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From the Editor-In-Chief:

June 2007

Are We Making Progress?

After nine years of success with the International
Conferences on Information Fusion (ICIF) and a year of
the Journal of Advances in Information Fusion (JAIF),
the question arises: Are we, the community of re-
searchers in the area of information fusion, making
progress?

With all of the focus of today's corporate manage-
ment on performance metrics, knowledge points, bal-
anced scorecards, etc., [ am surprised that this question
has not been raised earlier. However, a natural question
does follow. How does one define progress in informa-
tion fusion? For an individual researcher, progress can
be defined as movement toward the goal of an ideal
solution to the problem under study. Defining progress
with respect to the community of researchers in infor-
mation fusion presents a challenge.

One measure of the progress in information fusion
is the developmental activity with reference to the com-
mercial opportunities created thereby or to the promo-
tion of the material well-being of the public through the
goods, techniques, or facilities created. In other words,
progress in information fusion can be measured by the
number of products that include information fusion and
their impact on society.

A second measure of the progress in information
fusion is the maturity of solutions for problems in infor-
mation fusion. Mature solutions involve well established
and accepted approaches for which the cost and benefits
of the implemented solution are well understood. Doc-
umented design methods are also part of a mature solu-
tion. An example of a problem with a mature solution
is the tracking of maneuvering targets. The Interacting
Multiple Model (IMM) estimator is well-accepted as the
best approach to tracking of maneuvering targets when
the computational cost of the algorithm is considered
[1, 2], and design methods for application of the IMM
estimator are emerging [3, 4].

I am sure that the research community has knowl-
edge of other successful examples of progress in infor-
mation fusion. I encourage researchers to consider
progress in information fusion and document the prog-
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ress through papers and special sessions at the annual
International Conference on Information Fusion. This
might include a series of papers documenting the rel-
ative performances of competing solutions or a paper
documenting the application of information fusion in
a commercial product. Such examples might be appro-
priate for a special issue of the Journal of Advances in
Information Fusion.

(1]

(2]

(3]

(4]

William Dale Blair
Editor In Chief

Bar-Shalom, Y. and Blair, W. D.
Introduction.
In Y. Bar-Shalom and W. D. Blair (Eds.), Multitarget-
Multisensor Tracking: Applications and Advances, vol. 111,
Dedham, MA: Artech House, 2000.

Blair, W. D. and Bar-Shalom, Y.
Tracking maneuvering targets with multiple sensors: Does
more data always mean better estimates?
IEEE Transactions on Aerospace and Electronic Systems, 32,
1 (Jan. 1996), 822-825.

Kirubarajan, T. and Bar-Shalom, Y.
Kalman filter versus IMM estimator: When do we need the
latter?
IEEE Transactions on Aerospace and Electronic Systems, 39,
4 (Oct. 2003).

Blair, W. D.
Design of nearly constant velocity filters for tracking ma-
neuvering targets.
Proceeding of the 11th International Conference on Informa-
tion Fusion, Cologne, Germany, July 2008, 1452-1457.
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INFERD and Entropy for
Situational Awareness

MOISES SUDIT
MICHAEL HOLENDER
ADAM STOTZ

TERRY RICKARD
RONALD YAGER

As technology continues to advance, services and capabilities
become computerized, and an increasing amount of business is
conducted electronically, there is an interesting need for real-time
decision-making systems with many capabilities in various domains.
In this paper we introduce INFERD (INformation Fusion Engine
for Real-time Decision-making), an adaptable information fusion
engine which performs fusion at levels zero, one, and two to provide
real-time situational assessment. The advantages to our approach
are threefold: (1) The level of abstraction in which the analyst
interacts with the engine, (2) the speed at which the information
fusion is presented and performed, and (3) our ability to give the
user the choice to disregard ad-hoc rules or a priori parameters,
which have both advantages and disadvantages. We present both
a parameterized approach founded in statistical mechanics theory
and a non-parameterized approach using concepts in entropy as

understood in the context of information theory.
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1. INTRODUCTION

1.1. INFERD

INFERD was created in the context of cyber secu-
rity [25] as a decision aid tool to improve the analyst
understanding of the situation and ultimately expedite
their processing. To cope with the volumes and data
rates of current sensed environments such as cyber se-
curity and others, decision aid tools must provide their
assessment of the situation in a very time efficient man-
ner. In most cases, this time constraint eliminates the
possibility of some non polynomial approaches such as
optimal inexact graph matching and must instead rely
on heuristics to provide good results in a timely manner.
INFERD’s hierarchical fusion approach was developed
to do such a task. The two forms of input to INFERD
are in the form of a Guidance Template (a priori), and
sensor data (runtime). The actual fusion process, both a
parameterized and unparameterized approach, and how
these two forms of input produce valuable output will
be addressed throughout the paper.

INFERD’s unique approach to Information Fusion
can arguably provide these basic advantages: (1) The
flexibility of the system to be transitioned to different
environments, (2) the level of abstraction of the output
of the system compared to the specificity of the models,
and (3) the rate at which INFERD can process data and
produce results.

1.2. Parameterization v. Non-Parameterization

Parametric approaches are typically general enough
to be applied to a variety of environments. Deploy-
ing a parametric system to networks of varying topolo-
gies usually consists of retraining the system on test
data obtained for that environment. The problem of
systems using parametric approaches based on train-
ing data sets is a sensitive one that can often lead to
large numbers of false positives or inaccuracies when
working on data not in the training set. The two clas-
sical cases of overfitting and overtraining can arise
when a parameter vector v is obtained that configures
the system to be very accurate on the training data
but generalizes poorly to non-training data. The accu-
racy/generality tradeoff problem is a well-studied one
in many academic areas such as statistics (known as the
bias-variance tradeoff [15]), Bayesian inference (known
as penalized likelihood [6], [19]), and in pattern recog-
nition/machine learning (known as minimum message
length [39]).

Rule-based approaches are expressive in the way
that the security analyst provides system configuration.
Rules are created or modified in accordance with the en-
vironment in which the system is running. This method-
ology, however, has arguable deficiencies in that every
possible condition for the environment in which the sys-
tem is running must be accounted for in its rule set.

JUNE 2007 3



Fig. 1.3.1.

TABLE 1.2.1
Methodology Comparison

Methodology ~ Advantages Disadvantages
Parametric Portability Need for a priori training process
Generality Accuracy variance

Rule-Based  Expressiveness  Accuracy variance

Rule sets become unwieldy

Many domains provide very dynamic systems; on any
given day there may be topology changes in the tem-
plates (to be explained later), patches applied making
certain vulnerabilities dissipate or even materialize as a
side effect, discovery of new exploits, realization of new
attacking strategies, the list goes on. With such frequent
changes in the environment, the rule sets can quickly
become too complex and unwieldy to remain synchro-
nized with the latest changes. As rules are left out and
changed the chances of system accuracy being main-
tained diminish and the system becomes legacy provid-
ing no benefit to the present.

See Table 1.2.1 for an overview of the advantages
and disadvantages of parametric and rule-based sys-
tems. In summary, we wish to solve the problem of
performing real-time detection of complex, multistage,
systems in such a fashion that minimizes a priori settings
and is sustainable across the breadth and frequency of
changes that can occur within the deployment environ-
ment.

1.3. Information Fusion Overview

In order to address the problems in data fusion, the
US Joint Directors of Laboratories (JDL) developed a

4 JOURNAL OF ADVANCES IN INFORMATION FUSION  VOL. 2, NO. 1

JDL fusion model.

five-level Data Fusion Model, shown in Figure 1.3.1
[33]. Level 1 on Object refinement seems to have re-
ceived the most attention. Level 1 processing functions
include: data alignment, association, tracking, and iden-
tification. Less mature are Level 2 processing [16] [30],
situation assessment, which seeks a higher level of infer-
ence above Level 1 processing, and Level 3 processing
which performs threat assessment. Threat assessment is
an iterative process of fusing the combined activity and
capability of enemy forces to infer their intentions and
assess the threat that they pose. Level 1 is very often
called “low-level” processing, and the others as “high-
level” processing.

Higher level fusion problems are generally more dif-
ficult than Level 1 because they involve higher dimen-
sionality corresponding to the relationships among en-
tities identified at Level 1. Higher level fusion also con-
cerns modeling behavior of aggregate entities, through
the understanding of their individual behaviors and re-
lationships. Some commonly recognized relationships
are spatio-temporal relationships, part/whole relation-
ships, organizational relationships, various casual re-
lationships, semantic relationships, similarity relation-
ships, etc.

e Level 0: (Sub-Object Data Association & Estimation)
—This deals with signal level data association and
characterization.

e Level 1: (Object Refinement)—This deals with track-
to-truth and track-to-track association, kinematics es-
timation and target type and ID prediction.

e Level 2: (Situation Assessment)—This deals with
object clustering and relational analysis, to include
structure and relations, communications and physical
context.
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e Level 3: (Impact Assessment or Threat Assessment)
—This deals with threat intent estimation, conse-
quence prediction, susceptibility and vulnerability as-
sessment.

e Level 4: (Process Refinement)—This is an adaptive
search and processing step.

Level O is a special case of Level 1, where entities
are signals/features. Level 3 is a special case of Level 2,
where relations are cost impact. Level 4 is a special case
of Resource Management. Here we will be looking at
computational techniques applied in Level 2 and Level 3
data fusion.

1.4. Approaches to High Level Data Fusion

There have been many approaches to performing
high level data fusion (L2+) which have been devel-
oped, extended, modified, and refined over the years.
Many of these approaches which will be discussed
shortly have seen success through modification to spe-
cific problems, but no single approach has proven to
be a single solve-all solution. Every approach has its
advantages and disadvantages and the key is to exploit
these properties in an optimal fashion for the problem
at hand. The various INFERD terms used within this
section will be defined and discussed in Section 2 of
this paper.

1.4.1. Knowledge Based Expert Systems

Knowledge Based Systems (KBS) are computer sys-
tems that contain stored knowledge and solve prob-
lems like humans would. KBSs are drawn from the
broad discipline of artificial intelligence (AI) where
a knowledge base is defined in terms of rules, facts
and meta-knowledge. These systems are utilized for
combining expert knowledge and sensor information
to form a knowledge base which is used for reason-
ing about the current situation or threat. They are sym-
bolic programs which solve problems by symbol manip-
ulation. Base techniques of knowledge-based systems
are rule-based techniques, inductive techniques, hy-
brid techniques, symbol-manipulation techniques, case
based techniques, qualitative techniques, model-based
techniques and temporal reasoning techniques.

There are many advantages of using knowledge
based expert systems. In expert systems the changes
in field of interest are well-tracked and increase the
expert’s ability and efficiency. In addition to advantages,
there are some limitations to knowledge based expert
systems. Their knowledge is from a narrow field of
interest and they don’t know the limits to which it
can extend. There can be many exceptions and this
can increase the size of knowledge base and eventually
the running time of the algorithm. The answers from
the expert systems are not always correct, hence the
advice has to be analyzed before actually applying it.
The expert systems don’t have common sense and so
all of the self-evident checking has to be predefined.

Some examples of applied expert systems for decision
support can be found in [3], [42], [1], and [2].

It is typical for expert based knowledge to be re-
quired in the classification of observables into detailed
domain specific concepts. Otherwise, complex inference
processes and a large ontology must be defined, mak-
ing the solution intractable for time critical applications.
The Guidance Templates in INFERD contain Feature
Nodes that define a set of constraints which (when satis-
fied) map sensor data into events. This allows INFERD
to take advantage of the speed efficiencies of classifica-
tion in the same manner as KBS for low level fusion,
but does not require the definition of complex and in-
terrelated rules needed for higher levels of fusion.

1.4.2. Graph Based Matching Techniques

Graph based matching techniques [10] have been
used as a powerful tool for a number of decades, but
most notably in the early eighties. Graph based pattern
recognition or graph matching is the process of finding
a correspondence between the nodes and the edges
of two graphs that satisfies some constraints ensuring
semantic and syntactic relationships. Graph matching
techniques are divided into two broad categories: (1)
the exact graph matching method that requires stringent
correspondence among the graphs to be matched and (2)
the inexact graph matching method, where two graphs
can be compared even though they are semantically or
topologically different.

Graph matching has been used in high level fusion
to abstract complex situations from large amounts of
data. The ease of representation of graph patterns and
the cognitive advantages of representing situations as a
matching between graph based patterns has made the
approach increasingly popular with the introduction of
new high powered computers. The fundamental prob-
lem however, is the theoretical complexity of the graph
matching problem. The matching problems mentioned
above are all NP-complete, with the exception of at-
tributed graph matching in which the nodes are guaran-
teed to have distinct attributes. In this case the problem
becomes polynomial.

To take advantage of the expressiveness and ease
of defining graph based patterns, the INFERD Guid-
ance Template has adopted a graph based structure. The
structure will be detailed in Section 2, but the similari-
ties stop here in terms of INFERD’s fusion process in
comparison to graph matching techniques. Because of
the theoretical complexities of the matching process, the
research team investigated and developed an alternative
approach. Remember that the motivation was to pro-
vide timely hypothesis generation. These high level hy-
potheses can very well be linked to graph matching pat-
terns, effectively producing a ranked list of patterns to
be matched. This linkage between INFERD and graph
matching techniques makes the matching problem more
time tractable when there are large numbers of patterns
to be matched to a given data graph.

SUDIT ET AL.: INFERD AND ENTROPY FOR SITUATIONAL AWARENESS 5



1.4.3. Bayesian Belief Networks

In recent years there has been a surge in use of
Bayesian Belief Networks (BBNs) to solve the problems
of situation and impact assessment. BBNs have become
a popular knowledge inference scheme for probabilisti-
cally related evidence and inferences. Their attractive-
ness lies in the fact that BBNs provide both a sound
theoretical framework and a conceptually simple inter-
pretation for representing and manipulating knowledge
graphically in a probabilistic domain. BBNs are directed
acyclic graphs (DAG), which provide a framework for a
structured representation of knowledge about uncertain
quantities [12] where nodes and arcs represent condi-
tional probabilistic dependency between variables.

The sound theoretical foundation of BBNs in
Bayesian theory can be either an advantage or a disad-
vantage depending upon the application. In well known
environments, BBNs can work very well, however this
is not the case in highly dynamic or unknown environ-
ments. BBNs are highly dependent upon, and only as
good as, the conditional probability tables which are
defined. In unknown environments where some or all
of these conditional probabilities are not known, or can
only be grossly estimated, the accuracy of the BBN will
suffer. INFERD does not rely on likelihood functions
for this reason. An example of a BBN used in a decision
support problem can be seen in [14].

1.4.4. Fuzzy Logic

Fuzzy Logic (FL) is an inferencing methodology
that is directed toward vague relationships between ev-
idence and assertions. Fuzzy inference is the process of
formulating the mapping from a given input to an out-
put using FL. Because of its multidisciplinary nature,
fuzzy inference systems are associated with a number
of names, such as fuzzy-rule based systems, fuzzy ex-
pert systems, fuzzy modeling, fuzzy associative mem-
ory, fuzzy logic controllers, and simply (and ambigu-
ously) fuzzy systems.

Fuzzy logic systems have the advantage of introduc-
ing more flexibility into the processing layer to sym-
bolic manipulations or calculations through the defini-
tion of fuzzy membership functions which can be useful
in making decisions in light of information that is im-
precise and/or incomplete. Fuzzy logic techniques have
become popular to address various processes for multi-
sensor data fusion. Examples include the following:
fuzzy membership functions for data association [29]
[34], evaluation of alternative hypotheses in multiple
hypothesis trackers, fuzzy-logic-based pattern recog-
nition (target identification) [18], and fuzzy inference
schemes for sensor resource allocation [23].

A future extension to INFERD could incorporate
fuzzy logic into the mapping process of observables into
events. Currently observables are mapped to events on
a {0,1} basis, this could be extended to allow multiple
mappings in a fuzzy sense ([0,1]) relaxing INFERD’s

6 JOURNAL OF ADVANCES IN INFORMATION FUSION  VOL. 2, NO. 1

fusion process to be a multi-hypothesis evaluation sys-
tem.

1.4.5. Genetic Algorithms

Genetic Algorithms (GAs) are a type of evolutionary
algorithm which are the result of studying the natural
adaptation of living organisms and are a way of in-
corporating a similar adaptation into computer systems.
They try to mimic environmental factors such as repro-
duction, random variation, competition, and selection
of competing individuals. Genetic algorithms are now
widely applied in science and engineering as adaptive
algorithms for solving practical search problems par-
ticularly suited to multidimensional data where global
solutions are found within multiple local minima.

In the information fusion community, GAs are be-
ing utilized in many different applications relative to
the threat assessment. One of the challenges in a GA
based course of action (COA) optimization system is
the ability to generate and evaluate thousands of candi-
date COAs in order to generate the best solution. This
consists of two key aspects: the ability to encode the en-
emy COA into a set that comprises the GA population
under evaluation and the ability to quickly evaluate each
COA to determine which survives to the next genera-
tion. Because the key to success for a GA is evaluating
many candidates, it is necessary to be able to abstract
the battlefield in order to be able to both encode the
situation as a solution string and to be able to rapidly
war game each COA in order to evaluate it. Examples
of GAs used in high level information fusion problems
can be found in the following references: [32], [24], [8],
[4], and [5].

As stated in Section 1.4.2, there will be a future need
for generation of Template Graphs within certain prob-
lem domains. Genetic Algorithms along with Graph
Matching could provide a means for creating such tem-
plates.

1.4.6. Neural Networks

Artificial Neural Networks (ANNs) are computa-
tional systems premised upon the principles of biologi-
cal neural systems. In general, this means that ANNs
are characterized by having many low-level process-
ing units with a high degree of interconnectivity. It is
difficult to characterize the field of ANNs succinctly,
because the approaches and the results are so diverse.
Recently fuzzy logic is been used extensively along with
neural networks [20] [9]. Fuzzy logic uses approximate
human reasoning in knowledge-based systems while the
neural networks aim at pattern recognition, optimization
and decision making. A combination of these two tech-
nological innovations delivers better results than when
used independently.

The advantage of ANNSs is that when trained appro-
priately they produce accurate results for similar prob-
lems without the need of any type of parameterization.
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Fig. 2.1.1.

Fig. 2.1.2.

The disadvantage of neural networks is that their results
are contingent upon their level of training. Often in the
information fusion community realistic data sets are un-
available or scarce at best. In these situations, neural
networks will not be the best solution approach.

Wang and Archer [40] have proposed a neural net-
work based fuzzy set model to support organizational
decision making under uncertainty. The model makes
use of single back propagation neural network to gen-
erate a crisp fuzzy membership function. The authors
[41] have used a connectionist approach to multi criteria
decision making.

2. THE INFERD ENGINE

2.1. General Fusion Methodology in INFERD

Great care has been taken in the processing struc-
ture of the INFERD engine to minimize necessary com-

General fusion framework.

INFERD high level information flow diagram.

putation time. In many domains, data rates produced
by sensors are computationally intensive to process, so
there is not much overhead to spare. The fusion being
performed in INFERD is bottom-up in a hierarchical
fashion at Levels 0, 1, and 2 according to the JDL model
for information fusion [17]. Figure 2.1.1 shows the gen-
eral terminology and how our system and terminology
maps. In the INFERD fusion framework, each subse-
quent level of fusion feeds off of the previous levels
output. This is not a requirement of the JDL model, but
suited our system and its network and sensor environ-
ment well.

For a summary of the overall fusion processes in
INFERD consider the information flow diagram in Fig-
ure 2.1.2 as it would apply to the cyber security prob-
lem. In this diagram, we can see the flow of basic sensor
information, to ultimately, a set of tracks of that infor-
mation.

The first stage of processing, performed by the Input
Manager, wraps incoming sensed observables (sensor

SUDIT ET AL.: INFERD AND ENTROPY FOR SITUATIONAL AWARENESS 7



Fig. 2.1.1.1.

output) into Sensor Messages, a format which is under-
stood by the Model and Track Fusion Processes. By iso-
lating the fusion processing from the I/O architecturally,
INFERD is able to fuse information from sensors of
radically different formats and types but still define the
Guidance Templates in a common language. In the case
of cyber security the Input Manager would transform
the sensor alerts into an XML object and provide a
common referencing method to retrieve values from the
object.

The second stage of processing, performed by the
Model Fusion Process, assigns model-based meaning to
the Sensor Messages. In this stage of processing, Guid-
ance Templates, or a priori models, classify the Sen-
sor Message into a higher level event type and expose
valid relationships to other previously classified alerts.
This newly added information to the Sensor Message,
forming a Correlation Message, is then understood by
and sent to the Track Fusion Process. In the cyber se-
curity example, this process might reference the target
IP address, and signature found within the Sensor Mes-
sage and classify it as a Scanning Reconnaissance at-
tack on the corporate web server. It would also add
the knowledge that this could be a predecessor step
for a number of intrusion type attacks on that ma-
chine.

The third stage of processing, performed by the
Track Fusion Process, takes the Correlation Message and
fuses it to the existing runtime set of tracks already
in existence, possibly resulting in a new track. By
fusing piecemeal event steps into unified event tracks,
INFERD offers similar advantages to ground target
tracking systems, but in a multi-int environment and
in new fusion application domains. By analyzing tracks
instead of low level sensor events, the analyst is able to
prune his search space much more efficiently and have
a better understanding of the situation when it is time
to make decisions.

8 JOURNAL OF ADVANCES IN INFORMATION FUSION  VOL. 2, NO. 1

Example feature node definition.

Sections 2.1.1 through 2.1.3 will now detail the
fusion process in more specificity.

2.1.1. Level O Fusion—The Atomic Element

Level O fusion is the first processing that occurs
once a piece of information is accepted as input into
the engine. This piece of information can be of any
type such as numeric, text, or file based information.
Input to the LO process is taken in raw data form and
then necessary information is extracted by generalized
data objects which connect the abstracted data types
to the actual sensor message data values. In many
instances, more information is taken into the system
than is required to analyze what is happening within
the desired domain. These desired pieces of information
are arranged into Feature Nodes in a tree-structure
as understood in basic graph theory. This structure is
described later in the fusion discussion.

Once a piece of information (discrete sensor mes-
sage) is published to a Feature Node, the Critical Atomic
Values contained in the message are checked against
those specified in the Feature Node in the form of con-
straint satisfaction. These constraints can take a number
of forms such as greater than, less than, equality, string
equality, regular expression pattern matching, etc. If all
of the defined constraints are satisfied then that Fea-
ture Node becomes asserted. The credibility values of
Feature Nodes are binary (0, 1) with respect to their as-
sertion state.

In addition to specifying Critical Atoms and Criti-
cal Atomic Values, each Feature Node has a specified
lifetime associated with it. These lifetimes indicate the
maximum amount of time the Feature Node should stay
in the asserted state since the time of the last piece of
incoming information correlated to it. If Feature Nodes
did not de-assert themselves in some fashion, the cred-
ibility values of the Template Graphs containing them
would never decrease and there would be no temporal
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aspect to the INFERD engine. In many domains, it is
important that the relative timing of incoming informa-
tion be considered as to its relevant effects on the system
at hand.

Whenever a Feature Node changes state, the parent
nodes in the Feature Tree containing that node and sub-
sequently the Template Node specified by that Feature
Tree re-calculate their credibility values. This credibility
calculation will be discussed in Section 2.1.2 as the L1
fusion process, but it is important to note the bottom
up processing which occurs in INFERD. The publish-
subscribe service for information input to the system
saves a great deal of computation time by not perform-
ing the Critical Atomic Value comparisons for the pos-
sibly thousands of Feature Nodes which can ignore the
alert.

2.1.2. Level 1 Fusion—The Feature Tree

Level 1 fusion processing or Template Node cred-
ibility calculation takes over once a Feature Node
changes assertion state. The input to the L1 fusion pro-
cess or Fused Element Level is the Feature Node which
has changed assertion state, the Vertex Model is the Fea-
ture Tree containing that Feature Node, and the output
or Fused Vertex Level of L1 fusion processing is the
credibility value or estimated likelihood of occurrence
of the Template Nodes who’s Feature Tree contains that
Feature Node which has changed assertion state. The
calculation of L1 credibility values is inherent in the
structure of the Feature Tree and the values of the Re-
lation Nodes within that tree.

Every Relation Node specifies a function determin-
ing how its children relate to each other. We use Yager’s
Generalized Ordered Weighted Average (GOWA) func-
tion as a means of calculating the relation [43, 44,
45]. Assume {A,,A,,...,A,} are n criteria of concern
in this multi-criteria decision problem. These are the
criteria described in the atomic elements above. Let
us further assume that the values a,,a,,...,a, represent
credibilities associated with the above set A of n ele-
ments. We can then construct a function F(a,,a,,...,a,)
that will be used to aggregate its children at the re-
lation node. Yager describes many properties of such
a function. His OWA operators are designed by intro-
ducing two vectors B and W. Let B be an ordering
vector that “rearranges” the credibilities a,,a,,...,a, in
descending order. Let W be a weighting vector such
that Ziewwi =1, w; > 0. In vector form, the OWA op-
erator is expressed as F(aj,a,,...,a,) = W! B. Numeri-
cal examples are shown in Yager’s referenced papers.
The theory is carried out further to describe a concept
known as “attitudinal character” that describes the level
of “ANDness and ORness” that the W vector takes on.
The attitudinal character is described by the follow-
ing: AC(W) = Z;zl w;(n—j)/(n—1). For example, if
W =11,0,0,...,0], then AC(W) = 1 thus saying that we
have the greatest possible “ORness” since this would
give us a maximization function. This is true since

we are multiplying W and B where only the first ele-
ment of B would be considered (since w; = 1). Note the
first element of B is max(g;). Similarly, we have maxi-
mum “ANDness” when W = [0,0,...,0,1]; AC(W) = 0.
Finally, we simply compute the average value when
W =[1/n,1/n,...,1/n]; thus AC(W) = 1/2. Such a gen-
eral function has unlimited possibilities and can be ap-
plied to any domain using aggregation functions.

The Feature Tree used in INFERD consists of a
Template Node at the “top” of the tree. Below it may be
a series of child nodes. Each of these child nodes may be
a series of child nodes to them (or grandchild nodes to
the Template Node). The above GOWA function is used
to describe the relationships between the child nodes
and their respective parents. To calculate the values of
the Template Node (or parent node as it is known in
graph theory), INFERD begins with understanding of
the child nodes at the very bottom of the tree, then
it works its way upward. The “bottom-most” nodes of
the tree are the pieces of information taken in via LO
fusion discussed in the above section. Once these binary
values are obtained, we can apply the OWA function to
obtain the probabilistic value of their parent nodes. This
process continues up the tree structure until a value is
figured for the Template Node and further used in the
L2 fusion steps.

We will now introduce an example of a system that
could be analyzed using INFERD. We will continue us-
ing this example throughout the paper. Airport Security
is an increasingly important issue in today’s society.
There are many measures taken to prevent unsafe sit-
uations. We will present a somewhat simplified way to
answer the question: Is this passenger of any danger
to their fellow passengers? This question will be an-
swered probabilistically through determining its Cred-
ibility Factor (discussed later in the paper). There are
many different considerations in answering this ques-
tion; to describe the Feature Tree, we will look into the
verification of a passenger’s identity. The node in the
Template Graph is called “ID Verification.” We will see
later how this becomes a part of the Template Graph
and how it interacts with other nodes. For now, let us
look at its underlying Feature Tree such that we can
obtain credibility for the node. For our understanding,
let a higher credibility indicate a higher chance of this
passenger being an immediate danger. Figure 2.1.2.1
provides a visual of the Feature Tree.

For simplified understanding of INFERD, we will
consider only three measures taken to verify a passen-
ger’s identification prior to their boarding of a com-
mercial aircraft. Applying the GOWA function on our
Relation Nodes, we choose W = [1/n,1/n,...,1/n] to be
our measure, hence we will take a weighted average of
its immediate children, Risk Assessment, Photo ID, and
Biometrics. When a passenger books a flight, they may
be asked a series of personal questions that will lead to
an assessment of their risk. When this is completed, the
airline representative will then assess the risk based on
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Fig. 2.1.2.1.

the answers to the questions. To illustrate that any func-
tion may be used in this level of INFERD, we will intro-
duce a binary function such that each of the four levels
of risk assessment will be given a value in {0, 1} where
0 = the level of risk was not given to the passenger and
1 = the level of risk was given to the passenger. We
will then take a weighted average of the binary values
against the weights [0.00,0.33,0.67,1.00] for no risk,
unknown risk, elevated risk, and high risk respectively.
Next, when a passenger claims their boarding passes at
the airport, they are asked to show their photo ID. If that
ID matches all known information about the passenger,
we give a 0 value to that node; conversely, if there is a
discrepancy we will assign a value of 1. Finally, there is
a system being worked on and nearly in place in most
major airports called CAPPS II (Computer Assisted Pas-
senger Prescreening System). CAPPS II takes biometric
information about the passenger and attempts to verify
their identity. The system will test fingerprints, retinal
scans, and facial patterns of passengers. In our model,
we will assign a O value if there is no problem identi-
fying the passenger positively. However, if there is an
issue with these, we will assign the value 1. Under the
biometrics node we will take the maximum using the
GOWA function by setting W =[1,0,0,...,0].

Let us assume that the passenger being screened
when purchasing their tickets was given a risk assess-
ment of “unknown.” When they arrived at the airport,
their photo ID matched up. However, when CAPPS 11
was used there was an identification discrepancy with
the retinal scan and the facial pattern (the fingerprint
appeared to be correct). The node for Risk Assessment
would be given a value 00+ 1%0.33 + 0x0.67 + 0 x
1 = 0.33. The photo ID node would have a value of 0.
The biometrics node has a value of max{0,1,1} = 1.
Hence, we take the average to obtain the credibility
of the Template Node (j =1), ID Verification. ¢, =
(0.33+0+1)/3 =0.443. We will use this value going
forward.
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The feature tree underlying the ID verification node.

2.1.3. Level 2 Fusion—Template Credibility
Calculation

Level 2 fusion or Situation Refinement is currently
the highest level being implemented in the INFERD en-
gine. The input or Fused Vertex Level to L2 are the
credibility values of the Template Nodes, the model is
the given template and the output or Fused Graph Level
is an overall credibility value for that template. It is these
credibility values coupled with the ranking of the tem-
plates that provides the system analyst with a situational
estimation of their system’s current environmental sta-
tus.

Credibility Values exist for each node in the Tem-
plate Graph (Feature Nodes and Template Nodes) and
the Template Graph itself. While the methods of calcu-
lation of these values vary, the meanings of the values
remain consistent. A credibility value is simply a likeli-
hood of occurrence that INFERD produces. For Feature
Nodes, this value is in {0, 1} because either the observ-
able captured by that node was input to the system or
it was not. For Template Nodes which can represent
events, objects, or abstract concepts the value is in [0, 1]
because this is a much more fuzzy process. The same
argument is made for Template Graph credibility calcu-
lation as well.

The INFERD engine has imbedded into it, by the
system user, templates specific to the given system be-
ing studied suggesting the way it works within its envi-
ronment. Each Template Node may have an underlying
Feature Tree that gives INFERD its credibility via LO
and L1 fusion described earlier. The functions applied to
the children in the Feature Tree are chosen by the user,
the following figure shows maximum and weighted av-
erage. The Template Nodes are then linked to each other
as deemed reasonable to make up the Template Graph.
See Figure 2.1.3.1 for an illustration.

These Template Nodes connect to one another to
form a Template Graph. There are three types of nodes
that can exist in the graph as defined by their links to
other nodes. Extrinsic Nodes are those that have no
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Fig. 2.1.3.1. Illustration of L1 and L2 fusion within INFERD.

precursor Template Nodes. Their credibility value or
likelihood of occurrence is based solely on the Feature
Nodes contained within its Feature Tree. Intrinsic Nodes
are those that have one or more precursor nodes, and
also are not reported on at any level by any sub-
structure. These nodes can only be possible if triggered
by another node connecting to it in the Template Graph;
there is no underlying Feature Tree. Bi-trinsic Nodes are
those that are reported on at some level by LO fusion
and also have precursor nodes. The credibility value of
nodes of this class can leverage data from its Feature
Trees along with its precursor nodes.

For example, let us say we have a cyber network
alert system [35] being monitored by INFERD; we may
have Attack Templates imbedded into the engine. Each
of the Template Nodes would be some sub-situation that
could imply a possible attack on ones network. Hence,
underlying these Template Nodes would be the Feature
Tree including the steps possibly leading up to this part
of an attack happening. Note that there can, and most
likely will be, many more than one single Template
Graph being analyzed by INFERD at any given time.

Continuing our Airport Security example, we design
a Template Graph containing seven nodes that each has
an important contribution to understanding the cred-
ibility of a passenger’s safety. INFERD stores many
Template Graphs and analyzes them at the same time.
Hence, in this example, individual passengers would
have their own Template Graph. However, in many

Fig. 2.1.3.2.

other domains there may not be a consistency among
Template Graphs; there could be many with different
factors. Figure 2.1.3.2 illustrates our Template Graph
with node numberings in parentheses.

In our example, we will consider ID Verification
among other actions taken by the passenger, most of
which are understood in context. When in an airport,
one is not allowed under law to speak of “terrorism,”
“bombs,” “guns,” etc. Hence, we include node 7 as
“forbidden” words. Underlying each of these Template
Nodes, there may be a Feature Tree giving a credibility
factor denoted by ¢; where j=1,...,7. Notice how
some Template Nodes also have influences from other
Template Nodes in the Template Graph. From above,
we have ¢, = 0.443; let ¢ = [0.443,0.55,1,0.01,0.4,0.1,
0.15]. We will work with this Template Graph in the
next sections.

Now we describe two approaches that can be used to
determine the credibility factor of the Template Graph
in the INFERD engine. The first method described
will be a parametric approach with the advantages and
disadvantages discussed above. The second approach
will be the Entropy approach used to combat many of
the drawbacks of the parameterized approach.

2.1.3.1. The Parameterized Approach for Credibility
Factor

Our first L2 algorithm uses concepts in Statistical
Mechanics. During the late 1800s, M. L. Boltzmann
and J. W. Gibbs studied in the field of thermodynam-
ics and pioneered what we now know as statistical me-
chanics. While thermodynamics (in the classical sense)
deals with a single system called a macrostate, statisti-
cal mechanics studies the sub-components of this sys-
tem, called microstates. Statistical mechanics is the ap-
plication of probability theory to the field of mechan-
ics for large populations of particles with respect to
their motion subject to forces. The greatest benefit of
such a methodology from a physics point of view is
that statistical mechanics contains the ability to make
macroscopic predictions based on microscopic proper-
ties. This ability lends itself directly to a Data Fusion
system since raw data enters the system as microscopic
properties and the desired result of Situation Awareness
is a macroscopic prediction based on the raw data.

Example of Template Graph.
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One of the very first applications of statistical me-
chanics to optimization was in the field of Simulated
Annealing. Simulated annealing is a generalization of
a Monte Carlo method for examining the equations of
state and frozen states of n-body systems [27]. The con-
cept is based on the manner in which liquids freeze or
metals recrystalize in the process of annealing. In an
annealing process a melted material, initially at high
temperature and disordered, is slowly cooled so that the
system at any time is approximately at thermodynamic
equilibrium. As cooling proceeds, the system becomes
more ordered and approaches a frozen ground state. The
original Metropolis scheme was that an initial state of
a thermodynamic system was chosen at energy E and
temperature 7, then by holding 7 constant the initial
configuration is perturbed and the change in energy dE
is computed. If the change in energy is negative the new
configuration is accepted. If the change in energy is pos-
itive it is accepted with a probability given by the Boltz-
mann factor e~%/T_ This process is repeated a sufficient
number of times to give good sampling statistics for the
current temperature, and then the temperature is decre-
mented and the entire process repeated until a frozen
state is achieved at T = 0. By analogy the generalization
of this Monte Carlo approach to combinatorial problems
is straight forward [21]. The current state of the ther-
modynamic system is analogous to the current solution
to the combinatorial problem—the energy equation for
the thermodynamic system is analogous to the objective
function, and the ground state is analogous to the global
minimum. Hence, this notion of simulated annealing can
be used in optimization problems that are NP-hard as
a brilliant heuristic approach. The basic components of
simulated annealing are in statistical mechanics, thus
showing a strong tie between the fields of statistical me-
chanics and optimization. We therefore recommend its
use for our purposes in data fusion and as a heuristic for
situation state estimation. Claude Shannon found deep
links between information theory and thermodynamics.
Following the same reasoning a possible link can be
drawn between the probability of occurrence of the ac-
tivity of track of hacker behavior in a noisy environ-
ment and the heating and cooling of a metal to a steady
state. Thus we investigate this approach as applied to
the problem of computer network security.

One of the more important results discovered by
Gibbs and Boltzmann describes the probability of a mi-
crostate being within a certain energy state. We denote
the energy state as E ; under the assumption of the sys-
tem at hand being independent of other systems, we can
write the probability as follows:

e Es/T

Z(T)

P(E,) =

where T denotes the temperature of the system and Z(T)
is a partition function which normalizes probabilities

across all states such that ) ¢ P(E,) = 1.
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This concept has been used in various applications
in Information Theory [31], Optimization [21], and
Decision Theory [13]. The application of the Gibbs-
Boltzmann Equation in INFERD begins with defin-
ing the Template Graph as the system’s macrostate.
It’s sub-components (Template Nodes) represent the
microstates. Let G(N,A) be the macrostate (Template
Graph) where N is the set of Template Nodes and A is
the set of arcs connecting the nodes. Each node j € N
has a probability of belonging to one of four possible
energy states:

H _ .
E;" =High
E}' = Medium
EJL =Low

E]Q = Insignificant(Zero).

Given the discrete nature of the energy states, we
must introduce thresholds to determine to which energy
state each Template Node j belongs. Hence, we are
introducing a parameter that may be set by the INFERD
user as they see fit within their system. Let THY, THY,
and THE denote the threshold values between the high,
medium and low energies respectively. Note that TH- <
TH™ <TH!, and 0<TH' <1 for all i in {L,M,H}.
Let ¢; denote the credibility of node j coming from
the Feature Tree in L1 fusion described above. We can
determine the credibility (or probability of a Template
Node occurring), P, using equation (2.1.3.1.1):

efofz

iy = . H
P(E;)—W, ch[TH 1]
i=0
-1
e*(i
P(EM)= —————, ¢, €[TH",TH")
J 3 4D J
N T e
. NIY L,
j J
P(E}Y)= ——————, ¢, €[TH"THY)
/ 3 4D j
INIY e
7(11
0y — e L
P(Ej)—W, ¢, €[0,TH")
i=0
(2.1.3.1.1)

These thresholds and the constant a (o> 1), will
allow for a parametric approach in determining the
energy level of each Template Node j. A higher value of
« results in more emphasis being placed on the higher
energy states and vice versa. The assigning of value «
can be attributed to many different reasons specific to
each user; however we suggest that if the user believes
their LO sensors (information detection sensors) are
highly reliable, they may opt for a higher « value. In
contrast, if the user has less confidence in their sensors
detecting incoming information, they may wish to use
an « value closer to 1.

We define our partition function as Z(T) =
IN|S> e " such that the sum of the probabilities
over all energy states is equal to 1, hence meeting the
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basic axioms of probability:

IN|

SOPE) =D (PES) + PEN) + P(ED) + P(ED) = IN|(P(EJ) + P(E}) + P(EF) + P(ED)

SES j=1

-2 -1

0 1

e @ e @

e @ e @
IN| 3 —
N[> ige "

Now that we have the probabilities of each Template
Node in G(N,A) being in a certain energy state, we
use them to obtain an overall credibility factor (CF)
for the entire Template Graph. The probability of the
state of a node j that has other nodes directed to it (Nj)
will be affected by its neighboring nodes as long as the
last occurrence of the two events depicting the node (at
times r; and r;) are within a desirable time frame as
set by the user, denoted 7,. It is necessary to define a
new set of probabilities for each Template Node that
not only take into account its own state probability, but
also the current states of the Template Nodes directed
to it. Equation (2.1.3.1.2) defines Q; as these desired
probabilities:

>

heNj,|rj—r|<tj,

_ 0 h .
Qj_)\ij+ )\th YV JEN.

(2.1.3.1.2)

Y

+ 3 —(i-1) + 3 —(i-1) + 3 —(@i-1) =1
IN[> icpe™® IN[> isoe™ IN[> isoe™

G(N,A) cannot contain any directed cycles. In partic-
ular, there will always be at least one sequence for ob-
taining the revised probabilities, such that no Q; that
depends on another is calculated without the proper ad-
justment.

Now that we have obtained probability values for
each node of the Template Graph considering the topol-
ogy of G(N,A), we can introduce the overall Credibility
Factor (CF) as seen in equation (2.1.3.1.3):

> Mo

e’ .
3 — a1
>imo€

The denominator of equation (2.1.3.1.3) simply nor-
malizes the overall Credibility Factor so that when the
probabilities of all of the Template Nodes are equal and
in the high-energy state, then:

CF =

(2.1.3.1.3)

SN e e’
_ TN S e AN

CF = = =
e
< Yige )

The parameters A are the constraints used to obtain
a weighted sum of the state probabilities, such that:

N+ M=1, VvV jeN, with
heN;

0

Xi>0 Vv heN, and V jeN.

These A values represent the importance of connect-
ing nodes as desired by the user. For instance, in some
application domains, it can be such that the influence
of the Feature Trees with respect to Template Nodes
be weighted heavily, and the correlation influence of
connected nodes be only marginally considered. In this
case, )\? can be set close to 1, and the )\5' values closer
to 0. Note that each individual )\ﬁ-‘ value does not neces-
sarily have to be equal; one can place different weights
on each node directed at the node in question.

It is important to note that in order for a con-
sistent calculation of the QO ; values to be possible,

e
3 —a-G-D
>izo€®

= =1.

-2
e
3 a1
(Z,-zoe “ )

Let us continue our Airport Security example re-
ferring back to Figure 2.1.3.2 showing our Template
Graph. Recall ¢ = [0.443,0.55,1,0.01,0.4,0.1,0.15]. We
will set our parameter o = 2 and our set of thresholds
as TH' =[0.25,0.5,0.75] for low, medium and high re-
spectively. Then using equation (2.1.3.1.1), we can see
the probability of being in high, medium, low, and in-
significant energy states are [0.059,0.046,0.028,0.010]
respectively. Now we can find the Q; values given
(2.1.3.1.2) and the parameters as follows:

gefr, =0
J 0.5, 0.W.
0.5

h _
Aj =N

= V he{N;:N;#@}, and V jeN.

We can see from the values given by the c¢ vec-
tor, nodes 4, 6, and 7 have insignificant energy lev-
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els; nodes 1 and 5 have low energy; node 2 has
medium energy; and node 3 has a high energy level.
Hence, we use the P] values calculated above along
with the P, values for each node of the Template
Graph with the appropriate weighting to determine
the Q; value for each node j in N. We get Q =
[0.028,0.037,0.059,0.024,0.044,0.021,0.01]. Then we
compute the credibility factor as:

S,

e’
3 —(i—1)
—Q
Y0

~0.028 +0.037 + 0.059 + 0.024 + 0.044 + 0.021 + 0.01
B 0.412

CF =

0223
T 0412

Hence, in our example, under the statistical me-
chanics with parameterization methodology, we obtain a
Credibility Factor of 54.13%, suggesting that this given
passenger is about 54% probable to be a danger to oth-
ers in the airport or on the aircraft. It is left to the user’s
discretion as to what is a large enough credibility in
their given system in order to react accordingly.

=.5413 = 54.13%.

2.1.3.2. The Entropy Approach for Credibility Factor

To liberate our system from the parametric and
rule-based deficiencies listed in Table 1.2.1, we have
implemented a novel approach of using Entropy, or
a measure of randomness, to calculate the credibility
values for our Template Graphs. By determining the
inherent level of randomness in a template, and relating
it to the maximum amount of randomness possible, we
can derive meaning about how likely (credible) that
particular template graph is taking place.

The theory of statistical mechanics is governed pri-
marily through the second law of thermodynamics, bet-
ter known as entropy. Entropy was first used as a mea-
sure within the study of thermodynamics, but has since
been shown to be valuable in many other areas includ-
ing psychodynamics, thermoeconomics and information
theory. Information theory is useful in many disciplines
but is most basically defined as a means to measure the
amount of data that can be stored in a communication
type medium. Claude Shannon, in 1948, composed a
famous work [31] wherein he began to understand the
transmission of information through a noisy channel.
His fundamental results include the “source coding the-
orem” which states that the average number of bits of
information required to represent the result of an uncer-
tain event is given by entropy. Shannon’s “noisy channel
coding theorem” suggests that reliable communication
is possible over noisy channels provided that the rate of
communication is below a certain threshold. INFERD is
a fusion system where a large amount of information is
input, some of which is valuable and some of which is
not. This non-valuable information can be considered
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noise in Information Theoretic terms. Since entropy
measures amounts of valuable information throughout
a channeling system, it seems appropriate to use such a
measure for Situational Assessment within INFERD.

The study of entropy has evolved greatly throughout
the years. It has been shown that there are many types of
entropy that can be used in many domains. Tsallis [36,
37] introduces a generalized entropy function based on
a parameter q.

I—Z}le? "
Hq=kT, > pi=1,k>0].
i=1

The question arises as to what the value of q should
be in any given domain. In [37], Tsallis discusses three
optimization methods that can be used to find the opti-
mal g. In [36], he discusses how in many optimization
algorithms and information theory domains, ¢ — 1. He
later suggests that while considering a Gaussian distri-
bution, ¢ — 1 thus is the case for many natural phe-
nomenon. Hence, we use the above Tsallis General En-
tropy Function with ¢ — 1. This gives us Shannon’s En-
tropy Function as seen below.

Claude Shannon studied the discovery of statistical
knowledge about a source by use of proper encoding of
the information and defined entropy in cooperation with
Boltzmann’s famous H-Theorem as shown in equation
(2.1.3.2.1), where H is entropy, p; is the probability
of being in state i and K is a constant (Boltzmann’s
constant in thermodynamics) [31].

H=-K» plog,p,. (2.1.3.2.1)

i=1

Shannon’s application of entropy to information the-
ory allows one to find the total amount of random-
ness embedded in a state-system process. In doing so,
there must be an existing alphabet with known probabil-
ities of symbols. Consider the example where we have
an alphabet consisting of four symbols with the fol-
lowing probabilities (1/2 1/4 1/8 1/8). Using equa-
tion (2.1.3.2.1) we get H = (1/2)log,2 + (1/4)log,4 +
(1/8)log, 8 + (1/8)log, 8 = 1.75 bits/symbol. Next con-
sider the case where the probabilities of each sym-
bol are at equality (1/4 1/4 1/4 1/4). Using equa-
tion (2.1.3.2.1) we get H = 2.0 bits/symbol. Next con-
sider the case where we have the following probabili-
ties (0 0 O 1). Equation (2.1.3.2.1) gives H = 0.0 bits/
symbol. Note that as the probabilities of each symbol
move to equality, the entropy moves to a maximum.
This corresponds intuitively with the idea of random-
ness in a system—as each symbol in the alphabet be-
comes equally likely to occur, the symbols in the words
constructed from that alphabet become less predictable.
Also note that as the number of symbols in the alphabet
increases, so does the randomness. This follows intu-
itively as well—if there are more symbols to choose
from, predictability becomes more difficult.
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Our system does not use alphabets and alphanumeric
symbols as discussed in Shannon’s paper, but our ap-
plication in INFERD is in line with the requirements
of entropy as defined by Shannon. Here, the “system”
is our Template Graph, and the “symbols” are the Tem-
plate Nodes within the Template Graph. We measure the
entropy of the Template Graph by growing or shrink-
ing the Total State Space defined below according to
the credibilities of the Template Nodes and keeping
the probabilities of each state within each sub-space at
equality. By altering the size of the Total State Space to
determine entropy as opposed to altering probabilities
of states within the space, we develop a monotonically
increasing H function with respect to the credibilities of
the Template Nodes (¢ j).

Before we describe the entropy method for calcu-
lating the Credibility Factor we must take into account
the topology of the Template Graph. This is a simi-
lar procedure to the “Q-function” used in the Statistical
Mechanics Methodology in Section 2.1.3.1. In fact, the
only parameters used in the Entropy Approach are the
same A values as defined in the previous section. We
will use the following equation to determine the new
Cj* (the ¢; values that take the directions of the Tem-
plate Graph edges to nodes into account) values to be
used in the entropy calculation.

>

heN;,|rj—r|<tj

0 h _
A+ M =1,
heN;

c.*z/\?cj+ v jEN

h
j )\jch*

VY jeN, with

>0, MN>0 vV heN, and V jeN.

We have a Template Graph G(N,A) with a node set
N and an arc set A, where the jth node has a normalized
credibility factor value of c¢;. We seek a normalized
scalar aggregation function that approaches zero when
all node credibilities tend to zero and approaches unity
when all node credibilities tend to unity, and does not
require us to take account of the arc set A (which would
require an extensive parameterization of the aggregation
function.)

Since the only data we intend to use in the aggrega-
tion function are the normalized credibility factors c;,
which can be interpreted as individual probabilities of
their corresponding Template Nodes being “true,” we
are motivated to consider the Shannon entropy function
as a convenient starting point for building our aggrega-

tion function. Shannon entropy is very simple to calcu-
late under the assumption that a system has K equiprob-
able states, and is given by H = logK in this case. (The
base of the logarithm is immaterial, as changing bases
only induces a constant factor multiplying H.)

Thus we consider a system having equiprobable
states, where the overall number of states is a decreas-
ing function of the variable x = Z‘j]\ill ¢;, L.e., the more
certain we are of the truth of our composite set of Tem-
plate Nodes (such that x — |N|), the lower the number
of states and hence the smaller the value of H; con-
versely, as the truth probabilities approach zero (x — 0),
the larger the number of states and the larger the value
of H.

A simple function for the number of states K that
satisfies these properties is

V|
K=|N[-) ¢+
j=1

In the two extreme cases, we have
Hmin = H()C = ‘ND = 10gK|cjzl v = IOg(l) = O
H,. = H(x =0) =logK| oy, =1og(IN[+ D).

max

For all values 0 <x < |N|, we have log(|[N|+ 1) >
H(x)>0.

Our desired credibility factor CF (x) for the Template
Graph should range monotonically between zero and
unity as x ranges between its maximum and minimum
values, respectively. The simplest function satisfying
these properties is similar to the work presented by
Pierce and John [28]:

H_ —H(x
CF(x) = w20 _H(_)
max min

log(IN| + 1) — log <|N| M+ 1)

log(JN| + 1)

Now let us continue our ongoing example and con-
sider the Template Graph with the same values given
before: ¢ =[0.443,0.55,1,0.01,0.4,0.1,0.15]. Here we
illustrate the entropy approach via example. First, we
must account for which nodes are pointed at which
(the topology of the Template Graph). We will define
our parameter A just as is done in the prior example
in Statistical Mechanics. Using the same routine, we
obtain ¢;x =[0.433,0.492,1,0.288,0.7,0.285,0.15]. We
can now use the above equation to find the credibility
factor (CF).

CF(x) = Ho —HX) _ log(|N|+1) —log <|N| - Z‘fi‘l ¢+ 1>
Y= Hmax_Hmin - 10g(|N| +1)

_ log(8) —log(7 —(0.433 +0.492 + 1 + 0.288 + 0.7 + 0.285 + 0.15) + 1)

=0.261.

log(®)
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Fig. 2.1.3.2.2. CF Trends as node count increases.

Hence we say there is a 26.1% chance that this
particular passenger is a danger to those around him.

As mentioned before, CF is the credibility value of
the Template Graph and represents the likelihood that
the given scenario is taking place. This value is used
to rank the Template Graphs and is a simple indicator
to the analyst helping them in their decision process of
which situations to look into further.

A question can be raised to why a ten node Template
Graph is not ranked as credible as a 1 node Template
Graph when the sum of the credibilities of the nodes
contained within them are at the same percentage level
with respect to the maximum 3,y c;+ (refer to Fig-
ure 2.1.3.2.2). Recall that as this value increases and
decreases we determine the entropy for the graph by de-
creasing and increasing the size of 2, respectively. Each
state in this state space represents a piece of knowl-
edge defining the scenario that has not been detected
in the stream. Templates Graphs with more nodes have
more of these states when at the same ;. c;* level,
which makes intuitive sense because we must detect
many more occurrences in the system to be of definite
certainty that it has taken place.

2.1.3.3.  Other Credibility Factors

The above stated credibility factor calculations deter-
mine the reliability of information. However, we believe
that although this is a very valuable measure, it is not
all inclusive in terms of aiding the system user to make
a complete decision. There should be more measures
allowing a user to be more well informed of the current
situation.

We provide two examples of possible measures that
can be defined and embedded into a future version of
INFERD. Let’s consider the cyber domain as an exam-
ple. One helpful measure could be “Depth.” Cyber at-
tacks are usually accomplished in a progression toward
an end goal. This progression is understood, and thus
a measure can be defined in order to determine how
far into an attack a hacker may be at a certain time.
This helps explain the current situation (L2 fusion) as
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well as understand possible immediate ramifications of
a continued attack (L3 fusion). Another helpful measure
could be “Breadth” of an attack. Breadth would help un-
derstand the entire scope of an attack, thus providing the
user with information regarding how many possibilities
an attacker would have in the near future.

These credibility measures among others can be very
helpful to a user in terms of both situational awareness
and impact assessment and will be further explored in
future versions of INFERD.

3. CONCLUSIONS AND FURTHER WORK

In this paper we have described our INFERD sys-
tem in a general sense as it can be applied to various
domains depending on the needs of the consumer. We
offer a system that is flexible in that a user can adjust
the functions used at L1 and L2 fusion as well as in-
put their own scenarios as Template Graphs in order
to meet their needs. We describe the JDL definitions
used for information fusion and show how INFERD in-
corporates those steps into its analysis of the system at
hand. We offer two opposing viewpoints at the second
level of fusion (L2) along with the advantages and dis-
advantages of each. The Entropy approach we discuss
is a new and improved approach with direct ties into
information theory as pioneered by Shannon [31].

To initially test INFERD and its fusion capabili-
ties related to the cyber warfare domain, AFRL tasked
Skaion Corporation with the job of generating a num-
ber of synthetic cyber attack traffic data sets labeled
“Blind Tests.” These data sets are actual packet and
IDS alert information generated from attacks that were
run on a virtual computer network with common data
set components such as noise injected in. In this first
test, INFERD was able to handle 86.4 million alerts
over a 24 hour period. These data processing rates are
highly above even large computer networks allowing
us to claim real-time performance. Future tests will be
performed against ground truth information to assess
the “quality” of the generated hypotheses and the sen-
sitivity of the generated hypotheses as a function of the
parameters of the algorithm.

Advancements in the fusion process itself have been
considered and proposed as research for a future phase
of the project. Being able to determine credibilities in a
given system is just a first step in the process of being
able to successfully use that information to perform
a desired task with ones system. In the future, there
will be work done to make INFERD a self-acting, as
well as a self-learning, system. An upcoming stage
of our research will be to determine how to make
INFERD a self-acting engine for various applications,
hence creating a self-governing machine.

Currently, the user of the system must enter the
Template Graphs to be analyzed by INFERD. For many
application domains, it may be necessary to generate
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thousands or tens of thousands of these templates in
order to appropriately analyze the system. Hence, it
would be highly useful to create some sort of automated
Template Generation technique. The next stage of our
research will be to find a method to generate desirable
templates to be inserted into INFERD for analyzing.
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Active sonar tracking using measurements from multistatic sen-
sors has shown promise: there are benefits in terms of robustness,
complementarity (covariance-ellipse intersection) and of course sim-
ply due to the increased probability of detection that naturally ac-
crues from a well-designed data fusion system. It is not always clear
what the placement of the sources and receivers that gives the best
fused measurement covariance for any target—or at least for any
target that is of interest—might be. In this paper, we investigate the
problem as one of global optimization, in which the objective is to
maximize the information provided to the tracker.

We assume that the number of sensors is given, so that the
optimization is done in a continuous space. The strong variability
of target strength as a function of aspect is integral to the cost
function we optimize. Doppler information is not discarded when
constant frequency (Doppler-sensitive) waveforms are available. The
optimal placements that result are consistent with our intuition,
suggesting that our placement strategy may provide a useful tool in

more complex scenarios where intuition is challenged.
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1. INTRODUCTION

A. Background

Multistatic sonar networks have the potential to
improve anti-submarine warfare (ASW) detection and
tracking performance against small, quiet targets in
harsh reverberation-limited littoral operating areas. This
improved performance comes from increased area cov-
erage, expanded geometric diversity (greater coverage
footprint), increased target hold, robustness to sensor
loss and jamming, improved localization through cross-
fixing (complementarity of uncertainty); and of course
through simple gains in probability of detection via data
fusion [5].

Moreover, multistatic systems are flexible. It is pos-
sible to use different waveforms at different sources, and
the ping times can be chosen with greater freedom. In
most scenarios, how to choose these parameters to ex-
ploit the capabilities of the multistatic sonar system is
not immediately obvious—flexibility brings complexity.
In practice it is common that parameters such as sen-
sors’ locations, waveforms and ping times are chosen
heuristically and perhaps not optimally.

Fig. 1. Cartoon illustrating one of the benefits of using multistatic
sonar: complementarity of the localization uncertainties.

In this paper, we investigate the advantages that an
optimized sensor placement might offer, and we pro-
pose a methodology to determine the optimal placement
strategy. Tracking in a complex and time-varying ocean
environment is challenging. Multi-path effects, salin-
ity/temperature gradients and geographical constraints
may result in highly cluttered and/or low SNR sonar
signals. Hence, finding the “best” placement strategy is
going to be a considerable help to the tracker. In this
work, it is assumed that quickly-deployable short range
sensors are used and based on the predicted tracking
performance, a sensor re-deployment scheme is pro-
posed.

This study began with [6], which introduced many
of the features from this paper (a similar criterion, as-
pect dependence, blanking zone). In [6] a certain in-
tuitive regularity in optimized sensor layout was noted,
and the incremental benefit of complementarity between
sensors’ perspectives (intersecting covariance ellipses)
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was seen to diminish after the second source/receiver
pair. The results were considerably more stable in [7],
presumably due to the use of the minimax optimiza-
tion that we shall discuss shortly. The current paper
is more comprehensive, and additionally considers the
case of Doppler-sensitive waveforms. We find the work
of Hernandez and Horridge [10], [11], who use the
posterior Cramer-Rao lower bound (PCRLB), highly
relevant. The PCRLB is dynamic and allows for both
missed detections and false alarms by incorporating the
information reduction factor (IRF) [12]. A question an-
swered in [10] is: Given a present target being tracked
and its associated uncertainty, where ought a new sensor
be “dropped” to minimize the future uncertainty? In this
paper we have a different concern: How should a field
of sensors be configured to protect against an intelligent
threat? The PCRLB is perhaps a better indication of
tracking performance than the metric we shall introduce;
but as noted in [10] it is more complex, conservative,
and requires a description of the target dynamics and
initial uncertainty.

In the next section, we explain our modeling as-
sumptions. Then, we outline the proposed optimization
technique, while Sections 4 to 7 report representative
results. In the final section, we summarize our contri-
bution.

B. Deployable Experimental Multistatic Sonar
(DEMUS) System

We relate our analysis to DEMUS [14], an exper-
imental system designed and used for investigation of
the potential of multistatic sonar systems. The DEMUS
system is composed of three deployable receiver arrays
and one deployable acoustic source. Each system is bat-
tery powered, moored to the sea bottom, and communi-
cates with the ship via radio and satellite links sited on a
surface buoy. The receiver array records 64 channels of
acoustic data (7 arms of 9 staves, plus one in the center).
Each vertical stave sums the output of 3 hydrophones.
The array’s aperture may be scaled by extending the
system’s arms. The source array is made up of a ver-
tically suspended set of 8 free flooded acoustic rings,
capable of transmitting at high power.

Bistatic sonar can have many configurations, and
the characteristics of DEMUS, our notional platform,
include its relatively large beamwidth (approximately
six degrees)—although with sufficient SNR the angular
resolution can be made much better via interpolation—
and the isotropic nature of its angular resolution. That is,
although many sonar arrays have different performance
depending on their orientation (e.g., broadside versus
endfire in a linear array), DEMUS does not: this re-
moves a parameter from our optimization process and
allows us to concentrate on placement alone. In other
words, the optimization is done concerning the locations
of the sensors, their orientations do not matter.

Fig. 2. Bistatic source/receiver/target geometry for a single
source/receiver pair.

2. MODELING

A. Measurement Model and Localization Accuracies

In active sonar, the measurements are the return of
the transmitted acoustic signal from the target of interest
and the time of arrival. Hydrophones (receivers) deter-
mine the angle of arrival that gives the localization of
the target together with the traveling time of the sig-
nal. Further, the transmitted frequencies could be trans-
lated from those of the received signal due to the rela-
tive motion of the target to the source and/or receiver.
This Doppler shift provides information on the relative
speed of the targets. In this paper we assume two differ-
ent cases: first, with Doppler information not available,
specifically where a wide-band linear frequency modu-
lated (LFM) sonar signal is used; and second, a constant
frequency sonar signal (CW) is used and Doppler infor-
mation incorporated in the localization analysis.

The measurement model for a multistatic system,
with stationary source and receiver, is

rtr

r
(Y=
ii w (222)

+w,
r xX(x —x) +y(y—y,) . x(x—x)+y(y—y,)
2r, 2r,,
w~N(@O,Y) @)

where the target state consists of its position and ve-
locity, X, = [x y x y]’ and r,. is the range between the
target and the receiver. For LFM signals, the range rate
measurement 7 is insignificant and hence ignored.

The localization accuracy, i.e. the covariance matrix
of the target state estimation after a single observation
set [r 6 r]’ is received, is a function of source, receiver,
and target states and the selected sonar waveform,

2 o. 0 O

x Xy
Ty 0')2} 0 0
R(X,.X,,X,,w) = 5 2
0 0 g B o X)
oy 0y

where

e X_: source’s state (location) in Cartesian plane, s =
1,2,...,N;, N, is the number of sources.
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Fig. 3. Left: Nominal target strength [in dB] versus bistatic angle. Specular reflections from the broadside of the target are expected to be
considerably stronger than those from oblique or endfire angles. Right: The blanking zone ellipse, with source indicated by the box and
receiver by the star. Target detection is not possible within the blanking zone.

e X,: receiver’s state (location) in Cartesian plane, r =
1,2,...,N,, N, is the number of receivers.

e X,: target’s state (location and velocity) in Cartesian
plane.

e w: selected waveform, w € {LFM, CW}.

In recent work [3], [4], localization errors for bistatic
and quasi-monostatic contact localization accuracy were
derived as a function of the source-target-receiver geom-
etry and assumed error statistics for source and receiver
locations, sound speed, time, bearing, and array heading
measurements. This study illustrated that the impact of
measurement errors on localization accuracy depends
highly on the source-target-receiver geometry. Due to
space limitations we omit the lengthy equations showing
the relations between the errors mentioned above and
the components of covariance matrices, and refer the
interested reader to the related publications [3] and [4].
Coraluppi has described the measurement errors and,
more important, the measurement error covariances, as
a function of the fundamental system errors in angle,
observation time, array orientation, speed of sound and
source receiver locations. Sensitivity analysis of these
errors can be found in a consequent publication [9].

B. Target Detection Modeling

In addition to the localization analysis a second
element that we require in the optimization metric to be
discussed in Section 3-A is a model for target detection
capability. Significant work exists on elaborate target
strength and signal-to-noise (SNR) modeling; we have
chosen to work with simple models that capture the
key geometric dependencies relevant to CW and LFM
transmitted waveforms.

1) Aspect Dependence: In many studies, targets are
assumed to be a point: the sonar cross-section is inde-
pendent of the angle of illumination; or, in the case of
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bistatic systems, independent of the relative angle be-
tween source and receiver. Many practical targets do
not have this behavior at all. A “specular” return from
a target whose broadside is normal to the bistatic angle
is apt to be much larger than from a target that presents
some other visage. Much is known about some targets.
However, to keep our work generic, yet still to capture a
flavor of the aspect-dependence that we seek, we have
applied a simple target strength (TS) model to repre-
sent the aspect angle dependence of the signal return.
If the target heading happens to be parallel to the line
between the source and the receiver, the target strength
is highest. This effect degrades as the angle varies away
from the “best” angle; i.e., 90 degrees. Fig. 3 shows
the target strength versus bistatic angle. If the expected
target heading is known (for example, the surveillance
volume is a narrow region that any target must traverse),
the sensor placement ought to exploit this information.

2) Direct Blast: An important concern in bistatic
systems is the direct blast: the signal that arrives at the
receiver via the direct path. Propagation speed dictates
that no target’s return can arrive at the receiver prior
to the direct blast; but, more important, since the direct
blast is considerably louder than any target reflection, as
a practical matter no reception is possible until the direct
blast passes over. The direct blast can be very useful in
calibration and registration, and consequently is perhaps
a great strength of the multistatic architecture. However,
there is an unavoidable “blanking zone” (the inside of
an ellipse having source and receiver as foci and whose
target-locus-receiver distance is the transmitted pulse
length times the speed of propagation) as illustrated in
Fig. 3, in which the system is blind.

3) Signal-to-Noise Ratio (SNR) Modeling: 1t is as-
sumed that the multistatic system will be capable of
transmitting and processing both LFM and CW. This
capability is desired in a multistatic system since LFM
and CW waveforms are “complementary.” When the
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target strength is maximum, target heading is parallel
to the line between the source and the receiver, the tar-
get is in Doppler blind zone, i.e. range rate remains the
same no matter what the target speed is. In this situation
LFM waveform (or any Doppler-insensitive waveform)
would be the right choice to use. On the contrary, when
the target heading is perpendicular to bistatic orienta-
tion, then the target strength is minimum, whereas the
range-rate is highest. Hence, a Doppler-sensitive wave-
form such as CW would provide high SNR.

In [8], SNR is calculated as a function of source/
receiver/target locations and the selected waveform by
a model that employs a simplified reverberation-limited
sonar equation and a Q-function, which quantifies
Doppler performance of sonar waveforms in rejecting
reverberation. The model allows for both CW and LFM
waveforms, and is sensitive to a number of waveform
properties including center frequency, bandwidth, etc.
In our work, we use this model and the reverberation-
limited active sonar equation becomes (see [8] for de-
tails),

SNR = TS — BSS — AREA — Q(4 ) 3)

where TS is the target strength (as in Fig. 3-left), BSS
is the bottom scattering strength, a parameter that de-
pends on ocean seafloor type and composition (for our
purposes, this is constant over the surveillance region),
AREA is the area of the ensonified patch (i.e., resolu-
tion cell) that is a function of beam-width and the range
from receiver to the patch, and the last term, Q(Af),
is the (negative-valued) Q-function, which reduces the
amount of reverberation energy as a function of the
target’s Doppler shift. Q(A,) is the term that quanti-
fies Doppler-sensitive constant-frequency (CW) wave-
form’s advantage over the FM waveform.

4) Target Detection Probability and Detection-Local-
ization Coupling: The target detection probability for
source i, receiver j, and waveform w, assuming Swer-
ling I model (i.e., Rayleigh distributed target amplitude),
is given by [13]

ij(ly.]) — e*DT/(1+SNR) (4)
where DT stands for the detection threshold. We set
DT at 10 dB. The measurement error assumptions that
drive the state estimation covariance (see equation 2)
calculations include bearing, timing and frequency shift
errors; these are related to the observed SNR as follows:

A
7 = /SNR )
o = —2 (6)
T v/ SNR
op=—= )

:

SNR

where A, 7, ¢ are some constants. This implies that
amplitude-weighted interpolation between beams and

between matched-filter bins is performed [2]. This cou-
pling is used in our optimization work; that is, for each
source-target-receiver geometry, we determine the mea-
surement error standard deviations to be employed.

3. SENSOR PLACEMENT OPTIMIZATION

In this section, we describe the details of the pro-
posed optimization algorithm. We propose an objective
function that utilize the state estimation covariance ma-
trix, R, and the probability of detection, P;. The bearing,
timing and the frequency errors that are used in the cal-
culation of R, depend on the SNR value. Hence, R is
a function of target orientation, relative Doppler, and
source, receiver, target locations; so is P,.

A. Obijective Function

In finding an optimal sensor placement, our main
objective is to improve target tracking performance.
Hence, we use the “information” flow to the tracker
as the basis of the optimization surface. The Fisher in-
formation matrix can be seen as a quantification of in-
formation in the measurement about the target’s state.
In Section 2-A, we have shown that the target local-
ization uncertainty R can be derived as a function of
source/receiver/target locations and the selected wave-
form (CW or LFM). The Fisher information matrix is
defined as the inverse of the covariance of the estimate:

®)

For optimization purposes, we need a scalar quantity
for each source, receiver and target configuration for a
given waveform w (CW or LFM). We use the “informa-
tion gain”

LyeaX) = > PPIIX X, X, w).

Yw VY(s,r)eY

(X, X,,X,,w) = RX,,X,,X,,w) .

C))

I, eq(X,) is a function of target location given a particu-
lar geometry Y—the locations of sources and receivers,
see (14). In other words, the second sum in the equa-
tion (9), implies that all source/receiver pairs’ locations
in the given geometry are considered. Note that equa-
tion (9) is based on the simplifying approximation that
sensor measurement errors are uncorrelated from one
contact to another, and indeed can be related to the
PCRLB [10] for the case of a target without process
noise and in the absence of false alarms. This is true
for contact timing and bearing errors, but is not the
case for source and receiver positioning errors, array
heading errors, and speed of sound errors. Thus, the
expression, while simple and useful for our purposes,
has some degree of optimism: the true information gain
is upper bounded by this expression.

Direct blast blanking means that for certain source-
target-receiver geometries the detection probability that
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follows from our signal-excess modeling must be re-
placed by zero. Rather than doing so, and for numeri-
cal stability in the optimization process, we choose in-
stead to discount the information gain with a barrier-
type function. That is, as the target moves into the di-
rect blast region, it is still detected but with a rapidly
increasing localization uncertainty:

I1(X,X,.,X,,w) = e J(X, X, X,,w) (10)

where d is the shortest distance between the target and
the border of the blanking zone ellipse.

We choose the determinant to be the scalar measure
of the quality of information available to the tracker at
each waypoint. Moreover, we consider a set of linear tar-
get trajectories 7, each consisting of several waypoints,
as illustrated in Fig. 4. The number of waypoints along
each trajectory differs based on the speed of the target
and the sampling interval; the latter is chosen so as to
have several waypoints for the fastest-moving trajecto-
ries of interest. We use the (optimistic) simplifying ap-
proximation that information gained along a trajectory
is the summation of the information across waypoints.
Thus, as the scalar measure for each trajectory 7, € T,
we use the summation of determinants of the fused in-
formation matrix over all waypoints w;; € T;:

M(T) = " det(gyeeq(w;))- (11)
J

The objective function may be defined in either an
average or worst-case sense. The former approach seems
more applicable to problems where surveillance assets
are covert, and is defined as:

J=3"M@) (12)

where i is the trajectory index. Alternatively, the objec-
tive function J can be defined as the worst-case (i.e.
smallest) information gain achieved across all trajecto-
ries:

J =minM(T}). (13)

1

Maximization of the latter objective function is in fact
the well-known minimax criterion: minimization of the
maximum possible loss. In an overt network, a threat
submarine would try to choose a path so that it would
not be detected. Hence, operationally, the minimax cri-
terion makes more sense since it makes sure that there
are no “holes” in the surveillance region. We choose it
as our objective in the optimization.

Note that this objective incorporates (and maxi-
mizes) both localization accuracy and the detection op-
portunities over the whole trajectory of the target. In
other words, it aims to improve the tracking accuracy
at all instances of target penetration. Hence, it can be
seen that it relates to other operationally meaningful
objectives, such as maintaining (not losing) a track, or
increasing the target detectability.
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Fig. 4. In optimization, target trajectories are used instead of target
grids. A target heading south-east is shown, with 3 waypoints along
its trajectory.

Fig. 5. Barrier Scenario: the best placement should prevent any
target from passing this 20 km-by-70 km barrier without being
tracked. The sensors are initially randomly placed inside the shaded
region.

B. Our Scenario

Here we consider the barrier-scenario; the target sub-
marine aims to pass a barrier 20 km long and 70 km
wide (see Fig. 5). The multistatic sonar system has to
be placed optimally so that no target can pass this region
without being tracked. We consider some possible target
trajectories, where the target heading and the speed dif-
fer (see Fig. 7; solid lines show 15 different trajectories).
The objective is to maximize the provided information
in the worst target trajectory. Operationally, the surveil-
lance area should have no “holes.” The tracker’s per-
formance is expected to meet some requirements even
in the worst cases.

C. Likelihood Surfaces

With N available sensors, the parameter space for
the optimization algorithm is 2N, reflecting the need to
locate each sensor in both latitude and longitude. We
have no particular prescient knowledge on how this 2NV
dimensional surface would look, and hence it is not easy
to decide on the most appropriate optimization algo-
rithm. However, we can take 2-dimensional snapshots
from this surface. One example is given in Fig. 6. The
dark colored area around (8000,—10000) is the best
placement for the 3rd receiver at the moment that the
snapshot is taken. In this figure, this snapshot reveals a
smooth surface, although one that is not necessarily con-
cave. We choose the steepest ascent algorithm, mainly
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Fig. 6. 2-dimensional snapshot of 8-D surface: 1 source and 2
receiver positions are held, the 3rd receiver is free. The best
positions are dark red areas at right.

since it is easy to implement, and it is intuitively easy
to monitor its behavior.

D. Steepest Ascent Algorithm

The steepest ascent algorithm is a gradient-based
unconstrained optimization technique. Y is a stacked
vector of dimension 2N,

Y=[X, X, ---X,, X, sz"'XrN,]/ (14)

where total number of sensors is N = N, + N,. In each
iteration k, Y* moves in the direction of the gradient
of the objective function, until convergence to a (local)
maximum occurs. We have

Yo = YR 4 of v F(YR (15)

where «y, is the step size used at iteration k. As previ-
ously described, we use objective function

FOH =T =min )y " det(gyeeq(w;)) (16)
J

where i =1,2,..., number of waypoints. Due to the
complicated nature of the objective function, f(Y*),
it is hard to obtain the gradient analytically. Hence
a numerical gradient evaluation scheme is used. We
approximate the gradient at the direction i by the central
difference formula [1],

afrh)
0Y!

where h is fixed for each gradient direction and the
e; is the unit vector in the direction of Cartesian basis
vector i. The value of h should be chosen as small as
possible, otherwise, the coarsely-discretized objective
function may result in erroneous gradient estimates. On
the other hand, smaller 4 may cause numerical problems
near the local maximum [1].

~ %( f(* +hey) — f(YX —he))  (17)

Step-size selection is a critical step for fast conver-
gence.! The step-size needs to be large enough to reach
the local minimum soon, and small enough to prevent
oscillation (or large errors) when near the critical point.
We apply a successive step-size reduction strategy, the
so-called “Armijo rule” [1]. The Armijo rule picks its
step-sizes to satisfy the inequality

FOE = f(F + sV (YR > —op"s|| V(Y|
(18)

where 0 < <1 (chosen as 5 =0.7), 0 <o <1 (cho-
sen as 0 =0.1), s<1 and m =0,1,2. The step-size is
o = #"s. The Armijo rule first tests step-size s (i.e.,
m = 0) and then keeps increasing m until the inequality
is satisfied. The parameter s (chosen as s = 0.1) and o
assure that there is a substantial increase in the objec-
tive function for the stepsize ;. Convergence is de-
clared when m reaches 20, this implying that the algo-
rithm tests a point very close to the current one and
there is still no improvement in terms of the objective.
We choose s so that the first test point in the gradient
direction would be 5 km away from the current lo-
cation Y*. Overall, the optimization algorithm works
as follows:

1) Randomly initialize the sensors positions.>

2) Evaluate f(Y*) for current position vector Y*.

3) Evaluate gradient by central difference formula
(2N %2 = 4N f(Y*) evaluations.)

4) Test step sizes, oX, according to Armijo rule. (At
most m function evaluations.)

5) Update sensor positions using equation (15).

6) Go to step 2.

4. PLACEMENT STRATEGIES WITH LFM
WAVEFORMS

We refer to a source-receiver pair as a detection
node. In this section, we will consider 2-node and 3-
node systems. Besides the main question of how to
place these assets, we also aim to address which one
of, for instance, the 2-node systems perform better? Is
it better to deploy two sources with one receiver, or
is the system with two-receivers and a source good
enough? The barrier is the region (—35 km,—10 km)
to (35 km, 10 km); there are 15 hypothetical target
trajectories considered along this barrier. For instance,
trajectory 1 represents a target with heading 200 degrees
(from North) and 10 kts speed. Along this trajectory,
there are 5 waypoints.

'We omit the discussions regarding the convergence rate of the steep-
est ascent algorithm. For a detailed analysis on the subject, see [1].
2Steepest ascent is not a stochastic method. Random initialization is
hence important. It ensures that there is no bias in the convergence
results.
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Fig. 7. 2 Sources (the squares), 1 Receiver (the circle) case: The
lines are trajectories and the dots represent waypoints of each
trajectory. Targets head south. The optimal placement forms a line in
the North-South direction. See Table I for scores of trajectories.

Fig. 8. 1 Source, 2 Receivers case: The optimal placement is very
similar to the one in Fig. 7. See Table I for scores of trajectories.

A. Two-Node Cases

We consider two 2-node systems: one source and
two receivers, and two sources and one receiver. The
optimal placement turns out to be that the sources (blue
squares in the Figs. 7 and 8) and receivers (circled star
in the Figs. 7 and 8) form a line in the North-South
direction. This is intuitive since it allows sensors to see
the target from broadside. As explained in Section 2-B1,
the target strength is at its maximum if the bistatic angle
is close to 90 degrees (i.e., broadside), meaning that the
SNR is high. Moreover, the receivers are located so that
for any given target location, the orientation of the un-
certainty ellipses becomes complementary (see Fig. 1).
These lead both to high P, and to good localization
accuracy, hence resulting in good fused information.
The objective of maximizing the worst-case information
gain leads to a “balanced” deployment solution. Dur-
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TABLE I
Scores of Trajectories of Figs. 7 and 8
(worst cases are shown bold)

Trajectories 2S-1R 1S-2R
1 68.17 68.56
2 70.24 72.46
3 71.60 73.83
4 42.50 42.96
5 43.95 46.27
6 37.86 42.83
7 56.43 71.19
8 55.75 58.01
9 40.73 48.30

10 39.15 43.34
11 42.76 43.88
12 44.23 41.65
13 71.62 74.42
14 71.32 73.68
15 71.13 70.53

ing the optimization process, the worst trajectory jumps
between the west-most group to the east-most group.
Hence, the convergence geometry ends up being in the
middle of the barrier.

Placement scores® are obtained by using

Score =

(19)

Note that if a trajectory consists of a single waypoint
(target grid), and assuming the R is round, i.e., it is a
circular uncertainty around the target position, the score
has a physical meaning: it is the radius of the 1 —o¢
covariance circle.

Scores corresponding to the trajectories shown in
Figs. 7 and 8 are given in Table I. Balanced deployments
are evident from the scores (compare the scores of 1,
2, 3 with 13, 14, 15). Another intuitive outcome is
apparent from the scores of trajectories 7, 8 and 9: For
the single source case, they are higher (worse). When
the target penetrates into the blanking zone of the first
source/receiver pair, the range between the target and
the receiver of the second S/R pair is significantly higher
than in the case of 2 sources and 1 receiver. A higher
range results in higher localization error, mainly due to
the bearing error. So for an LFM waveform, it is better
to deploy two sources and a receiver, given the we have
only three assets.

B. Multiple-Node Case

We now consider the case that there are 3 receivers
with a single source. Fig. 9 shows the outcome of the
optimization algorithm. The optimal placement suggests
to use a regular geometry that one might find “heuris-
tic.” However this solution is not unique. The differ-

3Note that the scalar metric used in optimization is the determinant.
Score is introduced for easy comparison.
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Fig. 9. 3 Receivers, one source case, the optimal placement: Two
of the receivers (circles) are spread out to “monitor” the borders,
and the source (square) is in the middle with the third receiver is in
its north. They form a regular triangular geometry.

ent (random) initial placements result in different “op-
timal” placements, but they are equivalently good (see
the scores from Table II).

It is intuitive that given a solution one can create its
symmetric version and achieve the exact same scores
in reversed order. Two such solutions are shown in
Fig. 10. The initial placements were chosen randomly,
but interestingly, the converged geometries are almost
mirrored copies of each other. The scores indicate the
reversed-ordering effect, and these solutions are as good
as the regular-looking one from Fig. 9. Another nice
feature is that the range of the scores is not wide,
meaning that any path in the barrier would be monitored
similarly. This is due to use of the minimax criterion.*

4Our observation is that another candidate criterion, maximizing the
average measure, ZiM (1), does not necessarily have this behavior.
It can achieve an improvement in the average score by only improv-
ing some of the trajectories. Such a result would be operationally
undesirable.

It is important to note that the steepest ascent algo-
rithm is such that there is no guarantee that convergence
is to the global optimum except when the objective func-
tion is concave; and from Fig. 6, we cannot assume a
concave surface. Hence, our “optimal” solutions are not
outcomes of each and every execution of the proposed
algorithm. In fact, they are chosen so that they give the
best score(s) among many runs of the optimization pro-
gram. We follow this procedure:

e Execute the optimization process several times (on
the order of 10).

e List all convergence scores.

e Determine distinct outcomes with scores close to the
best overall score. (The optimal placements result in
similar scores, and these scores are much lower than
those in the rest of the list. Clustering is done by
observation.)

e Ignore suboptimal placements.

It is important to note that all of the optimal place-
ments yield “equivalent” solutions. In other words, they
are very similar if one considers rotations and mirror re-
flections. The solutions given in Fig. 10 are an example
for two such placements.

5. PLACEMENT STRATEGIES WITH CW
WAVEFORMS

As opposed to an LFM waveform, a pulse at a con-
stant frequency has coarser time resolution, and conse-
quently, position-only estimation using only CW wave-
form yields a comparably larger uncertainty. On the
other hand, a CW waveform provides Doppler infor-
mation that is a function of the relative velocity of the
target. Hence, while a fast target (e.g. 10 kts) yields
few waypoints across the barrier, it is more likely to be
detected when a CW waveform is used.

Since the information matrix has velocity uncer-
tainty, the score loses its physical meaning when a CW

Fig. 10. Equivalent solutions: convergence results for two different runs. Interestingly, the geometries are “mirrors” of each other.
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TABLE II
LFM Waveform is used
Scores of Trajectories for Figs. 9-10
(worst scores of each case are shown in bold)

Trajectory 1S-3R 1S-3R 1S-3R
No. Fig. 9 Fig. 10-left Fig. 10-right
1 52.14 48.51 47.90
2 52.29 41.66 52.18
3 47.15 51.81 51.08
4 38.91 42.41 30.10
5 36.93 41.49 33.29
6 35.97 43.20 33.82
7 46.56 29.69 34.65
8 51.09 31.91 30.73
9 47.04 29.47 35.12
10 35.60 32.07 42.70
11 35.63 30.51 40.14
12 41.67 29.59 40.53
13 45.51 49.65 52.21
14 50.49 50.43 42.29
15 51.86 45.64 47.81

waveform is available. Nonetheless, we use scores in
our comparison tables, since they are easier to compare
than the values of determinants of the information ma-
trices.

A. Two-Node Cases

We look at the same two systems as before. The op-
timal placements are given in Figs. 11 and 12. This time
the sensors are in the west-east orientation. This is again
intuitive since the penetrating target provides high range
rate (Doppler) measurement, and hence the information
provided to tracker is higher. The complementarity of
the waveforms is consistent with the complementarity
of the optimal solutions. Another important observation
is that the scores from the faster target are much bet-
ter (lower) than the other one. This indicates that the
Doppler information is so dominant that even though
the slow target has many more waypoints and hence
many more chances to be detected, it is harder to detect
it if only a CW waveform is used.

B. Multiple Node Cases

Convergence geometry for the 1 source—3 receivers
configuration is given in Fig. 13 in the fast-target case. It
is similar to the regular triangle geometry. The eminent
structure of the optimal geometry is to put two of the
receivers close to both sides of the barrier, and the
remaining receiver is placed in the center so that it forms
a line with the source in north-south orientation. (The
results are similar in the slow-target case.)

More important, this placement does not contradict
the one from LFM case. It seems that both high Doppler
detection and high target strength detection is possible
if 3 source/receiver pairs are available.
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Fig. 11. CW waveform is used: Orientation of the sensors are
complementary to the one of LFM waveform. See Table III for the
scores. Target speed is high: 10 knots.

Fig. 12. CW waveform is used: Target speed is 4 knots.

Note that scores for slow target trajectories are worse
than faster ones. Indeed, target SNR is considerably
higher when target speed is high, resulting in much
higher probability of detection, and also better localiza-
tion. This effect is so dominant that even the fact that
slow targets have twice as many waypoints is little help
to the tracker.

6. PLACEMENT STRATEGIES WITH BOTH CW AND
LFM WAVEFORMS

In the previous two sections, we have analyzed the
proposed methodology and reported that the results are
consistent with intuition. In this section, we assume the
multistatic system is capable of using both waveforms
and the target speed is unknown. Hence we consider
two extreme cases to analyze the worst-case scenario: a
target with 4 knots speed which is hard to detect with a
CW waveform and a fast target moving with 10 knots
trying to pass the barrier as quickly as possible. Each
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TABLE III
Scores of Trajectories of Figures
(worst cases are shown bold)
Scores when CW Waveform is used for the Systems in the Figs. 11

and 12

Trajectory Fast Slow
No. 10 kts 4 kts
1 4.73 91.63
2 11.72 95.17
3 9.23 84.09
4 7.12 33.39
5 6.27 44.36
6 7.62 23.98
7 11.09 96.03
8 10.19 84.77
9 11.73 96.56
10 8.07 23.57
11 6.18 44.98
12 8.51 33.77
13 8.18 85.76
14 10.97 96.52
15 8.62 93.18

Note: The slow target gives higher (worse) scores, unlike when an
LFM waveform is used.

Fig. 13. CW waveform is used: Two of the receivers reach to the
sides of the barrier and the source is in the middle with the third
receiver.

of the 15 trajectories are duplicated so one trajectory
corresponds to a slow target and the other corresponds
to a fast one.

For the single source, three receivers case the op-
timal placement is shown in Fig. 14. The outcome is
consistent with the earlier findings so that two of the
receivers are placed far out and the third receiver stays
in the middle of the barrier close to the source.

7. SENSITIVITY ANALYSIS OF SENSOR PLACEMENT
RESULTS

In the previous sections, we have reported “optimal”
placement strategies based on a sparsely sampled linear

Fig. 14. Both CW and LFM waveforms are available. Trajectories
are duplicated corresponding to different target speeds, 4 kts and
10 kts. The geometry is consistent with the earlier placements.

Fig. 15. The same initial placement as for Fig. 9, but with many
more trajectories. The optimal placement is the same.

target trajectories. Here we investigate whether this
choice has a dramatic impact on our results. The first
analysis we consider is to use the result from Fig. 9
and run the optimization again with more trajectories,
each of which has many more waypoints. The initial
placement is the one in the optimization run resulting
in Fig. 9. As seen in Fig. 15, the outcome is almost
identical to the former result.

For the second analysis the trajectories are perturbed
a random amount as seen in Fig. 16, and the optimiza-
tion algorithms re-run. The initial placement for opti-
mization is chosen as the optimal placement from Fig. 9.
If this placement is optimal, it is expected that perturba-
tion of the target trajectories would have little impact.
The result in Fig. 16 confirms this.

In an overt network, there is no reason for a threat
target to follow a straight line. Hence, in the last part
of sensitivity analysis we consider piece-wise linear tra-
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Fig. 16. The optimal placement with perturbed trajectories. The
initial point is the optimal placement from Fig. 9.

Fig. 17. Targets follow a zig-zag path. It appears that the optimal
placement is robust.

jectories: such a trajectory is of interest since the target
strength is changing along the trajectory. The result is
given in Fig. 17. It appears that the optimal placement
from Fig. 9 is robust for different configurations of tar-
get trajectories.

8. SUMMARY AND CONCLUSIONS

We propose an optimization technique for the opti-
mal sensor placement for multistatic sonar systems. We
study optimal placements in the LFM-only case, the
CW-only case, and the combined LFM-CW case, and
show that the optimal placements are consistent with
our intuition, thus validating our placement methodol-
ogy and its use as a placement aid in more complex
scenarios where intuition is challenged.

An important aspect of the algorithm is that we em-
ploy a “minimax” criterion which results in a balanced
surveillance performance. This makes sure that there is
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no path across the barrier for a target yet it remains
“unseen.”
Some aspects of modeling are important:

e Targets are not “point” targets: we employ an aspect
angle dependent target strength model.

e Target Doppler is included in the localization analysis
whenever CW waveforms are used.

e It is assumed that targets follow some realistic tra-
jectories; Hence, availability of two complementary
waveforms, CW and LFM, is incorporated in the met-
ric.

e The modeling reflects the “Blanking Zone” due to
direct blast signal reception.

e Signal Excess is calculated by a model where:

—A simplified reverberation-limited sonar equation
is used;

—The Q-function is considered, which quantifies the
Doppler performance of sonar waveforms in rejecting
reverberation.

A scalar metric blends all of the above into a tra-
jectory score, where “information gain” is computed at
each waypoint of the trajectory. A steepest ascent al-
gorithm is used for optimization, together with an in-
telligent step-size selection scheme (Armijo rule), and
numerical gradient evaluation techniques.

It is desired to show that the “optimal” placements
do, in fact, improve tracking performance. Thus, in fu-
ture work, we plan to compare actual tracking perfor-
mance based on optimal sensor placements with per-
formance based on sub-optimal placements. This study
would provide further validation that our information-
based optimization objective captures the salient dataset
characteristics that are required for high-quality tracker
outputs and an effective surveillance system.
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1. INTRODUCTION

Data fusion has been largely applied to symmetric
military warfare in which long-term strategic target de-
velopment processes have developed the signatures or
deductive model-based templates describing the compo-
nent targets of the fielded adversary forces [14], [27].
Asymmetric adversaries, usually utilizing Camouflages,
Concealment, and Deceptions (CC&D), and “unilateral
destruction” are quite unpredictable in their behavior,
tactics, weapons, and the choice of targets. Informa-
tion and patterns of behavior that could provide ad-
vanced warning of hostile intent are often hidden in
a vast background of harmless civilian activity. Auto-
mated processing techniques are needed to augment tac-
tical intelligence-analysis capabilities by automatically
identifying the militarily-relevant features of all avail-
able data of different modalities (e.g., signals intelli-
gence, human intelligence, imagery intelligence, etc.)
and recognizing patterns that are out of the ordinary
[25] and/or indicate probable hostile intent [18].

As asymmetric warfare becomes more prevalent and
introduces new security challenges, there is a critical
need for strategies for providing actionable informa-
tion to military decision makers so that the adversaries’
most likely future courses of actions (COAs) can be pre-
dicted. By successfully assessing possible future threats
from the adversaries, decision makers can make more
effective targeting decisions, plan friendly COAs, mit-
igate the impact of unexpected adversary actions, and
direct sensing systems to observe more efficiently ad-
versary behaviors. Information fusion is an efficient
method for providing this information by combining
diverse data from multiple sources. Many studies have
dealt with the information sources directly, which is the
first level of fusion (object assessment) and some have
aggregated information for level-two fusion—situation
assessment (SA) [22]. Information fusion for threat and
situation analysis is outlined in [13] with reference to
utility value. Others have included SA from cyber-IF
domains [20] with elements of SA ontology develop-
ments [16]. However, to combat the present and future
asymmetric threats to national and international security,
information fusion developments must progress beyond
current level-one fusion paradigms.

In this research, we developed a data-fusion frame-
work for asymmetric-threat detection and prediction in
an urban-warfare setting based on advanced knowledge
infrastructure and Markov (stochastic) game theory. It
consists of four closely coupled activities: 1) Level-one
fusion automates the processing and integration of in-
formation from disparate sources to produce an inte-
grated object state. 2) Level-two fusion automates the
estimation and groups the cooperative objects which
perform common tasks. The main tasks of level-two fu-
sion are estimation and prediction of relations among
entities, to include force structure and cross force rela-
tions, communications and perceptual influences, phys-
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Fig. 1.

ical context, etc. 3) Level-three fusion automates, infers
and predicts the intentions and COAs of asymmetric
threats. 4) Level-four fusion uses these COAs to task
available sensor assets to optimally minimize cost of op-
erations and decision response time. In particular, asym-
metric and adaptive threats are detected and grouped by
intelligent agent and Hierarchical Entity Aggregation
in level-two fusion and their intents are predicted by
a decentralized Markov (stochastic) game model with
deception in level-three fusion. Game theory is not a
new concept in military and cyber defense decision sup-
port. Existing game theoretic approaches [1] [2] [21]
for threat detection and decision support are based on
static matrix games and simple extensive games, which
are usually solved by game trees. However, these ma-
trix game models lack the sophistication to study multi-
players with relatively large actions spaces, and large
planning horizons. Recently, Brynielsson and Arnborg
propose a game theoretic data fusion approach [30]
via combining higher level command and control (C2)
and Bayesian Network (BN) to solve multiple-decision-
makers problems.

We have implemented Hierarchical Entity Aggrega-
tion and ontology-based Factlet Analysis Function to
detect asymmetric treats at level-two fusion. Factlets
are statements or evidence about the situation in the
battlespace and they form the main input to the level-
two fusion. We have implemented an adversary Markov
game [23] model with three players: Red force (en-
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The overall architecture. (The substructure of the Markov Game engine is also clearly shown in Fig. 2.)

emies), Blue force (friendly forces), and White force
(neutral objects) at level-three fusion. Inherent informa-
tion imperfection is considered and implemented in two
methods: 1) the decentralized decision making scheme;
and 2) deception with bounded rationality. We have
modified our game theoretic sensor management algo-
rithm at level-four fusion.

A software prototype has been developed with a
display module based on the Mixed-Initiative Control of
Autonomous Unmanned Units under Uncertainty (MICA)
OEP [28] to integrate levels 1, 2, 3, and 4 data fusion
and to demonstrate the performance of our proposed
algorithms.

The paper is organized as follows. In Section 2, we
will summarize the technical approach, which includes
overall architecture, hierarchical entity aggregation at
level-two fusion, and Markov game approach at level-
three fusion. Section 3 describes the experimental re-
sults. Section 4 concludes the paper.

2. THREAT PREDICTION AND SITUATION ANALYSIS

2.1. Overall Structure

The overall architecture of our game theoretic data
fusion is shown in Fig. 1. The level-one fusion builds
the tracks of enemy targets from the reported data for-
matted by Data Encapsulation, which is the mechanism
whereby the original data are kept hidden from the user
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and the user can only perform a restricted set of opera-
tions on the data. Level-one fusion also writes the Red
target track table, which contains time, location, target
type beliefs, and other information about each target.
The tracks are based on data from the Blue Unmanned
Air vehicle (UAV) and Airborne Warning and Control
System (AWACS) sensors. Field reports from forward
observers and signal intelligence contributes to event
data. Level-one fusion establishes and maintains tracks
for all ground vehicles, makes track-to-track associa-
tions, eliminates duplicates, and also initiates, maintains
and drops tracks. The Blue tables of tracks of friendly
armament resources contain similar information.

The level-two fusion (situation assessment—SA) per-
forms spatial and temporal processing on tracks pro-
duced by level-one multi-sensor, multi-target track fu-
sion, supplemented with intelligence information from
both structured data sources such as databases and un-
structured data sources such as ontology-based docu-
ments. At this level, Hierarchical Entity Aggregation,
ontology and Factlet Analysis Function are used to clus-
ter Red entities into groups by position, find the group
centers-of-mass, build target group tables, and deter-
mine certain critical events and behaviors over time,
which it formats into frame structures to pass to the
level-three fusion process.

At level-three (threat assessment—TA) fusion, we in-
vestigated and demonstrated the effectiveness of Markov
game theory. An adversarial Markov game framework
is proposed for threat refinement to drive existing
and newly formulated models of threat behavior with
factlets derived from situation refinement to support
the determination of possible enemy course of actions
(ECOAs). An artificial intelligence planning concept,
Hierarchical Task Network, is exploited to decompose
the estimated ECOAs. The decompositions are fed back
into and used in level-two fusion to identify and group
the enemy entities that pose threats.

At level-four fusion (process refinement), the main
tasks are to perform resource allocation and to provide
feedback information for fusions at level 1, 2, and 3 to
adjust the parameters. We use the method developed
by the authors in a Navy funded on-going Phase II
project named ‘“Adaptive Cooperative Path and Mission
Planning for Multiple Aerial Platforms.”

We have conducted the implementation and analysis
of several data fusion approaches at every JDL-model
level, including conscious effort on the display technol-
ogy to the user (as proposed in the Data Fusion Infor-
mation Group (DFIG) [6]). We drive existing and newly
formulated algorithms to support the determination of
possible enemy COA. Asymmetric threats will be iden-
tified efficiently by Hierarchical Entity Aggregation at
level-two fusion and assigned special payoff functions
in our Markov Game framework at level-three fusion so
that the intents of these irrational threats or entities will
be efficiently predicted.

Due to page limitations, here we focus only on
level-two and level-three data fusion and details can
be found in the following subsections. A related paper
summarizing our results with respect to level-one fusion
algorithm will appear elsewhere.

2.2. Level-Two Fusion—Situation Refinement

The objectives of level-two fusion SA include es-
timation as to the measurements and observations that
are available and establishing relationships between en-
tities, events and the environment. An ontology-based
battle-space modeling technique provides feasibility to
the representation and organization of the environmental
observations in a machine-readable manner. It also fa-
cilitates prediction of the potential relationships among
the entities.

The Factlet Analysis Functions execute across the
extent of the Virtual Battlespace as well as estimate
across the objects present and within each analysis per-
spective, to generate both measured and inferred items
of evidence, the “factlets.” These Functions are con-
cerned with establishing the “relationships” between ob-
jects in the Virtual Battlespace. For example, the Motion
Analysis Function considers the movement patterns of
groups (established by the Aggregate Analysis Func-
tion) of military objects such as armored personnel car-
riers. The Motion Analysis Function may conclude that
the current movement pattern indicates a probing be-
havior on the part of the adversary, rather than a full
scale attack. This prediction becomes a factlet.

In our data-fusion framework, Hierarchical Entity
Aggregation [12] [1] [15] (HEA) is exploited to identify
and group the entities that pose threats so that level-three
TA fusion can be performed efficiently because of the
following two major reasons. HEA reduces the ECOA
hypothesis space for level-three fusion by reducing the
number of potential “threats” to consider. In our ap-
proach, applying a Markov (stochastic) game theoretic
algorithm to predict ECOA becomes more feasible. The
other is that HEA can efficiently identify the asymmet-
ric threats. Entity Aggregation plays an important role in
subsequent fusion processing in the way that it provides
aggregates that have the same tactical goal. For exam-
ple, the capabilities and resources of a single terrorist
are vastly different from the capabilities and resources
of a team of terrorists. As a result, HEA will produce
different results when considering a single terrorist or
a team of terrorists as a threatening entity. To improve
the performance of asymmetric adversary identification,
we propose a feedback structure based on a Hierarchi-
cal Task Network (HTN) so that the revised asymmetric
tactics and strategy can be decomposed and fed back to
the HEA.

These identified asymmetric units with the asso-
ciated aggregations will be handled and refined by
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Fig. 2. Structure of level-three fusion (threat refinement).

our proposed Markov games in level-three TA data
fusion.

2.3. Level 3 Data Fusion—Threat Refinement
A Decentralized Stochastic Game Theoretical
Model

As shown in Fig. 2, a decentralized Markov game
is used to model the evolution of ECOAs originated
from an initial prediction based on Hierarchical Entity
Aggregation.

A Markov (stochastic) game [23] is given by (i) a
finite set of players N, (ii) a finite set of states S, (iii)
for every player i € N, a finite set of available actions
D' (we denote the overall decision space D = x;_y D',
where X is the multiplication operation), (iv) a transition
rule g : S x D — A(S), (where A(S) is the space of all
probability distributions over ), and (v) a payoff func-
tion : S x D — R". For our threat prediction problem,
we obtain the following discrete time Markov game:

Players (Decision Makers)—Although in our dis-
tributed (decentralized) Markov game model, each
group (cluster, team) makes decisions, there are three
main players: enemy, friendly force, and neutral play-
ers. All clusters of enemy (friendly force, or neutral)
can be considered as a single player since they have a
common objective.

State Space—All the possible COAs for enemy and
friendly force consist of the state space. An element
s € S is thus a sample of enemy and friendly force COAs
composed of a set of triplets (resource, action verb,
and objective). As an example, an enemy COA might
be: the Red team 1 (resource) attacks (action verb) the
Blue team 2 (objective). Similarly, for the friendly force
COA:s, resource is a friendly asset and objective is an
adversary entity. Therefore, we can denote the state and
state space as

2.3.1.

s = (sB,sR,sW)

S =88 xSRxs¥
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where s% € SB, sR € SR, and sV € SV are the COAs of
Blue (friendly) force, Red (enemy) force, and White
(neutral) force, respectively.

sB = {(rB,a8,08) | rB € RB,aB € AB,0P € OB} where
RE, AB and OF are the set of the resource, action, and
objective of Blue force, respectively.

Similarly, the states for red force and white force are

denoted as:
sB = {(F,af,0f) | rf € RR af € AR, 0f € OF}
sV = {0 ,a¥, 0y | e RV ,a) € A 0! € OV}

REMARK 1 It is well known that civilians often play an
active role in wars. That is, they are not just passively
static but might purposefully take actions to help one
side in a battle to minimize their losses or achieve some
political purpose. Unfortunately, existing game theoretic
models usually do not consider this situation, although
collateral damage has been considered in a paper on
a two-player game model by Dr. Cruz et al. [10]. In
this research, a three-player attrition-type discrete time
dynamic game model is formulated with two opposing
forces and one civilian player that might be either neu-
tral or slightly biased. In our current implementation,
the White units only care about their possible losses.
For example, when a dangerous location is detected,
normal White units will find a COA to keep them-
selves as far as possible from the harmful location. In
the case where Red force poses as White for decep-
tive purpose, our algorithm will deem the Red force as
White until abnormal activities or deceptions are de-
tected.

Decision—At every time step, each Blue group
chooses a list of targets with associated actions and con-
fidences (note that: the probability distribution over the
list of targets, i.e., the sum of the confidences should be
equal to 1) based on its local battle field information,
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such as the unit type and positions of possible targets,
from level-two data fusion. Let D? denote the decision
space of the ith Blue team. Each element d® of D? is
defined as

={@..p’)|a? € AP.1f € OP,0< pf < 1.3 pF =1}
(1)

where p? is the probability of the action-target couple
(aB,8), which is defined as the action a® to target 5.
Therefore, the decision space of Blue A' = x;_psD5.
(Compared with the standard definition of Markov game
model reviewed in the beginning part of Section 2.3.1,
D? is the action set of ith member of Blue team, which
is deemed as a single player. So, generally, the meaning
of A! is same as that of D! in the standard definition.) As
an example, for the Blue small weapon UAV 1 in Blue
team 1, its action might be d¥ = {(attack, Red fighter 1,
0.3), (fly to, Red fighter 2, 0 5), (avoid, Red fighter 3,
0.2)}.

Similarly, each Red cluster (obtained from the level-
two data fusion) determines a probability distribution
over all possible action-target combinations. Let DX
denote the decision space of the ith Red cluster. Each
element dX of DF is defined as

df = {(af.if,pf) |af € ARif € OF,0 < pf < 1.} pF =1}
(2)

where pX is the probability of action af to target
th. Therefore, the decision space of Red force A% =

x;cgeDR. A possible action for Red platform 1 (Red
fighter 1) is dR {(attack, small weapon UAV 1, 0.6),
(move to, Blue solider 2, 0.2), (avoid, Blue solider 1,
0.2)}.

REMARK 2 Decision and action verbs are different
concepts. A decision is a set of triplets with associated
probabilities while an action verb is just a component
of the triplet composed of resource, action verb and
objective. All actions are included in A! for player 1
(Blue force) and A? for player 2 (Red force). All action
verbs are enumerated in A® for player 1 (Blue force)
and AR for player 2 (Red force).

The decisions of White objects are relatively simple.
The main action type is movement. Let D! denote the
decision space of the ith White unit. Each element d?
of D? is defined as
dv =

1

{@".1i}.p!")|a) e A1} e 0¥, 0<pl <1, plf =1}
(3)

where p! is the probability of action a!¥ to target " .

Transition Rule—Due to the uncertainty properties
of military environments, we assume that the states
of the Markov game have inertia so that the decision

makers have more chance in the pursuit of the objective
from previous actions. We define an inertia factor vector
for each player. Without loss of generality, we take the
Blue force as an example, n® = (nf,n%,....n5 )", where
my is the number of the teams or clusters of Blue force,
and 0 < nf <1, 1< j<my. So, for the jth team of the
Blue player, there is a probability of nf to keep the
current action-target couple and a probability of (1 — »; )
to use a new action composed of action-target couples.

There are two steps to calculate the probability dis-
tribution over the state space S, where s,, s, are states
at time step k and k + 1 respectively, and a?, af and a”
are the decisions of Blue force, Red force, and White
force, respectively, at time step k.

Step 1 With the consideration of a inertia factor
vector 78, we combine the current state with decisions
of both players to obtain fused probability distributions
over all possible action-target couples for the Red and
Blue forces. To do this, we first decompose the current
state into the action-target couples for each team of
each player (Red force, Blue force, or White force).
Let \IJ (s;) denote the resulting action-target couple
related to the jth team of the Blue player. For example,
if there is one triplet of (Blue team 1, attack, Red
fighter 2) in the current state s,, then the action-target
couple for Blue team 1 (the first team of Blue force)
is \I/f (s,) = (attack, Red fighter 2). Secondly, for each
specified team, say the jth cluster of Blue player 2 (Blue
force), we fuse its action-target couples via modifying
the probability of each possible action-target couple
based on the following formula

(G RIED)
PECL =), if (@f.if.pf)edf
and (aj,tB) ¢ {\IIB(Sk)}
pi—ni)+nf, if (af.tf.p})ed]
and (af,1%) € {UP(sp)}
e, it @ phed
and (a», By e {‘I’B(Sk)}
0, if (aj,j,Pj)¢dB
and (af,1%) ¢ {UP(sp)}

“

There are four cases in Eq (4): 1) The action-target
couple (a?,t?) only occurs in the current action of the
jth cluster of the Blue player and is not in the current
state sk, which can be mathematically represented by
(aB,t ,pJ By e df and (af,tf) ¢ {\Ilf(sk)}. Then we know
the probability of (a?,t¥) in current state s, is 0 and
probability of (af,tf ) in current action is pf . So, accord-
ing to the definition of inertia, the fused probability of

the action-target couple (aj , f) is p; Bl — .) + O(nf) =
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pf(l —nf). 2) The action-target couple (af,tf) hap-
pens both in the current action of the jth cluster of
the Blue player and in the current state s,. Then we
know the probability of (a7,7¥) in the current state

s, is 1 and probability of (af,}) in the current ac-
tion 1is pf. So, according to the definition of inertia,
the fused probability of the action-target couple (a%,7¥)
is pP(1—n?) + 1(n?) = pf(1 —n?) +n?. 3) The action-
target couple (af,tf ) only occurs in the current state s,,
and then we know the probability of (a7,77) in current

state s, is 1 and probability of (¢Z,r%) in the current

action is 0. So, according to the ciednition of inertia,
the fused probability of the action-target couple (a%,7¥)
is 0(1 —n?) + 1(n?) =n?. 4) The action-target couple
(1153 ,tf ) occurs neither in the current state s, nor in the
current action of the jth cluster of the Blue player, and

then we know the probability of (a?,77) in the current

state 5, is 0 and probability of (¢Z,7%) in the current

action is 0. So, according to the (ieﬁ]nition of inertia,
the fused probability of the action-target couple (a?,¥)
is 0(1 — nf) + O(nf) =0.

Similarly, the new probability distribution for the jth
team of the Red player (Red force) is

PR, 1) | 5p)

PR =), it (aRf pF) e d¥

J
and (af,tf) ¢ \Ilf(sk)
if (af,tf,pf) Gdje

and (af,tf) € \Il]R(sk)

PR —nf) +nf,

nk it (af, i}, p¥) ¢ df
and (af,1f) € Uf(s,)
0, it (ak R pk) ¢ dF
and  p(af,tf) ¢ OR(s,)
Q)

The new probability distribution for jth team of White
player (White force) is

P (@) | 5)

Py —n),

if (@Y. pY)ed’

and (aW,t})V) ¢ {‘I/]W(Sk)}

pfa—n+nl, it @'V, p)ed

ol
and (ay’,t}”) € {\I/].W(sk)}

Step 2 We determine the probability distribution
over the all possible outcomes of state s, |,

B R W
G | Spoai aia;)

mg mpg
= [[PP @) |sp ][ PR (@i | s
j=1 j=1

my

< 12" @l i) s

Jj=1

(N

when

my

mpg mpg
senr = (JIOP a2 (R el Oy L) el i),
j=1 j=1 j=1

otherwise, q(s;, | s;.af,af,a)’) = 0. Where my is the
number of the teams or clusters of the Blue player (Blue
force), my is the number of the teams or groups of the
Red player (Red force) and my, is the number of the
units of the White player (White force). {(r2,a8,15)}
is the set of all possible (with positive probability)
triplets for the ith team of the Blue player. Therefore
U {(rB,aB,t8)} contains all the possible (with posi-
tive probability) triplets for the Blue force. From step
1, we know that the fused probability of each speci-
fied (af,tf) is iaB((af,tf) | ;) defined in equation (1).
With the assumption that all teams of Blue force are
independent, we obtain the overall probability of Blue

force, [[1", pP((a%,%) | s,). Similarly, [T, pR((a%,1%) |
s;) and []7%) [)W((ajw,tjw) | s,) are the overall probabil-
ities of the Red and White force, respectively. So the
probability distribution over the all possible outcomes of
state s, ., (composed of all possible sub-states of Blue,
Red, and White force) can be calculated via equation
(7).

Payoff Functions—In our proposed decentralized
Markov game model, there are two levels of payoff
function for each player (Blue, Red or White).

The lower (local) level payoff functions are used by
each team or cluster to determine the team actions based
on the local information. For the jth team of Blue force,
the payoff function is defined as ij (E? ,df,WkB), where
Ef C s is the local information (note that in a distributed
and partial observable framework, local information
for each player means the battle or state information
is available to the player.) obtained by the team, and
W2, the weights for all possible action-target couples
of Blue force, is announced to all Blue teams and
determined according the top level payoff functions by

ny, it (@1, p}H¢d} the supervisor of Blue force.
and (a} 1) € {¥}¥(s)} BB 7B vyB
W]W] w ]W 1747 W)
0 if (a¥.t7,pY) ¢ d:;
’ ol Pj j _ B(: B B B\ B,B(; B B B
W oW w - Z w (]’ai ’tl' 7% )p,g (]’ai ’tl' ’SJ'
and (aj ,tj )¢ {\I/] (sk)} (af,tf;,pf)edf
(6) (8)
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where, wB(j,a®,t8, W) will calculate the weigh for any
specified action- target couple for the jth team of Blue
force from the Wk , p? is the probability of the action-
target couple (a?,7%), and gB(j,a?,1?, B) will determine
the gain from the action-target couple (aB,18) for the
jth team of Blue force according to the positions and
features, such as platform values and defense/offense
capability, of the Blue and Red platforms. Similarly, we
obtain the lower level payoff functions for the jth team
of Red or enemy force,

G

9>

R R R R
(@R aF pRyedt

di. W)

wh(,af i, WOpEe®(j,af 1f 55) 9)
FYGYdY W)

= 2

w W W w
(a1 . )edj

wV(j,a) 1 WpY eV (j,a) .1 5V).

(10)

REMARK 3 For some asymmetric threats, such as sui-
cide bombers, the payoff functions may only consider
the loss of the Blue side. For some camouflage and con-
cealment entities, their objectives are to hide themselves
and move close to the Blue units. Other deception units
will do some irrational and additional movements to
hide their true goals.

REMARK 4 People usually think of a military conflict
situation as a zero-sum game—a game with a winner
and a loser. In zero-sum game theory, the players have
opposite objectives. If one player maximizes an objec-
tive function, the other automatically minimizes it. This
is equivalent to a player maximizing an objective func-
tion and the other player maximizing the negative of the
same function. Since the sum of the objective functions
is zero, the game is called a zero-sum game. But when
there are significant differences between the cultures
of the Red and Blue forces and significant differences
in the valuations of their assets and their opponent’s
assets, the zero-sum game approach in general is not
representative. For example, a Blue objective might be
to preserve as much of the Blue assets and to destroy
as much of the Red assets as possible. However, re-
cent experience with terrorist type battles suggests that
the Red force may not be as concerned as the Blue
force with preserving its own assets. The objectives in
such a situation are not opposite of each other and a
nonzero-sum approach would be much more appropri-
ate.

The top (global) level payoff functions are used to
evaluate the overall performance of each player.

mp

jg: ZE:f%?”B dB VV

(1)

JR=3 ZfR(vj AR Wk (12)
k

M= Zfﬂ@w AW (13)
ko Jj=1

where k is the time index. In our approach, the cal-
culation of the lower level payoffs are distributed and
sent back to commander/supervisor via communication
networks.

REMARK 5 Since the galn functions g®(j,af.17,57
for Blue force, g(j,af,7f,5%) for Red force and

¢"(j,a 1)’ ,5V) for White force are different functions,
asymmetrlc force and cost utilities can be straightfor-
wardly represented in our model. In addition, after an
irregular adversary is detected, a different type of gain
function will be assigned dynamically.

REMARK 6 In our Markov game model, the states
used in the control strategies are the estimates of the
future systems states. These estimates will evaluate or
update following the Markov decision process in the
Markov game framework, in which the interactions are
considered. At each time k, the process will be repeated
based on the observed current system states.

Strategies—In this project, we have tried several well
known types of strategies. Here we only give a brief
description about three of them:

Pure Nash Strategies with a finite horizon. In game
theory, the Nash equilibrium (named after John Nash
[17] who proposed it) is a kind of optimal collective
strategy in a game involving two or more players, where
no player has anything to gain by changing only his or
her own strategy. If each player has chosen a strategy
and no player can benefit by changing his or her strategy
while the other players keep their’s unchanged, then the
current set of strategy choices and the corresponding
payoffs constitute a Nash equilibrium. In our approach,
we use a game search tree to find the solution.

Mixed Nash Strategies. A mixed strategy is used
in game theory to describe a strategy comprised of
possible actions and an associated probability, which
corresponds to how frequently the action is chosen.
Mixed strategy Nash equilibria are equilibria where
at least one player is playing a mixed strategy. Nash
proved that that every finite game has Nash equilibria
but not all have a pure strategy Nash equilibrium.

Correlated Equilibria [26]. Unlike Nash equilibria,
which are the concept of equilibria formulated in inde-
pendent strategies, correlated equilibria were developed
from correlated strategies in non-cooperative games.
The correlated equilibrium of a Markov game describes
a solution for playing a dynamic game in which players
are able to communicate but are self-interested. Based
on the signals, which are generated by the correlated
devices and announced to each decision maker, players
choose their actions according to the received private
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signals. There are two types of correlation devices: au-
tonomous and stationary devices. An autonomous cor-
relation device is a pair D = (M)),cy.d,),cn), Where
(i) M! is a finite set of signals for player i at time
step n, and (i) d, : M(n) — AM,), M, = x,.yM; and
M(n) =M, xM, x---xM, ;. A stationary correlation
device is a pair D = (((Mi)ieN,d)), where d € A(M) and
M = x,.,yM'. Actually, a stationary correlation device
is a special case of an autonomous correlation device,
where M, is independent of n and d, is a constant func-
tion that is independent of n.

Given a correlation device D, we define an extended
game G(D). The game G(D) is played exactly as the
original game, but at the beginning of each stage n, a
signal combination m, = (m!),_y is drawn according to
the probability function d,(m,,m,,...,m,_;) and each
player i is informed of m!. Then each decision maker
must base his choice of actions on the received signal.
Any deviator will be punished via his min-max value.
The punishment only occurs if a player disobeys the rec-
ommendation of the device. Every Markov game with
an autonomous correlated device admits a correlated
equilibrium [26].

REMARK 7 In our proposed approach, the solution to
the Markov game model is obtained via a K time-step
look-ahead approach, in which we only optimize the
solution in the K time-step horizon. We set K as 5
during the simulations of the Section 3—Experiments.
Actually, this suboptimal technique is used successfully
for calculations in games such as chess, backgammon,
and monopoly.

2.3.2. Hierarchical Task Network

Once the ECOA hypotheses have been generated,
they must be evaluated. However, since the generated
hypotheses are not directly observable, they are not suit-
able for correctness testing. As with any hypothesis test,
observables must be identified. These observables act
as indicators to refute or support ECOA hypotheses. A
Hierarchical Task Network (HTN) planner [11] is em-
ployed to decompose ECOA hypotheses into observable
task sequences.

A construct known as the Hierarchical Task Network
(HTN) provides a representation of tasks at various
levels of specificity. The HTN not only mimics the
variation in specificity found in military echelons, it also
allows a computational construct for analyzing ECOAs.
In our game theoretic approach to level-three fusion
(threat assessment), the HTN is employed to provide a
method for decomposing high-level ECOAs into more
specific tasks. The HTN representation is the basis of
most modern planning algorithms. It is based on the
concept that humans plan by decomposing tasks into
smaller ones until a sequence of tractable tasks are
found that satisfy the objective [7]. These are tasks that
the fusion processes attempt to infer or observe directly
and are assumed to be tractable.
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3. EXPERIMENTS

In the simulation part, we build a virtual battle-space
and a typical urban scenario based on the ontology con-
cept, which is an explicit, formal, machine-readable se-
mantic model that defines the classes (or concepts) and
their possible inter-relations specific to some specified
domain. To simulate our data fusion approach, we im-
plemented and tested our battle-space, scenario and al-
gorithms on our prototype software with developed and
funded cooperative path planning and mission planning
algorithms [8], [9], [24].

3.1.  Scenario Description

We used a scenario shown in Fig. 3 to demonstrate
the performance of our proposed threat prediction and
situation awareness algorithm. In the shown urban en-
vironment, the Blue force’s missions are to capture two
bridges and to do security patrol on the main roads con-
necting the two bridges. The Blue ground force con-
sists of 3 teams of three soldiers each with sniper rifles.
The Red force includes 3 armed fighters and 3 asym-
metric adversaries hiding in and acting like the White
objects (the civilians and vehicles). We assume there
is an asymmetry in total forces between Blue side and
Red side. Blue has more soldiers than Red. Moreover,
the objectives of Blue side and Red side are asymmet-
ric: the objectives of Red side are to kill Blue forces
without considering the loss of themselves and the con-
sideration of collateral damage. The main challenge for
both sides is to understand the situation from the fused
sensor data and predict the intent of the opponent under
the “believed” war situation.

REMARK 8 In this scenario, the kill probability (of
each weapon type) and the target value of each unit
(Blue, Red, and White force) are pre-specified.

3.2. Implementation

To demonstrate our approach, we developed sim-
ulation software (Fig. 4) as a controller module for
the MICA (Mixed Initiative Control of Automa-Teams)
Open Experimental Platform (OEP) [28].

For the scenario (Fig. 3), the possible actions for
blue side are “Blue Team 1 move to Bridge 1,” “Blue
Team 2 Attack Red Fighter 2,” or “Blue Team 3 Halt.”
In general, RE = {Blue Team 1, Blue Team 2, Blue
Team 3}, AB = {Move to, Attack, Halt}, and O = {Red
Fighter 1, Red Fighter 2, Red Fighter 3, Bridge 1,
Bridge 2, Dummy, Detected Asymmetric Threats}. The
possible actions for red force are “Fighter 1 attack Blue
team 1,” “Asymmetric threat acts as a civilian.” In gen-
eral, RR = {Fighter 1, Fighter 2, Fighter 3, Asymmet-
ric threat}, AR = {Move to, Attack, Act as a civilian,
Halt}, and O = {Blue team 1, Blue team 2, Blue team
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Fig. 3. A simulated scenario—urban warfare for combating guerrilla forces.

Fig. 4. Simulation Software—a controller module for MICA OEP
virtual battlespace.

3, Bridge 1, Bridge 2, Dummy}. The actions for White
side include “Civilian 1 move to safe place,” “Civilian
2 move to Bridge 1,” and “Civilian 3 move to dan-
gerous place.” Mathematically, R = {Civilian 1, Civil-
ian 2,...}, AY = {Move to, Halt}, and O = {Bridge 1,
Bridge 2, Dummy, Safe place, Dangerous place}.

In this simulation we set all inertia values to 0.1 and
we also assume that the there is no measurement error
for the Blue, Red, and White forces.

The objective of the Blue force is to save Bridge 1,
Bridge 2, Blue teams, and Civilians; and eliminate Red
Fighter 1, Red Fighter 2, Red Fighter 3 and possible
asymmetric threats. The goal of the Red side is to De-
stroy Bridge and Kill Blue teams (we assume that Red
force has to kill Blue teams nearby before destroying
Bridge 1 or 2). The White force’s goal is to protect civil-
ians. Each side will estimate the information of damage
status (probability and expectation value) and calculate
its cost function based on the unit values: Bridge (100),
Blue team (50), Red Fighter (20), Asymmetric threat
(50), Civilian (0 for “don’t care about collateral dam-

Fig. 5. Result of a simulation run.

age” or 10 for “care about collateral damage”). We set
the kill probability to 0.5.

To solve the Markov game problem, we have con-
ducted a numerical procedure to compute the strate-
gies with a K-step look-ahead horizon. We first con-
vert the Markov game to several MDPs (one MDP for
each player with every possible combination of K-step
strategies of the other players) and several one-step
static matrix games (one game for each player at every
current system state). Then existing algorithms (MDP
MATLAB toolbox and Gambit [29]) will be exploited
to solve the MDPs and matrix games.

3.3. Experiments

For the scenario, in a specific simulation run (Mark-
ov game approach with correlated equilibrium) as
shown in Fig. 5, Blue team 1 and Blue team 3 were
assigned to secure Bridge 1 and Bridge 2, respectively,
almost for the whole simulation period of 30 minutes.
Blue team with 3 Blue soldiers was doing security pa-
trol on the two major roads connecting two bridges and
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Fig. 6. Damage comparison of various options.

some important areas. On the other hand, Red fighters
and asymmetric adversaries are trying their best to kill
Blue forces. The first battle happened when Red Fighter
2 tried to attack Blue Team 2 with the help of an asym-
metric White vehicle with deception (hiding in White
vehicles). During this period, one asymmetric adversary
vehicle, which posed civic activities at first and carried
out abnormal activities during the battle, is detected and
killed. Without the help of the Red vehicle, Red fighter
2 was killed by Blue team 2. Almost at the same time,
the asymmetric adversaries near Bridge 1 and Bridge
2 were attacking the Blue team 1 and 2. At this stage,
two civilians were detected and killed as asymmetric
adversaries. Without the help from the asymmetric ad-
versaries with deception, Red fighter 1 and 3 were killed
by Blue team 1 and 3 at Bridges 1 and 2, respectively.
In this specific run, there is no loss of Blue soldiers
since our algorithm predicted the intents of the Red side
correctly and promptly.

In addition to the explained run, we performed many
experiments. We compared the results using the various
options, such as without game theoretic fusion (without
level-two or level-three fusion, and a Bayesian Network
approach), without asymmetric-threat prediction (with
level-two fusion but the payoff function of game model
at level-three fusion doesn’t change dynamically), game
approach with mixed Nash strategy, game approach
with correlated equilibria, and the game approach with-
out collateral damage consideration in the cost function
of Blue side. Since the simulation is stochastic, the re-
sults consist of the mean of 10 runs for each case, which
are shown in Fig. 6 (Only the damage information for
the Blue side is shown). From the damage comparison
results, we can see that our Markov game approach with
correlated equilibrium and deception consideration for
threat detection and situation awareness is better than
the other methods except the game approach without
collateral damage consideration.

44 JOURNAL OF ADVANCES IN INFORMATION FUSION  VOL. 2, NO. 1

4.  CONCLUSIONS

Game theoretic tools have a potential for threat
prediction that takes uncertainties in Red plans and
deception possibilities into consideration. In this paper,
we have evaluated the feasibility of the Markov game
theoretic data fusion algorithm. The effectiveness has
been demonstrated through extensive simulations. The
scalability and stability analysis of our game theoretic
approach is one direction of future research.
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1. INTRODUCTION

The problem of track-to-track association (T2TA)—
a prerequisite for the fusion of tracks—has been con-
sidered initially in the literature for tracks described by
kinematic states [1]. More recently, it has been gener-
alized to include additional (continuous valued) feature
and (discrete valued) attribute variables which pertain
to those tracks.! These approaches allow the search for
the maximum likelihood (ML) or maximum a posteriori
(MAP) association.

It turns out that, under the Gaussian assumption on
the estimation errors—which applies to the kinematic
states and, possibly, the features—a simple sufficient
statistic exists for the track association hypothesis test-
ing and, consequently, it is easy to find the thresh-
old for the desired Neyman-Pearson test of “common
origin” (actually, “same kinematic state”) with a se-
lectable power. However, this does not apply for at-
tributes, which are discrete valued. In this paper the
sufficient statistic for the optimal association test in the
Neyman-Pearson sense is derived for discrete-valued
attribute/classification information and its relationship
with the class probability vector is discussed.

Feature-aided T2TA was presented in [19, 20, 8]. A
comprehensive procedure for incorporation of attributes
and their possible dependence on the features was pre-
sented in [23, 14, 15] and shown to be amenable to
obtain the MAP association of tracks from two sen-
sors using linear programming. A multiple model ap-
proach for feature aided tracking (FAT) was presented in
[22]. Classification-aided tracking with measurement-
to-track association via multidimensional assignment
(MDA) was discussed in [4]. However, while these ap-
proaches provide the ML or MAP association, they do
not provide the means to set up a statistical hypothesis
test with a desired power.

Target features and attributes/classification outputs
are in general useful for track-to-track association es-
pecially when targets are closely spaced and the as-
sociation based on the kinematic states only is unre-
liable. In some cases one deals with sensors that pro-
vide target attributes but the associated kinematic in-
formation is highly inaccurate. In such a case it is of
interest to provide association decisions based on the
attributes/classification information alone. This is the
major motivation for the present work.

The rest of the paper is organized as follows. Sec-
tion 2 discusses briefly the use of (continuous valued)
kinematic and feature variables for track-to-track for as-
sociation. The modeling and use of (discrete valued)
attribute/classification information for track-to-track as-
sociation is presented in Section 3. The modeling of the

TExamples of features are radar cross-section and target length. Ex-
amples of attributes are number of engines of an aircraft and type
of emitter/waveform. Target classes can be, e.g., fighter vs. bomber
or specific aircraft type. A detailed discussion of target features, at-
tributes and classification can be found in [9, 10, 11, 12, 13].
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classifier is discussed and the classification sufficient
statistic is derived under the assumption of a constant
“confusion matrix.” The sufficient statistic calculation
from the class probability vector is presented. To obtain
the Neyman-Pearson test for “common class,” the sta-
tistical characterization of the classification information
sufficient statistic is developed in Section 4. Track-to-
track association using all the information is discussed
in Section 5. This section also presents a suboptimal
test statistic for association based on classification infor-
mation, as well as the (optimal in the Neyman-Pearson
sense) likelihood ratio test and discusses the methodol-
ogy for the performance evaluation. Numerical exam-
ples of the use of the likelihood function and likelihood
ratio test are given in Section 6. Section 7 presents con-
clusions.

2. TRACK-TO-TRACK ASSOCIATION USING
KINEMATIC AND FEATURE STATES

The problem of track-to-track association (T2TA)
has been considered in the literature only for tracks de-
scribed by kinematic states. If tracks also include contin-
uous valued nonkinematic features which are estimated
together with the kinematic states, they should be con-
sidered as part of the state in the process of track-to-
track association. Once a decision on common origins
of the tracks (actually, “same state”) is made, the state
estimates of those tracks deemed to correspond to the
same target (have the same true state) can be fused to
yield a more accurate target state estimate.

Assuming that the estimates of these features are
obtained in a manner similar to the kinematic variables,
their errors can be taken as zero mean Gaussian ran-
dom variables. In this case, the association likelihood
function based on the augmented state, consisting of the
kinematic and feature components, can be expressed in
the standard form [1]. This holds for continuous val-
ued observations of both continuous as well as discrete
valued features (the latter was discussed and illustrated
in [13]). A special case is the target radar cross-section
(RCS), which is positive and a Gaussian model is not
appropriate. While a Swerling fluctuation model can be
easily used for measurement to track association [1],
for track-to-track association, there is no known suffi-
cient statistic in this case for the hypothesis test, like the
difference of state estimates when they have Gaussian
errors. While a possible approach could be to use the
difference of the RCS estimates (or their logarithms)
with an (approximate) Gaussian assumption, the true
RCS for different sensors is probably not the same due
to the different aspect angles, which would make its
use questionable. The situation of discrete valued ob-
servations, which is related to attributes/classifications,
is discussed in Section 3.

For a pair of tracks, one can accept the “same state”
hypothesis H,: C” for track i from one sensor and track j
from another sensor if the normalized distance between
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their (augmented) local state estimates X' and X/ (at a
common time, not indicated in the above notation for
simplicity), which is chi-square distributed, is “not too
large.” Specifically, the squared norm

DY =& =) [T (& - %) (H
has to be within the 1 —«a probability region of the

chi-square distribution with n, degrees of freedom for
acceptance of the same state hypothesis, i.e.,

DY < (- )
where the notation from [3] has been used. In (1)
TV = pi 4+ p/— pii_pii 3)

is the covariance of the difference between the local
state estimation errors, which includes the local esti-
mation error covariances P!, P/ and the crosscovariance
term P due to the common process noise [1]. Note that
for the feature part of the (augmented) state, which can
be assumed in general time invariant without process
noise, the crosscovariance of feature estimation errors
between two local trackers is zero. For a practical way
to obtain the crosscovariances for kinematic state com-
ponents, see [7]. The acceptance region for H,, defined
by (2), is called kinematic gate [1].

According to the above, CV is rejected if there is
too much evidence against it—the difference between
the estimates is too large (relative to their accuracies,
quantified by the covariance matrices) to accept that
they are from the same true state. The hypothesis H,: C"/
is called in the literature “common origin,” but it is more
accurate to call it “same true kinematic state,” as (4)
indicates.

Due to the correlation in time of the track state
estimation errors [3], the test (1) is based on the track
estimates at a single (common) point in time. Typically,
since sensors (and the corresponding local estimators)
are not synchronized, one of the state estimates will be
a (short interval) prediction.

The test statistic (1), while commonly used in the
literature [1, 6] without proof of its validity, was proven
for the first time in [18]. This proof is briefly outlined
below, because it will be the basis of a similar approach
for the case of track association with classification
information to be presented in the next section.

The likelihood function of the same kinematic state
hypothesis C” is the pdf of the track sufficient statis-
tics (the kinematic state estimates) conditioned on C¥,
namely,

Ay (€2 3 | CV) = / pGELA | Dp(odx (4)
y

where x is the true common state of the two tracks and
V is the region in which x takes values. The r.h.s. of (4)
follows from the total probability theorem.
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Assuming the joint pdf of the local state estimates
to be

N &7 [x] [P PY
wsnes((LLL D) o

and using a diffuse (noninformative) prior [3] within a
“sufficiently large” region V, with volume V,

px)=Vv! (6)
the likelihood function (4) becomes [18]
Ay (CT) = VIIN G —37,0,TY). @)

This shows the validity of using the test (2), which
is based on the likelihood function (7) and states the
following:

“Reject the same state (and thus the common origin)
hypothesis if the normalized distance is in the a-tail of
its distribution.”

Note that the likelihood function (7) is a Gaussian
pdf with the simple sufficient statistic (1). The Gaussian
pdf makes it very easy to arrive at the test (2), which
excludes its tail. This is the main reason to assume the
estimation error of a continuous valued feature variable
to be Gaussian.

REMARK The sufficient statistic (1) follows from the
likelihood function of the “common origin” hypothesis.
Assuming for the alternative hypothesis H,: C'7/ (“dif-
ferent origin”) a uniform diffuse distribution [3] i.e., a
constant

A (CFy = ¢ ®)

yields the likelihood ratio for the Neyman-Pearson
test as (7) divided by the above constant ¢, which is
irrelevant—the likelihood function and likelihood ratio
tests are effectively the same (and have the same ROC
curve). Consequently, (1), which can be seen to be the
negative log-likelihood ratio, is optimal in the Neyman-
Pearson sense and the power of the test (2) is 1 —a.

The difference of the estimates, as in (7), will not be
an exact sufficient statistic for the situation of contin-
uous valued observations on a discrete valued feature.
Nevertheless, as shown in Section 5.2, one can use such
an approximate sufficient statistic effectively.

The generalization of (7) to an arbitrary number of
tracks can be found in [5]. This allows the association
of tracks from an arbitrary number of sensors based
on their local estimates, covariances and crosscovari-
ances.

3. TRACK-TO-TRACK ASSOCIATION USING
DISCRETE ATTRIBUTE/CLASSIFICATION
INFORMATION

This section deals with the modelling and use of
(discrete valued) attribute/classification information for
track-to-track association. The modelling of the classi-

fier is discussed and the classification sufficient statistic
is derived under the assumption of a constant “‘confusion
matrix.”

Consider the case where a track contains observa-
tions of discrete valued attributes from which one can
infer the target’s class. The following model will be as-
sumed for the target classes. It is assumed that there are
N, classes of targets. Let the possible classes be

keK ={l,....N.}. 9)

The target class is assumed to be time invariant.

If two tracks belong to different classes, they ob-
viously cannot have a common origin. The converse,
however, is not true: if two tracks belong to the same
class, they do not necessarily originate from the same
target, unless the class is a unique identity. Thus, what
can be accomplished with class information is testing
whether two tracks belong to the same class, rather than
originating from the same target. This is similar to the
test based on kinematic state estimates where the test is,
rigorously speaking, “same kinematic state” rather than
“same origin.”

3.1. Modelling of the Classifier Output

Let ¢ denote the output of the classifier. The clas-
sifier’s output is an attribute (an element of a discrete
set), which is related to the presumed class to which the
target under consideration belongs, as discussed below.
The output set can have, in general, a larger number of
elements than the set of target classes.>? Then

(ekK,={1,....N,} OK (10)
and it is assumed that one has
¢ =P{C=m|rk=n}, n=1,..N, m=1,.,N,
(11)

which are the elements of the “confusion matrix” (see,
e.g., [17])

C=1lc (12)

VZWL]‘

Note that c,, is the likelihood (probability of the ob-
servable conditioned on the truth of interest, see, e.g.,
[3]) of the true class being n when the classifier out-
put (the observable) is ¢ = m. Thus the class likelihood
function for classifier output m is the mth column of
the confusion matrix C. One can conceivably have the
likelihood functions depend on additional variables, like
target kinematic state (e.g., aspect angle, distance to tar-
get), lighting, etc.

In the sequel it is assumed that all elements in the
confusion matrix are constant and the same across dif-

2For example, one can have an “undetermined” class or a “class n
or n,.” Following [13], we use the term attribute for the observable
from which a probabilistic inference can be made on the target class.
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ferent classifiers. These restrictions can be removed by
using a time argument and/or a classifier index, in which
case, for classifier i at time k one would have the like-
lihoods ¢!, (k). However, in this case there is no suffi-
cient statistic as in Section 3.3. Furthermore, it will be
assumed that the classifier outputs are, conditioned on
the truth, independent across time (it has “white” errors)
and independent of the kinematic and feature variables.
This is the counterpart of the white measurement noise
for the kinematic measurements.?

3.2. Update of the Classification Probabilities

Denote by 10 the prior probability of class n (prior to
the observation under consideration). The posterior (or
updated) probability of a target being in class n, given
that the classifier’s output is m, is

0
Cnmlun
N, 0°
Zlél Crmtl

The corresponding class probability vector of the
target under consideration can be written as

jo=Plr=n|C=m}= (13)

0
p=mll (14)
ch
where ¢,, is the mth column of C, u° is the prior
probability vector and ® is the Schur-Hadamard product
(term by term) [16].

Similarly, for a track—a sequence of associated mea-
surements that includes classification information—the
updated class probability vector at time k, with classifier
output m, is given by

k—1
(k) = col[P{r = n| (k) = m, ¢} = %
(15)

where ¢¥~! denotes the cumulative classification infor-
mation at time k — 1 and

11(0) = 1°

is the prior before getting any classification informa-
tion.

It is worth mentioning that it is not via the proba-
bilities (14) that the observations are used in the update
(15), unless they are based on a uniform (i.e., nonin-
formative) prior [3]. The update (15) requires the latest
observation to enter via the likelihood function c,,. If one
has only probabilities as in (14) with nonuniform priors,
one can use the update/fusion procedure from Sec. 8.5.2

(16)

3Just like the measurements are correlated because they observe
(nearly) the same state, the classifier outputs will be correlated be-
cause the observe the same true variable, the class of the same target.
However, the errors of the classifiers, like the errors of the sensor
providing the kinematic measurements, are assumed to be white.
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of [1], which avoids the “double counting” of the prior
information.

3.3. The Sufficient Statistic for Classification

Denote the output of the classifier at time ¢ as
m(t), t =1,...,k. The recursion (15) can be rewritten
as follows

1 0
k) = = Cmtt) @ Cne—1) @+ D 1y O 1 (I7)
where « is the normalizing constant.

Note that, since the target class was assumed to be
time invariant, the actual times at which the classifier
outputs are generated are not relevant. Furthermore,
because of the commutativity of the Schur-Hadamard
product in (17), it can rewritten as follows

1 ),

(k) = Ecg"ﬂ oMo odMe®  (18)
where v, is the number of times the output of the
classifier was m and cl'"! is c,, raised to the power v,
with the Schur-Hadamard product.

Since

C}[;l/m] = [(Clm)l/m (CZm)Vm "'(CNCm)Vm]I, m = 1""’N

(19)

the sufficient statistic for the classifier output can be
seen to be the number of times each output class was
generated, i.e., it is the vector

(20)

v=[v,....vyl.

The existence of the above sufficient statistic hinges on
the assumption that the confusion matrix is constant.
Otherwise it appears that there is no such sufficient
statistic.

3.4. Calculation of the Sufficient Statistic from the
Classification Probabilities

In practice it is more likely that the information
provided by the classifier will be the class probability
vector (18) rather than the sufficient statistic (20). In this
case we need to recover the vector v from the vector p.
Note that both v and p consist of N, elements but the
elements of ; sum up to unity after normalization by «,
which is not known. The elements of v sum up to N,
the number of times the classifier provided an output

ie.,
Na
g v, =N.

m=1

2D

It is assumed that N and p° are known. This allows the
substitution

Na
v=N-> v, (22)
m=2
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in (18), which can be written for component n as (the
time index is omitted)

0o M 0 N N Um
— & (C )V/n — 'u’n(cnl) Cnm
- a nm - o P s
m=1 m=2 nl

n=1,...,.N

. (23)
The above is a set of N, equations in the unknowns
consisting of v,,, m =2,...,N,, and o.

Taking the log of equations (23), one obtains a set
of N, linear equations in the N, unknowns v,, m =
2,...,N,, and loga. If N, =N,, this set has a unique
solution, allowing us to obtain v, m =2,...,N, (note
that «, while part of the solution, is of no interest); v,
follows from (22). This provides the complete solution
in this case for the classification sufficient statistics v,,,
m=1,...,N,. As it will be shown later, this vector v (and
not 1) will be needed for the test whether two tracks
belong to the same class. If N, > N,, then in general
one cannot find the classification sufficient statistics v,,,
m =1,...,N, uniquely by solving the above equations
because there are not enough equations. In this case,
if one has only the classification probabilities, then the
likelihood function of the same class hypothesis cannot
be fully specified. If N, > N,, then one can use a subset

of N, equations from (23) to obtain the likelihoods.

4. THE SAME CLASS LIKELIHOOD FUNCTION
FROM CLASSIFICATION INFORMATION

This section presents the probability mass function
(pmf) of the classifier’s sufficient statistic, which is the
basis of the Neyman-Pearson test.

The pmf, denoted as P[-], of the cumulative (local)
classifier information using the sufficient statistic for
the (local) track i is, for a total number of N’ classifier
outputs, if the true class is n, given by the multinomial
distribution [21]

N,

m

Pl | K =n]= P[l/i,.. VN | K =n]=N" H Cnm
m=1 ﬂ’l
(24)
where the total number of classifier outputs is
Nu
Z Vo= (25)

m=1

For simplicity, we assume that the local classifiers
have the same confusion matrix C which is known
at the fusion center. Furthermore, the outputs of the
two classifiers are assumed, conditioned on the truth,
independent.* Then the likelihood of the “same class”

“4This is the counterpart of assuming independent measurement noises
at different sensors.

hypothesis H,: C¥/ can be written as follows

N,
(C)EP W €V =3 Pl | W = = n]u)

Cldbb n

n=1

Z

PV |k =n)P[V/ |k = n]ug
1

Il
=
I

Z

Vm + Vm

c Nll
— z,N“ H Cnm ]
1

V’ ’1/
n=

(26)

where ' and s/ are the true classes of tracks i and j,
respectively. Note that while in (4) the total probability
theorem was used with the diffuse (or improper) prior
(6) to yield (7), in (26) the proper (and not necessarily
uniform) prior ;° was used (since x takes values in a
finite set). In (26) it is assumed that the classification
errors are independent across time and sensors.

Using the same approach as in the case of the
continuous valued states, we propose, based on the class
information, to reject the common origin hypothesis if
there is too much evidence against it: if the likelihood
(26) is in the tail of its distribution.

We are faced with two problems here:

1) There is no simple sufficient statistic similar
to the normalized distance in the continuous/Gaussian
case. The difference of the two vectors v/ and v/ is not
the exact sufficient statistic for the hypothesis test. Nev-
ertheless, a suboptimal method based on this is explored
in the next section and evaluated later.

2) While there is an expression for the likelihood
function pmf, to find its “tail,” an exhaustive evaluation
of all its point masses is needed: these point masses
have to be ordered and the “tail” identified.

An alternative approach would be to use a Monte
Carlo method to determine whether a particular pair v/,
v/ is in the tail of the distribution. To evaluate a 5%
tail probability with 20 = 1%, one needs 2000 runs (of
N + N/ classifications), which is not too excessive.

In the examples presented later, the exhaustive evalu-
ation of the likelihood function pmf is carried out, since
it is not too expensive computationally. The number of
points at which (26) has to be evaluated is obtained
below.

The number of points (different outcomes) for the
pmf (24) is

M(N,,N")

= (Na)Ni _

>

kl ..... kN“E{O,l,...,Ni}
k1+~~~+kNﬂ=Ni

W

27

The above result follows from Eq. (1.18) in Ch. 2
of [21]. Namely, it is the number of elements in the
expansion of a multinomial of N, elements raised to
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the power N': it is (N,)"' less the number of outcomes
which are equivalent because the order does not matter.
The latter is given, for a certain outcome, by the corre-
sponding multinomial coefficient less one because for
each outcome we remove only the duplicates.

The number of points at which (26) has to be
evaluated is then

M(N,,N',N/) = M(N,,NYM(N,,N/). (28)

5. TRACK-TO-TRACK ASSOCIATION TESTING USING
ALL THE INFORMATION

This section proposes a procedure to test for com-
mon origin by decoupling the continuous variables from
the discrete ones. Then the details of a simpler subop-
timal test as well as the optimal (likelihood ratio) test
using the discrete attribute variables are presented.

5.1. Test using the Likelihood Function of H,

It seems reasonable to accept that tracks i and j are
from the same target if

1) Their continuous valued state (kinematic and fea-
ture) estimates are “close enough” to accept that their
kinenatic/feature stats are the same—they satisfy (2),
and

2) Their classification does not present strong evi-
dence that they cannot be the same, i.e., A, (CV), given
in (26), falls into the 1 — a probability concentration re-
gion under H,. In this case the “same class” hypothesis
H, is accepted.

This sequence of tests assumes implicitly that the clas-
sification errors are independent of the kinematic and
feature variables. While one can write a joint likelihood
if there is a dependence [23], a joint test does not seem
to be available at this point due to the mixed nature
(continuous-discrete) of the likelihood function and the
ensuing lack of a joint sufficient statistic.

5.2. Test using the Difference of Local Classification

Sufficient Statistics

To reduce the complexity of the likelihood function
given in (26) and thus simplify the computation of
the probability region (the “attribute gate”), we also
consider using the difference of the local classification
sufficient statistics in the hypothesis test. The results are
particularly useful for the “same class” test involving
only two targets.

As a preliminary, consider the difference

z=x—Yy (29)
of two discrete-valued random variables
xe€{0,...,n.} y€10,....n,} (30)
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which yields
(3D

z€{-ny,...,n}.
Then

P{z=n}= i:P{x =k}P{y =k —n}.

k=n

(32)

Let the difference of the local classification sufficient
statistics given in (20), now superscripted by the sensor
index, be

60 = 187, 61 = I} — vl — ] 33)
which yields
W e(-N N}, k=Lo.N. (4

The pmf> of the above vector is, based on (32), given
by

N N'
P[67 |k =n] = Z Z P{v =kl,...,1/;\,u =ky, |k =n}
k=

8y =8y,
x P{v] =k, —6],....vi =ky, — 6y |rk=n}
(35)

where the probabilities in the N,-fold summation above
are given in (24).

5.3. Test using the Likelihood Ratio of H, vs. H,

There is an alternative approach to use the classi-
fication information: rely on the likelihood ratio of the
two hypotheses, rather than only the likelihood function
of H,. This is done as follows.

The hypothesis H,: C'#/ that the two targets are
different, i.e., belong to different classes, is composite
and can be written with the total probability theorem as
follows

Aclass(ci#j) é P[Ui, l/j | C#.i]

N. N,
= > PWV K =n# s = lun

n=11=1,l#n

i J
I/m Vi

N. N Na e
i i nm 00
= »  NUNI! lH —’m] 04

i1l
n=11=1l#n m=1Ym-Vm:

(36)

The test statistic (based on the classification information
only) is then the ratio of (26) to (36) i.e.,

Aclass (C[j)

Aclass(cl#]) ( )

)‘class(cij :C[#j) =

SDenoted as P[-], while P{-} denotes the probability of an event.
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Fig. 1.

1.2

The probability mass function of the local classifier sufficient statistics (v;,v{) under the same class hypothesis (likelihood function

1°71

of H)).

and the acceptance region for H, is obtained by finding
the 1 — « probability concentration region for this ratio
under H,.

For the kinematic and feature variables, typically,
the alternate hypothesis is usually modeled by a diffuse
pdf [3], i.e., it amounts to a constant that rescales the
likelihood function into the likelihood ratio. Thus they
are effectively the same test. Consequently, we shall
focus on the tests based on classification variables.

5.4. Performance Evaluation of the Tests

To find the probability of false alarm (acceptance of
H, when H, is true) for the likelihood function based
test, one has to evaluate numerically the probability
mass of (26) under H, in the acceptance region for H;.

For the likelihood ratio based test, one has to evalu-
ate the probability mass of the likelihood ratio test statis-
tic (37) under H, in the acceptance region for H,. These
are illustrated in the next section.

6. NUMERICAL EXAMPLES

Assume that each target belongs to one of N, =2
classes and each classifier output provides target at-
tribute (taken here as its class, i.e., N, = 2) with the ac-
curacy given by the following time invariant confusion

matrix
0.9 0.1
C= . (38)
0.2 038
Based on the sufficient statistics from two local clas-
sifiers, we want to test whether the two targets belong
to the same class (hypothesis H,) vs. different classes
(hypothesis H,). Note that the common origin hypoth-

esis will be rejected if according to the hypothesis test
it is very implausible. Assume that the target has equal
prior probability of belonging to each of the two classes
and the total number of outputs for each local classifier
is N’ = 20, the pmf of the sufficient statistic under the
“same class” hypothesis is shown in Figure 1 for differ-
entvi,i=1,2°

We can see the two peaks at (18,18) and (4,4) corre-
sponding to the two possible classes of the truth. In gen-
eral the pmf will have N, (number of attributes) peaks
due to the uncertainty about the truth. The decision re-
gion based on the likelihood function (26) to allow 5%
missed detection of H, is shown in Figure 2. This fol-
lows from the o = 5% tail probability mass of the pmf
plotted in Figure 1. Unlike in the Gaussian case (for
continuous valued states), the “same class” test (which
is for discrete states), in general, yields an irregular de-
cision region. This is the attribute gate, defined in the
vi,i=1,2 space. In this example we have only two pos-
sible combinations for the evaluation of (36) when the
two targets belong to two different classes, so one can
evaluate the likelihood function of H, relatively easily.

The pmf of v? — v} is shown (as a bar plot) in the
top part of Figure 3. It is symmetric around zero, as ex-
pected. The (moment matched) normal probability plot
(cdf—cumulative distribution function) in the bottom
part of Figure 3 indicates that the difference of the local
classification statistics (whose cdf is the shown stair-
case function) can be well approximated by a Gaussian
distribution. By numerical calculation we found that the
decision region (attribute gate for the above difference)

%In view of (25) and the fact that there are only two classes, l/i is a
sufficient statistic for classifier i.
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Fig. 2. Decision regions (attribute gate in the (ull,ulz) space) based on the likelihood function of H; with 5% probability of incorrectly
rejecting it.

Fig. 3. The probability mass function of the approximate local classifier sufficient statistic (Z/12 - ull) and the corresponding
moment-matched normal probability distribution under the “same class” hypothesis (likelihood function of H,). The 95% attribute gate for
this difference is [—4,4].

to allow 5% missed detection of H, is [—4,4]. This is
much simpler than the class gate given in Figure 2.

The log-likelihood ratio surface of the same class
(H,) vs. the different classes hypothesis (H;)—the ratio
(28)—is shown in Figure 4. The prior for the classes is
taken here as uniform. The decision region based on the
likelihood ratio (28) to allow o = 5% missed detection
of H, is shown in Figure 5.

Comparison of the various tests

By numerically evaluating the pmf of the likelihood
ratio statistic (37) under H, in the acceptance region
for H,, we find the false alarm probability (acceptance
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of H, when H, is true) as 8.1 x 10~%. Compared with
the decision region shown in Figure 2, which yields a
false alarm probability of 1.9 x 10~7, the likelihood ratio
test has only a marginal performance gain in this case.
Interestingly, the decision region based on the difference
of the local classification statistics yields a false alarm
probability of 9.1 x 1075, which is higher than both of
the above, but still quite small.

7. SUMMARY AND CONCLUSIONS

The likelihood function and likelihood ratio based
tests for track-to-track association using classification
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Fig. 4. The surface of the log-likelihood ratio between the same class (H,) and different classes (H,,) vs. the local classifier sufficient

|

1.2

statistics (v;,v7). Note the two peaks, one for (v;,v{) both large, one for both small.

1°71

Fig. 5.

1°71

Decision region for the likelihood ratio test with 5% probability of incorrectly rejecting H,. This is the 95% attribute gate in the

(Vll s 1/12) space.

information have been derived and the means for eval-
uating their performance have been presented and illus-
trated. The sufficient statistic for the optimal association
test in the Neyman-Pearson sense was obtained and its
relationship with the class probability vector was dis-
cussed. The likelihood ratio test does not appear to have
significant advantage over the test based on the likeli-
hood function. The simplest test, based on the difference
of the local sufficient statistics—similar to the test for
continuous valued state estimates—yields a false alarm
probability which is higher than for both of the above

tests, but still quite small. The generalization to different
and possibly time varying confusion matrices is a topic
for future investigation.
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