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Data-association-free
Characterization of Labeling
Uncertainty: the Cross
Modeling Tracker

CARLOS MORENO LEON
HANS DRIESSEN
ALEXANDER YAROVOY

The Multiple Object Tracking problem for a known and constant

number of closely-spaced objects in a track-before-detect context

is considered. The underlying problem of decomposing a data-

association-free Bayes posterior density is analyzed. A previously

proposed solution for two objects moving in one-dimensional space

is generalized for higher dimensional problems where t objects move

in a M-dimensional space. The underlying problem is solved with

the proposed Cross Modeling Tracker by means of hypothesizing

physical crosses between the objects for a general t–MD objects case.

In particular, the mathematical definition of cross-between-objects

is generalized from a meaningful interpretation of the problem in

the low dimensional setting. A method to provide optimal references

for evaluation of the Cross Modeling Tracker is also considered.

The Cross Modeling Tracker algorithm is validated with the optimal

references by simulating t–MD closely-spaced objects scenarios.

Wider applicability of the Cross Modeling Tracker with respect

to comparable reviewed solutions is demonstrated via simulation

experiments.

NOMENCLATURE

MOT Multiple Object Tracking.
DBT Detect-before-track.
TBD Track-before-detect.
RFS Random Finite Sets.
SNR Signal to Noise Ratio.
DA Data-association.
CMT Cross Modeling Tracker.
MMSE Minimum Mean Square Error.
JPDA Joint Probabilistic Data Association.
MHT Multiple Hypothesis Tracking.
PHD Probability Hypothesis Density.
LMB Labeled Multi-Bernoulli.
GOSPA Generalized Optimal Subpatern Assign-

ment.
PF Particle Filter.
LPE Labeled Point Estimates.
MD M-dimensional.
t Number of objects.
sk State vector at time k.
ok Variable “order” at time k.
zk DBT measurement at time k with indication

of correct data association.
Zk Sequence of DBT measurements up to, and

including, time k.
zk DBT measurement at time k.
Zk Sequence of complete TBD measurements

up to, and including, time k.
zk Complete TBD measurement at time k.
Nr,Nb Number of range and bearing cells in zk.
zi, jk TBD measurement at cell i, j.
Np Number of particles.

I. INTRODUCTION

Multiple Object Tracking (MOT) refers to the prob-
lem of jointly estimating the presence and states or
trajectories of objects based on measurements from
sensors such as radars. The majority of reported MOT
solutions are only suitable in detect-before-track (DBT)
context, i.e., designed for detection measurements. This
paper aims to solve the MOT problem for a known
and constant number of closely-spaced objects in a
track-before-detect (TBD) context.

The problem of deciding which track state estimate
belongs to which physical object over time is known as
the labeling problem. Labels are considered as unique
identifiers assigned to each physical object in the track
initiation stage. In closely-spaced objects tracking, sen-
sor systems may not provide enough information to
uniquely match objects labels and objects point esti-
mates consistently over time, leading to uncertainty in
the labeling [3]. Labeling uncertainty can play a role
already in sensor systems even if the objects can be
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resolved by the sensor.This will occur if maneuverability
of the objects and/or sensor update intervals get large.

The terms labeling problem and labeling uncertainty
might be misleading, it is important to remark that there
is no uncertainty in the labels as they have been assigned
(and are therefore fully known) within the tracker. The
uncertainty is about the assignment of tracks to the
fully known set of labels [17]. However, due to histor-
ical reasons, we will continue referring to this problem
and the uncertainty as labeling problem and labeling
uncertainty.

Labels have been rigorously incorporated in MOT
solutions by two different means. Firstly, by using ran-
dom vector formulations. In this case, the order of
partitions in the random vector implicitly determines
the labels of the tracks. Secondly, by using random finite
sets (RFS) formations and explicitly introducing labels
as additional components in the (unordered) state
variable. The scope of this paper is limited to the case
of known and constant number of objects in order to
isolate the essence of the labeling problem. Under this
assumption, a vector formulation suffices.

TBD MOT uses multiple frames of the raw sen-
sor measurements with the objective of avoiding a hard
thresholding decision. Consequently, TBD algorithms
jointly estimate the existence of the target (detection)
as well as track its kinematic state (filtering).

Avoidance of hard thresholding in TBD prevents
loss of information,which is remarkably important in the
tracking of low signal to noise ratio (SNR) objects. Ad-
ditionally, TBD MOT cope with closely-spaced objects
tracking in cases where a DBT approach would have to
deal with merged measurements. Therefore, TBDMOT
provides an inherently increased resolution capability
over DBT MOT, which however makes it all the more
important to address data-association-free characteriza-
tion of labeling uncertainty.

The advantages of TBD tracking motivate this pa-
per to design an algorithm able to characterize labeling
uncertainty without using data-association (DA) tech-
niques. The aim of such algorithm is adding labeling
characterization capabilities to regular TBD filters such
as the one presented in [6].The lack of practical solutions
is discussed in the Literature Review section. In order
to fill the gap, this paper generalizes the association-free
framework in [17, Section IV] to arbitrarily high dimen-
sional problems.

The paper is organized as follows. Section II presents
the research questions and specifies the underlying
problem to answer them. Also, an extensive literature
review on the topic is provided. Section III presents a
generic formulation to characterize the Cross Model-
ing Tracker (CMT). Section IV revisits the evaluation
method specifically design in [18] to measure esti-
mation performance of the CMT. Sections V and VI
provide the analytical generalization of the method pre-
sented in [17, Section IV] to the general t–MD objects
case. Simulation results are also provided. Section VII

draws final conclusions and proposes future research
directions.

II. PROBLEM DESCRIPTION AND
CONTEXTUALIZATION IN LITERATURE

Consider an MOT problem based on raw (TBD)
measurements and a scenario containing t objects mov-
ing in aM-dimensional space (t–MD setting). Addition-
ally, consider that t is constant and known by the tracker.

In cases where the objects move far apart from each
other, labeling uncertainty is negligible and a regular
TBD tracker such as the one in [6] suffices to infer
the correct pair-matching between labels and point esti-
mates.However,when the t objectsmove closely-spaced,
labeling uncertainty degrades tracking performance and
even the optimal TBDMOT solution is prevented from
inferring the correct pair-matching between labels and
point estimates. It is important to remark that what we
refer to as pair-matching between labels and point es-
timates is conceptually different from the well-studied
pair-matching problem between detections and labels
(detections do not even exist in TBD). This difference
is described in Appendix A.

Precisely due to the mathematical limitations for
providing uncertainty-free labeling in complicated sce-
narios, estimation of certainty regarding all potential la-
beling possibilities is a topic of major importance. For
this reason, the problem considered in this paper is de-
scribed by the following two questions:

� What is the list of t! labeled point estimates for the cur-
rent dynamic state of the objects? Here each labeled
point estimate hypothesises the state of the t targets
with indication of the labels.

� What is the certainty corresponding to each labeled
point estimate in the list?

A regular TBD tracker is known to fail at answer-
ing these questions in closely-spaced objects scenarios
for two reasons. First, particle-based approximations
(required due to the highly non-linear nature of theTBD
measurement models) cannot approximate multimodal
densities for long periods of time [7]. This can be tack-
led by using a convenient proposal density [15]. Sec-
ond,extraction ofminimummean square error (MMSE)
point estimates from a TBD multimodal posterior den-
sity results in track-coalescence underperformance [5].
This can be solved efficiently by means of characteriz-
ing the labeling uncertainty implicitly contained in the
TBDmultimodal density [17]. The purpose of this paper
is providing such characterization for the general t–MD
objects case.

A. Formulation of the Problem

The link between the DA problem and the labeling
problem is formulatedmathematically inAppendixA.It
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is concluded that in DBT context, the labeling problem
is implicitly solved by tackling the DA problem. Unfor-
tunately, the same analytic method cannot be applied in
TBD filtering to solve the labeling problem due to the
absence of detections.

In TBD context,zk contains the power reflected from
the tracking scenario for each radar cell at time step
k. For instance, a 2D raw data set zk can be modeled
as in [6] by Nr × Nb power measurements zi jk , where
i = 1, 2, ...,Nr and j = 1, 2, ...,Nb.

The permutation of measurement zk described in
AppendixAmakes no sense for the TBDmeasurements
zk. Therefore πm(zk) (see Appendix A) cannot be used
to hypothesize labeling associations in TBD. However,
the decomposition using permutations in sk, derived in
Appendix A, can be formulated also in TBD:

p(sk|Zk) ∝
t!∑

m=1

l(zk|πm(sk))p(sk|Zk−1). (1)

We consider the worst case scenario, where TBD
measurements do not incorporate information about ob-
jects’ labels. Under this assumption, the TBD likelihood
model for the measurements conditioned on the state
l(zk|sk) is invariant with respect to permutation of parti-
tions in the state vector:

l(zk|πm(sk)) = l(zk|πn(sk)) ∀{m,n} : {πm, πn} ∈ �.

(2)
This is a remarkable difference with respect to DBT,
where l(zk|sk) is permutation variant (even when the
measurements do not provide any information about the
labels). Due to equation (2), equation (1) provides a de-
composition in which all components end up being iden-
tical disregarding whether objects are closely-spaced or
not. For this reason, equation (1) is certainly not rele-
vant for labeling characterization in TBD. In fact, it can
be simplified as:

p(sk|Zk) ∝
t!∑

m=1

l(zk|πm(sk))p(sk|Zk−1)

∝ l(zk|sk)p(sk|Zk−1). (3)

The simplification in equation (3) illustrates that,
although p(sk|Zk) can be calculated, an analytical de-
composition of p(sk|Zk) cannot be accessed by the TBD
filter. This defines the specific problem which needs to
be tackled to answer the two questions of interest.

B. Related Literature

Aplethora ofMOT techniques have been developed
over recent decades including Joint Probabilistic Data
Association (JPDA) [13], Multiple Hypothesis Track-
ing (MHT) [21], and Probability Hypothesis Density
(PHD) [19]. These algorithms are designed to work with
detections. As the scope of this paper is within TBD
MOT, none of these methods are suitable.

Some RFS-based trackers use multitrajectory den-
sities instead of multiobject densities [23]. A multitra-
jectory random variable incorporates the states of the
entire history for each trajectory in the set. With this
information, track formation is enabled without any
type of label incorporation. Although some reported
RFS multitrajectory trackers accommodate TBD mod-
els [16], answering the two questions in the Problem
Description section does not require information about
the entire history of the trajectories.

In [14], an RFS-based mutiobject filter is adapted to
work in TBD context. The adaptation is based on fitting
a particle-based multiobject density approximation as a
Labeled Multi-Bernoulli (LMB) RFS density after each
filtering iteration.Nonetheless, questions in the Problem
Description section cannot be answered. In fact, the so-
called Improved LMB filter provides low Generalized
Optimal Subpatern Assignment (GOSPA) errors at the
expense of losing labeling information.

In [24], a backward simulationmethod is proposed to
recover full trajectory (labeling) information from unla-
beled filtering mutiobject densities. However, the pro-
cess (generating unlabeled filtering posteriors, recover-
ing trajectory information and marginalizing to obtain
the filtering density of interest) involves unnecessary
complexity overhead. This is specially so in TBD con-
text, where RFS prior conjugacy cannot be exploited as
particle-based approximations are required to accom-
modate highly nonlinear measurement models. Addi-
tionally, the problem in the scope of this paper does not
even need to be formulated with RFS as the number of
objects is assumed known and constant.

Aoki et al. provided a mathematical characteriza-
tion of the labeling uncertainties with clear physical
interpretation in [1]. However, the proposed Multitar-
get Sequential Monte Carlo filter algorithm involves a
computational complexity of O(N2

pt!
2). This computa-

tional bottleneck is prohibitive for tracking scenarios
with more than two objects.

Blom and Bloem [4] introduced a decomposition
of the exact Bayes posterior density into the weighted
sum of permutation invariant and permutation strictly
variant components. The so-called “unique decomposi-
tion” was used by García-Fernández in [15] to provide
a particle filtering solution relevant for our problem
description. The main focus in [15] is on calculating the
probability of successful labeling after object separation,
where the posterior multiobject density has symmet-
ric nature [8], [20]. In particular, the contribution of
García-Fernández to the characterization of labeling
uncertainty problem is based on linking the so-called
probability of successful labeling to the particular metric
and point estimate considered [15]. These contributions
where exemplified for the tracking of two objects with
wireless sensor networks.

A generalization of the “unique decomposition” [4]
was provided by Croise et al. in [9],where themain focus
is to demonstrate how this decomposition can be used to
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approximate Minimum Mean Optimal Subpartern As-
signment (MMOSPA) estimates . Although MMOSPA
estimates do not provide answers to the questions in
the ProblemDescription section due to its unlabeled na-
ture, it is important to remark that the consideration of
Optimal Subpartern Assignment (OSPA) metric (or its
generalization GOSPA) has been reported successful at
preventing track-coalescence.However,MMOSPA esti-
mates are very computationally demanding to calculate
and therefore its implementation in dynamic systems
has only been reported under some approximations [10],
[11].

The use ofMMOSPAestimates has been encouraged
by the majority of reviewed solutions. Only [15] has re-
ported successful results at avoiding track-coalescence
using MMSE estimates. This becomes possible as the
specific problem formulated in Section II-A is tackled by
incorporating characterization of labeling uncertainty in
the filtering process. Interestingly, this characterization
does not rely on DA techniques and therefore it is us-
able in TBD.Unfortunately,although proposed as future
work in [15], the generalization of this solution for more
than two objects has not been addressed.

An alternative solution for incorporating DA-free
characterization of labeling uncertainty in the filtering
process was provided in [17, Section IV]. Although this
solution tackles the problem formulated in Section II-
A, it is only usable for the 2–1D objects case. Specifi-
cally, the generalization of [17, Section IV] is the gap to
be filled with the contribution in this paper.

C. Detailed Review of [17, Section IV]: Modeling
Crosses for the 2–1D Objects Case

Fig. 1 illustrates the idea of cross modeling in
the most simple scenario where the labeling prob-
lem appears: two one-dimensional objects approach
each other, stay closely-spaced for a while and finally
split.

Fig. 1. Representation on top hypothesizes that objects have
(physically) crossed an even number of times from k = 0 to k = k′.

Representation at the bottom hypothesizes that objects have
(physically) crossed an odd number of times from k = 0 to k = k′.

At k = 0, the tracker places a label to each object
according to the tracker’s convention: e.g., blue to the
target that is further away and red to the other. At any

later point in time, for instance k = k′, two labeling pos-
sibilities are worth considering. One where the furthest
object is blue and the nearest one red (example trajec-
tories on top of the figure) and the other with opposite
colors, positions being the same (example trajectories at
the bottom of the figure).

Note that the questions in Section II do not ask about
past states but only current information, for instance at
k = k′. However, although full trajectory information is
not required, it is essential to estimate whether the ob-
jects have crossed an even or an odd number of times
from k = 0 to k = k′ in order to characterize the two
possible labeling solutions.

Based on described estimation of crosses, [17,Section
IV] proposed a method to decompose the association-
free TBD multiobject posterior density. For closely-
spaced objects situations, the non-decomposed p(sk|Zk)
in equation (3) displays symmetric multimodality:

10 20 30 40 50 60 70
2661

2661.5

2662

2662.5

2663

2663.5

2661 2661.5 2662 2662.5 2663 2663.5
2661

2661.5

2662

2662.5

2663

2663.5

Fig. 2. Illustration of a closely-spaced targets situation. Ground
truth trajectories of two targets moving in a line (2–1D objects

scenario) in the left-hand side. Last joint multiobject position density
(position components of p(sk|Zk)) represented in the right-hand side.

One interpretation of the multimodality in p(sk|Zk)
with physical meaning is that the objects may have
well crossed each other from one time scan to the
next one. As one can see in Fig. 2, the probabil-
ity mass of p(sk|Zk) concentrates in separated re-
gions of the joint state space. These regions represent
different labeling permutations of the information of
interest.

In [17, Section IV], it is assumed that the state vari-
able is a vector where partitions are stacked: sk =
[xbk ẋ

b
k x

r
k ẋ

r
k]
T . Positions of each partition are denoted as

xk and velocities as ẋk. b and r are the labels for the first
and second partition respectively (blue and red for print-
ing clarity). In order to hypothesize crosses between ob-
jects, the concept of order at time step k was defined
in [17, Section IV] as:

ok = d(sk) =
{
1 if xbk > xrk
2 otherwise.

(4)

For two objects moving in one dimension, the variable
order determines whether the position of one 1D object
is larger or less than the position of another 1D object.
Also, it is trivial to interpret a permutation of order in
the state vector as a cross of objects between time steps
k− 1 and k:
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Fig. 3. No permutation of order (left-hand side), permutation of
order (right-hand side).

The notion of order/cross escapes to physical inter-
pretation in higher dimensional problems. One cannot
tell whether the position of one 2D object is larger or
less than the position of another 2D object as the defini-
tion of “>” and “<” is only valid in the 1D line. In fact,
although one order definition was provided in [17, Sec-
tion V] for the 2–2D objects case, counterexamples were
found proving it wrong.

III. GENERALIZED CHARACTERIZATION OF CROSS
MODELING

Fig. 4 illustrates the block diagram of the CMT al-
gorithm required to solve the formulated problem in
Section II-A:

Fig. 4. This TBD framework was pictured in an equivalent way
in [17]. Although the block diagram of the algorithm is generic, the
definition of ok in [17, Section IV] does not allow its use out of the

2–1D objects case. Hence, the importance of generalizing the
definition of ok.

The solution to be generalized ([17, Section IV])
was designed for particle-based implementations of the
Bayesian filter. In particle filtering, “particle mixing” is a
characteristic phenomenon inherent in approximations
of multimodal densities [12]. Interestingly for our label-
ing problem, when “particle mixing” happens at least
two particles are represented with permuted order of
partitions in the state vector [8]. In order to generalize
the definition of order/cross in [17, Section IV] to arbi-
trarily high dimensional problems, this paper proposes to
analyze and exploit “particle mixing”effects in the parti-
cle cloud.Exploitation of such “particle mixing”analysis
is realized by means of clustering the particle cloud.

Clustering the particle cloud results in remarkable
benefits compared to existent methods. These benefits
are: straightforward extraction of labeling certaintymea-
sures and trouble-free use of computationally efficient
MMSE estimation (even when p(sk|Zk) is multimodal).

A. State Space Model

The general nonlinear dynamic system and observa-
tion models can be denoted as f and q respectively:

sk = f (sk−1,nk−1), (5)

zk = q(sk, vk), k ∈ N, (6)

where sk,nk, zk, and vk represent the state, process noise,
measurement, and measurement noise, respectively.

We tackle the MOT problem in the framework of
recursive Bayesian filtering. The predicted and poste-
rior densities of interest p(sk|Zk−1) and p(sk|Zk) are ob-
tained by iteration over the Chapman–Kolmogórov and
Bayes equations:

p(sk|Zk−1) =
∫

p(sk|sk−1)p(sk−1|Zk−1)dsk−1, (7)

p(sk|Zk) = p(zk|sk)p(sk|Zk−1)
p(zk|Zk−1)

, (8)

in this framework, the models in equations (5) and (6)
are expressed in the form of p(sk|sk−1) and p(zk|sk),
respectively.

Due to the nonlinear nature of TBD measurement
models, the Bayesian recursion formulated in equa-
tions (7) and (8) cannot be implemented via (stochastic)
parametric models [22]. For this reason, a particle filter
(PF) will be used to approximate the recursion.

B. A Generic Decomposition of p(sk|Zk) in TBD

As detailed in the Section II-A, the underlying con-
cern to answer the questions in Section II is how to de-
compose p(sk|Zk) in TBD. A generic decomposition of
p(sk|Zk) can be formulated by introducing an auxiliary
variable ok:

p(sk|Zk) =
t!∑
i=1

p(sk,ok = i|Zk). (9)

Please note that the desired definition of ok is not the
one in equation (4) as we are targeting its generalization
to the t–MD objects case. The new density of interest
p(sk,ok|Zk), can be factorized as:

p(sk,ok|Zk) = p(sk|ok,Zk)P(ok|Zk), (10)

where p(sk|ok,Zk) is the posterior density of the state
vector given ok and the measurements, while P(ok|Zk)
is the posterior probability of ok. Both can be computed
using the association-free (non-decomposed) TBD filter
output p(sk|Zk) and a certain probabilistic definition of
the auxiliary variable ok:

p(sk|ok,Zk) = P(ok|sk,Zk)p(sk|Zk)
P(ok|Zk)

, (11)

P(ok|Zk) =
∫
sk
P(ok|sk)p(sk|Zk)dsk. (12)
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Assuming that the generalized definition of ok is con-
ditionally independent on Zk given sk (this is the case
for the solution in [17, Section IV]), equation (11) can
be rewritten as:

p(sk|ok,Zk) = P(ok|sk)p(sk|Zk)
P(ok|Zk)

. (13)

The generic decomposition in equation (9) together
with the desired statistical definition of order P(ok|sk)
should allow answering the questions of interest. When
MMSE estimation is the choice for extracting point
estimates, the desired definition P(ok|sk) should en-
sure that each component in equation (9) p(sk|ok =
m,Zk) is unimodal. Under this condition, the list of
t! label point estimates (question 1) can be provided
avoiding track-coalescence. Finally, the desired defini-
tion P(ok|sk) should be such that P(ok = m|Zk) repre-
sent the certainty of labeling associationm (question 2).

1) Labeled Point Estimates and Labeling Certainties
of the CMT: In a particle-based implementation of
the Bayesian recursion, p(sk|Zk) is represented with a
weighted set of particles {sik,wi

k}
Np

i=1. According to the
decomposition in equation (9),MMSE order-dependent
labeled point estimates (LPEs) can be calculated as the
expected value of sk given the order and measurements:

E[sk|ok,Zk] =
∫
sk
skp(sk|ok,Zk)dsk

=
Eq(13)

1
P(ok|Zk)

∫
sk
skP(ok|sk)p(sk|Zk)dsk

≈ 1
P(ok|Zk)

∑
i

wi
ks
i
kP(ok|sik).

(14)

Order-dependent labeling certainties are necessarily in
the second factor of equation (10):

P(ok|Zk) =
∫
sk
P(ok|sk)p(sk|Zk)dsk ≈

∑
i

wi
kP(ok|sik).

(15)

Evaluation of E[sk|ok,Zk] for each possible realiza-
tion of ok provides a different vector of LPEs (answer to
question 1):

E[sk|ok = m,Zk] ≈ 1
P(ok = m|Zk)

∑
i

wi
ks

i
kP(ok = m|sik)

≈ 1
P(ok = m|Zk)

∑
i|oik=m

wi
ks

i
k wherem ∈ {1, 2, .., t!}. (16)

In the same way, evaluation of P(ok|Zk) for each possi-
ble realization of ok provides a scalar with the associated
labeling probability (answer to question 2):

P(ok = m|Zk) ≈
∑
i

wi
kP(ok = m|sik) ≈

∑
i|oik=m

wi
k. (17)

2) Algorithm Implementation: Alg. 1 is the practi-
cal implementation of the functionalities illustrated in
Fig. 4.

Algorithm 1 Pseudo-code of the PF algorithm for
implementation of the CMT. Extensions over the plain
SIR TBD particle filter plus traditional MMSE estimate
extraction are highlighted in blue color. p(sk) and p(nk)
denote the initial prior and the process noise models.

1 k = 0
2 Draw Np samples sik from p(sk)
3 Draw Np samples nik from p(nk)
4 k = k+ 1
5 sik = f (sik−1,n

i
k−1)

6 Calculate oik according to the definition of
“order” under test

7 Given zk, obtain w̃i
k = p(zk|sik)

8 Normalize weights wi
k = w̃i

k/
∑Np

j=1 w̃
j
k

9 Resample from p̂(sk|Zk) = ∑Np

i=1 wi
kδ(sk − sik):

10 Extract LPEs according to equation (16)
11 Obtain certainty measures of LPEs

according to equation (17)
go to 3

IV. PERFORMANCE EVALUATION OF THE CROSS
MODELING (CM) METHOD

Before delving into the main contribution of this pa-
per, this section provides an optimal reference for fu-
ture evaluation of the generalized CMT. Also, the val-
idation of the solution in [17, Section IV] is provided
in this section. Two algorithms implementing the op-
timal reference were provided in [18] based on the
link between the DA problem and the labeling prob-
lem. In order to provide a self-contained explanation,
the essential theory required to build up the optimal
references is provided in Appendix A. The method
we apply to validate the CMT can be summarized as
follows:

In DBT context and taking the considerations from the
sixth bullet point in Appendix A.

� Generate the analytical decomposition of p(sk|Zk):

p(sk|Zk) ∝
t!∑

m=1

l(πm(zk)|sk)p(sk|Zk−1). (18)

� For each data-association-dependent component
l(πm(zk)|sk)p(sk|Zk−1)
– Extract MMSE labeled point estimates (optimal
reference):

E[p(πm(zk)|sk)p(sk|Zk−1)]

=
∫
sk
skp(πm(zk)|sk)p(sk|Zk−1)dsk. (19)
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– Extract labeling certainty associated (optimal refer-
ence):

p(πm(zk)|Zk) =
∫
l(πm(zk)|sk)p(sk|Zk−1)dsk∑t!

m=1

∫
l(πm(zk)|sk)p(sk|Zk−1)dsk

.

(20)

� Decompose p(sk|Zk) from equation (18) using the
CMT decomposition (equation (9)):

p(sk|Zk) =
t!∑

m=1

p(sk,ok = m|Zk). (21)

� For each data-association-free component p(sk,
ok = m|Zk), factorize it as in equation (10) and:
– Extract CMT MMSE labeled point estimates ac-
cording to equation (16).

– Extract CMT labeling certainty associated accord-
ing to equation (17).

It is very important to remark that, although the
CMT is motivated by the needs of TBD filtering, per-
formance of the CMT can only be evaluated in the con-
text of DBT. This becomes apparent when consider-
ing the evaluation method described above this lines.
Please note that the optimal references in equations (19)
and (20) need to be derived from the DBT analytical ex-
pression in equation (18). Nonetheless, the validation in
DBT guaranties equivalent estimation performance of
the CMT in TBD.This is because the CMT is designed to
infer the relevant DA-free decomposition of any poste-
rior density, disregarding whether it (the posterior den-
sity) was generated in the context of DBT or TBD.

Estimation performance of the CMT can be mea-
sured as the quality of the decomposition in equa-
tion (21). This is done in following sections by using
the results in equations (19) and (20) as the optimal
reference to answer the questions in Section II. For the
validation of the proposed generalization of “order,”
the results in equations (16) and (17) will be compared
with the optimal reference.

A. Algorithm Implementation

Alg. 2 implements the generation of the optimal ref-
erences to answer questions in Section II based on the
decomposition of equation (18). Concerning the sec-
ond Remark in the Appendix A, p(sk|Zk−1) is com-
monly formulated as amixture of densities in algorithms
such as MHT, leading to exponentially increasing num-
ber of hypotheses over time. However, in the context
of this paper, equation (18) is implemented with a sin-
gle particle filter. Therefore, p(sk|Zk−1) can be formu-
lated as a single density, even when it has multimodal
nature.

Algorithm 2 Pseudo-code for generation of optimal
references (lines 9 and 10) to answer questions in
Section II.

1 k = 0
2 Draw Np samples s jk from p(sk)
3 Draw Np samples n jk from p(nk)
4 k = k+ 1
5 s jk = f (s jk−1,n

j
k−1)

Generate data-association-dependent posterior
beliefs

6 for i=1 until t!
7 Given zk, obtain w̃

i, j
k = p(πi(zk)|s jk)

8 Normalize weights w
i, j
k = w̃

i, j
k /

∑Np

j=1 w̃
i, j
k

9 Extract LPEs according to the particle − based
approximation of equation (19)

10 Obtain certainty measures of LPEs according to
particle − based approximation of equation (20)
Sum data-association-dependent posteriors in
order to approximate p(sk|Zk) with a single
particle cloud

11 for j=1 until Np

12 w
′ j
k = ∑t!

i=1 w
i, j
k

13 Normalize weights w
j
k = w

′ j
k /

∑Np

j=1 w
′ j
k

14 Resample Np times from
p̂(sk|Zk) = ∑Np

j=1 w
j
kδ(sk − s jk) to

generate p̂(sk|Zk) = 1
Np

∑Np

j=1 δ(sk − s jk)
go to 3

B. Performance Evaluation of [17, Section IV]

The choice of simulation parameters to evaluate the
solution in [17, Section IV] is shown in Table I. This
parametrization generates high amount of labeling un-
certainty in order to challenge the MOT algorithm. This
becomes apparent when considering the overlapping in
between partitions of different colors (labels) of the pre-
dicted and posterior particle cloud in Fig. 5.

The evaluation can be reproduced by setting up the
trajectories for the objects with initial and minimum dis-
tance as indicated by di and dm in Table I. The evalu-
ation considers the dynamic and measurement models
as nearly constant velocity [2] and linear-Gaussian. The
standard deviations of the process noise and observation
noise are indicated by σn and σv , respectively, in Table I,

TABLE I
Parameters of the simulation

Parameter Value

di 1.66 m
dm 0.22 m
σn 0.14 m/s3/2

σv 0.045 m
τ 1 s
Np 10000 particles
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Fig. 5. Illustration of real trajectories as well as predicted and
posterior particle clouds along all simulation time steps. The particle
mixing effect can be observed, for instance, in the posterior particle
clouds after object separation. In fact, different particles hypothesize

the state of the same physical object with different partitions.

where τ denotes the revisit time. Without loss of gener-
ality, choosing these simple models suffices to validate
Alg. 1 with Alg. 2.

The definition of ok in equation (4) can be rewritten
in a probabilistic form:

P(ok = 1|sk) = 1 i f xbk > xrk,

P(ok = 2|sk) = 1 i f xbk ≤ xrk.
(22)

The definition in equation (22) can be plugged into
equations (13) and (12) in order to decompose p(sk|Zk)
using the CMT (Alg. 1). By these means, LPEs and
associated labeling certainties can be generated with
Alg. 1 and evaluated with the optimal reference gen-
erated by Alg. 2. Simulation results illustrated in
Figs. 6 and 7 validate the cross modeling solution for
the 2–1D objects case using the evaluation method de-
scribed along this section.
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Fig. 6. Evaluation of estimation performance of the CM method for
a 2–1D objects scenario. Cross modeling based estimates are

extracted only from the cluster associated to “order” 1.
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Fig. 7. Evaluation of estimation performance of the CM method for
a 2–1D objects scenario. Cross modeling based estimates are

extracted only from the cluster associated to “order” 2.

1) Comments on the Results: Alg. 1 decomposes
the particle cloud in two (t!) clusters. These clusters
explicitly approximate the DA-free decomposition in
equation (9). The cluster associated to “order” 1 sup-
ports the hypothesis that the maneuvers of the two
labeled objects lead to non-crossed trajectories with
respect to the initialization ∀k. This cluster produces
LPEs represented in Fig. 6 as x̄b,rk (o = 1). The certainty
measure associated (P(o = 1|Zk) curve) is extracted
from the particle approximation of the joint multiobject
posterior in step 11 of Alg. 1.

Over the first 4 seconds of the simulation, the
LPE(o = 1) holds full certainty. No single particle be-
longs to the cluster o = 2 and therefore, no representa-
tive can be extracted from there (see Fig.7).As expected,
P(ok = 1|Zk) drops down to around 0.5 after the ob-
jects remain closely-spaced for some time. This means
that labeling information has been completely lost. La-
beling information cannot be recovered after the split as
suggested by the measure of certainty. The LPE(o = 2)
supports the hypothesis that the maneuvers of the two
labeled objects lead to crossed trajectories with respect
to the initialization ∀k.

Estimation results produced by the CMT closely
match the optimal references generated by Alg. 2. This
validates the CM method as a solution to the prob-
lem defined in the Section II-A for the 2–1D objects
scenario.

V. FIRST GENERALIZATION OF THE DEFINITION OF
cross: SCENARIOS WITH ARBITRARY NUMBER t
OF 1D OBJECTS

For 2–1D object settings, equation (4) provides the
order of any particle given its state. We will refer to this
calculation as an absolute evaluation of order. Unlike 1-
D points, 2-D points cannot be ordered making use of
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the operators ≤ and >. For this reason, finding an abso-
lute evaluation of “order” in 2-D is not a trivial concern.

A. Absolute Versus Relative Order Calculation and the
Definition of Cross:

An alternative method to obtain the order can be re-
alized by relative evaluation: relying on the prior order at
time step k− 1 and detecting whether or not the objects
have crossed from time step k− 1 to k,

P(ok = 1|sk) = 1 P(ok = 2|sk) = 1

P(ok−1 = 1|sk−1) = 1 no cross cross
P(ok−1 = 2|sk−1) = 1 cross no cross

For 2–1D objects scenarios:

xrk < xbk xrk ≥ xbk

xrk−1 < xbk−1 no cross cross
xrk−1 ≥ xbk−1 cross no cross

Therefore, for a cross to be declared, one of the two
following conditions should hold:

xrk−r < xbk−r and xrk ≥ xbk, (23)

xrk−r ≥ xbk−r and xrk < xbk. (24)

The relative “order” evaluation method shifts the
generalization problem from the definition of order to
the definition of cross. A cross detector for 2–1D ob-
jects can be derived from the absolute definition in equa-
tion (4). Let us denote s′pk as the position part of the
state vector sk = [xbk ẋbk xrk ẋrk] of particle p at time
step k: s′pk = [xp,bk xp,rk ]. Since s′pk and s′pk−1 are vectors
in a 2D space (two objects placed along 1D spacial di-
mension), one can calculate the Euclidean distance or
l2−norm between them in the joint space as (superscript
p is dropped for notation simplicity):

norm(s′k − s′k−1) =
√
(xrk − xrk−1)

2 + (xbk − xbk−1)
2 (25)

=
√
(xrk)

2 − 2(xrkx
r
k−1) + (xrk−1)

2 + (xbk)
2 − 2(xbkx

b
k−1) + (xbk−1)

2

(26)

=
√
(xbk − xrk−1)

2 + (xrk − xbk−1)
2 + 2(xrk−1 − xbk−1)(x

b
k − xrk) (27)

Then,

norm2(s′k − s′k−1) = (xbk − xrk−1)
2 + (xrk − xbk−1)

2

+ 2(xrk−1 − xbk−1)(x
b
k − xrk) (28)

norm2(s′k − s′k−1) = norm2(�s′k − s′k−1) +K (29)

where K = 2(xrk−1 − xbk−1)(x
b
k − xrk) and � denotes the

permutation matrix:

� =
(
0 1

1 0

)
. (30)

Each of the equations (23) and (24) define conditions for
a cross to be declared. Interestingly, when any of these
equations is applied to function K, the result is K > 0
as long as xrk−1, x

b
k−1, x

r
k and x

b
k take positive values. Vari-

ables xrk−1,x
b
k−1,x

r
k,and x

b
k can only take positive values in

our application problem as these are range magnitudes.
Therefore, inequation (31) holds as long as a cross in the
state vector of particle p takes place:

norm2(s′pk − s′pk−1) > norm2(�s′pk − s′pk−1). (31)

Equivalently, the next order switch condition can be
used to find out whether or not a cross should be de-
clared for the particle p between time instants k − 1
and k.

norm(s′pk − s′pk−1) > norm(�s′pk − s′pk−1). (32)

The result in equation (32) can be pictured in a phys-
ically meaningful way:

Fig. 8. The illustration in the left hand side represents an
order switch as the points pk and pk+1 belong to different sides of the
diagonal xr = xb. Indeed, inequation (32) holds in this case. In the
right hand side the point p does not cross the line xr = xb between

time instants k and k+ 1 meaning that the order remains the same in
this case. Indeed, inequation (32) does not hold.

B. Generalization of Cross from 2–1D to t–1D Cases

This generalization considering 1D objects makes
use of the relative definition of “order”based on inequa-
tion (32), applied to all possible pairs of partitions in
the state vector. As the number of possible labeling so-
lutions is t!, only the extension from two to three tar-
gets will be exemplified due to space limitations. Nev-
ertheless, there is no loss of generality as the same
technique can be applied to any arbitrary number of
targets t.

For a three-object scenario, the three partitions in the
state vector can be ordered in six different ways accord-
ing to, for instance, the following convention:
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TABLE II
As an example, this convention will group in cluster 1 those particles
complying with: position of the first partition is less than the position
of the second partition, being the position of the second partition less
than the position of the third partition. For the sake of printing clarity
in forthcoming simulation experiments, the first, second and third

partitions will be identified with colors green, red, and blue,
respectively.

1D magnitude
increasing direction

→
o= 1 1st 2nd 3rd

o= 2 1st 3rd 2nd

o= 3 2nd 1st 3rd

o= 4 3rd 1st 2nd

o= 5 2nd 3rd 1st

o= 6 3rd 2nd 1st

Between time steps k− 1 and k, there exist eight dif-
ferent types of crosses which could happen. Each cross
type is composed of three boolean variables. These are
used to codify whether or not a cross is declared between
pairs of partitions. When the boolean variable is set to
1, a cross is declared between the corresponding pair of
objects. For instance, one can adopt the following con-
vention:

Cross of Cross of Cross of
partitions partitions partitions
1st − 2nd 1st − 3rd 2nd − 3rd

C1 0 0 0
C2 0 0 1
C3 1 0 0
C4 0 1 1
C5 1 1 0
C6 1 1 1
C7 1 0 1
C8 0 1 0

These cross-type codes can be used now for relative
evaluation of the order at time step k, given the order at
time step k− 1.

ok = 1 ok = 2 ok = 3 ok = 4 ok = 5 ok = 6

ok−1 = 1 C1 C2 C3 C4 C5 C6
ok−1 = 2 C2 C1 C7 C8 C6 C5
ok−1 = 3 C3 C7 C1 C6 C8 C4
ok−1 = 4 C4 C8 C6 C1 C7 C3
ok−1 = 5 C5 C6 C8 C7 C1 C2
ok−1 = 6 C6 C5 C4 C3 C2 C1

C. Simulation Results

The estimation performance of the CM method for
a 3–1D objects scenario, using inequation (32) as the
“cross detector”, is illustrated in this subsection. Note
that the validation method summarized in Section IV
is based on evaluation of data association hypotheses.
Therefore,Alg. 2 can be used right away to generate op-
timal LPEs and labeling probabilities in any arbitrary
t–MD objects case. Fig. 9 illustrates the estimation per-
formance of the CM tracker.

1) Discussion of Results: The results in Fig. 9 re-
veal remarkably accurate estimation performance of the
CMT both in the computation of LPEs and labeling
probabilities.This validates the CMT as a convenient so-
lution to answer the questions in Section II for scenar-
ios where an arbitrary number of objects move in one
dimension.

The choice of the particular ground truth trajectories
in Fig. 9 results in complete loss of labeling information
(1/3! certainty for all LPEs). Although Fig. 9 illustrates
this worst case scenario, it is apparent that the CMT ac-
curately estimates labeling uncertain also in more favor-
able scenarios. For instance, scenarios where the objects
remain closely-spaced for a shorter time and labeling
certainty is lost only partially.

Disregarding the scenario, losing labeling informa-
tion is a physical limitation inherent in closely-spaced
object scenarios. Furthermore, once labeling certainty
is lost, is mathematically not possible to recover it (as-
suming that the objects cannot be differentiated in mea-
surements/maneuverability). In this context, all what can
be expected from the tracker is that it captures the un-
certainty produced by the combination scenario/sensor-
limitations as accurately as possible.While regular TBD
filters such as the one in [6] fail at doing so, the CMT
reports successful results for the cases simulated so far.

VI. SECOND GENERALIZATION OF THE DEFINITION
OF cross: FROM t–1D TO t–MD OBJECTS

Section III-B presented a generic DA-free decompo-
sition of p(sk|Zk) by introducing the (not yet defined)
variable ok. An analytical expression for the LPEs and
labeling probabilities (dependent on the definition of ok)
was provided in equations (16) and (17).Another analyt-
ical derivation provided in Section V-A has proved that
the relative calculation of ok for the 2–1D objects case,
based on inequation (32), leads to identical results than
the absolute calculation of ok based on equation (4).

Section V-B illustrated how the relative calculation
of ok [based on inequation (32)] can be extended seam-
lessly to cope with more than two objects moving in a
one-dimensional space. This section covers the general-
ization of the relative calculation of ok from 1D to MD
objects. In practice, simulation experiments will be lim-
ited to caseswhereM is 2 and 3 to illustrate that theCMT

84 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 16, NO. 2 DECEMBER 2021



0 10 20 30 40
2653

2654

2655

2656

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40
2653

2654

2655

2656

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40
2653

2654

2655

2656

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40
2653

2654

2655

2656

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40
2653

2654

2655

2656

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40
2653

2654

2655

2656

0

0.2

0.4

0.6

0.8

1

Fig. 9. Evaluation of estimation results provided from the clusters associated to all states of “order” in Table II.

can be used for tracking land/sea objects (2D) and air
objects (3D).

The reader is referred to Appendix B at this point
in order to understand the complexity of extending the
definition of ok in equation (4) to objects moving in 2
and 3 spacial dimensions.

A. Generalization of the Cross Detector for 2–2D
Objects Settings

Inequation (32) does not extend straightforwardly
from 2–1D to 2–2D objects scenarios as illustrated in
Appendix B. However, the reason why inequation (32)
works well for the 2–1D case can be found after analyz-
ing the functionK derived in Section V-A.Given the 2D
points s′pk−1 and s

′p
k (two objects in a 1D space), the func-

tion K = 2(xrk−1 − xbk−1)(x
b
k − xrk) complies with a very

particular condition:

K(s′pk−1, s
′p
k ) = −K(s′pk−1,�(s′pk )), (33)

as s′pk and �(s′pk ) are crossed with respect to each other,
K can be regarded as an odd function in the “order” of
s′pk . In other words, two different evaluations of K, using
the current state of particle p and its permuted version
are equal in absolute value but different in sign:

|K(s′pk−1, s
′p
k )| = |K(s′pk−1,�(s′pk ))|

sgn(K(s′pk−1, s
′p
k )) = sgn(−K(s′pk−1,�(s′pk ))).

(34)

Additionally, as we already pointed out in Section V-A:

K(s′pk−1, s
′p
k ) > 0 ⇔ s′pk−1, s

′p
k are crossed. (35)

The condition K(s′pk−1, s
′p
k ) > 0 and inequation (32)

are equivalent “cross detectors” for the 2–1D case due

to equation (29). Our problem formulation can be nar-
rowed down to the following question:What is the 2–2D
counterpart of the K function which can be applied to
the two 4D points s′pk−1 and s

′p
k ?

Let us consider an equivalent expression of K intro-
ducing the norm function, which we denote as K2–1D:

K = K2–1D = 2(norm(s′rk−1) − norm(s′bk−1))(norm(s′bk )

−norm(s′rk )). (36)

The desired function K2–2D : R
8 → R can be found by

considering the counterpart ofK2–1D for the 2–2D case:

K2–2D = 2(norm(s′rk−1) − norm(s′bk−1))(norm(s′bk )

−norm(s′rk )). (37)

where now s′pk = [xp,bk yp,bk xp,rk yp,rk ]T , s′p,rk = [xp,rk yp,rk ]T

and s′p,bk = [xp,bk yp,bk ]T .K2–2D is indeed the odd function
(in the “order”of s′k) which complies with the conditions
in equations (33) and (35). Therefore, the extension of
the definition of “cross” for the 2–2D objects case is:

K2–2D > 0. (38)

1) Simulations Results: The results provided by the
CMT for the 2–2D objects case using inequation (38) as
the “cross detector” are shown in Fig. 10.

B. Discussion of the Results

The results reveal remarkably accurate estimation
performance of the CMT both in the computation of
LPEs and labeling probabilities. This validates the CMT
as a convenient solution to answer the questions in
Section II for 2D objects. In fact, LPEs result in low
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Fig. 10. Evaluation of estimation performance of the CM method
when inequation (38) is used as the “cross detector.” LPEs and

labeling uncertainties are extracted from the clusters “order” 1 and 2,
illustrated on top and middle figures. Alg. 2 is the performance
evaluator algorithm. The figure at the bottom confirms that the
“order detector” in inequation (38) is appropriate. In fact, the

associated clustering method removes particle mixing within clusters
after objects separation.

OSPA errors. This becomes possible even when extract-
ing cost efficient MMSE [see equation (16)] point esti-
mates thanks to the clustering method, which separates
particles in different state of “order.” These results sup-
port our argument that the design of the proper “cross
detector” should produce a decomposition of p(sk|Zk)
where each component is unimodal. Also, very accurate
estimation of labeling uncertainty is provided, which
can be calculated by simply considering the proportion
of particles within each order-dependent cluster [see
equation (17)].

C. Generalization of the Cross Detector to 2–3D
Objects Settings

The function K2–3D : R
12 → R is the counterpart of

K2–1D for the 2–3D objects case:

K2−3D = 2(norm(s′rk−1) − norm(s′bk−1))(norm(s′bk )

−norm(s′rk )), (39)

where now s′pk = [xp,bk yp,bk zp,bk xp,rk yp,rk zp,bk ]T . As s′pk and
�(s′pk ) are in different states of “order,”K2−3D is also and
odd function (in the “order” of s′pk ) which complies with
the conditions in equations (33) and (35). The evalua-
tions of the current state and its permuted version are
equal in absolute value but different in sign. Therefore,
the exact same definition for the “cross detector” from
K2–1D and K2–2D cases can be used in the K2−3D case:

K2−3D > 0. (40)

1) Simulations Results: The results provided by the
CM method for the 2–3D objects case using inequa-
tion (40) as the “cross detector” are shown in Figs. 11
and 12.

Fig. 11. Evaluation of estimation performance of the CM method
when inequation (40) is used as the “order switch” detector. Labeled
point estimates are extracted from the cluster “order” 1. Alg. 2 is the

performance evaluator algorithm.

Fig. 12. Evaluation of estimation performance of the CM method
when inequation (40) is used as the “cross detector.” Labeled point
estimates are extracted from the cluster “order” 2. Alg. 2 is the

performance evaluator algorithm.

D. Discussion of the Results

The results reveal remarkably accurate estimation
performance of the CMT both in the computation of
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LPEs and labeling probabilities. This validates the CMT
as a convenient solution to answer the questions in Sec-
tion II also for 3D objects.

VII. CONCLUSIONS

Cross Modeling Tracking has been presented as a
DA-free solution to the MOT problem. DA-free solu-
tions are specially relevant in the TBD context, where
advantages concerning tracking of low SNR and closely-
spaced objects have been reported in previous literature.
The main contribution of the paper is the non-trivial
generalization of the idea in [17, Section IV] from the
2–1D objects case to the t–MD objects cases.

The underlying problem to solve the MOT problem
in TBD has been formulated as: how to decompose a
DA-free Bayes posterior so that labeling uncertainty can
be characterized. The reviewed method in [17, Section
IV] provides an answer based on modeling crosses be-
tween objects, but it is only suitable in the 2–1D objects
case. A generic formulation of the desired decomposi-
tion for the t–MD case is provided. Furthermore, the
generalized definition of cross-between-objects has been
derived from ameaningful interpretation of the problem
in the low dimensional setting.

The paper also revisits the method in [18] and uses
it to generate optimal references in order to evaluate
estimation performance of the CMT. Simulation results
involving challenging closely-spaced objects scenarios
have been provided. The results illustrate that the CMT
is usable in the general t–MD objects case under the as-
sumption that t is known and constant. Therefore, the
proposed solution extends the state-of-the-art of TBD
MOT. For the first time in literature, characterization
of labeling uncertainty with validated estimation per-
formance and efficient scalability has been provided for
seamless use in TBD context.

As for future work, the formulation of the CMT
within the RFS framework will be investigated in or-
der to add cardinality estimation capabilities. This is re-
quired for the CMT to be declared as a solution for
the complete MOT problem, where the assumption of
known and constant number of objects does not hold.
Additionally, studying the use of the CMT in the context
of DBT may lead to interesting advantages. This may be
specially the case when comparing withDBTmethods in
scenarios where DA needs to account for large number
of non-negligible hypotheses.

APPENDIX A RELATION BETWEEN THE DATA
ASSOCIATION PROBLEM AND THE
LABELING PROBLEM

Definitions:

� DA defines hypotheses matching detections and
labels.

� Labeling association defines hypotheses matching
point estimates and labels.

Applicability:

� DA applies before update.
� Labeling association applies after update and point
estimate extraction.

The interesting problem from the application point
of view is the labeling problem. The purpose of this ap-
pendix is illustrating that:

� DBT trackers only tackle the DA problem. However,
once the DA problem is solved, the solution of the
labeling problem follows right away: one only needs
to perform association dependent updates and extract
(labeled) point estimates.

Let us take the following considerations in order to
prove that onceDA is solved, the solution to the labeling
problem follows right away:

� In DBT context, let us consider:
– Perfect detectability, no false detections.
– No merged measurements.
– The measurements do not provide any info about
label.

Let us define zk as the vector of detections at time
step k with explicit indication of correct DA: zk =
[p1, p2, ..., pt]

T . The vector ω = [π1, π2, ..., πt!]T con-
tains the functions to perform all possible permutations
of t elements. The tracker cannot access zk but an unla-
beled version of it, which we denote as zk.

The DBT measurement zk is a set since different
ways of ordering detections define the same measure-
ment. Nevertheless, one can formulate zk as a vector,
zk = [d1,d2, ..., d t]T . Note that the subscripts in zk are
labels, the subscripts in zk only define the particular or-
der in which detections are collocated, as this order is
random:

P(zk = πm(zk)) = P(zk = πn(zk))

∀{m,n} : {πm, πn} ∈ ω. (41)

Let us consider the state vector sk, where the individ-
ual states of t objects are staked with explicit indication
of labels: sk = [s1k, s

2
k, ..., s

t
k]
T . Solving the DA problem

requires: generation of DA hypotheses and evaluation
of the DA hypotheses. Let us use hk to note the set of
generated DA hypotheses: hk = {(a1,a2, ...,at!)}, where
am = πm(zk), for m =1, 2, .., t!. Note that the subscripts
in the vector am are not labels, the labels are implicit in
the order of am. For illustrative purposes, consider there
are two objects and a1 = [d2

,d1]T : this means that a1
hypothesizes that the detection which came in second
position in zk was produced by target labeled as 1 and
the one which came in first position was produced by the
target labeled as 2.

Given the model for the likelihood of the measure-
ments conditioned on the state l(zk|sk), a DA dependent
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decomposition of p(sk|Zk) can be formulated as:

p(sk|Zk) ∝
t!∑

m=1

l(πm(zk)|sk)p(sk|Zk−1). (42)

From equation (42), one can conclude that in DBT
an analytical decomposition relevant for labeling char-
acterization follows from solving the DA problem. In
fact, each component in the sum directly relates one DA
hypotheses πm(zk) with its association-dependent poste-
rior l(πm(zk)|sk)p(sk|Zk−1). Furthermore, extraction of
sufficient statistics from each component in the sum, by
minimizing the MMSE, provides a labeled point esti-
mate. Note that a labeled point estimate explicitly hy-
pothesizes one particular association between point es-
timates and labels. This trivial derivation demonstrates
that once DA is solved, the solution of the labeling prob-
lem follows right away.

Remarks:

� The analytical evaluation of labeling association hy-
potheses has a one-to-one relation to the evaluation
of DA hypotheses. In particular, the certainty asso-
ciated to the labeled point estimate extracted from
l(πm(zk)|sk)p(sk|Zk−1) is:

p(πm(zk)|Zk)

=
∫
l(πm(zk)|sk)p(sk|Zk−1)dsk∑t!

m=1

∫
l(πm(zk)|sk)p(sk|Zk−1)dsk

. (43)

� Under the assumption that p(sk|Zk−1) can be formu-
lated as one single density ∀k, equation (42) does not
run into combinatorial explosion over time.

� This analytical derivation is the base of the optimal
reference that will be used to evaluate the CMT pro-
posed as the main contribution of this paper.

� Note that the evaluations of l(πm(zk)|sk) and
l(zk|πm(sk)) are equivalent. Therefore, equation (42)
can be rewritten as:

p(sk|Zk) ∝
t!∑

m=1

l(zk|πm(sk))p(sk|Zk−1). (44)

APPENDIX B NAIVE GENERALIZATION OF ok

A naive extension of the definition of “cross”
from 2–1D to 2–2D settings will be presented in this
appendix. This is not only to illustrate the complexity of
the problem but also to familiarize the reader with some
consistency checks that the correct extension of “cross”
should comply with.

The naive attempt presented in this appendix con-
siders that inequation (32) is the “cross detector” for the
2–2D objects case. After all, a point can be evaluated by
the l2−norm function disregarding the dimensionality of
the point. Only two formal modifications need to be ac-
counted for when extending inequation (32) from 2–1D
to 2–2D settings. First, the l2 − norm calculation for the

2–2D objects case becomes:

norm(s′k − s′k−1)

=
√
(xrk − xrk−1)

2 + (xbk − xbk−1)
2 + (yrk − yrk−1)

2 + (ybk − ybk−1)
2,

(45)

where now s′pk = [xp,bk yp,bk xp,rk yp,rk ]T . Second, the permu-
tation matrix � for the 2–2D objects case becomes:

� =

⎛
⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎠ . (46)

Given these modifications, the results provided by the
CMT for the 2–2D objects case are shown in Fig. 13.
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Fig. 13. Evaluation of estimation performance of the CM method
using a naive 2–2D “cross” detector. Alg. 2 generates the optimal

references.

The results reveal degraded estimation performance
of the CMT both in the computation of LPEs and label-
ing probabilities. In fact, LPEs result in high OSPA er-
rors (specially after objects separation) due to the well
known “track coalescence” effect. This undesired effect

88 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 16, NO. 2 DECEMBER 2021



is expected if MMSE point estimates are extracted from
multimodal densities when labeling uncertainty charac-
terization is not appropriately accounted for.

One can conclude that this attempt to generalize the
definition of “cross” is naive. In fact, the use of inequa-
tion (32) as the “cross detector” does not remove par-
ticle mixing inside each cluster after objects separation.
This is illustrated at the bottom part of Fig. 13,where the
particlemixing-ratio using CMT clustering, calculated as
the ratio between the number of “mixed particles” and
the total number of particles, does not drop to zero after
target separation.
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ML-PMH Tracking in Three
Dimensions Using Cluttered
Measurements From Multiple
Two-Dimensional Sensors

ZACHARIAH SUTTON
PETERWILLETT
TIM FAIR
YAAKOV BAR-SHALOM

The maximum-likelihood probabilistic multi-hypothesis tracker

(ML-PMHT) is a tracking method whose flexibility and scalability de-

rive from relinquishing the assumption that each target emits at most

one “hit” per scan of the sensor. This is an ML method that essen-

tially reduces to an optimization problem—recursively maximizing a

likelihood function that is simple to evaluate given a batch of observa-

tions. Unlike maximum a posteriori or minimum mean squared error

(MMSE) trackers, this likelihood maximization tracker requires nei-

ther prior knowledge about target motion nor measurement associ-

ation, making it conceptually easy to work with. Here, this method is

used to track targets in a three-dimensional “global” space with obser-

vations provided bymultiple two-dimensional sensors placed through-

out the global space. Since the observation model is non-linear, the

likelihood maximization is done via hill climbing. For this purpose, we

also address the issue of “hill finding.” Due to the presence of clutter

in the measurement model, the likelihood is a multi-modal function of

the parameter space. That is, there are multiple hills in the likelihood

function, and it is of great advantage to the tracker to initialize the hill

climber close to the right hill—the one whose peak is the global maxi-

mum. In this work, we present a data-driven method of initializing the

hill climber based on the received observations.

I. BACKGROUND

The maximum-likelihood probabilistic multihy-
pothesis tracker (ML-PMHT) is an ML target track-
ing paradigm that is convenient in cases where data
association—the measurement-to-target assignment
processes prior to updating the estimate—involves
significant numerical complexity, generally (but not
always) due to heavy clutter. In some settings, it is
possible that a single target will result in multiple mea-
surements at a particular sensor and time (tracking of
“extended objects,” for instance). In such cases, filters
that employ “hard” data association (the JPDA [20]
and random finite set filters such as the multi-Bernoulli
[6], [15]) will be sub-optimal since they make the fun-
damental assumption that each target being tracked
produces at most one measurement per sensor per time
step. In contrast, the likelihood function used in the
ML-PMHT is formulated by considering each mea-
surement individually, and applying a probability mass
function over the possible measurement generating pro-
cesses (targets and clutter). That is, instead of assuming
that a particular measurement has come from a partic-
ular target and evaluating the measurement likelihood
with that assignment, the ML-PMHT formulates the
measurement likelihood with a “soft” assignment that
accounts for uncertainty as to the process from which
a particular measurement originated. This formulation
naturally allows for the possibility that a target has
originated multiple measurements in a single “scan” of
a sensor. Along with being a better representation of
reality in some settings, the soft assignment also avoids
the computational bookkeeping cost of the hard as-
signment problem that the data association filters must
solve for each scan with relatively expensive routines
like Murty’s k-Best Assignment Algorithm [12]. Thus,
the ML-PMHT approach may also be desirable in some
settings where computational cost is a consideration.

The ML-PMHT likelihood formulation is borrowed
from the PMHT framework [7], [10]. The ML-PMHT
differs, however, in that it treats the target state (joint
target state in the case of multiple targets) as an un-
known deterministic parameter, and obtains anML esti-
mate of the parameter based on batches ofmeasurement
scans. It has shown especially good performance in sce-
narios with high levels of clutter [14], [21].

This work will use the ML-PMHT to perform data-
batch-based tracking of targets in a three-dimensional
“global” space based on multiple passive sensors that
return two-dimensional measurements. A generalized
measurement model is presented that can be adapted to
any type of sensor that returns measurements that can
be transformed into lines-of-sight.Some common sensor
types that could be used with this model are focal plane
arrays (cameras) with measurements given in the two-
dimensional image space, or passive radars that return
azimuth and elevation angles (or azimuth and elevation
angle sines).
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It is assumed that all sensors report to a central pro-
cessor that performs likelihood maximization based on
all observed data. The central optimization reveals an-
other benefit of the ML-PMHT in that data from multi-
ple sensors are naturally included in the likelihood for-
mulation in a simple linear sum manner. While sequen-
tial updating over sensors is a common practice in data
association filters, it is theoretically sub-optimal [20]; and
optimality withmultiple sensors according to the rules of
“hard” data association is computationally costly.

The ML-PMHT reduces to a conceptually straight-
forward optimization problem where likelihood maxi-
mization happens over a multi-dimensional parameter
space. However, an important practical consideration
in optimization problems is initialization: how to pick
the “initial guess” for the parameter value. Initializa-
tion is particularly important in the tracking setting since
we assume the presence of clutter measurements, which
makes the likelihood multi-modal. That is, coinciden-
tal “patterns” in clutter measurements can lead to false
maximums in the likelihood value that gradient-based
maximizers will reach in error if not initialized carefully.
Although the global maximum tends to occur at the true
parameter value, a maximizer must be initialized suffi-
ciently close to the global maximum in order to reach
it. For this purpose, a “hill finding” method is presented
where received measurements are used to identify sta-
tistically significant points in the global parameter space
that can be used to initialize the maximization. This
hill finding routine is conceptually separate from the
ML-PMHT, and is perhaps the most novel contribution
of this work. The method represents a means of identi-
fying pairs of line-of-sight measurements from separate
sensors that strongly correlate to a single point in three-
dimensional space.Thus, it could theoretically be used in
other settings where one would wish to identify points in
three-dimensional space that are statistically supported
by lower-dimensional measurements. (It could inform
the “target birth”process in themulti-Bernoulli filter, for
example.)

The benefit of central data processing and the re-
sulting ability to perform the “hill finding” is demon-
strated by comparing the method to a decentralized op-
tion where ML estimates are obtained individually by
each sensor, then fused in the global space. It is shown
that centralized optimization has a significant advantage
in settings with low target visibility. A comparison is
alsomade to the joint probabilistic data association filter
(JPDAF).

The paper is structured as follows. The models
used in the work are presented in Section II, in-
cluding the target parameter model, the measurement
model, and the model of the geometric arrangement
of sensors. The ML-PMHT likelihood formula is given
in Section III. The “hill finder” is presented in Sec-
tion IV, and a step-by-step summary of the overall
ML-PMHT method is given. Simulated results are
shown in Section V.

II. MODELING ASSUMPTIONS

Themodel assumes a three-dimensional global space
in which targets are to be tracked.Measurements are re-
ceived from a group ofNs sensors distributed around the
global space. This work uses a conventional Cartesian
coordinate system in the global space, but in theory it
could be replaced by a local north-east-down reference
frame or any other space where the following conditions
are fulfilled:

1) Themotion of targets can be (approximately) param-
eterized in the space.

2) The pose of every sensor is known in the space.

The pose of a sensor parameterizes the transfor-
mation between the global coordinate system and the
sensor’s coordinate system. The sensors are assumed
to have six degrees of freedom (DOFs)—three transla-
tional (location) and three rotational (pointing). So the
pose consists of six known parameters for each sensor.
If a sensor’s pose changes over time, it is assumed to be
known for each point in time that a measurement is re-
ceived. The conventions used for the pose and the re-
sulting transformations are discussed in more detail in
Section II.C.

A. Target Motion

The user must choose a batch size parameter Nb,
which is the number of scans from each sensor that will
be used in the likelihood evaluation. It is assumed that,
for all targets, the true target motion can be reasonably
approximated by a constant velocity model over the du-
ration of the batch. That is, for any discrete global time
index k, the motion of target j over the pastNb − 1 sam-
pling periods (Nb sampling points) is given by

X j,� � (X j,k − X j,k−Nb+1)
n

Nb − 1
+ X j,k−Nb+1

n = 0, . . . ,Nb − 1,

(1)

where X j,� denotes a three-element column vector con-
taining the target’s position in the global Cartesian space
at global time step � and n is a local time index such that
� = k−Nb + 1 + n.

A constant sampling period is assumed here, but
there is no loss of generality.With the batch size chosen,
the motion in (1) is entirely parameterized by X j,k−Nb+1
and X j,k—the positions of target j at the start and end
times of the batch. Thus, the motion to be estimated via
likelihood maximization can be described with six pa-
rameters for each target. For a scenario with Nt targets
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present, form a parameter vector

X k �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1,k−Nb+1

X1,k
...

XNt,k−Nb+1

XNt,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

We ultimately will be maximizing the log likelihood
function over this vector given Zk—the batch of mea-
surements up to and including time step k—to obtain the
estimate

X k
ML = arg max

X k∈IR6Nt
L(X k;Zk). (3)

The definition of Zk and the formulation of the likeli-
hood function L(·) are discussed later. The maximiza-
tion is mentioned here to emphasize that the dimension-
ality of the space over which maximization is performed
increases by 6 for each additional target. This is a com-
putational consideration in a practical application.

In theory, this likelihood maximization requires only
the constant velocity assumption over the course of any
particular batch.However, it will be of use if the user has
somemore prior knowledge about targetmotion.Specif-
ically, if there is knowledge available about the range of
possible target speeds, it will prove useful in the initial-
ization of the hill climber as discussed in Section IV.A.

Note that the particular six-parameter motion model
used here is not the only model compatible with batch
tracking. One could also choose—at the cost of compu-
tation time—to use a nine-parameter (initial position,
initial velocity, and acceleration) model or any other
method of parameterizing the targetmotion over the du-
ration of the batch.

B. Measurement Model

The tracker developed in this work uses line-of-sight
measurements. That is, it is assumed that each and ev-
ery sensor returns some form of two-element measure-
ments that can be used to parameterize a line-of-sight
beginning at the origin of its own coordinate system and
extending infinitely in the direction of sight. The line-
of-sight measurement model is a fundamental feature
of this work. However, there are multiple types of two-
dimensional measurements that provide a line-of-sight,
which allows the sensor type to remain ambiguous. Sim-
ple passive radar models directly provide line-of-sight
measurements.Also, a point in the image space of a cam-
era can be converted into a line-of-sight given the cam-
era model. The simplicity of radars in this context ren-
ders them rather uninteresting. Thus, cameras are as-
sumed in the peripheral theoretical modeling and verifi-
cation in this work, without loss of generalization in the
fundamental aspects of the work (likelihood maximiza-
tion).This section discusses the relationship between im-

Fig. 1. Illustration of the sensor reference frame convention used in
this work. Two different measurement types are shown. Given the
coordinates of the vector x, one could solve for θ̄ and φ̄, which is the
azimuth–elevation measurement model assumed throughout this

work. Given a point in the image plane (shaded) at a known distance
f from the origin (where f has the same length units as η, ζ

coordinate system), one could also calculate the corresponding
azimuth and elevation angles.

age space and line-of-sight measurements within the co-
ordinate system of a sensor’s reference frame.The trans-
formation between a sensor’s coordinate system and the
global coordinate system is discussed in Section II.C.

When camera images are used with this algorithm,
it is necessary to first perform measurement extrac-
tion. The assumption when using cameras as sensors is
that targets have a contrasting appearance to the back-
ground. The extraction must find significantly bright or
dark spots in an image, and condense each spot down
to a point in the image space of the camera, which, in
turn, can be converted into line-of-sight measurements
via the camera model.Methods of extracting these mea-
surements from images are discussed in [3] and [11]. The
signal-to-noise ratio (SNR) of the scenario is an impor-
tant factor in themeasurement extraction step.Note that
a significant portion of [3] is dedicated to defining the
SNR. The extraction process will have a certain proba-
bility of extracting “false” measurements, which we will
refer to as clutter.

Once measurement extraction has been performed
on the images, the resulting measurements must be con-
verted from the image space into lines-of-sight. Refer
to Fig. 1 for a summary of this conversion. The camera
model used here is the pinhole projectionmodel [5], [23].
The image is treated as a plane parallel to the x–y plane
of the sensor coordinate frame, set at some non-zero fo-
cal distance f along the sensor z axis. Let the coordinate
system in the image plane be denoted by (η, ζ ), which
is centered on the sensor z axis, and has directional con-
vention that agrees with the typical row–column format
of images. Then a point [η, ζ ]′ in the image plane coor-
dinate system has location [η,−ζ , f ]′ in the coordinate
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system of the sensor’s reference frame.Note that the im-
age plane is treated as a continuous space (as opposed
to a quantized space) since the measurement extraction
process yields continuous values.Azimuth–elevation an-
gles are used for parameterizing line-of-sight measure-
ments. The azimuth angle θ is taken in the sensor y–z
plane, with zero defined as the positive z axis and the
positive direction defined as from the positive z axis to
the positive y axis. The elevation angle φ is the angle be-
tween the sensor y–z plane and the positive x axis, de-
fined as zero on the y–z plane and positive toward the
positive x axis. Under this choice of convention, a given
point in the image plane [η, ζ ]′ yields line-of-sight angles

θ = tan−1
(−ζ

f

)
, (4)

φ = tan−1

(
η√

ζ 2 + f 2

)
. (5)

Note that this particular cameramodel is somewhat sim-
plistic. It does not account for image distortion or other
practical effects. If the user has a more accurate model
of the cameras, it will be compatible with this algorithm
so long as it provides a way to obtain lines-of-sight from
points in the image.Since the algorithmultimately works
with line-of-sight measurements, this writing will occa-
sionally use the general term “measurements” when re-
ferring to azimuth–elevation measurements.

Overall, it is assumed that at a particular time, each
sensor i returns a set of line-of-sight measurements—
potentially after conversion with (4) and (5)—which in-
cludes any target-originated measurements along with
any measurements originating from the clutter process.
That is, the set of measurements returned by sensor i at
time � can be denoted

Zi,� = {zi,�,m}N
z
i,�

m=1 =
{[

θi,�,m
φi,�,m

]}Nz
i,�

m=1
, (6)

where each zi,�,m is a two-element column vector and
Nz
i,� is the number of measurements at the current

time/sensor.
It will be helpful later on, during formulation of the

likelihood function, to have a simple expected value
parameterization for the number of clutter and target-
originating measurements. The expected numbers of re-
ceivedmeasurements are fundamentally tied to themea-
surement extraction process, which is left non-specific
for most of this work. Let us assume some general ex-
traction process such that λi,� and ϕi,� are the expected
numbers of clutter measurements and target-originated
measurements, respectively, in the scan from sensor i at
time �. For the sake of more generality, allow each indi-
vidual target j to originate a potentially unique expected
number of measurements ϕi, j,� such that

ϕi,� =
∑
j

ϕi, j,�. (7)

For purposes of simulation later in this work, it will
be assumed that the number of clutter measurements is
Poisson with some expected value λi. It will be further
assumed that, independently for each target present,
sensor i either reports a single measurement with “de-
tection probability” pd,i or “misses” the target. Thus, the
expected number of target-originated measurements
from each target is pd,i, and ϕi,� = pd,iNt for all �. These
assumptions are made to fit with a typical model used
in other trackers for the sake of comparison. However,
one of the main benefits of the ML-PMHT likelihood
formulation is that it is more flexible than trackers
that consider one-to-one data associations. Whereas
the JPDA and its derivative algorithms must make
the fundamental assumption that each target produces
at most one measurement per scan, the ML-PMHT
formulation requires no such assumption. Some data
association tracking methods do exist for extended
targets (targets that produce more than one measure-
ment in a single scan), and usually involve recursive
estimation of properties (e.g., shape, size) of targets. The
ML-PMHT offers a relatively cheap way around this
extra estimation for the case when the extended target
measurement assumption is true, but the shape/size
properties of targets are not of particular interest. For
instance, a simple model could assume that the number
of measurements originating from target j is Poisson
random number with expected value ϕi, j.

It is assumed that any target-originated measure-
ments have a random additive measurement error. Since
the ML-PMHT is an objective function optimization
problem, the parameterization of the measurement er-
ror is somewhat flexible:Any objectively computable er-
ror probability density can be used. This work will use
the typical Gaussian error assumption. That is, if a par-
ticular measurement zi,�,m originates from target j, then
it is a random vector given by

zi,�,m = z̄i, j,� + νi, j,�, (8)

where z̄i, j,� is the noiseless (zero-error) measurement by
sensor i due to target j at time �.Given the three-element
vector xi, j,� representing the Cartesian (x–y–z) position
of target j in the sensor i coordinate frame at time �, the
noiselessmeasurement for the azimuth–elevationmodel
is given by

z̄i, j,� =
[

θ̄i, j,�
φ̄i, j,�

]
=

⎡
⎢⎣ tan−1

(
yi, j,�
zi, j,�

)
tan−1

(
xi, j,�√

y2i, j,�+z2i, j,�

)
⎤
⎥⎦, (9)

where xi, j,�, yi, j,�, zi, j,� are the individual components
of xi, j,�. For a visual representation of this measurement
model refer to Fig. 1 and treat the orange vector as the
target position. The term νi, j,� in (8) is a two-element
multivariate random Gaussian vector with distribution

νi, j,� ∼ N (0,Ri,�), (10)
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(a () b () c)

Fig. 2. Step-by-step illustration of a three-DOF proper Euler rotation. The total rotation is the result of applying three elemental rotations
successively. The specific convention shown here and assumed in this work is a z–y–z intrinsic rotation. The focal plane shown in the figures

matches the orientation of the one shown in Fig. 1. The origin of the (u, v) coordinate system is marked by a dot. The rotations bring the plane
from the orientation marked by the red dot in (a) to the orientation marked by the black dot in (c). Orientations that are marked with a

common color are the same. Colored circles attempt to show planes of rotation.

where, in general, the covariance matrix Ri,� is allowed
to change from one sensor to the next and one time step
to the next. Measurement errors are assumed to be in-
dependent between sensors and between time steps.

Clutter measurements are assumed to be uniformly
distributed in the measurement space. It has been as-
sumed in this work that each sensor has a limited field
of view, modeled by setting limits on the azimuth and
elevation angles symmetrically around zero. Then for a
sensor i with a total azimuth field of viewW θ

i and total
elevation field of viewWφ

i , the spatial distributions of the
individual components of clutter measurements are

θ clutter
i ∼ U (−W θ

i /2, W θ
i /2), (11)

φclutter
i ∼ U

(
−Wφ

i /2, Wφ

i /2
)

, (12)

where, in general, different sensors are allowed to have
differently sized fields of view—hence the indexing with
i. For sensors with reasonably narrow fields of view
(within the range of realistic cameras), the uniform dis-
tributions in azimuth and elevation result in image space
measurements that are very close to uniform in the im-
age plane. See Figs. 7 and 8 for a visual example of mea-
surements in an image plane resulting from this model.

The total measurement batch Zk in (3) can be ex-
pressed as

Zk = {{Zi,�}i=Ns

i=1 }�=k
�=k−Nb+1. (13)

Or, in words,Zk is the set of all subsets of measurements
(both target and clutter originated) from all sensors for
the most recent Nb sample times (up to and including
the current estimation time k).

C. Sensor-World Setup

Notice that in Fig.1 and in the formulas in (8) and (9),
it is assumed that xi, j,�—the three-dimensional Cartesian
position of target j in the sensor i reference frame at

time �—is given. Since the likelihood in (3) is being max-
imized over targetmotion parameters given in the global
reference frame, the relationship between the global ref-
erence frame and each sensor reference frame must be
defined.

Let the axes of the global coordinate system be de-
noted (X−Y−Z) and those of the sensor coordinate sys-
tem (x−y−z). The pose of the sensor is the position and
orientation of its reference frame relative to the global
reference frame, defined such that at a pose of zero, the
two coordinate systems are one and the same.

Let the three rotational DOFs be described by the
angles αi,�, βi,�, and γi,�, where the time index � is noted
since the rotation of a sensor can changewith time.There
are multiple choices of convention for the actual mean-
ing of these angles.To be exact, there are 12 unique ways
to describe every possible orientation in terms of three
angles.

The rotation convention used here is illustrated in
Fig. 2, where, for convenience, a particular sensor at a
particular time is considered and the indexing ismomen-
tarily dropped. The sensor coordinate system is initially
aligned with the global coordinate system. The overall
rotation is the combination of three intrinsic rotations
performed sequentially.

(a) A rotation by α around the Z axis results in the new
coordinate system (x′–y′–z′).

(b) Then a rotation by β around the y′ axis to obtain
(x′′–y′′–z′′).

(c) Finally, a rotation by γ around the z′′ axis gives the
fully rotated coordinate system (x′′′–y′′′–z′′′).

Here, the positive direction for all rotations is given
by the “right-hand rule.” This describes what is com-
monly called an z–y–z intrinsic rotation. Here z–y–z
refers to the sequence of rotation axes, and intrinsic
refers to the fact that successive rotations are performed
around the axes of the rotating coordinate system (sen-
sor coordinate system) itself as opposed to rotating
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Fig. 3. Illustration of sensor-world setup for a particular sensor,
target, and time step. Given target location X in the global (X–Y–Z)

coordinates and sensor pose information �, ξ, the zero-error
measurements θ̄ , φ̄ in (9) are calculated by first evaluating x—the

target location in sensor (x–y–z) coordinates.

around the axes of the fixed global coordinate system.
There is nothing particularly special about the choice of
the z–y–z convention; in light of the camera model in
Fig. 1, it is merely a way that one could conceivably go
about orienting such a camera in a practical scenario. If
the rotation angles are in some other convention, they
will work just as well, and only the rotation matrix will
change. For a comprehensive description of Euler rota-
tions, see [22].

Referring now to Fig. 3, let the three-dimensional
Cartesian position of sensor i at time step � be a vector
denoted by ξi,�.After rotating the sensor coordinate sys-
tem, the final sensor coordinate system is given by trans-
lating the origin of the fully rotated system into the point
ξi,�.

Now,givenX j,�—aposition vector for target j at time
� in the global reference frame—the resulting target po-
sition in the reference frame of sensor i is given by the
inversing transformation

xi, j,� = �−1
i,� (X j,� − ξi,�). (14)

Here, �i,� is the 3 × 3 rotation matrix that transforms
Cartesian points from the fixed global frame to the ro-
tated (but non-translated) reference frame. For the par-
ticular rotation convention used in this work, the rota-
tion matrix is given by

�i,� =
⎡
⎣ cosα cosβ cos γ − sinα sin γ − cos γ sinα − cosα cosβ sin γ cosα sinβ

cosα sin γ + cosβ cos γ sinα cosα cos γ − cosβ sinα sin γ sinα sinβ

− cos γ sinβ sinβ sin γ cosβ

⎤
⎦ , (15)

where the (i, �) indexing is removed from the angles for
convenience. Note that �i,� entirely describes the rota-
tion of sensor i at time �. That is, the poses of all sensors
can be recorded as the set of data matrices

S = {�i,�, ξi,�}N
s

i=1, ∀�. (16)

III. LIKELIHOOD EVALUATION

A fundamental feature of the ML-PMHT is that no
hard limit is assumed for the maximum number of mea-
surements originating from any one target in any one
sensor at any one sample time. This is a significant de-
parture from the assumptions made in data association
filters where various one-to-one measurement-to-target
assignment events are enumerated and considered. This
modeling relaxation allows the ML-PMHT formulation
to consider any particular measurement (indexedm) in-
dependently from all other measurements, and assign
a prior probability mass function over the set of possi-
ble measurement generating processes (clutter and all
targets)

�i,� = (πi, j,�)N
t

j=0, s.t.
Nt∑
j=0

πi, j,� = 1, (17)

where πi, j,� is the prior probability that any particular
measurement in the scan from sensor i originated from
process j, and j = 0 indicates the clutter process. For
now,allow the value of the priors to be ambiguous.Meth-
ods for setting the priors are discussed in Section III.A.

The most conveniently scaled statistic to maximize
is the log-likelihood ratio (LLR) of the target state X k

based on the measurement batch Zk. By definition, the
LLR is given by

L(X k;Zk) = ln

(
p(Zk|X k)

p(Zk|∅)

)
, (18)

where p(Zk|∅) represents the probability density func-
tion (pdf) of the measurement batch given that no tar-
gets are present—the pdf of the entire batch given that
everything is clutter-generated.Under the measurement
independence assumptions and the product to sum log-
arithm property, (18) can be written as

L(X k;Zk) =
Ns∑
i=1

k∑
�=k−Tb

Nz
i,�∑

m=1

ln

(
p(zi,�,m|X k)
p(zi,�,m|∅)

)
, (19)

where Nz
i,� is the number of measurements in the scan

of sensor i at time step �. The term p(zi,�,m|∅) is the pdf
of a singlemeasurement given that it originated from the
clutter process.Under the simplifying assumption in (11)

and (12), this pdf is uniform in azimuth–elevation space,
given by

p(zi,�,m|∅) = 1
Vi

= 1

W θ
i W

φ

i

, ∀ �,m, (20)
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where Vi is the total volume of the measurement space
of sensor i.

Under the ML-PMHT framework, the term in the
numerator on the right-hand side of (19) is given by

p(zi,�,m|X k) = πi,0,� p(zi,�,m|∅) +
Nt∑
j=1

πi, j,� p(zi,�,m|X j,�),

(21)
which is a convex combination of the likelihoods based
on the different possible measurement generating pro-
cesses with the coefficients being the prior probabilities
in (17). The term X j,� is the global position of target j at
time step � and is given in (1). The relation betweenX j,�

and the batch joint target motion vector X k is given by
(1) and (2).

Under the Gaussian measurement error assumption,
the term p(zi,�,m|X j,�) is given by the multivariate Gaus-
sian density

p(zi,�,m|X j,�) = 1√|2πRi,�|
e−0.5(zi,�,m−z̄i, j,�)TR−1

i,� (zi,�,m−z̄i, j,�).

(22)
Under the azimuth–elevation measurement model,
z̄i, j,�—the predicted measurement originating from tar-
get j at time step � from sensor i—is given by (9). The
sensor reference frame target position xi, j,� required in
the measurement prediction is given in terms of the
global target position X j,� by (14).

Combining (19)–(22) gives a final expression for the
LLR in (23).

L(X k;Zk) =
Ns∑
i=1

k∑
�=k−Tb

Nz
i,�∑

m=1

ln

⎛
⎝πi,0,� +ViCi,�

Nt∑
j=1

πi, j,� e−0.5(zi,�,m−z̄i, j,�)TR−1
i,� (zi,�,m−z̄i, j,�)

⎞
⎠ . (23)

In (23),Ci,� is the Gaussian constant given by

Ci,� = 1√|2πRi,�|
. (24)

Since the remainder of this work deals with maximizing
the LLR over the target motion space given a batch of
measurements at time step k, the function in (23) will be
denoted as L(X k) for simplicity.

A. Choice of Priors

The performance of the ML-PMHT has been shown
in pioneering works to be rather robust to changes in the
prior probabilities in (17), (21), and (23). Qualitatively
speaking, if it is expected that most of the measurements
in any one scan will be clutter, the prior for the clutter
process should be significantly higher than the priors for
targets.

The simplest option is to naively set the clutter prior
based on expected values. If λi,� is the expected num-
ber of clutter measurements from sensor i at time � and
ϕi, j,� is the expected number of measurements originat-
ing from target j, the prior for the clutter process can

reasonably be set as

πi,0,� = λi,�

λi,� + ∑
j ϕi, j,�

, (25)

and the prior for target j as

πi, j,� = ϕi, j,�

λi,� + ∑
j ϕi, j,�

. (26)

The priors also provide a convenient way of working
with sensors with restricted fields of view. If, for instance,
a target position xi, j,� in the reference frame of sensor i is
such that either of the corresponding line-of-sight angles
is out of the sensor’s angular range (introduced in Sec-
tion II.A to model a restricted field of view), then the
corresponding “predicted observation” is z̄i, j,k = ∅. That
is, target j is expected to be out of view of sensor i at
time �.A convenient way to deal with this is to simply set
πi, j,� = 0,and adjust the other priors so that

∑
j πi, j,� = 1.

IV. LIKELIHOOD MAXIMIZATION

As stated earlier in (3), the ML batch estimate up to
time k is the X k that maximizes L(X k). Since L(X k)
is highly non-linear, an analytic solution is not obtain-
able.However, given a batch of measurements and some
fixed X k

0, it is easy enough to evaluate L(X k
0 ) using (9),

(14),and (23).Therefore,maximization can be done via a
hill climbing algorithm combined with other techniques
(discussed later) to get within the neighborhood of the
global maximum.

Generally speaking,any hill climbing algorithm func-
tions by stepping around a parameter space attempting
to find the global maximum in some function of the pa-
rameters. Obviously, the hill climber must be started at
some initial point in the parameter space. For some ap-
plications, it would be perfectly reasonable to sample the
initial point from a uniform distribution on the parame-
ter space. In other applications, the measurement space
and the parameter space are one and the same. In such
cases,onemay simply treat some observedmeasurement
as the initial step in the hill climber. There are two main
challenges in the likelihood maximization in this work.
First, the measurement spaces are not the same as the
parameter space.Second,due to clutter, there is not a sin-
gle hill in the LLR (see Fig.4). Instead, there aremultiple
“false” hills (local maxima) along with a single true hill
(global maximum). In general, the true hill will be taller
than the false hills. However, from the point of view of
the hill climber, there is no way to determine how tall
a given hill is at the start of climbing. This means that
the climber can get stuck climbing the wrong hill. Thus,
it would be to our advantage to have a method of ini-
tializing the climber as close to the true hill peak as pos-
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Fig. 4. The LLR surface centered on truth with two out of six
dimensions varied (the global X coordinate of both the start and end
point of the one target). The true hill (global max) is significantly

taller than the rest (local maxima). But since hill climber termination
is based on hill slope, the climber could potentially terminate at the
top of a false hill. This demonstrates why it is important to initialize

the climber as close to the true hill as possible.

sible. This routine will be referred to as “hill finding” in
this work. However, “hill finding” is somewhat of a mis-
nomer since the LLR surface has many hills. Precisely
speaking, the routine is an attempt to get close (in the
parameter space) to the one hill whose peak is the global
maximum; the term “hill finding” is used for concision.

A. Hill Finding

The parameter space in this application is described
by (2). For a scenario with Nt targets, the parameter ex-
ists in a 6Nt dimensional space. Each six-dimensional
sub-space parameterizes a line segment in the three-
dimensional global tracking space—three dimensions
for the start point and three for the end point. The line
segments parameterized in this space will represent the
estimate of the corresponding target’s trajectory over
the course of a batch.With this formulation, a “point” in
the parameter space represents a group of Nt line seg-
ments in the tracking space. Maximizing the likelihood
over this parameter space amounts to finding the group
of line segments that best represents the target trajecto-
ries based the batch of measurements.

“Good” initialization of the hill climber involves set-
ting the initial parameter vector to represent a “good
guess” as to the target trajectory segment(s) during the
batch. Given some prior knowledge of the targets’ be-
havior, it is possible to predict a parameter to use for ini-
tializing the climber.However, for the sake of robustness
and to deal with scenarios where no prior information
about the targets is available, we have developed a data-
drivenmethod of initializing the hill finder.This method,
detailed in the rest of this section, obtains a parame-

ter initialization based only on the currently observed
batch of measurements. Thus, the tracker can be started
“blind”—with no prior information about the targets—
and the data-driven hill finding should cause the tracker
to converge on the target track(s) within a few batches.
Based on the formulation of the parameter space, the ul-
timate goal of the hill finder—presented in the following,
somewhat verbose discussion—is to obtain estimates of
target locations in the three-dimensional tracking space
at the start and end times of the batch of measurements.

Given the pose of sensor i at time step �, {�i,�, ξi,�},
and a single two-dimensional measurement zi,�,m from
that sensor and time, there is not enough information
present to solve for a potential target location in three-
dimensional global space. There is, however, enough in-
formation to define a ray in three-dimensional global
space that starts at the origin of the sensor coordi-
nate system and extends infinitely in the line-of-sight
direction indicated by the measurement. The azimuth–
elevationmeasurement model is particularly convenient
here since it directly gives the azimuth and elevation of
this ray in the sensor reference frame.

Now since the algorithm is working with a group of
at least two sensors, consider a pair of sensors {a,b} at
time � and a pair of measurements {za,�, zb,�}—one from
each sensor. Then consider the two corresponding line-
of-sight rays, one starting at the origin of sensor a ex-
tending in the direction indicated by za,� and the other
starting at the origin of sensor b extending in the direc-
tion indicated by zb,�. In the absence of clutter and mea-
surement error, and given that the two measurements
originated from the same target, this pair of rays would
provide the precise location of the target as discussed in
(for example) [1] and [8] by finding the point where the
rays intersect. With additive measurement errors, how-
ever, these rays are unlikely to intersect. Furthermore, if
one or both of the measurements are clutter originated,
or if they do not originate from the same target, then
the measurements do not have any meaning when con-
sidered as a pair. However, if the measurements in the
pair both happen to originate from a target at a point p
in the global space, then the rays indicated by the two
measurements should “closely agree” on a point near p,
though they will not have an exact intersect due to the
measurement errors.

Recall that at sample time �, a single sensor i returns
a “scan”—a set of measurements Zi,� that includes all
clutter-originated and target-originated measurements.
So for each possible pair of sensors, the hill finder rou-
tine should check for “hit points” in three-dimensional
space that both sensors “closely agree” upon.Obviously
not every pair of measurements will “closely agree” on
a point since many measurements are clutter-generated
and it is not guaranteed that the two sensors are even
“looking at” any of the same points (the sensors could,
for instance, be placed back-to-back and faced in oppo-
site directions). Thus, in a process of elimination, mea-
surement pairs are subjected to a series of increasingly
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strict tests. First of all, the tests must eliminate from con-
sideration pairs of measurements that could not pos-
sibly correspond to a single target location in three-
dimensional space. Then, pairs that are likely to be un-
related (one or both are clutter originated or they orig-
inate from different targets) must be eliminated. And,
finally, any measurement pairs that remain must be con-
densed into composite point measurements in the three-
dimensional tracking space—a point p̂ upon which they
agree according to some criterion—and the “strength”
of agreement should be quantified so that the composite
measurements can be objectively ranked in quality.

1) Formation of Composite Point Measurements:
This series of tests is presented next for a single mea-
surement pair. The first level of tests are based on com-
puting the closest approach between the pair of line-of-
sight rays. This is heuristic but useful for computation-
ally cheap elimination of measurement pairs that are
most likely unrelated, which is especially useful in sce-
narios with large amounts of clutter in each scan. The fi-
nal,more strict test is based on the iterative least-squares
(ILS) estimator.

To formalize, consider a particular pair of sensors
{a,b}, a 	= b, at a particular time �. Take the pair of
scans {Za,�, Zb,�}, and let

Nz
i,� = |Zi,�|, i = a,b, (27)

be the number of individual measurements in the scans.
Now consider some pair of measurements (one from

each scan)

{za,�,m, zb,�,n}, m ∈ {1, . . . ,Nz
a,�}, n ∈ {1, . . . ,Nz

b,�}.
(28)

Let us momentarily drop the time (�) and measurement
pair (m,n) indexing and simply consider a particular
measurement from sensor a, call it za, a particular mea-
surement from sensor b, call it zb, with both measure-
ments taken at the same time.Eachmeasurement can be
taken to represent a ray (half line). So the pair of mea-
surements yields a pair of rays parameterized by a pair of
origin points and a pair of unit vectors that indicate the
rays’ pointing directions in the global coordinate system.

The origin of the first ray is ξa—the location of sensor
a, which is assumed to be known. Similarly, the second
ray has origin point ξb. The direction vectors are found
by first obtaining the unit vectors in their respective sen-
sor reference frames and transforming them both into
the global reference frame with the known sensor orien-
tations. In the case of azimuth–elevation measurements,
the unit direction vectors are given by

vi = �i

⎡
⎣ sinφi
sin θi cosφi
cos θi cosφi

⎤
⎦ i = a,b, (29)

where θi, φi are the individual components of zi and �i

is the rotation matrix of the ith sensor pose.
For any non-parallel pair of rays in three-

dimensional space, there is a single line segment

Fig. 5. Notional illustration of the points of closest approach (red
and blue points) between two line-of-sight measurements.

somewhere that connects the rays and is perpendic-
ular to both rays. The end points of this line segment are
the points of closest approach of the rays, and the length
is the minimum distance between the rays [19]. For this
case, solve for the end points of the minimum distance
segment with

pmd
i = ρivi + ξi, i = a,b, (30)

where pmd
i is the location of the closest approach that lies

on ray i. The scalar values ρa, ρb determine the distance
along each ray at which the closest approach occurs. Let

c � ξb − ξa, (31)

then these scalar values are given by

ρa =−(va · vb)(vb · c) + (va · c)
1 − (va · vb)2 , (32)

ρb = (va · vb)(va · c) − (vb · c)
1 − (va · vb)2 , (33)

where the dot indicates a vector dot product.Both values
are defined as long as the two measurement rays are not
perfectly parallel, which happens with probability zero.
Refer to Fig. 5 for an illustration of the closest approach
between an example pair of measurements.

First, a test can be performed by considering just the
signs of the scalar values ρa, ρb. These are the Carte-
sian distances along the rays where the closest approach
points occur. Thus, if either ρa or ρb is negative, it means
the corresponding closest approach point occurs “be-
hind the sensor.”(It is assumed that the negative z half of
the sensor coordinate frame is never observable.) So, if
either value is negative, reject the corresponding pair of
measurements as being indicative of a “hit” on a target.

Furthermore, in some settings, it would be reason-
able to set maximum limits for the values ρa, ρb such
that if either value exceeds its maximum, the pair of
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Fig. 6. The empirical distributions of the normalized measurement
error squared under the binary hypotheses:H0: the measurements
used in the ILS estimate are unrelated andH1: the measurements
used in the ILS estimate originated from the same target. The

one-DOF Chi-squared distribution is also plotted for reference. The
discrepancy between the theoretical Chi-squared distribution and

empirical distribution under H1 is due to the thresholded termination
of the ILS. The distributions would match if the ILS was run to exact

termination with perfect numerical precision.

measurements is eliminated. For instance, if visibility is
such that the user knows that no sensor can see farther
than 10 000 m, and two measurement rays have a closest
approach point that is 15 000 m away from one of the
sensors, then that pair of measurements could also rea-
sonably be rejected as originating from a common target.
This would also be of use if it is known that the target
tracking space down range of one or both sensors has
a hard limit—e.g., the sensors are orbiting the earth at
some known altitude and are pointed toward the earth’s
surface.
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Fig. 7. Example camera view of hits for a single scan for a clutter
level of λ = 30.
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Fig. 8. Example camera view of superimposed scans for an entire
batch for a clutter level of λ = 30. Blue dots indicate true target hits
and red dots are clutter. Note that without the color coding, it is not
clearly evident to the human eye where the target track is located.

The blue outline shows the image edge that results from setting limits
on the azimuth and elevation angles.

A final heuristic test involves setting a threshold τmd

on the length of the minimum distance segment such
that if

||pmd
a − pmd

b ||2 ≥ τmd, (34)

then the measurement pair is eliminated from consider-
ation. The ideal value for τmd depends on the particular
scenario and the desired level of restraint in eliminating
measurement pairs. Qualitatively speaking, the farther
down range the targets are expected to appear, the
greater the τmd should be. And, if it is found that the
algorithm is considering more measurement pairs than
the user finds reasonable, then τmd can be decreased.
This is perhaps the most heuristic of the series of tests.
However, in simulated scenarios with large amounts of
clutter, and sensors, which are known to be observing a
common space in which the targets are known to exist, it
has been found to be the workhorse test that eliminates
all but the most likely-to-be-related measurement pairs.

The tests presented thus far serve to eliminate line-
of-sight measurement pairs that either do not point to-
ward a common space, point at a space that is physi-
cally too far away for the sensors to observe, point at a
space where targets are not likely to exist, or are likely
unrelated based on not approaching each other within
a reasonably constrained space. Now, any measurement
pairs that remain must be either eliminated as well or
consolidated into a single composite measurement point
in three-dimensional space. Suppose that the measure-
ment pair under consideration—{za, zb}—has passed the
simple tests involving the closest approach between the
lines-of-sight. If those tests were reasonably well-tuned
to the operating scenario, the fact that the measure-
ment pair has passed increases the likelihood that both
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Fig. 9. The true hits received by each camera over the course of the entire scenario. Missed detections are accounted for (not visible).

measurements in the pair originated from a common tar-
get. Thus, a composite point measurement in the three-
dimensional tracking space based on the pair of mea-
surements is likely to be “meaningful”—an estimate of
a true target position.

The ILS estimator provides a mathematically rigor-
ous method to form a composite point measurement
based on the pair of line-of-sight measurements. It func-
tions by iteratively solving for the point p̂ in the three-
dimensional tracking space, which minimizes the nor-
malizedmeasurement error squared implied by themea-
surement pair due to a target at point p̂, which is a scalar
value given by

ε =
∑
i=a,b

(zi − z̄i(p̂))
′R−1

i (zi − z̄i(p̂)). (35)

where (·)′ denotes the matrix transpose. The term z̄i(p̂)
is the zero-error measurement returned by sensor i due
to a target at p̂. Notice the implicit assumption that both
of the measurements in the pair have in fact originated
from the same target—something that cannot be known
for certain in this case. However, due to the previous se-
ries of tests based on the closest approach points, the ILS
estimate will be calculated only for likely-to-be-related
measurement pairs. Furthermore, the final minimized
value of ε will be used as a final test statistic to eliminate
all but the strongest composite measurements.

The ILS estimator using line-of-sight measurements
in azimuth–elevation form is given in [13], and used for
related work in [9]. It is summarized here. First, form a
4×1 vector by stacking the pair of measurement column
vectors

z =
[
za
zb

]
(36)

and form the corresponding 4 × 4 covariance matrix

R =
[
Ra 0

0 Rb

]
, (37)

where 0 is a 2 × 2 matrix of zeros. Then p̂q—the ILS es-
timate at the qth iteration—is updated with an additive

term as

p̂q+1 = p̂q + �q, (38)

where the additive update term is calculated as

�q =
[
Hq

′ R−1Hq

]−1
Hq

′ R−1 [z − z̄(p̂q)
]
, (39)

where the 4 × 1 zero-error measurement vector is given
by stacking the individual zero-error measurement vec-
tors as

z̄(p̂q) =
[
z̄a(p̂q)
z̄b(p̂q)

]
, (40)

in which the individual vectors z̄i(p̂q) are obtained by
first setting X j,� = p̂q in (14), and then substituting the
result into (9). The matrixHq, defined as

Hq = ∂ z̄(X)
∂X

∣∣∣∣
X=p̂q

, (41)

is the 4 × 3 Jacobian matrix of the stacked zero-error
measurement vector with respect to Cartesian position
in the global reference frame, evaluated at the current
ILS estimate.

The formulas for the individual elements of the Ja-
cobian matrix and the initialization of the ILS estimator
are given in the Appendix.

The ILS estimator is terminated by setting a thresh-
old τ� and iterating until

||�q||2 ≤ τ� (42)

and recording the final estimate as

p̂ = p̂q+1. (43)

Once the final ILS estimate is obtained, the mini-
mum normalized measurement error squared given by
(35) is theoretically Chi-squared distributed with one
DOF given that the pair of measurements used in the es-
timate originated from a common target [4]. If the pair of
measurements used in the estimate is unrelated despite
having passed the previous tests, the distribution of the
minimum normalized measurement error has no known
closed form. However, the distribution is obtained em-
pirically through simulation and plotted in Fig. 6. The
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shape of this distribution is much like the Chi-squared
one DOF distribution, but with a much heavier tail. This
allows for a final thresholded test using ε—calculated
with the formula in (35)—as the test statistic. That is,
if the value of ε resulting from the ILS estimate based
on the measurement pair under consideration is above
some threshold τε , then the pair and the resulting com-
posite measurement can be eliminated from considera-
tion.Otherwise, the composite measurement has passed
all elimination tests and is taken to correspond to an ac-
tual target. A composite measurement that passes this
final test can be assigned a quantitative score given by

σ = 1 − χ2
1 (ε) (44)

—the complement of the one DOF Chi-squared cumu-
lative distribution function (cdf) evaluated at the mini-
mized normalized measurement error squared. This will
provide a score in the range [0, 1], with better estimates
receiving higher scores.

The elimination tests above were presented in terms
of a single pair ofmeasurements from a particular pair of
sensors (a,b) at a single time step, and the indexes of the
measurement pair (m,n) and time step (�) were omitted
throughout. Now, suppose that the algorithm performs
the entire series of elimination tests for every element
of the set

{{za,�,m, zb,�,n} : 1 ≤ m ≤ Nz
a,� 1 ≤ n ≤ Nz

b,�}
—every possible pair of measurements from the scans of
sensors a and b at time �. Record to memory all the re-
sulting composite measurement points that have passed
all the elimination tests along with their corresponding
Chi-squared scores given by (44) as the set of parameter
pairs

P̃(a,b),� =
{
(p̂, σ )p

}Np
(a,b),�

p=1
, (45)

whereNp
(a,b),� is the number of composite measurements

from sensor pair (a,b) at time step � that have not been
eliminated.

Notice that along with the obvious dependence on
time index �, P̃(a,b),� is also dependent on the pair (a,b).
That is, the list of points obtained at a particular time
depends on which pair of sensors is being used to look
for points. With a group of Nt > 2 sensors, find the list
of hit points from each possible pair of sensors and form
the total list

P� =
⋃

(a,b)∈r
P̃(a,b),�, (46)

where r is the set of all unordered pairs of the integers
[1,Ns].

2) Formation of Initial Parameter Estimates: To form
initial parameter vectors to pass to the climber at esti-
mation time step k, suppose that P� has been obtained
for every time step � ≤ k. Potential target track seg-
ments over the current batch are formed by pairing com-

posite measurements from the current batch start time
in Pk−Nb+1 with composite measurements from the cur-
rent batch “leading edge” time in Pk, which parame-
terizes line segments in global three-dimensional space.
If the user has knowledge of a minimum and/or maxi-
mum possible target velocity (in units length/sampling
period), then it can be used here to select only the rea-
sonable potential track segments. The segments are also
assigned a score equal to the product of the Chi-squared
score of the composite measurements that make up its
end points. This is useful in quantitatively ranking which
segments are the best if the number of segments sent to
the hill climber must be limited.

Formally, let s = k − Nb + 1 be the batch start time
step, and form the set of parameter pairs given in (47),

Qk =
{(

Q =
[
p̂s,p
p̂k,q

]
, δ = σs,pσk,q

)

: vminTb ≤ ||p̂s,p − p̂k,q||2 ≤ vmaxTb,

1 ≤ p ≤ |P s|, 1 ≤ q ≤ |Pk|
}

, (47)

where p̂s,p is the pth composite measurement in the set
of composite measurements from the batch start time
step s, and σs,p is the measurement’s Chi-squared score.
Similarly, p̂k,q, σk,q are the individual members of the
qth element in the set of composite measurements from
the batch leading edge time step k. Let [vmin, vmax] rep-
resent the range of possible target velocities and Tb =
Nb − 1 be the duration of the batch in sampling periods.
Forgive the reuse of the index q—it was used in Section
IV.A.1 for an unrelated purpose.

To be verbose, each element of the setQk contains a
6 × 1 column vector parameterizing a line segment in
three-dimensional space that satisfies a length restric-
tion, paired with a scoring value that represents the “tar-
get indication strength” of the segment based on the
Chi-squared scores of the two composite point measure-
ments that parameterize the segment. Notice that only
composite measurements from the start and end time
steps of the batch are used to populate Qk. If the user
finds that this does not provide enough target track seg-
ment estimates, then pairs of composite measurements
from intermediate batch times can be used to form seg-
ments that are projected to the start and end batch times.
That is, select pairs of composite measurements, one
from time step t and one from time step �, such that
s ≤ t < � ≤ k and—based on the assumption of a
constant sampling period—compute the individual 3×1
components of the stacked vector Q in (47) as

p̂s = p̂� +
(

� − s
� − t

)
(p̂t − p̂�), (48)

p̂k = p̂t +
(
k− t
� − t

)
(p̂� − p̂t ), (49)
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and assign the projected segment a score equal to the
product of the Chi-squared scores of the two compos-
ite measurements used in the calculation. This segment
projection is particularly useful in scenarios where all
sensors have a low probability of target detection in any
one scan since, for there to exist a meaningful composite
measurement at any one time step, at least two sensors
will need to have detected the same target at that sam-
pling instant.

The likelihood maximization will assume the num-
ber of targets based on the size of the initial parame-
ter vector it is passed. In order to choose a good ini-
tial vector that parameterizes Nt targets, sample Nt seg-
ments from Qk without replacement, and stack the in-
dividual segment vectors into a 6Nt × 1 parameter vec-
tor of the form given in (2). The sampling should give
preference to segments with high δ scores.A decent way
to accomplish this is to use a high-level function like
MATLAB’s datasample() and sample element r of Qk

with the weight of δr relative to all other δ values. If
the number of segments in Qk is small enough that it
will not be computationally prohibitive to simply run a
new instance of the hill climber for every possible ini-
tial parameter vector, then this sampling can be avoided
altogether.

Thus far, this section has discussed a method of using
observed data to initialize the hill climber. This has been
found to perform well enough as the sole method of
hill climber initialization at the beginning of each batch.
However, performance can be improved further if the
target motion for the current batch is predicted from the
best previous batch estimate (under the constant veloc-
ity assumption). The predicted segments along with seg-
ments sampled from Qk are then each used to initialize
individual instances of the hill climber. In simulation, it
was found that this prediction aids the tracker in “stick-
ing”to the track once it has a good estimate.On the other
hand, it cannot be used as the only method of initializing
the hill climber since the data-driven hill finder is needed
to converge on a good estimate in the first place and to
recover if the track is ever lost.

B. Hill Climbing

There are many types and variations of hill climbers.
The maximization in this work uses the conjugate gradi-
ent method implemented in Python’s SciPy “optimize”
library [24]. It should be pointed out that an elegant
expectation-maximization (EM) approach could also be
used (see [2]).

In some cases, the user might be interested in decid-
ing whether there is even a single target present or not
(target detection). In this case, one could pass the hill
climber an initial vector X k

0 that implies a single target
(six elements), and allow the climber to run till it reaches
a peak. Then, compare the value of the LLR at this peak
to some threshold to decide if there is a target present.
That is, if the peak of hill is below some height, decide

that the hill is just due to a randomly occurring pattern
in clutter instead of an actual target. The challenge with
this is picking a good threshold for this test. The peak
height of a given LLR hill depends heavily on the num-
ber of sensors being used and the geometric arrange-
ment of the sensors relative to each other and the targets.
The simulated detection performance is discussed in
Section V.B.

C. Tracker Summary

Tracking is performed in a “sliding batch” fashion
where after an estimate is obtained, the leading edge of
the batch slides forward by some number of sampling
periods less than the length of the batch. This means
that consecutive batch estimates share some observa-
tions and are thus correlated. The following will give a
step-by-step synopsis of the algorithm:

1) At time step k, take the Nb most recent scans from
each of the Ns sensors to form the current measure-
ment batch. That is, k indicates the leading edge of
the batch.

2) For each time step in the batch, for each possible pair
of sensors, obtain via the process of elimination in
Section IV.A.1 pairs of measurements from the pair
of sensors that “strongly agree” on some point in the
global space. Record the resulting composite mea-
surements.

3) With composite measurements obtained in the pre-
vious step, form line segments representing target
tracks over the course of the batch. These segments
are parameterized by their start and end points.They
can be formed either by pairing hit points from the
start and end times of the batch or by considering
pairs of hit points from intermediate time steps and
projecting out to the end points of the batch. If infor-
mation is available aboutmaximum and/orminimum
target speed, this can be used to eliminate segments
that are either too long or too short.

4) If working with a multi-target scenario with Nt tar-
gets, then form potential target parameters by com-
bining line segments from the previous step into
groups of size Nt. In a single target scenario, any one
of the line segments can be taken as a potential target
parameter.

5) (Optional) Form a predicted target parameter by us-
ing a constant velocity assumption to predict the tar-
get trajectories over the current batch based on the
ML estimate from the previous batch.

6) For each of the parameter vectors obtained in 4) and
5), evaluate the LLR. Keep the N best parameters
according the LLR value.

7) Initialize N hill climbers with each of the N best pa-
rameters from the previous step. Allow climbers to
run until terminal condition or until some maximum
number of steps has been exceeded.Take the param-
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eter indicated by the climber that reached the highest
peak in LLR to be the ML estimate for the current
batch.

8) Increment k by the desired batch slide amount. Re-
turn to 1).

It is of interest to summarize the computational
complexity of the method for a single batch estimate.
As presented, the expected computational complexity

of the hill finding is O
(
(λ + pdNt)2 Ns(Ns−1)

2

)
, where

λ + pdNt is the expected total number of measure-
ments per scan (clutter plus targets) and Ns(Ns−1)

2 is the
number of unique sensor pairs. That is, the point find-
ing (optimization-initialization, or hill finding) cost is
quadratic in both the number of measurements per scan
and in the number of sensors. While the expected num-
ber of measurements is usually dictated by “nature,” set-
tings withmany sensors may require care when choosing
which sensor pairs are used to find points.

The evaluation of the likelihood in (23) has expected
complexity O ((λ + pdNt)NsNt). The likelihood maxi-
mization requires approximation of the gradient of the
objective likelihood function via two-point differencing,
which requires 6Nt+1 evaluations of the objective func-
tion (one for each element of the parameter vector plus a
reference evaluation). Thus, the overall likelihood max-
imization has complexity O ([

λ(Nt)2 + pd(Nt)3
]
Ns

)
.

The number of targets assumed by the optimization is
the most significant factor in computational cost. While
(Nt)3 is the asymptotically dominant term, the entire ex-
pression λ(Nt)2 + pd(Nt)3 is noted since, in most practi-
cal settings, λ � pdNt (there is usually much more clut-
ter than target-originated measurements), so the clutter
level can dominate practical computation. Both the hill
finder andmaximizer also have simple linear complexity
in the batch length Nb.

V. RESULTS

The following sections present simulated results for
the sake of testing the presented method. The detection
performance (performance of a test to decide whether
or not a target is present) is given in Section V.B. The
tracking performance for a single target under various
states of nature is studied in Section V.C. In Section
V.D, a comparison is made to a decentralized method in
which each sensor obtains an ML estimate of the track
segment in its own measurement space, and then batch
estimates from pairs of sensors are fused to obtain track
segment estimates in the global space. This is in contrast
to the method presented in the main body of this work
could be considered a fuse-before-track method since
the likelihood involves measurements from all sensors.
Finally, a scenario with 2 targets is simulated, and a com-
parison is made between the tracking performance of
the presented method and the JPDA method presented
in [20].

A. Single Target Scenario Setup

The scenario has a single target and three sensors.
The target travels along an upward spiraling path at a
constant speed, see Fig. 9. Notice that, technically, the
curvature of the path violates the constant velocity as-
sumption in the target motion model. However, due to
the constant speed of the target and the small amount of
curvature that occurs over the course of any one batch,
constant velocity is a sufficient approximation.

Each simulated sensor has a restricted, conical field
of view with an angular range of 20◦. The sensors are
placed so that, for the majority of the target’s trajectory,
it is in view of all sensors.The sensor locations are all out
of view in Fig. 11, but referring to the coordinate system
in the figure:

� Sensor 1 is stationary at position (−18000,0,0), and
aimed in the +X direction (toward the origin) and
slightly up.Thismimics a camera viewing the sky from
the surface of the earth.

� Sensor 2 is stationary at position (0,0,60000), and
aimed toward the origin. This gives an overhead view
from a very high altitude.

� Sensor 3 is in motion. It orbits the Z axis at a height
of 12 000 above the X–Y plane and with a radius of
10 000. Its orientation changes so that it is consistently
aimed down and in toward the origin. Its orbital speed
is such that it makes only half an orbit throughout the
scenario.

In a real scenario, the expected number of clutter λ

and the probability of target detection pd are functions
of SNR and the threshold used in the measurement ex-
traction process. Qualitatively speaking, at a fixed SNR,
lower extraction threshold valueswill result inmore clut-
ter but higher probability of target detection.

For simulation purposes, it is assumed that the mea-
surement extraction process is Gaussian as in [11]. That
is, assume some extraction threshold τme, which, when
applied to a test for a measurement “hit” in some par-
ticular section of the sensor space where a target is not
present, results in a single clutter measurement with a
probability of “false alarm” given by

pf = Q
(τme

σ

)
, (50)

where Q(·) is the Gaussian Q function and τme has been
normalized by themeasurement intensity standard devi-
ation σ . Then, for a fixed SNR, the probability of target
detection is

pd = Q(Q−1(pf ) − SNR). (51)

For the sake of simulation, it is assumed that there
are a Poisson random number of clutter measurements
in each scan with expected value λ, and the expected
number is approximately related to the clutter level by

pf = λ

Nc
, (52)
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Fig. 10. The ROC curves for target detection based on the
ML-PMHT likelihood at different SNR levels. The probability of
target detection at individual sensors is fixed at pd = 0.45. This

implies a clutter level of λ =∼54 at an SNR of 0 dB and λ =∼74 at an
SNR of −1 dB

where Nc represents some total number of resolved
“cells” in the sensor space that are tested by the mea-
surement extraction. It is assumed here that all sensors
have Nc = 400.

The simulation uses azimuth–elevation measure-
ments. Target-originated measurements have Gaussian
additive error where the individual components are as-
sumed independent and each has standard deviation
σθ = σφ = 0.25◦. The small measurement error vari-
ance is used to mimic the behavior of cameras, which
generally exhibit goodmeasurement accuracy.The other
“error-inducing” processes (clutter and missed detec-
tions) are considered more interesting in this context.

Unless otherwise noted, results use a fixed batch size
Nb = 18, and the batch slides five sampling periods from
one estimate to the next.

B. Detection Performance

It is of interest how well the algorithm does at de-
tecting the presence of a target.Detection would be per-
formed by choosing some threshold value and declaring
a detection if the LLR for the current batch exceeds the
threshold. To test the detection performance, the algo-
rithm is run for 100 Monte Carlo runs under the null
hypothesis—no target present.These data are combined
with the data from the simulationwith a target present to
form the receiver operating characteristic (ROC) curves
shown in Fig. 10.When the target is present, each sensor
measures it with fixed probability of detection pd = 0.45.

At first glance, the detection performance appears
poor. However, it is important to note that detection is
performed on a batch-to-batch basis.That is, if the detec-
tion was operating at a point on the ROC with PD = 0.3
and PFA = 0.03, then the user could expect to get a
detection within four batches of the target appearing,
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Fig. 11. The true target track (blue) plotted along with the batch
estimates (red) for a single Monte Carlo run with λ = 54 and

pd = 0.45.

while expecting a false detection only once in every ∼33
batches when there is no target present. When framed
in this manner, the detection performance is acceptable.
It is also important to emphasize that the detection and
false alarm probabilities on the axes of Fig. 10 are not
the same as the detection and false alarm probabilities
in (50) and (51), which are properties of the underlying
measurement extraction process.

C. Tracking Performance

When tracking with a single target present, the effect
of the hill finder can be seen in the first fewML batch es-
timates in Fig. 11.While the first few estimates are not on
track, the hill finder enables the tracker to converge on
the track within a handful of batches. If instead the hill
climbing was initialized randomly throughout the entire
tracking space, it would have a tendency to settle on false
hills instead of converging to the true track. There is a
point about one third of the way into the scenario where
the algorithm briefly does a poor job tracking the target.
This is due to the geometry of the target relative to the
sensors being less than ideal at that time—two sensors
have almost anti-parallel lines-of-sight on the target.The
resulting deviation in the estimate can be seen in Fig. 11
at the spot where the batch estimates drift away from
the true track and in Fig. 12 by the spike in estimation
error around time step 120. The spike in error is short-
lived, however, since the hill finder compensates as soon
as the sensors have good visibility on the target again.

We wish to also study the performance of the algo-
rithm in terms of how often it is on track. To do so, we
must first quantify what it means to be “on track.” One
way to define “on track” is to find the root mean square
error (RMSE) over the course of each batch. Then, if
the RMSE over the course of a particular batch is below
some threshold, declare the algorithm to be on track for
that batch. It is of interest to study the tracking perfor-
mance based on the operating characteristic of the mea-
surement extraction process. The SNR is fixed and sim-
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Fig. 12. The RMS distance error between the estimate and true
target position versus time step. Averaged over 100 MC runs with

λ = 54 and pd = 0.45.

ulations are performed over a range of normalized mea-
surement extraction threshold values, which is equiva-
lent to a range of clutter levels via (50) and (52).The em-
pirical probability of the algorithm being on track (de-
notedPT) is plotted for three different SNRvalues in Fig.
13. The RMSE threshold used to declare whether the al-
gorithm is on track or not is set at 200 using the results
in Fig. 12—slightly higher than the RMSE to which the
algorithm empirically converges.

For each plot, a peak in tracking performance ap-
pears, above which the decreasing probability of target
detection has a negative effect on the hill finder, and be-
low which the increasing level of clutter results in de-
creasing estimation quality. The trend in the horizontal
location of the peaks suggests that the lower the SNR of
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Fig. 13. The probability of being on track versus the normalized
measurement extraction threshold. Different plots are for various
measurement extraction SNR values. Results are averaged over 20
Monte Carlo runs of the scenario—or 1400 batches—for each data

point.

Fig. 14. Notional representation of fusing two batch estimates from
two separate cameras (red segments) into a single estimate in global

space (orange segment).

the tracking scenario, the lower the ideal measurement
extraction threshold. That is, in scenarios with lower
target visibility, it is better to operate in a “high clut-
ter/high detection probability” regime. And when tar-
gets are more visible, it is ideal to compromise on the
detection probability with the pay-off of having less clut-
ter. The vertical location of the peaks are perhaps less
informative since the probability of detection is defined
in terms of an RMSE threshold (a peak would be higher
if a higher error threshold was used for declaring the al-
gorithm on track).However, when the same threshold is
used for each data series in Fig. 13, the predictable trend
of increasing peak performancewith increasing SNRcan
be observed.

These results assume a Gaussian intensity detection
structure for the measurement extraction, which repre-
sents a “worst case.”Of course, if there is some other ex-
traction process with which a higher detection probabil-
ity and/or a lower level of clutter can be obtained (if, for
instance, the preprocessing of images involved software
that used features like shape or size to further discrimi-
nate between targets and clutter), then the performance
of the tracker will be better.

D. Track-Before-Fuse Comparison

The tracker presented in this paper maximizes the
likelihood of the target state directly in the global three-
dimensional space.An alternative approach is to make a
batch estimate of the track in the measurement space of
each individual sensor and then fuse them into a batch
estimate in the global three-dimensional space.For a no-
tional representation of this process, refer to Fig. 14. If
the sensors are cameras, one could obtain batch esti-
mates of the target track in the image space of each cam-
era (red segments in Fig. 14) using measurements from
only the camera under consideration. Then, given the
poses of a pair of the cameras, one could triangulate to
a corresponding batch estimate in the global space (or-
ange segments in Fig. 14). This approach may be con-
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Fig. 15. The RMS position error for the global space tracker (solid
line) and the RMSE for the image space tracker (dotted line) plotted
for implied measurement extraction SNR values. Errors are averaged

over 100 Monte Carlo runs and averaged over time.

sidered desirable in situations where communication of
data is restricted: Inmost realistic settings, the communi-
cation cost for sensors to send batches of measurement
scans to a central maximizer is higher than if each sen-
sor sends an ML estimate of a track segment. However,
this method has the obvious drawback of not having ac-
cess to the discriminatory power of the “hill finder” al-
gorithm in Section IV.A since the premise is that mea-
surement scans have not been sent to a central location.

We use this decentralized method as a benchmark
comparison at various SNR values. The expectation is
that the method presented in this paper should be more
robust—in terms of mean squared estimation error—as
the SNR decreases. This intuitive expectation is due to
the fact that both the hill finder and the centralized like-
lihood evaluation use the relative geometric arrange-
ment of the sensors, which creates a triangulation ef-
fect. In terms of the log likelihood, the effect is that the
hills climbed by the central tracker aremuch steeper and
taller than the hills in the individual sensor space track-
ers, which results in a better ML estimate from the cen-
tral tracker.

Monte Carlo simulations of the scenario described
in the previous section are performed as the SNR varies
from −1 to 3 dB. As the scenario progresses, both types
of tracking are performed simultaneously—tracking ac-
cording to the algorithm presented in this paper and
ML-PMHT tracking in the image spaces of the individ-
ual sensors and then fusing into three-dimensional space.
TheRMSEs obtainedwith the two differentmethods are
plotted versus the SNR in Fig. 15.

E. JPDA Comparison

A scenario with two targets is simulated in order to
test the multi-target capabilities of the ML method pre-
sented in this work. For the sake of comparison, the sce-

nario is also subjected to the JPDA tracker, which is a
typical recursive maximum a posteriorimethod that has
been adapted in [20] to work with multiple sensors.

The sensor arrangement remains the same as the
simulation in Section V.A. Along with the original tar-
get from the scenario in Section V.A, an additional
target is simulated that starts from rest at the point
(1000.0, 0.0, 0.0) in the global space and accelerates lin-
early to arrive at the point (−1000.0, 0.0, 2000.0) at the
end of the scenario. The linear path of the second target
remains well-resolved from the first target in the three-
dimensional global space, although the targets may be-
come unresolved in the two-dimensional measurement
space of any one sensor. Although both targets violate
the constant velocity assumption of the ML-PMHT, it
remains a close approximation over the batch duration,
which is shortened to Nb = 12 for this simulation. The
batch slide is also reduced to 1. That is, a batch estimate
is obtained at every time step based on the current scans
along with the scans from the past 11 time steps. This
ensures that the ML-PMHT is informed by every point
obtained by the hill finder routine.

Themeasurement error is the same as in Section V.A
(σθ = σφ = 0.25◦). The measurement extraction is as-
sumed to operate such that, for each target, the proba-
bility of receiving a hit at each sensor is pd = 0.5, and
the expected number of clutter measurements in each
scan of each sensor is λ = 50.

For the JPDA, a single linear white noise accelera-
tion model is assumed for the targets with the process
noise parameterization being informed by themaximum
acceleration exhibited by the true targets.

Both the JPDA and the ML-PMHT are initialized
with a random joint state estimate distributed (with large
variance) around the truth, although the ML-PMHT is
also allowed immediate access to the hill finder as well,
so it has a chance of finding a better initialization for its
first batch estimate.

Fig. 16 shows the root-mean-squared position esti-
mate error versus the time step of the scenario aver-
aged over both targets. The benefit of the point finder
employed by the ML-PMHT is evident at the begin-
ning of the scenario—while both trackers are given the
same random initialization, theML-PMHT immediately
makes use of the point finding, which, on average, re-
sults in faster convergence to the “steady-state” perfor-
mance. A test for statistical significance of the Monte
Carlo comparison, as given in [4], is as follows. For a par-
ticular Monte Carlo runmc, the RMSE from each of the
tracking methods is averaged over time, and the differ-
ence between the averages is noted as�mc.After all runs
are completed, the sample mean and sample standard
deviation of the “deltas” are computed, and the signifi-
cance of the comparison is taken to be the sample mean
divided by the sample standard deviation. A value � 2
is taken to indicate that the performance difference is
present in a significant number of runs. The comparison
in this simulation was found to have a significance of 4.7.
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Fig. 16. The RMS position error for the maximum-likelihood
tracker (solid line) and the RMSE for the JPDA (dotted line) plotted
versus time step. Errors are averaged over 100 Monte Carlo runs and

averaged over both targets.

Note that this scenario simulates a relatively low SNR,
and previous work has suggested that the ML-PMHT
likelihood formulation is more suitable than the JPDA
in such settings [14], [21].

VI. CONCLUSION

The algorithm presented in this work is found to
outperform a similar track-before-fusing algorithm at
reasonably low SNR levels. This result is intuitively pre-
dictable given that the global space tracker is taking ad-
vantage of knowing the geometric layout of the sensors
relative to each other when evaluating the observation
likelihood. It is also shown that there is a performance
“sweet spot” for the underlying measurement extraction
(the process by which “point hits” are declared) where
the target detection probability is high enough for the
likelihood maximization to be effective, but the level of
clutter does not overwhelm the batch estimation.

The “point finding” method presented in Section
IV.A, culminating in the list of weighted points in (46),
is not fundamentally tied to the ML-PMHT. Instead,
it represents a standalone method for obtaining a
list of points in three-dimensional Cartesian space by
fusing “likely-to-be-related” pairs of two-dimensional
line-of-sight measurements from different sensors. The
extracted points are used in this work to initialize the
likelihood maximization, and are found to help the
ML-PMHT stay on track.However, the point extraction
could also be used in other fundamentally different
settings. For instance, the “target birth” process and
two-point-differencing, which is essential to track ini-
tialization in the multi-Bernoulli formulation, could be
informed by the presented point finding method in a
tracking scenario where targets exist in R

3 and multiple
sensors report two-dimensional measurements.

The formulation of the batch ML-PMHT presented
in this work allows for tracking multiple targets, and is
compared to the JPDA for a two-target scenario with
high clutter level and low probability of target detection.
TheML-PMHT is found to outperform the JPDA in this
case,which agrees with results in other works. In terms of
average computational cost, the ML-PMHT avoids the
expensive data-association step required by the JPDA,
but encounters the curse of dimensionality in the param-
eter space when dealing with multiple targets. Overall,
the results suggest that the ML-PMHT is a desirable op-
tion in settings where the user wishes to refine track es-
timates for relatively few targets in the presence of rel-
atively high levels of clutter and low detection probabil-
ity. Future work will insert the results of the ML-PMHT
to a generalized likelihood ratio test for target existence
using the threshold-setting techniques in [18], and will
compare to an automatically track-managed approach
such as the multi-Bernoulli filter [15].

APPENDIX A JACOBIAN COMPUTATION FOR ILS

Each iteration of the ILS estimator requires compu-
tation of (41): the Jacobian matrix of the stacked mea-
surement function of sensors a and b with respect to
Cartesian position of a target in the global space. In
keeping with the notation used in Sections II.B and
IV.A.1, this matrix is given by

Hq =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂θ̄a
∂X

∂θ̄a
∂Y

∂θ̄a
∂Z

∂φ̄a
∂X

∂φ̄a
∂Y

∂φ̄a
∂Z

∂θ̄b
∂X

∂θ̄b
∂Y

∂θ̄b
∂Z

∂φ̄b
∂X

∂φ̄b
∂Y

∂φ̄b
∂Z

⎤
⎥⎥⎥⎥⎥⎥⎦

X=p̂q

, (53)

where X,Y,Z are the individual Cartesian coordinates
of the position vector X in the global reference frame.
Using the formula in (14), which transforms a point in
global coordinates into a point in the coordinate system
of sensor i, and, specifically, the rotation matrix defined
by (15), it can be shown that

Hq =
[
Hq,a �′

a
Hq,b �′

b

]
, (54)

where �′
i is the transpose of the rotationmatrix of sensor

i, and we have used the property of a rotationmatrix that
its inverse is equal to its transpose. The other sub-matrix
terms are given by

Hq,i =
⎡
⎣ ∂θ̄i

∂xi
∂θ̄i
∂yi

∂θ̄i
∂zi

∂φ̄i
∂xi

∂φ̄i
∂yi

∂φ̄i
∂zi

⎤
⎦

xi=�′
i(p̂q−ξi)

, (55)

which is the Jacobian of the measurement vector of
sensor i with respect to a point in the coordinate sys-
tem of sensor i, evaluated at the current ILS estimate
transformed to the coordinate system of sensor i. Tak-
ing the corresponding partial derivatives of (9) yields the
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individual terms

∂θ̄i

∂xi
= 0, (56)

∂θ̄i

∂yi
= zi
y2i + z2i

, (57)

∂θ̄i

∂zi
= −yi
y2i + z2i

, (58)

∂φ̄i

∂xi
=

√
y2i + z2i

x2i + y2i + z2i
, (59)

∂φ̄i

∂yi
= −xiyi

(x2i + y2i + z2i )
√
y2i + z2i

, (60)

∂φ̄i

∂zi
= −xizi

(x2i + y2i + z2i )
√
y2i + z2i

, (61)

where xi, yi, zi are the individual Cartesian coordinates
in the sensor i reference frame. As indicated in (55), for
iteration q of the ILS, these terms are evaluated at the
coordinates of xi given by transforming the current ILS
estimate into the reference frame of sensor i with

xi = �′
i(p̂q − ξi), (62)

which,when evaluated for both sensors a and b,will yield
Hq via (54).Note that the notation used here is as in Sec-
tion IV.A.1 where, since the ILS is being run using a sin-
gle pair of measurements taken at a single point in time,
the time indexing has been omitted. However, in gen-
eral, the sensor rotation matrices �i and positions ξi will
be time-dependent.

APPENDIX B ILS INITIALIZATION AND A
COMPUTATION-SAVING TRICK

The initial estimate p̂0 given to the ILS estimator can
be evaluated in various ways, and different works differ
in the initialization method. In this work, we found that
an initialization based on the closest approach between
the two line-of-sight measurements worked very well.
As discussed in Section IV.A.1, the closest approach will
have been previously evaluated for any measurement
pair being used in the ILS estimate.Thus, it costs no extra
computation to compute the initial estimate as

p̂0 = ρa

ρa + ρb
(pmd

b − pmd
a ) + pmd

a , (63)

where the positions pmd
i for i = a,b are the end points of

the minimum distance segment connecting the lines-of-
sight indicated by measurements a and b evaluated via
(30). And, ρa, ρb are scalars given by (32) and (33), re-
spectively, which provide the Cartesian distance along
the lines-of-sight at which the minimum distance oc-
curs. Thus, (63) is a point on the minimum distance seg-
ment that lies proportionally closer to the line-of-sight

from the sensor that is physically closer to the closest
approach. The reasoning is that the farther the sensor
is from the target, the farther the corresponding line-
of-sight measurement will deviate from the target (in
Cartesian distance) due to some fixed measurement er-
ror. Thus,when considering a pair of sensors, the line-of-
sight from the sensor closer to the target tends to be—in
an expected value sense—more “trustworthy” in terms
of its Cartesian deviation from the target. This reason-
ing assumes that the measurement errors in each sensor
are identically distributed; if not, then the reasoning be-
comes less logical. The ILS estimate takes into account
non-identicalmeasurement error distributions,however,
and (63) still serves as a good initialization in such cases.

If the measurement errors from both sensors are
identically distributed, the position given by (63) has
been found to be a relatively good estimate of the tar-
get position, without even running ILS. Of course, ILS
will always provide further refinement of the estimate.
However, under certain conditions, the composite mea-
surements obtained in Section IV.A.1 via ILS can be re-
placed by simple evaluation of (63) for anymeasurement
pairs that pass the elimination tests. This would only be
done in the name of saving the computation power in-
volved in running ILS for each composite measurement,
and if one has computation power to spare, it is not a rec-
ommended compromise. However, in simulations with
a large number of sensors (Ns ≥ 3) and in which all
pairs of sensors have good cross-range confirmation (see
geometric dilution of precision in [4]), composite mea-
surements via (63) were found to serve the purposes of
this algorithm rather well. This is due to the fact that the
composite measurements, regardless of the level of re-
finement, are, in turn, used only for the initialization of
the batch estimate, which is further refined via the hill
climber. Thus, any lack of refinement in the composite
measurements from pairs of sensors is quickly made up
for once the batchML estimation is started using all sen-
sors. Qualitatively speaking, this is a good compromise
for scenarios with many sensors and small measurement
errors, becoming an increasingly poor practice with in-
creasing measurement error and/or decreasing number
of sensors.

If the user chooses to make the compromise laid
out above, the final thresholding test after ILS is run in
Section IV.A.1 can still be performed by replacing p̂ in
(35) with p̂0 from (63). However, no quantitative state-
ments can be made concerning the distribution of the
resulting normalized measurement error squared ε0, re-
gardless of whether or not the measurement pair origi-
nated from a common target.That is, under the hypothe-
sis that the measurement pair did originate from a com-
mon target, it can no longer be claimed that the nor-
malized measurement error squared is Chi-squared dis-
tributed. However, referring to Fig. 17, it can be seen
that the shapes of the empirically obtained distributions
still lend themselves to a simple test by setting a thresh-
old such that, if the normalized estimation error squared

110 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 16, NO. 2 DECEMBER 2021



0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

H
1

H
0

Fig. 17. The empirical distributions of the normalized measurement
error squared resulting from the unrefined composite measurement
under the binary hypotheses:H0: the line-of-sight measurements used
are unrelated and H1: the line-of-sight measurements used originated

from the same target.

exceeds the threshold, the composite measurement is re-
jected as being related to a target. However, compar-
ing to the distributions in Fig. 6, it can be seen that the
threshold used should be significantly larger than the
one used if the composite measurements are refined via
ILS. Furthermore, since the distribution under H1 is no
longer Chi-squared, the convenient score based on the
Chi-squared cdf in (44) is no longer valid for finalized
composite measurements. They must be ranked objec-
tively according to their normalized measurement error
squared directly, with smaller errors being considered
better.
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Fusion of Multipath Data From
a Remote Sensor for Object
Extraction
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This paper develops an Object Extraction (OE) algorithm from a

remote sensor in the presence of multipath propagation between the

sensor and the object. The OE is carried out by estimating the ob-

ject’s motion parameter by fusing the multipath measurements. The

signals from the object are assumed to have a low signal-to-noise ratio

i.e., the OE has to be done in the presence of numerous spurious de-

tections. This paper also discusses a method to reduce the size of the

motion parameter space by considering the object’s motion in a non-

inertial frame. The object is observed using a measurement model that

produces range, azimuth, and range-rate using a multipath refraction

model for the signal propagation through the medium. The OE ac-

counts for the multipath environment as the model allows for multiple

returns from a single object. Finally, the paper shows the effectiveness

of the OE by evaluating the accuracy of the estimation with Monte

Carlo simulation.

I. INTRODUCTION

There have been many approaches to extracting ob-
ject state or motion parameters from sensor data in a
cluttered environment. Some of these solutions use a
probabilistic data association filter (PDAF) [7], a multi-
path PDAF [20], or extensions of the multiple hypothe-
sis tracker (MHT) such as the multiple detection MHT
[23]. Our solution is to use the Object Extractor (OE),
based on the maximum likelihood probabilistic multiple
hypothesis tracker (ML-PMHT). This method creates
a likelihood function (LF) for the motion parameters,
based on the data and the object’s measurement model.
This LF is thenmaximized to produce the most likely set
of parameters for that object’s motion. This method is
attractive because the data association in this algorithm
is implicit. Furthermore, as the number of scans is in-
creased, the ML-PMHT is the only algorithm that does
not suffer a combinatorial explosion in computational
complexity. Lastly, the OE is shown to have the ability
to extract very low signal-to-noise ratio (SNR) objects
from cluttered observations. This was shown explicitly
for multiple objects in a multipath environment with the
development and evaluation of the joint multipath ML-
PMHT [24].

The present work extends the previous multipath
works [8], [21] in two vital ways.The first is that themulti-
pathmeasurement fusion has been enhanced for realism
through the use of coordinate system transformations.
This has been exemplified through the use of an atmo-
spheric refraction model [4]. The second notable exten-
sion relates to the number of target parameters.Whereas
previous treatments explored low-dimensional parame-
ter spaces (straight-line motion), we add acceleration in
three dimensions. In our examples, we explore a model
with significant centripetal acceleration, drag, and grav-
ity.The drag on these objects will bemodeled to increase
linearly with its centripetal acceleration, and gravity is
constant in magnitude and radially toward the origin.
The motion of such objects cannot be approximated as
straight line segments and coordinated turns as has of-
ten been done in previous works [21] and thus requires
a large number of parameters to accurately predict their
motion [26].This has the potential to cause the optimiza-
tion involved in the OE to become computationally in-
tractable due to ill-conditioning.

The measurement model considered in this work ex-
ploits the phenomenon where alterations to the signal
return path permits the sensor to detect objects that are
beyond the sensor’s line of sight. This phenomenon re-
sults in the signal propagating along several paths from
the originating point to an object and vice versa for the
reflected signal. This allows for multiple returns from a
single object during one scan, causing an ambiguity as
to which detection belongs to which path [27]. Further
increasing the difficulty of determining the object’s mo-
tion parameters, there are false detections causing spu-
rious measurements (clutter) from all paths. The OE
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algorithm has been extended to operate in a multiple
path formulation, presented in [21]. This extension re-
lies on the fact that the OE natively assumes that any
number of measurements may associate to an object
and modifies the fusion of measurements by allowing
for different measurement models (one for each path)
with associated prior probabilities. Another algorithm
that takes advantage of the multipath measurements
considered in this work is the multiple detection maxi-
mum likelihood probabilistic data association (MD-ML-
PDA),an extension of the standardmaximum likelihood
probabilistic data association to associate multiple mea-
surements to a single object. The development and eval-
uation of the MD-ML-PDA can be found in [25].

This work seeks to solve the problem of motion pa-
rameter extraction for an object executing a complex co-
ordinated turn outside line of sight of the sensor and
in a multipath environment. In Section II, we describe
the motion model which will be considered determin-
istic and nonlinear during a batch of sensor data. We
also define a reference frame conversion that defines
the object’s motion and allows for the use of a smaller
object motion parameter vector during extraction. In
Section III, we introduce the multipath measurement
model that uses a refraction function to calculate the
range and range-rate measurements. We also provide a
method for thresholdingmeasurements to limit the com-
putational load of the OE in this section. Section IV
describes the operation of the OE algorithm used to
process these measurements, and explains how it is ex-
tended to the multipath scenario. Finally, in Section V,
we present and discuss simulation results to test the al-
gorithm’s effectiveness in tracking these objects.

II. OBJECT MOTION MODEL

The kinematic motion model for the objects we con-
sider here is three-dimensional (3D) and uses a modi-
fied coordinated turn model. The objects are assumed
incapable of thrust during the period of observation and
therefore we will not model this. The object is under the
influence of gravity that is taken to be constant and equal
to that at Earth’s surface (i.e., g= 9.81m/s2).We use the
Earth-centered, Earth-fixed (ECEF) coordinate system,
which is a Cartesian system with the origin at the center
of the earth [15]. The motion model must describe the
propagation of the position and velocity of the object.
We define a stacked vector of these values as

θ (t) = [x(t) y(t) z(t) vx(t) vy(t) vz(t)
]′

, (1)

with the initial values denoted θ0. The components of an
object’s acceleration due to radial gravity are

gx(t) = −gx(t)
r(t)

, gy(t) = −gy(t)
r(t)

, gz(t) = −gz(t)
r(t)

,

(2)

where r(t) is the distance from the object to the origin,
i.e.,

r(t) =
√
x2(t) + y2(t) + z2(t). (3)

Next, the drag component of the object’s acceleration
has magnitude

|adrag(t)| = Cdρ(r)AXS2(t)
2mt

, (4)

whereCd is the drag coefficient,AX is the object’s cross-
sectional area,mt is the object’s mass, and S is the speed
of the object, namely,

S(t) =
√

v2
x(t) + v2

y(t) + v2
z(t). (5)

In an effort to limit the computational complexity, we
lower the parameter space by assuming parameters re-
lated to drag to be known.During a turn, the drag expe-
rienced by an object increases due to the aerodynamic
effectors used.Wemodel this bymodifyingCd to linearly
increase with the centripetal acceleration (other models
can be used as well). Specifically, the drag coefficient in-
creases such that an acceleration of ac = 10g causes the
drag to increase by 20%, i.e.,

Cd = Cd0

(
1 + ac

50g

)
, (6)

whereCd0 is the drag coefficient for the object flying in a
straight line. Lastly, ρ(r) is the density of the medium as
a function of object’s position. The density of the prop-
agation medium is modeled as a first-order differential
equation with exponential solution

ρ(r) = ρ0 exp
[
− r(t) − R

r0

]
, (7)

where ρ0 and r0 are constants defined for the medium
and R is Earth’s radius (about 6371 km). With this defi-
nition, the acceleration of the object due to drag (in the
x-coordinate, but it is similar in y and z-coordinates) is

ax,drag = −|adrag(t)|vx(t)
S(t)

. (8)

Finally, we need to model the centripetal acceleration
due to a turn in 3D space. The turn is defined by a vec-
tor of orthogonal turn-rates described within the global
(ECEF) reference frame andwe denote this vector (with
units in rad/s) as

�G(t) = [ωG
x (t) ωG

y (t) ωG
z (t)
]′

, (9)

where the superscript G indicates the global reference
frame. The way that these turn rates relate to the con-
stant turn rate within the object’s reference frame will
be described in the next subsection. The centripetal ac-
celeration is then

ac(t) = �G(t) × [ vx(t) vy(t) vz(t)
]′

, (10)

where × indicates the vector cross product. This cross
product can be expressed using a skew-symmetricmatrix
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to pre-multiply the velocity vector. Here, this matrix is
denoted asK�(t) and allows the centripetal acceleration
to be written as

ac(t) =

⎡
⎢⎢⎣

0 −ωG
z (t) ωG

y (t)

ωG
z (t) 0 −ωG

x (t)

−ωG
y (t) ωG

x (t) 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
K�(t)

⎡
⎢⎢⎣

vx(t)

vy(t)

vz(t)

⎤
⎥⎥⎦ .

(11)
The state vector θ (t) changes according to these

time-varying accelerations and can be concisely ex-
pressed using a block partitioned matrix as

θ̇ (t) =
⎡
⎣ 03×3 13×3

−g
r(t) I3×3 K�(t) − −|adrag(t)|

S(t) I3×3

⎤
⎦ θ (t). (12)

This equation is a non-linear differential equation, so to
produce trajectories,we use a fourth-orderRunge–Kutta
method [22] with a sufficiently small step size δ to ap-
proximate the truemotion observed during the sampling
period of T , i.e.,

θT (i) = θ (iT ). (13)

Further accelerations, caused by the use of a non-
inertial (ECEF) reference frame include the Coriolis ef-
fect and a centrifugal acceleration. These accelerations
were found to be insignificant compared to the cen-
tripetal acceleration from turns (and the other forces
considered). They are thereby omitted for the sake of
model simplicity, but the correction may be included in
future works.

A. Reference Frame Conversions

While the turn rate observed in the global ECEF
reference frame is constant in magnitude (i.e., the cen-
tripetal acceleration is constant), the component vectors
(ωG

x (t), etc.) are constantly changing. Furthermore, the
object can only perform pitch and yaw turns, and zero
roll maneuvers (according to our assumption of a point
object). Pitch and yaw turns are represented by turn
rates ωO

x and ωO
y , respectively, where the superscript O

indicates the object’s reference frame.We wish to stress
that these values are assumed to be constant parame-
ters in the object’s reference frame during the (relatively
short) batch length, so there is no time dependence on
these values (compared to the global reference frame
values). These can be arranged into a vector, similar to
�G(t), as

�O(t) = [ωO
x ωO

y 0
]′

. (14)

In order to convert between the two reference
frames, we use a time-varying conversion matrix. In
keeping with convention, as well as our above defini-
tions, the z-axis in the object’s reference frame is the di-
rection of its velocity at any time. Formally, the z-axis
unit vector in ECEF coordinates is the unit vector of the

velocity, i.e.,

�1zO (t) = 1
S(t)

[
vx(t) vy(t) vz(t)

]′ = �1v(t). (15)

We also define the x-axis in the object’s reference frame
to be the direction of a perpendicular “right turn” vector
(in the local vertical plane) from the object’s perspective.
Specifically, we construct the object’s reference frame
x-axis in ECEF coordinates using the object’s’s current
velocity and position as follows:

�1r(t) = 1
r(t)

[
x(t) y(t) z(t)

]′
, (16)

�1xO (t) =
�1v(t) ×�1r(t)∣∣∣�1v(t) ×�1r(t)

∣∣∣ , (17)

where × denotes the cross-product.
Naturally, the object reference frame y-axis in ECEF

coordinates is then calculated as

�1yO (t) = �1zO (t) ×�1xO (t). (18)

It is important to note that the basis vectors in the
object’s reference frame (�1xO (t), �1yO (t), �1zO (t)) are time-
varying.

With these axes defined in ECEF coordinates,we can
create the matrix that will transform coordinates from
the global ECEF reference frame, to the object’s refer-
ence frame as a matrix containing these rotated basis
vectors.

RG→O(t) =
[
�1xO (t) �1yO (t) �1zO (t)

]
. (19)

Finally, we can define the global turn rates in terms
of the constant object’s reference frame turn rates as

�G(t) = RG→O(t)′�O, (20)

where wemake use of the fact thatRG→O(t) is unitary to
perform the inverse reference frame change operation.

The above transformation has two useful aspects.
The first is that it allows us to describe the motion that
is fundamentally a time-varying turn rate vector in the
global reference frame as a constant turn rate vector in
the object’s reference frame and a time-varying, but sim-
ple to calculate, transformation matrix. Secondly, for an
object where the roll component of the turn rate vector is
always zero, this also allows one to circumvent the need
to determine a time-varying, 3D global turn rate vector
at each scan and instead look to determine the constant
two-dimensional turn rate vector in the object’s frame of
reference. This second aspect leads to a reduction in the
number of parameters needed to describe the object’s
motion in a global reference frame via the addition of a
transformation that depends on the motion parameters
at each scan, i.e., the object’s global velocity and posi-
tion relate the three non-zero global turn rates with the
object’s two non-zero local turn rates.
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Fig. 1. ROC for the amplitude thresholding described in Section III.
The SNRs provided are values of γ as the amplitude ratio. The

corresponding decibel values of γ are −3 dB, 0 dB, 3 dB, and 10 dB.

III. SENSOR MEASUREMENT MODEL

Our sensor measurement model will only consider
returns from two elevations that produce three paths in a
multipath scenario. This is the smallest number of paths
for a validmultipath development,but the extension to a
greater number of paths is conceptually straightforward
and increases the algorithm’s complexity linearly. The
measurements we receive from the sensor are range (r),
range-rate (ṙ), azimuth (α), and amplitude (A). At time
step k,we index themth set (vector) of measurements as

zm(k) = [rm(k) ṙm(k) αm(k) Am(k)]
′
. (21)

The amplitudes are generated according to a Swerling I
model [3] where the probability density function (pdf) of
the amplitude for object absent and object present (in a
resolution cell) are, respectively,

p0 (A) = A exp
{
−A2

2

}
A ≥ 0, (22)

p1 (A) = A
1 + γ

exp
{
− A2

2(1 + γ )

}
A ≥ 0, (23)

where γ is the expected SNR (power ratio) in a reso-
lution cell. We use the amplitude feature to reduce the
number of measurements sent to the OE via threshold-
ing. Specifically, for any threshold τ , the probabilities of
detection (PD) and false alarm (PFA) are calculated as

PFA =
∫ ∞

τ

p0 (A) dA, (24)

PD =
∫ ∞

τ

p1 (A) dA. (25)

The detection performance in this situation is easily
characterized by the receiver operating characteristic
(ROC) curves in Fig. 1. These values are then used to

calculate the amplitude pdfs (after thresholding), which
are

pτ
0 (A) = 1

PFA
p0 (A) A ≥ τ, (26)

pτ
1 (A) = 1

PD
p1 (A) A ≥ τ. (27)

The range and range rate portions of each measure-
ment are calculated via a 3D path calculation function.
These calculations are performed by an exogenous soft-
ware with knowledge of the propagationmedium [1], [4],
[13]. We choose an operating frequency for the sensor
of 15 MHz and restrict the number of round-trip paths
the signal may travel on to four.White Gaussian noise is
added to the range, range rate, and azimuth parts of the
measurement vector.Due to the difference between how
noise affects different parts of the measurements, we
present a modified measurement vector, with the ampli-
tude component removed, to be used separately. There-
fore, define the truncated measurement vector contain-
ing the kinematic components as

z∗
m(k) = [rm(k) ṙm(k) αm(k)]

′
. (28)

The covariance matrix of the truncated measurement
vector z∗

m(i) is

R =

⎡
⎢⎢⎣

σ 2
r 0 0

0 σ 2
ṙ 0

0 0 σ 2
α

⎤
⎥⎥⎦ . (29)

The noise is additive in the measurement (range, rate-
rate, and azimuth) space, and the motion is deterministic
given the initial state, therefore the equation for a object-
originated measurement is

z∗
m(k) = h� ( f (x,k)) + N ([0 0 0]′ ,R

)
, (30)

whereN (μ,R) is a multi-variate Gaussian with mean μ

and covariance matrixR,h� (·) is the measurement func-
tion for path l that produced measurement m (supplied
by the 3D path calculation function described above,
IONORT), applied to the putative location vector pro-
duced by the function f (x,k) (produced by the fourth-
order Runge–Kutta method in (13)), and x is the stacked
vector consisting of θ0 and the non-zero parts of �O,
namely,

x = [θ ′
0 �O ′]′. (31)

IV. OBJECT EXTRACTOR

The OE, an extension of the maximum-likelihood
probabilistic multi-hypothesis tracker (ML-PMHT), is a
batch estimation algorithm that effectively creates a pa-
rameter optimization problem for the OE problem. The
OE algorithm constructs the object state LF based on a
batch of measurements using a number of assumptions
about the data. The maximum of the LF occurs at the
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OE estimate of the parameter vector. The assumptions
are:

� The number of objects is known (in this work,we con-
sider only one object).

� Any number of measurements may be associated to
an object (here, up to four are truly possible).

� The object’s motion is deterministic during the (typi-
cally short) batch of measurements, given the object’s
motion parameters.

� False detections are distributed uniformly in space
and Poisson in cardinality, i.e., a spatial Poisson pro-
cess (this may be relaxed).

� Measurement noises are Gaussian, temporally white
(conditioned on the parameter vector), and Rayleigh
in amplitude (again, the amplitude assumptionmay be
relaxed).

With these assumptions, we build the log-likelihood
function (LLF) that can then bemaximized over the (ini-
tial) object state x from (31) to provide an estimate x̂ that
can be used to determine the object’s trajectory (because
of the deterministic trajectory assumption).

We will now describe the construction of the LF that
forms the basis for the multi-path OE algorithm. First,
we define the batch of measurements considered by the
OE. Only measurements above the threshold defined
above during a window of Nw time steps are used. The
set of these measurements is defined as

Z �
{{
z∗
m(i)
}Ni

m=1

}NW

i=1
. (32)

The LLF of the object motion parameter vector x based
on Z is then the log of the conditional pdf of the batch.
Namely,

λ(x;Z) = ln (p (Z|x))

= ln

{
Nw∏
i=1

Ni∏
m=1

p
(
z∗
m(i)
∣∣x)
}

=
Nw∑
i=1

Nm∑
m=1

ln
{
p
(
z∗
m(i)
∣∣x)} . (33)

This is a sum over the log of the likelihoods of x based on
each measurement. The LLF is then further expanded
by considering each measurement to be from the object-
present scenario (hypothesis H1), with prior probability
1, or the object-absent scenario (hypothesis H0), with
prior probability 0, independently of all other mea-
surements. The determination of 0 and 1 is based on
the probability of detection within a resolution cell ap-
proximately given as

0 ≈ NcellsPFA

NcellsPFA + PD
, 1 = 1 − 0. (34)

The LLF can now be written as

λ(x;Z) =
Nw∑
i=1

Nm∑
m=1

ln
{
0p
(
z∗
m(i)
∣∣x,H0
)

+1p
(
z∗
m(i)
∣∣x,H1
)}

. (35)

Disturbance (clutter plus noise) is assumed to be uni-
formly distributed within the observation volume of size
V , i.e.,

p
(
z∗
m(i)
∣∣x,H0
) = 1

V
. (36)

Object-originated kinematic measurements are Gaus-
sian with covariance matrix R and the mean of these
measurements is the application of the path-dependent
measurement function h�(·) to the putative state vector
mapped to time i, f (i, x). This allows us to write the con-
ditional pdf of a object based measurement for a specific
path � as

p
(
z∗
m(i)
∣∣x,H1, �

) = N [z∗
m(i);h� [ f (i, x)] ,R] , (37)

whereN [z;μ,R] is the Gaussian distribution with vari-
able z, mean μ, and covariance matrix R. Summing over
all path likelihoods and multiplying by the path priors
gives us the desired part of the likelihood as

p
(
z∗
m(i)
∣∣x,H1
) = N�∑

�=1

p
(
z∗
m(i)
∣∣x,H1, �

)
p(�) (38)

where p(�) is the prior probability of path � ∈
{1, 2, . . . ,N�}, which we take to be uniform.We also add
the amplitude pdfs, which are conditional after thresh-
olding, p0 (Am(k)) and p1 (Am(k)). This is done by as-
suming the amplitudes to be random and independent
of the rest of the measurements, then simply multiply-
ing, i.e.,

λ(x;Z) =
Nw∑
k=1

Nm∑
m=1

ln
{
0pτ

0 (Am(k)) p
(
z∗
m(i)
∣∣x,H0
)

+1pτ
1 (Am(k)) p

(
z∗
m(i)
∣∣x,H1
) }

. (39)

With the likelihoods defined above, the OE
algorithm provides an estimate according to the
maximization

x̂ = argmax
x

λ(x;Z). (40)

It must be stressed that the OE is based on the prob-
abilistic multiple hypothesis tracker (PMHT), and that
the PMHT makes the very strong assumption that the
provenance (association) of each measurement is inde-
pendent of that of all others. In the case of standard
“hit-based” tracking, this means that zero, or one, or
two—or, indeed, all—measurements can associate to the
object. In the case of our measurement model, this is
extended to allow for multiple measurements to have
provenance of (say) upper-path outbound and lower-
path return to have non-zero a-priori probability. This
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Fig. 2. A notional example of modifying a function that is essentially
flat between peaks (in blue) to one with a slight slope introduced by a
large, central Gaussian (in orange).We see that the position of the
global maximum is unchanged, but any method where candidate

points are on the flat surface part (now nearly flat) of the domain will
not stall.

formulation leads to computational amenability that the
OE exhibits; a multi-scan likelihood evaluation that ex-
cludes physically-duplicative events has been shown to
be quickly prohibitive due to the combinatorial com-
plexity involved in also considering multiple paths. For-
tunately, we find that the “impossible” events are gener-
ally afforded small likelihoods,meaning that much prac-
ticality is gained with the multipath OE approach.

A. Optimization

The above maximization of the LLF (39) is chal-
lenging due, in part, to the fact that the LLF is multi-
modal. Another challenge exists when calculating the
value of the LLF (which is done for many trajectory
options) is computationally demanding for even mod-
est sized batches.Our solution requires several different
optimization methods in tandem to produce consistent,
accurate results.

When performing the global optimization “hill-
finding” procedure (and only then), we alter the like-
lihood surface slightly. Specifically, we alter the flat re-
gions of the LLF to add a relatively small slope such that
the optimization stopping criteria will not be easily met.
This is shown notionally in Fig. 2.We obtained this slight
slope by changing the clutter density from uniform to
a truncated Gaussian, whose standard deviation in each
dimension is much larger than the volume of the obser-
vation area (by an order of magnitude). The truncated
Gaussian also has a mean that is placed in the middle of
the observation space.The placement of the mean of the
truncated Gaussian was found to be of no consequence
for the estimate (40) (assuming the variance was suffi-
ciently large and the average value was kept the same).
The output of this global optimizer is then given to a

TABLE I
Simulation parameters for scenario 1 and scenario 2. All location

parameters are in ECEF.

Parameter Value

R diag([75m 5m/s 1◦])
γ (SNR) 10
τ (Threshold) 3.1
Sensor Pos. (ECEF) [1450; − 2727.2; 5572.2] km
Monte Carlo runs 200
AX 0.48 m2

mt 2000 kg
Cd0 0.03
ρ0 1.2250
r0 8.5 × 103 m
Ci 6 × 10−5

PD (in a cell) 0.65
PFA (in a cell) 0.0082
0, 1 0.792, 0.208
Ncells 1200

gradient ascent method that operates on the original LF
to produce the final estimate and likelihood of this esti-
mate. This process is done a maximum of three times, or
until the likelihood of the estimate passes a threshold.

The global optimization routine that we used is from
the NLopt package [11], and is an implementation of
a “controlled random search” with a “local mutation”
modification [14]. We also provide our global optimiza-
tion method with an initial parameter vector around
which it will search. This is done by approximately in-
verting the measurement function and can be found in
the Appendix.

V. SIMULATIONS RESULTS

In this section, we present some interesting scenar-
ios for objects, as well as accuracy statistics pertain-
ing to the performance of our multipath OE. We be-
lieve it pertinent to mention that the Cramer–Rao lower
bound (CRLB) for a OE can be potentially misleading.
The assumption that everymeasurement can possibly be
object-generated is not correct and can produce lower
bounds that are not comparable to the state of nature.
Specifically, recall the earlier discussion about the OE
(and PMHT) association assumptions: in the simulation,
we do not generate the data according to those assump-
tions, rather we use the true model that excludes unreal-
istic associations. Therefore, we will not further discuss
the CRLB.

The first simulation tests an object that begins mov-
ing perpendicular to the line connecting the object to
the sensor. The velocity is also tangent to the Earth with
a magnitude of 4 km/s. The object will then perform a
20 m/s2 pull up and left turn in its own reference frame.
The object is observed for 15 s at a sample rate of 1 Hz.
The sensor operating frequency is 15 MHz. The rest of
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TABLE II
Initial motion parameter vector values and RMSE for scenario 1 at
the beginning and end of the OE estimated track. All motion and

location parameters are in ECEF. The turn rates are given in respect
to the object’s reference frame (i.e. the z turn rate is zero and not

given).

Parameter Value Init. RMSE Final RMSE

x 1450 km 1275 m 1345 m
y −2727.2 km 678 m 688 m
z 5572.2 km 139 m 148 m
Vx 3532 m/s 30.83 m/s 36.51 m/s
Vy 1878 m/s 20.9 m/s 18.30 m/s
Vz 0 m/s 6.2 m/s 5.97 m/s
�T
x 23.2 mrad/s 0.63 mrad/s

�T
y −65.8 mrad/s 0.73 mrad/s

the parameters for this scenario can be found in Table I
and motion parameters are found in Table II.

Fig. 3 shows measurements from a single Monte
Carlo run after thresholding. The scenario was run
through the OE algorithm described above to estimate
the initial object motion parameters and we examine
the root mean square error (RMSE) of this estimate as
well as the final position and velocity estimates.The esti-
mated final value is found by propagating the estimated
initial value through the deterministic motion equation
(12). These errors can be found in Table II and a sam-
ple trajectory, both truth and estimated, can be found in
Fig 4.

The results for this scenario show that the object po-
sition can be estimatedwith about∼ 1.45 kmaccuracy of
the original position and the velocity estimates are accu-
rate within about 38 m/s. The estimate of the turn rates
are accurate to ∼ 1 mrad/s on average. The final posi-
tion RMSE are similar to the initial value RMSE. We
will not report the final value of the turn rate as it is con-
stant over a single batch. We also found that the opti-
mizer converged to the correct solution over 94% of the
Monte Carlo runs.

A second scenario with different object parameters
yielded similar results. The other simulation parameters
were kept the same as scenario 1.The values of these pa-
rameters and the RMSE associated with them can found
in Table III. Fig. 5 shows the estimated trajectory for sce-
nario 2 compared to the truth and the Earth’s Surface

Finally, we address the assumption that the drag pa-
rameters (other than the speed of the object) are known
by exploration method by which we would determine
the drag coefficient via maximum likelihood methods.
Firstly, Table IV shows the LLF value, evaluated at the
true object motion parameters, as a function of the drag
coefficient for scenario 2. We see that we can maximize
over the value of the drag coefficient, perhaps by test-
ing a discrete number of candidate drag values, and use
this value as the true drag coefficient. We can also see
from Table IV that a using the incorrect drag causes an
increase in error (better to underestimate). In the sce-

Fig. 3. Sample measurements plotted for scenario 1. The blue
markers indicated object originated measurements and red markers

indicate disturbance originated (after thresholding).While the
originates are shown for illustration only, the OE does not know
them. Note that for each object-originated measurement there are
about 10 disturbance-originated ones. The OE also does not know
the paths corresponding to the object-originated measurements.
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Fig. 4. Sample trajectory for scenario 1 with the true trajectory in
blue and the estimated trajectory in red. The yellow plane indicates

the Earth surface.

TABLE III
Initial motion parameter vector values and RMSE for scenario 2 at
the beginning and end of the OE estimated track. All motion and

location parameters are in ECEF. The turn rates are given in respect
to the object’s reference frame (i.e. the z turn rate is zero and not

given).

Parameter Value Init. RMSE Final RMSE

x 571 km 1163 m 1194 m
y 1074 km 616 m 610 m
z 6255 km 142 m 144 m
Vx 3082 m/s 84.5 m/s 97.3 m/s
Vy 2545 m/s 49.3 m/s 40.7 m/s
Vz 155 m/s 5.9 m/s 6.4 m/s
�T
x −49.4 mrad/s 0.99 mrad/s

�T
y −49.4mrad/s 1.2 mrad/s

nario investigated here (scenario 2), the goal for error in
drag estimation should be ≤ 10%.

VI. CONCLUSIONS

This work developed a method to track an acceler-
ating object in a multipath environment. We first de-
fined a motion model for objects under the influence of

TABLE IV
A sampling of initial object motion parameter errors when non-exact

drag coefficient values are used.We also present the associated
log-likelihood values (evaluated at the true object motion

parameters) for the mis-matched drag coefficients.We see that larger
LLR values correspond to the drag coefficients with less error and a
larger error in drag used causes a larger mean squared error in initial

object parameter estimation.

% Drag LLF Val. |r0| Err |S0| Err |�O| Err
70% 448 1963 m 155 m/s 10.0 mrad/s
90% 788 1615 m 66 m/s 3.08 mrad/s
100% 1337 1451 m 38 m/s 0.96 mrad/s
110% 832 1965 m 99 m/s 6.16 mrad/s
130% 510 2537 m 154 m/s 8.32 mrad/s

Fig. 5. Sample trajectory for scenario 2 with the true trajectory in
blue and the estimated trajectory in red. The yellow plane indicates

the Earth surface.

radial gravity and drag that varies with centripetal ac-
celeration. These objects also exhibit rapidly changing
motion parameters that preclude the approximation by
straight lines even over short batch lengths.We also pre-
sented a method by which a conversion between refer-
ence frames limits the number of parameters that need
to be estimated. We then described the measurement
model and thresholding method used to limit the num-
ber of measurements delivered to the tracker. The al-
gorithm used is a generalized OE that allows for multi-
path measurements to be considered and uses a series of
optimization algorithms to produce an estimate for the
initial object motion parameters during a batch length.
Monte Carlo simulations were performed and show the
accuracies of position, velocity, and turn rate estimates
for the complex scenario we considered.

APPENDIX

A. Optimizer Initialization by Approximate Inverse Measurement Function

We developed a method to approximately invert
range and azimuth measurements to Earth centered,
Earth fixed (ECEF) Cartesian coordinates.The first step
in this inversion is to approximate the measurement
function, rt (θr, θt ),which calculates the range along a sin-
gle path from the sensor position (θr) to the object’s po-
sition (θt). The approximation used is

rt (θr, θt ) ≈ C0 +C1D+C2a, (41)

where D is the great circle distance (GCD) from the
sensor to the target, a is the target altitude, and Cn are
constants that minimize the error (via a least squares
method) in this approximation. There is a different set
of coefficients for each possible signal path from the sen-
sor to the object. We have found this approximation to
have negligible error over the observation area. The tar-
get altitude is unknown, yet necessary for this inversion.
In practice, we will test a set of probable altitudes at a
fine enough granularity to ensure minimal error.We will
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continue this description assuming the altitude being
used is the target’s true altitude at the measurement
time.

The solution involves rotating the global ECEF ref-
erence frame such that the sensor lies on the new z-axis
(while on the Earth’s surface). Solving this equivalent
problem is mathematically less complex and the result
can be converted back to the standard ECEF reference
frame via a rotation matrix. The sensor’s position in this
new reference frame (θ ′

r) is

θ ′
r = [0 0 RE

]T
, (42)

where RE is the radius of the earth (6371 km). An esti-
mate for the GCD can be found as

D̂ = rt (θr, θt ) −C0 −C2a
C1

. (43)

We note that the noise in the range measurement will
affect the accuracy of this estimate. The GCD between
the sensor and object is invariant under the change in
reference frame, and is calculated as

D = RE cos−1
(

θTr θs

R2
E

)

= RE cos−1
(
(θ ′
r)
Tθ ′

s

R2
E

)
= RE cos−1

(
z′
s

RE

)
, (44)

where θs and θ ′
s are the position on the Earth’s surface

directly below the target in the original and rotated ref-
erence frames, respectively. z′

s is the z-coordinate of θ ′
s.

This shows that the z-coordinate is constant in our solu-
tion, i.e., the inverted measurement lies on the plane

z′
s = RE cos

(
D̂
RE

)
, (45)

using the approximate GCD from (43).
The rotation into the new reference frame we use is

such that the new x-axis points to the local south in the
original ECEF reference frame. Therefore, the azimuth
measurement (α) is translated as the clockwise positive
angle from the rotated reference frame’s negative x-axis
(see Fig. 6). Any measurement at this azimuth will lie
inside a plane in the rotated reference described as

sin(α)x′
s + cos(α)y′

s = 0, (46)

where x′
s and y

′
s are the x-coordinate and y-coordinate of

θ ′
s.

Using (45) and (46), along with the fact that

(x′
s)

2 + (y′
s)

2 + (z′
s)

2 = R2
E, (47)

allows us to solve explicitly for θ ′
s as

θ ′
s = RE

[
− sin
(
D̂
RE

)
cos(α) sin

(
D̂
RE

)
sin(α) cos

(
D̂
RE

)
.
]′

(48)
This solution is then rotated back into the ECEF ref-

erence frame (θs) using the sensor spherical position (i.e.,

Fig. 6. Representation of the tangent plane to Earth’s surface at the
sensor in the rotated reference frame.Due North is represented as the
negative x̂′ direction. The azimuthal angle is given east of due north
and is shown in red. The calculation of (49) follows from the diagram.

[RE, φr, ψr]) in a rotation matrix as

θs =

⎡
⎢⎢⎣
cos(ψr) cos(φr) − sin(φr) sin(ψr) cos(φr)

cos(ψr) sin(φr) cos(φr) sin(ψr) sin(φr)

− sin(ψr) 0 cos(ψr)

⎤
⎥⎥⎦ θ ′

s.

(49)
Finally, the assumed altitude is added onto the surface
position to find an approximate inversion for the pro-
posed object position measurement, θt .

The estimated locations in (49) use measurements
that are corrupted by noise. Specifically, the azimuthal
noise causes a multiplicative bias that should and can be
corrected for. This is done by multiplying the inverse of
the expected value of the bias, as in [2], namely,

θ ′
s = RE

⎡
⎢⎢⎢⎢⎢⎣

− sin
(
D̂
RE

)
cos(α) exp

(
σ 2

α

2

)
sin
(
D̂
RE

)
sin(α) exp

(
σ 2

α

2

)
cos
(
D̂
RE

)

⎤
⎥⎥⎥⎥⎥⎦ , (50)

where σ 2
α is the azimuthal noise variance (assumed

Gaussian). The correction for the range noise is similar,
but is not needed for reasonable accuracy.
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Estimation of the Conditional
State and Covariance With
Taylor Polynomials

SIMONE SERVADIO
RENATO ZANETTI

A novel estimator is presented that expands the typical state and

covariance update laws of Kalman filters to polynomial updates in the

measurement. The filter employs Taylor series approximations of the

nonlinear dynamic andmeasurement functions.All polynomials (func-

tions approximation, state update, and covariance update) can be se-

lected up to an arbitrary order to trade between filter’s accuracy and

computational time. The performance of the algorithm is tested in nu-

merical simulations.

I. INTRODUCTION

Estimation is the process of inferring the value of a
quantity of interest from indirect, inaccurate, and noisy
observations. When the quantity of interest is the (cur-
rent) state of a dynamic system, the problem is often
referred to as “filtering”: The best estimate is obtained
by “filtering out” the noise from noisy measurements.
The estimate is the output given by an optimal esti-
mator, which is a computational algorithm that pro-
cesses measurements while maximizing a certain perfor-
mance index. The optimal estimator makes the best use
of the data, of the knowledge of the system, and of the
disturbances.

For the well-known linear and Gaussian cases, the
posterior distribution remainsGaussian and theKalman
Filter [21], [22] provides the mechanization to calculate
its mean and covariance matrix. However, most practi-
cal problems are nonlinear in the dynamics and in the
measurement equations, leading to non-Gaussian prob-
ability density functions (PDFs).

Many techniques have been developed to deal with
the nonlinear estimation problem. A simple solution is
based on the linearization of the dynamics andmeasure-
ment equations around the most current estimate. The
Extended Kalman Filter (EKF) [13] algorithm applies
the KFmechanization to the linearized system.Another
well-known technique to account for the system nonlin-
earities is the unscented transformation. The Unscented
Kalman Filter (UKF) [19], [20] is able to better handle
the effects of nonlinearities in the dynamics and in the
measurements and, typically, achieves higher accuracy
and robustness levels when compared to the EKF. The
UKF applies the unscented transformation to achieve a
more accurate approximation of the predictedmean and
covariancematrix.TheUKF is a linear estimator, i.e., the
estimate is a linear function of the current measurement.

The first-order approximation of the EKF can be
extended to higher order Taylor series [10], [13]. Gener-
ally, the higher the order of the Taylor series, the better
the performance of the filter. The Gaussian Second
Order Filter (GSOF) [18] truncates the Taylor series at
second order to better account for the system’s nonlin-
earities. Truncating the Taylor series to order c requires
knowledge of the estimation error’s central moments
up to order 2c in order to calculate the Kalman gain. For
example, the EKF truncates at first order, and it requires
knowledge of the covariance matrices. Consequentially,
the GSOF requires knowledge of the third and forth
central moments of the state distribution. At each
iteration, the GSOF approximates the prior PDF as
Gaussian so that the third-order central moment is zero
and the fourth is easily calculated from the covariance
matrix. The GSOF performs a linear update based on a
second-order approximation of the posterior estimation
error. Linear Gaussian filters exist up to any arbitrary
truncation order of the Taylor series approximation of
the dynamic/measurement functions [34], [35].
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Other linear filters make different types of approxi-
mations, such as Gaussian quadrature (QKF) [3], spher-
ical cubature (CKF) [2], ensemble points (EnKF) [42],
central differences (CDKF) [32], and finite differences
(DDKF) [31].

All of the filters mentioned above are linear estima-
tors, i.e., the estimate is a linear function of the current
measurement. The conditional mean, which is the op-
timal minimum mean square error (MMSE) solution,
is typically some unknown nonlinear function of the
measurement whose exact computation is usually not
feasible. A linear estimator, even when accounting for
the nonlinearities of the measurement function, is typi-
cally outperformed by nonlinear estimators such as the
Gaussian Sum Filter (GSF) [1], [40] or Particle Filters
(PFs) such as Bootstrap PF (BPF) [15],Marginalized PF
(MPF) [33], Auxiliary PF (APF), Unscented PF (UPF)
[44],Gaussian PF (GPF) [16], andMonte Carlo Filter PF
(MCFPF) [29].

Ref. [14] derives the evolution of the conditional
mean, covariance, and higher order moments of a dy-
namic system subject to continuous measurements. To
make the solution practical, the nonlinear dynamic and
measurement equations are approximated with Taylor
series expansions.

Another, less studied, approach to nonlinear fil-
tering is to expand the linear update structure to a
polynomial update function of the measurement. De
Santis et al. [11] propose an augmented state to ob-
tain a polynomial update but preserving the linear
update structure. Their work augments the measure-
ment vector with its square to form a quadratic up-
date [11] and was extended to polynomial updates [8].
Li et al. [23] propose to augment the measurement
vector with uncorrelated nonlinear conversions. Sim-
ilarly to [8] and [11], Liu et al. [26] obtain a non-
linear estimator preserving the linear structure of the
measurement update. The mean square error (MSE)
can be minimized by an optimal selection of the un-
correlated functions [24]. Later, Zhang and Lan [24]
merged with the GSF mathematics [46]. Servadio and
Zanetti [36] also implemented a quadratic update (ex-
tendable to polynomial update of any order) based
on Taylor series expansions. The polynomial update
requires knowledge of high-order central moments,
and [36] carries these moments, exactly like the EKF
carries mean and covariance. The computational de-
mand of carrying higher order central moments (prop-
agating forward in time and updating with measure-
ment data) grows quickly with the truncation order
of the Taylor series, the size of the state vector, and
the order of the polynomial update. Ref. 38 performs
a polynomial update without carrying the higher or-
der central moments and, hence, reduces overall com-
putational cost by approximating non-Gaussian dis-
tributions as polynomial transformation of Gaussian
random variables. In doing so, all high-order cen-
tral moments are easily and efficiently calculated in

a closed form. Consequently, in [38], polynomial up-
dates can be performed much more efficiently than
in [36].

The updatemethodologies presented in [8], [11], [23],
[36], and [38] produce a more precise state estimate than
those produced by a linear state update. This work in-
troduces a higher order update for the covariance ma-
trix as well as for the state update, which results in a
more accurate quantification of the uncertainty associ-
ated with the estimate. In turn, the more accurate uncer-
tainty representation produces a more accurate estima-
tor and, hence, a reduced estimation error.

This article is structured in the following way. First, a
short background section highlights the novel contribu-
tions of the work. This is followed by the development
of the newmethodology and by applications to three nu-
merical examples. Lastly, conclusions are drawn.

II. BACKGROUND

The linear update rule for mean x̂+ and covariance
matrix P+

xx are given by

x̂+ = x̂− + K(ỹ − ŷ−), (1)

P+
xx = P−

xx − KPyyKT , (2)

where K is the Kalman gain, ỹ is the measurement out-
come, ŷ− is the predicted measurement mean, x̂− is the
prior mean, P−

xx is the covariance of the state, and Pyy

is the covariance of the measurement. The above equa-
tions are optimal in anMMSEonly when the prior distri-
bution and themeasurement are jointlyGaussian (which
implies a linear relation between the two). In general, the
MMSE estimate is the conditional mean, an unknown
and typically nonlinear function of the measurement
outcome; Equation (1) is the statistical linear regression
of the conditional mean [25], that is to say, Equation (1)
is the best linear fit of the conditional mean with respect
to a MSE performance index

x̂+ ≈ E

{
x
∣∣∣y = ỹ

}
,

where the approximation holds to first order. Equation
(2), on the other hand, is the total covariance of the esti-
mation error:

P+
xx = E

{
(x − x̂+) (x − x̂+)T

}
,

but it is also the best constant approximation of the con-
ditional covariance of the state given the measurement,
also in an MSE sense.

P+
xx ≈ E

{
(x − E {x}) (x − E {x})T

∣∣∣y = ỹ
}

,

where the approximation holds to zeroth order.
For nonlinear dynamics/measurements, the linear

update equations above are not fully recursive, and pro-
cessing nonlinear measurements as a batch is more ac-
curate than processing them individually [36]. For non-
linear systems, Bayes’ rule can be applied recursively to
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obtain an optimal estimator, that is to say, the quantity
to be calculated recursively is the conditional PDF given
themeasurements outcome.Hence, a linear recursive fil-
ter can be interpreted as an approximated filter where
the distribution of the state given the measurements is
approximately Gaussian with mean x̂+ and covariance
matrix P+

xx.
Experience has shown that the order of the statis-

tical regression approximation of the covariance needs
to be lower than that of the mean in order to ob-
tain good numerical performance of the algorithm. A
zeroth-order covariance approximation, therefore, has
endured as a companion of a linear mean update rule,
but it is also used in higher order update methodolo-
gies [8], [11], [23], [36], [38].Our prior work,HOPUF-�-c
[38], presents a high-order polynomial state update, i.e.,
a higher-than-linear polynomial approximation of the
conditional mean.This article presents a novel higher or-
der polynomial covariance update to better approximate
the conditional covariance than the standard zeroth-
order approach.

A. The Polynomial Estimator

Gaussian filters are linear filters that approximate
the distribution of the state given the measurements as
Gaussian with mean x̂+ and covariance matrix P+

xx. This
is equivalent to approximating the distribution of the
state given the measurements as a linear transformation
of a standard normal. This linear transformation is given
by a shift of x̂+ and a scale of

√
P+
xx.

Our previous work (HOPUF-�-c) expanded this
concept by introducing a filter that approximates the
distribution of the state given the measurements as a
polynomial transformation of standard normal random
variables and uses a higher-than-linear polynomial up-
date function. This work introduces a novel covariance
update technique and uses theHOPUF-�-c state update,
which is summarized here.

Let x be the state of the dynamic system, which is
desired to be estimated, and let y be another random
vector, sampleable, related to x.Estimators are functions
g(y) that infer the unknown value of x based on the
known outcome of y. Polynomial estimators are a subset
of all estimators, which, using the Kronecker operator,
can be written as

g(y) = a + K1y + K2y[2] + K3y[3] + K4y[4] + · · · , (3)

where a is a constant, each Ki is a constant matrix of ap-
propriate dimensions,and each y[i] is calculated using the
Kronecker product

y[i] = y ⊗ y ⊗ y ⊗ · · · . (4)

In order to avoid redundancy, each repeated component
of Equation (4) generated by the Kronecker product is
eliminated, which means that, as an example, only one
term between yiy j and y jyi is kept. It is convenient to

derive the estimator’s constants by working with devia-
tion vectors. Deviation vectors are defined as

dx = x − E {x} , (5)

dy{i} = y[i] − E

{
y[i]

}
. (6)

Deviations have zero mean by construction. The fam-
ily of polynomial estimators defined by Equation (3) is
redefined by adding and subtracting constants, in order
to obtain a new, but theoretically equivalent, polynomial
estimator family

g(y) = a + E {x} + K1(y − E
{
y
}
)

+ K2

(
y[2] − E

{
y[2]

} )
+ K3

(
y[3] − E

{
y[3]

} )
+ · · ·

= a + E {x} + K1dy + K2 dy{2} + K3 dy{3} + · · ·
(7)

= a + E {x} + KdY, (8)

where both the measurement residual with its powers,
dY , and the matrices Ki are stacked:

K = [
K1 K2 K3 . . .

]
, (9)

dY = [
dyT dy{2}T dy{2}T . . .

]T
. (10)

The optimal estimator, in an MMSE sense, satisfies the
orthogonality principle, from which it follows that the
optimal polynomial update estimator becomes

x̂ = E {x} + PxYP−1
YYdY . (11)

Matrices PxY and PYY are the augmented state-
measurement cross-covariance matrix and the aug-
mented measurement covariance matrix, respectively.
These matrices are constructed blockwise by using co-
variancesPxy[ j] andPy[i]y[ j] , for any combination of i and j.
As an example,Py[3]y[4] indicates the covariance between
the third-order measurement vector y[3] and the fourth-
order y[4]. Since deviations have zero mean by construc-
tion, the identities Py[i]y[ j] = Pdy{i}dy{ j} and Pxy[ j] = Pdxdy{ j}

are valid ∀i, j ∈ N0.

B. Differential Algebra

In this work,Gaussian random vectors undergo non-
linear (polynomial) transformations. The methodology
used here to approximate these transformations is dif-
ferential algebra (DA) via theDifferential Algebra Core
Engine (DACE2.0) software program. DA is used as a
tool to implement the polynomial filter. Other approx-
imations of nonlinear transformations are also possible
but not considered here; ref. 23, for example, used the
Unscented Transformation.

The theory of DA has been developed by Martin
Berz in the late 1980s [7]. The DA framework is an alge-
bra of Taylor polynomials.All functions are represented
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through a matrix of coefficients and exponents rather
than the classical representation with an array of float-
ing point (FP) numbers. The DACE2.0 [27] software has
a hard-coded library of the Taylor series expansion of
elementary functions. As a consequence, derivatives are
not computed numerically (e.g., finite differences), but
evaluated directly from the Taylor polynomials. DA of-
fers a way of working in a computer environment where
the algebra of polynomials is endowed of composition
of function, function inversions, explicit system solving,
etc., as in the standard FP arithmetic.

DA has been proven to reduce computational costs
in solving ordinary differential equations (ODEs) [28].
Once the maximum truncation order of the polynomial
is selected,DA creates the Taylor polynomial expansion
of the flow of ODEs as a function of the provided initial
conditions. This approach can replace thousands of in-
tegrations with the computationally faster evaluation of
the Taylor expansion [5]. As a result, the computational
burden reduces considerably [42]. In the filtering prob-
lem,DA techniques have been used for the development
of an efficient mapping of uncertainties [43] and for the
evaluation of high-order moments [4]. Wittig et al. [45]
developed a domain splitting technique that improves
the state propagation when initial uncertainties are large
by creating multiple polynomials.

The main concept of DA is that each function f (x)
can be expressed as a polynomial p(δx), where the new
variable δx is the deviation from the expansion center x̂.
The polynomial p(δx) is the Taylor series expansion of
f (x), centered at x̂, and truncated up to a user-selected
order c.

For a detailed description of DA, its techniques, and
how the DACE2.0 works in a computer environment,
the reader is referred to the references.

III. THE STATE AND COVARIANCE ESTIMATION
FILTER

A new filtering technique, based on a double poly-
nomial estimator, is proposed in the DA framework.
The double nature of the filter refers to the sequen-
tial estimation of the state and the covariance, where, at
each time-step, the same measurement outcome is used
twice to achievematching between the conditioned state
mean and its relative uncertainty spread.

Consider the generic dynamic system described by
the following equations of motion and measurement
equations:

xk+1 = f(xk) + vk, (12)

yk+1 = h(xk+1) + wk+1, (13)

where f(·) is the dynamics function, xk is the
n-dimensional state of the system at time-step k, yk+1

is the m-dimensional measurement vector at time-step
k + 1, and h(·) is the measurement function. The noises

are assumed to be zero-mean Gaussians and uncorre-
lated, such that their distribution is fully described by
the first two moments. For all discrete time indexes i
and j

E

{
viwT

j

}
= 0, (14)

E

{
vivTj

}
= Qiδi j, (15)

E

{
wiwT

j

}
= Riδi j, (16)

where Qi is the process noise autocovariance function,
whileRi is for the measurement noise. The initial condi-
tion of the state of the system is assumed to be Gaussian
as well x0 ∼ N (x̂0,P0); however, for all other time-steps
k > 0, the state distribution will be non-Gaussian due
the nonlinearities in the dynamics.

The main result of this article, the State And Covari-
ance Estimation Filter (SACE-c-η-μ), shares the predic-
tion step with our previous work [38] and introduces a
new update technique. The single distribution used in
SACE-c-η-μ is expanded using Gaussian Multiple Mod-
els (GMMs) theory [30] to create the Multiple Models
State And Covariance Estimation Filter (SACEMM-c-
η-μ).

SACE-c-η-μ is composed of three different parts: the
prediction, the state update, and the covariance update.
The three integers c, η, and μ in SACE-c-η-μ refer to
the tuning parameters of the filter:They are, respectively,
the order of the Taylor polynomial approximation of f(·)
and h(·), (c), the order of the state polynomial update,
(η), and the order of the covariance polynomial update,
(μ).

A. Prediction

At the beginning of each time-step, the state distri-
bution is assumed to be Gaussian xk ∼ N (x̂k,Pk). The
state can, therefore, be initialized in the DA framework
as a first-order polynomial

xk = xk(δxk) = x̂k + Skδxk, (17)

where SkSTk = Pk, and the DA variable δxk = xk − x̂k ex-
presses the deviation from the expansion center, and it
is interpreted as a Gaussian with zero mean and iden-
tity covariance matrix. Therefore, matrix Sk (here cal-
culated through Cholesky Decomposition) scales the
coefficients of the state polynomial and results in the
moments of xk easily calculated from the moments of
N (0, I).

The propagation function is applied directly to the
state polynomial, such that the predicted state vector is

x−
k+1 = x−

k+1(δxk) = f
(
xk(δxk)

)
, (18)

where x−
k+1 indicates the Taylor series expansion of the

dynamics centered at x̂k and truncated at the user-
defined integer order c. Equation (18) is carried out in
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the DA framework. Each component of x−
k+1 is a poly-

nomial map (centered at x̂k) that maps deviations (δxk)
from time-step k to time-step k + 1 and describes how
the state PDF evolves in time. The predicted polynomi-
als are lacking the influence of the process noise. Pro-
cess noise can be mapped in the DA framework with the
same representation reserved for the state of the system.
Thus, a newDA variable δvk, interpreted again as a stan-
dard normal random vector, is introduced:

x−
k+1(δxk, δvk) := x−

k+1(δxk) + Tkδvk, (19)

where vk = Tkδvk and TkTT
k = Qk.

Analogously, the predicted measurement is ex-
pressed as a Taylor polynomial expansion in the DA
framework:

yk+1 = yk+1(δxk, δvk) = h
(
x−
k+1(δxk, δvk)

)
, (20)

where yk+1 is, again, a polynomial centered at x̂k with
maximum order c. In Equation (20), the expansion is
now with respect to both the state deviation vector
(δxk) and the process noise (δvk). The influence of the
measurement noise is added to the polynomials like in
Equation (19). A new DA variable δwk+1 is introduced

yk+1(δxk, δvk, δwk+1) := yk+1(δxk, δvk) + Uk+1δwk+1,

(21)
where wk = Ukδwk and UkUT

k = Rk. Once again, δwk+1

is interpreted as a standard normal random vector.
All the predicted quantities have been calculated,

and they are represented as polynomial functions of
standard random vectors. The number of variables is
2n + m: n deviations map the state behavior, n map the
process noise, and the remaining m map the measure-
ment noise. The Gaussian nature of the random vectors
leads to a fast evaluation of all expectation operations
since, for a Gaussian PDF, central moments can be eas-
ily computed using Isserlis’ formulation [17].

B. The State Polynomial Update

The second part of SACE-c-η-μ is the state polyno-
mial update. After selecting the integer c in the predic-
tion step, the user defines a second integer, η, which se-
lects the order of the polynomial estimator dedicated to
the state of the system.

The polynomial update evaluates the augmented
Kalman gain and for high powers of the measurement
polynomials. Starting from the latter,

y[2]k+1 = yk+1 ⊗ yk+1, (22)

y[i]k+1 = yk+1 ⊗ yk+1 ⊗ . . . (23)

with i = 1, . . . , η, and, once again, the redundant com-
ponents are eliminated, in order to have independent
measurements.

The means of the predicted state polynomials are
now evaluated. Each polynomial undergoes the expec-

Table I
Isserlis’ Moments of Gaussian N (0, 1)

Exponent 0 1 2 3 4 5 6 7 8 ...
Coefficient 1 0 1 0 3 0 15 0 105 ...

tation operator,which, being a linear operator,works di-
rectly on the single monomials of the expansion [34].

x̂− = E
{
x−
k+1

}
. (24)

The deviations have a Gaussian distribution with zero
mean and identity covariance matrix; therefore, the ex-
pected value substitutes the relative Isserlis’ moment in
for each monomial, according to Table I.

For example: E
{
αδx81δx

4
2δx

6
4δv

2
2δw

4
3

} = 4725α. The
predicted means of the measurement polynomials are
similarly evaluated using Equation (24):

ŷk+1 = E
{
yk+1

}
, (25)

ŷ[2]k+1 = E

{
y[2]k+1

}
, (26)

ŷ[i]k+1 = E

{
y[i]k+1

}
, (27)

where, once again, i = 1, . . . , η.
The augmented measurement covariance PYY,[η] is

evaluated blockwise.Thematrix is guaranteed to be non-
singular because redundant rows and columns have been
eliminated. The matrix is symmetric and each block is
evaluated as

Py[i]y[ j] = E

{(
y[i]k+1 − ŷ[i]k+1

)(
y[ j]k+1 − ŷ[ j]k+1

)T
}

, (28)

∀i, j = 1, . . . , η. Every time a polynomial multiplies it-
self, the maximum truncation order of the Taylor series
doubles. For example, the evaluation of Py[5]y[3] applies
the expectation operator to a polynomial with monomi-
als up to order 8c. The augmented state-measurement
cross-covariance matrix PxY,[η] is evaluated blockwise,
and each block is evaluated as

Pxy[i] = E

{
(x−

k+1 − x̂−
k+1)

(
y[i]k+1 − ŷ[i]k+1

)T
}

, (29)

∀i = 1, . . . , η. The subscript [η] specifies that the covari-
ance matrices are created with measurement powers up
to order η. From these covariances, it is now possible to
evaluate the augmented Kalman gain

K = PxY,[η]P−1
YY,[η]. (30)

Denote with ỹk+1 the numerical outcome of the ran-
dom vector yk+1, its powers are evaluated using the
Kronecker product

ỹ[2]k+1 = ỹk+1 ⊗ ỹk+1, (31)

ỹ[i]k+1 = ỹk+1 ⊗ ỹk+1 ⊗ · · · (32)

130 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 16, NO. 2 DECEMBER 2021



with i = 1, . . . , η, and, once again, the redundant com-
ponents are eliminated. The polynomial update exploits
the influence of high powers from the measurement out-
come. The measurement residual is developed to create
the augmented innovation vector

dỸ(δxk, δvk, δwk+1) =

⎡
⎢⎢⎣
ỹk+1 − yk+1(δxk, δvk, δwk+1)
ỹ[2]k+1 − y[2]k+1(δxk, δvk, δwk+1)

. . .

ỹ[η]k+1 − y[η]k+1(δxk, δvk, δwk+1)

⎤
⎥⎥⎦ .

(33)
The updated distribution (polynomial) of the state is
given by

x+
k+1(δxk, δvk, δwk+1)

= x−
k+1(δxk, δvk) + KdỸ(δxk, δvk, δwk+1), (34)

and the posterior estimate is its mean

x̂+
k+1 = E

{
x+
k+1(δxk, δvk, δwk+1)

}
(35)

evaluated, through Isserlis’s moments, monomial by
monomial using Table I.

Equation (34) shows that the state polynomials are a
function of the three different deviations: the state devi-
ation, the process noise,and themeasurement noise.Fur-
thermore, the new order of the polynomial is increased
by a factor η, dictated by the order of the polynomial
update. If the order of the polynomial approximation of
the prior distribution (x−

k+1(δxk, δvk)) is c, then the order
of the posterior polynomial (x+

k+1(δxk, δvk, δwk+1)) is ηc.
The higher the polynomial order, the higher the number
of moments to be calculated by Table I, which leads to a
higher computational burden.

C. The Covariance Polynomial Update

The third, and last, part of SACE-c-η-μ is the co-
variance polynomial update. After having estimated the
state of the system, SACE-c-η-μ applies a second poly-
nomial estimator to identify the value of the state covari-
ance conditioned to the measurements. Therefore, the
user defines one last integer parameter,μ, that specifies
the order of the covariance polynomial update. Unlike
previous tuning parameters, μ cannot be freely chosen,
but it has to respect the inequalityμ < η.The covariance
cannot have an higher update order than the state.

The covariance matrix is obtained as

Pxx,k+1 = E
{
(x+

k+1 − x̂+
k+1)(x

+
k+1 − x̂+

k+1)
T}

. (36)

This value shows the average spread of the posterior dis-
tribution among all different possible outcomes, ỹ, of the
random variable y.Equation (36) is the equivalent of the
classical covariance update formulation, Equation (2),
that is used in the most common filters such as EKF,
UKF, QKF, CBF, Central Difference Filter, and GSOF.
Therefore, even if correct, using the average error co-
variance does not extract all the possible information
from the measurement outcome. Similar to the polyno-

mial formulation for estimating the state presented in
Equation (7), Equation (36) can be seen as a zeroth-
order polynomial estimator of the covariance matrix.

A new approach is, therefore, presented in which the
estimate of the covariance is performed to order higher
than zero. Define a polynomial vector, ρk+1, as the co-
variance polynomial

ρ−
k+1(δxk, δvk, δwk+1) = (x+

k+1 − x̂+
k+1) ⊗ (x+

k+1 − x̂+
k+1),
(37)

where, in order to reduce the computational burden,
the redundant terms of the symmetric covariance ma-
trix have been eliminated, e.g., the upper diagonal terms
are removed. The covariance polynomial maximum or-
der is 2ηc, being the square of the posterior distribution.
The mean of ρk+1 is exactly the vectorized version of the
covariance matrix expressed in Equation (36):

ρ̂−
k+1 = E

{
ρ−
k+1(δxk, δvk, δwk+1)

}
, (38)

= stack(Pxx,k+1), (39)

where the stack() operator indicates the vectorization of
a matrix, performed by stacking columns on top of each
other.The covariance update is treated in the sameman-
ner as the state vector: adding to a known prior a poly-
nomial function of the measurement outcome ỹk+1. This
second polynomial update provides an updated covari-
ance value that better represents the state estimate’s un-
certainty.

The starting point is the already computed aug-
mented measurement covariance matrix PYY,[μ]. The
constrain μ < η makes PYY,[μ] a subset of PYY,[η], ob-
tained by selecting the first μ rows and columns. The
cross-covariance matrix PρY,[μ] is evaluated block-wise:

PρY,[μ] = [
Pρy Pρy[2] Pρy[3] . . .

]
, (40)

similarly to PxY,[η]. Each block is obtained as

Pρy[i] = E

{
(ρ−

k+1 − ρ̂−
k+1)

(
y[i]k+1 − ŷ[i]k+1

)T
}

(41)

with i = 1, . . . , μ. The Kalman gain associated with the
covariance correction is calculated as

G = PρY,[μ]P−1
YY,[μ]. (42)

The covariance is updated to its posterior estimate as

ρ̂+
k+1 = ρ̂−

k+1 + G

⎡
⎢⎢⎣
ỹk+1 − ŷk+1

ỹ[2]k+1 − ŷ[2]k+1
. . .

ỹ[μ]k+1 − ŷ[μ]k+1

⎤
⎥⎥⎦ , (43)

where the influence of the measurement is weighted by
the augmented Kalman gain. Before starting the next it-
eration, vector ρ̂+

k+1 is brought back to its matrix formu-
lation

P̂xx,k+1 = matrix(ρ̂+
k+1), (44)

where the matrix() operator is the inverse of the stack()
operator.
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The updated posterior distribution can be approxi-
mated as Gaussian with mean x̂+

k+1 and covariance ma-
trix P̂xx,k+1 to start the next iteration fromEquation (17),
where the DA variables related to the noises are dis-
carded and a new state deviation vector is initialized.

SACE-c-η-μ contains three tuning parameters to en-
hance the performance of classic estimators. In fact,
SACE-1-1-0 reduces to the EKF, and SACE-2-1-0 is the
GSOF. The polynomial estimator better weights the in-
formation from the measurement by computing high-
order central moments. The increase in accuracy is paid
by an increase in computational effort, which practically
limits the filter’s order selection. The highest polyno-
mial order the filter has to compute (in the evaluation
of Pρy[μ] ) is (2η + μ)c.

The computational time required by the filter de-
pends on the selection of its three tuning parameters and
on the dimension of the state vector. SACE-c-η-μ is not
suitable for extremely large systems because of the expo-
nential grow in the number of monomials in the Taylor
expansion [9].An in-depth analysis of the computational
time of filters developed in the DACE2.0 framework is
presented in [12]. The reference portraits an exhaustive
analysis of the execution time on the BeagleBone Black
(BBB) Single Board Computer, with particular focus on
the duty cycles of filter execution on BBB and its depen-
dency on the Taylor truncation order.

IV. THE MULTIPLE MODELS SPACE AND
COVARIANCE ESTIMATION FILTER

SACE-c-η-μ approximates the time propagation of
the state with one single polynomial representation of
the flow. However, as the Taylor polynomial series gets
farther away from the expansion center, it becomes less
accurate. Therefore, when the initial uncertainties of the
state distribution are extremely large, a single polyno-
mial map may not be sufficient to truthfully describe the
predicted PDF [45]. Splitting the initial uncertainties in
multiple (smaller) subdomains aids the filter in reaching
convergence. Thus, a second filter called SACEMM-c-
η-μ merges SACE-c-η-μ with the GMM formulation. In
the DA framework, multiple models translate into mul-
tiple polynomials.

A. Initialization

The initial state distribution is assumed to be Gaus-
sian x0 ∼ N (x̂0,P0). The initialization of the models fol-
lows an analogy with the unscented transformation [20].
Therefore, the initial domain is divided into θ = 2n + 1
models, where n is the number of states. Each ith model
is aGaussian withmean x̂0,{i} and covarianceP0,{i}.Being
symmetric, the state covariancematrix can be elaborated
into its eigenvalue decomposition

P0 = VDVT , (45)

where V is the matrix of eigenvectors that describes the
orientation of the uncertainty ellipsoids, and the diago-
nal matrix of eigenvalues D describes the magnitude of
the uncertainties. The mean of each Gaussian kernel is
selected as

x̂0,{0} = x̂0, (46)

x̂0,{ j} = x̂0 + VD j, j = 1, . . . ,n, (47)

x̂0,{ j} = x̂0 + VD j−n, j = n+ 1, . . . , 2n, (48)

where D j indicates the jth column of the matrix. The
centers of the models lie on the principal axes and their
initial weights are proportional to their probability with
respect to the initial distribution

ω0,{i} = (2π )−n/2

W0
√
detP0

exp
(

−1
2
(x̂0,{i} − x̂0)

T P−1
0 (x̂0,{i} − x̂0)

)
, (49)

W0 =
θ−1∑
i=0

ω0,{i}, (50)

where W0 normalizes the weights such that their sum is
unity. The models are assumed to share the same covari-
ance, and they all have the same initial level of uncer-
tainty

P0,{ j} = P0 + x0xT0 −
θ−1∑
i=0

ω0,{i}x0,{i}xT0,{i} (51)

with j = 0, . . . , θ − 1. Therefore, at the beginning of
the first iteration, the initial Gaussian distribution has
been divided into θ smaller Gaussian kernels x0,{i} ∼
N (x̂0,{i},P0,{i}) with the same covariance matrix and
means on the principal axes, selected as sigma points
from the unscented transformation.

B. Prediction

The models have been initialized as Gaussian ker-
nels. SACEMM-c-η-μ applies SACE-c-η-μ on each ker-
nel like it were operating by its own. As a consequence,
θ different polynomials are created in the DA frame-
works, and θ polynomial maps of the flow describe the
time propagation of the state.

Pk,{i} = Sk,{i}STk,{i}, (52)

δxk,{i} = xk,{i} − x̂k,{i}, (53)

xk,{i} = xk,{i}(δxk,{i}) = x̂k,{i} + Sk,{i}δxk,{i}, (54)

x−
k+1,{i} = x−

k+1,{i}(δxk,{i}) = f
(
xk,{i}(δxk,{i})

)
, (55)

with i = 0, . . . , θ − 1. Multiple Taylor series expansions
improve the approximation accuracy of the polynomial
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maps since, at the boundaries, deviations are closer to
their relative centers. Following SACE-c-η-μ for each
model, the process noise is mapped on each polynomial
expansion:

vk,{i} = Tkδvk,{i}, (56)

x−
k+1,{i}(δxk,{i}, δvk,{i}) := x−

k+1,{i}(δxk,{i}) + Tkδvk,{i},
(57)

and a measurement polynomial is evaluated for each
kernel:

wk+1,{i} = Uk+1δwk+1,{i}, (58)

yk+1,{i} = yk+1,{i}(δxk,{i}, δvk,{i}),

= h
(
x−
k+1,{i}(δxk,{i}, δvk,{i})

)
. (59)

Measurement noise is added in the DA framework

yk+1,{i}(δxk,{i}, δvk,{i}, δwk+1,{i}) :=
yk+1,{i}(δxk,{i}, δvk,{i}) + Uk+1δwk+1,{i} (60)

such that the prediction step is completed for eachGaus-
sian kernel.

C. The State and Covariance Polynomial Update

The prediction step has been exploited by the intro-
duction of multiple polynomials. In the update step, each
kernel undergoes the polynomial update for the state
and for the covariance described by SACE-c-η-μ.There-
fore, after having selected η and μ as the orders for the
polynomial estimators, the state posterior estimate and
the conditional covariance of each model are evaluated
as

x+
k+1,{i}(δxk,{i}, δvk,{i}, δwk+1,{i}) = x−

k+1,{i} + K{i}dỸ{i},
(61)

x̂+
k+1,{i} = E

{
x+
k+1,{i}(δxk,{i}, δvk,{i}, δwk+1,{i}

}
, (62)

and

ρ̂+
k+1,{i} = ρ̂−

k+1,{i} + G{i}

⎡
⎢⎢⎢⎣
ỹk+1,{i} − ŷk+1,{i}
ỹ[2]k+1,{i} − ŷ[2]k+1,{i}

. . .

ỹ[μ]k+1,{i} − ŷ[μ]k+1,{i}

⎤
⎥⎥⎥⎦ , (63)

P̂xx,k+1,{i} = matrix(ρ̂+
k+1,{i}), (64)

with i = 0, . . . , θ − 1. Every Kalman gain and expec-
tation has been calculated according to the polynomial
estimator theory and using Table I, since each deviation
is interpreted as a standard normal random vector.

The influence of each ith Gaussian to the poste-
rior PDF needs to be updated as well. The posterior
distribution of the probability of each Gaussian given
the measurements can be evaluated using Bayes’ rule.
Therefore, the updated weight of each model is propor-
tional to its measurement likelihood. Let us define with

P(yk+1|i,Yk) the probability of ỹk+1 to be the outcome
from the ith Gaussian:

P(ỹk+1|i,Yk) = (2π )−m/2√
detPyy,{i}

exp
(

−1
2
(ỹk+1 − ŷk+1,{i})P−1

yy,{i} (ỹk+1 − ŷk+1,{i})
)

,

(65)

where Yk indicates all the measurement realizations up
to time-step k.Theweight update formulation is derived,
for the ith kernel, as

ωk+1,{i} = P(i|Yk+1)

= P(i|ỹk+1,Yk)

= P(i, ỹk+1|Yk)
P(ỹk+1|Yk)

= P(i, ỹk+1|Yk)∑θ−1
j=0 P( j, ỹk+1|Yk)

= P(ỹk+1|i,Yk)P(i|Yk)∑θ−1
j=0 P( j, ỹk+1|Yk)

= P(ỹk+1|i,Yk)∑θ−1
j=0 ωk,{ j}P(ỹk+1| j,Yk)

ωk,{i}, (66)

where the denominator normalizes the weights such that
they sum to unity. Equation (66) is recursive and modi-
fies the importance of each model based on how likeli-
hood it could have generated themeasurement outcome.

The filtering algorithm has ended, and it can start the
following iteration from x̂+

k+1,{i}, P̂xx,k+1,{i}, andωk+1,{i} for
eachmodel.However, theweighted state estimate, x̄, and
covariance, P̄, are calculated for downstream users, and
they are used to assess the performance of the filtering
technique.

x̄ =
θ∑
i=0

ωk+1,{i}x̂+
k+1,{i}, (67)

P̄ = −x̄x̄T +
θ∑
i=0

ωk+1,{i}
(
P̂xx,k+1,{i} + x̂+

k+1,{i}x̂
+T
k+1,{i}

)
.

(68)

Once again, for basic parameters, SACEMM-c-η-μ
reduces towell-known filters: In fact,picking SACEMM-
1-1-0 reduces to the GSF. The computational complex-
ity of SACEMM-c-η-μ is approximately θ times bigger
when compared to SACE-c-η-μ. Therefore, it is advised
to operate the multiple-model technique when the ini-
tial state uncertainties are particularly large, or when the
time-step is long enough that one polynomial approxi-
mation is not sufficient to adequately represent the flow
of the dynamics. Therefore, for problems with high ini-
tial uncertainty,SACEMM-c-η-μ can be used for the first
few iteration steps and then replaced with SACE-c-η-μ
once the sate error covariance has decreased.
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V. NUMERICAL EXAMPLES

The proposed filtering techniques have been applied
to three different scenarios. First, a scalar application
gives a visual representation of how the new update al-
gorithm works and highlights the innovative features as
compared to other estimators. The second problem con-
sists of a tracking application where the system under-
goes the highly nonlinear dynamics of a Lorenz96 sys-
tem. The third application uses Lorenz63 dynamics to
underline the benefits of the multiple model filtering
technique.

A. Scalar Problem

A simple scalar problem is presented here to high-
light the improvements of the new filtering technique
by estimating the conditional covariance. It has already
been proven that high-order polynomial estimators are a
better approximation of the true MMSE [38]. However,

the presented example underlines thematching between
state and covariance for each different realization of the
measurement.

Define a normal prior state distribution x ∼
N (1, 0.02) and a measurement

y = 1/x+ ν, (69)

where ν ∼ N (0, 0.003) is independent of x and repre-
sents the measurement noise.

Fig. 1 shows the true joint distribution of x and y rep-
resented using 105 points (gray dots in the figure). The
figure compares SACE-c-η-μ and SACEMM-c-η-μ with
a few common estimators: the EKF, the UKF, the GSF,
the Iterated Extended Kalamn Filter (IEKF) [6], the PF,
and the high-order EKF (DAHO-k) [43]. The first row
of graphs (EKF,UKF,DAHO-3) contains linear estima-
tors; therefore, their representation on the (x, y) plane
is a straight line, shown in red. The slope of the red line
is the Kalman gain, whose optimal value is PxyP−1

yy . The
different slopes shown by the different linear estimators

Fig. 1. Comparison among different estimators. Posterior distribution (gray), the estimator functions (red), and their confidence levels (green).
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are due to the different approximations each linear fil-
ter employs to evaluate the moments. The EKF applies
basic linearization (Jacobians), the UKF uses the un-
scented transformation, and DAHO-3 uses Taylor poly-
nomials up to the third order. The green lines depict
the filter’s own assessment of the estimation error un-
certainty as a ±3σ boundary. The different evaluations
of the moments lead to different values on the estima-
tion of the variance, as it follows Equation (2).The green
lines share the same slope of the corresponding red line:
They are just translated left (and right) by 3σ . These lin-
ear filters estimate the same uncertainty level regardless
of the measurement outcome, and the predicted covari-
ance value is the mean among all the possible different
realizations.

The second row of graphs in Fig. 1 shows nonlinear
estimators. The GSF has been implemented with three
models, which allows the estimator function, red line, to
follow the curved shape of the posterior distribution.
However, when the likelihood of one model becomes
predominant with respect to the others, theGSF behaves
similarly to the EKF: This aspect is mostly evident near
the tails of the distribution. The estimated covariance
of the GSF is a function of the measurement because it
is evaluated as a weighted mean among all the models,
whose importance weight is based on their likelihood.
However, the ±3σ green lines show the same problems
of linear estimators: The lines are able to change slope
when the models have approximately the same weight;
otherwise, they are straight. Furthermore, since the GSF
can be intended as multiple EKFs with reduced subdo-
mains, the filter shows the same behavior of the linear es-
timator at the edges of the posterior PDF.The IEKF per-
forms multiple updates to repeatedly calculate the mea-
surement Jacobian each time linearizing with respect to
the most current estimate. The IEKF minimizes a non-
linear least-squares performance index that, for appro-
priate probability distributions functions, approximates
the maximum a posteriori (MAP) estimate. As such, the
IEKF is a nonlinear estimator,and its red line follows the
bend of the posterior distribution, setting on the most
likely value of x for each measurement outcome y. The
±3σ green lines correctly bound the distribution; how-
ever, the IEKF is not necessary an unbiased filter, and
choosing the peak of the posterior distribution does not
necessarily minimize the MSE.Hence, the IEKF’s MSE
is often larger than filters based on the MMSE principle
[37]. The third nonlinear estimator presented in Fig. 1
is the PF. PFs are accurate nonlinear estimators that use
an ensemble of weighted particles to calculate the state
estimate.Theweight of each particle depends on itsmea-
surement likelihood.Both the state estimate and the pre-
dicted error covariance are (nonlinear) functions of the
measurements. The graph shows that the PF estimates
do not form well-defined lines, but the state and covari-
ance estimate values depend on the randomness of the
data. In other words, while in the EKF the state esti-
mates from two separate updates with the same mea-

surement outcome give exactly the same value, two PF
estimates depend on the randomness of the initial en-
semble used to generate them. Consequently, the green
and red “lines” of the PF become thicker while moving
towards the tails of the posterior distribution.

In the third row, SACE-3-5-2 and SACEMM-3-5-
2 are reported. The fifth-order polynomial estimator is
able to follow the curved shape of the joint distribu-
tion, and it accurately approximates the true MMSE.
The optimal MMSE is the conditional mean, which vi-
sually is the line that divides in half the distribution of
y, as horizontal spread of points, for each value of x.
Therefore, while EKF, UKF, and DAHO-3 can be in-
terpreted as different linear approximations of the true
MMSE,SACE-3-5-2 represents a fifth-order approxima-
tion, which shows a more accurate result. By increas-
ing the estimator order η to infinity, SACE-c-η-μ would
asymptotically reach the true MMSE. The green lines
related to SACE-3-5-2 show how the uncertainty level
has become a (nonlinear) function of the measurement.
The ±3σ boundary increases and tightens depending
on the horizontal spread of samples around the estima-
tor function. For example, when the current measure-
ment is y = 1, SACE-3-5-2 gives its estimate with a
level of uncertainty that matches the spread of the gray
points on the line y = 1. When the sensor gives y = 2,
SACE-3-5-2 outputs a level of confidence in its estimate
higher than in the previous case, since the spread of the
gray samples around its estimate at y = 2 is tighter.
Therefore, the estimated covariance of the filter is a func-
tion of the measurement, and the performance improves
drastically because the uncertainty level always matches
the estimate, providing a more reliable outcome. There
appear to be no influential benefits in applying the
multiple model polynomial estimator: SACEMM-3-5-2
behaves similarly to its single-model counterpart and
shares the same features.However, at the tails of the dis-
tribution,SACEMM-3-5-2 estimated conditional covari-
ance better follows the distribution of the samples.

The accuracy level reached by each filter is com-
pared in Fig. 2, where the results of a RMSE analysis is
reported.

RMSE =

√√√√∑Nsamples

i=1 (xi − x̂+
i )

2

Nsamples
. (70)

The RMSE of each estimator is evaluated using the
entire set of 105 points. The bars show that SACE-3-5-2
is the most accurate filter, while the linear estimators
are the least. However, a more precise approximation
of the measurement equation leads to a smaller RMSE
and to a more precise estimate, as proven by DAHO-3
(third-order Taylor polynomial) being the most accurate
among the other linear estimators. The IEKF shares the
same accuracy level as DAHO-3,while the other nonlin-
ear estimators have lower RMSE. Two PF implementa-
tions are shown with different numbers of particles: 103
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Fig. 2. Comparison of RMSE and computational time among different estimators.

and 104. It has error levels comparable with SACE-3-5-2,
and the PF with 104 particles has a heavier computa-
tional burden. Fig. 2 reports, in orange, the average GPU
time of each estimator, evaluated among all the 105 runs
shown in Fig.1.As expected,PF-1e4 has the highest com-
putational time, while linear estimators have the lowest.
SACE-3-5-2 achieves the best accuracy levels compara-
ble to sample-based filters in a shorter amount of time,
although the performance of all nonlinear filters is very
similar in this simple motivating example.

The proposed scalar problem shows no significant
difference between SACE-c-η-μ and SACEMM-c-η-μ.
Let us increase the prior uncertainty level to x ∼
N (1, 0.03) in order to underline the benefits of having
multiple models. Fig. 3 shows the estimator function and
confidence level of the two filters, along with the joint
distribution. SACE-3-5-2 outputs unphysical results for
the predicted conditional covariance of the state: a neg-
ative value of σ 2. The initial prior uncertainties are ex-
cessively large to allow the filter to work properly. On
the left tail of the join distribution, the variance becomes
negative and that is represented by the green lines over-
lapping the red one, to show that the filtering algorithm is
not functioning correctly. SACEMM-3-5-2, on the other
hand, has no issues in estimating correctly both the state
and the covariance for all possible outcomes of the mea-
surement.The green lines bound the samples of the joint
distribution narrowing and widening as needed.The cor-
rect result is connected to the reduced initial covariance
associated with eachmodel,which increases the filter ro-
bustness and performance.

The proposed problem underlines a couple of char-
acteristics of the proposed algorithms. Unlike the linear
and Gaussian cases, the conditional covariance and the
estimation error covariance are different. Linear filters
employ the estimation error covariance,which expresses
the average spread of the estimation error over all pos-
sible measurement realizations. This is a good metric,
but once a measurement is actually available to process,
the covariance conditioned on the actual measurement
outcome is a more informative quantity, because it pro-

vides the spread of the estimation error for the actual
value of y. In fact, the conditional covariance is a (non-
linear) function of the measurement whose evaluation is
usually not feasible. SACE-c-η-μ and SACEMM-c-η-μ
use a polynomial estimator to approximate the function,
achieving better results with respect to filters that do not.

B. Lorenz96 System

The performance of the proposed filter is tested on a
Lorenz96 example [30], where the state dynamics are

dxi(t)
dt

= xi−1(t)(xi+1(t) − xi−2(t)) − xi(t) + F + νi(t),

(71)

with i = 1, . . . , 4, since x(t) is selected to be
four-dimensional. The following conventions are used:
x−1(t) = xn−1(t), x0(t) = xn(t), and x1(t) = xn+1(t).
The term F is a constant external force with value cho-
sen equal to 8, since it introduces a chaotic behavior in
the system. The initial condition is assumed to be Gaus-
sian, with mean x̂ = [

F F F + 0.01 F
]T and diago-

nal covariance matrix, with the same standard deviation
for each component of the state: σx = 10−3. The pro-
cess noise is assumed to be Gaussian and uncorrelated
among states, with known standard deviation σν = 10−3.
The dynamics are propagated at 2 Hz for a total of 20
s. The measurements are obtained at each time-step ac-
cording to the following model:

yk = Hx(tk) + μk, Hi, j =
{
1 j = 2i− 1
0 otherwise (72)

with i = {1, 2} and j = {1, 2, 3, 4}. In other words, the
sensors observe the components of the state with odd in-
dices. Measurement noises are assumed to be Gaussian
and uncorrelated within each other and with the process
noise. The standard deviation is selected as σμ = 0.5:
This value is particularly high, and filters based on linear
estimators are not able to track the state of the system
and achieve convergence [38].
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Fig. 3. SACE-3-5-2 versus SACEMM-3-5-2. Posterior distribution
(gray), the estimator functions (red), and their confidence levels

(green).

Fig. 4 shows the Monte Carlo analysis results per-
formed with SACE-2-3-2 on the presented application.
The figure shows, for each ith component of the state,
the estimation error of each realization (gray lines), cal-
culated as

ε j,i = x j,i − x̂ j,i, (73)

for each jth time-step.A total of 100 realizations are re-
ported.Fig. 4 describes the error means, in black, and the
error standard deviations, as 3σ values, in blue.The black
lines show that SACE-c-η-μ is an unbiased filter, as ex-
pected from the theory of MMSE estimation. The pre-
dicted error standard deviation, continuous blue line, is
evaluated directly from the updated covariance matrix,
by taking the square root of the diagonal terms. The ef-
fective performance of the filter is assessed by the sam-
ple standard deviation of the Monte Carlo estimation
errors, dashed blue lines. At each time-step, the actual
error covariance of the filter is evaluated by working di-
rectly on the samples. The consistency of SACE-2-3-2 is
established by the overlapping of the dashed and contin-

Fig. 4. Monte Carlo performance analysis with SACE-2-3-2: 100
runs.

uous blue lines, which proves that the filter can correctly
predict its own uncertainty levels.

The performance comparison among different filters
is shown in Fig. 5 through another Monte Carlo analysis
conducted with 100 runs. The figure shows, for each fil-
ter, the comparison between the effective and predicted
error covariance. The continuous lines represent the fil-
ter’s own estimate of the error standard deviation, cal-
culated directly from the updated covariance matrix as
the square root of its trace:

σ̄ =
√
tr(P̂xx). (74)
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Fig. 5. Lorenz96: covariance comparison among different filters.

The dashed lines represent the effective error standard
deviation derived from theMonte Carlo analysis.A con-
sistent filter has the matching between its dashed and
continuous lines,meaning that the estimated uncertainty
level reflects the actual error standard deviation.The top
graph, in Fig. 5 shows how linear estimators, the EKF,
UKF,andDAHO-2,diverge (and break down)while try-
ing to track the state of the system. The measurement
noise level is excessively large, and a linear dependence
on the measurement outcome is not sufficient to achieve
a correct estimate. The EKF lines also represent the be-
havior of the IEKF: Since the measurement is a linear
measurement, the IEKF reduces to the EKF. The UKF
and DAHO-2 use, respectively, the unscented transfor-
mation and second-order Taylor polynomial to improve
the prediction step of the filter and have a more accu-
rate propagated state prior distribution. However, the
update step is still linear and highly influenced by the
noise standard deviation that prevents the evaluation of
a reliable Kalman gain. The polynomial estimator better
weights the information from the measurements using
high-order moments and it achieves convergence and
consistency. Therefore, SACE-2-3-0, in blue, and SACE-
2-3-2, in red, correctly estimate the state of the sys-
tem along the whole simulation. The bottom graph in
Fig. 5 zooms in on the performance of SACE-c-η-μ for
the two different sets of parameters. SACE-2-3-0 shows
a filter whose estimate is a polynomial function of the
measurement, and its estimated covariance is evaluated
as a mean among all possible resolutions; it is not in-
fluenced by the measurement outcome. SACE-2-3-2, on
the other hand, improves accuracy by estimating the co-
variance, giving it the same importance reserved for the
state. Thus, the red lines settle below the blue ones for

the whole simulation, since the predicted error standard
deviation better matches the conditional mean.

C. Lorenz63 System

The performance of the proposed algorithms is also
tested on a Lorenz63 application [30], [41], a challenging
nonlinear system without process noise. The absence of
process noise causes impoverishments in PFs, typically
resulting in unsatisfactory performance. The state of the
system undergoes the following dynamics:

dx1(t)
dt

= α(x2(t) − x1(t)), (75)

dx2(t)
dt

= x1(t)(γ − x3(t)) − x2(t), (76)

dx3(t)
dt

= x1(t)x2(t) − βx3(t), (77)

where α = 10, β = 8/3, and γ = 28. For this selection
of parameters, the Lorenz system has chaotic solutions.
Almost all initial points will tend to the invariant set,
the Lorenz attractor. In the presented application, the
initial condition is assumed to be Gaussian with mean
x̂ = [

10 10 10
]T and diagonal covariance matrix, with

the same standard deviation for each component of the
state: σx = 2.5. The state is integrated in time at 30 Hz,
with observations taken at each time-step. The measure-
mentmodel consists of the range of the state from origin

yk =
√
x1(tk)2 + x2(tk)2 + x3(tk)2 + μk, (78)

where measurement noise is assumed to be Gaussian
with zero mean and standard deviation σμ = 1.

Fig. 6 shows, on the top, one of the trajectories de-
scribed by the state of the system, in its three compo-
nents. The Lorenz attractor has two main lobes symmet-
ric with respect to the x3 axis: The resulting pathway has
been labeled a “butterfly”shape.AMonteCarlo analysis
with 1000 realizations with SACEMM-2-5-2 is reported
at the bottom of Fig. 6. For each ith component of the
state, the estimation error of each realization is calcu-
lated according to Equation (73), and reported in gray.
Analogously with the previous application, the contin-
uous blue lines represent the predicted error standard
deviations, as 3σ values, of each component, while the
dashed blue lines are the effective error standard devi-
ations, again as 3σ values, calculated directly from the
Monte Carlo realizations at each time-step.The overlap-
ping between the dashed and the continuous lines indi-
cates that SACEMM-2-3-2 is a consistent filter able to
correctly estimate its own uncertainties. The black lines
are the error means, and they prove the unbiased nature
of the proposed filtering technique, as expected from the
MMSE theory.

The performance of the filters have been assessed
through a covariance comparison carried out with mul-
tiple Monte Carlo analyses, each performed with 1000
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Fig. 6. Trajectory and SACEMM-2-3-2 Monte Carlo analysis results:
1000 runs.

runs. Fig. 7 reports, for each filter, the effective and the
predicted error standard deviations. As shown in previ-
ous analysis, the dashed lines represent the actual un-
certainty level of the filter, while the continuous lines
are the filter’s own uncertainty estimate, evaluated ac-
cording to Equation (74). Fig. 7 reports SACE-c-η-μ
and SACEMM-c-η-μ with different sets of parameters.
For the basic selection of SACEMM-1-1-0, the filter re-
duces to the GSF, where the dynamics are linearized
around the current center of each model, and the up-
date is a linear estimator. The GSF is reported with
black lines, and it fails to estimate the state of the sys-
tem. The effective covariance indicates divergence and
goes out of scale with respect to the predicted standard
deviation.

The state of the system is also estimated with a 104

particles BPF, shown in orange, and the IEKF.The IEKF
diverges rapidly and is not reported in the figure since
the errors quickly reach out-of-scale large values. The
linearization of the dynamics employed by the IEKF
is not sufficient to correctly propagate the state covari-

Fig. 7. Lorenz63: covariance comparison and time analysis among
different filters.

ance forward in time. The divergence of the IEKFmight
be connected to the poor time propagation. However,
this issue might be alleviated by using the Levenberg–
Marquardt algorithm [39]. The BPF performs better
than the GSF but shows convergency problems, and it
is not able to achieve an accurate estimate of the state.
TheBPF has issues due to the lack of process noise in the
dynamics.After resampling, the propagated particles are
not spread enough to be an appropriate representation
of the prior uncertainty in order to accurately perform
the measurement update.

SACE-c-η-μ is analyzed with the traditional zeroth-
order covariance estimation, SACE-2-5-0 shown in
green, and with a second-order covariance polynomial
estimator, SACE-2-5-2 in blue. The two filters behave
similarly: They both show convergence with consistency
for the first half of the simulation, and they diverge for
the remaining half. At time-step t = 2.2 s, the state of
the system is near the origin, in between the two lobes
of the Lorenz attractor. This point is critical because,
due to uncertainty, the estimated state may select the
incorrect lobe, while the true state follows the other.
The measurement model, consisting solely of the range,
gives no beneficial information regarding the lobe se-
lection: Thus, the correction terms in the update step
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do not help tracking the state along the correct path.
Consequently, in some realizations of the Monte Carlo
analysis, the filter is tracking the state of the system as
if it were on the incorrect lobe. The radial nature of
the range measurement provides no information to the
estimator about correcting the estimated state because
of the symmetric nature of the “butterfly” trajectory.
Therefore, both SACE-2-5-0 and SACE-2-5-2 show in-
consistency after the critical point,and the effective stan-
dard deviation is bigger than the predicted one. How-
ever, it is worth noticing that the dashed blue line settles
below the dashed green line, indicating an increase in
accuracy achieved due to the estimated covariance be-
ing connected with the measurement outcome. Lastly,
SACEMM-2-3-2 is reported in red, and it is the only fil-
ter that shows convergency and consistency during the
whole length of the simulation. The introduction of mul-
tiple models improves accuracy, especially around the
critical point, where smaller subdomains make it easier
for the filter to follow the right path along the correct
lobe. If a model separates from the others, following the
incorrect lobe, then it is weighted down in order to en-
sure a correct estimation. The division of the system un-
certainties in smaller subdomains helps the filter track
the correct trajectory, while the high-order polynomial
update ensures excellent accuracy levels. SACEMM-c-
η-μ has better performance than SACE-c-η-μ when the
initial uncertainties of the state of the system are excep-
tionally high and when the propagated state PDF is mul-
timodal.

The second part of Fig. 7 reports an analysis on the
computational time requested by each filter. The param-
eter τ is evaluated as

τ = Ti
TGSF

, (79)

where Ti is the computational time of the ith filter, with
i = {GSF, BPF, SACE-2-5-0, SACE-2-5-2, SACEMM-2-
3-2}. Therefore, the τ bar expresses the relative compu-
tational effort among the different filters for this applica-
tion. The τ analysis shows that the BPF is the computa-
tionally heaviest filter, while the computational time re-
quested by SACE-c-η-μ and SACEMM-c-η-μ changes
depending on the selection of their parameters.

VI. CONCLUSIONS

A novel filter based on a double estimator has been
presented. The new technique estimates the conditional
mean and the conditional covariance of the posterior
distribution by applying, sequentially, two polynomial
estimators, using the same measurement outcome. The
new approach better matches the estimated state with
its error standard deviation, which is now a polynomial
function of the measurement. Therefore, the newly pro-
posed filter is able to reduce the error uncertainty when
the posterior distribution gets narrower around a low
probability realization of the measurement. In turn, the

better representation of the uncertainty produces a bet-
ter estimate of the state during the subsequent measure-
ment updates.

Three numerical examples have been reported. The
scalar application gives a visual representation of the
benefits of the polynomial approximation of the true
MMSE and its covariance. Thus, the higher the order
of the updates, the more precise the relative state esti-
mate and its covariance.The vectorial application under-
lines the benefits of predicting the covariance by con-
sidering its estimation as working with an augmented
state. The new state estimate improves in accuracy and
a smaller error standard deviation is obtained. The
multiple-model filter is more robust against high initial
standard deviations and multimodal distributions.
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