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From the Associate
Editor-in-Chief
December 2020

David Frederic Crouse

The Ubiquity of Multisensor Fusion

The topic of multiple sensor fusion is becoming in-
creasingly mainstream. For example, while cellphones
have long contained cameras, magnetometers, and ac-
celerometers, they now contain LiDAR (Light Detec-
tion andRanging) [1] as well.A smartphone can even be
strapped to one’s arm to serve as a goniometer to mea-
sure the range of motion of a joint [2].Even some smart-
watches have started sporting small W-band radars for
gesture recognition [3].

The cost of sensors is decreasing as their ubiquity
is increasing. This means that opportunities for hobby-
ists abound. For example, while until a few years ago
simultaneous localization and mapping (SLAM) was
more within the purview of the military, Google has
now started open sourcing software for LiDAR-based
SLAM [4].

Given the diversity of low-cost sensors available
nowadays, it is natural to want to fuse all of the avail-
able information. A prerequisite to sensor fusion is
that one establish a common coordinate system across
sensors. Two papers in this issue address this topic.
The paper “Bias Estimation for Collocated Sensors:
Model Identification and Measurement Fusion” consid-
ers measurement-level registration and fusion of collo-
cated sensors.These could be for autonomous driving,or
perhaps for some augmented reality feature in a smart-
phone. Additionally, the topic of multisensor fusion is
taken up with the paper “Statistically Efficient Multi-
sensor Rotational Bias Estimation for Passive Sensors
Without Target State Estimation,” which addresses fu-
sion between noncollocated passive angle-only sensors.

The third paper of this issue addresses additional
challenges ofmultisensor fusionwhile handling a variety
of target states. Different sensors might not make mea-
surements or produce estimates at the same rate. Addi-
tionally, some sensors might produce estimates in differ-
ent coordinate systems from others. Many off-the-shelf
sensors contain built-in trackers, precluding the possi-
bility of a fully centralized tracking architecture. The
paper “Heterogeneous and Asynchronous Information
Matrix Fusion” addresses such issues. It considers the
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asynchronous fusion of tracks from sensors in different
coordinate systems.

While the fusion literature primarily focuses on
the fusion of single-model estimates across sensors,
the fourth paper of this issue, entitled “Track-to-Track
Fusion Using Inside Information From Local IMM
Estimators,” discusses how to fuse estimates from
sensors running interactive multiple model (IMM)
estimators. Given the mature state of the multiple-
model-estimation literature, it is good to see that the
time has arrived for an increasing number of multiple-
model-fusion algorithms.

Finally, the ISIF Journal of Advances in Information
Fusion (JAIF) always encourages the submission of ex-
panded papers from the International Conference on In-
formation Fusion.This year’s Fusion conference was vir-
tual for the first time due to the COVID-19 pandemic.
Hopefully, the worldwide approval and dissemination of
COVID-19 vaccines (and who knows, maybe even snif-
fer dogs [5]) will prove effective in stemming the out-
break and will allow for the 2021 Fusion conference to
be held as planned in Sun City, South Africa. I look for-

ward to seeing many members of the fusion community
there.
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Statistically Efficient Multisensor
Rotational Bias Estimation for
Passive Sensors without Target
State Estimation

MICHAEL KOWALSKI
YAAKOV BAR-SHALOM
PETERWILLETT
BENNY MILGROM
RONEN BEN-DOV

In target tracking applications, it is necessary to account for mea-

surement biases present within the sensors. For passive sensors, these

biases are commonly represented as unknown rotations of the sensor

measurements and must be estimated. As targets may move in un-

predictable ways, it is advantageous to decouple target state and sen-

sor bias estimation to simplify the estimation problem. To do this, a

bias pseudo-measurement method must be used in which the mea-

surements are converted and differenced to eliminate the presence

of the true target state. For passive angle-only sensors, it is impor-

tant to appropriately convert lines of sight into Cartesian space. By

using the closest point of approach method, it is possible to apply the

bias pseudo-measurement method to these sensors. The Cramér–Rao

lower bound can be obtained for this method, and, furthermore, it can

be attained by using a maximum likelihood estimation method.

I. INTRODUCTION

In target tracking, it is common that the sensors em-
ployed are subject to systematic errors known as sensor
measurement biases. Errors present in sensors, such as
calibration, alignment, or clock time [3], [12], can con-
tribute to such biases. These errors can also be related to
environmental effects such as temperature-due warping
of the sensor material and atmospheric refraction. Fur-
thermore,many of the advanced methods developed for
target tracking do not take into account these sources
of error, which can result in diminished performance.
Therefore, it is necessary to use methods to estimate
these biases and then remove the corresponding error
from the sensor measurements before implementing tar-
get tracking solutions.

In the past, there have been primarily two methods
of bias estimation that have been implemented.The first
is simultaneous target state and sensor bias estimation
[4], [6], [7]. In this method, the state of the target is
estimated jointly and simultaneously with the sensor
biases. A significant problem with this method is that
the target as a practical matter needs to be assumed to
be moving in a deterministic manner. If not, the target
state at all times must be estimated, which is compu-
tationally infeasible and prone to numerical problems
in ill-conditioned systems [20]. An additional issue is
the increase in the dimension of the parameter vector
that must be estimated: not just bias parameters but
also those of the targets. This is both a computational
concern (increased complexity) and one of perfor-
mance, since more parameters always mean more error.
On the other hand, the advantage with this method
is that should the state information be known, then it
is possible to achieve efficient results using all of the
measurement information.Additionally, there are fewer
issues with measurement synchronization [21].

The second method for bias estimation is to use bias
pseudo-measurements [9], [16], [20]–[22], [26]. In this
method, the original measurements are converted into
Cartesian within common coordinates [such as Earth-
centered Earth-fixed (ECEF)] and then differenced to
eliminate the true target state. This process leaves solely
the effect of the biases and noise, which are used as the
measurements for bias estimation. This can be advanta-
geous because it enables the system to decouple the pro-
cess of state estimation and bias estimation.The problem
with this method is that the removal of the target state
information can potentially reduce the effectiveness of
bias estimation, as some measurement information can
be lost. Additionally, conversions can be nonlinear and
result in additional error as the noise is converted.

The sensor biases can bemodeled inmany forms that
depend on the sources of error that affect the types of
sensors in question. For example, there are results in-
vestigating bias estimation to additive andmultiplicative
biases [16], [22], [26]. These biases affect the measure-
ments directly by adding an unknown value or multiply-
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ing them by an unknown value. In the present work, the
biases of angle-only (passive) sensors are explored. As
these sensors are line-of-sight (LOS) sensors, the biases
present are chosen to be modeled as a rotation of the
LOS around the sensor. The sensors provide two angle
measurements and have 3-D alignment error. The rota-
tion is a nonlinear Euler rotation using yaw (azimuth),
pitch (elevation), and roll (rotation of the field of view),
which is a challenge to estimate. Rotational bias estima-
tion has been examined using simultaneous target state
and bias estimation in the past, but little has been done
for the pseudo-measurement method [9], [19], [26]. In
particular, these methods achieve this by using a con-
version via LOS triangulation; however, this method has
drawbacks as a result of its nonlinear conversion that re-
lies on projecting the LOSs into a single plane [17]. The
present work seeks to improve upon the method of [19]
by using the closest point of approach (CPA) method of
conversion [18], which avoids observability problems by
working in 3-D instead of 2-D.

The CPA conversion used here is based on the
method of finding the closest point between non-
intersecting lines [1], [15]. This is made via a least-
squares framework, where the squared distance of a
point between two lines is minimized. A cost function is
made and differentiated in order to find this point,where
the derivative is zero. In three dimensions, this results in
simple expression that can be itself differentiated to ob-
tain the Jacobians that are necessary for the bias pseudo-
measurementmethod.Thismethod of conversion differs
from maximum likelihood (ML) conversion from LOS
to Cartesian as there is no iteration involved, such as in
[24], and instead an explicit expression is used.

In previous research, simultaneous target state and
bias estimation has often been used to overcome the
challenge of a nonlinear bias [4], [6], [7]. However, this
method relies upon having a target of opportunity that
moves deterministically, and in many applications, it is
impossible to predict a target’s motion as it may move in
nonlinear and maneuvering ways that do not fit the ex-
pected target motion. Therefore, it is desirable to decou-
ple the target state and the estimation of sensor bias.This
bias pseudo-measurement method has been applied to
additive and multiplicative biases in active sensors suc-
cessfully in previous research [16], [22], [26]. Most work
in angle-only LOS sensor bias estimation has been done
solely in 2-D bearings-only problems.Thesemethods are
limited to 2-D Cartesian space with angle-only sensors
and bias only in the one angle.Methods for bistatic mea-
surements have been introduced in [27] and [28]. In [25],
the pseudo-measurement method is applied with time-
of-arrival measurements to improve the accuracy. In [8],
a particle filter is shown to be usable for bias estimation
for bearings-only sensors. In [26], it was shown that it is
possible to find the Cramér–Rao lower bound (CRLB)
but that achieving it is difficult.There has been very little
work to apply pseudo-measurement techniques to 3-D
passive sensors [9]. The main contribution of the present

work over [9] and [26] is to show attainability of the
CRLB; i.e., our algorithm is statistically efficient. In ad-
dition, [9] is limited to biases in azimuth and elevation,
lacking a roll bias.

Once the pseudo-measurements are generated, it is
possible to use them to estimate the sensor biases sepa-
rately from the target state.To estimate the biases in sen-
sors, it is simple and effective to use theMLapproach im-
plemented via the iterated least-squares (ILS) method
if the biases are constant over a batch of measurements.
ILS estimation has been used in 3-D passive sensor [5]
and 3-D spherical sensor bias registration. In this paper,
ILS is used to estimate the rotational biases in 3-D pas-
sive sensors.

The outline of this paper is as follows. The passive
sensor model is defined in Section II. In Section III, the
passive sensor angle-only measurements are converted
into Cartesian coordinates. In Section IV, the pseudo-
measurement approach for estimating the biases is out-
lined in Section IV-A and the ML estimation described
in Section IV-B. The CRLB is presented in Section V.
Simulation results presented in Section VI show that the
proposed method yields sensor bias estimates that meet
the CRLB. Section VII concludes the paper.

II. PROBLEM FORMULATION

The problem formulation for this work involves tar-
get tracking using passive angle-only sensors in 3-D
Cartesian space. There areNt targets of opportunity and
Ns sensors that move over K time steps. The common
Cartesian reference frame is in ECEF coordinates. The
position of each sensor s, which is assumed to be known
by the network, is defined as

xs(k) = [xs(k), ys(k), zs(k)]T. (1)

These sensors are assumed synchronous. Each target t
has a position in the common Cartesian frame unknown
to the network, given by

xt (k) = [xt (k), yt (k), zt (k)]T. (2)

The targets can move in arbitrary ways, but their posi-
tions related to the measurement origin must be known
for all times.Each sensor has an LOS to the targets based
in its own reference frame. The position of the target t
with respect to the sensor s in the common Cartesian
frame translates to the sensor location as

xts(k) = xt (k) − xs(k). (3)

The sensor reference frame is rotated (with respect to
the common Cartesian frame) using the Euler angle ro-
tation method. The sensors are affected by the known
nominal rotation ωn

s and the unknown bias rotation ωb
s .

The target position in the rotated sensor frame is then

xt,n,bs (k) = Ts(ωn
s )Ts(ω

b
s ) (x

t (k) − xs(k)) . (4)

The biases consist of yaw, pitch, and roll, defined as θ ,
φ, and ψ , respectively. For clarity, the superscripts n and
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b are used to denote rotation variables for the nominal
rotation and bias rotation, respectively. A variable with
both superscripts is rotated by both. The rotations for
sensor s are defined as

ωn
s = [

θns φn
s ψn

s

]T
, (5)

ωb
s = [

θbs φb
s ψb

s

]T
, (6)

T (ωi
s) = T (θ is, φ

i
s, ψ

i
s) = Tθ (θ is)Tφ(φi

s)Tψ (ψ i
s) =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(θ ) cos(φ)
cos(θ ) sin(φ) sin(ψ )

− sin(θ ) cos(ψ )
cos(θ ) sin(φ) cos(ψ )

+ sin(θ ) sin(ψ )

sin(θ ) cos(φ)
sin(θ ) sin(φ) sin(ψ )

+ cos(θ ) cos(ψ )
sin(θ ) sin(φ) cos(ψ )

− cos(θ ) sin(ψ )

− sin(φ) cos(φ) sin(ψ ) cos(φ) cos(ψ )

⎤
⎥⎥⎥⎥⎥⎥⎦

,

i = n,b. (7)

The rotated positions (4) that are used by the sensors
produce the rotated azimuth and elevation measure-
ments (represented by ξ for the vector of azimuth α and
elevation ε, respectively)

ξ t,n,bs (k) =
[

αt,n,bs (k)

εt,n,bs (k)

]

=

⎡
⎢⎢⎣

tan−1
(
yt,n,bs (k)
xt,n,bs (k)

)

tan−1

(
zt,n,bs (k)√

xt,n,bs (k)2 + yt,n,bs (k)2

)
⎤
⎥⎥⎦ . (8)

Uncorrelated (across sensors), independent (across
time), zero-mean, white Gaussian noise is added to
obtain the measurements, denoted by wt,n,b,α

s (k) and
wt,n,b,ε
s (k) for azimuth and elevation, respectively. These

noises have variances (σα
s )

2 and (σ ε
s )

2. An expansion is
used to approximate the effect of the nominal rotation
in equation (5) and biases in equation (6) through the
use of Jacobians (seeAppendixA).This results in biased
and noisy measurements, denoted by ζ , with the mea-
surement equation

ζ t,n,bs (k) =
[

αt,n,bs (k)
εt,n,bs (k)

]
+

[
wt,α
s (k)

wt,ε
s (k)

]

≈
[

αt,bs (k)

εt,bs (k)

]
+

[
wt,α
s (k)

wt,ε
s (k)

]

+

⎡
⎢⎢⎢⎣

∂αt,n,bs (k)
∂θns

∂αt,n,bs (k)
∂φn

s

∂αt,n,bs (k)
∂ψn

s

∂εt,n,bs (k)
∂θns

∂εt,n,bs (k)
∂φn

s

∂εt,n,bs (k)
∂ψn

s

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

θns

φn
s

ψn
s

⎤
⎥⎥⎦

≈
[

αts(k)

εts(k)

]
+

[
wt,α
s (k)

wt,ε
s (k)

]

+

⎡
⎢⎢⎢⎣

∂αt,bs (k)
∂θbs

∂αt,bs (k)
∂φb

s

∂αt,bs (k)
∂ψb

s

∂εt,bs (k)
∂θbs

∂εt,bs (k)
∂φb

s

∂εt,bs (k)
∂ψb

s

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

θbs

φb
s

ψb
s

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎣

∂αt,n,bs (k)
∂θns

∂αt,n,bs (k)
∂φn

s

∂αt,n,bs (k)
∂ψn

s

∂εt,n,bs (k)
∂θns

∂εt,n,bs (k)
∂φn

s

∂εt,n,bs (k)
∂ψn

s

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

θns

φn
s

ψn
s

⎤
⎥⎥⎦

� ξ ts (k) +Ct,b
s (k)ωb

s +Ct,n,b
s (k)ωn

s + wt
s(k), (9)

with the measurement noises for the sensor LOS angles
being

wt,α
s (k) ∼ N (0, (σα

s )
2), wt,ε

s (k) ∼ N (0, (σ ε
s )

2). (10)

The matrix Ct,n,b
s is the Jacobian of the sensor LOS an-

gles (at the nominal and bias rotation)with respect to the
nominal rotation. The matrix Ct,b

s is the Jacobian of the
sensor LOS angles (at the nominal rotation) with respect
to the bias rotation. The corresponding partial deriva-
tives are given in Appendix A. These measurements are
assumed to be synchronous, although an asynchronous
extension is possible [21]. It is important to note that this
Taylor series expansion is an approximation, and in cer-
tain cases, the nonlinearity may cause additional error.
It is possible to add higher order elements into the ex-
pansion, as this is only a first-order expansion, in order
to reduce this error.

III. CONVERSION INTO THE COMMON CARTESIAN
COORDINATES

In order to produce bias pseudo-measurements, it is
necessary to first convert the angle-only measurements
into the common frame of reference.This is done by con-
verting them into the common Cartesian coordinates.
This can be done using the triangulationmethod [17] and
CPA [18]. In [19], the pseudo-measurement method was
originally proposed for passive sensors, albeit with the
planar triangulation method. The method was success-
ful; however, it required a relatively low noise standard
deviation. For this work, the CPA method is considered
as it is more accurate for converting to Cartesian [18],
even achieving theCRLBof coordinate conversion.This
is much simpler than the ML method used for conver-
sion as in [24], which requires a numerical search and
does not yield the necessary Jacobians.

Before the conversion to the common Cartesian co-
ordinates can be made, it is necessary to remove the
nominal rotation so that the LOSs are in the same com-
monCartesian coordinate reference frame.This rotation
is known and can be removed by inverting it using the
function hi, defined in equation (13). This calculation is
included in Appendix A. It is also necessary to account
for this in the noise covariance through the Jacobian D
that transforms the sensor LOS angle noises into the
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Fig. 1. Using CPA to convert azimuth measurements into 3-D
Cartesian measurements. The sensors have their own rotated

Cartesian frames with respect to the common Cartesian frame (ECI
or ECEF) shown in the center. The LOS measurements are present
as rays L1 and L2. The two closest positions on the LOSs are found,
xt,c1,2′ (k) and x

t,c
1,2′′ (k), with respect to the common frame and the

midpoint xt,c1,2(k) is accepted as the measurement of the target
position.

rotated LOS noises (this rotation converts the sensor
LOS angles into the common Cartesian system angles).
This Jacobian is

Dt,n,b
s (k) =

⎡
⎢⎢⎢⎢⎣

∂αt,bs (k)

∂αt,n,bs (k)

∂αt,bs (k)

∂εt,n,bs (k)

∂εt,bs (k)

∂αt,n,bs (k)

∂εt,bs (k)

∂εt,n,bs (k)

⎤
⎥⎥⎥⎥⎦ . (11)

The converted noise in the common Cartesian system
angles is

wt,b
s (k) = Dt,n,b

s (k)wt
s(k). (12)

The angle measurement equation in the common Carte-
sian frame is

ζ t,bs (k) = hi
(
ζ t,n,bs (k),ωn

s

)
(13)

≈ ξ t,bs (k) + wt,b
s (k) (14)

≈ ξ ts (k) +Ct,b
s (k)ωb

s +Dt,n,b
s (k)wt

s(k). (15)

The expanded definition of equation (13) and the in-
dividual partial derivatives are given in Appendix A,
where the approximation is the Taylor series to first or-
der.1 The CPAmethod uses two LOSs and finds for each

1This conversion is an approximation as the presence of the unknown
bias may add some error from the nonlinear conversion from the sen-
sor frame to the common frame.The approximation’s error is based on
the presence of higher order components,which are negligible relative
to the biases themselves.

LOS the closest Cartesian positions along the other LOS.
The midpoint of these two points is the CPA and can be
accepted as a measurement of the Cartesian position of
the target. This process is illustrated in Fig. 1. Normally,
the midpoint of these positions is used as a single Carte-
sian measurement; however it is useful for bias estima-
tion to keep these positions separate in order to improve
the diversity of the pseudo-measurements. The super-
script c is used to indicate conversion via closest point
of approach, which is calculated as

xt,c12′ (k) =

⎡
⎢⎢⎣
xt,c12′ (k)

yt,c12′ (k)

zt,c12′ (k)

⎤
⎥⎥⎦ = x1(k) (16)

+λt1(k)
(λt1(k)

′p1,2(k)) − (λt1(k)
′λt2(k))(λ

t
2(k)

′p1,2(k))
1 − (λt1(k)′λ

t
2(k))2

,

xt,c12′′ (k) =

⎡
⎢⎢⎣
xt,c12′′ (k)

yt,c12′′ (k)

zt,c12′′ (k)

⎤
⎥⎥⎦ = x2(k) (17)

+λt2(k)
(λt1(k)

′λt2(k))(λ
t
1(k)

′p1,2(k)) − (λt2(k)
′p1,2(k))

1 − (λt1(k)′λ
t
2(k))2

,

λt1(k) =

⎡
⎢⎢⎣
cos(αt1(k)) cos(ε

t
1(k))

sin(αt1(k)) cos(ε
t
1(k))

sin(εt1(k))

⎤
⎥⎥⎦ , (18)

λt2(k) =

⎡
⎢⎢⎣
cos(αt2(k)) cos(ε

t
2(k))

sin(αt2(k)) cos(ε
t
2(k))

sin(εt2(k))

⎤
⎥⎥⎦ , (19)

p1,2(k) = x2(k) − x1(k) =

⎡
⎢⎣
x2(k) − x1(k)

y2(k) − y1(k)

z2(k) − z1(k)

⎤
⎥⎦ . (20)

In place of the true azimuth and elevation, the conver-
sion hc is made using the noisy measurements.

[
xt,c12′ (k)

xt,c12′′ (k)

]
= hc

(
ξ t1,2(k)

)
, (21)

ζ t,b,c1,2 (k) = hc
(
ζ t,b1,2(k)

)
. (22)
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The new noisy Cartesian measurement equation can be
rewritten similarly to equation (9) as

ζ t,b,c1,2 (k) ≈
[
xt (k)

xt (k)

]
+

[
wt,c

12′ (k)

wt,c
12′′ (k)

]

+Bt
1,2(k)

[
Ct,b
1 (k) 0

0 Ct,b
2 (k)

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θb1

φb
1

ψb
1

θb2

φb
2

ψb
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈ xt,E(k) + Bt
1,2(k)C

t,b
1,2(k)ω

b
1,2 + wt,b,c

1,2 (k). (23)

As it is a Taylor series expansion, this equation is an ap-
proximation. Depending on the case, higher order ex-
pansion via additional Jacobian terms may be necessary
to avoid error.ThematrixBt

1,2 is the Jacobian of the com-
mon Cartesian measurements with respect to the LOS
angles in the common Cartesian space, which is

Bt
1,2(k) =

[ ∇ξ t1,ξ
t
2
xt,c12′ (k)

∇ξ t1,ξ
t
2
xt,c12′′ (k)

]
. (24)

The Jacobian additionally affects the noise, which is

wt,b,c
1,2 (k) =

[
wt,c

12′ (k)

wt,c
12′′ (k)

]

≈ Bt
1,2(k)

[
wt,b

1 (k)

wt,b
2 (k)

]

∼ N
(
010×1,R

t,b,c
1,2 (k)

)
, (25)

Rt,b,c
1,2 (k) = Bt

1,2(k)D
t,n,b
1,2 (k)Rt,b,n

1,2 Dt,n,b
1,2 (k)′Bt

1,2(k)
′,

(26)

Rt,b,n
1,2 =

⎡
⎢⎢⎢⎢⎢⎣

(σα
1 )

2 0 0 0

0 (σ ε
1 )

2 0 0

0 0 (σα
2 )

2 0

0 0 0 (σ ε
2 )

2

⎤
⎥⎥⎥⎥⎥⎦ ,

where

Dt,n,b
1,2 (k) =

[
Dt,n,b

1 (k) 0

0 Dt,n,b
2 (k)

]
. (27)

It is not necessary to calculate the Cartesian target states
in order to generate the Jacobian matricesB,C, andD—
they are evaluated at the measured angles. The individ-
ual derivatives and gradients are given inAppendixA.A
higher order conversion may be used similarly to [23] in
order to avoid conversion error in the noise covariance
matrix as the noise is an approximation via a Taylor se-
ries expansion.

IV. BIAS ESTIMATION

A. Generation of the Bias Pseudo-Measurements

The key step of our method is to difference
Cartesian measurements from two pairs of sensors in or-
der eliminate the true target state and be left with solely
the effect of the biases and noise converted into Carte-
sian space. As the true Cartesian state is unknown, it is
advantageous to remove it from our measurements. This
way any error in the estimation of the Cartesian state
does not affect the estimation of the biases. The pro-
cess of converting all of the sensor measurements into
a common Cartesian frame allows its removal by sim-
ply differencing the measurements. This isolates the er-
ror from biases and noise. With the isolated error, it is
possible to estimate the biases by attempting to fit the er-
rors to what is expected in terms of the models used for
noise and bias.Denoted by superscript p, these “pseudo-
measurements” are calculated as

ζ
t,p
1,2,3,4(k) = ζ t,b,c1,2 (k) − ζ t,b,c3,4 (k)

≈ Bt
1,2(k)C

t,b
1,2(k)ω

b
1,2 − Bt

3,4(k)C
t,b
3,4(k)ω

b
3,4

+wt,b,c
1,2 (k) − wt,b,c

3,4 (k). (28)

This can be restructured into a new measurement equa-
tion similar to equations (10) and (23), where

ζ
t,p
1,2,3,4(k) ≈ Ht,p

1,2,3,4(k)

[
ωb
1,2

ωb
3,4

]
+ w

t,p
1,2,3,4(k), (29)

w
t,p
1,2,3,4(k) ≈ N

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
0

0

0

0

⎤
⎥⎥⎥⎥⎦ ,Rt,p

1,2,3,4(k)

⎞
⎟⎟⎟⎟⎠ , (30)

Ht,p
1,2,3,4(k) =

[
Bt

1,2(k)C
t,b
1,2(k) −Bt

3,4(k)C
t,b
3,4(k)

]
, (31)

Rt,p
1,2,3,4(k) = Rt,b,c

1,2 (k) + Rt,b,c
3,4 (k). (32)

The subscript for parameters (1,2,3,4) denotes that
the parameter includes information from the four sen-
sors. The pseudo-measurements are considered an ap-
proximation as a result of the previous Taylor series
expansions.

B. Maximum Likelihood Estimation of the Biases

It is possible to estimate the biases by using the bias
pseudo-measurements, and there are various methods
for this. In this paper, we seek the ML estimate (MLE)
for the biases, and note that it is desirable to accompany
the MLE with the CRLB, since when the MLE is effi-
cient (wewill check this) its error performance tracks the
CRLB closely. To achieve this, first the measurements
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are stacked into a batch

ζ =
[
ζ
1,p
1,2,3,4(1), . . . , ζ

Nt ,p
1,2,3,4(1), ζ

1,p
1,2,3,4(2), . . . , ζ

Nt ,p
1,2,3,4(K)

]T
.

(33)

The Jacobians and noise covariances are also stacked
into matrices H and R, respectively, as

H j =
[
H1,p

1,2,3,4(1)
j, . . . ,HNt ,p

1,2,3,4(1)
j, . . . ,HNt ,p

1,2,3,4(K) j
]T

,

(34)

R j =

⎡
⎢⎢⎣
R1,p

1,2,3,4(1)
j . . . 0

. . . . . . . . .

0 . . . RNt ,p
1,2,3,4(K) j

⎤
⎥⎥⎦ . (35)

As the Jacobian H is calculated using the biased LOS
measurements, it is necessary to recalculate it using the
debiasedmeasurements as the biases are estimated.This
means an iterative method is required—the ILS imple-
mentation of the MLE is used. In this method, an initial
estimate of zero bias is used and is iteratively updated
until the bias estimate converges. Denoting the current
ILS iteration by the superscript j,

ωb
1,2,3,4 = [

(ωb
1 )

T (ωb
2 )

T (ωb
3 )

T (ωb
4 )

T ]
(36)

ω̂
b,( j+1)
1,2,3,4 = ω̂

b, j
1,2,3,4

+[(H j)′(R j)−1(H j)]−1(H j)′(R j)−1[ζ −H jω̂
b, j
1,2,3,4],

(37)

ω̂
b, j=0
1,2,3,4 = [0, 0, . . . , 0]T . (38)

V. CRAMÉR–RAO LOWER BOUND

In order to understand the performance of this bias
estimation method, it is necessary to derive a metric for
accuracy. The CRLB offers a lower bound on the co-
variance of an unbiased estimator of a fixed parameter,
and hence the root-mean-square error (RMSE) of our
method can be compared to it to test for statistical ef-
ficiency.Additionally, the performances of other estima-
tionmethods can be compared to the presentmethod us-
ing this metric. For example, a simultaneous target state
and bias estimation method can be compared to this
method, which removes the need to estimate the target
state. The CRLB is calculated by taking the inverse of
the Fisher information matrix

J = H ′R−1H, (39)

that is,

CRLB = J−1 = (H ′R−1H )−1. (40)

To find the variances for the individual bias estimates,
it is necessary to examine the diagonal elements of the

CRLB, (σCRLB
i )2. In the case of approximations—such

as those we use here—it may be that an efficient result
is not obtained. Otherwise, the bound is, in theory, at-
tained asymptotically. In the case of this work, theCRLB
covariance is accepted via hypothesis testing at 5% er-
ror. For the estimator to be efficient, the RMSE must be
equal to σCRLB

i . To evaluate the estimator rigorously, its
RMSE σi for each component is compared to the 95%
probability interval of the square root of the CRLB cal-
culated as

P(a < σi < b) = 0.95, (41)

a = σCRLB
i − 1.96 · σi√

nMC
, (42)

b = σCRLB
i + 1.96 · σi√

nMC
, (43)

where σi is the standard deviation of error in component
i from nMC Monte Carlo runs.

The normalized estimator error squared (NEES) [2]
can also be evaluated with the chi-square test to verify
consistency. The NEES for each Monte Carlo Run is

εi = (ωb
1,2,3,4 − ω̂b,i

1,2,3,4)
′Ji(ωb

1,2,3,4 − ω̂b,i
1,2,3,4), (44)

i = 1, 2, . . . ,nMC.

The estimator is considered efficient if the mean of the
NEES (multiplied by the number of Monte Carlo runs)
lies within the 95% probability region for a chi-square
variable with degrees of freedom equal to the number of
bias variables multiplied by the number of Monte Carlo
runs. The probability region (with three angle biases for
each sensor) is defined as

nω = 3Ns, (45)

r1 = χ2
(nMCnω )(0.025), (46)

r2 = χ2
(nMCnω )

(0.975), (47)

ε̄ = 1
nMC

nMC∑
i=1

εi, (48)

ε̄ ∈
[
r1
nMC

,
r2
nMC

]
. (49)

In this case, with 4 sensors and 3 biases in each sensor,
there are 12 parameters and theNEES should be around
12.

VI. SIMULATIONS AND RESULTS

A. Simulation Parameters

In order to evaluate the performance of this method,
it is necessary to create a simulation of appropriate re-
alism. To accomplish this, two scenarios are created, the
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Fig. 2. Long-range sensor and target setup in ECEF coordinates.
K = 350 s.

first being a long-distance orbital scenario and the sec-
ond being a short-range maneuvering scenario. In the
long-range scenario, there are four fixed sensors posi-
tioned near the equator at sea level observing two tar-
gets orbiting the Earth in a deterministic way. This sce-
nario is useful because it is a baseline for performance
in a deterministic motion scenario, which can be then
compared to simultaneous target state and sensor bias
estimation. In the short-range scenario, there are four
ground-based sensors observing several targets that are
moving toward a position on the ground with mid-air
maneuvers. The reason for the short-range scenario is to
show the ability of this method to estimate biases de-
spite the difficulties in tracking a highly maneuvering
target. These scenarios are shown in Figs. 2 and 3. The
sensors have measurement noise standard deviation of
1 mrad and biases of 1 mrad. In the long-range scenario,
the sensors take one measurement per second over
350 s (K = 350) and 100 Monte Carlo runs are used. In
the short-range scenario, the sensors take 10 measure-
ments per second over 40 s (K = 400) and 100 Monte
Carlo runs are used.
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Fig. 3. Short-range sensor and target setup in ECEF coordinates.
K = 400 s.

B. Statistical Efficiency

The CRLB is the lower bound on the variance of this
estimator, meaning that the RMSE must be compara-
ble to the square root of the CRLB. If the RMSE is ac-
cepted as equal (via a statistical hypothesis test) to the
CRLB square root, then the estimator is considered sta-
tistically efficient. The simulations are first made to ver-
ify that this is the case for the estimator. Furthermore,
the results are compared to the method previously re-
sulted in [19] and the hybrid CRLB (HCRLB), an ad-
ditional metric proposed in [13] and [14]. The HCRLB
refers to the CRLB of joint target/bias estimation based
on the original measurements, and hence can be consid-
ered the true lower bound. Since here we digest the orig-
inal measurements into pseudo-measurements, there is
potential loss of information, implying concomitant in-
crease of the CRLB beyond the HCRLB. Additionally,
for the long-range scenario, this method is compared to
a previously developed method [19] that includes only
the Cartesian positions from the conversion via triangu-
lation, to show that using this method results in a lower
CRLB as the conversion has not lost information about
the biases. For the long-range scenario, the results are
seen in Table I.We can see that for this scenario the new
method is efficient and capable of estimating the biases
with an error that is significantly lower than the noise
standard deviation (1 mrad). The RMSE lies within the
probability interval for all biases and the RMSE is less
than 40% of the noise standard deviation for all biases.

Perhaps of even more interest, the method shown in
the present work achieves the HCRLB, while the pre-
vious method [13], [14], [19] fails to do so. This means
that no information about the biases is lost in convert-
ing the coordinates and no information can be added
by using additional transformations and combinations of
pseudo-measurements (such as using both CPA and tri-
angulation2).For the short-range scenario, the results are
seen in Table II, and similar conclusions can be drawn:
the new method achieves efficiency even in the case of
a maneuvering target. The reason why no information is
lost is that the useful data related to the target position
are included in the LOS angle measurements, which are
incorporated into the pseudo-measurements. This is fur-
ther related to the use of ILS,as during each iteration the
LOS angles are updated to prevent error as the bias es-
timates iteratively update. It is not necessary to estimate
the Cartesian position.

C. CRLB Relative to Number of Time Steps

The previous simulation results showed that the new
method is efficient and capable of achieving strong bias
estimates in favorable conditions. However, it is impor-
tant to understand how much data may be necessary to

2This can be loosely compared to counting one’s money forward and
backward (à la dynamic programming) and adding the two.
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Table I
Long-Range Scenario: Verification of the Statistical Efficiency with the CRLB, nMC = 100 Runs; All Quantities are in mrad

CRLB square root Triangulation CRLB [19] HCRLB [13], [14] RMSE 95% probability
Component (present work) square root square root (present work) interval (41)

Sensor 1 0.2203 0.3357 0.2203 0.2371 0.1902
yaw bias 0.2504
Sensor 1 0.3723 0.5033 0.3722 0.3530 0.3332
pitch bias 0.4115
Sensor 1 0.1474 0.3053 0.1474 0.1578 0.1280
roll bias 0.1667
Sensor 2 0.1563 0.2012 0.1563 0.1775 0.1334
yaw bias 0.1792
Sensor 2 0.3345 0.4280 0.3343 0.3309 0.2964
pitch bias 0.3726
Sensor 2 0.0990 0.2729 0.0990 0.1094 0.0864
roll bias 0.1116
Sensor 3 0.2019 0.3197 0.2019 0.2104 0.1753
yaw bias 0.2285
Sensor 3 0.3393 0.4609 0.3393 0.3187 0.3018
pitch bias 0.3769
Sensor 3 0.1522 0.2928 0.1521 0.1600 0.1333
roll bias 0.1710
Sensor 4 0.1046 0.1674 0.1045 0.1019 0.0929
yaw bias 0.1163
Sensor 4 0.3921 0.5214 0.3919 0.3821 0.3471
pitch bias 0.4372
Sensor 4 0.1171 0.2705 0.1171 0.1282 0.1017
roll bias 0.1324

Average NEES Chi-square 95% interval
12.365 11.059 12.979

Table II
Short-Range Scenario: Verification of the Statistical Efficiency with the CRLB, nMC = 100 runs; All Quantities are in mrad

CRL square root Triangulation CRLB [19] HCRLB [13], [14] RMSE 95% probability
Component (present work) square root Square root (present work) interval (41)

Sensor 1 0.1306 0.1425 0.1305 0.1325 0.1158
yaw bias 0.1454
Sensor 1 0.1569 0.1750 0.1569 0.1629 0.1391
pitch bias 0.1746
Sensor 1 0.0693 0.1203 0.0693 0.0706 0.0607
roll bias 0.0779
Sensor 2 0.1092 0.1262 0.1092 0.1057 0.0963
yaw bias 0.1222
Sensor 2 0.1067 0.1385 0.1067 0.1162 0.0942
pitch bias 0.1193
Sensor 2 0.0792 0.0955 0.0792 0.0722 0.0686
roll bias 0.0897
Sensor 3 0.1319 0.1595 0.1319 0.1337 0.1160
yaw bias 0.1477
Sensor 3 0.0873 0.1019 0.0872 0.0977 0.0765
pitch bias 0.0978
Sensor 3 0.0623 0.0632 0.0623 0.0595 0.0548
roll bias 0.0697
Sensor 4 0.0799 0.0935 0.0799 0.0845 0.0697
yaw bias 0.0902
Sensor 4 0.1447 0.1676 0.1447 0.1552 0.1264
pitch bias 0.1631
Sensor 4 0.0699 0.1148 0.0699 0.0659 0.0616
roll bias 0.0782

Average NEES Chi-square 95% interval
12.253 11.059 12.979
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Fig. 4. CRLB square root of bias estimates compared to number of
time steps for the short-range scenario with two targets.

have a good bias estimate and what to expect in bad con-
ditions. The CRLB is calculated for the short-range sce-
nario but with a spread of time steps from 10 time steps
(at 10 Hz, i.e., 1 s) to 400 time steps (40 s). The results of
this are seen in Figs. 4 and 5.

In the case of this two-target short-range scenario,
we see that within 150 time steps (15 s) all the bias er-
rors reduce to below half of the noise standard deviation.
This is particularly good as the bias estimation is able to
overcome the bias error relatively quickly, and certainly
before the targets reach their destination. Furthermore,
the RMSE graph matches the CRLB graph, showing
that this method retains efficiency even as the number
of measurements decreases,which would accordingly re-
duce the observability and accuracy of bias estimation.
This result proves a degree of resilience of this method
to poor observability, as the method remains efficient,
even when the error in the bias estimates is likely worse
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Fig. 5. RMSE of bias estimates compared to number of time steps
for the short-range scenario with two targets.
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Fig. 6. CRLB square root of bias estimates compared to number of
time steps for the short-range scenario with one target.

than the biases themselves. However, in this case there
are two targets, and hence there is a more diverse set of
data for elimination of the biases.

Next, we investigate the perhaps more common sit-
uation that there be only a single target. Figs. 6 and 7
show that the performance deteriorates. The CRLB of
the bias estimates does not reduce to below the noise
standard deviation until around 300 time steps (30 s)
and two of the biases are significantly higher as a result
of the sensor’s position relative to the target’s motion.
The RMSE remains comparable to the CRLB even as
the error increases significantly higher than the uncor-
rected bias error, proving efficiency in poor observabil-
ity scenarios. Furthermore, we see that having two tar-
gets is better than having twice as much time, as seen
by the CRLB being lower for two targets (Fig. 4) at 150
time steps than one target (Fig. 6) at 300 time steps. The
biases affect the targets in Cartesian space differently as
a result of their positions; therefore, the accuracy is im-
proved greatly as a result of having additional targets.
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Fig. 7. CRLB square root of bias estimates compared to number of
time steps for the short-range scenario with one target.
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As it is impossible to achieve more accurate bias es-
timates than the CRLB, it may be necessary to either
have knowledge of the target’s state or include addi-
tional targets, such as friendly ones and known objects
that are observed by the sensor, to improve bias esti-
mates within a shorter time frame.Methods of including
such “stationary emitters” are included in works such as
[10] and [11].

VII. CONCLUSION

The CPA-based method is an effective tool for bias
estimation in passive sensor data fusion applications.
The bias pseudo-measurement method can be applied
to angle-only sensors in 3-D to estimate the biases with-
out target state estimation. The bias estimation CRLB
is attained using this method and can be informative
about whether the system has enough data to perform
bias estimation or whether it is necessary to include ad-
ditional information to improve accuracy. Furthermore,
it is possible to reduce the bias residual error to sig-
nificantly below the noise standard deviation. The sim-
ulations show that having additional targets improves
bias estimation accuracy more than having a corre-
sponding increase in time steps, meaning a more di-
verse set of measurements is better than simply having
more.

APPENDIX A

The Jacobians used in this paper need to be calcu-
lated in order to convert the measurements and use ILS.
We first specify the problem formulation that is used for
our measurements and parameters. Before we can pro-
duce our bias pseudo-measurements, the effect of the
nominal rotation must be accounted for and removed
from themeasurements.We use the transformation (13),
which is expanded as

ξ t,bs (k) =
[

αt,bs (k)

εt,bs (k)

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

tan−1

(
λ
t,b,y
s (k)

λt,b,xs (k)

)

tan−1

⎛
⎝ λt,b,zs (k)√

λt,b,xs (k)2 + λ
t,b,y
s (k)2

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

= his

([
αt,n,bs (k)

εt,n,bs (k)

]
,ωn

s

)
, (A1)

where the variable λt,bs is the LOS ray in common
Cartesian space rotated by the bias rotation. To acquire
it, the original LOS ray must be rotated by the inverse of

the nominal rotation. This inverted rotation is

T (ωn
s )

−1 =

⎡
⎢⎢⎣
T11,i(ωn

s ) T12,i(ωn
s ) T13,i(ωn

s )

T21,i(ωn
s ) T22,i(ωn

s ) T23,i(ωn
s )

T31,i(ωn
s ) T32,i(ωn

s ) T33,i(ωn
s )

⎤
⎥⎥⎦ . (A2)

The LOS rays under rotations in common Cartesian
space are

λt,n,bs (k) =

⎡
⎢⎢⎣

λt,n,b,xs (k)

λ
t,n,b,y
s (k)

λt,n,b,zs (k)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
cos(αt,n,bs (k)) cos(εt,n,bs (k))

sin(αt,n,bs (k)) cos(εt,n,bs (k))

sin(εt,n,bs (k))

⎤
⎥⎥⎦ , (A3)

λt,bs (k) =

⎡
⎢⎢⎣

λt,b,xs (k)

λ
t,b,y
s (k)

λt,b,zs (k)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
cos(αt,bs (k)) cos(εt,bs (k))

sin(αt,bs (k)) cos(εt,bs (k))

sin(εt,bs (k))

⎤
⎥⎥⎦

= T (ωn
s )

−1λt,n,bs (k). (A4)

The equations for the individual Cartesian components
of the ray rotated by the inverse nominal rotation are

λt,b,xs (k) = T11,i(ωn
s )λ

t,n,b,x
s (k) + T12,i(ωn

s )λ
t,n,b,y
s (k)

+T13,i(ωn
s )λ

t,n,b,z
s (k), (A5)

λt,b,ys (k) = T21,i(ωn
s )λ

t,n,b,x
s (k) + T22,i(ωn

s )λ
t,n,b,y
s (k)

+T23,i(ωn
s )λ

t,n,b,z
s (k), (A6)

λt,b,zs (k) = T31,i(ωn
s )λ

t,n,b,x
s (k) + T32,i(ωn

s )λ
t,n,b,y
s (k)

+T33,i(ωn
s )λ

t,n,b,z
s (k). (A7)

These equations are used in the calculation of the indi-
vidual partial derivatives for the Jacobian D from equa-
tion (11), which are

∂αt,bs (k)

∂αt,n,bs (k)
=

(
T11,i(ωn

s )
∂αt,bs (k)

∂λt,b,xs (k)
+ T21,i(ωn

s )
∂αt,bs (k)

∂λ
t,b,y
s (k)

+T31,i(ωn
s )

∂αt,bs (k)

∂λt,b,zs (k)

)
∂λt,n,b,xs (k)

∂αt,n,bs (k)

+
(
T12,i(ωn

s )
∂αt,bs (k)

∂λt,b,xs (k)
+ T22,i(ωn

s )
∂αt,bs (k)

∂λ
t,b,y
s (k)

+T32,i(ωn
s )

∂αt,bs (k)

∂λt,b,zs (k)

)
∂λ

t,n,b,y
s (k)

∂αt,n,bs (k)
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+
(
T13,i(ωn

s )
∂αt,bs (k)

∂λt,b,xs (k)
+ T23,i(ωn

s )
∂αt,bs (k)

∂λ
t,b,y
s (k)

+T33,i(ωn
s )

∂αt,bs (k)

∂λt,b,zs (k)

)
∂λt,n,b,zs (k)

∂αt,n,bs (k)
, (A8)

∂αt,bs (k)

∂εt,n,bs (k)
=

(
T11,i(ωn

s )
∂αt,bs (k)

∂λt,b,xs (k)
+ T21,i(ωn

s )
∂αt,bs (k)

∂λ
t,b,y
s (k)

+T31,i(ωn
s )

∂αt,bs (k)

∂λt,b,zs (k)

)
∂λt,n,b,xs (k)

∂εt,n,bs (k)

+
(
T12,i(ωn

s )
∂αt,bs (k)

∂λt,b,xs (k)
+ T22,i(ωn

s )
∂αt,bs (k)

∂λ
t,b,y
s (k)

+T32,i(ωn
s )

∂αt,bs (k)

∂λt,b,zs (k)

)
∂λ

t,n,b,y
s (k)

∂εt,n,bs (k)

+
(
T13,i(ωn

s )
∂αt,bs (k)

∂λt,b,xs (k)
+ T23,i(ωn

s )
∂αt,bs (k)

∂λ
t,b,y
s (k)

+T33,i(ωn
s )

∂αt,bs (k)

∂λt,b,zs (k)

)
∂λt,n,b,zs (k)

∂εt,n,bs (k)
, (A9)

∂εt,bs (k)

∂αt,n,bs (k)
=

(
T11,i(ωn

s )
∂εt,bs (k)

∂λt,b,xs (k)
+ T21,i(ωn

s )
∂εt,bs (k)

∂λ
t,b,y
s (k)

+T31,i(ωn
s )

∂εt,bs (k)

∂λt,b,zs (k)

)
∂λt,n,b,xs (k)

∂αt,n,bs (k)

+
(
T12,i(ωn

s )
∂εt,bs (k)

∂λt,b,xs (k)
+ T22,i(ωn

s )
∂εt,bs (k)

∂λ
t,b,y
s (k)

+T32,i(ωn
s )

∂εt,bs (k)

∂λt,b,zs (k)

)
∂λ

t,n,b,y
s (k)

∂αt,n,bs (k)

+
(
T13,i(ωn

s )
∂εt,bs (k)

∂λt,b,xs (k)
+ T23,i(ωn

s )
∂εt,bs (k)

∂λ
t,b,y
s (k)

+T33,i(ωn
s )

∂εt,bs (k)

∂λt,b,zs (k)

)
∂λt,n,b,zs (k)

∂αt,n,bs (k)
, (A10)

∂εt,bs (k)

∂εt,n,bs (k)
=

(
T11,i(ωn

s )
∂εt,bs (k)

∂λt,b,xs (k)
+ T21,i(ωn

s )
∂εt,bs (k)

∂λ
t,b,y
s (k)

+T31,i(ωn
s )

∂εt,bs (k)

∂λt,b,zs (k)

)
∂λt,n,b,xs (k)

∂εt,n,bs (k)

+
(
T12,i(ωn

s )
∂εt,bs (k)

∂λt,b,xs (k)
+ T22,i(ωn

s )
∂εt,bs (k)

∂λ
t,b,y
s (k)

+T32,i(ωn
s )

∂εt,bs (k)

∂λt,b,zs (k)

)
∂λ

t,n,b,y
s (k)

∂εt,n,bs (k)

+
(
T13,i(ωn

s )
∂εt,bs (k)

∂λt,b,xs (k)
+ T23,i(ωn

s )
∂εt,bs (k)

∂λ
t,b,y
s (k)

+T33,i(ωn
s )

∂εt,bs (k)

∂λt,b,zs (k)

)
∂λt,n,b,zs (k)

∂εt,n,bs (k)
, (A11)

∂αt,bs (k)

∂λt,b,xs (k)
= −λ

t,b,y
s (k)

λt,b,xs (k)2 + λ
t,b,y
s (k)2

, (A12)

∂αt,bs (k)

∂λ
t,b,y
s (k)

= λt,b,xs (k)

λt,b,xs (k)2 + λ
t,b,y
s (k)2

, (A13)

∂αt,bs (k)

∂λt,b,zs (k)
= 0, (A14)

∂εt,bs (k)

∂λt,b,xs (k)
= −λt,b,xs (k)λt,b,zs (k)√

λt,b,xs (k)2 + λ
t,b,y
s (k)2||λt,bs (k)||2

, (A15)

∂εt,bs (k)

∂λ
t,b,y
s (k)

= −λ
t,b,y
s (k)λt,b,zs (k)√

λt,b,xs (k)2 + λ
t,b,y
s (k)2||λt,bs (k)||2

, (A16)

∂εt,bs (k)

∂λt,b,zs (k)
=

√
λt,b,xs (k)2 + λ

t,b,y
s (k)2

(λt,b,xs (k)2 + λ
t,b,y
s (k)2 + λt,b,zs (k)2)

, (A17)

∂λt,n,b,xs (k)

∂αt,n,bs (k)
= − sin(αt,n,bs (k)) cos(εt,n,bs (k)), (A18)

∂λt,n,b,xs (k)

∂εt,n,bs (k)
= − cos(αt,n,bs (k)) sin(εt,n,bs (k)), (A19)

∂λ
t,n,b,y
s (k)

∂αt,n,bs (k)
= cos(αt,n,bs (k)) cos(εt,n,bs (k)), (A20)

∂λ
t,n,b,y
s (k)

∂εt,n,bs (k)
= − sin(αt,n,bs (k)) sin(εt,n,bs (k)), (A21)

∂λt,n,b,zs (k)

∂αt,n,bs (k)
= 0, (A22)

∂λt,n,b,zs (k)

∂εt,n,bs (k)
= cos(εt,n,bs (k)). (A23)

With D calculated, the next step is representing the ef-
fects of the biases on the azimuth and elevationmeasure-
ments using the JacobianC.

Ct,b
s (k) =

⎡
⎣ ∂αt,bs (k)

∂θs

∂αt,bs (k)
∂φs

∂αt,bs (k)
∂ψs

∂εt,bs (k)
∂θs

∂εt,bs (k)
∂φs

∂εt,bs (k)
∂ψs

⎤
⎦ , (A24)
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λts(k) =

⎡
⎢⎢⎣

λt,xs (k)

λ
t,y
s (k)

λt,zs (k)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
cos(αts(k)) cos(ε

t
s(k))

sin(αts(k)) cos(ε
t
s(k))

sin(εts(k))

⎤
⎥⎥⎦

= T (ωb
s )

−1λt,bs (k), (A25)

λt,b,xs (k) = T11(ωb
s )λ

t,x
s (k) + T12(ωb

s )λ
t,y
s (k)

+T13(ωb
s )λ

t,z
s (k), (A26)

λ
t,b,y
s (k) = T21(ωb

s )λ
t,x
s (k) + T22(ωb

s )λ
t,y
s (k)

+T23(ωb
s )λ

t,z
s (k), (A27)

λt,b,zs (k) = T31(ωb
s )λ

t,x
s (k) + T32(ωb

s )λ
t,y
s (k)

+T33(ωb
s )λ

t,z
s (k), (A28)

∂αt,bs (k)
∂ωb

s (i)
=

(
∂αt,bs (k)

∂λt,b,xs (k)

∂T11(ωb
s )

∂ωb
s (i)

+ ∂αt,bs (k)

∂λ
t,b,y
s (k)

∂T21(ωb
s )

∂ωb
s (i)

+ ∂αt,bs (k)

∂λt,b,zs (k)

∂T31(ωb
s )

∂ωb
s (i)

)
λt,xs (k)

+
(

∂αt,bs (k)

∂λt,b,xs (k)

∂T12(ωb
s )

∂ωb
s (i)

+ ∂αt,bs (k)

∂λ
t,b,y
s (k)

∂T22(ωb
s )

∂ωb
s (i)

+ ∂αt,bs (k)

∂λt,b,zs (k)

∂T32(ωb
s )

∂ωb
s (i)

)
λt,ys (k)

+
(

∂αt,bs (k)

∂λt,b,xs (k)

∂T13(ωb
s )

∂ωb
s (i)

+ ∂αt,bs (k)

∂λ
t,b,y
s (k)

∂T23(ωb
s )

∂ωb
s (i)

+ ∂αt,bs (k)

∂λt,b,zs (k)

∂T33(ωb
s )

∂ωb
s (i)

)
λt,zs (k), (A29)

∂εt,bs (k)
∂ωb

s (i)
=

(
∂εt,bs (k)

∂λt,b,xs (k)

∂T11(ωb
s )

∂ωb
s (i)

+ ∂εt,bs (k)

∂λ
t,b,y
s (k)

∂T21(ωb
s )

∂ωb
s (i)

+ ∂εt,bs (k)

∂λt,b,zs (k)

∂T31(ωb
s )

∂ωb
s (i)

)
λt,xs (k)

+
(

∂εt,bs (k)

∂λt,b,xs (k)

∂T12(ωb
s )

∂ωb
s (i)

+ ∂εt,bs (k)

∂λ
t,b,y
s (k)

∂T22(ωb
s )

∂ωb
s (i)

+ ∂εt,bs (k)

∂λt,b,zs (k)

∂T32(ωb
s )

∂ωb
s (i)

)
λt,ys (k)

+
(

∂εt,bs (k)

∂λt,b,xs (k)

∂T13(ωb
s )

∂ωb
s (i)

+ ∂εt,bs (k)

∂λ
t,b,y
s (k)

∂T23(ωb
s )

∂ωb
s (i)

+ ∂εt,bs (k)

∂λt,b,zs (k)

∂T33(ωb
s )

∂ωb
s (i)

)
λt,zs (k). (A30)

To calculateC, it is necessary to evaluate how the biases
affect the azimuth and elevation measurements, which

requires knowledge of the unbiased azimuth and eleva-
tion measurements. To do this, we can debias our mea-
surements using the same method as before with the
nominal rotation based on the current bias estimate.

ξ ts (k) ≈ ξ̂ t, js (k) =
[

α̂
t, j
s (k)

ε̂
t, j
s (k)

]
= hi

(
ζ t,bs (k), ω̂b, j

s

)
, (A31)

∂T11(ωb
s )

∂θbs
= − sin(θbs ) cos(φ

b
s ), (A32)

∂T11(ωb
s )

∂φb
s

= − cos(θbs ) sin(φ
b
s ), (A33)

∂T11(ωb
s )

∂ψb
s

= 0, (A34)

∂T12(ωb
s )

∂θbs
= − sin(θbs ) sin(φ

b
s ) sin(ψ

b
s )

− cos(θbs ) cos(ψ
b
s ), (A35)

∂T12(ωb
s )

∂φb
s

= cos(θbs ) cos(φ
b
s ) sin(ψ

b
s ) (A36)

∂T12(ωb
s )

∂ψb
s

= cos(θbs ) sin(φ
b
s ) cos(ψ

b
s ) + sin(θbs ) sin(ψ

b
s ),

(A37)

∂T13(ωb
s )

∂θbs
= − sin(θbs ) sin(φ

b
s ) cos(ψ

b
s )

+ cos(θbs ) sin(ψ
b
s ),

(A38)

∂T13(ωb
s )

∂φb
s

= cos(θbs ) cos(φ
b
s ) cos(ψ

b
s ), (A39)

∂T13(ωb
s )

∂ψb
s

= − cos(θbs ) sin(φ
b
s ) sin(ψ

b
s )

+ sin(θbs ) cos(ψ
b
s ), (A40)

∂T21(ωb
s )

∂θbs
= cos(θbs ) cos(φ

b
s ), (A41)

∂T21(ωb
s )

∂φb
s

= − sin(θbs ) sin(φ
b
s ), (A42)

∂T21(ωb
s )

∂ψb
s

= 0, (A43)

∂T22(ωb
s )

∂θbs
= cos(θbs ) sin(φ

b
s ) sin(ψ

b
s ) − sin(θbs ) cos(ψ

b
s ),

(A44)

∂T22(ωb
s )

∂φb
s

= sin(θbs ) cos(φ
b
s ) sin(ψ

b
s ), (A45)
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∂T22(ωb
s )

∂ψb
s

= sin(θbs ) sin(φ
b
s ) cos(ψ

b
s ) − cos(θbs ) sin(ψ

b
s ),

(A46)

∂T23(ωb
s )

∂θbs
= cos(θbs ) sin(φ

b
s ) cos(ψ

b
s )

+ sin(θbs ) sin(ψ
b
s ),

(A47)

∂T23(ωb
s )

∂φb
s

= sin(θbs ) cos(φ
b
s ) cos(ψ

b
s ), (A48)

∂T23(ωb
s )

∂ψb
s

= − sin(θbs ) sin(φ
b
s ) sin(ψ

b
s )

− cos(θbs ) cos(ψ
b
s ), (A49)

∂T31(ωb
s )

∂θbs
= 0, (A50)

∂T31(ωb
s )

∂φb
s

= − cos(φb
s ), (A51)

∂T31(ωb
s )

∂ψb
s

= 0, (A52)

∂T32(ωb
s )

∂θbs
= 0, (A53)

∂T32(ωb
s )

∂φb
s

= − sin(φb
s ) sin(ψ

b
s ), (A54)

∂T32(ωb
s )

∂ψb
s

= cos(φb
s ) cos(ψ

b
s ), (A55)

∂T33(ωb
s )

∂θbs
= 0, (A56)

∂T33(ωb
s )

∂φb
s

= − sin(φb
s ) cos(ψ

b
s ), (A57)

∂T33(ωb
s )

∂ψb
s

= − cos(φb
s ) sin(ψ

b
s ). (A58)

In order to transform the effect of the biases when con-
verting into Cartesian,we use the JacobianB from equa-
tion (24) for which the gradients are calculated as

∇ξ t1,ξ
t
2
xt,c12′ (k) =

⎡
⎢⎢⎢⎢⎢⎣

∂xt,c
12′

∂αt1

∂xt,c
12′

∂εt1

∂xt,c
12′

∂αt2

∂xt,c
12′

∂εt2

∂yt,c
12′

∂αt1

∂yt,c
12′

∂εt1

∂yt,c
12′

∂αt2

∂yt,c
12′

∂εt2

∂zt,c
12′

∂αt1

∂zt,c
12′

∂εt1

∂zt,c
12′

∂αt2

∂zt,c
12′

∂εt2

⎤
⎥⎥⎥⎥⎥⎦ , (A59)

∇ξ t1,ξ
t
2
xt,c12′′ (k) =

⎡
⎢⎢⎢⎢⎢⎣

∂xt,c
12′′

∂αt1

∂xt,c
12′′

∂εt1

∂xt,c
12′′

∂αt2

∂xt,c
12′′

∂εt2

∂yt,c
12′′

∂αt1

∂yt,c
12′′

∂εt1

∂yt,c
12′′

∂αt2

∂yt,c
12′′

∂εt2

∂zt,c
12′′

∂αt1

∂zt,c
12′′

∂εt1

∂zt,c
12′′

∂αt2

∂zt,c
12′′

∂εt2

⎤
⎥⎥⎥⎥⎥⎦ . (A60)

To improve clarity in the calculation of these partial
derivatives, the conversion equations are simplified by
using

γ t
1 = (λt1)

′p1,2 − ((λt1)
′λt2)((λ

t
2)

′p1,2), (A61)

γ t
2 = ((λt1)

′λt2)((λ
t
1)

′p1,2) − (λt2)
′p1,2, (A62)

γ t
x,1 = λt,x1 γ t

1, (A63)

γ t
y,1 = λ

t,y
1 γ t

1, (A64)

γ t
z,1 = λt,z1 γ t

1, (A65)

γ t
x,2 = λt,x2 γ t

2, (A66)

γ t
y,2 = λ

t,y
2 γ t

2, (A67)

γ t
z,2 = λt,z2 γ t

2, (A68)

κ t12 = 1 − ((λt1)
′λt2)

2, (A69)

which results in the equations

xt,c12′ = x1 + γ t
x,1

κ t12
, (A70)

xt,c12′′ = x2 + γ t
x,2

κ t12
, (A71)

yt,c12′ = y1 +
γ t
y,1

κ t12
, (A72)

yt,c12′′ = y2 + γ t
y,2

κ t12
, (A73)

zt,c12′ = z1 + γ t
z,1

κ t12
, (A74)

zt,c12′′ = z2 + γ t
z,2

κ t12
, (A75)

∂xt,c12′

∂ξ ts
=

κ t12
∂γ t

x,1

∂ξ ts
− γ t

x,1
∂κ t12
∂ξ ts

(κ t12)
2

, (A76)

∂xt,c12′′

∂ξ ts
=

κ t12
∂γ t

x,2

∂ξ ts
− γ t

x,2
∂κ t12
∂ξ ts

(κ t12)
2

, (A77)
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∂yt,c12′

∂ξ ts
=

κ t12
∂γ t

y,1

∂ξ ts
− γ t

y,1
∂κ t12
∂ξ ts

(κ t12)
2

, (A78)

∂yt,c12′′

∂ξ ts
=

κ t12
∂γ t

y,2

∂ξ ts
− γ t

y,2
∂κ t12
∂ξ ts

(κ t12)
2

, (A79)

∂zt,c12′

∂ξ ts
=

κ t12
∂γ t

z,1

∂ξ ts
− γ t

z,1
∂κ t12
∂ξ ts

(κ t12)
2

, (A80)

∂zt,c12′′

∂ξ ts
=

κ t12
∂γ t

z,2

∂ξ ts
− γ t

z,2
∂κ t12
∂ξ ts

(κ t12)
2

, (A81)

∂γ t
x,1

∂αt1
= − sin(αt1) cos(ε

t
1)γ

t
1 + cos(αt1) cos(ε

t
1)

∂γ t
1

∂αt1
,

(A82)

∂γ t
x,1

∂αt2
= cos(αt1) cos(ε

t
1)

∂γ t
1

∂αt2
, (A83)

∂γ t
x,1

∂εt1
= − cos(αt1) sin(ε

t
1)γ

t
1 + cos(αt1) cos(ε

t
1)

∂γ t
1

∂εt1
,

(A84)

∂γ t
x,1

∂εt2
= cos(αt1) cos(ε

t
1)

∂γ t
1

∂εt2
, (A85)

∂γ t
y,1

∂αt1
= cos(αt1) cos(ε

t
1)γ

t
1 + sin(αt1) cos(ε

t
1)

∂γ t
1

∂αt1
,

(A86)

∂γ t
y,1

∂αt2
= sin(αt1) cos(ε

t
1)

∂γ t
1

∂αt2
, (A87)

∂γ t
y,1

∂εt1
= − sin(αt1) sin(ε

t
1)γ

t
1 + sin(αt1) cos(ε

t
1)

∂γ t
1

∂εt1
,

(A88)

∂γ t
y,1

∂εt2
= sin(αt1) cos(ε

t
1)

∂γ t
1

∂εt2
, (A89)

∂γ t
z,1

∂αt1
= sin(εt1)

∂γ t
1

∂αt1
, (A90)

∂γ t
z,1

∂αt2
= sin(εt1)

∂γ t
1

∂αt2
, (A91)

∂γ t
z,1

∂εt1
= cos(εt1)γ

t
1 + sin(εt1)

∂γ t
1

∂εt1
, (A92)

∂γ t
z,1

∂εt2
= sin(εt1)

∂γ t
1

∂εt2
, (A93)

∂γ t
x,2

∂αt1
= cos(αt2) cos(ε

t
2)

∂γ t
2

∂αt1
, (A94)

∂γ t
x,2

∂αt2
= − sin(αt2) cos(ε

t
2)γ

t
2 + cos(αt2) cos(ε

t
2)

∂γ t
2

∂αt2
,

(A95)

∂γ t
x,2

∂εt1
= cos(αt2) cos(ε

t
2)

∂γ t
2

∂εt1
, (A96)

∂γ t
x,2

∂εt2
= − cos(αt2) sin(ε

t
2)γ

t
2 + cos(αt2) cos(ε

t
2)

∂γ t
2

∂εt2
,

(A97)

∂γ t
y,2

∂αt1
= sin(αt2) cos(ε

t
2)

∂γ t
2

∂αt1
, (A98)

∂γ t
y,2

∂αt2
= cos(αt2) cos(ε

t
2)γ

t
2 + sin(αt2) cos(ε

t
2)

∂γ t
2

∂αt2
,

(A99)

∂γ t
y,2

∂εt1
= sin(αt2) cos(ε

t
2)

∂γ t
2

∂εt1
, (A100)

∂γ t
y,2

∂εt2
= − sin(αt2) sin(ε

t
2)γ

t
2 + sin(αt2) cos(ε

t
2)

∂γ t
2

∂εt2
,

(A101)

∂γ t
z,2

∂αt1
= sin(εt2)

∂γ t
2

∂αt1
, (A102)

∂γ t
z,2

∂αt2
= sin(εt2)

∂γ t
2

∂αt2
, (A103)

∂γ t
z,2

∂εt1
= sin(εt2)

∂γ t
2

∂εt1
, (A104)

∂γ t
z,2

∂εt2
= cos(εt2)γ

t
2 + sin(εt2)

∂γ t
2

∂εt2
, (A105)
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∂γ t
1

∂αt1
= cos(εt1) sin(α

t
1)(x1 − x2) − cos(αt1) cos(ε

t
1)(y1 − y2)

− cos(αt2) cos(ε
t
2) cos(ε

t
1) sin(α

t
1) sin(ε

t
2)(z1 − z2)

+ cos(εt2) sin(α
t
2) cos(α

t
1) cos(ε

t
1) sin(ε

t
2)(z1 − z2)

− cos(αt2) cos(ε
t
2) cos(α

t
2) cos(ε

t
1) cos(ε

t
2) sin(α

t
1)(x1 − x2)

+ cos(εt2) sin(α
t
2) cos(α

t
1) cos(α

t
2) cos(ε

t
1) cos(ε

t
2)(x1 − x2)

− cos(αt2) cos(ε
t
2) cos(ε

t
1) cos(ε

t
2) sin(α

t
1) sin(α

t
2)(y1 − y2)

+ cos(εt2) sin(α
t
2) cos(α

t
1) cos(ε

t
1) cos(ε

t
2) sin(α

t
2)(y1 − y2),

(A106)

∂γ t
1

∂αt2
= sin(εt2) cos(α

t
2) cos(ε

t
2) sin(ε

t
1)(y1 − y2)

− sin(εt2) cos(ε
t
2) sin(α

t
2) sin(ε

t
1)(x1 − x2)

+ cos(αt2) cos(ε
t
2) cos(ε

t
1) sin(α

t
1) sin(ε

t
2)(z1 − z2)

− cos(εt2) sin(α
t
2) cos(α

t
1) cos(ε

t
1) sin(ε

t
2)(z1 − z2)

+ cos(αt2) cos(ε
t
2) cos(α

t
1) cos(α

t
2) cos(ε

t
1) cos(ε

t
2)(y1 − y2)

+ cos(αt2) cos(ε
t
2) cos(α

t
2) cos(ε

t
1) cos(ε

t
2) sin(α

t
1)(x1 − x2)

−2 cos(εt2) sin(α
t
2) cos(α

t
1) cos(α

t
2) cos(ε

t
1) cos(ε

t
2)(x1 − x2)

− cos(εt2) sin(α
t
2) cos(α

t
1) cos(ε

t
1) cos(ε

t
2) sin(α

t
2)(y1 − y2)

+2 cos(εt2) sin(α
t
2) cos(α

t
2) cos(ε

t
1) cos(ε

t
2) sin(α

t
1)(y1 − y2)

− cos(εt2) sin(α
t
2) cos(ε

t
1) cos(ε

t
2) sin(α

t
1) sin(α

t
2)(x1 − x2),

(A107)

∂γ t
1

∂εt1
= − cos(εt1)(z1 − z2) + cos(αt1) sin(ε

t
1)(x1 − x2)

+ sin(αt1) sin(ε
t
1)(y1 − y2)

+ sin(εt2) cos(ε
t
1) sin(ε

t
2)(z1 − z2)

+ sin(εt2) cos(α
t
2) cos(ε

t
1) cos(ε

t
2)(x1 − x2)

+ sin(εt2) cos(ε
t
1) cos(ε

t
2) sin(α

t
2)(y1 − y2)

− cos(αt2) cos(ε
t
2) cos(α

t
1) sin(ε

t
1) sin(ε

t
2)(z1 − z2)

− cos(εt2) sin(α
t
2) sin(α

t
1) sin(ε

t
1) sin(ε

t
2)(z1 − z2)

− cos(αt2) cos(ε
t
2) cos(α

t
1) cos(α

t
2) cos(ε

t
2) sin(ε

t
1)(x1 − x2)

− cos(αt2) cos(ε
t
2) cos(α

t
1) cos(ε

t
2) sin(α

t
2) sin(ε

t
1)(y1 − y2)

− cos(εt2) sin(α
t
2) cos(α

t
2) cos(ε

t
2) sin(α

t
1) sin(ε

t
1)(x1 − x2)

− cos(εt2) sin(α
t
2) cos(ε

t
2) sin(α

t
1) sin(α

t
2) sin(ε

t
1)(y1 − y2),

(A108)

∂γ t
1

∂εt2
= 2 cos(εt2) sin(ε

t
1) sin(ε

t
2)(z1 − z2)

+ cos(εt2) cos(α
t
2) cos(ε

t
2) sin(ε

t
1)(x1 − x2)

+ cos(εt2) cos(ε
t
2) sin(α

t
2) sin(ε

t
1)(y1 − y2)

− sin(εt2) cos(α
t
2) sin(ε

t
1) sin(ε

t
2)(x1 − x2)

− sin(εt2) sin(α
t
2) sin(ε

t
1) sin(ε

t
2)(y1 − y2)

− cos(αt2) sin(ε
t
2) cos(α

t
1) cos(ε

t
1) sin(ε

t
2)(z1 − z2)

+ cos(εt2) sin(α
t
2) cos(ε

t
1) cos(ε

t
2) sin(α

t
1)(z1 − z2)

− sin(αt2) sin(ε
t
2) cos(ε

t
1) sin(α

t
1) sin(ε

t
2)(z1 − z2)

+ cos(αt2) cos(ε
t
2) cos(α

t
1) cos(ε

t
1) cos(ε

t
2)(z1 − z2)

−2 cos(αt2) sin(ε
t
2) cos(α

t
1) cos(α

t
2) cos(ε

t
1) cos(ε

t
2)(x1 − x2)

−2 cos(αt2) sin(ε
t
2) cos(α

t
1) cos(ε

t
1) cos(ε

t
2) sin(α

t
2)(y1 − y2)

−2 sin(αt2) sin(ε
t
2) cos(α

t
2) cos(ε

t
1) cos(ε

t
2) sin(α

t
1)(x1 − x2)

−2 sin(αt2) sin(ε
t
2) cos(ε

t
1) cos(ε

t
2) sin(α

t
1) sin(α

t
2)(y1 − y2),

(A109)

∂γ t
2

∂αt1
= cos(αt2) cos(ε

t
2) cos(ε

t
1)

2(y1 − y2)

+ cos(εt2) sin(α
t
2) cos(ε

t
1)

2(x1 − x2)

−2 cos(αt2) cos(ε
t
2) cos(α

t
1)

2 cos(εt1)
2(y1 − y2)

− sin(εt2) cos(α
t
1) cos(ε

t
1) sin(ε

t
1)(y1 − y2)

−2 cos(εt2) sin(α
t
2) cos(α

t
1)

2 cos(εt1)
2(x1 − x2)

+ sin(εt2) cos(ε
t
1) sin(α

t
1) sin(ε

t
1)(x1 − x2)

+ cos(αt2) cos(ε
t
2) cos(ε

t
1) sin(α

t
1) sin(ε

t
1)(z1 − z2)

− cos(εt2) sin(α
t
2) cos(α

t
1) cos(ε

t
1) sin(ε

t
1)(z1 − z2)

+2 cos(αt2) cos(ε
t
2) cos(α

t
1) cos(ε

t
1)

2 sin(αt1)(x1 − x2)

−2 cos(εt2) sin(α
t
2) cos(α

t
1) cos(ε

t
1)

2 sin(αt1)(y1 − y2),

(A110)

∂γ t
2

∂αt2
= cos(αt2) cos(ε

t
2)(y1 − y2)

− cos(εt2) sin(α
t
2)(x1 − x2)

+ cos(εt2) sin(α
t
2) cos(α

t
1)

2 cos(εt1)
2(x1 − x2)

− cos(αt2) cos(ε
t
2) cos(ε

t
1)

2 sin(αt1)
2(y1 − y2)

− cos(αt2) cos(ε
t
2) cos(ε

t
1) sin(α

t
1) sin(ε

t
1)(z1 − z2)

+ cos(εt2) sin(α
t
2) cos(α

t
1) cos(ε

t
1) sin(ε

t
1)(z1 − z2)

− cos(αt2) cos(ε
t
2) cos(α

t
1) cos(ε

t
1)

2 sin(αt1)(x1 − x2)

+ cos(εt2) sin(α
t
2) cos(α

t
1) cos(ε

t
1)

2 sin(αt1)(y1 − y2),

(A111)

∂γ t
2

∂εt1
= −2 sin(εt2) cos(ε

t
1) sin(ε

t
1)(z1 − z2)

− sin(εt2) cos(α
t
1) cos(ε

t
1)

2(x1 − x2)

+ sin(εt2) cos(α
t
1) sin(ε

t
1)

2(x1 − x2)

− sin(εt2) cos(ε
t
1)

2 sin(αt1)(y1 − y2)

+ sin(εt2) sin(α
t
1) sin(ε

t
1)

2(y1 − y2)

− cos(αt2) cos(ε
t
2) cos(α

t
1) cos(ε

t
1)

2(z1 − z2)

+ cos(αt2) cos(ε
t
2) cos(α

t
1) sin(ε

t
1)

2(z1 − z2)

− cos(εt2) sin(α
t
2) cos(ε

t
1)

2 sin(αt1)(z1 − z2)

+ cos(εt2) sin(α
t
2) sin(α

t
1) sin(ε

t
1)

2(z1 − z2)

+2 cos(αt2) cos(ε
t
2) cos(α

t
1)

2 cos(εt1) sin(ε
t
1)(x1 − x2)

+2 cos(εt2) sin(α
t
2) cos(ε

t
1) sin(α

t
1)

2 sin(εt1)(y1 − y2)

+2 cos(αt2) cos(ε
t
2) cos(α

t
1) cos(ε

t
1) sin(α

t
1) sin(ε

t
1)(y1 − y2)

+2 cos(εt2) sin(α
t
2) cos(α

t
1) cos(ε

t
1) sin(α

t
1) sin(ε

t
1)(x1 − x2),

(A112)
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∂γ t
2

∂εt2
= cos(εt2)(z1 − z2)

− cos(εt2) sin(ε
t
1)

2(z1 − z2)

− cos(αt2) sin(ε
t
2)(x1 − x2)

− sin(αt2) sin(ε
t
2)(y1 − y2)

+ sin(αt2) sin(ε
t
2) cos(ε

t
1)

2 sin(αt1)
2(y1 − y2)

− cos(εt2) cos(α
t
1) cos(ε

t
1) sin(ε

t
1)(x1 − x2)

− cos(εt2) cos(ε
t
1) sin(α

t
1) sin(ε

t
1)(y1 − y2)

+ cos(αt2) sin(ε
t
2) cos(α

t
1)

2 cos(εt1)
2(x1 − x2)

+ cos(αt2) sin(ε
t
2) cos(α

t
1) cos(ε

t
1) sin(ε

t
1)(z1 − z2)

+ sin(αt2) sin(ε
t
2) cos(ε

t
1) sin(α

t
1) sin(ε

t
1)(z1 − z2)

+ cos(αt2) sin(ε
t
2) cos(α

t
1) cos(ε

t
1)

2 sin(αt1)(y1 − y2)

+ sin(αt2) sin(ε
t
2) cos(α

t
1) cos(ε

t
1)

2 sin(αt1)(x1 − x2),

(A113)

∂κ t12

∂αt1
= 2 cos(εt2) cos(ε

t
1)(cos(α

t
2) sin(ε

t
2) sin(α

t
1) sin(ε

t
1)

− sin(αt2) sin(ε
t
2) cos(α

t
1) sin(ε

t
1)

+ cos(αt2) cos(ε
t
2) sin(α

t
2) cos(ε

t
1)

− cos(εt2) cos(α
t
1) cos(ε

t
1) sin(α

t
1)

+2 cos(αt2)
2 cos(εt2) cos(α

t
1) cos(ε

t
1) sin(α

t
1)

−2 cos(αt2) cos(ε
t
2) sin(α

t
2) cos(α

t
1)

2 cos(εt1)), (A114)

∂κ t12

∂αt2
= −2 cos(εt2) cos(ε

t
1)

(
cos(αt2) sin(ε

t
2) sin(α

t
1) sin(ε

t
1)

− sin(αt2) sin(ε
t
2) cos(α

t
1) sin(ε

t
1)

+ cos(αt2) cos(ε
t
2) sin(α

t
2) cos(ε

t
1)

− cos(εt2) cos(α
t
1) cos(ε

t
1) sin(α

t
1)

+2 cos(αt2)
2 cos(εt2) cos(α

t
1) cos(ε

t
1) sin(α

t
1)

−2 cos(αt2) cos(ε
t
2) sin(α

t
2) cos(α

t
1)

2 cos(εt1)
)
, (A115)

∂κ t12

∂εt1
= 2 cos(εt2) sin(α

t
2) sin(ε

t
2) sin(α

t
1) sin(ε

t
1)

2

−2 sin(εt2)
2 cos(εt1) sin(ε

t
1)

+2 cos(αt2)
2 cos(εt2)

2 cos(αt1)
2 cos(εt1) sin(ε

t
1)

+2 cos(εt2)
2 sin(αt2)

2 cos(εt1) sin(α
t
1)

2 sin(εt1)

−2 cos(αt2) cos(ε
t
2) sin(ε

t
2) cos(α

t
1) cos(ε

t
1)

2

+2 cos(αt2) cos(ε
t
2) sin(ε

t
2) cos(α

t
1) sin(ε

t
1)

2

−2 cos(εt2) sin(α
t
2) sin(ε

t
2) cos(ε

t
1)

2 sin(αt1)

+4 cos(αt2) cos(ε
t
2)

2 sin(αt2) cos(α
t
1) cos(ε

t
1) sin(α

t
1) sin(ε

t
1),

(A116)
∂κ t12

∂εt2
= 2 cos(αt2) sin(ε

t
2)

2 cos(αt1) cos(ε
t
1) sin(ε

t
1)

−2 cos(αt2) cos(ε
t
2)

2 cos(αt1) cos(ε
t
1) sin(ε

t
1)

−2 cos(εt2) sin(ε
t
2) sin(ε

t
1)

2

−2 cos(εt2)
2 sin(αt2) cos(ε

t
1) sin(α

t
1) sin(ε

t
1)

+2 cos(αt2)
2 cos(εt2) sin(ε

t
2) cos(α

t
1)

2 cos(εt1)
2

+2 sin(αt2) sin(ε
t
2)

2 cos(εt1) sin(α
t
1) sin(ε

t
1)

+2 cos(εt2) sin(α
t
2)

2 sin(εt2) cos(ε
t
1)

2 sin(αt1)
2

+4 cos(αt2) cos(ε
t
2) sin(α

t
2) sin(ε

t
2) cos(α

t
1) cos(ε

t
1)

2 sin(αt1).

(A117)
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Bias Estimation for Collocated
Sensors: Model Identification
and Measurement Fusion
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The sensor bias estimation problem is crucial in autonomous driv-

ing systems for perception and target tracking. This work consid-

ers the bias estimation for two collocated synchronized sensors with

slowly varying additive biases. The differences between the two sen-

sors’ observations are used to eliminate the target state. Consequently,

the bias estimation is independent of the target-state estimation. The

biases’ observability condition is met when the two sensors’ biases

are Ornstein–Uhlenbeck stochastic processes with different time con-

stants. The bias models, including the time constants and measure-

ment noises, can be identified based on a sample autocorrelation or

using the maximum-likelihood estimation technique. A maximum-

likelihood measurement fusion technique is introduced for the bias-

compensated observations. Simulation results, for several scenarios

with various bias model parameters, prove the consistency of the es-

timator. It is shown that the uncertainties of biases are significantly

reduced by the estimation algorithm presented. The sensitivity of the

proposed algorithm is also tested with mismatched filters as well as

the estimated bias models. Finally, the benefits of bias estimation in

measurement fusion are evaluated.

I. INTRODUCTION

Target tracking has always been an important prob-
lem for autonomous driving systems where multiple
sensors are utilized to improve the tracking accuracy.
Unfortunately, these sensors, such as radars, lidars,
and cameras, are prone to biases, which can lead to
a problematic association and hence poor results in
target tracking. The sensors used in autonomous driving
vehicles can only be placed together or very close (prac-
tically collocated), which makes the bias estimation
challenging. Consequently, only a few works partially
addressed this problem. Sensor calibration via off-line
preprocessing is supposed to eliminate the sensor biases.
However, it requires the knowledge of ground truth,
and to be of value, the biases must be time-invariant.
For the case where the sensor biases are dynamic and
slowly varying, off-line calibration is not sufficient. This
work proposes a real-time bias-estimation method for
collocated sensors independent of the target-motion
tracking and approaches for identifying the bias models.

Kastella and Yeary [7] considered the bias-
estimation problem for radars on moving platforms
by decoupling the tracking of targets of opportunity and
the estimation of the radar and platform biases.Lin et al.
[10] solved exact bias estimation for an active sensor
by using pairs of range and angle measurements to
create pseudo-measurements of the biases of both sen-
sors relying on the nonlinearity of the range and angle
measurements. Bar-Shalom [3] considered time-varying
bias estimation along with the target state. This work
is based on [3] and uses the subtraction between the
sensor measurements as in [10] to eliminate the target
state in estimating the sensor biases, i.e., the biases can
be estimated independently of the target. In [4], the
authors considered the problem of estimating sensor
biases from measurements of targets flying on known
trajectories by augmenting the kinematic state vector
with sensor bias parameters. In [10] and [11], the bias
model includes scale biases and unknown locations of
the sensors, as well as the usual offset biases. Kowalski
et al. [8] considered three-dimensional sensor bias esti-
mation using sine space measurements and showed the
achievability of the Cramér–Rao lower bound.

To handle bias estimation for collocated sensors,
this work considers slowly varying sensor biases that
are modeled as Ornstein–Uhlenbeck (OU, a class of
Gauss–Markov) processes (as discussed in [3]) and deals
with bias estimation with the following contributions: (i)
solving the problem for collocated synchronized sensors;
(ii) estimation of biases independent of target motion by
using the difference between the associated sensor ob-
servations; and (iii) application of the proposed method
to all kinds of observations (i.e., bearings, range, etc.)
from various types of sensors.

The bias models (parameters of the OU process)
are typically unknown with limited prior information. In
[12] and [13], the mean-reverting OU process parameter
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estimation is discussed along with a long-term predic-
tion. Two approaches are introduced in this paper to
identify the bias model: (i) sample autocorrelation based
method; and (ii) maximum-likelihood (ML) estimation
of the model parameters. The prior information about
the sensor biases consists of initial distributions,assumed
to beGaussianwith zeromean and certain variances.Af-
ter the bias estimation, one can fuse the local observa-
tions, according to Fusion Configuration III [2], with the
bias compensation taking into account the error in the
bias estimates. The fusion is carried out using the ML
criterion. The performance of the proposed method is
tested via simulations based on Monte Carlo (MC) runs
by showing the reduction in the mean-square (MS) er-
ror of the bias-compensated fused measurements versus
fusion without compensation. The estimator and fuser
presented are shown to be consistent.

The process flowchart for bias estimation, fusion, and
system identification is shown in Fig. 1. This paper is
organized as follows. Section II formulates the prob-
lem by introducing the bias dynamic model and the bias
measurement model (using the subtraction between the
sensor observations) and discusses the bias observabil-
ity. The bias model identification methods are presented
in Section III. In Section IV, the fusion of the bias-

compensated observations is presented. Section V gives
the simulation results of several scenarios. Conclusions
and remarks are in Section VI.

II. PROBLEM FORMULATION

The challenge of this work is to estimate the (collo-
cated) sensor biases efficiently given synchronized ob-
servations defined as

z1(k) = h [x(k), s(k)] + b1(k) + w1(k), (1)

k = 1, 2, . . . ,N,

and

z2(k) = h [x(k), s(k)] + b2(k) + w2(k), (2)

k = 1, 2, . . . ,N,

where x is the true (common) target state, which is un-
known, s is the sensor state, and h[·, ·] is the generic ob-
servation model (angle or range). Since the sensors are
collocated, they share the same sensor motion. The ob-
servations obtained from the sensors depend on both
the sensor and target motions as well as the biases and
noises. The bias estimation introduced in the following
does not require the target state. The observation noises

Fig. 1. Process flowchart for bias estimation and fusion.
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w1 and w2 are assumed to be zero mean,white with vari-
ances σ 2

w1
and σ 2

w2
, and are independent of each other and

of the sensor biases. The above observations are not re-
stricted to the type of sensors; only the same kind of ob-
servation is required, i.e., radars, lidars, and cameras can
provide angle observations; lidars and radars can also
provide range observations. It will be shown in the sequel
that bias estimation is independent of the target-state es-
timation, i.e., bias estimation and state tracking are de-
coupled. The observations considered are using generic
models in one coordinate (i.e., with a dimension of 1) to
aid in the clarity of the exposition.

The sensor biases are slowly varying, modeled as an
OU (first-order Gauss–Markov) process [7]. The dis-
crete dynamic model used for the biases [1], [3] is (two
collocated sensors are considered in this work)

bi(k+ 1) = αibi(k) + vi(k), i = 1, 2, (3)

with

αi = e−T/τi , (4)

where T is the sampling interval and τi is the time con-
stant of the bias evolution (assumed to be known; its es-
timation is discussed in Section III).

The time constant is given in terms of αi as

τi = −T lnαi. (5)

The above expression can be rewritten using the first-
order Taylor expansion for τ � T as

τi ≈ T
1 − αi

. (6)

The driving process noises vi are assumed to be zero
mean, white with variances σ 2

vi
. All the noises vi and wi

are independent.Using the abovemodel guarantees that
the bias estimates are bounded since (3) is stable.

The MS value of the bias bi is σ 2
bi
and its relationship

to the corresponding process noise variance is

σ 2
vi

= (1 − α2
i )σ

2
bi . (7)

Since the sensor biases bi will be estimated indepen-
dently of the target state,only the difference between the
observations is used:

z(k) = z1(k)− z2(k) = b1(k)− b2(k)+ w1(k)− w2(k).
(8)

The bias state to be estimated is

b(k) = [b1(k) b2(k)]′ (9)

with the state equation

b(k+ 1) = Fb(k) + v(k), (10)

where

F =
[
α1 0

0 α2

]
, (11)

and the process noise vector is

v = [v1 v2]′ (12)

with the covariance matrix

Q =
[
σ 2

v1
0

0 σ 2
v2

]
. (13)

The measurement model based on (8) is

z(k) = Hb(k) + w(k), (14)

where

H = [
1 −1

]
(15)

and the measurement noise w(k) is

w(k) = w1(k) − w2(k), (16)

which has variance σ 2
w1

+ σ 2
w2
.

A Kalman filter (KF) is then used for the estimation
of b(k), which gives the estimate at time k [1]

b̂(k) = [b̂1(k) b̂2(k)]′. (17)

The observability of the above system can be verified
via the observability matrix [9]

O =
[
H

HF

]
=

[
1 −1
α1 −α2

]
, (18)

which has full rank under the conditions (i) α1 �= α2, and
(ii) none is unity.1 Assuming that the sensors are differ-
ent, the biasmodels will be different due to their physical
properties, i.e., different αi in (3). Using a discrete-time
Wiener process to model both sensor biases will lead to
lack of observability of the system with αi = 1, and the
bias becomes the integral (sum) of the white noise se-
quence terms (and diverges). Thus, both the observabil-
ity conditions can be met with reasonably realistic as-
sumptions.

It can be easily seen that the pair (F,C), where C is
the Cholesky factor of the covariance matrix Q, is com-
pletely controllable. Thus, the solution of the discrete-
time Riccati equation for such a time-invariant system
will converge to a finite steady-state (SS) covariance [1],
which can obtained via KF.

III. BIAS MODEL IDENTIFICATION

The sensor biases are assumed to be OU processes,
as shown in (3); however, the time constants τi are, in
general, unknown. To identify the system (bias model)
as well as the process and measurement noise variances,
two approaches are introduced: (i) system parameter es-
timation based on sample autocorrelation, and (ii) ML
estimation. Note that the bias model identification is in-
dependent of and prior to the bias estimation.

For simplicity, only one system is analyzed for illus-
tration; however, the approach can be used for multiple
sensors with the same model but different parameters.

1The bias model should not diverge.

BIAS ESTIMATION FOR COLLOCATED SENSORS: MODEL IDENTIFICATION ANDMEASUREMENT FUSION 93



Consider the discrete-time OU bias model (with a
slowly varying bias2)

b(k+ 1) = αb(k) + v(k) (19)

and noisy observation model (k = 1, 2, . . . ,N)

z = h [x(k), s(k)] + b(k) + w(k), (20)

o(k) � z(k) − h [x(k), s(k)] = b(k) + w(k), (21)

with α defined in (4), v is the process noise with variance
σ 2

v , and w is the measurement noise with variance σ 2
w; x

and s are as defined in (2). The observation o(k) is ob-
tained assuming that the truth is known, which can be
done in the off-line precalibration. However, note that
h [x(k), s(k)] will cancel in (8),which will be used in esti-
mating the two biases (17). The identification of the bias
models will rely on (21).

A. Bias Model Parameter Estimation Using Sample
Autocorrelation

The autocorrelation of o(k), assumed to be wide-
sense stationary (WSS), is

r(m) = E{o(k)o(k−m)}
= E{[b(k) + w(k)][b(k−m) + w(k−m)]}
= E{b(k)b(k−m)} + σ 2

wδ(m)

= rb(m) + σ 2
wδ(m), (22)

where δ(k) is the Kronecker delta function and rb(m) is
the autocorrelation of b(k), also assumed to be WSS,

rb(m) = E{b(k)b(k−m)}
= E{[αb(k− 1) + v(k− 1)][b(k−m)]}
= αmrb(0) (23)

and

rb(0) = E{b(k)b(k)}
= E{[αb(k− 1) + v(k− 1)]

· [αb(k− 1) + v(k− 1)]∗}
= α2rb(0) + σ 2

v . (24)

The above equation yields

rb(0) = σ 2
v

1 − α2
. (25)

Substituting (25) into (22) gives

r(m) = αm
σ 2

v

1 − α2
+ σ 2

wδ(m), (26)

which can be used to estimate α, σ 2
v , and σ 2

w. That is, as-
suming that the sample autocorrelations are available

2This implies that α is near unity and σv is small.

(sufficiently accurate since one can have only sample au-
tocorrelations, i.e., time averages), one has

α = r(2)
r(1)

, (27)

σ 2
v = r(1)2 − r(2)2

r(2)
, (28)

σ 2
w = r(0) − r(1)2

r(2)
. (29)

Note that the above solution is highly dependent
on the accuracy of sample autocorrelations (especially
when α is very close to 1), which cannot be guaranteed
with limited sample data. Assuming that more autocor-
relations (i.e., more than r(2)) are available, the param-
eters can be estimated using all sample autocorrelations
to improve the accuracy as discussed in the following.

Equation (26) can be written for m > 0 as

ln r(m) = mβ + γ , m > 0, (30)

where

β = lnα, (31)

γ = ln
σ 2

v

1 − α2
. (32)

The least-squares (LS) estimate of parameters β̂

and γ̂ , given (r(1), . . . , r(M)), can be obtained as (see
Appendix)[

β̂

γ̂

]
=

[∑M
m=1m

2 ∑M
m=1m∑M

m=1m
∑M

m=1 1

]−1 [∑M
m=1m ln r(m)∑M
m=1 ln r(m)

]
,

(33)
and, using (31) and (32), one has

α̂ = eβ̂ , (34)

σ̂ 2
v = (1 − e2β̂ )eγ̂ . (35)

The full set of model parameter estimates is given
by (34), (35), and (29). Note that the parameter σ 2

w does
not require an additional LS estimator since it is not sen-
sitive to the accuracy of sample autocorrelations since
σ 2

v � σ 2
w.

B. ML Estimation of the System Parameters

The above equations can provide an explicit solution
for system parameter estimation in terms of the sample
autocorrelations, and due to computational and speed
demands, this is of high interest. However, the accuracy
of these estimated autocorrelations is highly dependent
on the data batch length.Alternatively, theMLapproach
can be used for estimating the system parameters of in-
terest [5], [6].
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The observation model (21) can be modified taking
into account the bias model (19) as

o(k) = αo(k− 1) + w(k) − αw(k− 1) + v(k− 1)

= αo(k− 1) + u(k), (36)

where

u(k) � w(k) − αw(k− 1) + v(k− 1) (37)

is zero mean but not white.
Consider an observation batch of length

L (L ≤ k− 1)

OL(k) =

⎡
⎢⎢⎢⎣

o(k)

o(k− 1)

. . .

o(k− L+ 1)

⎤
⎥⎥⎥⎦

= α

⎡
⎢⎢⎢⎣
o(k− 1)

o(k− 2)

. . .

o(k− L)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

u(k)

u(k− 1)

. . .

u(k− L+ 1)

⎤
⎥⎥⎥⎦

= αOL(k− 1) + UL(k). (38)

The noise vector UL(k) is zero mean with a covari-
ance matrix of dimension L

RU (L) ≈

⎡
⎢⎢⎢⎢⎢⎣

2σ 2
w −ασ 2

w 0

−ασ 2
w

...
...

...
... −ασ 2

w

0 −ασ 2
w 2σ 2

w

⎤
⎥⎥⎥⎥⎥⎦ (39)

under the assumptions that (i) α is very close to 1,and (ii)
the effect of the process noise v is negligible [σ 2

v � σ 2
w,

which can be seen from (7) as the difference on the right-
hand side is close to zero] and will not be estimated.3

The likelihood function (LF) of α and σ 2
w based on

(38) is

�(α, σ 2
w|OL(k))

= |2πRU (L)|−1/2 exp
[
1
2

O(k)′[RU (L)]−1
O(k)

]
,

(40)

where


O(k) = OL(k) − αOL(k− 1). (41)

The ML estimates (MLEs), α̂, and σ̂ 2
w can be found

by maximizing (40) via a numerical search. In practice,
a two-dimensional grid can be used for this. The process
noise σ 2

v estimate can be obtained via (7) using

σ̂ 2
v = σ 2

o − σ̂ 2
w, (42)

where σ 2
o is the MS value of the noisy observation (21).

3The process noise variance σ 2
v would appear added to each diagonal

term.

IV. FUSION OF THE OBSERVATION WITH BIAS
COMPENSATION

Under the Gaussian assumption, the fusion of bias-
compensated observations can be solved using the ML
criterion, i.e., by maximizing the LF or by minimizing
the negative log-likelihood function (NLLF) of the tar-
get position based on the observations from the two sen-
sors.4 Note that for the linear Gaussian case, the LS es-
timator and ML estimator, as well as the minimum MS
error (MMSE) estimator, coincide [1], [2].

With the bias estimates, the current observation can
be expressed as

zi(k) = ζ (k)+ b̂i(k)+ b̃i(k)+wi(k), i = 1, 2, (43)

where

ζ (k) = h [x(k), s(k)] (44)

is the noiseless fused observation that needs to be es-
timated given zi(k) and the bias estimates b̂i(k), and
by accounting for the residual bias error b̃i(k). The es-
timates for sensor biases are obtained using a KF and
thenwe directly estimate the fused observation with bias
compensation.

The bias-compensated (“bc”) observations, omitting
the time argument k for simplicity, are

zbc1 = z1 − b̂1 = ζ + b̃1 + w1 (45)

and

zbc2 = z2 − b̂2 = ζ + b̃2 + w2. (46)

Under the ML criterion, the fusion is carried out by
estimating ζ based on the bias-compensated observation
vector [zbc1 zbc2 ]′. The fused observation5 with bias com-
pensation (“Fbc”) is [1, Eq. (3.4.1-9)]

ζ̂ Fbc =
[
(HFbc)′(RFbc)−1HFbc

]−1

· (HFbc)′(RFbc)−1[zbc1 zbc2 ]′, (47)

where, in this case,

HFbc =
[
1
1

]
(48)

and

RFbc = E

{[
b̃1 + w1

b̃2 + w2

] [
b̃1 + w1 b̃2 + w2

]}
(49)

=
[
P11 + σ 2

w1
P12

P12 P22 + σ 2
w2

]
. (50)

4The LF of a parameter of interest (in this case, the target position) is
the probability density function (pdf) of the observation conditioned
on the parameter [1]. In the literature,one can find the term “likelihood
of the observation,” which is incorrect.
5The ML estimator is implemented using the LS technique [1].
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Table I
Steady-State Bias Error Variances and Standard Deviations for Each

Scenario

Scenario (1−α1, 1−α2) (τ1, τ2) P11 σb̂1
P22 σb̂2

1 (10−4, 10−2) (103, 101) 0.1673 0.4091 0.3084 0.5553
2 (10−5, 10−2) (104, 101) 0.0598 0.2445 0.2220 0.4712
3 (10−4, 10−3) (103, 102) 0.3689 0.6074 0.4014 0.6336

In (50), Pmn is the (m,n) element of the calculated co-
variance matrix associated with the bias estimate vector
(17).

The variance corresponding to the fused bias-
compensated observation (47) is

PFbc = [
(HFbc)′(RFbc)−1HFbc]−1

. (51)

The naïve fusion (with no bias compensation—
“Fnbc”) is

ζ̂ Fnbc = σ−2
w1
z1 + σ−2

w2
z2

σ−2
w1

+ σ−2
w2

, (52)

which has an MS error

PFnbc = σ−4
w1

(σ 2
w1

+ σ 2
b1
) + σ−4

w2
(σ 2

w2
+ σ 2

b2
)

(σ−2
w1

+ σ−2
w2

)2
. (53)

Note that the (non-Bayesian)ML fusion technique is
the same as the (Bayesian) MMSE fusion technique for
dependent tracks (with Gaussian errors), as discussed
in [2].

V. SIMULATION RESULTS

Numerical examples are shown in this section with
simulation results. For simplicity and illustration, con-
sider the stochastic biases to be estimated have MS val-
ues σ 2

b1
= σ 2

b2
= 1 for both sensors. The observation

noises σ 2
w1

and σ 2
w2

share the same variance 1. The sam-
pling interval T = 0.1 s. Simulation results are obtained
based on 100 MC runs.

Table II
Calculated Bias Estimate Variances for Various Numbers of Scans

for Each Scenario

Scans Scenario (1 − α1, 1 − α2) (τ1, τ2) P11 P22 PFbc

500 1 (10−4, 10−2) (103, 101) 0.2529 0.3786 0.7698
2 (10−5, 10−2) (104, 101) 0.2308 0.3620 0.7505
3 (10−4, 10−3) (103, 102) 0.4686 0.4959 0.9662

1000 1 (10−4, 10−2) (103, 101) 0.1952 0.3313 0.7171
2 (10−5, 10−2) (104, 101) 0.1512 0.2969 0.6779
3 (10−4, 10−3) (103, 102) 0.4405 0.4692 0.9388

2000 1 (10−4, 10−2) (103, 101) 0.1709 0.3113 0.6949
2 (10−5, 10−2) (104, 101) 0.0963 0.2519 0.6277
3 (10−4, 10−3) (103, 102) 0.4062 0.4363 0.9054

Table III
Bias NEES for Each Scenario With Various Numbers of Sampling

Scans From 100 Runs; 95% Probability Interval is [1.63 2.41]

Scenario N = 500 N = 1000 N = 2000

1 1.7321 2.1496 2.1339
2 2.1413 2.0102 1.8412
3 2.0802 2.1724 2.0791

A. Numerical Results

Three scenarios are considered in this section with
different values of the pair (1− α1, 1− α2): (10−4, 10−2),
(10−5, 10−2), and (10−4, 10−3). The corresponding time-
constant pairs (τ1, τ2) are (103, 101) s, (104, 101) s, and
(103, 102) s. With the same sampling interval, a smaller
1 − αi (αi closer to 1) indicates a larger time constant
and the corresponding bias has a smoother trajectory [7].
As discussed at the end of Section II, the covariance of
the bias estimates will converge to an SS value. Table I
lists the solutions of the SS variances from the discrete-
time Ricatti equation for each scenario. Note that for
such a system with αi close to 1, the convergence rate
is slow due to the small Kalman gain. The calculated co-
variances (variances for each bias, specifically) for each
scenario with respect to various numbers of scans N are
shown in Table II. The total simulation duration is NT .
The filter consistency is tested using the normalized es-
timation error squared (NEES) [1], which is Chi-square
distributed with the number of degrees of freedom given
by the number of MC runs (nMC) and the dimension of
the parameter vector (2 in this case). The 95% proba-
bility interval with nMC = 100 for the bias estimate is
[1.63 2.41]. It can be seen from Table III that the NEES6

for all the cases falls into the above interval and the es-
timator is thus consistent, i.e., the actual MSE matches
the filter-calculated variance.

In all the cases considered, the estimator reduced the
uncertainty of the biases. In Scenario 2 with 1000 scans,
the MS value of each bias is 1 before the biases are esti-
mated, which is reduced to 0.1512 for b1 (61% standard
deviation reduction) and 0.2969 for b2 (46% standard
deviation reduction). Similarly, for Scenario 1 with 1000
scans, the standard deviation reduction is 56% for b1 and
42% for b2. It can be seen that with 2000 scans (total
observation time 200 s), the calculated variance almost
reaches its SS value. The performance of the estimator
is sensitive to the bias models, i.e., when α1 and α2 are
close, such as in Scenario 3, the estimation performance
(uncertainty reduction) is not as significant due to the
marginal observability (the observability matrixO being
nearly singular).

In Table II, the variances of the fused observations
(51) for each scenario are also shown. The uncompen-

6The number of degrees of freedom is 100 × 2 = 200 and the NEES
uses division by 100, i.e., it should be around 2.
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Table IV
Sensitivity of MSE of Each Bias Estimate (MSEb1 , MSEb2 ) for Various Filter Model Time Constants (τMOD

1 , τMOD
2 ) From 1000 Runs With

True Model τTRUE
1 = 103 s, τTRUE

2 = 10 s. Note that Unless τMOD = τTRUE the Filters Are Mismatched

τMOD
2

(MSEb1 , MSEb2 ) 0.5τTRUE
2 τTRUE

2 2τTRUE
2 5τTRUE

2

τMOD
1 0.5τTRUE

1 (0.1971, 0.3391) (0.1826, 0.3163) (0.1897, 0.3333) (0.2358, 0.4155)
τTRUE
1 (0.1812, 0.3236) (0.1760, 0.3109) (0.1846, 0.3309) (0.2239, 0.4087)

2τTRUE
1 (0.1792, 0.3194) (0.1801, 0.3145) (0.1882, 0.3354) (0.2228, 0.4102)

5τTRUE
1 (0.1884, 0.3240) (0.1897, 0.3225) (0.1947, 0.3423) (0.2252, 0.4141)

Table V
Sensitivity of the Fused Observation MSE (MSEFbc) With Bias

Compensation From 1000 Runs

τMOD
2

MSEFbc 0.5τTRUE
2 τTRUE

2 2τTRUE
2 5τTRUE

2

τMOD
1 0.5τTRUE

1 0.7041 0.6878 0.6991 0.7557
τTRUE
1 0.6939 0.6863 0.6985 0.7479

2τTRUE
1 0.6956 0.6938 0.7050 0.7492

5τTRUE
1 0.7070 0.7056 0.7136 0.7533

sated sensor observation bias has MS values σ 2
bi

= σ 2
wi

=
1 and the naïvely fused error has an MS value PFnbc = 1
in all cases. After bias estimation and the compensated
fusion, the MS values have been significantly reduced.
The MS reduction is up to 37% (with PFbc = 0.63 for
Scenario 2).

B. Sensitivity

In the real world, the true bias models are not avail-
able inmost cases,whichwill result in amismatched filter
in estimation. The sensitivity of the proposed estimation
method is shown in Table IV, where the MSEs of the
bias estimate (obtained through a mismatched filter for
Scenario 1) are listed. The true bias dynamic models
have time constants τTRUE

1 = 103 s and τTRUE
2 = 101 s.

To test the sensitivity of the proposed estimator, dif-
ferent time constants are considered in the KF. The bi-
ases’ time constants used in the KF are τMOD

1 and τMOD
2 ,

respectively. The calculated variances for the bias esti-
mates are independent of the actual measurements with
P11 = 0.1709 and P22 = 0.3113 for all the cases consid-
ered. Since the bias dynamic models used in the filter are
different from the true ones, the consistency is lost. It can
be seen that, if the true bias model has time constants
different from those assumed in the estimator, the MSE
of the estimate increases. Nevertheless, there is always a
reduction in the bias error uncertainty.

The corresponding MSEs of the fused observations7

with bias compensation for various filter bias models
are shown in Table V. The simulation results are ob-

7These areMS errors,not covariances, in the case ofmismatched filters.

Table VI
Sample Autocorrelation Based Estimation of Bias b1 Model for

Various Data Batch Sizes

Batch length 5 × 105 106 107

e1 0.122 0.371 0.621
m1 1.001 1.000 1.000

tained from 1000MC runs. It can be seen that, even with
mismatched models in the filter, the fusion of the ob-
servations with bias compensation always achieves a
smaller MSE than the MSE of the “naïve” fusion, which
is 1.

C. Bias Model Identification

In this subsection, the scenario with decorrelation
true time constants τTRUE

1 = 103 s and τTRUE
2 =

101 s is considered. The two approaches introduced in
Section III are tested in the following.

Define the ratio of the estimated time constant to the
true constant as

ei = τ̂i/τ
TRUE
i , i = 1, 2, (54)

which indicates the accuracy of the estimation and can
be used for sensitivity analysis, and

mi = σ̂ 2
wi

/(σ̂TRUE
wi

)2, i = 1, 2, (55)

to be the ratio of the estimated measurement noise vari-
ance and the truth, taken as (σ̂TRUE

wi
)2 = 1. The simu-

lation results of ei and mi from the sample autocorrela-
tion based estimation of the corresponding bias model
are shown in Tables VI and VII with various data batch
lengths for i = 1 and i = 2, respectively. It can be seen
that, with more data, the accuracy of the model esti-
mation has been better. Note that bias model 1, with a
higher time constant, requires a longer batch.

Table VII
Sample Autocorrelation Based Estimation of Bias b2 Model for

Various Data Batch Sizes

Batch length 5 × 104 105 5 × 105

e2 0.650 0.736 0.916
m2 0.995 0.986 0.999
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Table VIII
MLE From 100 MC Runs (Batch Size L = 250)

i 
α 
σ 2
w 1 − α grid σ 2

w grid ēi RMSE(ei) m̄i RMSE(mi)

1 0.001 0.01 [0.95 0.999] [0.5 1.5] 5.489 4.611 1.000 0.087
2 0.00001 0.01 [0.999 0.99999] [0.5 1.5] 1.369 1.265 1.001 0.095

The MLE is obtained via numerical search, where
the search intervals for time constants and measure-
ment noises as well as the grid steps are shown in
Table VIII. The observation batch size is L = 250 and
the simulation results [mean and variance of the ratios,
(54) and (55), respectively] are based on 100 MC runs.
The MSEs of bias estimation and fusion with bias com-
pensation based on the result of system identification
are are shown in Table IX for the two approaches dis-
cussed. The degradation of MSEFbcMI (MSE of fusion
with bias compensation based on model identification)
versus MSEFbc (MSE from correct filter) is around 11%
for the autocorrelation-based model identification, and
is around 6% for ML-based identification due to the es-
timated model in the filter. Note that the MSE of fused
observation is the most important, and, even with a rela-
tively high error in the bias model estimation, the fused
MSE is clearly better with bias compensation than with-
out. Also note that the ML procedure requires a much
shorter batch length.

VI. CONCLUSIONS

In this work, the bias estimation for collocated syn-
chronized sensors is solved using a target of opportu-
nity. The sensor biases are slow varying, modeled as OU
processes. Only the difference between the sensor ob-
servations is used for the bias estimation, which is thus
independent of the target-state estimation. The system
is observable when the biases have different eigenval-
ues in their noise-driven discrete time dynamic models.
The bias model parameters can be obtained directly via
sample autocorrelations or viaML estimation.With bias
estimates and by accounting for the residual biases, the
fusion of the bias-compensated observations is carried
out under the ML criterion. The standard deviation of
the fused measurement is significantly reduced.The per-
formances, in terms of both accuracy and convergence
time, are sensitive to and depend on the bias dynamics.
The bias-estimation consistency is proved via simulation

Table IX
MSE of Fused Observation Based on System Identification From

100 Runs

Bias estimation approach MSEb1 MSEb2 MESFbcMI

Autocorrelation based
(batch length 5 × 106)

0.2278 0.3416 0.7728

ML (batch length 250) 0.1650 0.3351 0.7378

results. Using the ML criterion, the fusion of the obser-
vations carried out with bias compensation results in a
significant MSE reduction for the fused measurement.
The proposed algorithm is also shown to provide bene-
fits even with mismatched filers with bias dynamic mod-
els different from the true ones.

APPENDIX

A LEAST SQUARES ESTIMATOR OF BIAS MODEL
PARAMETERS

Given the sample autocorrelations {r(1), r(2), . . . ,
r(M))}, the LS estimates are[

β̂

γ̂

]
= argmin

β,γ
E(β, γ )

= argmin
β,γ

{
M∑
m=1

[ln r(m) − (mβ + γ )]2
}

. (A1)

Minimization of the above expression

∂E(β, γ )
∂β

= 0,
∂E(β, γ )

∂γ
= 0, (A2)

where

∂E(β, γ )
∂β

=
M∑
m=1

−2[ln r(m) − (mβ + γ )]m, (A3)

∂E(β, γ )
∂γ

=
M∑
m=1

−2[ln r(m) − (mβ + γ )]. (A4)

Setting ∂E(β,γ )
∂β

= ∂E(β,γ )
∂γ

= 0 gives

M∑
m=1

[ln r(m) − (mβ + γ )]m = 0, (A5)

M∑
m=1

[ln r(m) − (mβ + γ )] = 0. (A6)

Rewriting the above equations as(
M∑
m=1

m2

)
β +

(
M∑
m=1

m

)
γ =

M∑
m=1

m ln r(m), (A7)

(
M∑
m=1

m

)
β +

(
M∑
m=1

1

)
γ =

M∑
m=1

ln r(m), (A8)
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the LS estimates are (the solution to these equations)[
β̂

γ̂

]
=

[∑M
m=1m

2 ∑M
m=1m∑M

m=1m
∑M

m=1 1

]−1 [∑M
m=1m ln r(m)∑M
m=1 ln r(m)

]
.

(A9)
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Heterogeneous and
Asynchronous Information
Matrix Fusion

KAIPEI YANG
YAAKOV BAR-SHALOM
KUO-CHU CHANG

The Information Matrix Fusion (IMF) algorithm for nonlinear,

asynchronous (with arbitrary local tracker sampling times for full rate

as well as reduced-rate communication) and heterogeneous systems is

presented. The heterogeneous estimates from local trackers are in dif-

ferent state spaces with different dimensions and are related by a non-

linear and noninvertible transformation.Themain application of these

results is the fusion of tracks from radar and infrared/electrooptical

sensors. Different from Track-to-Track Fusion, the IMF does not re-

quire the cross-covariance between the local estimation errors. The

performance of the proposed algorithm is shown via simulation based

onMonte Carlo runs and is compared with the optimal solution—full-

rate centralized fusion for both full-rate fusion and reduced-rate fusion

for heterogeneous and asynchronous sensors.

I. INTRODUCTION

A sensor configuration with complementary sensors
at different locations (sensor network) is required in
most of the tracking systems to achieve the neces-
sary dependability and estimation accuracy. The best
target-state-estimation performance is obtained by a
centralized tracker/fuser (CTF), by directly sending to
the fusion center (FC) all the measurements of the local
sensors. However, CTF is not always available due to
the communication constraints in practical situations. In
this case, local sensors are capable of performing target-
state tracking with their information processing systems.
Such a system has a number of tracks that are sent to
the FC. High-level algorithms such as Track-to-Track
Fusion (T2TF) and Information Matrix Fusion (IMF)
are commonly used for their modularity, practicality and
scalability.

The IMF algorithm, as derived in [4] and originally
presented in [6] for the case where all the local sen-
sors are synchronized, is restricted to (i) linear systems,
and (ii) the local trackers (LTs) estimate the same state.
This algorithm belongs to the class of Track-to-Track
Fusion with Memory (T2TFwM) and is, if operating at
a “full communication rate,” algebraically equivalent to
the Configuration IV (centralized) tracker for linear sys-
tems.Unlike the Track-to-Track FusionwithoutMemory
(T2TFwoM) [4], the IMF algorithm does not need the
cross-covariance between the track estimation errors.

Asynchronous fusion was considered in [9] for the
case where the local trackers estimate the same state.
Aeberhard et al. [2] considered an asynchronous IMF
with applications for driver-assistance systems. Hetero-
geneous fusion was investigated in [10], where it was
shown how the linear minimum mean-square error
(LMMSE) estimator and an (approximate) equivalent
measurement based on a lower dimension local-state es-
timate can be used to update a higher dimension state es-
timatewhen these states are related by a nonlinear trans-
formation. However, the fusion algorithm from [10] did
not account for the common process noise. A modifica-
tion of the result of [10] was given in [1] by using the
unscented transform to evaluate the necessary covari-
ances. The recent work of Mallick et al. [7] considered
the problem of track fusion from heterogeneous sensors
(with sampling intervals of the radar a multiple of the in-
terval of the infrared/electrooptical (IR/EO) sensor) by
augmenting the lower dimensional state of the IR/EO
sensor with a number of range estimates based on a
priori information, thusmaking it of the same dimension
as the radar’s state estimate. The work [11] derived the
relationship between the process noise covariance ma-
trices of the two state vectors (to account for the com-
mon process noise) and provided the expression of the
covariance matrix of the heterogeneous estimation er-
rors, which is needed in T2TF.

In [12], the IMF algorithm was first derived for
nonlinear systems where the local filters are extended
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Kalman filters (EKFs), rather than Kalman filters (KFs),
estimating the same state and the conditions under
which it holds. The fusion equations for the asyn-
chronous case—arbitrary LT sensor sampling times—
with LT-driven communication as well as FC-driven
communication are also given for a system with homo-
geneous sensors.

In the present work, which is an extension of [12],
the IMF algorithm is generalized to asynchronous het-
erogeneous systems where the local filters estimate dif-
ferent states (in different spaces of different dimen-
sions), related by a nonlinear transformation, and the lo-
cal sensors are running at different sampling rates. Such
a situation occurs when the first tracker, using radar
data, estimates the full Cartesian state of the target,
while the second tracker, using a passive sensor (e.g.,
IR/EO), estimates the (lower dimension) angular state
of the target. These two different-dimension states are
related by a nonlinear transformation with no inverse.
It is shown that one can combine state estimates of dif-
ferent dimensions in the IMF algorithm by construct-
ing a “mapped” information involving the Jacobian of
the nonlinear transformation that relates these states.
Specifically, the IMF algorithm for an asynchronous case
is derived for both an LT (full-rate) driven case and
an FC (reduced-rate) driven case. This is investigated
since the asynchronous case is motivated by the real-
world scenario where the sensors have different sam-
pling frequencies. In this work, we considered one-way
communication from LT to FC without feedback. Note
that there is no communication delay. In other words,
the time index used later in the IMF formulas repre-
sents the LT sensor observation time, LT update time, as
well as FC fusion time for the synchronous case. For the
asynchronous case, zero communication delay implies
that there is no out-of-order information received at FC
from LT.

Section II presents the IMF algorithm for nonlinear
filters with homogeneous sensors, i.e., the state estimates
are in the same state space. Section III introduces the
heterogeneous system in detail. The IMF algorithm for
synchronous heterogeneous sensors is shown in Section
IV .The asynchronous IMF for heterogeneous sensors is
discussed in Section V for both the LT-driven case and
the FC-driven case. Section VI presents the simulation
results of an asynchronous heterogeneous IMFand com-
pares them with the (i) optimal solution—centralized
tracking/fusion and (ii) T2TF solution. Conclusions are
presented in Section VII. Notations used in equations
are summarized in Table I.

II. NONLINEAR INFORMATION MATRIX FUSION

The IMFwith nonlinear filters for homogeneous sen-
sors, i.e., the states are in the same space, is discussed in
detail in [12] for both the synchronous case and the asyn-
chronous case. The derivations will not be repeated here

Table I
Notations Used for IMF Algorithm

Indices:
tk Times when the FC carries out fusion
k Discrete time index
T Sampling interval
i Sensor index
tr(tk) Most recent times prior to tk at which LT r sent

information to the FC
te(tk) Most recent times prior to tk at which LT e sent

information to the FC
tem Sampling time of EO sensor with index m
trl Sampling time of radar with index l
Parameters:
ne Dimension of state estimate from EO tracker
nr Dimension of state estimate from radar tracker
Ns Number of local sensors
Variables:
zi Measurement from sensor i
x̂i State estimate of track i, used in homogeneous IMF
Pi Covariance corresponding to x̂i, used in

homogeneous IMF
x̂e,Pe Estimate from EO sensor with dimension ne and

corresponding covariance
x̂r,Pr Estimate from radar with dimension nr and

corresponding covariance
x̂E ,PE Estimate obtained using the x̂e with dimension nr and

corresponding covariance
ŷE (k|k) Mapped information state
ŷE (k|k− 1) Mapped predicated information state

for the sake of brevity. In this section, it is assumed that
each local filter/LT uses the same target statemodel with
an EKF as the tracker, and they are synchronized.

Under full-rate communication, each LT communi-
cates to the FC its updates as they are obtained and the
FC then updates its fused state.

The LT-state update at sensor i at time tk (indicated
in the sequel by its index only) is given by [4]

x̂i(k|k) = x̂i(k|k− 1) + Pi(k|k)Hi[k, x̂i(k|k− 1)]T

·Ri(k)−1 [
zi(k) − hi[k, x̂i(k|k− 1)]

]
(1)

using the measurements

zi(k) = hi[k, x(k)] + wi(k), (2)

where wi(k) is the zero-mean white measurement noise
with covariance Ri(k) and hi is its measurement func-
tion, with Jacobian

Hi[k, x̂i(k|k− 1)] �= [∇x(k)h
i[k, x(k)]T

]T∣∣∣
x(k)=x̂i(k|k−1)

.

(3)
The covariance-update equation in the information ma-
trix form is (see [3, eq. (5.2.3-16)])

Pi(k|k)−1 = Pi(k|k− 1)−1 +Hi[k, x̂i(k|k− 1)]T

·Ri(k)−1Hi[k, x̂i(k|k− 1)]. (4)
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The EKF information-state update at sensor i is [11]

Pi(k|k)−1x̂i(k|k)
= Pi(k|k− 1)−1x̂i(k|k− 1) +Hi[k, x̂i(k|k− 1)]T

·Ri(k)−1 [
zi(k) − hi[k, x̂i(k|k− 1)]

]
+Hi[k, x̂i(k|k− 1)]x̂i(k|k− 1), (5)

which gives (by rearranging)1

Hi[k, x̂i(k|k− 1)]TRi(k)−1 [
zi(k) − hi[k, x̂i(k|k− 1)]

]
+Hi[k, x̂i(k|k− 1)]x̂i(k|k− 1)

= Pi(k|k)−1x̂i(k|k) − Pi(k|k− 1)−1x̂i(k|k− 1). (6)

The full-rate information-state fusion equation is

P(k|k)−1x̂(k|k) = P(k|k− 1)−1x̂(k|k− 1)

+
Ns∑
i=1

[
Pi(k|k)−1x̂i(k|k)

−Pi(k|k− 1)−1x̂i(k|k− 1)
]
, (7)

whereNs is the number of sensors.The differences of the
predicted and updated information states in the summa-
tion above are the “new information” from each of the
sensors.This new information is exactly equivalent to the
innovation in the KF in the linear case—see (6)—and,
thus, it is uncorrelated with the past information.

The information matrix fusion equation is

P(k|k)−1 = P(k|k−1)−1+
Ns∑
i=1

[Pi(k|k)−1−Pi(k|k−1)−1],

(8)
i.e., the same as in the linear case but subject to the
approximations (linearization).

III. HETEROGENEOUS STATES

The IMF algorithm, as shown in (7), requires the
addition of the information vectors (Pi)−1x̂i across the
local trackers, i.e., they have to have the same dimen-
sion. In the case where one sensor is a radar (with the
corresponding target estimate of dimension nr and its
covariance, superscripted by r) and the other sensor is
an IR/EO one (with the corresponding target estimate
of dimension ne and its covariance, superscripted by e),
the two estimated state vectors have different dimen-
sions (they are in different spaces). Consequently, the
corresponding new information, based on the different-
dimension local information states, cannot be added as
required by (7).

The smaller dimension (ne) state is related to the
higher dimension (nr) state according to

xe = g(xr, pr, pe), (9)

1Note that equations (5) and (6) in [12] have typos and the correct ones
are, respectively, given in (5) and (6) in this paper.

where the time arguments are omitted for simplicity,
and pr and pe are the position vectors of the radar
and the EO sensor, respectively. Since g(·) maps the nr-
dimensional vector xr to the (lower) ne-dimensional vec-
tor xe, it is not invertible, i.e., one cannot obtain an esti-
mate of the full Cartesian state (of dimension nr) based
on the angular state estimate from the EO sensor.

Consider the estimate x̂e from the EO sensor (local
track) as an “observation” z of the nr-dimensional state
vector xr (truth) related by

z = g(xr) + w, (10)

where w is a zero-mean noise with covariance matrix Pe.
The solution (desired estimate) of the above system is
defined as x̂E (of dimension nr), where the superscript E
indicates the estimate obtained using the observation x̂e

through the nonlinear relationship g(·).2 The (hypothet-
ical3) least-squares (LS) estimate of dimension nr based
on (10) (following [3, eq. (3.4.4-11)], using the radar es-
timate x̂r since the true state is not available, is given by

x̂E = (G′R−1G)−1G′R−1(z− h(x̂r)) + x̂r (11)

and the covariance corresponding to x̂E is

PE = (G′R−1G)−1, (12)

where G is the Jacobian evaluated at x̂r and

G(x̂r) �= [∇xrg[xr]T
]T∣∣∣

xr=x̂r
(13)

is the (ne×nr) Jacobian.Note thatG′R−1G is not invert-
ible because the right-hand side of (12) has rank ne < nr,
and the covariance matrix does not exist. In this case,
one cannot obtain an estimate of the full Cartesian state
(of dimension nr) based on the angular-state estimate
from the EO sensor.However, the above equations pro-
vide the motivation for the following implementable al-
gorithm that can overcome the unequal-state-dimension
problem: Instead of the “mapped” estimate (11) and
covariance matrix (12), one can calculate the “mapped
new information” directly, which is what the IMF equa-
tions need.The following approach is taken to overcome
the incompatibility of state dimensions and singularity
of (12).

IV. HETEROGENEOUS IMF FOR SYNCHRONOUS
CASE

Define an nr-dimensional “mapped (from the EO/IR
state space to radar state space) information state”

ŷE(k|k) �= PE(k|k)−1x̂E(k|k) (14)

and a “mapped predicted information state”

ŷE(k|k− 1) �= PE(k|k− 1)−1x̂E(k|k− 1) (15)

2This is (9) omitting the sensor positions for simplicity.
3To be defined in the sequel—this estimate cannot be obtained since
ne < nr.
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in order to obtain the “mapped new information”
ŷE(k|k) − ŷE(k|k − 1). Although ŷE(k|k) and
ŷE(k|k − 1) cannot be obtained since x̂E and PE

are not available, they are not necessary and only their
difference—the “mapped new information”—will be
needed in the information-state-fusion equation, as it
will be shown in the sequel.

The state update equation for (10) with the time ar-
guments, based on (1), can be written as

x̂E(k|k) = x̂E(k|k− 1) + PE(k|k)G[k, x̂E(k|k− 1)]T

·Pe(k|k)−1 [
x̂e(k|k) − g[k, x̂E(k|k− 1)]

]
,

(16)

where

G[k, x̂E(k|k− 1)] �= [∇xg[x]T
]T∣∣∣

x=x̂E (k|k−1)
(17)

is the (ne × nr) Jacobian, the evaluation of which is dis-
cussed in the sequel. The covariance update equation in
the information matrix form, based on (4), is

PE(k|k)−1 = PE(k|k− 1)−1 +G[k, x̂E(k|k− 1)]T

·Pe(k|k)−1G[k, x̂E(k|k− 1)]. (18)

The “mapped new information” from the sensor of di-
mension ne into the space of dimension nr > ne can be
obtained, by substituting (16) and (18) into (14) and (15)
and following (6), as4

ŷE(k|k) − ŷE(k|k− 1)

= G[k, x̂E(k|k− 1)]TPe(k|k)−1

· {x̂e(k|k) − g[k, x̂E(k|k− 1)]

+ G[k, x̂E(k|k− 1)]x̂E(k|k− 1)
}

(19)

≈ G[k, x̂(k|k− 1)]TPe(k|k)−1{
x̂e(k|k) − g[k, x̂(k|k− 1)]

+ G[k, x̂(k|k− 1)]x̂(k|k− 1)
}
, (20)

where the approximate equality above is obtained by the
substitution x̂E → x̂. The evaluation of the Jacobian (17)
and state prediction in (19) can be done using the FC es-
timate x̂ rather than x̂E (since the latter is not available).
In this case, we useG[k, x̂(k|k− 1)] and g[k, x̂(k|k− 1)]
instead of G[k, x̂E(k|k − 1)] and g[k, x̂E(k|k − 1)], re-
spectively. Therefore, (20) will be used to obtain the syn-
chronous heterogeneous information state fusion equa-
tion with full-rate communication by modifying (7) as
follows:

P(k|k)−1x̂(k|k)
= P(k|k− 1)−1x̂(k|k− 1)

+{
Pr(k|k)−1x̂r(k|k) − Pr(k|k− 1)−1x̂r(k|k− 1)

}
4In (6),we substituteHi → G,Ri → Pe, zi → x̂e,hi → g, and x̂i → x̂E .

+ {
ŷE(k|k) − ŷE(k|k− 1)

}
. (21)

Note that the entire right-hand side of (21) has dimen-
sion nr, i.e., the problem of unequal state dimensions has
been eliminated. The corresponding synchronous het-
erogeneous informationmatrix fusion equation, based on
(18) and (8), is

P(k|k)−1

= P(k|k− 1)−1 + {
Pr(k|k)−1 − Pr(k|k− 1)−1}

+{
PE(k|k)−1 − PE(k|k− 1)−1}

= P(k|k− 1)−1 + {
Pr(k|k)−1 − Pr(k|k− 1)−1}

+{
G[k, x̂E(k|k− 1)]TPe(k|k)−1G[k, x̂E(k|k− 1)]

}
.

(22)

At initialization, one needs the radar’s (full-state) esti-
mate to evaluate the Jacobian G.

The fusion architecture for a synchronous heteroge-
neous IMF is shown in Fig. 1, where the dashed circle in-
dicates the mapping of the new information from angle
space to Cartesian space.

V. HETEROGENEOUS IMF FOR ASYNCHRONOUS
CASE

A. LT-Driven Asynchronous Case

With LT/local filter-driven communication, the fu-
sion in an asynchronous system (e.g., with tracks from
radar and IR/EO sensors) is carried out whenever the
FC receives new information. In this case, the system is
updated with full rate. As shown in Fig. 2, sensor r is as-
sumed to be the active one (radar) with the state vector
in the larger state space (of dimension nrx) and sensor e
is the passive EO/IR with the state vector in the smaller
state space (of dimension nex < nrx). For the FC, the fu-
sion times are equal to the times when new information
is obtained. From Fig. 2, we have

tk = tem (23)

and, with l � trl < tk,

tk−1 = max{trl , tem−1}, (24)

where l andm denote the respective LT sampling indices.
LT-driven asynchronous fusion (full rate) is carried out
whenever an LT has new information delivered to the
FC.

The “mapped new information,” based on (20), is

ŷE(tk|tk) − ŷE[tk|te(tk)]

= G
[
tk, x̂E[tk|te(tk)]

]T
Pe(tk|tk)−1

· {x̂e(tk|tk) − g
[
tk, x̂E[tk|te(tk)]

]
+ G

[
tk, x̂E[tk|te(tk)]

]
x̂E[tk|te(tk)]

}
. (25)
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Fig. 1. Fusion architecture for synchronous heterogeneous IMF.

Fig. 2. FC times and LT times in asynchronous IMF—LT driven,
update with latest information from sensor e.

Based on the above and discussion about the asyn-
chronous but homogeneous system in [12], the asyn-
chronous heterogeneous information state fusion
equation becomes

P(tk|tk)−1x̂(tk|tk)
= P(tk|tk−1)−1x̂(tk|tk−1)

+{
Pr(tk|tk)−1x̂r(tk|tk)

−Pr[tk|tr(tk)]−1x̂r[tk|tr(tk)]
}
χ r(tk)

+ {
ŷE(tk|tk) − ŷE[tk|te(tk)]

}
χ e(tk), (26)

where tr(tk) and te(tk) are the most recent times prior
to tk at which LT r and LT e have sent information to
the FC (its previous communication), respectively, and
χ r(k) and χ e(k) are the communication indicator func-
tions for LTs,

χ r(k) =
{
1 if LT r sends information to FC at tk

0 otherwise
(27)

and

χ e(k) =
{
1 if LT e sends information to FC at tk

0 otherwise
.

(28)
Note that if χ e(tk) = 1 and χ r(tk) = 0, (26) carries out
the update with the latest information only from sensor
e, as illustrated in Fig.2. Ifχ e(tk) = 0 andχ r(tk) = 1, then
(26) carries out the update with the latest information
only from sensor r.

The corresponding information matrix fusion equa-
tion is (modifying (22)) given by

P(tk|tk)−1 = P(tk|tk−1)−1

+{
Pr(tk|tk)−1 − Pr[tk|tr(tk)]−1}χ r(tk)

+{
G

[
tk, x̂E[tk|te(tk)]

]T
Pe(tk|tk)−1

·G[
tk, x̂E[tk|te(tk)]

]}
χ e(tk). (29)

To implement the above method, the approximations

G
[
tk, x̂E[tk|te(tk)]

] ≈ G
[
tk, x̂[tk|te(tk)]

]
(30)

and

x̂E[tk|te(tk)] ≈ x̂[tk|te(tk)] (31)

are used in (25), (26), and (29).
The fusion architecture for an LT-driven asyn-

chronous heterogeneous IMF is shown in Fig. 3, where
the dashed circle indicates the mapping of the new in-
formation from angle space to Cartesian (25).

Fig. 3. Fusion architecture for LT-driven asynchronous heterogeneous IMF.
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Fig. 4. FC times and LT times in asynchronous IMF—FC driven.

B. FC-Driven Asynchronous Case

In this case, it is assumed that the FC updates its state
at intervals τk (length of the fusion window); namely, if
the current update is at tk, the previous update was at
tk − τk = tk−1. The fusion window ending at tk is thus the
semiclosed interval (tk − τk, tk] of length τk, which is at
the discretion of the FC. The system is updated with a
reduced rate. The fusion times at the FC and the latest
LT sampling times are shown in Fig. 4.

The information state fusionwith FC-driven commu-
nication is

P(tk|tk)−1x̂(tk|tk)
= P(tk|tk−1)−1x̂(tk|tk−1)

+{
Pr[tk|tr(tk)]−1x̂r[tk|tr(tk)]

−Pr[tk|tr(tk−1)]−1x̂r[tk|tr(tk−1)]
}

+ {
ŷE[tk|te(tk)] − ŷE[tk|te(tk−1)]

}
(32)

and the counterpart of (25) is

ŷE[tk|te(tk)] − ŷE[tk|te(tk−1)]

= G
[
tk, x̂E[tk|te(tk−1)]

]T
Pe[tk|te(tk)]−1

· {x̂e[tk|te(tk)] − g
[
tk, x̂E[tk|te(tk−1)]

]
+ G

[
tk, x̂E[tk|te(tk−1)]

]
x̂E[tk|te(tk−1)]

}
(33)

≈ G
[
tk, x̂[tk|te(tk−1)]

]T
Pe[tk|te(tk)]−1

· {x̂e[tk|te(tk)] − g
[
tk, x̂[tk|te(tk−1)]

]
+ G

[
tk, x̂[tk|te(tk−1)]

]
x̂[tk|te(tk−1)]

}
, (34)

where tr(tk), te(tk) and tr(tk−1), te(tk−1) are the times of
the most recent update of LT r and e prior to tk and
tk−1, respectively. The approximation5 in (39) is needed
to evaluate the Jacobian matrix since x̂E is not available.

The terms in the braces in (32) represent the accu-
mulated new information from sensors r and e during
the fusion window (tk−1, tk] and are mapped directly to
the fusion time tk. Note that if the most recent update
of LT r or LT e prior to tk occurs prior to tk−1, i.e., there
is no new information from this LT during the window
(tk−1, tk], then the terms in the braces corresponding to
each LT will be equal and thus cancel—the “new infor-
mation” from this LT during this window is zero in this
case.

5G
[
tk, x̂E[tk|te(tk−1)] ≈ G

[
tk, x̂[tk|te(tk−1)]

]
, x̂E [tk|te(tk−1)] ≈

x̂[tk|te(tk−1)].

The corresponding information matrix fusion equa-
tion is

P(tk|tk)−1

= P(tk|tk−1)−1 + {
Pr[tk|tr(tk)]−1 − Pr[tk|tr(tk−1)]−1}

+{
G

[
tk, x̂E[tk|te(tk−1)]

]T
Pe[tk|te(tk)]−1

·G[
tk, x̂E[tk|te(tk−1)]

]}
(35)

≈ P(tk|tk−1)−1 + {
Pr[tk|tr(tk)]−1 − Pr[tk|tr(tk−1)]−1}

+{
G

[
tk, x̂[tk|te(tk−1)]

]T
Pe[tk|te(tk)]−1

·G[
tk, x̂[tk|te(tk−1)]

]}
. (36)

The “new information” terms in the braces in (36) are
not uncorrelated from the past information even in the
linear case—the uncorrelatedness holds only for full-
rate communication. Their use for “decorrelation” from
the past is only approximate.

The fusion architecture for an LT-driven asyn-
chronous heterogeneous IMF is shown in Fig. 5, where
the dashed circle indicates the mapping of the new in-
formation from angle space to Cartesian (39).

VI. SIMULATION RESULTS

The asynchronous heterogeneous IMF is evaluated
for two cases for the scenario detailed in the sequel: (i)
full-rate (LT-driven) asynchronous LTs and (ii) reduced-
rate (FC-driven) asynchronous LTs. The performance
of synchronous and heterogeneous LTs is also eval-
uated. The homogeneous and synchronous heteroge-
neous cases are discussed in [12] and will not be dupli-
cated here.

A. The State Models for the Active and Passive Sensors

In the ξ–η space, a radar located at [ξ r ηr] with, for
simplicity, direct Cartesian position measurements with
measurement noises wr 6 and an EO sensor located at
[ξ e ηe] with bearing measurements only,

θ e = tan−1[(η − ηe)/(ξ − ξ e)] + we, (37)

are considered for the IMF for a two-dimensional (2-D)
target. The measurement noises wr and we are assumed
to be independent zero-mean white Gaussians with cor-
responding standard deviations σ r and σ e.

The active sensor (radar) provides 2-D measure-
ments in 2-D Cartesian space (position) and a 4-D LT
state (position and velocity) with a discretized contin-
uous time white noise acceleration (CWNA) motion

6The radar’s measurements in polar coordinates can be transformed
into Cartesian coordinates with an unbiased consistent transformation
[3, Ch. 10.4.3].
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Fig. 5. Fusion architecture for FC-driven asynchronous heterogeneous IMF.

model [3] in Cartesian coordinates:

xr = [ξ ξ̇ η η̇]T (38)

with the discretized dynamic model to be

xr(trl+1) = Frxr(trl ) + vr(trl ), (39)

and measurement model

zr = Hrxr(trl ) + wr(trl ), (40)

where

Fr =

⎡
⎢⎢⎢⎢⎣
1 Tr 0 0

0 1 0 0

0 0 1 Tr

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , (41)

Hr =
[
1 0 0 0

0 0 1 0

]
. (42)

The process noise vector has covariance matrix

Qr =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
3 (T

r)3 1
2 (T

r)2 0 0

1
2 (T

r)2 Tr 0 0

0 0 1
3 (T

r)3 1
2 (T

r)2

0 0 1
2 (T

r)2 Tr

⎤
⎥⎥⎥⎥⎥⎥⎦
q̃, (43)

where q̃ is the power spectral density and q̃ = 3.8 m2/s3

in simulations.
The EO sensor uses a KF also based on a CWNA

model with a state vector involving the angle and angle
rate

xe = [θ θ̇ ]T. (44)

The discretized dynamic model is

xe(tem + 1) = Fexe(tem) + ve(tem), (45)

ze = Hexe(tem) + we(tem), (46)

where

Fe =
[
1 Te

0 1

]
, (47)

He = [
1 0

]
. (48)

The state vector (38) and the state vector (44) have
a nonlinear relationship

xe = α [xr] (49)

with explicit expressions

θ = atan
η − ηe

ξ − ξ e
, (50)

θ̇ = vsin(φ)
re

, (51)

where v is the target speed given by

v =
√

ξ̇ 2 + η̇2, (52)

re is the range with respect to the passive sensor’s loca-
tion given by

re =
√
(ξ − ξ e)2 + (η − ηe)2, (53)

and φ is the difference between velocity angle and posi-
tion azimuth angle given by

φ = atan
η̇

ξ̇
− atan

η − ηe

ξ − ξ e
. (54)

The process noise covariance matrix of the EO
tracker’s model at time tk has the following relationship

Fig. 6. Target trajectory (one realization) and sensor locations.
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Fig. 7. Full-rate (LT-driven) heterogeneous IMF RMSE from 500 runs.

Fig. 8. Reduced-rate (TFC = 0.4 s) heterogeneous IMF RMSE from 500 runs.

with the active process noise covariance matrix, as de-
rived and discussed in [12]7:

Qe(tk+1, tk) = A(tk)Qr(tk+1, tk)A(tk)′, (55)

where

A(tk) �
[∇xα(x)T

]T∣∣∣
x=Fr[tk+1,tk]xr(tk)

. (56)

B. Numerical Results

The sensor locations are [49 34] km and [−20 20] km
for the active sensor and passive sensor, respectively.The
target is assumed to have an initial position [−5 10] km
and velocity [200 20] m/s. The trajectory lasts for 200 s.
Fig. 6 shows the target trajectory (one realization) and
sensor locations. The standard deviations of measure-
ment noises are assumed to be σ r = 50 m for the ac-
tive sensor (direct position measurement in both coor-
dinates) and σ e = 0.4 milliradian (mrad) for the passive

7This process noise covariance mapping is similar to [8] except for the
linearization Jacobian,which is evaluated at the IMF fused state,while
[8] used a “worst-case”-based mapping.

sensor (azimuth angle). In all asynchronous cases, the ac-
tive sensor (radar) has sampling intervalTr = 1 s and the
passive sensor (EO) has sampling interval Te = 0.1 s.

Several FC sampling intervals (fusion rates) are used
in the simulation to compare the performance of the pro-
posed algorithm.The simulation results are based on 500
Monte Carlo runs. To evaluate the performance of the
IMF: (i) the full-rate centralized tracking/fusion is car-
ried out, which is the optimal one can achieve and (2)
the heterogeneous T2TF [13] is also carried out. Note
that the RMSE results in Figs 7–10 started at 9 s after
the convergence of LFs to avoid large plot scales.

The reduced-rate asynchronous heterogeneous IMF
is evaluated with multiple sampling rates at the FC:
TFC = 0.4, 0.8, and 1.6 s. The RMSEs for both position
and velocity are evaluated. Fig. 7 shows the RMSE of
the full-rate IMF. In this case, the rate is the that of a
higher rate sensor (10 Hz, since Te = 0.1 s). Simula-
tion results for TFC = 0.4, 0.8, and 1.6 s are shown in
Figs. 8, 9, and 10, respectively. The oscillations of the
position errors of the IMF are due to the fact that at its
update time it uses a predicted active LT (radar) state
since the FC is not synchronized with the radar. It can
be seen that with full-rate communication, the proposed
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Fig. 9. Reduced-rate (TFC = 0.8 s) heterogeneous IMF RMSE from 500 runs.

Fig. 10. Reduced-rate (TFC = 1.6 s) heterogeneous IMF RMSE from 500 runs.

heterogeneous and asynchronous IMF achieves almost
the optimal result (the CTF result) for position.The per-
formance of the velocity fusion is somewhat off due to
the nonlinearity (linear motion in Cartesian space is not
linear in angle space), and approximation of the “new
information,” The results also depend on the geometry
between the sensors and the target trajectory. It can be
seen that a larger sampling interval at the FC will de-
grade the performance of the IMF; however, there is al-
ways a reduction in theRMSE compared to the casewith
an active sensor only for both position and velocity. In all
the cases considered, the proposed IMF has better per-
formance than T2TF by having a smaller RMSE for both
position and velocity.

VII. CONCLUSION

In this work, the IMFalgorithmwas extended to non-
linear, asynchronous, and heterogeneous systems. The
LTs from an active sensor and a passive sensor are
in different state spaces and are related by a nonlin-
ear transformation without inverse. Both the LT-driven
full-rate asynchronous case and FC-driven reduced-rate

asynchronous case are investigated. Although the pas-
sive (EO/IR) LT state with a lower dimension can-
not be used directly in the IMF, it has been shown
that its new information can be mapped to the high-
dimension state space and then used by the IMF at
the FC. With full-rate communication (LT driven), the
proposed IMF can almost achieve the optimal solution
(full-rate CTF).The performance of the FC-driven asyn-
chronous IMF is not optimal but still remarkable com-
paredwith the results from the active sensor (radar) only
and T2TF by achieving a smaller RMSE in both posi-
tion and velocity.Real data testing is not available at the
current stage; however, it will be investigated in future
works.
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Track-to-Track Fusion Using
Inside Information From Local
IMM Estimators

RADU VISINA
YAAKOV BAR-SHALOM
PETERWILLETT
DIPAK K. DEY

Anovel approach to the track-to-track fusion (T2TF) of state esti-

mates from interacting multiple-model (IMM) estimators using inside

information [mode-conditioned estimates (MCEs) and mode proba-

bilities] is described in this paper. Fusion is performed on-demand, i.e.,

without conditioning on past track data. The local trackers run IMM

estimators to track a maneuvering target with switching process noise

and they transmitMCEs andmode probabilities to a fusion center.The

fused state posterior probability density is a Gaussian mixture, where

the parameters of the required likelihood functions can be computed

recursively.Mode probabilities are fused by transforming them to log-

ratios and using them as statistical information in the likelihood func-

tion of the mode. This results in consistent data fusion based on known

target and local tracker (IMM) parameters. Simulations show that this

method outperforms the fusion of the local IMM estimator Gaussian-

approximated outputs both in terms of error during target maneuvers

and in terms of the consistency of the mean-squared error (MSE). It is

a generalization of Gaussian T2TF with crosscovariance, and its per-

formance is close to that of centralized measurement fusion (CMF)—

by accounting for the error and log-ratio crosscovariances, the fused

covariance consistency matches the ideal consistency of CMF without

requiring memory of past fused tracks. The method is also shown to

be more accurate, informative, consistent in MSE, and of lower com-

putational and communication cost than Chernoff fusion, a recently

published method for Gaussian mixture fusion.

I. INTRODUCTION

The interacting multiple model (IMM) estimator is a
powerful nonlinear state estimator for targets whose dy-
namic evolution model changes according to a discrete-
time, discrete-state Markov chain with known transition
probabilities, and it may be used in local estimators for
tracking maneuvering targets or other mode-switching
systems. In this work, the posterior probability density
function (PDF) of the state of a dynamic target, condi-
tioned on information from local trackers (LTs) imple-
menting the IMM estimation algorithm [4], is derived
for on-demand track-to-track fusion (T2TF). The LTs
provide Gaussian mixture track information from inside
their IMM algorithms [the current mode-conditioned
estimates (MCEs) and mode probabilities]. The fusion
center (FC) continuously updates a linearized system
description of the IMM estimator’s error and mode
probability behavior to compute the required parame-
ters of the likelihood functions of the state and mode.
The fused posterior state PDF is then approximated as
a Gaussian mixture.

When new measurements from every sensor can be
communicated to a FC at every measurement time, the
optimal solution is to stack all new measurements into
a single vector and run a single estimator, resulting
in optimal centralized measurement fusion (CMF) [5].
However, data may need to be sent at arbitrarily low
rates compared to the LTmeasurement intervals, requir-
ing the transmission of recursively computed local esti-
mates (and sometimes covariances). The problem is dif-
ficult because of the dependent nature of the received
state estimation errors. The correlation between the lo-
cal estimation errors was described in [2] and [3] as the
recursively-computed crosscovariance matrices for lin-
ear, Gaussian estimators, and their incorporation into
the standard fusion equations results in optimal fusion
(given only the on-demand tracks) and consistent fused
covariances. This method is termed Gaussian T2TF with
crosscovariance (GT2TFwXC) and requires knowledge
of the Kalman filter design parameters.

The recursive computations described in this pa-
per yield the required matrices (including crosstracker
and crossmode covariances) for IMM track fusion as
a multiple-model generalization of GT2TFwXC. For
a single mode, the algorithm reduces naturally to
GT2TFwXC. Just as GT2TFwXC requires knowledge
of the LT Kalman filter parameters and the target, this
paper’s proposed method also requires the parameters
of the LT IMM estimators and the target. To bound
the complexity of the problem, the proposed method
is derived for trackers that agree on the set of possi-
ble dynamic target maneuvering modes and the mode
transition probabilities. The information from the track-
ers is for the same times (i.e., it is synchronous). It is
also assumed that the target state transition matrix is
the same in both modes, so the method is ideal for tar-
get models that switch process noise covariance only.
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(Section III-E explains the difficulty encountered with
a switching transition matrix.) The assumptions stated
here serve to introduce important theory fromwhich ad-
ditional complexities can be included in futurework.The
proposed method, along with the theory supporting it,
are the foundations for on-demand T2TF frommultiple-
model trackers.

For the fusion of IMM mode-conditioned informa-
tion, the extraction of track information from mode
probabilities (i.e., the mixture weights) is an additional
problem. This suggests that the received probabilities
should be treated as statistical information in the con-
ditioning of the posterior (fused) PDF. To account for
the dependency between the received probabilities, they
are transformed into infinite-support log-ratios (LRs)
of probabilities and a linear approximation of their
evolution is derived. Using this technique, the local
mode probabilities are successfully combined to form
the fused mode probabilities with the same number of
modes, allowing for mode inference based on the fused
information.

As an alternative,T2TF can be performed naively us-
ing the LT’smoment-matched IMMoutput estimate and
covariance [11], but that method has poor performance
during maneuvers and does not account for error cross-
covariance.

An alternate Gaussian mixture fusion approach
has been explored—Chernoff fusion, first proposed by
Mahler [13] and Hurley [10], has received some atten-
tion in the literature, and is capable of minimizing the
fused mean-squared error (MSE) while assuring that
the fused covariance is greater than or equal to the ac-
tual sample MSE,without direct knowledge of the error
crosscovariances. A successful, computationally feasible
implementation for Gaussian mixtures using unscented
sigma points has been developed in [8] and used in
distributed fusion from IMM tracks in [9]. However,
Chernoff fusion is unable to exploit system model infor-
mation (i.e., target dynamic motion models and IMM
design parameters, assumed available in this paper) and
may produce fused covariance values that are too high,
though they acceptably represent the sample MSE of
the fused estimate (i.e., the covariances are consistent).
The sigma point implementation is still computationally
demanding due to the need to search for the optimal
fusion exponent, and requires the transmission of local
mode-conditioned estimate covariances. Just as the
IMM fusion proposed here generalizes GT2TFwXC,
Chernoff fusion generalizes the covariance intersection
method and solves the fusion problemwhen the crossco-
variance cannot be computed or because system param-
eters (local IMM parameters) are not available. While
ignoring crosscovariances altogether results in overly
optimistic fused covariances, Chernoff Fusion results in
conservative fused covariances, which are still not ideal,
meaning that the MSE is higher than what is possible
with a more optimal method. When the target and LT
system design parameters are known, the crosscovari-

ances can be computed recursively and Bayesian fusion
can be performed as shown in this paper without the
transmission of the local covariance matrices and with-
out the need for numerical optimization. The simulation
results show that although the fused covariance of the
Chernoff method match the MSE of the fused estimate,
the model-driven fusion with crosscovariance presented
here significantly outperforms Chernoff fusion in terms
of fused accuracy. Another advantage of the method in
this paper is that the fused probability density output
includes fused mixture probabilities, which directly pro-
vide inference about target dynamicmaneuveringmode.
Chernoff fusion cannot provide this output information
because the number of mixture components in its fused
PDF is a product of the number of local components,
and such a mixture has no event-based interpretation in
the multiple-model target maneuvering scenario.

Another approach to the fusion of Gaussian mixture
filter outputs was developed in [14]. That paper intro-
duces the topic of crosscovariances for every mixture
component.However, that approach mainly treats prob-
lems with Gaussian mixture process noise and Gaussian
mixture measurement PDFs, both of which are unlike
the Markov chain switching processes involved in ma-
neuvering target tracking. Additionally, there is no con-
sideration of mixture component reduction strategies
that complicate the crosscovariance structure (such as
the mixing process of the IMM estimator); they assume
fully invertible state-to-measurement equations (unreal-
istic in target tracking applications where the state vec-
tor is longer than the measurement vector), and do not
consider the dependent, stochastic nature of local mix-
ture probabilities (weights) in their fused mixture prob-
abilities. The method developed in this paper accounts
for the Markov chain process of the target maneuvers
and the mixing process of the IMM, does not require in-
vertible measurement equations, and fully computes the
crosscovariances between all local mode-conditioned
state estimates and mode probabilities at the FC.

Though the present method does not require mem-
ory of past fused tracks, alternative data fusion schemes
exist that utilize memory of past fused tracks and decor-
relate the information being passed throughout a dis-
tributed sensing network. One of the first such algo-
rithms for Gaussian tracks was Information Matrix Fu-
sion [5]. See [6] and [7] for a general discussion of re-
cent advancements in distributed tracking. An approxi-
matemethod to solve this for IMM trackswas developed
in [12]. A model-agnostic method for fusion of IMM
Gaussian mixture tracks with memory was also devel-
oped in [1]. These methods do not provide the cross-
covariance for fusion without past track information.
Given these distinctions, further comparison is outside
of the scope of this paper; however, it should be noted
that, theoretically fusion schemes with memory running
at full rate could yield the accuracy performance of CMF
(which is slightly more accurate than on-demand fu-
sion techniques [5]), but the results in this paper show
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that the present memoryless method still achieves fused
track accuracy close to that of CMF and with ideal MSE
consistency.

Even when using a suitable reduced-rate T2TF
method, the problem of initial fusion must still be
solved using an on-demand fusion scheme. Without it,
the FC has no initial condition (i.e., prior) for recur-
sive updating of the fused track. This resembles the
problem of running a Kalman Filter without a previ-
ous estimate and covariance [4], [5]. GT2TFwXC pro-
vides a consistent fused estimate without initial condi-
tions for linear Gaussian systems; likewise, this paper
shows how this is accomplished when the received tracks
come from IMM estimators tracking a maneuvering
target.

This paper is organized as follows: Section II intro-
duces the problem mathematically, Section III describes
the required Bayesian fusion theory, Section IV devel-
ops the algorithmic steps required to implement fusion
with IMM inside information, Section V summarizes
the algorithm and discusses computational complexity,
and Section VI presents Monte Carlo simulations and
results. A list of symbols and acronyms is provided in
Table 1 for reference.

II. DESCRIPTION OF TARGET AND LOCAL TRACKERS

For clarity, only two LTs and two dynamic modes
will be considered, but the extension to multiple track-
ers and modes is possible. Local state estimation is per-
formed by two trackers obtaining noisy observations of
a target whose dynamics may switch between two dif-
ferent modes. Each tracker, indexed j = 1, 2, computes
MCEs and mode-conditioned covariances (MCCs) of
x(k) from modes indexed m = 1, 2. With Zk

j as the vec-
tor of all measurements at tracker j, up to and including
the present time step,

Zk
j = [

z j(0)′ z j(1)′ . . . z j(k)′
]′

, (1)

the Nx-dimensional MCEs, conditioned on the current
target modeM(k) being m, are denoted and defined as

x̂mj (k|k) � E[x(k) | Zk
j ,M(k) = m], j = 1, 2,

m = 1, 2
(2)

and with the MCE errors (MCEEs) defined as

x̃mj (k|k) = x̂mj (k|k) − x(k), (3)

the MCCs are

Pm
j (k|k) � E

[
x̃mj (k|k)x̃mj (k|k)′ | Zk

j ,M(k) = m
]
. (4)

The true state of the target,when in modeM(k) = n,
evolves linearly in time as1

x|n(k+ 1) = Fx(k) + vn(k). (5)

The Nz-dimensional measurements of the target at each
tracker are obtained according to

z j(k) = H jx(k) + w j(k). (6)

The trackers compute the probability of the target being
in mode m at time step k as

μm
j (k) � P

(
M(k) = m | Zk

j

)
. (7)

The evolution of the target’s dynamic modes is modeled
as a Markov chain. Its known transition probability ma-
trix (TPM; [4]) is

� =
[
π11 π12

π21 π22

]
(8)

and all of its rows must have a sum of 1.
Two key simplifying assumptions are made. First, as

can be seen in equation (5),mode changes affect the pro-
cess noise only and not the state transitionmatrix F. This
simplification was made because the theory required to
fuse with switching F becomes much more involved, es-
pecially if the state space of the models switches di-
mension. It is important to note that the methods de-
veloped in this paper are the foundations of a unique
methodology in on-demand T2TF that can be extended
to more complexities in future work (see Section III-E).
The Bayesian derivation of Gaussian mixture posteriors,
along with obtaining the parameters of the likelihood
function(s) through linearization and recursion of the
joint system describing the trackers and the target, con-
stitutes the powerful, yet fundamental, stochastic sys-
tems approach to T2TF proposed in this paper.

The second simplification in this paper is that mode
switching does not affect the measurement equation (6).
Mode-specific measurement parameters can be substi-
tuted if required, as long as they switch as part of the
same Markov chain process of the target. Given the
independence of the target motion and measurement
system(s), such examples are not typical in tracking sce-
narios, so treatment of this case is beyond the scope of
this paper.

III. BAYESIAN THEORY FOR IMM INSIDE
INFORMATION FUSION

A. The Posterior Fused State PDF

Omitting the time-step index k for brevity, the pos-
terior state PDF of the target state using the data from

1Note thatm is the index of the MCE at the LT. The FC must consider
the received MCE and probabilities under all mode hypotheses, so n
is used in the multiple-model inference process at the FC, while m is
used only to index the received data.
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Table 1
List of Symbols and Acronyms

¯(·) Mean of (·)
ˇ(·) Mixed initial condition of (·) (IMM algorithm)
ˆ(·) Estimate of (·)
˜(·) Error of ˆ(·)
d|n
j (k) Gaussian-approximated process noise entering the LR

D|n
j (k) Covariance of d j(k)

F State transition matrix
g|n(k) Additive noise of the linearized joint IMM system
G|n(k) Covariance of g(k)
H j Measurement matrix at LT j
IN×N N ×N identity matrix
j LT index ( j = 1, 2 — used as a subscript)
J|n(k) Transition Jacobian matrix of the joint IMM system
k Discrete time step
LR Log-ratio(s) of probability pair(s)
LT Local tracker(s)
m Target mode index of the received estimates and probabilities (m = 1, 2 — used as a superscript)
MCC Local mode-conditioned estimate covariance
MCE(E) Local mode-conditioned estimate (error)
MCI Local mode-conditioned innovation (i.e. residual)
MCP(E) Local mode-conditioned prediction (error)
M(k) True target dynamic mode
μm
j (k) Locally-computed probability of mode m

μ j(k) [μ1
j (k) μ2

j (k)]
′

μlm
j (k) Initial condition mixing weight (IMM algorithm)

n Target mode index hypothesis under consideration at the FC (n = 1, 2)
(·)|n Any variable (·) derived under the hypothesis that the current mode is n
νmj (k) MCI
Nlm
j Spread-of-the-means term of a mixture’s covariance

ω j(k) LR of the mode based on μ1
j (k|k)

�
|n
j (k) Covariance of [ω1(k) ω2(k)]′

p(·) Any probability density function (PDF)
P(·) Any probability mass function (PMF)
PF(k) Covariance of the moment-matched fused estimate output error
PnF(k) Covariance of the fused nth MCEE
Pmj (k|k) Locally-computed covariance of x̃mj (k|k) (MCC)
P̌mj (k|k) Locally-computed covariance of x̌mj (k|k)
P|n(k|k− 1) FC-computed complete covariance/crosscovariance of x̃mj (k|k− 1)
P|n(k) FC-computed complete covariance/crosscovariance of the MCEE
φ j(k) Received data from LT j
π lm Markov Chain transition probability from mode l to mode m
Qn Covariance of the process noise under mode n
R j Covariance of measurement error at LT j
S|n(k) FC-computed complete covariance/crosscovariance of the MCI
Smj (k) Locally-computed covariances of νmj (k)
TPM Transition probability matrix of Markov chain
vn(k) Zero mean process noise under mode n
w j(k) Zero mean measurement error at LT j
Wm

j (k) Locally computed Kalman gain matrices
xF(k) Moment-matched fused estimate output
x̂|n
F (k) Fused nth MCE

x̌mj (k|k) mth mode’s mixed initial conditions (from IMM algorithm)
x̂mj (k|k− 1) Local tracker MCP
x̃mj (k|k− 1) Local tracker MCPE
x̂mj (k|k) Local tracker MCE
x̃mj (k|k) Local tracker MCEE
x(k) True target state
y|n(k) “State vector” of the joint IMM system, computed at the FC
Y|n(k) Covariance of y|n(k)
z j(k) Measurement at LT j
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two trackers is a mixture density described by

p (x | φ1, φ2)

=
2∑

n=1

p (x | φ1, φ2,M = n)P (M = n | φ1, φ2)

(9)

with the received data from the two trackers (MCE and
mode probabilities) defined as

φ j �
{
x̂1j (k|k), x̂2j (k|k), μ1

j (k)
}
, j = 1, 2, (10)

where μ2
j (k) is ignored in equation (10) due to its

redundancy.
The FC does not have access to any z j(k) or any

past x̂mj (k|k), but should provide the best fused esti-
mate and its error covariance when receiving the lat-
est MCE and mode probabilities from all LTs. To do
this, the posterior fused mode-conditioned densities
p (x | φ1, φ2,M = n) and posterior fusedmode probabil-
ities P (M = n | φ1, φ2) will be derived next.

The LT MCCs Pm
j (k|k) are not part of the data used

for fusion in equation (10) (see Appendix: Property 7),
although the authors are not discouraging the transmis-
sion of these data if system parameters are unavailable.
The fused MSE and covariance consistency from the
Monte Carlo simulations of Section VI are extremely
close to that of CMF and this offers empirical evidence
that the MCCs do not contain significant information
about the target state, so considerable communication
savings can be achieved if the covariances are not trans-
mitted.

B. The Fused Mode-Conditioned State Estimates

We claim that, conditioned on the receivedMCE, the
receivedmode probabilities do not contribute additional
information about any mode-conditioned state vector.
This is proved for the linearized joint system model in
Section III-C and Property 3 of the Appendix. So, the
fused posterior mode-conditioned PDFs from equation
(9) are approximately

p (x | φ1, φ2,n) ≈ p
(
x | x̂11, x̂21, x̂12, x̂22,M = n

)

= 1
a
p(x̂11, x̂

2
1, x̂

1
2, x̂

2
2 | M = n, x)

× p(x | M = n), n = 1, 2, (11)

with a a normalizing constant and p(x | M = n) con-
sidered noninformative (i.e., diffuse) because there is no
initial condition about the target state at the FC (the key
assumption for on-demand fusion).2 The likelihood of

2The prior is diffuse because the state vector is composed of position
and velocity only, which are integrated states of a white noise accel-
eration (WNA) driven model (i.e., they are nonstationary processes).

the state in equation (11) is the PDFof theLTMCE,con-
ditioned on the true state x(k) and true modeM(k) = n,
given as

p(x̂11, x̂
2
1, x̂

1
2, x̂

2
2 | M = n, x) (12)

with mean

E
{[

(x̂11)
′ (x̂21)

′ (x̂12)
′ (x̂22)

′
]′

| M = n, x
}

= [
x′ x′ x′ x′]′ (13)

and covariance (to be computed recursively at the FC as
described in Section IV-B)

P|n

� E

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̃11(x̃
1
1)

′ x̃11(x̃
2
1)

′ x̃11(x̃
1
2)

′ x̃11(x̃
2
2)

′

x̃21(x̃
1
1)

′ x̃21(x̃
2
1)

′ x̃21(x̃
1
2)

′ x̃21(x̃
2
2)

′

x̃12(x̃
1
1)

′ x̃12(x̃
2
1)

′ x̃12(x̃
1
2)

′ x̃12(x̃
2
2)

′

x̃22(x̃
1
1)

′ x̃22(x̃
2
1)

′ x̃22(x̃
1
2)

′ x̃22(x̃
2
2)

′

∣∣∣∣∣n, x
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (14)

With equation (14) computed, the solution to equation
(11) is the standard linear minimum mean-square error
(LMMSE) fusion given by (see [5])

x̂nF(k) =
[
L̄′(P|n)−1L̄

]−1
L̄′(P|n)−1X̂ (15)

and the corresponding fused covariance given by

Pn
F(k) =

[
L̄′(P|n)−1L̄

]−1
(16)

with

L̄ � [INx×Nx INx×Nx INx×Nx INx×Nx]
′
. (17)

The 4Nx-element vector X̂ in equation (15) is

X̂ =
[
(x̂11)

′ (x̂21)
′ (x̂12)

′ (x̂22)
′
]′

. (18)

The LMMSE estimator is equivalent to the Bayes esti-
mator under the Gaussian likelihood assumption with a
diffuse prior [5]. Its use is justified because the state vari-
ables, position, and velocity are integrated from WNA
and the FC has no prior track data, so their prior PDF is
diffuse.

C. The LR Transformation of Mode Probabilities

Local mode probabilities are computed at the LT by
multivariate Gaussian PDF likelihoods evaluated at the
latest local measurements. Therefore, the probabilities

Before any data arrive, the priors on these states are diffuse. If a target
mode contains states that follow a stationary process, such asOrnstein–
Uhlenbeck acceleration, then the acceleration is a stationary process
with a proper prior. This may also be true if the F matrix is unique
for each mode. While fusion can still be performed in a sub-optimal
manner by assuming diffuse priors on the target state, the problems of
accommodating switching F and optimally treating stationary process
states will be treated in future work.
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are themselves stochastic processes.Since finding a para-
metric joint PDF of these nonlinear transformations is
not feasible, a solution is to transform the probabilities
into LRs and use a multivariate Gaussian approxima-
tion of the transformed variables. This approximation is
appropriate because LRs have infinite support and the
multivariate Gaussian density can capture dependencies
by nonzero covariances. The means variances and co-
variances are then readily computed as those of the dif-
ference of quadratic forms ofGaussian randomvariables
(the innovations).

The single LR at LT j, denoted as ω j, is selected to
be the log of the ratio of the mode 1 probability to the
mode 2 probability as

ω j = ln
μ1
j

μ2
j

. (19)

Note that only a single LR ω j uniquely determines the
probability pair, so the second log-ratio does not need
to be included in the analysis of the likelihood function
as it certainly does not provide additional information.
If there are more than two modes, then any mode prob-
ability can serve as the common denominator for all the
LRs, but the rest of this paper will concentrate on the
two-mode scenario only.

The LR transformation is one-to-one, and the prob-
abilities can be recovered using

μ1
j = eω j

eω j + 1
μ2
j = 1

eω j + 1
. (20)

The transformation allows the new variables to
be represented as a nonlinear first-order Markov pro-
cess driven by the wide-sense white MCI νnj (k) (see
Appendix: Property 1) with LT-computed covariances
Smj (k). At the LT, the mode probabilities are com-
puted as posterior probabilities using Gaussian likeli-
hood functions [4]:

μm
j (k) =

2∑
l=1

π lmμl
j(k− 1)

· 1
c
|2πSmj (k)|−

1
2 e− 1

2 [νmj (k)]
′[Smj (k)]

−1
νmj (k). (21)

Using equation (21), the normalizing constant c is can-
celed in the ratio and equation (19) becomes

ω j(k) = ln
π11eω j (k−1) + π21

π12eω j (k−1) + π22
+ 1

2
ln

|S2j (k)|
|S1j (k)|

+ 1
2
ν2j (k)

′S2j (k)
−1ν2j (k) − 1

2
ν1j (k)

′S1j (k)
−1ν1j (k). (22)

The means of the LR processes ω1(k), ω2(k) are
nonzero, and they have a finite variance and nonzero
correlation. The first term in equation (22), conditioned
on mode n, has the first-order Taylor series expansion
around ω̌

|n
j (k − 1) (the mixed initial condition—see

Section IV-C)

ln
π11eω

|n
j (k−1) + π21

π12eω
|n
j (k−1) + π22

≈
[

π11eω̌
|n
j (k−1)

π11eω̌
|n
j (k−1) + π21

− π12eω̌
|n
j (k−1)

π12eω̌
|n
j (k−1) + π22

]
ω

|n
j (k− 1)

=
[
μ̌
11|n
j (k− 1) − μ̌

12|n
j (k− 1)

]
ω

|n
j (k− 1).

(23)

The μ
lm|n
j are the (actual) initial condition mixing

weights at the local IMMs,which are functions of the LR,
all conditioned on mode n:

μ
1m|n
j (k− 1) = π1meω

|n
j (k−1)

π1meω
|n
j (k−1) + π2m

,

μ
2m|n
j (k− 1) = π2m

π1meω
|n
j (k−1) + π2m

,

(24)

and μ̌
lm|n
j (k − 1) are computed according to equation

(24) by using ω̌
|n
j (k− 1) instead of ω

|n
j (k− 1).

The last two terms of equation (22) are the difference
of quadratic forms of the innovations, which are corre-
lated between the modes and sensors. Since they are un-
known to the FC and they are stochastic, they are consid-
ered to be a common additive noise for the LR of both
sensors, and the mean and covariance of this noise are
readily computed to form a Gaussian approximation.

Omitting k again, themean and covariance of the LR
additive noise can be derived by first defining the stacked
vector of the zero mean (see Appendix: Property 1) in-
novations as

ν|n =
[
(ν1|n1 )′ (ν2|n1 )′ (ν1|n2 )′ (ν2|n2 )′

]′
. (25)

The covariance of equation (25) is S|n, derived in
Section IV-B. Together with the selection matrices

L1
1 = [I 0 0 0] L2

1 = [0 I 0 0]

L1
2 = [0 0 I 0] L2

2 = [0 0 0 I]
(26)

the quadratic forms can be written as

(ν2|nj )′(S2j )
−1ν

2|n
j − (ν1|nj )′(S1j )

−1ν
1|n
j

= (ν|n)′
[(

L2
j

)′
(S2j )

−1L2
j −

(
L1
j

)′
(S1j )

−1L1
j

]
ν|n

= (ν|n)′M jν
|n � d|n (27)

with

M j �
(
L2
j

)′
(S2j )

−1L2
j −

(
L1
j

)′
(S1j )

−1L1
j . (28)

The hidden matrix Smj is computed at the LT and
its expected value can be computed at the FC using
the algorithm in Section IV-D and is different from
the elements of S|n. The two-dimensional (2D), white,
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Fig. 1. Block diagram of the linearized model of the mode-conditioned errors and LRs of two IMM LTs (with only one shown explicitly)
tracking the same target, from which the computation of the mode-conditioned error covariance, LR mean, and LR covariance can be derived.
The evolution of the stochastic matrices Smj (k) and Wm

j (k) are not shown. Note that this block diagram describes the behavior of the LT but
does not describe the fusion algorithm itself. z−1 represents a unit delay to indicate variables from the previous time step.

nonzero mean Gaussian random process d will approx-
imate the quadratic form noise (27), having mean and
variance/covariance found by (see [4])

d̄|n � E[d | n] =
[
E [ν′M1ν]

E [ν′M2ν]

]
=
[
tr
[
M1S|n]

tr
[
M2S|n]

]
, (29)

D|n � E
[
(d − d̄)(d − d̄)′ | n]

=

⎡
⎢⎣2tr

[(
M1S|n)2] 2tr

(
M1S|nM2S|n)

2tr
(
M1S|nM2S|n) 2tr

[(
M2S|n)2]

⎤
⎥⎦ . (30)

The covariance between a zero mean Gaussian vec-
tor and a quadratic form in the same vector is zero [15]—
this means that d̄ is not correlated to the innovations,
the process noise, or the measurement noise. See the
Appendix for further details regarding this.

D. Fused Mode Probabilities

The received MCEs x̂mj do not contain information
about the target modeM(k) (seeAppendix:Property 4).
Using Bayes’ theorem and omitting the time step k for

brevity, the posterior fused-mode probabilities are3

μn
F =P

(
M = n | μ1

1, μ
2
1, μ

1
2, μ

2
2

)
=P (M = n | ω1, ω2)

= p(ω2 | ω1,M = n)P(M = n | ω1)
b

= p(ω1, ω2, | M = n)μn
1

bp(ω1 | M = n)

(31)

with b the normalizing constant and the likelihood func-
tion of the mode based on the LR represented as

p(ω1, ω2 | M = n). (32)

The goal here is to find the prior mean [ω̄|n
1 (k) ω̄

|n
2 (k)]

′

and the covariance �|n(k), conditioned under target
mode n, of the Gaussian approximation of equation (32)
before any data arrive. From this, the marginal in the de-

3The representation of equation (31) is not unique—eithermode prob-
ability can be used as the prior, or the prior can be noninformative.The
attractiveness of using a received probability as a prior is the ability to
use as much information in the data as possible before the Gaussian
approximation. In other words, the ability to directly factor in a prob-
ability as a prior can be advantageous from an accuracy perspective.
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nominator of equation (31) is easily found and the like-
lihood can be evaluated for each mode n = 1, 2.

E. The LT MCEEs

Recursive covariance computations can be used to
find the covariance of the zero mean MCEE. At every
step k, there are two mode hypotheses, represented by
n = 1, 2 .As in Fig. 1, the error of the modem prediction
at tracker j, conditioned onmode n being the truemode,
is

x̃m|n
j (k+ 1|k) � Fx(k) + vn(k) − Fx̌m|n

j (k|k)

=F
[
x(k) −

[
μ
1m|n
j x̂1|nj (k|k) + μ

2m|n
j x̂2|nj (k|k)

]]
+ vn(k)

=F
[
μ
1m|n
j x̃1|nj (k|k) + μ

2m|n
j x̃2|nj (k|k)

]
+ vn(k).

(33)

The MCEEs are propagated from the previous mode-
conditioned prediction errors (MCPEs) as

x̃m|n
j (k|k) = x(k) − x̂m|n

j (k|k)
= (I − Wm

j (k)H j)x̃
m|n
j (k|k− 1)

−Wm
j (k)w j(k). (34)

Since the LRs are system states, the weighting of the
MCEE by the mixing probabilities in equation (33) is
a nonlinear function of the state variables, which can
be linearized by using Jacobians (see Section IV-A).
Notice in equations (33) and (34) that as long as F is
properly matched to the target’s dynamics and previous
errors and noise terms are zero mean, all MCEEs are
zero mean.

E
[
x̃m|n
j (k|k)

]
= 0. (35)

It is evident why a target whose dynamic mode
switching includes changing F is more difficult to ana-
lyze: because F is common to both terms in equation
(33), it can be factored out, yielding an expression in the
MCEE. This is required for recursively computing the
likelihood function parameters. Switching F requires ad-
ditional analysis and algorithmic complexity to describe
the evolution of nonzero mean MCEE and is beyond
the scope of this paper. The Kalman gains Wl

j(k) are
unknown to the FC directly, but expected values can be
used in their place (see Section IV-D).

Note that the MCEE are never computed at the LT
(the MCE are); equations (33) and (34) are only a prob-
abilistic analysis of the errors for the purpose of finding
the likelihood function parameters. Upon linearization,
the MCEEs are jointly Gaussian stationary processes
(see Section IV-A).

F. The System State of the IMM Trackers

The vector of the MCEEs and LRs describes the in-
ternal behavior of two IMM trackers estimating the state
of the same target for the purpose of computing the re-
quired parameters of equations (12) and (32). Condi-
tioned on mode n, it is defined as

y|n(k) �
[
x̃|n
1 (k|k)′ x̃|n

2 (k|k)′ ω
|n
1 (k) ω

|n
2 (k)

]′
(36)

with the stacked vector of errors from each sensor writ-
ten for compactness as

x̃|n
1 (k|k) �

[
x̃1|n1 (k|k)′ x̃2|n1 (k|k)′

]′
. (37)

The mean of equation (36) is (considering that theMCE
have zero mean error according to Section III-E)

ȳ|n(k) � E
[
y|n(k)

] =
[
0 ω̄

|n
1 (k) ω̄

|n
2 (k)

]′
. (38)

The covariance of equation (36) is

Y|n(k) � E
[
y|n(k)y|n(k)′

] =
[
P|n(k) 0

0 �|n(k)

]
, (39)

where the zeros on the off-diagonal blocks are a re-
sult of the block-diagonal Jacobian and additive noise
covariance to be derived in Sections IV-A and IV-B,
respectively. Recursions yield ȳ|n(k) and Y|n(k), under
each hypothesis n = 1, 2, from which the parameters of
the likelihood functions, equations (12) and (32), can be
computed.This will be developed in Section IV-B.These
parameters are not conditioned on any previous track
information, but they do require knowledge of the mea-
surement models, the dynamic models, and the TPM.4

A linearized system description of two parallel IMM
LTs is depicted in Fig. 1. This diagram shows the util-
ity of the model: the white sequences, vn(k) and d|n(k),
act as common inputs to both IMM subsystems, the
measurement errors wi(k) act as independent inputs to
each IMM, and the MCEE x̃mj (k|k) and LRs ω j(k) act
as the outputs. It is the mode-conditioned, Gaussian-
approximated PDF parameters of these outputs that are
of interest.

IV. ALGORITHM IMPLEMENTING BAYESIAN FUSION
USING IMM INSIDE INFORMATION

While the previous section discussed important pre-
liminary fusion theory, this section develops the algo-
rithm for fusion with IMM Inside Information.

4Due to the recursive algorithm, initial conditions for ȳ|n(k) andY|n(k)
do need to be provided.Standard covariance initializationmethods can
be used (see [4]) and the mode-conditioned mean of the LR can be
initialized to zero. This can be accomplished offline.
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A. The System State Transition Jacobian

From equations (33) and (34), the Jacobians of the
MCPEs with respect to the previous MCEE are

J
x̃m|n
j (k+1|k)

x̃l|ni (k|k) (k) = μ̌
lm|n
j (k)Fδi− j, (40)

where δi− j is the Kronecker Delta function (i.e., the
crosssensor Jacobians in equation (40) are zero).

The Jacobians of the MCPEs with respect to the pre-
vious LR, evaluated at the mean of the errors (which are
zero), are zero:

J
x̃m|n
j (k+1|k)

ω
|n
j (k)

(k)

= π1mπ2meω̌
|n
j

π1meω̌
|n
j + π2m

FE
[
x̃1|nj (k|k) − x̃2|nj (k|k)

]
= 0. (41)

The Jacobians of the LR with respect to their pre-
vious values can be derived from equation (23). The
Jacobians of the LR with respect to the previous MCE
are zero since the partial derivative of the quadratic form
of innovations with respect to an innovation is scaled by
that innovation,which is zero mean.This is in agreement
with the claim that d j(k) can be treated aswhite,additive
noise. Omitting k, the complete Jacobian is

J|n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ̌
11|n
1 F μ̌

21|n
1 F 0 0 0

μ̌
12|n
1 F μ̌

22|n
1 F 0 0 0

0 0 μ̌
11|n
2 F μ̌

21|n
2 F 0

0 0 μ̌
12|n
2 F μ̌

22|n
2 F 0

0 0 0 0 Jω|n(k+1)
ω|n(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(42)

with

Jω|n(k+1)
ω|n(k) =

[
μ̌
11|n
1 − μ̌

12|n
1 0

0 μ̌
11|n
2 − μ̌

12|n
2

]
(43)

according to equation (23).

B. Recursion for the System Mode-Conditioned Means
and Covariances

Having computed J|n(k), the linearized system de-
scription for equation (36) under mode n becomes

y|n(k+ 1) = K(k)J|n(k)y|n(k) + �(k)g|n(k), (44)

with

K(k) � diag
(
K1

1,K
2
1,K

1
2,K

2
2

)
Km

j (k) � I − Wm
j (k)H j.

(45)

The noise vector

g|n(k) = [
vn(k)′ w1(k)′ w2(k)′ d(k)′

]′ (46)

has mean

ḡ|n(k) = E [g(k) | M(k) = n] = [
0 d̄|n(k)′

]′
, (47)

where d̄|n(k) is defined in equation (29). The covariance
of g|n(k) is

G|n(k) � E
[
[g(k) − ḡ|n(k)][g(k) − ḡ|n(k)]′ |M(k) = n

]
= diag

[
Qn,R1,R2,D|n(k)

]
(48)

and

�(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I − W1
1(k)H1 W1

1(k) 0 0

I − W2
1(k)H1 W2

1(k) 0 0

I − W1
2(k)H2 0 W1

2(k) 0

I − W2
2(k)H2 0 W2

2(k) 0

0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (49)

Note thatK(k)J|n(k) has eigenvalues inside the complex
unit circle so the recursion should always converge. So,
after K(k), J|n(k), and �(k) are computed, the mean of
the LR is updated as

ȳ|n(k+ 1) = K(k)J|n(k)y̌|n(k) + �(k)ḡ|n(k), (50)

where y̌|n(k) is amixed initial condition of the system re-
cursion with covariance Y̌|n(k).

The system’s covariance update is

Y|n(k+ 1)

= K(k)J|n(k)Y̌|n(k)J|n(k)′K(k)′ + �(k)G|n(k)�(k)′.
(51)

The first block on the diagonal of equation (51) is the
covariance of the MCEE.With5

P|n(k+ 1|k) � [
J|n(k)Y̌|n(k)J|n(k)′

]4Nx

1 (52)

representing the covariance of the local MCPE,
where only the first 4Nx rows and columns of
J|n(k)Y̌|n(k)J|n(k)′ are selected, the covariances and
crosscovariances of the MCIs are computed as

S|n(k+1) = HP|n(k+1|k)H′ +Lw

[
R1 0

0 R2

]
L′
w (53)

with

H = diag(H1,H1,H2,H2), (54)

Lw =
[
I I 0 0

0 0 I I

]′
. (55)

5The notation k + 1|k used in covariances computed at the FC serves
only to show that they are related to the state predictions made at the
LT. It is not intended to mean that the computations at the FC are
conditioned on past measurements.
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C. The Mixing Process for Hypothesis Merging

Before every recursion update step (50)–(51), the hy-
potheses from the previous step must be merged, just as
they are in the IMM estimation algorithm. In the ab-
sence of any previous observations, the time-invariant
mixing probabilities are computed at the FC from
the steady-state Markov chain probabilities μ1

∞, μ2
∞ as

priors [4]:

μln = π lnμl
∞

π1nμ1∞ + π2nμ2∞
. (56)

WithM(k+1) = n the event that the next mode is n, the
mixed initial conditions are

y̌|n(k) = E [y(k) | M(k+ 1) = n] =
2∑
l=1

μlnȳ|l (k),

(57)

Y̌|n(k)

= E
[[
y(k) − y̌|n(k)

] [
y(k) − y̌|n(k)

]′ | M(k+ 1) = n
]

=
2∑
l=1

μln
[
Y|l (k) + [

ȳ|l (k) − y̌|n(k)
] [
ȳ|l (k) − y̌|n(k)

]′]
.

(58)

D. Expected Values of the LT Stochastic Matrices

The local mode-conditioned innovation covariances
Smj (k) and Kalman gains Wm

j (k) are required for equa-
tions (27), (45), and (49). To proceed, it should be first
noted that both Smj (k) and Wm

j (k) are stochastic matri-
ces, computed from a mixed covariance matrix that in-
cludes the spread-of-the-means (SOM) of the Gaussian
mixture. The SOM results in a covariance update that
is measurement-dependent [4]. Because the local MCE
and mode probabilities depend on these stochastic ma-
trices, the covariances as computed by the LT IMM al-
gorithm behave like “state variables” of the system and
are recursively updated. The expected value of each ma-
trix can be computed through linearization, mixing, and
recursion, then treating the resulting matrices as having
zero variance (seeAppendix:Property 8).This can be ac-
complished by expanding the FC recursion process to in-
clude finding the matrix means of the mixed initial con-
dition covariances ¯̌Pm

j (k−1|k−1) and using them to find
S̄mj (k) and W̄m

j (k) using standard Kalman equations.
First, it is noted that mixed initial conditions x̌mj (k|k)

and P̌m
j (k|k) do not depend on the state or mode at k+

1. Then, the recursion for the matrix mean of the local

mixed initial condition matrix can be linearized as

¯̌Pm
j (k|k) �E

[
P̌m
j (k|k)

]

=E

{
2∑
l=1

μlm
j (k)

[
Pl
j(k|k) + N(k)

]}

=
2∑

n=1

E

{
2∑
l=1

μlm
j (k)

[
Pl
j(k|k)

+ Nlm
j (k) | M(k) = n

]}
· P [M(k) = n]

≈
2∑

n=1

[ 2∑
l=1

μ̌
lm|n
j (k)E

[
Pl
j(k|k) | M(k) = n

]

+ μ̌
lm|n
j (k)E

[
Nlm

j (k) | M(k) = n
] ]

μn
∞.

(59)

In equation (59), μlm
j (k) can be taken out of the expec-

tation (as a first-order linear approximation) and evalu-
ated using ω̌

|n
j (k) and equation (24);Nlm

j (k) is the SOM.
The expectation in the first term can be computed by

P̄l
j(k|k) � E

[
Pl
j(k|k) | M(k) = n

]
= E

[
Pl
j(k|k)

]
= F ¯̌Pl

j(k− 1|k− 1)F′ + Ql − Wl
j(k)S

l
j(k)W

l
j(k)

′.
(60)

Omitting the step k, the expected value of the SOM can
be derived starting with

E
[
Nlm

j | M(k) = n
]

= E
[[

x̂lj − x̌mj
] [

x̂lj − x̌mj
]′

| M(k) = n
]

(61)

and expanding the difference as

x̂lj − x̌mj = x̂lj −
2∑

o=1

μom
j x̂oj

=

⎧⎪⎨
⎪⎩

μ2m
j

[
x̂1j − x̂2j

]
if l = 1

μ1m
j

[
x̂2j − x̂1j

]
if l = 2.

(62)

Since the two MCEs have the same mean, x,

E
[
Nlm

j | M(k) = n
]

=
⎧⎨
⎩
(μ̌2m

j )2
(
P11|n
j j + P22|n

j j − P12|n
j j − P21|n

j j

)
if l = 1

(μ̌1m
j )2

(
P11|n
j j + P22|n

j j − P12|n
j j − P21|n

j j

)
if l = 2

(63)

where each Plm|n
j j is a respective block of equation (14).

Finally, after computing ¯̌Pm
j (k−1|k−1) using equations
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Fig. 2. Block diagram of the proposed IMM inside information fusion algorithm. ω̄|n is part of y|n and Y|n is block-diagonal with P|n and �|n

as its respective blocks. The relevant Gaussian likelihood functions used for fusion are shown in the fusion blocks.

(59), (60), and (63), the required expected values of the
stochastic matrices can be computed as

P̄m
j (k|k− 1) = F ¯̌Pm

j (k− 1|k− 1)F′ + Qm, (64)

S̄mj (k) = H jP̄m
j (k|k− 1)H′

j + R j, (65)

W̄m
j (k) = P̄m

j (k|k− 1)H′
jS̄
m
j (k)

−1. (66)

E. The Fused Estimate and Covariance Output

Omitting k for brevity, the fused estimate of the tar-
get state, in the minimumMSE sense, is the mean of the
posterior fused mixture (9):

x̂F =
2∑

n=1

μn
Fx̂

n
F (67)

and has expected MSE

PF =
2∑

n=1

μn
F

[
Pn
F + (x̂nF − x̂F) (x̂nF − x̂F)

′]
. (68)

V. SUMMARY

A. Algorithmic Steps

A block diagram of the overall fusion method is de-
picted in Fig. 2. The outside information fusion, which
fuses the moment-matched IMM outputs, is depicted in
Fig. 3 for comparison.

The algorithm can be interpreted as an IMM com-
bined with an extended Kalman filter (EKF) whose
recursion is executed without track data. The goal of
the recursion is to compute the mode-conditioned co-
variance/crosscovariance matrix of the MCE (condi-
tioned on x) and the mode-conditioned mean plus
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Fig. 3. Block diagram of conventional outside fusion method. The
Gaussian likelihood function used is written in the fusion block.

covariance/crosscovariance matrix of the LR to be used
in the fusion process when the data arrive.The state vari-
ables of the EKF/IMM-like algorithm are considered to
be the MCEE x̃mj , LR ω j, and the the local covariance
matrices Pm

j (where only the mode-conditioned mean of
the components of the latter matrices is computed). The
steps are as follows.

For n = 1, 2, initialize the following:

1) Set ω̄
|n
1 (0) ← 0, ω̄|n

2 (0) ← 0.

2) �|n(0) ← cI (where c should be large enough to
cover the expected error — see [4]; a value of 1 is
used in the simulations of Section VI).

3) Diagonal blocks of P|n(0) (the covariances of the
MCEE) are initialized the same as LT (see [4]), or us-
ing cI, where c is large enough to cover the expected
errors.

4) The off-diagonal blocks of P|n(0) are initialized with
zeros (i.e., the crosscovariances can be initialized to
zero).

5) The expected values of the hidden local mixed ini-
tial condition matrices P̄n

j (0|0), for j = 1, 2, are ini-
tialized the same as LT and the diagonal blocks of
P|n(0).

6) Compute steady-state Markov chain probabilities
μn

∞.
7) Set k = 1.

Repeat the following for each k (synchronously with
LT or offline) for j = 1, 2, l = 1, 2,m = 1, 2,and n = 1, 2:

1) Mixing: Compute y̌|n(k − 1) and Y̌|n(k− 1) using
equations (57) and (58).

2) Compute μ̌
lm|n
j (k−1) using equation (24) (substitute

ω̌
|n
j (k− 1) for ω

|n
j (k− 1)).

3) Compute the mean of the local mixed initial condi-
tion matrices ¯̌Pm

j (k− 1|k− 1) using equation (59).

4) Compute the expected value of the local S̄mj (k) and
W̄m

j (k) using equations (64), (65) and (66).

5) Compute joint system state mean ȳ|n(k) using equa-
tion (50).

6) Compute joint system state covarY|n(k) using equa-
tion (51).

If LT data (10) arrive at time step k, then for n = 1, 2:

1) extract ω̄1
|n
j , j = 1, 2, from ȳ|n(k) and P|n(k), �|n(k)

from Y|n(k). See equation (38) and (39);
2) compute fused MCE x̂nF(k) using equation (15);
3) compute fused MCC Pn

F(k) using equation (16);
4) compute fused mode probabilities μn

F(k) using equa-
tion (31);

5) compute output mean x̂F(k) and MSE PF(k) using
equations (67) and (68).

B. Computational Complexity

The algorithm described in this paper consists of two
main routines, which are both computationally feasible
for real-time performance.The first is the recursive com-
putation of ȳ|n(k),Y|n(k) and the hidden stochastic ma-
trices S̄mj (k) and W̄m

j (k). This algorithm is analogous to
an IMM track predictor with EKF mode predictors (i.e.,
an IMM with no data). Since this paper does not explic-
itly generalize the algorithm to more than two modes
and two LTs, the order of complexity will be discussed
in terms of the state dimensionNx only. It can be seen in
equations (57) and (58) that there are 22 = 4 mixing op-
erations as in a two-mode IMM,where eachmixing oper-
ation scales quadratically withNx due to the outer prod-
uct of equation (58).Each mode is approximately on the
order of O[(2 · 2Nx)2] due to the FC’s EKF-like pre-
diction recursion (50), (51). The hidden matrix compu-
tations (59)–(66), where a matrix inversion is involved,
scale approximately asO[2 · 2N3

x ], so the overall compu-
tational order isO[N3

x ]. Since the target and LT parame-
ters are time-invariant, these recursive computations can
be performed offline.

The second routine is the actual fusion of the data
when they arrive. Since Gaussian LMMSE fusion is per-
formed for each mode (see equations (15) and (16))
and matrix inversion dominates the order, its complex-
ity scales approximately as O[N3

x ].
Chernoff fusion scales similarly for each selection of

the fusion exponent w due to the matrix inversion of the
least-squares parameter estimation [8]. The search for
the optimal w using a grid of Nw values on the interval
(0,1)means that the sigma point Chernoff fusionmethod
of [8] scales approximately as O[NwN3

x ].

VI. SIMULATION RESULTS

The simulations have the local IMM estimators
tracking a target in 2D space observed by sensors that
are measuring its Cartesian position. Two LTs run IMM
estimators and use two dynamic modes described in the
sequel. Three scenarios are considered: the first has a
deterministic target trajectory (ground truth) using a
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Fig. 4. The fixed target trajectory of the first scenario.

coordinated-turn model (see [4]) and fusion at full rate;
the second has the same deterministic trajectory with
fusion at a reduced rate (as a sanity check since the
proposed method’s performance at fusion times is not
affected by fusion rate); and the third simulates random
trajectories driven by white noise,with a dynamic model
matching that of the estimators and with fusion at full
rate.

A. Ground Truth

The measurement interval is T = 1 s. The target
starts at x = 0, y = 0 with ẋ = 100m/s, ẏ = 100m/s.
The target:

1) travels straight for 25.2 s;
2) performs a constant-rate left turn of 3 ◦/s for 10.6 s;
3) travels straight for 18 s;
4) performs a constant-rate right turn of−3 ◦/s for 4.1 s;
5) performs a constant-rate left turn of 1.3 ◦/s 12.8 s;
6) travels straight for 22.6 s.

A plot of this constant-speed, variable-turn rate tra-
jectory is shown in Fig. 4.

B. Estimation Models

The state vector is composed of stacked position and
velocity

x(k) = [x(k) y(k) ẋ(k) ẏ(k)]′ . (69)

The estimator dynamic models are described as fol-
lows. Mode 1 is a 2D WNA model, discretized from the
continuous-time model [4]. It has a 2D process noise ac-
celeration with intensity (power spectral density) q̃1 =
0.012 m2/s3, and Mode 2 is the same but with q̃2 =

Fig. 5. Position RMSE of local IMMs, CMF, outside fusion, and
inside fusion.

7.52 m2/s3:

F =

⎡
⎢⎢⎢⎢⎣
1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , (70)

Qn =

⎡
⎢⎢⎢⎢⎣

1
3T

3 0 1
2T

2 0

0 1
3T

3 0 1
2T

2

1
2T

2 0 T 0

0 1
2T

2 0 T

⎤
⎥⎥⎥⎥⎦ q̃n. (71)

The TPM is

� =
[
0.95 0.05

0.05 0.95

]
. (72)

The measurement parameters are

H1 = H2 =
[
1 0 0 0

0 1 0 0

]
, (73)

R1 = diag[(15m)2, (18m)2], (74)

R2 = diag[(20m)2, (25m)2]. (75)

C. Fusion Results

Figs. 5 and 6 show the position and velocity RMSE
for the inside information fusion,outside information fu-
sion (naive Gaussian fusion with no crosscovariances),
and CMF methods, along with the RMSE of the lo-
cal sensor tracks. The inside fusion is slightly out-
performed by the outside fusion during straight-line
motion, just as the centralized fusion is, but inside fu-
sion significantly outperforms outside fusion during ma-
neuvers. It is interesting to note the low RMSE during
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Fig. 6. Velocity RMSE of local IMMs, CMF, outside fusion, and
inside fusion.

straight-line motion for naive outside fusion and that it
outperforms the method of this paper and CMF during
these times. This is explained by the fact that outside
fusion computes a small covariance matrix that signifi-
cantly reduces the overall filter “bandwidth” [4], but be-
cause of this, it performs very poorly during maneuvers
(i.e., it does not minimize the maximum error). Section
VI-E performs simulations with Monte Carlo randomly
generated trajectories that match the stochastic model
of the target, and those simulations show that, on aver-
age, CMF and the fusion with IMM inside information
do indeed outperform naive outside fusion.

The consistency is evaluated using the normalized es-
timation error squared (NEES, see [4]), divided by Nx

(the state dimension) and this is plotted for every time
point in Fig. 7. Values near 1 are ideal and reflect a chi-
square quadratic form resulting from estimation errors

Fig. 7. NEES of local IMMs, CMF, outside fusion, and
inside-information fusion. Value is normalized by Nx to be 1 when

fused covariance matches sample MSE.

Fig. 8. Computed probability of mode 1 from local IMMs (S1, S2),
inside information-fusion, and CMF.

that are zero mean and consistent with the state co-
variances. It is clear that the inside-information method
achieves better consistency.

In Fig. 8, the mode probabilities of the inside-
information fusion are compared to the local IMMmode
probabilities and theCMFmode probabilities.The fused
mode probabilities computed by the inside-information
fusion slightly lead the probabilities of the local sen-
sors when transitioning modes and, so, maneuvers can
be detected quicker than they can be at the LT.Although
the transient performance is encouraging, it can also be
seen that the method as described in this paper results
in fused mode probabilities that are “more sure” about
the mode—centralized fusion is more conservative and
only boosts this conviction slightly.

D. Reduced-Rate Fusion

As a sanity check, it should be shown that fusion per-
formance is not affected by the rate at which track data
are transmitted. An advantage to the T2TF using inside
information presented here is that it is not affected by
previous tracks.Outside information fusion is known not
to be affected by fusion rate because it utilizes the stan-
dard Gaussian fusion method without memory. As can
be seen in Fig.2, theLRmean/covariance and theMCEE
covariance (including crosscovariances between track-
ers) are recursively updated whether there is track infor-
mation or not, and received tracks are not used in that
computation (in the scenario presented here, ȳ|n andY|n

can even be computed offline).
Figs. 9–11 show the comparison of outside informa-

tion fusion to the inside information fusion at a reduced
rate of once every five measurement intervals, starting
at k = 4. Looking closely, the performance at the fu-
sion times matches the performance shown in Figs. 5–7.
Again, it can be seen that the inside information fusion,
like CMF, only outperforms outside information fusion
during maneuvers, but the consistency of the fused co-
variance is significantly superior for inside-information
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Fig. 9. Position RMSE of outside information fusion and inside
information fusion at reduced rate, fusing tracks once every five

measurement intervals.

fusion. The next section demonstrates that, on average,
CMF and fusion with inside information are actually
more accurate.

E. Simulations Using Random, Model-Matched Target
Trajectories

While the simulations of the previous sections were
carried out using a single realization of the true target
trajectory, the trajectory simulations of this section are
randomized for every Monte Carlo run. This provides
a better comparison of the overall behavior of the al-
gorithms and highlights the consistency of the inside-
information fusion.

The random trajectories are created using the WNA
model driven by zero mean white noise having covari-

Fig. 10. Velocity RMSE of outside information fusion and inside
information fusion at reduced rate, fusing tracks once every five

measurement intervals.

Fig. 11. NEES of outside information fusion and inside information
fusion at reduced rate, fusing tracks once every five measurement

intervals.

ance given in equation (71).6 The mode n is selected
according to realizations of the Markov chain having
TPM (72). The results are shown in Figs. 12–14. It can
be seen that the position RMSE is close to equal for
CMF, outside fusion, and inside fusion. Fusion with out-
side information has more velocity RMSE. Due to the
matched target and estimator parameters, the NEES,
normalized to nominal one, measures the overall MSE
consistency of the IMM trackers (where CMF is sim-
ply an IMM with stacked measurement vectors). Fusion
with inside information can be seen to be as consistent
as centralized fusion, demonstrating that it is a fusion
that accounts for error correlations (i.e., the crosscovari-
ances) and provides a consistent fused covariance out-
put. Outside-information fusion has NEES that is 50%
higher than the ideal NEES of inside-information fusion
meaning that the fused estimate covariance fromoutside
fusion is, on average, 33% smaller than it should be given
the actual sample error covariance.

Figs. 12–14 also show the results of Chernoff fusion
using the sigma-point method of [8], where the weight
parameter is searched at every time step in the interval
[0.01, 0.99] using increments of 0.01. It can be seen that
although the Chernoff fused covariance closely matches
the actual sample MSE of the fused estimate (accord-
ing to the NEES), its RMSE is higher than both inside-
information and outside-information fusion. So in this
application, the MSE consistency of Chernoff fusion is
evident, but its inability to incorporate the known sys-
tem parameters renders it more inaccurate than the
model-based fusion using IMM inside information. On
average, fusion with IMM inside information performed

6White noise is a requirement for the state of the system to be a
Markov process, which is a requirement for the existence of an esti-
mator [4].
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Fig. 12. Position RMSE of local IMMs, CMF, Chernoff fusion,
outside fusion, and inside fusion, using random, model-matched

target trajectories.

approximately 100 times faster than Chernoff fusion
(see Section V-B for complexity analysis).

VII. CONCLUSIONS

A system model of two IMM trackers estimating the
state of a maneuvering target was presented for T2TF
using information from inside the local IMM estimators.
The fusion estimator produces a posterior fused mean
and covariance that is reduced from a Gaussian mixture.
The mixture parameters are computed from IMM track
information from two LTs, with the target modeled as
jumping between two dynamic modes. The linearized
system model, together with the LR transformation
of the received mode probabilities, yields covariances
and crosscovariances of the local mode-conditioned
errors, and also yields the mode-conditioned means,

Fig. 13. Velocity RMSE of local IMMs, CMF, Chernoff fusion,
outside fusion, and inside fusion, using random, model-matched

target trajectories.

Fig. 14. NEES of local IMMs, CMF, Chernoff fusion, outside fusion,
and inside fusion, using random, model-matched target trajectories.
All estimators, except outside fusion, achieve ideal consistency of the

MSE.

variances, and covariances of the scalar LRs. From
these, the parameters of the likelihood functions of the
mode-conditioned state and the mode are derived.Each
fused mode-conditioned state estimate uses informa-
tion from all received MCE. The result is on-demand
Bayesian fusion capability with no previous fused track
information needed. Compared to the naive fusion
of moment-matched Gaussian track information (i.e.,
outside information fusion), the new method achieves
performance closer to the CMF method and outper-
forms the naive fusion in both RMSE and covariance
consistency, most notably when the target is in a ma-
neuvering mode. Fusion with inside information was
shown to be consistent on average as it accounts for the
crosscovariance of the local estimate errors and mode
probabilities, whereas fusion with outside information
and no crosscovariance has a computed covariance that
is 33% too small on average. Compared to Chernoff
fusion, the method is more accurate, consistent, provides
mode inference, and is computationally faster.

APPENDIX CORRELATION, DEPENDENCY, AND
STATISTICAL INFORMATION PROPERTIES

The following properties of the LT track parameters
and fused estimates establish some of the claims made
in this paper.For jointlyGaussian densities,uncorrelated
random variables are independent.Equivalently, if there
is no linear dependency among them, then the variables
are uncorrelated. The following claims are proved un-
der the multiple model, linear-Gaussian approximation
(Property 4 is proved without approximation):

Property 1:The locally computed, mode-conditioned
innovations are zero mean and wide-sense white se-
quences regardless of the true target mode. First, it is
noted that since the F is the same for both modes and
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the process noise is zero mean, all MCEE and innova-
tions are zero mean (see Section III-E). The whiteness
proof for single-mode systems is given in [4] using the
smoothing property of expectations. The following gen-
eralizes that proof because conditioning on modeM(k)
does not change this result. Let k1 < k2, then

E
[
νmj (k2)ν

m
j (k1)

′ | M(k2) = n
]

= E
[
E
[
νmj (k2)ν

m
j (k1)

′ | Zk2−1
j

]
| M(k2) = n

]
= E

[
E
[
νmj (k2) | Zk2−1

j

]
νmj (k1)

′ | M(k2) = n
]

= Smj (k2)δk2−k1

.

(A1)

Property 2: The LRs of the local mode probabilities
are orthogonal to the local MCEEs. Under the multiple-
model, linear-Gaussian approximation, the LR evolve as
a Markov process (22) driven by white noise that is un-
correlated to the noise that drives theMCEE process. In
Section III-C, the LR Gaussian white noise d(k) is ap-
proximated from the quadratic form of the innovations.
Likewise, conditioned on the target dynamic mode, the
MCEE evolve as a Markov process according to equa-
tions (33) and (34), where their additive white noise is
a linear combination of the process noise and the mea-
surement noise. Since the covariance between a vector
and its quadratic form is zero, the additive noises of the
LR and MCEE are uncorrelated. Additionally, the Ja-
cobian (42) is block-diagonal, where the MCEE do not
linearly depend on previous values of the LR and vice-
versa.

Property 3: Given the LT MCEs, the LRs of the re-
ceivedmode probabilities do not contribute additional in-
formation about the mode-conditioned target state.Using
the principle of orthogonality [4], this is written as

E
{[

ω1(k)
ω2(k)

]
x̃nF(k)

′ | M(k) = n
}

= 0. (A2)

This holds because x̃nF(k) is a linear combination of the
MCEE x̃mj (k),m = 1, 2, j = 1, 2 according to equation
(15). Because of Property 2 and this linear combination,
x̃nF(k) is also orthogonal to the LR.

Property 4: The received MCE do not contain infor-
mation about the target’s mode probability. This can be
proved without the linear-Gaussian approximation us-
ing the fact that the likelihood of the mode based on the
received MCE is a diffuse (noninformative) PDF; the
state vector is composed of integrated (i.e., nonstation-
ary) position and velocity:

p[x̂11, x̂
2
1, x̂

1
2, x̂

2
2 | M = m] → 0, m = 1, 2, (A3)

for any values of theMCE.Note that this property is not
necessarily satisfied if the state vector contains station-
ary process(es), e.g., discretized Ornstein–Uhlembeck
acceleration, autoregressive processes, or if the Fmatrix
switches with the mode.

Property 5: The components of the MCEE covari-
ance matrices are orthogonal to the MCEEs and the LRs.
In any single-mode linear-Gaussian system, this is eas-
ily proved since the computed state covariance matrix
does not depend on the observations. Let ql(n,o)j (k) =
ql(o,n)j (k) denote the locally computed scalar error co-
variance of the n-th and o-th state components (i.e.,
the n-th, o-th and the o-th, n-th components of Pl

j(k|k)
as computed by the jth IMM estimator). This quan-
tity is understood to be the covariance of the error
of the l-th MCE conditioned on LT measurements
up to k and target mode l being in effect. It can be
stated as

ql(n,o)j (k) � E
[
x̃l(n)(k)x̃(k)l(o) | Zk

j ,M(k) = l
]
. (A4)

Conditioned on mode n at the FC, the first correlation
to be analyzed is that of ql(n,o)j (k) and any MCEE x̃pj (k).
Since any zeromeanGaussian random variable is uncor-
related to the product of any other twoGaussian random
variables,

E
[
ql(n,o)j (k)x̃pj (k) | M(k) = n

]

= E
[
E
[
x̃l(n)(k)x̃l(n)(k) | Zk

j ,M(k) = l
]

· x̃pj (k) | M(k) = n
]

= 0,

(A5)

and similar analysis can be used to also prove the lack of
correlation between ql(n,o)j (k) and [ω1(k), ω2(k)]′.

Property 6:Given the LT MCEs, the received covari-
ance components ql(n,o)j (k) do not contain any linearly
dependent information about the mode-conditioned tar-
get state x|n(k). This can be proved using the princi-
ple of orthogonality: the fused mode-conditioned target
state estimate error x̃nF(k) is a linear combination of the
MCEE,which are uncorrelated to ql(n,o)j (k) according to
Property 5.

Property 7: The received covariance components
ql(n,o)j (k) do not contain significant information about the
target dynamic mode M(k) or the mode-conditioned tar-
get state x|n(k). Because of the nonlinear operations in-
volved in computing Pl

j(k|k), it is difficult to prove this.
However, an approximate argument can be made based
on the nature and intention of the IMM estimator. First,
it is stated in Section IV-D that the MCC do not de-
pend on the state or measurements at the current time
step, so not much information should be expected. They
do, however, depend on the previous MCE and mode
probabilities because of the SOM matrix term. But the
SOM is only a result of the mixing process that prevents
the exponential growth of mode history hypotheses, and
this method allows for feasible, yet suboptimal,multiple-
model estimation. Certainly, in single-mode Gaussian
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systems, or when using the infeasible optimal multiple-
model estimator [4], covariance/crosscovariance matri-
ces are deterministic, carry no statistical information,
and can be easily computed at the FC. For example, this
can be easily seen in the special case where the target is
known to be in a specific state at the previous time step:
there is no SOM in this case.

If system designers do not have access to LT de-
sign parameters or the target motion parameters, then
it makes sense why received covariance matrices would
be part of the fusion process. In such unfortunate scenar-
ios, the FC must utilize a highly approximate fusion al-
gorithm like covariance intersection or Chernoff fusion.
However, knowledge of the computational pipeline of
the LT track parameters allows for systematic, model-
based Bayesian fusion as presented here.

Property 8: Direct access to the locally-computed,
mode-conditioned Kalman gains and innovation covari-
ances does not improve the fused target state estimate or
the consistency of the fused estimate covariance; likewise,
computing and incorporating the covariance of these
locally-computed covariance components does not af-
fect the fused estimate or fused covariance. This is a di-
rect consequence of Property 5. It can be shown that
because the components of the MCC are uncorrelated
to the MCEE and the LR, then the MCEE and LR
covariances are unaffected by the covariance of the
LT Kalman gains and innovation covariance compo-
nents. Only the mode-conditioned means of these ma-
trices need to be computed at the FC as presented in
Section IV-D.
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