
This is necessary due to the pairwise nature of track
scoring. Consider the example in Fig. 1. MHT com-
putes L(z3) precisely; it must necessarily be zero since
tracks z1 and z3 share a relevant sensor scan. On the
other hand, GBT would allow for the association of
the tracks since pairwise feasibility is maintained, were
we not to impose the stricter no temporal overlap
condition.

Indeed, GBT will assume L(z3) ≈ L(z3|z2)L(z2|z1)
L(z1). In this example, both L(z3|z2) and L(z2|z1) are
nonzero, while L(z3) must be zero. Hence, the approx-
imation is potentially poor for temporally overlapping
tracks, not due to a poor kinematic filtering approxi-
mation but rather due to an incorrect accounting for
measurement-cardinality information.

D. MI-GBT Approach

We wish to leverage the GBT approach while allow-
ing for multiple kinematic and identity sensors, as well
as for identity tracks that violate theMarkovian assump-
tion on the data.

Let us first address the need to process multiple
sensors, as illustrated in Fig. 2. We do so by exploit-
ing MHT processing with a dedicated kinematic-fusion
stage,yielding a single, fused kinematic sensor feed.Only
nontemporally overlapping fused tracks (i.e., the strict
condition above) will be feasibly associated in down-
stream MI-GBT processing.

It is worth emphasizing that kinematic processing
may introduce undesired measurement association er-
rors. This is not problematic when one or more objects
remain in close proximity. On the other hand, when a
group of objects splits into two or more, it is impor-
tant to fragment kinematic-only tracks to enable high-
confidence stitching in downstream processing, with the
aid of identity-sensor data.
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Fig. 2. The MI-GBT is seemingly more restrictive as it requires a
single kinematic and identity feed. However, this can be addressed

with preprocessing that exploits MHT kinematic tracking, as well the
recasting of multiple-measurement identity tracks as unassociated
measurements of a vanishingly small type probability, all due to one

sensor.

Likewise, there may be multiple identity sensors.
However, since we assume single-measurement identity
tracks, there is no loss of generality in considering all
tracks as originating from a single identity sensor. For
identitymeasurements that potentially observe different
aspects of the target state, e.g., object color, object size,
etc., we may recast the formulation as a single identity
sensor with vector-valued measurements. For simplicity,
here we consider scalar object types.

It is important to note that the unionizing operation
on identity measurements preserves the scan structure
of the data. That is, if two identity sensors have sensor
scans at the same time, the two scans are kept distinct for
downstream processing.The point-target assumption re-
mains crucial as in MHT; i.e., we have at most one mea-
surement per target per scan.

The second need is to handle identity measurements
that violate the Markovian approximation in Eq. (29).
Indeed, while past kinematic tracks are not relevant to
future kinematic association scores, the same is not true
for identity tracks that specify the object type. Our ap-
proach will be to define an ILP that corresponds to a
multilayer graph, one for each object type.Path indepen-
dence holds within a layer of the track, but not across
layers. Before defining the ILP, we show an illustrative
example.

The advantage of the architecture in Fig. 2 is that we
exploit the MHT for what it performs well, namely,mul-
tisensor kinematic tracking where small hypothesis tree
depths are effective. We defer the disparate-sensor fu-
sion problem, where MHT is severely challenged com-
putationally, to generalized GBT processing.

Fig. 3. A multi-INT track fusion example.

E. MHT and MI-GBT Structure

Consider the notional example in Fig. 3. We have an
unknown number of objects giving rise to three identity
tracks and four kinematic tracks, indicating that there
are red and green objects present.

For simplicity of exposition, we assume a forensic
surveillance problem, in the sense that all data have been
received at the processing center.This enables a compact
representation of the association spaces associated with
competing solution approaches, with nodes represent-
ing input track. Regardless of whether online or foren-
sic analysis is to be performed, the data-association pro-
cess will necessarily rely on sliding-window processing
for computational tractability.

Under the simplifying assumption of no never-
observed objects (the usual assumption in MHT), there
are at most seven objects present, and there are at least
two targets (one red, one green). The MAP solution will
depend on target and sensor statistical assumptions, and
on the measured data themselves. The corresponding
data structure associated with TO-MHT processing may
be represented as illustrated in Fig. 4. Note that, for sim-
plicity, we have expressed each path in the MHT track
forest as a sequence of tracks. This is not fully reflective
of the actual processing sequence, since data are ingested
and processed in proper time order. As an example, in
the leftmost path, some measurements associated with
track 3 follow track C. Track filtering and scoring is per-
formed in proper time sequence.

The MAP solution associated with MHT processing
will be that set of paths that accounts for all the data,
while minimizing the sum of negative log likelihoods as
in Eq. (26). Alternatively, we may use likelihood ratios
as in Eq. (28).

Figs. 5 and 6 illustrate the GBT and MI-GBT graphs,
respectively. For simplicity, in both graphs we have not
drawn the termination node, nor the termination edges
from each node to the termination node. (There is no
edge directly from the birth node to the termination
node.) By default, all edges are directed (downward), ex-

Fig. 4. MHT track forest for the example in Fig. 3.
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Fig. 5. GBT graph topology for the example in Fig. 3.While the
representation supports computationally efficient solutions, these

cannot exploitation crucial object-type information.

cept where explicitly denoted, i.e., the second edge be-
tween track 3 and node C.

There are several points to note. First, while much
more compact than the MHT structure, the GBT graph
topology does not allow for exploitation of target-type
information (except for the lack of an edge directly con-
necting node B and node C). There is too much simplifi-
cation in the problem formulation, so that feature infor-
mation cannot help the data-association process. Indeed,
target-type information does not satisfy the Markovian
property that applies to kinematic data.

The MI-GBT structure is more compact than that
of MHT, due to the simplifying path-independence as-
sumption. Thus, for instance, each node associated with
track 4 is a sufficient representation of kinematic infor-
mation on the target, without the need for expressing
from whence the target originates. At the same time, it
is crucial to maintain graph layers (or subgraphs) associ-
ated with distinct object types. No flow is permitted be-
tween subgraphs, except for flow from the null subgraph
to the object-type subgraphs.

The null subgraph captures objects for which no
object-type information is known. In the example, these
objects may well be red or green—we do not know. Col-

Fig. 6. MI-GBT graph topology for the example in Fig. 3. Colored
edges indicate when type information is inserted into a tracking

solution. Constraints in the ILP ensure that equivalent vertices are
used only once.

ored edges indicate associations where type information
is introduced.

The MI-GBT topology distinguishes between
nonoverlapping tracks and overlapping (nested) tracks.
Indeed, the only temporal overlap that we allow is that
between kinematic and identity tracks. This requires the
use of double (directional) edges between such tracks
when there is temporal overlap. Either both or neither
is to be selected.

In the example in Fig. 3, there is temporal overlap
between track 3 and track C; hence, if these are asso-
ciated, we want flow from track 3 to track C, and then
from track C to track 3. In this manner, track 3 is rel-
evant to (kinematic) association with any preceding or
subsequent tracks, while track C is not. Indeed, it is al-
ways the identity track that is temporally nested in the
kinematic track, not vice versa.

There is an interesting question of how best to break
the symmetry whereby flow might in principle go into
track C, then to track 3, and then back to track C. This
is not admissible and can be avoided by introducing an
inequality constraint that forces flow into node 3 of sub-
graph R, if the cycle from track 3 to track C is active.

Note that the return flow from trackC to track 3must
necessarily be in subgraph R, since the object of interest
is necessarily of type R (red). Note also that, for tracks
1, 2, and 4, there is no need for bidirectional flow to any
identity track, since none of these identity tracks is tem-
porally nested in these kinematic tracks.Thus, in particu-
lar, if there is association between one of the tracks (1, 2,
4) with track C, any associations with subsequent tracks
would be from track C.

The data fusion that the MI-GBT permits—that be-
tween kinematic tracks and single-measurement identity
tracks—does pose a potential hazard. Indeed, we must
introduce a mechanism to specifically disallow the fu-
sion of multiple identity measurements at the same time
with the same kinematic track. Once more, this can be
achieved with a suitable inequality constraint.

The need for this constraint emphasizes a fundamen-
tal limitation of graph-based reasoning. It is inherently
myopic, in the sense that it reasons only over pairwise-
association scores. While this is reasonable for kine-
matic information, it is not so for cardinality informa-
tionwherebywewish to disallow fusion ofmultiplemea-
surements at the same time from the same sensor, hence
the need for the constraints noted above. Nor is pair-
wise reasoning sufficient to exploit object-type informa-
tion,hence the need for the expanded (multilayer) graph
structure in MI-GBT that conventional GBT lacks.

Sliding-window n-scan processing to resolve global
hypotheses may be performed on the MI-GBT data
structure, in analogous fashion to how it is performed
in MHT [1].

As an extension to the example above, consider the
scenario in Fig. 7, where we observe an additional kine-
matic track. The corresponding MI-GBT topology is
given in Fig. 8.
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Fig. 7. An extension to the previous multi-INT example.

F. MI-GBT ILP

While our ILP implementation corresponds to the
illustration in Fig. 6 (or Fig. 8, for the larger example),
it will be easier to describe the ILP associated with the
equivalent representation illustrated in Fig.9. In practice,
we prefer the structure in Fig. 6 as we only spawn sub-
graphs when identity tracks of the corresponding type
are to be processed, and not earlier. There is a one-to-
one correspondence between the two representations.

Let us denote by V the set of kinematic tracks, and
by v0 and v∞ the source and sink vertices, respectively.
We denote byWk the set of identity (singleton) tracks of
type k, with k = 1, . . . ,K.

In the MI-GBT, each kinematic track node may ap-
pear on multiple graph subgraphs (or layers). It will ap-
pear on all layers if spatial and kinematic gating are not
performed; we assume it does so, for ease of presenta-
tion.On the other hand, each identity track appears only
in one graph layer, e.g., red measurements only in the
red layer, etc. We denote by V̄k = V ∪Wk ∪ {v0, v∞} the
set of vertices in the kth subgraphGk, and by Ak the set
of edges in subgraph Gk, i.e., Gk = (V̄k,Ak). G0 is the
null subgraph, where no identity tracks are present. The
full set of identity tracks is given byW = ∪

k=1,...,K
Wk.We

haveW0 = �, as there are no null-type identity measure-
ments.

Recall that in Eq. (25), pairwise scores were indexed
by two tracks. Now we have a third index to account for
object type.LettingK be the number of object types, and
denoting by k = 0 the null index (i.e., no object-type in-
formation), we have the following, where the likelihood
function is understood not to include any contribution
from object type. Note there is no need for edges with

Fig. 8. The MI-GBT topology for the scenario in Fig. 7. Constraints
in the ILP ensure that equivalent vertices are used only once.

Fig. 9. An equivalent MI-GBT graph topology for the example in
Fig. 3. Constraints in the ILP ensure that equivalent vertices are used
only once.While our implementation matches the topology of Fig. 6,
the ILP is easier to describe for this topology. Dashed edges are not
strictly necessary (the solution will not include these edges) but are

included for completeness.

i = j.

ci jk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− logL (v j) , i = 0, k = 0,

− log
(
ptype (k)L (v j)

)
, i = 0, k �= 0,

− logL (v j|vi) , i �= 0, j �= 0,

0, j = 0.

(26)

As before, we may alternatively use dimensionless
track score based on likelihood ratios. In this case, we
have the following:

ci jk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, i = 0, k = 0,

− log ptype (k) , i = 0, k �= 0,

− log
L(v j |vi)
L(v j)

, i �= 0, j �= 0,

0, j = 0.

(27)

Using either Eq. (26) or Eq. (27), we may then ex-
press the ILP as follows:

J =
∑

k=0,...,K

∑
(i, j,k)∈Ak

ci jkxi jk, (28)

xi jk ∈ {0, 1} ∀ (i, j,k) ∈ Ak, k = 0, . . . ,K, (29)

∑
k=0,...,K

∑
i:(i, j,k)∈Ak

xi jk = 1 ∀v j ∈ V ∪W, (30)

∑
j:( j,i,k)∈Ak

x jik −
∑

j:(i, j,k)∈Ak

xi jk = 0 ∀vi ∈ V ∪Wk,

k = 0, . . . ,K. (31)

We seek the solution that minimizes the objective
(28) subject to conditions (29)–(31). Equation (30) en-
sures that all nodes be used exactly once. Equation (31)
ensures that flow balance be achieved in each track node
in each subgraph.

Additional constraints are needed to complete the
ILP formulation. Indeed, in Section III-E we identified
two concerns that must be addressed via appropriate
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constraints. The first is that identity track v j may be tem-
porally nested within track vi, so that both edge variables
xi jk and x jik are defined for k = 1, . . . ,K. In this case, we
must ensure that both edge variables (or neither) are set
to unity in subgraph Gk. Furthermore, if both are set to
unity, theremust be flow into vi from another node in ad-
dition to v j. This ensures that, inGk, flow is into vi, from
vi to v j and back, and out of vi. This is captured in the
following constraints:

( j, i,k) ∈ Ak ⇒ xi jk = x jik ∀ (i, j,k) ∈ Ak,

k = 1, . . . ,K, (32)

( j, i,k) ∈ Ak, v j ∈Wk ⇒
∑

l:(l,i,k)∈Ak\( j,i,k)
xlik ≥ xi jk,

k = 1, . . . ,K. (33)

A second concern is that we must exclude the asso-
ciation of multiple identity tracks in the same scan with
the same kinematic track. This would violate the mod-
eling assumption of at most one detection per target
per scan. This can be achieved with an inequality con-
straint whereby for each identity-sensor scan and each
(relevant) kinematic track at most one edge variable is
unity.

Each identity scan is at a time tm ∈ tn, with tn the
sequence of identity-sensor scan times. Let us denote
by W (tm) the corresponding set of identity (singleton)
tracks. For each kinematic track vi ∈ V , one or both of
two cases apply, depending on whether the end of the
kinematic track temporally precedes or follows the iden-
tity scan at time. Thus, we have

∀vi ∈ V, ∀tm ∈ tn,

⎧⎪⎨
⎪⎩

∑
k=1,...,K

∑
j:(i, j,k)∈Ak,v j∈W (tm)

xi jk ≤ 1,∑
k=1,...,K

∑
j:( j,i,k)∈Ak,v j∈W (tm)

x jik ≤ 1.

(34)
It is worth emphasizing that the MI-GBT solution is

fully specified by the ILP defined by Eqs. (28)–(34). The
graphical illustrations shown in Figs. 6, 8, and 9 are pic-
torial aids, but no not capture the required optimization
constraints.

G. Solution Complexity

It is useful to have an approximate, analytical assess-
ment of the computational complexity associated with
MHT, GBT, and MI-GBT solutions to the multi-INT
problem.Here,we estimate the size of the ILP associated
with these paradigms.We denote by dim(x) the length of
the solution vector in the objective—Eqs. (13), (21), and
(28), respectively.

Given m sets of |V | tracks, and with |W | identity
types, the GBT problem size is |x| = O(m|V |2), while
the MI-GBT problem size is |x| = O(m|V |2(1 + |W |)).
Both compare favorably to the (track-oriented)
MHT approach, for which problem size is |x| =

O(|V |m+1(1 + |W |)). The solution time associated
with the ILP is problem size dependent. Empirically, we
observe low-order polynomial times as a function of the
solution vector, typically O(|x|n) with small n for MHT
and MI-GBT solutions based on LP relaxation, and
O(|x|3) for the GBT based on MCNF or an equivalent
bipartite matching formulation [34].

The MI-GBT provides a good trade-off with its abil-
ity to exploit object-type information (like MHT) while
maintaining an efficient pairwise-cost formalism (like
GBT). For a given hypothesis depth (n-scan), MHT will
generally outperform MI-GBT. Likewise, for a given
hypothesis depth, GBT will incur lower computational
effort. We anticipate that, in disparate-sensor settings
where kinematic Markovian assumptions are appropri-
ate, MI-GBT will yield a better complexity versus per-
formance operating curve than both MHT (which does
the right thing, at great expense) andGBT (which cannot
exploit type information).

IV. SIMULATION RESULTS

We now explore the performance of MHT and
MI-GBT approaches to multi-INT track fusion. We fo-
cus on a simplified version of the general problem while
including the key challenge that exposes the differences
between the MHT, GBT, and MI-GBT solutions. This
will allow us to gain intuition regarding the relative
strengths of the methods. It will be of interest to conduct
more general MTT performance analysis in subsequent
studies.

We consider a fixed number of targets, with no tar-
get births or deaths. We assume high track-level detec-
tion performance. We simplify the problem further by
assuming equivalent-measurement processing that leads
to single-measurement kinematic tracks. Thus, our prob-
lem may be viewed as one for which we observe a se-
quence ofmeasurement sets, each containing a detection
on all targets, with no false measurements.

We assume that the identity sensor reports twice,
at the start and at the end of the scenario. In the in-
terim, we have a number of kinematic scans, each con-
taining positional measurements on all targets.The iden-
tity sensor includes precise object-type information with
each positional measurement. In general, there are mul-
tiple objects of each type, so the association of mea-
surements from the two identity-sensor scans in not
known.

We consider GBT, MHT, and MI-GBT solutions to
this data-association problem. Ultimately, even for this
simplified problem, one would want to compare GBT,
MHT, and MI-GBT solutions for a common processing
load.Since the computational complexity ofMHTgrows
significantly as a function of scenario duration, we limit
processing to an n-scan = 0 solution (i.e., no hypothesis
depth) that amounts to GNN processing.
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Fig. 10. GBT processing is more error-prone than MHT in
kinematic association, due to the fundamental path-independence
approximation that degrades kinematic-filtering accuracy. In the 1D
case, GBT tracks never cross. Note that ID associations may violate

type information: target 1 is of type A and target 3 is of type B.

Figs. 10–12 illustrate one realization of 1D target tra-
jectories (black lines), measurement data (black cross
symbols), and GBT, MHT, and MI-GBT solutions. Tar-
get motion is according to our stable, stationary second-
order OU process that generalizes the standard NCV
motion. Indeed, note that the positional spread of the
trajectories remains roughly the same over time; the
same is true in velocity space. Positional measurements
include additive Gaussian noise.

The first and last sensor scans are provided by the ID
sensor.We consider a five-target scenario. Targets 1 and
2 are of type A, targets 3 and 4 are of type B, and target 5
is of type C. The ID sensor does not exhibit object-type
measurement error, but the association of target mea-
surements of the same type is unknown.

It is instructive to consider aspects of the solutions as
illustrated in these figures. Note that the GBT solution
incurs errors when targets cross, since the solution tra-
jectories do not do so. This can be readily understood, as
the GBT reasons over pairwise costs. In the 1D case, it
is costly to associate measurements in such a way as to
alter the relative ordering of the tracks.

The GBT solution cannot exploit ID information ex-
cept when there are sequential ID-sensor scans. Hence,

Fig. 11. MHT performs effective kinematic association but is
ultimately myopic as it cannot exploit ID measurements that are in
the distant future. ID information is part of the track state and, thus,
corrective action is taken when prior association errors are detected.

Fig. 12. MI-GBT may perform association errors when consistent
with available ID data, but yields solutions that exploit all available

ID measurements.

when there are kinematic-sensor scans between ID-
sensor scans, the association of ID measurements is
error-prone. Unlike the GBT solution, the MHT solu-
tion relies on recursive filtering so that crossing targets
are handled properly in most cases. Corrective action is
taken when the second ID-sensor scan is received. Note
that full corrective active with MHT may not be possi-
ble when kinematic gating disallows sufficiently unlikely
associations.

The MI-GBT solution struggles with multiple target
crossing in the absence of ID data, but it maintains ID
information and is able to deal effectively with single-
crossing events between ID reports. More importantly,
theMI-GBT exploits ID data in performing associations
with the second scan of ID-sensor data. Hence, ID mea-
surement associations do not violate type information,
and this is achieved without the corrective action that
MHT exhibits. For the same computational load, deeper
hypothesis reasoning is possible.

Of course, for sufficiently temporally distant IDmea-
surements, MI-GBT will also require corrective action.
Note also that, when focusing only on the MI-GBT
tracking solution for targets of the same type, no track
crossing occurs. This behavior is consistent with what we
observe in the overall solution with all tracks in theGBT
solution.

Due to the nonunique nature of target-typemeasure-
ments, some incorrect ID measurement association de-
cisions are performed by MHT and MI-GBT. Figs. 13
and 14 illustrate a scenario for which both MHT and
MI-GBT incorrectly associate some ID measurements,
when these are of the same type. We highlight a track
that starts with a measurement on target 1, and ulti-
mately associates with one on target 2. Note that both
targets are of type A; hence, this error cannot be ex-
cluded.

In all cases, the final tracking solution for all
paradigms (GBT, MHT, and MI-GBT) includes trajec-
tory smoothing based on the forward–backward im-
plementation of the Kalman smoother. This provides
improved localization accuracy that is appropriate for
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Fig. 13. ID measurement association error in MHT processing, due
to common target type (targets 1 and 2).

forensic problems where maintaining small processing
latency is not crucial.When it is, this postprocessing step
may be omitted.

Figs. 15 and 16 provide performance as a function of
the number of kinematic-sensor scans. Note that, with
an increasing number of scans, correct measurement
association decisions become harder, for all solution ap-
proaches. Indeed, the value of temporally distinct iden-
tity measurements is more limited than when temporally
close identity measurements are available. There are at
least two ways that this can be understood. First, knowl-
edge of future location of a target has little bearing on
data-association decisions,when the future time is in the
distant future. Second, there are typically a larger num-
ber of ambiguous object-crossing events over a longer
time horizon, providing many similarly scoring tracking
solutions. The increasing difficulty of the MTT problem
can be seen empirically in the fact that performance un-
der all solution paradigms degrades as a function of the
number of kinematic-sensor scans, as these lack target-
type information.

We compare against a clairvoyant (ideal) algorithm
for which measurement association is known a priori.
We consider both the average track localization error
and the fraction of correct data-association decisions.

Fig. 14. ID measurement association error in MI-GBT processing,
due to common target type (targets 1 and 2).

Fig. 15. Positional error of solutions: MI-GBT is best.

Results are based on 100 Monte Carlo realizations for
each scenario duration.

These results on idealized scenarios provide confi-
dence in the significant potential of MI-GBT process-
ing for multi-INT surveillance, even when ID measure-
ment associations are only partially constrained.The full
MI-GBT solution accounts as well for birth/death phe-
nomena and missed detections. A key enhancement rel-
ative to our early work is to relax the unity-flow con-
straint on the number of objects of each type. In so do-
ing, it is crucial to express ID measurements as nodes in
the multilayer graph topology.

V. CONCLUSION

This paper introduces an efficient, generalized GBT
scheme for multi-INT track fusion that yields promis-
ing performance against an MHT baseline. Crucially,
our scheme allows for object identity measurements
via a multilayer graph approach, while exploiting kine-
matic path independence.As such, the approach may be

Fig. 16. Association accuracy of solutions: MI-GBT is best.
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thought of as a hybrid GBT/MHT approach to data as-
sociation. We allow for an arbitrary number of objects
of each type and achieve scalability via sliding-window
hypothesis resolution as is commonly performed in
MHT.

It is important to emphasize that our proposed
graph-based multisensor fusion algorithm is not fully
general, in the sense that we do not directly handle
an arbitrary number of kinematic and identity sources.
Rather, we rely on upstream processing (see again
Fig. 2) and assume a single (consolidated) kinematic
source and a single (consolidated) identity source. Fur-
ther, we do not consider fusion of temporally over-
lapping kinematic tracks (see again Fig. 1), and we
assume singleton (single-measurement) identity tracks.
Nonetheless, our work offers promising performance
benefits over classical MHT technology in this restricted
setting.

In ongoing work, we are investigating use of the
MI-GBT on scenarios that exhibitmove–stop–move tar-
get motion cycles and motion-sensitive kinematic sen-
sors. Additionally, further analysis is needed to address
slowly varying (nonstatic) feature states and noisy fea-
ture measurements.
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Conditions for MHT to be an
Exact Bayesian Solution to the
Multiple Target Tracking
Problem for
Target-to-Measurement
Association Hypotheses

LAWRENCE D. STONE

This paper finds conditions under which multiple hypothesis

tracking (MHT) is an exact Bayesian solution to the multiple target

tracking problem for target-to-measurement association hypotheses.

The crucial condition is that measurements arrive in scans from one or

more sensors, but otherwise the conditions areminimally restrictive. In

order to produce a computationally feasible implementation of MHT,

some approximations must be made, but this true is for any (existing)

method of producing an exact Bayesian solution. Limiting the num-

ber of hypotheses considered is an example of such an approximation.

This paper is motivated by recent claims that MHT is not theoretically

rigorous or “Bayes optimal.”

I. INTRODUCTION

This paper, which is based on [1], considers the ques-
tion of when multiple hypothesis tracking (MHT) is an
exact Bayesian solution to the multiple target track-
ing problem for target-to-measurement association hy-
potheses, or, more succinctly, when is it exact Bayesian.
By exact, we mean that MHT produces the correct
Bayesian posterior distribution on the targets and their
states. Recently, there have been claims that MHT is not
theoretically rigorous or “Bayes optimal” (see [2, Sec.
10.7.2] and [3]).Ref. [4, Sec.VII] observes that if the ran-
dom finite set (RFS) version of multiple target track-
ing is exact Bayesian, then so are certain special cases
of MHT that can be derived from the RFS formulation.
However, this begs the question as to whether the RFS
formulation is exact Bayesian and whethermore general
versions of MHT are exact Bayesian.

Note, a target-to-measurement association hypothe-
sis is different from a measurement-to-measurement as-
sociation hypothesis that is used in the standard MHT
formulation.

In this paper, we explore the question of when MHT
is exact Bayesian by first stepping back a bit and con-
sidering a more general definition of MHT than is gen-
erally used (see, e.g., [4], [5], and [6]). The plan of this
paper is to proceed from general versions of MHT to
the specific until we arrive at the most commonly used
notions of MHT. This approach has two virtues. First, it
shows that the notion and validity of an MHT decom-
position (defined below) is more general than the usual
notion ofMHT.Second, it highlights the special assump-
tions needed to produce the most common and useful
forms of MHT.

In classical multiple target tracking, the problem is
divided into two steps: association and estimation.Step 1
associates measurements with targets. Step 2 uses the
measurements associated with each target to produce
an estimate of that target’s state. Complications arise
when there is more than one reasonable way to asso-
ciate measurements with targets. MHT approaches this
problem by forming association hypotheses to explain
the source of the measurements. We consider the situ-
ation where each hypothesis assigns the measurements
to targets or false measurements. For each association
hypothesis, MHT computes the probability that the hy-
pothesis is correct and the conditional probability dis-
tribution on the joint target state given the hypothesis is
correct.The Bayesian posterior is amixture of the condi-
tional joint target state distributions weighted by the as-
sociation probabilities. This is the MHT decomposition
of the multiple target tracking problem.

Theoretically, there are other decompositions that
could be used. For example, one could use any set of
mutually exclusive and exhaustive conditions for the
decomposition. What makes the MHT decomposition
special and important is that it is useful. Each element
(hypothesis) of an MHT decomposition specifies which
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measurements are associated with which targets and
which are associated with false measurements. Under
a hypothesis, the multiple target tracking problem be-
comes a much more tractable problem. Usually it be-
comes a set of n single target tracking problems,where n
is the number of targets specified by the hypothesis. The
MHT decomposition transforms a difficult and daunting
multiple target tracking problem into a set of problems
we know how to solve. This was Reid’s key insight [5].

WhileMHT is the most widely usedmethod for solv-
ing multiple target tracking problems, multiple target
tracking is not limited to the classical case described
above. Section II-C includes a brief discussion of multi-
ple target tracking when the notion of associating mea-
surements with targets is not meaningful.

Reid [5] formulated the initial version of MHT that
was later generalized byMori et al. [6]. Since then,many
versions and implementations ofMHT have been devel-
oped (see [4]).

Many of the technical results presented in this pa-
per are based on results from [7, Ch. 4]. However, the
emphasis in this paper is on identifying conditions un-
der whichMHT is an exact Bayesian solution tomultiple
target tracking.

We show that the crucial condition ensuring that
MHT is exact Bayesian is that measurements arrive in
scans as defined below. The additional conditions re-
quired for this result are minimally restrictive. Thus, the
MHT decomposition is exact Bayesian for a wide class
of tracking problems. In order to produce a computa-
tionally feasible implementation, some approximations
must bemade,but this is true of any (existing)method of
producing an exact Bayesian solution. InMHT, the num-
ber of association hypotheses grows exponentially in the
number of measurements, so a typical approximation is
to limit the number of hypotheses considered. In addi-
tion, it is customary to display only the tracks resulting
from the highest probability association hypothesis and
treat them as the “tracking solution.”

Section II provides the basic definitions that we use
for multiple target tracking. Section III proves the basic
result on the validity of the MHT decomposition. The
reader will note in this section that we use a more gen-
eral definition of MHT than is usual. In particular, the
various versions of MHT discussed in [4] are all special
cases of this definition.Section IVpresents additional as-
sumptions that allow theMHT decomposition to be per-
formed recursively, and Section V gives assumptions un-
der which the target state distributions, conditioned on
an association hypothesis, are independent. Section VI
provides a summary of these assumptions. Section VII
provides some conclusions.

II. MULTIPLE TARGET TRACKING

We employ a continuous–discrete formulation of
tracking where the target motion takes place in contin-
uous time, but the measurements are received at a dis-

crete sequence 0 ≤ t1 ≤ · · · ≤ tK of possibly random
times.We represent a single target’s state and its motion
through the target state space S in terms of a stochastic
process {X (t); t ≥ 0}, where X (t) is the target state at
time t.The target state can have both continuous and dis-
crete components. In addition to kinematic components,
there can be components that correspond to “features”
such as color or frequency and source level of an emis-
sion.Targetmotion can include changes in nonkinematic
as well as kinematic components.

A. Multiple Target Motion Process

The multiple target tracking problem begins at t = 0.
The total number of targets is unknown but bounded
by N̄, which is known. We assume a known bound on
the number of targets because it allows us to simplify
the presentation and produces no restriction in practice.
It is possible to remove this restriction but that would
add complications without adding capability.We add an
additional state φ to the target state space S. If a tar-
get is not present in S, we say that it is in state φ. Let
S+ = S ∪ {φ} be the augmented state space for a single
target and S+ = S+ × · · · × S+ be the joint target state
space where the product is taken N̄ times. This is a vec-
tor formulation of the multiple target tracking motion
model. Each component (target) can be indistinguish-
able from the others, or if there is prior knowledge some
components can have different motion models. Both are
possible but neither is required. In the case where the
targets are indistinguishable, the component labels are
arbitrary.The notion of including a state such as φ to rep-
resent target not present in S has precedent in the works
of [8], [9], [10], [11], and [12].

Our prior knowledge about the targets and their
“movements” through the state space S+ is given by
a stochastic process X = {X(t); t ≥ 0}, where X(t) =
(X1(t), . . . ,XN̄(t)) is the state of the system at time t and
Xn(t) ∈ S+ is the state of target n at time t. The term
“state of the system”means the joint state of all the tar-
gets. If Xn(t) = φ, then target n is not present in S at
time t. The motion model can allow for targets to arrive
(transition from φ to S) and depart (transition from S to
φ) as time progresses.

B. Multiple Target Likelihood Functions

Definition.A measurement is a function of a sensor
response.

A sensor response that has crossed a specified thresh-
old and is used to provide an estimate of a target’s posi-
tion is an example of a measurement. A measurement
can be a multivariate function of the sensor response.
An example is a peak-picking algorithm that identifies
the number of peaks that cross a threshold and their lo-
cations. Another example of a measurement is the sen-
sor response itself. This is the identity function applied
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to the sensor response to yield the measurement.An ex-
ample of this is the acoustic times series received at a
hydrophone over an interval of time.

Let the random variableY (t, j) be the measurement
from sensor j at time t.Measurements from sensor j take
values in the measurement space � j that may be differ-
ent for each sensor. We define the multiple target likeli-
hood function l j for sensor j at time t as follows:

l j(t, y|s) = Pr{Y (t, j) = y|X(t) = s} for y ∈ � j,s ∈ S+.

(1)
Note that this likelihood depends on the system state s
at time t. The system state gives the state of each target.
If a target is not present, its state is φ. If false measure-
ments are possible, then a model for these must be de-
fined and used in the calculation of (1).Note that we use
Pr to mean probability or probability density, whichever
is appropriate.

Suppose we have obtained measurements at the dis-
crete times 0 ≤ t1 ≤ · · · ≤ tK ≤ t. Let the random vari-
able Yk be the set of measurements received at time tk
and yk denote a value of Yk. We extend (1) to define

Lk(yk|s) = Pr{Yk = yk|X(tk) = s} for s ∈ S+. (2)

Lk(yk| ·) is the multitarget likelihood function for the
measurement set Yk = yk. If the sensor responses are
correlated or there are restrictions such as a target can
generate at most one measurement in a set, then these
must be taken into account in computing this likelihood
function.

Let Y1:K = (Y1,Y2, . . . ,YK) and y1:K = (y1, . . . ,
yK). These are the measurement sets received at the
times {t1, . . . , tK}.

Define

L(y1:K|s1, . . . , sK)
= Pr

{
Y1:K = y1:K|X (t1) = s1, . . . ,X (tK) = sK

}
. (3)

We assume that the distribution of the measurements at
the times {t1, . . . , tK} depends only on the system states
at these times. That is,

Pr{Y1:K = y1:K|X(u), 0 ≤ u ≤ t} = L (y1:K|s1, . . . , sK) ,

(4)

where sk = X(tk) for k = 1, . . . ,K.

Let

q (s1, . . . , sK) = Pr{X(t1) = s1, . . . ,X(tK) = sK}.
Then, the posterior distribution on the multiple target
state at time tK given Y1:K = y1:K is

p (tK, sK|y1:K) = Pr{Y1:K = y1:K and X(tk) = sK}
Pr{Y1:K = y1:K}

=
∫
L (y1:K|s1, . . . , sK)q (s1, . . . , sK)ds1 · · · dsK−1∫
L (y1:K|s1, . . . , sK) q (s1, . . . , sK)ds1 · · · dsK ,

(5)

where the integral in the numerator of (5) is over the
system states at the first K − 1 measurement times and
the integral in the denominator is over these states at the
first K times.

C. Bayes–Markov Recursion

If the motion model is Markovian so that

q (s1, . . . , sK) =
∫
S+
q0(s0)

K∏
k=1

qk (sk|sk−1)ds0 (6)

where

q0(s) = Pr{X(0) = s},
qk (sk|sk−1) = Pr{X(tk) = sk|X(tk−1) = sk−1},

and the likelihood function in (4) factors so that

L (y1:K|s1, . . . , sK) =
K∏
k=1

Lk(yk|sk),

then the following Bayes–Markov recursion holds:

p (tK, sK|y1:K )

= Lk(yK|sK )
∫
S+ q(sK|sK−1)p(tK−1, sK−1|y1:K−1)dsK−1∫

S+ Lk(yK|sK )
∫
S+ q(sK|sK−1)p(tK−1, sK−1|y1:K−1)dsK−1dsK

.

Observe that the above recursion does not require
the notion of measurement association. The process
of performing multiple target tracking with or without
measurement association is called unified tracking in
[13].Ref. [13,Ch.5] gives examples where two targets are
tracked in a case where the notion of association is not
meaningful. In some cases, the targets are indistinguish-
able and in others not. When association is not mean-
ingful, standard MHT is not applicable to the multiple
target tracking problem.

An example where association is not meaningful in-
volves a fixed array of passive omnidirectional acoustic
hydrophones. The measurement received at the sensor
at time t is the vector of complex amplitudes (as a func-
tion of frequency) of the acoustic time series received
at the hydrophones of the array at time t. When there
is more than one target present, the signals from all tar-
gets are received and acoustically summed at each hy-
drophone so that it does not makes sense to associate
the measurement with a single target. The maximum
posterior probability penalty function (MAP-PF) algo-
rithm, described in [7,Ch. 6], uses the Bayes–Markov re-
cursion above to perform multiple target tracking using
thesemeasurements without association or thresholding
to produce contacts. By avoiding thresholding, one can
utilize more information and provide better tracking so-
lutions than if one is limited to using thresholded data
(e.g., called contacts). The MAP-PF algorithm has been
applied to a number of operational problems (see [7,Ch.
6, refs. 1–5]).

One can sometimes force the problem into an MHT
framework, but the results are suboptimal. In particu-
lar, the results are not Bayes optimal. Ref. [13, Sec. 5.3.2]
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gives an illustration of this and the resulting degradation
of the tracking performance that results.

Ref. [13, Ch. 5] shows that MHT can be derived as a
special case of unified tracking that motivates the name
because the above recursion provides a unified approach
to tracking with or without measurement association.

III. MULTIPLE HYPOTHESIS TRACKING

We take a more expansive definition of MHT than
is normally the case—see [4], for example. In particu-
lar, we do not require targets to be indistinguishable,
or false measurements to be Poisson distributed. We do
not require that the target motion processes be indepen-
dent or Markovian. In addition, Gaussian assumptions
are not required. We do require that measurements ar-
rive in scans as defined below.

A global measurement association hypothesis, de-
fined more precisely in Section III-A, assigns all mea-
surements received up to a given time to targets
or false measurements. These hypotheses are target-
to-measurement hypotheses, which are different from
measurement-to-measurement association hypotheses
used in the standard MHT formulation.

Definition. An MHT is a tracker that computes the
posterior distribution on system state as follows. It iden-
tifies all possible global measurement association hy-
potheses and calculates their probabilities of being true,
computes the conditional target state distributions given
each hypothesis, and forms the posterior distribution
as a mixture of the conditional target state distribu-
tions weighted by the association hypothesis probabil-
ities. This is called theMHT decomposition.

In Section III-B, we show that under the conditions
assumed in Sections II-A and II-B and the assumption
that measurements come in scans, the MHT decompo-
sition produces the exact Bayesian posterior on system
state. That is, it is the exact Bayesian solution, theoreti-
cally correct, and “Bayes optimal.”

However, the MHT decomposition will be of limited
use unless the conditional target state distributions can
be computed recursively and the target state random
variables are independent given a global measurement
association hypothesis. Sections IV and V provide con-
ditions under which these are true.

A. Scans and Global Measurement Association
Hypotheses

Definition.A set of measurements at time tk is a scan
if each measurement is generated by at most one target
and each target generates at most one measurement.We
also require that the association of measurements in dif-
ferent scans is independent.

Note that this definition means that not every mea-
surement is a scan by itself.

Assumption. We assume measurements arrive in
scans.

Some of these measurements may be false measure-
ments, i.e., not generated by a target, and some targets
may not produce measurements on a given scan. Let

Gj = set of measurements in the jth scan,

G(1 : k) = set of measurements in the first k scans

=
k⋃
j=1

Gj.

Definition. A global measurement association hy-
pothesis h on G(1 : k) is a mapping h : G(1 : k) →
{0, 1, . . . , N̄} such that

h(m) = n > 0 means measurement
m is associated with target n,

h(m) = 0 means measurement
m is associated with a false measurement,

and no target has more than one measurement per scan
associated with it.

Let H(k) = set of global measurement association
hypotheses on G(1 : k). A hypothesis h ∈ H(k) parti-
tionsG(1 : k) into disjoint subsets

�k(n) = {m ∈ G (1 : k) : h(m) = n} for n = 0, 1, . . . , N̄,

where �k(n) is the subset of measurements associated
with target n for n > 0 and �k(0) is the subset of mea-
surements associated with false measurements.

B. MHT Decomposition

MHT calculates the posterior distribution on system
state at time tK given the global measurement associa-
tion hypothesis h is true and the probability α(h|y1:K)
that hypothesis h is true given Y1:K = y1:K for each
h ∈ H(K). Specifically, it computes

p(tK, sK|h ∧ y1:K) = Pr{X(tK) = sK|h ∧ Y1:K = y1:K}
(7)

and

α (h|y1:K) = Pr{h|Y1:K = y1:K} = Pr{h ∧ Y1:K = y1:K}
Pr{Y1:K = y1:K} ,

(8)

where ∧ denotes conjunction. The Bayesian posterior is
given by

p(tK, sK|y1:K) =
∑

h∈H(K)

p(tK, sK|h ∧ y1:K)α(h|y1:K). (9)

Equation (9) is the MHT decomposition. The valid-
ity of this decomposition depends only on the assump-
tions in Sections II-A, II-B, and III-A. Thus, MHT is an
exact Bayesian solution under very general assumptions.
Themain restriction is that measurements must arrive in
scans. However, in most cases, we require more assump-
tions to compute MHT solutions.
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IV. RECURSIVE MHT ASSUMPTIONS

In this section, we add assumptions that allow us to
compute the MHT decomposition recursively. We as-
sume the motion model is Markovian in the joint state
space and that

L(y1:K|s1, . . . , sK) =
K∏
k=1

Lk(yk|sk). (10)

Let the Markov transition function be denoted by

qk(sk|sk−1) = Pr{X(tk) = sk
∣∣X(tk−1) = sk−1 } for k ≥ 1

and q0 be the probability (density) function for X(0).
Then, we can compute the posterior distribution in (5)
using the classic Bayes–Markov recursion as follows.

Initial distribution:

p(t0, s0) = q0(s0) for s0 ∈ S+. (11)

For k ≥ 1 and sk ∈ S+,

p−(tk, sk|y1:k−1) =
∫
qk(sk|sk−1)p(tk−1, sk−1|y1:k−1)dsk−1,

Lk (yk|sk) = Pr{Yk = yk|X (tk) = sk},

p(tk, sk|y1:k) = 1
C
Lk(yk|sk)p−(tk, sk|y1:k−1), (12)

where

C =
∫
Lk(yk|sk)p−(tk, sk|y1:k−1)dsk.

A. Scan and Global Measurement Association
Hypotheses

For the kth scan of measurements yk, letMk= num-
ber of measurements in the scan.

Definition.A function γ : {1, . . . ,Mk} → {0, . . . , N̄}
is a scan association hypothesis if γ (m) = n > 0 means
measurement m is associated with target n, γ (m) = 0
means measurement m is associated with a false mea-
surement, and no two measurements are assigned to the
same positive number (target).

Let

�k = the set of all scan association hypotheses on scan Yk.

A global measurement association hypothesis hK ∈
H(K) is composed of K scan association hypotheses
{γ1, . . . , γK}, where γk is the association hypothesis for
the kth scan. The global measurement association hy-
pothesis hK is an extension of hK−1 = {γ1, . . . , γK−1} ∈
H(K − 1). That is, hK is composed of hK−1 with γK ap-
pended.We write this as hK = hK−1 ∧ γK.

1) Scan Association Likelihood Function: Define the
scan association likelihood function

�k (yk|γ ∧ sk) = Pr{Yk = yk|γ ∧ X(tk) = sk} for

sk ∈ S+ and γ ∈ �k. (13)

The conditioning on the right-hand side of (13) means
that we are conditioning on the scan association hypoth-
esis γ as well as the system state sk.

As a function of sk, the likelihood of the scan mea-
surement computed in (13) accounts for the probability
of detecting the targets with whichmeasurements are as-
sociated, failing to detect the remaining targets, and the
false measurements.The likelihood function for the scan
Yk = yk is

Lk (yk|sk) =
∑
γ∈�k

�k (yk|γ ∧ sk) Pr{γ } for sk ∈ S+, (14)

where on the right-hand side of (14) we assume that the
(prior) probability of a scan association does not depend
on the system state.

2) Global Measurement Association Likelihood Func-
tion: From (10), it follows that conditioned on h ∈
H(K), the likelihood of the measurements received at
times t1, . . . , tK depends only on the system state values
at those times. Specifically, the global measurement as-
sociation likelihood function l is

l (y1:K|h ∧ (s1, . . . , sK))

= Pr{Y1:K = y1:K|h ∧ X(u) = su; 0 ≤ u ≤ tK}
= Pr{Y1:K = y1:K|h ∧ X(tk) = sk;k = 1, . . . ,K}. (15)

We assume that the scan association likelihoods are in-
dependent given h ∧ (s1, . . . , sK), so that

l (y1:K|h ∧ (s1, . . . , sK)) =
K∏
k=1

�k (yk|γk ∧ sk). (16)

Finally,we assume that the prior probability of the global
measurement association hypothesis h is equal to the
product of the prior probabilities of its constituent scan
association hypotheses. Specifically,

Pr{hK} =
K∏
k=1

Pr{γk}, where h = {γ1, . . . , γK}. (17)

Association probabilities:Define

C(h0) = 1 and C(hK) = Pr{hK ∧ Y1:K = y1:K} for K ≥ 1.

(18)

Ref. [7, Sec. 4.5.1] shows that

C(hK) = C(hK−1) Pr{γK}

×
∫

�K (yK|γK ∧ sK) p− (tK, sK|hK−1 ∧ y1:K−1)dsK

(19)

and that the probability of the global measurement as-
sociation h ∈ H(K) being correct given y1:K is

α(h|y1:K) = C(h)∑
h′∈H(K)C(h′)

. (20)
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B. Recursive Calculation of MHT Decomposition

Under the above assumptions, ref. [7, Sec. 4.2.5]
shows how the conditional target state distribution in (7)
and the association hypothesis probabilities in (8) may
be calculated recursively. This allows us to calculate the
MHT decomposition in (9) in a recursive fashion.

V. INDEPENDENT MHT

In this section, we give additional assumptions that
assure that the conditional target state distributions are
independent so that p(tK, sK|h ∧ y1:K) in (9) equals the
product of independent probability distributions on the
N̄ possible targets. In this case, the MHT decomposition
in (9) becomes

p(tK, sK|y1:K) =
∑

h∈H(K)

α(h|y1:K)p(tK, sK|h ∧ y1:K)

=
∑

h∈H(K)

α(h|y1:K)
N̄∏
n=1

pn(tK, xn|h ∧ y1:K)

for sK = (x1, . . . , xN̄ ) ∈ S+, (21)

where pn(tK, ·|h ∧ y1:K) is the marginal distribution on
target n. If target n is not present at time tK under hy-
pothesis h, then pn(tK, φ|h ∧ y1:K) = 1.

A. Conditionally Independent Association Likelihoods

Definition. The likelihood of a scan Yk = yk ob-
tained at time tk is conditionally independent if and only
if for all scan association hypotheses γ ∈ �k,

�k (yk|sk = (x1, . . . , xN̄ ) ∧ γ )

= Pr{Yk = yk|γ ∧ X(tk) = (x1, . . . , xN̄ )}

= gγ

0 (yk)
∏N̄

n=1
gγ
n(yk, xn) (22)

for some functions gγ
n, n = 0, . . . , N̄, where gγ

0 can de-
pend on the scan measurements but not sk. For n > 0,
gγ
n(yk, ·) is typically the likelihood function for the mea-
surement in yk that is associatedwith target n,whichmay
be no measurement, and gγ

0 (yk) is the probability of re-
ceiving the false measurements and measurements gen-
erated by targets as specified by the scan association hy-
pothesis γ .

B. Independence Theorem

Under the assumptions of conditional independence
of the scan association likelihood functions and indepen-
dence of the target motion models, MHT decomposes
the multiple target tracking problem into N̄ indepen-
dent single target problems by conditioning on a global
measurement association hypothesis. Let qnk(sn,k|sn,k−1)
be the transition function at time tk for target n for n =
1, . . . , N̄. The following theorem and proof are from [7].

Independence theorem. Suppose the prior target motion
processes are mutually independent so that the multiple
target transition function factors as follows:

qk (sk|sk−1) =
N̄∏
n=1

qnk (sn,k|sn,k−1) (23)

and the scan association likelihood functions are condi-
tionally independent. Then, the posterior system state dis-
tribution conditioned on a global measurement associ-
ation hypothesis is the product of independent distribu-
tions on the targets’ states.

Proof. Let Y1:K = y1:K be the scan measurements
that are received at times 0 ≤ t1 ≤ · · · ≤ tK ≤ t. Recall
that H(k) is the set of all global measurement associa-
tion hypotheses on the first k scans.We wish to show for
k = 1, . . . ,K that

p(tk, sk|h ∧ y1:K) =
N̄∏
n=1

pn(tk, xn|h ∧ y1:K) for h ∈ H(k)

and sk = (x1, . . . , xN̄ ) ∈ S+, (24)

where

pn (tk, xn|h ∧ y1:K) = Pr{Xn(tk) = xn|h ∧ Y1:K = y1:K}
for xn ∈ S+ and n = 1, . . . , N̄.

We will prove the theorem by induction.
k = 1:We first show that (24) holds for k = 1. By the

independence of the prior target motion processes,

p(0, s) =
∏N̄

n=1
pn(0, xn) for s = (x1, . . . ,xN̄ ) ∈ S+,

where pn(0, · ) is the initial state distribution on target n.
Since themotionmodels for the targets are independent,
the joint distribution at time t1 before updating for the
scan of measurements Y1 = y1 is

p−(t1, s1) =
∏N̄

n=1
p−
n (t1, xn) for s1 = (x1, . . . ,xN̄ ) ∈ S+,

where p−
n (t1, · )is the motion-updated distribution for

target n at time t1.A global measurement association hy-
pothesis,h ∈ H(1), is equal to a scan association hypoth-
esis γ ∈ �1. By the conditional independence assump-
tion, the likelihood function for the scan Y1 factors into
functions that depend only on the state of a single target
and are independent of the state of the other targets.

To compute the posterior given Y1 = y1 and the as-
sociation h = γ ,we follow the recursion in (11) and (12)
that clearly holds when we condition on a measurement
association hypothesis.Wemultiply the motion-updated
multiple target distribution at time t1 by the likelihood
function for Y1 = y1, both conditioned on γ , to obtain

p(t1, s1|γ ∧ y1) ∝ gγ

0 (y1)
∏N̄

n=1
gγ
n(y1, xn)

∏N̄

n=1
p−
n (t1, xn)

∝ gγ

0 (y1)
∏N̄

n=1

[
gγ
n(y1, xn)p

−
n (t1, xn)

]
for s1=(x1, . . . ,xN̄ ) ∈ S+. (25)
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We obtain pn(t1, xn|γ ∧y1), themarginal distribution
on the state of target n, by integrating the right-hand side
of (25) over all components except xn and normalizing
to obtain a probability distribution. The result is

pn(t1, xn|γ ∧ h1) ∝ gγ
n(y1, xn)p

−
n (t1, xn)

for n = 1, . . . , N̄,

and we see that (24) holds for k = 1.
k implies k + 1: Suppose that (24) holds for the first

k scans. Consider a global measurement association hy-
pothesis hk+1 ∈ H(k+1).Then,hk+1 = {hk∧γ } for some
hypothesis hk ∈ H(k) and scan hypothesis γ ∈ �k+1.

Define

p−(tk+1, ·|hk ∧ y1:k) = distribution on X(tk+1)

given hk ∧ y1:k.

This distribution is obtained by performing the motion
and information updates for the first k scans and themo-
tion update only from time tk to tk+1. For target n, we
define

p−
n (tk+1, ·|hk ∧ y1:k) = distribution on Xn(tk+1) given

hk ∧ y1:k.

By assumption, the targetmotion processes are indepen-
dent.From this and the fact that (24) holds for k,we have

p− (tk+1, sk+1|hk ∧ y1:k) =
∏
n

p−
n (tk+1, xn|hk ∧ y1:k) .

To obtain the posterior system state distribution at time
tk+1, we multiply p−(tk+1, sk+1|hk∧y1:k) by the scan like-
lihood function conditioned on γk+1 to obtain

p (tk+1, sk+1|hk+1 ∧ y1:k+1)

= 1
C
gγk+1
0 (yk+1)

∏
n

gγk+1
n (yk+1, xn)

∏
n

p−
n (tk+1, xn|hk ∧ y1:k)

= 1
C
gγk+1
0 (yk+1)

∏
n

gγk+1
n (yk+1, xn) p−

n (tk+1, xn|hk ∧ y1:k)

for sk+1 = (x1, . . . ,xN̄ ) ∈ S+.

This shows that if (24) holds for k, then it is true for
k + 1. Since we have shown that (24) holds for k = 1,
the theorem is proved by mathematical induction.

VI. SUMMARY OF ASSUMPTIONS

In this section,we provide a summary of the assump-
tions wemade to ensure the validity of theMHT decom-
position, the recursive computation of the MHT decom-
position, and the independence of the posterior distribu-
tions on the targets given a global measurement associ-
ation hypothesis. In each case, MHT produces an exact
Bayesian solution. The assumptions are cumulative; e.g.,
the assumptions in Section VI-B implicitly include those
in Section VI-A.

A. Assumptions for Validity of MHT Decomposition
� Continuous discrete formulation:Targets move in con-
tinuous time but measurements are received at a dis-
crete set of times {t1, . . . , tK}.

� Target evolution:Prior knowledge of themotion of the
targets in state space is specified by a stochastic pro-
cess.

� Scan assumption:Measurements are received in scans
at the discrete times {t1, . . . , tK}.

� Measurements at tk depend only on system state at
tk, and we can calculate the multiple target likelihood
function in (3).

B. Assumptions for Recursive Computation of MHT
Decomposition

� Target motion process is Markovian in system state.
� Measurement likelihood functions factor over scans:

L(y1:K|s1, . . . , sK) =
K∏
k=1

Lk(yk|sk),

l (y1:K|h ∧ (s1, . . . , sK)) =
K∏
k=1

�k (yk|γk ∧ sk).

� Prior on global measurement association hypotheses
factors:

Pr{h} =
∏K

k=1
Pr{γk}, where h = {γ1, . . . , γK}.

C. Assumptions for Independent Conditional Target
State Distributions

� Prior motion models are independent, i.e.,

qk (sk|sk−1) =
N̄∏
n=1

qnk (sn,k|sn,k−1).

� Scan likelihood functions are conditionally indepen-
dent, i.e.,

�k (yk|γ ∧ sk = (x1, . . . , xN̄ )) = gγ

0 (yk)
∏N̄

n=1
gγ
n(yk, xn).

D. Comments

Looking at the assumptions for the validity of the
MHT decomposition in Section VI-A, we see that only
the scan assumption puts any substantial restriction
on the class of problems for which MHT is the exact
Bayesian solution. The assumptions in Sections VI-B
and VI-C make explicit the assumptions made in most
multiple target tracking problems to make them more
computationally tractable.Most versions of MHT make
the further assumption that the false alarm process is
Poisson and that the motion and measurement mod-
els are linear Gaussian, at least approximately, so that
a Kalman filter can be used to calculate target state
distributions.
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VII. CONCLUSIONS

From the above discussion, we see that the MHT
decomposition produces the exact Bayesian solution
to the multiple target tracking problem for target-to-
measurement hypotheses under quite general assump-
tions. The main requirement is that measurements ar-
rive in scans. In order to compute the decomposition re-
cursively and to obtain independent conditional target
distributions, we add the Markovian and independence
assumptions given in Sections IV andV.Section VI sum-
marizes these assumptions. Although the MHT decom-
position applies to a great many multiple target tracking
problems, it does not apply to all of them. Both unified
fusion of [13, Ch. 5] and the RFS approach of [2] deal
with problems beyond the purview of MHT.

Because the number of global measurement asso-
ciation hypotheses grows exponentially in the number
of measurements received, implementation of an MHT
algorithm requires approximations such as limiting the
number of global association hypotheses or using a
track-oriented approach (see [4]). This problem is not
unique to MHT.All (existing) methods of producing an
exact Bayesian solution require approximations of some
sort to produce a computationally feasible algorithm for
even modestly complex multiple target tracking prob-
lems.
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Three Mathematical Formalisms
of Multiple Hypothesis Tracking

SHOZO MORI
CHEE-YEE CHONG
KUO-CHU CHANG

This paper describes three mathematical formalisms, each of

which provides a solid foundation for developing multiple hypothe-

sis tracking (MHT) theories and algorithms, as solutions to detection-

based multiple target tracking (MTT) problems. The three formalisms

are 1) random finite sequence (RFSeq), 2) finite point process (FPP),

and 3) random finite set (RFSet) formalisms. We will discuss equiva-

lencies and some subtle differences among them. In addition, we will

discuss theoretical consequences of various assumptions on MHT hy-

pothesis evaluation, as well as recent RFSet-basedMTT algorithm de-

velopments claiming relationship to MHT.

I. INTRODUCTION

This paper is generally concernedwithmultiple target
tracking (MTT) problems, as defined in [1]–[3], i.e., prob-
lems of tracking a generally unknown number of ob-
jects, called targets,

1
based on noisy data. Specifically, we

are concerned with a particular class of MTT problems,
where the information is provided by generally multi-
ple sensors in terms of finite sets of noisy measurements,
called target detections,

2
without any explicit indication

of their origins. This class of problems is sometimes re-
ferred to as point target tracking, due to the fact that each
target is modeled as a point in a target state space, or
each target appears and is detected as a point in a sensor
measurement space. It may also be referred to as track-
ing small targets,

3
for the same reason. Our focus is on a

particular class of solutions based on systematic genera-
tion and evaluation ofmultiple data association hypothe-
ses, which hypothesize the number of detected targets
and partition the set of all the acquired detections ac-
cording to their hypothesized common origins, custom-
arily referred to asmultiple hypothesis tracking (MHT).

4

To the best of our knowledge, various approaches to
MTT problems were first comprehensively described in
an MTT survey paper [4]. It referenced the two semi-
nal works: one by C. L. Morefield [5] and the other by
D. B. Reid [41] (the work of which was subsequently
published as [6]

5
). These two works constitute, in our

opinion, the first two significant MHT developments. In
[5], C. L. Morefield established the MHT foundation by
defining association hypotheses, each of which is a set of
tracks, and proposed the best hypothesis selection us-
ing a zero–one integer linear programming algorithm.
D. B. Reid, in [6], presented a recursive MHT algorithm
that propagates and evaluates multiple tracks and hy-
potheses, both recursively. Subsequently in [7], a gen-
eralized recursive MHT algorithm was developed, as a
Bayesian optimal solution, showing the optimality as a
clear theoretical consequence of mathematical models
of targets and sensors,and a set of statistical assumptions,
complementing the developments by Morefield [5] and
Reid [6].

Generation and evaluation of multiple hypothe-
ses are often considered as an intermediate step to-
ward Bayesian estimation

6
of the states of an unknown

number of targets. However, in some applications, the
Bayesian estimation of measurement-to-measurement
(data-to-data) association is of primary interest and

1In MTT, a target is a generic name for any object to be tracked.
2Also called contacts, returns, or simplymeasurements or observations.
3As opposed to extended targets with possibly multiple observations
from each single target.
4In MHT, by hypotheses we always mean data association hypotheses.
5The introduction section of [6] contains an excellent summary of the
early works on MTT problems.
6ByBayesian estimation, we mean a process to obtain analytical or nu-
merical expressions of the conditional probability distributions of the
states to be estimated, conditioned by available data (information).
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an important task by itself. In that regard, the MHT
has maintained a unique and important realm within
the MTT universe. The evolution of various MHT and
MHT-related MTT algorithms over the last 40 years
was extensively and comprehensively described in [8],
and will not be repeated in this paper. It is not the ob-
jective of this paper to describe and compare various
MHT algorithms, or to discuss related implementation
issues, or to present yet another new algorithm. Instead,
our objective is to present three different mathematical
formalisms, any one of which provides a solid theoreti-
cal foundation to support MHT concept and algorithm
developments.

The three formalisms are 1) random finite sequence
(RFSeq) formalism, 2) finite point process (FPP) formal-
ism, and 3) random finite set (RFSet) formalism. These
three are seemingly quite distinct from each other on
the surface, but essentially equivalent to each other in a
specific sense, as we discuss in this paper.We will define
MHT problem in each formalism, with precise mathe-
matical definitions to commonly used terms that have
been often loosely defined, such as “originate from,”
“associated with,” “assigned to,” “tracks,” “hypotheses,”
etc. We hope that, showing the uses of these three for-
malisms, side by side, we will be able to present a clear
and precise picture of the past, and the potential future
MHT developments. An earlier version of this paper
was presented in [9], to which we added some analy-
ses on specific consequences of commonly used assump-
tions, and our perspectives on relations of a selected set
of recently developed RFSet-based MTT algorithms to
MHT.

The rest of the paper is organized as follows: Section
II presents the three mathematical formalisms for MTT,
including all the relevant mathematical concepts in alge-
bra, topology, and probability theories. Section III intro-
duces target and sensor models, in the three formalisms,
and defines data association hypotheses, to form a stan-
dardMHTproblem.Section IVdiscusses generation and
evaluation of association hypotheses, and describes the
optimal Bayesian solution to MHT problem, in each of
the three formalisms, under a set of commonly used as-
sumptions. It is followed by Section V that discusses re-
lationship of the MHT solution of Section IV with a se-
lected set [36]–[39] of recently developed RFSet-based
MTT algorithms. We will state our concluding remarks
in Section VI.

II. THREE MATHEMATICAL FORMALISMS

We define MTT as a process of estimating the states
of a generally unknown number of objects, called tar-
gets, generally changing their states over time with given
stochastic dynamics, based on information collected by
generally multiple sensors on regular or irregular obser-
vation schedules.As we often do, in this paper, any target
is identified with its state, i.e., a point in a state space E,
which we assume is a locally compact Hausdorff space

satisfying the second axiom of countability (LCHC2)
7

[10]. Any countable set with discrete topology, as well
as any Euclidean space, is LCHC2. Let B be the collec-
tion of Borel sets in E, i.e., the smallest σ -algebra con-
taining all the open sets in E, and we assume that a σ -
finitemeasureμ on themeasurable space (E,B) is given.
Throughout this paper,we will maintain the measure set
(E,B, μ) as the target state space. To track n targets,
(x1, ..., xn), each in E, we use the state space defined as

the nth-order direct product En =
n times︷ ︸︸ ︷

E × · · · × E with the
direct product topology (inheriting LCHC2), the direct
product σ -algebra Bn, and the direct product measure
μn.

The measure space (En,Bn, μ
n) with a fixed n pro-

vides us with a natural basis for the generalization
8
of

the probabilistic data association (PDA) (n = 1 [12])
and the joint PDA (JPDA) (n ≥ 1 [13]) algorithms to
track a fixed number n of targets, each of which has its
existence established, as target state xi within the joint
state

9
(xi)ni=1, and is given a unique distinct a priori iden-

tification i ∈ {1, ...,n}. The main focus of this paper is,
however, to present mathematical formalisms to provide
a basis for tracking targets without a priori identification
in the sense that 1) the number n of targets is generally
unknown a priori and 2) given n, any particular ordering
of the joint states (xi)ni=1 is arbitrary. These facts necessi-
tate 1) considering all the possible numbers n (any non-
negative integer) of targets and 2) requiring any partic-
ular joint target state probability distribution to be per-
mutable or symmetric, which is an important aspect of
this class of MTT that we are exclusively concerned with
in this paper.

Remark 1 (Notations: Finite Sequences and Finite
Sets): (xi)ni=1 ∈ En is shorthand

10
of (x1, ..., xn), a finite

sequence in spaceE with length n, or an n-tuple of points
in E. Sometimes, it will be necessary to use a nested ex-
pression to shorten ((y11, ..., y1m1 ), ..., (yK1, ..., yKmK )) as
((yk j)

mk
j=1)

K
k=1 with double-indexed variables yk j.We also

use continuous index,e.g., (xt )t∈[t0,∞) ∈ E[t0,∞) for a func-
tion defined on time index set [t0,∞). If the index set I
is a finite set, by (xi)i∈I , we mean a function x defined on
I, but we may also mean a sequence (xi1 , ..., xin ) with an
arbitrary enumeration (i1, ..., in) of set I. By {xi}ni=1, we
mean {xi}ni=1 = ⋃n

i=1 {xi}, which is a set of n elements if
xi’s are all distinct, where {x} is the singleton with only
single element x.

7Also known as locally compact Hausdorff second-countable topologi-
cal space. See Remark 2, later in this section, for more explanations on
the meaning of this choice of the state space as the basis of our paper.
8See Remark 6 in Section III-C, for more comments on PDA and
JPDA algorithms, and their generalizations.
9See Remark 1.
10We consciously avoided the notation such as (xi)i=1:n or x1:n, in favor
of (xi)ni=1, since 1:n or n:m, used as a “colon”MATLAB syntax, is also
used for a one-to-many or a many-to-many relationship in database
designs, while (xi)ni=1 is universally used in the mathematical literature
(although 〈xi〉ni=1 is used instead in [28]).
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Remark 2 (LCHC2): If an LCHC2 space is a vec-
tor space, the local compactness implies a finite dimen-
sion [11, Th. 1.22, p. 17], so that we are excluding any
infinite-dimensional state space in this paper. On the
other hand, the countability implies being metrizable
and separable (having a countable, dense subset) [10,
Ch. 6, p. 241]. Non-Euclidean examples include a hy-
brid space (direct product of a Euclidean space (e.g.,
for kinematic sates) and a finite set (e.g., for discrete at-
tribute states)), an ellipsoidal surface (for surface ship
tracking),other one- or two-dimensional manifolds (e.g.,
for targets in road networks), Lie group SO(3) (coupled
with Lie algebra so(3)), the space of unit quaternions
for attitude estimation, etc. Thus, it seems to us that this
LCHC2 assumption may specify a necessary mathemat-
ical sphere for us to cover for all the application domains
that we, engineers,may be interested in, beyond familiar
Euclidean spaces.On the other hand,we understand that
this LCHC2 assumption allows us to almost “freely” use
familiar notions of conditional probability distributions,
densities, Bayes rules, stochastic processes, etc., without
fear of any mathematical pathology.

A. RFSeq Formalism

Randomness of the number n of targets forces us to
consider all the spaces En, for n = 0, 1, 2, ..., together, as
the direct-sum space

11 ⋃∞
n=0 E

n, using the standard con-
vention E0 = {θ} with the symbol

12
θ for the sequence

of the zero length, signifying “nothing,” or in our case
“no target.” Algebraically,

⋃∞
n=0E

n is the free monoid
(FM) generated by E (as the set of its alphabets [14]

13
),

with the concatenation operator ∗ as an associative bi-
nary operator, defined by (xi)ni=1 = (xi)n

′
i=1 ∗ (xi)ni=n′+1

for any 0 ≤ n′ ≤ n and any (xi)ni=1 ∈ En with the iden-
tity element θ . Topologically,

⋃∞
n=0 E

n is also an LCHC2
with the direct-sum topology, which induces the direct-
sum σ -algebra

⋃∞
n=0 Bn, where each Bn is σ -algebra of

Borel sets in En, which allows the direct-sum measure∑∞
n=0 μn on it.
Then, we can define an RFSeq as a random ele-

ment X on the measurable space (
⋃∞

n=0E
n,
⋃∞

n=0 Bn).
Although, in general, we may not know a priori how
many targets exist or we have to track, the number n of
all the targets (at least potentially to be detected) is al-
ways finite, but often with no known a priori upper limit.
For each n = 0, 1, 2, ..., let pn be the probability of the
number

14
of targets being n, and given any n, let the joint

11We assumeE 
= ∅ so thatEn 
= ∅ for any n, yet we haveEn∩En′ = ∅
for any n 
= n′.
12θ /∈ E (E0 = {θ}) is used as a special symbol (for the empty se-
quence) throughout this paper. It is also considered as a functionwhose
domain, image (range or codomain), and graph are all the empty set.
13A semigroup is a nonempty set with an associative binary operator.
A monoid is a semigroup with an identity (unit) element.
14We generally assume that the number n of targets is constant, for the
reasons explained by Remark 5 in Section III-A.

probability distribution of the n-tuple of target states,
(xi)ni=1 ∈ En, be F (n), called the nth-order probability
distribution (n-PDist), so that we can model targets, as
a whole, by an RFSeq X , with

15
F (n)(B) = Prob{X ∈

B|�(X ) = n} for each n and for each B ∈ Bn.
Our assumption that the targets are without a pri-

ori identification is translated into the assumption that,
for each n, F (n) is permutable,

16
in the sense F (n)(B) =

F (n)(π (n)
a (B)) for every B ∈ Bn and every a ∈ An, where

An is the set of all the permutations on {1, ...,n}, and
π

(n)
a ((xi)ni=1)

def= (xa(i))ni=1 for any (xi)ni=1 ∈ En and any
a ∈ An. If each permutable probability measure F (n) is
absolutely continuous with respect to the product mea-
sure μn, its Radon–Nikodym derivative f (n), called the
nth-order probability density (n-PD), is also permutable,
in the sense that f (n)(π (n)

a (x)) = f (n)(x) for all x ∈ En,
for any a ∈ An.

B. FPP Formalism

In [15, Ch. 5, p. 111], an RFSeq (xi)ni=1 ∈ En with
(pn,F (n))∞n=0 is called an FPP if each n-PDist F (n) is per-
mutable, and is characterized by a sequence (J (n))∞n=0
of measures, each of which, J (n), is a finite measure on
(En,Bn), defined by J (n)(B) = n!pnF (n)(B) for each
B ∈ Bn, called the nth-order Janossy measure (n-JM).

17

If n-JM
18 J (n) is absolutely continuous with respect to

the product measure μn, its Radon–Nikodym derivative
J(n) is called the nth-order Janossy density (n-JD), which
we can write as J(n)(x) = n!pn f (n)(x) for every x ∈ En,
with n-PD f (n) of each n-PDist F (n). Obviously, every
n-JM J (n) is permutable, and so is any n-JD J(n) if it
exists.

In this paper, as well as in [9] and [16], however, we
present an alternative but equivalent FPP formalism:
For each n and each x ∈ En, let the equivalence class
in En, obtained by ignoring the ordering of x = (xi)ni=1,

be [x], i.e., [x]
def= {π (n)

a (x)|a ∈ An} with π
(n)
a and An,

as defined earlier. For each n, let us symbolically de-
note En/n! = {[x]|x ∈ En}, using “n!” only as a sym-
bol in place of equivalence classes “[·] ” or relation “∼.”

15For any x ∈⋃∞
n=0 E

n, by �(x) we mean the length of finite sequence
x in E, i.e., �(x) = n ⇔ x ∈ En, and �(θ ) = 0.
16Synonymous to symmetric (permutation-symmetric), exchangeable,
interchangeable, etc. See Remark 3.
17According to [15], the term Janossymeasure originated from [17] that
references [18]. It is indicated [15, p. 124] that the constant n! in its
definition, as it distinctly appears in (1)–(4) also, is included to be ad-
vantageous in simplifying combinatorial formulae, so that, in a sense,
this constant n! uniquely identifies the n-JM, the n-JD, and the JMD
(introduced later), distinguishing themselves from other concepts.
18In this paper, we use superscripts (n) for n-PDist F (n), n-PD f (n), n-
JM J (n), and n-JD J(n), to signify the fact that they are applied to the
nth-order product space En, although, customarily, subscripts are used
instead as in Fn, fn,Jn, and Jn.
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En/n! is a quotient space induced by the quotient map
19

ϕn : x �→ [x] for each n. We may call [(xi)ni=1] an un-
ordered n-tuple, while (xi)ni=1 is an ordered n-tuple.

Algebraically, we may call
⋃∞

n=0 E
n/n! the free com-

mutative monoid (FCM)
20
generated by E with the com-

mutative operation ∗ defined by [x] ∗ [x′] = [x ∗ x′]
for every (x, x′) ∈ En × En′

, and the identity element
[θ ] = {θ}. Topologically, each En/n! is a quotient topo-
logical space. Since each coordinate permutation π

(n)
a is

a homeomorphism (and hence a continuous open map),
every open set in En/n! can be written as the image
ϕn(B) of an open set B in En, and hence each En/n! is
LCHC2, and so is their direct sum

⋃∞
n=0E

n/n!, with the
σ -algebra

⋃∞
n=0 Bn/n! of Borel sets in it. We may con-

sider
⋃∞

n=0E
n/n! as the quotient space through the map

ϕ :
⋃∞

n=0 E
n → ⋃∞

n=0 E
n/n! defined by ϕ(x) = ϕn(x) for

each x ∈ En (n > 0), and ϕ(θ ) = ϕ0(θ ) = [θ ] = {θ}.
Finally, an FPP can be defined as a random element

X on a measurable space (
⋃∞

n=0E
n/n!,

⋃∞
n=0 Bn/n!),

with PDist � such that

�

( ∞⋃
n=0

ϕ (Bn)
)

= Prob
{
X ∈

∞⋃
n=0

ϕ (Bn)
}

=
∞∑
n=0

pnF (n)
(
ϕ−1
n (ϕn (Bn))

)
=

∞∑
n=0

1
n!J (n)

(
ϕ−1
n (ϕn (Bn))

)
(1)

for any (Bn)∞n=0 ∈ ∏∞
n=0 Bn. Since each coordinate

permutation π
(n)
a is measurable, every measurable set

B ∈ ⋃∞
n=0 Bn/n! in

⋃∞
n=0 E

n/n! can be expressed as⋃∞
n=0 ϕ(Bn) with some (Bn)∞n=0 ∈ ∏∞

n=0 Bn. The first
equality of (1), therefore, simply states the definition of
PDist � of a random element X , i.e.,�(B) = Prob{X ∈
B} for any B ∈ ⋃∞

n=0 Bn/n!. The second equality of
(1) means that, given PDist � of FPP X , there exists a
series (pn,F (n))∞n=0 of probabilities and permutable n-
PDists such that

21
pn = �(En/n!) = Prob{�(X ) = n}

for every n, and pnF (n)(ϕ−1
n (Bn)) = �(Bn) for every

Bn ∈ Bn/n!. It also implies that PDist � is uniquely de-
fined by a PDist (pn)∞n=0 and any permutable n-PDists
F (n) for each n. The third equality is nothing but the defi-
nition of each n-JM. For each n and each measurable set
Bn = ϕn(Bn) in En/n!, event {X ∈ Bn} can be viewed
as the event

⋃
a∈An

{x ∈ ϕ−1
n (Bn)}, where x is an arbi-

trary enumeration ofX .We should note ϕ−1
n (ϕn(Bn)) =⋃

a∈An
π

(n)
a (Bn), which is the set of all the enumerations

of equivalence classes in Bn = ϕn(Bn).
Using the collection (En,Bn, μ

n)∞n=0 of the mea-
sure spaces, we can define a positive linear functional

19Also known as identification map, natural map, canonical surjection
map, canonical projection map, etc. In topological algebra [19], En/n!
is called the nth-order symmetric product of E, SPn(E).
20Cf. [47, Sec. I.6.3, p. 16], for definition of free commutative semigroup,
which becomes FCM when given an identity element.
21For any [x] ∈ ⋃∞

n=0 E
n/n!, the length �(x) of any element in the

equivalent class [x] is the same, so that we let �([x]) = �(x). We have
�(
⋃∞

n=0 E
n/n!) =∑∞

n=0 �(En/n!) =∑∞
n=0 pn = 1.

L, defined on a set of bounded measurable function-
als ψ , and a measure M, both on measurable set
(
⋃∞

n=0 E
n/n!,

⋃∞
n=0 Bn/n!), such that we have

22

L(ψ ) = ∫
⋃∞

n=0 En/n!

ψ (X )M(dX )

=
∞∑
n=0

1
n!

∫
En

ψ (ϕ(x))μn(dx),
(2)

where M(Bn) = μn(ϕ−1
n (Bn))/n! for every Bn ∈

Bn/n!, for each n. We may call the measure space
(
⋃∞

n=0 E
n/n!,

⋃∞
n=0 Bn/n!,M), derived from the state

measure space (E,B, μ) in this way, the quotient mea-
sure space (QMS).

It follows from (1) and (2) that, if each n-JM J (n) of
(1) has n-JD J(n), then PDist � has the density φ, i.e.,
the Radon–Nikodym derivative of �, with respect to the
measure M, which we call the Janossy–Mahler density
(JMD), defined as φ(ϕn(x)) = Jn(x) for every x ∈ En,
for each n, such that

� (ϕ (
⋃∞

n=0Bn)) = ∫
ϕ(
⋃∞

n=0 Bn)

φ(X )M(dX )

=
∞∑
n=0

1
n!

∫
ϕn−1(ϕn(Bn))

φ(ϕn(x))μn(dx)
(3)

for any (Bn)∞n=0 ∈∏∞
n=0 Bn.

Remark 3 (FM,FCM,FPP, and JMD):To call a ran-
dom element on FM

23
an RFSeq, and a random element

on FCM an FPP, is our own “invention,”which had most
probably not seen before our preliminary paper [9] (or
its predecessor [16]) was published. The introduction of
FM and FCM (or its variation), however, appeared in
[15] and [23]. In [15, p. 129], FM

⋃∞
n=0 E

n is called the
canonical probability space, and an FPP as a random ele-
ment in the quotient space

⋃∞
n=0 E

n/n! is also suggested.
In [23], FM

⋃∞
n=0E

n is called the population state space,
and a version of FCM,

⋃∞
n=0E

n/n!, the symmetric popu-
lation state space. Furthermore, in [23], what we call an
FPP was called a symmetric point process, while what
we call an RFSeq was called simply a point process,

24
re-

flecting the distinction caused by the “commutativity”or
“permutability,”

25
or lack of it.

Both in [15, Ch. 5, p. 111] and [23], we may say that
an FPP is defined through a series of n-PDist or n-JM,

22We use the convention that
∫
E0 q(ξ )μ0(ξ ) = q(θ )μ0(E0) = q(θ ) for

any functional q on (E0,B0) = (E0, {∅,E0}) = ({θ}, {∅, {θ}}).
23By replacing the target indices by the discrete time indices, an FM
can be used as a mathematical model for a discrete-time dynamical
process with a variable end-of-the-process time, as shown in [21].
24According to [23], the term “point process” is attributed to [24].
25In [23], the permutability is treated as synonymous to “indistin-
guishability,” which, in our opinion, is misleading to a degree, because,
for example, two targets, as realizations of two random points, which
do not share the same state, can always be “distinguished,” even when
the distributions are “identical” and “independent.” We would prefer
that the distinction is considered as “targets with and without a priori
identifications,” rather than “distinguishability”and “indistinguishabil-
ity.”
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rather than a random element itself. A traditional defi-
nition of an FPP is, however, as a random counting mea-
sure

26
[22, Def. 1.1, p. 4], which can represent possibly

countably many points. In our MTT applications, how-
ever, we do not need to consider any set of countably
many points, and therefore, we may say that our defini-
tion of FPP,without ever considering a randommeasure,
is justified.

27
A counting measure representationN of an

FPP X = [(xi)ni=1], as a random measure on (E,B), can
be defined as N (B) = ∑n

i=1 I(xi;B) for each B ∈ B,
with an arbitrary enumeration (xi)ni=1 of FPPX , where I

is the generic indicator function defined as I(ξ ;A) = 1
if ξ ∈ A and zero otherwise for any set A.

We call the probability density φ that appears in (3)
in our FPP formalism, as well as in the RFSet formalism
described later in this section, the JMD, because of 1) its
obvious relation to the Janossy densities n-JDs, (J(n))∞n=0,
through φ(ϕ(x)) = J(n)(x) for any x ∈ En, and 2) our
understanding that the PD φ was first introduced by
Dr. R. P. S. Mahler as a single function, as opposed to
a series (J(n))∞n=0 of functions, in his finite set statistics
(FISST) formalism [25]–[27]. The JMD φ is called the
multiobject density function in [25, Sec. 11.3.3, p. 360] and
[26, Sec. 3.2.4, p. 62], and the global probability density
function in [27, Sec. 4.3.3, p. 162].

C. RFSet Formalism

For each n > 0, let Fn(E) = {X ⊆ E|0 < #(X ) ≤ n}
and F̃n(E) = {X ⊆ E|#(X ) = n}. Then, with F0 =
F̃0 = {�}, F (E) = ⋃∞

n=0 Fn(E) = ⋃∞
n=0 F̃n(E) is the

collection of all the finite sets in the state space E. Al-
gebraically, we may call F (E) the free idempotent com-
mutative monoid (FICM) with the set-theoretic union

28

as the binary operator on it. For each n > 0, redefine the
quotient map ϕn as ϕn : En → Fn(E) with ϕn((xi)ni=1) =
{xi}ni=1. It makes Fn(E) a quotient topological space that
is an LCHC2 with its open sets as the collections of the
images ϕn(B) of all the open sets B in En. F (E) is also
LCHC2 as the quotient space induced by the redefined
map ϕ :

⋃∞
n=0E

n → F (E) with ϕ(x) = ϕn(x) for all
x ∈ En and ϕ(θ ) = ϕ0(θ ) = ∅.

An RFSet X can then be defined as a random el-
ement on measurable set (F (E), B(B)), where B(B)
is the σ -algebra of Borel sets in quotient topological

26A counting measure μ on any measurable space (E,B) is an integer-
valued functional defined byμ(B) = #(B) for eachB ∈ B.By #(A),we
mean the cardinality of (the number of elements in) any setA, through-
out this paper.
27In [15, p. 131], it is stated: “The main difficulty with this (Moyal’s)
approach from our point of view is that it does not extend readily to
random measures, which require for their own sake and for applica-
tions in later chapter.”
28The union operator ∪ on F (E) is associative and commutative with
the empty set as the unit element.F (E) is also idempotent, i.e., every
X ∈ F (E) is an idempotent, becauseX ∗X = X ∪X = X . Cf. [47, Sec.
I.6.3, p. 16], for definition of free idempotent commutative semigroup,
which becomes FICM when given an identity element.

spaceF (E). As the PDist � of RFSet X , (1) holds for
any (Bn)∞n=0 ∈ ∏∞

n=0 Bn, with the n-PDist F (n) (and
n-JM J (n) = n!pnF (n)) and the redefined quotient
map ϕ. Exactly in parallel to FPP formalism, through
the redefined quotient map ϕ, we can redefine L as
the positive linear bounded functional on the space of
bounded measurable functionals ψ on the measurable
space (F (E), B(B)), and themeasureM on themeasur-
able space (F (E), B(B)), as (2), and the JMD φ with re-
spect to the redefined measure space (F (E), B(B),M),
as (3).

The idempotency of the FICMF (E), however, poses
some peculiar problems: For example, a multidimen-
sional point, (xi)ni=1 in E

n with n > 1, is mapped into a
single point in F (E), when its elements are all identical,
i.e., x1 = · · · = xn. One way to avoid this peculiarity is
to “ignore” such coincidences. Namely, we may assume

that the setDn
def={(xi)ni=1 ∈ En|xi = xi′ for some i 
= i′} of

n-tuples with any repeated elements, which we call the
diagonal set in En, has the zero product measure, i.e.,
μn(Dn) = 0. We can then define the JMD φ in RFSet
formalism by φ(ϕ((xi)ni=1)) = φ({xi}ni=1) = J(n)((xi)ni=1)
for every (xi)ni=1 ∈ En, for each n.

However, in case where the state space E is count-
able with discrete topology

29
and counting measure μ,

μ2(D2) = 0 implies μ(E) = 0, which is obviously not
desirable. To remedy the situation, we need to modify
(2) and (3) slightly as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(ψ ) = ∫
F (E)

ψ (X )M(dX )

=
∞∑
n=0

1
n!

∫
En

ψ (ϕ(x)) μ̃n(dx)

� (ϕ (
⋃∞

n=0 Bn)) = ∫
ϕ(
⋃∞

n=0 Bn)

φ(X )M(dX )

=
∞∑
n=0

1
n!

∫
ϕ−1(ϕ(Bn))

φ(ϕ(x))μ̃n(dx)

(4)

using the modified measure,
30

μ̃n(B) = μn(B\Dn) for
every B ∈ Bn, for each n, to make μ̃n(Dn) = 0 with-
out affecting any product measure μn, withM(ϕ(B)) =
μ̃n(ϕ−1(ϕ(B)))/n! for any B ∈ Bn, and with the JMD
in RFSet formalism by φ(ϕ((xi)ni=1)) = φ({xi}ni=1) =
J(n)((xi)ni=1) for every (xi)ni=1 ∈ En. With this modifica-
tion, each component F̃n of FICM F (E) as the direct
sum F (E) = ⋃∞

n=0 F̃n(E) becomes the image of the
quotientmap ϕn in the μ̃n-a.e. sense. In the rest of this pa-
per, whenever the RFSet formalism is used, we assume
we are using the modified measures μ̃n’s, as in (4).

When E is countable with the discrete topology
and the counting measure μ, the measure M defined
in (4), using μ̃n’s, becomes a counting measure on
(F (E), B(B)), where B(B) becomes the power set of a

29Namely, every subset B of E is an open set, and hence, σ -algebra of
Borel sets B is the power set of E.
30By “\” we mean the set-theoretic subtraction operator, i.e., A\B =
{a ∈ A|a /∈ B}.

180 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 14, NO. 2 DECEMBER 2019



countable set
31 F (E), so that the JMD φ, which is the

Radon–Nikodym derivative of the probability distribu-
tion � with respect the counting measure M, becomes
the probability mass function (PMF). In such a case, for
example, when we define data association, as an RFSet
in Section III-C , we will use the generic symbol

32
“P”

(instead of φ) for such JMD that is nothing but a PMF.
We call the measure space (F (E), B(B),M)

derived from the state measure space (E,B, μ)
for RFSet formalism the QMS. We also call
(
⋃∞

n=0E
n/n!,

⋃∞
n=0 Bn/n!,M) for FPP formalism QMS.

If disambiguation is necessary, we will use FCM-QMS
or FICM-QMS.

Remark 4 (QMS): In Section II-B and II-C , we
defined the FCM-QMS and FICM-QMS for FPP and
RFSet formalisms, respectively, through the quotient
map ϕ, with which we defined the quotient topology and
the quotient measure M. An alternative, but an equiva-
lent, way to construct these measure spaces may be pos-
sible directly from the linear functionalsL, defined in (2)
or (4), first applied to an appropriate small class of func-
tionals ψ , and then appropriately extended to construct
measurable sets and measures, as shown in [28, Ch. 16,
p. 419] and [29]. In [25]–[27], what we have defined as
RFSet formalism in this paper is called FISST formal-
ism, in which the integral in (4) is called the set integral,
as its core concept, as we understand. We may interpret
the FISST formalism as the one in which the set inte-
gral plays this role to construct the appropriate measure
space (F (E), B(B),M).

As mentioned in [25, Appendix F, p. 711], FICM
F (E) can be topologized by the relative (subspace)
topology as the subset of the space C(E) of the closed
sets in E, with Fell–Matheron topology

33
[40, p. 3; 45,

p. 398]. Since the quotient map ϕ is continuous in this
topology [20, Prop. 2.4, p. 156], the quotient topology
(with which we have introduced RFSet formalism) is
stronger

34
than the Fell–Matheron topology. The FISST

formalism established in [25]–[27] motivated our defi-
nition of an FPP as a random element taking values in
FCM

⋃∞
n=0E

n/n!.
In summary, among the three formalisms, the equiva-

lence betweenRFSeq and FPP is rather obvious. Instead
of calling an RFSeq (xi)ni=1 with permutable n-PDists an
FPP, we call a random element on FCM

⋃∞
n=0 E

n/n! an
FPP, forcing the permutability on the state space alge-
braic structure rather than on the n-PDists. By doing so,

31The countability of E implies the countability of F (E) under the ax-
iom of countable choice.
32As a general “rule,” we use the symbols, F and f , for PDist and PD
in E (F (n) and f (n) for En),P and p for the probability or the PMF for
the discrete, or density function of random elements of mixed nature,
and φ for the JMD for FPP or RFSet formalism.
33Also known as hit-or-miss topology. With this topology, C(E) is a
compact Hausdorff space satisfying the second axiom of countability
[40, Th. 1-2-1, p. 3], and F (E) is dense in C(E) [40, Cor. 2, p. 7].
34Hence, our introductions of the linear functional L and the measure
M are consistent with the Fell–Matheron topology.

we put an FPP and an RFSet into almost equivalence,
with the same JMD concept. The difference between an
FPP and an RFSet is, however, that the former allows re-
peated elements, while the latter does not. An FPP that
does not allow any repeated elements is called a simple
FPP, and it is shown in [15, Prop. 5.4.V, p. 138], the nec-
essary and the sufficient condition for the “simpleness”
is J (n)(Dn) = 0; i.e., the n-JM of the diagonal set Dn is
zero. In this sense, we may say an RFSet is just a simple
FPP.

We should note that the target state space E may be
a finite set itself, e.g., when the original state space is ap-
proximated by a set of small rectangular cells, as in the
target model used in [30]. In that case, it would be un-
reasonable to prohibit any two targets from occupying
a single state, so that RFSet formalism becomes inade-
quate,

35
while FPP formalism may become a perfect al-

ternative. This idempotency peculiarity becomes appar-
ent also when we consider the union of two independent
RFSets, as we see below.

D. Concatenation, Union, Superposition, and
Convolution

As a foundation for MHT, the binary operation on
FM, FCM, or FICM, i.e., concatenation or unionization,
of random elements, plays crucial roles.LetX1 andX2 be
two independent RFSets, i.e., two independent random
elements in (F (E), B(B),M), with JMDs φ1 and φ2, re-
spectively. Then, as described in [25, Sec. 11.5.3, p. 385],
JMD φ of the union X = X1 ∪X2 can be written as

φ(X ) =
∑
X1⊆X

φ1(X1)φ2(X\X1), (5)

which holds true only when each product measure
μ̃n1 × μ̃n2 of the modified measures satisfies

36
(μ̃n1 ×

μ̃n2 )(Dn1+n2 ) = 0. This condition, guaranteeing that
X1 ∩X2 = ∅ with probability 1, is satisfied if μn(Dn) = 0,
e.g., when target state space E has a continuous compo-
nent such as a Euclidean component.

In FPP formalism, which lacks the idempotency, for
any two independent FPPs, [(x1i)

n1
i=1] and [(x2i)

n2
i=1], with

JMDs φ1 and φ2, respectively, the JMD φ of the concate-
nation [(x1i)

n1
i=1] ∗ [(x2i)

n2
i=1] = [(x1i)

n1
i=1 ∗ (x2i)

n2
i=1] can al-

ways be written as

φ([(xi)ni=1]) =
∑

I⊆{1,...,n}
φ1([(xi)i∈I])φ2([(xi)i∈{1,...,n}\I]),

(6)
which is translated into the case where the n-JD of
the two RFSeqs with permutable n-PDists, with n-JDs,

35In [25,Appendix E,p. 705], it is indicated that the idempotency issues
should be resolved by the concept of multisets.
36In Section II-C,we defined μ̃n(B) = μn(B\Dn), which does not nec-
essarily imply (μ̃n1 × μ̃n2 )(Dn1+n2 ) = 0, because μ̃n1+n2 = μ̃n1 × μ̃n2
does not hold necessarily.
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(J(n1 )1 )∞n1=0 and (J(n2)2 )∞n2=0, is (J
(n))∞n=0, as

J(n)((xi)ni=1) =
∑

I⊆{1,...,n}
J(#(I))1 ((xi)i∈I )J

(n−#(I))
2 ((xi)i∈{1,...,n}\I ).

(7)
For the rest of this paper, we will denote the right-

hand side of (5) for RFSet formalism, or of (6) for FPP
formalism, by the convolution φ1 ⊗ φ2 of two JMDs φ1

and φ2. This convolution can be extended to N indepen-
dent RFSets or FPPs as φ1 ⊗· · ·⊗φN , in an obvious way.
When two independent FPPs are represented by random
measures N1 and N2, the random measure representa-
tion N of the concatenation (the union) is simply the
sum N = N1 + N2, which is called the superposition of
two FPPs with N1 and N2 [42, Ch. 5.1, p. 152].

III. TARGET AND SENSOR MODELS, AND DATA
ASSOCIATION HYPOTHESES

Whenever the word MHT is mentioned in the con-
text of MTT, we understand that by a “hypothesis” we
mean a data association hypothesis,which is the core con-
cept of the MHT. The ultimate goal of any MHT algo-
rithm is to estimate the target states, in either one of
the three formalisms described in the previous section,
while generation, evaluation, and maintenance of asso-
ciation hypotheses may constitute various intermediate
algorithmic steps. In some applications, however, deter-
mination of correlation or relations among the data in
terms of their origins, retroactively in many cases, is of
primary interests and importance. In this section, after
describing a general class of target and sensor models
for the rest of this paper, association hypotheses will be
defined as possible realizations of an RFSet, called data
association, or simply association, in a discrete space.

A. Target Model: Set of Stochastic Processes

Unlike almost all the targetmodels inRFSet (FISST)
formalism [25]–[27] where a set of an unknown number
of targets is modeled as a stochastic process on FICM,
i.e., the collection F (E) of finite sets in a given target
state space E, our target model assumes that

(A1) [Target Model]: The set of targets, as a whole,
is modeled as 1) an RFSeq ((xi(t))t∈[t0,∞))ni=1, 2) an FPP
[((xi(t))t∈[t0,∞))ni=1], or 3) an RFSet {(xi(t))t∈[t0,∞)}ni=1,
of stochastic processes on space E, over a continuous
time interval [t0,∞), with the probability pn = P(n)
of the number of targets being n with a finite mean, so
that, for each n, for any N-tuple, (sκ )Nκ=1 ∈ [t0,∞)N , of
distinct times, 1) RFSeq ((xi(sκ ))Nκ=1)

n
i=1 has permutable

n-PDist F (n)(·; (sκ )Nκ=1) and n-JM J (n)(·; (sκ )Nκ=1) on
(ENn,BNn, μ

Nn) with n-PD f (n)(·; (sκ )Nκ=1) and n-
JD J(n)(·; (sκ )Nκ=1), 2) FPP [((xi(sκ ))Nκ=1)

n
i=1] has PDist

37

37We are using the same notations for the PDist �, and the JMD φ

for both the FPP and RFSet formalisms. Distinction should be clear

�(·; (sκ )Nκ=1) on (
⋃∞

n=0E
Nn/n!,

⋃∞
n=0 BNn/n!,MN ) with

JMD φ(·; (sκ )Nκ=1), or 3) RFSet {(xi(sκ ))Nκ=1}ni=1
has PDist �(·; (sκ )Nκ=1) on (F (EN ), B(BN ),MN ) with
JMD φ(·; (sκ )Nκ=1), whereMN is the measure defined by
(2) or (4) (for FPP or RFSet formalism) withE replaced
by EN .

Remark 5 (Birth–Death Target Models): There are
two significant departures of our target model from the
commonly used target models: 1) Targets aremodeled as
an RFSeq, an FPP, or an RFSet of stochastic processes,
each on the target state space (E,B, μ), over a continu-
ous time interval [t0,∞), rather than a single stochastic
process on FM

⋃∞
n=0 E

n or FCM
⋃∞

n=0 E
n/n! or FICM

F (E), and 2) the (generally unknown, and hence ran-
dom) number n of targets is constant over the entire time
interval [t0,∞). We contend that condition 1 is neces-
sary to define data association hypotheses as hypothe-
ses of the true association sharing the same origins, to
avoid any possibility of target identities from ever being
switched by the symmetrization as a consequence of us-
ing the FPP or the RFSet formalisms. We believe that
condition 2 can be defended froma “first principle”point
of view, as we argue in the following.

A real birth or death of any target occurs only un-
der very limited circumstances, most probably in bat-
tlefield type of environments, where, e.g., missiles are
launched or vehicles are destroyed.Evenmissiles before
being launched, however, may exist as ground targets. A
destroyed vehicle may be still called a damaged vehi-
cle, or a wreckage, with its existence intact, even if it is
dead. In many cases, an emergence of a persistent track
is at least partly a result of sensor management, and
should not be confused with a target birth,

38
which

should be a part of a purely target behavioral model, in-
dependent of any sensor.

In most realistic situations, what we call new targets
(or newly born targets) are actually those that had re-
mained undetected (and hence existed) but were de-
tected for the first time by a sensor that is capable of
detecting them. For the implementation of MHT algo-
rithms, therefore, the issue becomes how to calculate
the track initiation likelihood, or the newly detected tar-
get likelihood, as discussed in [35] as implementation of
track-oriented MHT, or in [36] as a part of overall al-
gorithm complexity as discussed in connection with the
RFSet-based algorithms. When hypotheses are evalu-
ated recursively, as discussed in Section III-C , the issue
is how to calculate the density of newly detected targets

from the context. In FPP or RFSet formalism,Assumption A1 implies
�(ENn/n!; (sκ )Nκ=1) = pn or �(Fn(EN ); (sκ )Nκ=1) = pn.
38In our opinion, a typical example of this type of confusion can be
seen in an assertion made in [2, p. 327]: “A true target is most generally
defined to be an object that will persist in the tracking volume for at
least several scans.” Although “many” true targets may be persistent
in any tracking volume (if it is well defined and well designed),we may
not know generally, a priori, any “true” target would appear at any time
in any portion of any tracking volume, depending on particular sensor
management strategies.
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in the sensor measurement space (as discussed in [41]).
In our opinion, the target birth–death model has more
often been used for the convenience of the algorithms
than for faithfully modeling the targets’ behaviors and
the sensor detection capabilities.

Moreover, the constant number n can be justified
even when the target birth–death is indeed supported by
some legitimate reality, by counting all the targets that
ever exist in a given time interval, e.g., [t0,∞), and by in-
cluding the augmented discrete states, such as {unborn,
alive, dead}, at any given time,with an appropriate target
dynamics, within the framework ofmultiple models [46].

B. Sensor Model: Random Assignments and False
Alarms

Our sensor model defines available information in
the form of a sequence yk, k = 1, 2, ..., of measurement
frames,

39
each of which, yk = (yk j)

mk
j=1, is an RFSeq, in an

appropriate measurement space
40
EMk with an appropri-

ate measure to let us properly define the mk-PD, com-
posed of mk measurements, yk j’s, collected at the same
time tk (t0 ≤ t1 ≤ t2 ≤ · · · ) by the same sensor.

41

The uncertainty of the origin of each measurement
yk j is modeled by an unobservable RFSet ak of pairs
of integers in {1, ...,n} × {1, ...,mk}, given the number n
of the targets and the number mk of the measurements
in frame k, called the target-to-measurement assignment
or simply target assignment at frame k. Let the domain
and the image (range) of ak be denoted by Dom(ak) =
{i|(i, j) ∈ ak for some j}, and Im(ak) = { j|(i, j) ∈
ak for some i}. Then, 1) i ∈ Dom(ak) means the ith tar-
get is detected at frame k, 2) (i, j) ∈ ak means

42
the jth

measurement of frame k originates from the ith target,
and 3) j /∈ Im(ak) means the jth measurement of frame
k is a false alarm (that does not originate from any tar-
get).

Throughout the rest of this paper, we maintain the
following two assumptions for each frame k:

(A2) [No Merged or Split Measurement]: There is
no merged measurement, i.e., #({i|(i, j) ∈ ak}) = 1 for
any j ∈ Im(ak), and there is no split measurement, i.e.,
#({ j|(i, j) ∈ ak}) = 1 for any i ∈ Dom(ak).

(A3) [Measurement Ordering]: Given the number
mk of measurements and given the set Dom(ak) of in-
dices of detected targets at frame k, the target assign-
ment ak is independent of the target states at time tk, and
all themk!/(mk − #(Dom(ak)))! possible realizations of
ak, under Assumption A2, are equally probable.

39Synonymous to scans, measurement sets, data sets, etc.
40We generally assume each measurement space EMk is also LCHC2
so that its conditional PD is well defined as the likelihood function that
is a measurable function of the state X (tk) in

⋃∞
n=0 E

n or
⋃∞

n=0 E
n/n!

or F (E). The measurement space EMk is essentially the field of view
of the sensor for frame k, and hence should be compact, or at least
bounded.
41Generally, one of the multiple sensors.
42We also write ak(i) = j to mean (i, j) ∈ ak, under Assumption A2.

Assumption A2 makes each target assignment ak a
one-to-one function, while Assumption A3 is to best re-
flect the fact that the actual process of how each sensor
orders the measurements (yk j)

mk
j=1 might be very com-

plex and different from sensor to sensor, making any or-
dering of the measurements not informative.

One of the most basic assumptions for any dynam-
ical state estimation problem to be tractable is condi-
tional independence of information. In our MTT cases,
that assumption is translated into the conditional inde-
pendence of the pair (yk, ak) of observations yk and un-
observable target assignments ak, for k = 1, 2, ....

(A4) [Conditional Independence]:For any sequence
(yk, ak)Kk=1 of measurement frames and target assign-
ments, we have

P
(
(yk, ak)Kk=1

∣∣ϕ (((xi(t))t∈[t0,∞))
n
i=1

))
=

K∏
k=1

P
(
yk, ak

∣∣ϕ ((xi(tk))ni=1

))
,

(8)

where ϕ(x) = x for RFSeq formalism, ϕ(x) = [x]
for FPP formalism, and ϕ((xi)ni=1) = {xi}ni=1 for RFSet
formalism, while ϕ(((xi(t))t∈[t0,∞))

n
i=1) should be un-

derstood as the σ -algebra of events generated by the
RFSeq, the FPP, or the RFSet of the entire stochastic
processes,modeling targets according to each formalism.

In (8), and in many of subsequent equations, to avoid
excessive notational complexities, we will use P or p as
the generic symbol for any conditional or unconditional
PD whenever its usage will not generate any confusion.
However, we should remember that, when the usage of
symbol P involves any discrete RFSet such as the target
assignment ak (and also the data association λK, defined
in Section III-C ), its PD is the JMD with respect to the
counting measure on the space of subsets of a countable
space, and, as discussed in Section II-C , is actually the
PMF.

Under Assumption A2, therefore, Assumption A3
can be written as a conditional PMF

P(ak|mk,Dom(ak),X (tk))
= P(ak|mk, #(Dom(ak))) = (mk−#(Dom(ak)))!

mk!
(9)

for each frame k,whereX (tk) is the target state set in any
of the three formalisms.With a straightforward Bayesian
expansion, we can write each scan-wise extended likeli-
hood function on the right-hand side of (8) as

43

P
(
(yk j)

mk
j=1, ak

∣∣∣ϕ ((xi(tk))ni=1

)) = (mk−#(Dom(ak)))!
mk!

P
(
(yk j)

mk
j=1

∣∣ak,mk, ϕ
(
(xi(tk))ni=1

))
P
(
mk
∣∣Dom(ak), ϕ

(
(xi(tk))ni=1

))
P
(
Dom(ak)|ϕ

(
(xi(tk))ni=1

))
,

(10)

43P((yk j )
mk
j=1, ak|X ) is the conditional joint PD for RFSeq (yk j )

mk
j=1

in EMk and RFSet ak on the space of pairs of integers. Whenever
we use any RFSeq such as (yk j )

mk
j=1, we need to remember that the

length mk is a random variable, so that we have P((yk j )
mk
j=1) =

P((yk j )
mk
j=1|mk)P(mk).
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the right-hand side of which consists of four factors: 1)
the equal probability of each realization of assignment
ak given only set Dom(ak) of indices for detected tar-
gets, and the number mk of measurements, as shown by
(9), 2) the PD of the values of themeasurements (yk j)

mk
j=1

in EMk, given the number mk of the measurements and
their origins specified by ak, 3) the probability of the
number of false alarms of being mFAk that is equal to
mk−#(Dom(ak)) underAssumptionA2,and 4) the joint
probability of detection/nondetection of the n targets.

We should note that, although each measurement
frame yk = (yk j)

mk
j=1 is modeled as an ordered set (i.e.,

RFSeq), the assignment is defined on an arbitrarily cho-
sen enumeration of the targets, modeled by RFSeq with
permutable n-PDist, or FPP, or RFSet of stochastic pro-
cesses. Consequently, in (8) and (10), (xi(tk))ni=1 means
target states with an enumeration that is arbitrary but
consistent throughout all the measurement frames that
we model.

By summing out the assignment ak in (10),we obtain
the measurement frame likelihood function in the ordi-
nary sense as

P
(
(yk j)

mk
j=1

∣∣∣ϕ ((xi(tk))ni=1

)) = 1
mk!

∑
ak∈Ā({1,...,n},{1,...,mk})

P
(
(yk j)

mk
j=1

∣∣ak,mk, ϕ
(
(xi(tk))ni=1

))
(mFAk!)P

(
mFAk

∣∣Dom(ak), ϕ
(
(xi(tk))ni=1

))
P
(
Dom(ak)|ϕ

(
(xi(tk))ni=1

))
,

(11)

wheremFAk = mk−#(Dom(ak)) and Ā (as well asA that
will be used later) is the symbol for the space of one-to-
one functions, which we may call assignment functions,
defined, for any pair of finite sets I and J, as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A(I, J)

def=
{
a : I → J

∣∣∣∣I = Dom(a) and
#(Dom(a)) = #(Im(a))

}
,

Ā(I, J)
def=
{
a : D → J

∣∣∣∣D = Dom(a) ⊆ I and
#(Dom(a)) = #(Im(a))

}
.

(12)

It is significant that we define each measurement
frame (yk j)

mk
j=1 as an RFSeq (not as an FPP or an

RFSet) so that we can call each measurement as the
“jth” measurement at the “kth” frame, to define data
association hypotheses in the next section. Apparently,
both sides of (11) are permutable with respect to the
index j ∈ {1, ...,mk} of measurements (yk j)

mk
j=1, as well

as with respect to the index i ∈ {1, ...,n} of targets
(xi(tk))ni=1, as the likelihood function and hence (yk j)

mk
j=1

can be considered as an FPP or RFSet with conditional
JMD φMk([(yk j)

mk
j=1]|[(xi(tk))ni=1]) in FPP formalism, or

φMk({yk j}mk
j=1|{xi(tk)}ni=1) in RFSet formalism, dropping

1/mk! from (11), reflecting the fact that the order of the
measurements does not bear any information.

C. Association and Association Hypotheses

Measurement-to-measurement or data-to-data or
simply data association λK over given cumulative frames
(yk)Kk=1 = ((yk j)

mk
j=1)

K
k=1 is defined, from the multiframe

target assignment (ak)Kk=1, as

λK =
{

K⋃
k=1

{(k, j)|(i, j) ∈ ak}
∣∣∣∣∣ i ∈

K⋃
k=1

Dom(ak)

}
. (13)

We should note that we define the data association λK,
not as a partition of the cumulativemeasurements them-
selves (yk)Kk=1 = ((yk j)

mk
j=1)

K
k=1, but rather as a par-

tition of the cumulative set of measurement indices,

IK
def=⋃K

k=1 {k} × {1, ...,mk}. Each component of λK con-
stitutes the indices of all the measurements originating
from the same target, so that #(λK) targets are detected
in (yk)Kk=1, implying #(λK) ≤ n, while its complement
IK\(⋃ λK) is the set of all the measurement indices for
false alarms in (yk)Kk=1.We call any realization of associ-
ation λK a data association hypothesis

44
or simply an as-

sociation hypothesis or a hypothesis. As a consequence
of Assumption A2, the set 
K of all the association hy-
potheses on (yk)Kk=1 is given by


K =
{

λ ⊆ TK\{∅}
∣∣∣∣∣
τ ∩ τ ′ = ∅ for any

(τ ,τ ′) ∈ λ × λ such that τ 
= τ ′

}
,

(14)
where

TK
def=
{

τ ⊆ IK

∣∣∣∣∣
#
({
j ∈ {1, ...,mk}|(k, j) ∈ τ

}) ≤ 1

for any k ∈ {1, ...,K}

}
,

(15)
each member of which is called a track on (yk)Kk=1; i.e.,
each hypothesis is a consistent (i.e., nonoverlapping) set
of nonempty tracks.

In Section IV,we will describe issues concerning gen-
eration of data association hypotheses, and their evalu-
ation under additional sets of assumptions, completing
our definition of MHT in the three mathematical for-
malisms, which is the main goal of this paper.

Remark 6 (Hypotheses):Aswe call any possible real-
ization of the data association, i.e., an RFSet, a data asso-
ciation hypothesis, we may call any possible realization
of target assignment ak for each frame k, i.e., any element
in Ā({1, ...,n}, {1, ...,mk}), a target-to-measurement as-
signment hypothesis. The latter type of hypotheses was
introduced in the context of the PDA [12] and JPDA [13]
algorithms, assuming a fixed number of targets, predat-
ing the development of the MHT. In [2, Sec. 7.5.2, p. 431]
and [3, Sec. 4.2, p. 113], multiple-scan, non-Gaussian ex-
tension of the JPDA algorithms is discussed. In [3, Sec.
4.1.1, p. 109], in order to model an unknown number of

44Also known as data-to-data or measurement-to-measurement asso-
ciation hypothesis.We are using two different terms, “association” and
“assignment,” to make a clear distinction between two random sets λK
and ak.
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targets, it was proposed to augment target space E to
E ∪ {θ}, where “θ” is the “target does not exist” state,
and to use the joint state space (E ∪ {θ})N with a fixed
numberN (that serves as a priori upper boundN on the
number of targets), within the extended JPDA context
mentioned earlier.

As seen in (13), each association hypothesis λ ∈ 
K

can be viewed as an equivalence class of multiframe tar-
get assignment hypotheses (ak)Kk=1 ∈ ∏K

k=1Ā({1, ...,n},
{1, ...,mk}), the equivalence defined through the permu-
tation of the target indices. Given the number n of tar-
gets and cumulative frames (yk)Kk=1, through (13), each
multiframe target assignment (ak)Kk=1 is uniquely deter-
mined by a pair (λ, α) of data association λ ∈ 
K and
track-to-target assignment (or simply track assignment)
α ∈ A(λ, {1, ...,n}) so that we have τ = ⋃K

k=1{(k,
ak(α(τ )))|α(τ ) ∈ Dom(ak)} for any τ ∈ λK. The target
permutability, assumed by Assumption A1, implies that,
given ((yk)Kk=1, λK,n), every realization of track assign-
ment α inA(λ, {1, ...,n}) is equally probable.Moreover,
in FPP or RFSet formalism, any arbitrary enumeration
of the targets in (8)–(13) can be viewed as another ran-
dom assignment from the set of targets,X = [(xi)ni=1] or
X = {xi}ni=1, to its index set {1, ...,n} with n = �(X ) or
n = #(X ), i.e., a random element in A(X, {1, ...,n}).

Remark 7 (Merged and Split Measurements): For
many sensors, the no-merged-or-split-measurement as-
sumption (A2) is a reasonable assumption. It is very
likely that any occasional violation of this assump-
tion may be helped out by an effective recovery al-
gorithm. On the other hand, there have been many
efforts to generate and probabilistically evaluate, ex-
plicitly, merge/split measurement hypotheses, e.g., [34]
(merged measurements) and [35] (split measurements).

IV. HYPOTHESIS GENERATION AND EVALUATION

To our best knowledge, the concept of the data as-
sociation hypothesis, the core of the MHT, as described
in the previous section, was first clearly defined in [5],
in terms of tracks and hypotheses, together with an al-
gorithm for selecting the single best (most probable or
maximum a posteriori probability) hypothesis in a batch-
data-processingmode.Subsequently, an algorithm for si-
multaneously generating and evaluating tracks and hy-
potheses, using recursive formulas, was first systemati-
cally and comprehensively described in [6]. In this sec-
tion, we discuss hypothesis generation, and hypothesis
evaluation under commonly used assumptions, using the
three formalisms described in Section II, and the tar-
get/sensor models defined in Section III, which we may
view as a form of generalizations of the results described
in [5]–[7].

A. Hypothesis Generation and Management

For any pair ((yk)
K1
k=1, (yk)

K2
k=1) of cumulative frames

such that K1 < K2, we call a track τ1 ∈ TK1 a prede-

cessor of a track τ2 ∈ TK2 (or τ2 is a successor of τ1) if
τ1 = {(k, j) ∈ τ2|k ≤ K1} (including the case τ1 = �).
We call a hypothesis λ1 ∈ 
K1 a predecessor of a hy-
pothesis λ2 ∈ 
K2 (or λ2 is a successor of λ1) if, for each
track τ2 ∈ λ2, there exists a (necessarily unique) prede-
cessor τ1 in λ1 or otherwise track τ2 has an empty prede-
cessor τ1 = ∅ in TK1 . Then, both cumulative collections
of tracks and hypotheses,

⋃K
k=1 Tk and

⋃K
k=1 
k, respec-

tively, form arborescent (tree) directed graphs through
the predecessor–successor relations. For each hypothe-
sis λ ∈ 
K2 and each track τ ∈ TK2 , we denote their
unique predecessors in 
K1 and TK1 by λ|K1 and τ|K1 ,
respectively.

There may be many systematic methods for generat-
ing these trees. In [6], D. B. Reid called hypothesis tree
generation using each measurement yk j as a level vari-
able

45
the measurement-oriented approach, from which

the termmeasurement-orientedMHT originated, in con-
trast to the target-oriented approach in which a target-
to-measurement assignment tree is generated using
each target index as a level variable

46
(e.g., for PDA

and JPDA algorithms) with a fixed known number n
of targets.

The algorithm described in [5] recursively generates
and evaluates tracks (including the track likelihood de-
fined later in this section), in effect, building a track
tree.Using a batch-processing form of hypothesis evalu-
ation, it then selects the single best association hypoth-
esis on (yk)Kk=1 based on the a posteriori probability
P(λ|(yk)Kk=1) (defined in Section IV-B ) for each hypoth-
esis, using a zero–one integer programming technique,
where a set of association hypotheses is formed as feasi-
ble solutions to a system of binary linear equations.Over
the years, it has become customary to call any MHT al-
gorithm using this approach, which originated from [5],
a track-oriented MHT.

It is well known that the numbers, #(
K) and #(TK),
of hypotheses and tracks generally grow very rapidly, at
exponential rates in many cases, so that any practical
MHT implementation must have reasonable means of
controlling the growth. Common methods for control-
ling the growth of the number of association hypothe-
ses include gating, pruning, combining, and clustering, as
outlined in [6]. The single best hypothesis selection of
[5] over sliding windows of consecutive frames has been
widely used as means for pruning track trees in a vari-
ety of ways for many track-oriented MHT algorithms.
Many heuristic methods to control the numbers, #(
K)
and #(TK), generally known as hypothesis management
methods, have been devised in the past 40 years or so, as
described in [8].

45Assigning each measurement to tracks in hypotheses at each expan-
sion.
46Assigning each target to measurements at each expansion.
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B. Hypothesis Evaluation: Independence Assumptions

As mentioned in Remark 6 in Section III-C, in any
of the three formalisms, an immediate consequence of
Assumptions A1–A3 and the definition (13) of data as-
sociation is as follows: Given the data association λK ∈

K on cumulative frame (yk)Kk=1, and given the num-
ber n of targets such that n ≥ #(λK), any one of the
equally possible n!/(n − #(λK))! track assignments α’s
inA(λK, {1, ...,n}) will define uniquely a multiframe tar-
get assignment (ak)Kk=1 ∈ ∏K

k=1Ā({1, ...,n}, {1, ...,mk}).
Hence, if (13) holds,we haveP(λK|n, (yk)Kk=1, (ak)

K
k=1) =

1 and P((ak)Kk=1|n, (yk)Kk=1, λK) = (n− #(λK))!/n!. Both
are zero otherwise. Hence, we have

P(λK,n|(yk)Kk=1)
= P((yk)Kk=1)

−1 n!
(n−#(λK ))!

P((yk, ak)Kk=1,n).
(16)

On the right-hand side of (16), (ak)Kk=1 ∈ ∏K
k=1Ā({1, ...,

n}, {1, ...,mk}) is any one of the n!/(n − #(λK))! mul-
tiframe target assignment hypotheses that supports λK
(through (13)).

Since the sensor model defined in Section III-B al-
lows us to have multiple sensors, the sequence of mea-
surement frame times, (tk)Kk=1, may contain repeated
time stamps.We therefore need to consider a subset [K]
of {1, ...,K} to remove any repeated time, i.e., [K] ⊆
{1, ...,K}, #([K]) = #({tk}Kk=1) ≤ K, and K ∈ [K], for
hypothesis evaluation and target state estimation.

Under Assumptions A1–A4,P((yk, ak)Kk=1,n) in (16)
can be expanded by the target states, in RFSeq formal-
ism, as

P((yk, ak)Kk=1,n) = pn
∫

E#([K])n

(
K∏
k=1

P
(
yk, ak

∣∣(xi(tk))ni=1

))
f (n)

(
((xi(tκ ))κ∈[K])

n
i=1; (tκ )κ∈[K]

)
μ#([K])n

(
((dxi(tκ ))κ∈[K])

n
i=1

)
.

(17)
The product, n!pn f (n)(·; (tκ )κ∈(K)), which appears when
we substitute (17) into (16), is nothing but the
n-JD J(n)(·; (tκ )κ∈(K)), and hence should be replaced
by JMD φ([((xi(tκ ))κ∈(K))ni=1]; (tκ )κ∈(K)) in FPP formal-
ism, and JMD φ({(xi(tκ ))κ∈(K)}ni=1; (tκ )κ∈(K))in RFSet
formalism. Each frame-wise extended likelihood func-
tion P(yk, ak|ϕ((xi(tk))ni=1)) (with ϕ(x) = x, ϕ(x) = [x],
and ϕ((xi)ni=1) = {xi}ni=1 for RFSeq, FPP, and RFSet for-
malisms, respectively) can then be expanded by the sen-
sor model (10).

The a posteriori probabilities of each hypothesis
λK ∈ 
K and of the number n of targets are obtained
separately through marginalization of (16) with (17). To
evaluate them in a practical and hence meaningful way,
however, we need to divorce ourselves from target-to-
measurement assignments, (ak)Kk=1, which would require
a fewmore assumptions on the target and sensormodels,
including

(A5) [i.i.d. Targets]:Given the number n of targets,
assume the joint probability distribution for the set of

targets is i.i.d. with the common single-target joint PD
fTGT, in the sense that, for any (sκ )Nκ=1 ∈ [t0,∞)N of dis-
tinct times, for any ((xi(sκ ))Nκ=1)

n
i=1 ∈ ENn, we have f (n)

(((xi(sκ ))Nκ=1)
n
i=1; (sκ )Nκ=1) = ∏n

i=1 fTGT((xi(sκ ))Nκ=1;
(sκ )Nκ=1) in RFSeq formalism, and φTGT(ϕ(((xi
(sκ ))Nκ=1)

n
i=1); (sκ )Nκ=1) = n!pn

∏n
i=1 fTGT((xi(sκ ))Nκ=1;

(sκ )Nκ=1) in FPP (ϕ(x) = [x]) or RFSet (ϕ((xi)ni=1) =
{xi}ni=1) formalism.

Under this i.i.d. assumption, the target model
can conveniently be expressed by the intensity
measure density (IMD),

47
γTGT((ξκ )Nκ=1; (sκ )Nκ=1) =

ν fTGT((ξκ )Nκ=1; (sκ )Nκ=1), for any N, for any (ξκ, sκ )Nκ=1 ∈
(E × [t0,∞))N ,with a priori expected number of targets,
ν =∑∞

n=1 npn < ∞.
Another set of independence assumptions is con-

cerned with our sensor model:
(A6) [Independent Detections and i.i.d. False

Alarms]: For each measurement frame, yk = (yk j)
mk
j=1,

1) the target detection is target-wise independent and
determined by a common detection probability as a
function pDk of the target state, 2) the target-state-to-
measurement transition is also target-wise independent
with a common transition probability density

48
pMk, and

3) each false alarm in the frame is independent from the
target states and from other false alarms with a common
PD, pFAk, while the probability of the number of false
alarms in the frame beingmFAk is given as pNFAk(mFAk)
with finite mean νFAk = ∑∞

mFAk=1mFAkpNFAk(mFAk) <

∞.
By applying Assumption A6 to (10), for each k, we

have

P
(
(yk j)

mk
j=1, ak

∣∣∣ϕ((xi(tk))ni=1)
)

= LFAk({1,...,mk}\Im(ak))
mk!( ∏

i∈Dom(ak)
pMk(ykak(i)|xi(tk))pDk(xi(tk))

)
⎛
⎜⎝ n∏

i=1
i/∈Dom(ak)

(1 − pDk(xi(tk))

⎞
⎟⎠

(18)

47For an RFSeq (xi)ni=1, an FPP [(xi)ni=1], or an RFSet {xi}ni=1 in
(EN ,BN ), for any N = 1, 2, ..., the intensity measure (IM) � is a fi-
nite measure on (EN ,BN ) defined by �(B) = E(

∑n
i=1 I(xi;B)) (with

the random measure representation N of FPP formalism, �(B) =
E(N (B)).), for each B ∈ BN , using the generic symbols, E and I, for
mathematical expectation and indicator function. The IMD is its den-
sity, i.e., the Radon–Nikodym derivative with respect to the measure
μN .More commonly used name for IM is the first-order moment mea-
sure ([15, Sec. 5.4, p. 132], but we prefer IM and IMD because we only
use the moment measure of the first order. Another synonym is ex-
pectation measure. A conditional version of IMD is called probability
hypothesis density in [25]–[27].
48The use of a common pMk, equally for all themk measurements,yk j ’s,
in frame k, may not be justified when each measurement yk j has dif-
ferent measurement error characteristics from others. In that case, we
should use the measurement-index-dependent pMk j in place of pMk
(which we avoid for the sake of simplicity).
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with the frame-wise false alarm likelihood, defined for
each IFAk ⊆ {1, ...,mk}, as

LFAk(IFAk) = LNFAk(#(IFAk))
∏
j∈IFAk

γFAk(yk j), (19)

where γFAk(η) = νFAkpFAk(η) is the IMD of the false
alarms in frame k at each η ∈ EMk, and LNFAk(mFAk) =
(mFAk!/(νFAk)mFA )pNFAk(mFAk) is the likelihood on the
number mFAk of false alarms in frame yk = (yk j)

mk
j=1.

As shown in Appendix A, Assumptions A1–A6 al-
low us to derive a batch-mode hypothesis evaluation for-
mula,which we callMorefield form, in terms of the a pos-
teriori probability of the data association λK on cumula-
tive frame (yk)Kk=1, as

P(λK|(yk)Kk=1)

= C−1
MKLNDTK(#(λK))

( ∏
τ∈λK

LTRKK(τ )

)
L(K)

FA (λK)
(20)

with
1) the normalizing constant (Morefield constant),

CMK = P((yk)Kk=1)(
∏K

k=1mk!);
2) track likelihood

LTRKK(τ ) = ∫
E#([K])

(
K∏
k=1

qMDk(ξk; τ )
)

γTGT((ξκ )κ∈[K]; (tκ )κ∈[K])
∏

κ∈[K]
μ(dξκ )

(21)

defined for each track τ ∈ TK, derived from the a priori
joint IMD γTGT , and the extended target-wise state like-
lihood function qMDk(·; τ ), defined by, for each ξ ∈ E,

qMDk(ξ ; τ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pMk(y j|ξ )pDk(ξ ),
if (k, j) ∈ τ for some j ∈ {1, ...,mk},

1 − pDk(ξ ),

if (k, j) /∈ τ for any j ∈ {1, ...,mk};
(22)

3) likelihood LNDTK(nD) of the cumulative number
nD = #(λK) of detected targets defined by

LNDTK(nD) =
∑∞

n=nD
pn
n!
νn

(ν̂K)
n−nD

(n− nD)!
(23)

expressed by the a priori mean ν of the number of the
targets and the a posteriori expectation ν̂K = LTRKK(�)
of the number of the targets that remain undetected
through the cumulative frames (yk)Kk=1;

4)multiframe false alarm likelihood L(K)
FA , defined by

L(K)
FA (λ) =

K∏
k=1

LFAk
({
j ∈ {1, ...,mk}|(k, j) /∈ ∪λ

})
(24)

for each λ ∈ 
K through frame-wise false alarm likeli-
hood LFAk defined by (19).

As shown in [5], Morefield form (20) for evaluat-
ing hypotheses can be expressed as a form of zero–one
integer programming problem, by enumerating the set
∪
K = TK\{∅} of all the nonempty tracks as (τi)

NT
i=1, and

by mapping the set 
K of all the hypotheses into the
space {0, 1}NT through (ξi)

NT
i=1 = (I(τi; λ))NT

i=1 ∈ {0, 1}NT

for each λ ∈ 
K.

C. More on Hypothesis Evaluation: Markov and Poisson
Assumptions

We will now introduce two more commonly used as-
sumptions.

(A7) [Markov Assumption]: The targets are mod-
eled as an RFSeq, an FPP, or an RFSet of independent
stochastic processes, with a common a priori joint IMD
γTGT, which is Markovian, in the sense that, for any N-
tuple (sκ )Nκ=1 ∈ [t0,∞)N of distinct times, such that s1 <

s2 < · · · < sN , and for any (ξκ )Nκ=1 ∈ EN , we have

γTGT((ξκ )Nκ=1; (sκ )Nκ=1)

= γTGT(ξ1; s1)
N∏

κ=2
fTRN(ξκ |ξκ−1; sκ − sκ−1, sκ−1)

(25)

with a given state transition probability density (STPD),
fTRN(·|·;�s, s), on (E,B, μ), for each �s > 0 and s ∈
[t0,∞).

Markov assumption (A7) enables us to calculate
track likelihood LTRKK(τ ) for each nonempty track τ ∈
∪
K = TK\{∅} defined by (21), recursively as

LTRKk(τ|k) =

⎧⎪⎪⎨
⎪⎪⎩

γMNDk(yk j),
if k = k0(τ ) with (k, j) ∈ τ,

LTRK(k−1)(τ|(k−1))LMDk(τ|k),
if k > k0(τ )

(26)

for
49
k = k0(τ ),k0(τ ) + 1, ...,K, with the measure-

ment IMD γMNDk from newly detected targets, and the
measurement-or-no-detection likelihood LMDk, which
are defined by⎧⎪⎨
⎪⎩

γMNDk(yk j) = ∫
E
pMk(yk j|ξ )pDk(ξ )γ̄k(ξ )μ(dξ )

LMDk(τ|k) = ∫
E
qMDk(ξ ; τ|k) f̄k(ξ |τ|(k−1))μ(dξ )

(27)

for each k, any yk j ∈ EMk, and any track τ ∈ TK for any
K ≥ k. The recursive calculation (26) of track likelihood
can be done in parallel to a recursive process for obtain-
ing the updated track target state PD f̂k(·|τ|k) from the
predicted f̄k(·|τ|(k−1)), and generating the next predicted
f̄k+1(·|τ|k), for every ξ ∈ E, as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̂k(ξ |τ|k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γMNDk(yk j)−1pMk(yk j|ξ )pDk(ξ )γ̄k(ξ ),
if k = k0(τ ) with (k, j) ∈ τ,

LMDk(τ|k)−1qMDk(ξ ; τ|k) f̄k(ξ |τ|(k−1)),

otherwise (τ|(k−1) 
= ∅),

f̄k(ξ |τ|(k−1)) =

⎧⎪⎪⎨
⎪⎪⎩

∫
E fTRN(ξ |ξ ′; tk − tk−1, tk−1)

f̂k−1(ξ ′|τ|(k−1))μ(dξ ′), if tk > tk−1,

f̂k−1(ξ |τ|(k−1)), if tk = tk−1.

(28)

49k0(τ )
def= min{k|(k, j) ∈ τ for some j} is the index of the first frame

where track τ obtains a measurement, i.e., track initiation frame.
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The predicted IMD γ̄k(ξ ) of the undetected targets in
(27) and (28) is obtained from the similar recursion,
along the updated IMD γ̂k(ξ ), for each k = 1, 2, ..., as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ̂k(ξ ) = (1 − pDk(ξ ))γ̄k(ξ )

γ̄k(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

∫
E fTRN(ξ |ξ ′; tk − tk−1, tk−1)γ̂k−1(ξ ′)μ(dξ ′),

if k > 1 and tk > tk−1,

γ̂k−1(ξ ), if k > 1 and tk = tk−1,

γTGT (ξ, t1), if k = 1
(29)

for every ξ ∈ E.
For each k = 1, ...,K, let ν̄k = ∫

E γ̄k(ξ )μ(dξ ) and
ν̂k = ∫

E γ̂k(ξ )μ(dξ ). Then, we have ν̄k = ν̂k−1 for any
k > 1 (reflecting our no-birth-no-death target model),
ν̄1 = ν is the a priori expectation of the number n of tar-
gets, and ν̂K = LTRKK(∅) is the a posteriori expectation
of the number of targets that are not detected in any of
the K frames, (yk)Kk=1.

Under Markovian assumption (A7), we can rewrite
Morefield form (20) in a recursive hypothesis evaluation
form, as

P(λ|(yk′ )kk′=1) = C−1
RkP(λ|(k−1)|(yk′ )k−1

k′=1)⎛
⎜⎝ ∏

τ∈λ
τ|(k−1) 
=�

LMDk(τ )

⎞
⎟⎠ · LNDTk(#(λ))

LNDT(k−1)(#(λ|(k−1) ))⎛
⎜⎝ mk∏

j=1
{(k, j)}∈λ

γMNDk
(
yk j
)
⎞
⎟⎠ · LFAk

⎛
⎜⎝ mk⋃

j=1
(k, j)/∈∪λ

{ j}

⎞
⎟⎠

(30)

for each k, for every λ ∈ 
k, where

1) CRk = (mk!)P(yk|(yk′ )k−1
k′=1) = J(mk)

Mk (yk|(yk′ )k−1
k′=1) is

the normalizing constant (Reid constant);
2) λ|(k−1) is the unique predecessor

50
of λ ∈ 
k in 
k−1;

3) τ|(k−1) ∈ Tk−1 is the unique predecessor of each track
τ in a given hypothesis λ (including the case where
τ|(k−1) = ∅; in that case, τ is a singleton {(k, j)} for
some j ∈ {1, ...,mk}, i.e., a new track at frame yk);

4) LMDk(τ ) is the track-to-measurement likelihood of
old track τ|(k−1) and measurement yk j if (k, j) ∈ τ ,
and the missed detection likelihood otherwise (i.e., if
(k, j) /∈ τ ), defined in (27);

5) LNDTk and LNDT(k−1) are the likelihoods of the cu-

mulative numbers of detected targets, in (yk′ )kk′=1 and
(yk′ )k−1

k′=1, with ν̂k and ν̂k−1, as defined by (23);
6) γMNDk is the new detection IMD defined in (27);
7) LFAk(IFAk) is the false alarm likelihood defined by

(19).

We call this recursive hypothesis evaluation formula
(30), Reid form, which is the non-Poisson extension of

50For k = 1,we use the convention that 
̄0 = {∅} and P(λ̄|(yk′ )0k′=1) =
P(λ̄) = 1 for λ̄ = ∅.

the formulas in [6, eq. 16, p. 848] and [7, eq. 19, p. 405],
and was presented in [43, Th. 2, p. 231].
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Another common assumptions are Poisson assump-
tions on the a priori PDist (pn)∞n=0 of the number n of
the targets, and on the PDist (pNFAk(mFAk))∞mFAk=0 of the
numbermFAk of false alarms in each frame yk = (yk j)

mk
j=1.

(A8) [Poisson Assumptions]: 1) The PDist (pn)∞n=0
of the number of targets is Poissonwithmean ν, i.e., pn =
e−ννn/n!, for each n = 0, 1, 2, ..., and 2) for each frame
k = 1, 2, ..., the PDist pNFAk of the numbermFAk of false
alarms in frame yk = (yk j)

mk
j=1 is Poisson with mean νFAk,

i.e., pNFAk(mFAk) = e−νFAkν
mFAk
FAk /mFAk!, for each mFAk =

0, 1, 2, ....
With this Poisson assumption (A8), the likelihood

functions,LNDTK for the number of detected targets de-
fined by (23) and likelihood LNFAk for the number of
false alarms at each frame k, both become constants, as
LNDTK ≡ e−(ν−ν̂K ) and LNFAk ≡ e−νFAk , respectively. It
was proven in [31, Th. 2, p. 1136] that Poisson assump-
tion (A8) is also a necessary condition for those likeli-
hoods to be constants. With this assumption, Morefield
form (20) of hypothesis evaluation can be transformed
to a linear objective function of a zero–one linear inte-
ger programming problem, or equivalently to an objec-
tive function for a form of multidimensional assignment
algorithm described in [32].Any hypothesis selection al-
gorithm using Morefield form (20) became the core al-
gorithm for every so-called track-oriented MHT [8].

D. Target State Estimation

Under Assumptions A1–A3, given cumulative frame
(yk)Kk=1, for each assumed number n of targets and for
each data association λK ∈ 
K, there are n!/(n −
#(λK))! multiframe target assignments (ak)Kk=1’s, each
of which supports association λK (i.e., (λK, (ak)Kk=1) sat-
isfies (13)) and is uniquely determined by one of the
equally probable n!/(n− #(λK))! track assignments α ∈
A(λK, {1, ...,n}) as mentioned in Remark 6 of Section
III. Hence, in RFSeq formalism, we have

f (n)
(
((xi(tκ ))κ∈[K] )

n
i=1;(tκ )κ∈[K]

∣∣(yk)Kk=1

)
P(n|(yk)Kk=1)

= ∑
λK∈
K

f (n)
(
((xi(tκ ))κ∈[K] )

n
i=1;(tκ )κ∈[K]

∣∣λK, (yk)Kk=1

)
P(λK,n|(yk)Kk=1)

= ∑
λK∈
K

P(λK, n|(yk)Kk=1) ((n− #(λK))!/n!)∑
αK∈A(λK,{1,...,n})

f (n)
(
((xi(tκ ))κ∈[K] )

n
i=1;(tκ )κ∈[K]

∣∣(yk, ak)Kk=1

)
,

(31)
where, within the second summation, (ak)Kk=1 is the
multiframe assignment that is uniquely determined by
λK ∈ 
K and αK ∈ A(λK, {1, ...,n}), such that

51In [43], the statement of Theorem 2 (p. 231) contains a mis-
statement: LNDTk(#(λ)) in eq. (22) (p. 231) must be replaced by
LNDTk(#(λ))/LNDT(k−1)(#(λ̄)) where λ̄ = λ|(k−1) is the unique pre-
decessor of hypothesis λ, and accordingly, (ν̄ − ν̂k) in Corollary 2 of
[43, p. 233] should be replaced by (ν̂k−1 − ν̂k).

188 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 14, NO. 2 DECEMBER 2019



(k, ak(αK(τ ))) ∈ τ for each τ ∈ λK and αK(τ ) ∈
Dom(ak). While P(λK,n|(yk)Kk=1) can be determined
through (16) and (17), f (n)(·;(tκ )κ∈[K]|(yk, ak)Kk=1) can be
expressed by the standard Bayes formula, under condi-
tional independence assumption (A4).

The target permutability of Assumption A1 implies
that, once f (n)(((xi(tκ ))κ∈[K])

n
i=1;(tκ )κ∈[K]|(yk, ak)Kk=1) is

evaluated for any particular (ak)Kk=1 determined by an
arbitrary (λK,n, α), each term of the second summation
of (31) can be obtained by appropriate coordinate per-
mutation defined by each α ∈ A(λK, {1, ...,n}).

With additional independence assumptions (A5 and
A6), in RFSeq formalism, (31) can be rewritten as

Ĵ(n)K ((xi(tK))ni=1) =
∑
λ∈
K

P(λ|(yk)Kk=1)P(n|λ, (yk)Kk=1)

(n− # (λ))!

(ν̂K)
n−#(λ)

∑
α∈A(λ,{1,...,n})

(∏
τ∈λ

f̂K(xα(τ )(tK)|τ )
)

⎛
⎜⎜⎝

n∏
i=1

i/∈Im(α)

γ̂K(xi)

⎞
⎟⎟⎠ (32)

with

p(n|λK,YK) =

⎧⎪⎨
⎪⎩
(LNDTK(#(λK)))

−1 (ν̂K )
n−#(λK )

(n−#(λK ))!
· n!

νn
pn,

if n ≥ #(λK),
0, otherwise,

(33)
where

1) Ĵ(n)K ((xi(tK))ni=1) = J(n)((xi(tK))ni=1;tK|(yk)Kk=1) is
the conditional n-JD of the current state (xi(tK))ni=1 con-
ditioned by (yk)Kk=1;

2) LNDTK(nD) is the likelihood of the hypothesized
number #(λ) of all the detected targets in the K frames
being nD, defined by (23);

3) ν̂K = LTRKK(∅) is the expected number of targets
remaining undetected throughout the K frames, defined
by (21) through qMDk as qMDk(·; ∅) = 1−pDk(·) for each
k = 1, ...,K;

4) for nonempty track τ ∈ ∪
K = TK\{∅}, f̂K(·|τ ) is
the track target (current) state PD defined by

f̂K(ξK|τ ) =
( ∫
E#([K])−1

(
K∏
k=1

qMDk(ξk; τ )
)

γTGT((ξκ )κ∈[K]; (tκ )κ∈[K])
∏

κ∈[K]\{K}
μ(dξκ )

)/
( ∫
E#([K])

(
K∏
k=1

qMDk(ξ ′
k; τ )

)

γTGT((ξ ′
κ )κ∈[K]; (tκ )κ∈[K])

∏
κ∈[K]

μ(dξ ′
κ )

)
;

(34)

5) γ̂K is the IMD of the targets remaining undetected
after the K frames, defined by

γ̂K(ξK) = ∫
E#([K])−1

(
K∏
k=1

(1 − pDk(ξk))
)

γTGT((ξκ )κ∈[K]; (tκ )κ∈[K])
∏

κ∈[K]\{K}
μ(dξκ )

(35)

for each ξK ∈ E.
By dropping the most current target-wise extended

track-to-measurement likelihood function qMDK(·; τ )
from both the denominator and the numerator of (34),
we have the prediction PD f̄K(·|τ|(K−1)), which can
then be used for the recursive calculation of the track
likelihood by (26), without Poisson (A8) or Marko-
vian (A7) assumptions.UnderMarkov assumption (A7),
with or without Poisson assumption (A8), f̂K(·|τ ) and
f̄K(·|τ|(K−1)) can be obtained through the familiar recur-
sion of (28). Similarly, by taking out (1− pDK(ξK)) from
the integrand of (35), we have the predicted IMD γ̄K of
the undetected targets, while, with Markovian assump-
tion (A7), γ̄k and γ̂k can be obtained recursively by (29).

With Poisson assumption (A8), with or without
Markov assumption (A7), we can rewrite (32) as

Ĵ(n)K ((xi(tK))ni=1) = e−ν̂K
∑

λ∈
K

P(λ|(yk)Kk=1)

∑
α∈A(λ,{1,...,n})

(∏
τ∈λ

f̂K(xα(τ )(tK)|τ )
)⎛⎜⎝ n∏

i=1
i/∈Im(α)

γ̂K(xi)

⎞
⎟⎠
(36)

and
52

p(n|λK,YK) =
{
e−ν̂K (ν̂K )

n−#(λK )

(n−#(λK ))!
, if n ≥ #(λK),

0, otherwise.
(37)

In FPP formalism, we have

φ̂K([(xi(tK))ni=1])
def= φ([(xi(tK))ni=1]; tK|(yk)Kk=1)

= Ĵ(n)K ((xi(tK))ni=1),

while

φ̂K({(xi(tK))ni=1})
def= φ({(xi(tK))ni=1}, tK|(yk)Kk=1)

= Ĵ(n)K ((xi(tK))ni=1)

in RFSet formalism, both being expressed by (32) (non-
Poisson cases) and (36) (Poisson cases), as the a posteri-
ori JMD.

V. RELATION OF MHT TO RFSET-BASED MTT
ALGORITHMS

We understand that the relation between MHT and
RFSet-based MTT algorithms has been actively dis-
cussed recently, e.g., in [36]–[39]. It was even claimed in

52Thus, the a posteriori probability distribution of the number of un-
detected targets is Poisson.
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[38] that MHT can be derived from an RFSet-based al-
gorithm. This development is interesting, as we remem-
ber that RFSet-based algorithms started to be devel-
oped as correlation-free

53
algorithms [44].As mentioned

earlier, it is not our objective to conduct the literature
survey. In this section, we will state our perspectives
of RFSet-based MTT algorithms, from our MHT view-
points presented in Sections I–IV. We will use what we
consider as typical RFSet-based MTT target and sensor
models.

A. RFSet Target and Sensor Models

Throughout this section, we basically maintain all
the assumptions made so far, i.e., Assumptions A1–
A8. Instead of the RFSet-of-stochastic-processes as-
sumption (A1), however, we assume a discrete-time
Markov process (Xk)Kk=1 (K ≤ ∞) on an FICM-QMS
(F (E), B(B),M), with the kth stateXk ∈ F (E) at time
tk of the kth measurement frame, such that t1 ≤ t2 ≤
· · · , defined by a transition JMD

54
φTRNk(Xk+1|Xk), and

a Poisson initial state JMD φ(X1) = e−ν̄1
∏

x∈X1
γ̄1(x)

with IMD γ̄1 and the expected number of targets, ν̄1 =∫
E γ̄1(x)μ(dx), at time t1.

As a “typical” RFSet-based model, let us assume
that the transition JMD φTRNk(Xk+1|Xk) (for tk+1 >

tk) includes a birth–death term, as
55

φTRNk(·|Xk) =
φTSk(·|Xk) ⊗ φBk(·), which is the convolution of 1) the
survival-transition JMD φTSk(·|Xk) defined as a condi-
tional multiple Bernoulli (MBe) (or Poisson binomial)
JMD,

φTSk(·|{xki}ni=1) = φTSBek(·|xk1) ⊗ · · · ⊗ φTSBek(·|xkn)
(38)

for each Xk = {xki}ni=1, with each conditional Bernoulli
(Be) JMD φTSBek(·|xki), defined by, for any X ∈ F (E),

φTSBek(X |xki) =
⎧⎨
⎩
1 − pSk(xki), if X = ∅,

fTk(xk+1|xki)pSk(xki), if X = {xk+1},
0, if #(X ) > 1

(39)
assuming target-wise independent, target-state depen-
dent survival probability pSk : E → [0, 1], and a discrete-
time STPD

56
fTk(xk+1|xk) = fTRN(xk+1|xk; tk+1 − tk, tk)

that is target-wise independent, and 2) a Poisson birth
JMD φBk(X ) = e−νBk

∏
x∈X γBk(x), defined through the

IMD γBk with νBk = ∫
E γBk(x)μ(dx), all generally de-

pending on k = 1, 2, ....
In Section III-B, we modeled the kth frame as an

RFSeq (yk j)
mk
j=1 with each measurement having a unique

53We understand that the “correlation” is a “traditional”U.S.Navy ter-
minology for data association.
54We assume that the transition JMD φTRNk is only defined for tk+1 >

tk, and that Xk+1 = Xk if tk+1 = tk.
55We assume, for Section V, that any diagonal set Dn in En has zero
product measure μn, i.e.,μn(Dn) = 0.
56 fTRN is the continuous time STPDofAssumptionA7,assuming�s =
tk+1 − tk > 0.

label. The likelihood function (11) is, however, per-
mutable with respect to bothmeasurements (yk j)

mk
j=1 and

the target states (xi(tk))ni=1. Therefore, we can consider
each measurement frame as an RFSet Yk = {yk j}mk

j=1 in
an LCHC2 measure space

57
(EMk,BMk, μMk), having a

conditional JMD φMk(·|Xk) = φMDk(·|Xk)⊗φFAk(·) that
is the convolution of 1) conditional JMD φMDk(·|Xk)
of target detections and 2) Poisson JMD φFAk(YFAk) =
e−νFAk

∏
η∈YFAk

γFAk(η) with νFAk = ∫
EMk

γFAk(η)μMk(dη)
for the set of false alarms.

With the independent detection assumption (A6),
the target detections are modeled by a conditional MBe
JMD,

φMDk(·|{xki}ni=1) = φMDBek(·|xk1) ⊗ · · · ⊗ φMDBek(·|xkn)
(40)

for Xk = {xki}ni=1, with each conditional Be JMD,
φMDBek(·|xki), defined as, for anyY ∈ F (EMk),

φMDBek(Y |xki) =
⎧⎨
⎩
1 − pDk(xki), if Y = �,

pMk(y|xki)pDk(xki), if Y = {y},
0, if #(Y ) > 1.

(41)
For k = 1, 2, ..., let φ̄k(Xk) and φ̂k(Xk) be the predicted
and the updated state JMD, i.e.,⎧⎨
⎩φ̄k(Xk)M(dXk) =

{
Prob{Xk ∈ dXk}, if k = 1,
Prob{Xk ∈ dXk|(Yk′ )k−1

k′=1}, if k > 1,
φ̂k(Xk)M(dXk) = Prob{Xk ∈ dXk|(Yk′ )kk′=1}.

(42)
Then, as shown in Appendix B, with the target and

sensor models described earlier, we can prove that pre-
dicted JMD φ̄k(Xk) and updated JMD φ̂k(Xk) can be
expressed as convolutions φ̄k = φ̄Dk ⊗ φ̄Uk and φ̂k =
φ̂Dk ⊗ φ̂Uk, respectively, where 1) conditional JMD φ̄Dk

or φ̂Dk for the detected targets is written as
58

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ̄Dk(X ) = ∑
λ̄∈
̄k

#(λ̄)=#(X )

p̄k(λ̄)
∑

ᾱ∈A(λ̄,X )

(∏
τ̄∈λ̄

f̄k(ᾱ(τ̄ )|τ̄ )
)

φ̂Dk(X ) = ∑
λ̂∈
̂k

#(λ̂)=#(X )

p̂k(λ̂)
∑

α̂∈A(λ̂,X )

(∏
τ̂∈λ̂

f̂k(α̂(τ̂ )|τ̂ )
)

(43)
and 2) conditional JMDs φ̄Uk and φ̂Uk for the undetected
targets are Poisson JMD as⎧⎨
⎩

φ̄Uk(X ) = e−ν̄k
∏
x∈X

γ̄k(x) with ν̄k = ∫
E

γ̄k(ξ )μ(dξ )

φ̂Uk(X ) = e−ν̂k
∏
x∈X

γ̂k(x) with ν̂k = ∫
E

γ̂k(ξ )μ(dξ )

(44)
for each X ∈ F (E), with undetected target IMD γ̄k and
γ̂k, where

57We also assume, for Section V, that any diagonal set DMkm in each
product measurement space Em

Mk has zero product measure μm
Mk, i.e.,

μm
Mk(DMkm) = 0 for eachm.

58We understand that each JMDof (43), a probability-weighted sum of
the symmetrized asymmetric PD products, is called generalized multi-
Bernoulli (GMBe) in [33].
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1) 
̄k and 
̂k are sets of association hypotheses, each
hypothesis being as a collection of nonempty tracks,each
ofwhich is a subset of

⋃k−1
k′=1 {k′} ×Yk′ or

⋃k
k′=1 {k′} ×Yk′ ;

2) ( p̄k(λ̄))λ̄∈
̄k
and ( p̂k(λ̂))λ̂∈
̂k

are probabilistic
weights;

3) each nonempty track, τ̄ ∈ ⋃

̄k or τ̂ ∈ ∪
̂k, is

accompanied by track PD, f̄k(·|τ̄ ) or f̂k(·|τ̂ ), on the state
space E.

Thus, the predicted φ̄k is represented by parame-
ters, (( p̄k(λ̄))λ̄∈
̄k

, ( f̄k(·|τ̄ ))τ̄∈∪
̄k
, γ̄k), the updated JMD

φ̂k by (( p̂k(λ̂))λ̂∈
̂k
, ( f̂k(·|τ̂ ))τ̂∈∪
̂k

, γ̂k), through (43) and
(44). Those parameters, which we may call sufficient
statistics,

59
are recursively calculated as shown in the next

two sections.

B. RFSet Filtering Update

The conditional JMD is updated, from φ̄k to φ̂k, by
the Bayes update formula, as

φ̂k(Xk) = φMk(Yk|Xk)φ̄k(Xk)∫
F (E) φMk(Yk|X )φ̄k(X )M(dX )

. (45)

As proven in Appendix B, the updated parameter
( p̂(λ̂))λ̂∈
̂k

of the conditional JMD φ̂k(Xk) is obtained
from the parameters (( p̄(λ̄))λ̄∈
̄k

, ( f̄k(·|τ̄ ))τ̄∈∪
̄k
, γ̄k) of

the predicted JMD φ̄k(Xk) defined in (43) and (44), and
from the sensor model defined by (40) and (41) with
parameters (pDk, pMk, γFAk), as the Poisson version of
Reid form,

p̂k(λ̂) = C′−1
Rk p̄k(λ̄)

⎛
⎜⎝ ∏

τ̂∈λ̂
τ̂|(k−1) 
=�

LMDk(τ̂ )

⎞
⎟⎠

⎛
⎜⎝ ∏

y∈Yk
{(k,y)}∈λ̂

γMNDk(y)

⎞
⎟⎠
⎛
⎜⎝ ∏

y∈Yk
(k,y)/∈∪λ̂

γFAk(y)

⎞
⎟⎠

(46)

for each updated hypothesis λ̂ in the set 
̂k that is de-
fined as

60


̂k =
⎧⎨
⎩λOLDk(λ̄, ā) ∪ λNEWk(YNk)

∣∣∣∣∣∣
λ̄ ∈ 
̄k,

ā ∈Ā(λ̄,Yk) and
YNk ⊆ Yk\Im(ā)

⎫⎬
⎭

(47)
with⎧⎨
⎩

λOLDk(λ̄, ā) = {τ̄ ∪ {(k, ā(τ̄ ))}|τ̄ ∈ Dom(ā)}
∪ (λ̄\Dom(ā)),

λNEWk(YNk) = {k} ×YNk.

(48)

Equation (46) can be obtained by applying Pois-
son assumption (A8) to Reid form (30). The right-hand
side of (46) consists of 1) Poisson version C′

Rk of Reid

59These sufficient statistics are not finite dimensional unless the track
PDs and undetected target IMDs have finite-dimensional representa-
tions, which, most likely, exist only approximately.
60Using convention Ā(∅,Y ) = {θ} with Dom(θ ) = Im(θ ) = ∅.

constant, 2) the prior probability p̄k(λ̄) of the unique
predecessor λ̄ = λ̂|(k−1) of each λ̂ in 
̄k, 3) the ex-
tended track-to-measurement likelihood LMDk(τ̂ ) de-
fined in (27) with τ|k = τ̂ , 4) the newly detected target
measurement IMD γMNDk(y) defined in (27), and 5) the
false alarm IMD γFAk(y) of the Poisson false alarm JMD
φFAk. The rest of the parameters for the updated JMD
φ̂k(Xk) are updated to ( f̂k(·|τ̂ ))τ̂∈∪
̂k

and γ̂k in the first
equations of (28) and (29) from ( f̄k(·|τ̄ ))τ̄∈∪
̄k

and γ̄k,
respectively.

We should immediately note that (46) is the Reid
form for evaluating association hypotheses recursively,
shown in [6, eq. 16, p. 848], and that (47) expresses the
recursive hypothesis expansion that corresponds almost
exactly to the illustration in [6, Fig. 2, p. 846].

We should also note that, as seen in (48), each track
(and hence each hypothesis) is defined through the value
y ∈ Yk of eachmeasurement in each frameYk (that is de-
fined as an RFSet), not through the measurement index,
as having been done in Section III-C. Since we assume
that the diagonal setDMkm in each order-m productmea-
surement space (EMk)m has zero product measure, we
maintain the no-merged-or-split-measurement assump-
tion (A2). Since every measurement frame is data or ob-
servation, we can reorder (or relabel) measurements in
the RFSet-modeled frame in any arbitrary way (as we
wish), and yet we obtain the same permutable target
state likelihoods. For this reason, this difference in the
definition of hypothesis is inconsequential, and in that
sense, the hypothesis evaluation (46) is exactly the same
as Reid form (30), except for the Poisson assumption
(A8).

However, there is an important difference that we
should note: In Section III-C, we define the hypothe-
ses as possible realizations of an RFSet, which we call
“association,” so that their evaluation is to calculate the
conditional probabilities, while the hypotheses in this
section appear only as parameters to define weights in
(43). As shown in Appendix B, the fact that the set of
weights, ( p̂k(λ̂))λ̂∈
̂k

, is indeed in a unit simplex is a con-
sequence of the evaluation of the denominator of the
right-hand side of the update equation (45), i.e., the nor-
malizing constant, under the induction assumption that
( p̄k(λ̄))λ̄∈
̄k

is a set of probabilistic weights.

C. RFSet Filtering Extrapolation

Since the Markov process (X1,X2, ...) on measure
space (F (E), B(B),M) is defined in Section V-A with
the transition JMD φTRNk, for each tk < tk+1, the pre-
dicted JMD φ̄k+1 of Xk+1 conditioned on (Yk′ )kk′=1 is ob-
tained by extrapolating the previously updated JMD φ̂k,
as

φ̄k+1(Xk+1) =
∫

F (E)

φTRNk(Xk+1|Xk)φ̂k(Xk)M(dXk).

(49)
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As shown in Appendix B, the representa-
tion (parameters) (( p̂k(λ̂))λ̂∈
̂k

, ( f̂k(·|τ̂ ))τ̂∈∪
̂k
, γ̂k)

of the conditional JMD φ̂k is extrapolated to
(( p̄k+1(λ̄))λ̄∈
̄k+1

, ( f̄k+1(·|τ̄ ))τ̄∈∪
̄k+1
, γ̄k+1) for the condi-

tional JMD φ̄k+1 as
1) the extrapolated probabilistic weights

p̄k+1(λ̄) =
∑
λ̂∈
̂k
λ̂⊇λ̄

p̂k(λ̂)

⎛
⎝∏

τ̄∈λ̄

PSk(τ̄ )

⎞
⎠
⎛
⎝ ∏

τ̂∈λ̂\λ̄
(1 − PSk(τ̂ ))

⎞
⎠

(50)
for each predicted hypothesis λ̄ in


̄k+1 =
⋃

λ̂∈
̂k

F (λ̂) = {λ̄ ⊆ λ̂|λ̂ ∈ 
̂k} (51)

with the track survival probability PSk(τ̂ ) defined by

PSk(τ̂ ) =
∫
E

pSk(xk) f̂k(xk|τ̂ )μ(dxk) (52)

for each τ̂ ∈ ∪
̂k;
2) the extrapolated target state PD f̄k+1(·|τ̄ ) for any

surviving track τ̄ ∈ ∪
̄k+1 = ∪
̂k as

f̄k+1(xk+1|τ̄ ) = PSk(τ̄ )−1∫
E
fTk(xk+1|xk)pSk(xk) f̂k(xk|τ̄ )μ(dxk); (53)

3) the predicted IMD of the undetected targets that
are either surviving or newly born as

γ̄k+1(xk+1) = γBk(xk+1)
+ ∫

E
fTk(xk+1|xk)pSk(xk)γ̂k(xk)μ(dxk). (54)

Death of any previously detected target is hypothe-
sized by τ̂ ∈ λ̂\λ̄ through an updated hypothesis λ̂ ∈ 
̂k

and a predicted hypothesis λ̄ ∈ 
̄k+1 such that λ̄ ⊆ λ̂,
whichmay break the tree structure of the hypotheses de-
scribed in Section IV-A. The extrapolation, as described
earlier, should take place only when tk+1 > tk. In case
tk+1 = tk, we should let 
̄k+1 = 
̂k, p̄k+1 = p̂k, and
f̄k+1(·|τ ) = f̂k(·|τ ) for any τ ∈ ∪
̄k+1 = ∪
̂k, to avoid
any unwanted “jumps.”

D. Track Continuity

At least to the authors of this paper, it is rather
surprising to see that, when we eliminate the birth–
death model from the state transition described in
Section V-A, i.e., with γBk ≡ 0 and pSk ≡ 1, a purely
stochastic-process-on-FICMRFSet model of Section V-
A regenerates Reid form (30), exactly by (46), and the
state estimation of (36) by (43) and (44), in Section V-B,
with Poisson assumption

61
(A8). We should remember

that Reid form (30) was derived in Section IV, 1) with

61The RFSet filtering shown in Sections V-A to V-C should be easily
extended to non-Poisson cases.

target model of an RFSeq (or FPP or RFSet) of stochas-
tic processes and 2) with data association hypotheses de-
fined as the set of all the possible realizations of a ran-
dom element, called “data association.” This validates a
claim made in [38]: “The MHT can be derived from an
RFSet MTT algorithm.” We should note that, however,
in the RFSet-based algorithm as described in this sec-
tion, the hypotheses appear only as “indices,”with which
probabilistic weights over the GMBer terms of (43) are
expressed, not as the probabilistic evaluation of possi-
ble realizations of a random element as we defined as
association.

The target transition model in RFSet formalism, de-
scribed in Section V-A, does have an appearance that
targets may exchange their states among them because
the state transition is expressed asRFSet-state-to-RFSet
transition. In fact, our motivation of using a set of
stochastic processes, rather than a single stochastic pro-
cess on an FICM, is to avoid the target switches of this
kind, through the most obvious and explicit way. To the
best of our knowledge, there are at least two known ef-
forts to avoid these target switches. These two are based
on two quite different approaches: 1) the introduction
of the labeled RFSets in [33] and 2) the use of trajectory
states in [39]. The former adds an extra state element,
called a label to each single target state, to prevent target
exchange during the extrapolation step, according to our
interpretation. The latter extends

62
the individual target

state to the consecutive series, from the target’s birth to
the current state, again to prevent the “target exchange,”
which is characterized as the maintenance of the track
continuity in [39].

After having seen the re-creation of Reid form (30)
by (46) in this section, sharing the same conclusion by
[38], as we understand, we are not quite sure now if all
those precautions to maintain track continuity are re-
ally necessary, or if they are mere precauzione inutile. It
seems to us, at this point, that the track continuity issues
are implicitly taken care of by the use of the concept of
the tracks (and hypotheses),which is actually a core con-
cept of the MHT.

VI. CONCLUSIONS

We presented three mathematical formalisms, i.e.,
RFSeq, FPP, and RFSet formalisms, which provide us
with theoretical foundations for MTT problems in gen-
eral, and the basis forMHT in particular,when generally
multiple sensors provide target detections with uncer-
tain origins.MHT,as a concept for providing solutions to
MTT problems, has been studied over the last 40 years
extensively, as described in [8]. In this paper, using a gen-
eral class of target and sensor models, we revisited the

62By this extension, the trajectory-state estimation may be considered
as a variable-time-interval smoothing, i.e.,estimation of each target tra-
jectory from the moment of the birth to the current state or to the time
when the target is killed.
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generation and evaluation of data association hypothe-
ses, and provided some new perspectives, by presenting
them using, side by side, the three different formalisms.
Those three may appear quite differently on the surface
but are almost equivalent to each other except for subtle
differences, e.g., those caused by repeated elements that
are allowed in an RFSeq or an FPP but not in an RFSet.

Based on target models that use the concept of a
set of stochastic processes, rather than a single stochas-
tic process on FM (RFSeq), FCM (FPP), or FICM (RF-
Set), and sensor models with RFSeq outputs, we explic-
itly defined data association as a discrete-valued ran-
dom element. We called all of its possible realizations
data association hypotheses, as defined in Section III-C.
The twowell-known hypothesis evaluation forms,More-
field form and Reid form, were then derived in
Section IV-B and IV-C, with a gradual introduction of
commonly used assumptions, (A1–A8). Although hy-
potheses can be defined without the independence as-
sumptions, the familiar hypothesis–track structure of
MHT appeared only after the independence assump-
tions (A5 and A6) were introduced. The consequences
of the other assumptions were rather predictable: the
separation of evaluation of the probabilities of the num-
ber of newly detected targets and that of data associa-
tion hypotheses was obtained by the Poisson assumption
(A8), and the familiar extrapolation–update recursion
structure appeared with the introduction of the Markov
assumption (A7).

In Section V, we stated our perspectives on the
recently developed RFSet-based MTT algorithms, for
which intimate relations to MHT were claimed. We ob-
served that not only the MHT hypothesis–track struc-
ture emerged as described in [36], but also the exact
Reid formwas surprisingly re-created from a pureRFSet
model, which we think is consistent with the claim made
by Brekke and Chitre [38]. Our conjecture on the rea-
son for this reappearance of Reid form is the use of the
hypothesis/track structure that forces the desired conti-
nuity, well within the context of MHT.

The MTT algorithm developments based on RFSet
formalism, also known as FISST formalism [25]–[27],
were relatively new, compared with the long history of
FPP formalism, which is claimed to have started with
[24].The authors hope some oldwisdommay benefit our
efforts in advancing MTT technologies further.

APPENDIX A: DERIVATION OF HYPOTHESIS
EVALUATION EQUATIONS

Under Assumptions A1–A3, for any cumulative
frame (yk)Kk=1 = ((yk j)

mk
j=1)

K
k=1, it follows from (16) that

data association λK ∈ 
K on (yk)Kk=1 can be evaluated as

P(λK|(yk)Kk=1) =
∞∑

n=#(λK )
P(λK,n|(yk)Kk=1)

= P((yk)Kk=1)
−1

∞∑
n=#(λK )

n!
(n−#(λ))!P((yk, ak)

K
k=1,n),

(A.1)

where n is the number of targets and (ak)Kk=1 ∈∏K
k=1Ā({1, ...,n}, {1, ...,mk}) is, for a given (λK,n), any

one of the n!/(n − #(λ))! multiframe target assignment
hypotheses that support λK, in the sense that the pair
(λK, (ak)Kk=1) satisfies (13).

In the RFSeq formalism, with additional as-
sumptions (A4–A6), substitute (18) into (17),
and apply f (n)(((xi(tκ ))κ∈[K])ni=1; (tκ )κ∈[K]) =∏n

i=1 fTGT((xi(tκ ))κ∈[K]; (tκ )κ∈[K]).
Then, we have

P((yk, ak)Kk=1,n) = P(((yk j)
mk
j=1, ak)

K
k=1|n)pn

= pnν−n
(

K∏
k=1

LFAk({1,...,mk}\Im(ak))
mk!

)
∫

E#([K])n

(
K∏
k=1

( ∏
i∈Dom(ak)

pMk(ykak(i)|xi(tk))pDk(xi(tk))
)

⎛
⎜⎝ n∏

i=1
i/∈Dom(ak)

(1 − pDk(xi(tk)))

⎞
⎟⎠
⎞
⎟⎠

n∏
i=1

γTGT((xi(tκ ))κ∈[K]; (tκ )κ∈[K])μ
#([K])((dxi(tκ ))κ∈[K]),

(A.2)
where the a priori target state IMD, over (tκ )κ∈(K),
with a priori mean ν = ∑∞

n=1 npn < ∞ of the
number of targets, is γTGT((xi(tκ ))κ∈[K]; (tκ )κ∈[K]) =
ν fTGT((xi(tκ ))κ∈[K]; (tκ )κ∈[K]),andLFAk(IFAk) is the false
alarm likelihood defined by (19).

Let the integral in (A.2) over the set E#([K])n be
LTGTK((yk, ak)Kk=1;n). Then, when (ak)Kk=1 supports λK
(i.e., for which (13) holds) with #(λ) ≤ n, we have

LTGTK((yk, ak)Kk=1;n)

=
n∏
i=1

∫
E#([K])

⎛
⎜⎝ K∏

k=1
i∈Dom(ak)

pMk(ykak(i)|xi(tk))pDk(xi(tk))

⎞
⎟⎠

⎛
⎜⎝ K∏

k=1
i/∈Dom(ak)

(1 − pDk(xi(tk)))

⎞
⎟⎠

γTGT((xi(tκ ))κ∈[K]; (tκ )κ∈[K])

μ#([K])((dxi(tκ ))κ∈[K])

=
( ∏

τ∈λK

∫
E#([K])

(
K∏
k=1

qMDk(ξk; τ )
)

γTGT((ξκ )κ∈[K]; (tκ )κ∈[K])

μ#([K])((dξκ )κ∈[K])
)

( ∫
E#([K])

(
K∏
k=1

(1 − pDk(ξk))
)

γTGT((ξκ )κ∈[K]; (tκ )κ∈[K])μ
#([K])((dξκ ))κ∈[K]

)n−#(λK )

=
( ∏

τ∈λK

LTRKK(τ )

)
LTRKK(∅)n−#(λK )

=
( ∏

τ∈λK

LTRKK(τ )

)
(ν̂K)

n−#(λK ),

(A.3)
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where LTRKK(τ ) is the track likelihood defined by (21)
with (22), and ν̂K = LTRKK(∅) is the a posteriori ex-
pected number of targets that remain undetected over
the K frames. Then, substituting (A.3) into (A.2), and
substituting (A.2) into (A.1), we obtain Morefield form
(20), which completes the derivation of the hypothesis
evaluation in RFSeq formalism.

In FPP or RFSet formalism, the integral in (17), and
the n-PD f (n) in its integrand, should be replaced by
the set integral defined in (2) or (4), and by the JMD
φ(·; (tκ )κ∈(K)). The constant n!, included in the JMD in
either FPP or RFSet formalism, is cancelled out by 1/n!
included in the definition of the set integral in (2) or (4),
resulting in the same expression as the one by (A.3), and
hence,we have the same hypothesis evaluation equation,
i.e., Morefield form (20).

The recursive form hypothesis evaluation equation,
i.e.,Reid form (30), can be readily derived from its batch-
processing counterpart, Morefield form (20), with or
without Markov assumption (A7), and vice versa (i.e.,
from Reid form to Morefield form).

APPENDIX B : DERIVATION OF SOLUTION TO AN
RFSET FILTER

This appendix provides a proof to our assertion that,
under the assumptions made in Section V-A, the condi-
tional JMDs, φ̄k and φ̂k, defined by (42), can be written
as the convolutions of the GMBer JMDs, φ̄Dk and φ̂Dk,
defined by (43), and the Poisson JMDs, φ̄Uk and φ̂Uk, of
(44), respectively. Our proof is one by mathematical in-
duction, giving a proof to all the update and extrapola-
tion equations (46)–(48) and (50)–(54), together at the
same time.

For k = 1, we have 
̄1 = {∅}, and φ̄U1 = φ̄1 is the
Poisson initial-state JMD. For any k ≥ 1, let assume,
as the induction assumption, that φ̄k is the convolution
φ̄k = φ̄Dk ⊗ φ̄Uk of the GMBer φ̄Dk given in (43) and
Poisson JMD φ̄Uk in (44). This convolution can be
rewritten as
φ̄k({xi}ni=1) = e−ν̄k

∑
λ̄∈
̄k

p̄k(λ̄)

∑
ᾱ∈A(λ̄,{1,...,n})

(∏
τ̄∈λ̄

f̄k(xᾱ(τ̄ )|τ̄ )
)⎛⎜⎝ n∏

i=1
i/∈Im(ᾱ)

γ̄k(xi)

⎞
⎟⎠ .

(B.1)

The JMD likelihood function φMk for frame
Yk = {yk j}mk

j=1, defined as the convolution of MBe
JMD φMDk, defined by (40) and (41), and of Poisson
JMD φFAk, can be written as

φMk({yk j}mk
j=1|{xi(tk)}ni=1) = e−νFAk

∑
a∈Ā({1,..,n},{1,..,mk})( ∏

i∈Dom(a)
pMk(yka(i)|xi(tk))pDk(xi(tk))

)
⎛
⎜⎝ n∏

i=1
i/∈Dom(a)

(1 − pDk(xi(tk)))

⎞
⎟⎠
⎛
⎜⎝ mk∏

j=1
j/∈Im(a)

γFAk(yk j)

⎞
⎟⎠ .

(B.2)

It follows from (B.1) and (B.2) that

φMk({yk j}mk
j=1|{xi}ni=1)φ̄k({xi}ni=1)

= e−νFAk−ν̄k
∑

λ̄∈
̄k
#(λ̄)≤n

p̄k(λ̄)
∑

ᾱ∈A(λ̄,{1,...,n})

∑
a∈Ā({1,...,n},{1,..,mk})( ∏

i∈Im(ᾱ)∩Dom(a)
pMk(yka(i)|xi)pDk(xi) f̄k(xi|ᾱ−1(i))

)
( ∏
i∈Im(ᾱ)\Dom(a)

(1 − pDk(xi)) f̄k(xi|ᾱ−1(i))

)
( ∏
i∈Dom(a)\Im(ᾱ)

pMk(yka(i)|xi)pDk(xi)γ̄k(xi)
)

⎛
⎜⎝ n∏

i=1
i/∈Dom(a)∪Im(ᾱ)

(1 − pDk(xi))γ̄k(xi)

⎞
⎟⎠

⎛
⎜⎝ mk∏

j=1
j/∈Im(a)

γFAk(yk j)

⎞
⎟⎠ ,

(B.3)
where the five product factors,within the second summa-
tions overĀ({1, ...,n}, {1, ...,mk}), correspond to 1) tar-
gets detected before detected again, 2) targets detected
before but not detected by frame k, 3) targets detected
for the first time in frame k, 4) targets not detected
before and remaining undetected, and 5) false alarms.

Each of the first three factors in (B.3) in the second
summation can be written as the product of a particu-
lar assignment likelihood and the updated (or initiated)
track PD obtained assuming that assignment. For exam-
ple, pMk(yka(i)|xi)pDk(xi) f̄k(xi|τ̄ ) is the product of the
likelihood

∫
E pMk(yka(i)|ξ )pDk(ξ ) f̄k(ξ |τ̄ )μ(dξ ) of track

τ̄ being assigned to measurement yka(i), and the updated
track PD f̂k(xi|τ̄ ∪ {(k, yka(i))}).

When we calculate the denominator of (45)
by the “set integral” defined in (4), because
φMk({yk j}mk

j=1|{xi}ni=1)φ̄k({xi}ni=1) is permutable with
respect to (xi)ni=1 ∈ En, each term of the second sum-
mation over ᾱ ∈ A(λ̄, {1, ...,n}) of (B.3) becomes
the same values in the integral, i.e., n!/(n − #(λ̄))!
times the one term obtained by any arbitrarily chosen
ᾱ ∈ A(λ̄, {1, ...,n}). Thus, rearranging the summations
of (B.3) for the numerator of (45), the updated JMD is
calculated as

φ̂k({xi}ni=1) = e−ν̂k
∑

λ̂∈
̂k

p̂k(λ̂)
∑

α̂∈A(λ̂,{1,...,n})(∏
τ̂∈λ̂

f̂k(xα̂(τ̂ )|τ̂ )
)⎛⎜⎝ n∏

i=1
i/∈Im(α̂)

γ̂k(xi)

⎞
⎟⎠ ,

(B.4)

which is nothing but the convolution φ̂k = φ̂Dk ⊗ φ̂Uk

of φ̂Dk defined in (43) and of φ̂Uk defined in (44), with
parameters (( p̂k(λ̂))λ̂∈
̂k

, ( f̂k(·|τ̂ ))τ̂∈∪
̂k
, γ̂k) defined in

(46), (28), and (29).
To derive the extrapolation formulas in Section V-C,

we first should observe that φ̄k+1 = φ̄D(k+1) ⊗ φ̄U(k+1)
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with φ̄U(k+1) = φ̃U(k+1) ⊗ φBk, where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ̄D(k+1)(XD(k+1)) = ∫F (E) φTSk(XD(k+1)|XDk)

φ̂Dk(XDk)M(dXDk)

φ̃U(k+1)(XU(k+1)) = ∫F (E) φTSk(XU(k+1)|XUk)

φ̂Uk(XUk)M(dXUk)

(B.5)

implying that φ̄D(k+1) and φ̃U(k+1) are independent
63
from

each other, since φ̂Dk and φ̂Uk are independent from each
other. φBk is independent from φ̄D(k+1) and from φ̃U(k+1)
because φTRNk(·|Xk) = φTSk(·|Xk) ⊗ φBk(·).

On the other hand, we can rewrite (38) and (39) as

φTSk({xi}ni=1|{x′
i′ }n′
i′=1) = ∑

a′∈Ā({1...,n′},{1,...,n})
#(Dom(a′))=n( ∏

i′∈Dom(a′)
fTk(xa′(i′)|x′

i′ )pSk(x′
i′ )

)
⎛
⎜⎝ n′∏

i′=1
i′ /∈Dom(a′)

(1 − pSk(x′
i′ ))

⎞
⎟⎠ .

(B.6)

By substituting the second equation of (43),and (B.6)
into the first equation of (B.5), following the definition
(4) of the “set integral,” we have

φ̄D(k+1)({xi}ni=1)
= ∫F (E) φTSk({xi}ni=1|{x′

i′ }n′
i′=1)

φ̂Dk({x′
i′ }n′
i′=1)M(d{x′

i′ }n′
i′=1)

=
∞∑
n′=0

1
n′!

∑
a′∈Ā({1,...,n′},{1,...,n})

#(Dom(a′))=n

∫
En′( ∏

i′∈Dom(a′)
fTk(xa′(i′)|x′

i′ )pSk(x′
i′ )

)
⎛
⎜⎝ n′∏

i′=1
i′ /∈Dom(a′)

(1 − pSk(x′
i))

⎞
⎟⎠

⎛
⎜⎜⎝ ∑

λ̂∈
̂k
#(λ̂)=n′

p̂k(λ̂)
∑

α̂∈A(λ̂,{1,...,n′})

∏
τ̂∈λ̂

f̂k(x′
α̂(τ̂ )|τ̂ )

⎞
⎟⎟⎠

n′∏
i′=1

μ(dx′
i′ )

=
∑
λ̂∈
̂k

p̂k(λ̂)
∑

a′′∈Ā(λ̂,{1,...,n})
#(Dom(a′′))=n

1

#(λ̂)!

∑
α̂∈A(λ̂,{1,...,#(λ̂)})( ∏

τ̂∈Dom(a′′)

∫
E
fTk(xa′′(τ̂ )|x′

α̂(τ̂ ))pSk(x′
α(τ̂ ))

f̂k(x′
α(τ̂ )|τ̂ )μ(dx′

α(τ̂ ))
)

( ∏
τ̂∈λ̂\Dom(a′′)

∫
E
(1 − pSk(x′

α(τ̂ )))

f̂k(x′
α(τ̂ )|τ̂ )μ(dx′

α(τ̂ ))
)

.

(B.7)

63More precisely, the RFSets represented by conditional JMT φ̄D(k+1)
and φ̃U(k+1) are independent.

For given any λ̂ ∈ 
̂k, the last summation of (B.7) is over
all the enumerations of the tracks in λ̂. The summation
for all the a′′’s inĀ(λ̂, {1, ...,n}) such that #(Dom(a′′)) =
n is the summation over all the choices of subsets λ̄ of λ̂,
such that #(λ̄) = n ≤ #(λ̂) = n′, plus all the possible
enumerations of the tracks in the “decimated” hypothe-
sis λ̄.Hence,we have (51),andwe can rewrite (B.7) in the
formof first equation of (43)with the index k replaced by
k+ 1, with the probabilistic weights ( p̄k+1(λ̄))λ̄∈
̄k+1

de-
fined by (50), and with the track PDs, ( f̄k+1(·|τ̄ ))τ̄∈∪
̄k+1

,
defined by (53).

Since φ̂Uk is Poisson and the transition PD φTSk of
(38) is target-wise independent, φ̃U(k+1) defined by the
second equation of (B.5) is also Poisson with the IMD
defined as the second term of the right-hand side of (54).
Since φ̃U(k+1) is independent of φBk, we have the Poisson
JMD φ̄U(k+1) = φ̃U(k+1)⊗φBk,which completes the proof
bymathematical induction for all the update and predic-
tion formulas in Section V-B and V-C.
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On Indistinguishability and
Antisymmetry Properties in
Multiple Target Tracking

WOLFGANG KOCH

The notion of indistinguishable targets is well established in ad-

vanced target tracking. If no specific target attributes are sensed, in-

distinguishability is often unavoidable and sometimes even desirable,

for example, to enable “privacy by design” in public surveillance. Con-

ceptually, this notion is rooted in quantum physics where functions

of joint quantum particle states are considered that are either sym-

metric or antisymmetric under permutation of the particle labels. This

symmetry dichotomy explains why quite fundamentally two disjunct

classes of particles exist in nature: bosons and fermions. Besides sym-

metry, also antisymmetry has a place in multiple target tracking as

we will show, leading to well-defined probability density functions de-

scribing the joint target states. Inbuilt antisymmetry implies a target

tracking version of Pauli’s exclusion principle: Real-world targets are

“fermions” in the sense that cannot exist at the same time in the same

state.This is of interest in dense tracking scenarios with resolution con-

flicts and split-off and may mitigate track coalescence phenomena, for

example. We discuss the framework that is illustrated by an example.

I. INTRODUCTION

In grateful memory of Günther van Keuk (1940–2003),
a pioneer in multiple target tracking.

Since Donald B. Reid’s seminal paper, multiple tar-
get tracking has been a topic of intensive research
[1]–[5]. It provides backbone algorithms for multisensor
fusion engines [6] that transform data streams from a va-
riety of sensors along with context knowledge into situ-
ation pictures, the basis for decision making in an ever-
increasing range of applications.Examples are manned–
unmanned teaming and autonomous platform manage-
ment, use cases in manufacturing, process control, or
supply chain management, in health or elderly care, as
well as in public security and defense. Situational aware-
ness is basic not only to reaching goals efficiently, but
also to reaching them in an ethically acceptable and re-
sponsible way [7].

Tracks represent the available knowledge on time-
varying quantities of interest that characterize the state
of the targets to be tracked. Quantitative performance
measures describing the quality of this knowledge are
part of the tracks. The information obtained by tracking
algorithms also includes the history of the targets. Ide-
ally, a one-to-one association between all the targets in
the sensors’ field of view and the produced tracks is to be
established and to be preserved as long as possible. The
achievable track quality depends not only on the perfor-
mance of the sensors used, but also on the target prop-
erties, their kinematic behavior, and the environmental
conditions within the scenario observed.

A. Indistinguishable Targets

In themacrophysical world of target tracking,objects
of interest, such as airplanes, vehicles, persons, ships, and
so on, are mutually distinguishable physical objects in
themselves. The information on them that is collected
by sensors, however, covers a limited set of their prop-
erties only and is in many cases restricted to positional
and kinematic properties. Let us call targets identical if
two assumptions hold: (1) their intrinsic properties can-
not be distinguished from each other by the measure-
ments considered; and (2) they move according to the
same dynamical model. Spatiotemporal target proper-
ties are extrinsic by definition.

Froma systems engineering perspective, target track-
ing algorithms often have to obey certain nontechnical
rules “by design” in order tomake their use acceptable at
all. Besides aspects formulated by rules of engagement
in defense applications, surveillance systems for preserv-
ing public security are examples, where rule-constraint
tracking systems are of growing interest. In particular,
the “indistinguishability of the uninvolved” is a desired
property in this context wheremultiple sensor assistance
systems are to be designed that facilitate the assessment
of the value of the additional security against the pri-
vacy lost by public surveillance.The proper and balanced
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Fig. 1. Ellipses indicating imperfect knowledge on two mutually
distinguishable (left) and indistinguishable (right) identical targets

labeled by i and j.

relation between the emerging surveillance technology
for public security and the notion of an individual human
subject entitled to “inalienable fundamental rights,” for
example, privacy, is of crucial importance.1

Within a conceptual framework that is inspired by
classical mechanics, even identical objects in the previ-
ous sense can be distinguished from each other by their
spatiotemporal behavior, since they move along well-
defined trajectories. Let us consider, for example, a bil-
liard game where all balls have the same color, their ini-
tial identity being known. Just by carefully watching, an
observer could keep track of the balls as if they were
individually colored. This changes even in classical me-
chanics in the case of “chaotic” dynamical systems ac-
cording to sensitivity to initial conditions that are never
known precisely. Even more so, this is valid in multiple
target tracking problems where the temporal evolution
has to be modeled stochastically and the measurements
are inaccurate and ambiguous with respect to which ob-
ject has produced which measurement, making a proba-
bilistic description inevitable.

Fig. 1, left-hand side, illustrates the probabilistic
representation of positional information on two well-
separated identical targets.Even in case of imprecise po-
sitional information, each one of them occupies a clearly
distinct spatial region, arbitrarily labeled by i and j, thus
allowing us to distinguish between these identical tar-
gets just as previously discussed. The right-hand side
of the figure shows two identical targets in a situation
where the probability density functions representing im-
precise positional information are overlapping. It is no
longer unambiguous in which region each target is to
be expected. They have become indistinguishable [8],
[9, Ch. 3].

1“to which a person is inherently entitled simply because
she or he is a human being.” Human Rights. In: Wikipedia,
http://en.wikipedia.org/wiki/Human_rights, last accessed August 26,
2019.

More precisely speaking, our knowledge of indistin-
guishable targets remains unchanged if their labels are
changed. In other words, the labels of indistinguishable
targets have no longer a physical meaning. The joint
probability density functions describing the kinematic
states of indistinguishable targets must therefore obey
symmetry restrictions: if any permutation is applied to
the target labels, the density function has to remain in-
variant. In an early paper with Günter van Keuk [10,
Sec. IV-B], the concept of symmetry has been used in
Bayesian multiple hypothesis tracking.

B. Bosons and Fermions in Quantum Physics

In quantum physics where the notion of individual
particle trajectories is abandoned altogether,we are con-
fronted with a similar situation. Here, a complex-valued
function, the multiple particle wave function ψ(x1:n, t),
completely describes a quantum system composed of n
indistinguishable particles that at each instant of time t
are characterized by their joint state x1:n = (x1, . . . , xn).
Knowledge of the wave function, together with the rules
for the system’s temporal evolution, exhausts all that can
be known on the quantum system. By taking the abso-
lute square of the complex wave function,

p(x1:n, t) = |ψ(x1:n, t)|2, (1)

a probability density function is obtained for calculating
the probable outcome of each possible measurement on
the system. It has to be invariant under any permutation
taken from the set Sn of all n! permutations of the n par-
ticle labels:

∀σ ∈ Sn : p(x1:n, t) = p(xσ (1:n), t). (2)

Since only the absolute square of wave functions has
a physically interpretable meaning, multiple particle
quantum systems are characterized by a symmetry
dichotomy: the wave function for a collection of indis-
tinguishable particles must be either symmetric or anti-
symmetric when two particle labels are exchanged, that
is, when the wave functions involved remain invariant
under any permutation of the particle labels up to a
factor of ±1. If a wave function is initially symmetric
(or antisymmetric), it will remain symmetric (or an-
tisymmetric) as the quantum system evolves in time.
The symmetry dichotomy also claims that asymmetric
multiple identical particle wave functions are forbid-
den. Quantum particles are either bosons2 or fermions3

characterized by symmetric or antisymmetric wave func-
tions, respectively. For further details, see any standard

2Named after the Indian physicist and polymath Satyendra Nath Bose
(1894–1974) who provided the foundation for Bose–Einstein statistics
and the theory of the Bose–Einstein condensate.
3Named after the Italian physicist Enrico Fermi (1901–1954), who first
applied Pauli’s exclusion principle to an ideal gas, employing a statis-
tical formulation now known as Fermi–Dirac statistics.
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textbook on quantum physics, such as [11, Ch. IX]. For
historic aspects, see [12].

In the micro- and macrophysical world, the notions
of identity, individuality, distinguishability, and their op-
posites are conceptually related, but to be distinguished
carefully from each other in any philosophical reflec-
tions [8, Ch. 5], [13].

C. Exclusion Principle in Target Tracking

Amultiple target tracker extracts information on the
kinematic properties of several moving targets from a
time series of sensor data produced by a single sensor or
multiple sensors; that is, target tracking provides infor-
mation on the targets’ position, velocity, and often also
acceleration and related quantities.

As an example, let us consider a tracking prob-
lem with two targets, where probability density func-
tions p(x1, x2) represent the information available on
the kinematic target states x1 and x2. In the case of indis-
tinguishable targets, p(x1, x2) is symmetric under permu-
tation of the target labels: p(x1, x2) = p(x2, x1). In many
cases, p(x1, x2) can be represented by a mixture with
symmetric components: p(x1, x2) = ∑

ν pν pν (x1, x2)
and weighting factors pν . No objection can be made if
we are representing the component densities pν (x1, x2)
by the square of real-valued functions:

pν (x1, x2) = (
ψν (x1, x2)

)2
. (3)

One can easily see that the functions ψν must be either

symmetric ψ+
ν (x1, x2) = ψ+

ν (x2, x1) or (4)

antisymmetric ψ−
ν (x1, x2) = −ψ−

ν (x2, x1) (5)

under permutation of the target labels in order to guar-
antee that p(x1, x2) represents two indistinguishable tar-
gets. Since considering functions ψ+

ν does not add some-
thing substantially new to understanding the properties
of symmetric densities p+, we will be dealing with them
as usual in the tracking literature. This is different, how-
ever, for densities p− that are given by the square of
antisymmetric components ψ−

ν .
As shown later, Bayesian multiple target tracking is

equivalent to iteratively calculating the probability den-
sities p± of indistinguishable multiple targets.Of course,
the “temporal propagation” of multiple target densi-
ties, driven by subsequent prediction and update steps,
is mathematically quite different from the propagation
of multiple particle wave functions in quantum physics.
While the symmetric multiple target densities p± remain
symmetric if the same dynamics model is assumed for
both targets in the prediction step and under wide and
realistic assumptions on the sensormodels to be used for
the filtering update, the antisymmetric ψ− components
remain antisymmetric.Also in target tracking theory,we
can therefore distinguish between bosonic and fermionic
targets according to the symmetry properties of the func-
tions ψ±

ν describing them. As in quantum physics, this

distinction is fundamental.Obviously, themacrophysical
notion of bosonic and fermionic targets considered here
is by no means related to the purely quantum physical
concept of even or odd particle spin.

Real-world targets are fermions in the following
sense:Due to the “fermionic” antisymmetry property of
ψ−

ν , they cannot be characterized by the same state at
the same instant of time:

p−(x, x) =
∑

ν

(
ψ−

ν (x, x)
)2 = 0. (6)

This is a target tracking version of the famous exclusion
principle.4

D. Contribution and Structure

In the tracking literature, indistinguishable targets
have implicitly been considered as bosons; that is, no at-
tention was given to antisymmetry.Attempts to broaden
the methodological basis of point processes applied to
target tracking, for example, do not use the concept of
antisymmetry (see, e.g., the early and insightful paper by
Sosho Mori and Chee-Yee Chong [14] or [15]). This is
valid also for new trends in multitarget tracking such as
labeled Random Finite Sets and message passing tech-
niques to be mentioned [16]–[18]. Only a most recent
paper, not yet published [19], points into the direction
of “fermionic” multiple target tracking.

Since symmetric probability density functions are
crucial building blocks for advanced trackers, see, for
example, [3, pp. 239–244], also the notion of fermionic
targets can quite naturally be introduced. In particular,
the target tracking version of Pauli’s exclusion princi-
ple leads us to multiple target trackers that are better
adapted to real-world phenomena since targets simply
cannot exist at the same place at the same time. It is an
open question what type of phenomena to be tracked
might best be modeled by bosonic targets. Two collec-
tively moving groups that may merge and split off again
are candidates of two bosons, while extended target
tracking is fermionic in nature. In this sense, fermionic
point targets might be called somewhat provocatively
“extended” point targets.

After more precisely stating the notions of symme-
try and antisymmetry as well as reviewing some basics of
multiple target tracking in Section II, we rigorously dis-
cuss the problem of tracking two indistinguishable tar-
gets using a realistic sensor model with possibly missing,
false, and unresolved measurements (Section III). Via
a simulated example based on a tracking vignette with
road moving targets, Section IV illustrates some char-
acteristics of “fermionic” target tracking and compares

4It was formulated in 1925 by Wolfgang Pauli (1900–1958) at the Uni-
versity of Hamburg, Germany. Nominated by Albert Einstein (1879–
1955), Pauli received the 1945 Nobel Prize in Physics for his “decisive
contribution through his discovery of a new law of Nature, the exclu-
sion principle or Pauli principle” [20].
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them with “bosonic” target tracking and more standard
approaches. Since our focus here is on the methodolog-
ical approach, a more comprehensive qualitative discus-
sion of the advantages of the proposed approach in com-
parison to alternative tracking methodologies, although
desirable, goes beyond the scope of this publication and
will be provided by subsequent work. An evident and
practically relevant benefit of “fermionic” trackers to be
stated right now is the mitigation of track coalescence
phenomena in dense target situations. In Section V, we
discuss the relevance of indistinguishable target track-
ing in surveillance systems for public security. “Indistin-
guishability of the uninvolved” seems to be a fundamen-
tal principle for security systems design to be recognized
as a certifiable means for preserving informational self-
determination. Conclusions and some physics-inspired
remarks for generalizing the formalism conclude the
paper.

At the 21st International Conference on Informa-
tion Fusion, the general idea underlying this paper and
its potential relevance to tracking closely spaced targets
were sketched [21].We here provide amore comprehen-
sive view and coherently consider the quantum physi-
cal background, which has guided our approach. In its
present form, this contribution reflects also a series of
discussions that were stimulated by the preliminary pub-
lication. The author in particular wishes to thank three
anonymous reviewers for their insightful and inspiring
comments.

As Wolfgang Pauli made clear himself, the funda-
mental symmetry dichotomy, tightly connected with the
notion of indistinguishability, that is visible and relevant
also in multiple target tracking as shown in this paper,
still calls for a deeper understanding.5

II. BAYESIAN MULTIPLE IDENTICAL TARGET
TRACKING

Tracking systems extract kinematic target informa-
tion from a time series of data Zk:1 = {Zk,Zk−1:1} pro-
duced by a single sensor or multiple sensors at certain
instants of time tl , l = 1, . . . ,k,measuring positional and
kinematic properties of the targets starting at an initial
time t1. The number of measurements mk in each data
set Zk = {z j}mk

j=1 produced at time tk can be equal to,
less than, or larger than the number n of targets to be
tracked due to false, missing, and unresolved measure-
ments. The targets’ position, velocity, and possibly also
acceleration are described by kinematic state vectors xik,
i = 1, . . . ,n, at instants of time tk, the joint state being de-
noted by x1:nk = (x1k, . . . , x

n
k). Identical targets obey the

same dynamical model.

5“Already in my original paper I stressed the circumstance that I was
unable to give a logical reason for the exclusion principle or to deduce
it from more general assumptions. I had always the feeling, and I still
have it today, that this is a deficiency.” [22].

The implications of antisymmetry in the formalismof
multiple identical target tracking and its practical bene-
fits are more clearly visible within the standard Bayesian
framework where we assume independent targets along
with a fixed and known number of targets than in more
advanced tracking methodologies, such as Probalility
Hypothesis Density and intensity filtering, where anti-
symmetry can be embedded as well.

In Bayesian context, the problem of tracking well-
separated targets or well-separated groups consisting
of not too many targets or that of tracking some well-
separated targets or groups joining and separating after
a while can be solved more or less rigorously, that is, by
explicitly enumerating data interpretation hypotheses.
Since it seems unreasonable to deal with large groups
by keeping track of each individual group member, we
should rather track the centroid and the boundary of the
group in this case until it splits off into smaller compo-
nents to be tracked individually; see [6, Sec. 8.2] and [23],
for example.

Our general line of argumentation is valid for nonlin-
ear, non-Gaussian sensor and evolution models where
the resulting probability densities and ψ functions can
be calculated by numerical methods based on tensor de-
composition methods, for example, those presented in
[24]. For being able to discuss the impact of antisymme-
try more analytically and in greater detail, however, we
are assuming linear Gaussianity whenever to be justified
and mathematically convenient.

A. Antisymmetry in Mixture Densities

In the case of ambiguous sensor data, the time series
Zk:1 is to be interpreted by data interpretation histories,
series of possible interpretation hypotheses of the sen-
sor data sets at different instants of time.The conditional
probability density function p(x1:nk |Zk:1) of the joint state
x1:nk that contains all information on the state vectors
available at time tk can thus be written as weighted sum
of component densities pν related to these interpreta-
tion histories:

p(x1:nk |Zk:1) =
∑

ν

pν
k pν (x1:nk |Zk:1). (7)

If at one particular instant of time tl the component den-
sities pν (x1:nl ) are symmetric under permutation of the
target labels,

∀σ ∈ Sn : pν (x1:nl |Zk:1) = pν (x
σ (1:n)
l |Zk:1), (8)

this property is preserved in the iterative calculation
process of the densities that will become clear later.
Symmetry in this sense can thus be imposed on the
“noninformative” initial prior density as some structural
information. As sketched in the introduction, the sym-
metric probability densities pν can either be considered
in themselves, that is, instead as a square of symmetric
functions, this bosonic case being denoted by
p+

ν (x
1:n
k |Zk:1), or be written as the square of func-
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tions ψν that are antisymmetric under permutation of
the target labels:

p−
ν (x

1:n
k |Zk:1) =

(
ψν (x1:nk |Zk:1)

)2
. (9)

With Dirac’s6 antisymmetrizing operator A, see [11,
p. 248],

A f
(
x1:n

) =
∑
σ∈Sn

(−1)σ f
(
xσ (1:n)

)
, (10)

where the symbol (−1)σ is 1 for even and −1 for odd
permutations σ . Let ψν be given by a weighted sum of
Gaussians with positive and negative weighting factors:

ψν (x1:nk |Zk:1) =
√
cν
k|k AN

(
x1:nk ; xν

k|k, P
ν
k|k

)
(11)

=: ψ
(
x1:nk ; xν

k|k,P
ν
k|k

)
(12)

that are characterized by joint state expectation vectors
xν
k|k, corresponding covariance matricesPν

k|k, and a prop-
erly defined normalization constant (see Section A.1 in
Appendix A):

1/cν
k|k =

∫
dx1:nk

(
ψ

(
x1:nk ; xν

k|k,P
ν
k|k

))2
. (13)

Under these modeling assumptions, the fermionic com-
ponent densities p−

ν are therefore given by correctly
normalized, well-defined Gaussian mixture densities
with possibly negative weighting factors that sum up
to 1. More general non-Gaussian representations are
possible.

With the symmetrizing operator S ,

S f
(
x1:n

) =
∑
σ∈Sn

f
(
xσ (1:n)

)
, (14)

let the bosonic components be given by

p+
ν (x

1:n
k |Zk:1) = 1

n!
S N

(
x1:nk ; xν

k|k, P
ν
k|k

)
. (15)

With these definitions, the overall densities p±(x1:nk |Z1:k)
are symmetric under permutation of the target labels.
The symmetrizing and antisymmetrizing operators S
and A are projectors into disjunct function subspaces.

B. Fermionic Prediction

Let F′
k|k−1 andD′

k|k−1 denote the evolution and plant
noise covariance matrices describing the temporal evo-
lution of the identical targets as usual in the tracking lit-
erature. With Fk|k−1 = 1n ⊗ F′

k|k−1 and Dk|k−1 = 1n ⊗
D′
k|k−1, where 1n denotes the n-dimensional unity ma-

trix and theKronecker product is used, a Gauss–Markov

6Paul Adrien Maurice Dirac (1902–1984) shared the 1933 Nobel Prize
in Physics with Erwin Schrödinger (1887–1961).

transition density for n identical independently moving
targets is defined by

p(x1:nk |x1:nk−1) = N
(
x1:nk ; Fk|k−1x1:nk−1, Dk|k−1

)
. (16)

Since all identical targets obey the same evolution
model, the multiple identical target transition density
has the following property:

∀σ ∈ Sn : p(x1:nk |x1:nk−1) = p(xσ (1:n)
k |xσ (1:n)

k−1 ). (17)

While the bosonic prediction update is quite straight-
forward, the fermionic version of it requires some care.
The square root of the transition density is given by (see
Section A.2 in Appendix A)

π (x1:nk |x1:nk−1) = |8πDk|k−1|1/4 N
(
x1:nk ; Fk|k−1x1:nk−1, 2Dk|k−1

)
.

(18)
For modeling the prediction step in the tracking process,
we consider predictive ψ functions defined by

ψ
(
x1:nk |Zk−1:1

) =
∑

ν

pν
k ψ

(
x1:nk ; xν

k|k−1,P
ν
k|k−1

)
(19)

with mixture components given by

ψ
(
x1:nk ; xν

k|k−1,P
ν
k|k−1

) =
√
cν
k|k AN

(
x1:nk ; xν

k|k−1, P
ν
k|k−1

)
(20)

with properly defined normalizing constants cν
k|k−1 and

the standard, though “relaxed”Kalman prediction step:

xν
k|k−1 = Fk|k−1xν

k−1|k−1, (21)

Pν
k|k−1 = Fk|k−1Pν

k−1|k−1F
�
k|k−1 + 2Dk|k−1. (22)

The predicted fermionic density is thus given by

p−(x1:nk |Zk−1:1) =
∑

ν

pν
k

(
ψ

(
x1:nk ; xν

k|k−1,P
ν
k|k−1

))2
.

C. Intrinsic Symmetry in Sensor Models

Likelihood functions represent imperfect and am-
biguous information on the target states x1:nk that is pro-
vided by a set of sensor data Zk at time tk as well as
context knowledge on the sensor performance and the
sensing environment.For identical targets, the likelihood
functions necessarily have to be symmetric under per-
mutation of the target labels, since otherwise the targets
could be distinguished from each other via sensor data
processing.

Likelihood functions �(x1:nk ;Zk) are up to a multi-
plicative constant determined by the conditional densi-
ties p(Zk|x1:nk ):

�(x1:nk ;Zk) ∝ p(Zk|x1:nk ). (23)

The potential origin of ambiguous sensor data Zk is
explained by a set of data interpretation hypotheses
hk ∈ Hk, which are assumed to be exhaustive and mu-
tually exclusive, yielding a representation by a weighted
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sum:

�(x1:nk ;Zk) ∝
∑
hk∈Hk

p(hk) p(Zk|x1:nk ,hk). (24)

Following well-established and fairly general modeling
assumptions for the sensors considered [6, Sec. 7.1], the
likelihood functions can be rearranged as a sum of par-
tial sums over classesHμ

k of data interpretation hypothe-
ses that are similar in the sense that they differ only in a
permutation of the target labels:

�(x1:nk ;Zk) =
∑

μ

�μ(x1:nk ;Zk) (25)

with �μ(x1:nk ;Zk) ∝
∑
hk∈Hμ

k

p(hk) p(Zk|x1:nk ,hk). (26)

As a result, the component likelihood functions �μ re-
lated toHμ

k are symmetric under permutation of the tar-
get labels:

∀σ ∈ Sn : �μ(x1:nk ;Zk) = �μ(x
σ (1:n)
k ;Zk). (27)

This can be shown by assuming false measurements that
are Poisson distributed in number with a spatial false
measurement density ρF and uniformly distributed in
the measurement space, missing measurements occur-
ring according to a detection probability PD, and the
measurements zk ∈ Zk being mutually independent.
Moreover, let a resolved measurement z jk related to tar-
get i be characterized by a Gaussian likelihood

p(z jk|xik) = N
(
z jk; Hkxik, R

j
k

)
(28)

withmeasurement and error covariancematricesHk and
R j
k.
Inherently, antisymmetry and the exclusion principle

it implies are only relevant for targets that may move
closely spaced. Due to the finite resolution capabilities
of real-world sensors, such targets are expected to transi-
tion frombeing resolved to unresolved and back again. It
is thus inevitable to model the sensors’ resolution capa-
bility appropriately and to take this phenomenon explic-
itly into account. In practical applications, only a small
number of targets are expected to be jointly unresolved.

Let an unresolved measurement zuk produced by a
group of n closely spaced targets be modeled as a mea-
surement of the group centroid that is characterized by
the Gaussian likelihood

p(zuk|x1:nk ) = N
(
zuk; Hgx1:nk , Rg

)
(29)

with Rg denoting the measurement error of unresolved
measurements and a measurement matrix given by

Hg = (1, . . . , 1) ⊗ Hk. (30)

The probability Pu(x1:nk ) of n targets being jointly unre-
solved is modeled by pseudo-measurement “zero”of the
distances between the targets [6, Sec. 7.1], where the sen-
sor resolution in the measured quantities such as range
and cross range, αr and αxr, can be considered as stan-
dard deviations entering a related pseudo-measurement

error covariance matrixAu:

Pu(x1:nk ) = |2πAu|1/2 N
(
0; Hdx1:nk , Au

)
, (31)

where the corresponding pseudo-measurement matrix
Hd that describes mutual distances is given by

Hd =

⎛
⎜⎜⎜⎜⎝

1 −1 0 . . .

0
...

... 0
...

... 1 −1
−1 0 . . . 1

⎞
⎟⎟⎟⎟⎠ ⊗ Hk. (32)

BothGaussians related to unresolvedmeasurements are
evidently symmetric under permutation of the target
labels:

∀σ ∈ Sn :
N

(
zuk; Hgx1:nk , Rg

) = N
(
zuk; Hgx

σ (1:n)
k , Rg

)
,

N
(
0; Hdx1:nk , Ru

) = N
(
0; Hdx

σ (1:n)
k , Ru

)
.

In order to pinpoint the effects of antisymmetry, a fully
detailed discussion of this fairly general approach in the
limiting case of two closely spaced targets is provided in
Section III.

D. Fermionic Filtering

The data update of the fermionic density follows
from Bayes’ rule; that is, it is provided by normalizing
the product of the sensor likelihood �(Zk; x1:nk ) and the
predicted density p−(x1:nk |Z1:k−1):

p−(x1:nk |Zk:1) = ck|k �(x1:nk ;Zk) p−(x1:nk |Zk−1:1) (33)

with 1/ck|k =
∫
dx1:nk p(Zk|x1:nk ) p−(x1:nk |Z1:k−1).

We can therefore write the fermionic density function of
the joint state as a mixture density:

p−(x1:nk |Z1:k) = ck|k
∑
μ,ν

�μ(x1:nk ;Zk)

×
(
ψ

(
x1:nk ; xν

k|k−1,P
ν
k|k−1

))2
. (34)

If it is possible to rewrite the symmetric component
likelihood functions �μ as squares of symmetric func-
tions, the fermionic filtering update consists in updating
the antisymmetric component ψ functions and squaring
them. To keep the discussion simple, let us consider a
tracking problem of reduced complexity that is still rich
enough to be practically relevant.

III. EXAMPLE WITH POSSIBLY UNRESOLVED TARGETS

While applicable for n targets, the effects of antisym-
metry in identical target tracking can more easily be an-
alyzed in the case of two targets that may move closely
spaced for a while. Depending on the sensor-to-target
geometry, the finite sensor resolution may even play a
dominant role in target tracking.
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In order to preserve antisymmetry of the fermionic
ψ functions in the filtering update, the likelihood func-
tions need to be modified appropriately. To do so, let us
be guided by some sort of “correspondence principle” in
the sense that for well-separated fermionic targets the
effect of fermionically modified likelihood functions is
the same as that for bosonic targets. If there is no need
for any linear Gaussianity as in case of direct numeri-
cal calculation [24] where the square roots can be drawn
directly, no modification is necessary.

A. Components of the Likelihood Function

For two targets moving in a cluttered environment,
five different classes Hm

k ,m = 1, . . . , 5, of data interpre-
tation hypotheses exist [6, Sec. 7.1]. The likelihood func-
tion for the bosonic and femionic filtering update has
thus a sum representation:

�±(x1:nk ;Zk) ∝
5∑
i=1

�±
i (x

1:2
k ;Zk), (35)

where the five component likelihood functions are sym-
metric under permutation of the target labels and corre-
spond to the following data interpretation classes.

1) H1
k—Both targets were resolvable, but not detected;

all mk measurements in Zk are false (one interpretation):
The component likelihood �1 is the same for bosonic and
fermionic tracking and given by

�±
1 (x

1:2
k ;Zk) = ρ2

F(1 − PD)2
(
1 − Pu(x1:2k )

)
. (36)

2) H2
k—Both targets were neither resolvable nor detected

as a group;all measurements in Zk are assumed to be false
(one interpretation hypothesis): Also here, there is no
difference between the bosonic and fermionic cases:

�±
2 (x

1:2
k ;Zk) = ρF(1 − PuD)Pu(x

1:2
k ). (37)

3) H3
k—Both targets were not resolvable but detected as a

group with probability PuD, z
j
k ∈ Zk representing the cen-

troid measurement; all remaining returns are false (mk

data interpretations): Up to constant factors, the cor-
responding component likelihood is equivalent to joint
centroid and distance measurements; that is, the single
unresolved group measurement z jk provides under this
hypothesis a measurement of the full joint position of
the targets:

�±
3 (x

1:2
k ;Zk) = ρFPuDPu(x

1:2
k )

mk∑
j=1

N
(
z jk; Hgx1:2k , Rg

)
(38)

= ρFPuD |2πRu|1/2
mk∑
j=1

N
(
z j,1:2k ; Hux1:2k , Ru

)
,

(39)

z j,1:2k = (z jk, 0), Hu = diag[Hg,Hd], and Ru =
diag[Rg,Au].

4) H4
k—Both objects were resolvable but only one object

was detected, z jk is the measurement,mk−1measurements
are false (2mk interpretations): With the abbreviation

λ4
(
z jk;Hkx1:2k ,R j

k

) = N
(
z jk; Hkx1k, R

j
k

)
+N

(
z jk; Hkx2k, R

j
k

)
, (40)

the bosonic component likelihood is given by

�+
4 (x

1:2
k ;Zk) = ρFPD(1 − PD)

(
1 − Pu(x1:2k )

)
×

mk∑
j=1

λ4
(
z jk;Hkx1:2k ,R j

k

)
. (41)

For applying this component likelihood in the filtering
updatewhere the antisymmetric structure ofψ functions
is to be preserved,we need a representation by appropri-
ate “squares.”According to the introductory remarks, let
us make an “ansatz”:

�−
4 (x

1:2
k ;Zk) = ρFPD(1 − PD)

(
1 − Pu(x1:2k )

)
×

mk∑
j=1

λ4
(
z jk;Hkx1:2k , 2R j

k

)2
. (42)

5) H5
k—Both objects were resolvable and detected, zik and

z jk are the measurements, mk − 2 measurements are false
(mk(mk − 1) interpretations): With the abbreviation

λ5
(
x1:2k ; zi jk ,Ri j

k

) = S N
(
zi jk ; Hkx1:2k , Ri j

k

)
, (43)

the bosonic component likelihood is given by

�+
5 (x

1:2
k ;Zk) = P2

D

(
1 − Pu(x1:2k )

) mk−1∑
i=1

mk−i∑
j=1

λ5
(
x1:2k ; zi jk ,Ri j

k

)
,

(44)
while we assume for the fermionic component

�−
5 (x

1:2
k ;Zk) = P2

D

(
1 − Pu(xk)

) mk−1∑
i=1

mk−i∑
j=1

×
(
λ5

(
zi jk ;Hi j

k x
1:2
k , 2Ri j

k

))2
. (45)

Note the “relaxed” measurement error covariance ma-
trix in the fermionic versions of the component likeli-
hood functions �−

4 and �−
5 .

Each component likelihood is symmetric under per-
mutation of the target labels. If an unresolved group
is assumed, two measurements are to be processed: a
real measurement of the group centroid and a pseudo-
measurement “zero”of the distance between the objects.
We can thus speak of a piece of negative sensor informa-
tion, as the lack of a second target measurement conveys
information on the target position, since in the case of a
resolution conflict, the relative target distances must be
smaller than the sensor resolution.
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B. Fermionic Filtering Update: Discussion

The general structure of the filtering update in case of
two targets becomes visible even in the absence of clut-
ter, ρF = 0, and in case of perfect detection, PD = 1.
This means that at a given instant of time tk either two
resolved measurements z1k and z2k or a single unresolved
measurement zk has to be processed. Let the predictive
ψ function be given by

ψ
(
x1:2k |Zk−1:1

) = ψ
(
x1:2k ; xk|k−1,Pk|k−1

)
(46)

or by a weighted sum of such components.

1) Unresolved measurement: In this case, the bosonic
and fermionic updates use the same component likeli-
hood.Up to a constant, the square root of the likelihood
is given by (see Section A.2 in Appendix A)

λ3(x1:2k ; zk) ∝ N
(
zu,1:2k ; Hux1:2k , 2Ru

)
. (47)

The filtering update by a measurement that is assumed
to be unresolved yields a ψ function ψ(x1:2k ; xk|k,Pk|k)
characterized by a standardKalman update based on the
“relaxed”measurement error covariance matrix 2Ru:

x1:2k|k = x1:2k|k−1 + Wk(z
u,1:2
k − Hux1:2k|k−1), (48)

P1:2
k|k = P1:2

k|k−1 − WkSkW�
k (49)

with innovation covariance and gain matrices given by
Suk = HuP1:2

k|k−1H
�
u + 2Ru and Wu

k = P1:2
k|k−1H

�
u S

u−1

k .

2) Resolved measurements: In this case, we obtain for
the fermionic update (see Section A.3 in Appendix A)

ψ(x1:2k |Z1:k) ∝ λ5
(
x1:2k ; zi jk , 2Ri j

k

)
ψ

(
x1:2k ; xk|k−1,Pk|k−1

)
(50)

= p12k ψ
(
x1:2k ; x12k|k,P12

k|k
) + p21k ψ

(
x1:2k ; x21k|k,P21

k|k
)
, (51)

where xi jk|k and Pi j
k|k result from the standard Kalman up-

date equations with measurement vectors zi jk = (zik, z
j
k).

The weighting factors result from the corresponding in-
novation:

pi jk = N
(
zi jk ; Hi j

k xk|k−1, S
i j
k

)
(52)

with Si jk = Hi j
kPk|k−1H

i j�
k + Ri j

k . Via symmetrized mo-
ment matching [10, Sec. IV-B], an increasing number
of mixture components by the fermionic update can be
avoided:

ψ(x1:2k |Z1:k) ≈ ψ
(
x1:2k ; xk|k,Pk|k

)
. (53)

IV. EXAMPLE: GMTI TRACKING OF ROAD MOVING
VEHICLES

Tracking of road moving targets using data from air-
borne GMTI (ground moving target indicator) radar is
a relevant problem. Since here the state space has only
one spatial dimension, the impact of antisymmetry can
easily be visualized.

Fig. 2. Two road moving vehicles observed with GMTI radar.

A. Description of a Characteristic Vignette

Let us therefore consider a straight road given by the
x-axis of the chosen coordinate system with a road map
error of 5 m. See [6, Sec. 9.1] for details and general-
izations to winding roads. As a function of time, Fig. 2
shows the position of vehicle 1 moving uniformly with
the speed v1 = 14 m/s. At time t1 = 120 s, it smoothly ac-
celerates with a = 2m/s2 over 4 s and continues to move
uniformly with v2 = 22 m/s.Vehicle 2 approaches vehicle
1 with the initial speed v2. At time t2 = 58 s, it deceler-
ates with−a over 4 s and follows vehicle 1 at a distance of
20 m until vehicle 1 is accelerating.

Let this vignette be observed by a typical GMTI
radar positioned at s1 = (1, 40) km. For the sake of sim-
plicity, we neglect the phenomenon of GMTI Doppler
blindness [6, Sec. 7.2].Moreover, we assume for resolved
and unresolved measurements the same standard devia-
tions of themeasurement errors in range and cross range
that are given by σr = 10 m and σxr = 70 m, respectively,
while the sensor resolution parameters are αr = 15m and
αxr = 100 m.

Fig. 2 also shows the variation of the resolution prob-
abilities in time and a time series of GMTI plots that are
simulated according to these assumptions. Apparently,
the vehicles are unresolved in the intermediate period
of the vignette. The measurement and resolution capa-
bilities of GMTI sensors strongly depend on the cho-
sen sensor-to-target geometry. This is clearly indicated
by the resolution probability of a second GMTI radar
located at s2 = (40, 0) km (dashed line).

B. Comparison of Fermionic and Bosonic Densities

For the first sensor-to-target geometry previously
discussed, we focus on four instants of time, shortly be-
fore the vehicles are becoming unresolvable (after 36 s),
after processing a fairly long sequence of unresolved
measurements (100 s), during the process of splitting off
(140 s), and well after the vehicles have split off again
(170). Figs. 3 (36, 100 s) and 4 (140, 170 s) show the
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Fig. 3. Spatial projection of p±(x1:2k |Zk:1 ) at two different instants of time (36, 100 s).

spatial projections of the fermionic (left) and bosonic
(right) joint densities representing the positional infor-
mation on them for these instants of time. For about
30 s from the beginning of the vignette, the vehicles are
well separated and characterized by two distinct Gaus-
sian peaks that are the same in the fermionic and bosonic
cases.

At time t1 = 36 s, however, the bosonic peaks are
close to merging, while the peaks of the fermionic den-
sity are separated by a notch along the line where the
vehicle positions are identical. This notch, which might
be called the Pauli notch, is even more pronounced at
time t2 = 100 s, when the bosonic peaks are completely
merged for quite a long time. With “a smiling wink of
the eye,” one might be tempted to speak of a Bose–
Einstein condensate of the two tracks. At time t3 =
140 s, the bosonic tracks are beginning to be separated
again, while at time t4 = 170 s, when the vehicles are well

separated again, the fermionic and the bosonic densities
look identical.

Fig. 5 (left-hand side) shows the corresponding ψ

function in a combined surface and contour plot where
the Pauli notch is clearly visible. This phenomenon re-
sembles the clutter notch in GMTI tracking [6, Sec. 7.2]
that also “forbids” certain state characteristics.The Pauli
notch vanishes when the vehicles become well sepa-
rated again as shown for t3 = 170 s. The square of
ψ function yields the fermionic density at this time
(Fig. 4, left-hand side), which is essentially the same
as in the bosonic case and in the beginning of the
vignette.

In our simulations, we have observed that both
fermionic and bosonic multiple identical target track-
ers mitigate the phenomenon of track coalescence,while
fermionic trackers react significantlymore agile to target
split-off.
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Fig. 4. Spatial projection of p±(x1:2k |Zk:1 ) at two different instants of time (134, 170 s).

V. INDISTINGUISHABILITY AND PUBLIC SECURITY

Since security of public life is a basic human de-
sire and a fundamental prerequisite of liberal societies,

its satisfaction raises an important question: How can
public security be improved by morally and legally
conformable and societally acceptable multiple sensor
surveillance systems in public spaces? Perhaps rather

Fig. 5. Fermionic ψ function for closely spaced and well-separated vehicles (36, 170 s).
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unexpectedly, bosonic and fermionic multiple target
tracking, that is, indistinguishable target tracking, seems
to play a key role seen from a systems engineering per-
spective whenever the problem of reconciling the values
of greater security with the values of the liberality, free-
dom, personal dignity, or privacy that an individual fore-
goes is to be solved.

In the context of public surveillance, the tracking
approach proposed here guarantees “indistinguishabil-
ity of the uninvolved,” a notion that seems to play
the role of a quite fundamental systems design prin-
ciple. By considering persons to be tracked as indis-
tinguishable targets, such security systems will be able
to preserve the anonymity of the vast majority of per-
sons until a certain level of suspicion is reached that
may finally justify the identification of an individual,
for example, by using the output of biometric sensors.
From a systems engineering point of view, we conclude
this paper discussing a prototypical realization that ad-
dresses security threats by hazardous materials in public
infrastructures.

At the Nuclear Security Summit 2016,7 radiological
terrorismwas identified as one of the greatest challenges
to international security. Compared to nuclear weapons,
improvised radiological dispersion devices (IRDDs) are
relatively easy to produce, for which radioactive isotopes
are used in many facilities, and often susceptible to theft.
With the explicit constraint of not compromising the in-
formational self-determination, an experimental public
security system was developed to detect IRDDs in per-
son streams and to make the security personnel aware
of potential suspects. This research was part of a re-
search project, which investigated the vulnerability of
the transnational high-speed train systems [25]. While
maintaining an open transport concept as far as possible,
an analysis of the infrastructure usually available in and
around railway stations shows that there are always ar-
eas suitable for continuous radiological monitoring. For
details, see [26].

A spatially distributed network of gamma sen-
sors records and classifies gamma radiation emitted
by the materials used for building IRDDs. Any ef-
fective shielding by the perpetrators is impractica-
ble. Such sensors provide data about the existence
of a radiological hazard, the materials involved, the
intensity, indications whether the material is incor-
porated for medical purposes or extracorporeal, and
other attributes derivable from gamma spectra. The re-
liable localization of the source of gamma radiation,
however, is not possible by considering spectrometers
only.

The assignment of a radiological threat detected and
classified to an individual is possible in a multiple sen-
sor approach that exploits besides the spectra from spa-

7Nuclear Security Summit, Washington, DC, USA, 2016,
http://www.nee2016.org, last accessed August 26, 2019.

tially distributed gamma sensors also the temporal di-
mension by tracking the persons while they are mov-
ing within the surveillance area. For tracking purposes,
time-of-flight (ToF) cameras, cheap mass products, are
used that are located in the ceiling above the surveillance
area. These sensors provide additionally depth informa-
tion in addition to the images. Person streams thus ap-
pear as “hilly landscapes” characterized by the moving
heads of the people.Each individual can thus be tracked
with high precision and without the risk of occlusions,
even in dense crowds.

The demonstration of the experimental system
shown in Fig. 6 shows persons walking around gamma
sensors that in practical realizations may well be hidden
in the walls or in the floor. The association of positive
signatures provided by the gamma sensors with an in-
dividual and its track over time is produced by a track-
while-classify (TwC) algorithm such as that described
in [27]. Indistinguishable target tracking is essential in
the TwC step that treats persons as fermionic targets. In
other words, the overall system preserves in a certifiable
sense personal privacy by the “indistinguishability of the
uninvolved” principle that we would like to see recog-
nized as a generally used principle of systems design in
public surveillance applications.

The key benefit of indistinguishable target tracking
in public security applications lies less in the fact that
“better” tracks in a certain respect are produced, for ex-
ample, in terms of accuracy or continuity, but to guar-
antee that no “uninvolved” person can be distinguished
from another as long as it is not “uninvolved” any more,
that is, until a sufficient level of “suspicion” has been
accumulated, thus establishing privacy by design. In a
crowd of persons, fermionic trackers may also provide
a certain gain in track continuity as discussed in the ex-
ample of the previous section.

VI. CONCLUSIONS AND WAY AHEAD

Based on the fundamental observation that real-
world targets cannot exist at the same time at the same
place, we have introduced Pauli’s exclusion principle
into multiple identical target tracking. Symmetry in tar-
get tracking, either in their fermionic variant or in their
bosonic variant, inherently implies amultiple hypothesis
structure where all measurements are associated with
all targets that should conceptually be distinguished
from classical enumeration of data interpretation
hypotheses.

� Antisymmetry can seamlessly be embedded into the
joint probability functions describing the kinematic
properties of identical targets. Preliminary simula-
tions indicate benefits in situation where targets may
move closely spaced.

� In particular, antisymmetry leads to Gaussian sum
representations with normalized weighting fac-
tors that are possibly negative. Such densities do
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Fig. 6. Lab view of demonstrating IRDD localization in person streams using five gamma sensors on stabs and ToF cameras at the ceiling
(invisible).

occur in target tracking for several reasons (see, e.g.,
[6, Sec. 7.4]).

� Extensive simulations will have to explore the proper-
ties and benefits of fermionic trackers quantitatively.
In particular, the width of the Pauli notches has to
be characterized and to be related to the targets’
properties.

� Suitable approximations have to be developed as well
and to be evaluated in view of practical implementa-
tions. Many-particle quantum physics has much more
to offer to the tracking community as it would seem.

� Symmetry and antisymmetry can be embedded into
group and extended target trackers, where the kine-
matics is described by random vectors and their shape
by random matrices [6, Sec. 8.2]. While group targets
might be dealt with as bosonic targets, extended tar-
gets are fermions.

� Antisymmetry is potentially present in every identi-
cal target tracking problem. Alternative methodolo-
gies are based on symmetric point processes [3, pp. 19,
240].There are results for anti/skew-symmetric or “de-
terminantal” point processes that are relevant to tar-
get tracking [19].

� Finally, symmetry and antisymmetry properties seem
to be linked to “spooky action at a distance,”
first observed in tracking by Dietrich Fränken,
Michael Schmidt, and Martin Ulmke [28]. Appar-
ently, entanglement is not restricted to the micro-
physical world. The physics literature may stimu-
late progress in understanding this paradox in target
tracking [29].

APPENDIX

A.1 Normalizing ψ Functions

With 
 defined by x1:2k = 
x2:1k , we obtain

∫
dx1:2k

(
N (x1:2k ; xk|k, Pk|k)− N (x1:2k ; 
xk|k, 
Pk|k
�)

)2
= 2√|4πPk|k|

− 2N
(
xk|k; 
xk|k, Pk|k + 
Pk|k
�)

.

(A.1)

A.2 Square Roots of Gaussians

According to the product formula for Gaussians, see
[6, A.5], for example, we obtain(

N
(
z; x, 2P))2 = N

(
z; z, 4P)

N
(
x; z, P)

. (A.2)

A.3 Fermionic Filtering Update

Since z1k and z2k are independent of each other,

λ5
(
z1:2k ;H1:2

k x1:2k ,R1:2
k

)
ψ

(
x1:2k ; xk|k−1,Pk|k−1

)
= N

(
z1:2k ; H1:2

k x1:2k , R1:2
k

)
N

(
x1:2k ; xk|k−1, Pk|k−1

)
− N

(
z2:1k ; H2:1

k x2:1k , R2:1
k

)
N

(
x2:1k ; xk|k−1, Pk|k−1

)
+ N

(
z2:1k ; H2:1

k x1:2k , R2:1
k

)
N

(
x1:2k ; xk|k−1, Pk|k−1

)
− N

(
z1:2k ; H1:2

k x2:1k , R1:2
k

)
N

(
x2:1k ; xk|k−1, Pk|k−1

)
.

From the product formula [6,A.5], the update equations
result.
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The Poisson multi-Bernoulli mixture (PMBM) and the multi-

Bernoulli mixture (MBM) are two multitarget distributions for which

closed-form filtering recursions exist. The PMBM has a Poisson birth

process, whereas the MBM has a multi-Bernoulli birth process. This

paper considers a recently developed formulation of the multitarget

tracking problem using a random finite set of trajectories, through

which the track continuity is explicitly established. A multiscan tra-

jectory PMBM filter and a multiscan trajectory MBM filter, with the

ability to correct past data association decisions to improve current

decisions, are presented. In addition, a multiscan trajectory MBM01

filter, in which the existence probabilities of all Bernoulli components

are either 0 or 1, is presented. This paper proposes an efficient im-

plementation that performs track-oriented N-scan pruning to limit

computational complexity, and uses dual decomposition to solve the

involvedmultiframe assignment problem.The performance of the pre-

sented multitarget trackers, applied with an efficient fixed-lag smooth-

ing method, is evaluated in a simulation study.

I. INTRODUCTION

Multitarget tracking (MTT) refers to the problem of
jointly estimating the number of targets and their tra-
jectories from noisy sensor measurements [1]. The num-
ber of targets and their trajectories can be time-varying
due to targets appearing and disappearing. In a general
MTT system, a multitarget tracker needs to tackle the
modeling of births and deaths of targets, as well as the
partitioning of noisy sensor measurements into poten-
tial tracks and false alarms; the latter is also referred to
as data association. The major approaches to MTT in-
clude the joint probabilistic data association (JPDA) fil-
ter [2], the multiple hypothesis tracker (MHT) [3]–[5],
and random finite set (RFS) [6] based multitarget filters
[7, Ch. 6].

The JPDA filter [2] seeks to calculate the marginal
distribution of each track. To accommodate for an un-
known and time-varying number of targets, the joint in-
tegrated probabilistic data association [8] extends the
basic JPDA [2] by incorporating target existence as an
additional random variable to be estimated. It has re-
cently been shown that the marginal data association
probabilities can be efficiently approximated using mes-
sage passing algorithms [9], [10].

MHT is described in a number of books; e.g., see [3,
Ch. 16] and [4, Chs. 6 and 7]. The model was made rigor-
ous in [11] through random finite sequences, under the
assumption that the number of targets present is con-
stant but unknown, with an a priori distribution that is
Poisson. In MHT, multiple data association hypotheses
are formed to explain the source of the measurements.
Each data association hypothesis assigns measurements
to previously detected targets, newly detected targets, or
false alarms.Data association uncertainty is captured by
the data hypothesis weight, and the target state uncer-
tainty is captured by the target state density distribution
conditioned on each hypothesis.

There are two types of MHT algorithms: the
hypothesis-oriented MHT (HOMHT) [12] and the
track-oriented MHT (TOMHT) [13], [14]. In HOMHT,
multiple global hypotheses are formed and evaluated
between consecutive time scans; the complete algorith-
mic approach was first developed by Reid [12]. The
TOMHToperates bymaintaining a number of single tar-
get hypothesis trees, each of which contains a number of
single target hypotheses explaining themeasurement as-
sociation history of a potential target.

A TOMHT algorithm usually uses a deferred deci-
sion logic to consider the data associations of measure-
ments from more than one scan, in the sense that the
hypotheses are propagated into the future in anticipa-
tion that subsequent data will resolve the uncertainty
[5]. Intuitively, measurements in more than one scan
may provide more accurate data association than those
in a single scan. The number of single target hypothe-
ses can be limited by performing N-scan pruning [5],
and the involvedmultiframe assignment problem is typi-
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cally solved using Lagrangian relaxation-based methods
[15]–[17]. Track management (target initiation and ter-
mination) is usually performed using some external pro-
cedures; see, e.g., [18].

RFSs and finite set statistics (FISST) were devel-
oped to provide a systematic methodology for dealing
with MTT problems involving a time-varying number
of targets [6]. The relationship between RFS-based ap-
proaches to MTT and MHT has been discussed in [19]
and [20]. In the RFS formulation of MTT, the multitar-
get filtering density contains the information of the tar-
get states at the current time step. Exact closed-form so-
lutions of RFS-based multitarget Bayes filter are given
by multitarget conjugate priors. The concept of multitar-
get conjugate prior was defined in [21] as “If we start
with the proposed conjugate initial prior, then all sub-
sequent predicted and posterior distributions have the
same form as the initial prior.”

Two well-established MTT conjugate priors for the
standard point target measurement model are the
Poisson multi-Bernoulli mixture (PMBM) [22] based
on unlabeled RFSs and the generalized labeled multi-
Bernoulli (GLMB) [21] based on labeled RFSs. The
PMBM consists of a Poisson distribution representing
targets that are hypothesized to exist but have not been
detected and a multi-Bernoulli mixture (MBM) repre-
senting targets that have been detected at some stage.
The resulting PMBM filter [23] is a computationally
tractable filter for the standard point target dynamic
model, where the birth model is a Poisson RFS. If the
birth process is a multi-Bernoulli RFS, the multitarget
conjugate prior is of the form MBM [23], [24]. A dis-
cussion regarding the differences between the use of a
Poisson birth model and the use of a multi-Bernoulli
birth model can be found in [24].

A. Track Continuity in MTT

In this section, we discuss how track continuity can
be maintained in different MTT methodologies. Vector-
type MTT methods, e.g., the JPDA filter and the MHT,
describe the multitarget states and measurements by
random vectors. They are able to explicitly maintain
track continuity; i.e., they associate a state estimate with
a previous state estimate or declare the appearance of
a new target [10]. For multitarget filters based on un-
labeled RFS, time sequences of tracks cannot be con-
structed easily due to the set representation of the mul-
titarget states that are order independent. The PMBM
filter (as well as the MBM filter) seemingly does not
provide explicit track continuity between time steps,1 al-
though a hypothesis structure in analogy to MHT was
observed in [22] and [23].

1The PMBM filter and the MBM filter are able to maintain track con-
tinuity implicitly, in a practical setting, based on information provided
by metadata.

One approach to addressing the lack of track con-
tinuity is to add unique labels to the target states and
estimate target states from the multitarget filtering den-
sity [21], [25], [26]. This procedure can work well in
some cases, but it becomes problematic in challeng-
ing situations, for example, when target birth is in-
dependent and identically distributed, and when tar-
gets get in close proximity and then separate [27]. The
δ-GLMB filter [28] (and its approximation the labeled
multi-Bernoulli (LMB) filter [29]) is an example of
the resulting labeled filter when the birth model is
an LMB (mixture) RFS. The δ-GLMB density is sim-
ilar in structure to labeled MBM using MBM01 pa-
rameterization [23], in which Bernoulli components
are uniquely labeled, and their existence probability
is restricted to either 0 or 1. It was shown in [23]
that the MBM parameterization has computational
and implementational advantages over the MBM01

parameterization.

B. Trajectory PMBM Filter and Its Relation to MHT

In this section, we give a brief introduction to the
trajectory PMBM filter and discuss its relation to MHT.
More details of the trajectory PMBM filter will be given
in Section III.

Compared to augmenting target states with unique
labels, a more appealing approach to ensuring track con-
tinuity for RFS-based multitarget filters is to generalize
the concept of RFSs of targets to RFSs of trajectories.
The theoretical background to performMTT using RFS
of trajectories was provided in [27] and [30]. Within the
set of trajectories framework, the goal of MTT is to re-
cursively compute the posterior density over the set of
trajectories, which contains full information about the
target trajectories, and can be used to estimate the best
set of trajectories at each time step.

Closed-form PMBM filtering recursions based on
the set of trajectories framework have been derived in
[31], which enables us to leverage on the benefits of the
PMBM filter recursion based on sets of targets, while
also obtaining track continuity.Assuming standard point
target dynamic [32, Sec. 13.2.4] and measurement mod-
els (defined in Section II-A), two different trajectory
PMBM filters were proposed in [31]: one in which the
set of current (i.e., alive) trajectories is tracked, and one
in which the set of all trajectories (dead and alive) up
to the current time step is tracked. In both cases, finite
trajectories, i.e., trajectories of finite length in time, are
considered.

The implementation of the trajectory PMBMfilter in
[31] considers the single-scan data association problem,
and the best global hypotheses are found usingMurthy’s
algorithm [33]. As a complement to [31], an approxi-
mation to the exact trajectory PMBM filter that con-
siders multiscan data association was developed in [34].
It operates by performing track-oriented N-scan prun-
ing [5] to limit computational complexity, and using dual
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decomposition [17] to solve the involved multiframe as-
signment problem. The proposed algorithm therefore
shares some of the key properties of certain TOMHT
algorithms [5], [17],but is derived usingRFSs of trajecto-
ries and birth/death models. As a comparison, TOMHT
algorithms typically use heuristics to take into account
the appearance and disappearance of targets [4, Ch. 7].

Numerical results in [34] show that the proposed
multiscan trajectory PMBM filter has better track-
ing performance than the fast implementation of the
δ-GLMB filter using Gibbs sampling [35] in terms of es-
timation error and computational time. These two fil-
ters use different birth models, Poisson RFS and multi-
Bernoulli RFS, respectively.A multi-Bernoulli birth can
be suitable if one is certain that a known maximum
of targets will enter the area of interest and the tar-
gets appear around some known locations. With multi-
Bernoulli birth, the PMBM conjugate prior becomes an
MBM conjugate prior [23]. An implementation of the
MBM filter for sets of targets was proposed in [24]. The
case in which the probability distribution of the number
of targets is not necessarily Poisson was discussed in [36]
for the batch-processing formulation used for TOMHT;
however, a practical implementation was not provided
in [36].

The data association is explicitly represented in both
the trajectory PMBM filter and the trajectory MBM fil-
ter, in a data structure analogous to TOMHT.Compared
to conventional MHT formalism, as described in [5] and
[14], one important difference is that the presented tra-
jectory PMBM filters include a Poisson RFS that mod-
els undetected trajectories. The modeling of undetected
targets allows for newly discovered targets to have been
born at earlier time steps [20]. Therefore, the trajectory
PMBM filters give a higher effective birth rate than gen-
eral TOMHT. The modeling of undetected targets was
incorporated into TOMHT in [37]. In comparison, in
the trajectory PMBM filters the hypotheses are purely
data-to-data assignments and they are more efficiently
represented using Bernoulli RFSs with probabilistic tar-
get existence.More importantly, in the PMBM trajectory
filters the estimates of the set of trajectories can be di-
rectly extracted from the multitarget densities in addi-
tion to the target current states.

C. Contributions and Organization

This paper is an extension of [34]. In this paper, we
present the trajectory PMBM and the trajectory MBM
filter with multiscan data association. The main novel-
ties of the proposed algorithms, compared to previous
work based on sets of trajectories [27], [31], [38], [39],
are that they consider the multiscan data association
problem.Themain novelties of the proposed algorithms,
compared to TOMHT, are that they produce full trajec-
tory estimates, i.e., smoothed estimates, upon receipt of
each new set of measurements, and that the filters based
on sets of trajectories model the targets that remain to

be detected and the target death subsequent to the final
detection.

The contributions can be summarized as follows:

1) We present the filtering recursions for the trajectory
MBM filter and the trajectory MBM01 filter using a
multi-Bernoulli birth model. Two variants are con-
sidered for each filter: the set of current trajectories
and the set of all trajectories.

2) We show that the ideas from the efficient TOMHT
in [17] can be utilized in trajectory filters based on
PMBM,MBM, and MBM01 conjugate priors, result-
ing in so-called multiscan trajectory filters.

3) We explain how to efficiently perform fixed-lag
smoothing to extract smoothed trajectory estimates
for the presented algorithms.

4) We evaluate the performance of the presented al-
gorithms in a simulation study, in terms of target
state/trajectory estimation error and computational
time.

The paper is organized as follows. In Section II, we
introduce the modeling assumption and background on
sets of trajectories. In Section III, we review the PMBM
conjugate prior on the set of trajectories. In Section IV,
we present the filtering recursion for trajectoryMBMfil-
ter. In SectionV,we present implementations of themul-
tiscan trajectory filters. In Section VI, we present how to
efficiently perform fixed-lag smoothing when extracting
trajectory estimates. Simulation results are presented in
Section VII, and conclusions are drawn in Section VIII.

II. MODELING

In this section, we first outline the modeling assump-
tions utilized in this work. Next, we give a brief intro-
duction to RFSs of trajectories. Then, we introduce the
generalized transition and measurement models in the
framework of set of trajectories; the precise mathemat-
ical definitions can be found in [27]. The modeling is
probabilistic, and the interested reader can find the nec-
essary details about FISST, measure theory, probability
generating functionals (PGFLs), and functional deriva-
tives for sets of trajectories in Appendices A and D.

A. Modeling Assumptions

We assume that for each discrete time k (a non-
negative integer), a continuous time tk is assigned, such
that tk > tk′ for k > k′. In the traditional formula-
tion for RFSs of targets, target states and measurements
are represented in the form of finite sets [6]. A random
single target state xk is a random element of the state
(Euclidean) space X = R

n, and a random measure-
ment zk is a random element of the measurement space
Z = R

m, all at discrete time k. The random set of mea-
surements obtained by a single sensor, including clutter
and target measurements with unknown origin, at time
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step k is denoted as zk ∈ F (Z ), whereF (Z ) denotes the
set of all the finite subsets of Z .

We proceed by introducing two families of RFSs
that will have prominent roles throughout the paper: the
Poisson RFS [6, Sec. 4.3.1] and the Bernoulli RFS [6,
Sec. 4.3.3]. A Poisson RFS � has multi-object density
distribution

f ppp(�) = e− ∫
λ(�)d�

∏
�∈�

λ(�), (1)

where λ(·) is the intensity function and the number of
objects is Poisson distributed. An RFS � is a Bernoulli
RFS if |�| ≤ 1, and a Bernoulli RFS has multi-object
density distribution

f ber(�) =
⎧⎨
⎩
1 − r, � = ∅,

r f (�), � = {�},
0, otherwise,

(2)

where f (·) is a single object probability density and r
is the probability of existence. A multi-Bernoulli RFS is
the union of a finite number of independent Bernoulli
RFSs.

In previous works [27], [31], [38], [39], two differ-
ent birth models have been used. In this paper, we
present multiscan trajectory filter implementations for
both birth models: the Poisson birth model defined in
Assumption 1 and the multi-Bernoulli birth model de-
fined in Assumption 2. The standard point target mea-
surement model is defined in Assumption 3.

Assumption 1. Themultitarget state evolves according to
the following standard dynamic process with a Poisson
birth model:

1) New targets appear in the surveillance area indepen-
dently of any existing targets. Targets arrive at each
time step according to a Poisson RFS with birth in-
tensity λb

k(xk) defined on the target state space X .
2) Given a target with state xk, the target survives with

a probability PS(xk) and moves with a Markov state
transition density π (xk+1|xk) defined on the target
state space X . The state transition density is the den-
sity of the target state at time step k+ 1, given that the
target had state xk at time step k.

Assumption 2. The multitarget state evolves according
to the following modified dynamic process with a multi-
Bernoulli birth model:

1) New targets appear in the surveillance area indepen-
dently of any existing targets. Targets arrive at time
step k according to a multi-Bernoulli RFS, which has
nbk Bernoulli components. The lth Bernoulli compo-
nent has existence probability rb,l

k and state density
f b,l
k (xk) defined on the target state space X .

2) Same as Assumption 1, point 2.

Assumption 3. The multitarget measurement process is
as follows:

1) Each target may give rise to at most one measurement,
and each measurement is the result of at most one tar-
get. The probability of detection of a target with state
xk is PD(xk), and the single measurement density is
f (zk|xk) from the target space X to the measurement
space Z , which is the probability density of the mea-
surement zk, given that there is a target with state xk in
the scene.

2) Clutter measurements arrive according to a Poisson
RFS with intensity λFA(zk) defined on the measure-
ment space Z , independently of targets and target-
oriented measurements.

B. Random Finite Sets of Trajectories

In this section, we first explain how the single trajec-
tory state and its density are defined. Then, we briefly
introduce some basic types of RFSs of trajectories.

1) Trajectory State: We use the trajectory state model
presented in [27] and [30], in which the trajectory state
is a tuple

X = (β, ε, xβ:ε), (3)

where β is the discrete time of the trajectory birth, i.e.,
the time the trajectory begins; ε is the discrete time of
the trajectory’s end time. If k is the current time, ε = k
means that the trajectory is alive; xβ:ε is, given β and ε,
the (finite) sequence of states

xβ:ε = (xβ, xβ+1, . . . , xε−1, xε), (4)

where xκ ∈ X for all κ ∈ {β, . . . , ε}. This gives a trajec-
tory of length l = ε − β + 1 time steps.

The single trajectory state can be considered a hybrid
state consisting of discrete states β and ε representing
the start and end time indices, and a continuous state xβ:ε

that evolves according to a stochastic model dependent
on the discrete states.2 The trajectory state space at time
step k is [27]

Tk = �(β,ε)∈Ik{β} × {ε} × X ε−β+1, (5)

where � denotes the union of (possibly empty) sets that
are mutually disjoint, Ik = {(β, ε) : 0 ≤ β ≤ ε ≤ k} is the
set of all possible start and end times of trajectories up
to time step k, andX l denotes l Cartesian products ofX ,
i.e., the Cartesian products of spaces of different sizes.A
trajectory state density p(·) of X factorizes as follows:

p(X ) = p(xβ:ε|β, ε)P(β, ε), (6)

where, if ε < β, then P(β, ε) is zero. Integration for sin-
gle trajectory densities is performed as follows [27]:

2We remark that the use of such a hybrid state, i.e., a combination of
one (or more) discrete state and one (or more) continuous state, is
not uncommon in MTT: a typical example is the interacting multiple
model [40], in which the identification of multiple models, which can
be of different dimensionality [41], is governed by a discrete stochastic
process.
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∫
p(X )dX

=
∑

(β,ε)∈Ik

[∫
· · ·
∫

p(xβ:ε|β, ε)dxβ · · · dxε

]
P(β, ε).

(7)

2) Sets of Trajectories: A set of trajectories is denoted
as Xk ∈ F (Tk), where F (Tk) is the set of all the finite
subsets of Tk. Let g(Xk) be a real-valued function on a
set of trajectories, then the set integral is

∫
g(Xk)δXk

� g(∅)+
∞∑
n=1

1
n!

∫
· · ·
∫
g
({
X 1
k , . . . ,Xn

k

})
dX 1

k · · · dXn
k .

(8)

A trajectory Poisson RFS has (multitrajectory) density
of the form (1), where the trajectory Poisson RFS inten-
sity λ(·) is defined on the trajectory state space Tk; i.e., re-
alizations of the PoissonRFS are trajectories with a birth
time,a time of themost recent state,and a state sequence
[38]. A trajectory Bernoulli RFS has density of the form
(2), where f (·) is a single trajectory density (6). Trajec-
tory multi-Bernoulli RFS and trajectory MBM RFS are
both defined analogously to target multi-Bernoulli RFS
and target MBM RFS [27]: a trajectory multi-Bernoulli
is the disjoint union of a multiple trajectory Bernoulli
RFS; trajectory MBM RFS is an RFS whose density is a
mixture of trajectory multi-Bernoulli densities.

C. Transition Models for Sets of Trajectories

In the standard multitarget dynamic model with
Poisson birth (see Assumption 1), target birth at time
step k is modeled by a Poisson RFS, with intensity

λB
k (X ) = λB,x

k (xβ:ε|β, ε)	k(ε)	k(β), (9a)

λB,x
k (xk:k|k,k) = λb

k(xk), (9b)

where 	(·) denotes the Kronecker delta function. In
the modified multitarget dynamic model with multi-
Bernoulli birth (see Assumption 2), target birth at time
step k is modeled by a multi-Bernoulli RFS,with the tra-
jectory state density in the lth Bernoulli component

fB,l
k (X ) = fB,l,x

k (xβ:ε|β, ε)	k(ε)	k(β), (10a)

fB,l,x
k (xk:k|k,k) = f b,l

k (xk), (10b)

and the existence probability rb,l
k .

We focus on two different MTT problem formula-
tions: the set of current trajectories, where the objec-
tive is to estimate the trajectories of targets that are still
present in the surveillance area at the current time, and
the set of all trajectories, where the objective is to es-
timate the trajectories of both the targets that are still
present in the surveillance area at the current time and

the targets that once were in (but have since left) the
surveillance area at some previous time. The probability
of survival as a function on trajectories at time step k is
defined as

PS
k (X ) = PS(xε)	k(ε). (11)

The transition density for the trajectories depends on the
problem formulation.

1) Transition Model for the Set of Current Trajectories:
The Bernoulli RFS transition density for a single poten-
tial target without birth is

f ck|k−1(X|X′)

=

⎧⎪⎪⎨
⎪⎪⎩
1, X′ = ∅,X = ∅,

1 − PS
k−1(X

′), X′ = {X ′},X = ∅,

PS
k−1(X

′)π c(X |X ′), X′ = {X ′},X = {X },
0, otherwise,

(12a)

π c(X |X ′) = π c,x(xβ:ε|β, ε,X ′)	ε′+1(ε)	β ′ (β), (12b)

π c,x(xβ:ε|β, ε,X ′) = πx(xε|x′
ε′ )δx′

β′ :ε′
(xβ:ε−1), (12c)

where δ(·) denotes Dirac delta function and X ′ denotes
the single trajectory state at time step k−1. In thismodel,
PS(·) is used as follows. If the target disappears,or “dies,”
then the entire trajectory will no longer be a member of
the set of current trajectories. If the trajectory survives,
then the trajectory is extended by one time step.

2) Transition Model for the Set of All Trajectories: The
Bernoulli RFS transition density for a single potential
target without birth is

f ak|k−1(X|X′)

=
⎧⎨
⎩
1, X′ = ∅,X = ∅,

πa(X |X ′), X′ = {X ′},X = {X },
0, otherwise,

(13a)

πa(X |X ′) = πa,x(xβ:ε|β, ε,X ′)πε(ε|β,X ′)	β ′ (β),
(13b)

πε(ε|β,X ′) =

⎧⎪⎪⎨
⎪⎪⎩
1, ε = ε′ < k− 1,
1 − PS

k−1(X
′), ε = ε′ = k− 1,

PS
k−1(X

′), ε = ε′ + 1 = k,
0, otherwise,

(13c)

πa,x(xβ:ε|β, ε,X ′)

=
{

δx′
β′ :ε′

(xβ:ε), ε = ε′,
πx(xε|x′

ε′ )δx′
β′ :ε′

(xβ:ε−1), ε = ε′ + 1. (13d)

In this model, the interpretation of the probability of
survival is that it governs whether the trajectory ends or
it is extended by one more time step. However, impor-
tantly, regardless of whether or not the trajectory ends,
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the trajectory remains in the set of all trajectories with
probability one.

The complete transition model for sets of trajecto-
ries is analogous to the complete transition model for
sets of targets, by using sets of trajectories and the corre-
sponding Bernoulli transition density for each problem
formulation. Given the set Xk−1 = {X 1

k−1, . . . ,X
n
k−1} of

trajectories at time step k−1, the setXk of trajectories at
time step k isXk = Xb

k�X1
k�· · ·�Xn

k,whereX
b
k,X

1
k, ...,X

n
k

are independent sets,Xb
k is the set of newborn trajecto-

ries, andXi
k is the set of trajectories resulting fromXi

k−1.
Using the convolution formula formulti-object densities
[6, eq. (4.17)], the resulting multitrajectory density f (·|·)
of Xk given Xk−1 can be written as

f (Xk|Xk−1) =
∑

Xb
k�X1

k�···�Xn
k=Xk

f birthk (Xb
k)

×
n∏
i=1

f persistk|k−1 (X
i
k|{Xi

k−1}), (14)

where f birthk (·) is either a trajectory Poisson RFS or
a trajectory multi-Bernoulli RFS, and f persistk|k−1 (·|·) is a
Bernoulli transition density for a single potential target
without birth, with the form f ak|k−1(·|·) or f ck|k−1(·|·).

D. Single Trajectory Measurement Model

According to the point target measurement model
in Assumption 3, the multi-object density of a target-
generated measurement at time step k given a set of tra-
jectories with 0 or 1 element is Bernoulli, with the form

ϕk(wk|X)

=

⎧⎪⎪⎨
⎪⎪⎩
1, X = ∅,wk = ∅,

1 − PD
k (X ), X = {X },wk = ∅,

PD
k (X )ϕ(zk|X ), X = {X },wk = {zk},

0, otherwise,

(15a)

PD
k (X ) = PD(xε)	k(ε), (15b)

ϕ(z|X ) = f (z|xε). (15c)

Note that trajectories that do not exist at the cur-
rent time cannot be detected. The complete measure-
ment model for sets of trajectories is similar to the mea-
surement model for sets of targets by using the proper
probability of detection and single measurement density
for trajectories [27].Given the setXk = {X 1

k , . . . ,Xn
k } of

trajectories at time step k, the set zk of measurements
at time step k is zk = wc

k � w1
k � · · · � wn

k, where wc
k,

w1
k, ..., w

n
k are independent sets, wc

k is the set of clut-
ter measurements, and wi

k is the set of measurements
produced by trajectory i. The resulting measurement set
density f (·|·) of zk given Xk can be written as

f (zk|Xk) =
∑

wc
k�w1

k�···�wn
k=zk

f pppk

(
wc
k

) n∏
i

ϕk
(
wi
k

∣∣{Xi
k

})
.

(16)

III. TRAJECTORY PMBM FILTER

The PMBM conjugate prior was developed for point
targets in [22] and for extended targets in [42], and it was
further generalized to trajectories in [31] and [43].Given
the sequence of measurements up to time step k′ and
Assumptions 1 and 3, the density of the set of trajectories
at time step k ∈ {k′,k′+1} is given by the PMBMdensity
of the form

fk|k′ (Xk) =
∑

Xu
k�Xd

k=X

f pppk|k′
(
Xu
k

) ∑
a∈Ak|k′

wa
k|k′ f ak|k′

(
Xd
k

)
, (17a)

f pppk|k′
(
Xu
k

) = e− ∫
λu
k|k′ (X )dX

∏
X∈Xu

k

λu
k|k′ (X ), (17b)

f ak|k′
(
Xd
k

) =
∑

�i∈Tk|k′ X
i
k=Xd

k

∏
i∈Tk|k′

f i,a
i

k|k′
(
Xi
k

)
, (17c)

where the RFS of trajectories Xk is an independent
union of a Poisson RFS Xu

k with intensity λu
k|k′ and

an MBM RFS Xd
k with Bernoulli parameters ri,a

i

k|k′ and

f i,a
i

k|k′ (·), cf. (2), and Ak|k′ is the set of all global hypothe-
ses, which will be explained in the next section.A trajec-
tory PMBM RFS can be defined by the parameters of
the density,

λu
k|k′,Ak|k′ ,

{
�a
k|k′
}
a∈Ak|k′

, (18a)

�a
k|k′ = {(

wi,ai

k|k′, r
i,ai

k|k′ , f
i,ai

k|k′
)}

i∈T
. (18b)

A. Structure of the Trajectory PMBM Filter

The structure of the trajectory PMBM (17) is in anal-
ogy to the structure of the target PMBM [22]. The Pois-
son RFS represents trajectories that are hypothesized
to exist, but have never been detected; i.e., no mea-
surement has been associated with them. In the track-
oriented trajectory PMBM filter, a new track is initiated
for each measurement received. In the MBM in (17),
Tk|k′ = {1, . . . ,nk|k′ } is a track table with nk|k′ tracks,
a = (a1, . . . , ank|k′ ) ∈ Ak|k′ is a possible global data as-
sociation hypothesis, and for each global hypothesis a
and for each track i ∈ Tk|k′ , ai indicates which track hy-
pothesis is used in the global hypothesis. For each track,
there are hik|k′ single trajectory hypotheses.3 The weight

of global hypothesis a iswa
k|k′ ∝ ∏

i∈Tk|k′
wi,ai

k|k′ , where wi,ai

k|k′

is the weight of single trajectory hypothesis ai from track
i.

Letmk be the number of measurements at time step
k ∈ {1, . . . , τ } and j ∈ Mk = {1, . . . ,mk} be an index
to each measurement. LetMk denote the set of all mea-
surement indices up to and including time step k; the el-
ements ofMk, if not empty, are of the form (τ, j), where

3The “track” defined here is different from the convention used in
MHT algorithms, where “track” is referred to as single trajectory hy-
pothesis.
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j ∈ {1, . . . ,mτ } is an index of ameasurement at time step
τ ≤ k. Further, let Mk(i, ai) denote the history of mea-
surements that are hypothesized to belong to hypothesis
ai from track i at time step k. Under the standard point
targetmeasurementmodel assumption (seeAssumption
3), there can be at maximum one measurement corre-
sponding to the same time step in Mk(i, ai).

For a global hypothesis to be correct, we have the
following constraints. Each global hypothesis should ex-
plain the association of each measurement received so
far. In addition, every measurement should be associ-
ated with one and only one track in each global hy-
pothesis. In other words, the single trajectory hypothe-
ses included in a given global hypothesis cannot have
any shared measurement. Under these constraints, the
set of global hypotheses at time step k can be expressed
as

Ak|k′ =
{
a = (a1, . . . , ank|k′ )

∣∣∣∣∣
⋃
i∈Tk|k′

Mk(i, ai) = Mk,

Mk(i, ai) ∩ Mk( j, a j) = ∅ ∀i �= j, i, j ∈ Tk|k′

}
.

(19)

B. PMBM Filtering Recursion

The form of the PMBMconjugate prior on the sets of
trajectories is preserved through prediction and update.
The two different trajectory PMBM filters based on the
two different transitionmodels for sets of trajectories are
both track-oriented. For each track, there is a hypoth-
esis tree, where each hypothesis corresponds to differ-
ent data association sequences for the track. The predic-
tion step preserves the number of tracks and the num-
ber of hypotheses. By using a Poisson RFS birth model,
the density of newborn trajectories λB

k (Xk) can be easily
incorporated into the predicted density of Poisson dis-
tributed trajectories λu

k|k−1(Xk) that have never been de-
tected. The two different trajectory PMBM filters have
different prediction steps; the difference is that whether
dead trajectories are still maintained in the set of trajec-
tories. In the update step, a potential new track is initi-
ated for each measurement, and additional hypotheses
are created due to data association. The two different
trajectory PMBM filters have the same update step. Ex-
plicit expressions for how the PMBM parameters (18)
are predicted and updated, using the two different prob-
lem formulations, can be found in [31]; they are omitted
here.

IV. TRAJECTORY MBM FILTER

It is shown in [23] that the MBM RFS of targets
is a multitarget conjugate prior if the birth model is a
multi-Bernoulli RFS, as in Assumption 2. In this section,
we extend this result to RFS of trajectories. Given the

sequence of measurements up to time step k′ and As-
sumptions 2 and 3, the density of the set of trajectories
at time step k ∈ {k′,k′ + 1} is given by the MBM of the
form

fk|k′ (Xk) =
∑

a∈Ak|k′

wa
k|k′

∑
�i∈Tk|k′ X

i
k=Xk

∏
i∈Tk|k′

f i,a
i

k|k′
(
Xi
k

)
, (20)

where the MBM RFS Xk has Bernoulli parameters ri,a
i

k|k′

and f i,a
i

k|k′ (·), cf. (2). A trajectory MBM RFS can be de-
fined by the parameters of the density

Ak|k′,
{
�a
k|k′
}
a∈Ak|k′

, (21a)

�a
k|k′ = {(

wi,ai

k|k′, r
i,ai

k|k′ , f
i,ai

k|k′
)}

i∈T
. (21b)

A. Structure of the Trajectory MBM Filter

The structure of the trajectory MBM is similar to
the MBM maintained in the trajectory PMBM. The dif-
ference lies in how tracks (i.e., Bernoulli components)
are initiated. In the trajectory PMBM filter, a new track
is initiated for each measurement, whereas in the tra-
jectory MBM filter, a new track is initiated for each
Bernoulli component in themulti-Bernoulli birthmodel;
i.e.,MBMhypotheses explicitly enumerate potential tar-
gets that remain to be detected. Both the trajectory
PMBM filter and the trajectory MBM filter can explic-
itly represent trajectories that remain to be detected.
In the PMBM representation, these trajectories are ef-
ficiently represented through the trajectory Poisson in-
tensity λu

k|k′ (·),whereas in theMBMrepresentation, they
are split across many single trajectory hypotheses (tra-
jectory Bernoulli RFSs) with empty measurement asso-
ciation history, i.e.,Mk(i, ai) = ∅.

In each global hypothesis a ∈ Ak|k, each measure-
ment, at each time step, is associated with at most one
track, and each track is associated with at most one mea-
surement. Measurements that are not associated with
any tracks in a global hypothesis are considered to be
clutter under this global hypothesis. Tracks that are not
associated with any measurements in a global hypoth-
esis are considered to be misdetected under this global
hypothesis.Under these constraints, the set of global hy-
potheses at time step k can be expressed as

Ak|k′ =
{
a = (a1, . . . , ank|k′ )

∣∣∣∣ ⋃
i∈Tk|k′

Mk(i, ai) ⊆ Mk,

Mk(i, ai) ∩ Mk( j, a j) = ∅ ∀i �= j, i, j ∈ Tk|k′

}
. (22)

Compared to (19),hereMk\
⋃

i∈Tk|k′
Mk(i, ai) consists of

indices of measurements received so far that are clutter
under global hypothesis a ∈ Ak|k′ . This is an important
difference from the trajectory PMBM filter, in which the
question whether a measurement corresponds to clut-
ter, or to the initialization of a new target trajectory, is
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captured by the existence probability of the created tra-
jectory Bernoulli RFS.

In the rest of the section, we present the predic-
tion and update steps for recursively computing (20)
for the MBM parameterization. Similar to the trajectory
PMBM filter, the two different trajectory MBM filters,
based on the set of current trajectories formulation and
the set of all trajectories formulation, have the same up-
date step. For compactness, we denote the inner product
of two functions h(·) and g(·) as 〈h; g〉 = ∫

h(x)g(x)dx.

B. MBM Filtering Recursion

We first present the prediction steps, respectively, for
the two different problem formulations, and then we
present the update step.

1) Prediction Step for the Set of Current Trajectories:
The prediction step is given in the following theorem.

Theorem 1. Assume that the distribution from the previ-
ous time step fk−1|k−1(Xk−1) is given by (20), that the tran-
sitionmodel is (12),and that the birthmodel is a trajectory
multi-Bernoulli RFS with nbk Bernoulli components, each
of which has density of the form (10). Then, the predicted
distribution for the next step fk|k−1(Xk) is given by (20),
with nk|k−1 = nk−1|k−1 + nbk. For tracks continuing from
previous time (i ∈ {1, . . . ,nk−1|k−1}), the parameters of
the MBM are

hik|k−1 = hik−1|k−1, (23a)

wi,ai

k|k−1 = wi,ai

k−1|k−1 ∀ai, (23b)

ri,a
i

k|k−1 = ri,a
i

k−1|k−1

〈
f i,a

i

k−1|k−1;PS
k−1

〉 ∀ai, (23c)

f i,a
i

k|k−1(X ) =
〈
f i,a

i

k−1|k−1;π cPS
k−1

〉
〈
f i,a

i

k−1|k−1;PS
k−1

〉 ∀ai. (23d)

For new tracks (i ∈ {nk−1|k−1 + l}, l ∈ {1, . . . ,nbk}), the
parameters of the MBM are

hik|k−1 = 1, (24a)

Mk−1(i, 1) = ∅, (24b)

wi,1
k|k−1 = 1, (24c)

ri,1k|k−1 = rb,l
k , (24d)

f i,1k|k−1(X ) = f
B,l
k (X ). (24e)

2) Prediction Step for the Set of All Trajectories: The
prediction step is given in the following theorem.

Theorem 2. Assume that the distribution from the previ-
ous time step fk−1|k−1(Xk−1) is given by (20), that the tran-
sitionmodel is (13),and that the birthmodel is a trajectory
multi-Bernoulli RFS with nbk Bernoulli components, each
of which has density given by (10). Then, the predicted
distribution for the next step fk|k−1(Xk) is given by (20),
with nk|k−1 = nk−1|k−1 + nbk. For tracks continuing from

previous time (i ∈ {1, . . . ,nk−1|k−1}), the parameters of
the MBM are

hik|k−1 = hik−1|k−1, (25a)

wi,ai

k|k−1 = wi,ai

k−1|k−1 ∀ai, (25b)

ri,a
i

k|k−1 = ri,a
i

k−1|k−1 ∀ai, (25c)

f i,a
i

k|k−1(X ) = 〈
f i,a

i

k−1|k−1;πa〉 ∀ai. (25d)

For new tracks (i ∈ {nk−1|k−1 + l}, l ∈ {1, . . . ,nbk}), the
parameters of the MBM are the same as (24).

3) Update Step: The update step is given in the follow-
ing theorem.

Theorem 3. Assume that the predicted distribution
fk|k−1(Xk) is given by (20), that the measurement model
is (15), and that the measurement set at time step k is zk =
{z1k, . . . , zmk

k }. Then, the updated distribution fk|k(Xk) is
given by (20), with nk|k = nk|k−1. For each track (i ∈
{1, . . . ,nk|k}), a hypothesis is included for each combi-
nation of a hypothesis from a previous time and either
a misdetection or an update using one of the mk new
measurements, such that the number of hypotheses be-
comes hik|k = hik|k−1(1+mk). Formisdetection hypotheses
(i ∈ {1, . . . ,nk|k}, ai ∈ {1, . . . ,hk|k−1}), the parameters of
the MBM are

Mk(i, ai) = Mk−1(i, ai), (26a)

wi,ai

k|k = wi,ai

k|k−1

(
1 − ri,a

i

k|k−1

〈
f i,a

i

k|k−1;PD〉), (26b)

ri,a
i

k|k =
ri,a

i

k|k−1

〈
f i,a

i

k|k−1; 1 − PD
〉

1 − ri,a
i

k|k−1

〈
f i,a

i

k|k−1;PD
〉 , (26c)

f i,a
i

k|k (X ) =
(1 − PD

k (X )) f i,a
i

k|k−1(X )〈
f i,a

i

k|k−1; 1 − PD
〉 . (26d)

For hypotheses updating tracks (i ∈ {1, . . . ,nk|k}, ai =
ãi + hik|k−1 j, ã

i ∈ {1, . . . ,hik|k−1}, j ∈ {1, . . . ,mk}, i.e., the
previous hypothesis ãi,updatedwithmeasurement z jk), the
parameters are

Mk(i, ai) = Mk−1(i, ãi) ∪ {(k, j)}, (27a)

wi,ai

k|k =
wi,ai

k|k−1r
i,ãi

k|k−1

〈
f i,ã

i

k|k−1;ϕ
(
z jk
∣∣ · )PD

〉
λFA

(
z jk
) , (27b)

ri,a
i

k|k = 1, (27c)

f i,a
i

k|k (X ) =
ϕ
(
z jk
∣∣X )PD

k (X ) f i,ã
i

k|k−1(X )〈
f i,ã

i

k|k−1;ϕ
(
z jk
∣∣ · )PD

k

〉 . (27d)

The derivation here incorporates hypotheses updat-
ing every prior hypothesis with every measurement;
however, in practical implementations, gating can be
used to reduce the computational burden by excluding
hypotheses with negligible weights.
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C. MBM01 Filtering Recursion

The trajectory MBM01 filter can be considered as a
variant of the trajectory MBM filter, in which existence
probabilities of Bernoulli components are either 0 or 1.
TheMBM01 filtering recursion can be obtained from the
MBM filtering recursions by expanding the MBM into
its MBM01 equivalent [23]. The filtering recursions for
the trajectory MBM01 filter are given in Appendix C.

D. Discussion

All the trajectory filters presented above are track-
oriented. For each Bernoulli component in the multi-
Bernoulli birth density, a new track is initiated. Com-
pared to the trajectory PMBM filter with Poisson RFS
birth, tracks are created in the prediction step but not the
update step of trajectory MBM/MBM01 filter. In the tra-
jectory MBM/MBM01 filter for the set of all trajectories,
the predictions (25d) and (66c) result in additional mix-
ture component in Bernoulli densities f i,a

i

k|k′ (Xk), which
are of the form

p(X ) =
∑
j

w j pj(xβ:ε|β, ε)	e j (ε)	bj (β), (28)

where each mixture component is characterized by a
weight w j, a distinct birth time bj, a distinct most re-
cent time e j where bj ≤ e j for all j,4 and a state
sequence density pj(·). This type of state density fa-
cilitates simple representations for the state sequence
xβ:ε (either the state of a trajectory that is still present
or the state of a dead trajectory), conditioned on β

and ε.
The prediction steps, given by Theorems 5 and 6,

in the trajectory MBM01 filter, create more single tra-
jectory hypotheses than the prediction steps, given by
Theorems 1 and 2, in the trajectory MBM filter; this
is a direct result of restricting the existence probabil-
ity of Bernoulli components to either 0 or 1. The exis-
tence probability of trajectory Bernoulli RFS r has dif-
ferent meanings in the four different trajectory filters:
in the trajectory MBM filter for the set of current tra-
jectories, r is the probability that the trajectory exists at
the current time and has not ended yet; in the trajec-
tory MBM filter for the set of all trajectories, r repre-
sents the probability that the trajectory existed at any
time before including the current time; in the trajectory
MBM01 filter for the set of current trajectories, r indi-
cates whether the trajectory exists at the current time
and has not ended yet; in the trajectory MBM01 filter for
the set of all trajectories, r indicates whether the trajec-
tory existed at any time before and including the current
time.

We remark that the labeled trajectory MBM and
MBM01 filters, which are defined over the set of labeled

4Neither the birth time β nor the most recent time ε is deterministic.

trajectories, can be obtained by augmenting label to sin-
gle target state x [27, Sec. IV-A]. This does not affect the
filtering recursion or the information in the computed
posterior, compared to MBM and MBM01. Therefore,
the correspondingmultiscan implementations in Section
V are analogous.

V. IMPLEMENTATION OF MULTISCAN TRAJECTORY
FILTERS

In this section, we present efficient multiscan imple-
mentations of the above trajectory filters.

A. Hypothesis Reduction

The hypothesis reduction techniques for the trajec-
tory PMBM, MBM, and MBM01 are quite similar, so
we first explain the general formulation and then high-
light the differences. As a first step, we identify the most
probable global hypothesis, from which estimates of tra-
jectories are also typically extracted. Conditioning on
the most likely global hypothesis, we make use of track-
oriented N-scan pruning [5], a conventional hypothesis
reduction technique used in TOMHT, to prune global
hypotheses with negligible weights.

We note that hypothesis reduction is not compli-
cated by the fact that we are working with symmetric
(unlabeled) distributions. Specifically, in (20), the quan-
tities stored are the weight of hypothesis a, i.e., wa

k|k′ ,
and the hypothesis-conditioned trajectory distributions
f i,a

i

k|k′ (Xi
k) for each target. Symmetry is ensured by the

sum over �i∈Tk|k′X
i
k = Xk; this sum is implicit, and terms

never need to be explicitly represented. Therefore, hy-
pothesis reduction achieved by either setting wa

k|k′ = 0
for some subset of hypotheses (and renormalizing the
weights of remaining hypotheses to sum to 1) or remov-
ing a subset of multi-Bernoulli components f i,a

i

k|k′ (Xi
k)

for some hypotheses always results in valid symmetric
distributions. Likewise, if the existence probability of a
Bernoulli component is close to zero in all the consid-
ered global hypotheses, pruning is equivalent to setting
this existence probability equal to zero, which does not
affect the symmetry of the posterior.

Given the most likely global hypothesis a∗ at cur-
rent time step k, we trace the single trajectory hypothe-
ses included in a∗ back to their local hypotheses at time
step k − N. The assumption behind the N-scan pruning
method is that the data association ambiguity is resolved
before scan k−N [5]. In other words, global hypotheses
that do not coincide with a∗ up until and including time
step k − N + 1 are assumed to have negligible weights;
these global hypotheses can then be pruned. In addition,
tracks (local hypothesis trees) that, after pruning, have a
single nonexistence local hypothesis, i.e., r = 0, can be
pruned. In what follows, we show that the most likely
global hypothesis a∗ can be obtained as the solution of a
multiframe assignment problem.
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B. Data Association Modeling and Problem Formulation

As indicated in the previous section, the posterior
global hypothesis probability wa

k|k is proportional to the
product of the weights of different single trajectory hy-
potheses wi,ai

k|k, one from each track:

wa
k|k ∝

∏
i∈Tk|k

wi,ai

k|k, (29)

where the proportionality denotes that normalization is
required to ensure that

∑
a∈Ak|k wa

k|k = 1. Omitting time
indices and introducing the notation ca = − log(wa) and
ci,a

i = − log(wi,ai ) yields

ca =
∑
i∈T

ci,a
i +C, (30)

whereC is the logarithmof the normalization constant in
(29). The most likely global hypothesis is the collection
of single trajectory hypotheses that minimizes the total
cost, i.e.,

a∗ = argmin
(ai)∈A

∑
i∈T

ci,a
i
. (31)

Let Hi denote the set of single trajectory hypothe-
ses for the ith track, and let Mτ denote the set of mea-
surement indices at time step τ . Further, let ρ i,a

i ∈ {0, 1}
be a binary indicator variable, indicating whether single
trajectory hypothesis ai in the ith track is included in a
global hypothesis or not, and let

ρ = {ρ i,ai ∈ {0, 1}|ai ∈ Hi ∀i ∈ T} (32)

be the set of all binary indicator variables. The mini-
mization problem (31) can be further posed as a mul-
tiframe assignment problem by decomposing the con-
straint (ai) ∈ A into a set of smaller constraints [17, Sec.
III], in the form of

argmin
ρ∈⋂k

τ=0 Pτ

∑
i∈T

∑
ai∈Hi

ci,a
i
ρ i,a

i
, (33)

with the constraint sets denoted as

P0 =
{

ρ

∣∣∣∣∣
∑
ai∈Hi

ρ i,a
i = 1, ∀i ∈ T

}
, (34a)

Pτ =

⎧⎪⎪⎨
⎪⎪⎩ρ

∣∣∣∣∣
∑
i∈T

∑
ai∈Hi:

(τ, j)∈M(i,ai)

ρ i,a
i ≤ 1, ∀ j ∈ Mτ

⎫⎪⎪⎬
⎪⎪⎭ , (34b)

where k is the current time step and τ = 1, . . . ,k. The
first constraint (34a) enforces that each global hypothe-
sis should include one and only one single trajectory hy-
pothesis from each track. The set of k constraints (34b)
differs in the trajectory PMBM filter and the trajectory
MBM/MBM01 filter. In the trajectory PMBM filter, each
measurement from each time should be associated with
exactly one track, i.e., the ≤ sign becomes an = sign
in (34b), whereas in the trajectory MBM/MBM01 filter,

each measurement from each time should be associated
with at most one track, which explains the ≤ sign.

C. Multiframe Assignment via Dual Decomposition

The multidimensional assignment problem (33) is
NP-hard for two or more scans of measurements. An ef-
fective approach to solving this problem is Lagrangian
relaxation; this technique has been widely used to solve
themultiscan data association problem inTOMHTalgo-
rithms; see, e.g., [15] and [16]. In this work, we focus on
the dual decomposition formulation [44], i.e., a special
case of Lagrangian relaxation, whose competitive per-
formance, compared to traditional approaches [15], [16],
in solving the multiframe assignment problem has been
demonstrated in [17].

1) Decomposition of the Lagrangian Dual: We follow
similar implementation steps as in [17].The original (pri-
mal) problem (33) is separated into k subproblems, one
for each time step, and for each subproblem a binary
variable is used. The subproblem solutions

ρτ = {ρ i,aiτ ∈ {0, 1}|ai ∈ Hi ∀i ∈ T} (35)

must be equal for all τ ; this is enforced through Lagrange
multipliers that are incorporated into the subproblems
acting as penalty weights. The τ th subproblem can be
written as [17]

argmin
ρτ ∈P0∩Pτ

∑
i∈T

∑
ai∈Hi

(
ci,a

i

k
+ δi,a

i

τ

)
ρ i,a

i

τ

� argmin
ρτ ∈P0∩Pτ

S(ρτ , δτ ), (36)

where the Lagrange multipliers used for the τ th sub-
problem are denoted by

δτ = {
δi,a

i

τ

∣∣ai ∈ Hi ∀i ∈ T
}
, (37)

and the division by k in (36) comes from the fact that the
summation of the objectives that each subproblem tries
to minimize should be equal to the objective of the orig-
inal problem. The Lagrange multipliers δi,a

i

τ ∈ R have
the constraint that, for each single trajectory hypothe-
sis, they must add up to zero over different subproblems
[44]. Thus, the set of Lagrange multipliers has the form

� =
{

δτ

∣∣∣∣∣
k∑

τ=1

δi,a
i

τ = 0, ∀ai ∈ Hi ∀i ∈ T

}
. (38)

2) Subproblem Solving: After eliminating all the con-
straint sets except two, i.e., P0 and Pτ , we obtain a 2D
assignment problem (36). The objective of the τ th as-
signment problem (36) is to associate eachmeasurement
received at time step τ ≤ k, i.e., j ∈ Mτ , with either
an existing track or a new track5 at the current time

5In the trajectory MBM/MBM01, “dummy” tracks are created to rep-
resent clutter.
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step k, i.e., i ∈ Tk, such that the total assignment cost is
minimized.

For a track that is created after time step τ , no mea-
surement from time step τ should be assigned to it; there-
fore, the measurement-to-track assignment cost is infin-
ity. For a track that existed before and up to time step τ ,
i.e., i ∈ Tτ , if measurement z jτ was not associated with
this track, let the measurement-to-track assignment cost
be infinity; if otherwise, let the cost first be the minimum
cost of the single trajectory hypothesis in this track that
was updated by z jτ [45, Ch. VII, eq. (7.24)], i.e.,

min
∑
ai∈Hi:

(τ, j)∈M(i,ai)

(
ci,a

i

k
+ δi,a

i

τ

)
. (39)

In order to keep the cost of a hypothesis that does not
assign a measurement to a track the same for an existing
track and a new track (trajectory PMBMfilter) or clutter
(trajectory MBM filter), the cost (39) should then have
subtracted from it the minimum cost of hypotheses that
this track is not updated by any of the measurements at
time step τ , i.e.,

min
∑
ai∈Hi:

(τ, j)/∈M(i,ai), ∀ j∈Mτ

(
ci,a

i

k
+ δi,a

i

τ

)
. (40)

Note that, in the context of Lagrangian relaxation, the
costs of single trajectory hypotheses refer to the costs
that are penalized by the Lagrange multipliers.

After solving the 2D assignment problem, we can
obtain the associations for each measurement at time
step τ . For tracks not being associated with any mea-
surements at time step τ , if the track is created before
and up to time step τ , i.e., i ∈ Tτ , the single trajectory
hypothesis

argmin
ai

∑
ai∈Hi:

(τ, j)/∈M(i,ai), ∀ j∈Mτ

(
ci,a

i

k
+ δi,a

i

τ

)
(41)

is included in the most likely global hypothesis; if other-
wise, i.e., i ∈ Tk \ Tτ , we can choose the single trajectory
hypothesis

argmin
ai

∑
ai∈Hi

(
ci,a

i

k
+ δi,a

i

τ

)
(42)

to be included in the most likely global hypothesis.

3) Subgradient Updates: The objective of Lagrangian
relaxation is to find the tightest lower bound of the sum-
mation of the cost of each subproblem (36). The dual
problem can be expressed as [17]

argmax
{δτ }∈�

(
k∑

τ=1

min
ρτ ∈P0∩Pτ

S(ρτ , δτ )

)
, (43)

where the maximum can be found using subgradient
methods [46]. The Lagrange multipliers {δτ } are updated
using

δi,a
i

τ = δi,a
i

τ + αt · gi,aiτ , (44)

where gi,a
i

τ is the projected subgradient that can be cal-
culated as

gi,a
i

τ = ρ i,a
i

τ − 1
k

k∑
τ ′=1

ρ i,a
i

τ ′ , (45)

and αt is the step size at iteration t. There are many rules
to set the step size; see [44]. In this work, we choose to
use the same setting as in [17], which has the form

αt = CBP
t −CD

t

‖{gτ }‖2 , (46)

whereCBP
t is the best (minimum) feasible primal cost so

far obtained,CD
t is the dual cost calculated at iteration t

from (43), and {gτ } denotes the concatenation of all the
projected subgradients gi,a

i

τ . The optimal solution is as-
sumed to be attained when the relative gap between the
primal cost and the dual cost (CBP

t −CD
t )/CBP

t is less than
a specified threshold, e.g., 0.01 [44].

Each subproblem solution will, in general, be infea-
sible with respect to the primal problem (33); neverthe-
less, subproblem solutions will usually be nearly feasi-
ble since large constraint violations were penalized [44].
Hence, feasible solutions ρ can be obtained by correct-
ing the minor conflicting binary elements on which sub-
problem solutions ρτ disagree. For tracks for which we
have not yet selected which single trajectory hypothe-
sis to be included in the most likely global hypothesis,
we use the branch and bound technique [47] to recon-
struct the best feasible solution at each iteration of the
Lagrangian relaxation. Note that there are many other
ways to recover a feasible primal solution from subprob-
lem solutions; see [44].

D. Discussion

The objective of solving the multiframe assignment
problem is to know which Bernoulli components are in-
cluded in the multi-Bernoulli with the highest weight.
Because the data association ambiguity is assumed to
be resolved before time step k − N, obtaining the most
likely global hypothesis at time step k, which explains
the origin of each measurement from time step k−N to
current time step k, requires the solution of an (N + 2)-
dimensional assignment problem [5].

The computational complexity of filters can be fur-
ther reduced by limiting the number of single target/
trajectory hypotheses; see [23] and [31]. As for the mul-
tiscan trajectory PMBM and MBM filters, pruning sin-
gle trajectory hypotheses with small existence proba-
bilities besides N-scan pruning might sometimes harm
the solvability of the multiframe assignment problem,
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since the problem is formulated using the measure-
ment assignment information contained in single trajec-
tory hypotheses. Instead,we can choose single trajectory
hypotheses ai ∈ Hi, ∀i ∈ T, with small Bernoulli
existence probability r at current time step to be up-
dated only by misdetection at next time step. Then, sin-
gle trajectory hypotheses with several consecutive mis-
detections can be pruned using N-scan pruning. Also, to
limit the number of mixture components in the trajec-
tory Poisson RFS, components with negligible weights
can be pruned.

VI. EFFICIENT FIXED-LAG SMOOTHING

Multitarget filters based on sets of trajectories are
able to estimate the full state sequence instead of ap-
pending the sequence of estimates at each time step.This
is possible since the posterior density contains full tra-
jectory information. The posterior density over the set
of trajectories can be computed either off-line by apply-
ing fixed-interval smoothing or recursively as new mea-
surements arrive by performing smoothing while filter-
ing. Examples of the latter case include the Gaussian
mixture trajectory (cardinalized) probability hypothesis
density filter proposed in [38] and [39] and the trajec-
tory MBM01 filter proposed in [27] that use an accumu-
lated state density representation [48], and the trajectory
PMBM filter proposed in [31] that uses an information
form [49], to represent the joint state density.

As time progresses, the lengths of the trajectories in-
crease. Eventually, the length may be such that it is com-
putationally beneficial to perform approximate smooth-
ing while filtering. An L-scan implementation is pro-
posed in [27] and [38] that propagates the joint den-
sity of the states of the last L time steps and indepen-
dent densities for the previous states for each trajec-
tory. Still, from the perspective of N-scan pruning, a lot
of unnecessary calculations might be spent on obtaining
the smoothed posterior density for each single trajectory
hypothesis. More specifically, when the data association
ambiguity is high (e.g., targets move in proximity), we
might have hundreds or even thousands of single trajec-
tory hypotheses, and at each time instance we only need
to compute the posterior trajectory mean for those that
are included in the most likely global hypothesis. How-
ever,note that the prediction and update of the hypothe-
ses weights are the same as in the implementation using
smoothing while filtering, e.g., [31].

We propose an efficient fixed-lag smoothing imple-
mentation of multiscan trajectory filters that solves the
above-mentioned problem by combining theL-scan tra-
jectory density approximation with N-scan pruning. Af-
ter N-scan pruning, single trajectory hypotheses in the
same track share the samemeasurement association his-
tory at all times up to time step k−N.Then,we can apply
(N+L)-scan density approximation, such that all single
trajectory hypotheses in the same track share the same
posterior trajectory density up until time step k−N−L.

It is therefore sufficient to perform fixed-lag smoothing
forN+L steps for the most likely global hypothesis, and
then store the parameters of the smoothed target state
densities at time stepk−N−L+1 before proceeding.Fol-
lowing this approach, the extracted posterior trajectory
mean from themost likely global hypothesis at time step
k+1 consists of the newly computed smoothed estimates
for the last N + L steps and the prestored smoothed es-
timates at all times up to k−N − L+ 1.

VII. SIMULATIONS

In this section, we show simulation results that com-
pare five different filters6:

1) multiscan trajectory PMBM filter7;
2) multiscan trajectory MBM filter (footnote 7);
3) multiscan trajectory MBM01 filter (footnote 7);
4) fast implementation of the δ-GLMB filter using

Gibbs sampling8 [35];
5) fast implementation of the LMB filter using Gibbs

sampling (footnote 8) [50].

For all the trajectory filters, we consider the set of all
trajectories problem formulation.

A. Parameter Setup

A 2D Cartesian coordinate system is used to de-
fine measurement and target kinematic parameters. The
kinematic target state is a vector of position and veloc-
ity xk = [px,k, vx,k, py,k, vy,k]T .A singlemeasurement is a
vector of position zk = [zx,k, zy,k]T . Targets follow a lin-
ear Gaussian constant velocity model πk|k−1(xk|xk−1) =
N (xk;Fkxk−1,Qk), with parameters

Fk = I2 ⊗
[
1 T
0 1

]
, Qk = 0.01I2 ⊗

[
T 3/3 T 2/2
T 2/2 T

]
,

where ⊗ is the Kronecker product, Im is an identity ma-
trix of size m × m, and T = 1. The linear Gaussian
measurement likelihood model has density f (zk|xk) =
N (zk;Hkxk,Rk), with parameters Hk = I2 ⊗ [1, 0] and
Rk = I2.

The filters consider that there are no targets at
time step 0. For multiscan trajectory filters, we use
N-scan pruning (N = 3) to remove unlikely global

6The TOMHT implementation developed in [17] can be considered as
a special case of the multiscan trajectory PMBM filter for sets of cur-
rent trajectories where the trajectory estimates consist of target state
estimates that are extracted from the marginal densities over the cur-
rent set of targets. Therefore, we choose not to include the TOMHT
implementation in [17] in the simulation results.
7MATLAB code of the multiscan trajectory PMBM, MBM, and
MBM01 filters is available at https://github.com/yuhsuansia/Multi-
scan-trajectory-PMBM-filter.
8We use the code that Prof. Ba-Ngu Vo and Prof. Ba-Tuong Vo share
online: http://ba-tuong.vo-au.com/codes.html. The authors thank them
for providing the code.
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Fig. 1. True target trajectories for 81 time steps. In both scenarios,
targets are born at times {1, 11, 21, 31} and are dead at times {51, 61,
71, 81}. Targets’ positions every six time steps are marked with a
circle, and their initial positions with a filled circle. In Scenario 1,
there are 12 targets born at four different locations. In Scenario 2,

targets move in close proximity around the midpoint.

hypotheses. In addition to filtering, we also perform
fixed-lag smoothing for the latest four steps. Both fil-
tering and smoothing performances are analyzed. For
the trajectory PMBM filter and the trajectory MBM
filter, Bernoulli components with existence probability
smaller than 10−3 are not updated bymeasurements (see
Section V-D). For the trajectory PMBM filter, we re-
movemixture components in the trajectory PoissonRFS
with weights smaller than 10−3. For the δ-GLMB filter,
the cap on the number of componentsHmax = 2000. El-
lipsoidal gating is used in all the compared filters; the
gating size in probability is 0.999.

We consider two different scenarios with true tra-
jectories shown in Fig. 1. In Scenario 1, targets are well
spaced, and there is at most one target born at the
same location per scan. In Scenario 2, for each tra-
jectory, we initiate the midpoint from a Gaussian with
mean [0, 0, 0, 0]T and covariance matrix I4, and the rest
of the trajectory is generated by running forward and
backward dynamics. This scenario is challenging due to
the fact that all the four targets move in close prox-
imity around the midpoint. In the simulation, we con-
sider constant target survival probability PS = 0.99, con-
stant target detection probability PD = 0.9, and Pois-
son clutter uniform in the region of interest with rate
λFA = 10.

For the trajectory PMBM filter, the Poisson birth in-
tensity has the form λb

k(xk) = ∑
l 0.05N (x; x̄b,l

k ,Pb,l
k ).

For the trajectory MBM filter, the trajectory MBM01

filter, the δ-GLMB filter, and the LMB filter, the lth
Bernoulli component in the multi-Bernoulli birth has
existence probability rb,l

k = 0.05 and single target
state density N (x; x̄b,l

k ,Pb,l
k ). In Scenario 1, we set

x̄b,1
k = [50, 0, 50, 0]T , x̄b,2

k = [50, 0,−50, 0]T , x̄b,3
k =

[−50, 0, 50, 0]T , x̄b,4
k = [−50, 0,−50, 0]T , and Pb,l

k =
diag([4, 1, 4, 1]). In Scenario 2, we set x̄b,1

k = [0, 0, 0, 0]T

and Pb,1
k = diag([1002, 1, 1002, 1]), which covers the

region of interest. It should be noted that the multi-
Bernoulli and Poisson birth models have the same in-
tensity (probability hypothesis density) [6, eq. (4.129)].

This implies that birth models are as close as possible in
the sense of Kullback–Leibler divergence.

B. Performance Evaluation

For all the three multiscan trajectory filters, we esti-
mate the full trajectories directly from the most likely
global hypothesis. For the trajectory filters, we choose
the most likely cardinality estimate n� from the multi-
Bernoulli of the most likely global hypothesis. We then
report trajectory estimates from the n� Bernoulli com-
ponents with the highest existence probabilities. Given
a Bernoulli state density (28), an estimate of the tra-
jectory is obtained by selecting the most probable mix-
ture component j∗ = argmax j w

j
k|k′ and reporting its

mean value [31]. For the δ-GLMB filter and the LMB
filter, we first obtain the maximum a posteriori estimate
of the cardinality. We then find the global hypothesis
with this cardinality with highest weight and report the
mean of the targets in this hypothesis [28]. Trajectories
are formed by connecting target estimates with the same
label.

To evaluate the filtering performance, we used the
generalized optimal subpattern assignment (GOSPA)
metric [51], which can be decomposed into localiza-
tion cost, missed target cost, and false target cost. The
GOSPA metric is applied to the set of current target
states at each time step. To evaluate the tracking per-
formance, the trajectory metric in [52] based on linear
programming (LP) was used, which can be decomposed
into localization cost,missed target cost, false target cost,
and track switch cost.

C. Results

We perform 100 Monte Carlo runs and obtain the
average root-mean-square (RMS) GOSPA error (order
p = 2, location error cutoff c = 10, and α = 2), the
average RMS trajectory estimation error (order p = 2,
location error cutoff c = 10, switch cost γ = 2), and the
average running time, summed over 81 time steps. We
apply the trajectory metric [52] at each time step k, and
normalize it by

√
k. This normalization allows a compar-

ison of how the RMS metric evolves over time in the
scenario, as opposed to only computing the metric at the
final time step.

The comparison of different filters by the RMS
GOSPAerror and by the average running time9 is shown
in Table I for Scenario 1 and in Fig. 2 for Scenario 2.We
can see that the trajectory PMBM filter arguably has the
best performance in terms of target state estimation er-
ror and computational complexity,especially in Scenario
2 with coalescence. By comparing the execution time of
trajectory filters with and without fixed-lag smoothing

9MATLAB implementations on a desktop with 3.0 GHz Intel Core i5
processor.
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TABLE I
Simulation Results for Scenario 1: RMS GOSPA/LP Trajectory Metric Errors and Average Running Time (s)

Algorithm Trajectory PMBM Trajectory MBM Trajectory MBM01 δ-GLMB (Gibbs) LMB (Gibbs)
Fixed-lag smoothing Without With Without With Without With Without Without

GOSPA 150.02 150.02 148.98 148.98 149.33 149.33 151.94 155.21
GOSPA—localization 120.73 120.73 120.76 120.76 120.74 120.74 120.82 120.93

GOSPA—missed 68.10 68.10 66.24 66.24 67.54 67.54 63.71 57.72
GOSPA—false 65.65 65.65 64.04 64.04 63.70 63.70 68.40 77.19

LP trajectory metric 141.91 128.25 141.02 127.15 141.04 127.16 167.50 168.85
LP—localization 123.23 101.72 123.40 101.87 123.35 101.72 123.01 123.01

LP—missed 98.10 98.10 93.81 93.81 93.89 93.89 131.80 128.21
LP—false 56.38 56.38 62.56 62.56 63.19 63.19 107.46 114.76

LP—track switch 9.68 9.68 7.73 7.73 6.00 6.00 22.73 30.79
Average running time (s) 4.41 4.61 8.57 8.90 10.29 10.50 12.87 2.27

Fig. 2. Performance comparison among the δ-GLMB (Gibbs) filter,
the LMB (Gibbs) filter, the trajectory PMBM filter, the trajectory
MBM filter, and the trajectory MBM01 filter in Scenario 2: RMS

GOSPA error versus average running time.

(for the latest four target states), we can find that the
running time of the implemented filters is dominated by
their filtering recursions.

For Scenario 1, the numerical values of the aver-
age RMS GOSPA and the trajectory estimation errors
are given in Table I. For Scenario 2, the average RMS
GOSPA error and its decomposed values over time are

illustrated in Fig. 3, and the average RMS trajectory es-
timation error and its decomposed values over time are
illustrated in Fig. 4.Comparing the results of the two sce-
narios, we can find that when the birth process is less
informative, i.e., a broad birth prior density, the trajec-
tory PMBM filter exhibits lower estimation error than
the trajectory MBM and MBM01 filters.

While the differences in target state estimation er-
ror among different filters are not distinct in both sce-
narios, it is noticeable that trajectory filters yield much
less trajectory estimation error than labeled RFS filters.
The worse trajectory estimation performance of labeled
RFS filters is a result of worse track continuity.There are
two main drawbacks in forming trajectories by connect-
ing target states with the same label: first, misdetections
can lead to gaps in the trajectory formed by labeled esti-
mates; second, physically unrealistic track switching; see
[31, Fig. 2] for an example.

In addition, we can see that performing fixed-lag
smoothing does not change the error due to missed/false
detections and track switching; it mainly improves the
localization error. This is expected since the choice of
N+L has a direct effect on the estimation of past states
of the trajectories. From the results of the simulation
study, we can conclude that the trajectory PMBM fil-
ter has the best tracking performance, and that the tra-
jectory MBM filter is more efficient than the trajectory
MBM01 filter.

Fig. 3. Average target state estimation error in Scenario 2 evaluated using the GOSPA metric. The lines show the RMS error averaged over
100 Monte Carlo runs. Legend: trajectory PMBM filter (without smoothing) (red), trajectory MBM filter (without smoothing) (blue),

trajectory MBM01 filter (without smoothing) (magenta), δ-GLMB (Gibbs) filter (green), and LMB (Gibbs) filter (cyan).
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Fig. 4. Average trajectory state estimation error in Scenario 2 evaluated using the trajectory metric [52]. The lines show the RMS error
averaged over 100 Monte Carlo runs. Legend: trajectory PMBM filter (without smoothing) (red solid line), trajectory PMBM filter (with

smoothing) (red dash-dotted line), trajectory MBM filter (without smoothing) (blue solid line), trajectory MBM filter (with smoothing) (blue
dash-dotted line), trajectory MBM01 filter (without smoothing) (magenta solid line), trajectory MBM01 filter (with smoothing) (magenta

dash-dotted line), δ-GLMB (Gibbs) filter (green), and LMB (Gibbs) filter (cyan).

VIII. CONCLUSION

In this paper,we have presented the trajectoryMBM
filter. We have also presented an efficient implementa-
tion of multiscan trajectory PMBM,MBM, and MBM01

filters using N-scan pruning and dual decomposition.
The performance of the presented multitarget trackers,
applied with an efficient fixed-lag smoothing method, is
evaluated in a simulation study. The simulation results
show that the multiscan trajectory PMBM filter has im-
proved tracking performance over the trajectory MBM
filter in terms of state/trajectory estimation error and
computational time.

APPENDIX A

In this appendix, we first review why FISST can be
used for sets of trajectories.Then,we show how to define
reference measures and measure theoretic integrals for
sets of trajectories.

A1. Use of FISST for Sets of Trajectories

In this section, we review why FISST can be used for
sets of trajectories. The single trajectory space is locally
compact, Hausdorff, and second countable (LCHS) [27,
Appendix A], where second countable is also referred
to as completely separable [53]. LCHS spaces are often
used in random set theory [54], and LCHS is also the
type of single object space required by Mahler’s FISST
[6, Sec. 2.2.2].

In particular, single object/measurement spaces that
are the disjoint union of spaces of different dimensional-
ities, similarly to the single trajectory space, have previ-
ously been used in Mahler’s FISST and RFS framework
in [6, Sec. 2.2.2] and [6, Sec. 11.6] for variable state space
cardinalized probability hypothesis density filters, and in
[6,Ch.18], [55],and [56] forRFS filters for unknown clut-
ter. In addition, [6, Sec. 3.5.3] explicitly explains how the
set integral is constructed for this type of space. There-
fore,Mahler’s FISST and RFS framework on its own en-
ables us to perform inference on sets of trajectories. For
completeness, we proceed to provide also the required
measure theory to define probability densities.

A2. Measure Theoretic Integrals

We begin by introducing some basic concepts in
measure theory; for more details, see, e.g., [57] and [58,
Appendix A]. Consider a nonempty set Y , the pair
(Y, σ (Y )), in which σ (Y ) denotes a σ -algebra of sub-
sets of Y , is called a measurable space.Given a topology
space Y , the Borel σ -algebra is the smallest σ -algebra of
the subsets of Y containing the open sets of Y (or equiv-
alently, by the closed sets ofY).A setB is said to bemea-
surable if B ∈ σ (Y ). A function f : Y → R is said to be
measurable if the inverse images of R under f are mea-
surable. The triple (Y, σ (Y ), μ) in which μ is a measure
on σ (Y ) is called a measure space.

The integral of a measurable function f : Y → R,∫
f (y)μ(dy), is defined as a limit of integrals of simple

functions. The integral of f over any measurable B ⊂ Y
is defined as∫

B
f (y)μ(dy) =

∫
1B(y) f (y)μ(dy), (A.1)

where 1B denotes the indicator function 1B(y) = 1 if y ∈
B and 1B(y) = 0 otherwise.

A3. Measure Theoretic Integrals for Single Object LCHS Spaces

In this section,we explain how to definemeasure the-
oretic integrals for RFSs whose single objects belong to
LCHS spaces, following the steps in [58, Appendix B].

We denote an LCHS space as E. For instance, E
could denote the single object space X or the single tra-
jectory space Tk.We also let F (E) denote the collection
of finite subsets of E.10

A common class of RFSs is the Poisson point pro-
cesses. A Poisson point process ϒ is an RFS that is
characterized by the property that for any k disjoint
Borel subsets S1, . . . ,Sk of E, the random variables |ϒ ∩
S1|, . . . , |ϒ ∩ Sk| are independent and have a Poisson
distribution. The mean of the Poisson random variables
|ϒ∩Si| is denoted as vϒ (Si).The function vϒ (·) is a (unit-
less) measure on the Borel subsets of E and is referred

10We would like to clarify that the topology on F (E) is the myopic of
Mathéron topology [59], for which we require an LCHS space. To be
precise, second countability, not only separability as indicated in [58,
Appendix B], is required in the Mathéron topology [59, Sec. 1.1], as it
makes use of a countable base [59, p. 1].
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to as the intensity measure of ϒ . If the mapping from
vectors to finite sets is denoted as χ : �∞

n=0E
n → F (E),

we have that χ ((x1, . . . , xn)) = {x1, . . . , xn}. Then, the
probability distribution of ϒ is [58, Appendix B]

Pϒ (B) = e−vϒ (E)
∞∑
n=0

vnϒ (χ
−1(B) ∩ En)
n!

, (A.2)

where B is a Borel subset of F (E), χ−1 is the inverse
mapping of χ , and vnϒ (·) is the nth product (unitless)
Lebesgue measure of vϒ (·).

We define the measure μ(·), on the Borel subsets of
F (E), as

μ(B) =
∞∑
n=0

vnϒ (χ
−1(B) ∩ En)
n!

, (A.3)

which is proportional to the probability distribution
Pϒ (·).The integral of ameasurable function f : F (E) →
R with respect to the measure μ(·) is then [58,Appendix
B]

∫
B
f (X)μ(dX)

=
∞∑
n=0

1
n!

∫
χ−1(B)∩En

f ({x1, . . . , xn})vnϒ (dx1 · · ·dxn).

(A.4)

A4. Reference Measure for Sets of Trajectories

In the previous section, we explained how to define
a measure theoretic integral with respect to a measure
μ(·) on the Borel subsets of F (E) in terms of a measure
vϒ (·) on the Borel subsets of E. We proceed to choose
a specific measure vϒ (·) when E is the single trajectory
space Tk = �(β,ε)∈Ik{β} × {ε} ×X ε−β+1 and X = R

n. This
will allow us to write the measure theoretic integrals for
sets of trajectories in terms of standard Lebesgue inte-
grals and establish the correspondence withMahler’s set
integral (8).

We first denote the units of the hypervolume in the
single target space X asK. For example, if the single tar-
get state is [px, vx] with px beingmeasured inmeters (m)
and vx being measured in meters per second (m/s), then
K = m2/s.

Given a Borel subset S of Tk, which can be written
as S = �(β,ε)∈Ik{β} × {ε} × Sε−β+1,Sε−β+1 ⊂ X ε−β+1, we
choose the measure vϒ (·) in the single trajectory space
as

vϒ (S) =
∑

(β,ε)∈Ik

λKε−β+1 (Sε−β+1)
Kε−β+1

, (A.5)

where λKε−β+1 (·) represents the Lebesgue measure of
Sε−β+1 (with unitsKε−β+1). Therefore, λKε−β+1 (·)/Kε−β+1

represents the unitless Lebesgue measure on X ε−β+1.
The normalization of each term in (A.5) by Kε−β+1 is
needed so that we can perform the sum; otherwise, the

sum would consider terms with different units, which is
erroneous. It is straightforward to check that (A.5) is a
measure on the Borel subsets of Tk. That is, vϒ (·) meets
the following three properties that define measures [60]:

1) For any S, vϒ (S) ≥ 0.
2) vϒ (∅) = 0.
3) If S1,S2, . . . is a disjoint sequence, then

vϒ (
∑∞

j=1 S
j) = ∑∞

j=1 vϒ (Sj).

It is straightforward that the first two properties hold.
For the third one, we have

vϒ

⎛
⎝ ∞∑

j=1

Sj

⎞
⎠ =

∑
(β,ε)∈Ik

λKε−β+1

(∑∞
j=1 S

j
ε−β+1

)
Kε−β+1

=
∞∑
j=1

∑
(β,ε)∈Ik

λKε−β+1

(
Sj

ε−β+1

)
Kε−β+1

=
∞∑
j=1

vϒ (Sj),

(A.6)

where we have applied that λKε−β+1 (·) is a measure.
We substitute (A.5) into (A.4) and integrate over the

whole space,which implies that B satisfies that χ−1(B)∩
T n
k = T n

k . We have that∫
f (X)μ(dX)

=
∞∑
n=0

1
n!

∫
T n
k

f ({X1, . . . ,Xn})vnϒ (dX1 · · · dXn)

=
∞∑
n=0

1
n!

∫
Tk

· · ·
∫
T n
k

f ({X1, . . . ,Xn})vϒ (dX1)

· · · vϒ (dXn)

=
∞∑
n=0

1
n!

∑
(β1,ε1 )∈Ik

· · ·
∑

(βn,εn)∈Ik

∫
X ε1−β1+1×···×X εn−βn+1

f
({(

β1, ε1, x
1:ε1−β1+1
1

)
, . . . ,

(
βn, εn, x1:εn−βn+1

n

)})
λKε1−β1+1

(
dx1:ε1−β1+1

1

)
Kε1−β1+1

· · · λKεn−βn+1

(
dx1:εn−βn+1

n
)

Kεn−βn+1
.

(A.7)

If we further rewrite λKεi−βi+1 (dx1:εi−βi+1
i ) as dx1:εi−βi+1

i
and abbreviate

∫
X ε1−β1+1×···×X εn−βn+1 as

∫
, then we have

that

∫
f (X)μ(dX) =

∞∑
n=0

1
n!

∑
(β1,ε1)∈Ik

· · ·
∑

(βn,εn)∈Ik

∫
· · ·
∫

f
({
(β1, ε1, x

1:ε1−β1+1
1

)
, . . . ,

(
βn, εn, x1:εn−βn+1

n

)})
dx1:ε1−β1+1

1

Kε1−β1+1
· · · dx

1:εn−βn+1
n

Kεn−βn+1
. (A.8)
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Therefore, for the reference measure μ(·) in
(A.3) and vϒ (·) in (A.5), the measure theoretic in-
tegral corresponds to Mahler’s set integral over sets
of trajectories (8) but normalized by the units of
the differential dx1:ε1−β1+1

1 , . . . ,dx1:εn−βn+1
n , which are

Kε1−β1+1, . . . ,Kεn−βn+1. The relation between set inte-
grals and measure theoretic integrals is similar in the
single target case [58]. Therefore, if probability densi-
ties on sets of trajectories are defined with respect to
the reference measure μ(·), with vϒ (·) given by (A.5),
Mahler’s multitrajectory densities are equivalent to
measure theoretic densities, except for the normalizing
units. Note that if the state space has no units, the
measure theoretic integral and Mahler’s set integral are
alike.

APPENDIX B

In this appendix, we proceed to explain how to use
PGFLs, functional derivatives, and the fundamental the-
orem of multi-object calculus for RFSs of trajectories.
These results are important as PGFLs are useful tools to
derive filters. First, the prediction and update steps can
be performed in the PGFL domain. Second, the funda-
mental theorem of multi-object calculus indicates how
to recover the corresponding multi-object density from
a PGFL, which requires functional derivatives. We ex-
plain PGFLs in Appendix E and functional derivatives
inAppendix F. InAppendixG,we provide and prove the
fundamental theorem of multi-object calculus for RFSs
of trajectories.

B1. Probability Generating Functionals

PGFLs for sets in LCHS spaces, such as the trajec-
tory space, are defined in [6, Secs. 4.2.4 and 4.2.5]. Let
h : Tk �→ [0, 1] be a test function defined on the trajec-
tory state space Tk = �(β,ε)∈Ik{β}×{ε}×X ε−β+1.LetX be
an RFS of trajectories with multitrajectory density f (·),
then its PGFL is

GX [h] = E
[
hX
] =

∫
hX f (X) δX, (B.1)

where

hX =
{∏

X∈X h (X ) , X �= ∅,

1, X = ∅.

Note that both h(X ) and the PGFL are unitless func-
tions, i.e., functions whose output has no units.

B2. Functional Derivatives

In this section, we explain (Volterra) functional
derivatives for RFS of trajectories using FISST tools.We
consider a unitless functional F [h] defined on unitless
real-valued functions h (X ) with X ∈ Tk, e.g., a PGFL.
Then,using FISST, the functional derivative ofF [h] with
respect to a finite subset Y ∈ F (Tk) is defined to be [32,

Sec. 11.4]

δF
δY

[h] =
⎧⎨
⎩
F [h] , Y = ∅,

limε→0
F [h+εδY ]−F [h]

ε
, Y = {Y } ,

δnF
δY1···δYn [h] , Y = {Y1, . . . ,Yn} ,

(B.2)

where the Dirac delta on the single trajectory space is

δ(β ′,ε′,yβ′ :ε′ ) (β, ε, xβ:ε)

=
{
δ (xβ:ε − yβ ′:ε′ ) , β = β ′, ε = ε′,
0, β �= β ′, ε �= ε′,

and we use the notational convention
δF

δ {Y } [h] = δF
δY

[h] .

Also, note that the Dirac delta on the single trajectory
space meets the following identity:∫

δY (X ) f (X )dX = f (Y ) .

We remark that the use of δY as the input of the func-
tional is a tool of FISST that is not completely rigorous
[6, p. 66], but admitted from a practical point of view. Set
derivatives can be defined in terms of functional deriva-
tives [6, p. 67].

B3. Fundamental Theorem of Multi-Object Calculus

The fundamental theorem of multi-object calculus
enables the recovery of a multi-object density from its
PGFL [6, Sec. 3.5.1]. This result also applies to RFS of
trajectories, and we provide a proof for completeness.

Theorem 4. Given the PGFLGX [h] of an RFSX of tra-
jectories, we can recover its multitrajectory density f (·)
evaluated at Y as

f (Y) =
[
δGX

δY
[h]
]
h=0

. (B.3)

The proof of this theorem is direct for Y = ∅ by sub-
stituting (B.2) into (B.1). For Y �= ∅, the theorem is a
direct consequence of the following lemma.

Lemma 1. The functional derivative of the PGFLGX [h]
of an RFS X of trajectories with respect to Y =
{Y1, . . . ,Yn} is

δnGX

δY1 · · · δYn [h] =
∫
hX f ({Y1, . . . ,Yn} ∪ X) δX, (B.4)

where f (·) is its multitrajectory density.
The proof of Lemma 1 is given in Appendix G1.

Then, by substituting h = 0, we directly obtain (B.3) for
Y �= ∅. We also have[

δGX

δY
[h]
]
h=1

=
∫

f ({Y } ∪ X) δX,

which represents the first-order moment, also called in-
tensity and probability hypothesis density, as required.
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B3.1. Proof of Lemma 1

In this section, we prove (B.4) by using induction. In
part I of the proof, we prove (B.4) for Y = {Y }. Then, in
part II, we prove the general case Y = {Y1, . . . ,Yn}.

B3.1.1. Part I of the proof

For Y = {Y }, we proceed to prove that

δGX

δY
[h] =

∫
hX f ({Y } ∪ X) δX.

For Y = {Y }, we have

δGX

δY
[h]

= lim
ε→0

GX [h+ εδY ] −GX [h]
ε

= lim
ε→0

∫
[h+ εδY ]

X f (X) δX − ∫
[h]X f (X) δX

ε

= lim
ε→0

∑∞
n=1(1/n!)

∫
f ({X1, . . . ,Xn}) × · · ·

ε

× [
∏n

j=1[h(Xj) + εδY (Xj)] −∏n
j=1 h(Xj)]dX1:n

ε
,

where X1:n = (X1, . . . ,Xn). The limit can be computed
by applying L’Hôpital’s rule and taking derivatives with
respect to ε. This results in

δGX

δY
[h]

= lim
ε→0

∞∑
n=1

1
n!

∫ n∑
j=1

⎡
⎣δY (Xj)

n∏
i=1:i�= j

h (Xi + εδY (Xi))

⎤
⎦

× f ({X1, . . . ,Xn})dX1:n

=
∞∑
n=1

1
n!

n∑
j=1

∫ ⎡
⎣δY (Xj)

n∏
i=1:i�= j

h (Xi)

⎤
⎦

× f ({X1, . . . ,Xn})dX1:n.

The inner integral is the same for every j, sowe canwrite

δGX

δ {Y } [h]

=
∞∑
n=1

1
n!
n
∫ [

δY (X1)
n∏
i=2

h (Xi)

]

× f ({X1, . . . ,Xn})dX1:n

=
∞∑
n=1

1
(n− 1)!

∫ [ n∏
i=2

h (Xi)

]
f ({Y,X2, . . . ,Xn})dX2:n.

We further make the change of variablesm = n− 1 and
X ∗

1:m = X2:n in the previous equation, which yields

δGX

δ {Y } [h]

=
∞∑
m=0

1
m!

∫ [ m∏
i=1

h (X ∗
i )

]
f
({Y } ∪ {X ∗

1 , . . . ,X ∗
m

})
dX ∗

1:m

=
∫
hX f ({Y } ∪ X) δX. (B.5)

B3.1.2. Part II of the proof

We proceed to prove (B.4) by induction. We assume
that

δn−1GX

δY1 · · · δYn−1
[h] =

∫
hX f ({Y1, . . . ,Yn−1} ∪ X) δX

(B.6)

holds and proceed to prove (B.4). Note that the relation
holds for n = 1, as proved in the previous section. We
denote

L [h] =
∫
hXl (X) δX,

where

l (X) = f ({Y1, . . . ,Yn−1} ∪ X) .

Then, by making use of (B.5), we obtain

δnGX

δY1 · · · δYn [h] = δ

δYn
L [h]

=
∫
hXl ({Yn} ∪ X) δX

=
∫
hX f ({Y1, . . . ,Yn} ∪ X) δX.

This result completes the proof of Lemma 1.

APPENDIX C

In this appendix, we present the MBM01 filtering re-
cursions for both the set of current trajectories and the
set of all trajectories. TheMBM01 filtering recursions for
the set of all trajectories were first given in [27]; they are
presented here for completeness.

C1. Prediction Step for the Set of Current Trajectories

The prediction step is given in the following theorem.

Theorem 5. Assume that the distribution from the pre-
vious time step fk−1|k−1(Xk−1) is given by (20) with
ri,a

i

k−1|k−1 ∈ {0, 1}, that the transition model is (12), and
that the birth model is a trajectory multi-Bernoulli RFS
with nbk Bernoulli components, each of which has den-
sity given by (10). Then, the predicted distribution for the
next step fk|k−1(Xk) is given by (20) with r

i,ai

k|k−1 ∈ {0, 1}
and nk|k−1 = nk−1|k−1 + nbk. For tracks continuing from
previous time (i ∈ {1, . . . ,nk−1|k−1}), a hypothesis is in-
cluded for each combination of a hypothesis from a pre-
vious time and either a survival or a death. For new tracks
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(i ∈ {nk−1|k−1 + l}, l ∈ {1, . . . ,nbk}), a hypothesis is in-
cluded for each combination of a Bernoulli component
in the multi-Bernoulli birth density and either born or
not born. The number of hypotheses therefore becomes
hik|k = 2(hik|k−1 + nbk).

11 For survival hypotheses (i ∈
{1, . . . . ,nk−1|k−1}, ai ∈ {1, . . . ,hk−1|k−1}), if ri,aik−1|k−1 = 1,
the parameters are

wi,ai

k|k−1 = wi,ai

k−1|k−1

〈
f i,a

i

k−1|k−1;PS
k−1

〉
, (C.1a)

ri,a
i

k|k−1 = 1, (C.1b)

f i,a
i

k|k−1(X ) = 〈
f i,a

i

k−1|k−1;π c〉. (C.1c)

If ri,a
i

k−1|k−1 = 0, the parameters are

ri,a
i

k|k−1 = 0, (C. 2a)

wi,ai

k|k−1 = 0. (C. 2b)

For death hypotheses (i ∈ {1, . . . ,nk−1|k−1}, ai = ãi +
hik−1|k−1, ã

i ∈ {1, . . . ,hik−1|k−1}), the parameters are

wi,ai

k|k−1 = wi,ai

k−1|k−1〈 f i,a
i

k−1|k−1; 1 − PS
k−1〉, (C.3a)

ri,a
i

k|k−1 = 0. (C.3b)

For birth hypotheses (i ∈ {nk−1|k−1 + l}, l ∈
{1, . . . ,nbk}), the parameters are

Mk−1(i, 1) = ∅, (C.4a)

wi,1
k|k−1 = rb,l

k , (C.4b)

ri,1k|k−1 = 1, (C.4c)

f i,1k|k−1(X ) = fB,l
k (X ). (C.4d)

For nonbirth hypotheses (i ∈ {nk−1|k−1 + l}, l ∈
{1, . . . ,nbk}), the parameters are

Mk−1(i, 2) = ∅, (C.5a)

wi,2
k|k−1 = 1 − rb,l

k , (C.5b)

ri,2k|k−1 = 0. (C.5c)

Compared to the corresponding prediction steps (23)
and (24) in the trajectory MBM filter, the MBM01 pa-
rameterization entails an exponential increase in the
number of global hypotheses.

C2. Prediction Step for the Set of All Trajectories

The prediction step is given in the following theorem.

Theorem 6. Assume that the distribution from the pre-
vious time step fk−1|k−1(Xk−1) is given by (20) with
ri,a

i

k−1|k−1 ∈ {0, 1}, that the transition model is (13), and

11A hypothesis at the previous time with ri,a
i

k−1|k−1 = 0 would be re-
moved by setting its hypothesis weight to zero. For simplicity, the hy-
pothesis numbering does not account for this exclusion.

that the birth model is a trajectory multi-Bernoulli RFS
with nbk Bernoulli components, each of which has density
given by (10).Then, the predicted distribution for the next
step fk|k−1(Xk) is given by (20), with r

i,ai

k|k−1 ∈ {0, 1} and
nk|k−1 = nk−1|k−1 + nbk. For tracks continuing from previ-
ous time (i ∈ {1, . . . ,nk−1|k−1}), the number of hypothe-
ses remains the same. For new tracks (i ∈ {nk−1|k−1 + l},
l ∈ {1, . . . ,nbk}), a hypothesis is included for each com-
bination of a Bernoulli component in the multi-Bernoulli
birth density and either born or not born. The number of
hypotheses therefore becomes hik|k = hik|k−1 + 2nbk.

For hypotheses in tracks continuing from previous
time (i ∈ {1, . . . ,nk−1|k−1}, ai ∈ {1, . . . ,hk−1|k−1}), the pa-
rameters are

wi,ai

k|k−1 = wi,ai

k−1|k−1 ∀ai, (C.6a)

ri,a
i

k|k−1 = 1, (C.6b)

f i,a
i

k|k−1(X ) = 〈 f i,aik−1|k−1;πa〉 ∀ai. (C.6c)

For new tracks (i ∈ {nk−1|k−1 + l}, l ∈ {1, . . . ,nbk}), the
parameters of MBM01 parameterization are the same as
(64) and (65).

C3. Update Step

The update step is given in the following theorem.

Theorem 7. Assume that the predicted distribution
fk|k−1(Xk) is given by (20) with r

i,ai

k|k−1 ∈ {0, 1}, that the
measurement model is (15), and that the measurement set
at time step k is zk = {z1k, . . . , zmk

k }. Then, the updated
distribution fk|k(Xk) is given by (20), with r

i,ai

k|k ∈ {0, 1}
and nk|k = nk|k−1. For each track (i ∈ {1, . . . ,nk|k}), a
hypothesis is included for each combination of a hypoth-
esis from a previous time with ri,a

i

k|k−1 = 1 and either a
misdetection or an update using one of the mk new mea-
surements, such that the number of hypotheses becomes
hik|k = hik|k−1(1 + mk).12 For misdetection hypotheses

(i ∈ {1, . . . ,nk|k}, ai ∈ {1, . . . ,hk|k−1}) with ri,aik|k−1 = 1,
the parameters are

Mk(i, ai) = Mk−1(i, ai), (C.7a)

wi,ai

k|k = wi,ai

k|k−1

(
1 − 〈

f i,a
i

k|k−1;PD〉), (C.7b)

ri,a
i

k|k = 1, (C.7c)

f i,a
i

k|k (X ) =
(1 − PD

k (X )) f i,a
i

k|k−1(X )〈
f i,a

i

k|k−1; 1 − PD
〉 . (C.7d)

For hypotheses updating tracks (i ∈ {1, . . . ,nk|k}, ai =
ãi + hik|k−1 j, ã

i ∈ {1, . . . ,hik|k−1}, j ∈ {1, . . . ,mk}, i.e.,

12A hypothesis at the previous time with ri,a
i

k|k−1 = 0 must not be up-
dated. For simplicity, the hypothesis numbering does not account for
this exclusion.
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the previous hypothesis ãi, updated with measurement z jk)

with ri,a
i

k|k−1 = 1, the parameters are

Mk(i, ai) = Mk−1(i, ãi) ∪ {(k, j)}, (C.8a)

wi,ai

k|k =
wi,ai

k|k−1

〈
f i,ã

i

k|k−1;ϕ
(
z jk
∣∣ · )PD

〉
λFA(z jk)

, (C.8b)

ri,a
i

k|k = 1, (C.8c)

f i,a
i

k|k (X ) =
ϕ
(
z jk
∣∣X )PD

k (X ) f i,ã
i

k|k−1(X )〈
f i,ã

i

k|k−1;ϕ
(
z jk
∣∣ · )PD

k

〉 . (C.8d)
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SOCIETY VISION

The International Society of Information Fusion (ISIF) is the premier professional society and global information 
resource for multidisciplinary approaches for theoretical and applied information fusion technologies.

SOCIETY MISSION

Advocate
	To advance the profession of fusion technologies, propose approaches for solving real-world problems, rec-
ognize emerging technologies, and foster the transfer of information.

Serve
To serve its members and engineering, business, and scientific communities by providing high-quality infor-
mation, educational products, and services.

Communicate
To create international communication forums and hold international conferences in countries that provide 
for interaction of members of fusion communities with each other, with those in other disciplines, and with 
those in industry and academia.

Educate
To promote undergraduate and graduate education related to information fusion technologies at universities 
around the world. Sponsor educational courses and tutorials at conferences.

Integrate
Integrate ideas from various approaches for information fusion, and look for common threads and themes– 
look for overall principles, rather than a multitude of point solutions. Serve as the central focus for coordinat-
ing the activities of world-wide information fusion related societies or organizations. Serve as a professional 
liaison to industry, academia, and government.

Disseminate
To propagate the ideas for integrated approaches to information fusion so that others can build on them in 
both industry and academia.



Call for Papers

The Journal of Advances in Information Fusion (JAIF) seeks original 
contributions in the technical areas of research related to informa-
tion fusion. Authors are encouraged to submit their manuscripts for 
peer review http://isif.org/journal.

Call for Reviewers

The success of JAIF and its value to the research community is 
strongly dependent on the quality of its peer review process. Re-
searchers in the technical areas related to information fusion are 
encouraged to register as a reviewer for JAIF at http://jaif.msubmit.
net. Potential reviewers should notify via email the appropriate edi-
tors of their offer to serve as a reviewer.
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