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From the Editor-in-Chief:
June 2020

Looking Back and Looking Forward

Welcome to the June 2020 issue of the ISIF Journal
of Advances in Information Fusion (JAIF). This year we
embark on the 15th year of JAIF, and it is my first as
Editor-in-Chief. I have served JAIF in several editorial
roles since 2008,and I amprivileged and honored to take
over the leadership role this year.

I would encourage all of us in the information fusion
community to take time to familiarize ourselves with the
contents of the 28 excellent issues of JAIF that have been
published in the last 14 years. This includes a total of 147
full articles,many informative editorials, and five special
issues on the following topics:

� Nonlinear Derivative-Free Filters: Theory and
Applications;

� Estimation Involving Directional Quantities;
� Extended Object Tracking;
� Evaluation of Uncertainty Representation and Rea-
soning Techniques;

� Multiple-Hypothesis Tracking.

The success of JAIF rests principally on the hard
work and creative research efforts of the information
fusion community, leading to a collection of excellent
published manuscripts. Equally important are the ef-
forts of the JAIF editorial board. This has been led by
two distinguishedEditors-in-Chief:Dale Blair (Vols. 1–8,
2006–2013) andUweHanebeck (Vols. 9–14, 2014–2019).
The initial vision for JAIF was encouraged and led first
by our former VP for Publications Yaakov Bar-Shalom,
and now by our current VP for Publications Dale Blair.
Behind the scenes, exceptional effort was expended by
our first Administrative Editor Robert Lynch (2006–
2015), and since then by our current Administrative Ed-
itor David Krout.Managing the journal would simply be
impossible without this support. I would like especially
to thank David for helping me as I have taken over the
Editor-in-Chief duties this year.

What is the vision for JAIF? It is to be the pre-
mier forum for archival work in information fusion. Of
course, other fine publication venues do exist. Nonethe-
less, JAIF is uniquely positioned at the intersection
of multiple lines of research that span signal-level
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processing, communications, detection-level and track-
level exploitation, situational awareness,and uncertainty
modeling for a broad range of applications. Ultimately,
the focus areas of the journal are defined empirically by
what has been published and what special issues are in
preparation. Again, I encourage all to browse the con-
tents of past issues!

In addition to familiarizing ourselves with the JAIF
past, I would like to call on the information fusion
community to participate actively in the present and
future of JAIF. First, consider volunteering to review
papers or to join the editorial board. Second, consider
preparing a manuscript for submission. We particu-
larly encourage the submission of expanded versions
of papers presented in the ISIF FUSION conference
series. Preparing a journal manuscript is hard work, and,
particularly for researchers in industry, often needs to be
done on personal time in addition to other professional
commitments. It can be an opportunity to develop one’s

work more fully while furthering its relevance to the
research community.

Finally, consider serving as a guest editor while orga-
nizing a special issue on a topic of interest to the commu-
nity.Note that five of the last nine JAIF issues are special
issues;we plan to continue to have approximately half of
future issues be special issues. This allows those outside
the editorial board to have a significant impact on the
direction of the journal.

Contributing to JAIF in a variety of capacities is a re-
warding endeavor that will help to strengthen the stand-
ing and relevance of JAIF in the research community, to
the benefit of all JAIF authors and readers. I look for-
ward to working together with all of you in the years to
come.

Stefano Coraluppi
Editor in Chief
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Context-Aware Dynamic Asset
Allocation for Maritime
Surveillance Operations

LINGYI ZHANG
DAVID SIDOTI
GOPI VINOD AVVARI
DIEGO F. M. AYALA
MANISHAMISHRA
DAVID L. KELLMEYER
JAMES A. HANSEN
KRISHNA R. PATTIPATI

This paper formulates and solves a maritime surveillance problem

involving the allocation of multiple heterogeneous assets over a large

area of responsibility to detect multiple drug smugglers using hetero-

geneous types of transportation on the sea with varying contraband

weights. The asset allocation is based on a probability of activity sur-

face, which represents spatiotemporal target activity obtained by in-

tegrating intelligence data on drug smugglers’ whereabouts/waypoints

for contraband transportation, their behavior models, and meteoro-

logical and oceanographic information. A number of algorithmic con-

cepts based on branch-and-cut with limited search and approximate

dynamic programming (ADP) were investigated.We validate the pro-

posed algorithmic concepts via realistic mission scenarios. We con-

duct scalability analyses of the algorithms and conclude that effective

asset allocations can be obtained within seconds using rollout-based
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ADP. The contributions of this paper have been transitioned to and

are currently being tested by Joint Interagency Task Force—South, an

organization tasked with providing the initial line of defense against

drug trafficking in the East Pacific Ocean and the Caribbean Sea.

I. INTRODUCTION

A. Motivation

The illicit drug trade is an extremely profitable indus-
try and it is estimated that the consumers in the United
States alone spend as much as 150 billion USD per year
on black market drugs. Of this, it is estimated that 37
billion USD is spent on cocaine alone. It is a problem
of national, and increasingly international, concern [1],
[2]. This problem increased exponentially with the ad-
vent of narco-terrorism and the prospect of terrorists
using narcotics smuggling techniques to transport ter-
rorists or weapons of mass destruction into the country.
Given the reduction in the national resources allocated
to the counter-narcotics threat, it is of paramount impor-
tance that smarter and faster decision support tools that
integrate a wide variety of information are developed to
assist in this challenge of using less to accomplish more.
To do so requires effective hybrid human–machine
systems.

TheU.S.Navy has shown a growing interest inmixed-
initiative human–machine systems and mastering infor-
mation dominance for effective context-driven opera-
tions [3]. To do so requires the transfer of the right data
from the right sources in the right context to the right
decision maker (DM) at the right time for the right
purpose—a concept known as 6R [4]. If a dynamically
developing operational context can be understood by
the DM, appropriate courses of action (COAs) can be
carried out, given the unfolding events. In the context
of maritime operations, DMs must assimilate informa-
tion from a multitude of sources before making deci-
sions on the strategy to be followed each day. If the DMs
are better informed about what to expect given the cur-
rently accessible data, as well as what they might expect
in the case of unforeseen events, effective decisions can
be made on the COAs.

Currently, much planning for narcotics seizures is
performed by humans interpreting large amounts of
data, including weather forecasts, intelligence, and re-
cently reported contacts of interest. Each day, the tar-
geting analysts must process and interpret all of these
data and agree upon a COA amounting to where lim-
ited detection aircraft and interdiction vessels should
be allocated to disrupt the maximum amount of ship-
ments over a multiday planning cycle. The consoli-
dation of large amounts of data and possible strate-
gies into a single asset allocation optimizer is benefi-
cial for both algorithmic purposes and human under-
standing.To support this transition to a human–machine
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collaborative mode of operation, we have developed an
optimization-based modeling framework and the as-
sociated decision support software tool for dynamic
surveillance and interdiction resource management in
counter-smuggling operations. This tool, named COAST
or Courses Of Action Simulation Tool [5], and the cor-
responding algorithms are intended to support targeting
analysts in identifying high-probability areas of smug-
gler presence and to proactively develop a set of high-
value COAs.

The counter-smuggling problem presented in this pa-
per is viewed as a moving horizon stochastic control
problem,as illustrated in Fig. 1, specifically from a strate-
gic operations standpoint, i.e., decision making with re-
gard to a schedule to follow for the upcoming time hori-
zon. Here, each block is an entity, such as a DM, sensor,
or asset, and the link from each block represents the out-
come of the block and its impact or influence on the next
block.The problem can be decomposed into surveillance
and interdiction asset allocation subproblems. This pa-
per focuses on the surveillance component, where DMs
(also termed targeteers) are responsible for allocating
multiple aircraft (namely, P-3 Orions (manned)) over
a finite time horizon in an effort to detect the trans-
portation of contraband. The interdiction component,
detailed in [6], involves the allocation of multiple het-
erogeneous surface assets (namely, Navy ships, Coast
Guard cutters), to disrupt multiple drug smugglers of
varying types, similar to that which is addressed in this
paper. The DMs in Fig. 1 choose which surveillance as-
sets to allocate to which target(s) (smugglers) based on
the target type and intelligence forecasting the target’s
trajectory (specified in the form of probability of activity
(PoA) surfaces [7], [8]). After allocated assets attempt
to search for potential targets, the mission environment
changes due to any target detection that may occur or
due to weather changes. These environment changes are
recorded by sensors and operators, processed, and sent
back to the DMs in the form of target types and tracks,
and are combined into an updated PoA surface, provid-

ing a new forecast for the remainder of the planning time
horizon. The process then repeats. Ideally, the results of
this paper feed that of [6] for coordinated smuggler de-
tection and interdiction.

B. Related Research

The surveillance mission involves the search, detec-
tion, tracking, and identification of potential smugglers
within a large geographic region, which plays an essen-
tial role in the counter-smuggling operation. Airborne
surveillance assets (e.g., helicopters, maritime patrol
aircraft) are highly efficient at determining the sea sur-
face traffic information. However, in a real-world sce-
nario, there are typically a limited number of surveil-
lance assets and a large sea surface area that needs to be
surveilled. The study of how to most effectively employ
limited resources to locate an object, whose location is
not precisely known, falls under the rubric of search
theory.

The earliest foundations of search theory were built
by Koopman [9] to aid the U.S. Navy in efficiently lo-
cating enemy submarines during World War II, which
was further generalized in [10]. There are two major
categories of search theory: 1) the optimal allocation
of effort problem and 2) the best track problem [11].
For the optimal effort allocation problem,Blachman and
Proschan [12] derived an optimum search pattern for a
generalized problem of finding an object in one of the
n boxes. Pollock [13] introduced a Bayesian approach to
the optimal allocation problem, where allocation deci-
sions are made sequentially based on observations up
to the current time in order to minimize the expected
cost of searching to satisfy a specified probability of de-
tection (PD). Charnes and Cooper [14] applied convex
programming, along with the Kuhn–Tucker conditions,
for the optimum distribution of effort computation. In
this paper, we adopt Charnes and Cooper’s method to
compute the effort required for the optimal search in a
discretized map.

Fig. 1. The counter-smuggling problem viewed from a stochastic control standpoint. Targeteers (DMs) choose from a set of available
surveillance assets and finalize a search schedule to allocate the asset(s) over a near-time planning horizon, typically 72 h. Similar to the

planning/decision process presented in [6], [7], [32], and [40], after the action is carried out, information is gathered, processed, and fed back to
the targeteer.
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Stone [15]made use of the calculus of variations, con-
vexity properties, and generalized Lagrange multiplier
techniques to formulate a systematic treatment of search
theory. For the best track problem, Lukka [16] worked
out the theory of optimal search for stationary targets,
targets whose motion is known, and targets whose mo-
tion is almost known. The method relies on the theory
of optimal control. Mangel [17] extended Lukka’s algo-
rithms with the option of incorporating a detection rate
that is either independent of or dependent on velocity.

In recent years, the problem of drug surveillance has
been formulated from a variety of viewpoints. For exam-
ple, Washburn and Wood [18] formulated the surveil-
lance problem as a two-person zero-sum game and
Pfeiff [19] applied search theory to a defender–attacker
optimizationmodel that maximizes the defender’s prob-
ability of success. Royset and Wood approach the
problem as a network flow problem, wherein an inter-
dictor must destroy a set of arcs on a network to mini-
mize both the interdiction cost and themaximum flow of
smugglers [20]. Jacobson et al. [21] formulate the prob-
lem as a multiple traveling salesman problem with the
objective of minimizing the overall search route cost
for multiple platforms that visit every search location.
Ng and Sancho [22] developed a dynamic programming
method to solve the surveillance problem.However, the
dynamic programming approach suffers from the curse
of dimensionality for large problems and, consequently,
near-optimal approximations are needed. A common
way to overcome this curse is by approaching the prob-
lem via approximate dynamic programming (ADP) with
policy iteration as in [23], where they frame the problem
in terms of stochastic control with partially observable
Markov decision processes. Kress et al. [24] examine a
discrete-time and discrete-space stochastic dynamic pro-
gramming approach to coordinate the efforts of a single
aerial search asset and a single surface interdiction as-
set. Other approaches, including the formulation of the
surveillance problem as a resource-dependent orienteer-
ing problem [25]–[27], wherein reward depends on the
resource expended at each visited node, have been in-
vestigated.

Optimal search problem formulations have become
versatile in their ability to account for multiple coop-
erating searchers, multiple targets with different char-
acteristics, and environmental effects on the search
[28]–[31]. For example, arc inspection is based on the in-
verse of the probabilities of detection as opposed to PoA
surfaces accounting for weather and intelligence in [7],
[8], and [32]. Byers [33] extended the network model-
ing approach to drug interdiction by including Bayesian
updating of the PoA surface. He considered a scenario
with one unmanned aerial vehicle and one ground-based
interceptor to interdict multiple targets with different
deadlines. Bessman [34] developed a defender–attacker
optimization model that uses the PoA surfaces as the
basis for asset allocation against smugglers. He formu-
lated a stochastic shortest path problem and represented

smuggler behavior as the output of an all-to-one label-
correcting temporal dependence instead of one-step de-
pendence. Three different sensor types (one interdiction
and two surveillance) are considered for allocation to
prosecute one type of target (among three possible). In
this defender–attacker model, smugglers are assumed to
have imperfect knowledge of possible sensor locations
and are given the ability to modify their behavior in re-
sponse to this information.

C. Paper Organization

Similar to Pietz and Royset [25], we also discretized
our maritime map. We adopt Charnes and Cooper’s
method [14] to compute the effort required for optimal
search in a discretized map. Our novel algorithmic con-
tributions are the following:

1) Fast one- and two-step lookahead ADP (1SLADP
and 2SLADP) algorithms for maritime surveillance
composed of heterogeneous assets and heteroge-
neous targets, each of which is carrying not necessar-
ily the same amount of contraband. Our algorithms
exploit the fusion of intelligence and weather infor-
mation available in the PoA surfaces.

2) We measure the utility of our approach by way
of comparison with more traditional branch-and-cut
(B&C) algorithms to solve the surveillance prob-
lems. We develop two variations of the ADP-based
surveillance asset allocation algorithms, wherein
real-world constraints on the assets (e.g., endurance
and rest time) are explicitly considered.

The paper is organized as follows. Section II de-
scribes the problem and the technical challenges ad-
dressed in the development of allocation algorithms un-
derlying our decision support tool. In Section III, we
discuss solution approaches, including exhaustive and
greedy B&C andADP. In Section IV,we present simula-
tion results as applied to a benchmark scenario that has
multiple targets,multiple surveillance assets, and param-
eters that have multiple levels of uncertainty. We addi-
tionally conduct and present results from our sensitivity
analysis relating to the scalability and performance of
our solution approaches in a realistic mission scenario.
We conclude the paper in Section V with a summary of
our findings and future work.

II. PROBLEM MODEL AND FORMULATION

A. Problem Definition and Solution Architecture

The complete maritime surveillance and interdiction
problem is one of maritime drug trafficking disruption
in the East Pacific Ocean and the Caribbean Sea. The
general mission consists of two components: 1) surveil-
lance (the detection, tracking, and identification of con-
tacts of interest) and 2) interdiction (the interception,
investigation, and potential apprehension and repatri-
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Fig. 2. Information flow and decisions (controls) in the
counter-smuggling problem. The decision support tool, COAST,

provides COAs to the JIATF-South Targeting Team who then modify
them as they see fit. The manually entered COAs can then be fed
back into the tool where the simulation is rerun providing new
outcomes to the targeting team, who can then provide further

feedback and modifications, if necessary.

ation of smugglers). In response to the need for infor-
mation fusion, we proposed a decision support system
(DSS) in [5], named COAST, to host and utilize algo-
rithms to provide auxiliary support to Joint Interagency
Task Force—South (JIATF-South) targeteers. We pro-
posed different forms of visualizations to enable DMs
to understand the behavior of our algorithms and the
presently evolving context, while also providing func-
tionality for human input and interaction in order to ef-
fectively integrate both humans and decision support al-
gorithms for mixed-initiative planning. The information
flow for the complete maritime interdiction problem is
illustrated in Fig. 2.

In COAST, we solve a moving horizon dynamic re-
source management problem for both surveillance and
interdiction operations based on user-defined mission
parameters. We then provide suggested COAs that the
DMs can interact with, adjust, and fine-tune to ana-
lyze various “what–if” scenarios and to obtain a satis-
factory allocation. Visual and computational analytics
are provided to communicate the reasons behind our al-
gorithm’s behavior. From Fig. 2, continuously updated
PoA surfaces (see Fig. 3 for an example), representing
the posterior probabilities of smugglers’ presence, con-
stitute the sufficient statistics for decision making [35]—
that is, COAST does not need to know how specific
Intel or meteorology and oceanography (METOC) fea-
tures, for example, uncertainty associated with a drug
trafficker,wave heights, currents, etc., and how these two
inputs, along with asset and target models, are combined
to produce the PoA surface. A targeteer can fine-tune
the allocations, the resultingCOAs are executed,and ob-
servations from surveillance and interdiction assets are
sent back to the reachback cell in the form of situational
reports or SITREPs (e.g., detections or nondetections)
that are used to update the PoAs.The targeteer can spec-

Fig. 3. PoA surface PoA(q, k, j) summed over all k.

ify multiple objective functions. The objectives consid-
ered and analyzed in this paper are as follows:

O1: Maximize the normalized weight of the contraband
detected (normalized by the total possible amount
of contraband).

O2: Maximize the normalized number of detections
(normalized by the total possible number of cases).

O3: Maximize the normalized number of smugglers de-
tected (normalized by the total possible number of
smugglers).

Let α j and ρ j denote the expected contrabandweight
and expected number of smugglers for case j. Let C
be the total number of cases (i.e., predicted smuggler
tracks) to be searched. Then, the normalized prior-
ity weights for objectives O1–O3, respectively, are as
follows:

λ j = α j∑C
g=1 αg

, (1)

λ j = 1
C

, (2)

λ j = ρ j∑C
g=1 ρg

. (3)

B. Problem Formulation

The notation used in this paper is listed in Table I.

1) PoA Surface: The foundation for each asset allo-
cation solution is the PoA surface over multiple time
epochs. The PoA surface is the result of combining
METOC information with actionable intelligence with
regard to uncertain smuggler departure point(s), depar-
ture times, waypoint(s), destination(s), and their behav-
ior on the ocean.The spatiotemporal probability surface,
PoA, is calculated as the joint probability of two discrete
randomevents:1) the case j,with a corresponding binary
random variable C j, i.e., how trustworthy the intelligence
source is regarding a target,and 2) the target correspond-
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TABLE I
Summary of Notations

A Total number of surveillance assets
A j Total area to be searched for case j
Bi j Great Circle distance from the base of asset i to the

centroid of case j
C Total number of cases
CPoSD(i, j) Cumulative probability of successful detection for a

given asset i allocated to case j
di� Landing time for asset i’s �th flight
i Surveillance asset index
j Case index
k Time epoch index
K End of planning time horizon
Li Endurance of asset i
PoA(q, k, j) Likelihood that a smuggler belonging to case j is

located in a cell q at time k
Ri Downtime of asset i
si� Remaining search time available within the current

sortie for asset i
Si j Sweep width of asset i searching for target j
ti j Travel time for traversing the distance Bi j
vai Travel speed of asset i
vsi Search speed of asset i
wi jk Reward of allocating asset i to case j at time k
xi jk Binary decision variable of allocating asset i to case

j at time epoch k
λ j Priority weight of case j
τi� Departure time for asset i’s �th flight
γ (i, j, �) The set of search time indices for asset i assigned to

case j for the �th flight

ing to case j at a location q at time epoch k, with a cor-
responding binary random variable X (q,k, j), i.e., given
that the case j exists, the probability that the target exists
at a location q at time k. The probability surface PoA is
indexed by a location q, time k, and case j, and is defined
in (4)–(7):

PoA(q,k, j) = P (C j = 1 ∩ X (q,k, j) = 1) (4)

= E
{C j · X (q,k, j)

}
(5)

= EC j
{C j · EX (q,k, j)|C j (X (q,k, j) |C j)

}
(6)

=
∑

c j={0,1}
c j · P(C j = c j)

·
⎛
⎝ ∑
h={0,1}

h · P(X (q,k, j) = h|C j = c)

⎞
⎠ ,

(7)

where we separate the expectation in (6) based on the
law of total expectation/iterated expectations.

We assume that P(C j = 1) = 1, that is, the intel-
ligence sources are always correct with 100% certainty.
Then, (7) reduces to

PoA(q,k, j) = P (X (q,k, j) = 1) . (8)

Therefore, PoA(q,k, j) is a number that refers to the
likelihood that a smuggler, belonging to case j, is located
in a cell q at time k. The PoA surfaces are computed as
detailed in [8] and represent all the relevant information
for effective asset allocation. The DM can specify how
many planning epochs to optimize over based on these
PoA surfaces and the objective function to be optimized.
A typical PoA surface PoA(q,k, j), summed over all k,
is shown in Fig. 3.

2) Optimal Search Effort Calculation: We assume
the optimumdistribution of search effort is known based
on the model in [14]. Let pjkq denote the PoA of target
j in cell q at time k. We first rank the nonzero PoA cells
in decreasing order such that pjk[1] ≥ pjk[2] ≥ · · · , where
[κ] denotes the κth largest nonzero PoA cell. Let the to-
tal available effort to be expended by asset i to search
case j be 	i j. A critical threshold is then calculated to
narrow the problem space and eliminate PoA cells not
worth searching,by first finding an n that satisfies the fol-
lowing inequality [14]:

n∑
v=1

v
[
ln pjk[v] − ln pjk[v+1]

]
> 	i j. (9)

Then, the critical probability, ρi jk, corresponding to the
search of case j by asset i at time k, is as in (10):

ρi jk = 1
n

(
n∑

v=1

v
(
ln pjk[v] − ln pjk[v+1]

) − 	i j

)

+ ln pjk[n+1].

(10)

We then select all the cells corresponding to case
j that have a PoA greater than the critical probability
found in (10). This reduces the number of potential cells
that need to be searched for each case j by asset i. We
then compute the patrol box that maximally covers the
high-probability cells for each case. The allocation of as-
sets to patrol boxes is the subject of the optimization
problem discussed next.

3) Optimization Problem: The case regions are la-
beled by aggregating the PoA surfaces over a discrete
planning time period of length K (e.g., 72 h). Let us as-
sume a moving horizon frame of reference, where k = 0
corresponds to the current time period of unit length
(
 = 1 h), k = 1 corresponds to the first planning pe-
riod, and k = K corresponds to the final period to be
planned for. Let A be the total number of surveillance
assets,C be the total number of cases, and q ∈ Q( j) be
the set of cells in the patrol box for case j as determined
by the optimal search effort calculation algorithm. The
size of the patrol box depends on the concept of opera-
tions and is assumed known. Let wi jk be the probability
of successful detection (PoSD), which is the product of
the PoA surface and the PD when asset i is assigned to
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search for case j at time k. That is,

wi jk =
∑

q∈Q( j)

PoA(q,k, j)PD(i, j,k), (11)

where

PD(i, j,k) = 1 − exp
(

−Si jkvs
i


A j

)
(12)

is the probability that asset i detects case j during the kth
time epoch interval (PD(i, j,k) can only be collected at
the end of the kth time epoch interval). Let us assume
that each asset travels to the search region at a speed va

i
and searches in the search region at a speed vs

i . The PD
equation is adopted fromKoopman’s random search for-
mula [9], and offers a lower bound on the PD; advanced
models may be used in place of (12) as in [15]. Here, Si jk
is the sweep width of asset i searching for case j at time
epoch k, and 
 is the interepoch interval (=1 h in this
paper).

Let Bi j represent the geodesic1 distance that asset i
must traverse from its base to the centroid of case j. The
time it takes to traverse Bi j, denoted by ti j, is given by

ti j =
⌈
Bi j

va
i

⌉
, (13)

where �·� denotes the ceiling or rounding up to the near-
est integer. Let τi� denote the departure time if an asset
i is allocated to a case for flight �, and di� as the land-
ing time upon its return from the corresponding search
box. The index � increments with each flight that as-
set i is scheduled to fly over the planning time horizon.
Formally,

τi� =

⎧⎪⎪⎨
⎪⎪⎩
k, 0 < k ≤ K, if i is assigned to a case during

the �th flight,

∞, otherwise.

(14)
A similar definition applies to di�. For each flight, the to-
tal search and travel time for each asset from its corre-
sponding base to each case must not exceed the asset’s
endurance,Li (in hours), and, upon flight completion, it
must rest forRi consecutive hours before it can be sched-
uled to depart for the next search box. The assets are as-
sumed to bemanned aircraft with an associated rest time
for the pilot; additionally, each aircraft requires periodic
maintenance and refueling. The minimum time it may
take for an asset to become available again for search is
Li+Ri. Note that there is no feasible asset allocation for
a case j and asset i if 2ti j ≥ Li; i.e., the total round trip
travel time for a search region is greater than the max-
imum aloft time Li. With PoSD defined as in (11), the
cumulative probability of successful detection (CPoSD)

1The geodesic distance is the shortest distance between two points on
the surface of a sphere.

for a given asset i is

CPoSD(i, j) = 1 −
K∏
k=1

(
1 − wi jkxi jk

)
, (15)

where xi jk is a binary decision variable such that xi jk =
1 if asset i is assigned to case j at time epoch k, and 0,
otherwise. The total reward that asset i can collect over
the planning time horizon is then

ri =
∑
j

λ jCPoSD(i, j), (16)

where λ j is the normalized priority weight of case j. We
wish to solve the following problem:

max
xi jk,τi�,di�

J = max
A∑
i=1

ri, (17)

s.t.
∑
i

xi jk ≤ 1 ∀ j,k, (18)

∑
j

xi jk ≤ 1 ∀i,k, (19)

di� − τi� ≤ Li ∀i, �, (20)

τi�+1 − di� ≥ Ri ∀i, �, (21)

τi�,di� ∈ {0, . . . ,K} ∪ {∞} ∀i, �, (22)

xi jk ∈ {0, 1} . (23)

In (17), we assume that the surveillance asset cannot de-
tect targets while it is en route to the patrol box. Con-
straints (18) and (19) ensure that no more than one case
is allocated to an asset at one time. Constraint (20) indi-
cates that the maximum asset aloft timemust not exceed
Li. Constraint (21) ensures that there must be a mini-
mumdowntime ofRi between asset allocations for a par-
ticular asset i and that subsequent allocations must have
a departure time later than the previous one(s), if any.
The problem posed in (17)–(23) is NP-hard [36].

III. SOLUTION APPROACH

A. Exhaustive Branch-and-Cut

The first solution approach we investigated is the ex-
haustive B&C method, herein referred to as E-B&C.
This method involves the enumeration and evaluation
of all feasible solutions and is illustrated in Fig. 4 with
respect to asset i, where each completed branch is a fea-
sible solution with the corresponding asset–case assign-
ments 〈i, j∗〉, given the departure times τi�, � = 1, 2, . . . ,
for each flight of asset i. We enumerate a complete fea-
sible flight schedule over all flights for each asset i and
calculate the total reward ri for a given asset i using (15)
and (16). The schedule with the highest ri is selected to
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Fig. 4. Branching method with τi1 and τi2 being the departure time
for the first and second flights and the corresponding case

assignments j1 and j2. ri is evaluated using (15) and (16) for each
completed branch. The highest ri is then saved as the best assignment

for asset i.

be the best assignment for asset i. In order to find the op-
timal allocation,we repeat the processmentioned earlier
with the full permutation of asset–case combinations.
The pseudocode is shown in Algorithm 1. In Algorithm
1’s pseudocode, line 1 generates the permutation of the
ordering of assets for which to start the allocation. Lines
2–5 compute the best assignment for the selected asset
i using B&C and updates the PoA surface accordingly
to avoid duplicate assignments (this is done by setting
the allocated grid cells in the PoA surface to have no re-
ward during the assigned search time(s)). Line 7 saves
all the assignment for each asset sequence generated by
the permutation function. Line 8 resets the PoA surface
to the originally initialized surface prior to any updates
in order to compute the next sequence generated by the
permutation function.

Algorithm 1 Exhaustive Branch-and-Cut (E-B&C)

1: PermSeq = Perm(1, . . . ,A) � Permutation of
ordering of assets for which to start allocation

2: for each AssetSeq in PermSeq do
3: for each i ∈ AssetSeq do
4: assign(i) = B&C(i)
5: updatePoA(assign(i)) � Prevent overlap of patrol
box assignments

6: end for
7: PotentialAssign ← PotentialAssign + assign � Save

potential assignment given we allocated in order
AssetSequence

8: resetPoA � Set PoA to originally initialized surface
prior to any updates

9: end for
10: BestAssign = MaxReward(PotentialAssign) � For

all potential assignments found, search and find that
which resulted in the maximum reward

B. Greedy Branch-and-Cut I

Similar toE-B&C,we repeat the asset allocation pro-
cess for all the available assets and fix the assignment
for an asset i∗ with the highest ri. After the asset–case–

time epoch assignment is fixed, we update the PoA sur-
face to ensure that the assigned cases are no longer avail-
able for additional scheduling during the assigned search
hours. The same process is then repeated until either no
more assets are available or all cases are fully allocated.
We refer to this method as GB&C-I. The pseudocode is
shown in Algorithm 2. In this pseudocode, line 1 states
that while there are any unassigned assets, continue on to
lines 2–7, where the best assignment for each unassigned
asset is found using B&C. The best asset assignment is
then selected in line 8 (i.e., i∗ becomes known among
the explored potential assignments). In lines 9–11, the
PoA surface is updated given the asset assignment
found.

Algorithm 2 Greedy Branch-and-Cut I (GB&C-I)

1:while length(AssignedAsset) ≤ A do
2: assign = ∅
3: for each i ∈ {1, . . . ,A} do
4: if i /∈ AssignedAsset then
5: assign(i) = B&C(i)
6: end if
7: end for
8: assignment(i∗) = MaxReward(assign)
9: AssignedAsset ← AssignedAsset + i∗

10: BestAssign ← BestAssign + assignment(i∗)
11: updatePoA(assignment(i∗))
12: end while

C. Greedy Branch-and-Cut II

To reduce the runtime and problem complexity, we
propose a second greedy B&C method, referred to as
GB&C-II. This method is similar to the E-B&Cmethod,
except that we put an additional constraint on assets.
Once we enumerate all the possible departure times and
find the best assignment { j∗} corresponding to each de-
parture time for an asset i, we fix the corresponding
schedule. That is, we reduce the complexity of search
with more than one asset from permutation ordering to
a linear ordering. The same process is then repeated un-
til all cases are fully allocated or there are no more as-
sets available. The pseudocode is shown in Algorithm 3.
Here, line 2 finds the best assignment for asset i found in
line 1. Line 3 updates the PoA surface and line 4 saves
the best assignment found in line 2.

Algorithm 3 Greedy Branch-and-Cut II (GB&C-II)

1: for each i ∈ {1, . . . ,A} do
2: assign(i) = B&C(i)
3: updatePoA(assignment(i))
4: BestAssign ← BestAssign + assign(i)
5: end for
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D. Parallelized Greedy Branch-and-Cut II

To further improve the computation time, we de-
velop a parallelized version of the GB&C-II algorithm.
Parallelization involves dividing a large problem into
multiple independent subproblems, where each sub-
problem is assigned to a processor. This substantially re-
duces the computation time and therefore can rapidly
generate allocation solutions. We use a master–slave
architecture for our parallelization with the following
functionalities:
Master process

� Pools subproblems for the slave processors to run.
� Spawns the subproblems onmultiple slave processors.
� Collects the results from the slave processors.

Slave process

� Receives the subproblem from the master processor.
� Executes the subproblem.
� Returns the solution to the master processor.

The serial GB&C-II algorithm, executed on a sin-
gle processor, searches the B&C tree by expanding live
nodes one at a time. In order to parallelize this prob-
lem on M processors, we set each τi1 to each processor
and let each processor execute the subproblem.All pro-
cesses share the same memory for the PoA and other
read-only data. Lastly, the master processor collects all
value returns from the slave processors to evaluate the
best assignment for asset i.

E. Approximate Dynamic Programming

Another approach to solve the problem is via ADP,
more specifically, a one-step lookahead rollout algo-
rithm.Note that the following formulation is for a single
arbitrary asset i and is thus assumed given throughout.
Let jk be the asset–case assignment at time epoch k and
zk be the remaining aloft time for an asset at time epoch
k. We have the state equation for zk+1 as

zk+1 = f (zk, jk), (24)

where jk is the state-based control variable that selects
a case j at time epoch k as

jk = μk(zk, jk−1), jk = 0, 1, . . . ,C. (25)

Here, zk = Li and jk = 0 implies that there is no asset–
case assignment made and the asset is in the rest state at
time epoch k.When zk ≤ Li and jk = 1, . . . ,C, an asset–
case assignment has been made at time epoch k− 1 and
the asset is currently in a flight state.The detailed control
options are described in this section later (see (31) and
(32)).

The ADP equation for the problem is defined as
follows:

gk(zk, jk) = λ jk

⎛
⎝1 −

∏
k∈s jk |zk

(
1 − wi jkk

)⎞⎠ , (26)

Jk( jk) = max
jk

E
{
gk(zk, jk) + J̄k+1 ( f (zk, jk,�(k)))

}
,

(27)
where s jk is the set of remaining search time indices avail-
able within the current sortie for asset i assigned to case
j and �(k) is a function that indicates that the asset is
currently flying its �th flight at time k. The variable λ j

is the normalized priority weight for case j. Here, J̄k+1

is the heuristic cost-to-go and is estimated based on the
following assumptions:

H1: The asset will fly out for its maximum aloft time.
H2: Each asset will stay on just one case for each

flight.
H3:Each asset will fly out immediately after it is fully

rested.
H4: The case with the highest total reward will be

selected for the �th flight interval, as in (28):

j∗ = argmax
j

λ j

⎛
⎝1 −

∏
k∈γ (i, j,�)

(
1 − wi jk

)⎞⎠ , (28)

where γ (i, j, �) is the set of search time indices for asset
i assigned to case j for the �th flight. If the planning time
horizon allowsmultiple flights, then we first compute the
best case for the next flight time defined by H1 to H3
using (28). The future cost-to-go for the �th flight is as
follows:

H(�) = λ j∗

⎛
⎝1 −

∏
k∈γ (i, j∗,�)

(
1 − wi j∗k

)⎞⎠ , (29)

where j∗ is computed from (28). The heuristic cost-to-go
given the current flight at time k is �(k) and is given by

J̄k+1 ( f (zk, jk, �k)) =
�K/(Li+Ri)�∑
n=�(k)+1

H(n). (30)

As mentioned earlier, the control variable jk is state-
dependent. When an asset is at rest state at time k, the
control variable jk comprises the actions of launching
the asset or not with the intent of obtaining better re-
ward at a later time epoch. That is,

jk =
{
0, do not launch the asset,

β, β = 1, . . . ,C, launch the asset.
(31)

A comparison of expected reward between launching
the asset at the current hour versus the next hour is
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Fig. 5. Illustration of rollout for deciding when to fly with the traveling time (green) and search time (blue).

performed using rollout with the heuristic defined ear-
lier. If launching the asset during the current time epoch
results in a higher reward, then the asset will be assigned
to the case with the highest total reward ri in (28) and
assigned for the first search hour to the selected case. If
launching the asset during the next time epoch results
in a higher reward, then we simply increment the time
epoch and repeat the process. Fig. 5 illustrates this roll-
out heuristic for determining the expected reward for
launching at a different hour.
When the asset is in flight, for the second through final
hour of the search, the control variable jk takes on a dif-
ferent set of values, detailed as follows:

jk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
jk−1, stay on the current case,

j̃ �= jk−1,
switch to a different case with
the cost of additional travel time.

(32)
We illustrate the computation of the heuristic for the
one-step lookahead rollout in Fig. 6. The first example
illustrates the situation when the surveillance asset is
searching for case j and chooses to stay on case j for
the remaining search interval. The second example illus-
trates the situation, wherein the asset currently search-
ing for case j switches to a new case j̃ �= j, while
considering the cost of additional travel time from case
j to case j̃. The travel time between the new case j̃
to the asset’s home base is then the new return travel
time for the asset. The optimal control action is selected
based on the maximum expected reward, as in (27).
This process is repeated for each time epoch k to ob-
tain a feasible asset–case assignment over the planning
horizon.

F. Multistep Lookahead Approximate Dynamic
Programming I

We propose two multistep lookahead ADP strate-
gies to obtain near-optimal assignments for all assets.
The first method begins with an m-length permutation
of the asset order for which to start the allocation. That
is,m = 1 corresponds to searching over each asset;m = 2
corresponds to searching over all possible pairs of as-
sets; and so on. The PoA is then updated with respect
to each asset–case–time assignment to ensure that there
are no duplicate asset–case–time tuples. The difference
between the two methods lies in how the remaining as-
sets are allocated. In the first proposed method, we ex-
haustively compute the feasible asset assignment for all
the available assets and fix the allocation corresponding
to the asset with the highest ri. The PoA is then updated
and the process is then repeated until either no more as-
sets are available or all cases are fully allocated. Once
all the assets are allocated, we reset the PoA surface to
its original state and repeat the process from the begin-
ning with the next possible m-length subset of assets to
start the initial asset assignment over the time horizon.
We refer to this method asmSLADP-I. The pseudocode
is shown in Algorithm 4. In Algorithm 4’s pseudocode,
line 1 generates the m-length permutation of asset or-
der,wherem specifies the size of the subset permutation
to be used for the initial asset allocation. Lines 4–7 find
the best allocation given each asset i in a specific asset
order from line 1 and update the PoA surface, accord-
ingly. Then, lines 12–18 compute the best assignment for
the remaining unassigned assets. Line 12 finds the best
assignment for each unassigned asset and line 17 selects
the best asset i∗ for allocation. The PoA surface is sub-
sequently updated in line 18. Lines 20–24 save the com-
plete assignment and reset the parameters for the next
asset permutation sequence generated in line 1.

Fig. 6. Illustration of one-step lookahead. 1) Stay at current case; 2) switch to a different case with the cost of additional traveling time; and 3)
return to the asset’s base.
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Algorithm 4 mSLADP-I

1: PermSeq = Perm({1, . . . ,A},m) � m-length
permutation of asset order, where m specifies the size
of the subset permutation to be used for initial asset
allocation

2: for each AssetSeq in PermSeq do
3: for each i ∈ AssetSeq do
4: assign(i) = ADP(i)
5: BestAssign ← BestAssign + assign(i)
6: updatePoA(assign(i))
7: AssignedAsset ← AssignedAsset + i
8: end for
9: while length(AssignedAsset) ≤ A do
10: for each i ∈ {1, . . . ,A} do
11: if i /∈ AssignedAsset then
12: assignTemp(i) = ADP(i)
13: end if
14: end for
15: b_assign(i∗) = MaxReward(assignTemp) �

Given the previous allocations, select the asset
assignment with the highest ri among the
remaining available assets

16: AssignedAsset ← AssignedAsset + i∗

17: BestAssign ← BestAssign + b_assign(i∗)
18: updatePoA(assignment(i∗))
19: end while
20: PotentialAssign ← PotentialAssign + BestAssign
21: assign = ∅
22: AssignedAsset = ∅
23: BestAssign = ∅
24: resetPoA
25: end for
26: BestAssign = MaxReward(PotentialAssign)

G. Multistep Lookahead Approximate Dynamic
Programming II

The secondmultistep lookaheadmethod (referred to
as mSLADP-II), as in the first method, begins with an
m-length permutation of asset ordering. The difference
between mSLADP-I and mSLADP-II is how the algo-
rithm computes the asset allocation for the remaining
assets. In mSLADP-II, we iteratively compute the best
asset allocation for each i. Once the best assignment is
found for asset i, we immediately fix the corresponding
schedule and update the PoA surface. There is no addi-
tional loop to find the best asset–case assignment among
all the remaining assets.Hence,mSLADP-II is faster and
less complex thanmSLADP-I. The same process is then
repeated until all cases are fully allocated or there are
no more assets available. The pseudocode is shown in
Algorithm 5. In this pseudocode, lines 1–7 remain the
same as Algorithm 4. The difference lies in lines 10–17,
where, for each unassigned asset,we find the best assign-
ment corresponding to an asset i∗ and update the PoA

surface accordingly. Once all assets are assigned, we re-
set all the parameters for the next asset permutation se-
quence generated from line 1.

Algorithm 5 mSLADP-II

1: PermSeq = Perm({1, . . . ,A},m)
2: for each AssetSeq in PermSeq do
3: for each i ∈ AssetSeq do
4: assign(i) = ADP(i)
5: BestAssign ← BestAssign + assign(i)
6: updatePoA(assign(i))
7: AssignedAsset ← AssignedAsset + i
8: end for
9: for each i ∈ {1,..., A} do
10: if i /∈ AssignedAsset then
11: assign(i) = ADP(i)
12: end if
13: end for
14: AssignedAsset ← AssignedAsset + i∗

15: BestAssign ← BestAssign + assign(i)
16: updatePoA(assignment(i∗))
17: PotentialAssign ← PotentialAssign + BestAssign
18: assign = ∅
19: AssignedAsset = ∅
20: BestAssign = ∅
21: resetPoA
22: end for
23: BestAssign = MaxReward(PotentialAssign)

IV. SIMULATION AND COMPUTATIONAL RESULTS

The proposed algorithms were implemented in
Python 2.7 on an Intel® CoreTM i7-6600U CPU @
2.60 GHz × 4 with 32 GB RAM. Our computational
results are organized as follows: We first describe the
mission scenario. Then, we discuss the solution quality
of various algorithms with respect to objectives O1–O3
and their runtimes. Additionally, we conduct scalability
analyses of the algorithms by varying the number of as-
sets and cases, as well as robustness of the various algo-
rithms using a signal-to-noise ratio (SNR) metric from
robust design [37].

A. Scenario Description(s)

There are two main areas of operation in the simu-
lated scenario: the East PacificOcean and the Caribbean
Sea. The PoA surfaces corresponding to this area of re-
sponsibility (AOR) were partitioned into a grid of 90 ×
138 cells, where each cell is a square with a side length
of 30 nautical miles. The total area of the AOR was ≈11
million square nauticalmiles.The lower left corner of the
rectangular AOR had a latitude and longitude of 10◦S
and 110◦W, respectively.
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TABLE II
Smuggler Cases

Case Case ID Vessel type Speed (kts) Payload (kg) No. of smugglers

1 GF1 Go fast 30 1000 3
2 PG1 Panga 20 450 2
3 GF2 Go fast 30 1000 3
4 PG2 Panga 20 450 2
5 PG3 Panga 20 450 2
6 PG4 Panga 20 450 2
7 SP1 SPSSa 8 2500 3
8 FSV1 FSVb 4 5000 2
9 PG5 Panga 20 450 2
10 PG6 Panga 20 450 2

aSelf-propelled semi-submersible.
bFully submerged vessel.

The PoA surfaces forecasted 10 smuggler cases, of
which 5 were located in the East Pacific Ocean and the
remaining 5 were located in the Caribbean Sea. The de-
tails for each case can be found in Table II and Fig. 7.
These cases are generated based on Navy intelligence,
which typically comprises estimates of the expected
number of smugglers on board and the size of the con-
traband shipment.Often there are few “active”cases, i.e.,
cases that targeteers deem to have sufficient actionable
intelligence to allocate assets to.We assume the PoA sur-
faces reflect the spatiotemporal probabilities pertaining
to such “active” cases. Four different types of smuggler
vessels were considered: 1) Go fast—small, fast boats ca-
pable of reaching high speeds; 2) Panga—modest-sized,
fast boats that are easy to build by the smugglers; 3) self-
propelled semi-submersible (SPSS)—narco-submarines
capable of shifting heavy loads long distances while al-
most submerged under the ocean’s surface [38]; and 4)
fully submerged vessel—makeshift submarine-like ves-
sels that can remain submerged with large quantities
of cocaine aboard. Each case had a unique departure,
destination, and waypoint combination. Waypoints are
defined as possible areas in the ocean where the cargo
is transferred to another vessel or a change in trajec-
tory of the smuggler is predicted.Additionally, each case
also had an associated payload measured in kg of co-

Fig. 7. Experiment scenario.

Fig. 8. Chart displaying when each smuggler case is active over the
72 h time horizon. Cases are active up through time K = 72 and do

not necessarily end at that time, but rather, due to the time horizon of
the forecast data, are truncated.

caine. This is relevant when we run the algorithm with
objective O2. An important fact to note is that each
case had different start and end times. Fig. 8 details the
time epochs when each smuggler case is deemed active.
Cases with high uncertainty had wide bands of PoA.The
amount of uncertainty is dependent on the type of smug-
gler vessel (e.g., SPSSs can be extremely difficult to de-
tect, and thus the corresponding PoA surfaces reflect
this in long and broad bands of probability reflecting
spatial and temporal uncertainty) and/or departure time
uncertainty.

In the scenario, 10 P-3 surveillance assets were con-
sidered as available for allocation during the planning
horizon. The home bases of individual surveillance as-
sets are detailed in Table III. Each asset carries two dif-
ferent types of sensors with performance parameters de-
tailed in Table IV.

We simulated the scenario with a granularity of
1 h (i.e., the forecasted surfaces were for each hour,
on the hour; thus 
 = 1 h). The forecasts extended to
72 h out from the current time (i.e.,K = 72) and an as-
set allocation solution (e.g., xi jk = 0 or 1) was required
for each time epoch, k, in order for the algorithm to
terminate.

Note that we omit E-B&C for large-sized scenarios
in our results due to an exponential increase in com-
putation times. Therefore, for E-B&C, we compute the
solution for scenarios involving only up to 5 assets and
10 cases.

TABLE III
Asset Home Base Location (Longitude, Latitude)

1, 6 (−69.7617, 18.5036)
2, 7 (−79.3833, 9.07111)
3, 8 (−85.5442, 10.5931)
4, 9 (−89.0558, 13.4406)
5, 10 (−92.37, 14.7942)
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TABLE IV
Sensor-to-Target Sweep Width (nm)

Sensor type FSVa SPSSb FVc Panga GFd MVe SVf UNKg

APS 115 5 7.5 7.5 9 7.5 7.5 7.5 2.5
APS 137 10 15 15 18 15 15 15 5

aFully submerged vessel.
bSelf-propelled semi-submersible.
cFishing vessel.
dGo fast.
eMerchant vessel.
fSupply vessel.
gUnknown (other).

B. Solution Quality with Different Objective Functions

Using the aforementioned values for the parame-
ters, we ran the simulation for all the approaches to
schedule the 10 specified assets over the 72 h plan-
ning horizon. Tables V–VII show the CPoSD for the
GB&C-II method for objectives O1, O2, and O3, re-
spectively. Parallel GB&C-II has the same result as the
sequential GB&C-II. Therefore, we omit the parallel
GB&C-II from the quality comparison.

We refer to Tables V–VII as COA matrices [5]. The
COAmatrices aid the DM in understanding the reason-
ing behind the algorithm’s behavior and its output by
giving metrics for both individual asset–case pairs and,
overall, the probability an asset detects at least one case
(PDC) and the probability that a case is detected by at
least one asset (PDA).These matrices may be generated
to assess the allocation performance at a particular time
epoch, or, as shown in Tables V–VII, the cumulative as-
set allocation performance up to that point in time (in
Tables V–VII, through K = 72).

Solving with respect to objective O1 (Table V) re-
sulted in an asset allocation with the highest expected
weight of contraband detected, totaling 7828 kg of co-
caine compared to objectives O2 and O3 (Tables VI and

VII). This implies that we have a 64% success rate of de-
tecting the transport of contraband with respect to the
total possible for the experimental scenario of 12,200 kg
of contraband. The asset allocations with respect to ob-
jective O1 have 15.5% and 10.1% more contraband dis-
rupted when compared to objectives O2 and O3, respec-
tively. In Table V, case 8 has the most amount of con-
traband (5000 kg) with a CPoSD = 0.95. Solving with
respect to objective O3 resulted in the detection of a
higher expected weight of contraband (5.9%), expected
number of detections (6.8%), and expected number of
smugglers (7.5%) compared to objective O2. This could
be caused by the uniform priority weight vector used in
objective O2.

For the sake of compactness, we omit the COA ma-
trices used in demonstrating the performance of the
other approaches implemented and, instead, quantify
the goodness of the allocation by comparing the algo-
rithms with that of GB&C-II algorithm as measured
by the expected weight of the contraband detected, ex-
pected number of detections, and expected number of
smugglers detected.

The sums of the totals for each objective for each
algorithm are shown in Table VIII. Fig. 9 shows a
normalized representation of the results detailed in
Table VIII, where the largest possible number of detec-
tions and contraband detected was utilized as a basis
for normalization of both metrics, respectively, to com-
pare the expected number of detections and contraband
weight detected.Note that Fig.9 only contains the results
for 1SLADP-I and 1SLADP-II; the detailed solutions of
mSLADP with m > 1 are shown later in Section IV-C.

We illustrate in Table VIII and Fig. 9 that all B&C-
based algorithms optimizing objective O2 are outper-
formed by the same algorithms optimizing objective O3
in terms of both the expected number of detections
and expected number of smugglers. When comparing
GB&C-I and GB&C-II, optimizing with respect to ob-
jectiveO2 resulted in 4% less expected number of detec-

TABLE V
Objective O1:Maximize Weight of Contraband Detected

Asset Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 PDC

1 – – – – – – – 0.76 – – 0.76
2 – – – – – – 0.43 0.29 – – 0.60
3 0.09 – – – – – 0.25 0.29 – – 052
4 0.15 – – – – 0.28 – – – 0.14 0.47
5 0.21 0.14 – – – – – – – – 0.33
6 – – – – – – – 0.61 – – 0.61
7 – – – – – – 0.40 – – – 0.40
8 – – 0.09 — – – 0.21 – – – 0.28
9 0.17 – – – – 0.30 – – – – 0.42
10 – – – 0.20 – 0.11 – – – 0.06 0.33

PDA 0.49 0.14 0.09 0.20 – 0.55 0.80 0.95 – 0.19 a,b,c

aExpected weight of contraband disrupted: 7828 kg.
bExpected number of detections: 3.41.
cExpected number of smugglers: 8.21.
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TABLE VI
Objective O2:Maximize Number of Detections

Asset Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 PDC

1 – – – – – – – 0.76 – – 0.76
2 – 0.27 – – – 0.38 – – – 0.15 0.61
3 0.20 – – – – – 0.28 – – – 0.43
4 0.15 – – – – – – 0.10 – 0.15 0.35
5 0.19 – – 0.17 – – – – – – 0.33
6 – – – 0.13 – – – – – 0.20 0.31
7 – 0.29 – – – – – 0.37 – – 0.55
8 0.13 – – – – – – – 0.23 – 0.33
9 – – 0.10 – 0.18 – – – – – 0.25
10 0.17 – – – – – – – – 0.05 0.21

PDA 0.61 0.48 0.10 0.28 0.18 0.38 0.28 0.86 0.23 0.46 a,b,c

aExpected weight of contraband detected: 6619 kg.
bExpected number of detections: 3.85.
cExpected number of smugglers: 8.67.

TABLE VII
Objective O3:Maximize Number of Smugglers Detected

Asset Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 PDC

1 – – – – – 0.21 – 0.61 – – 0.69
2 – – – – – 0.34 0.26 – – 0.15 0.59
3 0.09 0.23 – – – – 0.25 – – – 0.48
4 0.11 – – 0.21 – – 0.10 – – – 0.37
5 0.18 – 0.10 – – – – – – – 0.25
6 – – – – – – – 0.58 – 0.15 0.64
7 – 0.27 – – — – – – – 0.11 0.35
8 – – – – 0.18 – – – 0.22 – 0.36
9 0.16 – – – – 0.30 – – – – 0.41
10 – – 0.09 0.16 – – – – – – 0.23

PDA 0.44 0.44 0.17 0.34 0.18 0.63 0.51 0.84 0.22 0.35 a,b,c

aExpected weight of contraband detected: 7036 kg.
bExpected number of detections: 4.13.
cExpected number of smugglers: 9.37.

tions and 1.2% less expected number of smugglers than
when optimizing with respect to objective O3.

In terms of the amount of contraband detected, us-
ing the GB&C-I algorithm resulted in an allocation that
obtained the highest expected amount of contraband de-

TABLE VIII
Algorithm comparison

Contraband disrupted (kg)

Objective GB&C-I GB&C-II 1SLADP-I 1SLADP-II
O1 7869 7828 7520 7821
O2 6658 6619 7185 7610
O3 7188 7036 7594 7591

No. of detections
Objective GB&C-I GB&C-II 1SLADP-I 1SLADP-II

O1 3.47 3.41 3.57 3.68
O2 3.87 3.84 3.72 4.08
O3 4.12 4.13 3.80 4.04

No. of smugglers
Objective GB&C-I GB&C-II 1SLADP-I 1SLADP-II

O1 8.35 8.21 8.37 8.72
O2 8.56 8.67 8.40 9.21
O3 9.50 9.37 8.70 9.12

tected when solving for objective O1; however, its solu-
tions for maximizing the expected number of detections
or expected number of smugglers were inferior to the
ADP-based algorithms. In general,we see that the B&C-
basedmethods are able to obtainmore contrabandwhen

Fig. 9. A normalized view comparing the performance of all the
algorithms, with respect to the expected weight of contraband

disrupted (O1), the expected number of interdictions (O2), and the
expected number of smugglers (O3).
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Fig. 10. The expected weight of contraband disrupted for each
algorithm by varying the number of available assets.

solving with respect to objective O1, while the ADP-
based methods are able to get better solutions for the
expected number of detections and expected number of
smugglers when solving with respect to objectives O2
and O3 with the exception of 1SLADP-I for objective
O3.

C. Scalability: Available Asset Sensitivity

In this section, we use objective O1 for the scalabil-
ity studies with respect to the number of assets. To mea-
sure the scalability,we limited the number of assets avail-
able for allocation for the scenario from 1 to 10 aircraft.
Figs. 10 and 11 show the expected weight of contra-
band disrupted and the runtimes, respectively. The de-
tailed values are given in Tables IX and X. In Fig.
10 and Table IX, we see that ADP-based algorithms

Fig. 11. The CPU runtimes for each algorithm by varying the
number of available assets.

(1SLADP-I, 1SLADP-II, 2SLADP-I, and 2SLADP-II)
are able to obtain similar amounts of contraband
disrupted, differing by only up to 339.7 kg (4.6%)
of contraband.

Similarly, the B&C-based algorithms (E-B&C,
GB&C-I, and GB&C-II) are able to obtain similar
amounts of contraband disrupted, differing by only
up to 279.1 kg of contraband among the three. E-B&C,
intuitively, outperformed the other B&C variations (and
all other algorithms for that matter) among the scenar-
ios simulated until runtime became an issue. GB&C-II
is able to obtain a better result compared to GB&C-I
when there are two, six, or seven assets available for
allocation. This is due to the nature of the scenario or
the characteristics of the smuggler cases. Since GB&C-I
iterates through all available assets, there is a tendency
that closer (with respect to assets’ home base) cases

TABLE IX
Expected Weight of Contraband Disrupted (kg) for Varying Asset Availability

No. of assets E-B&C GB&C-I GB&C-II 1SLADP-I 1SLADP-II 2SLADP-I 2SLADP-II

1 3806 3806 3806 3806 3806 3806 3806
2 5240 4747 5240 4747 4747 4747 4747
3 5997 5997 5935 5952 5988 5988 5988
4 6436 6349 6253 6306 6341 6341 6341
5 6762 6617 6483 6583 6658 6658 6693
6 – 6816 6847 6748 6823 6823 6858
7 – 7239 7265 6983 7298 7292 7323
8 – 7501 7490 7195 7494 7396 7519
9 – 7734 7691 7369 7648 7535 7673
10 – 7869 7828 7520 7821 7648 7846
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TABLE X
Simulation Runtime (s) for Varying Asset Availability

No. of assets E-B&C GB&C-I GB&C-II Parallel GB&C-II 1SLADP-I 1SLADP-II 2SLADP-I 2SLADP-II

1 3.23 3.70 3.48 1.86 0.08 0.08 0.09 0.08
2 15.1 10.9 7.54 4.49 0.18 0.18 0.16 0.17
3 69.6 22.8 11.8 6.75 0.38 0.26 0.30 0.29
4 418 45.7 16.7 9.82 0.53 0.36 0.51 0.47
5 2639 75.9 21.9 12.5 0.55 0.43 0.92 0.71
6 – 89.4 23.0 13.9 0.94 0.53 1.58 1.03
7 – 111 25.5 15.1 1.46 0.66 2.91 1.62
8 – 139 30.3 16.4 1.35 0.83 4.91 2.22
9 – 181 31.0 18.32 1.73 0.93 7.75 2.90
10 – 220 34.7 20.9 2.22 0.99 13.0 5.50

are allocated first, since there is less travel time and,
hence, are more rewarding. In turn, this may limit the
options available to assets considered for allocation in
later iterations since cases, previously in close proxim-
ity to their home base, may already be allocated and,
due to longer travel time, will be much less rewarding
or not at all. Similar problems arose with 1SLADP-I
algorithm, which obtains less expected contraband
disrupted compared to 1SLADP-II algorithm when
there are more than six assets available for allocation,
differing by up to 314.9 kg of contraband. We are able
to minimize the effect of this problem by applying a
two-step lookahead strategy. 2SLADP-I algorithm ob-
tains less expected contraband disrupted compared to
2SLADP-II algorithm when there are more than five as-
sets available for allocation, differing by up to 197.6 kg of
contraband.

As Fig. 11 and Table X show, E-B&C has the slow-
est runtime. There is a maximum speedup of 34.8, 120.6,
210.6, 4794, 6146, 2861, and 3711 and an average speedup
of 9.8, 30.9, 53.7, 1177, 1542, 809, and 994 when com-
paring the runtimes of GB&C-I to GB&C-II, parallel
GB&C-II, 1SLADP-I, 1SLADP-II, 2SLADP-I, and
2SLADP-II, respectively. Over all the asset availability
scenarios tested, the average speedups of GB&C-II, par-
allel GB&C-II, 1SLADP-I, 1SLADP-II, 2SLADP-I, and
2SLADP-II are 3.6, 6.1, 87, 143, 52, and 72 times, respec-
tively, faster compared to GB&C-I.

Our key finding here is that, with a 1.6% sacrifice
in optimality on average, GB&C-II provides a solution
nearly identical to that of E-B&C, while offering a solu-
tion in a fraction of the time (up to nearly 210.6 times
faster among the simulated results). Alternatively, at a
cost of 2.5% suboptimality on average, but more than
6146 times faster speedup, we can run 1SLADP-II for a
given scenario. Similarly, at a cost of 2.4% suboptimal-
ity on average, 2SLADP-II offers more than 3711 times
faster speedup.

In general, GB&C-II should be used when the total
number of assets is less than 3 due to its minimal sac-
rifice in optimality (on average 1.6%). When the num-
ber of assets is greater than 3, 2SLADP-II should be
used.

D. Scalability: Varying the Number of Cases

Here,we vary the number of cases from 1 to 10,while
fixing the number of available assets to 10. Figs. 12 and
13 show the expected weight of contraband disrupted
and the runtimes, respectively. The detailed values for
each figure are given in Tables XI and XII, respectively.
From Fig. 12 and Table XI,we see that all the algorithms
have very similar solution quality. We see a noticeable
increase in contraband disruption for case 8 (5000 kg of
contraband). All algorithms obtained a similar amount
of expected contraband disrupted.

Fig.13 andTableXII show the runtimes.As expected,
GB&C-I has the slowest runtimes, while the 1SLADP-
II algorithm has the fastest runtime (<1 s). There are
maximum speedups of 7, 11, 99, 221, 17, and 40 when
comparing the runtimes of GB&C-I to GB&C-II, par-
allel GB&C-II, 1SLADP-I, 1SLADP-II, 2SLADP-I, and

Fig. 12. The expected weight of contraband disrupted for each
algorithm by varying the number of available cases.
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TABLE XI
Expected Weight of Contraband Disrupted (kg) for Varying Case Availability

No. of cases GB&C-I GB&C-II 1SLADP-I 1SLADP-II 2SLADP-I 2SLADP-II

1 653.2 558.7 653.2 629.6 657.7 653.2
2 1000 775.8 968.7 999.4 1037 999.4
3 1332 1189 1302 1334 1355 1359
4 1459 1425 1462 1479 1471 1504
5 1540 1452 1474 1549 1537 1610
6 1680 1633 1707 1655 1727 1685
7 3145 3090 3049 3133 3125 3188
8 7725 7694 7311 7648 7665 7716
9 7725 7694 7320 7633 7612 7754
10 7869 7828 7520 7821 7648 7846

TABLE XII
Simulation Runtime (s) for Varying Case Availability

No. of cases GB&C-I GB&C-II Parallel GB&C-II 1SLADP-I 1SLADP-II 2SLADP-I 2SLADP-II

1 0.85 0.34 1.08 0.68 0.23 1.99 0.86
2 4.09 1.36 4.47 0.66 0.32 3.74 1.27
3 5.88 2.67 1.89 0.85 0.42 4.13 1.58
4 11.8 3.93 3.06 1.00 0.54 5.24 1.91
5 18.0 4.77 4.01 1.48 0.57 5.51 2.16
6 24.7 7.48 5.31 1.34 0.64 6.95 2.38
7 56.0 11.7 7.27 1.45 0.72 7.79 2.55
8 108 13.2 8.56 1.67 0.80 9.45 3.13
9 183 15.9 9.85 1.92 0.89 11.9 4.00
10 220 34.7 20.9 2.22 0.99 13.0 5.50

2SLADP-II, respectively. On average, the speedups of
the GB&C-II, parallel GB&C-II, 1SLADP-I, 1SLADP-

Fig. 13. The CPU runtimes for each algorithm by varying the
number of available cases.

II, 2SLADP-I,and 2SLADP-II algorithmswere 4.3,6,33,
71.8, 6, and 16.5 times, respectively.

The key point here is that the algorithm 2SLADP-I
is very efficient and is recommended for scenarios when
the number of cases is less than or equal to the number
of assets, which is often the case.

E. Robustness: Monte Carlo Evaluation of Asset
Allocation Strategies

To test the robustness of each asset allocation algo-
rithm, we simulated 100,000 trajectories of smugglers
(10,000 from each case) behaving as in our benchmark
scenario. Sampling from the PoA surfaces, we obtained
waypoints for each smuggler at each time epoch and
joined them together to obtain a full path. From these
paths, we measured whether the smuggler traversed
through any allocated patrol boxes during the allocated
search time, and if so, what was the aircraft’s probabil-
ity of detecting the target during those time epoch(s).
Table XIII shows the detailed performance statistics for
each algorithm over the 100,000 Monte Carlo simula-
tions. A useful metric to measure an algorithm’s good-
ness is that of nominal-the-best SNR [37], that is,

SNR = 10 log10
μ2

σ 2
. (33)
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TABLE XIII
Monte Carlo Analysis (from 100,000 Runs)

Objective Mean of contraband detected (μ) in kg Standard deviation of contraband detected (σ ) in kg SNR (dB)

GB&C-I 7616 246.3 29.8
GB&C-II 7632 252.5 29.6
1SLADP-I 7645 244.2 29.9
1SLADP-II 7610 218.4 30.8
2SLADP-I 7648 240.3 30.1
2SLADP-II 7612 203.3 31.5

Nominal-the-best SNR is a useful measure when the
goal is to maximize a mean and minimize the variation.
Note that maximization of this metric seeks to minimize
the coefficient of variation (=standard deviation/mean)
and is thus a measure of robustness of a solution. From
the results of 100,000 Monte Carlo runs, we found that
the algorithm 2SLADP-II performs the best with re-
spect to objective O1, when measured using the SNR.
The 2SLADP-II algorithm obtained,on average, 7612 kg
of contraband (out of a total of 12,200 kg purportedly
transported).

As Table XIII shows, all algorithms were able to
obtain a similar expected amount of contraband, with
2SLADP-II proving to be the most robust, as measured
in terms of nominal-the-best SNR.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed five asset alloca-
tion algorithms to the maritime surveillance problem:
1) E-B&C: enumerate all possible asset–case combi-
nations over all times and find the optimal allocation.
2) GB&C-I: enumerate and solve for the best alloca-
tion for each asset and compute the PoSD for each as-
set, and iteratively generate a schedule based on the
highest PoSD. 3) GB&C-II: similar to E-B&C, except
the algorithm directly enforces the asset schedule once
the best allocation is found. 4)mSLADP-I: utilize multi-
step lookahead rollout in a heuristic to iteratively sched-
ule asset–case assignments for individual time epochs. 5)
mSLADP-II: similar tomSLADP-I,except that the algo-
rithm directly enforces the asset schedule based on the
highest incremental reward.

We validated each algorithm and solved the NP-hard
counter-smuggling surveillance problem in a relatively
short amount of time for any of the three objectives
examined—maximizing the contraband disrupted, num-
ber of detections, or number of smugglers detected. We
found that B&C-based methods are able to obtain more
contraband when optimizing the amount of contraband
disrupted, while the approximate dynamic approaches
are better at optimizing over the number of smugglers
and the number of detections.

We conducted scalability and robustness analyses to
evaluate the solution quality, runtimes, and contraband
detection performance behavior of each algorithm.
We found that the algorithms scale reasonably well

with the problem size. We also found that ADP-based
approaches are able to obtain effective asset allocations
within seconds of computation time with a minimal
sacrifice in optimality, while proving to provide the
most robust solution as measured by the SNR metric.
Additionally, we found the 2SLADP-II algorithm to be
the best when measuring with respect to nominal-the-
best SNR. Our future work includes further sensitivity
analyses with varying asset types, aloft times, number
of unavailable assets, and rest times, and spatiotempo-
ral variations in the PoA surface (e.g., scenario-based
asset allocation to handle uncertainty in PoA surfaces).
Additionally, higher fidelity simulations could easily
be analyzed for more accurate detection models and
other operational PoA surfaces (e.g., historical flow
surface and active cases). Future work also includes
the incorporation of unmanned aerial vehicles (UAVs),
either as in [39], where solely UAVs collaborate, or in a
mixed-initiative sense, an augmentation of our proposed
approach.
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A New Heterogeneous Track
Fusion with Information
Decorrelation Algorithm for
Target Tracking in a Multistatic
Sensor System with
Non-Cooperative Moving
Transmitters

RONG YANG
YAAKOV BAR-SHALOM

This paper considers a target tracking problem in a non-

cooperative multistatic system, where several transmitters are mov-

ing and their positions are unknown. The receiver listens to the sig-

nals from non-cooperative transmitters via direct and indirect (bounc-

ing from targets) paths. The transmitters and targets are then tracked

based on the measured bearings and the bistatic ranges (derived from

the time difference of arrival of the direct and indirect path signals)

simultaneously. In previous work, we proved that the transmitter tra-

jectories are observable when the two transmitters are not located on

the same line from the receiver, and developed an approximate algo-

rithm to perform estimation based on covariance inflation (CI). In this

paper, a new estimation algorithm, heterogeneous track fusion with in-

formation decorrelation (HTF-D), is developed. It aims to achieve op-

timal estimates without using a large augmented state consisting of all

transmitter and target states. The approach tracks targets individually,

and fuses these highly correlated tracks through a novel information

decorrelation method. The performance of the HTF-D is evaluated

through simulation tests. The results show that the HTF-D provides

better estimates than theCI algorithm, and achieves the same accuracy

as the optimal algorithm when the latter does not suffer from numer-

ical problems due to its large augmented state. The HTF-D estimates

are also consistent statistically.
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I. INTRODUCTION

Passive detection and tracking is desirable in surveil-
lance systems as it estimates target trajectories through
“listening” to the signals emitted by others without any
emission of its own.It can therefore avoid being detected
by the targets it observes. This paper will develop a new
passive tracking algorithm primarily for passive sonar
and radar applications.

Passive tracking algorithms operate according to two
basic approaches. One is to listen to target emission
signals and then to estimate target trajectories. The
techniques such as bearings-only tracking (BOT) and
Doppler-bearing tracking (DBT) belong to this category
[1]–[8]. The target motion state (comprising the target
position and velocity) is estimated by measuring the tar-
get bearings and, if their emissions are narrowband, also
their Doppler shifted frequencies. Since the target range
cannot bemeasured, the conventional BOT/DBT [1], [3],
[5], [6] usually cannot provide accurate trajectory esti-
mates, even when the platform of the receiver maneu-
vers. The recently developed unscented Gauss–Helmert
filter [2], [4], [7], [8] fuses two types of target signals (e.g.,
an acoustic signal and an electromagnetic signal) with
different propagation delays, so that a target range can
be inferred from the delays. This method increases the
estimation accuracy significantly. However, it is only ap-
plicable to the targets that emit these heterogeneous sig-
nals. Another approach to passive tracking is by means
of the multistatic sensor concept,which does not require
any emission from targets. The receiver (listener) listens
to some transmitters’ signals through direct and indi-
rect (bouncing from targets) paths. The targets can then
be tracked based on the measured bearings and bistatic
ranges.The bistatic ranges are derived from the time dif-
ference of arrival (TDOA)of the direct and indirect path
signals. This paper will present a generalization of the
multistatic approach, detailed in the sequel.

The multistatic tracking has been extensively stud-
ied. The international Multistatic Tracking Working
Group, organized in 2005, dedicated research to this
topic. Their research results were summarized in [9].
The algorithms they used include Bayesian tracking, dis-
tributed multiple hypothesis tracking, probabilistic mul-
tiple hypothesis tracking, maximum likelihood proba-
bilistic data association algorithm, and Gaussian mix-
ture cardinalized probability hypothesis density track-
ing. All of them solve the tracking problem for the
conventional multistatic system where the positions of
transmitters and receivers are assumed known. How-
ever, the transmitters’ positions are not always known,
especially for moving transmitters, which do not inform
the receiver of their positions in a timely manner. We
designate this type of transmitters as non-cooperative
transmitters. To widen the application of multistatic sys-
tems, research on non-cooperative transmitters is of spe-
cial interest. In general, the moving target trajectories
are not observable based on the measurements from a
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non-cooperative transmitter only. Additional informa-
tion needs to be provided to estimate the transmitter
positions.A well-knownmethod is to estimate the trans-
mitter position from objects with known positions (e.g.,
landmarks, rocks, or wrecks) [10]–[12]. The environmen-
tal information such as walls and other reflectors can
also be utilized [13]–[15].1 Once the transmitter posi-
tion is known, the target trajectories are observable in
a multistatic system. A study on non-cooperative trans-
mitter system without using additional information was
also conducted recently [16]. It estimates the positions of
targets and a transmitter simultaneously purely from the
measurements. However, this approach is only applica-
ble for stationary targets.

This paper focuses on a new non-cooperative mul-
tistatic configuration [17], [18] that can track trans-
mitters and targets simultaneously, where targets and
transmitters can be either moving or stationary, and no
additional information such as reflections from known
objects and environment is required. The only require-
ment is that the number of non-cooperative transmitters
must be greater than or equal to 2. This configuration
was first proposed in [17]. The observability of the prob-
lem was proved when the two transmitters are not lo-
cated on the same line of sight from the receiver (see
Appendix A). Simulation tests were conducted using
synchronous transmitters for proof of concept. Further
study [18] extended the algorithm from synchronous
transmitters to the more realistic asynchronous case.
This is because non-cooperative transmitters do not ne-
gotiate each other to synchronize their emission times.
The covariance inflation (CI) filter [19] was used for
transmitter and target trajectory estimation in [18] and
its estimation results were compared to the optimal al-
gorithm that estimates the augmented state consisting
of all transmitter and target states. Unfortunately, the
CI filter, being an approximate approach, has a signifi-
cant accuracy gap to the optimal algorithm. The optimal
algorithm is straightforward but, unfortunately, has the
following issues:

1) The state size will be large when many targets exist.
This will cause the estimation to be more sensitive to
the system errors, and it is likely to have numerical
problems.

2) The state size varies with the number of targets in the
system.This complicates the real system applications.

3) The system may face scalability issues as all tar-
get and transmitter estimation is handled by one
estimator.

Thus, a better tracking algorithm is needed.

1Strictly speaking, the systems addressed in these references are not
multistatic systems since they consider only transmitters and receivers.
Non-emitting targets are not there. However, the approaches for the
transmitter/receiver location estimation in these papers can be utilized
in a non-cooperative multistatic system when the additional environ-
mental information is available.

Fig. 1. Noncooperative multistatic system with two asynchronous
transmitters with unknown positions. Transmitters A and B move and
emit “blue” and “red” signals (on different frequencies), respectively.
The dashed lines are the direct signal paths, and the solid lines are the

indirect signal paths.

In this paper,we present a novel heterogeneous track
fusion with information decorrelation (HTF-D) algo-
rithm that provides similar accuracy to the optimal algo-
rithm and estimates each target trajectory individually,
so that the drawbacks of the optimal algorithm caused
by the large state size are avoided. The technical chal-
lenge is that the cross-covariances among the target es-
timation errors cannot be addressed properly if we track
the targets individually.The optimal algorithm estimates
a large augmented state so that these cross-covariances
can be computed easily.The HTF-D, tracking the targets
individually, does not compute the cross-covariances be-
tween individual tracks. To overcome this, we develop a
new heterogeneous and correlated state fusionmethod on
top of the individual tracks, so that the cross-covariances
can be handled properly through the fusion.

The rest of paper is organized as follows. Section 2
describes the problem formulation. Section 3 reviews
the existing estimation algorithms relevant to our prob-
lem. Section 4 describes the HTF-D algorithm. Section 5
shows the simulation results, and conclusions are given
in Section 6.

II. PROBLEM FORMULATION

The problem is illustrated in Fig. 1. A stationary re-
ceiver2 is located at the origin of the Cartesian coor-
dinate system O(0, 0). Two moving platforms A and
B carry emitters that emit asynchronous pulse signals
periodically with different frequencies (represented in
red and blue). One moving target (without emitter) re-
flects the signals to the receiver. Note that only one tar-
get is shown in Fig. 1 for simplicity. The approach is

2The approaches described in the paper are not limited to a station-
ary receiver; they can also work on a moving receiver, assuming the
trajectory of the receiver is known.
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applicable to multiple targets as shown later in the sim-
ulation results. The positions of the transmitters and tar-
get are unknown to the receiver. The direct signal paths
from the two transmitters are represented by dashed
lines,while the indirect signal paths reflected via another
transmitter or target are represented by solid lines. It is
easy for the receiver to differentiate the direct and in-
direct signals from their amplitudes, as the direct signals
are much stronger than the indirect signals [20].

The two transmitters emit signals asynchronously,
based on their own schedules. The receiver needs to per-
form estimation when it receives signals from any one of
transmitters.

The states to be estimated are

xA(tk) = [xA(tk) yA(tk) ẋA(tk) ẏA(tk)]′, (1)

xB(tk) = [xB(tk) yB(tk) ẋB(tk) ẏB(tk)]′, (2)

xDi (tk) = [
xDi (tk) yDi (tk) ẋDi (tk) ẏDi (tk)

]′
, (3)

where xA and xB are the states of the transmitters A and
B, respectively, xDi is the target state with i = 1, . . . , n,
and n is the number of targets in the system. The state
transition model assuming a nearly constant velocity
(NCV) model is

x∗(tk) = F(Tk,k−1)x∗(tk−1) + v∗(Tk,k−1), (4)

where �∗ represents �A,�B, or �Di ,

F(Tk,k−1) =

⎡
⎢⎢⎢⎣
1 0 Tk,k−1 0

0 1 0 Tk,k−1

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ (5)

with the time interval (not a constant in the asyn-
chronous case)

Tk,k−1 = tk − tk−1, (6)

and v∗ is the zero-mean process noise for the interval
Tk,k−1. Based on the discretized continuous-time white
noise acceleration model [21], its covariance is

E[v∗(·)v∗(·)′] = Q(Tk,k−1)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

T 3
k,k−1

3 0
T 2
k,k−1

2 0

0
T 3
k,k−1

3 0
T 2
k,k−1

2
T 2
k,k−1

2 0 Tk,k−1 0

0
T 2
k,k−1

2 0 Tk,k−1

⎤
⎥⎥⎥⎥⎥⎥⎦
q, (7)

where q is the power spectral density (PSD) of the
continuous-time (acceleration) process noise (same for
x and y, and assumed independent between the coordi-
nates). The measurement vectors are

zA(tk) =
{
bA(tk), when A is emitting at tk,

[rAB(tk) bA(tk)]′, when B is emitting at tk,
(8)

zB(tk) =
{
bB(tk), when B is emitting at tk,

[rBA(tk) bB(tk)]′, when A is emitting at tk,
(9)

zDi (tk) =
{
[rDiA(tk) bDi (tk)]′, when A is emitting at tk,

[rDiB(tk) bDi (tk)]′, when B is emitting at tk,
(10)

where (see Fig. 1)

rAB(tk) = |AO| + |AB| − |BO| + wAB
r (tk), (11)

rBA(tk) = |BO| + |AB| − |AO| + wBA
r (tk), (12)

rDiA(tk) = |DiO| + |ADi| − |AO| + wDiA
r (tk), (13)

rDiB(tk) = |DiO| + |BDi| − |BO| + wDiB
r (tk), (14)

with

|AO| =
√
xA(tk)2 + yA(tk)2, (15)

|BO| =
√
xB(tk)2 + yB(tk)2, (16)

|DiO| =
√
xDi (tk)2 + yDi (tk)2, (17)

|AB| =
√
[xA(tk) − xB(tk)]2 + [yA(tk) − yB(tk)]2, (18)

|ADi| =
√
[xA(tk) − xDi (tk)]2 + [yA(tk) − yDi (tk)]2,

(19)

|BDi| =
√
[xB(tk) − xDi (tk)]2 + [yB(tk) − yDi (tk)]2,

(20)

are the four bistatic ranges, and wAB
r , wBA

r , wDiA
r , and

wDiB
r are their measurement noises, assumed to be zero-

mean white Gaussian with variance σ 2
r , and

b∗(tk) = tan−1
[
x∗(tk)
y∗(tk)

]
+ w∗

b(tk) (21)

are three bearings, where �∗ represents �A,�B, or �Di ,
and w∗

b is the bearing measurement Gaussian error with
variance σ 2

b .

III. REVIEW ON THE EXISTING APPROACHES

The three existing estimation approaches that can be
applied to our problem are reviewed in this section.They
are the optimal, simple, and CI algorithms. The review
focuses on the dynamic state estimation. The parameter
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estimation used for the track initiation is not included.
Interested readers can find the track initiation details
in [18].

A. The Optimal Algorithm

The optimal algorithm [18] is straightforward. It es-
timates the augmented state xALL using the augmented
measurement zALL, which are defined as

xALL(tk) = [xA(tk)′ xB(tk)′ xD1 (tk)′ · · · xDn (tk)′]′, (22)

zALL(tk) = [zA(tk)′ zB(tk)′ zD1 (tk)′ · · · zDn (tk)′]′, (23)

where the sizes of xALL(tk) and zALL(tk) are determined
by the number of targets and transmitters in the system.
The state transition model and measurement model are

xALL(tk) = FALL(Tk,k−1)xALL(tk−1) + vALL(Tk,k−1),
(24)

zALL(tk) = hALL[xALL(tk)] + wALL(tk), (25)

where

FALL(Tk,k−1) =

⎡
⎢⎢⎣
F(Tk,k−1) · · · 0

...
...

...

0 · · · F(Tk,k−1)

⎤
⎥⎥⎦ , (26)

hALL[·] can be derived from (8)–(21), and vALL and
wALL are the process noise and measurement noise,
respectively.

The optimal algorithm performs estimation without
losing any information. Thus, it can in theory obtain the
best estimates. However, when the system is marginally
observable, the augmented state is large, and the mea-
surement noise is large, the optimal algorithm is inferior
to the new algorithm (as it will be shown in Section 4)
because the latter handles small states (each target state
is estimated separately). The state estimate error covari-
ance (time tk is omitted for simplicity) for the optimal
algorithm’s augmented state is

PALL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

PA PAB PAD1 · · · PADn

PBA PB PBD1 · · · PBDn

PD1A PD1B PD1 · · · PD1Dn

...
...

...
...

...

PDnA PDnB PDnD1 · · · PDn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

The off-diagonal blocks are the cross-covariances among
the transmitter and target state estimate errors. In this
problem, the transmitter and target state estimate er-
rors are all cross-correlated. The off-diagonal blocks are
therefore nonzero.

Although the optimal algorithm can provide opti-
mal solution in theory, it has three drawbacks given in
Section 1.Thus, to track the targets individually (without
large augmented state size), accounting for the coupling
is preferred.

B. The Simple Algorithm

The simple algorithm [18] tracks the trans-
mitters and targets individually in a completely
decoupled manner. The state and measure-
ment vectors are x∗(tk) in (1)–(3) and z∗(tk) in
(8)–(10), respectively. The state transition model is
as in (4), and the measurement model is (8)–(21). It can
be seen that the bistatic ranges in (11)–(14) are functions
of the target state and the emitting transmitter position
(which can be either transmitter A or transmitter B
based on who is emitting at time tk). At a particular
time tk, the emitting transmitter state must be estimated
first, so that the updated transmitter position can be
used in the measurement model for estimating the other
transmitter and the target states.

This approach ignores the transmitter state estimate
errors [namely, PA and PB in (27)] in the other trans-
mitter and target state estimation. Furthermore, since
the transmitters and targets are estimated individually,
the cross-covariances among estimate errors in the op-
timal algorithm [all the off-diagonal blocks in (27)] are
ignored.

C. The CI Algorithm

This approach was used in [18] based on the CI
method [19]. Similarly to the simple approach, the trans-
mitter states are estimated first, and then the estimated
transmitter positions are used to estimate the target
states.Unlike the simple algorithm, it includes the trans-
mitter position errors (assumed white, which they are
not) in the measurement noise when performing target
state estimation. Two CI filters were presented in [18].
One tracks the transmitters with augmented transmitter
states, whereas another one tracks the transmitters indi-
vidually. We will review the first one, as it yields better
performance.

For the transmitter state estimation, the augmented
transmitter state and measurement vectors are

xAB(tk) =[xA(tk)′ xB(tk)′]′, (28)

zAB(tk) = [zA(tk)′ zB(tk)′]′, (29)

respectively. The state transition model and measure-
ment model are

xAB(tk) = FAB(Tk,k−1)xAB(tk−1) + vAB(Tk,k−1), (30)

zAB(tk) = hAB[xAB(tk)] + wAB(tk), (31)

where

FAB(Tk,k−1) =
[
F(Tk,k−1) 0

0 F(Tk,k−1)

]
. (32)

The measurement function hAB[·] can be derived from
(8)–(21), and vAB and wAB are the process noise and
measurement noise, respectively.
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For the target estimation, the state andmeasurement
vectors are xDi and zDi given in (3) and (10), respectively.
The state transition model has been given in (4), and the
measurement model can be derived from (10)–(21). The
CI filter with the following steps is used for the dynamic
target state estimation.

Prediction:

x̂Di (tk|tk−1) = F(Tk,k−1)x̂Di (tk−1|tk−1), (33)

PDi (tk|tk−1) = F(Tk,k−1)PDi (tk−1|tk−1)F(Tk,k−1)′

+ QDi (Tk,k−1). (34)

Update:

x̂Di (tk|tk) = x̂Di (tk|tk−1) + KDi (tk)
[
zDi (tk) − ẑDi (tk)

]
,

(35)

PDi (tk|tk) = PDi (tk|tk−1) − KDi (tk)SDi (tk)KDi (tk)′,
(36)

where

ẑDi (tk) = h
[
x̂Di (tk|tk−1), x̂A/B(tk)

]
, (37)

KDi (tk) = PDi (tk|tk−1)HDi (tk)′SDi (tk)−1, (38)

SDi (tk) = HDi (tk)PDi (tk|tk−1)HDi (tk)′

+HA/B(tk)PA/B(tk)HA/B(tk)′ + RDi , (39)

and

HDi (tk) = ∂h[xDi (tk), xA/B(tk)]
∂x(tk)

, (40)

HA/B(tk) = ∂h[xDi (tk), xA/B(tk)]
∂xA/B(tk)

, (41)

where xA/B and PA/B are the state and error covari-
ance of transmitter A or B based on who is emitting at
time tk.

It can be seen that the CI filter is the same as the
Kalman filter except the innovation covariance compu-
tation in (39). The measurement error covariance RDi

in the Kalman filter is replaced by the inflated measure-
ment error covariance

HA/B(tk)PA/B(tk)HA/B(tk)′ + RDi (42)

in the CI filter. The transmitter error covariance PA/B is
added to the measurement noise. However, PA/B is not
“white,” as the transmitter state estimate error is corre-
lated to its history. This conflicts with the Kalman filter
requirement on the measurement noise to be white. As
indicated in [19], it is clearly not correct since, although
the noise in (42) is zero mean, it is by no means white.
It yields inconsistent estimates with covariances that are
too small. However, the transmitter state estimation can

still yield consistent results, as the augmented state xAB

is used.
Furthermore, the target and transmitter states

are estimated separately in the CI algorithm, which
ignores the contributions of the target measure-
ments zDi to the transmitter state; namely, the cross-
covariances [PADi and PBDi in (27) in the optimal
algorithm] are not handled correctly. Similarly to the
simple approach, the individual target state estimation
also causes the cross-covariances [PDiD j with i �= j
in (27) in the optimal algorithm] to be not treated
correctly. Although the CI approach is better than the
simple approach in term of information loss, it still has
a gap to the optimal approach.

IV. THE HTF-D ALGORITHM

It is desirable to have an approach to track the tar-
gets individually with small state size, and obtain the es-
timates without losing any information. In this section,
we will develop such an approach. The principle, shown
in Fig. 2, consists of the following two steps:

(A) To track targets individually with minimal aug-
mented states [defined in (43)].An augmented state
consists of the two transmitter states and one par-
ticular target state. It is updated by the correspond-
ing transmitter and target measurements defined
in (44). Since the transmitter measurements, zA and
zB, are used to update all the individual tracks, the
individual track state estimation errors are highly
correlated, since they include common information.

(B) To fuse the individual track estimates through a
special information fusion algorithm. The common
information among the individual tracks is com-
puted first, so that the common information can
be decorrelated, and the individual tracks can then
be fused without double counting the common
information.

We designate this approach as the HTF-D. The de-
tails of the two steps are given next.

A. Individual Target Tracking
Assume there are n targets in the system. The ith in-

dividual target state and measurement vectors are de-
fined as

xi(tk) = [xA(tk)′ xB(tk)′ xDi (tk)′]′, (43)

zi(tk) = [zA(tk)′ zB(tk)′ zDi (tk)′]′, (44)

where i = 1, . . . , n, and n is the number of the tar-
gets. The NCV state transition model and measurement
model are

xi(tk) = Fi(Tk,k−1)xi(tk−1) + vi(Tk,k−1), (45)

zi(tk) = hi[xi(tk)] + wi(tk), (46)
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Fig. 2. The flowchart of the HTF-D algorithm. It consists of two steps: 1) Individual target tracking to generate tracks 0–n. These tracks are
heterogeneous and correlated. 2) Fusion of these heterogeneous and correlated tracks.

where

Fi(Tk,k−1) =

⎡
⎢⎣
F(Tk,k−1) 04×4 04×4

04×4 F(Tk,k−1) 04×4

04×4 04×4 F(Tk,k−1)

⎤
⎥⎦
(47)

is the state transition matrix, hi[·] is the measurement
function that follows from (8)–(21), and vi(·) and wi(·)
are the process and measurement noises, respectively.
The extended Kalman filter is used for the dynamic es-
timation. The ith individual track state estimate is

x̂i(tk, zi) = [x̂A(tk, zi)′ x̂B(tk, zi)′ x̂Di (tk, zi)′]′, (48)

where zi indicates that the state is contributed by the
measurement zi consisting of zA, zB, and zDi .

It can be seen that the individual state estimates
x̂1(tk), . . . , x̂n(tk) are heterogeneous and their errors will
be highly correlated. The heterogeneity of the individ-
ual track states shown in blue in Fig. 2 is due to different
xD1 , . . . , xDn in the states. The correlation shown in red
in Fig. 2 is caused by the common information from the
transmitter measurements zA and zB.

To quantify the correlation among the individual
state estimates, we add an additional reference track 0.
This reference track is contributed by the transmitter
measurements (the common measurements) zA and zB

only. The state and measurement vectors of the refer-
ence track are defined as

x0(tk) = [xA(tk)′ xB(tk)′]′, (49)

z0(tk) = [zA(tk)′ zB(tk)′]′. (50)

The NCV model is applied for the reference track esti-
mation. The estimate state is

x̂0(tk, z0) = [x̂A(tk, z0)′ x̂B(tk, z0)′]′, (51)

where z0 indicates that the state is contributed by the
measurement z0, namely, zA and zB only.

The individual track initiation uses the iterated least
squares algorithm [18], [19] on a batch of measurements.

B. Individual Heterogeneous Track Fusion
This section shows how to combine the individual

track states into one fused state estimate

x̂ALL(tk, zALL) = [x̂A(tk, zALL)′ x̂B(tk, zALL)′

x̂D1 (tk, zALL)′ · · · x̂Dn (tk, zALL)′]′, (52)

where zALL indicates that the state is contributed by all
transmitter and target measurements.

To fuse these highly correlated and heterogeneous
tracks, we need to examine the information content of
each individual track estimate. Fig. 3 shows the details
for a scenario with three targets. For a particular individ-
ual track i, its information vector and informationmatrix
are

ŷi(tk, zi) = Pi(tk, zi)−1x̂i(tk, zi), (53)

Yi(tk, zi) = Pi(tk, zi)−1. (54)
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Fig. 3. Information contribution distribution in a three-target
scenario.

The above can be separated into two parts. Part 0 (the
gray area in Fig. 3) is contributed by the transmitter
measurements

zA(t1), . . . , zA(tk), (55)

zB(t1), . . . , zB(tk), (56)

and Part i (the white area in Fig. 3, i ∈ {1, 2, 3}) is con-
tributed by the particular target measurement

zDi (t1), . . . , zDi (tk). (57)

The fused information (the full circle shown in Fig. 3) is
the sum of Parts 0,1,2, and 3. Part 0 cannot be usedmore
than once as it is from the same source.

The key challenge is to separate the information cor-
responding to the individual track i into Part 0 and Part i.
This can be done through the information provided by
the reference track 0, which is contributed by the trans-
mitter measurements only, and it is actually equivalent
to Part 0 embedded in each individual track. The infor-
mation vector and matrix of Part i in track i can then be
decorrelated by

ŷi,i(tk, zDi ) = ŷi(tk, zi)� ŷ0(tk, z0), (58)

Yi,i(tk, zDi ) = Yi(tk, zi)�Y0(tk, z0), (59)

where � is heterogeneous “information subtraction.”
Since [ŷi(·), Ŷi(·)] with i = 1, . . . ,n and [ŷ0(·), Ŷ0(·)] are
heterogeneous (of dimensions 12 and 8, respectively),
the subtraction needs homogenization. The reference
track has no information about xDi ; 0s are used to pad
the missing elements in [ŷ0(·), Ŷ0(·)]. The information
subtraction in (58)–(59) is rewritten as

ŷi,i(tk, zDi ) = ŷi(tk, zi)� ŷ0(tk, z0)

=

⎡
⎢⎣
ŷA(tk, zi)

ŷB(tk, zi)

ŷDi (tk, zi)

⎤
⎥⎦ �

[
ŷA(tk, z0)

ŷB(tk, z0)

]

=

⎡
⎢⎣
ŷA(tk, zi)

ŷB(tk, zi)

ŷDi (tk, zi)

⎤
⎥⎦ −

⎡
⎢⎣
ŷA(tk, z0)

ŷB(tk, z0)

04×1

⎤
⎥⎦ , (60)
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Fig. 4. Scenario 1.

Yi,i(tk, zDi ) = Yi(tk, zi)�Y0(tk, z0)

= Ŷi(tk, zi) −
[
Ŷ0(tk, z0) 08×4

04×8 04×4

]
. (61)

After all individual track information is decorrelated
into two parts, the fused the information vector and ma-
trix are computed as

ŷALL(tk, zALL) = ŷ0(tk, z0) ⊕ ŷ1,1(tk, zD1 ) ⊕ · · ·
⊕ ŷn,n(tk, zDn ), (62)

ŶALL(tk, zALL) = Ŷ0(tk, z0) ⊕ Ŷ1,1(tk, zD1 ) ⊕ · · ·
⊕ Ŷn,n(tk, zDn ), (63)

where⊕ is heterogeneous “information addition,”which
is implemented through information homogenization as
done in the heterogeneous “information subtraction”
before, namely, to pad with 0s the missing elements.

The fused vector and matrix are then computed as

x̂(tk, zALL) = Y(tk, zALL)−1ŷ(tk, zALL), (64)

P(tk, zALL) = Y(tk, zALL)−1. (65)

The individual transmitter and target state estimates and
error covariances can then be obtained as the appropri-
ate parts/blocks from x̂(tk, zALL) and P(tk, zALL).

Since the HTF-D does not discard or ignore any in-
formation, it provides the optimal estimates. Further-
more, it does not have the drawbacks of the “optimal”
algorithm,3 as it does not estimate a big augmented state.

3In the sequel, we shall use the designation “optimal” for the optimal
algorithm when it suffers from numerical problem, due its large aug-
mented state.
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Fig. 5. Scenario 2.

V. SIMULATION RESULTS

A. Test Scenarios

Weconsider two test scenarios.Scenario 1 is shown in
Fig. 4.The receiver stays at position (0, 0).The two trans-
mitters A and B move with speed of 3 m/s. Their head-
ings are −70o and −145o (clockwise from True North),
respectively. There are three targets. Targets 1 and 2 are
approaching to the receiver with speeds of 10 and 7 m/s,
respectively. Target 3 is moving away from the receiver
with speed of 5 m/s.The headings of the three targets are
150o, 170o, and 20o, respectively. This scenario has good
observability. The two transmitters are well separated,4

and targets are not located in the blind zone of the mul-
tistatic system.5

Scenario 2 is shown in Fig. 5. The receiver loca-
tion and three target trajectories are the same as in
Scenario 1, but the transmitters move close to each
other. The observability of this scenario is not as good
as that of Scenario 1, as the two transmitters are not well
separated.

In both scenarios, transmitters A and B emit asyn-
chronous pulse signals with starting times 1 and 10 s, re-
spectively. They have the same pulse interval 30 s. The
total simulation duration is 750 s. The receiver receives
the pulse signals with the appropriate signal propagation
delays (the delays are not shown for simplicity) at

{1 s 31 s . . . 721 s} from transmitter A, (66)

{10 s 40 s . . . 730 s} from transmitter B. (67)

The bistatic range measurement error standard devi-
ation is σr = 20 m in both scenarios. The bearing
measurement error standard deviation is σb = 1o in

4The problem is not observable when the two transmitters are located
on the same line from the receiver (see Appendix A).
5When a target and a transmitter are located on similar bearings from
the receiver, the weak indirect path signal is blocked by the strong di-
rect path signal.This creates a detection blind zone for a target near the
line between the transmitter and the receiver. The target observability
in the blind zone is also very marginal due to the geometry.

Scenario 1, and it increases to σb = 1.5o in Scenario 2
to make estimation more difficult. The probability of de-
tection in both scenarios is 0.8. Two random false alarms
were added at each time.A preprocessing with aKalman
filter with 2-D assignment data association is used to
track the bistatic range and bearing to filter out the false
alarms.Themeasurements that passed the preprocessing
will be used for trajectory estimation. The preprocessing
details can be found in [22], where the approach is used
to filter false alarms in the measurements of bearing and
Doppler frequency.

B. Algorithms Used in the Simulation Test

Four algorithms are tested for comparison. They are
as follows:

� Simple: This approach estimates the transmitter and
target trajectories individually. It estimates the trans-
mitter states first, and then the target states.The draw-
back is that the transmitter state estimation errors are
not taken into consideration in the target estimation.
The algorithm details can be found in Section 3.2.

� CI: This approach estimates the two transmitters us-
ing an augmented state first, and then estimates target
states individually. The transmitter estimation errors
are taken into consideration in the target state esti-
mation (but only as extra white measurement noise),
and some cross-correlations are ignored. The details
can be found in Section 3.3.

� Optimal: This approach estimates a large augmented
state consisting of all transmitter and target states.
It can provide the optimal estimates. However, the
large augmented state introduces some numerical is-
sues and increases the system sensitivity to the noise.
The algorithm details can be found in Section 3.1.

� HTF-D:This is the algorithm proposed in the paper. It
tracks targets individually (without a large augmented
state), and obtains the optimal estimation through
heterogeneous track fusion. The details are given in
Section 4.

In the simulation tests, the process noise PSD q in (7)
is set to 10−6 m2/s3. The batch measurements for track
initiation are taken from time 0 to 100 s.

C. Results of Scenario 1

We conducted 100 Monte Carlo runs on the first sce-
nario using the four algorithms mentioned earlier. The
position estimate root mean square errors (RMSEs) of
the two transmitters and three targets versus time are
presented in Figs. 6–10, respectively.

From the test results, we can observe that the sim-
ple algorithm (which ignores the transmitter estimation
errors) provides the worst accuracy. The CI algorithm
(which considers the transmitter estimation errors as
white,and ignores some cross-correlations) is better than
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Fig. 6. Position estimate RMSE of transmitter A versus time from
100 Monte Carlo runs (Scenario 1). The results of the HTF-D (solid
line) and optimal (dashed line) algorithms are overlapping each

other as they provide the same result.

the simple algorithm. The HTF-D and the optimal algo-
rithms provide the best estimates and have practically
the same results. Their accuracy (solid and dash) lines
overlap in Figs. 6–10, except a slight difference in Fig. 8
(around time 150 s), which is due to numerical issues
of Matlab computation. So, we can say that the HTF-D
achieves the optimal performance in this scenario.

To evaluate the consistency of the algorithms, the av-
erage normalized estimation error squared (NEES) of
position is evaluated. The average position NEES [19]
at time tk for N = 100 Monte Carlo runs is

ε̄(tk) = 1
Nn

N∑
i=1

x̃i1:2(tk)
′Pi

1:2,1:2(tk)
−1x̃i1:2(tk), (68)

where n = 2 is the dimension of the position state,
P1:2,1:2(tk) is the position estimation error covariance at
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Fig. 7. Position estimate RMSE of transmitter B versus time from
100 Monte Carlo runs (Scenario 1). The results of the HTF-D (solid
line) and optimal (dashed line) algorithms are overlapping each

other as they provide the same result.

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

time (s)

po
si

tio
n 

es
tim

at
e 

R
M

S
E

 (
m

)

Simple
CI
Optimal
HTF−D

Fig. 8. Position estimate RMSE of target 1 versus time from 100
Monte Carlo runs (Scenario 1). The results of the HTF-D (solid line)
and optimal (dashed line) algorithms are almost overlapping each

other as they provide similar results.

time tk, i is the run index,

x̃1:2(tk) = x1:2(tk) − x̂1:2(tk) (69)

is the position estimation error at time tk, and x̃1:2(tk)
and x1:2(tk) are the position estimate and ground truth at
time tk, respectively. The two-sided 95% probability re-
gion for an Nn = 200 degrees of freedom (N = 100, n=
2) chi-square random variable is [163, 241]. Dividing by
200, the average NEES should be in the interval [0.815,
1.205]. Figs. 11–15 show the average position NEES ver-
sus time of the CI, and optimal and HTF-D algorithms
for the two transmitters and three targets, respectively.
The NEES of the simple algorithm (around 50–150) is
too far away from the boundary, so it is not displayed in
the figures. It can be seen that the NEESs of the HTF-D
and optimal algorithms are all within the 95% probabil-
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Fig. 9. Position estimate RMSE of target 2 versus time from 100
Monte Carlo runs (Scenario 1). The results of the HTF-D (solid line)
and optimal (dashed line) algorithms are overlapping each other as

they provide the same result.
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Fig. 10. Position estimate RMSE of target 3 versus time from 100
Monte Carlo runs (Scenario 1). The results of the HTF-D (solid line)
and optimal (dashed line) algorithms are overlapping each other as

they provide the same result.
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Fig. 11. Position NEES of transmitter A versus time from 100
Monte Carlo runs (Scenario 1). The results of the HTF-D (solid line)
and optimal (dashed line) algorithms are overlapping each other as

they provide the same result.
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Fig. 12. Position NEES of transmitter B versus time from 100 Monte
Carlo runs (Scenario 1). The results of the HTF-D (solid line) and
optimal (dashed line) algorithms are overlapping each other as they

provide the same result.
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Fig. 13. Position NEES of target 1 versus time from 100 Monte
Carlo runs (Scenario 1). The results of the HTF-D (solid line) and
optimal (dashed line) algorithms are almost overlapping each other

as they provide similar results.
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Fig. 14. Position NEES of target 2 versus time from 100 Monte
Carlo runs (Scenario 1). The results of the HTF-D (solid line) and
optimal (dashed line) algorithms are overlapping each other as they

provide the same result.
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Fig. 15. Position NEES of target 3 versus time from 100 Monte
Carlo runs (Scenario 1). The results of the HTF-D (solid line) and
optimal (dashed line) algorithms are overlapping each other as they

provide the same result.
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Fig. 16. Position estimate RMSE of transmitter A versus time from
100 Monte Carlo runs (Scenario 2).

ity region [0.815, 1.205]. This shows that both the HTF-
D and optimal algorithms yield consistent estimation
results.

For theCI algorithm, the transmitter positionNEESs
are within the 95% probability region (see Figs. 11 and
12).However, the target positionNEESs aremuch larger
than the upper bound after track initiation (see Figs. 13–
15, t > 100 s). This is because the transmitters are esti-
mated using the augmented state given in (28). The esti-
mation error cross-covariance between the transmitters
is taken into consideration.The transmitter estimates are
therefore yield consistent estimates. However, the tar-
get state estimation treats the transmitter position error
as white noise, but this is actually not white. The cross-
correlations with the historical transmitter estimation er-
rors are ignored.This leads to the target state estimation
error covariances smaller than their actual values. The
NEESs are therefore above the upper bound.

D. Results of Scenario 2

We also conducted 100 Monte Carlo runs for Sce-
nario 2, which has marginal observability due to its ge-
ometry and larger measurement error (σb = 1.5o) than
Scenario 1. The position estimation RMSEs of the two
transmitters and three targets versus time are presented
in Figs. 16–20, respectively.

It can be seen that the simple algorithm diverges for
all the transmitter and target estimates.The CI approach
still shows noticeable gaps compared to the HTF-D.

An interesting observation is that the “optimal”algo-
rithm performs worse than the HTF-D for the target 1
estimation shown in Fig.18.This is because the “optimal”
algorithm has a state vector with large size (5 × 4 = 20,
for the 2 transmitters plus 3 targets, each of them has 4
state elements). This creates more numerical problems
than a system with a smaller state, and causes the “opti-
mal” algorithm to yield larger errors than the HTF-D al-
gorithm,especially when themeasurement noise is large.
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Fig. 17. Position estimate RMSE of transmitter B versus time from
100 Monte Carlo runs (Scenario 2).
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Fig. 18. Position estimate RMSE of target 1 versus time from 100
Monte Carlo runs (Scenario 2).
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Fig. 19. Position estimate RMSE of target 2 versus time from 100
Monte Carlo runs (Scenario 2).
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Fig. 20. Position estimate RMSE of target 3 versus time from 100
Monte Carlo runs (Scenario 2).

These results show that the “optimal” algorithm is not
robust when the measurement error is large and observ-
ability is not good. The number of targets in the system
also affects its estimation quality.

VI. CONCLUSIONS

This paper deals with target tracking using a new con-
figuration of a non-cooperative multistatic systemwhere
the positions of moving transmitters are unknown. The
new HTF-D algorithm was developed to track each tar-
get individually, and fuse these correlated and heteroge-
neous tracks using a novel decorrelation approach.Since
it does not lose any information, it can achieve the ac-
curacy of the optimal algorithm. As the HTF-D tracks
each target individually, its state size is fixed and small.
The drawbacks of the optimal algorithm (such as sensi-
tivity to higher noise and difficulty to implement in real
systems) are avoided.

Simulation results showed that the HTF-D indeed
obtained the accuracy of the optimal algorithm. The
NEES results showed that the HTF-D is consistent sta-
tistically as well.We also observed that the “optimal” al-
gorithm yielded larger estimation error than the HTF-

Fig. A1. The triangle formed by the receiver and two transmitters.

D in Scenario 2, where the measured bearing error is
larger and observability is not good.This showed that the
HTF-D is more robust than the “optimal” algorithm.

APPENDIX A OBSERVABILITY

It is known that a multistatic tracking system is ob-
servable when the positions of transmitters and receiver
are known. If both transmitters’ positions can be solved
from the measurements rAB, rBA, bA, and bB [defined in
(11), (12), and (21), respectively] uniquely, the problem
defined in Section 2 is observable.

Without loss of generality, the problem can be simpli-
fied as to determine the triangle�OAB shown in Fig.A1
from rAB, rBA, bA, and bB. This can be done in one time
cycle. The orientations of OA and OB are fixed by bA

and bB, and

θ = bA − bB (A.1)

is known.The problem is then of solving for a and b from
rAB and rBA using the nonlinear model[

rAB

rBA

]
= h0

([
a

b

])
+ w0, (A.2)

where w0 is the error of [rAB rBA]′,

h0,1(·) = c+ a− b, (A.3)

h0,2(·) = c+ b− a, (A.4)

and

c =
√
a2 + b2 − 2ab cos θ. (A.5)

This problem is observable when

det(H0) �= 0, (A.6)

where

H0 = [�yh0(y)′]′ (A.7)

with y = [a b]′.H0 is derived as

H0 =

⎡
⎢⎣
a− b cos θ + c

c
b− a cos θ − c

c
a− b cos θ − c

c
b− a cos θ + c

c

⎤
⎥⎦ (A.8)

and its determinant is

det(H0) = 2(a+ b)(1 − cos θ )
c

. (A.9)

Since (a + b) > 0, det(H0) is 0 when (1 − cos θ )/c is 0.
This latter condition occurs only when θ is 0o (or 180o).
Thus, the problem is observable when the two transmit-
ters are not located on the same line of sight from the
receiver.
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Asynchronous and
Heterogeneous Track-to-Track
Fusion with Mapped Process
Noise and Cross-Covariance

KAIPEI YANG
YAAKOV BAR-SHALOM
PETERWILLETT

Track-to-track fusion has been studied extensively for both homo-

geneous and heterogeneous cases, these cases denoting common and

disparate state models. However, as opposed to homogeneous fusion,

the cross-covariance for heterogeneous local tracks (LTs) in different

state spaces that accounts for the relationship between the process

noises of the heterogeneous models seems not to be available in the

literature. This work provides the derivation of the cross-covariance

for heterogeneous LTs of different dimensions where the local states

are related by a nonlinear transformation (with no inverse transfor-

mation). First, the relationship between the process noise covariances

of the motion models in different state spaces is obtained. The cross-

covariance of the local estimation errors is then derived in a recursive

form by taking into account the relationship between the local state

model process noises. Both the synchronous and asynchronous sys-

tems are considered. A linear minimum mean square fusion is carried

out for a scenario involving tracks from two LTs: one from an active

sensor and one from a passive sensor.

I. INTRODUCTION

In a heterogeneous system, the state models used by
local sensors are in different state spaces with different
dimensions.The fusion for heterogeneous systems needs
investigation since it is closely related to the real-world
problems.One reason for using distinct systemmodels in
the local trackers is the different sensor characteristics—
active versus passive. For example, for self-driving ve-
hicle system perception, heterogeneous tracks are in-
evitable due to different coordinate systems, which are
related by a nonlinear transformation. Low-level fusion,
or centralized track/fusion (CTF), is characterized by
transferring raw data from each sensor to the fusion
center (FC). It requires communication with high band-
width since all the raw data need to be transferred on
demand, which is not feasible for most of the practical
applications.The track-to-track fusion (T2TF) to be con-
sidered is characterized by local tracking at each of the
sensors and a fusion combining the tracks from multi-
ple sensors at the FC.For several applications in defense
systems and self-driving vehicle systems, T2TF fusion is
preferred due to communication constraints.

For T2TF, it is critical to consider the cross-
covariance between the track estimation errors of the
same target at different local trackers. The fusion
of homogeneous local tracks (LTs)—when the state
models at two sensors are the same—considering the
“common process noise”of the LTs is discussed in [1,Ch.
9]. The work [2] considered homogeneous T2TF with
the cross-covariance for the asynchronous case. The fu-
sion of heterogeneous LTs from local sensors that use
different state models was presented in [3]; however, it
assumed the cross-covariance between the local state es-
timation errors to be zero since the cross-covariance was
not available. The contributions of this paper compared
to [3] are as follows: (i) the cross-covariance of the pro-
cess noises of the heterogeneous models is derived and
(ii) the cross-covariance of the heterogeneous estima-
tion errors from the LTs is derived. The recent work [4]
deals with the heterogeneous T2TF in 3D using an in-
frared search and track (IRST) sensor and an air moving
target indicator (MTI) radar based on information ma-
trix fusion taking into account the cross-covariance be-
tween the LTs.However, themain limitation of [4] is that
the authors assumed that the local state vectors have the
same dimension with a unique inverse mapping,which is
not realistic in most of the heterogeneous T2TF scenar-
ios where the inverse transformation does not exist due
to the different state space dimensions.

This work provides the derivation of the cross-
covariance for the heterogeneous LTs of different di-
mensions where the local states are related by a non-
linear transformation without inverse transformation.
The heterogeneous T2TF considered here has no in-
formation feedback. The relationship between the pro-
cess noise covariances of the two motion models is
presented. The state model process noise covariance
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in the smaller state space can be obtained (through a
mapping based on the nonlinear relationship) from the
state model process noise covariance and the estimate
in the larger state space.The cross-covariance of the esti-
mation errors from twoLTs is derived in a recursive form
by taking into account the relationship between the local
state model process noises. Both synchronous and asyn-
chronous systems are considered. In the asynchronous
case, where the sensors are having arbitrary sampling
times, the fusion happens at the union of the sampling
times of the two trackers, that is, with LT-driven commu-
nication. The asynchronous T2TF fusion is carried out
for a scenario of two tracks of a single target (one from
an active sensor and one from a passive sensor) with
a linear minimum mean square (LMMSE) fuser in the
simulation. The cross-correlation of the estimation er-
rors is shown to be sometimes positive and sometimes
negative depending on the sensor-trajectory geometry,
which confirms the results in [3] from a Monte Carlo
(MC) investigation.

The paper is organized as follows. Section II formu-
lates the heterogeneous fusion problem and derives the
relationship of the process noise covariances of the LT
models. Section III presents the cross-covariance of the
estimation errors. In Section IV, the state and measure-
ment models for both the active sensor and passive sen-
sor are introduced. Section V formulates the LMMSE
fuser. Section VI presents the simulation results from
MC runs. The summary and conclusions are provided in
Section VII.

II. PROBLEM FORMULATION AND THE
RELATIONSHIP BETWEEN THE PROCESS NOISES

A. Synchronous Case

In the synchronous case, the LTs share the same sam-
pling time and are assumed to have the full rate commu-
nication with the FC. Consider the state models at sen-
sors i and j in different state spaces with dimensions nix
and njx, respectively,

xi(k+ 1) = f i[k, xi(k)] + vi(k), (1)

x j(k+ 1) = f j[k, x j(k)] + v j(k), (2)

and the measurements of dimensions niz and n
j
z, respec-

tively,

zi(k) = hi[k, xi(k)] + wi(k), (3)

z j(k) = hj[k, x j(k)] + w j(k), (4)

where vm(k) and wm(k),m = i, j, are the process noises
and measurement noises assumed to be additive, zero
mean, and white with corresponding covariance matri-
ces Qm(k) and Rm(k) (m = i, j). All the noises are also
assumed to be mutually independent, except vi is corre-
lated with v j since they pertain to themotion of the same

target, although in different state spaces. The recursion
of the cross-covariance Qij(k) between vi(k) and v j(k)
will be discussed later.

The nonlinear functions fm[·, ·] and hm[·, ·],m = i, j,
are distinct and may be time varying. The two state vec-
tors have a nonlinear relationship1

x j = α
[
xi

] ; (5)

with nix > njx, it is clear that (5) has no inverse.
Substituting (1) into the above equation yields

x j(k+ 1) = α
[
xi(k+ 1)

] = α
[
f i[k, xi(k)] + vi(k)

]
.

(6)
The vector Taylor series expansion of (6) up to the first-
order term is

α
[
xi(k+ 1)

] = α
[
f i[k, xi(k)]

]
+ [∇xα(x)′]′|x= f i[k,xi(k)]v

i(k). (7)

Thus,

v j(k) ≈ [∇xα(x)′]′|x= f i[k,xi(k)]v
i(k) = A(k)vi(k), (8)

where

A(k) � [∇xα(x)′]′|x= f i[k,xi(k)] (9)

is the (njx × nix, i.e., not square) Jacobian corresponding
to (8).

Then, Qj(k), the covariance of the process noise
v j(k), can be expressed using Qi(k) as follows:

Qj(k) = E
[
v j(k)v j(k)′

] = A(k)Qi(k)A(k)′, (10)

and the cross-covariance between the two process noises
is

Qij(k) = E
[
vi(k)v j(k)′

] = Qi(k)A(k)′. (11)

Note that in the estimation problem where the state
is not available, the Jacobian (9)will have to be evaluated
at the latest estimate.

B. Asynchronous Case

With LT (local filter/tracker)-driven communication,
the fusion of an asynchronous system (i.e., with tracks
from radar and infrared/electro-optical sensors) is car-
ried out whenever the FC receives new information. As
shown in Fig. 1, sensor i is assumed to be the active one
with state vector in the larger state space (of dimension
nix) and sensor j is the passive one with state vector in
the smaller state space (of dimension njx, n

j
x < nix). For

the FC, the fusion times are equal to the times when new
information is obtained. From this figure, we have

tk+1 = t jm+1 (12)

1This is in general, and subsumes cases of equivalent states, situations
in which one state is a subset of the other, and other more complicated
relationships.
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Fig. 1. FC times and LT times in asynchronous T2TF.

and

tk = til , (13)

where l andm denote the respective LT sampling indices.
Since the state error cross-covariance will have to be

iterated according to the FC times2

{tk} = {til }
⋃

{t jm}, (14)

we will develop the relationship between the process
noises of the different local states

f j[tk+1, tk, x j(tk)] + v j(tk+1, tk)

= α
[
f i[tk+1, tk, xi(tk)] + vi(tk+1, tk)

]
. (15)

Different from the synchronous case, the nonlinear func-
tions f i[·, ·, ·] and f j[·, ·, ·] have three arguments: prop-
agation end time, propagation start time, and the state
at the propagation start time. The process noises vi(·, ·)
and v j(·, ·) have two arguments: propagation end time
and propagation start time.Following (7) with first-order
Taylor expansion, the second term on the left-hand side
is given by

v j(tk+1, tk) = A(tk)vi(tk+1, tk), (16)

where

A(tik) � [∇xα(x)′]
′
∣∣∣
x= f i[tk+1,tk,xi(tk)]

(17)

with dimension nj × ni.
The covariance matrix of v j(tk+1, tk) can be obtained

by

Qj(tk+1, tk) � E[v j(tk+1, tk)v j(tk+1, tk)′]

= E[A(tk)vi(tk+1, tk)vi(tk+1, tk)′A(tk)′]

= A(tk)Qi(tk+1, tk)A(tk)′. (18)

The cross-covariance between the process noises is

Qij(tk+1, tk) � E[vi(tk+1, tk)v j(tk+1, tk)′]

= E[vi(tk+1, tk)vi(tk+1, tk)′A(tk)′]

= Qi(tk+1, tk)A(tk)′. (19)

The process noises are assumed to be additive, zero
mean, and white. It should be noted that to ensure the
whiteness of the discrete time process noises over the ar-
bitrary sampling intervals, one has to use the discretized
continuous-time white noise state propagation models.

2For asynchronous homogeneous sensors (with same LT states), the
cross-covariance iteration is given in [1, eq. (9.3.2-5)] based on the
“common process noise.” This has to be generalized to the heteroge-
neous states where there is no common process noise but the process
noises in the different states models are related.

III. THE CROSS-COVARIANCE OF THE ESTIMATION
ERRORS

A. Synchronous Case

Consider a tracker at a single sensor (this could be
sensor i or sensor j) with the state model and measure-
ment model to be

x(k+ 1) = f [k, x(k)] + v(k), (20)

z(k+ 1) = h[k, x(k)] + w(k). (21)

The updated state at time k is, using an extended
Kalman filter (EKF),

x̂(k|k) = f [x̂(k− 1|k− 1)] +W (k)ν(k). (22)

Expanding h[k, x(k)] around x̂(k|k−1) yields the in-
novation

ν(k) = h[k, x(k)] + w(k) − h[k, x̂(k|k− 1)]

= h[k, x̂(k|k− 1)] +H(k)[x(k) − x̂(k|k− 1)]

+w(k) − h[k, x̂(k|k− 1)]

= H(k)[x(k) − x̂(k|k− 1)] + w(k), (23)

where

H(k) = [∇xh(k, x)′
]′ |x=x̂(k|k−1)). (24)

Using the dynamic equation (20), (23) can be written
as

ν(k) = H(k)
{
f [x(k− 1)] + v(k− 1)

− f [x̂(k− 1|k− 1))]
} + w(k). (25)

Expanding f [x(k− 1)] around x̂(k− 1|k− 1) yields

ν(k) = H(k)
{
f [x̂(k− 1|k− 1)] + F (k− 1)[x(k− 1)

− x̂(k− 1|k− 1)] + v(k− 1)

− f [x̂(k− 1|k− 1)]
} + w(k)

= H(k)F (k− 1)x̃(k− 1|k− 1)

+H(k)v(k− 1) + w(k), (26)

where

F (k− 1) = [∇x f (k− 1, x)′
]′ |x=x̂(k−1|k−1). (27)

The estimation error at time k− 1 is

x̃(k− 1|k− 1) = x(k− 1) − x̂(k− 1|k− 1). (28)

Substituting (26) into (22) yields

x̂(k|k) = f [x̂(k− 1|k− 1)]

+W (k)[H(k)F (k− 1)x̃(k− 1|k− 1)

+H(k)v(k− 1) + w(k)]. (29)

The first-order vector Taylor series expansion of (20)
around x̂(k− 1|k− 1) is

x(k) = f [x̂(k− 1|k− 1)] + F (k− 1)x̃(k− 1|k− 1) + v(k− 1).

(30)
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Subtracting (29) from (30), the estimation error at
time k can be expressed as

x̃(k|k) = x(k) − x̂(k|k)
= [Inx −W (k)H(k)]F (k− 1)x̃(k− 1|k− 1)

+ [Inx −W (k)H(k)]v(k− 1) +W (k)w(k),

(31)

where Inx is the nx-dimensional identity matrix and nx is
the dimension of the state vector x.

Following the discussion above, the estimation errors
from the two sensors i and j are

x̃i(k|k) = xi(k) − x̂i(k|k)
= [Inix −Wi(k)Hi(k)]Fi(k− 1)x̃i(k− 1|k− 1)

+ [Inix −Wi(k)Hi(k)]vi(k− 1) +Wi(k)wi(k),

(32)

x̃ j(k|k) = x j(k) − x̂ j(k|k)
= h[xi(k)] − x̂ j(k|k)
= [I

n jx
−W j(k)H j(k)]F j(k− 1)x̃ j(k− 1|k− 1)

+ [I
n jx

−W j(k)H j(k)]v j(k− 1) +W j(k)w j(k).

(33)

Note that x j(k) in (33) is α[xi(k)] (5); that is, there is a
common truth in (32) and (33).

Then, the estimation errors’ cross-covariance (of di-
mension nix × njx) is

Pi j(k|k) = E[x̃i(k|k)x̃ j(k|k)′]
= [I −Wi(k)Hi(k)]Fi(k− 1)Pi j(k− 1|k− 1)

×F j(k− 1)′[I −W j(k)H j(k)]′

+ [I −Wi(k)Hi(k)]Qij(k− 1)[I −W j(k)H j(k)]′

= [I −Wi(k)Hi(k)]
{
Fi(k− 1)Pi j(k− 1|k− 1)F j(k− 1)′

+Qij(k− 1)
}
[I −W j(k)H j(k)]′. (34)

B. Asynchronous Case

In this case, the cross-covariance between the estima-
tion errors is, based on [1, eq. (9.3.2-5)] and the previous
discussion about the synchronous case,

Pi j(tk|tk) = [I − χ i(tk)Wi(tk)Hi(tk)]

· {Fi(tk, tk−1, x̂i(tk−1|ti(tk−1)))Pi j(tk−1|tk−1)

×F j(tk, tk−1, x̂ j(tk−1|t j(tk−1)))′

+Qij(tk, tk−1)
}
[I − χ j(tk)W j(tk)H j(tk)]′,

(35)

where ti(tk−1) and t j(tk−1) are themost recent times prior
to tk−1 at which LT i and LT j sent information to the FC,

respectively, and

Fi(tk, tk−1, x̂i(tk−1|ti(tk−1)))

= [∇x f i(tk, tk−1, x)′
]′ |x=x̂i(tk−1|ti(tk−1))), (36)

F j(tk, tk−1, x̂ j(tk−1|t j(tk−1)))

= [∇x f j(tk, tk−1, x)′
]′ |x=x̂ j (tk−1|t j(tk−1))). (37)

In (35),

χ i(tk) =
{
1, if sensor i has a measurement at time tk,
0, others,

(38)
similarly for sensor j.

With the following assumptions for the previous
fused estimate x̂(tk−1|tk−1):

Fi(tk, tk−1, x̂i(tk−1|ti(tk−1))) ≈ Fi(tk, tk−1, x̂(tk−1|tk−1)),
(39)

F j(tk, tk−1, x̂ j(tk−1|t j(tk−1))) ≈ F j(tk, tk−1, x̂(tk−1|tk−1)),
(40)

equation (35) becomes

Pi j(tk|tk) = [I − χ i(tk)Wi(tk)Hi(tk)]

· {Fi(tk, tk−1, x̂(tk−1|tk−1))Pi j(tk−1|tk−1)

×F j(tk, tk−1, x̂(tk−1|tk−1))′

+Qij(tk, tk−1)}[I − χ j(tk)W j(tk)H j(tk)]′.

(41)

If the fusion is at a time when there is an updated state
only from LTi, it will use a prediction to that time from
LT j. Note that although the fusion can be carried out on
demand, the cross-covariance calculation needs to run
with full rate.

IV. THE STATE MODELS FOR THE ACTIVE AND
PASSIVE SENSORS

In the ξ–η space, an active sensor located at [ξ a ηa]
with range and azimuth angle measurements (without
time arguments, for simplicity)

r =
√
(ξ − ξ a)2 + (η − ηa)2 + wr, (42)

θa = tan−1[(η − ηa)/(ξ − ξ a)] + wa (43)

and a passive sensor located at [ξp ηp] with bearingmea-
surements only

θp = tan−1[(η − ηp)/(ξ − ξp)] + wp (44)

are considered for the T2TF for a 2D target. The mea-
surement noises wr,wa, and wp are assumed to be inde-
pendent zero-mean white Gaussian with corresponding
standard deviations σ r, σ a, and σ p.

42 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 15, NO. 1 JUNE 2020



The active sensor’s measurements in polar coordi-
nates are transformed into Cartesian coordinates with
an unbiased transformation [5, Sec. 10.4.3]. Given (42)
and (43), the unbiased transformedmeasurement vector
is

zC =
[

ξC

ηC

]
=

[
b−1
1 r cos(θa) + ξ a

b−1
1 r sin(θa) + ηa

]
, (45)

where

b1 = e−σ a/2. (46)

The transformed active sensor noise vector wC has the
covariance matrix RC with elements

RC(1, 1) = b−2
1 r2 cos(θa)+ 0.5(r2 + σ a)(1+ b41 cos(θ

a)),
(47)

RC(2, 2) = b−2
1 r2 sin(θa) + 0.5(r2 + σ a)(1 − b41 cos(θ

a)),

(48)

RC(1, 2) = RC(2, 1)

= (0.5b−2
1 r2 + 0.5(r2 + σ a)b41 − r2)sin(2θa).

(49)

For the active sensor, a nearly coordinated turn
model [7] is used for tracking along with an EKF.The 5D
state vector3 includes position, velocity, and turn rate 	,
that is,

xa = [ξ ξ̇ η η̇ 	] (50)

with the discretized dynamic model to be

xa(tal+1) = f a[xa(tal )] + va[xa(tal )], (51)

zC = Haxa(tal ) + wC(tal ), (52)

where

f a[xa(tal )]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ξ (tal ) + T a ξ̇ (tal ) − (T a)2	(tal )η̇(t
a
l )/2

ξ̇ (tal ) − T a	(tal )η̇(t
a
l ) − (T a)2	(tal )

2 ξ̇ (tal )/2

η(tal ) + T aη̇(tal ) + (T a)2	(tal )ξ̇ (t
a
l )/2

η̇(tal ) + T a	(tal )ξ̇ (t
a
l ) − (T a)2	(tal )

2η̇(tal )/2

	(tal )

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(53)

Ha =
[
1 0 0 0 0
0 0 1 0 0

]
. (54)

The process noise vector is target state depen-
dent and its covariance matrix is discussed in [3].
The continuous-time process noise “intensities” are the
power spectral densities that need to be chosen in the
design of the process noise covariance matrix.

3Here, the superscripts i and j used in the previous text are replaced
by “a” and “p” to indicate the states are from one active sensor and
one passive sensor, respectively.

The passive sensor uses a Kalman filter based on
a continuous-time Wiener process acceleration model
with a state vector involving the angle, angle rate, and
angle acceleration:

xp = [θ θ̇ θ̈ ]. (55)

The discretized dynamic model is

xp(tpm + 1) = F pxp(tpm) + vp(tpm), (56)

zp = Hpxp(tpm) + wp(tpm), (57)

where

F p =
⎡
⎣1 Tp (Tp)2/2
0 1 Tp

0 0 1

⎤
⎦ , (58)

Hp = [
1 0 0

]
. (59)

The process noise covariance matrix of the passive
tracker’s model at time k has the relationship with active
process noise covariance matrix shown in (10). The state
vector (50) and the state vector (55) have a nonlinear
relationship

xp = α [xa] (60)

with explicit expressions

θ = atan
(

η − ηp

ξ − ξp

)
, (61)

θ̇ = v sin(φ)
rp

, (62)

θ̈ = v cos(φ)	
rp

, (63)

where v is the target speed

v =
√

ξ̇ 2 + η̇2, (64)

rp is the range with respect to the passive sensor’s loca-
tion

rp =
√
(ξ − ξp)2 + (η − ηp)2, (65)

and φ is the difference between velocity angle and posi-
tion azimuth angle:

φ = atan
(

η̇

ξ̇

)
− atan

(
η − ηp

ξ − ξp

)
. (66)

V. THE LMMSE ESTIMATOR FOR HETEROGENEOUS
T2TF

A. Synchronous Case

The LMMSE estimation for heterogeneous T2TF is
carried out (omitting the time arguments) with

x̂i = x̂a(1 : 4) = [ξ̂ ˆ̇ξ η̂ ˆ̇η]′ (67)
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as the active sensor’s track and

x̂ j = x̂p(1 : 2) = [θ̂ ˆ̇θ ]′ (68)

as the passive sensor’s track.
The fused track estimate is obtained by (derivation

can be found in [1, Sec. 9.2.3])

x̂iLMMSE = x̂i + PxzP−1
zz [x̂ j − g[x̂i]], (69)

where g[·] is the nonlinear relationship between the
states from the two sensors.Here, we use g rather than α

to avoid ambiguity in calculating the different Jacobians.
The corresponding fused covariance matrix is

PiLMMSE = Pi − PxzP−1
zz P

′
xz, (70)

where

Pxz ≈ Pi(Gi)′ − Pi j, (71)

Pzz ≈ Pi −GiPi j − Pji(Gi)′ +GiPi(Gi)′, (72)

and

Gi = [∇ i
xg(x

j)′]′|xi=x̂i (73)

is the Jacobian evaluated at the estimate from sensor i.

B. Asynchronous Case

In the asynchronous case, the fusion is carried out at
the times given by the union of the different sampling
times of the two sensors. Since not all the LTs’ commu-
nications are available to the FC at the fusion time, pre-
dictions of theLTs’ latest estimates (prior or at the fusion
time) are used for LMMSE estimation. The fused track
estimate (extension of (69)) at time tk is obtained by

x̂LMMSE(tk) = f i
[
tk, ti(tk), x̂i[ti(tk)|ti(tk)]

]
+PxzP−1

xz

{
f j

[
tk, t j(tk), x̂ j[t j(tk)|t j(tk)]

]
− g

[
f i

[
tk, ti(tk), x̂i[ti(tk)|ti(tk)]

] ]}
, (74)

where ti(tk) and t j(tk) are the latest times up to and in-
cluding tk at which LT i and LT j sent information to
the FC. In (74), the latest estimates (or the predication
if needed) are used.The corresponding fused covariance
matrix calculation is carried out (based on (70)) in terms
of the LTs’ latest covariance matrices

PiLMMSE(tk) = Pi(tk|ti(tk)) − PxzP−1
zz P

′
xz, (75)

where

Pxz ≈ Pi(tk|ti(tk))Gi(tk|ti(tk))′ − Pi j(tk|tk), (76)

Pzz ≈ Pj(tk|ti(tk)) −Gi(tk|ti(tk))Pi j(tk|tk)
−Pji(tk|tk)Gi(tk|ti(tk))′

+Gi(tk|ti(tk))Pi(tk|ti(tk))Gi(tk|ti(tk))′, (77)

Fig. 2. Target trajectory on the ξ–η plane.

and

Gi(tk|ti(tk)) = [∇ i
xg(x

j)′]′|
xi= f i

[
tk,ti(tk),x̂i[ti(tk)|ti(tk)]

] (78)

is the Jacobian evaluated at the prediction/estimate from
LT i. The covariance matrix from LT i is

Pi(tk|ti(tk))

=

⎧⎪⎪⎨
⎪⎪⎩
Pi(ti(tk)|ti(tk)), if tk = ti(tk),

Fi
[
tk, ti(tk), x̂i[ti(tk)|ti(tk)]

]
Pi(ti(tk)|ti(tk))

·Fi
[
tk, ti(tk), x̂i[ti(tk)|ti(tk)]

]′ +Qi(tk, ti(tk)), others.

(79)

VI. SIMULATION RESULTS

In the simulation, a target moving in a plane is con-
sidered with initial position [−5 10] km and the initial
velocity [0 200] m/s in Cartesian coordinates. The tar-

Fig. 3. Position RMSEs from 500 MC runs.
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Fig. 4. Position RMSE difference ratio of the fused estimate (with
cross-covariance minus without cross-covariance divided by without

cross-covariance).

get keeps going straight for 60 s and makes a right turn
at 1 rad/s for 90 s. Then, it keeps straight for another 30 s
and turns to the right with turn rate 1 rad/s lasting for
45 s, followed by a left turn at 1 rad/s for 90 s, and finally
makes a right turn at 1 rad/s for 45 s. The trajectory of
the target is shown in Fig. 2.

The active sensor is located at [28 −9] km with mea-
surement noise standard deviations σ r = 20 m and σ a =
1mrad.The passive sensor is located at [14 26] kmwith
angle measurement noise σ p = 1mrad.The sampling in-
tervals areT a = 2.5 s (for the active sensor) andTp = 1 s
(for the passive sensor).Five hundredMC runs aremade
in the simulation to obtain the results. Maneuver du-
ration is highlighted on the time axis in the following
figures.

Fig. 3 shows the root mean square errors (RMSEs)
of the position vector from the active sensor, for both
fusion without cross-covariance and fusion with cross-
covariance. The difference ratio between the latter two
is compared (RMSE of fusion with cross-covariance mi-
nus RMSE of fusion without cross-covariance divided
by the latter one) in Fig. 4. Similarly, the velocity vec-

Fig. 5. Velocity RMSEs from 500 MC runs.

Fig. 6. Velocity RMSE difference ratio of the fused estimate (with
cross-covariance minus without cross-covariance divided by without

cross-covariance).

tor RMSEs are shown in Fig. 5 with the difference com-
parison shown in Fig. 6. The negative differences shown
in Figs. 3 and 5 indicate better performance of the fu-
sion with cross-covariance as it achieves smaller RMSE.
For position, the fusionwith cross-covariance hasRMSE
reduction up to 6% (MSE reduction 12%); for veloc-
ity, the fusion with cross-covariance has RMSE reduc-
tion up to 8% (MSE reduction 16%). The difference
ratio depends on the maneuvers but is not only lim-
ited to that since the maneuvers are not obvious to the
passive sensor. The performance is sensitive to the ge-
ometry of the target’s trajectory and the sensor posi-
tions.The CTF using the original measurements sequen-
tially from different sensors is compared with the pro-
posed fusion approach with simulation results shown in
Figs. 7 and 8 for position and velocity, respectively. As
shown in [3], the CTF using interacting multiple model
(IMM) cannot “see” the maneuvers at the times when
there is only a passive sensor measurement—the CTF
IMM performs worse than the heterogeneous T2TF.
For the case considered in this work, the FC used one
EKF only. The CTF is sometimes worse (e.g., when the
target starts maneuvering after 60 s) since the passive
measurements (angle only) used in CTF-EKF cannot

Fig. 7. Position RMSEs of the fused estimate.
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Fig. 8. Velocity RMSEs of the fused estimate.

provide sufficient information on the target’s velocity
and maneuvers. The IMM is not used at the FC since
the cross-covariance needs to be weighted based on
the model probabilities and the relationship of different
state models in Cartesian space and in angle space. In
this work, this information is not available at the FC.

For the asynchronous, heterogeneous, and nonlin-
ear case considered, the fusion with cross-covariance
yields the actual variance, which is sometimes larger
and sometimes smaller than the variance obtained un-
der the (inaccurate) assumption of independence be-
tween the estimation errors. The variance differences
(variance of fusion with cross-covariance minus vari-
ance of fusion without cross-covariance) for each com-
ponent in the Cartesian state vector are shown in Fig. 9.
Neglecting the cross-covariance between the estima-
tion errors makes the fusion sometimes optimistic and
sometimes pessimistic. The normalized estimation er-
ror squared (NEES) with the maneuver duration high-
lighted is shown in Fig. 10. Due to the facts that (i) the
target is maneuvering (i.e., its motion uncertainty is de-
terministic rather than a stochastic white noise process)
and (ii) the local trackers are running asynchronously,
the system is not expected to be consistent with the ideal
NEES of 4. For the white noise-driven motion model as

Fig. 9. Variance difference of elements from the state vector in
Cartesian coordinates.

Fig. 10. NEES from 500 runs.

in [6], the fusion with cross-covariance was shown to be
consistent.

The cross-correlation coefficients between the ele-
ments in (67) and (68) are shown in Fig. 11. The cross-
correlation coefficients depend on the geometry of the
two sensors and the target as well as the maneuvers
of the target. It can be seen from Fig. 9 that some
of the cross-correlation coefficients are positive and
some of them are negative. This confirms the results in
[3], which were obtained numerically through an MC
investigation.

VII. SUMMARY AND CONCLUSIONS

In this work, we derived the cross-covariance (for
both the synchronous and asynchronous cases) between
the local estimation errors of heterogeneous tracks from
local sensors with different state models. The simulation

Fig. 11. Cross-correlation coefficients between the elements from
two state vectors.
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results from a scenario with one passive tracker and one
active tracker show the performance of heterogeneous
T2TF with cross-covariance. It can be seen that with the
cross-covariance, the T2TF can achieve improved per-
formance with lower RMSE and better statistical effi-
ciency. The cross-correlation coefficients are sometimes
positive and sometimes negative, which confirms the re-
sults obtain in [3] through an MC investigation.

REFERENCES

[1] Y. Bar-Shalom, P.Willett, and X. Tian
Tracking and Data Fusion. Storrs, CT: YBS Publishing, 2011.

[2] X. Tian and Y. Bar-Shalom,
“On Algorithms for Asynchronous Track-to-Track Fusion,”
in Proc. Int. Conf. Inf. Fusion, Edinburgh, UK, July 2010.

[3] T. Yuan, Y. Bar-Shalom, and X. Tian
“Heterogeneous Track-to-Track Fusion,”
J. Adv. Inf. Fusion, vol. 6, no. 2, pp. 131–149, Dec. 2011.

[4] M.Mallick, K. C. Chang, S. Arulampalam, and Y. Yan,
“Heterogeneous Track-to-Track Fusion in 3D Using IRST
Sensor and Air MTI Radar,” IEEE Trans. on Aerospace
Engineering Systems, vol. 55, no. 6, pp. 3062–3079, Dec. 2019

[5] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan
Estimation with Applications to Tracking and Navigation:
Theory, Algorithms and Software. New York:Wiley, 2001.

[6] K. Yang, Y. Bar-Shalom, and P.Willett,
“Track-to-Track Fusion with Crosscovariances from Radar
and IR/EO Sensor,” in Proc. Int. Conf. Inf. Fusion, Ottawa,
Canada, July 2019.

[7] M. R.Morelande and N. J. Gordon
“Target Tracking Through a Coordinated Turn,” in Proc.
IEEE Int. Conf. Acoust., Speech, and Signal Process.
(ICASSP ’05), 2005, vol. 4, pp. iv/21–iv/24.

Kaipei Yang received the B.S. degree from the Northwestern Polytechnical Univer-
sity, Xi’an, China, in 2014, and the Ph.D. degree from the University of Connecti-
cut, Storrs, CT, USA, in 2019. She is currently an Assistant Research Professor with
theDepartment of Electrical and Computer Engineering,University of Connecticut.
Her research interests include statistical signal processing, estimation theory, and in-
formation fusion.She gained experience in autonomous driving vehicles while work-
ing at NIO, San Jose, CA,USA, in 2018.

ASYNCHRONOUS AND HETEROGENEOUS TRACK-TO-TRACK FUSION 47



YaakovBar-Shalom received theB.S.andM.S.degrees in electrical engineering from
the Technion, Haifa, Israel, in 1963 and 1967, respectively, and the Ph.D. degree in
electrical engineering from Princeton University, Princeton, NJ, USA, in 1970. From
1970 to 1976, he was with Systems Control, Inc., Palo Alto, CA,USA.He is currently
a Board of Trustees Distinguished Professor with the Department of Electrical and
Computer Engineering and Marianne E. Klewin Professor in Engineering with the
University of Connecticut, Storrs, CT, USA. His current research interests include
estimation theory, target tracking, and data fusion. He has authored or coauthored
more than 550 papers and book chapters, and coauthored/edited 8 books, includ-
ing Tracking and Data Fusion (YBS Publishing, 2011). He has been elected Fellow
of IEEE for “contributions to the theory of stochastic systems and of multitarget
tracking.”He was anAssociate Editor for the IEEETransactions onAutomatic Con-
trol and Automatica. He was General Chairman of the 1985 ACC, Chairman of the
Conference Activities Board of the IEEE CSS and member of its Board of Gov-
ernors, General Chairman of FUSION 2000, President of ISIF in 2000 and 2002,
and Vice President for Publications during 2004–2013. In 1987, he was the recipient
of the IEEE CSS Distinguished Member Award. Since 1995, he is a Distinguished
Lecturer of the IEEE Aerospace and Electronic Systems Society. He was the core-
cipient of the M. Barry Carlton Award for the best paper in the IEEE Transactions
on Aerospace and Electronic Systems in 1995 and 2000. In 2002, he was the recipi-
ent of the J. Mignona Data Fusion Award from the DoD JDL Data Fusion Group.
He is a member of the Connecticut Academy of Science and Engineering. In 2008,
he was the recipient of the IEEE Dennis J. Picard Medal for Radar Technologies
and Applications, and in 2012 the Connecticut Medal of Technology. He has been
listed by academic.research.microsoft (top authors in engineering) as #1 among the
researchers in aerospace engineering based on the citations of his work. He was the
recipient of the 2015 ISIF Award for a Lifetime of Excellence in Information Fu-
sion. This award has been renamed in 2016 as the Yaakov Bar-Shalom Award for a
Lifetime of Excellence in Information Fusion.

Peter Willett received the B.A.Sc. (engineering science) degree from the University
of Toronto, Toronto, Canada, in 1982, and the Ph.D. degree from Princeton Univer-
sity,Princeton,NJ,USA, in 1986.He has been a faculty member with theDepartment
of Electrical andComputer Engineering,University of Connecticut,Storrs,CT,USA,
since 1986. Since 1998, he has been a Professor, and since 2003 an IEEE Fellow. His
primary areas of research include statistical signal processing, detection, machine
learning, communications, data fusion, and tracking.He has authored or coauthored
more than 650 papers on these topics. He was Editor-in-Chief for the IEEE Signal
Processing Letters from 2014 to 2016.He was Editor-in-Chief for the IEEE Transac-
tions on Aerospace and Electronic Systems from 2006 to 2011, and then AESS Vice
President for Publications (2012–2014).He was a member of the IEEEAESS Board
of Governors (2005–2010, 2011–2016) and of the IEEE Signal Processing Society’s
Sensor-Array andMultichannel (SAM) technical committee (and Chair 2015–2016).

48 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 15, NO. 1 JUNE 2020



Manuscript received November 20, 2019; revised February 14, 2020;
released for publication June 30, 2020.

The author is with the School of Computing andMathematics, Charles
Sturt University, Port Macquarie, NSW 2444, Australia (E-mail:
aulhaq@csu.edu.au).

1557-6418/20/$17.00 © 2020 JAIF

The Role of Information Fusion
in Transfer Learning of Obscure
Human Activities During Night

ANWAAR ULHAQ

Human actions are often tightly coupled with their context that

can play an important role in their modeling and understating. How-

ever, adverse lighting conditions and clutter can easily disrupt the vi-

sual context during night, especially in outdoor environments. This sit-

uation makes it difficult for any autonomous system to detect or clas-

sify actions. Various works have proposed contextual enhancement of

available imagery to improve performance. However, no study articu-

lates the most suitable type of contextual enhancement. In this study,

we try to evaluate the role of information fusion in enhancing the vi-

sual context.We are interested in knowing whether fusion can enhance

the performance of the autonomous system or it is just visually appeal-

ing.Our evaluation framework is based on transfer learning using deep

convolutional neural networks.Experimental results show that contex-

tual enhancement based on 1) the fused contextual information and 2)

its colorization significantly enhances the performance of automated

action recognition.

I. INTRODUCTION

Human action recognition is a challenging computer
vision problem.Different challenging scenarios are con-
sidered in the literature like action by large groups [1],
group actions [2], recognizing actions in crowd [3], ac-
tions inside movies [4], single- and two-person action
recognition [5], action recognition from the side of a
video [6], actions across different viewpoints [7]–[9], and
occluded actions [10]. However, these approaches as-
sume that the action dataset is captured at daytime un-
der clear context and reasonable lighting conditions.
Their performance will decline if available data are ad-
versely affected by diverse lighting conditions and clut-
tered context. Fig. 1 illustrates two such scenarios of ad-
verse lighting conditions at night. Targets (actors) are
visible with dim and hazy context in infrared (IR) im-
agery. In contrast, background context is clear with hid-
den or vague targets in visible (VIS) imagery. In this pa-
per, we want to explore if context is enhanced, how it
contributes to the automated recognition through ma-
chine vision.

Visual context is valuable a priori knowledge in
terms of modeling action instances. Therefore, con-
textual action recognition is addressed by various re-
searchers. The context of scenes is utilized for recogniz-
ing events by Li and Fei-Fei [11]; however, it uses only
the static images. Contextual action recognition is pre-
sented by Marszalek et al. [12], which is based on the
bag-of-features framework. It considered the annotated
actions in movies and with script mining for visual learn-
ing. A similar technique [13] extracts the overall object-
based context by detectors and their descriptors with su-
pervised learning.Modeling of scene and object context
is designed by Jiang et al. [14] for the Hollywood2 action
dataset. These approaches aim at action recognition in
high-resolution videos. Hierarchical attention and con-
text modeling for group activity recognition is consid-
ered in recent works [15], [16]. However, achieving the
same objectives in night-time imagery is cumbersome
due to clutter and low-lighting conditions.

Human action activity recognition in a single spec-
trum is discussed in [17] and [18],which perform recogni-
tion in IR spectrum. However, these approaches ignore
action contexts that are poorly captured by IR sensors.
These approaches, therefore, cannot be classified as con-
textual action recognition approaches. In this paper, we
build upon the idea of [19]–[21] and further evaluate the
role of contextual information fusion in recognizing hu-
man actions.

Moreover, night-time imagery lacks color informa-
tion that provides great help to human visual percep-
tion. Due to unnatural appearance and IR imagery lim-
itations, multi-sensor systems and color information are
integrated for better contextual awareness [22]. An-
other approach to optimize these systems is to in-
troduce pseudo-color information [23], [24]. A recent
study about the perceptual evaluation [25] of such
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Fig. 1. Two different scenarios of visual context of actions captured
by two different sensors: low-light VIS and IR sensors. Each sensor
has its limitation that affects recognition performance. It means

contextual improvement can play a positive role in improvement of
detection capability of autonomous systems.

color-transformed multispectral systems concludes that
pseudo-colorization better illustrates the gist of a night
scene by improving the fixation behavior of human eye
compared to large-scale imagery.

We address the following research question: Can ac-
curacy of automated action recognition be increased by
context enhancement through information fusion and
transferring knowledge from daytime image data to
night-time data?

This paper claims the following contributions: 1) It
evaluates the role of information fusion in transfer learn-
ing of activity recognition at night-time. To the best of
our knowledge, it is the first work that evaluates such a
problem. 2) It explores how transfer learning can be bet-
ter utilized (frozen or fine-tuned) for transferring knowl-
edge from different domains.

The paper is organized as follows: Section 2 presents
the related work, Section 3 illustrates how the con-
text enhancement of multisensor videos is possible, and
Section 4 discusses the transfer learning framework and
the action filter. Experimental results are discussed in
Section 5. The conclusion and references are provided
at the end.

II. PRIOR WORK

Human action recognition is now a well-researched
area. There are various methodologies that can be cat-
egorized on the basis of the scenario used. The per-
formances of these approaches vary in different cir-
cumstances and challenges. One of such challenges is
the action context. An action-scene context is acquired
through movie-script mining by Liu et al. [1] for realis-
tic action recognition in movies. Spatiotemporal action
context was utilized by Han et al. [13] based on space–
time features. Similarly, [26] employs convolutional neu-
ral networks (CNNs) for contextual action recognition.
However, these approaches use high-resolution action

datasets for which the extraction of spatiotemporal in-
terest points is straightforward.

Recently, deep CNNs [27] have achieved significant
success in object detection and classification. In par-
ticular, CNNs trained on the large datasets such as
ImageNet have been shown to learn general-purpose
image descriptors for a number of vision tasks. A re-
cent trend has been observed about the use of deep fea-
ture learning.Various pretrained convolutional network
(ConvNet) models are publicly available. In the same
spirit, 3D ConvNets [6], [28] were proposed for different
types of video analysis tasks, especially action recogni-
tion. Instead of using fully connected layers, activations
from convolutional layers of the network have achieved
superior results.

However, recognition of human actions in low-
quality night-time videos is not well-explored area of re-
search and very few approaches can be cited in this cat-
egory. The utility of thermal imagery is analyzed by Li
and Gong [29] for human action recognition. This ap-
proach is built upon the histogram of oriented gradients
and nearest-neighbor classification.

A similar work [30] uses gait energy images. How-
ever, it is limited to walking activity, which is easier
to recognize. IR image super-resolution is proposed for
enhancement by Du et al. [31]. Deep VIS and ther-
mal image fusion [32] was used for enhanced pedes-
trian visibility. However, such work cannot be catego-
rized as action recognition work. Fourier transform is
a great tool to analyze response of patterns of inter-
est in the frequency domain. Such matching is efficient
and faster than matching based on spatial templates. In
addition, it combines target classification and detection
(localization) simultaneously. Inspired by this this idea, a
contextual action recognition approach based on 3D fast
Fourier transform and contextual cues was proposed in
[19] and [20].

In this paper, we present robust action recognition,
which can deal with low-quality night-time video se-
quences. In case of night-time videos, we consider the
registered videos collected from low-light VIS and IR
spectra. We enhance the context through video fusion
[33].Our action recognition approach is based on space–
time interest point detection and frequency-domain cor-
relation analysis and can detect and classify human ac-
tions in a robust manner.

III. CONTEXT ENHANCEMENT OF NIGHT-TIME
VIDEOS

In this section, we discuss the motivation behind
contextual enhancement of night-time video sequences,
video fusion, and colorization for context enhancement.

A. Motivation

The aim of context enhancement is a preprocessing
step to give day-like appearance to night-time videos.
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Fig. 2. Color-transfer-based video fusion method: (a) an IR video
sequence; (b) low-light VIS domain video sequence; (c) a source
color image for the purpose of color transfer; and (d) a color-fused
video generated from (a), (b), and (c). Image adapted from [22].

It involves video fusion applied on registered video
streams collected from IR and VIS spectra. Context en-
hancement helps to reveal a camouflaged target and to
assist target localization [34]. Here, we present and dis-
cuss context enhancement briefly.

B. Context Enhancement Through Video Fusion and
Colorization

The objective of employing video fusion is to gener-
ate a single enhanced video from complementary videos
that ismore suitable for the purpose of human visual per-
ception, action, and context recognition. If we denote A
as IR video sequence andB as a VIS video sequence,we
intend to generate another video sequence C by fusing
visual information fromA andB.Fig. 2 gives illustrations
of video fusion results.

There is extensive literature on contextual enhance-
ment of nigh-time imagery. However, we selected au-
tomatic color-transfer-based video fusion (FACE) [22]
as it enhances video context by color transfer from a
source image because it enhances context through fu-
sion and colorization simultaneously. An example sce-
nario adapted from this work can be seen in Fig. 2.

IV. MULTIDOMAIN ACTION RECOGNITION VIA
TRANSFER LEARNING

Transfer learning is a machine learning methodology
where a model developed for a task in one domain is
reused as the starting baseline for learning a more spe-
cific model on another task in the other domain. Let
us define domain and task for better understanding of
transfer learning.

Let D denote the domain; we can define it as a two-
element tuple (a finite ordered list) consisting of feature

space, X , and marginal probability, P(X ), where X is a
sample data point. Therefore, we can write the domain
mathematically as D = (X,P(X )).

A task,T , then can be defined as a two-element tuple
of the label space,Y , and objective function,O, denoted
as P(Y |X ) from a probabilistic viewpoint. Thus, a task
can be defined as T = (Y,P(Y |X )) = (Y,O). We can
define transfer learning as follows.

Given a source domain Ds with source task Ts, and
similarly, a target domain Dt with target task Tt, trans-
fer learning has the objective to learn the target condi-
tional probability distribution P(YT |XT ) inDT with the
knowledge transferred from Ds and Ts, where Ds �= Dt

and Ts �= Tt. Usually in such scenarios, the number of la-
beled target examples is exponentially smaller than the
number of labeled source examples. We have a similar
scenario as the majority of action datasets and trained
models have daytime-captured data, while target night-
vision data are scarce. Our problem in this study, how-
ever, is not the design of effective transfer learning but
to evaluate the suitability of data for transfer learning.

We will use transfer learning to extract knowledge
from the already trained 3D CNN [2] for action recogni-
tion in one domain (daytime) and would use it to learn
actions in the other domain (night time).This pretrained
network on the UCF101 action dataset has eight convo-
lutions, five maximum pooling, and two fully connected
layers, followed by a softmax output layer.

All 3D convolution kernels are 3 × 3 × 3 with stride
1 in both spatial and temporal dimensions. After train-
ing all the network layers, we extract fc6 layer features
from the trained network and call them C3D features.
To extract these features, we follow the guidelines of
[2]. Each video is split into clips, and each of the 16
frames is passed to the C3D network to extract fc6 ac-
tivations. These fc6 activations are averaged to form a
4096-dimensional video descriptor followed by an L2
normalization.These representations are known as C3D
video features.

In transfer learning,we will train a base network and
then copy its first n layers to the first n layers of a tar-
get network. In our case, n = 4. The remaining layers of
the target network will then randomly be initialized and
trained toward the target task. Rather than freezing the
transferred layers, we train all the layers. It is inspired by
the recent work by Yosinski et al. [35].

A. Action Classification

To apply transfer learning for the action classifica-
tion task,we developed four separate networks based on
the 3D CNNmodel, C3D network [2]. The first network
was trained on daytime image data UCF101 [36].Model
A is 3D CNN trained on IR video sequences (InfAR
data, and other available night IR data), Model B is 3D
CNN trained on the night-time VIS spectrum only, and
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Model C is 3D CNN trained on fused video sequences
and color-enhanced video sequences.

B. Action Detection

Action detection is more challenging compared to
simple classification as it not only classifies the action
but also provides its location. To achieve action detec-
tion, we use 3D feature-based zero-aliasing maximum-
margin correlation filter as described below.

1) Action-02MCF: 3D Feature-Based Zero-Aliasing
Maximum-Margin Correlation Filter:

The motivation of using correlation filter compared
to end-to-end classification is simultaneous localization
and detection of action instances. We train 3D correla-
tion filters on fine-tuned features described in the pre-
vious section. These filters can be synthesized by calcu-
lating Fourier transfer of fine-tuned features. Correla-
tion filters were initially developed in the seminal work
of [37], which is a way of learning a template/filter in
the frequency domain that, when correlated with a set
of training signals, gives a desired response (correlation
peak).A general correlation filter h can be expressed as

h = arghmin
N∑
i=1

||h⊗ xi − gi||2, (1)

where ⊗ denotes the cross-correlation of the vector ver-
sions of the input signal xi and the template h, and gi is
the vector version of the desired correlation output. If
N denotes the training feature vectors, xi denotes the ith
feature vector.

Correlation filters are generally 2D as these filters
work well on images. In our previous work [38], we have
extended correlation filters in 3D for action recognition.
Therefore, only a brief description of their optimiza-
tion criteria is presented here as the complete design of
Action-02MCF correlation filters is described in [38].

The correlation filter design problem is often consid-
ered as an optimization problem. IfN denotes the train-
ing feature vectors of length M, we can write the mul-
tiobjective function of the proposed correlation filter as
follows:

h = min
ĥ

(
1
N

N∑
i=1

M∑
k=1

|| f̂ ki ⊗ ĥki

− ĝi||22, λ
M∑
k=1

||hk||22 +C
N∑
i=1

ξi

)
,

s.t. yi

(
M∑
k=1

·ĥkt · f̂ ki
)
� uiξi

Here, f̂ is a feature vector, ĥ is a frequency-domain filter,
ξi is a penalty term to penalize the training samples on
thewrong side of themargin,λ is a regularization param-
eter,whereasC > 0 denotes a trade-off parameter,yi is a
class label (1: positive class;−1: negative class), and ui is

the minimum peak value set to 1 for N training samples
and anM number of features.

The regularization parameter λ serves as a degree of
importance that is given to misclassifications. So, intu-
itively, the larger the λ grows, the fewer the wrongly clas-
sified examples are allowed (or the higher the price they
pay in the loss function). Then, when λ tends to infinity,
the solution tends to the hard margin (allowing no mis-
classification).When λ tends to 0 (without being 0),more
misclassifications are allowed.

C parameter controls the trade-off between achiev-
ing a low error on the training data and minimizing the
norm of the weights and it tells the optimization how
much misclassification to be avoided for each training
example. For large values of C, the optimization will
choose a smaller margin hyperplane if that hyperplane
does a better work of achieving all the training points
classified correctly. Conversely, a very small value of C
will cause the optimizer to look for a larger margin sep-
arating hyperplane, even if that hyperplane misclassifies
more points.

2) Notation: Vectors are represented by the lower-
case letters f ,matrices are represented by uppercase let-
tersF ,ˆrepresents variables in the frequency domain,and
t represents its transpose.

We extracted C3D features and named themModel-
0-fc. We call these models as the pretrained model and
extracted features as pretrained features. Model-A-fc
was extracted from 3D CNN trained on IR video se-
quences (InfARdata,and other available night IR data),
Model-B-fc was extracted from 3D CNN trained on the
night-time VIS spectrum only, and, finally, Model-C-fc
was extracted from 3D CNN trained on fused video se-
quences and color-enhanced video sequences.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section describes our experimental data, setup,
results, and performance comparison with discussion.

A. Action Dataset and Experimental Setup

In the absence of any benchmark night-vision (NV)
action dataset, we have recorded the NV action dataset
using two different cameras. One of them is an IR cam-
era,Raytheon Thermal IR-2000B,and the other is a low-
light VIS camera, Panasonic WV-CP470. The thermal
and visual videos are registered before the fusion pro-
cess. In addition to these videos, this dataset includes
20 video sequences collected from the TNO image fu-
sion dataset [25], Eden Project dataset [39], and Ohio
State University thermal dataset. This dataset comprises
eight action categories, including walking,wave1,wave2,
stand-up, sit-down, clapping, pick-up, and running per-
formed by different actors. It also includes videos from
the IR action dataset [40], which contains 12 common
human actions with IR video sequences. All action
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Fig. 3. Sample IR video instances for 12 action classes. Action
categories include fight, handclasp, handshake, hug, jog, jump, punch,

push, skip, walk, wave1, and wave2.

instances are displayed in Fig. 3. Sample actions include
one-hand wave (wave1), multiple-hand wave (wave2),
handclasp, jog, jump, walk, skip, hug, push, handshake,
punch, and fighting action, each containing 50 video se-
quences, with 25 fp/s and resolution of 293 × 256. These
actions are performed by 40 different actors. Each video
clip lasts about 4 s on average. Some of these videos il-
lustrate interactions between multiple actors.

B. Experiment No. 1: The Role of Information Fusion in
Terms of Error Rate

In this experiment, we intended to validate the sig-
nificance of multisensor fusion data.We created training
and validation sets with a ratio of 70:30. The base net-
workwas trained on IRdata only as actions aremore vis-
ible in the IR than in the VIS spectrum. The second net-
work is prepared after transferring the first three layers
of the C3D network and remaining layers of the fused
dataset.Error rate is calculated for both training and val-
idation sets. The experiment is shown in Fig. 5. It shows
that in the case of fused data, the error rate ismuch lower
than that of single-domain data for both training and val-
idation sets.

C. Experiment No. 2: The Role of Information Fusion in
Terms of Recognition Accuracy

This experiment checks the classification accuracy.
For validation, the leave-one-out cross-validation strat-
egy is used. The results are shown in Table 1 in terms of
recognition accuracy and the layers used during trans-
fer learning.We experimented with different versions of
our recognition framework to know the impact of infor-
mation fusion on recognition performance. First, a base-
line is developed as discussed in the transfer learning
section. It is based on the daytime video action dataset,
and we used the knowledge extracted from this network
to fine-tune other networks. This network was the C3D
network pretrained on the UCF101 dataset. Second, we
fine-tuned other networks as described earlier in the
transfer learning section. In addition, to know the effect
of different layers in transfer learning,we fine-tuned dif-
ferent versions of each network to quantify the learning
transferred from the base network.

Table 1
Average Recognition Accuracy of Three Different Models Versus

Number of Layers Transferred from the Baseline Network

No. of layers Recognition
Model used transferred accuracy

Model A 3, 4, 5 0.96, 0.91, 0.87
Model B 3, 4, 5 0.72, 0.71, 0.69
Model C 3, 4, 5 0.98, 0.93, 0.87

It shows that best recognition for each model is achieved if only

three convolution layers are transferred as after this dataset specificity

started increasing.

In this experiment, Model A is 3D CNN trained on
IR video sequences (InfAR data, and other available
night IR data),Model B is 3DCNN trained on the night-
timeVIS spectrumonly,andModel C is 3DCNN trained
on fused video sequences and color-enhanced video
sequences.

We calculated the average recognition accuracy for
each case against the NV dataset and the results are
displayed in Table 1. We found that network that uses
both color and context information fusion alongside
motion cues outperforms others. It demonstrated that
fused information is significantly important in the ac-
tion recognition process. Contextual information also
plays an important role, especially in actions that involve
full-body motion. Therefore, an information fusion of
motion, color, and contextual cues can enhance action
recognition performance.

D. Experiment No. 3: Filter Performance for Action
Detection and Localization

For this experiment, the training of Action-02MCF
filters is performed for each action category. During the
testing phase, a test action video is correlated with the
synthesized filter to find the correlation peak.

To measure the detection and localization perfor-
mance of the proposed filter, we utilize the probability
of detection versus false alarms per second (FA/s). A
performance metric denoted as P is utilized, which is
equal to the integration of a receiver operating charac-
teristic (ROC) curve from 0 to 5 FA/s. An ideal ROC
curve must have P = 5. To evaluate this performance,

Fig. 4. Action instance detection in three NV action instances,
where the red bounding box is the actual ground truth, while the

green bounding box shows detection by 3D SDCF.
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Fig. 5. The plot for the effect of transfer learning on the C3D
network. The base C3D network trained on the NV dataset shows a
high error rate in both training and validation sets compared to the

C3D transferred network that is fine-tuned on the knowledge
transferred by the fused dataset.

we applied the proposed filter to each test video and
varied the threshold of the detection to generate ROC
curves. The detection is labeled a true positive detection
if the ground truth and the center of the bounding box lie
within three frames of each other and the Euclidean dis-
tance is ≤8 pixels in the spatial domain to keep a >50%
bounding box overlap for each action. We then plot
the values of the performance metric P against all ac-
tions and perform a comparison with a similar approach,

Fig. 6. Top: the plot of PSR by correlating the trained
walking-Action-02MCF with a night-time video sequence. As visible

from the plot, PSRs produced by walking-Action-02MCF are
comparatively much higher than the responses by action filters for
other actions. Bottom: a representative frame from the respective

videos (both domains).

Action-DCCF filter [19]. The corresponding filter is se-
lected due to similarity and code availability. Fig. 4 dis-
plays the sample detections with the original and esti-
mated bounding boxes.

E. Experiment No. 4: Quantitative Evaluation of Filter
Robustness

We use another quantitative metric, named peak-
to-sidelobe ratio (PSR) described in [41], which calcu-
lates the ratio of peak response to local surrounding re-
sponse. Fig. 6 plots PSRs for walking action present in
the test video sequence (sample frame displayed) using
Action-03MCF for the walking action trained on the NV
dataset.

VI. CONCLUSION

In this paper, we explored and discussed the role
of information fusion for automated action recogni-
tion. We use deep ConvNets for action recognition
and used transfer learning to learn and transfer knowl-
edge from a pretrained action network. In addition, we
included an action-detection framework based on ro-
bust feature-based space–time action recognition called
Action-02MCF. Experiments were conducted to know
the effects of transfer learning,number of layers in trans-
fer learning, and information fusion on improving the
performance of action recognition at night time.We dis-
covered that information fusion enhances action recog-
nition performance as it improves the contextual infor-
mation of night-vision data.
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A Nonparametric Bayesian
Compressive Sensing
Classification

RUILONG CHEN
MATTHEWHAWES
LYUDMILAMIHAYLOVA

This paper presents a novel nonparametric backpropagation

Bayesian compressive sensing (BBCS) classification approach. While

the state-of-the-art parametric classifiers such as logistic regression re-

quire model training and can result in inadequate models, the devel-

oped approach does not require model training. It is combined with a

column-based subspace sampling process and can deal efficiently with

uncertainties and highly computational tasks. Validation on a publicly

available vehicle logo dataset shows that the proposed classifier can

achieve up to 98% recognition accuracy as compared with the state-of-

the-art nonparametric classifiers. Compared with the generic Bayesian

compressive sensing classification, the proposed approach decreases

the mean number of misclassifications by 87% along with 68% reduc-

tion of the computational time. The robustness of the BBCS approach

is demonstrated over scene recognition tasks, and its outperformance

over the AlexNet convolutional neural network algorithm is demon-

strated in noisy conditions. The proposed BBCS approach is generic

and can be used in different areas; for example, it has shown robustness

over the CIFAR-10 dataset.

I. INTRODUCTION

A number of parametric classifiers such as the lin-
ear support vector machine (SVM) [1]–[4] and logis-
tic regression [5] have been developed for vehicle logo
recognition (VLR) and traffic scene recognition (TSR).
Deep learning models such as convolutional neural net-
works (CNNs) and capsule networks have been applied
to VLR [6], [7]. These parametric classifiers assume a
functional distribution of the data [8]. The relationship
between the label and the input data is modeled using a
fixed number of parameters. An advantage of paramet-
ric classifiers is that once the number of parameters is
determined, it would not change later as nonparametric
methods do. However, in practice, parametric classifiers
could result in an inadequately trained model due to in-
appropriate assumptions of prior distributions, leading
to inappropriate predictions in the testing phase [8], [9].

On the contrary, nonparametric classifiers do not
make assumptions about the distribution representing
the data [8]. They do not have a model with a fixed num-
ber of parameters. Instead, the number of parameters in-
creases with the size of the training dataset [10]. This in
turn increases the computational complexity.

The K-nearest neighbor (KNN) approach is a com-
monly used nonparametric approach that is often used
for classification [11], [12].However, theKNN approach
is not robust to outliers and to data with high dimension-
ality. This is because the shortest distance is not neces-
sarily the best match to the testing data, especially when
the number of training data is limited [8], [13]. Besides,
the KNN approach has been shown to be vulnerable to
noise effects [5].

A nonparametric classification approach based on
sparse representation proposed by Wright et al. [14] has
proven to bemore accurate than the linear SVM and the
KNN classifier for face recognition. The sparse repre-
sentation classifier (SRC) [14] assumes that the testing
data can be represented as a linear combination of the
training dataset. A weight vector is generated with each
element representing a corresponding coefficient in the
linear combination.By splitting the weights according to
their associated classes (with the remaining set to be zero
valued), the weights in the correct class should recon-
struct the original data with a minimum error.However,
the high computational costs of the SRC can be a prob-
lem. In addition, the SRC works only when the system is
under-determined [15]. In practice, this criterion cannot
be met when there is a lack of training data.

Recently, the Bayesian compressive sensing (BCS)
[16] approach has been efficiently applied to synthetic
aperture radar target classification [17], image recon-
struction [18], [19] and phonetic classification [20]. The
Bayesian approach could potentially provide an alter-
native to the l1-norm minimization for optimizing the
linear combination coefficients required for the clas-
sification framework. Similarly to Zhou et al. [21], by
comparing the magnitudes of the coefficients, the testing
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data can then be classified by assigning them to the class
whose coefficients have the highest l2-norm magnitude.

The methods proposed in [22] and [23] map the
data into a reduced dimensional space, using principal
component analysis (PCA). However, these new latent
spaces are different from the original space andmake the
original data difficult to interpret. To combat this issue,
a column-based subspace sampling data representation
can be used [24]–[26]. In this case, it is still possible to
work in the original space, just with fewer data points.

In order to cope with various sources of uncertainties
that many of the existing classification algorithms face,
this paper proposes a new solution that provides robust-
ness to insufficient training data and to noises. The key
contributions of this work can be summarized as follows:

1) A new backpropagation BCS (BBCS) classifier is
developed that represents efficiently the data and solves
the classification problem as an optimization problem.
The Euclidean distance between the constructed testing
data and the original testing data is minimized. This pro-
cess increases the recognition accuracy.

TheBBCS incorporates a data reduction process that
further decreases the computational costs. The column-
based subspace sampling representation selects infor-
mative data points from the dataset. Compared with the
PCA that transforms the original data into a new la-
tent space, the column-based subspace samplingmethod
chooses the best data directly from the original space.
This process significantly decreases the computational
costs and facilitates the interpretation in this reduced di-
mensional space.

2) The developed BBCS approach is validated and
evaluated over noisy data and compared with state-of-
the-art nonparametric classifiers: the KNN algorithm,
the SRC, and the BCS algorithm. The BBCS is more ro-
bust than the KNN classifier. Compared with the BCS,
the proposed approach decreases the mean number of
misclassifications by 87% and reduces the computa-
tional cost compared with the SRC algorithm.

The rest of this paper is organized as follows.
Section II introduces the general sparse representation
classification framework. Section III presents the BCS
approach. Section IV introduces the developed back-
propagation BCS classifier approach and the column-
based subspace sampling method. Section V presents
performance validation on VLR and discussions of the
results. Sections VI and VII present performance vali-
dation on vehicle scene recognition and the CIFAR 10
dataset. Section VIII summarizes the findings. The ap-
pendices contain the full derivation of the marginal like-
lihood function and its maximization.

II. CLASSIFICATION FRAMEWORK BASED ON SPARSE
REPRESENTATION

The SRC,BCS classifier, and BBCS classifier assume
that the testing data x∗ ∈ RM×1 can be represented as a
linear combination of the training samples X ∈ RM×N ,

whereM is the length of the vector data andN gives the
number of entries in the training dataset.When applying
to images, each image is represented by an image fea-
ture vector rather than by pixels of the raw image.There-
fore,M refers to the length of the feature vector repre-
senting the image. Feature-based methods such as the
scale-invariant feature transform (SIFT) [27] and CNN
[28] can represent an image using a vector rather than a
matrix representation.

A testing image denoted by image feature x∗ is rep-
resented with the linear model

x∗ = Xw + z, (1)

where w ∈ RN×1 is a weight vector controlling the con-
tribution of each image feature in the training dataset
to the linear combination representing the testing image
feature, z ∈ RM×1 is a bounded noise termwith ||z||2 � ε,
||·||2 is the l2-norm,and ε is a small positive constant.The
solution to equation (1),w, is obtained byminimizing the
l2-norm:

ŵ = argmin
w

(||w||2), s.t. ||x∗ − Xw||2 � ε, (2)

where ŵ ∈ RN×1 is the estimated weight vector. How-
ever, when N > M, equation (1) corresponds to an
under-determined system and there is no unique solu-
tion by using conventional methods [14], [29].

The SRC classification method [14] assumes that a
testing image feature can be sufficiently represented by
a dictionary for its corresponding class. Therefore, the
solution is naturally sparse as coefficients for unrelated
classes are zero valued. For instance, if there are 20
classes, only approximately 5% of the coefficients in ŵ
will have nonzero values [14]. In fact, the sparser the re-
coveredw is, the easier it is to accurately classify the test-
ing image feature x∗ [14]. This motivates the use of the
l0-norm to find the sparest solution forw in equation (1).

However, l0-norm minimization is an NP-hard prob-
lem. Instead, an l1-norm minimization is typically used
as an approximation [15], [30], [31], giving

ŵ = argmin
w

(||w||1), s.t. ||x∗ − Xw||2 � ε. (3)

The solution to the l1-minimization in equation (3) can
be found by linear programmingmethods such as the ba-
sis pursuit [32] or the orthogonal matching pursuit [33]
methods. The solution to equation (1) gives the optimal
w for classification purposes in the SRC [14].

III. BAYESIAN COMPRESSIVE SENSING

The BCS method [16] provides an alternative to the
l1-norm minimization method by incorporating prior
knowledge within the Bayesian framework. Since the
testing image feature can be represented as a linear com-
bination (1) of the training images, the relative impor-
tance of each training image feature is controlled by the
weight vector w. The vector w can be separated into wv

and we, where wv contains the significant weights and we
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the remaining negligible weights. Hence, w = wv + we

and equation (1) can be written as

x∗ = Xwv + Xwe + z. (4)

Both Xwe and z can be approximated as zero-mean
Gaussian noises [16], allowing equation (4) to be
written as

x∗ = Xwv + n, (5)

where n = Xwe + z. The variance of n is then given by
�n = σ 2IM, where IM is an identity matrix of sizeM×M.
Note that each entry in n has the same variance σ 2 and
hence the likelihood function can be given by

p(x∗|w, σ 2) = (2πσ 2)−M/2 exp
{
−||x∗ − Xw||22

2σ 2

}
, (6)

rather than in the standard multivariate form that in-
cludes the covariance matrix �n. In equation (6) and in
the following equations, the subscript v of w is dropped
for conciseness.

The elements of w are assumed to have a zero-mean
Gaussian distribution. This is given by

p(w|α) =
N∏
i=1

N(wi|0, α−1
i )

=
N∏
i=1

(2πα−1
i )−1/2 exp

{
−1
2
αiw

2
i

}

= (2π )−N/2|A|1/2 exp
{
−1
2
wTAw

}
, (7)

where A = diag(α1, α2, . . . , αN ) and α = [α1, α2, . . . ,

αN]T,αi is a precision value, and | · | denotes the determi-
nant. Furthermore, Gamma hierarchical priors are con-
sidered over αi and σ 2:

p(α) =
N∏
i=1

Gamma(αi|a,b), (8)

p(σ 2) = Gamma(σ 2|c,d), (9)

where a, b, c, and d are shape and scale parameters.
The overall prior over w can be evaluated by

marginalizing over the hyperparameters α:

p(w|a,b) =
N∏
i=1

∫ ∞

0
N(wi|0, α−1

i )Gamma(αi|a,b)dαi.

(10)
Since the prior of w is assumed to be a zero-mean
Gaussian distribution that conjugates to aGamma prior,
the probability density p(w|a,b) corresponds to the
Student’s t-distribution [34].This achieves sparsity as the
Student’s t-distribution can be strongly peaked atwi = 0
with appropriate choices of a and b [16], [34].

Combining the likelihood function and the prior
given by equations (6) and (7), respectively, the poste-

rior distribution of the weights can be found from

p(w|x∗,α, σ 2) = p(x∗|w, σ 2)p(w|α)
p(x∗|α, σ 2)

. (11)

As the likelihood function and prior are both Gaus-
sian, the posterior distribution over w is also a Gaussian
distribution:

p(w|x∗,α, σ 2) = N(w|μ, �),

= (2π )−N/2|�|−1/2 exp
{
−1
2
(w − μ)T�−1(w − μ)

}
,

(12)

where the mean vector and covariance matrix, respec-
tively, are given by

μ = σ−2�XTx∗ (13)

and

� = (A + σ−2XTX)−1. (14)

Note thatμ and� are dependent on σ 2 and α. There-
fore, the goal is to find the posterior probability den-
sity function over all the unknown parameters given
the training image features and the testing image fea-
ture. This means finding the values for w, α, and σ 2 that
maximize the following posterior probability density
function:

p(w,α, σ 2|x∗) = p(w|x∗,α, σ 2)p(α, σ 2|x∗). (15)

Finding the optimal w, α, and σ 2 involves two steps.
First, for the current values of μ and �, the values of
α and σ 2 are calculated to maximize p(α, σ 2|x∗). Then,
these values are substituted to re-evaluate μ and �. This
process is then repeated until a convergence criterion is
met. In the first step, μ and � are fixed then, and maxi-
mizing equation (15) is equivalent to maximizing

p(α, σ 2|x∗) = p(x∗|α, σ 2)p(α)p(σ 2)
p(x∗)

, (16)

where the denominator is independent of α and σ 2.
Therefore, only p(x∗|α, σ 2)p(α)p(σ 2) has to be maxi-
mized. Furthermore, by selecting a, b, c, and d to be
small positive values, there are flat, uninformative priors
over α and σ 2 [34]. Maximizing equation (16) is approx-
imately equal to maximizing the marginal likelihood:

p(x∗|α, σ 2) =
∫

p(x∗|w, σ 2)p(w|α)dw, (17)

with p(x∗|w, σ 2) and p(w|α) being given in equations (6)
and (7), respectively. The full derivation of the marginal
likelihood function is given in Appendix A.

Equation (17) is a convolution of two zero-mean
Gaussians and the logarithm of the result gives

L(α, σ 2) = ln
(
p(x∗|α, σ 2)

)
= ln (N(x∗|0,C))

= −1
2

(
M ln(2π ) + ln |C| + x∗TC−1x∗

)
, (18)
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where theM ×M matrix C is given by

C = σ 2IM + XA−1XT. (19)

A type IImaximum likelihood approximation is used
to estimate α and σ 2 [34], which gives

αnew
i = 1 − αi�ii

μ2
i

, (20)

(σ new)2 = ||x∗ − Xμ||22
M − ∑N

i (1 − αi�ii)
, (21)

where �ii is the ith diagonal element of � in equation
(14). The parameters α and σ 2 are functions of μ and
�, while μ and � are functions of α and σ 2. This leads
to an iterative algorithm to update each variable until
a convergence criterion has been met. The derivation
of the update equations in (20) and (21) is provided in
Appendix B.

IV. THE PROPOSED BACKPROPAGATION BAYESIAN
COMPRESSIVE SENSING CLASSIFIER AND
COLUMN-BASED SUBSPACE SAMPLING

A. Backpropagation Bayesian Compressive Sensing
Classifier

Given that the training images in X belong to K
classes, where the class label i ∈ {1, 2, . . . ,K}, the train-
ing image features can be separated according to their
labels. This gives X = [X1,X2, . . . ,Xi, . . . ,XK], where
Xi contains all of the training image features belonging
to the ith class. Suppose that there are ni samples in the
ith class, then all of the training image feature vectors
in the ith class are given by Xi = [xi1, x

i
2, . . . , x

i
ni ]. No-

tice that this process only separates the training image
feature vectors by their labels, and the total number of
training image feature vectors does not change. Hence,∑K

i ni = N.
Therefore, an original testing image feature vector

can be reconstructed by using the estimated weight
vector ŵ:

x̃∗ = [X1,X2, . . . ,XK]

⎡
⎢⎢⎢⎣
ŵ1

ŵ2

...
ŵK

⎤
⎥⎥⎥⎦ , (22)

where x̃∗ is an estimate of the original image feature vec-
tor x∗ and ŵ = [[ŵ1]T, [ŵ2]T, . . . , [ŵK]T]T. Based on the
assumption that the testing image feature vector is a lin-
ear combination of a few image feature vectors from
its corresponding class, nonzero-valued elements in ŵ
should be only in ŵi if the testing image feature vector
belongs to class i.TheBCS approach [17], [20] assigns the
testing image feature vector to class i if it has the highest
norm-2 magnitude of ŵi.

However,when there are training image feature vec-
tors with no or a very small number of points of inter-

est, most of the resulting feature vectors are zero val-
ued. This would allow large weight values in ŵ without
detrimentally affecting the likelihood value when eval-
uating equation (6). These inappropriately large weight
values can lead to data being misclassified when using
the l2-norm of the weights as a classification mechanism.
To overcome this problem, this work proposes a classifi-
cation approach based on a backpropagation process as
described below. Note that the backpropagation here is
a reconstruction process, in which the weights are propa-
gated back in order to reconstruct the input feature vec-
tor. This is different with the backpropagation process
used in neural network.

The proposed approach reconstructs the testing im-
age feature vector by a BCS process in which the image
feature vectors are represented by equation (22). Simi-
lar to SRC, the weight vector ŵ is separated into K vec-
tors with each vector keeping the value in its correspond-
ing weight locations and setting the remaining values to
zero: ⎡

⎢⎢⎢⎣
ŵ1

ŵ2

...
ŵK

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ŵ1

0
...
0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
ŵ2

...
0

⎤
⎥⎥⎥⎦ + · · · +

⎡
⎢⎢⎢⎣

0
0
...

ŵK

⎤
⎥⎥⎥⎦ ,

ŵ = w̃1 + w̃2 + · · · + w̃K, (23)

where w̃i ∈ RN×1 and i ∈ {1, 2, . . . ,K}. Each w̃i is used
to reconstruct the testing image feature xicons as follows:

xicons = Xw̃i. (24)

The testing image feature vector x∗ is assigned to a
class corresponding to the most similar reconstructed
image feature vector.More specifically, if the testing im-
age feature vector recovered by w̃i has the highest sim-
ilarity with the original testing image feature vector x∗,
then this testing image feature vector can be classified
into the ith class. In order to compute the similarity be-
tween the image feature vector recovered by w̃i and the
original image feature vector x∗, an error term is defined
for each class:

Err(i) = ||x∗ − xicons||2. (25)

Then, the testing image feature vector can be classified
into the class that gives the minimum error. SRC, BCS,
and BBCS classifiers all need a dictionary composed by
training data; hence, they are naturally inefficient for
large datasets.

B. Column-Based Subspace Sampling

Estimating the coefficients in equation (5) for BBCS
can be time consuming when X is high dimensional.
PCA can solve this problem by mapping the data into
a lower dimensional data space. However, as the space
has been altered, each entry can be difficult to inter-
pret. The column-based subspace sampling method can
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avoid these problems [24]. It selects the “best” subset of
h columns from X, where h < N.

LetXk represent the “best” rank-k approximation to
X by singular value decomposition. The output matrix
D ∈ RM×h consists of h columns from X such that the
inequality in equation (26) is valid for a probability of at
least 1 − δ.

||X − DD+X||F � (1 + ρ)||X − Xk||F , (26)

where || · ||F is the Frobenius norm, D+ is a Moore–
Penrose generalized inverse of D, ρ is an error param-
eter, and δ is the failure probability.

Define a score for each column in “X” in the follow-
ing form:

π j = 1
k

k∑
ξ=1

(vξ

j )
2, (27)

where vξ

j ( j = 1, 2, . . . ,N) is the jth coordinate of vξ and
vξ ∈ RN×1 (ξ = 1, 2, . . . ,k) is the top right k singular
vectors of X. A random sampling process is applied on
X and the jth column of X is adopted with probability
min{1,hπ j}, where h = O(k log k/ρ2). All the adopted
columns then generate the target matrixD,with h exam-
ples to represent the original dataset. The detailed proof
is given in [24] and [26].

V. PERFORMANCE EVALUATION FOR VEHICLE LOGO
RECOGNITION

The proposed BBCS can be used as a generic
classifier. In this paper, we implemented for VLR. Rec-
ognizing vehicle logos and traffic scenes is of paramount
importance for intelligent transportation systems, es-
pecially for traffic monitoring and management. The
vehicle logo is one of its most distinguishable vehicle
features [11] and as part of systems it can facilitate
detecting fraudulent plates even when the observed
logo is not available in the police security database [35].
As a result, this could give robust vehicle identification
also in commercial investigations [1] and document
retrieval systems [36]. VLR is also plays a crucial role in
self-driving cars, traffic safety [37], and surveillance [38].

In this section, the open VLR dataset provided by
Huang et al. [6] is used to evaluate the proposed classifi-
cation approach. It has 10 categories and each category
contains 1000 training images and 150 testing images.All
images have a size of 70×70 pixels. Fig. 1 shows an exam-
ple of the 10 vehicle categories by randomly choosing
one image from each category in the training dataset.

The local descriptor SIFT [27] and the bag of words
[39] model are applied in order to represent images be-
fore the classification. All SIFT interest points are clus-
tered in order to generate a dictionary with M words.
In the representation stage, interest points from an im-
age are replaced by their nearest words in the dictio-
nary. This allows each image to be represented as a fea-
ture vector of lengthM, whereM is the number of cen-

Fig. 1. Vehicle logo dataset.

troids in the clustering process in the bag ofwordsmodel.
The value in each entry of the vector is the normalized
frequency of each word that appeared in an image. In-
creasing M gives more detailed information about the
feature but increases the computation costs. Further de-
tails about representation models can be found in [40]
and [41].

The performance evaluation is conducted in
MATLAB on a computer with the following speci-
fication: Intel CPU i5-4590 (3.4 GHz) and 8 GB of
RAM. The open-source library VLFeat [42] is applied
for extracting the SIFT features. A comparison is made
with the SRC (implemented using CVX [43], [44]), BCS
classifier, and KNN classifier. In our experiment,K = 1
achieves the best result for clear images. Different K
values influence the result when images are noisy, while
the prior knowledge of images is unknown. Therefore,
as it is commonly done in the literature [14], [25], here
a value of K = 1 is selected for all considered examples.
The performance of each method is evaluated in terms
of accuracy (percentage of correctly classified images),
the total number of misclassified images, and the com-
putation time (to indicate the relative computational
complexities).

A. Classification Comparisons for Vehicle Logo
Recognition

This subsection compares the performances of the
classification methods when applied to the images that
are provided in the dataset [6]. The simulation is re-
peated 30 times, and the average accuracy is found and
given with the corresponding standard deviation. The
computation time and number of misclassified images
are also given as the mean results for all the simulation
runs.

Table I shows that the BBCS classifier achieves the
highest accuracy of 98.91%. Table I also indicates that
the BCS classifier is less accurate than the SRC and
BBCS classifier. For example, when M = 300, the BCS
classifier incorrectly classifies 138 images, while this is
reduced to 17 images for the BBCS classifier. In this
case, the number of misclassifications is reduced by 88%
without increasing the computational cost. For all the
values of M considered, there was a mean reduction in
the number of misclassified logos of 87% for the BBCS
classifier as compared to the BCS classifier. The compu-
tation times in Table I show that this improvement in
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Table I
Nonparametric Classifiers’ Comparison Using SIFT Descriptors withM = 100, 200, 300, 400, and 500

Classifiers KNN SRC BCS BBCS

M = 100 Accuracy (%) 98.29 ± 0.36 98.30 ± 0.44 92.17 ± 0.77 98.24 ± 0.32
Misclassified images 25.65 25.50 117.45 26.40
Time (s) 0.97 6357 868 868
M = 200 Accuracy (%) 98.72 ± 0.24 98.73 ± 0.25 91.36 ± 0.54 98.60 ± 0.28
Misclassified images 19.20 19.05 129.60 21
Time (s) 1.84 7804 2358 2358
M = 300 Accuracy (%) 98.63 ± 0.27 98.78 ± 0.24 90.77 ± 0.75 98.86 ± 0.22
Misclassified images 20.55 18.30 138.45 17.10
Time (s) 2.70 8360 3120 3120
M = 400 Accuracy (%) 98.67 ± 0.30 98.83 ± 0.23 90.37 ± 0.77 98.91 ± 0.24
Misclassified images 19.95 17.55 144.45 16.35
Time (s) 3.54 9116 3360 3360
M = 500 Accuracy (%) 98.74 ± 0.23 98.86 ± 0.19 90.25 ± 0.95 98.84 ± 0.25
Misclassified images 18.90 17.10 146.25 17.40
Time (s) 4.17 9582 3497 3497

Fig. 2. The first row illustrates some challenge images, and the second, third, and fourth rows are the corresponding results classified by KNN,
SRC, and BBCS, respectively.

classification accuracy comes without an increase in
computational complexity.

The SRC and BBCS classifier give very similar clas-
sification accuracies. However, the BBCS classifier has
a significant advantage in terms of computational costs.
For the example, when M = 300, the proposed BBCS
classifier reduces the computational cost by 63% when
compared with the SRCwhile giving a slightly improved
accuracy compared with the SRC algorithm.When com-
paring the computation times of the proposed BBCS
classifier to the SRC, for all values ofM considered, there
is a mean reduction in the computation time of 68%.
It only takes about 2 s to recognize an image using the
BBCS classifier (note, that the times in Table I are for
classifying all images in the testing dataset). The com-
putation times show that the KNN classifier is quicker
than the proposed BBCS classification approach. How-
ever, later results will show that the KNN classifier is
more vulnerable to the effects of noise than the BBCS
approach.

According to these results, the computation times for
the BCS and BBCS are the same. However, the accu-
racy is consistently lower for the BCS classifier as com-
pared to the BBCS classifier. The accuracy of the other
two classifiers considered in the comparison also out-
performs the BCS-based method. As a result, the BCS-
based classifier will not be considered further in this per-
formance evaluation.

Fig. 2 shows 20 images (from the original testing
dataset) that the KNN algorithm fails to satisfactorily
classify.The first row gives the images that are under con-
sideration and the second row gives the classification re-
sults from the KNN classifier. For comparison, the SRC
and BBCS classification results are shown in rows 3 and
4, respectively. The relative performances of the three
methods are also further summarized in Table II. Here,
it can be seen that both methods outperform the KNN
algorithm in terms of classification accuracy. The BBCS
classifier gives the highest classification accuracy overall.
Note that the 30 independent simulation runs are con-
ducted with the final selected class being the most fre-
quent overall.

B. Classification Comparisons with Noise

In practice, it is unlikely that the logos being classi-
fied will be clearly visible.Hence, here different levels of
Gaussian white noise are added to the training images
and testing images in order to examine the performance

Table II
Accuracies Obtained Using Challenging Data

Classifier KNN SRC BBCS
Accuracy 19.17% 43.83% 47%
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Fig. 3. An example of a training image and the effect by adding
Gaussian white noise to image intensities with zero mean and

variance values of 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 from left to
right, respectively.

of the classifiers. Due to computational costs, onlyM =
300 will be considered in this subsection and those that
follow. This has been selected as a compromise between
accuracy and computational costs.

Fig. 3 shows an example of a training image and the
effects of adding noisewith increasing values of variance.
The intensities of all pixels in the image are normalized,
giving values between 0 and 1.A white Gaussian noise is
then added to each pixel,which varies the pixel intensity,
with the effects of different variance levels being investi-
gated. Normally, an image is considered highly contami-
nated if the variance of the Gaussian noise is above 0.2.
The noise variance levels in the training and testing im-
ages are denoted as σ 2

train and σ 2
test, respectively.

Ten independent classification simulation runs are
then carried out using the noisy images and the mean
accuracies are shown in Fig. 4. Although adding a small
amount of noise to the training images can initially offer
an improvement in terms of classification accuracy, there
is a degradation in performance when it is is increased
further.

According to the authors’ experience, there are more
SIFT features that could be detected in slightly noisy im-
ages.This results in a better image representation vector.
It can be explained by the fact that the use of the small
amount of noise preserves more edges than for clear im-
ages after the Gaussian smoothing process used in the
SIFT algorithm. However, an increase of the noise level
makes difficult to recover the image. As the noise vari-
ance is increased, less and less SIFT features can then be
detected as the images are then severely damaged by the
noise.

Fig. 4 shows that the KNN classifier is the most
vulnerable to the effects of noise. It can be explained
by the fact that the KNN classifier only calculates the
Euclidean distance, while the other two allow for some
error when modeling a testing image feature as a linear
combination of the training image features. The perfor-
mances of the BBCS classifier and the SRC are simi-
lar, while the BBCS classifier tends to be more accurate
compared with the SRC when the training images are
heavily contaminated by noise. For instance, when the
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Fig. 4. Noise robustness comparisons for the KNN, SRC, and BBCS
classifiers.

noise variances are 0.25 in the training and testing im-
ages, the BBCS classifier and the SRC achieve 75.87%
and 73.79%, respectively. Furthermore, when the noise
variances increase to 0.3, the BBCS classifier and the
SRC can achieve 70.05% and 67.82%, respectively.

C. Column-Based Subspace Sampling

In this section, a reduced number of training images
are used to evaluate the situation where the size of the
dictionary is large. Table III shows the time and compu-
tational cost comparisons for different classifiers. Using
the column-based subspace sampling method, the par-
tial dictionary size is decreased to 20% and 10% (de-
noted as p1 and p2, respectively) when compared to
the original dataset (denoted as f ). The computational
cost decreases about 6 times (p1) and 11 times (p2),
while the accuracy drops slightly. The proposed BBCS
approach requires an overall time of 500 and 277 s, re-
spectively, which is 0.3 and 0.18 s per image. The ex-
periments are performed over 1500 images. This could
still be applied to real-time applications. Even though
the computational cost of the proposed algorithm is still
higher than the cost of the KNN algorithm, it is more ro-
bust than the KNN when applied to noisy images. Since
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Table III
Comparisons Between Using the Full and Partial Dictionaries

Classifiers KNN( f ) SRC( f ) BBCS( f )

Accuracy (%) 98.63 ± 0.27 98.78 ± 0.24 98.86 ± 0.22
Misclassified images 26.33 18.30 17.10
Time (s) 2.70 8360 3120
Classifiers KNN(p1) SRC(p1) BBCS(p1)
Accuracy (%) 97.32 ± 0.47 98.54 ± 0.31 98.24 ± 0.35
Misclassified images 40.20 21.83 26.83
Time (s) 0.25 1436 500
Classifiers KNN(p2) SRC(p2) BBCS(p2)
Accuracy (%) 96.75 ± 0.86 97.49 ± 0.61 96.94 ± 0.52
Misclassified images 40.20 21.83 26.83
Time (s) 0.13 1170 277

10% data reduction does not decrease the accuracy sig-
nificantly, the next experiments are performed with 10%
data reduction as a trade-off between the computational
cost and accuracy.

Fig.5 shows the result of different classifiers when the
dictionary size is decreased to 10% of the original size
by the column-based subspace sampling method. When
comparing the accuracies to those shown in Fig. 4, the
accuracy of each classification method has been reduced
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Fig. 5. Noise robustness comparisons when there are 10% training
examples in each class using the column-based subspace sampling.
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Fig. 6. Noise robustness comparisons when there are 1% training
examples in each class using the column-based subspace sampling.

when compared to Fig. 5. Moreover, Fig. 5 shows that
the KNN classifier is vulnerable to noise and the SRC is
only marginally more accurate than the BBCS classifier,
despite having previously been shown to be less compu-
tationally efficient. However, the computational cost is
dropped as the dictionary size has decreased by a factor
of 10.

The size of the training dataset is further decreased
to only 1% selected images for each class in each of the
10 independent simulations, with the resulting classifica-
tion accuracies being shown in Fig. 6. In this case, the
accuracies of the KNN classifier are not as high as those
of the BBCS algorithm, especially when the noise lev-
els increase. The SRC does not work any more since
M > N and the system is no longer underdetermined.
Note that the conventional compressive sensing frame-
work (as used in the SRC) is specifically designed for sys-
tems that are under-determined [15]. This leads to a ran-
dom guess that can only achieve 10% accuracy as there
are 10 classes with equal number of logos in each class.

VI. PERFORMANCE EVALUATION FOR SCENE
RECOGNITION

The previous section considered the application of
BBCS for VLR. TSR is a very similar topic in smart
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cities. Here, the FM2 dataset [45] is considered. This
dataset contains 6237 images from eight classes: high-
way, road, tunnel, tunnel exit, settlement, overpass, toll
booth, and dense traffic. Seventy percent of the images
are randomly chosen for the training stage and the rest
30% of images are for testing purposes. Fig. 7 illustrates
some examples of the FM2 dataset.

A pre-trained CNN framework (AlexNet [28]) is
used for feature extraction. Instead of using the original
weights from the network that was trained on other im-
ages, this work replaces the last fully connected layer to
200 neurons and fine-tunes the weights based on traf-
fic scene images. Hence, each image is represented by
a vector of length 200. Note that the focus is on the
classification method rather than on the image feature
extraction.

The column-based subspace sampling representation
is applied to each training group.Since each class has im-
balanced training data, the experiment sets a maximum
number of 200 to each class.When a class has more than
200 training images, the column-based subspace sam-
pling method is applied to this class. A comparison with
a recently developed deep learning approach, the CNN
from [28], is performed, where the weights are trained
for classification. Note that in CNN the classification is
applied directly without using column-based subspace
sampling. Since the parameters are fixed based on the
whole training dataset, there is no need of retraining a
network using a much smaller dataset. However, the re-
sults forKNN,BBCS, and SRC are achieved on the new
dataset after the column-based subsampling.

Table IV shows the result from each classifier. Zero-
mean Gaussian noises with different noise variances are
applied on these training images and testing images.
Without adding any noise, the CNN achieves the high-
est accuracy. However, when increasing the noise, the
CNN becomes fragile. Similar research shows that when
changing the intensity of even a single pixel, the classifi-
cation result changes [46]. However, using the extracted
features from CNN and applying them to other classi-

Table IV
Classifiers’ Accuracy Comparisons Using Features Extracted by CNN

Based on the FM2 Dataset

Noise variance CNN (%) KNN (%) SRC (%) BBCS (%)

0 87.70 84.41 87.00 86.31
0.01 57.01 73.21 79.73 79.89
0.1 10.59 56.04 57.59 64.39
0.2 7.43 52.03 42.51 54.33

fiers leads to better results. Increasing the noise level, the
proposed BBCS achieves the best results. This is impor-
tant as the real images are not always clear. Fig. 8 illus-
trates how different noise levels influence an image.

VII. APPLICATION OF BBCS TO ALTERNATIVE
DATASET

The proposed BBCS approach has the potential to
be applied to other areas, not only to VLR and TSR.
In this performance validation, the CIFAR-10 dataset
[47] is used. This dataset consists of 50,000 training im-
ages and 10,000 testing images. Here, a CNN similar to
[28] is trained on the new dataset. The network contains
three convolution layers with 48, 96, and 192 3-by-3 ker-
nels.Each convolutional layer is followed by a batch nor-
malization layer and a max-pooling layer. Two fully con-
nected layers are followed with 512 and 200 neurons, re-
spectively. The ReLU non-linear function [28] is applied
to all neurons, except the softmax being applied to the
neurons in the last layer. The last fully connected layer
is used as the feature. Hence, each image is represented
by a vector of length 200.

The column-based subspace sampling is applied to
each training group.This process picks 200 image feature
vectors from 5000 image feature vectors in each group
(4% of the original size). Hence, in order to avoid using
all image feature vectors, the dictionary X is formed by
only 2000 representative image feature vectors.Both the

Highway Road Tunnel Exit

Settlement Overpass Booth Traffic

Fig. 7. Example of classes from the FM2 dataset.

A NONPARAMETRIC BAYESIAN COMPRESSIVE SENSING CLASSIFICATION 65



Fig. 8. An example of a traffic scene image with different levels of noises.

Table V
Classifiers’ Accuracy Comparisons Using Features Extracted by CNN

Based on the CIFAR-10 Dataset

Noise variance CNN (%) KNN (%) SRC (%) BBCS (%)

0 81.87 68.79 78.53 73.40
0.01 47.60 52.77 52.51 58.36
0.02 36.37 42.39 43.80 46.98

CNN and BBCS approaches train the weights for clas-
sification. Similarly, in CNN the classification is applied
directly without using column-based subspace sampling.

Table V gives the performance of each classifier.
Zero-mean Gaussian noises with different noise vari-
ances are added on these training images and testing im-
ages. Note that here the noise level is lower than that in
the VLR dataset. The reason for this is the images in the
CIFAR-10 dataset are tiny color images. A small color
image can be easily contaminated by adding up the noise
effects from each channel. Fig. 9 illustrates the effect
of the noise contamination. Similar to the TSR dataset,
the result shows that the CNN classifier is not robust to
noise.However,using the features extracted by the CNN
and applying it to other classifiers could achieve better
accuracy.This is important as clear images are not always
guaranteed in real applications. Table V also shows that
SRC should achieve good accuracy when the images are
noise free, even if only 4% training images are applied.
However, when the images are noisy, the BBCS algo-
rithm achieves the best accuracy.Again, both BBCS and
SRC perform better than the KNN algorithm.

VIII. CONCLUSION

This paper proposes a novel nonparametric classifi-
cation approach, namely the BBCS classifier. The nov-

Fig. 9. An example of an image from the CIFAR 10 dataset with
different levels of noises.

elty of the work has two main components: 1) the pro-
posed back propagation process, and 2) the proposed
column-based subspace sampling to reduce the size of
the dataset and associated computation costs.

The developed approach relies on the constructing
of the testing image feature using partial information
from the weights estimated by BCS. Note, that for each
class there is a corresponding reconstructed image fea-
ture.By comparing the reconstructed image feature with
the testing image feature, the objects of interest are re-
constructed and classified.

The proposed backpropagation process gives a sig-
nificant reduction of the misclassification error. For
VLR, the number ofmisclassified testing images reduces
by 87% when compared with the BCS classifier. Com-
pared with the SRC, the BBCS algorithm gives a similar
recognition accuracy,while decreasing the mean compu-
tational cost by 68%. However, the SRC does not work
when the training dataset is small while the BBCS algo-
rithm shows accurate results in the same situation.More-
over, the proposed classifier and column-based subspace
sampling have been shown to be robust to the effects of
heavy noise, unlike theKNN classifier.The proposed ap-
proach is a general nonparametric classifier and is also
validated on the TSR dataset and on the CIFAR-10 im-
age dataset.

APPENDIX A
MARGINAL LIKELIHOOD MAXIMIZATION

The following gives a detailed derivation for the
marginal likelihood in equation (17). By combining
equations (6) and (7), the marginal likelihood can be
expanded to

p(x∗|α, σ 2)

=
∫

p(x∗|w, σ 2) p(w|α)dw

= (2πσ 2)−M/2(2π )−N/2|A|1/2

×
∫

exp
{
− 1
2σ 2

||x∗ − Xw||22 + wTAw
}
dw.

(A1)

In order to simplify equation (A1), define

Q = 1
2

{
1
σ 2

||x∗ − Xw||22 + wTAw
}

. (A2)
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Combining with equations (13) and (14), equation
(A2) can be given as

Q = 1
2

(
x∗Tx∗

σ 2
− μT�−1μ

)
+ 1

2
(w − μ)T�−1(w − μ).

(A3)

In order to simplify equation (A3), we set

T = 1
2

(
x∗Tx∗

σ 2
− μT�−1μ

)
. (A4)

Therefore, the integral part on the right-hand side of
equation (A1) is given by∫

exp{−Q}dw = (2π )N/2|�|1/2 exp {−T} . (A5)

Substituting equation (A5) back in equation (A1)
gives

p(x∗|α, σ 2) = (2πσ 2)−M/2|A|1/2|�|1/2 exp{−T}. (A6)

This can be further simplified by

p(x∗|α, σ 2)

= (2π )−M/2 1
σM

1
|IN + σ−2A−1XTX|1/2 exp{−T},

(A7)

where IN = A−1A. Using the matrix determinant prop-
erties [48] that |IN +DTB| = |IM+DBT| withD ∈ RM×N

and B ∈ RM×N , the above equation can be updated to

p(x∗|α, σ 2)

= (2π )−M/2 1
|σ 2IM + XA−1XT|1/2 exp{−T}. (A8)

Recall that T is given in equation (A4) and it can be
expressed as follows:

T = 1
2

(
x∗T

[
σ−2IM − σ−2X(A + σ−2XTX)−1XTσ−2

]
x∗

)
.

(A9)
According the Woodbury inversion identity [34]

[σ−2IM − σ−2X(A + σ−2XTX)−1XTσ−2]

= (σ 2IM + XA−1XT)−1, (A10)

equation (A9) can be expressed as

T = 1
2

(
x∗T(σ 2IM + XA−1XT)−1x∗

)
. (A11)

Therefore, equation (A8) can be given as

p(x∗|α, σ 2) = 1√
(2π )M|C| exp

{
−1
2
x∗TC−1x∗

}
,

(A12)

which links back to equation (18),with theM×Mmatrix
C given by

C = σ 2IM + XA−1XT. (A13)

APPENDIX B
EVIDENCE APPROXIMATION

This section presents the derivation of the marginal
log-likelihood function and its maximization with re-
spect to αi and σ 2.We can express T from equation (A4)
as follows:

T = 1
2σ 2

||x∗ − Xμ)||22 + 1
2
μTAμ. (B1)

Hence, taking the logarithm of the marginal like-
lihood given in equation (A6), the logarithm of the
marginal likelihood can be obtained in the following
form:

L(α, σ 2) = −M
2

ln σ 2 − M
2

ln(2π ) + 1
2

N∑
i=1

lnαi

+1
2
ln |�| − 1

2σ 2
||x∗ − Xμ)||22 − 1

2
μTAμ.

(B2)

The procedure ofmaximizing equation (B2)with respect
to αi and σ 2 is known as the evidence approximation
procedure.

Following the approach from [49], the derivative of
ln |�| with respect to αi is

d
dαi

ln |�| = d
dαi

− ln |�|−1 = −Trace� = −�ii, (B3)

where �ii is the ith diagonal component of the posterior
covariance matrix � and Trace is the trace of a matrix.
Therefore, the derivative ofL(α, σ 2) from equation (B2)
with respect to αi is

dL(α, σ 2)
dαi

= 1
2αi

− 1
2
�ii − 1

2
μ2
i . (B4)

Setting the derivative to zero gives equation (20).
In order to simplify dL(α, σ 2)/dσ 2, set β = 1/σ 2.

Following the approach from [50], the derivative of ln |�|
with respect to β is

d
dβ

ln |�| = d
dβ

− ln |�|−1

= −Trace(IN − �A)β−1. (B5)

Therefore, the derivative ofL(α, σ 2) from equation (B2)
with respect to β is

dL(α, σ 2)
dβ

= M
2β

−1
2
||x∗−Xμ)||22−

1
2
Trace(IN − �A)β−1.

(B6)
Setting the derivative to zero gives equation (21).
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