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Survey on Clutter Spatial
Intensity Estimation Methods
for Target Tracking

FAHAD A.M.
SARITHA D. S.

This paper is a comprehensive and up-to-date survey on clut-

ter spatial intensity estimation methods proposed over a span of two

decades for radar target tracking. Here, the methods are grouped into

three categories. The first category of methods is applicable to mea-

surements in a track validation gate, while the second category of

methods compute the clutter spatial intensity of any measurement in

measurement space.Finally, the third category uses the concept of clut-

ter generators, which act as the source of clutter measurements. Then,

probability hypothesis density filter equations are used to derive the

clutter spatial intensity of measurements. The above classification of

different methods is based on the techniques used and on the assump-

tions made while computing the spatial intensity of clutter. This paper

emphasizes the underlying ideas and assumptions of each of the meth-

ods so that the reader could understand not only how each method

works but also their pros and cons. Also, an effort is made to bring out

the interrelationship between different methods, wherever possible.

I. INTRODUCTION

The surveillance systems like radar generate detec-
tions (measurements) from the received signals based
on a defined detection threshold. These detections may
be from targets of interest or from random objects in
surveillance space. If a target is present among the de-
tections, then it is detected with a detection probabil-
ity (PD < 1). The detections from random objects are
termed clutter or false alarms. These detections are fed
to multitarget trackers (MTTs) without any prior infor-
mation about the source of measurements. The primary
task of anyMTT algorithm is to solve the measurement-
origin uncertainty, i.e., to identify target-originated mea-
surements and clutter measurements. The above task is
called “measurement-to-track association” in the target
tracking world.

Usually, in multitarget tracking, the clutter is mod-
eled as a nonhomogeneous Poisson process (NHPP) in
measurement space [1]. The distribution of an NHPP
process is fully described by its spatial intensity func-
tion [6], [7]. Hence, the clutter process can be explained
by some clutter spatial intensity function, otherwise
called a jargon clutter density in target tracking. Many
practical MTTs require the clutter spatial intensity to
compute the measurement likelihood ratio (i.e., ratio of
the probability that ameasurement is generated by a tar-
get to the probability that it is clutter) for the purpose
of measurement-to-track association and new track ini-
tialization [8]–[10], [12]. An overoptimistic estimate for
clutter spatial intensity leads to lower data association
probabilities of measurement-to-tracks, thereby degrad-
ing the performance of MTT.Whereas, a pessimistic es-
timate of clutter spatial intensity may lead to faster con-
firmation of false tracks. Hence, it is important to have
an optimal estimate of clutter spatial intensity at the
tracker.

This paper is a consolidated survey on clutter spa-
tial intensity estimation methods proposed over a span
of two decades for radar target tracking. The research
work on clutter spatial intensity estimators is scattered
over many literatures with no consolidation of the work
available till date. This paper is the first comprehensive
and up-to-date survey on clutter spatial intensity estima-
tors [3]–[5] to the best of the authors’ knowledge. The
contributions of the authors are as follows. We broadly
group the different spatial intensity estimators into three
categories. The first category of methods [1], [12], [14]
computes the clutter spatial intensity of those measure-
ments that are only in the track validation gate. The
second category of methods [11], [18], [20]–[24], [38],
[46], [49], [50] evaluates spatial intensity at any detection
point in the surveillance region using some nonparamet-
ric density estimation methods. Finally, the third cate-
gory of methods [27]–[29], [31]–[33], [36], [39], [40], [48]
uses a notion of clutter generators independent of the
actual targets, and they act as the source of clutter mea-
surements. Thereafter, a probability hypothesis density
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(PHD) filter-based recursions are derived for evaluat-
ing the intensity of clutter generators. This intensity is
used to estimate the required clutter spatial intensity at
any detection point.Here, this survey emphasizes the un-
derlying ideas and assumptions of each of the methods
so that the reader could understand not only how each
method works but also their pros and cons. Moreover,
this paper also brings out the interrelationship between
different methods, wherever possible. However, the is-
sues related to the implementation of methods are not
discussed in this paper.

The rest of the paper is organized as follows: A
mathematical definition for clutter spatial intensity is
presented in Section II. The clutter density estima-
tion methods based on a track validation gate are ex-
plained in Section III. Thereafter, Section IV describes
the clutter spatial intensity estimators for any detection
in measurement space. The clutter density estimators
based on a clutter generator assumption are explained in
Section V. Finally, an interrelation between the methods
is discussed in Section VI.

II. DEFINITION OF CLUTTER SPATIAL INTENSITY

Assume that the clutter measurements follow an
NHPP with spatial intensity function c(z) varying with
the d-dimensional location in space z, and if c(z) is con-
tinuous and locally integrable in small infinitesimal vol-
ume dV , then [41]

λ =
∫ V+dV

V
c(z)dz, (1)

where λ is the mean number of clutter points in the vol-
ume. Thus, clutter spatial intensity can be defined as the
average number of clutter measurements in dV . From
(1), it can be seen that the number of clutter measure-
ments in surveillance space is not uniformly distributed
but dependent on spatial coordinate z.The clutter spatial
intensity estimators presented in the subsequent sec-
tions either try to estimate or find some approximations
for this clutter spatial intensity.

III. CLUTTER SPATIAL INTENSITY ESTIMATORS BASED
ON TRACK VALIDATION GATE

It is common in the target tracking world to define
a validation gate in order to select only the probable
measurements corresponding to tracks. A simple ellip-
soidal gate [2] is used as the validation gate in the case
of single target trackers (STTs).Whereas, a union of val-
idation gates (effective validation gate) of those tracks
sharing measurements is used in the case of MTT. The
type of estimators discussed in this section only evaluate
the clutter spatial intensity of measurements that are in
the validation gate/effective validation gate of track(s).
Such estimators assume the spatial variation of clutter to
be uniformly distributed in the volume of the validation
gate/effective validation gate. The clutter spatial inten-

sity estimate in such estimators is calculated as

λ̂(z) = m̂k

V
, (2)

where m̂k is the expected number of clutter measure-
ments in the validation gate,V is the volume of the val-
idation gate, and λ̂(z) is the estimate for clutter spatial
intensity. The effective track validation gate volume dis-
cussed in [13] can be used for clutter intensity estimation
when the measurements are shared by different tracks.
In [1], MTT uses sample spatial intensity (2) obtained
from the set of measurements in the effective validation
gate as the clutter spatial intensity. In this case, m̂k = mk,
where mk is the total number of measurements in the
validation gate. However, the method in [1] gives a bi-
ased estimate as it does not distinguish between target
originated measurements and clutter measurements in
the validation gate.

However, the method in [14] uses “track perceivabil-
ity”[15] and that in [12] uses “track existence probabil-
ity”[16] in order to give an unbiased estimate for the
clutter spatial intensity of measurements in the effec-
tive track validation gate. The conditional mean estima-
tor of spatial intensity for false alarms proposed in [14]
is defined, for a single target, on the assumption that at
any time there is one or no target measurement present
in the validation gate. Therein, the mean number of
falsemeasurements is computed by excluding the target-
originated measurements stochastically. The mean num-
ber of false alarms m̂k can be evaluated as [14]

m̂k = mk − rk
mk
V

λ̂k + rk
mk
V

. (3)

In the above, rk, a measure of target-originatedmeasure-
ments, is defined as

rk = PDPGP
(
χk | Zk−1

)
1 − PDPGP (χk | Zk−1)

. (4)

Here, P
(
χk | Zk−1

)
denotes the predicted track quality

parameter, i.e., the track exists at time k given the set
of previous measurements, and PD and PG denoting the
track-detection probability and the probability that the
target measurement is in its validation gate, respectively.
Once m̂k is computed, the spatial intensity of clutter can
be approximated as given in (2). The conditional esti-
mate of (3) is dependent on an initial estimate λ̂k, which
can be computed using a maximum-likelihood (ML) es-
timator [14] as

λ̂k = mk

2V

⎛
⎝1 − rk +

√
(1 − rk)2 + 4mk − 1

mk
rk

⎞
⎠ . (5)

In [12], the predicted track existence probability of
tracks is used to stochastically identify target-originated
measurements under the assumption of at most one
detection per target. In a single-target case, the mean
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number of false alarms therein can be shown to be

m̂k = mk − PDPGP
(
χk | Zk−1

)
. (6)

Thereafter, (2) can be used to evaluate clutter spatial in-
tensity. However, for a multitarget case, the extension is
slightly exhaustive [12].

Validation gates in MTT are created using innova-
tionmatrices of tracks [2].Hence, a measurement shared
by different tracks will have different false alarm spatial
intensities when used in updating different tracks.So, the
effective track validation gate used in the above meth-
ods cannot be a suitable choice to estimate the spatial
clutter intensity. Furthermore, the estimators based on
a track validation gate only evaluate the clutter spatial
intensity of those measurements inside the track vali-
dation gate. However, the false-alarm intensity of mea-
surements outside the gates of tracks is also required as
shown in [17] to compute the cost of newly initialized
tracks.

IV. CLUTTER SPATIAL INTENSITY ESTIMATORS IN
MEASUREMENT SPACE

Spatial intensity estimators of this category try to
evaluate the false-alarm intensity of any detection point
in measurement space or in a surveillance region. They
utilize statistical methods like nonparametric density es-
timation [19] or expectation maximization (EM) toward
this purpose. The classic clutter map estimator in [18]
and [11] divides the whole measurement space into cells,
and the false-alarm spatial intensity of measurements
belonging to a cell is assumed constant. The false-alarm
intensity in cell i is given by

λ̂(z) = number of false alarms in cell i
volume of cell × number of scans

. (7)

Note that (7) returns a smoothed clutter intensity over
a number of scans. Here, the spatial intensity estimate
depends on the size of the cell, which also determines
the bias of the estimate. The clutter map estimator can
be compared to a multivariate histogram method [19].
The histogram method is discontinuous and unsuitable
for data of two or more dimensions [19] and also gives
a block nature to the estimated spatial intensity func-
tion. Even though the notion of dividing the measure-
ment space into cells captures nonhomogeneity in some
sense, the spatial intensity estimate evaluated by a clut-
ter map method is overoptimistic, as shown in [18].

Two other methods, namely spatial clutter map esti-
mator [18], [20] and temporal clutter map estimator [18],
also require the surveillance region to be divided into
cells manually and assume a stationary Poisson clutter
process in each cell. Both methods define a mathemati-
cal distance to compute the inverse of clutter spatial in-
tensity, called sparsity, of the measurements falling in a
cell. The former relies on the nearest neighbor measure-
ment distance, which is equal to the mathematical dis-
tance from the center of the cell to the nearest neighbor

measurement, and the latter uses interarrival time be-
tween two consecutive measurements falling in the cell
as themathematical distance.The estimates obtained are
averaged over time in order to smoothen the spatial in-
tensity. However, the exact definition of mathematical
distance between the center of the cell and the nearest
measurement is not given therein. In order to use the
nearest neighbor distance or the interarrival time be-
tween measurements in evaluating the clutter spatial in-
tensity, it is assumed that the spatial intensity is homoge-
neous and isotropic in and around the cell. But, the in-
verse of the definedmathematical distance does not hold
in the case of NHPP [41]. It was shown in [18] that a spa-
tial clutter map estimator is effective when compared to
a temporal clutter map estimator in a dynamic clutter.

The need to divide the measurement space into cells
is eliminated in a spatial clutter measurement density es-
timator (SCMDE) [21] unlike the previous methods. It
proposes to calculate the sparsity at any detection point
by evaluating the volume of hypersphere with center at
the detection point and radius equal to the l2-norm dis-
tance to nth nearest detection point.The sparsity therein
is the inverse of clutter spatial intensity at that point.The
sparsity γ̂(z) in SCMDE is defined as

γ̂(z) = V (rn(z))
n

, (8)

where V (rn(z)) is the volume of the d-dimensional hy-
persphere with center z and radius rn(z) equal to the dis-
tance to the nth nearest measurement.Here, the volume
of hypersphere is defined as

V (rn(z)) = Cd (rn(z))
d
, (9)

where the constantCd is defined as

Cd = 2
d

πd/2

� (d/2)
. (10)

Here, �(.) is the Gamma function. SCMDE has simi-
lar assumptions of homogeneity around the detection
point like the former methods of this category. More-
over, the sparsity is assumed independent at points far
from z, thereby accounting for NHPP but with local ho-
mogeneity. It has been shown in [21] that the higher the
order n of sparsity, the higher the bias in estimate in the
case of a nonhomogeneous clutter process. This is due to
the fact that as n increases, we tend to encounter more
overlapping nonhomogenous areas, and an assumption
of homogeneity in those areas could yield a biased es-
timate. SCMDE is similar to a k-nearest neighbor den-
sity estimation technique, and the spatial intensity es-
timate obtained is discontinuous in nature [19]. It has
been shown in [21] and [22] that SCMDE is effective
in STT because an unbiased false-alarm spatial inten-
sity estimate is obtained at the target detections while
penalizing the clutter measurements. However, it is not
suitable for MTT [22] as it does not distinguish tar-
get measurements from clutter measurements. In [22]
and [23], an improvement for SCMDE is proposed by
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calculating the clutter probability of each measure-
ment in the hypersphere. The clutter probability

P
(
χ0
k, j | Zk−1

)
of each jth measurement zk, j, given Tk

potential tracks at time k, is computed as [22]

P
(
χ0
k, j | Zk−1

)
= 1

1 + ∑
τεTk

Pτ
k, j

1−Pτ
k, j

. (11)

Here, χ0
k, j is the event that the measurement zk, j has not

originated from any given tracks and Pτ
k, j is the prior

probability that the measurement originated from the
track τ described in [12]. The MTTSCMDE proposed
therein computes the sparsity at any detection point as

γ̂(zk, j) = V
(
rn(zk, j)

)
∑m

l=1C
l
k, j

. (12)

Here,Cl
k, j is the clutter probability of the lth nearest de-

tection point computed using (11).
Even though similarities can be drawn between

SCMDE and MTTSCDME based on their assumptions,
there lies a significant dissimilarity between them in the
method adopted to evaluate clutter spatial intensity at
a point. SCMDE utilizes the number of measurements
in a hypersphere in computing the sparsity estimate.
These measurements can be target detections as well as
clutter measurements, which may lead to a biased esti-
mate.Whereas, MTTSCMDE uses the mean number of
clutter measurements with the aid of clutter measure-
ment probability to reduce the bias in clutter spatial
intensity estimate. The mathematical distance used in
SCMDE as well as MTTSCMDE is not well-defined for
range (r)/bearing (θ)/range-rate (ṙ) measurement space
in cases like Doppler radar. One solution could be to
write the clutter spatial intensity estimate c(r, θ, ṙ) as the
product of position clutter measurement intensity c(r, θ )
and clutter likelihood of range-rate measurement p( fd),
as shown in [42]. However, this amounts to an assump-
tion that the clutter distribution in range rate space is
homogeneous with respect to range and bearing. This
assumption may not be true for all real scenarios due
to anisotropy in the field of view of range rate, range,
and bearing.Another possible solution could be to use a
weighted normalized distance that reflects the actual dis-
tance of measurements in nonhomogeneous measure-
ment space, as shown in [38].

In [24], the clutter spatial intensity estimation prob-
lem is fitted into a kernel density estimation (KDE) [19]
framework. A multivariate Gaussian kernel density es-
timator that can handle the measurement origin un-
certainty as well as the continuous arrival of measure-
ments is proposed therein to evaluate the spatial inten-
sity of false alarms.Themeasurement-origin uncertainty
is solved using the joint association events and their cor-
responding probabilities given by MTTs [8], [10]. This
is possible because the measurement origin is decided
in an association event. If an association event χi with
probability P (χi) gives a set of clutter measurements

ZC
k = {

zk,1, zk,2, . . . , zk,n
}
, then the normalized spatial

intensity estimate conditional on the association event
can be evaluated as [24]

λi(z) =
n∑
j=1

w jKH
(
z − zk, j

)
. (13)

Here,KH (.) is the Gaussian kernel with a positive def-
inite bandwidth matrix H and corresponding weight w j.
Furthermore, using the following relation between con-
ditional expectation and unconditional expected value

E[Z] = E[E[Z | X ]], (14)

the clutter spatial intensity at a point z in measurement
space can be computed as

λ̂(z) =
m∑
i=1

P (χi) λi(z). (15)

In (14),E denotes the expectation operator. The per-
formance of KDE depends on the choice of bandwidth
rather than the shape of the kernel used [19]. Hence,
a method to compute an optimal bandwidth is given
in [24], wherein the gradient of the cost function is de-
rived using a cross-validation technique [25]. A fixed
bandwidth in a KDE method affects data with a long
tail distribution [19]. Hence, an adaptive kernel band-
width matrix based on adaptive KDE [19] is adopted
in [24], which ensures the kernels at lower intensity ar-
eas have a different bandwidth from that of kernels at ar-
eas with high intensity. The probability density estimate
obtained by KDE inherits all the continuity and differ-
entiability properties of the kernel used [19]. Hence, the
clutter spatial intensity estimate of (15) is continuous as
the Gaussian kernel has continuity and differentiability
of all orders. The method in [24] does not rely on the cal-
culation of mathematical distance unlike SCMDE and
MTTSCMDE. Hence, it is applicable to nonlinear sen-
sors like Doppler radar. It has been shown in [24] that
it is effective in target tracking in a background clutter
with slowly varying spatial intensity. However, a back-
ground clutter with fast varying clutter spatial intensity
could mean the need to compute optimum bandwidth
frequently. This could add to computational complexity
in radars with higher sampling rates.

The method in [46], [49], and [50] assumes a time-
invariant clutter intensity function, which is estimated
using cumulative measurements collected over some
window of time. Furthermore, it assumes that the num-
ber of targetmeasurements is sparse compared to clutter
measurements. Given Z = {z1, z2, . . . , zm}, the cumula-
tive set of measurements in the period [1,L], and a setC
of components, the clutter intensity therein is defined as
the product of the average number of clutter measure-
ments and the spatial density function, which can be ex-
pressed as

λ(z j) = λ̂ f (z j | C). (16)

6 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 17, NO. 1 JUNE 2022



Here, λ̂ denotes the estimate of the average num-
ber of clutter measurements, f (z j | C) denotes
the spatial probability density function, and λ(z j) de-
notes the clutter intensity at a measurement z j of
Z. The spatial probability density function is repre-
sented by anN-component finite mixture model (FMM)
[47] as

f (z j | C) =
N∑
i=1

w j f (z j | ci) �
N∑
i=1

w j = 1, (17)

where w j denotes the weight of each component and
f (z j | ci) denotes the likelihood of the measurement z j
with each component ci. Gaussian mixture models were
adopted in the said paper;hence, the likelihood f (z j | ci)
is Gaussian with parameters θi = {μi, 	i}, wherein μi

and 	i represent the mean and covariance of compo-
nent ci, respectively. Note that an implicit one-to-one
mapping between measurements and components can
be seen therein. Finally, λ̂ and the parameters of compo-
nents in (16) are estimated as follows. IfM1,M2, . . . ,ML

represent the number ofmeasurements in each sampling
time in [1,L] and assuming each Ml follow a Poisson
distribution, then λ̂ can be given by an ML estimate ex-
pressed as

λ̂ = 1
L

L∑
l=1

Ml . (18)

Moving on, if f (Z | 
) given in (19) denotes the likeli-
hood function of a parameter set,
, of components and
by assuming the measurements in set Z are independent
of each other, then

f (Z | 
) =
m∏
j=1

N∑
i=1

wi f (z j | ci) (19)

the ML estimate for 
 can be derived by


̂ = argmax



{
log f (Z | 
)

}
. (20)

An EM algorithm is proposed in the same paper to
solve (20) iteratively. It has been shown in [46] that
the number of target measurements should be negli-
gible when compared to clutter measurements to ob-
tain an unbiased estimate for clutter intensity. Hence,
the method has no inherent mechanism to discriminate
among clutter and target measurements.

A method for updating clutter intensity online as
well is proposed in [51] as an extension to [46]. It has
a mechanism to distinguish clutter measurements from
target measurements, which is explained below. At first,
a PHD [26] filter is run to update the target states. The
measurements nearest to the target states are regarded
as target measurements. Hence, a set of clutter mea-
surements for the current sampling time can be deter-
mined. The update for λ̂ for the current sampling time is
computed using its value in the previous sampling time
and the number of clutter measurements at the current

sampling time [51]. The component weights, means, and
covariances are also updated based on the obtained
set of clutter measurements. The set of clutter mea-
surements is divided into subsets of clutter measure-
ments belonging to each of the components using a
χ2 test based on the previous estimates of compo-
nents [51]. Then, the new component parameters and
their weights are updated using the said subset of clut-
ter measurements. It is shown in [46] that the EM al-
gorithm proposed therein is susceptible to giving an
underestimate or overestimate of the number of com-
ponents and their corresponding parameters. These
issues are also addressed in [51] by adding new
components, wherein the component parameters are
misestimated. However, the addition of components
may lead to an explosion in the number of compo-
nents beyond control.Hence, some pruning andmerging
methods need to be adopted to reduce the nonrelevant
components.

V. CLUTTER SPATIAL INTENSITY ESTIMATORS BASED
ON CLUTTER GENERATORS

The methods in this section assume some unknown
background targets represented using auxiliary variables
called clutter generators that generate the clutter mea-
surements. Following the random finite set (RFS) the-
ory [26], the clutter spatial intensity estimation problem
then becomes an intensity estimation problem of clutter
generators. In [27] and [28], a set of clutter generators
C = {c1, c2, . . . , cm} defined in space C, which is disjoint
from the target state spaceX andmeasurement space M,
is assumed.Furthermore, assuming the clutter process as
a Poisson mixture process, an approximate Bayesian es-
timator based on a PHD filter is derived for computing
the intensity of clutter generators. However, the PHD
filter proposed in [27] and[28] is intractable [29] as the
PHD update equation requires a summation over all the
partitions of measurement set at the current time, which
is combinatorial in nature and no practical implementa-
tion of PHD equations is provided therein.

In [32], two assumptions about the clutter genera-
tors are made toward simplifying the above-mentioned
problem. The first assumption is that each clutter gen-
erator ci generates only one clutter measurement zCi
and the second is that the predicted clutter generator
distribution can be assumed as a Poisson point pro-
cess. Then, a tractable PHD filter for the estimation
of the intensity of clutter generators is proposed. Sim-
ilar assumptions of one-to-one mapping between clut-
ter generators and measurements can be seen in [29]–
[31]. In [32], the clutter process is assumed to be NHPP
whose intensity function is approximated by a Gaussian
mixture with unknown mean and covariance. If Zk ={
zk,1, zk,2, . . . , zk,n

}
is the set of d-dimensional measure-

ments and c = {c1, c2, . . . , cm} the set of clutter genera-
tors at current time k, then the intensity function at any
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detection point zk, j( j = 1, 2, . . . ,n) is given by [32]

c(z j) =
m∑
i=1

miC1√|	i|
exp

{
−1
2
(z j − μi)T	−1

i (z j − μi)
}

=
m∑
i=1

miC2 exp
{
−1
2
(z j − μi)Tρi(z j − μi)

}
, (21)

whereC1 = 1
(2π )d/2 andC2 = C1

√|ρi|.
Here, the mean and covariance of the ith Gaussian

component are μi ∈ Rd and 	i ∈ Rd×d, respectively.
Also, ρi denotes the precision matrix, i.e., the inverse of
	i, z j denotes the detection point zk, j, and mi ∈ R+ rep-
resents the expected number of clutter measurements
corresponding to the ith Gaussian component. Here-
after, the symbol z j will be used in place of zk, j for sim-
plicity. Also, ci = {mi, μi, 	i} (i = 1, 2, ·,m) is the ith
clutter generator. All the parameters of ci are random.
Hence, the clutter generator ci is a random point pro-
cess. Again, under the assumption of a one-to-one rela-
tion between clutter generators and measurements, the
clutter generator parameters reduce to ci = {μi, 	i}, as
shown in [32]. Also, a Gaussian likelihood function de-
fined below is assumed for z j given ci [32]:

f (z j | ci) = 1
(2π )d/2

√|	i|
exp

{
1
2
(z j − μi)T	−1

i (z j − μi

}
.

(22)
Here,μi and 	i denote the position and extension of the
clutter generator ci, respectively.Using (21) and (22), the
clutter spatial intensity estimation problem becomes an
estimation of Gaussian random variable with unknown
mean and covariance. Furthermore, using the assump-
tion that the state evolution of targets is statistically in-
dependent of the state evolution of clutter generator, the
prediction of target PHD is decoupled from the predic-
tion of clutter generator PHD, and the prediction equa-
tions of [26] are applied to targets and clutter generators
separately [32]. The predicted PHDDC

k|k−1(c) for clutter
generators is given as [32]

DC
k|k−1(c) = bCk (c) +

∫
fCk|k−1(c)D

C
k|k(c)dc. (23)

Here, bCk (c) denotes the PHD of newborn clutter gener-
ators, and fCk|k−1(c) denotes the state transition function
for clutter generators defined in (33) and (34) of [32].
On the other hand, given the measurement set Zk, the
update equations for posterior PHD Dk|k(x) of targets
and posterior PHDDC

k|k(c) of clutter generators derived
in [32] are coupled as

Dk|k(x) = pMDk|k−1(x) +
∑
z j∈Zk

PD f (z j | x)
L(z)

Dk|k−1(x)

DC
k|k(c) =

∑
z j∈Zk

f (z j | c)
L(z)

DC
k|k−1(c). (24)

Here, pM = 1 − PD and L(z) are the predicted pseudo-
likelihoods for the measurement set Zk defined as

L(z) = PD

∫
Dk|k−1(x) f (z | x)dx

+
∫
DC
k|k−1(c) f (z | c)dc. (25)

The pseudo-likelihood function L(z) consists of two
parts. The first part PD

∫
Dk|k−1(x) f (z | x)dx represents

the target-originated measurements and the second part∫
DC
k|k−1(c) f (z | c)dc represents the clutter measure-

ments. It is evident from (25) that [32] does not need
a separate filter to identify target-originated measure-
ments. Using the idea of translated point process [43],
L(z) can be viewed as a sum of two independent
translated Poisson processes: the first one denoted by
PD

∫
Dk|k−1(x) f (z | x)dx in (25) is a translated Poisson

process (using basic assumption of [26]) of predicted tar-
gets with point transition density PD f (z | x) and the
second one represented by

∫
DC
k|k−1(c) f (z | c)dc in (25)

with point transition density f (z | c). Thus, the predicted
clutter spatial intensity at a detection point z j can be
given by [29]

λ̂(z j) =
∫

f (z | c)DC
k|k−1(c)dc. (26)

Finally, using the fact that a normal-Wishart distri-
bution is the conjugate prior of Gaussian distribution
with unknown mean and covariance [34], a practical im-
plementation for the recursion of DC

k|k−1(c) and D
C
k|k(c)

is shown in [32] using a normal-Wishart mixture. Sim-
ilar derivations of PHD recursions for the intensity of
clutter generator can be seen in [29]. It has been shown
in [32] that the number of normal-Wishart mixture com-
ponents grows out of bound;hence,pruning andmerging
techniques similar to a Gaussian mixture probability hy-
pothesis density (GMPHD) filter [37] has to be adopted
for practical implementation. In the same paper, a zero-
velocity model for the dynamic evolution of clutter gen-
erators is adopted.However, in sea-based radars, the ra-
dial velocity of clutter is usually high due to the presence
of moving waves on the sea surface. The radial velocity
of these waves can be significant depending on the sea
state that is influenced by various weather and wind con-
ditions [45]. Hence, an accurate modeling for the clutter
random process used in track-before-detect (TBD) fil-
ters [44] could be adopted to improve the accuracy of
clutter spatial intensity estimate.

In [33], an extension to [32] is presented in order to
use the output of standardMTTs like the joint integrated
probabilistic data association (JIPDA) [10] in deriving
the clutter generator PHD. The update equation (24)
for clutter generator PHDDC

k|k(c) in [32] requires a pre-
dicted PHDDk|k−1(x) of targets. However, the standard
MTTs like JIPDA readily provide the state estimates
of targets as well as the association events that iden-
tify target-originated measurements. Hence, the output
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of JIPDA is used in [33] to derive a recursion for PHD
of clutter generators. In that paper, the posterior target
state outputs from standard trackers are approximated
by multiBernoulli RFS (MBe RFS) [35], [36]. In addi-
tion, the possible interaction between the clutter gener-
ator and the target during prediction is neglected. Then,
by using the association events and their correspond-
ing probabilities generated by JIPDA, an approximate
Bayesian clutter intensity estimator is obtained.The pos-
terior target state pdf at time k−1 obtained from legacy
trackers is an MBe RFS of the form [33]

�k−1 = {
rik−1, pk−1(xk−1)

}Mk−1

i=1 . (27)

Here, rik−1 denotes the posterior target existence prob-
ability, pk−1(xk−1) denotes the posterior pdf of the ith
target state, andMk−1 denotes the cardinality of targets.
Then, the predicted target state pdf at time k is also an
MBe RFS, which can be used to generate association
events. If each association eventχi with probabilityP(χi)
generates a set Zk(Wχi ) of clutter measurements, then,
using the similar assumptions of [32], the posterior PHD
DC
k|k(c) of clutter generator can be represented by [33]

DC
k|k(c) =

∑
χi

P(χi)

⎧⎨
⎩

∑
z j∈Zk(Wχi )

f (z j | c)DC
k|k−1(c)∫

f (z | c)DC
k|k−1(c)dc

⎫⎬
⎭.

(28)
Here, f (z j | c) is the likelihood function in (22). The
PHD prediction for clutter generators as well as the pre-
dicted clutter spatial intensity remains the same as (23)
and (26), respectively.

The methods in [32] and [33] are different from
the kernel estimation-based method [24] in two aspects.
The KDE-based method is a nonparametric estimation
method, and as the number of measurements increases,
the bandwidth of kernels decreases. In addition, no two
kernels are merged at any point of time. On the other
hand, the approximate Bayesian methods of [32] and
[33] are parametric methods wherein the clutter area is a
summation of ellipses (normal-Wishart mixture geome-
try). Also, the clutter generator components are merged
for practical implementation. If the shape of the clutter
area is close to the summation of ellipses, then [32] and
[33] can give better results than [24] with fewer observa-
tions [33].However, if the shape of the clutter area is sig-
nificantly different from the summation of ellipses, then
the methods in [32] and [33] can be biased.

In [39], aGMPHD-based [37] clutter spatial intensity
estimator called interactive clutter measurement den-
sity estimator (ICMDE) is proposed, assuming a Pois-
son point process for clutter generators. Here, the as-
sumption of one-to-one mapping of clutter generator
to measurements is retained, but the likelihood func-
tion for clutter generator is assumed to be Gaussian
with known covariance. Also, a nearly constant veloc-
ity model is assumed for the dynamic state evolution
of clutter generators. Then, using the above assump-
tions, the spatial intensity function becomes a Gaussian

mixture with known covariance for each component.
The intensity estimation problem then reduces to the es-
timation of Gaussian random variable with a known co-
variance and unknown mean. Again, using the fact that
the conjugate prior of Gaussian distribution with known
covariance is also Gaussian [34], GMPHD-based recur-
sions for the PHD of clutter generator are presented
therein. The covariance required for GMPHD recursion
is calculated based on the sparsity [22] of each measure-
ment,as shown in [39].Furthermore, ICMDEutilizes the
calculated clutter probability of measurements (11) us-
ing the tracker output to distinguish target-originated
measurements from clutter measurements while evalu-
ating the sparsity of each of the measurements. Hence,
ICMDE can be easily integrated to existing MTTs [10],
[12]. In [40], a multiscan version of ICMDE is explained.
The assumption of known covariance for the likelihood
function could make it an attractive choice for practical
implementation when compared to methods in [32] and
[33].However, the problem of finding the nearest neigh-
bor detections in nonhomogenous measurement space
for the computation of sparsity exists in [39]. The solu-
tions mentioned in [42] and [38] could be adopted to cir-
cumvent it.

The nonhomogenous clutter intensity is estimated
in [36] and [48] based on clutter generators but by drop-
ping the standard Poisson assumption for clutter pro-
cess. Therein, the clutter generators are modeled anal-
ogous to actual targets with separate models for births,
death processes, and transition density. Furthermore, as-
suming that the targets and clutter generators are in-
dependent, MBe RFS recursions of [35] are applied to
targets and clutter generators separately. Since clutter
generators are modeled with separate models for evolu-
tion over time,both the stationary and the nonstationary
clutters can be addressed by the said method.

VI. DISCUSSION ON INTERRELATION BETWEEN
METHODS AND CONCLUSION

The clutter spatial intensity estimators discussed in
the above sections have been categorized into three
groups. The categories are decided based on the tech-
niques used and on the assumptionsmadewhile comput-
ing the spatial intensity of clutter. The first type of meth-
ods only compute the spatial intensity of measurements
in the validation gate of tracks, assuming uniform spatial
intensity inside it. The second group of methods com-
pute the spatial intensity of clutter at any detection point
in measurement space. In those methods, some varia-
tion of nonparametric density estimation techniques is
used to evaluate the spatial intensity of false alarms. The
third group of methods assume auxiliary variables called
clutter generators, disjoint from target space and mea-
surement space. Then, using RFS theory, PHD recursion
equations are used to derive the intensity for clutter gen-
erators, thereby evaluating the clutter spatial intensity
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Table I
Clutter Spatial Intensity Estimators Under Different Categories

Category Technique used Assumptions References

Methods based on track
validation gate

- Uniform clutter spatial intensity in validation gate [1], [12], [14]

Methods for any
detection point in
measurement space

Nonparametric density
estimation

1) Constant clutter spatial intensity in each cell.
2) Homogeneous Poisson process in the near
proximity of measurement.

3) Nonhomogeneous clutter spatial intensity.
4) FMM approximation.

1) [11], [18], [20]
2) [18], [21]–[23], [38]
3) [24]
4) [46], [49]–[51]

Methods based on
clutter generator

PHD filter/MBe RFS 1) Multiple measurements per clutter generator.
2) One measurement per clutter generator.

1) [27], [28].
2) [29]–[33], [36], [39], [40],

[48]

Table II
Pros and Cons of Clutter Spatial Intensity Estimation Methods

Method Pros Cons

Nonparametric clutter
intensity estimation

Uniform clutter intensity for all measurements in
track(s) validation gate.

1) Different clutter intensities for the same
measurement in different track validation gates.

2) Unable to distinguish between target and clutter
measurements.

Nonparametric clutter
intensity estimation with
track perceivability

1) Uniform clutter intensity for all measurements in
track(s) validation gate.

2) Target measurements are distinguished from
clutter measurements using track perceivability.

Different clutter intensities for the same
measurement in different track validation gates.

Cluttermap method, spatial
clutter map method

Nonhomogenous clutter intensity estimate obtained
by dividing measurement space into cells.

1) Naive method with uniform intensity for all
measurements in a cell.

2) Intensity estimate obtained has block nature and
biased.

3) Unable to distinguish between target and clutter
measurements.

SCMDE 1) Clutter intensity estimate for any measurement
in measurement space is obtained without
dividing the measurement space into cells.

2) Nonhomogenous clutter intensity estimate with
local homogeneity.

1) Clutter intensity estimate obtained has block
nature.

2) Unable to explicitly distinguish between target
and clutter measurements.

3) Not suitable for MTT.
4) Not directly suitable for sensors with

nonhomogenous measurement space.
MTTSCMDE 1) Nonhomogenous clutter intensity estimate, which

in unbiased.
2) Clutter probability of measurements aids in

identifying target measurements.
3) Suitable for MTT.

1) Not directly suitable for sensors with
nonhomogenous measurement space.

2) Intensity estimate obtained may have block
nature.

Kernel density clutter
intensity estimation

1) Efficient method with unbiased and smooth
clutter intensity estimate for any measurement.

2) Suitable for MTT and all type of sensors.

Efficiency comes at the cost of computational
complexity of KDE.

Online FMM method 1) Recursively updates clutter intensity.
2) Discriminates between target and clutter

measurements.
3) Addresses the shortcoming of estimates given by

EM algorithm.

1) Nearest neighbor method to identify target
measurements is not guaranteed to give correct
measurements corresponding to a target.

2) Pruning and merging methods required to stop
explosion of number of components.

3) Clutter intensity is assumed time invariant; hence,
no transition densities are defined for
components.

Integrated clutter intensity
estimation

1) Recursively updating clutter intensity estimate.
2) Ease of integration with legacy trackers like

JIPDA.

Use of static transition density for clutter
generators.

ICMDE 1) Recursively updating clutter intensity estimate.
2) Ease of integration with legacy trackers like

JIPDA and LMIPDA.

Not directly suitable for sensors with
nonhomogenous measurement space.
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of measurements. Table I shows the classification of the
spatial intensity estimators under different categories.

The methods in [1], [14], and [12] are similar in the
way they compute the clutter spatial intensity of track(s)
validated measurements. However, the former has no
means to discriminate between clutter and target mea-
surements, whereas the latter two use (4) to distinguish
target measurements from clutter measurements. The
clutter map method and spatial clutter map estimator
are based on amultivariate histogram,whereas SCMDE
and MTTSCMDE are based on a k-nearest density es-
timation technique. The former three methods have no
provision to identify target measurements, while the lat-
ter uses the clutter probability of each measurement for
this purpose,hence a better choice above others inmulti-
target tracking. The methods similar to k-nearest neigh-
bor density estimation use the mathematical distance to
the nearest measurement in evaluating the clutter spa-
tial intensity. They are forced to make a homogeneous
assumption for clutter spatial intensity in and around the
desired measurement as nonhomogeneous assumptions
do not hold for the inverse of the defined mathematical
distance.Moreover, they are not easily adaptable to non-
linear sensors like Doppler radar. The method based on
KDE is a more general approach applicable to any type
of sensors. However, the effectiveness of the approach
comes at the cost of computational load of KDE.

One-to-onemapping between clutter generators and
measurements can be seen throughout the methods of
category three, but the clutter intensity filter recursion
implementations vary among each other. The methods
in [32] and [33] use a normal-Wishart mixture imple-
mentation to account for unknown mean and covari-
ance of Gaussian mixture, whereas a Gaussian mixture
implementation is used in [40] to accommodate for the
known covariance. However, the former two methods
cannot be directly integrated to linear multitarget (LM)
tracker [12] variants, whereas the latter can be seam-
lessly integrated to both LM variants and JIPDA track-
ers. The method in [32] requires the predicted PHD of
targets as shown in (24),whereas the method in [33] uses
the output of JIPDA tracker to represent target PHD
and then the clutter PHD is updated using the associ-
ation events. Finally, the pros and cons of each of the
methods are tabulated in Table II.
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Full State Information Transfer
Across Adjacent Cameras in a
Network Using Gauss Helmert
Filters

RONG YANG
YAAKOV BAR-SHALOM

This paper develops three-dimensional (3D) Cartesian tracking

algorithms for a high-resolution wide field of view (FOV) camera

surveillance system. This system consists of a network linking multi-

ple narrow FOV cameras side-by-side looking at adjacent areas. In

such a multi-camera system, a target usually appears in the FOV of

one camera first, and then shifts to an adjacent one. The tracking algo-

rithms estimate target 3D positions and velocities dynamically using

the angular information (azimuth and elevation) provided by multiple

cameras. The target state (consisting of position and velocity) is not

fully observable when it is detected by the first camera only. Once it

moves into the FOV of the next camera, the state can then be fully es-

timated. The main challenge is how to transfer the state information

from the first camera to the next one when the target moves across

cameras. In this paper, we develop an approach, designated as Carte-

sian state estimation with full maximum likelihood information trans-

fer (fMLIT), to cope with this challenge. Since the fMLIT consists of

an implicit state relationship, the conventional Kalman-like filters (for

explicit constraints) are not suitable. We then develop three Gauss–

Helmert filters, and test them with simulation data.

I. INTRODUCTION

As more and more cameras are used in surveillance
systems, intensive research and development works have
been conducted on target detection and tracking using
cameras. Most of them deal with extended targets (such
as people or vehicles) in near range. After illegal drone
intrusions were frequently reported, the camera surveil-
lance has been extended to the more challenging appli-
cations which track small air targets in a relatively far
range. This paper will focus on developing appropriate
algorithms to track small air targets in three-dimensional
(3D) Cartesian space using a network of cameras.

In the earlier stage, the computer vision research fo-
cused on detection of targets from images, and associa-
tion of the detections from the same targets over frames
based on various features (color, shape, edge, etc.) [9],
[16], [18]. Later, it was extended target tracking over
video frames to help the track continuity when the de-
tection was imperfect [3], [19]. Further extensions fo-
cused on estimation of the target location and trajectory
in Cartesian 3D space instead of the two-dimensional
(2D) image space. A direct conversion (from 2D image
to 3D Cartesian space) can be applied when the camera
projection matrix and the target range are available [8],
[17]. Another approach is to estimate target range from
the ratio of target size and image size (assuming both
are known). This is actually an old technique called Sta-
diametric range finding. Recently, artificial intelligence
techniques were introduced to this approach for better
accuracy [5].

However, a small air target in a relatively far range
(the focus of this paper) has only a few pixels in a video
frame.The target image size and range information (with
sky background) cannot be obtained accurately. It is
hard to obtain the target locations or trajectories in 3D
Cartesian space using the above-mentioned techniques.
Triangulation from multiple cameras is then a suitable
method. In [11], a drone location is estimated by the
measured azimuths and elevations from multiple cam-
eras, assuming the cameras are widely spaced and detect
a target simultaneously.

In this paper, we consider a realistic camera deploy-
ment as shown in Fig. 1. It is a camera network with
multiple high-resolution narrow field of view (NFOV)
stationary cameras located side by side. Each of them
covers a small area and overlaps with the neighbors a lit-
tle. In this system,a target is detected by one camera only
most of time, and the triangulation cannot be performed
always. This paper will focus on developing appropri-
ate approaches to track targets in 3D Cartesian space
even for cameras with non-overlapping regions. In such
a multi-camera system, a target usually appears in the
field of view (FOV) of one camera first, and then shifts to
an adjacent one. The proposed tracking algorithms will
estimate target 3D positions and velocities dynamically
using the angular information (azimuth and eleva-
tion) provided by multiple cameras. The target state
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Fig. 1. A wide field of view surveillance system consisting of four
NFOV cameras.

(consisting of position and velocity) is not fully observ-
able when the target is detected by the first camera only.
Once the target moves into the FOV of the next camera,
the state can then be estimated completely using suit-
able algorithms. The main challenge is how to transfer
the useful state information from the first camera to the
next one when the target moves across cameras.We will
formulate the problem with an unique Gauss–Helmert
model (GHM), which provides an implicit constraint
that is used to transfer full state information (including
3D position and velocity) across cameras. The approach
is designated as Cartesian state estimation with full
maximum likelihood information transfer (fMLIT).

A conventional dynamic estimation problem is for-
mulated by two basic models, the state transition model
and the measurement model. Usually these two models
are in explicit forms as

x(tk) = f[x(tk−1)] + v(tk, tk−1), (1)

z(tk) = h[x(tk)] + w(tk), (2)

where x(tk) is the state vector to be estimated at time
tk, z(tk) is the measurement vector observed by a sensor,
f[·] and h[·] are the state transition function and mea-
surement function, respectively, and v(·) and w(·) are
the process noise and measurement noise, respectively.
Based on these models, the Kalman-like filters has the
following two generic steps to perform estimation:

� Predict the state from time tk−1 to tk using the state
transition model (1). The predicted state is x̂(tk|tk−1).

� Update the predicted state x̂(tk|tk−1) by the measure-
ment z(tk) using the measurement model (2). The up-
dated state is x̂(tk|tk).
However, to perform fMLIT across cameras, an im-

plicit constraint needs to be taken into consideration in
addition to the measurement model given in (2) (the de-
tails will be given later in the Section II-B). The implicit
relationship is between the predicted state x̂(tk|tk−1)
from the previous camera and the current state x(tk).
Thus, the following GHM is used to replace the mea-
surement model in (2) at the crossover time (details to
be given later—see (20)).

g[x(tk), x̂(tk|tk−1), z(tk)] = wg, (3)

Fig. 2. A target flies from the FOV of camera 1 to FOV of camera 2.
The across-camera event (crossover) occurs at time t5 when camera 2

detects the target for the first time. The others are considered as
within-camera events.

where wg is a small zero-mean Gaussian model error.
Thus the Kalman-like filters cannot be applied, and need
a further development.

The GHM is commonly used for similarity estima-
tion in geodetic science [10], [12], and is also applied to
computer vision and curve fitting [4], [7], [13], [14], [15].
It was introduced in dynamic estimation for solving un-
known propagation delay problem in the state transi-
tion model in [20], [21]. The Unscented GHF (UGHF)
was developed to solve the problem.A number of works
were conducted for various applications with implicit
state transition models [22], [23], [24].

The above mentioned Gauss–Helmert filter (GHF)
and its applications use the GHM in their state transi-
tion models. The problem in this paper requires an im-
plicit measurement model.Consequently,we will discuss
three GHFs and three other algorithms which totally
or partially ignore the implicit constraints in the GHM.
Their performance will be demonstrated using simula-
tion data.

The rest of paper is structured as following.Section II
formulates the problem. Section III develops the six es-
timation algorithms. Section IV presents the simulation
results, and Section V draws the conclusions.

II. PROBLEM FORMULATION

To track a target using the camera suite shown in
Fig. 1, we need to formulate the dynamic estimation
problem with the state transition model and measure-
ment model within and across cameras, respectively.
Fig. 2 illustrates the within and across camera events.
When a target flies from the FOV of camera 1 to the
FOV of camera 2, it is detected by camera 1 first at times
t1, t2, t3, t4, t6, and t8. Camera 2 detects the target at times
t5, t7, t9, t10, t11, and t12. The across camera event occurs
at time t5 when the target is firstly detected by camera 2.
All other occurrences are considered as within-camera
events, even they fall in overlapping FOVs.The problem
formulate is then based on these two events.
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A. Dynamic Estimation Models for the Within-Camera
Event

The state vector to be estimated at time tk is defined
as

x(tk) = [x(tk) y(tk) z(tk) ẋ(tk) ẏ(tk) ż(tk)]
′
. (4)

It consists of the position and velocity components of
a target in 3D Cartesian coordinates. The measurement
vector from the ith camera (with i = 1, . . . ,n, and n is
the total number of cameras in the system) is

zsi (tk) = [asi (tk) esi (tk)]
′
, (5)

where asi (tk) is the measured (noisy) azimuth from true
North clockwise, and esi (k) is the measured elevation up
from the horizontal, with the reference to the ith cam-
era position. The state transition model uses the nearly
constant velocity (NCV) model [2] as

x(tk) = Fx(tk−1) + v(tk, tk−1), (6)

where

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 T (tk) 0 0

0 1 0 0 T (tk) 0

0 0 1 0 0 T (tk)

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

with time interval

T (tk) = tk − tk−1, (8)

and v(tk, tk−1) is the white Gaussian process noise with
covariance

Q(tk, tk−1) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T (tk)3

3 0 0 T (tk)2

2 0 0

0 T (tk)3

3 0 0 T (tk)2

2 0

0 0 T (tk)3

3 0 0 T (tk)2

2

T (tk)2

2 0 0 T (tk) 0 0

0 T (tk)2

2 0 0 T (tk) 0

0 0 T (tk)2

2 0 0 T (tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
q, (9)

and q is the Cartesian acceleration power spectral den-
sity (PSD). The measurement model is

zsi (tk) = h[x(tk), xsi ] + w(tk) (10)

with

h[x(tk), xsi ] =

⎡
⎢⎢⎢⎣

atan
[
x(tk)−xsi (tk)
y(tk)−ysi (tk)

]

atan
[

z(tk)−zsi (tk)√
[x(tk)−xsi (tk)]2+[y(tk)−ysi (tk)]2

]
⎤
⎥⎥⎥⎦ ,

(11)

Fig. 3. The ground truth is at xII. The estimated state from camera 1
is xI. The large estimate bias of xI is because the state is not

observable from the measurements from one camera.

where xsi = [xsi ysi zsi ]
′ is the position of the ith camera,

which provides the measurement, and w(tk) is the white
Gaussian measurement noise with covariance

R = diag(σ 2
a σ 2

e ), (12)

with σa and σe, which are the measurement error stan-
dard deviations of azimuth and elevation, respectively.

To apply these models to our problem directly one
has the following issue. The state is not fully observable
when a target is detected by one camera only, as the tar-
get range cannot be obtained. Fig. 3 shows that the pos-
sible target trajectories are a set of parallel lines (assum-
ing the target is in constant velocity motion, and does
not head to or move away from the camera directly) [6].
All these parallel trajectories share the same heading,
and the speeds on parallel lines are proportional to their
ranges (the distances to the camera). The proof of the
target heading observability and range unobservablity
from a single stationary camera, shown in Fig. 3, is given
in Appendix A. The state estimate, using this incom-
pletely observablemodels, can fall on any one of possible
trajectories depending on the initial condition. The ini-
tial state estimate is usually set at a particular point along
the line of sight (LOS) of the first detection in 3D space
and zero velocities with predefined large range and ve-
locity errors. When the state estimate is updated by the
angular measurements, it is adjusted to suitable range
and speed to match the angular change.This process can
lead to a biased estimation for this unobservable prob-
lem, namely, the ground truth can fall outside the state
uncertainty region. Fig. 4 and its enlarged version Fig. 5
show an estimation example. There are two cameras lo-
cated at (0, 0, 50) m and (1, 0, 50) m, respectively.The tar-
get is in the FOV of the first camera at beginning where
the target trajectory is not observable, and moves to the
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Fig. 4. Estimation from angle-only measurements using two
adjacent cameras (here the error ellipses are very elongated).

FOV of the second camera. The track has an initial state
with large error in range to cover the ground truth. Af-
ter the second time cycle, the filter-calculated estimation
error is much smaller, and the state converges to a trajec-
tory (blue) parallel to the ground truth (red).Obviously,
the estimation is seen to be biased in range.Using a very
large uncertainty for the initial state does not solve the
problem.

While we cannot make the state observable in this
situation,we can transfer all useful information obtained
from the first camera to the subsequent estimation. A
Gauss–Helmert (GH)-based information transfer can
make the state fully observable from the across-camera
event (given in the next subsection).

After the across-camera event, the estimation is car-
ried out continuously in the FOV of camera 2.Although
the state is still not fully observable in theory (namely,
the measurements are from camera 2 only), the bias is, in
spite of the marginal observability, reduced significantly
after the full information transfer (see Figs. 4 and 5).

Fig. 5. An enlarged version of Fig. 4.

B. Dynamic Estimation Models for the Across-Camera
Event

At the across-camera event, the state vector and
the state transition model are the same as those of the
within-camera event given in (4) and (6). Assuming
the across-camera event happens at time tk, we predict
the state estimate x̂(tk−1|tk−1) and its error covariance
P(tk−1|tk−1) to time tk by

x̂(tk|tk−1) = Fx̂(tk−1|tk−1), (13)

P(tk|tk−1) = FP(tk−1|tk−1)F′ + Q(tk, tk−1). (14)

To simplify the expression,we denote the predicted state
and its error covariance as

xI = x̂(tk|tk−1), (15)

PI = P(tk|tk−1), (16)

and the state at tk (see Fig. 3) as

xII = x(tk). (17)

Intuitively, the predicted state xI can be updated to xII
by the second camera measurement zs2 (tk) based on the
measurement model giving in (10).However, it faces the
following issues. First, the predicted state xI can be sig-
nificantly biased compared to the ground truth due to
the unobservability in the range.Fig. 3 shows an example
that the estimated range from the first camera is rI, but
the actual range is rII. The error covariance PI does not
include camera 2’smeasurement zs2 (tk) in its uncertainty
region. The Kalman-like filters cannot bring the state xI
close to xII enough with zs2 (tk), as the filters are designed
to reduce the random error, and are not effective for a
large bias error. Second, the state information estimated
by the first camera is not fully utilized. The headings in
xI and xII should be consistent, and the speeds should be
proportional to their ranges. Thus, we reformulate the
problem to estimate xII from a known augmented pa-
rameter y with error covariance Py

y = [x′
I zs2 (tk)

′]′, (18)

Py =
[

PI 06×2

02×6 R

]
. (19)

Since xII and y have an implicit relationship, as shown
below in (20)–(31), a GHmeasurement model is defined
as

g(xII, y) = wg, (20)

which is the same as (3), where

g(·) = [g1(·) g2(·) g3(·) g4(·) g5(·) g6(·) g7(·) g8(·)]′,
(21)

with

g1(·) = rI(xII − xs1 ) − rII(xI − xs1 ), (22)
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g2(·) = rI(yII − xs1 ) − rII(yI − xs1 ), (23)

g3(·) = rI(zII − xs1 ) − rII(zI − xs1 ), (24)

g4(·) = rIẋII − rIIẋI, (25)

g5(·) = rIẏII − rIIẏI, (26)

g6(·) = rIżII − rIIżI, (27)

g7(·) = arctan
(
xII − xs2
yII − ys2

)
− as2 (tk), (28)

g8(·) = arctan

(
zII − zs2√

(xII − xs2 )2 + (yII − ys2 )2

)
− es2 (tk),

(29)

and

rI =
√
(xI − xs1 )2 + (yI − ys1 )2 + (zI − zs1 )2, (30)

rII =
√
(xII − xs1 )2 + (yII − ys1 )2 + (zII − zs1 )2. (31)

This model considers three constraints, first, the po-
sition (xII, yII, zII) in xII and the position (xI, yI, zI)
in xI are on the same LOS with reference to cam-
era 1. This is described in (22)–(24). Second, the ve-
locities (ẋII, ẏII, żII) and (ẋI, ẏI, żI) are proportional to
their ranges with reference to camera 1, which is given
in (25)–(27). Third, the position (xII, yII, zII) is on the
LOS of camera 2’s measurement, as given in (28)–(29).
The third constraint is the within-camera measurement
model given in (10). The GH measurement model adds
the constraints in (22)–(27). This ensures that the useful
state information obtained from camera 1 is fully trans-
ferred to the subsequent estimation in a proper manner.

III. DYNAMIC ESTIMATION ALGORITHMS

This section presents six dynamic estimation algo-
rithms for the problem addressed in this paper:

� EKF: extended Kalman filter without implicit con-
straint;

� pMLIT: partial maximum likelihood information
transfer;

� fMLIT: full maximum likelihood information transfer
without considering cross-correlation;

� fMLIT-EGHF: full maximum likelihood information
transfer using extended Gauss–Helmert filter;

� fMLIT-UGHF: full maximum likelihood information
transfer using unscented Gauss-Helmert filter; and

� fMLIT-UGHFapp: full maximum likelihood informa-
tion transfer using unscented Gauss-Helmert filter
with approximation.

Like all dynamic estimation algorithms, they consist
of two steps, prediction and update. The six algorithms
share the sameprediction step given in (13) and (14).The
update step is also the same for within-camera estima-
tion, which follows the extended Kalman filter (EKF)1

as

x̂(tk|tk) = x̂(tk|tk−1) + W(tk)ν(tk), (32)

P(tk|tk) = P(tk|tk−1) − W(tk)S(tk)W(tk)′, (33)

where

ν(tk) = zsi (tk) − h[x̂(tk|tk−1), xsi ], (34)

W(tk) = P(tk|tk−1)H(tk)S(tk)−1, (35)

S(tk) = R + H(tk)P(tk|tk−1)H(tk)′, (36)

and

H(tk) = ∂h(x, xsi )
∂x

∣∣∣∣
x=x̂(tk|tk−1)

, (37)

with h(·) given in (11). The differences between the six
algorithms are at the across-camera update step. This is
the main focus of this section, and will be given next.

A. Extended Kalman Filter without Implicit Constraint

This algorithmupdates the target across camera state
using the measurement model given in (10).The implicit
constraints given in (22)–(27) are totally ignored. Its up-
date step is according to the EKF given in (32)–(33).

As we discussed in Section II, this algorithm suffers
from large errors due to unobservability. We include it
here as baseline for comparison purpose. This algorithm
may be in use in some real applications due to its easy
implementability. It is worth to evaluate its performance
to understand its limitations.

B. Partial Maximum Likelihood Information Transfer
(pMLIT)

This algorithm updates the across-camera state using
the partial information in the predicted state xI (position
only). It converts the predicted position to the LOS in-
formation (azimuth and elevation) with reference to the
first camera, and then combines with the LOS measure-
ment from the second camera to estimate the position in
xII using the maximum likelihood (ML) estimation. The
velocity in xI is not utilized, and the velocity in xII is not
estimated. The details are given in sequel.

1The EKF is selected for within-camera estimation.This is because the
camerameasurement error is small.The other nonlinear filters like un-
scented Kalmen filter and particle filter cannot improve estimation ac-
curacy when the measurement errors are small. Furthermore, the EKF
is more efficient, and is good for the high sampling/measurement rate
of a camera.
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First, the LOS and its error covariance from the first
camera are computed by

zIA = [aI eI]′ = h(xI, xs1 ), (38)

RIA = H(tk)PIH(tk)′, (39)

where h(·) and H(·) are given in (10) and (37), respec-
tively.

Second. the position in xII is estimated. The LOS of
the second camera is the measurement

zs2 (tk) = [as2 (tk) es2 (tk)]
′. (40)

The iterated least squares (ILS) [1] is used to obtain the
ML estimate of the target position by the model

zp = hp(xp, xs1 , xs2 ) + wp, (41)

where

zp = [z′
IA zs2 (tk)

′]′, (42)

xp = xII(1 : 3) = [xII yII zII]′, (43)

hp[xp, xs1 , xs2 ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

arctan
(
xII−xs1
yII−ys1

)

arctan
(

zII−zs1√
(xII−xs1 )2+(yII−ys1 )2

)

arctan
(
xII−xs2
yII−ys2

)

arctan
(

zII−zs2√
(xII−xs2 )2+(yII−ys2 )2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(44)

and wp is the error of zp with the covariance

Rp =
[
RIA 02×2

02×2 R

]
. (45)

The position ML estimate is obtained by the ILS algo-
rithm as

x̂ j+1
p = x̂ jp + P j+1

p (J j)′R−1
p [zp − hp(x̂

j
p, xs1 , xs2 )], (46)

P j+1
p = [(J j)′R−1

p J j]−1, (47)

where j is the iteration index, and

J j = ∂hp(xp, xs1 , xs2 )
∂xp

∣∣∣∣
xp=x̂ jp

. (48)

The state xII estimate and its error covariance are then
given by

x̂II = [x̂′
p 0 0 0]′, (49)

PII =
[

Pp 03×3

03×3 diag(σ 2
ẋ σ 2

ẏ σ 2
ż )

]
, (50)

where σẋ, σẏ, and σż are predefined velocity error stan-
dard deviations in x, y, and z coordinates, respectively.

This algorithm can overcome the range bias problem
in the EKF described in the Section III-A. It carries the
estimated azimuth and elevation information from the
first camera to the subsequent tracking process. How-
ever, the velocity estimates are lost, and the velocities in
xII in (49) are set to 0 without the contribution from the
previous state estimate. Thus the information from the
previous state is only partially transferred to the subse-
quent tracking process.

C. Full Maximum Likelihood Information Transfer
(fMLIT) without Considering Cross-Correlation

This algorithm estimates xII and its error covari-
ance PII using the fMLIT.However, it ignores the cross-
covariance between the position and velocity error. The
details are given below.

First, the algorithm estimates the position in xII us-
ing the same method as the pMLIT described in the
Section III-B.

Second, xII (including velocity estimation) and its er-
ror covariance PII are estimated by

x̂II = [x̂′
p λx′

I,(4:6)]
′, (51)

PII =
[

Pp 03×3

03×3 λ2PI,(4:6,4:6)

]
, (52)

where

λ = r̂II
rI

, (53)

where rI and r̂II are computed using (30) and (31), re-
spectively (see Fig. 3).

This is an approximate solution to compute the ve-
locity in xII.The velocity error covariance is also approxi-
mately proportional with factor λ2.The cross-covariance
between the errors of the position and velocity is not
taken into consideration, setting it to 03×3 in PII.

D. Full Maximum Likelihood Information Transfer Using
Extended Guass–Helmert Filter (fMLIT-EGHF)

This algorithm updates the across-camera state
based on the GHM described in Section II-B. Since the
GHM is nonlinear, we approximate the nonlinear trans-
formation by the first-order Taylor expansion. Follow-
ing the name of the EKF, using the same approximation
approach, we designate the algorithm as extended GHF
(EGHF).

The update step is performed by the following itera-
tion

P j+1
II =

[
(A j)′[B jPy(B j)′]−1A j

]−1,
(54)

x̂ j+1
II = x̂ jII − P j+1

II (A j)′[B jPy(B j)′]−1g(x̂ jII, y), (55)
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where j is the iteration index,

A j = ∂g(xII, y)
∂xII

∣∣∣∣
xII=x̂ jII

, (56)

B j = ∂g(xII, y)
∂y

∣∣∣∣
xII=x̂ jII

. (57)

The initial x̂0II is set as in (51). The Jaconbians A and B
are given in Appendix B.

This algorithm is a solution for the implicit GHM
given in the Section II-B, using the first-order Taylor
expansion to approximate the nonlinear function (20).
However, in addition to the well-known disadvantages
of the first-order Taylor approximation, such as not be-
ing suitable for highly nonlinear models with large er-
rors, the EGHF involves matrix inversion operations.
This may cause numerical issues when the matrices are
ill-conditioned. This will be discussed later in the simu-
lation tests.

E. Full Maximum Likelihood Information Transfer using
Unscented Gauss–Helmert Filter (fMLIT-UGHF)

This algorithm is also a GHF to provide a solu-
tion to the GH measurement model. To better approxi-
mate the nonlinear transformation, the unscented trans-
form is used to replace the first-order Taylor expan-
sion in the fMLIT-EGHF.The algorithm is designated as
fMLIT-UGHF.

First, (2ny + 1) weighted sigma points of y are gener-
ated as

y1 = y, (58)

yi = y +
[√

(ny + κ )Py

]
i−1

i = 2, . . . ,ny + 1, (59)

yi = y −
[√

(ny + κ )Py

]
i−ny−1

i = ny + 2, . . . , 2ny + 1. (60)

Their corresponding weights are

w1 = κ

ny + κ
, (61)

wi = 1
2(ny + κ )

i = 2, . . . , 2ny + 1, (62)

where ny = 8 is the dimension of y, and κ is a scalar to
determine the spread of sigma points.

Second, the following iteration step is performed for
each sigma point, so that the sigma points of xII are ob-
tained.

x̂ j+1
II,i = x̂ jII,i − [(A j)′A j]−1(A j)′g(x̂ jII,i, yi). (63)

The initial x̂0II,i is set by (51) based on yi.
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Fig. 6. Test scenario with two adjacent cameras and three targets
(the two cameras, at 1 m apart, appear overlapped due to the

necessary scale of the figure).

Third, the updated state and its error covariance are
computed by the sigma points xII,i with i = 1, . . . , 2ny+1

x̂II =
2ny+1∑
i=1

wix̂II,i, (64)

PII =
2ny+1∑
i=1

wi(x̂II,i − x̂II)(x̂II,i − x̂II)′. (65)

The fMLIT-UGHF still has inversematrix operation,
but less occurrence than the fMLIT-EGHF.

F. Full Maximum Likelihood Information Transfer using
Unscented Guass–Helmert Filter with approximation
(fMLIT-UGHFapp)

This algorithm is an approximation version of the
fMLIT-UGHF. It removes the iteration process of the
fMLIT-UGHF in (63). The sigma points of x̂II are the
initial ones x̂0II,i. If the initial sigma points are accurate
enough, this approximation will not affect the final accu-
racy much. Furthermore, this approximation version has
no matrix inversion operations, so the numerical issues
due to the inversion of possibly ill-conditioned matrices
are avoided. It also more efficient as it has no iteration
process.

IV. SIMULATION RESULTS

This section evaluates the performance of the six al-
gorithms described in Section III. The test scenario is
shown in Fig. 6. Two adjacent cameras 1 and 2 are lo-
cated at (0, 0, 50) m and (1, 0, 50) m, respectively, 1 m
apart. Each camera has a field of view of 10o and 5.6o

horizontal and vertical, respectively. The pointing an-
gles of cameras 1 and 2 are 30o and 38o (clockwise from
true North), respectively.Both of them are looking 2o up
in elevation (from the horizontal). Their measurement
error standard deviations of azimuth and elevation are
σb = σe = 0.046 mrad, which is equivalent to 1 pixel

20 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 17, NO. 1 JUNE 2022



6 8 10 12 14 16
0

50

100

150

200

250

300

time (s)

R
M

S
E

 o
f P

os
 E

st
im

at
e 

(m
)

EKF
pMLIT
fMLIT
fMLIT−EGHF
fMLIT−UGHF
fMLIT−UGHFapp

Fig. 7. The RMSE of position estimates versus time from 100 runs
for the six algorithms after camera 2 starts to detect target 1 (with

starting range 500 m).

(the cameras are assumed to have 8 megapixels). The
two cameras provide their detections every 0.1 s.We sim-
ulate the targets 1, 2, and 3 with starting ranges at 500 m,
750 m, and 1,000 m, respectively. They move across
the two cameras horizontally with the same heading
100o (clockwise from true North) and the same constant
speed of 12.5 m/s. The observation durations for the tar-
gets 1, 2, and 3 are 15 s, 22 s, and 30 s, respectively.A near-
range target has better observability than a far-range tar-
get, as the two LOSs from the two cameras have larger
angle between themwhen the target crosses the cameras.
So target 1 should have better estimation accuracy than
target 2, and target 3 is the worst. The PSD in (9) is set
as (see [2] for the units)

qp = 0.012 m2/s3. (66)

The velocity error standard deviations in (50) are set as

σẋ = σẏ = σż = 10m/s. (67)

The scalar κ in (59)–(62) is set to 1. We will present the
estimation accuracy using the root mean square errors
(RMSE) of the position and speed (magnitude of the
velocity vector), the statistical consistency analysis us-
ing the normalized estimation error squared (NEES) [1],
and the algorithms’ performances when the probability
of detection (PD) is less than unity in sequel.

A. Estimation Accuracy

The position and velocity estimates from 100 Monte
Carlo runs for each targets will be presented in this sub-
section.

First, we present the estimation accuracy of the six
algorithms for target 1 with starting range 500 m. The
position and speed estimate RMSEs versus time from
100 Monte Carlo runs are shown in Figs. 7 and 8, re-
spectively. The time starts from the moment camera 2
starts detecting the target (since the state is not fully
observable before that). It can be seen that the EKF
and pMLIT are obviously worse than the other four
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Fig. 8. The RMSE of speed estimates versus time from 100 runs for
the six algorithms after camera 2 starts to detect target 1 (with

starting range 500 m).

fMLIT algorithms, as they do not take all constrains
into consideration when the target crosses the cameras’
FOVs.We remove these two algorithms from the perfor-
mance figures, so that the other algorithms’ performance
can be enlarged and seen clearly. Since the EKF and
pMLIT have poor performance clearly, their perfor-
mance will not be presented in the sequel. The position
and speed RMSEs versus time for the four fMLIT algo-
rithms are shown in Figs. 9 and 10, respectively. We can
see the fMLIT is worse than the other three algorithms.
This is because the fMLIT is an approximate solution to
compute the position and velocity separately, the cross-
correlation of the estimation error between the posi-
tion and velocity is totally ignored, whereas, the other
three are solutions to the GHmodel.We do not observe
much differences in accuracy among the fMLIT-EGHF,
fMLIT-UGHF,and fMLIT-UGHFapp.Itmeans the non-
linearity and errors in the problem are small enough,
so that the first-order Taylor expansion (in the fMLIT-
EGHF) and unscented transform (in the fMLIT-UGHF
and fMLIT-UGHFapp) have very similar accuracy.Also,
since target 1 is the nearest with the best observability, it
does not cause numerical issues with ill-conditioned ma-
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Fig. 9. The RMSE of position estimates versus time from 100 runs
for the four fMLIT algorithms after camera 2 starts to detect target 1

(with starting range 500 m).
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Fig. 10. The RMSE of speed estimates versus time from 100 runs for
the four fMLIT algorithms after camera 2 starts to detect target 1

(with starting range 500 m).

trices in the filtering process, so that the three GHFs all
perform well. The similar results of the fMLIT-UGHF
and fMLIT-UGHFapp also show the initial sigma points
x̂0II,i in (63) are accurate enough, as similar accura-
cies are obtained with or without the iteration given
in (63).

Second, we show the estimation accuracy of tar-
get 2 with starting range 750 m. The position and speed
RMSEs versus time for the four fMLIT algorithms are
shown in Figs. 11 and 12, respectively. Similarly to target
1, the fMLIT is worse than the other three GHFs, and
the three GHFs have very similar results.

Next,we present the estimation performance for tar-
get 3 with starting range 1,000 m. Fig. 13 shows the posi-
tion RMSEs versus time for the four fMLIT algorithms.
It can be seen that the fMLIT-EGHF diverges. Diver-
gence happened after the across-camera event in one
run only. This is due to the state estimate error cov-
eriance PII in (54), which is not positive-definite in the
fMLIT-EGHFestimation.We investigated the condition
number of [BPyB′] in (54). It is 1 × 1018. The inver-
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Fig. 11. The RMSE of position estimates versus time from 100 runs
for the four fMLIT algorithms after camera 2 starts to detect target 2

(with starting range 750 m).
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Fig. 12. The RMSE of speed estimates versus time from 100 runs for
the four fMLIT algorithms after camera 2 starts to detect target 2

(with starting range 750 m).

sion operation on such an ill-conditionedmatrix encoun-
tered numerical issues, and caused PII to lose its posi-
tive definiteness. This resulted in estimation divergence
subsequently. Target 3 is at the farthest range among
the three targets, and its observability is marginal. The
two LOSs of the two cameras are nearly parallel when
the target crosses between the cameras. This leads to
ill-conditioned matrices during the fMLIT-EGHF iter-
ation process. We remove the fMLIT-EGHF, and show
the position and speed estimate RMSEs for the remain-
ing three algorithms in Figs. 14 and 15, respectively. It can
be seen that the fMLIT-UGHF and fMLIT-UGHFapp
have similar accuracy, and fMLIT is worse. We also in-
vestigatePII in fMLIT-UGHF.It is positive-definite.This
is because PII is computed with sigma points using (65),
and its positive-definiteness is maintained.However, the
sigma points computation also has an inversion op-
eration in (63). The condition number of the matrix
[A′A] to be inverted in (63) reached 1 × 1018. Thus, the
fMLIT-UGHF has a potential risk of numerical issues,
although not as much as the fMLIT-EGHF.
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Fig. 13. The RMSE of position estimates versus time from 100 runs
for the four fMLIT algorithms after camera 2 starts to detect target 3

(with starting range 1,000 m).
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Fig. 14. The RMSE of position estimates versus time from 100 runs
for the fMLIT, fMLIT-UGHF, and fMLIT-UGHFapp after camera 2

starts to detect target 3 (with starting range 1,000 m).

B. Statistical Consistency Analysis

The statistical consistency analysis is conducted us-
ing the NEES [1] at the across-camera event and is
computed by

εi(tk) = x̃i(tk)′Pi(tk)−1x̃i(tk), (68)

where i = 1 . . . 100 is the run index,

x̃i(tk) = x(tk) − x̂i(tk), (69)

and x̂i(tk) and x(tk) are the ith run state estimate and
ground truth at time tk, respectively, assuming the target
crosses between the cameras at time tk. The NEESs of
100 runs are recorded. The NEES of the state (with di-
mension 6) is a 6 degrees of freedom chi-square random
variable. Its two-sided 95% probability region is [1.24,
14.45]. The estimation is statistically consistent, if 95%
of NEESs are within this interval.

Figs. 16–18 show the NEESs versus the run index at
across-cameras for targets 1–3, respectively. The num-
bers of NEESs that are outside the 95% region for the
four fMLIT algorithms are counted and listed in Table I.
It can be seen, the fMLIT is not statically consistent for
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Fig. 15. The RMSE of speed estimates versus time from 100 runs for
the fMLIT, fMLIT-UGHF, and fMLIT-UGHFapp after camera 2

starts to detect target 3 (with starting range 1,000 m).
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Fig. 16. The across-cameras NEES of target 1 (with starting range
500 m) in 100 runs for the four fMLIT algorithms.
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Fig. 17. The across-cameras NEES of target 2 (with starting range
750 m) in 100 runs for the four fMLIT algorithms.
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Fig. 18. The across-cameras NEES of target 3 (with starting range
1,000 m) in 100 runs for the four fMLIT algorithms.

Table I
Number of NEES out of 95% boundary (100 runs)

Target 1 2 3

fMLIT 18 11 24
fMLIT-EGHF 5 5 11
fMLIT-UGHF 5 6 9
fMLIT-UGHFapp 5 4 4
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Fig. 19. RMSE of position estimate in 100 runs for the
fMLIT-UGHF.

all three targets. The number of NEES outside the 95%
region is 11 to 24, much larger than 5. For target 1, the
three GHFs are statistically consistent, as they all have
five NEESs outside the 95% region, i.e., they meet the
criterion. For target 2, the three GHFs are also consis-
tent. For target 3, only the fMLIT-UGHFapp is statisti-
cally consistent. The fMLIT-EGHF and fMLIT-UGHF
do not meet the consistency criterion. The worse perfor-
mance of the fMLIT-EGHF and fMLIT-UGHF is due to
their numerical issues.

C. Performance under Imperfect Detection

The PD is usually imperfect in real camera ap-
plications. We investigate the estimation accuracy of
the three GHFs (namely, fMLIT-EGHF, fMLTL-UGHF,
and fMLTL-UGHFapp) when PD = 0.9 for the three
targets shown in Fig. 6. The RMSE of position esti-
mates in 100 Monte Carlo runs are studied. The fMLIT-
EGHF diverges for all three targets when PD = 0.9.
The results of the fMLIT-UGHF and fMLIT-UGHFapp
are shown in Figs. 19 and 20, respectively. The corre-
sponding RMSEs when PD = 1 are also shown in the
figures for comparison. The position RMSEs increased
1–2mwhen PD= 0.9 in both fMLIT-UGHF and fMLIT-
UGHFapp. The fMLIT-UGHF and fMLIT-UGHFapp
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Fig. 20. RMSE of position estimate in 100 runs for the
fMLIT-UGHFapp.

generate very similar results. Figs. 19 and 20 are shown
separately because the results of the fMLIT-UGHF and
fMLIT-UGHFapp would be indistinguishable on a com-
bined figure at the same scale—they are, as in Figs. 9–15,
practically the same.

In summary, it can be seen from the simulation re-
sults that the fMLIT-UGHFapp is the most robust algo-
rithm. Its accuracy is similar to the fMLIT-UGHF and
without numerical issues. Its estimation is consistent sta-
tistically. It also has lower computational cost than the
fMLIT-UGHF as no iteration process is needed at each
sigma point. The fMLIT-UGHF is good in theory, but
is limited by numerical issues in practice. It is better
than the fMLIT-EGHF which suffers from serious nu-
merical problems. In general, the unscented transform
(in the fMLIT-UGHF) should be better than the first-
order Taylor approximation (in the fMLIT-EGHF) for
a highly nonlinear model with large error. In this appli-
cation, the nonlinearity and the degree of error do not
affect their performance.However,we observed another
disadvantage of the first-order Taylor approximation—
it is easier to encounter numerical issues in the infor-
mation transfer when the observablity is marginal. The
other three algorithms (EKF, pMLIT, and fMLIT) are
worse than those using GHFs.

V. CONCLUSIONS

In this paper, we formulated an implicit GHM to
transfer the full state information when a target crosses
between cameras. This model is based on the principle
that the target heading estimated from the first camera
is observable (assuming the target is in a NCV motion),
so that the heading should be consistent when the target
moves across cameras, and the speed is therefore pro-
portional to the range from the cameras. These implicit
constraints were added to the original measurement
model at the crossover time as the GHM.We developed
three GHFs, namely, fMLIT-EGHF, fMLIT-UGHF, and
fMLIT-UGHFapp, as solutions for the GHM (with dif-
ferent approximations of the nonlinear constraint). The
three GHFs outperform the other three algorithms
(EKF, pMLIT, and fMLIT), which are not using the
GHM, when numerical issues are not encountered. The
three GHFs are statistically consistent when the tar-
get is near (≤750 m) and PD = 1. However, when the
target is at 1,000 m range, only fMLIT-UGHFapp is
still statistically consistent, and the fMLIT-EGHF and
fMLIT-UGHF cannot meet the consistency criterion
due to numerical problems in the matrix inversion. The
fMLIT-UGHFapp is an approximate implementation of
the fMLIT-UGHF to avoid the matrix inversion. It has
similar accuracy to the fMLIT-EGHF (when the lat-
ter does not diverge) and fMLIT-UGHF, and its esti-
mates are statistically consistent. Therefore, the fMLIT-
UGHFapp is the most robust algorithm in this problem.

To apply the proposed algorithm to real applications,
other issues need to be addressed. First of all, cameras
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should be calibrated accurately. Second, a suitable track
to measurement association algorithm should be ap-
plied when multiple targets and false alarms exist. Third,
maneuvering targets need to be handled. The GHM in
this paper is based on the assumption of constant ve-
locity motion. This assumption is only necessary in the
neighborhood of the transfer between cameras. Based
on our study, the velocity estimate from a single camera
can converge within 1 s observation interval. If the tar-
get is not maneuvering for 1 s before camera crossing,
the GHM is valid. Otherwise, the pMLIT without speed
constraint should be applied. All these issues are sep-
arate topics in themselves and quite extensive. Further
study on them will be conducted in the future.

APPENDIX A

OBSERVABILITY OF HEADING FROM A SEQUENCE OF
ANGULAR MEASUREMENTS

This appendix proves that the target heading is ob-
servable for a constant velocity (CV) target from a se-
quence of angular measurements (azimuths and eleva-
tions) of a stationary sensor.The 3Dproblem can be sim-
plified to a 2D problem in the plane formed by the target
path (a straight line) and the sensor location point. The
azimuth and elevation measurements can then be con-
verted to bearing lines in this plane. If we can prove the
target heading in this plane is observable, the heading is
also observable in 3D Cartesian space.

Fig. 21 shows this 2D plane with the sensor at pointO
and three bearing lines OA, OB, and OC in time se-
quence with a fixed time interval T .Assuming the target
path is on the straight line ABC,we have |AB| = |BC| as
the target is moving in CV.We will prove that the target
heading is observable by the following two steps:

� At an arbitrary point A on the first bearing line, there
is an unique straight path ABC with |AB| = |BC|
(namely, with two equal cuts by the three bearing
lines).

� All the (CV target paths with two equal cuts (by the
three bearing lines) are parallel.

These will prove that all possible target trajectories
share the same unique heading.

First, we prove that if A is fixed, then ABC is the
unique straight path with |AB| = |BC| for the three LOS
as above.We draw a line AD parallel toOC and it inter-
sects OB at D. We prove |AD| = |OC|. Since the tri-
angles ABD and OBC are similar and |AB| = |BC|, we
have

|AB|
|BC| = |AD|

|OC| = 1, (A1)

|AD| = |OC|. (A2)

We then draw two arbitrary straight lines AB1C1 and
AB2C2 below and above ABC, respectively. We will

Fig. 21. Proof of the unique target heading obtained from three
bearing lines for a constant velocity target.

prove these two arbitrary lines cannot meet the equal-
ities (implied by CV assumption) |AB1| = |B1C1| or
|AB2| = |B2C2|. For AB1C1, we prove |AB1| > |B1C1|
by

|AB1|
|B1C1| = |AD|

|OC1| >
|AD|
|OC| = 1, (A3)

|AB1|
|B1C1| > 1, (A4)

|AB1| > |B1C1|. (A5)

For AB2C2, we prove |AB2| < |B2C2| by
|AB2|
|B2C2| = |AD|

|OC2| <
|AD|
|OC| = 1, (A6)

|AB2|
|B2C2| < 1, (A7)

|AB2| < |B2C2|. (A8)

Since any arbitrary line below or above ABC does not
have two equal cuts by the three bearing lines, it follows
that ABC is unique for a CV target starting at A.

Second, we will prove all the possible target trajec-
tories with equal cuts are parallel. Let’s draw another
arbitrary line abc parallel to ABC, and a is an arbitrary
point besides A on the first bearing line. We will prove
|ab| = |bc| by

|ab|
|AB| = |Ob|

|OB| , (A9)

|ab| = |Ob||AB|
|OB| , (A10)

|bc|
|BC| = |Ob|

|OB| , (A11)

|bc| = |Ob||BC|
|OB| = |Ob||AB|

|OB| = |ab|. (A12)
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Based on our previous proof, the straight line with two
equal cuts is unique if a is fixed. Thus abc is the unique
line starting at a with two equal cuts. Since abc is paral-
lel to ABC, they share the same heading. Furthermore,
point a is an arbitrary point on the first bearing line, and
this proves that all possible CV trajectories (with two
equal cuts) are parallel and share the same heading.This
proves that the heading is observable.

Note the assumption of the above proof that the
three bearing lines are different. If a target approaching
to the sensor (or moving away from the sensor) directly,
the three bearings coincide.The heading angle is known,
but cannot differentiate if the target is approaching or
moving away fromO.That needs additional information,
such as target size increasing/decreasing in a sequence of
images (or intensity for point detection), to tell the direc-
tion.

APPENDIX B

JACOBIANS IN THE fMLIT-EGHF AND fMLIT-UGHF

The Jacobians A and B used in the fMLIT-EGHF
and fMLIT-UGHF are derived below.

A = ∂g(xII, y)
∂xII⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0

A21 A22 A23 0 0 0

A31 A32 A33 0 0 0

A41 A42 A43 rI 0 0

A51 A52 A53 0 rI 0

A61 A62 A63 0 0 rI

A71 A72 0 0 0 0

A81 A82 A83 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B1)

B = ∂g(xII, y)
∂y⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 0 0 0 0 0

B21 B22 B23 0 0 0 0 0

B31 B32 B33 0 0 0 0 0

B41 B42 B43 −rII 0 0 0 0

B51 B52 B53 0 −rII 0 0 0

B61 B62 B63 0 0 −rII 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B2)

with

A11 = rI − (xI − xs1 )(xII − xs1 )/rII, (B3)

A12 = −(xI − xs1 )(yII − ys1 )/rII, (B4)

A13 = −(xI − xs1 )(zII − zs1 )/rII, (B5)

A21 = −(yI − ys1 )(xII − xs1 )/rII, (B6)

A22 = rI − (yI − ys1 )(yII − ys1 )/rII, (B7)

A23 = −(yI − ys1 )(zII − zs1 )/rII, (B8)

A31 = −(zI − zs1 )(xII − xs1 )/rII, (B9)

A32 = −(zI − zs1 )(yII − ys1 )/rII, (B10)

A33 = rI − (zI − zs1 )(zII − zs1 )/rII, (B11)

A41 = −ẋI(xII − xs1 )/rII, (B12)

A42 = −ẋI(yII − ys1 )/rII, (B13)

A43 = −ẋI(zII − zs1 )/rII, (B14)

A51 = −ẏI(xII − xs1 )/rII, (B15)

A52 = −ẏI(yII − ys1 )/rII, (B16)

A53 = −ẏI(zII − zs1 )/rII, (B17)

A61 = −żI(xII − xs1 )/rII, (B18)

A62 = −żI(yII − ys1 )/rII, (B19)

A63 = −żI(zII − zs1 )/rII, (B20)

A71 = yII − ys2
(xII − xs2 )2 + (yII − ys2 )2

, (B21)

A72 = − xII − xs2
(xII − xs2 )2 + (yII − ys2 )2

, (B22)

A81 = − (xII − xs2 )(zII − zs2 )√
(xII − xs2 )2 + (yII − ys2 )2

× 1
(xII − xs2 )2 + (yII − ys2 )2 + (zII − zs2 )2

,

(B23)
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A82 = − (yII − ys2 )(zII − zs2 )√
(xII − xs2 )2 + (yII − ys2 )2

× 1
(xII − xs2 )2 + (yII − ys2 )2 + (zII − zs2 )2

,

(B24)

A83 =
√
(xII − xs2 )2 + (yII − ys2 )2

(xII − xs2 )2 + (yII − ys2 )2 + (zII − zs2 )2
, (B25)

B11 = (xII − xs1 )(xI − xs1 )/rI − rII, (B26)

B12 = (xII − xs1 )(yI − ys1 )/rI, (B27)

B13 = (xII − xs1 )(zI − zs1 )/rI, (B28)

B21 = (yII − ys1 )(xI − xs1 )/rI, (B29)

B22 = (yII − ys1 )(yI − ys1 )/rI − rII, (B30)

B23 = (yII − ys1 )(zI − zs1 )/rI, (B31)

B31 = (zII − zs1 )(xI − xs1 )/rI, (B32)

B32 = (zII − zs1 )(yI − ys1 )/rI, (B33)

B33 = (zII − zs1 )(zI − zs1 )/rI − rII, (B34)

B41 = ẋII(xI − xs1 )/rI, (B35)

B42 = ẋII(yI − ys1 )/rI, (B36)

B43 = ẋII(zI − zs1 )/rI, (B37)

B51 = ẏII(xI − xs1 )/rI, (B38)

B52 = ẏII(yI − ys1 )/rI, (B39)

B53 = ẏII(zI − zs1 )/rI, (B40)

B61 = żII(xI − xs1 )/rI, (B41)

B62 = żII(yI − ys1 )/rI, (B42)

B63 = żII(zI − zs1 )/rI, (B43)

where rI and rII are given in (30) and (31), respectively
(see Fig. 3).
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Unbiased Conversion of Passive
Sensor Measurements Using
Closest Point of Approach

MICHAEL KOWALSKI
YAAKOV BAR-SHALOM
PETERWILLETT
TIM FAIR

In passive sensor target tracking, there are applications that re-

quire converting the angle-only measurements into Cartesian space.

Multisensor methods can be used to convert the raw measurements

into Cartesian measurements by finding the intersection of lines of

sight. This method contains significant nonlinearity in its conversion;

therefore, it is subject to corresponding errors such as a conversion

bias and an improper covariance. The proposedmethod uses a second-

order Taylor series expansion to accurately account for the conver-

sion nonlinearities. This results in an explicit (noniterative) expression

of the Cartesian position based on two line-of-sight measurements in

three dimensions.This paper investigates the severity of the conversion

biases from nonlinearity and the efficiency of the unbiased conversion

with regard to compensating for them.

I. INTRODUCTION

Passive sensors are especially challenging compared
to those that are active. Although some passive sen-
sors also deliver amplitude information—and, indeed,
in some situations, can incorporate processing such as
via wavefront curvature or based on target image expec-
tations to infer range—they are commonly assumed to
present only angular measurements (see [3], [4]). Pas-
sive sensor measurements require a data fusion step if
a three-dimensional plot is desired, as it often is by a
downstream tracker. However, as we shall see, a typi-
cal processing chain aimed at such plots produces an
unwanted but modelable bias.1 This paper addresses
such modeling, but we note that while there are so-
phisticated ways to mitigate bias (e.g., nonlinear least-
squares in [2] and maximum-likelihood (ML) estima-
tion in [13]), the goal here is for a simple delivery of
Cartesian measurements to a simple Cartesian tracker
such as a Kalman filter; a nonlinear dynamic estima-
tion approach such as a particle filter does not require
such pre-processing, but is often much more computa-
tionally demanding. However, in any case, even therein
improvements can be made in terms of initialization
(using the angle measurements to obtain Cartesian po-
sitions and velocities), and sensor registration through
bias estimation is a widely researched topic that com-
monly uses converted measurements from spherical co-
ordinates and range/direction-sines coordinates [16].

Triangulation is often used to convert two angle-only
measurements into Cartesian position. In [14], triangu-
lation is used to initialize an ML approach to convert-
ing angle-only measurements into Cartesian. However,
the MLmethod uses a search to obtain an (iterative) es-
timate of the Cartesian position. In the case of an ML
search, it is practically impossible to produce a Jacobian
matrix of the converted Cartesian coordinates with re-
spect to the original angle-only measurements as the
“location” of the ML estimate’s convergence point is
not analytically related to the angle-only measurements.
This Jacobian is useful for applications in other target
tracking applications such as bias estimation. The novel
[10] was the first to attempt the second-order Taylor
series expansion for angle-only measurements in pas-
sive sensors and use them for estimation of sensor bias,
which is separate from conversion bias. The work re-
lied on triangulation to form bias pseudo-measurements.
Conversion via triangulation is flawed particularly as the
conversion is overly reliant on azimuth rather than the
total angle. The transformation fails when the lines of
sight of the two sensors are equal in azimuth as the
denominator of the conversion equation becomes zero.
This would result in “blind spots” of the transformation
where the error and covariance consistency would dete-

1Other effects such as refraction also produce offsets that might be
called biases, but these can be treated in other ways and we do not
discuss them here.
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riorate greatly, as seen in [9]. The law of sines is used in
[5] to generate ranges in order to convert the angle mea-
surements into Cartesian similarly to triangulation. In
[15], the closest point of approach between the two line-
of-sight (LOS) rays is used to create compositeCartesian
coordinates. This paper investigates the closest point of
approachmethod to produce a (noniterative) expression
of the Cartesian position based on two LOS measure-
ments in three dimensions. However, the conversion of
angle measurements into Cartesian is a nonlinear trans-
formation that requires an unbiased conversion [3]. As
such, this paper investigates the bias of the explicit con-
version expression and provides a solution to overcome
it.

An approach to deriving an unbiased conversion for
a nonlinear transformation is used in [17] to convert
sine space coordinates into Cartesian by using a second-
order Taylor series expansion. In this paper, the ap-
proach is replicated for the conversion of passive sensor
measurements to Cartesian.Themethod is also similarly
evaluated to ensure that the second-order conversion is
necessary.

In particular, it is necessary to account for the non-
linear measurement conversion by accounting for the
bias and also by converting the measurement noise
covariance. The conversion bias is well documented in
the literature [3], [12] for spherical to Cartesian conver-
sion where the noise pattern resembles a curved lens
in Cartesian space rather than a sphere. It is necessary
to adjust the converted noise covariance to more accu-
rately represent the converted measurements. Similarly,
the same process must be made for the conversion of
angle-only measurements into Cartesian. Previously,
in [9], the conversion bias and covariance consistency
errors were improved by using the second-order Taylor
series expansion. A simulation was constructed that
produced a conversion bias, and the unbiased conver-
sion reduced it to less than one-tenth of its original
value. This conversion was then used in [10] to form
bias pseudo-measurements, which could then be used
to estimate sensor biases without needing to estimate
the target state. In [11], debiased polar measurements
were used in a Kalman Filter and are shown to improve
tracking performance relative to a mixed coordinate
Extended Kalman Filter (EKF). The RMS values were
reduced as a result of the reduction of errors due to
nonlinearity. This is because an EKF is subject to the
same nonlinearities when converting its state to sensor
coordinates when using a mixed measurement model,
albeit in the opposite “direction”.

A cubature integration method can also be used to
approximate the moments of the nonlinear conversion.
In [6], several filters involving cubature methods were
examined with respect to areas of severe nonlinearity.
The cubature Kalman filters and a Kalman filter using
converted measurements were found to be commensu-
rate in performance when wrapping was used.

This paper is outlined as follows: Section II contains
the definitions for passive sensing used by this method.
The proposed method of closest point of approach is
presented in Section III. The methods of analyzing the
conversion are in Section IV. The parameters for the
simulation are included in Section IV-A. The methods
include analysis of the bias discussed in Section IV-B and
analysis of the covariance discussed in Section IV-C.Sec-
tion V concludes the paper.

Notation used in this work includes vectors as bold
symbols such as x. Gradients are defined using the
∇ symbol. The superscript t and subscript s specify
the target and sensor indices, respectively. The super-
scripts c, db, and m specify that a variable is con-
verted, debiased, and measured, respectively. The no-
tation ′ means the vector or matrix is transposed. The
subscripts x, y, and z are used to specify that a variable
refers to the respective Cartesian coordinate. The no-
tation (k) specifies the time index. N specifies a Gaus-
sian random variable with the mean and covariance in
parentheses.

II. PROBLEM FORMULATION

Passive three-dimensional angle-only sensors are
used for this paper. Passive sensors only give angle mea-
surements pointing in the direction of the target. In three
dimensions, this is made up of two angles, azimuth, and
elevation. The sensors are assumed to be synchronous
and the network consists of Ns sensors. At a timestep k,
the position of sensor s in Cartesian space, assumed to
be known, is

xs(k) = [xs(k), ys(k), zs(k)]′. (1)

For simplicity, there is only a single target t, and its Carte-
sian position is similarly

xt (k) = [xt (k), yt (k), zt (k)]′. (2)

The sensors generate measurements of the target from
their own reference frame:

xts(k) = xt (k) − xs(k). (3)

Using the positions derived in (3), the sensors gener-
ate elevation and azimuthmeasurements.Azimuth is de-
noted as α and elevation is denoted as ε. The measure-
ments use atan2,which (MATLAB notation) is the four-
quadrant inverse tangent.

ξs(k) =
[

αs(k)

εs(k)

]
=

⎡
⎢⎢⎣

atan2
(
yts(k)
xts(k)

)

atan2
(

zts(k)√
xts(k)2+yts(k)2

)
⎤
⎥⎥⎦ . (4)

The measurements are combined with noises wα
s (k)

and wε
s (k) to produce the final measurement model,

where superscript m signifies that the angles are the
measurements generated by the sensors. The noise for
each sensor is assumed uncorrelated independent white
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Gaussian with variances (σα
s )

2 and (σ ε
s )

2 and zero
mean.2 The noisy measurements are

ξms (k) =
[

αms (k)

εms (k)

]
=

[
αs(k)

εs(k)

]
+

[
wα
s (k)

wε
s (k)

]
, (5)

wα
s (k) ∼ N (0, (σα

s )
2) wε

s (k) ∼ N (0, (σ ε
s )

2). (6)

The noise variances are assumed to be known by the
system. These measurements are assumed to be syn-
chronous, but this model can be modified for the asyn-
chronous case.The true target state is treated as a param-
eter because we consider a single point in time, and the
method proposed here seeks to be agnostic with regard
to target dynamics. A filter (which operates across time)
normally introduces process noise models for tracking,
but our method converts the individual measurements
to be used in a tracking filter with the converted noise
errors being zero-mean, with consistent covariance, and
independent across time. As such, this method can be
used with any target motion or process noise model.

In this paper, we assume sensors deliver synchro-
nized measurements. In practice, a high frame rate miti-
gates asynchronicity. But, it is admitted that significantly
asynchronousmeasurements will cause additional errors
as theywould need to be propagated to the same time for
conversion, and this would require integration of bias es-
timation into the dynamic estimation procedure. That is
beyond the scope of this paper, but is an intriguing topic
for future work.

III. CONVERSION USING CLOSEST POINT OF
APPROACH

A. The Conversion

The method for conversion investigated in this work
is using the closest point of approach to generate a sin-
gle Cartesian measurement using angle measurements
from two sensors. This method finds the points on the
two LOS rays that are closest to each other and then la-
bels the midpoint between the two points as the com-
posite Cartesian position.When converting lines of sight
into Cartesian, it is important to take into account ob-
servability. Previously, in [9], the triangulation conver-
sion was examined, but this was found to have observ-
ability problems when solely the azimuth components
were similar, regardless of whether the lines of sight were
parallel or not. This reduces the practicality of the ap-
proach because the reference frame would have to be

2In passive sensor angle measurements, the noise is commonly approx-
imated with a Gaussian, but it is not the most accurate model for real
sensors. Research in passive sensors has used alternatives such as the
Kent distribution in [8] or a wrapped distribution as in [6]. For the pur-
poses of this work, the noise is approximated as Gaussian.A Gaussian
assumption yields a simple algorithm, so we use it; but, if a higher fi-
delity/complexity solution is required, the approaches in [10] and [4]
should be consulted.

Fig. 1. Using CPA (closest point of approach) to convert azimuth
measurements into three-dimensional Cartesian measurements.

rotated to avoid having the azimuth components be the
same. The conversion proposed in this work is an im-
provement because it avoids this severe reliance on one
of the two angle measurements, improving observability
and avoiding the need for rotation.This process is shown
in Fig. 1. The superscript c is used to signify that it is a
conversion:

xt,c1 (k) =

⎡
⎢⎢⎣
xt,c1 (k)

yt,c1 (k)

zt,c1 (k)

⎤
⎥⎥⎦

= x1(k)+L1(k)(L1(k)′B1,2(k))−(L1(k)′L2(k))(L2(k)′B1,2(k))
1−(L1(k)′L2(k))2

, (7)

xt,c2 (k) =

⎡
⎢⎢⎣
xt,c2 (k)

yt,c2 (k)

zt,c2 (k)

⎤
⎥⎥⎦

= x2(k)+L2(k)(L1(k)′L2(k))(L1(k)′B1,2(k))−(L2(k)′B1,2(k))
1−(L1(k)′L2(k))2

, (8)

xt,c1,2(k) = 1
2

(
xt,c1 (k) + xt,c2 (k)

)
. (9)

The conversion relies on the Cartesian vectors of the
lines of sight defined as L and the line between the sen-
sors defined as B. These are calculated as

L1(k) =

⎡
⎢⎢⎣
cos(α1(k)) cos(ε1(k))

sin(α1(k)) cos(ε1(k))

sin(ε1(k))

⎤
⎥⎥⎦ , (10)

L2(k) =

⎡
⎢⎢⎣
cos(α2(k)) cos(ε2(k))

sin(α2(k)) cos(ε2(k))

sin(ε2(k))

⎤
⎥⎥⎦ , (11)
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B1,2(k) = x2(k) − x1(k) =

⎡
⎢⎣
x2(k) − x1(k)

y2(k) − y1(k)

z2(k) − z1(k)

⎤
⎥⎦ . (12)

The derivation for these equations is included in the
Appendix. In ML applications [10], the two Cartesian
coordinate measurements can be used separately rather
than merged for the parameter estimate.

In the presence of noise, this method is imperfect
as the two lines of sight will not intersect exactly in
three-dimensional space. As such, estimation methods
are commonly used to estimate the true target state,
which will be discussed later in the paper. However,
in circumstances when estimation methods are undesir-
able, it is possible to use thismethod,and the effect of the
noise can be approximated with a conversion. Further-
more, the noise can cause a bias in the converted mea-
surement, but this bias can be calculated and removed.

It is important to note that this is an explicit expres-
sion of the conversion. Unlike iterative methods such
as ML, it is possible to calculate a Jacobian of the con-
verted Cartesian positions with respect to the original
LOS measurements. As such, the derivatives can be cal-
culated and, in turn, used to calculate the bias and co-
variance. The explicit expression and these derivatives
are useful in other applications such as the generation
of pseudo-measurements for bias estimation [10].

B. The Bias of the Conversion and Its Compensation

To approximate the noise covariance and debias the
converted measurements, a Taylor series expansion is
used. A second-order expansion is used here; however,
further orders can be used for a more accurate conver-
sion. For simplicity, the y and z expansions as well as the
individual derivatives are moved to the Appendix. The
superscriptm denotes that the convertedCartesianmea-
surements are made with the noisy LOS measurements:

xt,c,m1,2 (k) ≈ xt (k) + ∂xt,c1,2
∂α1

wα
1 (k) + ∂xt,c1,2

∂α2
wα

2 (k)

+ ∂xt,c1,2
∂ε1

wε
1(k) + ∂xt,c1,2

∂ε2
wε

2(k)

+ 0.5
∂2xt,c1,2
∂α2

1

wα
1 (k)

2 + 0.5
∂2xt,c1,2
∂α2

2

wα
2 (k)

2

+ 0.5
∂2xt,c1,2
∂ε21

wε
1(k)

2 + 0.5
∂2xt,c1,2
∂ε22

wε
2(k)

2

+ ∂2xt,c1,2
∂α1∂α2

wα
1 (k)w

α
2 (k) + ∂2xt,c1,2

∂α1∂ε1
wα

1 (k)w
ε
1(k)

+ ∂2xt,c1,2
∂α1∂ε2

wα
1 (k)w

ε
2(k) + ∂2xt,c1,2

∂α2∂ε1
wα

2 (k)w
ε
1(k)

+ ∂2xt,c1,2
∂α2∂ε2

wα
2 (k)w

ε
2(k) + ∂2xt,c1,2

∂ε1∂ε2
wε

1(k)w
ε
2(k).

(13)

The expected value of the expanded term contains the
conversion bias.

E[xt,c,m1,2 (k)] ≈ xt (k) + 0.5
∂2xt,c1,2
∂α2

1

(σα
1 )

2

+ 0.5
∂2xt,c1,2
∂α2

2

(σα
2 )

2 + 0.5
∂2xt,c1,2
∂ε21

(σ ε
1 )

2

+ 0.5
∂2xt,c1,2
∂ε22

(σ ε
2 )

2, (14)

cx,1,2 = 0.5
∂2xt,c1,2
∂α2

1

(σα
1 )

2 + 0.5
∂2xt,c1,2
∂α2

2

(σα
2 )

2

+ 0.5
∂2xt,c1,2
∂ε21

(σ ε
1 )

2 + 0.5
∂2xt,c1,2
∂ε22

(σ ε
2 )

2, (15)

E[xt,c,m1,2 (k)] ≈ xt (k) + cx,1,2. (16)

By calculating and subtracting the bias, it is possible to
avoid this error, producing the debiased measurements
denoted by the superscript db.

xt,c,m,db
1,2 (k) = xt,c,m1,2 (k) − cx,1,2, (17)

E[xt,c,m,db
1,2 (k)] ≈ xt (k). (18)

The converted state is rewritten into a simple form that
contains the truth and converted zero-mean Gaussian
noise. This results in the following measurement equa-
tion for the converted measurements:

xt,c,m,db
1,2 (k) =

⎡
⎢⎢⎢⎣
xt,c,m,db
1,2 (k)

yt,c,m,db
1,2 (k)

zt,c,m,db
1,2 (k)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣
xt (k)

yt (k)

zt (k)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎣

wx,t,c,db
1,2 (k)

w
y,t,c,db
1,2 (k)

wz,t,c,db
1,2 (k)

⎤
⎥⎥⎥⎦ . (19)

The noise after conversion is now zero-mean white
Gaussian, as is desirable for tracking and applications,

w1,2(k) =

⎡
⎢⎢⎢⎣

wx,t,c,db
1,2 (k)

w
y,t,c,db
1,2 (k)

wz,t,c,db
1,2 (k)

⎤
⎥⎥⎥⎦ ∼ N

⎛
⎜⎜⎝

⎡
⎢⎢⎣
0

0

0

⎤
⎥⎥⎦ ,Rt,c,db

1,2

⎞
⎟⎟⎠. (20)

C. The Covariance of the Converted Errors

The covariance matrix for the converted measure-
ments can be calculated with the same Taylor series
expansion. The full derivation of the following equa-
tions and the appropriate derivatives are found in the
Appendix. The covariance matrix (with the superscripts
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and subscripts removed for simplicity) is

Rt,c,db
1,2 =⎡
⎢⎢⎣

V (x(k)) CV (x(k), y(k)) CV (x(k), z(k))

CV (x(k), y(k)) V (y(k)) CV (y(k), z(k))

CV (x(k), z(k)) CV (y(k), z(k)) V (z(k))

⎤
⎥⎥⎦,

(21)

whereV is the variance of the variable defined by

V (xt,c,m,db
1,2 (k)) = E[xt,c,m,db

1,2 (k)2] − E[xt,c,m,db
1,2 (k)]2.

(22)

By using the terms in the Taylor series expansion, the
equation is changed into a usable form expressed as

V (xt,c,m,db
1,2 (k)) =(

∂xt,c1,2
∂α1

)2

(σα
1 )

2 +
(

∂xt,c1,2
∂α2

)2

(σα
2 )

2

+
(
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∂ε1

)2

(σ ε
1 )

2 +
(
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)2

(σ ε
2 )

2

+
(
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∂α1∂α2

)2

(σα
1 )

2(σα
2 )

2 +
(
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(σα
1 )

2(σ ε
1 )

2
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(
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)2

(σα
1 )

2(σ ε
2 )

2 +
(
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)2

(σα
2 )

2(σ ε
1 )

2

+
(
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)2

(σα
2 )

2(σ ε
2 )

2 +
(

∂2xt,c1,2
∂ε1∂ε2

)2

(σ ε
1 )

2(σ ε
2 )

2,

(23)

and the covarianceCV is defined by

CV (xt,c,m,db
1,2 (k), yt,c,m,db

1,2 (k))

= E[(xt,c,m,db
1,2 (k) − E[xt,c,m,db

1,2 (k)])

×(yt,c,m,db
1,2 (k) − E[yt,c,m,db

1,2 (k)])], (24)

where, similarly, the Taylor series expansion transforms
the equation into

Cov(xt,c,m,db
1,2 (k), yt,c,m,db

1,2 (k))

=
(

∂xt,c1,2
∂α1

) (
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)
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1 )
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(25)

At this point, the previous unbiased conversion and co-
variance evaluation can be defined as the second-order
conversion. In the simulations, this will be compared to
a first-order conversion, in which the same conversion
via the closest point of approach is made, but debiasing
is not performed and the second-order components are
ignored in the covariance calculation.

IV. SIMULATIONS AND RESULTS

A. Simulation Parameters

To analyze the conversion, we study a long-range or-
bital scenario in which an orbiting target passes through
the field of viewof two sea-level sensors.The target starts
at 7000 km from the center of the earth, or at an altitude
of 622 km above sea level on the equator directly on the
x axis in ECI (Earth-centered inertial) coordinates. The
target begins with a velocity necessary for maintaining
an orbit, 7.546 km/s, with the vector pointing at an angle
of 2.678 radians (clockwise from the Y axis) in the Y–Z
plane of ECI. Both sensors are stationary at sea level.
Sensor 1 is at −1◦ in latitude and −3◦ in longitude, and
sensor 2 is at 1◦ in latitude and 3◦ in longitude. The sen-
sors move via the rotation of the earth with respect to
ECI coordinates.The sensors are oriented facing directly
up, meaning that the local vertical is the boresight and 0
azimuth position. This scenario is designed to have a tar-
get that passes the sensors, causing angle measurements
that begin relatively perpendicular and become paral-
lel over time. A less observable system is present when
the measurements are parallel. Less observable systems
benefit more from improved nonlinear conversion. The
simulation setup is shown in Fig. 2.

The measurement noise values and simulation pa-
rameters are given in Table I and are kept the same for
both sensors for simplicity. The performance of the con-
version is analyzed over 100 000 Monte Carlo runs.
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Fig. 2. Sensor and target setup in ECI.

B. Cartesian Position Bias Evaluation

The value of this conversion is first investigated by
evaluating the significance of the bias. The conventional
conversion is the first-order conversion, which is based
on the first-order Taylor series expansion.The bias in the
conversion is defined as

μx = xt (k) − E[xt,c,m1,2 (k)], (26)

μy = yt (k) − E[yt,c,m1,2 (k)], (27)

μz = zt (k) − E[zt,c,m1,2 (k)]. (28)

The significance of the bias is defined as the norm of the
bias divided by the standard deviation of the noise in
Cartesian coordinates. This metric is based on the met-
ric proposed in [11] and used in [7]. The noise is roughly
converted by multiplying the range from the closest sen-
sor by the sine of the standard deviation of the azimuth,

β =
√

μ2
x + μ2

y + μ2
z

sin(σα
s )

√
(xts(k))2 + (yts(k))2 + (zts(k))2

. (29)

The biases and their significance over the simulation
time steps are seen in Fig. 3. The bias increases signifi-
cantly as the measurements become more parallel. The
significance of the bias is quite low, but for long-distance
applications, it is advantageous to include debiasing. If
the bias significance is less than 0.3 in most applications,
it is considered to be negligible as it is less than a 10% in-

Table I
Simulation Parameters,Ns = 2,Nt = 1,K = 1000 s, and

NMC = 100 000 runs

Sensor measurement noise
Azimuth noise

standard deviation
Elevation noise

standard deviation

Sensor 1 1 mrad 1 mrad
Sensor 2 1 mrad 1 mrad
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Fig. 3. Conversion bias and its significance over time.
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Fig. 4. Results of debiasing using the second-order conversion.

crease in the mean square error. The results of debiasing
are seen in Fig. 4.

After debiasing, the mean of the results is appropri-
ately centered on zero, meaning a significant improve-
ment in measurement consistency is made.Higher order
Taylor expansions may lead to more accurate debiasing.

C. Covariance Analysis

The accuracy of the covariance matrix from equation
(21) is also analyzed for the second-order conversion.A
Monte Carlo simulation is made to achieve this.For each
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Fig. 5. NES First and Second Order Comparison of covariance NES.

Monte Carlo run, denoted by superscript n out of NMC,
a converted measurement is obtained and compared to
the truth. The metric for analyzing the covariance is the
Normalized Error Squared (NES). This is defined as

x̃t1,2(k) = xt,c,m,db,n
1,2 (k) − xt (k), (30)

NES(k) = 1
NMC

∑NMC
n=1 x̃

t
1,2(k)

′Rt,c,db,n
1,2 (k)−1x̃t1,2(k).

(31)

Comparisons of the NESs, both for the first- and for
the second-order conversions to each other and to the
99% confidence region, are shown in Fig. 5. The NES
for the first-order conversion is significantly higher than
the confidence interval,meaning that the covariance cal-
culated is not accurately containing the measurement
points. In this case, the covariance is too small. The
second-order conversion very accurately remedies this
problem and results in a consistent NES. This calculated
covariance matrix can be safely used to represent the
converted Cartesian measurements.

D. Comparison With ML Conversion

In the previous sections, the proposed method is
shown to remove nearly all bias and calculates an ac-
curate, albeit pessimistic, covariance matrix. However,
it is important to consider comparing the method with
the already present method of generating composite
measurements using ML. This method is presented
in [14] and involves implementation of the ML using
Iterated Least-Squares (ILS). Intuitively, one can de-
duce that theMLmethod should producemore accurate
results for Cartesian coordinates from fusing two angle-
only measurements because it is efficient compared to
the Cramér–Rao Lower Bound (CRLB). However, the
proposed method has an advantage in that it is an ex-
plicit (noniterative) expression of the Cartesian posi-
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Table II
Comparison of Computation Times

Proposed
explicit

conversion
method

ML
one-iteration
conversion
method

ML
ten-iterations
conversion
method

K = 100 s 0.0084 s 0.0165 s 0.0966 s
K = 1000 s 0.0755 s 0.1401 s 0.9228 s

tion based on two line-of-sight measurements in three
dimensions as opposed to a search to obtain the (itera-
tive)MLE of the Cartesian position.This also means the
Jacobian of the converted Cartesian coordinates with re-
spect to the original angle-only measurements can be
calculated. In the case of ML, it is practically impossible
to produce the Jacobian matrix as the “location” of the
ML estimate’s convergence point is not analytically re-
lated to the angle-only measurements. Furthermore, the
proposed method is significantly faster than the ML es-
timate as no matrix multiplication is required, and the
conversion is done in one step rather than requiringmul-
tiple iterations. In this section, the performance of the
proposed method is compared to theMLmethod to ver-
ify the improvement in computation speed and examine
the difference in standard deviation. Two experiments
aremade for comparison:onewith the proposedmethod
compared to one iteration of ILS in theMLmethod, and
the other where the proposed method is compared to
ten iterations of ILS in the MLmethod. The single itera-
tion is the fastest the ML method can perform, but may
lose some accuracy compared to using ten iterations to
converge. Additionally, the methods are compared with
more or fewer measurements. The same parameters are
used from the previous simulations. Computation time
is evaluated using MATLAB and is averaged over 100
Monte Carlo runs. The results are displayed in Table II
and in Figs. 6 and 7. These figures present the time his-
tory of converted measurement errors along the trajec-
tory (no filtering is carried out here).

The table shows that the computation time is signifi-
cantly reduced by using the proposed method. The ex-
plicit conversion takes half the time compared to the
MLmethod for one iteration, and hence naturally nearly
20 times less time for ten iterations. Additionally, the
explicit conversion is nearly identical in performance
to the ML method in terms of standard deviation and
residual bias. The ML method is slightly better for sit-
uations with poor azimuth observability and situations
with very good observability. The graph for the single-
iterationMLmethod is neglected as it is nearly identical
in performance to the ten-iteration ML method. The re-
sults show that the ML method can be favored in situa-
tions where computation speed is not a factor and an ex-
plicit expression of the conversion is not needed, but the
explicit conversion is a very small reduction in perfor-
mance if needed.Bothmethods have negligible bias, and

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

B
ia

s 
(k

m
)

Comparison of Bias in X 2nd Order vs ML

2nd Order X
ML X
Linear Fit

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

B
ia

s 
(k

m
)

Comparison of Bias in Y 2nd Order vs ML

2nd Order Y
ML Y
Linear Fitting

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

B
ia

s 
(k

m
)

Comparison of Bias in Z 2nd Order vs ML

2nd Order Z
ML Z
Linear Fitting

Fig. 6. Comparison of the biases in the proposed method and the
ML method.

the residual bias is nearly the same. The results also im-
ply that trackingmethods, such as the EKF, can use these
converted measurements without significant degrada-
tion compared to a mixed measurement filter tracking
in Cartesian with angle-only measurments. Previous re-
search in [11] has shown that in cases of high conversion
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Fig. 7. Ratio of Cartesian coordinate standard deviations from the
proposed method over the ML method using ten iterations.

bias significance (if done in the conventional way), the
filter with measurements using the unbiased conversion
performs better than the mixed measurement filter, as
errors from nonlinearity can be present in the Jacobians.

V. CONCLUSION

When the observability of a target drops for pas-
sive sensors, it is necessary to account for higher or-
der dynamics present in the conversion from angle-only
measurements into Cartesian measurements. The bias
present in the conversion can interfere with passive sens-
ing applications such as target tracking and bias estima-
tion. By using a second-order Taylor series expansion, it
is possible to effectively remove the bias from converted
measurements. Additionally, a more accurate model of
the covariance of the converted noise is achieved. This
method is useful as it is nearly equal in accuracy to ML
methods, but also it is significantly faster and includes an
explicit (noniterative) expression of the Cartesian posi-
tion that can be used for applications. The bias present
is relatively minimal and can be easily removed as well,
meaning it is a robust conversion.

Future work with converted angle-only measure-
ments would be to test this approach in situations in-
corporating additional real-world considerations. These
would include asynchronous measurements and data as-
sociation. Data association, in particular, is important
as the method presented relies on correct associations
for the formation of converted measurements. Asyn-
chronousmeasurementsmust be propagated at the same
time; thus, an additional source of error will be intro-
duced. Therefore, the next step would be to integrate
this approach to a target association method and deter-
mine how much error is likely from association errors,
and howmuch error is obtained from the propagation of
asynchronous measurements. Future work will also in-
clude analysis of the converted measurements with re-

spect to an EKF, as this approach focuses on the con-
version of individual measurements. Although the con-
verted measurements have been shown to be effective
relative to the ML solution, the inclusion of all of the
nuances of tracking in an EKF such as process noise and
target evolution models must be analyzed with respect
to the coordinate conversion.

APPENDIX

A. Introduction of the Conversion

In order to calculate the unbiased conversion, it is
necessary to derive the expressions for the converted
measurements and then the derivatives of the converted
measurements with respect to the angle measurements.
First, the basics of the measurements are presented

xts(k) = xt (k) − xs(k), (32)

yts(k) = yt (k) − ys(k), (33)

zts(k) = zt (k) − zs(k), (34)

αs(k) = atan2
(
yts(k)
xts(k)

)
, (35)

εs(k) = atan2

(
zts(k)√

yt2s (k) + xt2s (k)

)
. (36)

The closest point of approach method involves convert-
ing the LOS measurements into a Cartesian ray. The ray
for a sensor s is defined as

Ls =

⎡
⎢⎢⎣
cos(αs) cos(εs)

sin(αs) cos(εs)

sin(εs)

⎤
⎥⎥⎦ . (37)

The sensor positions are assumed to be known, and the
line between them is used to determine the closest point
of approach

B1,2 = x2 − x1 =

⎡
⎢⎢⎣
x2 − x1

y2 − y1

z2 − z1

⎤
⎥⎥⎦ . (38)

The closest point of approach for each sensor using the
derivation in [1] and multiplied by the LOS ray to find
the Cartesian positions on each LOS that are closest to
each other. These are shifted by the sensor positions to
place them within the same reference frame.

xt,c1 (k) =

⎡
⎢⎢⎣
xt,c1 (k)

yt,c1 (k)

zt,c1 (k)

⎤
⎥⎥⎦

= x1(k) + L1(k)(L1(k)′B1,2(k))−(L1(k)′L2(k))(L2(k)′B1,2(k))
1−(L1(k)′L2(k))2

,

(39)
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xt,c2 (k) =

⎡
⎢⎢⎣
xt,c2 (k)

yt,c2 (k)

zt,c2 (k)

⎤
⎥⎥⎦

= x2(k) + L2(k)(L1(k)′L2(k))(L1(k)′B1,2(k))−(L2(k)′B1,2(k))
1−(L1(k)′L2(k))2

, (40)

xt,c1,2(k) = 1
2

(
xt,c1 (k) + xt,c2 (k)

)
. (41)

The conversion relies on the Cartesian vectors of the
lines of sight defined as L and the line between the sen-
sors defined as B. These are calculated as

L1(k) =

⎡
⎢⎢⎣
cos(α1(k)) cos(ε1(k))

sin(α1(k)) cos(ε1(k))

sin(ε1(k))

⎤
⎥⎥⎦ , (42)

L2(k) =

⎡
⎢⎢⎣
cos(α2(k)) cos(ε2(k))

sin(α2(k)) cos(ε2(k))

sin(ε2(k))

⎤
⎥⎥⎦ , (43)

B1,2(k) = x2(k) − x1(k) =

⎡
⎢⎢⎣
x2(k) − x1(k)

y2(k) − y1(k)

z2(k) − z1(k)

⎤
⎥⎥⎦ . (44)

For simplicity in the appendix the following substitu-
tions are made:

N1 = L′
1B1,2 − (L′

1L2)(L′
2B1,2), (45)

N2 = (L′
1L2)(L′

1B1,2) − L′
2B1,2, (46)

Nx,1 = Lx,1N1, (47)

Ny,1 = Ly,1N1, (48)

Nz,1 = Lz,1N1, (49)

Nx,2 = Lx,2N2, (50)

Ny,2 = Ly,2N2, (51)

Nz,2 = Lz,2N2, (52)

D = 1 − (L′
1L2)2, (53)

which results in the equations

xt,c1 = x1 + Nx,1

D
, (54)

xt,c2 = x2 + Nx,2

D
, (55)

yt,c1 = y1 + Ny,1

D
, (56)

yt,c2 = y2 + Ny,2

D
, (57)

zt,c1 = z1 + Nz,1

D
, (58)

zt,c2 = z2 + Nz,2

D
, (59)

xt,c1,2 = (xt,c1 + xt,c2 )
2

, (60)

yt,c1,2 = (yt,c1 + yt,c2 )
2

, (61)

zt,c1,2 = (zt,c1 + zt,c2 )
2

. (62)

By making these substitutions, it is possible to use calcu-
lus rules to more efficiently represent the derivatives of
the composite measurements.

B. Debiasing Calculation

It is necessary to calculate the bias for each Cartesian
coordinate by using a Taylor series expansion to include
the noise variables. For terseness, the symbol ζ is used to
represent any of the Cartesian coordinates.

ζ = x, y, z, (63)

ζ t,c,m1,2 (k) ≈ ζ t (k) + ∂ζ t,c1,2

∂α1
wα

1 (k) + ∂ζ t,c1,2

∂α2
wα

2 (k)

+ ∂ζ t,c1,2

∂ε1
wε

1(k) + ∂ζ t,c1,2

∂ε2
wε

2(k)

+ 0.5
∂2ζ t,c1,2

∂α2
1

wα
1 (k)

2 + 0.5
∂2ζ t,c1,2

∂α2
2

wα
2 (k)

2

+ 0.5
∂2ζ t,c1,2

∂ε21
wε

1(k)
2 + 0.5

∂2ζ t,c1,2

∂ε22
wε

2(k)
2

+ ∂2ζ t,c1,2

∂α1∂α2
wα

1 (k)w
α
2 (k) + ∂2ζ t,c1,2

∂α1∂ε1
wα

1 (k)w
ε
1(k)

+ ∂2ζ t,c1,2

∂α1∂ε2
wα

1 (k)w
ε
2(k) + ∂2ζ t,c1,2

∂α2∂ε1
wα

2 (k)w
ε
1(k)

+ ∂2ζ t,c1,2

∂α2∂ε2
wα

2 (k)w
ε
2(k) + ∂2ζ t,c1,2

∂ε1∂ε2
wε

1(k)w
ε
2(k).

(64)

The bias is defined as the difference between the truth
and the expected value of the converted measurement.
The first-order terms are eliminated from the bias, but
the second-order terms contribute to the mean:

E[ζ t,c,m1,2 (k)] ≈ ζ t (k) + 0.5
∂2ζ t,c1,2

∂α2
1

(σα
1 )

2

+0.5
∂2ζ t,c1,2

∂α2
2

(σα
2 )

2 + 0.5
∂2ζ t,c1,2

∂ε21
(σ ε

1 )
2

+0.5
∂2ζ t,c1,2

∂ε22
(σ ε

2 )
2, (65)
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cζ ,1,2 = 0.5
∂2ζ t,c1,2

∂α2
1

(σα
1 )

2 + 0.5
∂2ζ t,c1,2

∂α2
2

(σα
2 )

2

+0.5
∂2ζ t,c1,2

∂ε21
(σ ε

1 )
2 + 0.5

∂2ζ t,c1,2

∂ε22
(σ ε

2 )
2, (66)

E[ζ t,c,m1,2 (k)] ≈ ζ t (k) + cζ ,1,2, (67)

ζ t,c,m,db
1,2 (k) = ζ t,c,m1,2 (k) − cζ ,1,2, (68)

E[ζ t,c,m,db
1,2 (k)] ≈ ζ t (k). (69)

C. Variance Calculation

The variance is defined as the expected value of the
measurement squared minus the mean squared:

Var(ζ t,c,m,db
1,2 (k)) = E[ζ t,c,m,db

1,2 (k)2] − E[ζ t,c,m,db
1,2 (k)]2.

(70)

The debiasing is included in order to find the variance of
the debiased measurements

Var(ζ t,c,m,db
1,2 (k))

= E

[(
ζ t (k) + ∂ζ t,c1,2

∂α1
wα

1 (k) + ∂ζ t,c1,2

∂α2
wα

2 (k)

+ ∂ζ t,c1,2

∂ε1
wε

1(k) + ∂ζ t,c1,2

∂ε2
wε

2(k) + 0.5
∂2ζ t,c1,2

∂α2
1

wα
1 (k)

2

+ 0.5
∂2ζ t,c1,2

∂α2
2

wα
2 (k)

2 + 0.5
∂2ζ t,c1,2

∂ε21
wε

1(k)
2

+ 0.5
∂2ζ t,c1,2

∂ε22
wε

2(k)
2 + ∂2ζ t,c1,2

∂α1∂α2
wα

1 (k)w
α
2 (k)

+ ∂2ζ t,c1,2

∂α1∂ε1
wα

1 (k)w
ε
1(k) + ∂2ζ t,c1,2

∂α1∂ε2
wα

1 (k)w
ε
2(k)

+ ∂2ζ t,c1,2

∂α2∂ε1
wα

2 (k)w
ε
1(k) + ∂2ζ t,c1,2

∂α2∂ε2
wα

2 (k)w
ε
2(k)

+ ∂2ζ t,c1,2

∂ε1∂ε2
wε

1(k)w
ε
2(k) − cζ ,1,2

)2
⎤
⎦ − ζ t (k)2.

(71)

The debiasing will remove some of the terms, so they are
separated from the equation:

V (ζ t,c,m,db
1,2 (k)) =(

ζ t (k) + 0.5
∂2ζ t,c1,2

∂α2
1

(σα
1 )

2 + 0.5
∂2ζ t,c1,2

∂α2
2

(σα
2 )

2

+0.5
∂2ζ t,c1,2

∂ε21
(σ ε

1 )
2 + 0.5

∂2ζ t,c1,2

∂ε22
(σ ε

2 )
2 − cζ ,1,2

)2

−ζ t (k)2 +
(

∂ζ t,c1,2

∂α1

)2

(σα
1 )

2 +
(

∂ζ t,c1,2

∂α2

)2

(σα
2 )

2

+
(

∂ζ t,c1,2

∂ε1

)2

(σ ε
1 )

2 +
(

∂ζ t,c1,2

∂ε2

)2

(σ ε
2 )

2

+
(

∂2ζ t,c1,2

∂α1∂α2

)2

(σα
1 )

2(σα
2 )

2 +
(

∂2ζ t,c1,2

∂α1∂ε1

)2

(σα
1 )

2(σ ε
1 )

2

+
(

∂2ζ t,c1,2

∂α1∂ε2

)2

(σα
1 )

2(σ ε
2 )

2 +
(

∂2ζ t,c1,2

∂α2∂ε1

)2

(σα
2 )

2(σ ε
1 )

2

+
(

∂2ζ t,c1,2

∂α2∂ε2

)2

(σα
2 )

2(σ ε
2 )

2 +
(

∂2ζ t,c1,2

∂ε1∂ε2

)2

(σ ε
1 )

2(σ ε
2 )

2.

(72)

The final variance equation is as follows:

V (ζ t,c,m,db
1,2 (k)) =

(
∂ζ t,c1,2

∂α1

)2

(σα
1 )

2 +
(

∂ζ t,c1,2

∂α2

)2

(σα
2 )

2

+
(

∂ζ t,c1,2

∂ε1

)2

(σ ε
1 )

2 +
(

∂ζ t,c1,2

∂ε2

)2

(σ ε
2 )

2

+
(

∂2ζ t,c1,2

∂α1∂α2

)2

(σα
1 )

2(σα
2 )

2 +
(

∂2ζ t,c1,2

∂α1∂ε1

)2

(σα
1 )

2(σ ε
1 )

2

+
(

∂2ζ t,c1,2

∂α1∂ε2

)2

(σα
1 )

2(σ ε
2 )

2 +
(

∂2ζ t,c1,2

∂α2∂ε1

)2

(σα
2 )

2(σ ε
1 )

2

+
(

∂2ζ t,c1,2

∂α2∂ε2

)2

(σα
2 )

2(σ ε
2 )

2 +
(

∂2ζ t,c1,2

∂ε1∂ε2

)2

(σ ε
1 )

2(σ ε
2 )

2.

(73)

D. Covariance Calculation

Similarly, the covariance is calculated for each com-
bination of two Cartesian coordinates. As before, ζ is
used to represent any particular Cartesian coordinate. γ
is used to represent a different Cartesian coordinate.The
calculation begins with the definition

ζ = x, y, z, (74)

γ = x, y, z, (75)

γ �= ζ , (76)

CV (ζ t,c,m,db
1,2 (k), γ t,c,m,db

1,2 (k))

= E[(ζ t,c,m,db
1,2 (k) − E[ζ t,c,m,db

1,2 (k)])

×(γ t,c,m,db
1,2 (k) − E[γ t,c,m,db

1,2 (k)])]

= E[ζ t,c,m,db
1,2 (k)γ t,c,m,db

1,2 (k)]

−E[ζ t,c,m,db
1,2 (k)]E[γ t,c,m,db

1,2 (k)]. (77)
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This is expanded with the second-order conversion

Cov(ζ t,c,m,db
1,2 (k), γ t,c,m,db

1,2 (k))

= E

[(
ζ t (k) + ∂ζ t,c1,2

∂α1
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− ζ t (k)γ t (k). 78)

The debiasing will remove some of the terms, so they are
separated from the equation:

Cov(ζ t,c,m,db
1,2 (k), γ t,c,m,db

1,2 (k))

=
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The final covariance equation is as follows:
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E. Derivatives of Converted Measurements

It is necessary to calculate the derivatives of the
converted measurement with respect to the original
measurements. This process begins with the first-order
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derivatives. The derivatives are defined in terms of the
substitutions made earlier. Furthermore, terms φ is in-
cluded for terseness to represent any of the individual
LOS measurements.

N1 = L′
1B1,2 − (L′

1L2)(L′
2B1,2), (81)

N2 = (L′
1L2)(L′

1B1,2) − L′
2B1,2, (82)

N1 = N1L1, (83)

N2 = N2L2, (84)

D = 1 − (L′
1L2)2, (85)

which results in the equations

∇N1 = L′
1∇N1 +N1∇L1, (86)

∇N2 = L′
2∇N2 +N2∇L2, (87)

xt,c1 = x1 + N1

D
, (88)

xt,c2 = x2 + N2

D
, (89)

xt,c1,2 = (xt,c1 + xt,c2 )
2

, (90)

∇xt,c1,2 = 1
2
(∇xt,c1 + ∇xt,c2 ), (91)

∇xt,c1 = D∇N1 − N′
1∇D

D2
, (92)

∇xt,c2 = D∇N2 − N′
2∇D

D2
. (93)

Gradients are used to simplify the equations, with an ex-
ample being

∇xt,c1,2 =

⎡
⎢⎢⎢⎢⎣

∂xt,c1,2
∂α1

∂xt,c1,2
∂ε1

∂xt,c1,2
∂α2

∂xt,c1,2
∂ε2

∂yt,c1,2
∂α1

∂yt,c1,2
∂ε1

∂yt,c1,2
∂α2

∂yt,c1,2
∂ε2

∂zt,c1,2
∂α1

∂zt,c1,2
∂ε1

∂zt,c1,2
∂α2

∂zt,c1,2
∂ε2

⎤
⎥⎥⎥⎥⎦ , (94)

∇N1 = B′
1,2∇L1 − (L′

1L2)(B′
1,2∇L2)

−(L′
2B1,2)(L′

1∇L2 + L′
2∇L1), (95)

∇N2 = −B′
1,2∇L2 + (L′

1L2)(B′
1,2∇L1)

+(L′
1B1,2)(L′

1∇L2 + L′
2∇L1), (96)

∇D = −2(L′
1L2)(L′

1∇L2 + L′
2∇L1), (97)

∇L1 =

⎡
⎢⎢⎢⎣

∂Lx,1

∂α1

∂Lx,1

∂ε1
0 0

∂Ly,1

∂α1

∂Ly,1

∂ε1
0 0

∂Lz,1

∂α1

∂Lz,1

∂ε1
0 0

⎤
⎥⎥⎥⎦ , (98)

∇L2 =

⎡
⎢⎢⎢⎣
0 0 ∂Lx,2

∂α2

∂Lx,2

∂ε2

0 0 ∂Ly,2

∂α2

∂Ly,2

∂ε2

0 0 ∂Lz,2

∂α2

∂Lz,2

∂ε2

⎤
⎥⎥⎥⎦ , (99)

∂Lx,1

∂α1
= − cos(ε1) sin(α1), (100)

∂Lx,1

∂ε1
= − sin(ε1) cos(α1), (101)

∂Ly,1

∂α1
= cos(ε1) cos(α1), (102)

∂Ly,1

∂ε1
= − sin(ε1) sin(α1), (103)

∂Lz,1

∂α1
= 0, (104)

∂Lz,1

∂ε1
= cos(ε1), (105)

∂Lx,2

∂α2
= − cos(ε2) sin(α2), (106)

∂Lx,2

∂ε2
= − sin(ε2) cos(α2), (107)

∂Ly,2

∂α2
= cos(ε2) cos(α2), (108)

∂Ly,2

∂ε2
= − sin(ε2) sin(α2), (109)

∂Lz,2

∂α2
= 0, (110)

∂Lz,2

∂ε2
= cos(ε2), (111)

The second-order derivatives are calculated to be

φ = α1, α2, ε1, ε2, (112)

∂∇xt,c1,2
∂φ

= 1
2
(
∂∇xt,c1

∂φ
+ ∂∇xt,c2

∂φ
), (113)

∂∇xt,c1
∂φ

=
⎛
⎝D2

(
∂D
∂φ

∇N1 +D ∂∇N1
∂φ

− N′
1

∂∇D
∂φ

− ∂N1
∂φ

′∇D
)

D4

⎞
⎠

+
(−2D ∂D

∂φ
(D∇N1 − N′

1∇D)

D4

)
, (114)

∂∇xt,c2
∂φ

=
⎛
⎝D2

(
∂D
∂φ

∇N2 +D ∂∇N2
∂φ

− N′
2

∂∇D
∂φ

− ∂N2
∂φ

′∇D
)

D4

⎞
⎠

+
(−2D ∂D

∂φ
(D∇N2 − N′

2∇D)

D4

)
, (115)
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∂∇N1

∂φ
= B′
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)
, (116)

∂∇N2

∂φ
= −B′

1,2
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′
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)
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(
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, (117)

∂∇D
∂φ

= −2
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∂L1

∂φ

′
L2 + L′

1
∂L2

∂φ

)
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, (118)

∂∇L1
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=
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, (119)

∂∇L2
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, (120)

∂2Lx,1

∂2α1
= − cos(ε1) cos(α1), (121)

∂2Lx,1

∂2ε1
= − cos(ε1) cos(α1), (122)

∂2Ly,1

∂2α1
= − cos(ε1) sin(α1), (123)

∂2Ly,1

∂2ε1
= − cos(ε1) sin(α1), (124)

∂2Lz,1

∂2α1
= 0, (125)

∂2Lz,1

∂2ε1
= − sin(ε1), (126)

∂2Lx,1

∂α1∂ε1
= sin(ε1) sin(α1), (127)

∂2Ly,1

∂α1∂ε1
= − sin(ε1) cos(α1), (128)

∂2Lz,1

∂α1∂ε1
= 0, (129)

∂2Lx,1

∂α1∂α2
= 0, (130)

∂2Lx,1

∂α1∂ε2
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∂2Ly,1

∂α1∂α2
= 0, (132)

∂2Ly,1
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= 0, (134)

∂2Lz,1
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∂2Lz,2

∂2ε2
= − sin(ε2), (147)

∂2Lx,2

∂α2∂ε2
= sin(ε2) sin(α2), (148)

∂2Ly,2

∂α2∂ε2
= − sin(ε2) cos(α2), (149)

∂2Lz,2

∂α2∂ε2
= 0, (150)

∂2Lx,2
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∂α1∂ε2
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∂α1∂α2
= 0, (153)
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∂α1∂ε2
= 0, (154)
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∂α1∂α2
= 0, (155)

∂2Lz,2

∂α1∂ε2
= 0, (156)

∂2Lx,2

∂ε1∂α2
= 0, (157)

∂2Lx,2

∂ε1∂ε2
= 0, (158)

∂2Ly,2

∂ε1∂α2
= 0, (159)

∂2Ly,2

∂ε1∂ε2
= 0, (160)

∂2Lz,2

∂ε1∂α2
= 0, (161)

∂2Lz,2

∂ε1∂ε2
= 0. (162)
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Optimal Threat-Based Radar
Resource Management for
Multitarget Joint Tracking and
Classification

MAX IAN SCHÖPE
HANS DRIESSEN
ALEXANDER YAROVOY

The Radar Resource Management problem in a multitarget joint

tracking and classification scenario is considered. The problem is

solved using a previously introduced dynamic budget-balancing algo-

rithm that models the sensor tasks as Partially Observable Markov

Decision Processes. It is shown that tracking and classification tasks

can be considered as a single task type. Furthermore, it is shown how

the task resource allocations can be jointly optimized using a carefully

formulated cost function based on the task threat variance. Multiple

two-dimensional radar scenarios demonstrate how sensor resources

are allocated depending on the current knowledge of the target po-

sition and class. In contrast to previous approaches, the novelty of this

paper lies in combining tracking and classification performance into a

single cost function, preventing heuristic trade-offs.

I. INTRODUCTION

Due to the recent developments in multifunction
radar (MFR), such systems have become more flexible
and allow an automatic adjustment of many of their pa-
rameters during runtime [18]. Possible situations where
such an adaptation is desirable are, e.g., quickly changing
weather conditions, target maneuvers, or interference.
This automatic control of the radar parameters or re-
sources is often named Radar Resource Management
(RRM). It is generally considered as a part of so-called
cognitive radar (see, e.g, [11], [14], [18], [23], [32]). Pos-
sible applications can be found in many domains, such
as traffic monitoring, autonomous driving, air traffic con-
trol, or (maritime) surveillance.

A. Radar Resource Management

Many different overviews of RRM approaches are
available, for instance, by Moo and Ding in [45], Hero
and Cochran in [25], or Hintz in [26]. Most RRM re-
search focuses on a single task, e.g., guaranteeing con-
sistent track quality even under target maneuvers. This
commonly means that the available time budget has to
be scheduled for a specific task.However,MFR systems
are usually considered to operate at their resource limit
(w.r.t., e.g., time or energy) and deal with a large num-
ber of different tasks. This means that increasing the re-
source budget for one task automatically reduces it for
the others and inevitably deteriorates their performance,
making the RRM problem a balancing problem.

As a solution for multitask RRM problems, several
heuristic solutions have been presented in the past (see,
e.g., the overview in [29]). Applying heuristics too early
in the designmakes it difficult to understandwhich prob-
lem is supposed to be solved.Additionally, it is challeng-
ing to judge the optimality of that solution. Moreover,
the heuristic solutions frequently schedule tasks based
on different priorities (as shown, e.g., in [42] and [53]).
Such approaches usually assume that each task has a
specific fixed resource need, which frequently leads to
a situation where tasks need to be dropped. If different
tasks have the same fixed priority, then this can poten-
tially lead to tasks being dropped at random. Addition-
ally, prioritizing tasks is usually tricky, and often it is not
clear how many priority levels are necessary.

It should be noted that RRM algorithms are not
identical to multitarget tracking algorithms. In this ap-
proach, a multitarget tracker is applied to process the
radar measurements and provide the estimated tracks to
the RRM algorithm, which then optimizes future radar
transmissions. Although the proposed RRM approach
comprises computing expected track accuracies, it does
not represent the actual multitarget tracking andwill not
automatically lead to maximized track accuracies for ev-
ery task.

This paper approaches the RRM problem as a re-
source balancing procedure and as an optimal stochastic
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control problem. This strategy relies on an explicit for-
mulation of

� the sensing problem that the radar needs to solve w.r.t.
dynamic and measurement models,

� the control actions that the radar sensor has available,
reflecting the degrees-of-freedom of the MFR men-
tioned earlier,

� a cost function that expresses the system performance
that the user would like to optimize w.r.t. the sensing
aim.

To the authors’ best knowledge, an overall solution
to the RRM problem based on such a problem solution
approach has not been presented so far. A genuinely
optimal solution could supposedly lead to a significant
performance improvement of adaptive sensors [24], but
that still needs to be illustrated.However, an optimality-
based approach using a modular framework could sig-
nificantly reduce the design effort for newMFR systems
compared to heuristic solutions, even if the performance
does not improve.

B. RRM for Tracking and Classification

For a successful radar application, it is often neces-
sary to distinguish between different types of targets.
Therefore, classification is a vital task for every mod-
ern radar system and needs to be considered in RRM.A
general high-level overview of classification techniques
in CR and RRM is shown by Brüggenwirth et al. in
[14]. Furthermore, Kreucher and Hero presented a very
generic framework that is potentially capable of doing
joint detection, tracking, and classification [34]. The ex-
planation of the approach stays at a very high level and
is only demonstrated through a detection and tracking
scenario.

Most RRM approaches for classification are myopic
and focus on a simple waveform or sensor mode se-
lection, often for a single object. In [55], Sowelam and
Tewfik present such an approach where the Kullback–
Leibler information is maximized for the subsequent
measurement. Based on this, the algorithm can decide if
another measurement is necessary and which waveform
must be chosen from a predefined library. Another ex-
ample has been shown by Bell et al. and considers both
tracking and classification [2]. The system is assumed to
have separate tracking and classification modes, which
each have a predefinedwaveform library to choose from.
The proposed algorithm decides the following sensor
action to be executed. As for objective functions, both
task-driven and information-driven possibilities are dis-
cussed. While the task-driven approach requires differ-
ent objective functions for the two sensing modes, the
information-driven approach can compare the two dif-
ferent task types through information gain.

A popular approach is to introduce a measure of risk
or threat. The idea is to summarize the interesting task

quantities into a single scalar number that is easy to com-
pare. In [39], Martin introduces a risk-based approach
where the risk depends on the probability of making a
wrong classification and the possibility of track loss mul-
tiplied with predefined cost values. The approach finds
a solution for both tracking and classification in a my-
opic fashion. The measurements are always taken the
same way, but the algorithm decides which target will
be sensed. In [22] and [47], similar approaches are pre-
sented. From the perspective of this paper, such a cost
function definition is not preferred, as predefined cost
values cannot easily represent the risk in all possible sit-
uations. Such a formulation leads to a lack of flexibility
in the approach. Bolderhij et al. present an approach for
military radar applications that relies on a large amount
of expert knowledge to decide the risk level [12]. Al-
thoughmany different situations are considered, this ap-
proach does not automatically balance the resources and
cannot flexibly adapt to different situations. A more in-
teresting approach is shown by Katsilieris et al. in [30]
where joint tracking and classification are performed by
running a tracking filter per target class in parallel. The
classification is done by comparing the likelihood of a
measurement belonging to the different tracks. The next
sensing action is then chosen by evaluating the threat’s
uncertainty based on the target state.

Additionally, some authors have introduced RRM
approaches with a hierarchical structure. This is usu-
ally done for two main reasons. Firstly, such a structure
can decrease the computational complexity and increase
the efficiency of an algorithm. Two notable examples of
such approaches are the ones by Wintenby and Krish-
namurthy in [60] and Castãnón in [15], which both use
a hierarchical structure to solve the RRM problem us-
ing Lagrangian relaxation (LR). Secondly, a hierarchical
structure can also be used to emulate the cognitive be-
havior of the human brain in order to improve radar per-
formance. An example for such an approach has been
proposed by Mitchell et al. in [44] and Mitchell in [43].

This paper treats the RRM problem as an optimal
control problem. It is not the intention to mimic the
behavior of human or animal brains. Furthermore, the
functional performance is the focus of the proposed ap-
proach rather than a computationally efficient imple-
mentation. However, the RRM approach in this pa-
per can potentially be applied in a hierarchical fashion,
whichmight lead to improvements that are beneficial for
practical implementation.

C. Markov Decision Processes in RRM for Tracking and
Classification

Many RRM approaches for tracking and classifica-
tion of multiple targets assume a Markov Decision Pro-
cess (MDP) or Partially Observable MDP (POMDP)
framework.

Wintenby and Krishnamurthy have presented an in-
teresting RRM approach for tracking scenarios in [60]
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where a Markov chain consisting of performance states
is applied for each tracking task. The problem is then
solved using a combination of LR and approximate dy-
namic programming. Furthermore, White and Williams
assume a discretized state space and solve a fully ob-
servableMDPby applying dynamic programming [59] in
combination with LR. Similar to LR, some approaches
also apply the Quality of Service resource allocation
method (Q-RAM) with POMDPs to solve the RRM
tracking problem. Two examples of such an approach
can be found in [17], [19].

For simple classification problems, it is relatively easy
to implement a solution assuming underlying MDPs or
POMDPs, as the number of considered states is usu-
ally relatively low. An advantage of using such a frame-
work is the possibility of taking the expected future
into account. Chong et al. present a straightforward gen-
eral example of how to use classification in RRM with
POMDPs [20]. Castãnón applies a nonmyopic POMDP
approach for a classification scenario of almost 10 000
objects where the algorithm chooses from a set of sen-
sor modes [15]. This approach does not take the position
and velocity of the objects into account. Another inter-
esting approach has been presented by La Scala et al. in
[37] and nonmyopically solves the underlying POMDP
in a detection and classification scenario. The algorithm
selects the best waveforms froma predefined library.The
authors promise that an extension to tracking can be
achieved without much effort, but do not demonstrate
that explicitly. Two other classification approaches that
assume an MDP or POMDP framework are shown in
[22], [27]. Since the number of states is relatively low in
most classification problems,alsomachine learning tech-
niques have been suggested for solving the underlying
(PO)MDPs, e.g., by Langford and Zadrozny in [36] and
Blatt and Hero in [10].

D. The Cost Function

An optimization-based RRM approach is preferred
over a heuristic approach. However, this requires an ex-
plicit definition of a cost function that determines the
sensor system’s performance. It has been suggested pre-
viously that generic measures, such as the Information
Gain or the Renyi divergence, applied to the posterior
density of the full state, could be applied (see, e.g., [35],
[58]). Unfortunately, one single cost function will not
meet the expectations of different users in different ap-
plications using different sensor systems in different en-
vironments and for different targets (see, e.g., [21]).

Developing a useful cost function is critical for the
good performance of the RRM algorithm. The develop-
ment of specific cost functions requires close coopera-
tion with future users and is an intricate development
process on its own. Since the focus of this paper is to il-
lustrate how the underlying framework and algorithmic
solution can be applied in an example scenario, the de-
velopment of a user-specific cost function is out of scope.

Therefore, it is not claimed that the presented cost func-
tion formulation is necessarily leading to the best perfor-
mance possible.

An example of amore specific operationally relevant
cost function can be found in the approach by Narykov
et al. in [46] where the adversarial risk is introduced as a
cost function in a military impact assessment scenario.

E. Proposed Approach

This paper is based on the framework and algorith-
mic solution presented in [51] and [50], which was previ-
ously mainly illustrated in multitarget tracking scenario,
i.e., without classification. Here, the framework and ap-
proach are applied to a joint tracking and classification
problem.

Most approaches that focus on RRM for classifi-
cation are concrete and apply heuristic rules to com-
pare different task types, such as tracking and classifi-
cation tasks. In most proposed approaches, the different
tasks are assumed to be independent or very weakly de-
pendent. This paper specifically focuses on cases where
the tasks are joint. In addition to that, most available
approaches are myopic and do not consider MDP or
POMDP frameworks. The introduction of risk or threat
measures is widespread and seems promising as it en-
ables the objective comparison of different task types.
In this paper, it is shown that the generic algorithm in-
troduced in previous publications can be used to ad-
dress the shortcomings of previously published litera-
ture. It is explained how the approach can easily be ad-
justed to include joint tracking and classification, using a
single cost function for both task types. The underlying
POMDP is solved nonmyopically, and the resulting pol-
icy is achieved by balancing all the considered actions in
the action space.

The purpose of this paper is to introduce as few as-
sumptions and simplifications as possible and formu-
late the RRMproblem as a single optimization problem.
However, the techniques shown here could potentially
be applied in a hierarchical algorithm as well, taking into
account higher and lower levels of optimization.

F. Novelty

This paper shows that it is possible to solve the RRM
problem for multiple task types by using only a single
cost function based on a definition of a mission threat.
Such an approach has been suggested previously but has
never been fully developed and demonstrated with the
help of practical simulation scenarios.

G. Structure of the Paper

The remainder of this paper is structured as follows:
Section II defines the general RRM problem, and Sec-
tion III introduces the proposed solution for a track-
ing and classification scenario. Furthermore, Section IV
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introduces the applied threat and cost function, while
SectionV gives details about the assumed radar scenario
for the simulations. The results of those simulations are
discussed in Sections VI–IX. Finally, Section X contains
the conclusions.

II. GENERAL RRM PROBLEM DEFINITION

A. Motion Model

Each target can be described by a state based on
its position and velocity in x and y directions in a two-
dimensional Cartesian coordinate system. For Target n
at time t, this state is defined as

snt = [xnt ynt ẋnt ẏnt ]
T

, (1)

where xnt , y
n
t , and ẋ

n
t , ẏ

n
t are the position and velocity of

Target n in x and y, respectively. The future target state
at time t + �t can be calculated following a function:

snt+�t = f�t (snt ,w
n
t ) , (2)

where snt+�t is the next state at time t + �t and wn
t ∈ R

4

is the maneuverability noise for Target n at time t. The
state evolution equation (2) directly defines the evolu-
tion probability density function (PDF), which is given
as

p
(
snt+�t |snt

)
. (3)

B. Measurement Model

It is assumed that the considered sensor is taking
noisy measurements of the state snt by executing a sen-
sor action ant ∈ R

m, where m denotes the amount of ad-
justable action parameters. The measurement znt of Tar-
get n at time t is expressed by the measurement function
h as

znt = h (snt , v
n
t ,a

n
t ) , (4)

where vnt ∈ R
q is the measurement noise for Target n,

and q is the amount of measurement parameters. The
measurement equation (4) directly defines the measure-
ment PDF, which can be written as

p (znt |snt ,ant ) . (5)

C. Tracking Algorithm

As this paper considers joint tracking and classifi-
cation scenarios, a tracking filter needs to be chosen
that aims at computing the posterior density. A sim-
ple Kalman filter (KF) would be the exact solution for
a linear system. In contrast, nonlinear systems require
approximate solutions given by, e.g., an extended KF
(EKF) or a particle filter.

D. Budget Optimization Problem

The radar sensor has a limited maximum budget
�max of any kind. For action ant that is executed for each
task n, a specific amount of budget (such as time or en-
ergy allocations) is required. An overload situation oc-
curs when the current tasks require more of the total
budget than is available. In such a situation, the available
budget needs to be allocated to all tasks by minimizing
the cost (e.g., related to the uncertainty of the current
situation).

At time t, the optimization problem for N different
tasks can be written as

minimize
at

N∑
n=1

c(ant , s
n
t )

subject to
N∑
n=1

�n
t (a

n
t ) ≤ �max,

(6)

where �n
t ∈ [0, 1] is the budget for task n at time t, c(·) is

the applied cost function, and �max ∈ [0, 1] is the maxi-
mum available budget (0: no budget assigned, 1: all bud-
get assigned). It is critical for the performance of the al-
gorithm to define a relevant cost function.However, this
is not the focus of this paper.An example of another op-
erationally relevant cost function has been discussed by
Katsilieris et al. [31].

III. PROPOSED APPROACH FOR THE RRM PROBLEM

A. Joint Tracking and Classification

This paper assumes that each target is of a specific
predefined class that is initially unknown to the radar
system.A Bayesian classifier will be applied to make the
classification decision. Suppose a class feature could be
measured directly and the features were independent of
each other. In that case, the classification problem can
be solved, e.g., by applying a naive Bayes classifier using
these class measurements directly.

If the class features cannot be observed directly, then
the behavior of the target often contains information
about the underlying target type. In that case, joint track-
ing and classification can be applied. Similar approaches
have been presented, e.g., in [1], [40]. Based on the mea-
surements taken by the radar sensor, a track can be cre-
ated with the help of a tracking filter (e.g., EKF or parti-
cle filter).The track then describes themovements of the
observed objects. The problem that needs to be solved
contains both discrete (class) and continuous variables
(e.g., position and velocity) of the targets are considered.
The following equations are based on Bayesian theory
(see, for instance, [4], [49], [57]).

Taking into account the class of the target, the state
evolution equation in (2) changes to

snt+�t = f�t (snt , c
n,wn

t ) , (7)
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where cn ∈ C is a scalar and denotes the class of Target n,
which is not changing over time.Themeasurement func-
tion is defined similarly to (4):

znt = h (snt , v
n
t ,a

n
t , f

n
c ) , (8)

where f nc is a directly measurable feature of Target n,
represented as a scalar value. The PDF function for fea-
ture f nc can explicitly be written as

p
(
znt, f |SNR, cn

)

= √
2πσ 2

f (SNR)
exp

(
−

(znt, f − f nc )
2

σ 2
f (SNR)

)
,

(9)

where znt, f is the measurement of the feature of Tar-
get n at time t, and σ 2

f (SNR) is the feature measure-
ment variance which depends on the signal-to-noise ra-
tio (SNR). One could think, for instance, of the RCS or
the micro-Doppler spectrum. For simplicity, the values
used in this paper do not have any physical origin and
are merely chosen for demonstration purposes. This fea-
ture is assumed to be directly connected to the object’s
class and not dependent on the state of the target.There-
fore, themeasurement znt consists of a state (position and
Doppler) and a class (feature) component. The PDFs
of state, process, or maneuverability noise and measure-
ment noise can then depend on the underlying target
class:

p
(
snt+�t |cn

)
,

p (wn
t |cn) ,

p (vnt |cn)
p ( f nc |cn) .

(10)

The goal of this joint tracking and classification approach
is to recursively calculate the posterior joint PDF

p (snt , c
n|Zn

t ) = p (snt |cn,Zn
t )P(c

n|Zn
t ), (11)

where Zn
t = [znt , z

n
t−�t , z

n
t−2�t , . . . , z

n
0] are all measure-

ments taken for Target n until time t and P(cn|Zn
t ) are

the prior class probabilities, which are known from the
last iteration. Using the Bayesian evolution and update
equations, the conditional posterior density can be writ-
ten as

p
(
snt+�t |cn,Zn

t

) =
∫
S
p

(
snt+�t |snt , cn

)
p (snt |cn,Zn

t )ds
n
t ,

(12)
where

p (snt |cn,Zn
t ) = p (znt |snt , cn) p

(
snt |cn,Zn

t−�t

)
p

(
znt |cn,Zn

t−�t

) . (13)

The normalizing constant in the denominator is calcu-
lated with

p
(
znt |cn,Zn

t−�t

) =
∫
S
p

(
znt |snt , cn,Zn

t−�t

)
p (snt |cn,Zn

t )ds
n
t .

(14)

Figure 1. Joint tracking and classification process.

As the measurement consists of a state dependent and a
state independent part, which is based only on the class,
this expression can also be written as

p
(
znt |cn,Zn

t−�t

) = p
(
zn,s,ct |cn,Zn,s

t−�t

)
p (zn,ct |cn) , (15)

where zn,s,c denotes the state and class dependent mea-
surements and zn,c the class dependent measurement of
feature f nc for Target n at time t.The posterior class prob-
ability is calculated via

P (cn|Zn
t ) = p

(
znt |cn,Zn

t−�t

)
P

(
cn|Zn

t−�t

)
p

(
znt |Zn

t−�t

) . (16)

The likelihood of the current measurement given all the
previous measurements is defined as

p
(
znt |Zn

t−�t

) =
C∑
c=1

p(znt |cn,Zn
t−�t )P

(
cn|Zn

t−�t

)
, (17)

where C is the number of assumed target classes. The
recursive process that is described through (7)–(17) re-
quires C different tracking filters, each conditioned to
a specific class. Based on the likelihood of the current
measurement being associatedwith one of the tracks, the
class probability is updated. The process is summarized
in Fig. 1.

B. Distribution of the Sensor Budgets Using LR

The approach presented here is based on the algo-
rithmic solution presented in [51] and [50]. It applies LR
to relax the problem by including the constraint into the
cost function. This results in the so-called Lagrangian
dual (LD). The original optimization problem is then
decoupled into suboptimization problems, one for each
task. This leads to the Lagrangian dual problem (LDP),
which can be formulated as

ZD=max
λt

(
min
at

(
N∑
n=1

(c(ant , s
n
t ) + λt · �n

t )

)
− λt · �max

)
,

(18)
where λt ∈ R is the Lagrange multiplier for the resource
budget constraint. The sum in the LDP allows the algo-
rithm to solve the minimization problem in parallel for
each Target n before updating the Lagrangian multiplier
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in an iterative process using the subgradient method.
This process is explained following,where an internal in-
dex l is used for the iterations within the LR process:

1) l = 0: Set the initial Lagrange multiplier (λ = λ0).
2) For every task n,minimize the LDwith respect to the

actions. Keep the resulting anl and �n
l .

3) Choose the subgradient for the Lagrange multiplier
as μλ

l = ∑N
n=1 �n

l − �max.
4) Is μλ

l ≈ 0 reached with desired precision? If yes, then
stop the process. The current λl , anl and �n

l are the
LR solution for λt at time t.

5) Set λl+1 = max{0, λl + γlμ
λ
l }, where γl is the LR step

size at time l. In this step, the LD is iteratively maxi-
mized with respect to λ.

6) Go to step 2 and set l = l + 1.

Further information regarding LR can be found in
Appendix A, as well as in [50]–[52].

C. Definition of a POMDP

A POMDP is defined as an MDP whose state can-
not be observed directly. Instead, the state can be ob-
served through noisy measurements, leading to a proba-
bility distribution over the possible states called the be-
lief state. Knowing the structure of the underlying MDP
and having noisy measurements available, the POMDP
framework allows solving optimization problems non-
myopically,whichmeans calculating the expected cost in
future time steps. For the following equations, the time
is assumed to be discretized in intervals k with length
T , the time between two consecutive measurement
operations.

A POMDP is commonly defined by the following pa-
rameters (see, e.g., [48] and [20]):

State space S:All possible states that can be reached
within the process, see (1). At time step k the state is
defined as sk. The belief-state defines a probability dis-
tribution over all possible states based on the previous
measurements and is defined as bk.

Action space A:All possible actions within the pro-
cess.Each executed action leads to a certain cost defined
by the cost function. The action at time step k is written
as ak.

Observation space Z:All possible observations that
can be made within the process. An observation at time
step k it is defined as zk.

Transition probability �(sk, sk+1,ak): The probabil-
ity function p(sk+1|sk,ak) that defines the probability of
transitioning from state sk to state sk+1 given action ak.
Note: In this paper, the transition probability does not
depend on the action.

Probability of observationO(zk, sk+1,ak):The prob-
ability function p(zk|sk+1,ak) that defines the probabil-
ity to make a certain observation zk when action ak is
executed with the resulting state being sk+1.

Cost function c(sk,ak): The immediate cost of exe-
cuting action ak in state sk.

Discount factor γ : A possible factor that discounts
future costs. Note: in this paper, the discount factor is al-
ways set to γ = 1.

D. Policy Rollout for POMDPs

A variety of different POMDP solution methods ex-
ist. A short general discussion of possible approaches
can be found in Appendix B, or the overviews by Ross
et al. in [48] and Chong et al. in [20].

In this paper, the policy rollout (PR) technique is ap-
plied, which takes Monte Carlo samples of the expected
future.This means that it stochastically explores the pos-
sible future actions and their related costs. Per possi-
ble action a in the action space A, a so-called rollout is
used to evaluate the expected cost. Expected observa-
tions and belief states are generated from a given ini-
tial belief state and a given candidate action within such
a rollout. The candidate action is executed first, while a
so-called base policy (BP) πbase is used for every follow-
ing step in the rollout, until the horizon H is reached.
The cost of all steps within a rollout is summed up. This
procedure is repeatedM times, and finally, the cost of all
rollouts is averaged. The resulting number is then called
the expected cost of the evaluated action. The candidate
action with the lowest expected cost is chosen to be ex-
ecuted in the next time step. It has been shown that PR
leads to a policy that is at least as good as the BP with a
very high probability if enough samples are provided [6].
Choosing a good BP and a large enough number of sam-
ples is therefore crucial to the algorithm’s performance.
In this case, the number of samples is equivalent to the
number of rolloutsM per action. Therefore, one sample
is the evaluation of one possible future. It is no trivial
task to find a good BP for the considered scenario. As
an example, previously experienced situations could be
used for it, e.g., as a lookup table. Additionally, the BP
could also be improved with new information over time,
which could be considered in RL, for instance. Unfortu-
nately, it is not very likely to experience the exact same
situation multiple times if a huge state space is assumed,
so the usefulness of RL techniques is questionable for
typical radar scenarios. Another straightforward choice
of the BP could be an equal resource allocation to all the
tasks.PRhas been covered extensively,e.g.,byBertsekas
in [5]–[7].

The PR can be expressed as shown in (19) and (21).
The Q-value is defined as

Qπbase (bk,ak) = CB(bk,ak) + E [Vπbase (bk+1)|bk,ak] ,
(19)

where CB(bk,ak) = ∑
s∈S bk(s)c(s,ak) being the ex-

pected cost given belief state bk, E[·] is the expectation
andVπbase (·) is the so-called value function assuming the
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Figure 2. High-level block scheme of the AODB algorithm [50].

chosen BP. The value function can be expressed as

Vπbase (bk0 ) = E

⎡
⎣k0+H∑

k=k0
CB(bk,ak)|bk0

⎤
⎦ . (20)

The best policy can then be found by applying

πk(bk) = argmin
ak∈A

(Qπbase (bk,ak)). (21)

PR does not necessarily lead to the optimal policy. It in-
stead aims at improving the chosen BP πbase.

E. Approximately Optimal Dynamic Budget Balancing

This paper uses the Approximately Optimal
Dynamic Budget Balancing (AODB) algorithm as
introduced in [51] and [50], which applies a combination
of PR and LR. The general structure of our proposed
algorithm is illustrated in Fig. 2. The outputs of the
algorithm are the converged budgets for each task. The
PR is applied per task, which in this paper means that
for each observed object, the expected cost for each
action is calculated, taking into account the current class
probabilities for all possible classes.

IV. FORMULATION OF THE COST FUNCTION

The assumed cost function in this paper is based on
a definition of threat. This definition depends heavily on
the considered scenario and the wishes and expectations
of the user.There are practically an unlimited amount of
possibilities for constructing such a function. In this sec-
tion, it is considered that the threat φ(c, s) depends on
the class and the state of a target. The cost function will
be defined by the variance in the threat knowledge of
a target. This means that the cost will be very high for
unclassified targets, as all class-dependent threat values
are equally likely.Once the knowledge of the target class
increases, this variance in threat will decrease also. An
explicit example formulation of the threat and the cost
function will be introduced later, together with the sim-
ulation scenarios. First, the focus is on transforming the
PDF from the state domain to the threat domain.As the
cost calculation is done for each target separately, the

target-related superscript n is dropped to simplify the
notations in the following subsections.

A. Unscented Transform

The running target tracks supply a PDF of the tar-
get state. Since the transformation of the state PDF to
the threat PDF is nonlinear, a sampling approach is cho-
sen. A possible implementation is to sample the threat
PDF with a certain number of random samples in the
state PDF. For an accurate result,many samples are nec-
essary, which can make this approach very slow. There-
fore, in this paper, the samples in the state space of the
target are chosen with the help of the unscented trans-
form that is also applied in the unscented KF [28]. For
a D-dimensional PDF, 2D + 1 sigma points are neces-
sary. The procedure for calculating the current threat at
a certain moment in time is as follows:

1) Calculate the Cholesky decomposition of the belief
state covariance matrix of the target:

LLT = P, (22)

where P is the belief state covariance matrix of the
target.

2) Calculate the so-called sigma points:

X
0 = ŝ,

X
i = ŝ+ √

D+ κ coliL i = 1, . . . ,D,

X
i+D = ŝ− √

D+ κ coliL i = 1, . . . ,D,

(23)

where ŝ is the belief state mean of the target,
κ = 3−D and coliL denotes the i-th column ofmatrix
L.

3) Now, each of these samples has to be transformed
into the threat domain by using the threat function
φ(c, s).

Y
i
c = φ(ĉ, X

i)) i = 0, . . . , 2D, (24)

where ĉ is the believed class of the target.
4) From the samples in the threat domain, the threat

PDF is defined by the mean and covariance:

φ̂c =
2D∑
i=0

wi
Y
i
c,


φ,c =
2D∑
i=0

wi(Yi
c − φ̂c)(Yi

c − φ̂c)T ,

(25)

where φ̂c is the mean and 
φ,c the covariance of the
threat PDF based on class c and wi are weights for
the samples given as

wi =
⎧⎨
⎩

κ
D+κ

, if i = 0

2(D+κ ) , otherwise
. (26)
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B. Combination of Threat PDFs

Since the threat PDF depends on the class c, is has
to be calculated for each class separately. Based on the
resulting PDFs for C different classes, a total PDF can
be constructed. The total mean of the threat φ̂tot for the
target is defined as

φ̂tot =
∫

�

φp(φ|z)dφ

=
∫

�

φ

C∑
c=1

N (φ; φ̂c, 
φ,c)P(c|Z)dφ

=
C∑
c=1

P(c|Z)
∫

�

φN (φ; φ̂c, 
φ,c)dφ

=
C∑
c=1

P(c|Z)φ̂c,

(27)

where z is a recent measurement of the target state,
N (φ; φ̂c, 
φ,c) denotes a normal distribution with mean
φ̂c and variance 
φ,c, and P(c,Z) is the posterior class
probability based on all previous measurements Z. The
variance can be calculated using


φ,tot =
∫

�

(φ − φ̂tot)2p(φ|z)dφ

=
∫

�

(φ2 − 2φφ̂tot + φ̂c)2)p(φ|z)dφ

=
∫

�

φ2p(φ|z)dφ − φ̂2
tot.

(28)

Using

∫
�

φ2p(φ|z)dφ =
∫

�

φ2
C∑
c=1

N (φ; φ̂c, 
φ,c)P(c|Z)dφ

=
C∑
c=1

P(c|Z)
∫

�

φ2N (φ; φ̂c, 
φ,c)dφ

=
C∑
c=1

P(c|Z)(
φ,c + φ̂2
c ),

(29)
it can also be written as


φ,tot =
C∑
c=1

P(c|Z)(
φ,c + φ̂2
c ) − φ̂2

tot. (30)

C. Variance of Threat

The previous subsection described transforming the
PDF from the state and class domain to the threat do-
main by considering multiple possible target classes.
Given this threat PDF, a different cost function could
be constructed. A simple and unambiguous choice is to
simply evaluate the total threat variance 
φ,tot. The un-
derlying assumption is that the radar system cannot in-

fluence the target state but only the uncertainty about
the knowledge of the target state by adjusting its sensing
actions. Following this cost function, the most resources
will be assigned to the targets where the biggest decrease
in uncertainty (decrease in threat variance) is expected.

The hypothesis is that this will lead tomore resources
being assigned to objects of an uncertain class. Once all
the objects are classified, the uncertainty in the threat
will drop significantly and only depend on the uncer-
tainty in the track. This emphasizes the jointness of the
proposed tracking and classification approach, as the un-
certainty in both the tracking and classification classes
is directly taken into account through this cost function.
For the remainder of this paper, the cost function will
thus be defined as

C(a, sk|k−1,Pk|k−1, c) = 
φ,tot, (31)

where sk|k−1 is the predicted state and Pk|k−1 is the pre-
dicted error-covariance for the considered target given
by the tracking filter. Therefore, the predicted belief
state is used as input for the cost calculation.

V. ASSUMED RADAR SCENARIO

For the following simulation sections, a simplified
radar scenario for tracking and classification is assumed.
An EKF is applied as a tracking algorithm and similar
definitions are used as already shown in [50]. As men-
tioned in (1), the targets move in a two-dimensional
Cartesian coordinate system.The algorithm is jointly op-
timizing the revisit interval T and the dwell time τ . The
former is the time between two consecutive measure-
ments, and the latter is the time the radar sensor spends
on a target. For a Target n, a pair of Tn and τn defines a
budget allocation, also called action an ∈ R

2.The actions
influence both the classification and the tracking perfor-
mance. The outcome of the algorithm is budget alloca-
tions per target that theoretically fit into the time frame.

Furthermore, as the situation changes over time, the
resource allocation needs to be adjusted to it. In this pa-
per, this is done in regular predefined update intervals.

A. Assumed Radar System

The assumed radar system is able to take measure-
ments in range r and angle θ . Additionally, it can take
measurements of a certain target feature f . There exists
a measurement noise with variances σ 2

r,0, σ
2
θ,0, and σ 2

f,0,
which refer to a referencemeasurement.The parameters
of that reference measurement are shown in Table I.

B. Target Dynamics

The targets are assumed to move with a constant ve-
locity in x and y directionwith an addedmaneuverability
noise, which is class-dependent. Instead of (2), the next
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TABLE I
Parameters of the Reference Measurement

Parameter Value

SNR (SNR0) 1
RCS (ς0) 10 m2

Dwell time (τ0) 1s
Range (r0) 50 km
σ 2
r,0 625 m2

σ 2
θ,0 4×10−4 rad2

σ 2
f,0 4

state can therefore be written as

snkn+1 = Fnsnkn + wn,c
kn

, (32)

with Fn ∈ R
4×4 defined as

Fn =

⎡
⎢⎢⎣
1 0 Tn 0
0 1 0 Tn
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (33)

and the maneuverability noise wn,c with covariance

Qn,c =

⎡
⎢⎢⎣
T 3
n /3 0 T 2

n /2 0
0 T 3

n /3 0 T 2
n /2

T 2
n /2 0 Tn 0
0 T 2

n /2 0 Tn

⎤
⎥⎥⎦ σ 2

w,c, (34)

where σ 2
w,c is themaneuverability noise variance for class

c.

C. SNR Model

As previously mentioned, measurements are taken
in range r and angle θ . Due to the nonlinearity between
measurements and target states, at snkn a measurement
transformation function h(snkn ) ∈ R

3 is defined.Themea-
surement equation in (4) therefore becomes

znkn = h(snkn , c
n) + vnkn , (35)

with

h(snkn ) =[√
(xnkn )

2 + (ynkn )
2 , atan2

(
ynkn , x

n
kn

)
, f (cn)

]T
,

(36)

and vnkn ∈ R
3 being the measurement noise for Target n.

The feature of class cn is denoted as f (cn) and atan2(·)
denotes the two-argument arctangent as commonly used
in programming languages.

The range and azimuth components of vnkn are con-
sidered to be independent:

vnkn = [vr,nkn vθ,n
kn

v
f,n
kn

]T , (37)

with variances σ 2
r,n, σ

2
θ,n, and σ 2

f,n.
Since the relationship between the measurements

and the states is nonlinear, an EKF is applied in the fol-
lowing simulations. The observation matrix Hn

kn is de-

fined as the Jacobian of the measurement transforma-
tion function h:

Hn
kn = ∂h

∂s∂ f

∣∣∣∣
snkn , f n

. (38)

For the assumed radar systems, it has dimensions Hn
kn ∈

R
3×5.
In line with the radar scenario described [50], the

SNR is calculated by using (39), which is based a paper
by Koch [33]:

SNRkn (ςn, τn, r
n
kn ) = SNR0·

(
ςn

ς0

)
·
(

τn

τ0

)
·
( rnkn
r0

)−4

·e−2�α.

(39)
where�α is the relative beam positioning error,ςn is the
constant radar cross section (RCS) of the Target n, rnkn is
the distance of Target n at time step kn and ς0, τ0 and r0
are the corresponding values for a reference target. The
dwell time is used equivalently to the transmitted energy
mentioned by Koch.The relative beam positioning error
is calculated as

�α =
(
θkn − θ̂kn

)2
�2

, (40)

where θkn is the real target angle and θ̂kn is the predicted
target angle in azimuth at time kn and � is the one-sided
beam-width in azimuth.

The variance of the range and azimuth measurement
noise for Target n can then be defined as (see, e.g., [41])

σ 2
•,n = σ 2

•,0
SNRkn (ςn, τn, r

n
kn
)
, (41)

where • ∈ (r, θ, f ) and σ 2
•,0 is the measurement noise

variance for a reference target 0 as defined in Table I.
Assuming independent measurements, the measure-

ment covariance can be written as

Rn
kn =

⎡
⎣σ 2

r,n 0 0
0 σ 2

θ,n 0
0 0 σ 2

f,n

⎤
⎦ . (42)

D. Target Classes

Each target is assumed to belong to a specific class.
The class is defined before the simulation scenario starts
and cannot be changed. Therefore, it stays the same dur-
ing the entire scenario. The measurement variance re-
garding the class feature f n of object n is calculated
as shown in (41). The corresponding variance value for
the reference measurement f0 is shown together with
the other simulation parameters in the specific subsec-
tion. For the simulations discussed below, different tar-
get classes are considered that influence the maneuver-
ability of the targets. These maneuverabilities are imple-
mented in the trajectory simulations of the targets and
are also considered in the resource optimization algo-
rithm.As discussed earlier, one tracking filter per target
class is applied, each tuned to one of the classes.
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D. Optimization Problem

There are N tracked targets in the environment.
Based on the general definition in (6), the RRM prob-
lem can thus be expressed as

min
T,τ

N∑
n=1

E
[
C

(
snkn|kn−1(Tn, τn),P

n
kn|kn−1(Tn, τn), c

n
)]

s. t.
N∑
n=1

τn

Tn
≤ �max,

(43)
where E[·] denotes the expected value. The cost that is
optimized is therefore based on the current prediction
of the tracking filter,which is based on the measurement
actions Tn and τn for Target n. Both the revisit times Tn,
as well as the dwell times τn are optimized. The state
measurements are influenced by both T and τ , while
the state independent feature measurement is only in-
fluenced by the dwell time.

For all shown simulations, the implemented BP is
simply to apply the evaluated action in every step of the
PR. Therefore, πbase = a.

F. Threat Definition

Since a two-dimensional scenario is assumed, the di-
mension parameter in the unscented transform isD = 2.
As mentioned before, the choice of the “correct” threat
definition depends on the scenario and the user’s wishes.
As an example, in the following, the threat φ is defined
as

φ(c, s) =
ρc ·

(
0.1 + exp

(
− r−r′

η

))
1 + exp

(
− r−r′

η

) , (44)

where ρc is a scalar factor unique for each class, r =√
x2 + y2 is the range of the target from the sensor, r′ =

18 km is a reference range and η = 5000 is a parameter
to fine-tune the threat function slope. A possible exam-
ple of such a threat is shown in Fig. 3. This formulation
assumes that targets at a long distance pose a very low
threat,while the threat increases the closer the target ad-
vances toward the sensor location.At a certain distance,
themaximum threat value is reached. In addition to that,
some classes generally pose a higher threat than others.
One could think of an automotive scenario where a ve-
hicle is moving toward the sensor location.When it is far
away, the threat would be low as it would probably turn
away at some point. However, once it comes closer, the
threat increases until it is not very likely to turn away
anymore, which means that the maximum threat level is
reached,and a collision is almost inevitable.For instance,
regarding the different classes, one could think of a truck
having a higher base threat level than a cyclist.
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Figure 3. Example threat function for three different targets. The
reference range r′ is 18 km and the tuning parameter η is 5000. The

class parameters ρ are set to values 1, 2, and 3, respectively.

TABLE II
Simulation Parameters for Simulation Scenario A

Parameter Value

Precision of solution (δ) 0.01
Action space discretization steps (�T ,�τ ) Adaptive
Action space limits revisit interval (Tmin,Tmax) T ∈ [0.1s . . . 5 s]
Action space limits dwell time (τmin, τmax) τ ∈ [0.1 s . . . ∞]
Number of rollouts (M) 10
Rollout horizon (H ) 10
Maximum available budget (�max) 1
Budget update interval (tB) 5 s
Beam positioning error (�α) 0
Probability of detection (PD) 1
Threat reference range (r′) 18 km
Threat slope parameter (η) 5000

VI. SIMULATION SCENARIO A

In this section, the dynamic tracking example as pre-
sented in [50] is used to show the impact of the chosen
cost function based on the threat.Essentially, theAODB
algorithm from [50] is applied with the cost function as
defined in (31). The radar sensor is placed at the origin
of the coordinate system. Initially, there are four targets
in the scene. After 25 s, a fifth target is detected, and a
new track is started. All targets move with constant ve-
locities. Here, it is assumed that the class of the targets
is not of interest, so no classification is applied during
the simulation scenario. The simulation parameters are
summarized in Table II, while the target parameters are
shown in Table III. The trajectories of the targets during
the simulation scenario are shown in Fig. 4, and the re-
sulting budget allocation of the simulations is shown in
Fig. 5.

Since classification is not considered in this example,
the uncertainty in threat comes directly from the track-
ing accuracy.This is reflected in Fig. 5 by the fact that the
budgets overall show very similar behavior to the dashed
lines. Those lines indicate the results from [50], where
the error-covariance of the tracking filter was used di-
rectly to optimize the resource allocation. For example,
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TABLE III
Initial Target Parameters for Simulation Scenario A

Parameter
\\
Target n 1 2 3 4 5

xn0 [km] 12 12 7 19 7.9
yn0 [km] 10 15 11 2 8.3
ẋn0 [m s−1] 9 −30 45 −35 −20
ẏn0 [m s−1] −15 15 30 0 −25
ςn [m2] 25 25 64 64 64
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Figure 4. Trajectories of the targets for Simulation Scenario A. The
symbols mark the starting positions.

Target 4 receives the largest budget allocation during the
first 70% of the scenario, while Target 5 always receives
the smallest, which is in line with the previous results. It
should be noted that the algorithm decides the resource
allocations on the expected threat variance reduction
rather than the actual threat variance values. Neverthe-
less, the target with the highest threat variance will offer
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Figure 5. Resulting budget distribution for Simulation Scenario A.
The dashed lines denote the results for tracking without classification

as shown in [50].
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Figure 6. The PDFs of the class features given different SNR values.
The solid lines correspond to SNR = 1 and the dashed lines to

SNR = 50.

the biggest opportunity to reduce this threat variance in
most cases.

VII. SIMULATION SCENARIO B

In this section, a dynamic joint tracking and classifi-
cation scenario are presented.The radar sensor is placed
at the origin of the coordinate system.There are two pos-
sible classes and two observed targets. The first target is
of Class 1, and the second one of Class 2. The radar sen-
sor is aware of all possible target classes, but it does not
know which target is of which class. Therefore, the ini-
tial class probabilities are equal for both classes for each
target. The available budget is set to 1, implying that the
radar system fully focuses on these two tracking tasks.
Aspects like false alarms are not taken into account.
However, even if ambiguities in the measurement-to-
track assignment were considered, it would still be nec-
essary to compute the joint posterior of the state vari-
ables that are used for the optimization. Therefore, the
approach would not be significantly different from what
is presented here. For future use in a real radar system,
those aspects certainly need to be taken into account.

The targets move with a class-typical maneuverabil-
ity noise,which can be seen from trajectories in Fig. 7(a).
The simulation parameters are identical with the ones
for simulation A as mentioned in Table II. The target
and class parameters are shown in Tables IV and V, re-
spectively. As mentioned before, the values used in this
section do not have any physical origin and are merely
chosen for demonstration purposes. Figure 6 shows the
PDFs of the features given two different SNR values.
The simulation results are presented in Fig. 7(b)–(e).

In the beginning, Target 2 gets a larger amount of
dwell time assigned than Target 1,which leads to a quick
classification. Target 2 is closer to the radar sensor than
Target 1, which means that not knowing the class leads
to a higher threat variance. Additionally, the feature
measurements for Target 2 are more accurate than for
Target 1 due to the smaller distance and, therefore,
higher SNR. Subsequently, after 5 s, the dwell time and
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Figure 7. Simulation results for Simulation Scenario B. (a) Trajectories of the targets for Simulation Scenario B. The symbols mark the
starting positions. (b) Resulting budget distribution. (c) Resulting dwell time and revisit time distribution. (d) Resulting optimized cost (threat

variance). (e) Resulting class probabilities. A value of 1 means that a target was correctly classified.
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TABLE IV
Initial Target Parameters for Simulation Scenario B

Parameter
\\
Target n 1 2

xn0 [km] 14.8 9.2
yn0 [km] 13.9 15.9
ẋn0 [m s−1] 2 2
ẏn0 [m s−1] −1 1
ςn [m2] 5 5
cn 1 2

with it the relative budget for Target 2 drops, while Tar-
get 1 gets significantly more dwell time and budget as-
signed. During the bigger part of the scenario, the sen-
sor focuses on classifying Target 1,which is more difficult
due to its larger distance from the sensor. While Target
1 gets slowly classified, its budget starts to decrease af-
ter about 45 s. The budget for Target 2 increases at the
same time. After both targets are successfully classified
at about 70 s, the assigned budgets for both targets stay
around 0.5, although Target 1 still gets a higher dwell
time.The targets are both classified and theoretically de-
serve a similar amount of attention. However, as Target
1 was classified later, there is still slightly more uncer-
tainty left about its class, leading to a higher dwell time
allocation. This behavior emphasizes that the resource
allocation is based on the expected threat variance re-
duction. Figure 7(d) shows how the early classification
of Target 2 leads to a significant direct decrease in threat
variance,while the classification of Target 1 takes longer,
and the cost therefore also drops slower.

VIII. SIMULATION SCENARIO C

This simulation scenario is similar to Scenario B.The
radar sensor is again placed at the origin of the coordi-
nate system, and the available maximum budget is set to
�max = 0.5. The reason for a lower maximum budget
could be, e.g., that an operator of the radar system man-
ually assigned some of the total budget to other tasks.
Additionally, the length of the simulation is 500 s, which
is longer than in Scenario B.All other general simulation
parameters are the same as shown in Table II. The class
parameters are summarized in Table VII, and the initial
target parameters are shown in TableVI.This time, there
are three targets in the environment, and the targets can
be of three possible classes. Figure 8(a) shows the trajec-

TABLE V
Class Parameters for Simulation Scenario B

Parameter
\\
Class 1 2

Class feature fc 1 2
Threat parameter ρc 1 9
Maneuverability σw,c [m s−2] 2 5

TABLE VI
Initial Target Parameters for Simulation Scenario C

Parameter
\\
Target n 1 2 3

xn0 [km] 10.1 12.3 12.1
yn0 [km] 17.1 17.5 15.3
ẋn0 [m s−1] 1 −2 1
ẏn0 [m s−1] 2 2 −2
ςn [m2] 5 5 5
cn 1 2 3

tories of the simulated targets.The simulation results are
shown in Fig. 8(b)–(e).

At the beginning of the scenario, it can be seen that
Target 3 gets the largest relative budget assigned. Subse-
quently, it gets classified very quickly. It can be seen that
the algorithm makes a wrong decision about the class
of Targets 1 and 2. Figure 7(d) shows that making the
first classification decisions leads to a large reduction of
the calculated threat variance for all targets within the
first 100 s. It can be seen that while the algorithm slowly
classifies Target 2 between about 100 s and 300 s, the
threat variance increases and then drops again. The rea-
son is that the class probabilities are shifting during that
phase, and there has no clear decision been made yet.
The same happens to Target 1, as its class probability val-
ues are also changing at that time. Between about 320 s
and 420 s Target 1 is classified correctly, which also leads
to an increased threat variance. After 400 s, all targets
are correctly classified, and the threat variances decrease
rapidly.

In Fig. 8(b), it can be seen that the budget alloca-
tions roughly follow the threat variances.The target with
the highest threat variance usually receives the largest
budget. Similarly, the dwell times are assigned approxi-
mately proportional to the threat variance.

IX. SIMULATION SCENARIO D

This simulation is similar to Simulation C, except for
all targets being of the same class. The available bud-
get is set to �max = 0.7. The length of the simulation is
100 s.All other simulation parameters are identical with
Simulation A as shown in Table II. The target and class
parameters for this simulation scenario are shown in
Tables VIII and IX. The simulation results are shown in
Fig. 9(a)–(d).

Table VII
Class Parameters for Simulation Scenario C

Parameter
\\
Class 1 2 3

Class feature fc 1 2 3
Threat parameter ρc 1 9 19
Maneuverability σw,c [m s−2] 2 5 9
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Figure 8. Simulation results for Simulation Scenario C. (a) Trajectories of the targets for Simulation Scenario C. The symbols mark the
starting positions. (b) Resulting budget distribution. (c) Resulting dwell time and revisit time distribution. (d) Resulting optimized cost (threat

variance). (e) Resulting class probabilities. A value of 1 means that a target was correctly classified.

Figure 9(c) shows that the closer the targets, the ear-
lier they get classified. This has to do with the higher
SNR at shorter ranges and the fact that the proposed
algorithm assigns larger budgets to “dangerous” targets
to classify them quickly. This can be seen in Fig. 9(b),

where Target 2 receives the largest budget between 5
and 10 s. After the classification of the targets is com-
pleted, the budget distribution in Fig. 9(b) shows a clear
influence from the distance of the targets. The reason
is that there is no significant uncertainty in the class
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TABLE VIII
Initial Target Parameters for Simulation Scenario D

Parameter
\\
Target n 1 2 3

xn0 [km] 4 8 12
yn0 [km] 4 8 12
ẋn0 [m s−1] −1 −1 −2
ẏn0 [m s−1] 1 −1 −2
ςn [m2] 5 5 5
cn 3 3 3

anymore, so the position uncertainty becomes more
important.

Additionally, Fig. 9(d) shows that the proposed ap-
proach delivers the lowest expected cost compared to
three other resource allocation methods. It can also be
seen that once the target classes are determined, the
costs of the different approaches are relatively small.
The reason, therefore, is that the cost function heavily
depends on the assumed class probabilities, especially
when the target class is not determined yet. The differ-
ences between the approaches depend on the cost func-
tion and feature definition.

TABLE IX
Class Parameters for Simulation Scenario D

Parameter
\\
Class 1 2 3

Class feature fc 1 2 3
Threat parameter ρc 1 9 19
Maneuverability σw,c [m s−2] 2 6 10

X. CONCLUSION

This paper introduced a novel RRM approach for
joint tracking and classification using a previously in-
troduced framework. In contrast to most available ap-
proaches, two different task types are combined into one.
It is shown that it is possible to solve the RRM prob-
lem for multiple task types by using only a single cost
function based on a definition ofmission threat.Such ap-
proaches have been suggested previously but have never
been fully developed and demonstrated with the help of
fully worked out practical simulation scenarios.

Firstly, the joint tracking and classification frame-
work have been introduced, which builds on the previ-
ous RRM framework as shown in [50].
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Figure 9. Simulation results for Simulation Scenario D. (a) Trajectories of the targets. The symbols mark the starting positions. (b) Resulting
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Secondly, it has been explained how to move from
the state to the threat domain and combine the costs of
different target classes. The idea of threat is to transform
the state of each task into an easily comparable scalar
number.

Finally, an explicit definition of a possible mission
threat has been introduced. The presented threat defini-
tion is based on the position and a class-dependent pa-
rameter. It has been shown how the threat looks like for
multiple classes in a two-dimensional environment.

Through an analysis of the dynamic tracking Scenar-
ios A–D, it has been shown that the algorithm works in
different situations. It calculates the resource allocations
based on the class probabilities and the tracking state ac-
curacy.The algorithm tries to classify targets of unknown
classes faster, especially when they are close to the radar
sensor.On the other hand, the classification is done over
time while tracking if the targets are further away and
have a smaller threat variance.Once the targets are clas-
sified, the resource allocations depend primarily on the
track uncertainty. This means that the target tracks get
the resources assigned based on the expected decrease
in uncertainty. Compared to other approaches, the pre-
sented approach leads to a quicker classification of dan-
gerous objects. Within the presented simulations, a sin-
gle measurable feature was chosen for demonstration
purposes. In a practical implementation of the approach,
multiple features (e.g.,RCS and velocity) could be taken
into account to further accelerate the classification pro-
cedure. Nevertheless, the presented simulations confirm
the applicability of the proposed algorithm.

The proposed algorithm fills the timeline on aver-
age, leading to some overlap of tasks. Specifically, this
can happen when predefined start or end times are re-
quired,or the tasks cannot be split up intomultiple parts.
A possible defensive solution to this problem is to as-
sume a lower available budget for the tasks to keep a
part of the timeline free. However, this would lead to a
less optimal result. For practical implementation, the im-
pact of these overlaps would need to be investigated,and
an explicit scheduler would need to be implemented at
a lower level, but this is out of the scope of this paper.

Future research has to be conducted w.r.t. the def-
inition of the threat and cost function. Additionally, it
has to be investigated further how these different threat
and cost formulations influence the budget allocations.
It will be especially interesting to look at how the clas-
sification process exactly depends on the different input
parameters, such as the measurement variance. Finally, a
practical implementation of the algorithm requires the
investigation of an explicit scheduler and its impact on
the results.

APPENDIX A
LAGRANGIAN RELAXATION PRINCIPLE

LR simplifies complicated constrained optimization
problems by removing constraints and adding them as

penalty terms into the original problemmultiplied by so-
called Lagrange multipliers. Consequently, a new opti-
mization problem is created with fewer constraints than
the original problem.LRmaximizes the minimum of the
cost function by adjusting the Lagrange multipliers. This
problem is called the LDP, which is usually a lower esti-
mate of the original problem if the initial Lagrange mul-
tipliers are chosen properly (see, for example, [8]).

LR and Lagrange multipliers have been extensively
covered in literature (for example, in [5], [8], [9], [13], or
[38]). As an example of how LR is applied, we consider
the general optimization problemwithN input variables
that is shown below:

minimize
x

f (x)

subject to g(x) ≤ A

h(x) ≥ B,

(45)

where

x = [x1, . . . , xN]T ∈ R
N,

g(x) = [g1(x), . . . , gm(x)]T ∈ R
m,

h(x) = [h1(x), . . . ,hp(x)]T ∈ R
p,

A = [A1, . . . ,Am]T ∈ R
m,

B = [B1, . . . ,Bp]T ∈ R
p.

Including the constraints into the optimization prob-
lem is done by adding a penalty term for each removed
constraint, multiplied by Lagrange multipliers, which
are defined as λ = [λ1, . . . , λm]T ∈ R

m and μ =
[μ1, . . . , μN]T ∈ R

p. The Lagrangian is defined as

L(x,λ,μ) = f (x) +
m∑
i=1

λi(gi(x) −Ai)

+
p∑
j=1

μ j(Bj − hj(x)). (46)

The relaxed problem is then called Lagrangian dual
function and can be expressed as

d(λ,μ) = minimize
x

L(x,λ,μ). (47)

The meaning of this expression is to find the maxi-
mum of the Lagrangian dual function with respect to the
Lagrange multipliers, as

ZD = maximize
λ,μ

d(λ,μ). (48)

Therefore, the objective function is minimized over x
while also being maximized over the Lagrange multipli-
ers. The goal is to come as close to the original problem
as possible. Iterative approaches are typically used to
find the optimal Lagrange multipliers and, consequently,
the tightest lower bound to the original problem. One
of those techniques, the subgradient method, will be ex-
plained in the following subsection.
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A. Subgradient Method

The subgradient method is an iterative process,
which starts with an initial value for the Lagrange
multipliers (e.g., 1). At each iteration k, the minimum
of the relaxed problem is calculated using that value
(Lagrangian dual function, see (46)). Then, subgradi-
ents are chosen for each of the constraint as skλ =
[sk

λ,1, . . . , s
k
λ,m]

T ∈ R
m and skμ = [sk

μ,1, . . . , s
k
μ,p]

T ∈ R
p.

Assuming the constraints mentioned in (45), the subgra-
dients are defined as

skλ = (g(xk) −A)

skμ = (B− h(xk)).
(49)

Next, the Lagrange multipliers are updated with a step
size γ k. If an inequality constraint is given, then the
penalty term may not become negative. The updated
Lagrange multipliers are therefore calculated as

λk+1 = max{0,λk + γ kskλ}
μk+1 = max{0,μk + γ kskμ}.

(50)

There are many possible step size approaches, such as
constant or decreasing step sizes like γ0/k or /γ k, for
example. The procedure started again with the new
Lagrange multipliers. A new Lagrangian dual function
is found, and afterward, new subgradients are again cal-
culated. The exact result is found when the gradients skλ
and skμ reach 0. Since this value can never be reached ex-
actly using this method, the process is repeated until the
gradient reaches 0 with the desired precision.

To summarize, a short overview of the subgradient
algorithm for the above mentioned optimization prob-
lem is given here:

1) k = 0: Set the Lagrangian multipliers to initial value
(λ0 = λ0,μ0 = μ0).

2) Calculate solution for d(λ,μ) and save xk.
3) Choose subgradients for Lagrangian multipliers skλ

and skμ (see (49)).

4) Check if skλ ≈ 0 and skμ ≈ 0 with desired precision. If
it is, then stop the process.

5) Adjust Lagrangian multipliers as shown in (50).
6) Go to step 2 and set k = k+ 1.

APPENDIX B
SOLUTION METHODS FOR POMDPS

POMDPs can be solved for finite or infinite horizons.
In order to reduce complexity, limited horizons H are
often considered. The value of H represents the num-
ber of measurement time steps into the future that are
considered in the optimization.Once a new budget allo-
cation is calculated, the horizon H will be moved to the
current moment in time. This approach is therefore also
called a receding horizon.

In [16], Charlish and Hoffmann have presented an
excellent summary of the general solution of a POMDP.
The following equations are based on their explanations.
The goal is to find the actions thatminimize the total cost
(valueVH over horizonH ).Starting at time step k0, this
can be expressed as

VH = E

⎡
⎣k0+H∑

k=k0
c(sk,ak)

⎤
⎦ . (51)

Using CB(bk,ak) = ∑
s∈S bk(s)c(s,ak) being the ex-

pected cost given belief state bk,VH can be written as
a so-called value function of the belief state bk0 at time
step k0:

VH (bk0 ) = E

⎡
⎣k0+H∑

k=k0
CB(bk,ak)|bk0

⎤
⎦ . (52)

For belief state b0 and taking action a0, the optimal value
function is defined according to Bellman’s equation [3]
as

V∗
H (b0) = min

a0∈A
(
CB(b0,a0) + γ · E [

V∗
H −1(b1)|b0,a0

])
.

(53)
For very long or infinite horizons, the discount factor can
be set to γ < 1. Using this equation, the optimal policy
can be expressed as

π∗
0 (b0) = argmin

a0∈A

(
CB(b0, a0) + γ · E [

V∗
H −1(b1)|b0,a0

])
.

(54)
For each bk and ak, the optimal so-called Q-value is then
defined as

QH −k(bk, ak) = CB(bk, ak)+γ ·E [
V∗

H −k−1(bk+1)|bk,ak
]
.

(55)
Another way to find the optimal policy is to find the ac-
tion ak that minimizes the optimal Q-value:

π∗
k (bk) = argmin

ak∈A
(QH −k(bk,ak)). (56)

Therefore, it is necessary to calculate the Q-value for all
possible actions, which is generally infeasible.

Generally, POMDPs can be solved both online as
well as offline. Which type of solution is applied de-
pends on the size of the state space. The so-called state-
space explosion limits the usefulness of exact offline
techniques.

Many offline methods are based on the so-called
value iteration (VI).This technique iteratively calculates
the cost/reward values of all possible states.An exact ap-
proach is, e.g., the One-Pass algorithm [54]. Examples
for approximate point-based algorithms are PBVI, or
Perseus [56]. Exact methods often lead to highly com-
plex optimization problems, while approximate point-
based methods require many grid points within the state
space to converge toward the exact solution. The ad-
vantage of offline solutions is that the POMDP is fully
solved only once. Unfortunately, this type of method is
already infeasible for a very small state space.

62 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 17, NO. 1 JUNE 2022



Contrary to that, online algorithms only solve a small
currently relevant part of the POMDP.This makes them
less accurate but much easier and faster to compute.
Some of the online approaches involve approximate
tree methods (see, for example, the overview in [48]) or
Monte Carlo sampling (e.g., PR).
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The International Society of Information Fusion (ISIF) is the premier professional society and global infor-
mation resource for multidisciplinary approaches for theoretical and applied information fusion technologies.
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information, educational products, and services.
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To create international communication forums and hold international conferences in countries that pro-
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sities around the world. Sponsor educational courses and tutorials at conferences.
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themes– look for overall principles, rather than a multitude of point solutions. Serve as the central fo-
cus for coordinating the activities of world-wide information fusion related societies or organizations. 
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To propagate the ideas for integrated approaches to information fusion so that others can build on them 
in both industry and academia.
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The Journal of Advances in Information Fusion (JAIF) seeks original 
contributions in the technical areas of research related to information 
fusion. Authors are encouraged to submit their manuscripts for peer 
review http://isif.org/journal.
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The success of JAIF and its value to the research community is 
strongly dependent on the quality of its peer review process. 
Researchers in the technical areas related to information fusion are 
encouraged to register as a reviewer for JAIF at http://jaif.msubmit.
net. Potential reviewers should notify via email the appropriate 
editors of their offer to serve as a reviewer.
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