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From the Administrative Editor
December 2007

Review and Production Process of JAIF Manuscripts

The Journal of Advances in Information Fusion (JAIF)
has been in publication since the first issue in July 2006.
A new issue of the journal is published every six months
and posted on the web site of the International Soci-
ety of Information Fusion (ISIF) at http://www.isif.org.
Each issue typically features four to six original arti-
cles. Bringing each article to you involves many steps
that begin with a new manuscript submission and ends
with posting of the final typeset manuscript on the ISIF
web site. We are often asked by authors to estimate
how long the review and production process takes in
JAIF. However, no universal timeline exists for papers
to go from manuscript submission to publication, and
this is typically true for most journals. Some journals
achieve a shorter timeline by reducing the peer review
process.

When a new manuscript is submitted to JAIF, it is
automatically assigned to the Area Editor for the tech-
nical area selected by the corresponding author. The
Area Editor assigns an Associate Editor under their area
to handle the actual review process. Area Editors can
also serve in the role of an Associate Editor. The Asso-
ciate Editor uses the web-based system to assign three
to four reviewers who have the appropriate technical
background for evaluating the manuscript. This process
often takes more time than one would anticipate because
technical experts are busy and not always available to re-
view it in a timely manner. Referees are given forty-five
days to complete the review, and typically, the referees
take more than forty-five days. Further, in many cases,
potential referees do not respond promptly to a request
to review a manuscript. As a result of these issues, the
Associate Editor has to seek new potential referees for
the manuscript further delaying the review process.

The referees' responses usually include detailed
comments that are used by the authors to help improve
the manuscript and a recommendation on publication
of the manuscript. Based on these responses, the As-
sociate Editor makes a decision to accept, reject, or
conditionally-accept the manuscript after further revi-
sions. This letter is produced within the JAIF system
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by editing the appropriate decision letter. Before this
letter is sent to the authors, it is reviewed and approved
by both the Area Editor and the Editor-in-Chief. The
typical manuscript is not accepted after the first cycle
of reviews. Conditionally-accepted manuscripts are sub-
jected to one or two (and sometimes three) cycles of
additional revisions byte authors before it is accepted
for publication. This process takes a few months to
more than a year to complete. The reviews of no two
manuscripts are identical nor take the same amount of
time, and the more problems that the referees find with
a manuscript the longer it takes the manuscript to get
to publication. While such rounds of revisions might
sound painful, the goal is to improve the quality of
the paper and make it suitable for a selective archival
journal—the stated goal of JAIF from its inception.

When a JAIF manuscript is accepted for publica-
tion, the authors are instructed to follow the guidelines
found at http://www.isif.org/jaif.htm to prepare all re-
quired files for publication. These files are uploaded to
the web-based review system or sent electronically via
email to the Administrative Editor. It is important for
authors get these files in as soon as possible so that the
paper will appear in the next the available issue. Fur-
ther, it is important for authors to submit all required
files as these are utilized by the typesetter to produce
a professional looking paper. A long delay in getting
all required publication files to the Administrative Ed-
itor will extend the delay in publishing the associated
manuscript.

Manuscript files received by the Administrative Ed-
itor are audited for completeness and accuracy, and
sent to production after they are found to be accept-
able. The typesetter uses LaTex to prepare a draft of
the manuscript. The typesetter provides proofs of the
manuscript to the Associate Editor-In-Chief, who re-
views it for errors (i.e., technical, grammatical, format-
ting, etc). This review is in addition to the normal peer
review performed by the referees. Once this editorial
review is complete, the proofs and corrections are sent
to the authors for further proofing. The goal of these
multiple reviews is to ensure that high quality papers
are published in JAIF.

While the delays in publication for the peer review
and production processes can at times be frustrating for
authors, the standards are set to provide high quality
manuscripts to be published in JAIF. This strengthens
the reputation of the journal and benefits the authors and
research community. Thus, the editorial staff of JAIF is
satisfied to publish two issues per year of high quality
papers as opposed to more issues with paper of lesser
quality. However, as JAIF grows with more manuscript
submissions, the number of issues per year will increase.

Thank you again for submitting your manuscripts to
JAIF, and the editorial staff encourage you to continue
to consider JAIF for future manuscripts and serve our
research community as a reviewer for JAIF.

Robert Lynch
Administrative Editor
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Performance Analysis of
Decentralized Kalman Filters
under Communication
Constraints
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Distributed fusion architectures are often used in multi-sensor
target tracking as they are more robust and more flexible than
centralized architectures. Furthermore, they allow for a reduction
in the required communication bandwidth with only limited effect
on the estimation performance. The trade-off between bandwidth
and performance is analyzed in detail for the special case of a
decentralized Kalman filter. As a result of this study, a conservative
fusion approach for such systems with a reduced communication

rate is proposed.
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1. INTRODUCTION

In target tracking, multi-sensor systems are becom-
ing more and more popular [14]. The advantages es-
pecially for physically distributed sensors are obvious:
multiple viewing angles, different strong points of dif-
ferent sensors, and a higher robustness due to the inher-
ent redundancy. On the other hand, some kind of fusion
is necessary to integrate the data from the different sen-
sors and to extract the desired information about the
targets.

Traditionally, centralized fusion architectures have
been used as their application is straightforward. All the
data from the different sensors is sent to a single location
to be fused. In recent years, increasing emphasis has
been placed on distributed fusion where several fusion
nodes exist in the network, like e.g., the Decentralized
Kalman Filter (DKF) [11, 27], which is studied here,
but also the covariance method [2], the federated filter
[6, 7], a fusion system based on channel filters [23], and,
most recently, a unified framework for optimal linear
estimation fusion [16-21, 29].

As usual, the approaches based on Kalman filters
are thereby mainly restricted to the linear Gaussian case.
Furthermore, the unified framework is theoretically very
insightful. As detailed in [17], the required generalized
covariance matrix can, however, only be calculated ac-
curately for some special cases. In many cases, it needs
to be approximated numerically or even manually tuned.
Finally, even if the covariance matrix can be determined
accurately, this need not necessarily be possible in a
recursive way so that no recursive estimator can be de-
signed [16].

In a distributed fusion system, the sensor measure-
ments are processed locally to produce state estimates,
which are then transmitted between the fusion nodes.
This approach is conceptually more complex as, even
for statistically independent measurements, the local
state estimates are correlated in time and among each
other. In contrast to centralized fusion, there is also
the danger of reusing information. Common informa-
tion has to be detected and discarded in the fusion
process. Additionally, the task of data association in
tracking multiple targets, which is already difficult and
still an active area of research for centralized archi-
tectures [4], becomes even more complex in the dis-
tributed case where only parts of the data are available
at each fusion node. Finally, distributed fusion can even
be inherently suboptimal [18]. A sufficient condition
for distributed fusion to be optimal, however, is that
the measurement noises are uncorrelated, which is of-
ten at least approximately given in real world scenar-
ios.

On the other hand, the advantages of such distributed
fusion architectures are a higher robustness due to a re-
dundancy of fusion nodes and a lower processing load
at each fusion node. It is also easier to integrate or scale
existing systems. Therefore, distributed fusion is espe-
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cially advantageous for large scale systems with many
sensors. For such a system, another problem typically
consists in only a limited amount of communication
bandwidth being available. In this case, distributed fu-
sion opens up the possibility to trade off bandwidth
against performance by letting the fusion nodes com-
municate at reduced rates.

In [8, 12, 22], it was already pointed out that, if the
communication rate is reduced, the information con-
veyed by the different local processors becomes cor-
related due to propagating the same underlying pro-
cess noise. However, no quantitative measures for the
amount of performance degradation were given. In [10],
formulas describing the steady state performance of a
DKF for arbitrary communication rates were derived
and compared with simulative results for a linear system
with two sensors and a nearly constant velocity model
for the target dynamics. In our work, a simple formula
for the performance degradation in the worst case of
ignoring the correlation completely is derived. Its eval-
uation is straightforward compared with the solution of
the asymmetric Lyapunov equation in [10]. As it repre-
sents the worst case, this analysis can be used to turn the
too optimistic estimates of a system with reduced com-
munication rate into conservative ones. Furthermore, the
simulative study is extended to a nearly constant accel-
eration model, which results in some further insights.

The rest of this paper is organized as follows: The
Decentralized Kalman Filter (DKF) is introduced in
Section 2. In Section 3, the bandwidth requirements of
centralized and distributed fusion architectures are com-
pared with each other. The possibility for a reduction in
communication rate is detailed in Section 4, and the re-
sulting performance analyzed in Section 5. Based on the
results, a new conservative fusion approach is proposed
in Section 6. Finally, Section 7 recapitulates the most
important findings.

2. DECENTRALIZED KALMAN FILTER

For a Kalman Filter (KF) to be applicable, the tar-
get’s dynamics need to be modeled by the following
state space equation

x(k + 1) = Fx(k) + w(k) (1)

where x(k) is the state vector of the target at time in-
stant k, typically containing the target position, velocity
etc. F is the time-invariant state transition matrix and
w(k) a white noise sequence with covariance matrix
Q(k) representing the process noise. The state transition
matrix F could just as well be time-variant for a KF.
As this is not the case for the models studied later, it is
omitted here.

Respectively, the linear measurement models are
given by

y; (k) = Hx(k) + v,(k) (2)

where y;(k) is the observation vector of the ith sensor,
i=1,...,N. H; is the corresponding measurement ma-
trix and v,(k) a zero-mean, white noise sequence with
covariance matrix R,(k) representing the measurement
noise. To avoid stability issues [28], we assume for sim-
plicity that every sensor is able to measure the complete
position of the target and, thus, that the system is fully
observable. Furthermore, only one easily detectable tar-
get shall be present in the scene without any clutter so
that the task of data association is trivial.

According to these model equations, the Centralized
KF (CKF) algorithm with multiple inputs in its infor-
mation form can be described as recursively performing
the following two steps to calculate the overall state esti-
mate Xxp(k | k) and error covariance matrix Peygp(k | k)
at time instant k [3]:

1. Prediction
Rewp(k | k= 1) = FRep(k — 1 [k —1)
Pop(k | k—1) = FPo ok — 1 [ k— DF +Q(k —1).

3

“

2. Estimate correction
Xexp(k | k) = Pogp(k | k) (Palq:(k |k —DXcxpk [k —1)
N
+ ZH?Rﬂ(k)y,»(k)) )
i=1

N
Popp(k | k) = Pogp(k [k — 1) + ZHZR;l(k)H,..

i=1

(6)

This is called the information form as the inverse of
the covariance matrix P~! is a measure for the accuracy
of the corresponding state estimate X and thus for the
information contained in it. Accordingly, P~'(k |k —1)
determines the weight given to X(k | k — 1) in (5).

In the Decentralized KF (DKF), Local Kalman Fil-
ters (LKFs) produce estimates X;(k | k) based on the in-
formation available from a single sensor i using the stan-
dard KF equations, i.e., (3)-(6) with N = 1. At a Fusion
Center (FC), these estimates are fused together to form
the overall state estimate Xpr(k | k) [22]:

ﬁDKF(k | k) = PDKF(k | k) (PDII(F(k ‘ k— l)ﬁDKF(k ‘ k— 1)

N
+ 3P k[ Rkk | )
i=1

— Pk | k= DRk | k— 1)1>

. . @)
Ppkr(k | k) = Ppgp(k | k—1)

N
+ [Pk [ k)~ P (k[ k= 1)]

i=1

&)
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where P and P; are the error covariance matrices of
the state estimates Xpgp at the FC and X; at the LKFs,
respectively.

The state estimate ﬁDKF(k | k) in (7) can easily be
shown to be equivalent to ﬁCKF(k | k) in (5): Solving (5)
in the single sensor case, i.e., N = 1, for the weighted
measurement H[TRI._ l(k)yl-(k) leads to the equivalence
between HiTRfl(k)yi(k) in (5) and the gain in informa-
tion between the predicted local estimates X.(k |k — 1)
and the corrected ones X;(k | k) in (7)

HIR; ' (k)y;(k) = P; ' (k | k)X,(k | k)

—P k| k—Dx;(k [k—1). (9)

Therefore, it is not the information contained in the
local estimates itself but the gain in information that
counts.

3. BANDWIDTH REQUIREMENTS

Looking at (7) and (8), it is sensible to save band-
width in a DKF by directly transmitting the vector'

A)A(Weighted,i(k) = P,_l(k | k)ﬁl(k | k)
—P7 (ke [k = DXk [k—1) (10)
and the matrix

AL(k) =P (k| k) —P; (k[ k—1) (11)

instead of P;!(k|k), X,(k | k), P;'(k|k—1) and x;(k |
k —1). This not only saves half of the communication
bandwidth but also processing power at the FC.

Despite these savings, the bandwidth required by a
distributed fusion network may still be higher compared
with a centralized architecture, as the information pack-
ages are usually larger due to the state vector being of a
higher dimension than the measurement vector. On the
other hand, mislocalizations due to clutter are filtered
out locally and need not be transmitted. Furthermore,
many sensors do not provide position measurements of
the object directly but merely scan the scene, like e.g.,
laser-radars. In this case, the bandwidth requirements
would increase dramatically if the measurements were
not preprocessed locally and, thus, a distributed fusion
architecture lends itself naturally.

For a large system with many sensors, it is also likely
that the central processor or the communication network
are not able to handle the large amount of data trans-
mitted by the sensors. In this case, centralized fusion is
no longer applicable except if a corresponding amount
of measurements is discarded completely. This is, how-
ever, likely to affect the estimation performance severely
if no smart communications resource management tech-
niques are applied [24]. In this case, distributed fusion
opens up the possibility to distribute the processing load

Ly .= .. means “x is defined as ...”.

and to save the necessary bandwidth by letting the fu-
sion nodes communicate less frequently.

Additionally, solar and battery powered sensors
without wiring have become popular recently as they
are easy to install [5, 13]. Due to their limited energy re-
sources, it is important to save transmission energy even
if sufficient bandwidth is available. The economical us-
age of transmission energy will become even more im-
portant in the future as the performance of microproces-
sors increases continuously according to Moore’s law so
that they need less and less energy for the same task.
The energy needed for the transmission of the data is,
however, mostly unaffected by these improvements [5].

Finally, it is sensible to adapt the reduction in com-
munication rate to the movement of the tracked target.
If the object is stationary or if it moves with a nearly
constant velocity, its future state can be predicted more
reliably and the communication rate can be reduced fur-
ther than for a maneuvering target [9].

4. REDUCED COMMUNICATION RATE

As far as the DKF is concerned, reducing the com-
munication rate at which information packages are sent
from the LKFs to the FC by a factor m results in all
predictions by one step being replaced with predictions
by m steps in (7) and (8):

)}DKFm (k ‘ k) = PDKF,”(k | k)

<PD}<Fm (k | k —m)Xpyg, (k |k —m)

N
+ Y [Pk | KXk [ k)

i=1
—P; (k| k—m)X;(k | k — m)])

- - 12)
Pok, (k | ) = Ppgp, (k [k —m) (

N
+> (@7 k[ k) =P (k | k—m)).
i=1
(13)

Any other communication issues are ignored for sim-
plicity. Like in Section 2, it is still assumed that all
sensors run synchronously and that information pack-
ages travel over communication links without any delay.
Furthermore, the update rate at the LKFs is not affected.
The LKFs still run at the sensor observation rate.

Unfortunately, if the predictions by one step are re-
placed by predictions by m steps, the gain in informa-
tion is no longer based on one measurement but on
m measurements and m — 1 predictions. As these m — 1
predictions are subject to the same process noise in all
LKFs, the gain in information of the different LKFs is
no longer statistically independent.
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As this statistical dependence is not taken into ac-
count during the fusion process in the FC, the perfor-
mance of the DKF degrades for such a reduced commu-
nication rate [10, 22]. On the other hand, if w(k) =0,
i.e., the target’s dynamics can be modeled exactly, the
local estimates f(i (k | k) are not correlated and, therefore,
the communication rate can be reduced at will without
any performance degradation.

For less and less frequent communication between
the LKFs and the FC, i.e., m — oo, the information
contained in the predicted state estimates becomes
less and less reliable. This is represented by the in-
verses of the corresponding error covariance matrices
Pop(k | k—m) and P;'(k|k—m) approaching zero.
Thus, no weight is given to these estimates and they
can be discarded in (12) and (13) leading to

N
ﬁna‘l‘ve(k | k) = Pna‘l‘ve(k | k)ZPfl(k ‘ k)ﬁl(k | k)
i=1
(14)

N
Pk k)= Pl (k| k).
i=1

15)

This is equivalent to the so-called naive fusion architec-
ture that assumes the local state estimates X,(k | k) and
X (k | k) to be statistically independent for all i # j.

As a consequence, m — oo would result in a system
where infinite intervals lie between two communication
cycles so that no data would ever be transmitted. The
performance of this hypothetical system can, however,
readily be determined using the naive fusion architec-
ture whose track estimate can be formed for every time
instant k, i.e., at the sensor observation rate.

From a different perspective, this somewhat aston-
ishing finding can be explained as follows: As already
stated, the local state estimates are statistically depen-
dent due to propagating the same underlying process
noise. This statistical dependence is properly corrected
for in the DKF of (7) and (8) by the term

Xpp(k |k — 1) := Pokp(k |k — DXpyp(k [ k— 1)

N
= PNk [k — DXk | k—1).
i=1
(16)
In the DKF,, of (12) and (13), this term is approximated
by

Xpr, (k | k—m) := Poke (k| k —m)Rpyp, (k | k—m)

N
= PNk [k —m)X;(k | k —m)
i=1
(17)

and the DKF, ;. of (14) and (15) neglects the sta-
tistical dependence completely, i.e., Xpgr (kK [0)=0.
Therefore, it can serve as a worst case scenario for

such a reduction in communication rate, i.e., the esti-
mate ﬁna.fve(k | k) in (14) is always less accurate than
)A(DKFm (k | k) in (12), for all values of m.

Finally, it should be noted that Ppgp is a valid
estimate of the mean square error as it is an optimal
Kalman filter. This is, however, neither true for P,
nor for P (except for w(k) =0). As the DKF,, and
the DKF, ;. ignore the correlation between the local
estimates at least partially, they overestimate their own
performance, i.e.,

Paive < PDKFm <Ppkr = E{XDKFXEKF}
S E{XDKFm XEKFM} S E{Xnai'vexga'ivc} (1 8)

where X, (k| k) =X, (k| k) —x(k) and “A <B” means
that the difference B — A is positive semidefinite. The
relationship in (18) is valid for “(k|k)” as well as
“k|k—1)".

For complex systems containing several hierarchies
or even feedback loops, this inconsistency between
estimated and true error covariance matrix can build up
and cause stability problems. Furthermore, it may cause
problems during the association of the measurements to
the tracked objects.

naive

5. PERFORMANCE ANALYSIS

In this section, the performance degradation due to
infrequent communication is investigated in detail. First,
the performance of the DKF, . defined by (14) and
(15) is derived theoretically. As detailed in Section 4, it
presents an upper bound on the performance degrada-
tion for a reduction in communication rate, as it ignores
the correlation between the local estimates completely.
Its performance is equivalent to a hypothetical system
where infinite intervals lie between two communication
cycles, i.e., m — oco. Second, the theoretical performance
degradation is compared with simulative results. Finally,
a simulative study concerning the performance of the
DKEF,, of (12) and (13) is conducted for realistic reduc-
tions in the communication rate m < co.

5.1. Theoretical Analysis of DKF, .. .

The theoretical performance of the DKF, ;. defined
by (14) and (15) can be derived as follows. Introducing
X, (k | k) = x,(k | k) —x(k) in (14) leads to

Patve(k | DRgie (k | K)

naive

N
=> P k| Xk | k)

i=1

N
— |Prdvelk [ K) = > Pk [ )| x(Kk). (19)

i=1
According to (15), the second term is zero. There-

fore, the true error covariance matrix P (k|k):=
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E{X, 0 (k | K)XL satisfies

P_l (k| k)P

naive true

(k| k)} of the DKF
(k | kP!

naive naive naive

(k | k)

naive

Sk | k) + Z Pk | S, (k| kP (k| k))
j=1j#i

(20)
where the cross-covariance 3; j(k | k) between two local

estimates X;(k | k) and X;(k | k) can be determined using
the following equation [1]

%k | k) =I-K;(kbH,)- (FX%, (k-1 k- DF" +Q)
(I-K;(H)". (21)

K;(k) and K, (k) denote the Kalman gains. Using (15)
once more, (20) becomes

true(k | k)
nalve(k | k) + PﬂalVC(k | k)
N
: (Z > Pk Bk [P k| k)) P,k | K).
i=1 j=1j#i

(22)

Therefore, the inconsistency of (18) between the true
covariance matrix Py, = E{X (k| K)XL (k| k)} and
the estimated covariance matrix P, . consists in the
term depending on the cross-covariance ¥, ; between
the local estimates.

The case of identical sensors, i.e., P;(k|k) =
P, xp(k | k) Vi, also results in %, ik | k) = X,k | k) =
3 krs(k | k) Vi, j. Therefore, the true error covariance
matrix simplifies to

lrue(k | k) ﬂalVe(k | k) + N(N nalve(k | k)
‘Pillq:(k | k)ELKFs(k ‘ k)PEKF(k | k)Pna'we(k | k)
nalve(k | k) + LKFs(k | k) (23)

as P o (k | §) = <1/N>PLKF</< &),

The evaluation of (22) and (23) is straightforward
compared with the solution of the asymmetric Lyapunov
equation in [10] describing the steady state performance
of a DKF for arbitrary communication rates, as the
latter consists of several non-trivial systems of linear
equations. A further advantage consists in the fact that
the term depending on the cross-covariance X, ; in
(22) and (23) represents an explicit explanation for the
inconsistency of the naive fusion architecture.

5.2. Simulative Analysis of DKF

naive

In addition to validating the theoretical analysis of
the DKF .., the following simulative study shall pro-
vide some quantitative numbers for its performance
degradation and its inconsistency in typical tracking sce-
narios. In contrast to [10], the study not only covers a

026
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o 021F !
= o2
0.19}
(R | R R St
P
5 10 15 20 25 30 35 40 45 50 55 60
Time [s]
Fig. 1. Comparison between true and estimated MSE of DKF and

DKF, ;.. (@ncy =0.01m?/(s*), T, =15, 0, =1 m).

nearly constant velocity but also a nearly constant accel-
eration model for the target dynamics. The results lead
to a generalization of the target maneuvering index [3],
which is commonly used as the decisive parameter for
describing the performance of a Kalman filter. For sim-
plicity the comparison is restricted to the steady state.

5.2.1. Nearly Constant Velocity

First, N =2 sensors track a target whose one-
dimensional dynamics can be described by the follow-
ing Nearly Constant Velocity (NCV) model [3]

xk+ D) _[1 L] [x®] ©
L‘e(k+ 1>} - {o 1] L‘e(k)] Ve

where the process noise is given by

(24)

LT —t
Wy (k) = /0 {51 ]uNCV(m;H)dt 25)

and uycy(?) 1S zero-mean continuous random noise with
power spectral density gycy, leading to the following
process noise covariance matrix

173 172
3l 3T

1
T

s

(26)

Quev = [ } 4dnev-

The measurements y,(k) are the position in Cartesian
coordinates

yitk) = x(k) +v;(k),
2

i=12 (27)

with variances o
Fig. 1 presents the comparison between the true and
estimated Mean Square Error (MSE)

MSE ~ E{(%,(k | k) — x(k))*} (28)

of the position component in f{DKF(k|k) of (7) and

X, .ive(k | k) of (14) for a typical example, where gycy =
0.0lm?/(s*), T, =1 s and o, = 1 m. The “true” MSEs
are thereby averaged on 5000 Monte Carlo runs. In
accordance with (18), it can be seen how the DKF
slightly outperforms the DKF, ;. by approximately 4%.
Furthermore, the DKF estimates its accuracy correctly
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Fig. 2. Comparison between MSE_ . . and MSE, 1. as a function
of the process noise gycy (o, = 1 m).
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Fig. 3. Comparison between MSE . and MSE, . normalized by
2

o, as a function of the process noise gycy (T, =1 8).

v

whereas the DKF, ;. . produces estimates of its MSE that
are about 16% more accurate (smaller) as compared to
the DKF,, even though its true MSE is slightly worse.

Fig. 2 displays the true MSEs of DKF and DKF ;.
averaged over time as a function of the process noise
gncy for three different sampling periods 7, = 0.1 s, 1 s,
10 s and a measurement noise o, = 1 m. Fig. 3 shows the
corresponding comparison for varying o, = 0.1 m, 1 m,
10 mand 7; = 1 s. To allow for a comparison, the MSEs
are normalized by o2 this time. For every point on each
line, 1000 Monte Carlo runs with 400 measurements
per simulation were performed. To obtain an estimate
of the steady state performance, the averages are only
based on the last 200 measurements.

For high values of gycy, the curves in both figures
approach the variance of the combined measurements
02 comb = Tr1022/(02 | + 02,) = 0.507. For low values of
gncy - they should approach zero as KFs are able to esti-
mate the position arbitrarily precisely if no process noise
is present and if a sufficient number of observations is
available. Due to a finite number of observations, this
is not the case here.

In both Figs. 2 and 3, changing the parameter merely
results in a shift of the corresponding curves. Their
shape is not affected. If 7, is increased by a factor of
10, gncey needs to be decreased by a factor of 1000
to obtain the same results. On the other hand, if o, is

0.06

0.05

0.04

0.03

0.02

0.01

~0.01 i i i j

Hev

Fig. 4. Relative difference A, between MSE . . and MSE . as a
function of the target maneuvering index fiycy -

increased by a factor of 10, gycy needs to be increased
by a factor of 100.
Therefore, using the target maneuvering index [3]

finey 1= anev Y
NCV - Jg

as independent variable leads to an invariance against a
variation in the sampling period 7, and the measurement
noise o,. This can be seen in Fig. 4, which shows the
relative difference?

(29)

1,1 1,1
— MSEna’l‘vc — MSEDKF ; Pir(ue - PD(KF)
A, = — (30)
MSEkr Bk

between the six corresponding dashed and solid curve
pairs in Figs. 2 and 3. The identity with the right-hand
side follows from the definition of P, in (23) and the
fact that the DKF estimates its accuracy correctly. This
analytical prediction of A, is represented by the bold
line.

For large values of jucy, the different curves all
approach zero. This can be explained by the predicted
states X;(k | k — 1) being not only correlated but also un-
reliable in this case. As large values of puycy also imply
a large process noise g, the predicted states are given al-
most no weight compared with the measurements y;(k)
in calculating X;(k | k) in the LKFs. Note that the Kalman
filters are of little use in this case.

For small values of jiycy, (23) predicts A, to ap-
proach 5.1% asymptotically, whereas the simulations
show A, to approach zero. This significant difference
can be explained by the analytical curve predicting the
steady state behavior, whereas the steady state is never
reached during the simulations for such small values of
tiney- As described by (21) and as depicted in Fig. 5, the
cross-covariance Ei’j(k | k) between the local estimates
rises only slowly for low values of jiycy. Therefore, the
estimates Xpgp(k | k) and X, ;.. (k | k) are quasi identical
and A, equals zero during the initialization phase.

2«1} over {=,=,<,>}” means “shall be” or “needs to be.” Fur-
thermore, the superscript (1,1) denotes the upper-left element of the
matrix.
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Fig. 5. Time dependency of the normalized cross-covariance
between the local position estimates.

Fig. 6. Relative difference A between MSE . = and MSE . as a
function of the target maneuvering index p.

5.2.2. Nearly Constant Acceleration

In this section, the previous analysis is extended to a
Nearly Constant Acceleration (NCA) model being used
for the target dynamics, i.e.,

x(k + 1) 1 T, iT27 [x(k)
xk+1)| =10 1 T, x(k) | + wyea (k)
x(k+1) 0 0 1 x(k)

N (3D

where the process noise is given by
: [2@—0°
Wyea (k) = / T.—t | uncakT, +t)dt (32)
0
1

and uyca(?) is a zero-mean continuous random noise
signal with power spectral density gyca, leading to the
following process noise covariance matrix

L5 174 1793
w0l 5L gL

Qnea = %7;4 %7;3 %Tsz 4dNCA- (33)
s 3T T,

Fig. 6 shows the relative difference A; between
the true MSEs of the DKF, . and the DKF for the
NCV and the NCA model. For the latter, the target

0.06-:

0.05F —— CA (Simulations)

— - CV (i

0.04
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Ay
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0.01

-0.01 : i i i i i i

Fig. 7. Relative difference A, between MSE ;..
function of the weighting ratio 7.

and MSE, - as a

maneuvering index is defined as [3]

5

tnen 1= ¢ | Incal?

NCA -= -
UV

(34)

Like in the nearly constant velocity case, the curves are
invariant against a variation in 7, and o,. On the other
hand, the curves for the two different target models
clearly do not match.

A comparison between the definitions of the target
maneuvering indices in (29) and (34) and the respec-
tive process noise covariance matrices in (26) and (33)
reveals that 2 is proportional to the ratio QY /o2 be-
tween the variance of the predicted position estimate
due to the process noise and the variance of the measure-
ment. Therefore, ;1 is an indicator for how much weight
is given to the measurement and the predicted estimate
during the track update in the LKFs, respectively (see
(5) with N =1).

On the other hand, as described in (4), the accuracy
of the prediction in the LKFs does not only depend on
the covariance of the process noise Q but also on the
state transition matrix F and the inaccuracy of the last
estimate P(k — 1 | k — 1). The correct ratio

(35

between the weight given to the measurement and the
weight given to the predicted position estimate can be
taken from the simulations. For the case of a NCV and a
NCA model, it can, however, also be calculated for the
steady state by numerically solving a system of non-
linear equations (as detailed in the Appendix).

The resulting curves for the relative difference A as
a function of 7 are displayed in Fig. 7, where the bold
lines again present the analytical predictions. This time
the curves for the NCV and the NCA model show the
same progression. Only the maximum degradation for
the NCA model of around 4% is lower than the 5.1%
for the NCV model, as also predicted by the theory.
This can be explained by the same weighting ratio 7
being reached for a smaller process noise g for the NCA
model. As the common process noise is responsible
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Fig. 9. Relative difference A between MSEpy and MSEp, ¢ as
a function of the the update rate m for the nearly constant velocity
model (7, =1s, 0, =1 m).

for the correlation between the local estimates, the
correlation is also lower for the NCA model.

Note that for small values of n even the analytical
prediction fails for the NCA model. This is due to the
numerical solution of the system of non-linear equa-
tions, which is needed to determine the steady state per-
formance of the KFs, reaching its limits for such small
values. Simulations with 10000 measurements indicate
that A, stays at its maximum also in the NCA case.

KFs do not only produce state estimates X but also
calculate an accuracy of these estimates in form of the
error covariance matrix P. As stated earlier, the DKF
estimates its accuracy correctly whereas the DKF ;...
although performing slightly worse, estimates its accu-
racy even better than that of the DKF.

Fig. 8 shows this difference

(1,1) (L,1)
MSEna‘n‘ve — MSEestimated ; Pirue _ Rm’ive

A, =
2 MSE

estimated

(36)

between the true and estimated MSE of the DKF, ..
as a function of the weighting ratio 7. It can be seen
how this difference A, can again be predicted very
precisely by (23). The shape of these curves is very
similar to those in Fig. 7 for the difference between the
true MSE of the DKF, . and the DKF. The maxima
are, however, a lot higher at 16% and 25%, respectively.
This significant overestimation of its own performance

Fig. 10. Relative difference A; between MSEDKFm and MSE . as
a function of the the update rate m for the nearly constant
acceleration model (7, =15, o, = 1 m).
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Fig. 11. Time dependency of the normalized cross-covariance
between the local position estimates.
in the DKF, ;.. can lead to severe stability problems if

the estimates are propagated to other fusion nodes in
the system or even fed back to the local estimators.

5.3. Performance Analysis of DKF,,

As already stated, the DKF, ;. presents an upper
bound on the performance degradation for a reduction
in communication rate. Its performance is equivalent
to a hypothetical system where infinite intervals lie
between two communication cycles, i.e., m — oco. In this
section, the performance degradation is examined for
realistic reductions in communication rate m < oo using
the DKF,, of (12) and (13).

To this end, Figs. 9 and 10 show the relative differ-

ence
_ MSEpkg, — MSEpkr

A, =
3 MSEpxr

(37

between the MSE of the position component in the state
estimate ﬁDKFm(k | k) of (12) and Xpgr(k | k) of (7) as
a function of the update rate m for the nearly constant
velocity (NCV) and nearly constant acceleration (NCA)
model, respectively. The sampling period was set to T;, =
1 s and the measurement noises to o, = 1 m. This time
10000 Monte Carlo runs were performed on simulations
with 400 measurements.
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In both figures, it can be seen that the maximum dif-
ference of the DKF, . (see Fig. 7) is not reached in the
shown interval 1 < m < 20 even for large values of 7 and
that A; remains almost zero for small values of 1. The
latter is due to the state vector x(k) changing only slowly
in such scenarios. Therefore, the term Xpyr (k |k —m)
of (17), which corrects for the statistical dependence be-
tween X, (k | k) and X,(k | k) in the DKF,,, stays longer
an accurate estimate of the true term Xpgp(k |k — 1) of
(16) in the DKF.

A comparison between the curves for the NCV and
the NCA model shows that those for the NCA model
are significantly lower. This can be explained by the
maximal degradation being lower, as indicated in Fig. 7,
and the maximum cross-covariance also being reached
more slowly, as indicated in Fig. 11. The reason for
this is again that a smaller process noise g is needed
for the same weighting ratio n in the NCA case, and
the common process noise being responsible for the
correlation between the local estimates.

As a result, it can be concluded that, even for the
worst case of 1 € [1,10] and the NCV model, the com-
munication rate between the LKFs and the FC can be
reduced by at least a factor m = 8 without introducing an
additional error of more than 1%. For sensors producing
measurements at high rates, the error due to infrequent
communication is typically even smaller as the short
sampling period 7, results in a small target maneuver-
ing index p and, thus, a small weighting ratio n. Exactly
in these scenarios, a reduction in communication rate is
most likely to be desirable.

6. CONSERVATIVE FUSION APPROACH

Sophisticated approaches for distributed tracking
systems exist that are specifically designed to be robust
against unmodeled correlations, like e.g., the covariance
intersection method [15] or the bounded covariance in-
flation method [25]. On the other hand, the results of
the last section give rise to a conservative, but simple
alternative fusion approach for a reduction in commu-
nication rate.

Combining the results of Section 5 with (18) it can
be seen that Ppyg (k|k) is a slightly too optimistic
and E{X . .(k|k)X
vative estimate of the true accuracy E{Xpgg (k|k)
Xpkr, (K | k)T} of the DKF, in (12) and (13). As
E{X,ive(k | K)X, ek | K)T} is equivalent to P (k | k),
it can be determined using (22) and (23). Therefore, the
DKF,, of (12) and (13) can be used without alteration
for the estimation of Xy (k | k), i.e., Ppgp (k| k) is still
used during the recursive estimation. To obtain a con-
servative estimate, Ppyp (k| k) is then simply replaced
by Ptrue(k | k)

The computation of P, (k | k) in (22) and (23), how-
ever, requires the knowledge of 3, ;(k | k) in (21) and,

naive naive

(k| k)T} a slightly too conser-

thus, of K;(k), for all i and k. In the studied case with
a time-invariant state-space representation of the track-
ing system, the K;(k) can simply be (pre-)computed at
the FC as they do not depend on the actually observed
measurements [3]. In many real-world scenarios, this
condition is, however, likely to be violated, like e.g.,
for a maneuvering target or if the measurement accuracy
depends on the distance from the sensor to the target.
In this case, the FC may determine the gain sequence at
least approximately, in particular if additional informa-
tion is provided by the LKFs. As (21) is not restricted
to the K;(k) being the Kalman gains, a predictable se-
quence of suboptimal filter gains may also be used.
Finally, if the calculation of P (k|k) for every
time step k shall be avoided, an even more conservative
approximation consists in determining the maximum

difference AP, between P .(k|k) and P, . (k|k),
and adding this difference to Ppy (k| k), ie.,

Pk | k) = Ppp, (k| ) + AP, (38)
The difference between P, (k | k) and P, ;,.(k | k) is the

term depending on the cross-covariance X, ;(k | k) be-
tween the local estimates in (22) and (23). As the cross-
covariance builds up slowly, this term is maximum for
the steady state, i.e.,

APmax = Ptrue(oo | OO) - Pna’l‘ve(oo | OO) (39)

As the Kalman gains K;(co) are constant, (21) turns into
a simple system of linear equations. Consequently, if the
K, (o0) can be determined (like e.g., for the NCV and the
NCA model), this is also true for Ei’ j(oo | 00) and, thus,
AI)Il’lil)(°

7. CONCLUSIONS

If the communication rate between the Local Kalman
Filters (LKFs) and the Fusion Center (FC) needs to be
reduced to save communication bandwidth, the perfor-
mance of the fusion process degrades as the information
provided by the different sensors becomes correlated
due to propagating the same underlying process noise.
A simulative study is performed for a simple system
with two local sensors, which are both able to measure
the position of the target. It is shown that the ratio »
between the weight given to the measurement and the
weight given to the predicted position estimate during
the track update in the LKFs is more useful in describ-
ing the performance degradation than the target maneu-
vering index. Furthermore, it is found that, even for the
worst case of 7 € [1,10] and the nearly constant velocity
model, the communication rate between the LKFs and
the FC can be reduced by at least a factor of 8 without
introducing an additional error of more than 1%.

Furthermore, a simple formula for the performance
degradation in the worst case of ignoring the correlation
due to such a reduction in communication rate com-
pletely is derived. As its evaluation is straightforward
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compared with the solution of the asymmetric Lyapunov
equation for the general case, it can be used for a con-
servative fusion architecture where the slightly too op-
timistic state estimates due to such a reduction in com-
munication rate are replaced by slightly too conservative
ones.

APPENDIX

In the steady state, the Kalman filter simplifies to
x(k | k) =Fx(k—1|k—1)+ K(yk) —Hx(k | k — 1))
(40)

with a constant Kalman gain K. If, as in our case, only
the position of the object is measured in 1D, K; becomes
a vector

a
Kyev = (5/?;) and Kyea =

Q
B/T;
/T?

41
in the nearly constant velocity (NCV) and nearly con-
stant acceleration (NCA) case, respectively. Accord-

ingly, the filters are denoted optimal «-3- and a-(3-v-
filter [3]. It can easily be shown [26] that

(42)

The corresponding formulas to calculate o and 3 for
a NCV model excited by discretized continuous-time
white process noise can be found in [3]:

/ > B
o = 264-5*5

2 3
B~ _anevly . o
I—a_ o2 =- HUNcv-
v

(43)

(44)

The following equations for o, § and v for a NCA
model being excited by a discretized continuous-time
white process noise can be obtained using the same
approach:

6 = 2ay (45)
2
Y Y 4 2y
——t———==1 4
12062 2a o B (46)
A QNCAY;S )
—a —03 =- HUNcA-
47)
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Performance Evaluation for
Automated Threat Detection

ROBERT C. SCHRAG
MASAMI TAKIKAWA
PAUL GOGER
JAMES EILBERT

We have developed a performance evaluation laboratory (PE
Lab) to assess automated technologies that fuse fragmentary, par-
tial information about individuals’ activities to detect modeled ter-
rorist threat individuals, groups, and events whose evidence traces
are embedded in a background dominated by evidence from sim-
ilarly modeled non-threat phenomena. We have developed the PE
Lab’s main components—a test dataset generator and a hypothesis
scorer—to address two key challenges of counter-terrorism threat
detection performance evaluation:

e Acquiring adequate test data to support systematic experimenta-
tion; and

e Scoring structured hypotheses that reflect modeled threat objects’
attribute values and inter-relationships.

The generator is parameterized so that the threat detection
problem’s difficulty may be varied along multiple dimensions (e.g.,
dataset size, signal-to-noise ratio, evidence corruption level). We
describe and illustrate, using a case study, our methodology for
constraint-based experiment design and non-parametric statistical
analysis to identify which among varied dataset characteristics most
influence a given technology’s performance on a given detection
task.

The scorer generalizes metrics (precision, recall, F-value, area
under curve) traditional in information retrieval to accommo-
date partial matching over structured case hypothesis objects with
weighted attributes. Threat detection technologies may process
time-stamped evidence in either batch, forensic mode (to tender
threat event hypotheses retrospectively) or in incremental, warn-
ing mode (to tender event hypotheses prospectively—as ‘‘alerts”).
Alerts present additional scoring issues (e.g., timeliness) for which
we discuss practical techniques.

PE Lab technology should be similarly effective for information
fusion or situation assessment technologies applied in other domains
(besides counter-terrorism), where performance evaluation presents
similar challenges.
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1. INTRODUCTION

Threat detection by sifting high-volume data streams
for indicators has been likened to the problem of rec-
ognizing a complete “threat” needle by selecting from
among many haystack-sized piles of threat and non-
threat needle pieces [33]. Under this analogy, problem
difficulty may vary depending on factors such as how
many stacks there are, how many threat and non-threat
needles are distributed among them, and how like are
threat and non-threat needles. A key goal in developing
a performance evaluation laboratory (PE Lab) is to un-
derstand how variation along dimensions like these can
affect the performance of a threat detection technology.

As the haystack analogy suggests, many characteris-
tics that contribute to threat detection’s difficulty may be
modeled simply using convenient abstractions of real-
world phenomena. We want to identify well-performing
regions of an information fusion approach—e.g., its
power to resolve ambiguities arising from partial, poten-
tially corrupted, and temporally overlapping evidence
fragments. We deliberately aim to drive the evaluated
technology toward explicit representations of and rea-
soning about structured data and connections between
entities and events. Abstraction serves to factor out is-
sues inessential to this, and we model key relation-
ships among threat and non-threat actors, events, and
evidence characteristics approximating qualitative real-
world relationships and quantitative values. We also fac-
tor out user interaction—e.g., evidence visualization and
mixed-initiative hypothesis development—so that tech-
nology evaluation is in principle entirely automated (al-
though in practice we have not yet required hands-off
execution for detection technologies).

We have followed these principles in developing the
PE Lab’s dataset generator during a multi-year, multi-
contractor, multi-agency Government research program,
where it has served in several program-wide technology
evaluations that have necessitated our development of
novel, compatible scoring methods. Many results have
already been reported [1] [2] [3] [4] [5] [7] [8] [9] [10]
(117 [12] [13] [14] [18] [22] [23] [24] [25] [29] [30]
[31] [32] [40] [41] [43] [44].

The PE Lab is schematized in Fig. 1, where square-
cornered boxes represent artifacts, round-cornered
boxes represent processes, and arrows represent flow
of artifacts. The threat detection component—assumed
to employ link discovery (LD) technology and also
referred to here as an LD component—is rendered
3-dimensionally to indicate its status outside of the PE
Lab proper (as the technology under test).

Synthetic dataset generation creates evidence used
to challenge LD and (synthetic) ground truth used in
scoring LD’s hypotheses. LD processes evidence to hy-
pothesize threat phenomena. Generation uses simulation
driven by discrete, stochastic event patterns that also are
provided to LD. Hypothesis scoring compares technolo-
gies’ output hypotheses to ground truth.
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Fig. 1. PE Lab schematic.

In subsequent sections, we describe the following.

Abstract challenge problem domain (Section 2)

General hypothesis scoring methods (Section 3)

Alert scoring methods (Section 4)

Experiment design to identify performance influences

in the problem space (Section 5)

e PE Lab advantages for information fusion system
design (Section 6)

e Conclusions (Section 7)

2. COUNTER-TERRORISM THREAT DOMAIN

Synthetic datasets have the advantage for evaluation
that (synthetic) ground truth is readily available for
scoring. To support unclassified, exploratory counter-
terrorism research, we have developed synthetic datasets
presenting the same key sources of threat detection
difficulty that intelligence analysts have described in
real data. In the terminology of the information fusion
community [37] [38], real and synthetic datasets present
common “referencing” and “registration” problems: Is
the “man in the white shirt” in one report the same
“man in a white shirt” described in another report about
a different event? They also present several types of
“association” problems: Are several lower-level events
all parts of the same higher-level event, or are people
members of the same organization? Finally, they present
“estimation” problems: Is a group of events that have
already been associated really an instance of a particular
type of behavior, and if so can upcoming events be
predicted based on our model of the behavior? The issues
addressed by PE Lab-based evaluation fall mainly in
the Joint Director of Laboratories data fusion model’s
Level 2, estimation of relationships among entities—or
situation assessment [21].

We generate our synthetic datasets over an artifi-
cial world that is tunable, mitigating privacy and secu-
rity classification concerns and supporting systematic
experimentation. That our artificial world is also ab-
stract facilitates parameterized overlap between threat
and non-threat activities and de-emphasizes knowledge
representation and reasoning requirements in compar-
ison to (threat) signal detection requirements, consis-

Fig. 2. Real-world motivation for challenge problem.

tent with the funding program’s goals. Our synthetic
datasets, while thus simplified, present deliberately se-
lected technical challenges.

Fig. 2 exhibits some real-world motivation behind
the abstract, artificial world challenge problem domain
we have developed. The PE lab’s dataset generator
uses an artificial world abstraction style inspired by
that of Hats [27] [28]. A key difference is that the PE
Lab is structured deliberately to emphasize exploratory
experimentation, as described in Section 5.

On the left-hand side of Fig. 2, “Farmer Fred” buys
fertilizer and fuel oil and transports these via truck
to his farm. He applies the fertilizer using his tractor
which (along with his truck) burns the fuel oil. (Fred
is an honest, hard-working man.) On the right-hand
side, “Demolition Dan” acquires the same resources but
mixes them into a slurry that he transports (via rental
truck) to the basement of an office building. (Dan is up
to no good.)

In the artificial world, capabilities (like farming and
demolition) and resources (like fertilizer and fuel oil)
are mapped to abstract elements that individuals can
possess intrinsically or acquire. Infrastructure elements
(like office buildings) are mapped to “targets” that sup-
port both legitimate/productive and destructive modes of
use or “exploitation.” Non-threat and threat individuals
(like Fred and Dan) each may belong to any of various
groups whose members collaborate in sub-group teams
towards different goals. Exploitations play out the gen-
eral scheme of Fig. 3.

The exploitation scheme on the left-hand side of
Fig. 3 includes four main, sequential subevents, each
of which unfolds through several levels of task decom-
position (illustrated in Fig. 4), bottoming out in trans-
actions with record types indicated on the right-hand
side of Fig. 3 and at the bottom of Fig. 4. In a threat
exploitation, the final, consummation phase—in which
capabilities and resources are (destructively) applied to
the target—defines the time by which alerting must oc-
cur to be at all effective. Transactions appearing in in-
crementally presented, time-stamped evidence are the
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Fig. 3. Generic exploitation scheme.

Fig. 4. Invocation relationships among event generation patterns.

sole basis LD has for issuing alerts; intermediate-level
events are never materialized in evidence.

In the real world, people typically interact simultane-
ously in several different social spheres associated with
(e.g.) work, family, faith, neighborhood, sports/hobbies,
civic involvement, shopping, and other relationships.
People interact to coordinate times and locations for
all of their activities, negotiate inter-activity constraints,
and travel as necessary to interact. To make large dataset
generation efficient, we have abstracted away such de-
tails, modeling all group activities with the same ab-
straction (the exploitation pattern), allowing individuals
to participate in arbitrarily many activities simultane-
ously, and assuming that all activities take place in a
single location (e.g., a metropolitan area).

The challenge to threat detection technology is to
identify and report threat cases—top-level objects with
attributes and values summarizing extant threat phe-
nomena at a level sufficient for scoring. The case types
that are LD is tasked to detect include threat actors
(groups, individuals, and their aliases) and (ideally, im-
pending) threat events/attacks. To perform this chal-
lenge, an automated threat detector is given informa-
tion about the underlying artificial world that is rela-
tively complete (excepting only a few, novel exploita-

Fig. 5. Threat detection objectives and notional instance
observabilities.

tion modes) and about events and actors that is only
partial—per settings of “observability” parameters, as
depicted notionally in Fig. 5.

We further describe the artificial world problem
domain as follows.

e Individuals have assets.
—They have permanent capabilities.
—They can acquire consumable resources as neces-
sary to exploit a target in one of its modes.

e Both resources and capabilities are abstract enumer-
ations.

e Exploitation modes are sets of capabilities and re-
sources.

—Vulnerability modes are exploited by threat actors.
—Productivity modes are exploited by both threat and
non-threat actors.

e Groups are collections of individuals. Only threat in-
dividuals belong to threat groups. Both threat and non-
threat individuals can belong to non-threat groups.
Groups have designated exploitation modes—vulner-
ability modes for threat groups and productivity
modes for both group types. A group can exploit a
target that exhibits one of its modes.

e Groups have subgroups—exploitation teams—that
focus on particular exploitation modes for which a
team has qualified members.

e Groups’ and teams’ member individuals tend to share
abstract social/demographic attributes.

e Noise events masking threat activity occur at several
levels. We refer to non-threat exploitations as clut-
ter. Structured noise events share intermediate struc-
ture with exploitations. Transaction noise events are
atomic.

In this world, inter-connections abound. Modes over-
lap with respect to capabilities and resources (as sug-
gested in Fig. 2). Groups overlap with respect to modes,
as do targets. Individuals overlap with respect to teams
and groups and with respect to capabilities. Exploita-
tions overlap in time with each other and with noise and
clutter events. All of these inter-connections contribute
to threat detection difficulty.
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Fig. 6. Generic hypothesis scoring scheme.

3. GENERAL HYPOTHESIS SCORING METHODS

We want to score structured hypotheses that re-
flect modeled threat objects’ attribute values and inter-
relationships—e. g., a threat event case mentions a threat
group case, which includes threat individuals that may
be named by their aliases. (Section 3.2 gives full at-
tribute type details.) In this object-oriented context, we
need metrics analogous to traditional information fu-
sion’s probability of detection and probability of false
alarm. For this purpose, we generalize the related re-
call and precision metrics from traditional information
retrieval to accommodate partial matching over struc-
tured objects with weighted attributes. Fig. 6 depicts
the generic scoring scheme. We require LD to return
hypothesis objects that are definite (incorporate neither
logical nor probabilistic uncertainty).

In Fig. 6, the reference cases are summaries com-
puted from ground truth, and the hypothesized cases are
from LD. Because case objects have significant struc-
ture, we want to credit LD when hypothesized cases
approximately match reference cases. Match quality is
determined by case comparison. When a hypothesized
case object’s existence has been inferred from lower-
level evidence, we can decide which reference case to
pair the hypothesized one with only by comparing the
hypothesized case with all relevant reference cases—on
the basis of their attribute values. We store comparison
results for the candidate pairs in a matrix. With inexact
matching, it also can be ambiguous which of the one-to-
one mappings admitted by the candidate pairs should be
selected, so we use an algorithm that optimizes dataset-
level scores. Given these pairs, we compute scores for
object-oriented metrics based on traditional precision,
recall, and F-value metrics.

Subsequent subsections present our scoring methods
in more detail, as follows.

e Section 3.1 summarizes the issues of case comparison
and case pairing that arise with inexact structured
object matching.

e Section 3.2 summarizes the scored object types and
attributes in our counter-terrorism domain.

e Section 3.3 presents the algorithmic details of case
comparison.

Fig. 7. Traditional precision and recall.

Fig. 8. The F-value surface.

e Section 3.4 describes how we apply the algorithm at
the attribute and value level.

e Section 3.5 summarizes additional extant and contem-
plated hypothesis scoring capabilities.

e Section 3.6 discusses others’ work related to our
hypothesis scoring approach.

3.1. Case Comparison and Pairing

Case comparison determines the quality of match
between any two cases. We characterize this quality by
generalizing the traditional precision and recall metrics
that presume exact matching between hypothesized and
reference items. Fig. 7 illustrates the traditional versions
of these metrics.

Traditionally, recall R is the number of valid hy-
potheses divided by the number of detection targets (the
required number of valid hypotheses). Precision P is the
number of valid hypotheses divided by the number of
all hypotheses.

A single metric to summarize the values of recall
and precision is frequently useful, and it is traditional to
appeal to F-value = 2PR/(P + R)—the harmonic mean
of precision and recall. (When both precision and recall
are zero, we define F-value as zero.)

F-value (shown in Fig. 8 and also known as
“F-score” or “F-measure”) has the same extremes as a
simple average of precision and recall but discounts
differences between them (less aggressively than
min(P,R) would discount such differences).
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Fig. 9. Object-oriented metrics.

Fig. 10. Case pairing issue.

Fig. 11. Case pairing matrix and metrics.

To accommodate inexact matching over structured
case objects, we define object-oriented versions of pre-
cision, recall, and F-value, as illustrated in Fig. 9. Our
complete definitions—in Section 3.3—address object
attributes that may be weighted differently, so that at-
tributes contribute to scores non-uniformly.

Of the three attribute values in the reference case of
Fig. 9, the hypothesized case agrees only for the Target
attribute, so the object-oriented recall score R is 1/3.
Of the two attributes included in the hypothesis, only
one agrees with the reference, so the object-oriented
precision score P is 1/2. The corresponding object-
oriented F-value (F-value) is 2/5, as shown.

Case pairing determines which hypothesized cases
to pair with which reference cases—since this may not
be obvious, as illustrated in Fig. 10.

In Fig. 10, we have three reference and three hy-
pothesized attack cases. (Reference Case 1 and Hypoth-
esized Case A correspond to the pairing of Fig. 9.) Links
appear in the bipartite graph between reference and hy-
pothesized cases wherever these share one or more at-
tributes. Fig. 11 illustrates how we perform one-to-one
case pairing using a matrix over all possible pairings.

In Fig. 11, we compute per-pair object-oriented pre-
cision, recall, and F-value (as in Fig. 9). Then we use
an optimization algorithm to select (red-circled) pairs
leading to the greatest average object-oriented F-value.
So, we have computed a matching for Fig. 10’s bipartite
case graph including just the strictly vertical edges.

Case pairing is necessary only for objects whose ex-
istence LD has hypothesized based on lower-level evi-
dence, when we require it to invent a unique identifier
(UID) in its own namespace. Otherwise LD reports ob-
jects’ UIDs as they appear in evidence. We forcibly pair
any like-UID hypothesized and reference objects, and
we omit them from the case pairing matrix.

When the numbers of reference and hypothesized
cases do not match, we (effectively) pad the matrix, as
necessary to make it square, with null cases. Precision
and recall with respect to null cases are defined as zero.

As an optimization algorithm to select a best-scoring
one-to-one case pairing, we have often used greedy,
heuristic search with a sparse matrix representation that
can process thousands of structured hypothesized and
reference cases in tens of minutes on conventional hard-
ware. We also have implemented an optimal assignment
algorithm [19] that can process hundreds of cases in
minutes. The greedy algorithm always selects next the
best score in the yet-unselected row or column with
the greatest standard deviation among F-values, thus
has O(n?) behavior. In practice, when its F-values dif-
fer from those optimally computed, it is only by a few
percentage points. The optimal algorithm is O(n?). For
small n (up to about 10,000), both algorithms are dom-
inated by the O(n?) matrix set-up time. Our current im-
plementation doesn’t support non-sparse, square matri-
ces of more than about 5,000 on a side, though, and, as
the optimal algorithm does not readily accommodate a
sparse matrix representation, we fall back to the greedy
algorithm as an alternative. We also are interested in
the optimal forward/reverse asymmetric assignment al-
gorithm of Bertsekas and Castanon [6] which is reported
to work efficiently with sparse matrices.

To help illustrate how we develop dataset-level met-
rics, Fig. 12 depicts a somewhat larger, notional case
pairing matrix. Again, it holds computed object-oriented
F-values for candidate reference-versus-hypothesized
case pairings.

In Fig. 12, we again have circled entries to optimize
average F-value in a one-to-one pairing. Generally, we
admit entries to candidacy per a user-specified F-value
threshold that must be exceeded for a hypothesis to be
deemed adequate for an analyst or other consumer. The
larger, red circles apply when all non-zero entries are
candidates for pairing (i.e., when the threshold is zero).
The smaller, yellow circles apply when the threshold
is set at 0.75. Notice that the pairings under the differ-
ent thresholds are different—each case pairing process
considers just the eligible entries. Giving these pairs and
object-oriented precision and recall scores, we compute
dataset-level precision and recall. Under zero thresh-
olding, the dataset’s average object-oriented F-value is
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Fig. 12. Larger, notional case pairing matrix.

0.834, and the traditional metrics aren’t particularly in-
formative (always equal one), as all cases (given equal
numbers) are paired. Under non-zero thresholding, we
always apply traditional metrics given these pairings,
so the dataset-level precision, recall, and F-value under
the 0.75 threshold all equal 0.8. (A potential expedi-
ent would be to develop different higher-thresholded
dataset-level scores from a single, zero- or otherwise-
lower-thresholded case pairing by dropping any below-
threshold pairs.)

To support forthcoming examples, we exhibit, in
Fig. 13 and Fig. 14, matrices with notional object-
oriented precision and recall values that combine
to yield the F-values in Fig. 12. For each cell in
the F-value matrix, we have set R = (1 + F-value)/2
and P = R(F-value)/(2R — F-value). We have set the
F-value threshold for case pairing at zero and include
only the larger, red circles from Fig. 12.

When LD can rank its hypotheses with respect to
estimated quality, this ranking supports developing a
precision-recall curve and computing the area under
the curve (AUC). Any consistently applied variant of
precision and recall—e.g., using any consistent F-value
threshold—suffices here. Fig. 15 illustrates the AUC for
the example values in Fig. 13 and Fig. 14, under two
different hypothesis rankings.

At each ith curve point, we compute precision and
recall with respect to the full reference case set and
the set of LD’s 1st- through ith-ranked hypotheses.
Fig. 15 notes the hypotheses accounted for by each
rectangle contributing to the example’s AUC supposing
LD ranks its hypotheses in the order (A, B, C, D, E, F, G,
H, I, J). Instead of performing full case pairing at each
point, we expediently take the case pairings over the full
sets of reference and hypothesized cases as authoritative
and impose them as we consider each successively
presented case to develop the curve.

Fig. 13. Notional recall values for Fig. 12’s F-values.

Fig. 14. Notional precision values for Fig. 12’s F-values.

AUC summarizes LD’s performance on a dataset in
a way that rewards good rankings. When LD returns
lower-quality hypotheses earlier, these drag down incre-
mentally computed scores for later points in the curve
as well. When LD returns its hypotheses in the order
(E, D, I, C, A, G, F, B, H, J) induced by decreasing
F-value scores, the AUC rises to 0.851.

Note that our detection task, where structured threat
hypotheses must be developed from lower-level evi-
dence, leads to expectations different from those for the
traditional information retrieval task, where every pre-
sented item merely must be classified as positive or neg-
ative. In the traditional setting, the AUC expected from
a strategy of pure guessing is 0.5. In our setting, some
reference threats may never be reported, given what-
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Fig. 15. Precision-recall curve and area for the example values in
Fig. 13 and Fig. 14.

ever practical minimum-estimated precision threshold
a detector may set. Also, the universe of potential—
e.g., syntactically admissible—hypotheses for a given
dataset is practically unbounded, rather than limited to
presented items as in the traditional case, so that preci-
sion scores may be dominated by a practically arbitrary
number of false-positive responses (making guessing a
practically ineffective strategy).

The size of the information fusion hypothesis space
also presents issues for some other metrics commonly
used in performance analysis of (binary) classifiers. In
particular, the so-called “false-positive rate” used in
receiver operator characteristic (ROC) curves and in
the calculation of the “detection capability” metric of
Gu et al. [16]' assumes a practically enumerated set
of “true-negative” responses (i.e., the presented items
known in ground truth to be non-threat). True nega-
tives also must be enumerated for the machine learning
community’s commonly used ‘“accuracy” metric (the
number of true—positive and negative—responses di-
vided by the number of all—true and false—responses).
Schrag and Takikawa [35] describe analogies between
our hypothesis scoring approach and binary classifica-
tion.

3.2. Scored Object Types and Attributes

Table I presents the types and attributes that are con-
sidered during scoring in the counter-terrorism domain,

I'The authors, working in the domain of computer network intrusion
detection, describe an “intrusion detection capability” metric which is
in fact applicable in any binary classification setting.

TABLE I
Scoring-Relevant Types and Attributes

per the artificial world’s representation. Along with each
attribute is specified its domain, scoring weight (reflect-
ing the challenge problem developer’s intuition of an at-
tribute’s importance), and reference attribute cardinality
(either single or multiple).

The first three types in Table I are just the scored
case types. The remaining types are those that appear
as values of scored attributes of cases (i.e., as subcases)
or in turn as values of the subcases’ attributes.

For each type, each instance also has a unique
identifier (UID) by which it may be referred to. An
object of class ThreatIndividualEC is used to represent
an equivalence class (EC) of threat individual identities,
supporting aliases. In attribute values, we interpret any
of an EC’s member UIDs as denoting the full EC.

Note that an instance of the exploit-target event
generation pattern in Fig. 4 is represented in Table I
only at the top level (the VulnerabilityExploitation-
Case threat event type). To simplify scoring, we have
engineered this object type to include relevant at-
tributes that it might not explicitly have otherwise—e.g.,
minAssetApplicationEndingDate, determined by com-
paring occurrence dates of (lower-level) events associ-
ated with the apply-resource and apply-capability pat-
terns.

Note also that event objects have as attribute values
objects of other types, some of which also are scored.
We rely on the fact that our counter-terrorism domain’s
supercase type-to-subcase (whole-to-part) type graph
(depicted in Fig. 16) is directed and acyclic, as we
compute scores for leaf types first and work our way up
to root types. (In Fig. 16, only the object types requiring
case pairing are shown.)
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Fig. 16. Counter-terrorism domain supercase type-to-subcase type
graph.

3.3.  Algorithmic Details of Case Comparison

We compare two like-type cases to determine their
object-oriented precision P and object-oriented recall
R, as follows.

We treat a case as a set of assertions regarding the
case’s attribute values—e.g., (hasMembers Group-4931
Individual-2437). Note that a given case can have mul-
tiple, distinct assertions pertaining to a given (multi-
valued) attribute. e.g., Group-4931 can have more than
one member. Note also that the reference and hypoth-
esized cases can have different numbers of assertions
and of attributes, depending on numbers of values per
attribute reported by the reference and by the hypothe-
sis.

For each case type, for each defined attribute, a case
scoring specification indicates an assertion weight, as
summarized in Table I. For a given attribute, the same
weights are used for assertions of hypothesized as for
those of reference cases.

For a given reference case with the set of asser-
tions {r,r,,...,r,} and corresponding set of weights
{wy,w,,...,w, }, we define the “object-oriented recall
basis” R, = ;-1 mW; (So, each weight is counted
once for each assertion in which the attribute appears.)
For a given hypothesized case with the set of asser-
tions {h,,h,,...,h,} and corresponding set of weights
{wy,w,,...,w,}, we similarly define the “object-oriented
precision basis” P, = 3" ;_; ,,w;. Note that, for a given
comparison of two cases, R;, and P, may differ depend-
ing on numbers of values per attribute reported by the
reference and by the hypothesis.

We pair reference and hypothesis attribute assertions
one-to-one, computing for each pair (r;, ;) the follow-
ing (per the next section’s rules for assertion compar-
ison).

e Object-oriented recall R(r;, h;)
e Object-oriented precision P(h;,r;)

We define the “object-oriented recall contribution”
R, as the sum over the hypothesized case’s assertions
of assertion weight w; pro-rated by the corresponding
recall—R,. =3 i_ , R(r;,h)*w;. The “object-oriented
precision contribution” P, is the sum over the reference
case’s assertions of assertion weight w; pro-rated by the
corresponding precision—7P, =3y, P(h;r)*w;.

Fig. 17. Object-oriented metrics with non-uniform attribute
weights.

For a given pair of reference and hypothesized cases,
we define the following.

R=R/R,
P=P,/P,
F-value = 2(PxR)/(P + R).

We compute the metrics for a given dataset’s cases
of a given type as follows. Let N, be the number of
reference cases and Ny the number of hypothesized
cases. Let the set {p,,p,,...,p,} be the computed pairs,
and R(p,), P(p,) the object-oriented recall and precision
(respectively) of the kth pair. Then for the dataset we

have the following.

/.

Fig. 17 adds non-uniform attribute weights to the
example of Fig. 9 to illustrate their use in the object-
oriented metrics.

The metrics’ sensitivities to specified attribute
weights depend on the numbers of values for each at-
tribute in compared cases (so, how many times each
weight is counted) and—for nested objects—on weights
applied in supercases.

R =

> R

(k=1...0)

> P

(k=1...0)

P =

3.4. Pairing and Comparison for Attribute Values

We require that paired assertions have the same at-
tribute, so single-valued attributes pair straightforwardly
and multi-valued attributes require a one-to-one pairing
over their values. In principle, the values may be scalars
(of type, e.g., Date) or structured objects (cases or other
objects—e.g., Targets) that have UIDs. Per Table I, we
have no multi-valued attributes with scalar values in the
counter-terrorism domain. Thus, we emphasize here the
pairing of multi-valued attribute assertions with nested
object values.

We have two alternative general methods for pairing
multi-valued attribute assertions.
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e Rely on a global one-to-one pairing between all the
hypothesized and reference instances of the nested
case types for any multi-valued attributes. This has
the advantage of consistent pairing across all contexts
(because the same hypothesized case is always paired
with the same reference case).

e Compute a local one-to-one pairing addressing just
the context of a given candidate pair of hypothesized
and reference cases and their attribute values. This
has the advantage of optimizing per-candidate pair
scores—at the expense of global consistency (because
different hypothesized cases may be paired with dif-
ferent reference cases in different contexts). Local
pairing over nested cases with multi-valued attributes
might be prohibitively expensive, but these do not
arise in our counter-terrorism domain.

Once pairs have been established over the candidate
hypothesized and reference objects’ attributes, we can
read off each pair’s object-oriented precision and recall.
We have two alternative general methods of doing this.

e Interpret the computed comparison scores smoothly
(accept them at face value)—wherever they fall in
the interval [0,1]. Smooth comparison reflects the
combined matching quality of a given case and all
of its nested subcases.

e Interpret the selected pairing crisply, by returning
one—for both precision and recall—if the hypoth-
esized object has been paired with a reference object,
zero otherwise. Thus, scores fall in the set {0,1}.
Crisp attribute comparison minimizes the impact of
inexact matching of nested subcases. The crisp setting
matters when the F-value threshold for case pairing
is zero. Under non-zero thresholding, comparison is
always “crisp” (using traditional metrics, as noted in
Section 3.1).

Of the object types with attributes considered dur-
ing scoring, instances only of ThreatIndividualEC ap-
pear as values of multi-valued attributes in other types
(VulnerabilityExploitationCase and ThreatGroup). So,
in our counter-terrorism domain, only instances of type
ThreatIndividualEC may require local case pairing. For
these instances, a pair’s object-oriented precision and
recall depend on how we handle any aliases.

o If both the reference and hypothesized ECs are sin-
gleton (perhaps because the dataset does not invoke
aliasing), the pair’s object-oriented precision and re-
call are both one if the UIDs match, otherwise both
Zero.

e Otherwise (at least one of the reference and hypoth-
esized ECs is not singleton), we have two choices.
—Apply smooth or crisp comparison to the globally
or locally computed pairing of reference and hypoth-
esis ThreatIndividualECs.

—Anti-alias by appeal to the ECs defined in ground
truth, then (after discarding any resulting duplicate
assertions) score as for singletons. This may be ap-

Fig. 18. Alternative pairings (local and global) and interpretations
(smooth and crisp) for objects (of type ThreatGroup) with
object-valued attributes (of type ThreatIndividualEC).

propriate when LD does not have access to an alias
detection capability.

To illustrate the above concepts, suppose that Fig. 12
compares objects of type ThreatlndividualEC. Suppose
that we would like to compare two ThreatGroups and
that we have for the present zeroed out the scoring
weight for the exploitsVulnerabilities attribute. Then
only the memberAgents attribute counts; suppose for
the compared groups it has the following values.

e Reference: {EC-1, EC-2, EC-3, EC-4}
e Hypothesized: {EC-A, EC-B, EC-C}

We have reproduced the relevant portions of Fig. 12,
Fig. 13, and Fig. 14 in Fig. 18. The global pairing is
given by the larger, red circles, the local pairing by the
smaller, cyan ones.

Of the types in Table I, the following either have
no attributes or have no attributes that are considered
during scoring.

e Instances of type Date are represented by integers.
The object-oriented precision and recall for a pair of
reference and hypothesized Dates are both (identi-
cally) defined in terms of their normalized temporal
distance, as illustrated in Fig. 19. (The “ratio” param-
eter is computed with respect to a nominal distance
specified for the given attribute.)

e The types Target, Capability, and ResourceType have
no scored attributes. If a pair’s UIDs are the same,
the object-oriented precision and recall are both one,
otherwise both zero.

e For the type VulnerabilityMode, we require strict
set equivalence. For each of the two multi-valued
attributes, if a pair’s respective sets of attribute values
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Fig. 19. A normalization function for Date distances.

have the same members, the pair’s object-oriented
precision and recall are both one, otherwise both zero.

3.5. Additional Hypothesis Scoring Capabilities

The PE Lab also implements many-to-one and
many-to-many case pairing methods that—unlike their
one-to-one counterpart—do not necessarily penalize LD
for submitting multiple competing hypotheses. We have
considered (but not yet implemented) support for logi-
cal and probabilistic uncertainty. One practical approach
may be for LD to submit disjunctive hypotheses with
each disjunct’s probability noted. Entire disjunctions
would then be paired one-to-one with reference cases.

Because we include some (partially described, po-
tentially corrupted) case objects in evidence, we would
like a scoring method to factor this information out
of reported scores. We score evidence’s case objects
directly (treating them as hypotheses), to establish a
baseline, as described in Section 5.4. To obtain more
diagnostic value, we are contemplating a refinement to
develop separate hypothesis scores regarding reference
case content that is:

e Correct in evidence;

e Clearly incorrect (corrupted) in evidence;
e Ambiguous in evidence; or

e Omitted from evidence.

Our hypothesis scorer’s many parameters (only
some of which have been mentioned here) support cus-
tomized experimentation. For example, we have on oc-
casion (as in Section 3.4’s illustration) tailored case
scoring specifications to zero out the weights of at-
tributes that a given technology does not address. An-
other parameter lets us count the weight of each multi-
valued attribute only once for a given object instance,
rather than counting the attribute’s weight time it ap-
pears in the object. Counting just once is appropriate
when attributes’ relative imports are roughly indepen-
dent of their per-instance cardinalities, which agreed
with our intuition when we applied the overall PE lab
approach in the computer network intrusion detection
information fusion domain [34].

We are considering the following alternative treat-
ment of temporal information (e.g., events’ endpoints)

Fig. 20. Ground truth representation of a time-varying attribute.

Fig. 21. Temporal object-oriented recall and precision.

to accommodate scored objects with time-varying prop-
erties that may be included in future versions of the
artificial world or that may arise in other application
domains—e.g., groups with time-varying membership
(memberAgents) or events during which an exploita-
tion’s leader (directingAgent) role may alternate among
team members. Instead of treating an event’s endpoints
as individual scalar attributes (startingDate and end-
ingDate), we would record, for each object attribute
with temporal extent, a set of contiguous temporal in-
tervals over which its potentially different values hold.
In ground truth, for each single-valued attribute there
would be a set of disjoint, adjacent intervals that to-
gether cover the object’s extent, as in Fig. 20.

Fig. 21 suggests how we would compute temporal
object-oriented precision and recall for the reference
and hypothesized threat events shown in Fig. 9. (For
simplicity, Fig. 21 omits the weights of Fig. 17. The
fact that our current threat events have static attributes
also simplifies the illustration, in that we require only a
single temporal interval per event.)

Note that scores for these temporal versions of
object-oriented recall and precision are zero whenever
the intervals do not overlap, which means we can omit
any non-overlapping pairs from the case pairing matrix
without excluding any pairs with non-zero comparison
scores.

Under some circumstances, it might make sense to
compare temporal objects with attributes summarized
at different levels of temporal abstraction; thus two
objects’ coarse time structures could be seen to match
relatively well even when their fine time structures did
not.

3.6. Related Work (Hypothesis Scoring)

Our object-oriented metrics may be compared with
other metrics of inexact matching, such as the graph
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edit distance metric used in LAW [44]. Some of the
key differences between this approach and ours are:

e Our strong object orientation versus their accommo-
dation of arbitrary relationship graphs;

e Our separate tracking of false-positive and false-
negative discrepancies versus their uniform distance
tracking; and

e Their accommodation of ontological distances be-
tween typed nodes that we haven’t required (because
our ontology of case- and scoring-relevant attribute
types in Table I includes no subtype relationships).

Our reliance on a directed acyclic graph of subcase
types means that (given global pairing of multi-valued
attributes) we compare two cases of a given type only
once, regardless of how interconnected the different-
type hypotheses may be. It also allows us to deprecate
the fine differences between nested cases in comparison
to the coarser differences at the supercase level. They
also take advantage of graphs’ hierarchical structure
and cache computed subgraph distances locally, but not
globally as we do. Ghallager [15] surveys additional
graph-based pattern matching metrics.

Working in the computer network intrusion detec-
tion domain, Tadda et al. [39] have adopted our un-
weighted object-oriented metrics and our one-to-one
case pairing (with recall, rather than F-value, used in
case comparison matrices) and have developed some
original metrics—inspired by metrics in the field of tar-
get tracking—to summarize a resulting case pairing ma-
trix. This is for a single-level case structure where each
attribute value is assumed to appear in no more than one
hypothesis.

To support scoring in the network intrusion detection
PE Lab, Schrag and Takikawa [34] developed object-
oriented precision and recall scores at different levels
by defining different case types corresponding to dif-
ferent abstractions (information-reducing mappings) of
a full-information case type accommodating hypotheses
from the technology under test. This requires separate
case pairings for the different case types but supports
scoring the abstractions using common metrics. Preci-
sion for the most-reduced case type, a bag of evidence,
corresponds to the “track purity” metric used in target
tracking.

Mahoney et al. [26] describe scoring for a two-level
military situation hypothesis that includes a joint prob-
ability distribution (e.g., a Bayesian network) regarding
component objects’ existence and attribute values. They
compute (un-normalized) attribute value distances at the
situation component level, accounting for hypothesized
probabilities and applying attribute weights. At the sit-
uation level, they invoke a distance threshold to qualify
potential matches of hypothesized and reference com-
ponents, then develop all possible sets of one-to-one
pairs and estimate the likelihood of the observed dis-
tance given that the pair is a correct match and given
that the pair does not match. By aggregating the like-

lihoods computed for a given pair across the sets, they
estimate the overall likelihood for each pair. It is not
clear whether this work could be generalized easily to
address more deeply nested hypotheses.

4. ALERT SCORING METHODS

The scoring methods of Section 3 allow us to com-
pare, for a given scored object type, a static set of hy-
pothesized objects against a static set of reference ob-
jects. They thus are appropriate for scoring a batch of
event hypotheses tendered retrospectively/forensically.
By themselves, though, they are inadequate for scor-
ing alerts—event hypotheses tendered prospectively,
for warning, when LD incrementally processes time-
stamped event records in evidence. Here, we describe
methods that additionally account for alert scoring’s
dynamics—whether the alerts in effect during reference
events are good hypotheses and whether they can be
used to support effective warning.

Schrag et al. [36] describe an approach that was im-
plemented late in the development of PE Lab and sug-
gest an alternative practical approach and an associated
(deemed-impractical) idealized approach. All three of
these variants rely on specified costs of false-positive
and false-negative reporting that are applied uniformly
over a portion of the reference event’s temporal extent.
As explained further in Section 4.2, they also conflate
evaluation of the quality of a prospectively tendered
event hypothesis and of the decision about whether or
not to tender it, in that they presume some mitigating
action will be attempted for all tendered alerts. Rec-
ognizing the potential value of pure hypothesis quality
evaluation and of more sophisticated models for cost
and response, we here sketch two alternative, comple-
mentary approaches.

e Section 4.1 describes a cost-free approach based on
the temporal variant of object-oriented precision and
recall described in Section 3.5.

e Section 4.2 describes an alert-free, cost-based ap-
proach that excludes precision and recall because it
doesn’t even require the technology under test to
present alerts, rather merely to invoke response ac-
tions when it considers this advantageous with refer-
ence to a furnished cost model.

e Section 4.3 describes related work.

4.1. Cost-free Alert Scoring

As LD advances incrementally through time-stamp-
ed evidence, it must examine only the events that are
reported (with respect to simulation time) either at or
before its current processing time. LD may submit alerts
at any (simulation) time, with any frequency it chooses.
Finer incremental processing time intervals may incur
greater overall processing time but also may afford
more opportunity to detect impending threat events
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and issue alerts sooner. Coarser intervals may not pick
up evidence regarding threat events until after they
have been consummated—and so miss the opportunity
for alerting. Requiring alerts at fixed simulation-time
frequencies would entail similar issues. Requiring alerts
at specified simulation times (e.g., near threat event
consummations) might engender gaming by LD.

LD may supersede an alert tendered earlier in sim-
ulation time with one tendered later, or it may retract
an alert without superseding it. We call an alert that has
been tendered and that has been neither superseded nor
retracted an “active” alert. The temporal scores we’ve
described in Section 3.5 for retrospectively tendered
event hypotheses can be construed as applying to the
hypotheses active at the end of simulation time. For any
given simulation timepoint, we could make a similar
comparison of the active alerts—either to the full set
of reference events or just to those that have started.
If we averaged the resulting scores across timepoints,
though, earlier events that were considered in more per-
timepoint scores would have disproportionate effect. We
propose instead to consider all simulation timepoints si-
multaneously, admitting an alert as a candidate for pair-
ing with a reference event based on its activity status
(i.e., whether it is active or not) at an anchor point in the
reference when it might reasonably last be considered
useful—the first time one of its capability or resource
assets is applied to the target (noted in the attribute mi-
nAssetApplicationEndingDate) and after which we may
consider the attack’s success to be inexorable.

While we have thus shifted the focus from individ-
ual simulation timepoints to the reference events them-
selves, we’d like to go a bit further and reflect how the
quality of alerting has evolved over the course of each
reference event (i.e., not just at one anchor point). Given
unlimited computing power, we might compute the per-
anchor point scores using as anchors all earlier points in
the reference event (i.e., considering just the alerts active
at each point). While this may be feasible when there
are few alerts, for more general practicality we must
limit our invocation of the expensive case pairing oper-
ation. We propose to do so by taking the case pairing
that is computed for the reference cases’ minAssetAp-
plicationEndingDates as authoritative and by chaining
backward from the alerts paired there to any alerts they
have superseded.? Finally, we can take the average val-
ues we have computed for temporal precision and recall
(or for temporal F-value) over each reference case.

In the example of Fig. 22, Alert 3 tendered at Sim-
ulation Time 3 supersedes Alert 2 tendered at Time 2.
Alert 4 (not shown) is tendered past Anchor Point A

2The earlier practical and implemented approaches (Schrag et al.
2006) chained backward over supersession links established as au-
thoritative by pairing reference cases with retrospectively tendered
hypotheses. While this affords more perspective for LD, it might (es-
pecially since some reference events become visible in evidence after
they are complete) be considered artificial.

Fig. 22. Alerts in a supersession chain.

corresponding to the minAssetApplicationEndingDate,
so is not eligible for comparison to this reference event.
Both Alert 1 and Alert 3 are active with respect to An-
chor Point A; Alert 2, the better match, is paired, and the
alert supersession chain it heads becomes authoritative
over the rest of the reference event. Even though Alert
1 is a better match at Anchor Point B than Alert 2, Alert
1 is not considered. The overall score computed for this
reference event thus is based on Alert 3 from Time 3 to
the event’s end, on Alert 2 from Time 2 to Time 3, and
on no alert before Time 2.

Under this treatment of supersession chains, LD
should supersede one alert with another when it believes
they apply to the same event. Otherwise, it should retract
the earlier alert and start a new chain. We require super-
session chains to be non-branching. Backward branch-
ing would introduce ambiguity as we chain backward.
Forward branching might make two reference intervals
end up at the same alert—if the heads of their respective
chains were paired with different reference cases.

4.2.  Alert-free Response Action Scoring

In the earlier approaches [36], we specified costs for
false-positive and false-negative predictions of an attack
on a target, indicating (respectively) the costs of actions
taken in response to a false prediction (e.g., escalated
protection, evacuation) and of inaction resulting from
a non-prediction (destruction of target, loss of life). We
applied these costs uniformly over the portion of the ref-
erence event’s temporal extent preceding the minAsse-
tApplicationEndingDate and discounted them to reward
good hypotheses—discounting the false-positive cost by
object-oriented precision and the false-negative cost by
object-oriented recall. See Fig. 23, whose dark-shaded
fraction corresponds to the discount and light-shaded
fraction to the assessed cost.

In the real world, the costs of action and of inaction
depend on complex interactions. Even in our artificial
world, it’s hard to tell a consistent story (in terms

88 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 2, NO. 2 DECEMBER 2007



Fig. 23. Discounting uniform false-negative cost by object-oriented
recall (in earlier approaches).

Fig. 24. Processes in automated threat defeat.

of actions and effects) about why false-negative and
false-positive costs should be applied symmetrically and
uniformly over time.

More fundamentally, our funding program’s scope
was limited to an LD component tendering threat hy-
potheses (see Fig. 1), not a “counter-threat enforcement”
component issuing actions to interdict threat agents or
to defeat their attacks (see Fig. 24). Imposing an ac-
tion interpretation on LD’s prospective event hypothe-
ses effectively required our evaluation participants to
conflate enforcement with LD and to make decisions
about whether to issue alerts at all.

In hindsight, we recommend that cost-based scores
be developed following an approach closer to that taken
by Morrison et al. [27] in the Hats simulator, where an
agent with threat detection capability (like that of LD)
acts as a player in a game. The player agent must act
on whatever threat event hypotheses it develops to in-
terdict suspected or known threat actors before they in-
flict damage. Performance is determined by the game’s
final score that accounts for incurred costs associated
with things like surveillance, damage, and false arrest.
Because the player agent is included in the Hats simula-
tion, its actions can have downstream effects as rich as
the simulation supports. For example, an incarcerated
agent will not participate in future attacks.

The simulator currently underlying PE Lab’s dataset
generator supports no such enforcement actions. One
reason we wanted datasets that could be processed en-
tirely off-line was to compare easily performance re-
sults for a given dataset across different technologies
under test, without the technologies’ different sets of en-
forcement actions resulting in different simulation his-
tories (effectively making the datasets different and the
technologies’ scores incomparable). The closest we can
come to Hats’ style of cost-based performance evalu-
ation and still maintain dataset-based comparability is
to admit “hypothetical” actions and effects that do not
actually manifest in simulation history. Instead, we pro-

TABLE II
Attack Effects and Eosts

One-time
cost

Attack Effect

Good individual dies.
Target is destroyed.

TABLE III
Hypothetical Counter-Threat Enforcement Actions, Effects, and
Costs

pose to infer tendered actions’ (determined or likely)
effects and (determined or expected) costs according to
a model that we furnish. Such a hypothetical action ap-
proach also might be used to evaluate an enforcement
component’s performance against real-world historical
datasets, which inherently require off-line processing.

To illustrate how this approach might be realized
in our artificial world, Table II suggests some notional
one-time costs to be associated with a successful attack.
Table I1I suggests continuing (per-time unit) costs that a
counter-threat enforcement (CE) component could incur
in its actions to defeat attacks.

Table IIT also suggests time constraints. Details fol-
low.

e Upon invoking the action to escalate security at
a target, there is a short “security escalation pe-
riod” (latency). Thereafter, CE can detain (effectively
incarcerate) individuals at that target and can evac-
uate it.

e The action to evacuate a target must be invoked a
medium time before the attack’s last resource or ca-
pability is applied (maxAssetApplicationEndingDate)
to avoid the deaths of visitors (everyone whose last
visit was to the target, including attackers’) when the
target is destroyed.

e CE may choose to detain (e.g.) suspected threat indi-
viduals or any individual it can determine may pos-
sess a resource or capability supporting a suspected-
impending threat mode. The exploitation team leader
or at least half its members must be detained through-
out the asset application interval (from minAsset-
ApplicationEndingDate to maxAssetApplicationEnd-
ingDate) to defeat the attack. We could (as in Hats)
accord greater cost to detaining a non-threat individ-
ual.

Fig. 25 illustrates CE’s hypothetical actions to defeat
a specific attack, in a scenario where CE is able to detain
three attackers but doesn’t have confidence that it can
thwart the attack. It decides to evacuate and is able to
do so in time.

Fig. 26 illustrates (not to scale) cumulative costs
associated with the enforcement actions and with the
attack in Fig. 25. In the described scenario, costs in the
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Fig. 25. Actions to defeat a specific attack.

Fig. 26. Costs of hypothetical enforcement (left),
enforcement-defeated loss of life (center), and attack damage (right).

center column are averted; those in the left and right
columns are incurred.

Precise scalar costs would need to be tuned relative
to each other to ensure that datasets would pose rea-
sonable challenges. e.g., we generally would want CE
to incur a higher cost for incarcerating everyone it ever
sees than it incurs for doing nothing. A limited cost
budget (e.g., one that would support only a limited num-
ber of concurrent individual detentions or of total target
evacuation days) also could help to ensure plausible CE
threat-defeating strategies.

To facilitate comparison across datasets, scores may
be normalized in each dataset to the cost that would be
incurred if CE were to do nothing (and all attacks were
successful).

4.3. Related Work (Alert Scoring)

Besides Hats, related work appears to be limited.
Others have evaluated event prediction where exact
hypothesized-to-reference case matching is appropriate.
Weiss and Hirsh [42] specialize precision to discount
temporally close false-positive hypotheses. Létourneau,
Famili, and Matwin [20] apply a nonmonotonic time-
liness function to determine rewards and penalties for

TABLE IV
Coarse Problem Space Dimensions

true- and false-positive predictions of appropriate air-
craft component replacement times. Different metrics
are certainly appropriate in different contexts, and we
believe the accommodation of inexactly matching hy-
pothesized and reference cases and attendant case pair-
ing entail issues for structured threat alert scoring that
others have not addressed. Mahoney et al. [26] sug-
gest some overall strategies for comparing hypothesized
versus reference situation histories and note the require-
ment for timeliness, without directly addressing threat
event prediction.

5. EXPERIMENT DESIGN TO IDENTIFY
PERFORMANCE INFLUENCES IN THE PROBLEM
SPACE

We now describe our methodology for constraint-
based experiment design and analysis to identify which
among varied dataset characteristics most influence a
given technology’s performance on a given detection
task. We illustrate this methodology with a case study
using object-oriented F-value as the performance metric
of interest. We describe our experimental approach,
summarized as follows, in subsequent subsections.

1. Collapse many (fine) problem space parameters
into a few dimensions with discrete (coarse) difficulty
settings (Section 5.1).

2. Specify a mix of experimental datasets that maxi-
mizes diversity over the difficulty settings (Section 5.2).

3. Exercise participating detection technology con-
figurations over datasets in the mix (Section 5.3).

4. Score technologies’ output hypotheses relative to
an baseline derived from evidence (Section 5.4).

5. Determine the statistical significance of apparent
problem space performance influences by technology
and detection objective (Section 5.5).

Section 5.6 describes some related experimental de-
sign work.

5.1. Problem Space Discretization

The coarse problem space dimensions are summa-
rized in Table I'V.

Each coarse dimension corresponds to one or more
fine parameters. For some dimensions, we discretize
the fine parameters based on quantitative annual or
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TABLE V
Fine Parameter Discretizations by Problem Difficulty

TABLE VI
Fine Parameter Discretizations per Annual Performance Goals

semi-annual performance goals (set by the funding
program)—see Table VI. For other dimensions we
chose to explore, we discretize into difficulty settings
such as Easy, Fair, Hard—see Table V for an example.
We apply a stop-light color-coding over the discretized
settings, adding light green for very easy settings and
dark red for very hard.

5.2. Dataset Mix Specification

Several factors make effective experimentation chal-
lenging in this context. The evaluation dataset mix
is scoped to occupy a few solid weeks of coordi-
nated program effort. Processing is not always hands-
off, with several disparate component developers some-
times manually handling intermediate results within a
single technology configuration. A star-shaped exper-
imental design with fixed baseline settings and single-
dimension departures might serve individual technology
configurations with single detection objectives, but—
with each dataset—we must test multiple configurations
over multiple objectives. What’s easier for one technol-
ogy/objective combination might be harder for another.
At evaluation time, we have somewhat sparse prior per-
formance data from dry-run activities. We need an ex-
periment that effectively tests over multiple baselines
simultaneously, so we choose a diversity-maximizing,
fractional factorial design.

We take the following steps, discussed below, to
maximize diversity.

1. Specify cross-dimension settings constraints that
ensure well dataset generation.

TABLE VII
Cross-Parameter Constraints

2. Perform constraint satisfaction to develop an ini-
tial dataset mix.

3. Perturb the initial mix in hill-climbing to optimize
the experiment’s coverage.

Table VII indicates some prohibited coarse setting
combinations and associated rationale. e.g., the Fat set-
ting (corresponding to rich threat event modeling—
resulting in more atomic transactions per threat event)
results in too few threat events when the signal-to-noise
ratio used is too low for the dataset size.

Other combinations of coarse settings over these di-
mensions have been verified to generate well datasets.
The coarse discretizations themselves assure compati-
bilities at the fine parameter level. For example, the var-
ious signal-to-noise (threat-to-non-threat) ratios (SNRs)
for a given coarse setting in Table VI are coordinated so
that there are enough individuals to satisfy the genera-
tor’s minimum group size requirement. The discretiza-
tion process thus factors out such fine, numerical con-
straints (whose violation would raise run-time excep-
tions), so that coarse constraint satisfaction over sym-
bolic domains is sufficient for the dataset mix specifi-
cation/experiment design.

The constraint satisfaction problem is challenging
in that we want a number of dataset specifications that
draw without replacement from settings pools, fixed
for each dimension, until all the pools are exhausted.
The pool for Group Connectivity, e.g., includes six
instances each for the tokens None, Easy, Fair, and
Hard. We have implemented an algorithm to specify
a dataset mix respecting both the constraints and the
pools. Alternatively, if the exact numbers of tokens
drawn from each pool is not critical, we can draw
with replacement to generate a random dataset spec-
ification and discard this if it does not satisfy con-
straints (or if it is a duplicate), until we have enough
datasets.

With an initial mix in hand, we perform a hill-
climbing random walk over the space of well datasets,
swapping any two datasets’ like settings along a given
dimension whenever this decreases the maximum num-
ber of like settings shared across all datasets.
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Fig. 27. Relative scoring r = (a— p)/(1 — p).

5.3. Detection Technology Exercise

Technology developers receive the test datasets in
database form and are required to return ranked hy-
potheses in the scorer’s input format for each of the
detection objectives noted in Fig. 5.

5.4. Adjusting Hypothesis Scores Relative to an
Evidence Baseline

To compare dimension influences across different
datasets requires comparable scores. As explained be-
low, our default (“absolute’) scoring method credits hy-
pothesis content that is patently manifest in datasets to
different extents. Comparability requires a (“relative”)
scoring method that factors this content out.

Evidence provided to LD (as illustrated in Fig. 5)
includes partial top-level case descriptions for some
instances of the detection object types (threat event,
group, individual, and alias association). These descrip-
tions, notionally corresponding to a legacy intelligence
database, afford starting places for the detection pro-
cess. The completeness, consistency, and transparency
of these descriptions with respect to ground truth de-
pend on settings for the Observability, Corruption, and
Alias dimensions. In absolute scoring, LD gets credit
for reporting detection objects whether the same infor-
mation appears in evidence or not.

In relative scoring, the detection task may be re-
interpreted as, “Find unknown and correct misreported
threat objects and their attribute values.” Let a stand for
LD’s absolute score, and let p stand for the score for
returning exactly all and only the top-level threat case
content provided in evidence. We use p as a baseline
in computing the relative score r = (a — p)/(1 — p). See
Fig. 27.

Note that  can be negative—if LD does not perform
as well as the baseline. Note also that the relative
score rewards LD for any improvements to top-level
threat case content provided in evidence—for supplying
missing attribute values or correcting corrupted ones.

5.5. Identifying Performance Influences

Because of the coarse discretizations and constraints,
our experiment design must be “unbalanced” (i.e., have
unequal numbers of settings within and across dimen-

TABLE VIII
Ranked Settings Significance Testing

sions). This requires us to invent novel techniques
to identify performance-influencing dataset characteris-
tics, rather than, e.g., applying ANOVA over coefficient
means among regression fits.

Relative scores support ranking experimental data-
sets by LD’s performance for a given objective. Under
this ranking, we expect the settings for a dataset dimen-
sion with significant performance influence to tend to
exhibit the expected difficulty order—e.g., “Easy, Fair,
Hard” or “Y1, Y2.5, Y3.” To determine the significance
of the settings order actually observed, we first com-
pute its distance to the expected, or “ideal,” order, as
illustrated in Table VIII. We first number the tokens for
each setting (e.g., “Hard”) consecutively as they appear
in each of the observed and ideal orders. Then, for each
so-numbered token, we compute the distance between
its ranks in the two orders. Finally, we sum the rank
distances for all the setting tokens—yielding in the ex-
ample an aggregate distance of 32.3

To determine the extent to which the observed or-
der is significant with respect to the ideal—the extent to
which the observed could have arisen strictly by chance,
with lower values indicating greater significance—we
similarly compute distances (represented in the abbrevi-
ated vector at the bottom of Table VIII) to the ideal from
a sufficient number N = a + b of randomly generated to-
ken orders, counting the number of times a the observed
order is at least as close and reporting significance as
a/N. The significance computation thus accounts both

3This example is taken from an experiment earlier than that reflected
in Table IX. Here, the Observability dimension is discretized into just
three settings: Easy, Hard, Covert.
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TABLE IX
Performance Influence Case Study (Group Detection)

for the closeness of the observed order to the ideal and
for variability of settings among the datasets.

By way of a case study, we include Table IX, cov-
ering results for a selected technology configuration [2]
with the group detection objective, (to provide member-
ship lists for all of the threat groups). Table IX covers
an additional dimension (not included in Table IV) rele-
vant to the technology configuration: Observed 2-way-
comms per Individual. The 21 datasets processed using
the selected technology are sorted by group detection
performance (noted lower right).* Each dataset dimen-
sion column is headed by an idealized settings order.
Under the dimension name, significance is plotted on a
log scale.

With a scoring option in effect to resolve aliases
automatically from ground truth, Group Connectivity
is the most significant influence: chance probability =
0.0006. (Without this option, Aliasing is.) We split the
dataset mix along this dimension to continue analysis,
with results shown below.

4The experiment reflected in Table IX included 24 datasets developed
from the pool specifications discussed in Section 5.2. The results were
developed in the context of a technology integration experiment; a
different group detection technology was used to process the three
datasets omitted from Table IX.

e Group Connectivity (GC) at 0.0006 significance:
—GC = None: (No dimension of convincing signifi-
cance)

—GC = Easy: (No dimension of convincing signifi-
cance)

—GC = Fair or Hard: Observed 2-way-comms per
Individual ar 0.0005 significance

Both Group Connectivity and Observed 2-way-
comms per Individual are relevant to group detection
intuitively as well as in the group detector’s implemen-
tation.

5.6. Related Work (Experiment Design)

Hoffman and Jameson [17] present a multi-sensor,
multi-target geospatial tracking testbed with a multi-
dimensional dataset generation facility to explore the
performance boundaries of a particular data fusion
system implementation. They identify dimensions of
problem complexity (or solution difficulty), generate
datasets with parameter values varying along the differ-
ent dimensions (apparently following the same kind of
star-shaped experimental design we discussed in Sec-
tion 5.2), and determine limits of acceptable perfor-
mance for the fusion system and subsystems using tra-
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Fig. 28. Blackboard-based component integration.

ditional precision and recall along with other tracking
metrics. Our work differs from theirs in several ways.

e Our problem focuses on inference of higher-level
activities from discrete transaction evidence.

e Our evaluation applies object-oriented metrics to
structured hypotheses.

e Our experimentation employs a fractional factorial
design to differentiate performance of multiple so-
lution implementations.

e Our analysis uses a novel rank correlation test to
determine the problem dimensions most affecting a
given technology’s performance.

6. PE LAB ADVANTAGES FOR INFORMATION
FUSION SYSTEM DESIGN

The overall PE Lab supports advanced threat detec-
tion technology development in several ways.

As reported here, we assess technical progress
through program-wide evaluation and identify particu-
lar problem characteristics most influential to a technol-
ogy’s performance. Besides assisting individual tech-
nologists, this process can identify alternative technolo-
gies’ relative strengths and elucidate potentially advan-
tageous combinations.

Within a functional architecture (such as the black-
board architecture schematized in Fig. 28), we can em-
ploy the PE Lab to validate assumptions about the per-
formance of a downstream component (or blackboard
knowledge source—KS) based on that of an upstream
one.

Suppose, e.g., that a group detector depends on an
alias resolver to deliver sufficiently de-aliased evidence
about individuals. If the resolver is not yet performing
at a goal level meeting the detector’s input specs, we can
still ascertain validity of performance claims for the lat-
ter by stubbing the former with a direct feed of evidence
having per-spec de-aliasing. This can help to pinpoint
performance gaps among functional components early
in the development process.

In the future, we hope to facilitate such exploratory
experimentation via a PE Lab-based component test
harness and a program-wide commitment to automated
(i.e., hands-off) component execution. This has the po-
tential to institutionalize the evaluation/experimentation

process as a near-continuous loop in which experiments
result in performance feedback to technology develop-
ers and developers respond to performance deficits with
updated component versions. It also would enhance op-
portunities for large-scale experimentation.

7. CONCLUSIONS

Our hypothesis scoring methods are applicable in
principle to performance evaluation in any domain
where technologies return instances of one or more
structured object types, given a problem for which an
answer key is available. We expect that our alert scor-
ing methods may be applied with benefit in other infor-
mation fusion domains where hypothesis timeliness is
important. Our experimental design methods may ben-
efit other fusion (especially situation assessment) appli-
cations during exploratory system design and develop-
ment.

PE Lab datasets and documentation are currently
available to U.S. Government-approved users. Docu-
mentation covers concept of operations, event genera-
tion pattern language and counter-terrorism domain pat-
terns, dataset generation algorithms, ontology, database
schema, case scoring specifications, hypothesis format,
and user instructions for the hypothesis scoring and
dataset generation software.
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Target Engageability
Improvement through Adaptive
Tracking
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This paper addresses the joint problem of target engageabil-
ity assessment and engageability improvement in naval Anti-Air
Warfare operations. An integrated approach that aims to minimize
the detect-to-engage sequence is proposed. It uses an estimation of
the search-to-lock-on time of the fire control radar to evaluate the
engageability of targets. The latter is then improved through the
control of tracking operations. Weapons assignment process and
the resulting engagement plan are adjusted based on the results of
both the assessment and the improvement of the engageability. A
quantitative evaluation of the proposed approach was performed
using a simulation and performance evaluation environment devel-
oped at Defence Research and Development Canada—Valcartier. Al-
though simple sensors and weapons models used in the presented
work, encouraging results were obtained with scenarios involving
generic supersonic Anti-Ship Missiles. In such scenarios, the pro-
posed adaptive tracking strategy was able to provide timely engage-

ments compared to a conventional engagement strategy.
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1. INTRODUCTION

Reaction time of current and future naval warships is
eroded since they are expected to operate in a large vari-
ety of situations with constantly increasing complexity.
To cope with diverse air and surface threats, the war-
ships, either operating in a single ship configuration or
within a task group, will require their combat power
resources to be efficiently managed. The coordination
and tight integration during the deployment of these re-
sources will also be required. Decision support aids can
help in overcoming the inherent complexity of the naval
Command and Control (C?) process and the underlying
combat resource management problem [15].

This paper addresses two problems related to tar-
get engageability in naval warfare operations: engage-
ability assessment and engageability improvement. En-
gageability is defined as the feasibility of engagement
actions against designated targets. Engageability assess-
ment is concerned with the evaluation of the feasibility
of engagement actions based on the involved combat
resources, the environmental condition, and the geom-
etry of the engagement. The problem of engageability
improvement goes beyond the assessment and aims at
making non-feasible engagements feasible by changing
the engagement geometry and dynamics.

The focus of this paper is on on Anti-Air Warfare
(AAW) [7], and more specifically the problem of com-
bat power management to counter Anti-Ship Missiles
(ASM). This problem is very constrained by the avail-
ability of the combat resources, the most important ones
being hardkill and softkill weapons. Furthermore, most
of the weapons rely on supporting resources for their
deployment. An example of such supporting resources
is given by the Fire Control Radars (FCR) [22] that offer
a limited number of concurrent channels. Since typical
AAW hardkill weapons require FCR support, the en-
gageability of targets using hardkill is very dependent
upon the availability of FCR. This is not the case for
softkill, which can be fired without the need of FCR.

In this work, the availability of FCRs is used as a
key parameter in the assessment of the target engage-
ability using hardkill weapons. When required and pos-
sible, the engageability is improved by adapting the ob-
ject! tracking functionality [1, 4] using an on-line es-
timation of the FCR search-to-lock-on time. This rep-
resents a new approach, which is partly inspired from
the work of [10, 11] on covariance control. If the tar-
get is not and cannot be made engageable, softkill en-
gagements are advocated. As detailed in the sequel and
under given conditions, both engageability assessment
and improvement exploit the dependency of the FCR
search and lock-on duration on the error covariance of
the track of the target to be engaged; the track being pro-
vided by the surveillance system. Scenarios involving

Here we make a clear distinction between objects and targets, since
not all objects will become targets (from the engagement perspective).
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generic supersonic Anti-Ship Missiles (ASMs) are used
to demonstrate the proposed approach. The evaluation is
performed within a simulation and evaluation environ-
ment developed at Defence Research and Development
Canada—Valcartier. This environment is a combination
of a set of tools, including the Simulation Environment
for the Analysis of the Tactical Situation (SEATS) test-
bed [16], Ship Air Defense Model (SADM) simula-
tor [21] and Concept Analysis and Simulation Environ-
ment for Automatic Target Tracking and Identification
(CASE-ATTI) test-bed [20].

This paper is original in that it is one among the very
few to address the engageability assessment problem,
and the first to propose an engageability improvement
approach, and to integrate it with object tracking and
weapons assignment functionalities.

The paper is organized as follows. Section 2 presents
the naval Command and Control (C?) problem. Sec-
tion 3 discussed the target engageability concept and
the role of fire control operation in the detect-to-engage
sequence. A method for assessing the target engageabil-
ity based on FCR search-to-lock-on time is presented in
Section 4. The result of engageability assessment is ex-
ploited in Section 5 to proposed a target engageability
improvement solution. The simulation results and their
discussion are given in Section 6.

2. COMMAND AND CONTROL PROBLEM

Military Command and Control (C?) is a very com-
plex problem and often this complexity rises from the
multitude, the heterogeneity and the inter-relationships
of the systems and resources involved. This is in gen-
eral the case when simultaneous engagements, involv-
ing heterogeneous sensor and/or weapon systems, can
take place. Decision support aids can help in overcom-
ing the inherent complexity of simultaneous engage-
ments.

Naval tactical C2, which defines the context of this
work, can be decomposed into a set of generally ac-
cepted functions that must be executed within some
reasonable delays to ensure mission success. A very
high-level description of those functions, related to bat-
tlespace management, is given below (Fig. 1). Note that
the presented C? model is proposed here for our specific
target engagement application. Waltz and Llinas [23]
present a more generic description and review of the
more the general Command, Control and Communica-
tions (C?) problem.

2.1. Surveillance

Surveillance includes object detection, object track-
ing, and object identification. Object detection is very de-
pendent upon the sensors performance. Object tracking
uses the sensor data to estimate the current kinematical
properties of the object, and predict their future posi-
tions. Object identification (and classification) assesses

Fig. 1. Global view of C? process.

the identity and the class of objects. This also results in
the resolution of true objects from decoys.

2.2. Combat Power Management

To defend itself, a warship relies on a set of tactical
resources, which we will refer to as Combat Power (CP).
These consist mainly of weapons, sensors, navigation,
and communication systems. For a typical frigate, such
as the Canadian Halifax Class, the Anti-Air Warfare
(AAW) weapons include hardkill and softkill. Hardkill
weapons are directed to intercept its target and actively
destroy it through direct impact or explosive detonation
in the proximity of the target. Hardkill weapons for a
typical frigate include Surface to Air Missiles (SAM),
an intermediate range Gun, and a Close-In Weapons
System (CIWS). Softkill weapons use techniques to
deceive or disorient the target to cause it to destroy
itself, or at least lose its lock on its intended target
(i.e., ownship or the high value unit). The AAW softkill
weapons for a typical frigate include decoys (Radio Fre-
quency/Infrared) and jamming systems (on-board/off-
board).

Combat Power Management’> (CPM) functionalities
include, as depicted on Fig. 1, threat evaluation, engage-
ability assessment and weapons assignment, which are
described below.

2.2.1. Threat Evaluation

Threat evaluation establishes the intent and the ca-
pability of the non-friendly entities within a certain Vol-
ume Of Interest (VOI) and for a specific reference point.
It refers to the ongoing process of determining if an
entity intends to inflict evil, injury, or damage to the
defending forces and/or their interests, along with the
ranking of such entities according to the level of threat
they pose. In this work, threat value computation is
based on the Closest Point of Approach (CPA).

2Also referred to as Threat Evaluation and Weapons Assignment
(TEWA).
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2.2.2. Engageability Assessment

Engageability assessment [9, 12, 8] concerns the
evaluation of own force’s engagement options feasi-
bility against the non-friendly entities within the VOI.
This process is intended to help the weapons assignment
process by eliminating candidate solutions that violate
one or more hard constraints. The latter will therefore
not be feasible. Several aspects can be taken into con-
sideration during this process, such as Rules Of En-
gagement (ROE), blind zones, ammunition availability,
etc.

2.2.3. Weapons Assignment

Weapons assignment makes decisions on how to
deal with the identified threats (and that become targets
now). This process can be subdivided into several sub-
problems that include mainly a response planning and
response execution and monitoring. Response planning
ensures that one or more weapons are assigned to en-
gage each target, including the assignment of support-
ing resources (as sensors, communications, etc.). This
is about assignment of both resources (a pure allocation
problem) and start and end times to activities (a pure
scheduling problem). We talk about joint resource allo-
cation and scheduling problems, that generates a ranked
engagement list of the targets for the response execution
module. Response execution and monitoring is the pro-
cess by which the planned response is executed in real-
time. This also includes the execution monitoring func-
tionality. Since the responses are executed in a dynamic
environment, subject to uncertainty, changing goals, and
changing conditions, the actual execution contexts will
be different from the projected ones.? Monitoring is re-
quired to help detect, identify and handle contingencies
caused by uncertainty and changing nature of the envi-
ronment.

3. FIRE CONTROL AND ENGAGEABILITY PROBLEM

To provide response to an ASM attack, human op-
erators in charge of AAW go through a standard se-
quence of operations referred to as detect-to-engage se-
quence. This temporal sequence starts with the object
detection by the surveillance system and ends with the
object (now a target) engagement. Fig. 2 illustrates the
main operations within this sequence. These include the
object detection and tracking by the surveillance system,
FCR cueing, acquisition by FCR (that relates to the FCR
search-to-lock-on) and engagement.

The duration of the detect-to-engage sequence is
crucial to the ship survival. Short detect-to-engage se-
quence provides room for the re-engagement of the
same target (in the case of a target miss assessment)
or the engagement of one or more different targets (in
the case of a target kill/seduction assessment).

3The ones that motivated the construction of the original response.

Fig. 2. Detect-to-engage sequence.

Fig. 3. Fire control cueing.

The duration of the whole detect-to-engage sequence
depends on the individual durations of the composing
functions, over which the decision making (human,
automation or both) has some control. This is especially
the case for the FCR search-to-lock-on. This control
will be used, as explained in the sequel, to evaluate and
optimize the duration of the detect-to-engage sequence
in order to improve the engageability of targets.

3.1. FCR Cueing

The FCR system effectively offers two concurrent
fire channels for the hardkill weapons that provide
high accuracy track data for target engagements. Fig. 3
illustrates how the surveillance sensors and the related
tracking system cue the FCR system to help it acquire
the target and provide a hardkill firing solution [17]. Itis
assumed here that FCR cueing includes the designation
phase in which the FCR is directed to the estimated
location of the target.

Upon detection by the 2D surveillance radars, the
contact information is provided to the tracking system
that maintains a more accurate estimation of the object
position and infers its identity and classification. In
the sequel, only the object position will be 09n§idered.
It is given by the state estimate X = [x,y,x,y]” and
the related error covariance matrix P that represents
some measure of the tactical picture accuracy. Note
that in [19], accuracy is defined in terms of the Root
Mean Square Error (RMSE) of a track. Here we will
assume a consistent tracking and optimal filter [3],
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where the target behavior follows the motion model
used by the tracking filter, so that the RMSE and the
error covariance will converge towards the same value.

Given its high-risk consequences, the engagement
phase requires more precise information than the sur-
veillance operations. This is why the (3D) FCR must
take over the less accurate (and 2D) surveillance radars.
To provide such accurate information, the FCR will
have to acquire and then track the designated target by
itself. Therefore, once a decision is made to engage a
given target, the corresponding positional information
is used to cue the FCR, i.e., to delimit its search region
(Fig. 3) for its search and lock-on phase. This phase
starts once the FCR begins its scan* and ends when the
FCR locks on the target.

3.2. FCR Search-to-Lock-on Time

Following a specific pattern, the FCR will scan the
specific region of the Volume Of Interest (VOI) until
it detects and locks on the target for which a track is
then maintained. The target course and speed contained
in this FCR track is then used to compute a Predicted
Intercept Point (PIP) inside the weapon engagement
envelope. The goal is to provide guidance (for the
missile) or the pointing (for the gun) information toward
the engaged target.

During this target acquisition, or search-to-lock-on,
phase, the FCR has a search time that depends on several
factors, such as: the ownship weapons properties, Com-
mand and Control System (CCS) performance, the op-
erator skill/training, the engaged target characteristics,
etc. Nevertheless, the search-to-lock-on duration should
be limited to avoid wasting the valuable and scarce re-
action time.

3.3. Track Accuracy, Search-to-Lock-on, and
Engageability

The accuracy of the information cued to the FCR
determines the volume it must scan. The time it will
take to re-acquire the target, that is the duration of
the search-to-lock-on operation, depends in a non-linear
manner of the volume to be scanned and the detection
probability of the FCR. This duration is subtracted from
the total reaction time available to the decision-maker
and/or combat power management capability. Note that
the ship survival is very depending upon this reaction
time.

A poor track accuracy causes the FCR to search in
a large volume, so that it will take more time to acquire
the target. This may lead to grave consequences on own-
ship safety. Therefore, the engageability of the targets
is a function of the accuracy of their tracks as provided
by the surveillance system. Hence, controlling the track
accuracy, on the surveillance side, offers a means to im-

4Upon cueing from the surveillance system.
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prove the targets engageability and increases the chance
of ownship to achieve its engagement objectives.

4. ENGAGEABILITY ASSESSMENT

Engageability assessment defines the process of
evaluating the engageability of a specific target, viz.,
evaluating the ability to successfully execute a specific
engagement action against a specific target. Success
here is related to the ability to undertake the action,
given the tactical situation, and not to the outcome of
the undertaken action. Actions refer to defensive strate-
gies where one or more weapons are assigned to the tar-
get. Engageability is assessed over a multi-dimensional
space, which includes time, space, frequency spectrum,
etc.

In this work, the focus is on time. The engageabil-
ity is defined as the feasibility, in terms of scheduling
or time-lining, of a specific engagement as defined by
the duration of the detect-to-engage process. The evalu-
ation also considers target state and characteristics as
well as characteristics of the defensive weapons and
of their related resources. This evaluation aims at re-
ducing the combat power management problem com-
plexity and save the weapons assignment planning time
by discarding inconsistent candidate solutions. Thus, a
feasible alternative must verify a set of constraints and
will be eliminated if it violates any one. For example,
an alternative is retained if, for each considered hardkill
engagement,

1) the requested FCR is available;

2) the target to be engaged is within the range of
the selected FCR;

3) the interception will occur within the weapon
envelope; and

4) the target is not in the blind zones of FCR and
weapons.

In the remaining, only the availability of the FCR is
considered for the engageability assessment, where the
assessment process considers time constraints over the
predicted timeline of the interception.

4.1. FCR-Based Engageability Assessment

The proposed engageability assessment computation
is based on estimations of both the search-to-lock-on
time (f,) and of the detect-to-engage duration (fy.).
The engageability of a specific target depends on its
kinematics as well as on the properties of the weapons
(W) and the characteristics of the FCR.

There is a minimum admissible range of interception
™ that depends on both the weapon and the FCR. Here
it is assumed that ™" corresponds to the weapon’s min-
imum effective range r™". Accordingly, the predicted
target intercept range r; should always be such that

rzrt = (M
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Fig. 4. Target interception range 7;.

where r; is determined based on the target velocity 7T,
the target range r, at the beginning of the engagement,
and the weapon velocity w (see Fig. 4)

R
ColwsT) @
The assessment of engageability is performed as
by equation (1), with focus on specific steps in the
engagement. First, given r™" there is a minimum target
range r™" at which the weapon must be fired to make
the interception happen within its effective range. If
the weapon W is launched while the target 7 has
already passed r;“i“, it will be too late, i.e, r, ¢ [w—,w*].
Therefore, the weapon ¥V must be fired while the target
T is beyond r™". To make this interception possible,
the target 7 must be acquired by the FCR at a range r,
such that

@)

3)

From Equation 2, it is clear that the intercept range r; is
dependent on r, (target range at the end of the detect-
to-engage sequence). The sequence includes detection,
surveillance sensor tracking, FCR cueing, FCR search-
to-lock-on, FCR tracking, and finally weapon launch.
The duration #,;, of the whole sequence is function of
the different phases, as follows

min
r2r,>r, .

“

tde = ttr + ts +I (tdet’tcue’ttrf’twi)

where the durations of detection (z4,), FCR cueing (z,,.),
FCR tracking (7, ,), and weapon launch initialization
(¢,;) are assumed non-controllable (for this work) and
gathered in a single function I'. . and ¢, designate re-
spectively the durations of tracking (with the surveil-
lance sensors) and search-to-lock-on of the FCR. A limit
12 on the detect-to-engage time 7,4, is set using the limit
ri" defined by the minimum range beyond which the
target must be engaged
< fmax _ Td _'rémn

Tde < lge T (5 )

where 7, is the range at which the threat is detected by

the surveillance sensors, and r™" is given by

pmin — pmin ll + 7—’1 .

e w w

(6)

Consequently, the detect-to-engage time f4, has an in-
fluence over the predicted intercept range r;. Thus, any
constraint on r; can be reformulated as a constraint on
I4o- Furthermore, the duration 74, is mainly determined

by the length ¢, of the search and lock-on phase of the
FCR and by the duration #, of the tracking phase (by
the surveillance system). Therefore, the constraint on #,,
can be re-expressed as a constraint on £

Z‘de = ttr + Z‘s < t(rjr::ax = ts < t;nax (7)
where
max _ ,max
ts =lie Iy (8)
r _rmin

— dTe . 9)
_ r,— rxlin r:;lin
= e (10)

Moreover, since the duration of the search and lock-on
phase of the FCR depends on the uncertainty related to
the track of the target (P), the established constraints
on f, can be re-expressed as constraints on P. Note also
the all of the constraints described above can be re-
expressed in terms of time instead of range. The next
section will show how the search-to-lock-on time and
the detect-to-engage time can be estimated.

4.2. Estimation of the Sequences Duration

The core idea of the presented work is to generate
engagement strategies that exploit contextual informa-
tion. This information is given, in this work, by an es-
timate of the duration of the engagement sequence, fo-
cusing on the search-to-lock-on time of the FCR. These
estimated values, shown in Fig. 2, will be used both for
assessing and improving target engageability. As men-
tioned above, the estimated search-to-lock-on time (?s)
of the FCR is a key parameter of the engagement se-
quence. It is evaluated based on both the characteristics
of the target and of the FCR.

Error covariance of the track handed-over to the
FCR also influences the estimation in the determination
of the search volume and conditional detection proba-
bilities. Assuming Gaussian noise for both the target
dynamics and the measurement process, let X and P
represent the target state estimate and its error covari-
ance matrix respectively, Q the process noise covariance
matrix for the discrete time interval & and R the mea-
surement error covariance matrix. Considering regular
measurement updates at an update interval 4, the track
accuracy represented by P can be expressed in terms of
the tracking time f,.:

(11)

F is evaluated recursively by applying the Kalman
covariance update equations given by

P=F(,)

Pk+1|k+1 :Pk+1\k7Wk+lHk+1Pk+l|k (12)
with

Wi = Pk+l|kH£+l[Hk+lPk+1\kHl{+1 +R]™T (13)
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and

P = FPyFL +Q (14)

where H and F are the measurement and state transition
matrices respectively. Thus, for a tracking duration of
n x h seconds, P is obtained recursively by evaluating
equation (15) n times. The estimated search-to-lock-on
time can be expressed in terms of P

1, = G(P) = G(F(1,))

where G is the estimation function. As more to P, G
depends on other variables that include the characteris-
tics of the FCR. There is no explicit analytical form for
the function G, which instead is computed recursively.
More details on the computation of G are given in [18]
for a standard fixed swath search pattern of the FCR. In
short, the estimation function defined in [18] considers

15)

1) a FCR model that comprises beam shape, direc-
tion displacement speeds and search pattern;

2) a search area that is defined by delimiting an
amount of the localization probabilities given by P;

3) conditional detection probabilities for the FCR;

4) a multi-scan time estimation related to a cumula-
tive detection probability;

Let p,(t) be the density function associated with the
probability that the FCR detects and acquire the target
at time ¢. Then the search-to-lock-on time estimation
function G is defined as
+0o0

L=0®) = [ pondr (16)
where 7, can be seen as a random variable with mean
;S. p, depends on the target localization probability p;
and on the conditional detection probability pp; that
depends on the properties/performance of the sensor
used. This is where the track accuracy represented by
P has an influence since p; is defined according to
the Gaussian target distribution subsumed by the error
covariance matrix P [18, 17]. Note that the fact that
p; is Gaussian does not imply that 7, has a Gaussian
distribution. Also, in this work, 7, will be considered
as an exact estimation of the search-to-lock-on, as a
primary study, although it is acknowledged that future
work should consider the probabilistic nature of 7,. pp,,
depends on the properties/performance of the FCR.

Moreover, the discretized form of (16) is

Es = Zpa(tk)tk
k

where p, (t,) represents the probability mass function.
Note that p,(7,) does not have an explicit analytical
form. It is computed recursively [18].

Finally, substituting (15) into (7), the estimated
detect-to-engage time is

lge =Ty + Zpa(tk)tk
k

A

tde = ttr + g(]:(ttr))

A7)

(18)

(19)

104

Fig. 5. Detect-to-engage (¢,,) and search to lock-on (¢.) durations

in terms of tracking time #,.. Measurement updates are assumed to

occur regularly so that their number is proportional to the tracking
time 7. (a) & (c) Target not engageable. (b) Target engageable.

which shows that the detect-to-engage time #,. (or its
estimate 7,,) can be expressed as a function of 1.

Before going further about the estimation of the
search-to-lock and time, it must be acknowledged that
the presented estimation functions are restrained to spe-
cific tracking conditions to produce useful results for
the development of target engagement strategies. For
instance, the presented strategies in the next paragraphs
necessitate having a monotonically decreasing search-
to-lock-on time function in terms of the tracking du-
ration. This implies conditions on the tracking process
that mainly involve the process noise, the measurement
noise and the measurement update rate for the tracking
filter. Also, it is also assumed that measurements are
received regularly over time such that as the tracking
process goes on more measurements are received and
the track uncertainty gets reduced. As more, to obtain a
monotonically decreasing track error covariance, a rel-
atively high measurement update rate is needed and the
ratio of the process noise over measurement noise must
be low enough. This should allow having a monotoni-
cally decreasing search-to-lock-on time function and a
corresponding detect-to-engage function that is charac-
terized with a single minimum as in Fig. 5.

The functions for 7, and 7,, in terms of the tracking
duration ¢, that we are needing to apply adaptive track-
ing strategies are illustrated on Fig. 5, where we have
lye =1, +1,

In comparison, Fig. 6 shows the same functions ob-
tained experimentally with & =0.4 and with surveil-
lance sensor measurement noise standard deviations
05 =0.035 rad for bearing and o, =1 m for range.’
The process noise follows the pulse model with power
spectral density (standard deviation) of 1 m?/s® [4].
The tracking parameters were adjusted to provide the
monotonically decreasing search-to-lock-on time and
the minima of the detect-to-engage function.

5The tracking system converts the sensor measurements from Polar
to Cartesian coordinates using the conventional coordinate transfor-
mation [4, 2].

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 2, NO. 2 DECEMBER 2007



Fig. 6. Estimated detect-to-engage (;de) and search to lock-on (?s)
durations in terms of tracking time ¢, for a target initially situated at
75 km from the ship and with speed of 700 m/s in the direction of
the ship.

Hence, controlling duration 7, before cueing the
FCR in order to satisfy the conditions expressed in (1)
and (5) can ensure that the target is engageable. As
explained below, three situations may occur (Fig. 5)
based on the constraint 737%*:

a) A too short tracking time causes a too low track
accuracy, and therefore a too long search-to-lock-on
time. The target is not engageable since the predicted
target intercept range will be below its minimum limit
defined in (1).

b) A good compromise between tracking time and
search-to-lock-on time. The target is engageable since
the predicted target intercept range will be above its
minimum limit defined in (1).

c) A too long tracking time before cueing the FCR.
The FCR takes a short time to lock on the target (due

to the high accuracy of the track). Nevertheless, the
gain in search-to-lock-on time cannot compensate for
the long time spent in tracking. As for (a), the target is
not engageable.

The proposed target engageability improvement so-
lution, presented in the next section, will help maintain-
ing situation (b) for different engagement scenarios.

5. TARGET ENGAGEABILITY IMPROVEMENT

As stated in the previous section, the engageability
assessment aims at supporting the weapons assignment
planning process. Instead of performing it in open-loop
manner (Fig. 1), we propose a closed-loop approach that
combines the engageability assessment and engageabil-
ity improvement, as shown in Fig. 7.

The concept of engageability improvement goes be-
yond the assessment concept by changing the engage-
ment geometry and dynamics, to make non-feasible
engagements feasible. In this work, it is shown that
the engageability can be improved through the mini-
mization of the detect-to-engage time in given in equa-
tion (19). The proposed target engageability improve-
ment approach is based on the control of the FCR cue-
ing time. This is achieved through feedback to the ob-
ject tracking function, such as illustrated in Fig. 7. Both
the engageability assessment and the engageability im-
provement functions use an estimation of the FCR’s
search-to-lock-on time, and interact with the data fusion
(i.e., object tracking), threat evaluation and weapons as-
signment processes.

The engageability improvement function controls
the cueing time of the FCR by setting a tracking du-
ration ¢, for each target based on the desired search-to-
lock-on time and the underlying track accuracy (Fig. 8).
Practically, the tracking duration is determined itera-

Fig. 7. Target engageability improvement in the C? process.
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Fig. 8. Engageability assessment and engageability improvement
interaction.

tively at the instant where the estimated search-to-lock-
on time (and the underlying error covariance of the
track) reaches an objective threshold shown in Fig. 8. It
is chosen such that some operational objectives on the
detect-to-engage and search-to-lock-on durations are
achieved. These objectives depend mainly on the num-
ber of planned engagements and their configurations.
In the followings, two operational objectives (labeled
respectively O, and O, on Fig. 9) are considered.

O,—aims at intercepting the target as close as pos-
sible to the weapon’s minimum intercept range r™".
This translates in long tracking time, minimum® search-
to-lock-on time (7, = t™") and high probability of in-
terception. On the other hand, this corresponds to the
maximum detect-to-engage duration (t;, = 17**), as il-
lustrated on Fig. 9).

SWhich makes FCR more available for other engagements and also
minimizes the signature (i.e., detectability) of ownship.

Fig. 9. Objectives of the detect-to-engage sequence.

O,—aims at intercepting the target such as to mini-
mize the total detect-to-engage duration (fy4, = #J2"). This
consists in finding the tracking duration and cueing time

that guarantee the achievement of this objective.

The proposed engageability improvement approach
considers the initial hardkill engagement plan for each
target. Then, based on the engageability assessment, the
detect-to-engage objectives are adjusted to improve en-
gageability. When the target is not engageable, and there
is no room for improvement, hardkill engagements are
dropped and softkill is recommended instead for the
concerned targets. When the engagement objectives are
met and the engageability of each target is satisfactory,
the hardkill plan is made available for execution and
the FCR is cued following the computed engagement
schedule. The execution also includes the softkill strate-
gies for the targets that were not considered engageable.

Fig. 10 illustrates an engagement sequence example
of two targets, the engageability the second target is
improved through the minimization of the detect-to-
engage duration for the first target. It is shown that both
targets can be intercepted in time with the appropriate
selection of the tracking durations 7, and z,.

Fig. 10. Engagement sequence of two targets, with detect-to-engage time minimization on the first target (t,, is detection time and ¢, is
interception time for target k).
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Fig. 11.

Engagement sequence of two targets, without detect-to-engage time minimization on the first target (7, is detection time and ¢, is

interception time for target k).

On the other hand, Fig. 11 shows the engagement
sequence of the same two targets where no improve-
ment of engageability was used. Because the tracking
durations #,, and #,, are not set correctly, one of the
targets will not be engageable.

6. SIMULATION AND RESULTS

A quantitative evaluation of the proposed target en-
gageability improvement approach was performed using
a combination of the SEATS test-bed [16], SADM sim-
ulator [21] and CASE-ATTTI test-bed [20]. The target
engageability improvement approach is based on mini-
mization of the detect-to-engage time. The demonstra-
tion uses the search-to-lock-on time estimator and the
FCR model presented in [17].

Two scenarios, featuring a warship that is attacked
respectively by one or two supersonic ASMs, are pre-
sented. The scenarios were defined such that the du-
ration of the detect-to-engage sequence is critical to
the ship survival. The simulated scenarios, including
weapons and targets characteristics, are kept simple
to avoid incorporating any military CLASSIFIED in-
formation. Nonetheless, the simulation remains rich
enough to illustrate the benefits of the proposed ap-
proach as a first study.

The ship is assumed equipped with SAMs as pri-
mary hardkill weapons. The SAM minimum intercept
range is assumed to be ™" = 1000 m. Any interception
below this range is considered to be highly unlikely suc-
cessful. In this case, the defending ship would be hit by
the ASM. Also, it is assumed that the ship has only
one FCR available.” Fig. 12 and Fig. 15 illustrate the
two used scenarios as scripted in the simulation envi-
ronment, using STAGE™,

"Note that Canadian Frigates of Class Halifax have two FCRs.

For each of the two scenarios presented in the next
sections, the performance of the defending ship is eval-
uated using two different defensive strategies. The first
one is a conventional engagement method that does not
rely on the estimation of the search-to-lock-on time.
With this strategy, the FCR is cued as soon as the
ASM is detected and a confirmed track is established.
This corresponds to the typical tactic used by most
navies in the world. The second strategy exploits en-
gageability assessment and improvement concepts. Al-
though more sophisticated hardkill and softkill coordi-
nation strategies exist [14, 13, 5, 6], softkill combat
resources are used, in this work, as second resorts in
cases where hardkill engagements are deemed not fea-
sible. Finally, it must noted that the actual search-to-
lock-on time #, and its estimated value 7, are considered
identical in this simulation. Hence the results should be
treated as average results rather than single instances
out a probability distribution. However, a future work
that will consider the probabilistic aspect of the search-
to-lock-on time will offer a natural extension to this
work.

6.1. Single Target Scenario

The first scenario (Fig. 12) considers a closing sin-
gle supersonic ASM with a zero CPA relative to the
ownship.

This scenario provides the ship with conditions for
re-engagement should a miss occur. More precisely, it is
assumed that the target is missed at its first engagement.
The miss is due to the SAM performance and a second
engagement is then required to intercept the target. In
that case, a second SAM could be launched shortly
after the miss assessment. The following will show
how the minimization of the detect-to-engage sequence
can provide the opportunity of a second engagement
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Fig. 12. Single target scenario in the STAGE (within SEATS test-bed).

compared to the conventional engagement method and
under specific target conditions.

Suppose a scenario that starts at + = 0.0 s with the
detection of the ASM by the surveillance system at
the initial range of 26000 m. The ASM has and initial
altitude of 300 m and a speed of 900 m/s. Under these
conditions, the threat time-to-go (or time on flight) is
about 29 s. The tracking parameters are given in Table I.
Note that the parameters were set to study how the
estimation of the search-to-lock-on time and related
cueing strategies could improve the engageability of
targets.

6.1.1. Conventional Engagement

With the conventional engagement strategy, the FCR
is cued by the surveillance system as soon as a con-
firmed track is obtained, that is 2.9 s after the first de-
tection. The FCR locks on the target at 21.3 s. One
second later, a first SAM is fired. It misses the target
at time #,, = 26.5 s, as illustrated in Fig. 13. According
to the minimum intercept range (r™") of the SAM, the
maximum intercept time is:

r,—rmn 26000 — 1000
7 900

max
L =

=27.78s (20)

so that the target must be intercepted before r = 27.78 s.
A second SAM could be fired not until t = 27.5 s, so
it that would be too late to intercept the threat. The
warship is hit by the target at 28.9 s, unless a softkill is
used as a backup strategy.

TABLE I
Tracking Parameters for the Single-Target and Two-Target Scenarios

Track update period (h) 04 s
Search and surveillance radar accuracy in bearing (o) 0.035 rad
Search and surveillance radar accuracy in range (o,) 1m
Process noise power spectral density 1 m?/s3

Fig. 13. Engagement sequence without detect-to-engage time
minimization (single target scenario).

6.1.2. Detect-to-Engage Time Minimization

Using the minimization of the detect-to-engage time,
the FCR is not cued as soon as a confirmed track is
obtained. Instead, it is cued once the minimum value
of the detect-to-engage duration is reached (i.e., at t,. =
9.9 s). A shown in Fig. 14, this causes the FCR to lock
on the target at 15.4 s, offering a gain of 5.9 s even if
cueing occured 7.0 s later compared to the conventional
engagement case. A first missile is then fired at 16.4 s
and misses the target at 24.4 s, which leaves enough
time for a re-engagement with a predicted interception
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Fig. 14. Engagement sequence with minimization of the
detect-to-engage time (single target scenario).

time below #"**. A second missile is fired at 25.4 s and
hits the target at 27.7 s, at 1112 m from the ownship.
Table II summarizes the results.

6.2. Two-Target Scenario

This second scenario (Fig. 15) illustrates the engage-
ment of two closing supersonic ASMs, again with zero
CPA relative to the defending ship.

ASM, has an initial range of 19000 m, an altitude
of 300 m and its speed is 900 m/s. ASM, has an initial
range of 23000 m, an altitude of 300 m and its speed is
900 m/s as well. ASM, pops up at 0.0 s, while ASM,
pops up at 2.0 s. It is assumed that the ownship is aware
that an attack by more than one ASM is potentially high.

6.2.1. Conventional Engagement

Without minimization of the detect-to-engage time
of its, ASM, is intercepted just before it reaches the
minimum intercept range (1000 m) of the SAM. This
leaves no time for engaging ASM,, which is detected

TABLE II
Results of the Conventional Engagement and the Engageability
Improvement Method for the Single Target Scenario

Without Engageability Improvement

Function Time ([s]) ASM range ([m])
Cueing 2.9 23390
Acquisition (lock-on) 21.3 6830
Ist engagement 22.3 5930
st miss 26.5 2114
2nd engagement (27.5) (1217)

Interception none, the ASM hits the warship at 28.9 s

With Engageability Improvement

Cueing 9.9 17090
Acquisition (lock-on) 154 12140
st engagement 16.4 11240
1st miss 24.4 4014

2nd engagement 25.4 3114
Interception 27.7 1112

by the surveillance radar at 2.0 s. At that time, the FCR
is busy on ASM,. The assignment of the FCR to ASM,
takes place at 20.9 s and the acquisition occurs at 23.9 s.
Another SAM could be fired at 24.9 s, but it would
be too late to prevent ASM, from hitting the ship (at
27.56 s).

This is shown in Fig. 16, where the cueing of the
FCR as soon as ASM, is detected (¢, = 0) has resulted
in a long search-to-lock-on time (¢, = 13.9 s). The
evaluation of the engageability before the engagement
takes place will allow the recommendation of a softkill
strategy.

Fig. 15. Two-target scenario in the STAGE (within SEATS test-bed).
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Fig. 16. Engagement sequence without detect-to-engage time
minimization on the first target (two-target scenario).

Fig. 17. Engagement sequence with detect-to-engage time
minimization (two-target scenario).

6.2.2. Detect-to-Engage Time Minimization

With minimization of the detect-to-engage time, the
FCR is assigned to the first detected target (ASM,) at
9.9 s, that is 7.0 s after track confirmation. The FCR
locks on the threat at 14.9 s (instead of 16.8 s with
the conventional engagement method). A SAM is then
fired at 15.9 s and hits ASM, at 19.25 s. Prior to that,
the second target was detected by the surveillance radar
at 2.0 s. The FCR was busy until made available once
ASM, is assessed killed. The FCR is then assigned to
ASM, at 20.25 s. It locks on it at 23.25 s (instead
of 23.9 s with the conventional engagement method).
A SAM is fired at 24.25 s against ASM,, which is
intercepted at 26.38 s. Fig. 17 shows the complete
engagement sequence and Table III summarizes the
results.

TABLE III
Conventional Engagement and the Detect-to-Engage Time
Minimization Method for the Two-Target Scenario

Conventional Engagement

Target Function Time ([s]) ASM range ([m])
ASM, Cueing and designation 2.9 16390
Acquisition (lock-on) 16.8 3880
Engagement 17.8 2980
Interception 19.9 1064
ASM, Cueing and designation 20.9 5990
Acquisition 23.9 3290
Engagement 249 2390
Interception none, ASM, hits
the warship at 27.56 s
Detect-to-Engage Time Minimization
ASM, Cueing and designation 9.9 10090
Acquisition (lock-on) 14.9 5590
Engagement 15.9 4690
Interception 19.25 1675
ASM, Cueing and designation 20.25 6575
Acquisition (lock-on) 23.25 3875
Engagement 24.25 2975
Interception 26.38 1063
6.3. Discussion

The two presented scenarios showed that the FCR
cueing time f,. can have a significant impact on the
engageability of the targets and can be used as a con-
trol variable to influence the engagement sequence. The
presented results are based on several assumptions re-
garding the engagement configuration, the shipboard
resources, as well as the behavior of the different es-
timation algorithms used. For instance, for less critical
situations (e.g., single subsonic missile attack), cueing
the FCR a few seconds later or a few seconds sooner
may not impact much the outcome of the engagement.
Also, the tracking parameters showed in Table I assumes
that the error covariance to be monotonically decreasing
in terms of the tracking time 7. A minimum detect-to-
engage time strategy would be irrelevant in the cases
where the error covariance does not decrease with time.
Moreover, the results are very dependent on the model
the FCR and the corresponding search-to-lock-on time,
which can change considerably with the track error co-
variance [17, 18].

7. CONCLUSION

This paper considered the problem of target engage-
ment in the naval Anti-Air Warfare operations. The
naval Command and Control process was briefly de-
scribed and an approach to improve the engageability of
the targets was proposed. The proposed approach com-
bines object tracking, threat evaluation, and weapons
assignment in a closed-loop and integrated manner, and
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uses an estimation of the search-to-lock-on time of the
FCR to control the tracking and cueing operations. Two
scenarios, involving supersonic targets with the inher-
ent short reaction time, were used to show the benefit of
the proposed approach on the overall detect-to-engage
sequence and the ownship survival. For the two pre-
sented illustrative scenarios, the conventional engage-
ment method was unable to cope with the short reaction
time constraints, and failed to defeat the threats using
its hardkill resources. The engageability improvement
strategy based on minimization of the detect-to-engage
time provided a better way to exploit the same available
and scarce reaction time.
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Misassociation Probability in
M2TA and T2TA
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This paper presents procedures to calculate the probability that
the measurement or the track originating from an extraneous tar-
get will be (mis)associated with a target of interest for the cases of
Nearest Neighbor and Global association. For the measurement-to-
track (M2T) case, it is shown that these misassociation probabilities
depend, under certain assumptions, on a particular—covariance
weighted—norm of the difference between the targets’ predicted
measurements. For the Nearest Neighbor M2T association, the exact
solution, obtained for the case of equal track covariances, is based
on a noncentral chi-square distribution. An approximate solution is
also presented for the case of unequal track prediction covariances.
For the Global M2T association case an approximation is presented
for the case of “similar” track covariances. In the general case of
unequal track covariances where this approximation fails, a more
complicated but exact method based on the inversion of the charac-
teristic function is presented. The track-to-track (T2T) association
case involves correlated random variables for which the exact prob-
ability density function is very hard to obtain. Moment matching
approximations are used that provide very accurate results. The
theoretical results, confirmed by Monte Carlo simulations, quantify
the benefit of Global vs. Nearest Neighbor M2T association. These
results are applied to problems of single sensor as well as centralized

fusion architecture multiple sensor tracking.
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1. INTRODUCTION

This paper deals with the closed form misassocia-
tion probability formula for measurement-to-track as-
sociation (M2T) and track-to-track association (T2T).
The emphasis of this work is in closely spaced tar-
gets, which is much more prevalent in the real world
than association of clutter to target tracks. Thus clut-
ter is not considered in the sequel. In the first sections
we develop the procedure to calculate the probability
that the measurement associated by a likelihood based
assignment algorithm to a target of interest originates
from another (extraneous) target as a function of the
state estimates and covariances of the tracks. Both a
Nearest Neighbor! (NN) as well as Global® (G) assign-
ment are considered. An approximate procedure is de-
veloped for the T2T association, as a closed form of
the probability density function is very hard to find,
due to the existing correlation between the track esti-
mates. These closed form expressions should be useful
when the knowledge of the performance of a system
is to be quantified, for example, in the selection of a
radar given it accuracy and the expected scenarios it
could encounter. Also as in [6], it could be used to pre-
dict the number of measurements needed to achieve a
certain performance. The model used for the targets is
deterministic—they are located at a certain separation
distance in the measurement space, expressed in terms
of the track state estimates mapped into the measure-
ment space. The association problem® was investigated
in [10] for a different model, namely, the targets were
assumed randomly distributed (i.i.d. uniform in a hyper-
ball of a sufficiently large radius). Extensive work on
the association of tracks from two sources, using kine-
matic, feature and classification information was done in
[14, 7]. In [9] a more complex T2TA problem account-
ing for registration errors and mismatch in the number
of tracks is considered. To obtain meaningful results, the
track model considered is simplistic, assuming isotropic
errors of the same variance. The model considered here
allows performance evaluation of association algorithms
under more realistic conditions, namely, with arbitrary
measurement prediction covariances and the results are
expressed in terms of the target separation distance.

Section 2 formulates the M2T association problem.
The calculation of the misassociation probability for a
Nearest Neighbor association is described in Section 3

IStrictly speaking, this is local NN because it considers the association
of only one measurement to a track at a time (see [1] Section 3.2),
and the measurement/track with smaller association cost is assigned
to it. The other measurement is associated to the remaining track.
2This considers simultaneously all the measurements and tracks so
the assignment is chosen as the association pair with overall smaller
cost, and, unlike the local NN, has a unique solution [11].
3Two-dimensional (2-D, also known as “single frame”), i.e., between
two lists—the list of measurements from the latest scan/frame and
the list of tracks. Association is called sometimes “correlation”; since
correlation has a well defined meaning in probability/statistics, we
will not use it for association.
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for the situation where the innovation covariances of the
two tracks are equal as well as a generalization for un-
equal innovation covariances case. Section 4 introduces
the Global association criterion, and the probabilities of
misassociation for the two innovation covariance cases
are obtained. The case of T2T association is considered
in Section 5. Simulation results presented in Section 6
compare the theoretical calculations with Monte Carlo
runs. Conclusions are presented in Section 7.

2. FORMULATION OF THE M2T ASSOCIATION
PROBLEM

The predicted measurements (at the current time,
not indicated for simplicity) for the two targets are
denoted as z;, with associated covariances S;, i = 1,2.
These covariances are detailed in the sequel.

The pdf of the measurement prediction from the
target of interest, designated as 1, is

P(Zl)=N(Z1;21,Sl) D

while the pdf of the measurement prediction from the
extraneous target, designated as 2, is

p(Zz) = N(ZZ;EQ,Sz)- 2)

It is assumed that the assignment algorithm, using
the likelihood function (or likelihood ratio) as a crite-
rion, will associate to target ¢ the measurement whose
likelihood of having originated from target ¢ is the
largest. The likelihood of measurement z; having origi-
nated from target ¢ is given by the pdf of a measure-
ment originating from target (track) r—the predicted
measurement pdf—evaluated at z;, namely,

Ay =Py N(z32,S;)
A _ Ao A
=By, 278 2expl—3(z = 2)'S; (@~ 2] (3)
where Fj, is the detection probability of target 7, and

“

where H, is the measurement matrix for track ¢ and R,
is the measurement noise covariance for z;. Since this
noise covariance can be a function of the SNR, it has
the index of the measurement. The likelihood ratio of
originating from this track vs. from (random) clutter is
this likelihood function divided by a constant, which
is the spatial density of the clutter, assumed Poisson
distributed [4].

Thus the index of the measurement that will be
associated with track ¢ is [1]

i*(t) = arg max[PDzN(z,-;E,,S,-t)]
1

S, = HPRH/ + R,

= argmin[(z; — 5)'S; 'z~ 2) + In 23S, ]I (5)

Note that the target detection probability does not ap-
pear in the final expression above because all the like-
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lihoods of association with track ¢ have the same multi-
plier. In the case that the innovation covariance matrices
are equal*

then the log of the determinant of the covariance matrix
in (5) is the same for all i and

i°(t) = argmin[(; — )'S, (5~ 2)1. @)
Consequently, under assumption (6), for track 1 the
associated measurement report (AMR) will be the one
whose normalized (Mahalanobis) distance squared to Z;,
given by
D(Z,21)=(Z*21)'Sf1(zfﬁl) (8)

is the smallest. This amounts to a “local Nearest Neigh-
bor” (designated as NN) assignment. Therefore, the
misassociation event (MAYN) that the measurement
from target 2 is assigned to track 1 (which represents
target 1) occurs if
A A A

{MASN} ={D(z,,,) < D(z,,2))} )
The analysis of misassociation in the case of a global
assignment (G) will be presented later.

3. NEAREST NEIGHBOR M2T MISASSOCIATION

3.1. Equal Innovation Covariances

This section evaluates the probability of misassoci-
ation of the NN assignment technique which considers
tracks independently under a simplifying assumption.
Assuming that

z; ~ Nz, 5) (10)

the pdf of D(z,,2,) is chi-square with n, (dimension of
z) degrees of freedom (d.o.f.), to be denoted as

(11)

To obtain the pdf of the “competition,” D(z,,z,), it is
rewritten as

D(z5,2)) = (22— 2))'S (2, — %))
= (22 *22 + 22 721)/8;1(22 722 + 22 *21)-
(12)

Note that the above contains, in addition to the deter-
ministic quantity z, — z,, the difference z, — z,. The lat-
ter is random with covariance S,, but the quadratic form
in (12) contains the matrix S;.

As shown below, the pdf of (12) is noncentral chi-
square if the matrix in the quadratic form is the covari-
ance of z, —Zz,. Consequently, it will be first assumed

pD(Zlil)(x) = Xiz(x)-

4This holds approximately when a single sensor tracks two close
targets.
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that’

$=5,=S. (13)
Using the Cholesky decomposition of S~!
S—l =(S—1/2)/S—l/2 (14)
one can rewrite (12) as
D(z,,2)) = [571/2(12 —Z)+ 571/2(22 -zl
X [S7V2(zy = 2) + S22, — 2]
(15)
Denoting the n_-vector
Ara A 12,8 A
&1 218 P -+ PG -1 (16)
the distance (15) is its norm squared, i.e.,
D(2,2)) = &6 = Y (& (D) (17)
i=1
Since
cov[é, 1=S7128(S712) =1 (18)

the components &,,(i) of &,; are independent Gaussian
random variables with nonzero means and unity vari-
ance. Thus

£1(0) ~ N (&, (D), 1),

where &,,(i) it the i-th element of [S~1/2(2, —2))], i =
1,...,n,.
2 9 Z
Consequently [15], the pdf of (17) is noncentral chi-
square with n_ d.o.f. and non-centrality parameter

(19)

i=1,...,n,.

A=Y AG - )
1

=[S72E, - 2DVIS V22, — 2]

= (G -2 (G - 2. (20)
This pdf is denoted as
Pz @) = X5 1 (0). 1)

The cumulative distribution function (cdf) correspond-
ing to the above will be denoted as X,% ,(x) and a routine
for its evaluation (to be needed below) is available from
[5].

The probability of the misassociation event (9) is
then given by

Pyayy = P{D(25,2)) < D(z1,2)}
=/0 P{D(z,,2,) <x}p1)(zl,21)(x)dx

= / h Xy \()x (x)dx. (22)
A :

SFor simplicity, the single indexing of covariances as in (1)—(2) is
used in the sequel.

3.2.  Unequal Innovation Covariances

This section evaluates the probability of misassoci-
ation of the NN assignment technique which considers
tracks independently in the general case. While assump-
tion (13) is somewhat limiting, it is not unreasonable
to assume that two targets in the same neighborhood
have the same state estimation covariance. If (13) is not
satisfied, then (16) has to be replaced by

A — A~ — A~ ~
Gr 2187 Pz = 50) + 8,25, — 2] (23)
and
D(23.2)) = 511 = D (G ()% (24)
i=1
The covariance of (23) is
covlCy 1 = 87/28,8 2 #1 (25)

i.e., its components are not independent anymore and
(24) is not chi-square distributed. Consequently, one
cannot use anymore (22) to evaluate the probability of
the misassociation event (9).

In this case the exact distribution of (24) is needed.
However, this is not known because the covariance of
7, — 2, is S, but the norm is w.r.t. §; #S,. A moment
matching technique will be used to approximate its
distribution.

Considering only the zero-mean part of (23), its
norm squared is

Dy(z0.51) = [87 2 (20 — 2TIS; 22 — 21 (26)
and its mean is
E[Dy(z,2)1 = EI[S;*(z = 2)V'1S] (2 — 2]

=[S, 'S,]. (27)

Under the equal covariance assumption, the above
would have been equal to n_ (the trace of the n_ xn,
identity matrix, as in (18)).

Based on the above observation, we will scale
D(z,,z,) to match its mean to what it would have been
in the equal covariance case (i.e., n,) as follows

* ANA ~
D (Zz’zl)=0121D(Z2,Z1) (28)
where
A n,
Oy = ——— 29
2 u[Sy'S,] 29)

and will approximate the distribution of D*(z,,z,) as
noncentral chi-square with n, d.o.f. and noncentrality
parameter

)\* = 0[21 Z([SII/Z(EQ - 21)]1')2
i=1

= a5 —2)S; ' E —2)). (30)
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The probability of the misassociation event (9) is
then given by

Puaw = P{D(z5.2)) < D(z;,2))}

- p{m <D(Z1721)}

Q)

:/0 P{D"(2,2)) < ayix}pp, 2,y (X)X

= /0 Xy (a1 0)x; (X)dx. (31)
Since the above is an approximation, its quality will
be evaluated via Monte Carlo runs in Section 6.

4. M2T MISASSOCIATION IN A GLOBAL
ASSIGNMENT

If a Global assignment [2] is used, then a misasso-
ciation (swap of measurements for two targets) occurs
if

D, +D,, <D +D,, (32)

since, as in (5), the covariance determinants cancel.
This assumes the same noise covariances for the two
measurements and the same detection probabilities for
the two targets. The evaluation of the probability of this
event is done next. Note that the distance term D(z;,Z;)
is now noted as D;;, for simplicity. No “gating” [1]
(i.e., infinite gating threshold) is assumed because it
would require truncated pdfs, which would complicate
the analysis and would make little difference in the
results because the gates are, typically, above 99%.
The inequality (32) is rewritten so that the random
variables in it (z;, z,) are each on one side only, namely,

Dy =Dy, <Dy —Dy. (33)
The 1.h.s. of the above is
D, — Dy, = (2, —2)S (2, — %) — (2, — 2,)'S, (2, — 2,)
=508, =8z, — 25812 — 281 ',
+2,8, 1%, + 258, 5, + 2182, = 355,12, (34)
As before, this equation should be analyzed for the case

of equal covariances, where cancelation of the first term
occurs, and for different covariances.

4.1. Global Assignment Misassociation with Equal
Innovation Covariances

When both covariances are equal,® the quadratic
term in (34) vanishes, thus the distribution of D,; — D,,

S A similar approach has been taken in [10] assuming, however, ran-
dom location of the targets according to a spatial Poisson process. In
our case the probability of error is a function of a normalized distance
between the targets.

is Gaussian since
_ A ave-l Ma—la  arg-la
Dy =Dy = =22, —2)S 2,+71S 21 =5 %

S, +bEA,,. (35)

Similarly, the term D, — D, can be written as
D =Dy =—-2E —%)S 'z +87'2, 55713,

A A

=z +b=A,. (36)
Note that these two Gaussian random variables (RV)
are independent because each depends on only one
of the measurements. Thus, as they are Gaussian and
independent, their difference A,; — A, is also Gaussian

Ay — AL ~NQE —2)S G —2),8E, —2,)S ' —2,)
(37)

so the probability of the misassociation event MA%’12 =
{A,; <A},} can be calculated in terms of the cumula-
tive density function ® of a standard Normal random
variable as

Pyag , = P{A, — A, <0}

=P { AZI B A12 B 2(21 - 22)/5‘71(21 - 22)
[8(2, —2,)'S~1(z; —2]'/?
—2(2, = 2,)'S7 'z - 2,) }

[8(2; —2,)'S~1(z, —2,)]'/?

s s veolgs sl

= (_ {(Z] %) 52 (z Zz)] ) . (38)

4.2.  Global Assignment Misassociation with Unequal

Innovation Covariances

In the case that the covariances are different, the
quadratic term in (34) does not vanish. Its contribution is
higher when the covariance matrices are very different.
Thus two approaches to approximate the distribution
of the difference will be investigated. The first one
approximates the distribution as a noncentral chi-square,
using the first two moments, and is expected to provide
better results when the quadratic term dominates and
has positive eigenvalues. The other approach is to fit
a Gaussian with matched mean and variance, and is
expected to work better when the contribution of the
quadratic term is small.

4.2.1.  Moment matching approaches
For the first approach, denote

A _

Ay =S =85! (39)
A 1~ 1A

by =872, -85'%, (40)
éA/S—lA _A/S—l" 41

=291 3L =990y L (41)
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one has, by completing the quadratic form
D,y =Dy = 55012, — 55by — D125 + ¢y

= (23 — Ay by)) Agy (2 — Ay by)

— Dy A5\ by + ¢y (42)
Using the following notation
dy =~ 5145 by + ¢y (43)
Gy é(Zz - Az_ll by1) Ay (2 — Az_ll byy) (44)
expression (34) becomes
D, —Dyy = Gy +dy,. (45)

Note that (44) can be rewritten as
A A~ A _ A A _
Gy =+ — A211b21)lA21(Z2 — Lt A211b21)

(46)

which would be exactly noncentral chi-square dis-
tributed if the matrix in the quadratic form would have
been the covariance of z,. As in (28), define

L A
G5, =06,,Gy 47)
where "
A Z
=—= 4
621 tr(A21S2) ( 8)

Then, G}, is approximately (by moment matching) non-
central chi-square distributed with n_ d.o.f. and noncen-
trality parameter

. A N _ N _
A1 =601(2 — A211b21)/A21(Z2 - A211b21)' (49)

This is written as

G5y ~ Xi,A;I- (50)

*

A similar definition yields G7,, which is the negative
of the r.h.s. of (33). The pdf of Gj, is the same as in
(50) with the indices 1 and 2 switched. Furthermore,
G5, and G7, are independent.

The misassociation event for a Global assignment
between tracks 1 and 2 is thus

*

G G*
MAS, |, = {5—21 +dy < — {—12 +d12} } (51)
21 12

The probability of the above is then obtained as

> X
PMA;]Z =/0 Xfm;l [—[321 <E +d,, +d21>] xﬁ:%(x)dx.

(52)
Note from (43) that d,, = —d,, and thus (52) becomes

= &
PMA?].]Z =/0 Xi’/\zl —Ax X’zlf’)‘fz(x)dx' (53)

ﬂlZ

For the second approach, the mean and variance
of the differences’ A, 2D, —D,, and A, 2D,, — D,
are required to approximate their distributions by a
Gaussian pdfs. From (42) we have that D,, —D,, is a

quadratic expression in z,, and similarly for D;; — D,,,
thus

Ay =Dy —Dyy = 2545125 —2by 12 + ¢y (54)

A] = Dll —Dlz = ZIIAQIZ] _2b21zl +C21. (55)

Note that the above two RVs are independent. Using
the results in the appendix showing the variance of a
quadratic form, one has (approximately)

A,’ NN(M’U,'Z) (56)

where

Mi = tr(AzlSi) + 2;142121' - 2b/2121 + Cr1 (57)

07 = 2t(Ay ;A5 5)) + 4[Ay % — by I'S[Ay 5 — by -
(58)

As in Section 4.1, these two Gaussian random vari-
ables are independent, so the misassociation probability
can be calculated in terms of the cumulative density
function ® of a standard Normal random variable as

Puag,,, = P{A; — A, <0}

-pP Ay — Ay — iy + iy Hi— o
(o} +0N)1/? (o} +0)1/?
)
=0 ———=— ). 59
(wham) &2

4.2.2. Global assignment misassociation with unequal
innovation covariances—exact solution

The approximation methods of the previous sub-
section will be shown to work well when the covari-
ances are not very different, that is, when the matrix
Ay, =S " =8, has small eigenvalues compared to the
values of the element in b,, . If this is not the case, some-
thing that happens when S, greatly differs from S,, the
distribution of the quadratic form is not easy to approx-
imate, and a method to obtain the true distribution is
required.

In the following subsection a method to numerically
obtain the cdf of a noncentral quadratic function will be
delineated, following [8]. Analytical expressions have
been derived via a series representation, similarly to
[12], for the case of real Gaussian random variables,
but the convergence of such series is not assured, and
hence only the numerical integration method is pre-
sented.

7Different notations are used than in Section 4.1 because their expres-
sions are different.

ARETA ET AL.: MISASSOCIATION PROBABILITY IN M2TA AND T2TA 117



The quadratic function of Gaussian random vari-
ables (42) is replicated here without subscripts for clar-

ity

Q2Z)=7'AZ+Z'b+b'Z+c
=(Z+A'DYAZ+A'D)—bA b+
(60)
where the N-vector Z is Gaussian
Z~N(u,X). (61)

Neglecting the constant, (60) can be expressed as a
weighted sum of noncentral chi-square random vari-
ables by writing Z in terms of X ~ N(0,1)

Z=X"2X+pu (62)
as
Q@) =X +3 P+ A" D[
X ASYP[X + 272 (u+ A7)
N
= Xy (63)
k=1

where the matrix [£!/2]'AX!/2 has distinct eigenvalues
A and eigenvector matrix 7', and

pRIpy eyl =TS P+ A'D). (64
The characteristic function of Q(Z) is
_ _ 1/2 PEA
() = kHu 2iN )" exp< Z DY t)
(65)
This function can be inverted as in [8], yielding
1 1 sinf(u
PO<p=5-1 [ a0
w Jo  ur(u)
where
O(u) = lzNj tan~' O\ 1) + A ] _qu (67)
2 & L T
5 2.2\1/4 ¢ P
k(u) = 1]:[1(1 + \u?) 4 exp 72 m
(68)
Also the probability density function is obtained as
1 cosH(u)
== 6
=1 [ (69)

These integrals can be truncated to some finite upper
limit since x(u) is an increasing function in u, and the
integral is approximated using Simpson’s rule, follow-
ing the suggestions in [8].

Having both the pdf and cdf of the quadratic func-
tions, the exact probability of misassociation is obtained
as in the previous sections. While this characteristic

function based procedure is exact, unlike the moment
matching procedure from the previous subsection, it is
more costly. However, the moment matching procedure
is accurate enough in certain circumstances, to be spec-
ified in the next section.

5. FORMULATION OF THE T2T ASSOCIATION
PROBLEM

In this section we consider the case of two sensors
m,n, generating track estimates from two targets i, ;.
The track estimate of target i generated by sensor m
after receiving the measurement at time k is noted as
x"(k | k). Some authors [6, 13] have tried to obtain the
T2T misassociation probability, but without considering
the correlation of the estimation errors (due to the
common process noise [1]) and have also considered
only a single track, thus no global association results
have been reported.

In the case of Gaussian measurements, the log like-
lihood ratio for the common origin association consists
of two terms. One is the normalized distance squared
(NDS) and the other is a ratio of the determinant of
the innovation covariance matrix and the density p,, of
extraneous tracks [4]. In the case of tracks )Ac;?(k | k) and
x"(k | k) the NDS takes the form

D} (k) = (&' (k | k) = Xk | ) (T GO1 Gk | k) — Xk | k)

(70)
where Ti}-”"(k) is the track difference covariance, which
will be given later.

The likelihood based association cost for tracks fc;’
and X" is the negative log likelihood ratio (NLLR)

C" = D" + In(127 T V2 / 1) (71)

The superscripts will be dropped when possible as
we are checking for association between tracks origi-
nated from sensors m and n only and not across time.
Also the time index k will be dropped, for brevity, thus
for example Y}m"(k) becomes T;.

5.1. Nearest Neighbor T2T Association Criterion

Using the NLLR cost as a modified distance defi-
nition, the Nearest Neighbor (NN) misassociation event
(MA?}N) that the estimate of target i obtained by sen-
sor m is assigned to track j from sensor n instead of
being assigned to track i from sensor n, is defined by

{MAY} é{cij <Cyt- (72)
Consider each of these cost terms separately, and note
that each estimate can be expressed as its true value plus
the error term x"(k | k) = x;(k) + x"(k | k), where x;(k) is
the true state of target i (regardless of the sensor).

For the term C,,, i.e., the cost of associating the tracks

i’

corresponding to target i obtained at the two sensors, the
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covariance matrix
T; = E{G{" —x)'(3" =¥}
= E{(")'%"} + E{G])'x]'}
—E{G"%} - E{()X"}

— Em +En _Emn _Enm (73)

is required.

The autocovariance terms are obtained from the es-
timation algorithm (a Kalman filter in our case) and the
crosscovariance is present due to the common process
noise. This crosscovariance terms can be obtained in an
iterative way [1] by the Lyapunov type equation

B K) = E{GI)'R}
= [1 = W"HPNFR™ (k= DF + Q1 — W'H,'.
(74)

The distance term in the cost can then be written as
Dy = (x; + X" —x, — X L) (o + X —x, — X))
= (" =¥ L0017 G = &), (75)

This random variable has X2 distribution, but its de-
pendence on the other distance term D;; (through xJ")
precludes the usage of the results obtained for the M2T
association.

The term C;; is the cost of associating track i ob-
tained from sensor m to the track j obtained by sensor n.
In this case the covariance matrix 7;; is simply £ + P/,
as the track errors are not correlated. Then, the distance
D;; can be written as

Dy = (x; + X7 —x; = X)[T,00] " (x; + ¥ —x; — &)

(76)

= @' %~ o (01 @ ] —0)

where ¢ = x; — x; is the separation between tracks.
The exact probability of misassociation can be ob-
tained as

PMAf_\J_N = P{Cij < Cii}
= P{Dij —Dj;+7; < 0}
- / [ — ¥ — o) [T,001 (¥ — ¥ — c)
A

- (;Clm - ;C?)/[Y;i(k)]_l (;C,m - ;C,n) + ’Yij]

X p(x], X1, XX dX] dX] (77)
where
A= {{XXI50} (D, — Dyy) < 0} (78)
and
vi; = (20T /1) — In( 20T V2 ,,0)
= In(|T™ (/2 /| 2). (79)

The integration region A is very difficult to find, and
this does preclude the usage of (77) for the calculation
of the misassociation probability. Another approach is
to obtain the pdf of the cost difference, but the fact
that two of the estimates are correlated makes the exact
pdf calculation very complex. These are the reasons
that lead to the moment matching approach technique
described next.

As the distance formulas involve quadratic terms,
closed form first and second order moments can be
obtained, which depend only on the correlation matrices
involved. So, if we define

m =D =Dy +7;; (80)
the first and second moments of 7,, o, and 03]1, are
obtained using (133) and (134) in the appendix. These
moments are used to match both a Gaussian distribution
as well as a shifted chi-square distribution, to obtain
approximate misassociation probabilities.
The Gaussian approximation &; =7, follows by
defining
& N'/V.('u"/l’gﬁl)'

Then the approximate misassociation probability is

given by
i,
PG ) M
MAEN (Uﬁl )

where ®(-) is the normal standard cumulative distribu-
tion function.

The chi-square approximation ¢; ~n, is based on
the definition of the random variable (; in terms of a
shifted chi-square random variable w with k degrees of
freedom

(81

(82)

G=o0+w (83)

where
01 = Hy, — 0y /2 (84)
k=o; /2 (85)

and X,f(~) is the cumulative distribution function for
a chi-square random variable with k degrees of free-
dom. Then the approximate misassociation probability
is given by

PY o = XZ(0))- (86)

5.2. Global T2T Association Criterion

Similarly to the NN case, the misassociation event
MAS. that the estimate of target i and j obtained by sen-
sor m are respectively assigned using a global approach
to tracks j and i from sensor n instead of being assigned
to tracks i and j from sensor #, is defined by

A
{MAG}:{Cij+Cji<Cii+ij}. 87)
The exact probability of misassociation is again very
difficult to obtain, thus a moment matching approach

ARETA ET AL.: MISASSOCIATION PROBABILITY IN M2TA AND T2TA 119



to a Gaussian and a shifted chi-square random variable
will be used to obtain two approximations. Defining

172=Dl-j+Dﬁ—Dil-—Djj+'y (88)

where

v = In([ 5" 2T 2 T T ).

: (89)

2

e are

The first and second moments of 7,, u,, and o
obtained using (140) and (141) in the appendix.

The Gaussian approximation &, ~ 7, is, as before,

& ~N(i,.07 (90)

n

and this yields the approximate misassociation proba-

N M 2

where ®(-) is the standard normal cumulative distribu-
tion function.

The chi-square approximation ¢, ~ 7, is also as be-
fore based on the definition of the random variable ¢,
in terms of a shifted chi-square random variable ¢ with
k degrees of freedom

oD

G=0+¢ (92)
where
02 = ty, = 07,/2 (93)
k=oa; /2. 94)

Denoting X,?(-) to the cumulative distribution function
of a chi-square random variable with k& degrees of
freedom, the approximate misassociation probability is
given by

pY

X o = X20). (95)

6. SIMULATION RESULTS

A number of cases with unequal covariances are
considered to compare the techniques for the Nearest
Neighbor of Section 3 to Monte Carlo results. As a
limiting case, the equal covariance situation is also
considered.

Two targets, moving in 3 dimensions, are consid-
ered. Their motion is modeled by a NCV (nearly con-
stant velocity) model [3] in each Cartesian coordinate
with Gaussian zero-mean white process noise with PSD
(power spectral density) g, uncorrelated across the co-
ordinates. Position measurements z, are obtained with
probability of detection one at sampling intervals of T
in spherical (“s””) coordinates (range, azimuth and ele-
vation) with additive Gaussian zero-mean white noise
with covariance
2 2]

a’ JC'

R, = diag[o?, o (96)

120

These measurements are converted into Cartesian
coordinates (“C”) in the standard manner, resulting in
Z¢, with covariance matrix (at a particular position x,
relative to the radar), denoted as Rc(xp). The tracking
filter is then linear [3]. No clutter or false measurements
are considered in this work. In an actual tracking algo-
rithm the covariance of the converted measurements is
evaluated at the predicted position or at the measure-
ment itself, whichever is more accurate. Here the con-
verted measurement covariances (for the two targets)
will be evaluated at the predicted locations of the corre-
sponding measurements, 2C,, t = 1,2, which will be also
a parameter of the evaluation to be carried out. These
predicted measurements will quantify the separation be-
tween the targets.

To simulate a case where the measurement covari-
ances are unequal, it is assumed that target r was ob-
served n, times, ¢t = 1,2. These will yield the innova-
tion covariances S,, t = 1,2 (in Cartesian coordinates,
denoted only with the target subscript for simplicity).
With the values of 26,’ and S,, t = 1,2, a random num-
ber generator will be used to generate the measure-
ments

7 ~ N(e,.S), t=1,2. 97
Let z,(j) denote the measurements in Monte Carlo
run j, j=1,...,N. Using these, denote the indicator

variable of the misassociation event (9) as

1 if D(z,2) < D(z1,%)

. (98)
0 otherwise

x()) = {
where the distances D(z,z) are defined in (12). The
theoretical probability that the above indicator will be
unity (i.e., a misassociation occurs) is given by (31), to
be denoted now as P.

Thus the test whether the theoretical probabi-
lity matches the outcomes (98) will be based on the sta-
tistic

N
P== ;X(D (99)

and, in order for P to be acceptable,8 one has to have
(see, e.g., [3], Sect. 2.6.4)

P(I—P)

IP—-P|<2 i

(100)

or,
P(1-P)

i (101)

IP—P|<2

based on the 95% probability region.

8Both P and P will be subscripted later by NN for the Nearest Neigh-
bor assignment misassociation and by G for the Global assignment.
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TABLE I
The M2T Misassociation Probabilities for Various Covariances and Separations (Scenario 1) for the Nearest Neighbor Method

ny ny 51/104 52/104 c 6 Prann PyaNN
1.202 —1.182 -0.011 1.202 —1.182 -0.012 .03 | 0.306 490 495
30 30 —1.182 1.202 -0.013 —1.182 1.202 —-0.011 1 1.019 400 400
-0.011 -0.013 2.385 -0.012 -0.011 2.385 3.058 .063 .065
1.202 —1.182 —0.011 1.372 —1.352 -0.039 .03 | 0.305 450 455
30 10 —1.182 1.202 -0.013 —1.352 1.374 -0.012 1 1.017 372 .369
-0.011 -0.013 2.385 -0.039 -0.012 2.815 3.051 .065 .058
1.202 —1.182 -0.011 1.810 —1.794 —0.085 .03 | 0.267 322 328
30 5 —1.182 1.202 -0.013 —1.794 1.845 -0.062 1 0.892 275 273
-0.011 -0.013 2.385 —0.085 —0.062 4.164 2.675 .069 .066

Note: The minor differences between the covariances of the two targets for n; = n, = 30 are due to the fact that the conversions from
spherical to Cartesian coordinates of the measurement noise covariances (which amount to linearizations) were done at slightly different

points, (109) and (110), respectively.

The following values for the parameters of the prob-
lem were considered:

g=>5m?/s (102)
T=1s (103)
o,=10m (104)
o,=0,=1mrad (105)
x,=[10° 10° 10’ m (106)
n, =30 (107)
n, =5;10;30 (108)
2 =x, (109)
% =x,+c[10° 10* 10%) m. (110)

In the above c is a coefficient that yields several sepa-
rations.

In Scenario 1 the same radar located at the origin
of the coordinate system is tracking both targets. In
Scenario 2, target 2 has been tracked (for n, samples)
by another radar located at [2 - 10°,0,0]. In this case the
ellipsoids corresponding to the two covariance matrices
are approximately perpendicular.

A “normalized separation distance” between the two
targets, denoted as 0, is evaluated, following (16), ac-
cording to

622G, — )18, 1S P, — 5.l
This gives a measure of the closeness of the two targets
for the case of different innovation covariances.

6.1. M2T Misassociation with Nearest Neighbor
Assignment

Table I shows for the values of n; listed above, the
resulting covariances S;, and for the three separations,
defined by ¢ =0.03;0.1; 0.3, the resulting normalized
separation distances, the theoretical Py, (based on the
non-central x? distribution, presented in Section 4) as

well as the average FA’M A from 1000 Monte Carlo runs.
In all cases the differences between these probabilities
is well within the limits given in (100) for N = 1000.
Therefore the theoretical misassociation probabilities
Pyaxy, as computed by the method presented in Sec-
tion 4, are remarkably accurate.

Note that for decreasing n, the Py~ for equivalent
separation does also decrease. This seems counterintu-
itive, as larger number of measurements correspond to
having more information available at the tracker, and
thus a better (smaller) probability of misassociation is
expected. The reason for this phenomenon is in the rel-
ative size of the innovation covariance matrices. When
these are similar the chance of confusing the measure-
ments is high as the measurements from both targets are
within the same distance to any of tracks. Instead, if one
of the ellipsoids is larger than the other, the distance of
some of the measurements corresponding to this track
(the ones occurring outside the smaller ellipsoid) to the
center of the smaller covariance track will be larger, thus
making it harder to misassociate them.

6.2.  M2T Misassociation with Global Assignment

Table II shows the comparison of Nearest Neighbor
association results with the approximate Global associ-
ation misassignment probability evaluation algorithms
from 4.2 (Gaussian fit and y? fit via moment matching)
with the results for Monte Carlo runs.

The y? fit for the Global assignment approach does
not work when the covariance matrices are very similar,
as the noncentrality parameter depends on the inverse of
the difference of these matrices. On the other hand, the
Gaussian fit method does give accurate results over all
the range of parameters, showing that for this Scenario
the linear term dominates over the quadratic.

For the case of Scenario 2, the covariance ellipses
S, and S, are quite different as a result of the location
of the sensors during the initial estimation periods. In
this case, prior to the current time when the association
is considered, sensor 1 has been tracking target 1 only
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TABLE II
The M2T Misassociation Probabilities for Various Covariances and
Separations using Both the Global and Nearest Neighbor

TABLE IV
The T2T Misassociation Probabilities for Different Track Accuracies
and Separations using Both the Global and Nearest Neighbor

Approaches (Scenario 1) Approaches
A N 2 r 2 A 2 ~
ngony oo Pyaw Pyaw o Pyue Pf\\/[/AG PKMG nonp C P}\M/[ANN PK/IANN Pumam Pi\\/[[AG P;/[AG Pumac
.03 490 495 410 416 N/A 01 484 .553 480 464 476 464
30 30 .1 400 400 235 .235 N/A 10 10 2 236 251 225 123 112 100
.063 .065 .016 015 N/A 4 .043 .026 .028 073 011 015
.03 450 455 401 399 126 01 345 .396 321 258 269 240
30 10 .1 372 369 230 232 N/A 30 30 2 252 274 233 162 161 .149
.065 .058 .016 015 N/A 4 116 .100 .096 055 035 .034
.01 322 328 316 312 312 .01 466 542 457 344 394 339
30 5 1 275 273 224 235 231 10 50 2 344 394 339 236 244 227
.069 066 .029 039 032 4 165 161 152 066  .049  .052
TABLE III

The M2T Misassociation Probabilities for Various Covariances and Separations using the Global and Nearest Neighbor Approaches
(Scenario 2)

n | n, s,/10* S,/10* ¢ PyANN PriaG PG
1202 -1.182 0011 12027  —0.8072 00126 | .03 169 136 134
30 {30 | -1.182 1202 0013 ~0.8072 12028 —0.0088 1 164 130 129
0011  —0.013 2.385 ~00126  —0.0088 23852 3 131 103 095
1202 -1.182  —0011 13724 —0.6369  —0.0395 03 118 101 100
30 |10 | —1.182 1202 —0.013 ~0.6369 13740  —0.0317 1 116 097 096
-0011 0013 2.385 ~0.0395  —0.0317 28157 3 108 086 081
1202 -1.182 0011 18106  —0.1957  —0.0853 01 070 061 062
30 | 5 | -1182 1202 0013 ~0.1957 1.8452  —0.0820 1 069 060 061
0011  —0.013 2.385 —0.0853  —0.0820  4.1647 3 068 059 056

and sensor 2 has been tracking target 2 only because of
occlusion conditions. Then, after the initial estimation
periods, both targets are visible for sensor 1 and a
centralized fusion architecture [1] is assumed. The two
measurements of sensor 1 are to be associated with the
two tracks—one from sensor 1, the other from sensor 2.

Because of the different past “history” of these
tracks, the difference matrix A,, is no longer “close”
to zero, and in general it can have positive and nega-
tive eigenvalues,’ so the approximate algorithms for the
Global assignment from Section 4.2 give inaccurate val-
ues (for the Nearest Neighbor the evaluation algorithm
from Section 4 works well). Since the distribution of
such quadratic form is difficult to find, the characteris-
tic function based method of Section 4.2 is needed. The
results are shown in Table III.

6.3. T2T Misassociation Probabilities

Consider again Scenario 2, where two sensors (lo-
cal trackers) generate track estimates from two targets,
but now the estimation is done simultaneously by the
sensors, and the results transmitted to a fusion center.

9This scenario was devised to see if the evaluation technique works
for indefinite difference matrices.
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The probability of misassocition is again parameterized
by the separation between the targets. In this case we
are not interested in the measurement-to-track associ-
ation (which is assumed to be done perfectly at each
sensor) but in the track-to-track association performed
at the fusion center. We consider that the local tracks are
based on different numbers of measurements, n, for the
first sensor and n, for the second, modeling different
times of target acquisition. The probability of detection
is considered to be 1.

Table IV shows the results obtained by the two
approximation methods for the cases of NN and global
association criteria. Also the misassociation probability
estimated from 1000 Monte Carlo runs is shown to
validate the results obtained.

It can be seen that for large target separation the
probability of misassociation goes to zero, as expected,
and that in this case the chi-square approximation is
very accurate, and much better than the normal approxi-
mation. For smaller separation, when the misassociation
probability is close to one half, the Gaussian approxi-
mation is better, although it may mismatch the real value
by up to a 10%. Overall both approximations provide
larger probabilities than the true one, so the lowest value
estimate should be used to guarantee an error below
10%.
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The advantage of using global assignment vs. near-
est neighbor is clear, unless the targets are so far apart
that it is obvious how to do the association, or so close
that no matter which method is used, the misassociation
probability is around 0.5.

7. CONCLUSIONS

For the M2T association problem, the probability
that the measurement from an extraneous target will be
(mis)associated with a target of interest by the (local)
Nearest Neighbor association was evaluated exactly for
the case of equal track prediction covariances and ap-
proximately for the case of unequal covariances. It was
shown that this misassociation probability depends on
a particular—covariance weighted—norm of the differ-
ence between the targets’ predicted measurements des-
ignated as the “separation” of the tracks. Numerical sim-
ulations confirm the accuracy of the solutions presented
for the misassociation probabilities.

For the Global association, in the case of very dis-
similar track covariances the approximation methods do
not work, and a characteristic function based method,
which is more expensive computationally but exact, was
presented with excellent results. The probability formu-
las derived as well as the Monte Carlo runs show the
benefit of the Global (G) vs. Nearest Neighbor (NN) as-
sociations, especially in the case of similar track covari-
ances. Future work will involve considering the multi-
frame or multidimensional association (MDA) case.

The T2T association problem is harder, and only
approximate results are presented, which nonetheless
provide accurate results for both global and NN associ-
ation criteria. The estimated probabilities are never off
by more than a 10% of the true value. It has been shown
that a chi-square matching of the statistic gives the best
results when the separation is large, and for the case of
smaller separations a Gaussian matching provides better
results.

APPENDIX A.  MOMENT MATCHING OF
QUADRATIC FUNCTIONS: UNCORRELATED CASE

Consider the random variable defined by
v=uAu+bu+c (112)

where A is any real n x n matrix, b is a real n x 1 vector,
c is a real scalar and u is a Gaussian random vector

u~N({,X). (113)

Define the zero mean version of u as u =u—p, an
rewrite

v=(u+p)YAQ +p) +b'(+ p) +c
=uwAu+u'Ap+ pAu+ p/Ap+b'u+b'p+c

= WAl + bt + ¢ (114)

where b = Ap+Ap+b and ¢ =pA'p+b'pu+c The
mean value of v is

E{v} =¥ = E{il At} + b'E{il} + ¢

=tr(AY) + ¢ (115)

where the expected value of a quadratic form is taken
from [3] Section 1.4.15 The variance of v is

Var{v} = E{(v — v)*} = E{(i/' At + b'ii — tr(A%))*}
= E{il Aiil Ait} + D'E{itit' Yb + tr(AX)? + 2E{it' Ail'it' }b
— 2E{il' Ait}tr(AS) — 2b'E{ii }tr(A%)
= tr(AD)? + 2t(ATAY) + b'Sh + tr(AD)? — 2tr(AY)>
= 2r(ASAR) + [(A+ A + bIS[(A + Ay + b]

(116)

where, as before, a compact expression for the fourth
moment of u is used, and the terms containing odd
powers of u are zero.

APPENDIX B. MOMENT MATCHING OF
QUADRATIC FUNCTIONS: CORRELATED CASE

Consider four random vectors )Acl’.",fc;’,fc;" and 5c’]?,
Gaussian distributed

m Tm
Xi )Ci +Xl~
X! X+ x;
m = xm
xj xj +xj
n n
xj xj+xj
X1 [B" B™ 00
MEEIR L
~ ’ m mn
xj o 0 A" P
nm n
X o 0 " K

the four possible distance terms are
Dy ==X —sY[R"+P'T "G =X —s5)  (117)
D= =X +s/[P"+P' "X} —X'+s) (118)
Dy = (' XY [B" + B = B — B (5" = &)
(119)
Djj = Gy ~ BB + B By = BT (& — %)

J
(120)

where s = x; —x;.

For convenience, define
M = [Pim +Pjn]71; N = [Rm +Bn 7Piimn 7E?m]71
(121)
_ m —1
Q="+ by BT
(122)

K = [ij +Pin]_l;
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To obtain the first and second moments for the
difference of distances, the following tools are needed.

From [3], the moments for quadratic and quartic
zero mean Gaussian random vectors x ~ N(0,R,) are
given by

E{xXWx} = t(W,R,) (123)
E{x'Wxx'Wyx} = tr(W, R )tr(WoR,) + 2tr(W, R W4R).
(124)

If two zero mean Gaussian random vectors x and y
are correlated through R, , the vector y can be written
as

y=Rx+Tw (125)

where w ~ N(0,1) and
R =R, Rx' (126)
T =Ry - R Rx 'R )" (127)

In the above Z!/2 denotes the Cholesky factor of =, so
that 22212y = =.

For the NN association case we are interested in the
moments of the difference d; = D;; — D;;. In this case
the variables X" and x’ are correlated, and can be related
as

X = AX]"+ Bw (128)

where w ~ N(0,1) and
A= @MY@y (129)
B =(R"—(B"™y®" B (130)

Then we have

g, = E{@ — % — sYMG — %0 —5) — (&' — 2YNG -3}

(131)
= E{@(M — N)T' —2@YME! +5) + @YMZ! + 5 Ms
—2()Ms + (YN — (RYNZ} (132)

=t((M —N)E") + (M P]) + r(ZNAP™) — tr(NF").
(133)

Define gll =d, —s'Ms, so that cov(d,) = cov(gll) as s is
a constant. Then after some algebraic operations

E{d}} = E{[(X' —¥! —s)M(¥' = X! —5)
— G —XYNG! -3 — s’ Ms)*}
= (M — N)P™)* + 2tr(M — N)P"(M — N)P™)
+tr(MP")* + 2t(MP'MP"")
—tr(NP")> + 2u(NP'NP") + 4te(Mss' M P™)
+4t(NAP")tr(AN'P") + 8tr(NAP" AN'P™)
+ 4tr(NBB'NP™) + tr(M — N)E"u(MP")
+2u((M — N)P™)ur(NAP™) + 4te(M — N)P"NAP™)
— (M — N)B"r(ANAP™) — tr(M — N)B" AN AR™)

—tr((M — N)P™)te((B'N Bym + 2tr(M P")tr((NAP™)
—tr(MP")(NP") — 2te(NAP™)tr(A'N AP™)

— 4 (NAP" AN AP™) — 2te(N AP )tr(B'N B)
— 4(NBB'NAP™). (134)

For the global association case we are interested in
the moments of

dy=D;;+D;,—D;—D;.. (135)

In this case the vectors X" and X! are correlated
as before and (128) still holds. Also i;” and 37 are
correlated and can be related as

X = CX + Dx (136)

where x ~ N(0,I) and
C=EmEn! (137)
D = chol(P' — (P"Y'(P") ' P™). (138)

Then, the moments of interest are
fg, = E{G{" =X; = )M (X" =X} —5)
- - s~ -
+ () =X =KX —x =)

G EYNGE )~ (& -0 - 7))

(139)
= (M —N)E") + (M — Q)P")

+tr((K — N)P") + tr(K — Q)P")

+2tr(NAPR™) + 2te(QCP"). (140)

Define d, = d, — s'(M +k)s, so that cov(d,) = cov(d,)
as s is a constant. Then after some algebraic operations

E{d2} = t(M — N)P")? + 2u((M — N)P"(M — N)P™)
+ (M — Q)P")* +2t(M — Q)P""(M — Q)P/")
+tr(N —C)P")? + 2tr(N — C)P"(N — C)P")
+tr(K — Q)P")* + 2t (K — Q)P"(K — Q)P")
+u((=2M)P"(=2M)'B") + te((—2M)ss'(=2M Y P")
+tr(2M)ss'(2M)'P") + r((=2K)B" (=2K)P")
+tr((=2K)ss'(=2K)P") + tr((—2K)ss'(=2K)R")
+tr((2N)AR™)tr(A'(2N)AP™)
+ 2tr((2N)AP" A'(2N)AP™) + tr((2N)BB'(2N) P™)
+ tr(RCP"r(C'R'P") + 2tr(RCP'C'R'P}")
+ t(RDD'R'P") + tr(M — N)P")tr(M — Q)P"")
+ (M — N)P™)tr(A'(N — C)AP™)
+2tr((M — N)P"A'(N — C)AP™)
+tr((M — N)P™)tr(B'(N — C)B)
+ (M —N)P")ur((K — Q)P")
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+t((M — N)P")r((2N)AB™)
+2tr((M — N)P"(2N)AP™)

+ (M — N)P")tr(R'CP")
+u((M - Q)PH((N — O)F")
+tr((M — Q)P")(C'(K — Q)CP")
+20((M — Q)P'C'(K — Q)CP!)
+tr((M — Q)P"r(D'(K — Q)D)
+ (M — Q)P ((2N)AR™)

+ (M — Q)PIT(R'CP)
+2t((M — Q)P'"R'CP")

+ (N — O)P")u((K — Q)P™)

+ tr(A'(N — C)AP™)tr((2N)AP™)
+2tr(A'(N — C)AP"(2N)AP™)
+ tr(B'(N — C)B)tr((2N)AP™)
+2tr(A'(N — C)BB'(2N)'P™)
+1tr((N — C)P"r(R'CP")

+ (K — Q)P"u((2N)AR™)
+1r(C'(K — Q)CP (R CP")
+2tr(C'(K — Q)CP'R'CP")
+t(D'(K — Q)D)(R'CP)")
+2t(D'(K — Q)CP'R'D)
+tr((—2M)P"C'(~2K)AP")
+tr((—2M)ss' (—2K Y AP™)

— tr(2M)ss'(=2K)CP")
+tr((2N)AR" r(C'RP").
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authors is available at http://www.isif.org/jaif.htm, and
specific document preparation information for final
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tionl.doc.

Copyright: 1t is the policy of the ISIF to own the
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thors are required to sign an ISIF copyright transfer
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If a copyright form is not submitted with the manuscript,
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cation will not take place without a completed copyright
form.
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ing their manuscript for publication, authors should
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http://jaif.msubmit.net.
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MS-Word with the MathType extension for equations
and in-text mathematical material. The pdf file must
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plied as a separate graphics file. Graphics (or cap-
tions) should NOT be embedded in the text files. The
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article and the pdf file must be created with graphics
resolution set to 300 dpi or greater.
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be submitted. The text file should be less than 500
words.

e Separate graphics files of each author's photo should
be provided as a grayscale graphics file or a color
graphics file.

Examples of the references are alphabetized cor-
rectly and listed below.

BOOK:

[11 R. E. Blahut
Theory and Practice of Error Control Codes. Reading, MA:
Addison-Wesley, 1983.

PROCEEDINGS ARTICLE:

[2] T. Fichna, M. Gartner, F. Gliem, and F. Rombeck
Fault-tolerance of spacebome semiconductor mass memo-
ries.

In Twenty-Eighth Annual International Symposium on
Fault-Tolerant Computing, Digest of Papers, 1998, 408—
413.

BOOK:

[3] P.K. Lala
Fault Tolerant and Fault Testable Hardware Design. Engle-
wood Cliffs, NJ: Prentice-Hall, 1985.

WEB SITE:

[4] National Semiconductors Inc.
Homepage: http://www.national.com.

PROCEEDINGS ARTICLE:

[5] C. Paar and M. Rosner
Comparison of arithmetic architectures for reed-solomon
decoders in reconfigurable hardware.
In Proceedings of the Symposium on Field-Programmable
Custom Computing Machines, Apr. 1997, 219-225.

JOURNAL ARTICLE:

[6] N.R. Saxena and E. J. McCluskey
Parallel signature analysis design with bounds on aliasing.
IEEE Transactions on Computers, 46, 4 (Apr. 1997), 425—
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