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From the Editor-In-Chief:
June 2008

Value of Peer-Review

I have served as an editor for peer-reviewed journals
since 1996 and during those thirteen years, I have been
exposed to numerous complaints about the peer review
and publication processes. The most common complaint
relates to the delay in publication that results from the
peer review process. Another common complaint relates
to popular opinion that novel results from newcomers
are rejected to protect the interests of those in the
research community. In other words, the researchers are
members of a “good old boys club” that rejects the
results of those outside the “club.” Before I address
these criticisms, let us consider the value of the peer
review and publication processes.
In order to illustrate the value of peer review and

publication process for journals, I conducted a search
of IEEE Xplore for papers with keywords of interest
to those involved in information fusion. I restricted the
searches to IEEE journal articles in 2008. I then re-
stricted the search to IEEE conference articles in 2008.
I also restricted the searches to IET journal articles or
IET conference articles. The results are shown in the
table. For “target tracking” as a keyword, 83 articles

cles were found in IEEE conference proceedings. These
are the numbers of manuscripts published in only one
year. Similar ratios of IEEE journal articles to IEEE
conference articles were found for “data fusion,” “infor-
mation fusion,” and “nonlinear filtering” as keywords.
Since it is unrealistic for a researcher to read all of these
manuscripts in their active areas, researchers must focus
their energy on selected articles. By focusing on journal
articles, researchers can greatly improve their efficiency.
Why should researchers focus their energy on the

journal articles? First, each journal article has been re-
viewed by at least two peers who have recommended
it for publication as an original contribution with ac-
curate results. The standards for peer review of confer-
ence papers vary from a single review of an abstract
to a review of the complete manuscript. Second, the
referees of journal articles provide input to the authors
for improving their manuscript and two or three review
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were found in IEEE journals and more than 500 arti-



cycles are conducted to ensure that the comments of
the referees are properly addressed. The peer review of
conference papers is often time driven by the conference
schedule and typically includes no checks of manuscript
revisions. Third, the editorial staff of journals read the
manuscript for inconsistencies, clarity, and typographi-
cal errors, while the final version articles of conference
proceedings are seldom read by the technical program
committee. Therefore, the peer review and publication
processes of journals greatly improve the efficiency of
researchers by helping them to focus their efforts on
articles that have meet standards on quality and orig-
inality. With the high rate of publications in the areas
of information fusion, it is unrealistic for researchers to
spend time on all articles in their area and spending time
on articles that are not original or incorrect will further
degrade their efficiency.

Xplore from 2008

Number of Articles from 2008 in IEEE Xplore

IEEE IET IEEE IET
Keyword Journals Journals Conferences Conferences

Target Tracking 83 16 >500 19

Nonlinear Filtering 43 2 256 2

Data Fusion 42 2 383 5

Information Fusion 17 0 238 0

During my first few years as an editor, it was com-
mon for the first review cycle for a manuscript to take a
year and completion of the peer review process would
take more than two years. Today, with the use of web-
based systems for managing the peer review process,
the typical review periods have been reduced to four
months for the first cycle of review and less than a year

to complete the peer review process. Thus, significant
progress has been made in reducing the delay in the
publication of manuscripts due to the peer review. Con-
sidering the value of a rigorous peer review process, the
current delays are very reasonable. This is particularly
true for JAIF that is operated by editors and referees
who are volunteers. Achieving further reductions in the
time required by the peer review process presents a sig-
nificant challenge because the more talented reviewers
tend to be very busy with other projects for their em-
ployer and JAIF is competing for their time to serve our
profession as a volunteer.
From history, we know that innovative solutions to

challenging problems have been rejected by the peer
review process. With today's standards of three or four
reviewers per manuscript, the rejection of papers with
innovative results is less likely. If one of the review-
ers provides evidence of a thorough review and recom-
mends the manuscript for publication, it is difficult for
an Associate Editor to reject the paper unless a second
reviewer finds a technical flaw in the results. Since all
manuscript reviews are archived in the web-based re-
view system, the peer review process can be audited at
any time by the EIC. Furthermore, the EIC regularly
monitors the performance of the Associate Editors in
order to ensure the integrity of the peer review process.
Also, the authors can appeal the publication decision
of the Associate Editor to the Area Editor and EIC.
Since the review process is thoroughly documented and
archived, these appeals can be addressed fairly in a
timely manner. Thus, the likelihood of a paper being
rejected because of the personal biases of the reviewers
or editors is greatly diminished with the peer review

Sincerely,
William Dale Blair
Editor-In-Chief
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Optimal Policies for a Class
of Restless Multiarmed
Bandit Scheduling Problems
with Applications to Sensor
Management

R. B. WASHBURN

M. K. SCHNEIDER

We present verifiable sufficient conditions for determining opti-

mal policies for finite horizon, discrete time Markov decision prob-

lems (MDPs) with terminal reward. In particular, a control policy

is optimal for the MDP if (i) it is optimal at the terminal time,

(ii) immediate decisions can be deferred to future times, and (iii)

the probability transition functions are commutative with respect

to different decisions. The result applies to a class of finite horizon

restless multiarmed bandit problems that arise in sensor manage-

ment applications, which we illustrate with a pair of examples.
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1. INTRODUCTION

Consider the Markov decision problems (MDPs)
arising in the areas of intelligence, surveillance, and re-
connaissance in which one selects among different tar-
gets for observation so as to track their position and
classify them from noisy data [9], [10]; medicine in
which one selects among different regimens to treat a
patient [1]; and computer network security in which one
selects different computer processes for observation so
as to find ones exhibiting malicious behavior [6]. These
MDPs all have a special structure. Specifically, they are
discrete-time MDPs in which one controls the evolu-
tion of a set of Markov processes. There are two pos-
sible transition probability functions for the processes.
The control at a given time selects a subset of pro-
cesses, which then transition independently according
to the controlled transition probability; the remaining
processes transition independently according to the un-
controlled transition probability. Rewards are additive
across processes and accumulated over time. The con-
trol problem is one of determining a policy to select con-
trols so as to maximize expected rewards. MDPs with
this structure have been termed restless bandit prob-
lems [15]. Our particular interest in such problems is
in developing methods for deriving optimal solutions to
them. Such solutions may be important of themselves
as a control solution or may be useful for analyzing a
problem in the process of developing a good suboptimal
controller.
Restless bandits problems are a variation of a classi-

cal stochastic scheduling problem called a multiarmed
bandit problem. It differs from the restless bandits prob-
lems considered here in two key respects. The first is
that the states of the unselected process in the multi-
armed bandit problem do not change. Second, the re-
wards in a multiarmed bandit problem are accumulated
over an infinite horizon, discounting future rewards.
Note that this is a significant difference because the time
remaining in the horizon is essentially a component of
the state and does not change for a multiarmed bandit
problem but does change for the finite horizon restless
bandit problems considered here.
A number of techniques have been previously devel-

oped for computing solutions to restless bandits prob-
lems. For example, index rules have been shown to
optimally solve classical multiarmed bandit scheduling
problems [2], [4]. Generalizations of this result have
been conjectured, and some of them have been proven to
apply to other classes of restless bandit problems [14],
[15]. Proofs establishing the optimality of controls for
finite-horizon restless bandit problems with particular
reward structures have also been presented [1], [3], [5].
Each of these results describes a set of conditions for a
control to be optimal for a restless bandit problem.
This paper introduces a set of novel conditions that

are sufficient for a control policy to be optimal for a
finite-horizon MDP. The conditions are readily verified

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 3, NO. 1 JUNE 2008 3



for a specified control policy and are convenient for ver-
ifying the optimality of controls such as priority index
rules [3], [4], [15]. We have been able to apply the con-
ditions to verify the optimality of controls for a number
of different restless bandit problems [12]. In particular,
our conditions can be used to verify special cases of
previous results on the optimality of controls for MDPs
in [1] and [3]. We have also been able to apply our
results to verify the optimality of controls for MDPs
arising in sensor management [9], [10] applications for
which no existing proofs of optimality existed. General
conditions have not been previously developed that can
verify optimality of strategies for such a range of ex-
amples. These sufficient conditions may prove useful
in helping to identify and verify optimal policies for
similar multiarmed bandit problems and for developing
good suboptimal solutions for more complex problems.
The latter is illustrated by the work in [3] and [13]. In
both cases, a priority index rule is proven to be opti-
mal for special cases of a more general restless bandit
problem. Although the policies are not optimal for the
general problems, empirical results reported in the pa-
pers demonstrate that the policies perform well even for
the more general case.
An example of the type of sensor management prob-

lem we are interested in is that of managing an airborne
sensor to collect data on ground targets. The goals could
be either to collect kinematic data so as to track the
kinematic state of the targets or to collect discrimina-
tive data so as to classify them. The control problem
is one of selecting a subset of the targets for observa-
tion, subject to sensor field of view constraints, given
current estimates of target and class. The objective is
to optimize the quality of the data collected within a
finite time horizon. Such sensor management problems
are naturally modeled as restless bandit problems [8],
[7], [11]. The quality of the data for each target can be
modeled as a Markov process, which transitions differ-
ently depending on whether the target is selected for
observation or not.
The details of our results and applications of them

to sensor management problems are provided in the rest
of the paper. Section 2 presents our results on sufficient
conditions for a control to be optimal for a Markov
decision problem. Section 3 applies the result to a
general sensor management problem. Finally, examples
of managing a sensor to perform binary classification
and target tracking are presented in Section 4-A. For the
reader’s convenience, we have relegated the proofs for
the main theorem and all propositions to the Appendix.

2. SUFFICIENT CONDITION

We will denote a MDP with terminal reward by
the tuple (X,U,pu,R,T) where X denotes the discrete
(finite or countable) state space of the Markov chain, U
denotes the finite set of possible decisions, fpu : u 2 Ug
is the collection of transition probabilities parameterized

by the decision u, R is the terminal reward function
R : X!R, and the integer T is the terminal time.
If X(t), 0· t· T is the Markov process with deci-

sions U(t), 0· t· T¡1, and terminal reward R(X(T)),
the MDP problem is to select U to maximize the
expected value EfR(X(T))g of the terminal reward.
We assume that the decision U(t) depends only on
X(0), : : : ,X(t) and that

PrfX(t+1) = » j X(t) = x,U(t) = ug= pu(» j x):
(1)

The dynamic programming equations for the optimal
reward-to-go function V(x, t) for the MDP (X,U,pu,R,T)
are given as follows. The terminal condition is

V(x,T) = R(x): (2)

The recursion is

V(x, t) = max
u
fVu(x, t)g (3)

for times 0· t· T¡1, where we define
Vu(x, t) :=

X
»

V(», t+1)pu(» j x): (4)

Also, any u that achieves the maximum in (3) is defined
to be an optimal decision at time t when in state x.

DEFINITION 1 Suppose that the MDP (X,U,pu,R,T)
has the probability transition functions pu(» j x) for
x,» 2 X, u 2 U, and terminal reward R(x) for x 2X. If
©(x, t)½ U for each x 2 X and 0· t· T¡ 1, we say that
© is a strategy set for the MDP.

DEFINITION 2 If © is a strategy set for the MDP
(X,U,pu,R,T) and if for each x 2 X, the expected value
for selecting each u 2 ©(x,T¡ 1) achieves the maximum
value, i.e.,X

y

R(y)pu(y j x) = maxv
X
y

R(y)pv(y j x), (5)

we say that the strategy set © is terminally optimal for
the MDP.

DEFINITION 3 More generally, for, 0· t· T¡ 1 and
x 2 X, define ©¤(x, t) to be the set of optimal strategies

©¤(x, t) =
n
u :Vu(x, t) = maxw

Vw(x, t)
o
: (6)

What follows is a pair of definitions for properties
of the strategy set and MDP as well as a theorem con-
cerning the optimality of the strategy set when these
conditions hold. Note that the properties in the defini-
tions are abstract at this point and are illustrated later in
this section with an example.

DEFINITION 4 If © is a strategy set for the MDP
(X,U,pu,R,T), and if for each t such that 0· t· T¡ 2,
each x 2X,

u 2©(x, t), Vv(x, t)>Vu(x, t), and

pv(y j x)> 0 imply u 2 ©(y, t+1),
(7)
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then we say that decisions are deferrable in the strategy
set ©.

REMARK 1 Definition 4 gives conditions under which
if u is in the decision set at the current time but a
different decision v is made, then u is still in the decision
set at the next time. This condition allows using an
interchange argument to prove the optimality of the
decision set (Theorem 1). Unfortunately, Definition 4
is too hard to check in practice. However, it is implied
by various stronger conditions that are easier to check.
For example, if for each t such that 0· t· T¡ 2, each
x 2 X, and for all u,v,y,

u 2 ©(x, t), v 6= u, and

pv(y j x)> 0 imply u 2 ©(y, t+1),
(8)

then decisions are deferrable in the strategy set ©.
This condition is stronger than the definition, since
Vv(x, t)>Vu(x, t) obviously implies that v 6= u. At the end
of this section we prove another stronger condition for
problems with symmetry.

DEFINITION 5 We say that the probability transition
functions pu(» j x) are commutative if for all u,v 2 U,X

´

pu(» j ´)pv(´ j x) =
X
´

pv(» j ´)pu(´ j x) (9)

for all x,» 2 X.
THEOREM 1 Suppose that © is a strategy set for an
MDP (X,U,pu,R,T) with commutative transition proba-
bility functions pu, such that © is terminally optimal and
decisions in © are deferrable. Then the strategy set © is
optimal in the sense that any decisionU(t) 2 ©(X(t), t) for
0· t· T¡ 1, is an optimal decision for (X,U,pu,R,T).
REMARK 2 If ©¤(x, t) is the optimal strategy set for
(X,U,pu,R,T) as defined in (6), then ©¤ is necessar-
ily terminally optimal. It also necessarily satisfies the
condition for deferrable decisions, simply because the
hypothesis of the condition,

u 2 ©¤(x, t), Vv(x, t)>Vu(x, t), (10)

is always false. As we indicated in Remark 1, this
condition is difficult to check in practice, but we can
replace it with stronger conditions which do not refer
to the optimal reward function. With these stronger
conditions, it is important to have the third condition,
commutativity of the transition probabilities, to prove
the optimality of a proposed strategy set.
To conclude this section we will prove another

stronger condition for deferrable decisions in © based
on symmetric MDP problems. Note that for these prob-
lems, the state space of the Markov chain X is a product
space Xn, and the ith component of an element x 2 X is
denoted by xi.

DEFINITION 6 The MDP (X,U,pu,R,T) is symmetric
if for some n > 1

X=Xn, (11)

U= f1, : : : ,ng, (12)

p¼(i)(¼y j ¼x) = pi(y j x) (13)

and
R(x) = R(¼x) (14)

where ¼ permutes the components of x,y, namely

¼x= (x¼(1), : : : ,x¼(n)), (15)

for any permutation ¼ of f1, : : : ,ng and all x 2Xn.
REMARK 3 Note that the symmetry conditions in Defi-
nition 6 all hold for multiarmed bandit scheduling prob-
lems. However, the symmetric scheduling problem con-
sidered here still differs from the multiarmed bandit
problem in two key respects. First, the states for un-
observed processes may change, whereas, for multi-
armed bandit problems, the states of unobserved pro-
cesses remain the same. Second, the horizon here is
finite whereas the horizon for multiarmed bandit prob-
lems is infinite.

PROPOSITION 1 Suppose that the MDP (X,U,pu,R,T)
is symmetric. Then if for 0· t· T¡ 2 and all x 2X

u 2©(x, t), xv 6= xu and

pv(y j x)> 0 imply u 2 ©(y, t+1),
(16)

decisions are deferrable in ©.

An example of a strategy for a symmetric MDP that
is terminally optimal, deferrable, and commutative is as
follows. Suppose X=N and

R(x) =
nX
i=1

±(xi) (17)

where

±(xi) =
½
1 if xi = 0

0 otherwise:
(18)

Moreover, define the transition probabilities as follows.
If xi > 0

pi(y j x) =
½
1=2 if yi = xi§1
0 otherwise

(19)

and if xi = 0,

pi(y j x) =
½
1 if yi = 0

0 otherwise:
(20)

This is a MDP in which there are n independent Markov
processes xi evolving on the non-negative integers. A
process xi transitions only if it is selected by the control
and is equally likely to increase or decrease. The value
0 is a trapping state. The objective is to drive as many
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processes as possible to the trapping state. Define the
strategy set to be the non-zero processes of minimal
value

©(x, t) = argmin
i
fxi > 0g: (21)

This strategy set is terminally optimal because selecting
a process with value 1 is optimal at the last stage.
The strategy set is deferrable because the condition
of Proposition 1 holds. Specifically, if u 2 ©(x, t) and
v 2U is such that xv 6= xu, then xv > xu and pv(y j x)> 0
implies yv ¸ xu so that

u 2 argmin
i
fyi > 0g=©(y, t+1): (22)

Finally, the probability transitions are commutative be-
causeX

´

pu(» j ´)pv(´ j x)

=
½
1=4 if »u = xu§1,»v = xv § 1
0 otherwise

(23)

=
X
´

pv(» j ´)pu(´ j x): (24)

Thus, the strategy is optimal for this problem by Propo-
sition 1.
Applications of the results in this section to sensor

management problems follow.

3. APPLICATIONS TO SENSOR MANAGEMENT
PROBLEMS

The results are stated for a very general situation in
Section 2, where few assumptions are made concerning
the statistics of the Markov chain. However, the opti-
mality conditions are expected to be useful for analyz-
ing special cases of more general problems, in part to
develop good heuristics for the general case. The pur-
pose of this section is to specialize the optimality condi-
tions to problems where the Markov chain is a product
of independent, identically distributed chains, which is
a common situation arising in some important special
cases of sensor management problems.
Specifically, consider the sensor management prob-

lem where there are n targets and we can only observe
one target at a time. In the simplest case, the deci-
sion U(t) to make at each time t is only which target
i= 1, : : : ,n to observe. There is a Markov chain Xi(t)
corresponding to each target i, where Xi(t) represents
the information state of target i at time t. Typically, we
assume that the chains Xi(t) are independent and iden-
tically distributed, and that the selected (i.e., observed)
chain transitions according to p(» j x) and the n¡ 1 un-
observed chains transition according to q(» j x). More-
over, the reward is typically additive over the n targets,
namely

R(X1(T), : : : ,Xn(T)) =
nX
i=1

r(Xi(T)): (25)

The resulting MDP (X,U,pu,R,T) has special structure
where

X=Xn and X is the state space of
one Markov chain Xi (26)

U= f1, : : : ,ng (27)

pi(» j x) = p(»i j xi)
Y
j 6=i
q(»j j xj) for i 2 U, x,» 2Xn

(28)

R(x) =
nX
i=1

r(xi) for x 2Xn: (29)

REMARK 4 If s= jXj is the number of states for each
single Markov chain, then the computational complex-
ity of the dynamic programming solution is O(ns2nT).
Thus, for fixed s and T, the complexity is exponential
in n. Furthermore, the memory requirements are expo-
nential, namely O(snT). In some cases we can find an
optimal strategy of the formU(t) 2©((X1(t), : : : ,Xn(t)), t)
where

©(x, t) = fi :Mi(xi, t) = max
j
Mj(xj , t)g: (30)

This is what we call a priority index rule strategy. The
Mi(xi, t) are indices that can be computed for each target
with complexity O(s2T) (i.e., equivalent to solving the
dynamic program for one target). Thus, the complexity
of the n target strategy is O(ns2T) rather than O(ns2nT),
linear in n rather than exponential in n.
For the class of transition probabilities pi(» j x) with

structure (28), commutativity is equivalent to the com-
mutativity of the transition functions p and q, as the
following simple result shows.

PROPOSITION 2 If the transition probability functions
pi(» j x) defined for »,x 2 Xn and i 2 f1, : : : ,ng satisfy

pi(» j x) = p(»i j xi)
Y
j 6=i
q(»j j xj), (31)

and if for all »1,x1 2 X,X
´1

q(»1 j ´1)p(´1 j x1) =
X
´1

p(»1 j ´1)q(´1 j x1),

(32)

then pi(» j x) are commutative transition probability func-
tions for »,x 2Xn.
REMARK 5 Note that commutativity always holds if p
or q is the identity transition ±(»i j xi) = 1 for »i = xi and
0 otherwise. Note that q= ± is assumed true in (non-
restless) multiarmed bandit problems. Also, classifica-
tion sensor management problems often satisfy q= ±
(i.e., the classification information state remains un-
changed while the target is unobserved).

REMARK 6 Transition probabilities of the form

pi(» j x) = p(»i j xi)
Y
j 6=i
±(»j j xj) (33)
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and reward functions

R(x) =
nX
i=1

r(xi) (34)

are obviously symmetric.
For this class of MDPs corresponding to sensor

management problems, the general result (Theorem 1)
becomes the following.

COROLLARY 1 Suppose that the MDP (X,U,pu,R,T)
has special symmetric structure where

X=Xn and X is the state space of one

one Markov chain Xi (35)

U= f1, : : : ,ng (36)

pi(» j x) = p(»i j xi)
Y
j 6=i
q(»j j xj) for i 2 U, x,» 2Xn

(37)

R(x) =
nX
i=1

r(xi) for x 2Xn: (38)

Then the strategy set © is optimal if the following three
conditions are met. The first condition is that p and q are
commutative so thatX

´

p(» j ´)q(´ j x) =
X
´

q(» j ´)p(´ j x): (39)

Suppose that ©(x, t) is a strategy set for x= (x1, : : : ,xn).
Then, the second condition is that i 2 ©(x,T¡ 1) impliesX

yi

r(yi)p(yi j xi)¡ r(xi)¸
X
yj

r(yj)p(yj j xj)¡ r(xj)

(40)
for all j 6= i, and the third condition is that
i 2 ©(x1, : : : ,xi, : : : ,xj , : : : ,xn, t), xi 6= xj , and

p(yj j xj)> 0
(41)

implies that

i 2 ©(x1, : : : ,xi, : : : ,yj , : : : ,xn, t+1): (42)

PROOF The condition on pi(» j x) implies that it is
commutative. The second condition implies that © is
terminally optimal for the terminal reward R(x), and the
third condition implies that decisions in © are deferrable
(Proposition 1). The result follows from Theorem 1.

4. SENSOR MANAGEMENT EXAMPLES

What follows are two examples that illustrate the
application of the conditions presented in the paper.
The first is a binary classification example, which is a
type of finite horizon sensor management problem for
which the states of unobserved processes (other than
the time remaining until the end of the horizon) do not
change. The second is a tracking problem, for which the

states of unobserved processes do change. The examples
illustrate how the novel conditions presented in this
paper apply to a large class of problems that includes
these two. The utility of such an analysis is that it sheds
insight into sensor management problems and suggests
heuristics that could be used for more general sensor
management problems.

A. Binary Classification Problem

This problem is to classify as many of n objects
as possible over a finite time horizon T given binary
measurements of the objects. This problem is similar
to the classical treasure hunting problem [2]. In that
problem, one selects among a finite number of areas to
search for treasure, but the treasure may be missed with
a fixed probability. This is a special type of a multiarmed
bandit problem in which a so-called deteriorating condi-
tion holds so that the optimal policy is a greedy policy.
The binary classification problem considered here dif-
fers from the treasure hunting problem in two respects.
The first is that the horizon here is finite whereas it is
infinite for the treasure hunting problem. The second is
that processes in the two problems represent different
quantities and so have different transition probabilities.
In the problem here, each process represents the proba-
bility that a target is of a particular type. In the treasure
hunting problem, each process represents the proba-
bility that the treasure is present at a particular loca-
tion. The details of the binary classification problem
follow.
First, note that this problem is a partially observed

Markov decision process (POMDP) that can be inter-
preted as an MDP with a countable state space. Suppose
there are n random variables Zi with values 0, 1 and that
PrfZi = 1g= p for all i= 1, : : : ,n. Suppose that the Yi(t)
are 0,1 observations of Zi, and Yi(t) are independent and
identically distributed conditioned on Zi with

PrfYi(t) = y j Zi = zg= (1¡ ") ¢ ±y,z + " ¢ (1¡ ±y,z),
(43)

where we use the notation ±y,z = 1 if y = z and 0 other-
wise. We assume that " < 1

2 . Note that " is the probabil-
ity of classification error for one measurement.
Define the information state Xi(t) as the conditional

probability

Xi(t) = PrfZi = 1 j Yi(1), : : : ,Yi(t)g: (44)

The objective of the problem is to maximize the ex-
pected reward

E

(
nX
i=1

r(Xi(T))

)
(45)

at the terminal time T, where r(xi) is the individual
reward

r(xi) = max
di=0,1

fr(di,1)xi+ r(di,0)(1¡ xi)g (46)
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and r(d,z) are the rewards for the different types of
outcomes (i.e., deciding di when the true state of i
is zi).
The processes Xi(t) satisfy

Xi(0) = p (47)

and for t¸ 0,

Xi(t+1) =8>>>>>>>><>>>>>>>>:

(1¡ ")Xi(t)
(1¡ 2")Xi(t) + "

with probability (1¡ 2")Xi(t)+ "
"Xi(t)

(2"¡ 1)Xi(t) +1¡ "
with probability (2"¡ 1)Xi(t)+1¡ ":

(48)

Note that although Xi(t) take values in R, there are only
a countable number of possible values they can take.
Thus, Xi(t) 2X½ R where X is a countable set. Thus,
we have an MDP (X,U,pu,R,T) where

X=Xn (49)

U= f1,2, : : : ,ng (50)

pi(» j x) = p(»i j xi)
Y
j 6=i
±(»j j xj) for i 2U, x,» 2Xn

(51)

R(x) =
nX
i=1

r(xi) for x 2Xn (52)

where p(»i j xi) is defined by

p

μ
(1¡ ")xi

(1¡ 2")xi+ "
j xi
¶
= (1¡ 2")xi+ " (53)

p

μ
"xi

(2"¡ 1)xi+1¡ "
j xi
¶
= (2"¡1)xi+1¡ "

(54)

and r(xi) is defined by (46). We will consider the
special case for which r(1,1) = r(0,0) = 1 and r(0,1) =
r(1,0) = 0 so that

r(xi) =
1
2 + jxi¡ 1

2 j, (55)

and we will assume that the prior probability p= 1
2 .

Note that if p= 1
2 , then

X=

8>><>>:
1

1+
μ

"

1¡ "
¶m : m= 0,§1,§2, : : :

9>>=>>; :
(56)

PROPOSITION 3 The strategy set © defined by

©(x) = fi : jxi¡ 1
2 j=minj jxj ¡ 1

2 jg (57)

is optimal for the binary classification problem with
r(1,1) = r(0,0) = 1, r(0,1) = r(1,0) = 0, and prior prob-
ability p= 1

2 for each object i.

B. Tracking Problem

The following is an example in which one is manag-
ing a sensor to track targets. Specifically, one is tracking
targets over a finite horizon with a noisy sensor. At the
end of the time horizon, the tracks are to be handed
over to another sensor. The handover is successful if
the track mean square error is smaller than the required
level. The objective is to maximize the number of tracks
that are successfully handed over.
Note that this example differs from the binary clas-

sification one in that unobserved chains have nontrivial
dynamics. Specifically, the dynamics are those of the
track error covariances. The conditions are used to ver-
ify the optimality of a strategy for an approximate model
of the track error covariance where the increase in error
when a track is unobserved is given by that of a Kalman
filter, but the error reduction is approximated as being
constant, independent of the initial error. The details of
this example are as follows.
Consider the one-dimensional tracking problem in

which there are n targets each of which is moving as
a one-dimensional Brownian motion with process noise
variance ¤p. Location measurements have additive noise
with variance ¤m. The state of each track i at time t,
for the purposes of sensor management, is the error
variance Xi(t). All tracks are initialized with the same
error variance ¤0, and all have the same desired error
variance ¤h at the end of the horizon T. The objective
of the problem is to maximize the expected reward

E

(
nX
i=1

r(Xi(T))

)
(58)

at the terminal time T, where r(xi) is the individual
reward

r(xi) =
½
1 if xi · ¤h
0 otherwise.

(59)

Now suppose that the track error is approximated
so that the track error reduction for observed tracks is
constant, given by the error reduction from the desired
value ¤h. That is, if the error variance is initially ¤h,
then after one measurement update and one prediction,
it is reduced by the amount ¤p¡¤2h=(¤h+¤m). Then,
the dynamics of the processes Xi(t) satisfy

Xi(0) = ¤0 (60)

and for unobserved processes for t¸ 0,
Xi(t+1) = Xi(t) +¤p: (61)
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For the process observed at t¸ 0,

Xi(t+1) = Xi(t)+¤p¡
¤2h

¤h+¤m
: (62)

We will assume that ¤p < ¤
2
h=(¤h+¤m) so that the error

for observed processes is always decreasing. This is an
MDP (X,U,pu,R,T) with

X=Rn (63)

U= f1,2, : : : ,ng (64)

pi(» j x) = p(»i j xi)
Y
j 6=i
q(»j j xj) for i 2U, x,» 2X

(65)

R(x) =
nX
i=1

r(xi) for x 2 X (66)

where p(»i j xi) is defined by

p

μ
xi+¤p¡

¤2h
¤h+¤m

j xi
¶
= 1 (67)

q(»i j xi) is defined by
q(xi+¤p j xi) = 1, (68)

and r(xi) is defined by (46).

PROPOSITION 4 The strategy set © defined by

©(x) =
½
i : xi =min

j
fxj : xj > ¤h¡¤pg

¾
(69)

is optimal for this tracking problem.

REMARK 7 Note that under this strategy, the approxi-
mate error variance Xi(t)¸ 0 because Xi(t) will decrease
only if the process is chosen for observation, which will
only occur if Xi(t)>¤h¡¤p and

Xi(t) +¤p¡
¤2h

¤h+¤m
¸ ¤h¡

¤2h
¤h+¤m

> 0: (70)

5. CONCLUSION

Thus, the sufficient conditions stated in Section 2 are
useful for establishing optimality of sensor management
strategies. Note that the optimal strategy for the binary
classification and tracking examples presented in Sec-
tion 4-A are priority index rule strategies, as defined
in Section 3. Priority index rules are optimal strategies
for other sensor management problems including those
in [1], [5], [3]. However, the conditions in this paper
do not imply optimality of these strategies except for
some special cases of the sensor management problem
being solved. Whether there exists a generalization of
the results in this paper that implies optimality of prior-
ity index rules for general sensor management problems
and other restless bandit problems is an open question.

APPENDIX. PROOFS OF RESULTS

A. Proof of Theorem 1

For, 0· t· T¡ 1 and x 2X, let ©¤(x, t) be the set of
optimal strategies, as defined in Definition 3. We want
to prove that

©(x, t)½ ©¤(x, t): (71)

The terminal optimality condition is equivalent to

©(x,T¡ 1)½ ©¤(x,T¡ 1): (72)

Thus, assume that ©(x, t+1)½ ©¤(x, t+1) is true for
t < T¡ 1 and prove (71) from it. Suppose that u 2
©(x, t) and u =2 ©¤(x, t). Clearly ©¤(x, t) 6=Ø and there
is v 2©¤(x, t) such that Vv(x, t)>Vu(x, t). The condition
that decisions in © are deferrable implies that u 2
©(X(t+1), t+1) where X(t+1) results from using U(t)
= v. The induction hypothesis implies that

©(X(t+1), t+1)½ ©¤(X(t+1), t+1), (73)

so that U(t+1) = u is an optimal decision.
We now can use the commutativity of the transitions

pw to show that the sequence of decisions U(t) = u,
U(t+1) = v has the same expected value-to-go as the
sequence of decisions U(t) = v, U(t+1) = u and must
be optimal too. Specifically, note that starting from
X(t), if X(t+2) is the state resulting from U(t) = v,
U(t+1) = u and X̃(t+2) is the state resulting from
U(t) = u, U(t+1) = v, then commutativity implies
that X(t+2) and X̃(t+2) have the same distribution.
By assumption (induction) the decisions U(t) = v,
U(t+1) = u are optimal and have the value-to-go

V(X(t), t) = EfV(X(t+2), t+2) j X(t)g: (74)

Commutativity implies that

EfV(X(t+2), t+2) j X(t)g
= EfV(X̃(t+2), t+2) j X(t)g, (75)

which implies that U(t) = u, U(t+1) = v must also be
optimal decisions. Thus, u is optimal, contrary to as-
sumption and we must have u 2 ©¤(x, t).

B. Proof of Proposition 1

First, we show by induction that the symmetry as-
sumption implies that the optimal reward-to-go satisfies

Vv(x, t) = V¼(v)(¼x, t) (76)

for all permutations ¼. Let x denote a vector in Xn =X.
By definition of symmetry

V¼(u)(¼x,T¡1) =
X
y

R(¼y)p¼(u)(¼y j ¼x) (77)

=
X
y

R(y)pu(y j x) (78)

= Vu(x,T¡1): (79)
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Now, assume that

Vv(x, t+1) = V¼(v)(¼x, t+1) (80)

for all x,¼ and prove it for t. Note that the induction
hypothesis implies that

V(x, t+1) =max
v
Vv(x, t+1) (81)

= max
v
V¼(v)(¼x, t+1) (82)

= V(¼x, t+1): (83)

By symmetry assumptions,

Vu(x, t) =
X
y

V(y, t+1)pu(y j x) (84)

=
X
y

V(¼y, t+1)p¼(u)(¼y j ¼x) (85)

=
X
y

V(y, t+1)p¼(u)(y j ¼x) (86)

= V¼(u)(¼x, t) (87)

which completes the induction.
Now, to prove the statement of Proposition 1, sup-

pose that u 2 ©(x, t), Vv(x, t)>Vu(x, t) and pv(y j x)> 0.
We have just shown that

Vv(x, t) = V¼(v)(¼x, t) (88)

for all permutations ¼. Let ¼ be the permutation that
interchanges v and u. Then if xv = xu, Vv(x, t) = Vu(x, t).
Thus, Vv(x, t)>Vu(x, t) implies that xv 6= xu. By the prop-
osition’s assumption, it follows that u 2 ©(y, t+1),
which proves the result.

C. Proof of Proposition 2

Note that for i 6= j,X
´

pi(» j ´)pj(´ j x) (89)

=
X
´

p(»i j ´i)
Y
k 6=i
q(»k j ´k)p(´j j xj)

Y
k 6=j
q(´k j xk)

(90)

=
X
´j

q(»j j ´j)p(´j j xj)
X
´i

p(»i j ´i)q(´i j xi)

£
Y
k 6=i,j

X
´k

q(»k j ´k)q(´k j xk): (91)

By assumptionX
´j

q(»j j ´j)p(´j j xj) =
X
´j

p(»j j ´j)q(´j j xj)

(92)
and X

´i

q(»i j ´i)p(´i j xi) =
X
´i

p(»i j ´i)q(´i j xi): (93)

Thus,X
´j

q(»j j ´j)p(´j j xj)
X
´i

p(»i j ´i)q(´i j xi)

£
Y
k 6=i,j

X
´k

q(»k j ´k)q(´k j xk) (94)

=
X
´j

p(»j j ´j)q(´j j xj)
X
´i

q(»i j ´i)p(´i j xi)

£
Y
k 6=i,j

X
´k

q(»k j ´k)q(´k j xk) (95)

=
X
´

pj(» j ´)pi(´ j x), (96)

proving thatX
´

pi(» j ´)pj(´ j x) =
X
´

pj(» j ´)pi(´ j x): (97)

D. Proof of Proposition 3

The proof verifies that the three conditions of Corol-
lary 1 hold.
First, the transition probabilities pi(» j x) are obvi-

ously commutable and symmetric, and the reward func-
tion R(x) is obviously symmetric.
Now, note thatX
yi

[R(yi)¡R(xi)]p(yi j xi) (98)

=¡ 1
2 ¡ jxi¡ 1

2 j (99)

+
μ
1
2
+
¯̄̄̄

(1¡ ")xi
(1¡2")xi+ "

¡ 1
2

¯̄̄̄¶
((1¡2")xi+ ")

(100)

+
μ
1
2
+
¯̄̄̄

"xi
(2"¡ 1)xi+1¡ "

¡ 1
2

¯̄̄̄¶
£ ((2"¡ 1)xi+1¡ "): (101)

This simplifies toX
yi

[R(yi)¡R(xi)]p(yi j xi)

=¡jxi¡ 1
2 j+ 1

2 jxi¡ "j+ 1
2 j(1¡ xi)¡ "j,

(102)
which is equivalent toX

y

[R(y)¡R(xi)]p(y j xi)

=

8>>><>>>:
0 for 0· xi · "
xi¡ " for "· xi · 1

2

1¡ xi¡ " for 1
2 · xi · 1¡ "

0 for 1¡ "· xi · 1

:

(103)
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Note that because

xi =
1

1+
μ

"

1¡ "
¶m , (104)

if m< 0, then

xi ·
1

1+
μ

"

1¡ "
¶¡1 = " (105)

and if m> 0, then

xi ¸
1

1+
μ

"

1¡ "
¶ = 1¡ ": (106)

Thus,X
yi

[R(yi)¡R(xi)]p(yi j xi) =
½0 for xi 6= 1

2
1
2 ¡ " for xi =

1
2

:

(107)
In particular,

max
j

8<:X
yj

[R(yj)¡R(xj)]p(yj j xj)
9=;

=
½0 if all xi 6= 1

2
1
2 ¡ " if some xi =

1
2

(108)

and if
jxi¡ 1

2 j=minj jxj ¡ 1
2 j, (109)

then X
yi

[R(yi)¡R(xi)]p(yi j xi)

= max
j

8<:X
yj

[R(yj)¡R(xj)]p(yj j xj)
9=; :
(110)

This shows that the second condition of Corollary 1
holds.
To show that the third condition of Corollary 1

holds, suppose that i 2 ©(x) so that
jxi¡ 1

2 j=mink jxk ¡ 1
2 j (111)

and suppose xj 6= xi, p(yj j xj)> 0. Thus,

yj =
(1¡ ")xj

(1¡2")xj + "
(112)

or
yj =

"xj
(2"¡ 1)xj +1¡ "

: (113)

If jxj ¡ 1
2 j> jxi¡ 1

2 j, then it is easy to see that jyj ¡ 1
2 j ¸

jxi¡ 1
2 j and therefore i 2 ©(x1, : : : ,yj , : : : ,xn). However, it

is possible that jxj ¡ 1
2 j= jxi¡ 1

2 j and xi 6= xj . If xi 6= 1
2 ,

then the conclusion is not true, because one of the two
values of yj is closer to

1
2 than xi.

However, we can easily extend the proposition to
cover this case. Note that if jxj ¡ 1

2 j= jxi¡ 1
2 j, then

xj = 1¡ xi. The classification problem is invariant under
the transformation xi! 1¡ xi, and in particular,

V(: : : ,xi, : : : ,¿) = V(: : : ,1¡ xi, : : : ,¿ ): (114)

Furthermore, if p(yi j xi)> 0, then p(1¡ yi j 1¡ xi)> 0.
It follows that

Vi(: : : ,xi, : : : ,¿) = Vi(: : : ,1¡ xi, : : : ,¿ ): (115)

As a consequence of this and the symmetry of V, we
find that jxj ¡ 1

2 j= jxi¡ 1
2 j implies that

Vi(x,¿) = Vj(x,¿ ): (116)

Thus, i,j 2©(x) implies that Vi(x,¿ ) = Vj(x,¿). This is
sufficient to extend the proposition because if Vj(x, t)>
Vi(x, t), then both xi 6= xj and jxj ¡ 1

2 j 6= jxi¡ 1
2 j. Thus,

we can apply the earlier argument to show that i 2
©(x1, : : : ,yj , : : : ,xn). Consequently, the third and final
condition of Corollary 1 holds so that © is optimal.

E. Proof of Proposition 4

The optimality of Proposition 4 will be established
by verifying that the three conditions of Corollary 1
hold.
First, note that the distributions p and q are commu-

tative sinceX
´

p(» j ´)q(´ j x)

=
X
´

q(» j ´)p(´ j x)

=

8><>:
1 if » = x+2¤p¡

¤2h
¤h+¤p

0 otherwise.

(117)
Moreover,X
yi

r(yi)p(yi j xi)¡ r(xi)

=

8>>>>>>><>>>>>>>:

0 if xi · ¤h¡¤p

1 if ¤h¡¤p < xi · ¤h¡¤p+
¤2h

¤h+¤p

0 if ¤h¡¤p+
¤2h

¤h+¤p
< xi:

(118)
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Thus, if i 2©, then for all j 6= i, either xi · xj or xj ·
¤h¡¤p so thatX

yi

r(yi)p(yi j xi)¡ r(xi)¸
X
yj

r(yj)p(yj j xi)¡ r(xi),

(119)

and the second condition of Corollary 1 holds. Finally,
if

i 2 ©(x1, : : : ,xi, : : : ,xj , : : : ,xn, t) (120)

xj 6= xi then p(yj j xj)> 0 implies one of the following.
Either xi < xj or xj · ¤h¡¤p. In the first case, there
exists m 2 f0,1,2, : : :g so that yj ¡ xi =m¤2h=(¤h+¤p)¸
0. In the second case, yj · xj · ¤h¡¤p: In either case,

i 2 ©(x1, : : : ,xi, : : : ,yj , : : : ,xn, t+1): (121)

and the third and final condition of Corollary 1 holds,
and the strategy set is optimal.
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Fusion of Tracks with Road
Constraints
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This paper is concerned with tracking of ground targets on roads

and investigates possible ways to improve target state estimation via

fusing a target’s track with information about the road along which

the target is traveling. A target track is estimated using a surveil-

lance radar whereas a digital map provides the road network of the

region under surveillance. When the information about roads is as

accurate as (or even better than) radar measurements, it is desired

naturally to incorporate such information (fusion) into target state

estimation. In this paper, roads are modeled with analytic functions

and their fusion with a target track is cast as linear or nonlinear

state constraints in an optimization procedure. The constrained op-

timization is then solved with the Lagrangian multiplier, leading to

a closed-form solution for linear constraints and an iterative solu-

tion for second-order nonlinear constraints. Geometric interpreta-

tions of the solutions are provided for special cases. Compared to

other methods, the track-to-road fusion using the constrained opti-

mization technique can be easily implemented as an add-on mod-

ule without changes to an existing tracker. For curved roads with

coarse waypoints, the nonlinear constrained solution outperforms

the piecewise linearized constrained approach. Computer simula-

tion results are presented to illustrate the algorithms.

Manuscript received October 4, 2006; revised August 3, 2007 and
June 12, 2008; released for publication on June 25, 2008.

Refereeing of this contribution was handled by Benjamin J. Slocumb.

Authors’ addresses: C. Yang, Sigtem Technology, Inc., 1343 Par-
rott Drive, San Mateo, CA 94402, E-mail: (chunyang@sigtem.com);
E. Blasch, Air Force Research Lab/RYAA, 2241 Avionics Circle,
WPAFB, OH 45433, E-mail: (erik.blasch@wpafb.af.mil).

1557-6418/08/$17.00 c° 2008 JAIF

1. INTRODUCTION

With the rapid building up of geographic informa-
tion system (GIS) including digital road maps (DRM)
and digital terrain elevation data (DTED), information
about roads becomes more accurate, up to date, and
accessible. Looking for a map in the Internet is at fin-
gertips with a least cost (i.e., distance or time) route
plotted to a destination. Road and terrain information
has been used in the past for navigation via terrain con-
tour matching. Other examples include the increasingly
popular use of digital maps for automobile navigation
with a Global Positioning System (GPS) receiver and
terrain-aided navigation for aircraft.
This paper is concerned with tracking of ground tar-

gets on roads and investigates possible ways to improve
target state estimation via fusing a target’s track with in-
formation about the road along which the target is trav-
eling. A target track is estimated using a surveillance
radar whereas a digital map provides the road network
of the region under surveillance. Target tracking is not
unfamiliar with road maps. For example, target tracks
are represented by colorful dots and lines blinking along
road networks on a big screen, often on top of a topo-
graphic or satellite image, in a situation room, in an air
traffic control tower, and on a radar operator screen.
In these applications, however, target tracks and road
networks are merely displayed together with little or no
interaction in the data processing level.
When the information about roads is as accurate as

(or even better than) radar measurements, it is naturally
desired to incorporate such information into target state
estimation. When a vehicle travels off-road or on an
unknown road, the state estimation problem is uncon-
strained. However, when the vehicle is traveling on a
known road, be it straight or curved, the state estima-
tion problem can be cast as constrained with the road
network information available from digital road/terrain
maps. In the past, such constraints are often ignored (or
left for the users to perceive it as in the display exam-
ple mentioned above). The resulting estimates, even ob-
tained with the Kalman filter, cannot be optimal because
they do not make full use of this additional information
about state constraints.
To use such state constraints, previous attempts can

be put into several groups. The first group is to incorpo-
rate road information into the state estimation process.
One technique is to reduce the system model param-
eterization. Another technique is to translate the state
constraints onto the state process and/or observation
noise covariance matrix for the estimation filter [10].
The use of variable structure IMM (VS-IMM) methods
also belongs to this group [7, 18, 19, 22]. Yet another
technique is to project a dynamic system onto linear
state constraints and then apply the Kalman filter to
the projected systems [11]. Similarly, for nonlinear state
constraints, there is the one-dimensional (1D) represen-
tation of a target motion along a curvilinear road [27].
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The technique to model bounded random variables with
truncated densities also belongs to this group, which is
easily workable with such nonlinear filters as a parti-
cle filter [2, 4, 25, 26]. Road map information can also
be integrated within Multi-Hypothesis Tracking (MHT)
[12, 13].
The second group is to treat state constraints as

pseudo measurements [8]. For a road segment, its an-
alytic model not only constrains the target position but
also the direction of the target’s velocity. Indeed, the
target velocity is closely aligned with the road orien-
tation for a linear segment and with the tangent vec-
tor at the target position for a nonlinear segment. Fur-
thermore, an estimate of centripetal acceleration can
be obtained given the curvature and the target speed
[27].
In the third group, an unconstrained Kalman filter

solution is first obtained and then the unconstrained
state estimate is projected onto the constrained sur-
face [24]. This technique can also be viewed as post-
processing (estimation or updating) correction [28] or
track-to-road fusion as referred to in this paper. In con-
ventional track fusion, two or more tracks are available,
each consisting of an estimate of the underlying tar-
get trajectory with its estimation error covariance. The
fused track is typically found that minimizes the sum
of covariance-weighted state errors squared [5, 6]. In
contrast to this conventional track fusion that operates
on individual states, fusion of tracks with roads involves
a state value (a point) and a subset of state values (an
arc or interval). In this paper, roads are modeled with
analytic functions and their fusion with a target track
is therefore formulated as linear or nonlinear state con-
straints in an optimization procedure.
Although this paper presents a new technique for

the third group, it is interesting to think of it relative
to the first group in much the same way track fusion
is compared with measurement fusion. In measurement
fusion, measurements from all sensors are made avail-
able to a centralized tracker, which has the potential to
fuse out the best estimate. However, measurement fu-
sion may not be practical for distributed sensors wherein
gathering all raw measurements is often limited by net-
work transmission bandwidth and latency. Track fusion
is frequently used as acceptable compromise between
performance and cost.
Similarly, fusion of tracks with road constraints (in

the third group) may not perform as well as an algorithm
that incorporates road maps directly into the filtering
process (in the first group). However, it has many merits
of its own. First, it is simple and can be retrofitted
into existing trackers as an add-on module without
changes to the trackers. Since the tracks are obtained
without constraints, it can easily switch between off-
road and on-road operations when road information is
available and the unconstrained tracks are deemed close
to roads. Second, an up-to-date accurate road map may
not be available to individual sensors but only at a
fusion center. In this case, the algorithm of track-to-

road fusion as presented in this paper can be applied
directly whereas those in the first group cannot. Third,
as noted in [18], the IMM methods based on road maps
do not always perform better than those without road
maps particularly when the updating interval is long. In
contrast, constraining an on-road target’s track onto a
road (fusing) has no such a problem. Fourth, the track-
to-road fusion algorithm goes beyond target tracking to
navigation for instance where it can be used to loosely
integrate GPS fixes and digital maps [16].
In this paper, we therefore focus on the third group

and in particular present an optimization procedure for
nonlinear state constraints which is shown to be superior
to the linear approximation of nonlinear state constraints
as suggested in [24].
There are a host of constrained nonlinear optimiza-

tion techniques [15]. Primal methods search through the
feasible region determined by the constraints. Penalty
and barrier methods approximate constrained optimiza-
tion problems by unconstrained problems through mod-
ifying the objective function (e.g., add a term for higher
price if a constraint is violated). Instead of the origi-
nal constrained problem, dual methods attempt to solve
an alternate problem (the dual problem) whose un-
knowns are the Lagrangian multipliers of the first prob-
lem. Cutting plane algorithms work on a series of ever-
improving approximating linear programs whose so-
lutions converge to that of the original problem. La-
grangian relaxation methods are widely used in discrete
constrained optimization problems.
In addition, moving horizon estimation reformulates

the estimation problem as quadratic programming over
a moving, fixed-size estimation window and has be-
come an important approach to constrained nonlinear
estimation [20]. Another approach to constrained linear
estimation is to exploit the Lagrangian duality. Indeed,
a constrained linear estimation problem is shown to be
a particular nonlinear optimal control problem in [9].
Constrained state estimation has also been studied from
a game-theoretical point of view (also called the mini-
max or H1 estimation) in [23].
In this paper, the constrained optimization is solved

with the Lagrangian multiplier, leading to a closed-form
solution for linear constraints and an iterative solution
for nonlinear constraints. In the latter case, we present a
method that allows for the use of second-order nonlinear
state constraints exactly. The method can provide better
approximation to higher order nonlinearities. The new
method is based on a computational algorithm that
iteratively finds the Lagrangian multiplier. The use of a
second-order constraint versus linearization is a tradeoff
between reducing approximation errors to higher-order
nonlinearities and keeping the problem computationally
tractable.
A nonlinear constraint can be approximated with

linear constraints in a piecewise fashion. By judicious
selection of the number of linear segments and their
placement (i.e., the point around which to linearize), a
reasonably good performance can be expected. In the
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limit, a nonlinear function is represented by a piece-
wise function composed of an infinite number of linear
segments. This naturally leads to the use of nonlinear
constraints. As such, the proposed nonlinear constrained
solution for curved roads is not only more accurate but
also less complicated in implementation than a piece-
wise linearized constrained approach, to be shown later
in simulation examples.
Although the main results are restricted to state

equality constraints, it can be extended to inequality
constraints. According to [24], the inequality constraints
can be checked at each time step of filtering. If the in-
equality constraints are satisfied at a given time step, no
action is taken since the inequality constrained problem
is solved. If the inequality constraints are not satisfied
at a given time step, then the constrained solution is
applied to enforce the constraints.
The paper is organized as follows. Section 2 presents

linearly constrained state estimation for fusion of tracks
with linear road segments. Section 3 presents an iter-
ative solution for fusion of tracks with nonlinear road
segments. In both cases, geometric interpretations of the
solutions are provided for special cases. In Section 4,
computer simulation results are presented to illustrate
the algorithms. Finally, Section 5 provides concluding
remarks and suggestions for future work.

2. FUSION OF TRACKS WITH LINEAR ROAD
SEGMENTS

When a road segment is straight, it can be mod-
eled as a linear state constraint. In this section, we first
summarize the results for linearly constrained state es-
timation [24] as an approach to fusion of tracks with
linear road segments. We then show that this linearly
constrained state estimation is equivalent to use of con-
straints as measurements in state update. Finally, we
provide a simple geometric interpretation of the linearly
constrained state estimation for track-to-road fusion.

2.1. Linearly Constrained State Estimation for Track-to-
Road Fusion

Consider a linear time-invariant discrete-time dy-
namic system together with its measurement as

xk+1 =Axk +Buk +wk (1a)

yk =Cxk + vk (1b)

where the subscript k is the time index, x is the state
vector, u is a known input, y is the measurement, and
w and v are state and measurement noise processes,
respectively. It is implied that all vectors and matrices
have compatible dimensions, which are omitted for
simplicity.
The goal is to find an estimate denoted by x̂k of xk

given the measurements up to time k denoted by Yk =
fy0, : : : ,ykg. Under the assumptions that the state and
measurement noises are uncorrelated zero-mean white
Gaussian with w»Nf0,Qg and v»Nf0,Rg where Q

and R are positive semi-definite covariance matrices,
the Kalman filter provides an optimal estimator in the
form of x̂k = Efxk j Ykg [3]. Starting from an initial esti-
mate x̂0 = Efx0g and its estimation error covariance ma-
trix P0 = Ef(x0¡ x̂0)(x0¡ x̂0)Tg where the superscript T
stands for matrix transpose, the Kalman filter equations
specify the propagation of x̂k and Pk over time and the
update of x̂k and Pk by measurement yk as

x̄k+1 =Ax̂k +Buk (2a)

P̄k+1 =APkA
T+Q (2b)

x̂k+1 = x̄k+1 +Kk+1(yk+1¡Cx̄k+1) (2c)

Pk+1 = (I¡Kk+1C)P̄k+1 (2d)

Kk+1 = P̄k+1C
T(CPkC

T+R)¡1 (2e)

where x̄k+1 and P̄k+1 are the predicted state and predic-
tion error covariance, respectively.
Now in addition to the dynamic system of (1), we

are given the linear state constraint equation

Dxk = d (3a)

where D is a known constant matrix of full rank, d is
a known vector, and the number of rows in D is the
number of constraints, which is assumed to be less than
the dimension of states. If D is a square matrix, the state
is fully constrained and can thus be solved by inverting
(3a). Although no time index is given to D and d in (3a),
it is implied that they can be time-dependent, leading to
piecewise linear constraints.
The information about a target traveling along a lin-

ear road segment is well modeled by (3a) and illus-
trated in Fig. 1. As shown, the road is specified by the
orientation μ defined as the angle of its normal vector
n relative to the x-axis and the distance to the origin
r. The unit vectors pointing along the road and per-
pendicular to the road are given by ¹= [¡sinμ,cosμ]T
and n= [cosμ, sinμ]T, respectively. Clearly, a target at
position p= [x,y]T with velocity v= [_x, _y]T satisfies the
linear constraints pTn= r and vTn= 0. These two equa-
tions can be easily put together into the format of (3a)
with the corresponding D and d given below.

D=
·
cosμ 0 sinμ 0

0 cosμ 0 sinμ

¸
, d=

·
r

0

¸
(3b)

The constrained Kalman filter according to [24]
is constructed by directly projecting the unconstrained
state estimate x̂k onto the constrained surface S = fx :
Dx= dg. It is formulated as the solution to the problem

³x= argmin
x2S
(x¡ x̂)TW(x¡ x̂) (4)

where W is a symmetric positive definite weighting
matrix. The time index subscript k is dropped from
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Fig. 1. Road models as linear constraints.

variables in (4) for simplicity. When W= I, the cost
function of (4) is the standard least squares formulation.
IfW is chosen based on the estimation error covariance
matrix P, it becomes the weighted least squares solution.
Derived using the Lagrangian multiplier technique in

Appendix A, the solution to the constrained optimiza-
tion in (4) is given by [24]

³x= x̂¡W¡1DT(DW¡1DT)¡1(Dx̂¡d): (5)

Several interesting statistical properties of the con-
strained Kalman filter are presented in [24]. This in-
cludes the fact that the constrained state estimate as
given by (5) is an unbiased state estimate for the sys-
tem in (1) subject to the constraint in (3a) for a known
symmetric positive definite weighting matrix W. Fur-
thermore when W= P¡1, the constrained state estimate
has a smaller error covariance than that of the uncon-
strained state estimate, and it is actually the smallest for
all constrained Kalman filters of this type.

2.2. Track-to-Road Fusion Architectures1

According to (4), the fusion of a target track (an
unconstrained state estimate) x̂k with a road segment

1This subsection is added based on the editor’s comments.

Fig. 2. Track-to-road fusion architectures.

represented by a surface in the state space S is cast as
a constrained least squares optimization problem, yield-
ing the constrained solution ³x and its estimation error
covariance P³x. This leads to two possible implementa-
tion schemes. One is the open-loop architecture with-
out feedback as shown in Fig. 2(a) and the other is
the closed-loop architecture with feedback as shown in
Fig. 2(b).
In the open-loop architecture of Fig. 2(a), the uncon-

strained solution can be used to help select the proper
road constraints prior to fusion and the fused solution
may be further used to refine road constraints for future
target movements. However, the fused state is not fed
back to the unconstrained tracker.
In contrast, the closed-loop architecture of Fig. 2(b)

feeds back the fused state to the unconstrained Kalman
tracker (i.e., to replace the state with the fused state).
This has the advantage of keeping the one-step-ahead
prediction closely aligned to the road estimates.
There are several issues to trade off when making

the choice of one architecture versus the other. The
closed-loop scheme needs to alter the unconstrained
filter and its implementation therefore requires inter-
nal access. Further, a two-way data link may be nec-
essary if the tracker and the fusion center are not
co-located.
The open-loop architecture is simple and can be

retrofitted into existing trackers as an add-on module
without changes to the trackers. Since the tracks are ob-
tained without constraints, it can easily switch between
off-road and on-road operations. It is particularly useful
for cases where no up-to-date accurate road map (e.g.,
the latest satellite imagery) is available to individual sen-
sors but at a fusion center. In this paper, the open-loop
scheme is implemented in the simulation examples pre-
sented in Section 4.
As shown in Fig. 2, an important step leading to the

track-to-road fusion is the road constraint generation. It
consists of two major parts, namely, creating an analytic
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representation for a given road segment and selecting
the correct road segment(s) for fusion.
In a digital geographic database, road network is

stored as a series of waypoints, a layer of the vector map
(VMAP). The waypoints are typically extracted from
survey data and aerial imagery among others and the
density or spacing of waypoints is determined by the
map resolution, which may be nonuniform. Although
local survey data may contain the radius and turn center
of a curved road segment, the waypoints themselves do
not define the functions representing the road. To apply
the road-constrained optimal fusion method, it is nec-
essary to generate the constraint function based on the
waypoints in the database. The most typical approach
would use linear segments to connect the waypoints as
evident from Google Map, MapQuest, or MSN Maps
when zooming in. The waypoint connections defines a
line representing road, which can be a simple line con-
necting two waypoints or a tangent passing through a
waypoint. Alternately, a spline (a piecewise polynomial
function) can be used to define the road in between
the points, leading to a nonlinear function defining the
road.
Ideally, the number of waypoints used to define the

road is generated such that the maximum error between
the actual road and the mathematical model for the
road (linear segments, spline, etc.) is less than some
allowable value. However, waypoints in most digital
maps are pre-determined and fixed. Depending on the
map resolution and sensor accuracy, when the error
associated with the constraints becomes larger than
the error in the sensor measurement, the benefits of
using such constraints diminish. It is therefore desired
to have a road modeling system that generates the
waypoints to support “adaptive sampling” so that the
error between the road and the road model is always
less than some limit. The use of an analytic nonlinear
representation, rather than fixed waypoints with linear
segments, is a possible way toward adaptive sampling
and resampling.
The second aspect of the road constraint generation

shown in Fig. 2 is constraint selection, which identifies
which road the target is on and the closest waypoints
on the road and then produces the constraint function
for those points of the road. Similar to the problem
of target tracking with measurement origin uncertain-
ties where data association is applied prior to mea-
surement updating, the track-to-road fusion necessitates
road constrained data association (RCDA) especially
with closely spaced roads and around intersections. This
association can be either measurement-based or pre-
dicted state-based and a data history may be needed
to ascertain the winning hypothesis.
For an identified road, it then comes to select a piece-

wise constraint model. Without pre-determined analytic
models available for the road segment, it is possible to

perform on-line synthesis. For example, from two clos-
est waypoints to a measurement, a line representation
can be computed for those points. Or a spline repre-
sentation of the road can be computed for the nearest
three points of the digital map. A nonlinear represen-
tation (from the spline for instance) further allows for
piecewise linearization with the point for the lineariza-
tion chosen near the measurement or near the estimated
track state. Iterative linearization can be used to refine
the linearized constraints if necessary.
For lines between fixed waypoints or piecewise lin-

earized segments from a nonlinear model, the linear
constrained optimization method of this section can be
applied. For curved roads, the nonlinear optimization
method presented in Section 3 can be used advanta-
geously when a nonlinear representation of a road is
available.
The aspects of constraint modeling and selection

are not further discussed in this paper. Another impor-
tant issue that is not addressed either in this paper is
possible errors in digital maps such as bias and mis-
orientation for linear road segments and erroneous ra-
dius and turn center for curved segments. We leave it for
future treatment but focus on fusion methodology in this
paper.

2.3. Linear Road Constraint as Pseudo Measurement

As described above, the linear constrained estimator
(5) can be obtained by different methods. It is shown
in this section that it is also equivalent to the solution
where the linear state constraints are considered as
pseudo measurements.
For the linear time-invariant discrete-time dynamic

system (1a) and its measurement (1b), consider the lin-
ear state constraint (3) as an additional measurement
to the system, which can be used to perform the fil-
ter measurement update (2c) and (2d) right after (1b)
without the filter time propagation (2a) and (2b) (i.e.,
stay the same). To apply (2), we identify the following
equivalence:

C=D, R= 0, yk = d: (6)

Consider (x̂(i)k ,P
(i)
k ) as the constrained state and co-

variance after the ith iteration update with the con-
straints at time k. With this notation, (x̂(i)k ,P

(i)
k ) = (x̂k,Pk)

estimate for i= 0 is the unconstrained state estimate and
covariance at time k. The Kalman filter gain is given
by

K(i+1)k = P(i)k D
T(DP(i)k D

T)¡1: (7)

The updated state and error covariance becomes:

x̂(i+1)k = x̂(i)k +P
(i)
k D

T(DP(i)k D
T)¡1(d¡Dx̂(i)k ) (8)

P(i+1)k = P(i)k ¡P(i)k DT(DP(i)k DT)¡1DP(i)k : (9)
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If we choose W= (P(i)k )
¡1, (8) becomes

x̂(i+1)k = x̂(i)k +W
¡1DT(DW¡1DT)¡1(d¡Dx̂(i)k )

(10a)

= x̂(i)k ¡W¡1DT(DW¡1DT)¡1(Dx̂(i)k ¡d)
(10b)

= x̂k ¡W¡1DT(DW¡1DT)¡1(Dx̂k ¡d)
(10c)

which is exactly the same as the solution given by (5).
This equivalence affords a possible way to incorpo-

rate uncertainty in road modeling such as bias, width,
and mis-orientation through pseudo measurement error
covariance matrix R. In the ideal case where roads are
assumed to be known perfectly, this R is set to zero. In-
equality constraint is another way to handle uncertainty
if errors are within certain known bounds. Furthermore,
when the track-to-road fusion is based on optimization
with a least-squares criterion, it is possible to introduce
weightings to account for directional errors given by
covariance matrices of the track and/or the road.

2.4. Geometric Interpretation

Assume that the state dimension is n and the number
of linear constraints is m< n. For x 2 Rn, the constraint
S = fx :Dx= dg constitutes a surface in Rn. It is shown
in Appendix B that for the case whereW= I, the linear
constrained estimation (5) is the orthogonal projection
of the unconstrained estimate onto the constraining sur-
face. This offers a geometric interpretation and provides
a theoretical justification of the intuitive practice of find-
ing a point along the road that is of the shortest distance.
The theory still holds for W 6= I. The proof is given

in Appendix C. The results presented in this and pre-
vious sections complement the work of [24], providing
an interesting geometric interpretation to the linear con-
strained estimation by estimate projection.

3. FUSION OF TRACKS WITH NONLINEAR ROAD
SEGMENTS

When a road segment is curved, it can be modeled
as a nonlinear state constraint. In this section, we first
analyze the linearizing approach and the associated con-
straint approximation error. We then present an iterative
solution to a second order state constraint. Finally, we
offer a geometric interpretation of the solution under a
circular constraint and outline a simple approach to a
more general second order state constraint problem of
practical significance.

3.1. Approximation Errors in Constraint Linearization

To deal with nonlinearity, a simple approach is to
project the unconstrained state estimate onto linearized

state constraints. Once the constraints are linearized,
the results presented in the previous section for linear
cases can be applied. However, linearization introduces
constraint approximation error, which is a function of
the nonlinearity and, more importantly, of the point
around which the linearization takes place. This may
lead to an undesired divergence problem as analyzed
below.
Consider the nonlinear state constraint of the form

g(x) = d: (11)

We can expand the nonlinear state constraints about
a constrained state estimate ³x and for the ith row of (11),
we have

gi(x)¡ di = gi(³x) + g0i(³x)T(x¡ ³x)

+
1
2!
(x¡ ³x)Tg00i (³x) + (x¡ ³x)+ ¢ ¢ ¢ ¡ di = 0

(12)

where the superscripts 0 and 00 denote the first and second
partial derivatives.
Keeping only the first-order terms as suggested in

[24], some rearrangement leads to

g0(³x)Tx¼ d¡ g(³x)+ g0(³x)T³x (13)

where g(x) = [: : :gi(x) : : :]
T, d= [: : :di : : :]

T, and g0(x) =
[: : :g0i(x) : : :]. An approximate linear constraint is there-
fore formed by replacing D and d in (3) with g0(x)T and
d¡ g(³x) +g0(³x)T³x, respectively.
Fig. 3 illustrates this linearization process and iden-

tifies possible errors associated with linear approxima-
tion of a nonlinear state constraint. As shown, a previous
constrained state estimate ³x¡ lies somewhere on the con-
strained surface but is away from the true state x. The
projection of the unconstrained state estimate x̂ onto the
approximate linear state constraint produces the current
constrained state estimate ³x+, which is however subject
to the constraint approximation error. Clearly, the fur-
ther away is ³x¡ from x, the larger is the approximation-
introduced error. More critically, such an approximately
linear constrained estimate may not satisfy the original
nonlinear constraint specified in (11). It is therefore de-
sired to reduce this approximation-introduced error by
including higher-order terms while keeping the prob-
lem computationally tractable. One possible approach
is presented in the next section.
As discussed in Section 2.2, when waypoints of

a digital map are used to construct linear constraints
directly, their modeling error is related to a large extent
to the coarseness of waypoints, which is determined in
turn by the map resolution.
Working with an analytic road model, simply curve-

fitted from fixed waypoints for instance, provides
the opportunity for possible “iterated linearization” or
“adaptive sampling” so as to maintain small uniform lin-
earization errors. As shown in Fig. 3, when the lineariza-
tion point is far away from the true state, the lineariza-
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Fig. 3. Errors in linear approximation of nonlinear state constraints.

tion is poor. In this particular case, the linearization
point is the predicted state ³x¡, which happens to be on
road. However, due to target motion, this predicted state
is offset from the true state x. The linear constrained
state estimate ³x+ is now “closer” to the true state than
the predicted one and can be used to re-linearize the
function as done in an iterated extended Kalman filter.
This iterated linearization may reduce linearization error
in a sense but cannot guarantee a smaller state estima-
tion error because the linear constrained state estimate
and its iterations may not always fall onto the road.
At a first glance, a curved road can be well approxi-

mated with a sufficient number of waypoints where the
linearization points are critically placed (i.e., the way-
point sample rate is sufficient to keep the error between
the road and the road model small). In the limit, a piece-
wise linear approximation converges to a continuous
function; and the direct use of a nonlinear constraint
itself, rather than its approximation, becomes natural.
In practical cases, however, only a limited number of

waypoints are available. For sharp turns, linear approx-
imation errors dominate. As shown later in Section 4.1,
the selection of a linear segment and in particular the
transition from one segment to another is a rather in-
volved process. On the other hand, the track-to-road
fusion is considerably simplified with nonlinear con-
strained optimization as described below.

3.2. Iterative Solution to Second-Order Constraints

Naturally formed roads tend to have more bends
and turns of irregular shapes (high nonlinearity). Even
highways have to follow terrain contours when crossing
mountains. Locally, however, it suffices to represent a
curved road segment by a second-order state constraint
function as

f(x) = [xT 1]
·
M m

mT m0

¸·
x

1

¸
= xTMx+mTx+ xTm+m0 = 0 (14)

which can be viewed as a second-order approximation
to an arbitrary nonlinearity in a digital terrain map.

Similar to (4), we can formulate the projection of
an unconstrained state estimation onto a nonlinear con-
straint surface as the constrained least-squares optimiza-
tion problem

x̂= argmin
x
(z¡Hx)T(z¡Hx) (15a)

subject to f(x) = 0: (15b)

If we let W=HTH and z=Hx̂, the formulation in
(15) becomes the same as in (4). In a sense, (15) is a
more general formulation because it can also be inter-
preted as a nonlinear constrained measurement update
or a projection in the predicted measurement domain.
The solution to the constrained optimization (15)

can be obtained again using the Lagrangian multiplier
technique, which is detailed in Appendix D, as

x̂=G¡1V(I+¸§T§)¡1e(¸) (16a)

q(¸) =
X
i

e2i (¸)¾
2
i

(1+¸¾2i )
2
+2

X
i

ei(¸)tj
1+¸¾2i

+m0 = 0

(16b)

whereG is an upper right diagonal matrix resulting from
the Cholesky factorization of W=HTH as

W=GTG (16c)

V, an orthonormal matrix, and§, a diagonal matrix with
its diagonal elements denoted by ¾i, are obtained from
the singular value decomposition (SVD) of the matrix
LG¡1 as

LG¡1 =U§VT (16d)

where U is the other orthonormal matrix of the SVD
and L results from the factorization M= LTL, and

e(¸) = [: : :ei(¸), : : :]
T =VT(GT)¡1(HTz¡¸m)

(16e)

t= [: : : ti : : :]
T =VT(GT)¡1m: (16f)

As a nonlinear equation in ¸, it is difficult to find a
closed-form solution in general for the nonlinear equa-
tion q(¸) = 0 in (16b). Numerical root-finding algo-
rithms may be used instead. For example, the Newton’s
method is used below. Denote the derivative of q(¸) with
respect to ¸ as

_q(¸) = 2
X
i

ei(¸)_ei(1+¸¾
2
i )¾

2
i ¡ e2i (¸)¾4i

(1+¸¾2i )
3

+2
X
i

_eiti(1+¸¾
2
i )¡ ei(¸)ti¾2i

(1+¸¾2i )
2

(17a)

where
_e= [: : : _ei : : :]

T =¡VT(GT)¡1m: (17b)

Then the iterative solution for ¸ is given by

¸k+1 = ¸k ¡
q(¸k)
_q(¸k)

starting with ¸0 = 0:

(18)
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The iteration stops when j¸k+1¡¸kj< ¿ , a given
small value or the number of iterations reaches a pre-
specified number. Then bringing the converged La-
grangian multiplier ¸ back to (16a) provides the con-
strained optimal solution.
Now consider the special case where W=HTH,

z=Hx̂, and m= 0, that is, a quadratic constraint on the
state. Under these conditions, t= 0 and e is no longer
a function of ¸ so its derivative relative to ¸ vanishes,
_e= 0. The quadratic constrained solution is then given
by

³x= (W+¸M)¡1Wx̂ (19a)

where the Lagrangian multiplier ¸ is obtained iteratively
as in (18) with the corresponding q(¸) and _q(¸) given
by

q(¸) =
X
i

e2i ¾
2
i

(1+¸¾2i )
2
+m0 = 0 (19b)

_q(¸) =¡2
X
i

e2i ¾
4
i

(1+¸¾2i )
3
: (19c)

The solution of (19) is also called the constrained
least squares [17: pp 765—766], which was previously
applied for the joint estimation of angles of arrival and
calibration of channel biases of a linear array [29].
Similar techniques have been used for the design of
filters for radar applications [1] and in robust minimum
variance beamforming [14]. WhenM= 0, the constraint
in (14) degenerates to a linear one. The constrained
solution is still valid. However, the iterative solution
for finding ¸ is no longer applicable but a closed-form
solution is available instead as given in (5).

3.3. Geometric Interpolation for Simple Cases

Consider a simple example where a target travels
along a circle. For this case, in fact, a closed-form
solution can be derived. Assume that W= I, M= I,
m= 0, and m0 =¡r2. Let p be the position components
of the state x, to which the constraint is applied. The
nonlinear constraint can be equivalently written as:

pTp= r2: (20)

The quadratic constrained estimate given in (19a)
becomes:

³p= (W+¸M)¡1Wp̂= (1+¸)¡1p̂ (21)

where ¸ is the Lagrangian multiplier.
Bringing (21) back to (20) gives:

³pT³p=
μ

p̂
1+¸

¶T p̂
1+¸

= r2: (22)

One solution for ¸ is:

¸=

p
p̂Tp̂
r

¡ 1 = kp̂k2
r
¡ 1 (23)

where k ¢ k2 stands for the L2-norm or length for the
vector.

Bringing the solution for ¸ in (23) back to (21) gives:

³p= r
p̂
kp̂k2

: (24)

This indicates that for this particular case with a cir-
cular constraint, the constraining results in normaliza-
tion.
This further suggests a simple solution for some

practical applications. When a target is traveling along
a circular path (or approximately so), one can first
find the equivalent center of the circle around which
to establish a new coordinate system. Then express
the unconstrained solution in the new coordinate and
normalize it as the constrained solution. Finally convert
it back to the original coordinates. For non-circular but
second-order paths, eigenvalue-based scaling may be
effected following coordinate translation and rotation
in order to apply this circular normalization. Reverse
operations are in order to transform back to the original
coordinates. For applications of high dimensionality, the
scalar iterative solution of (17) may be more efficient.

4. SIMULATION RESULTS

In this section, two simulation examples are pre-
sented in the context of on-road ground vehicle tracking.
The first example compares linearized and nonlinear
constraining schemes for a simple tracker and the sec-
ond example compares unconstrained and constrained
IMM trackers.

4.1. Linearized versus Nonlinear Constraints for a
Simple Tracker

In this simulation example, a ground vehicle is as-
sumed to travel along a circular road segment as shown
in Fig. 3. The turn center is chosen as the origin of the
x-y coordinates and the turn radius is r = 100 m. The
target maintains a constant turn rate of 5.7296 deg/s
with an equivalent linear speed of 10 m/s. The initial
state is

xk=0 = [x _x y _y]T = [100 m 0 m/s 0 m 10 m/s]T:

(25)

The vehicle is tracked by a radar sensor with a sam-
pling interval of T = 1 s. The sensor provides position
measurements of the vehicle as

yk =
·
1 0 0 0

0 0 1 0

¸
xk + vk (26)

where the measurement error v»N(0,R) is a zero-
mean Gaussian noise, independent in the x- and y-
axis. The covariance matrix R= diag([¾2x ¾

2
y ]) uses the

particular values of ¾x = ¾y = 7 m in the simulation. To
use the position measurement model (26), it is assumed
that the radar-produced measurements in a polar frame
are converted to the Cartesian frame and the errors
associated with the conversion are ignored.
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Fig. 4. Sample trajectories for linear constrained Kalman filter.

The radar implements a simple tracker based on the
following discrete-time second-order kinematic model
(nearly constant velocity)

xk+1 =

26664
1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

37775xk +
26664
1
2T

2 0

T 0

0 1
2T

2

0 T

37775wk
(27)

where the process noise w»N(0,Q) is also a zero-mean
Gaussian noise, independent of the measurement noise
v. The covariance matrix Q= diag([¾2ẍ ¾

2
ÿ ]) uses the

particular values of ¾ẍ = ¾ÿ = 0:32 m/s
2 in the simula-

tion.
When represented in a Cartesian coordinate system,

a target traveling along a curved road is certainly subject
to acceleration in both the x- and y-axis. However, no
effect is made in this simulation to optimize the tracker
for maneuver but merely to select Q and the initial
conditions so as to focus on constraining the estimates.
The use of an IMM filter [5] with “coordinated turn”
models will be presented next in Section 4.2. The initial
state is selected to be the same as the true state, i.e.,
x̂0 = x0 for this example, again to focus on the aspect
of track-to-road fusion, not on that of tracker design.
The initial estimation error covariance is selected to be

P0 = diag([5
2 m2 12 (m/s)2 52 m2 12 (m/s)2]):

(28)

Fig. 4 shows sample trajectories of the linear con-
strained Kalman filter. There are 5 curves and 2 series

of data points in the figure. The true state is represented
by a series of dots (¢) at consecutive sampling instants,
which is plotted on the solid line being the road seg-
ment. The corresponding measurements are a series of
circles (o).
The estimates of the unconstrained Kalman filter are

shown as the connected triangles (4) whereas those
of linearly constrained Kalman filters are shown as the
connected crosses (£), stars (*), and pluses (+) for three
linear approximations of the nonlinear constraint of the
curved road, respectively.
In the first approximation (the line with cross £ la-

beled “linear constraint 1”), a single linearizing point at
μ1 = 10

± is chosen to cover the entire curved road, where
μ is the angle made relative to the x-axis, positive in the
counter-clock direction. The linearized state constraint
at μ1 can be written as·

cosμ1 0 sinμ1 0

0 cosμ1 0 sinμ1

¸
x=

·
r

0

¸
: (29)

Although all estimates are faithfully projected by the
constrained filter onto this linear constraint, tangential
to the curve at the linearizing point, it runs away from
the true trajectory and the resulting errors continue to
grow. The apparent divergence is caused by the choice
of linearization.
In the second approximation (the line with star *

labeled “linear constraint 2”), two linearizing points at
μ1 = 15

± and μ2 = 80
± are chosen to cover the curved

road with two linear segments. The switching point
from one linear segment to the other in this case is
at μ = 45±. As shown, the estimates are projected onto
one of the two linear segments. Except near the corner
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Fig. 5. Linear constrained position errors versus time.

where the two linear approximations intersect (which
is far away from both linearizing points), the linear
constrained estimates typically outperform the uncon-
strained estimates (closer to the true state). This is better
illustrated in Fig. 5 where the upper plot is for the ab-
solute position error in x while the lower plot is for the
absolute position error in y, both plotted as a function
of time.
Still with two linearizing points and the same switch-

ing point at μ = 45±, the third approximation (the line
with plus+labeled “linear constraint 3”) adjusts lineariz-
ing points to μ1 = 20

± and μ2 = 70
±. A better overall

performance is achieved as shown in Fig. 5.
It is clear from Fig. 4 that a nonlinear constraint can

be approximated with linear constraints in a piecewise
fashion. By judicious selection of the number of linear
segments and their placement (i.e., the point around
which to linearize), a reasonably good performance
can be expected. In the limit, a nonlinear function is
represented by a piecewise function composed of an
infinite number of linear segments. This naturally leads
to the use of nonlinear constraints.
Fig. 6 shows sample trajectories of the nonlinear

constrained Kalman filter. There are 2 curves and 4
series of data points in the figure. The true state is
still represented by a series of dots (¢) at the sampling
instants, which is plotted on the solid line of road
segment. The corresponding measurements are again a
series of circles (o). The unconstrained Kalman filter
is shown as the connected crosses (£) whereas the
estimates of nonlinearly constrained Kalman filters are
shown as a series of pluses (+) and stars (*) for two
implementations, respectively.

The first implementation (the series of pluses +)
only applies the nonlinear constraint to the position
estimate whereas the second implementation (the se-
ries of stars *) applies constraints to both the position
and velocity estimates. In fact, we encounter a hybrid
(mixed) linear and nonlinear state constraint situation.
The constrained position estimate is given by (19) for
the quadratic case (equivalent to (24) for a circular
road). Since the velocity direction is along the tangent
of the road curve, the constrained velocity estimate is
obtained by the following projection

v̂constrained = (v̂
T
unconstrained¹)¹ (30)

where v̂= [ _̂x _̂y]T is the estimated velocity vector and
¹= [¡sinμ cosμ]T is the constrained unit direction
vector associated with the constrained position at μ =
tan¡1(ŷ=x̂).
In the present simulation, the open-loop architecture

without feedback is used. In this implementation, the
unconstrained estimation error covariance is not mod-
ified after the constrained estimate is obtained using
the projection algorithms (19). The implementation is
therefore pessimistic (suboptimal) in the sense that it
does not take into account the reduction in the estima-
tion error covariance brought in by constraining. One
consequence of this simplification is more volatile state
estimates. To quantify this effect, one approach is to
project the unconstrained probability density function
(i.e., a normal distribution with support on the whole
state space) onto the nonlinear constraint. Statistics can
then be calculated from the constrained probability den-
sity function with the constraint as its support. Again,
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Fig. 6. Sample trajectories for nonlinear constrained Kalman filter.

Fig. 7. Nonlinear constrained position errors versus time.

the resulting error ellipse represented by the covariance
matrix is only an approximation to the second order.
As explained in Section 2.2, the open-loop architecture
without feedback has many merits of its own and it
here provides a reference point for fusion architecture
study.
As shown in Fig. 6, both the nonlinear constrained

estimates fall onto the road as expected. Overall the

position and velocity constrained estimates are better
(closer to the true state) than the position-only con-
strained estimates. This is illustrated in Fig. 7 where the
upper plot is for the absolute position error in x while
the lower plot is for the absolute position error in y.
A Monte Carlo simulation is used to generate the

root mean square (RMS) errors of state estimation.
The results are based on a total of 100 runs across 16
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Fig. 8. Convergence in iterative Lagrangian multiplier.

TABLE I
RMS Estimation Errors

RMS Estimation Error

Estimators Position (m) Velocity (m/s)

Unconstrained 8.4 4.3
Best Linear Constrained 5.5 2.5
Nonlinear Constrained 1.8 0.4

updates and summarized in Table I. The performance
improvement of the nonlinear constrained filter over the
linearized constrained filter is demonstrated.
Finally for this simulation example, we use Fig. 8

to show an example of the Lagrangian multiplier as it
is calculated iteratively using (19). The runs for five
unconstrained state estimates are plotted in the same
figure and to make it fit, the normalized absolute values
of ¸ are taken. As shown, starting from zero, it typically
takes 4 iterations for the algorithm to converge in the
example presented.

4.2. Unconstrained Versus Constrained IMM Trackers

In the previous example, a nearly constant velocity
model (27) was used in the filter. Obviously, a tracker
that uses a maneuvering model can do better in tracking
a turning target. However, it may still not be able to
produce a track that falls on road all the time. The track-
to-road fusion algorithm described in this paper can be
applied in conjunction with a maneuvering target tracker
to further improve target state estimation as illustrated
in the following simulation example.

An IMM filter is constructed based on the “coor-
dinated turn” models. For a ground vehicle, its wide
turning maneuver is reasonably well modeled by a co-
ordinated turn, i.e., at a constant turn rate with a con-
stant speed. For the state vector xk defined in (25), the
coordinated turn model is given by

xk+1 =

26666664
1

sin!T
!

0 ¡1¡ cos!T
!

0 cos!T 0 ¡sin!T
0

1¡ cos!T
!

1
sin!T
!

0 sin!T 0 cos!T

37777775xk

+

26664
1
2T

2 0

T 0

0 1
2T

2

0 T

37775wk (31)

where ! is the turn rate considered to be a known
modeling parameter and wk is defined as for (27).
For the IMM filter, three models are specified by

choosing different values for !. In the first model,
setting ! = 0 in (31) leads to the nearly constant velocity
or non-maneuver model (27). In the second model,
! = 5:7 deg/s represents a left turn maneuver while in
the third model, ! =¡5:7 deg/s represents a right turn
maneuver. The three models have an equal initial model
probability of 1/3 and the model transition probability
matrix is taken as

¦ =

2640:8 0:1 0:1

0:1 0:8 0:1

0:1 0:1 0:8

375 : (32)

YANG & BLASCH: FUSION OF TRACKS WITH ROAD CONSTRAINTS 25



Fig. 9. Sample trajectories for unconstrained versus constrained IMM.

The three interacting filters inside the IMM tracker
are identically initialized as x̂i »N(x0,P0) for i= 1,2,3.
The same sensor model as (26) is used for generat-
ing radar measurements in this simulation. Hybrid con-
straints are applied with the nonlinear constraint (14)
for position estimates and the linear constraint (30) for
velocity estimates. In the Monte Carlo simulation, the
truth track of the target remains the same but the initial
estimate is drawn from the distribution for each run as
described above. So is the measurement noise at each
sampling instant for each run.
Fig. 9 shows sample trajectories wherein the tar-

get starts from an initial position at (x0,y0) = (100 m,
¡100 m) heading due north along a straight road with
_y = 10 m/s. At k = 10 s, it follows the curve and makes
a left turn at a rate of 5.7 deg/s for 16 s. At k = 17 s,
it comes to another straight road heading due west with
_x=¡10 m/s for 5 s.
The true state is represented by a series of dots (¢)

plotted on the solid line of road segment. The corre-
sponding measurements are a series of circles (o). The
unconstrained IMM filter is shown as a series of con-
nected stars (*) whereas the constrained IMM filter is
shown as a series of connected crosses (£). When the
target is on linear road segments, the linear constrained
solution (5) is applied to the combined state of the IMM
filter while on the curved road segment, a hybrid con-
strained solution is used (nonlinear for position and lin-
ear for velocity). From Fig. 9, the typical behavior of
an unconstrained IMM filter can be seen. It converges
rather quickly from the initialization of large errors, de-
velops an overshoot right after the maneuver but cor-
rects itself towards the true trajectory, and converges

again after the maneuver terminated. However, these
unconstrained IMM estimates (*) are off road while the
target is on road.
In contrast, the constrained IMM estimates (£) are

always on road even though they do not fall exactly on
top of the true positions (¢). As a result, the constrained
position errors are smaller than the unconstrained ones
as shown in Fig. 10, which are obtained by a Monte
Carlo simulation with 100 runs. In particular, the ve-
locity errors of the unconstrained IMM solution grow
during the maneuver period whereas those of the con-
strained solution appear to be uniform.
The RMS errors averaged over the entire trajectory

are summarized in Table II. The values in Table II
are bigger than those in Table I because of larger
initialization errors and longer simulation run. It shows
an improvement of approximately 3 folds in position
and in velocity.

5. CONCLUSIONS

In this paper, we presented an approach to incorpo-
rating road information into target tracking via track-to-
road fusion. In this approach, road segments were mod-
eled with analytic functions and their fusion with a tar-
get track was cast as a linearly or nonlinearly state con-
strained optimization procedure. With the Lagrangian
multiplier, a closed-form solution was found for linear
constraints and an iterative solution for nonlinear con-
straints. Geometric interpretations of the solutions were
provided for simple cases. Computer simulation results
demonstrate the performance of the algorithms.
Future work includes both algorithms development

and practical applications. It is of interest to extend
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Fig. 10. Position and velocity error RMS versus time (100 Monte Carlo runs).

the iterative method presented in the paper for second-
order nonlinear state constraints to other types of non-
linear constraints of practical significance and to search
for more efficient root-finding algorithms to solve for
the Lagrangian multiplier. Similarly, the simple fusion
of a single track to a single road as presented in this
paper is being extended to multiple targets moving
along closely-spaced road networks with intersections
and by-passes. In this case, the fusion (or constrain-
ing) can take place in the measurement level as well
as in the track level, involving road constrained data
association (RCDA). Results will be reported in future
papers.
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APPENDIX A

To solve the constrained optimization problem in
(4), we form the cost function including the Lagrangian
multiplier

J(x,¸) = (x¡ x̂)TW(x¡ x̂) +2¸T(Dx¡d): (A1)

The first order conditions necessary for a minimum
are given by

@J

@x
= 0)W(x¡ x̂) +DT¸= 0 (A2a)

TABLE II
RMS Estimation Errors

RMS Estimation Error

Estimators Position (m) Velocity (m/s)

Unconstrained IMM 9.0 6.2
Nonlinear Constrained IMM 3.2 1.7

@J

@¸
= 0)Dx¡d= 0: (A2b)

The solution for the optimal Lagrangian multiplier
¸ can be found first as

¸= (DW¡1DT)¡1(Dx̂¡d): (A3)

Bringing this solution back to (A1) leads to the
constrained solution of the state in (5).
Note that the above derivation does not depend on

the conditional Gaussian nature of the unconstrained
estimate x̂. It was shown in [24] that when W= I,
the solution in (5) is the same as what is obtained by
the mean square method, which attempts to minimize
the conditional mean square error subject to the state
constraints, that is,

min
x
Efkx¡ x̂k22 j Yg such that Dx= d: (A4)

Furthermore, when W= P¡1, i.e., the inverse of the
unconstrained state estimation error covariance, the so-
lution in (5) reduces to the result given by the maximum
conditional probability method

max
x
lnProbfx j Yg such that Dx= d: (A5)
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Fig. B1. Geometrical interpretation of linear constrained solution.

More results and proofs can be found in [24].

APPENDIX B

For x 2Rn, the constraint surface S = fx :Dx= dg
with the number of linear constraints m< n is not a
subspace simply because for d 6= 0, the null vector is
not inside S. To construct a subspace, first find an
arbitrary point x0 2 S and then define » = x¡ x0. This
is equivalent to shifting the origin of the coordinates to
x0, thus performing an affine transformation, denoted
by T. For all x 2 S, the corresponding shifted vector »
has the following property:

D» =D(x¡ x0) =Dx¡Dx0 = d¡d= 0: (B1)

In other words, the constraint surface after the affine
transformation T becomes a subspace, denoted by L=
TS = f» :D» = 0g, which has a dimension n¡m. The
affine transformation is illustrated in Fig. B1.
We are now to express L. But first, the row vectors

of D can be expressed as:

DT = [d1 d2 ¢ ¢ ¢dm]: (B2)

Since D is of full rank by assumption, the row
vectors of D can be used as the non-orthogonal basis
for a subspace denoted by D = spanfd1,d2, : : : ,dmg. In
light of (B1) and by definition of L, it is easy to see that
D is an orthogonal complement of L, that is, D ?L and
D©L=Rn where © stands for direct sum between two
orthogonal subspaces.
For ± 2D, it can be written as:

± =
mX
i=1

cidi = [d1 d2 ¢ ¢ ¢dm]

266664
c1

c2
...

cm

377775=DTc: (B3)

Then for » 2 L, we have
h±,»i= hDTc,»i= ±T» = cTD» = 0 (B4)

where ha,bi= aTb is the inner product defined on Rn.
By the principle of orthogonality, an arbitrary vector

» can be decomposed into its projections onto the
orthogonal complements D and L, denoted by »D and
»L, respectively, as

» = »D+ »L: (B5)

Adding x0 to both sides of (B5), we can express the
vectors in the original coordinates as:

x= »+ x0 = »D+ »L+ x0 = »D + x
¤: (B6)

The projection of the arbitrary vector on the con-
straint subspace L and the constraint surface S can be
obtained, respectively, as:

»L = »¡ »D (B7a)

x¤ = x¡ »D: (B7b)

To obtain »D, express it as a linear combination
of the non-orthogonal bases of DT with the coefficient
vector c as:

»D =
mX
i=1

cidi = [d1 d2 ¢ ¢ ¢dm]

266664
c1

c2
...

cm

377775=DTc: (B8)

Again, by the principle of orthogonality, the projec-
tion error vector »¡ »D is orthogonal to D, i.e., each
and every basis of it:

h»¡ »D,dii= h»¡DTc,dii= dTi (»¡DTc) = 0,
i= 1, : : : ,m: (B9)
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Stacking these orthogonality conditions, we obtain266664
dT1
dT2
...

dTm

377775(»¡DTc) = 0 or D(»¡DTc) = 0:

(B10)

Since DDT is an m£m matrix and invertible, the coef-
ficient vector can be obtained as:

c= (DDT)¡1D»: (B11)

Bringing (B11) back to (B8) gives the projection
vector as:

»D =D
T(DDT)¡1D» = P» (B12)

where P=DT(DDT)¡1D is usually referred to as the
projection matrix onto D and (I¡P) is the projection
matrix onto L.
Bringing (B12) back to (B7) gives

»L = »¡P» = (I¡P)» (B13a)

x¤ = x¡P» = x¡P(x¡ x0): (B13b)

Bringing the expression for P into (B13b) gives

x¤ = x¡DT(DDT)¡1D(x¡ x0)
= x¡DT(DDT)¡1(Dx¡Dx0)
= x¡DT(DDT)¡1(Dx¡d) (B14)

where Dx0 = d is used to arrive at the last equation
because of x0 2 S.
Clearly, (B14) is exactly the same as (5) when W=

I. This offers a geometric interpretation that the linear
constrained estimation is the orthogonal projection of
the unconstrained estimate onto the constrained surface.
It provides a theoretical justification of the intuitive
practice of finding a point along the road that is of the
shortest distance.

APPENDIX C

When W 6= I, we can rewrite the weighted square
error formulation as

³x= argmin
x2S
(x¡ x̂)TW(x¡ x̂)

= argmin
x2S
[W1=2(x¡ x̂)]TW1=2(x¡ x̂) = argmin

z2S̄
zTz

(C1)

where W=W1=2W1=2 is a symmetric positive definite
weighting matrix. This can be understood as if we
perform an equivalent un-weighted optimization on the
transformed state:

z=W1=2x: (C2)

The constraint can be written as:

Dx=DW¡1=2W1=2x=Mz= d (C3)

where M=DW¡1=2 by definition. The constrained sur-
face S̄ = fz :Mz= dg is used in the last equality of (C1).
Since the constrained solution in (B14) holds for z

with M and d, we have

z¤ = z¡MT(MMT)¡1(Mz¡d): (C4)

Putting (C2) and (C3) into (C4) gives

W1=2x¤ =W1=2x¡W¡1=2DT(DW¡1=2W¡1=2DT)¡1

£ (DW¡1=2W1=2x¡d): (C5)

Multiplying both sides byW¡1=2 gives the weighted
constrained solution as:

x¤ = x¡W¡1DT(DW¡1DT)¡1(Dx¡d) (C6)

which is exactly the same as (5).
It is interesting to note that the use of W= P¡1 has

the effect of pre-whitening in the sense that

EfzzTg= P¡1=2EfxxTgP¡1=2 = P¡1=2PP¡1=2 = I:
(C7)

APPENDIX D

Construct the Lagrangian with the Lagrangian mul-
tiplier ¸ as

J(x,¸) = (z¡Hx)T(z¡Hx)+¸f(x): (D1)

Taking the partial derivatives of J(x,¸) with respect
to x and ¸, respectively, setting them to zero leads to
the necessary conditions

¡HTz+¸m+(HTH+¸M)x= 0 (D2a)

xTMx+mTx+ xTm+m0 = 0: (D2b)

Assume that the inverse matrix of HTH+¸M ex-
ists. Then, x can be solved from (D2a), giving the con-
strained solution in terms of the unknown ¸ as

x= (HTH+¸M)¡1(HTz¡¸m) (D3)

which reduces to the unconstrained least-squares solu-
tion when ¸= 0.
Assume that the matrix M admits the factorization

M= LTL and apply the Cholesky factorization to W=
HTH as

W=GTG (D4)

where G is an upper right diagonal matrix. We then
perform the SVD [17] of the matrix LG¡1 as

LG¡1 =U§VT (D5)

where U and V are orthonormal matrices and § is a
diagonal matrix with its diagonal elements denoted by
¾i. For a square matrix, this becomes the eigenvalue
decomposition.
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Introduce two new vectors

e(¸) = [: : :ei(¸), : : :]
T =VT(GT)¡1(HTz¡¸m)

(D6a)

t= [: : : ti : : :]
T =VT(GT)¡1m: (D6b)

With these factorizations and new matrix and vec-
tor notations, the constrained solution in (D3) can be
simplified into (16a), which is repeated below for easy
reference as

x=G¡1V(I+¸§T§)¡1e(¸): (D7)

The first and second order terms of x in (D2b) can
be expressed in ¸ as:

xTMx= e(¸)T(I+¸§T§)¡T§T§(I+¸§T§)¡1e(¸)

=
X
i

e2i (¸)¾
2
i

(1+¸¾2i )
2

(D8a)

mTx= tT(I+¸§T§)¡1e(¸) =
X
i

ei(¸)ti
1+¸¾2i

(D8b)

xTm= e(¸)T(I+¸§T§)¡1t=
X
i

ei(¸)ti
1+¸¾2i

: (D8c)

Bringing these terms into the constrained equation
in (D2b) gives rise to the constraint equation, now ex-
pressed in terms of the unknown Lagrangian multiplier
¸, as

q(¸) = (zTH¡¸mT)(HTH+¸M)¡2(HTz¡¸m)
+mT(HTH+¸M)¡1(HTz¡¸m)
+ (zTH¡¸mT)(HTH+¸M)¡1m+m0

= e(¸)T(I+¸§T§)¡1§T§(I+¸§T§)¡1e(¸)

+ tT(I+¸§T§)¡1e(¸) + e(¸)T(I+¸§T§)¡1t+m0

=
X
i

e2i (¸)¾
2
i

(1+¸¾2i )2
+2
X
i

ei(¸)tj
1+¸¾2i

+m0 = 0: (D9)

which is (16b) given in Section 3.
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Diplôme d’Études Approfondies from Institut National Polytechnique de Grenoble,
Grenoble, France, majored in automatique et traitement du signal (LAG/ENSIEG).
In 1989, he received his title of Docteur en Science from Université de Paris, Orsay,
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In this paper, a hidden Markov model (HMM)-based dynamic
sensor scheduling problem is formulated, and solved using infor-
mation gain and rollout concepts to overcome the computational
intractability of the dynamic programming recursion. The problem
involves dynamically sequencing a set of sensors to monitor mul-
tiples tasks, which are modeled as multiple HMMs with multiple
emission matrices corresponding to each of the sensors. The dy-
namic sequencing problem is to minimize the sum of sensor usage
costs and the task state estimation error costs. The rollout infor-
mation gain algorithm proposed herein employs the information
gain heuristic as the base algorithm to solve the dynamic sensor
sequencing problem. The information gain heuristic selects the best
sensor assignment at each time epoch that maximizes the sum of
information gains per unit sensor usage cost, subject to the assign-
ment constraints that at most one sensor can be assigned to a HMM
and that at most one HMM can be assigned to a sensor. The roll-
out strategy involves combining the information gain heuristic with
the Jonker-Volgenant-Castañ _on (JVC) assignment algorithm and a
modified Murty’s algorithm to compute the ·-best assignments at
each decision epoch of rollout. The capabilities of the rollout infor-
mation gain algorithm are illustrated using a hypothetical scenario
to monitor intelligence, surveillance, and reconnaissance (ISR) ac-
tivities in multiple fishing villages and refugee camps for the pres-
ence of weapons and terrorists or refugees.
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1. INTRODUCTION

Complex applications involving threat detection,
such as multi-target tracking and unmanned aerial vehi-
cles for surveillance in remote or hostile environments,
include heterogeneous sensors, which trade off perfor-
mance (e.g., detection, identification, and tracking ac-
curacies) versus the sensor usage cost (e.g., power and
bandwidth consumption, distance traveled, risk of ex-
posure, deployment requirements). The objective of dy-
namic sensor scheduling is to judiciously allocate sens-
ing resources to exploit the individual sensors’ capa-
bilities, while minimizing their usage cost. As an ex-
ample, consider a target identification scenario where
an incoming aircraft needs to be identified as an en-
emy or a friendly target using active or passive sen-
sors available at a surveillance station [16]. This sce-
nario requires sensor scheduling because active sensors
(e.g., radar) tend to reveal clues about the location of
the surveillance station to a potential enemy aircraft,
whereas the more stealthy passive sensors tend to be
inaccurate [16]. Thus, in this case, the sensor scheduling
algorithm needs to trade-off accuracy versus risk of ex-
posure. As another example, unmanned aerial vehicles
(UAVs) are preferred assets for monitoring nearly all
the intelligence, surveillance, and reconnaissance (ISR)
activities; however, they cannot be deployed in large
numbers due to their limited availability. Thus, astute
allocation of scarce resources is a major issue in sensor
scheduling.
In this paper, we consider the sensor scheduling

problem faced by an ISR officer of an expeditionary
strike group (ESG) in coordinating the use of surveil-
lance assets (sensors) to improve situational awareness
[14]. An ESG provides a flexible Navy-Marine force,
capable of tailoring itself to a wide variety of missions.
An important ESG mission involves dealing with asym-
metric threats, such as terrorist groups who carry out
attacks while trying to avoid direct confrontation. Ter-
rorist groups are elusive, secretive, amorphously struc-
tured and decentralized entities that often appear uncon-
nected. This stealthy behavior makes it very difficult to
predict when and where they will strike. Moreover, the
increased geographical range and unpredictable nature
of this behavior require effective allocation and appro-
priate scheduling of sensors to achieve mission objec-
tives. Effectively performing the ISR activities is a key
step to gain situational awareness, which, in turn, en-
ables the allocation of resources for the interdiction of
potential threats.
We model the asymmetric threats using hidden

Markov models, because these activities are concealed
and their true states can only be inferred through the
observations obtained using various ISR sensors. A pat-
tern of these observations and its dynamic evolution
over time provides the information base for inferring
a potential realization of a threat [25]. Performing the
ISR activities requires multiple sensors to provide ob-
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servations needed for accurately estimating the status
of suspicious activities. The available sensors are lim-
ited in number, and possess different attributes requiring
judicious sensor allocation over time. Therefore, an ef-
fective scheduling of ISR sensors over time is essential
for accurate situation assessment and to the success of
the overall mission.

1.1. Previous Work

The dynamic sensor scheduling problem, which
has been widely studied in the area of target track-
ing (e.g., [8], [28]), is to solve a sequential stochastic
optimization problem that seeks to minimize the ex-
pected scheduling cost under a given set of resource
constraints over time [8]. For linear Gaussian state space
systems, one can obtain an analytic solution for the
posterior distribution of system state given sensor mea-
surements, and a scheduling sequence via a Kalman
filter [18]. Shakeri et al. [24] formulated the sensor
scheduling problem subject to a fixed total budget and
the cost of individual sensor varying inversely with
its measurement variance. They obtained the optimal
measurement variance distribution that minimizes the
trace of a weighted sum of the estimation error co-
variance matrices of a discrete-time vector stochastic
process, when the auto-correlation matrix of the pro-
cess is given. The study showed that the problem can
be transformed into an optimization problem with lin-
ear equality and inequality constraints. In the special
case of a linear finite-dimensional stochastic system,
they showed that the problem can be formulated as
an optimal control problem, where the gradient and
Hessian of the objective function with respect to the
sensor accuracy parameters can be derived via a two-
point boundary value problem. The resulting optimiza-
tion problem was solved via a projected Newton Method
[4], [24].
In [26], Singh et al. provided a summary of previ-

ous research on sensor scheduling for tracking targets,
whose dynamics are modeled by linear Gauss-Markov
processes. They formulated the sensor scheduling prob-
lem as one of minimizing the variance of the estima-
tion error of hidden states of a continuous-time HMM
with respect to a given action sequence [26]. The au-
thors proposed a stochastic gradient algorithm to de-
termine the optimal schedule for the HMM. Another
effort, related to our work, using a discrete HMM frame-
work was considered by Krishnamurthy in [16]. Here,
the author proposed a stochastic dynamic programming
(DP) framework to solve the sensor scheduling prob-
lem for a single HMM, which is intractable for all
but simple HMMs with a few states (e.g., at most 15
states).
Sub-optimal approaches, based on information-theo-

retic criteria, have been developed to overcome the
computational intractability of determining the optimal

sensor schedule. For a linear Gauss-Markov system,
Logothetis et al. [17] formulated the sensor schedul-
ing problem as one of determining a sequence of ac-
tive sensors to maximize the mutual information be-
tween the states of the unobserved dynamic process
and the observation process generated by the sen-
sors. In the context of sensor networks, Zhao et al.
[29] and Chu et al. [9] formulated the target track-
ing problem as a sequential Bayesian estimation prob-
lem, where the participants for sensor collaboration
are determined by minimizing an objective function
comprised of information utility, measured in terms of
entropy, Mahalanobis distance and the sensor usage
cost.
Rollout algorithms were first proposed for the ap-

proximate solution of dynamic programming recursions
by Bertsekas et al. in [5], [6]. They are a class of subop-
timal solution methods inspired by the policy iteration
of dynamic programming and the approximate policy
iteration of neuro-dynamic programming. The rollout
algorithm, combined with the information gain heuris-
tic (IG), was first proposed in our previous research
on sequential fault diagnosis [27], where the system
state is fixed (i.e., static), but unknown. In [27], we
showed that rollout strategy, which can be combined
with the one-step or multi-step look-ahead heuristic al-
gorithms as base algorithms, can solve test sequencing
problems in real-world systems with a higher compu-
tational efficiency than the optimal strategies, while be-
ing superior to those using the base algorithms only.
In order to coordinate multiple sensor resources to
track and discriminate targets modeled as continuous-
state HMMs, Schneider et al. [23] presented a roll-
out approach to approximate the dynamic program-
ming recursion using a cost-to-go function based on
feasible candidate scenarios. In contrast, our approach
employs discrete-state HMMs to model tasks and an
information gain heuristic to estimate the cost-to-go
function.
In this paper, two-dimensional assignment algo-

rithms, exemplified by the Jonker-Volgenant-Castañ _on
(JVC) [15] and the auction [2], [3], are used to obtain
an assignment for maximizing the sum of information
gains per unit sensor usage cost accrued by assigning
multiple sensors to multiple HMMs. The JVC and the
auction are the most efficient algorithms for solving the
two-dimensional (2-D) assignment problems. The JVC
algorithm is a primal-dual optimization method that in-
cludes an effective initialization of dual variables, and
an augmentation phase based on the Dijkstra’s shortest
path algorithm [11]. The auction algorithm, proposed
by Bertsekas et al. [2], [3], consists of a bidding phase
and an assignment phase, where an optimal assignment
is found by employing a coordinate descent method on
the dual function. However, scaling of the information
gain matrix is critical to the success of the auction algo-
rithm. The ·-best assignment algorithm, first proposed
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Fig. 1. Sensor scheduling problem for multiple HMMs.

by Murty [20], is independent of the algorithm cho-
sen for solving the assignment problem. This algorithm
ranks all the assignments in the order of decreasing ob-
jective function value by a clever partitioning of the
search space of feasible assignments. The computational
efficiency of Murty’s algorithm has been enhanced by
Cox et al. [10], Miller et al. [19], and Popp et al. [21],
where the ·-best assignment algorithm is used to rank
order assignment solutions for data association.

1.2. Scope and Organization of the Paper

This paper makes three novel contributions. First,
motivated by the intractability of DP recursion even for
a single HMM-based sensor scheduling problem [16]
and its success in sequential probing for fault diagnosis
[27], we propose a greedy heuristic algorithm based on
information gain per unit sensor usage cost. We derive
the information gain of a sensor for HMM models in
the predictor-corrector form of state estimation equa-
tions, which are ideally suited for on-line implementa-
tion. Second, we improve the information gain heuristic
algorithm by embedding it in a rollout algorithm to im-
prove its scheduling performance. This is accomplished
via the solution of a ·-best assignment algorithm. The
multiple HMM scheduling problems using the com-
bined rollout and assignment approach proposed herein
have not been considered in the literature. Finally, the
algorithms are applied to realistic ISR mission scenarios
arising in ESG missions.
The paper is organized as follows. In Section 2, the

multiple sensor scheduling problem is formulated. In
Section 3, the DP recursion is developed. In Section 4,
we present the rollout information gain heuristic algo-
rithm based on JVC and ·-best assignment algorithm.

We apply our solution approach to the ISR mission sce-
nario, and present its results in Section 5. Finally, Sec-
tion 6 concludes with a summary.

2. MULTIPLE HMM SENSOR SCHEDULING
PROBLEM

2.1. The Factorial Hidden Markov Model (FHMM) for
Dynamic Sensor Scheduling

Consider a scenario with N marginally independent
discrete HMMs evolving independently and coupled via
the observation process, as shown in Fig. 1. This model
is also known as FHMM in the machine learning lit-
erature [13]. However, our framework is valid for cou-
pled HMMs [7] and hierarchical HMMs [12] as well.
Suppose there are m sensors, and ¹(k)μ f1,2, : : : ,mg
are the set of available sensors at decision epoch k 2
f1,2, : : : ,Kg. We assume that at most a single sensor
out of available sensors, ¹(k), is assigned for observ-
ing the hidden state of a HMM at time epoch k. The
FHMM is parameterized by the set of transition proba-
bility matrices A(k), the set of emission matrices B(k),
and the set of initial probability vectors '. We assume
that the FHMM parameter sets ¤(k) = (A(k),B(k),')
(k = 1,2, : : : ,K), are known a priori; however, they could
also be estimated based on historical data using the
Baum-Welch algorithm [1].
The set of transition probability matrices of the

underlying Markov chains associated with the N HMMs
is given by A(k) = fA1(k), : : : ,Ar(k), : : : ,AN(k)g at time
epoch k, where Ar(k) denotes the transition probability
matrix of the rth HMM:

Ar(k) = [arij(k)] = [P(xr(k) = srj j xr(k¡ 1) = sri)],
i,j = 1,2, : : : ,nr (1)
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where xr(k) is the hidden state of rth HMM at time
epoch k. The hidden state xr(k) 2 fsri : i= 1,2, : : : ,nrg,
where nr is the number of states used for modeling the
rth HMM. We denote the subset of emission matrices,
corresponding to each of the m sensors associated with
the rth HMM, as Br(k) = fBr1(k), : : : ,Brq(k), : : : ,Brm(k)g
at time epoch k. The set of emission matrices for the
N HMMs is denoted by B(k) = fB1(k), : : : ,Br(k), : : : ,
BN(k)g. The observation, measured by sensor ur(k) = q
assigned to the rth HMM at time epoch k, is denoted
by yr(k) 2 fOr1(k), : : : ,OrL(q)(k)g, i.e., it belongs to one
of L(ur(k) = q) symbols. Evidently, the number of ob-
servation symbols L(q) can be a function of the sensors.
This models a realistic scenario in which different sen-
sors have different capabilities in generating different
observation symbols. If none of the sensors is assigned
to a HMM at a given epoch, we assume that the ob-
served symbol is null (Á). The probability of observ-
ing the symbol Orl(k) (l = 1,2, : : : ,L(q)) with the sen-
sor ur(k) = q assigned to the rth HMM, given the state
xr(k) = sri, denoted by brliq(k), is an element of the emis-
sion matrix, Brq(k). That is,

Brq(k) = [brliq(k)] = [P(yr(k) =Orl(k) j xr(k) = sri,ur(k) = q],
i= 1,2, : : : ,nr; l = 1,2, : : : ,L(q);

q= 1,2, : : : ,m; r = 1,2, : : : ,N: (2)

The key point here is that the observation yr(k) de-
pends upon the current state xr(k) and the selected
sensor ur(k) from among the available sensors at time
k. At time epoch k, we have, for each HMM (r =
1,2, : : : ,N), the information sets fYk¡1r ,Uk¡1r g, where
Yk¡1r = fyr(1), : : : ,yr(k¡1)g and Uk¡1r = fur(1), : : : ,
ur(k¡1)g, the previously observed symbols and the
sensor sequence used from time epoch t = 1 to time
epoch t= k¡ 1. Evidently, Y0r =U0r = Á. The initial
probability of the underlying Markov states of the rth
HMM at time t= 0 is denoted by

'
r
= ['ri = p(xr(0) = sri)],

i= 1,2, : : : ,nr; r = 1,2, : : : ,N: (3)

We denote the set of initial probability vectors of the N
HMMs as '= f'

1
, : : : ,'

r
, : : : ,'

N
g.

2.2. Dynamic Sensor Scheduling Cost

The sensor scheduling problem is the following:
How to find the policy to optimally allocate the m sen-
sors to the N HMMs from time epoch 1 to time epoch
K, based on fYk¡1,Uk¡1gKk=1, where (Yk¡1,Uk¡1) =
fYk¡1r ,Uk¡1r gNr=1, the information available to optimize
the sensor schedule at time epoch k. The sensor schedul-
ing cost function is a sum of sensor usage costs and
the state estimation errors over the planning horizon.
The information states ¦(k j k¡ 1) = f¼1(k j k¡ 1), : : : ,
¼r(k j k¡ 1), : : : ,¼N(k j k¡1)gT are sufficient statistics

to describe the current state of the N HMMs, where
¼r(k j k¡ 1) = f¼r1(k j k¡ 1), : : : ,¼rnr (k j k¡1)gT. Indeed,
the information state is the predicted probability
of the hidden state X(k) = fx1(k), : : : ,xr(k), : : : ,xN(k)gT
given the available information, fYk¡1,Uk¡1g, where
xr(k) = fsr1(k), : : : ,srnr (k)gT, i.e.,

¦(k j k¡ 1) = P(X(k) jYk¡1,Uk¡1) (4)

where P(X(k) jYk¡1,Uk¡1) = fP(x1(k) j Yk¡11 ,Uk¡11 ), : : : ,
P(xr(k) j Yk¡1r ,Uk¡1r ), : : : ,P(xN(k) j Yk¡1N ,Uk¡1N )gT. Let us
denote the sensor scheduling policy from time epoch 1
to time epoch K by » = f»(k)gKk=1. For a given policy,
the cumulative expected schedule cost from time epoch
1 to time epoch K, denoted by J» , is assumed to be of
the form:

J» = E

"
NX
r=1

"
¯frK(¼r(K j K)) +

K¡1X
k=0

¯frk(¼r(k j k))

+
KX
k=1

grk(ur(k),¼r(k j k¡1))
##

(5)

where ¼r(k j k) is the updated (corrected) informa-
tion state, frk(¼r(k j k)) is the state estimation error,
grk(ur(k),¼r(k j k¡ 1)) is the sensor cost of the rth
HMM, and ¯ is a positive scalar weight. Here, the ex-
pectation is over the stochastic realizations of measure-
ment sequences. Typical cost functions for the state es-
timation error are as follows:

frk(¼r(k j k)) = 1¡¼Tr (k j k)¼r(k j k), (6)

frk(¼r(k j k)) = 1¡ max
i2f1,:::,nrg

¼ri(k j k), (7)

frk(¼r(k j k)) = min
1·i·nr

nrX
j=1

¼rj(k j k)¸ij : (8)

The first criterion as given in (6) can be interpreted
as the L2-norm of the updated state estimation error;
the second criterion in (7) as the error probability of
a maximum a posteriori probability (MAP)-based de-
cision rule; while the third criterion in (8) as the ex-
pected cost of errors in estimating the information state.
In (8), ¸ij represents the cost of erroneously estimating
the hidden state as sri when the true state is srj . The
sensor cost grk(ur(k),¼r(k j k¡ 1)) is the sum of sen-
sor usage cost hrk(ur(k),¼r(k j k¡ 1)) and sensor travel
(movement) cost cm(ur(k)), i.e.,

grk(ur(k),¼r(k j k¡ 1))
= hrk(ur(k),¼r(k j k¡ 1))+ cm(ur(k)) (9)

where the sensor usage cost is given by

hrk(ur(k),¼r(k j k¡ 1)) =
nrX
i=1

crk(sri,ur(k))¼ri(k j k¡ 1)

= cTk (ur(k))¼r(k j k¡1) (10)
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and cTk (ur(k)) = fcrk(sr1,ur(k)),crk(sr2,ur(k)), : : : ,crk(srnr ,
ur(k))g is the usage cost of sensor ur(k) corresponding
to each of the states fsrignri=1. We also considered the
cost of moving a sensor, denoted by cm(ur(k)), from its
current location to the location of the task. This cost is
computed via a simplified travel cost model as

cm(ur(k)) =
k(ar,br)¡ (aur(k),bur(k))k2

v(ur(k))
w(ur(k))

(11)

where (ar,br) and (aur(k),bur(k)) denote the cartesian co-
ordinates of the task location (indexed by the HMM)
and the selected sensor ur(k) for monitoring the rth
HMM, respectively. Here, w(ur(k)) is a priority param-
eter that accounts for the scarcity of the sensor, v(ur(k))
denotes the velocity of the sensor (or the mobile plat-
form on which it is resident), and k ¢ k2 denotes the Eu-
clidean (2-) norm.

3. DYNAMIC PROGRAMMING ALGORITHMS FOR
OPTIMAL SOLUTION

The optimal solution to the sensor scheduling prob-
lem is to find the sensor assignment policy Ã¤ which
minimizes the sensor scheduling cost defined in (5). Let
us define a optimal cost-to-go function J¤(¦(k j k))as
follows:

J¤(¦(k j k))

= E

"
NX
r=1

"
¯frK(¼r(K j K)) +

K¡1X
l=k

¯frl(¼r(l j l))

+
KX
l=k

grl(Ã
¤
r (¦(l j l¡ 1)),¼r(l j l¡ 1))

##
(12)

where Ã¤r (¦(l j l¡ 1)) = u¤r (l) is the optimal sensor allo-
cated to rth HMM in the optimal policy. The optimal
cost-to-go function J¤(¦(k j k)) satisfies the dynamic
programming (DP) recursion:

J¤(¦(k j k))

= E

"
NX
r=1

[¯frk(¼r(k j k)) + grk(Ã¤r (¦(k j k¡ 1)),¼r(k j k¡ 1))]

+ J¤(¦(k+1 j k+1))
#

(13)

with the terminal condition J¤(¦(K j K)) =PN
r=1¯frK

¢ (¼r(K j K))+ grK(Ã¤r (¦(K j K ¡ 1)), ¼r(K j K ¡ 1)).
Hence, the optimal solution of (5) can be obtained us-
ing the dynamic programming (DP) technique; however,
the computational complexity is O(

QN
r=1D

(nr¡1)nLmK).
Here, D is the number of quantization levels used to

discretize the continuous-valued information probabil-
ity state, m is the number of sensors, K is the num-
ber of time epochs, N is the number of HMMs, nr is
the number of states of rth HMM, n=maxr2f1,2,:::,Ngnr,
L=maxr2f1,2,:::,Ng,q2f1,2,:::,mg(L(ur(:) = q)), and L(ur(:) =
q) is the number of observation symbols when sensor
q is allocated to the rth HMM at any epoch. The com-
putational complexity is intractable in both n and N.
This motivates us to investigate suboptimal algorithms
to solve the dynamic sensor scheduling problem. We
propose the rollout information gain (RIG) algorithm
with computational complexity of O(NnLm2K) per roll-
out, which is significantly lower than that for the DP
technique.

4. ROLLOUT STRATEGIES TO SOLVE SENSOR
SCHEDULING PROBLEM WITH MULTIPLE HMMS

4.1. Information Gain Heuristic as a Base Policy

Multiple HMM sensor scheduling involves two-
dimensional (2-D) assignment or a weighted bipartite
matching problem, where one set of nodes corresponds
to sensors and the other set to HMMs. When allocating
m sensors among N HMMs at each time epoch using
the information gain heuristic algorithm, one needs to
consider the m£N matrix of information gains for each
sensor-HMM pair, where the elements of qth row corre-
spond to information gains obtained by assigning sensor
q to each of the N HMMs, as shown in Fig. 2. The infor-
mation gain heuristic algorithm selects the best sensor
assignment at each time epoch k, ±¤(k), that maximizes
the sum of information gains per unit sensor usage cost,
subject to the assignment constraints that at most one
sensor can be assigned to a HMM and that at most
one HMM can be assigned to a sensor. The assignment
problem at time epoch k is (assuming without loss of
generality that m<N)1

±¤(k) = argmax
±(k)2»(k)

mX
q=1

NX
r=1

Iqr(¼r(k j k¡ 1),ur(k) = q)
grk(ur(k),¼r(k j k¡ 1))

±qr(k)

subject to
mX
q=1

±qr(k)· 1, r = 1,2, : : : ,N;

NX
r=1

±qr(k) = 1, q= 1,2, : : : ,m

(14)

where grk(ur(k),¼r(k j k¡ 1)) is the sensor usage cost
when it is assigned to the rth HMM as defined in (9),
and Iqr(¼r(k j k¡1),ur(k) = q) is the information gain

1This formulation can be extended to the case where multiple sensors
may be needed to estimate a HMM state or a single sensor can estimate
states of multiple HMMs. See [4].
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Fig. 2. Information gain matrix for multiple HMM-multiple sensor
case.

given by:

Iqr(¼r(k j k¡ 1),ur(k) = q)

=
nrX
i=1

¼ri(k j k¡ 1)
L(q)X
l=1

brliq(k) log2 brliq(k)

¡
L(q)X
l=1

Ã
nrX
i=1

brliq(k)¼ri(k j k¡ 1)
!

¢ log2
Ã

nrX
i=1

brliq(k)¼ri(k j k¡ 1)
!
: (15)

The derivation of information gain equation is provided
in the Appendix. The formulation in (13) is an asym-
metric assignment problem, because none of the sen-
sors may be assigned to some HMMs, leading to null
observations at that time epoch for the corresponding
unassigned HMMs.
The Jonker-Volgenant-Castañ _on (JVC) and the auc-

tion are the most efficient algorithms for solving the
(2-D) assignment problems. The JVC algorithm [15]
is a primal-dual method that includes an effective ini-
tialization of dual variables, and an augmentation phase
based on the Dijkstra’s shortest path algorithm [11]. The
auction algorithm, proposed by Bertsekas et al. [2] [3],
consists of a bidding phase and an assignment phase,
where an optimal assignment is found by employing a
coordinate descent method on the dual function. How-
ever, scaling of the weight (in our case the information
gain per unit cost) matrix is critical to the success of the
auction algorithm.
The JVC algorithm is used here for finding the best

assignment of sensors among multiple HMMs at each
time epoch. Thus, in the multiple HMM case, the in-
formation gain heuristic algorithm can be implemented
using the following five steps (see Fig. 3 for IG heuristic
processing steps of a single (rth) HMM):2

Step 1 (State Prediction): Predict the informa-
tion state vector set ¦(k j k¡ 1) = f¼1(k j k¡ 1), : : : ,

2The information gain heuristic is derived in terms of predictor-
corrector form of discrete HMM equations. These are similar to
the dynamic Bayesian state estimation equations, when the HMM
states and observations are continuous. In the latter case, ¼r(k j k¡ 1)
¢
=p(xr(k) j Yk¡1r ,Uk¡1r ) and ¼r(k j k)

¢
=p(xr(k) j Ykr ,Ukr ) should be inter-

preted as probability density functions of system state. The predicted

¼r(k j k¡ 1), : : : ,¼N(k j k¡ 1)gT. Here, ¼r(k j k¡1) at
time epoch k is predicted using the current updated in-
formation state vector at time epoch (k¡ 1), ¼r(k¡ 1 j
k¡1), and the transition matrix Ar(k):
¼r(k j k¡1) = ATr (k)¼r(k¡ 1 j k¡1), 1· r ·N:

(16)

Here N is the number of HMMs being tracked and
¼r(k j k¡ 1) = f¼r1(k j k¡ 1), : : : ,¼rnr (k j k¡1)gT. Evi-
dently, the updated information state ¦(k¡ 1 j k¡ 1)
uses all the information available up to time epoch k¡ 1,
i.e., fYk¡1,Uk¡1g.
Step 2 (Generation of Information Gain Matrix):

We construct the matrix of information gains per unit
sensor cost for all sensor-HMM pairs,

Iqr(¼r(k j k¡ 1),ur(k) = q)
grk(ur(k),¼r(k j k¡ 1))

,

r = 1,2, : : : ,N; q= 1,2, : : : ,m:

Step 3 (Sensor Assignment): Select the best sensor
assignment ±¤(k) that maximizes the sum of information
gains in (14) using the JVC assignment algorithm.
Step 4 (Observation): The set of observations

fy1(k),y2(k), : : : ,yN(k)g at time epoch k are obtained us-
ing the sensor set ur(k) (r = 1,2, : : : ,N) based on the
emission probability matrices given in (2).
Step 5 (State Update): Obtain the updated informa-

tion state, ¼ri(k j k), by using the forward algorithm [22]
as follows:

¼ri(k j k) =
brliq¤(k)¼ri(k j k¡ 1)Pnr
j=1brljq¤(k)¼rj(k j k¡1)

(17)

where ¼ri(k j k) is the ith element of ¼r(k j k¡ 1) =
f¼r1(k j k¡ 1), : : : ,¼ri(k j k¡ 1), : : : ,¼rnr (k j k¡ 1)gT and
the brliq¤ is the (l, i) element of emission matrix Brq¤(k).
It is the probability of the symbol Orl(k) (l = 1,2, : : : ,
L(q)) when the sensor ur(k) = q¤ is assigned to the rth
HMM, given the state xr(k) = sri.

information state for the next time epoch k can be obtained as:

¼r(k j k¡ 1) =
Z
xr(k¡1)

p(xr(k) j xr(k¡ 1))¼r(k¡ 1 j k¡ 1)dxr(k¡ 1);

1· r ·N
Once the observation for selected sensor ur(k) is obtained, the updated
information state is:

¼r(k j k)

=
p(y

r
(k) j xr(k),ur(k) = q)R

xr(k)
p(y

r
(k) j xr(k),ur(k) = q)¼r(k j k¡ 1)dxr(k)

¼r(k j k¡ 1);

1· r ·N

Typically, these integrals are intractable. However, if we can obtain
analytical approximations to the above equations (e.g., Gaussian sum
approximation), information gain heuristic would still be a tractable
approach.
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Fig. 3. Information gain heuristic (IG) processing steps for rth HMM.

4.2. Rollout Algorithms

Rollout algorithms are a class of suboptimal meth-
ods which are capable of improving the effectiveness
of any given heuristic through sequential application.
This is due to the policy improvement mechanism of
the underlying policy iteration process [27]. They can
be viewed as a single step of the classical policy itera-
tion method, wherein we start from a given easily im-
plementable and computationally tractable policy, and
then try to improve on that policy using online learn-
ing and simulation. The attractive aspects of rollout al-
gorithms are simplicity, broad applicability, and suit-
ability for online implementation. The details of the
rollout algorithms are provided in [5], [6], [27]. In
our rollout framework, the information gain heuristic
is used as a base policy where optimal cost-to-go func-
tion J¤(¦(k+1 j k+1)) is approximated by the cost-to-
go function J(¦(k+1 j k+1)) of the information gain
heuristic. The rollout policy for approximating (13) can
be written in terms of Q-factor as follows:

±¤(k) = argmin
±i(k)2±(k)

Q(¦(k j k¡1),±i(k)), i= 1, : : : ,·

= argmin
±i(k)2±(k)

E

"
NX
r=1

[frk(¼r(k j k))

+grk(Ã
i
r(¦(k j k¡ 1)),¼r(k j k¡ 1))]

+ J(¦(k+1 j k+1))
#

(18)

where ±(k) = f±1(k), : : : ,±·(k)g are the ·-best assign-
ments used to reduce the search space, and Ãir(¦(k j
k¡ 1)) = uir(k) is the sensor assigned to monitor the rth
HMM in the ith-best assignment. The problem of com-
puting the ·-best assignments is solved by combining
the JVC algorithm with a modified Murty’s algorithm
[20], [10], [21]. However, the Q-factor driven by ith-
best assignment ±i(k) at time epoch k can not be com-

Fig. 4. Rollout information gain (RIG) algorithm coupled with
·-best assignment algorithm.

puted in closed-form. A straightforward approach for
computing the Q-factors is to use Monte Carlo simula-
tions for J(¦(k+1 j k+1)). Unfortunately, the method
suffers from increase in computational complexity. In
our paper, given information state vector ¦(k j k) at
time epoch k, we approximated J(¦(k+1 j k+1)) by
generating a single schedule trajectory computed from
the information gain heuristic starting from k+1 to K.
The rollout assignment is obtained by minimizing the
approximated Q-factor in (18) from the ·-best assign-
ments at time epoch k.
Fig. 4 graphically illustrates the RIG algorithm with

two rollouts at each time epoch. The pseudo code of the
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Fig. 5. Pseudo code for the rollout information gain (RIG) algorithm.

Fig. 6. Notional area for scenario development.

RIG algorithm using the ·-best assignment algorithm is
shown in Fig. 5.

5. COMPUTATIONAL RESULTS

5.1. A Hypothetical Mission Scenario

This scenario, motivated by ESG missions, involves
simultaneous monitoring of multiple geographically dis-
persed threat activities. Here, an ISR officer needs to
dynamically allocate sensors to monitor threats in a no-
tional area (e.g., fishing villages, refugee camps) that
involves primarily two fictitious countries, Asiland and
Bartola [14]. Asiland is an unstable state, where mar-
itime smugglers and anti-western terrorist groups have
supported the insurgent factions hostile to the govern-
ment of Bartola. Local terrorists and sea rovers use Asi-
land as a base. The scenario considers that nearly a
month ago, the northern shore of Asiland was struck
by a tsunami that destroyed several fishing villages
and caused enormous casualties. Large numbers of
Asiland citizens sought refuge in the south for help
and assistance. However, this exodus quickly drained
the resources of Asiland. Consequently, many Asiland

refugees began to move to fishing villages and refugee
camps in Bartola. Within a few days, insurgents and ter-
rorist factions in and around Asiland began to exploit
the situation, infiltrating their operations into Bartola
by disguising as refugees and smuggling weapons on-
board fishing boats and merchant ships. Bartola’s mili-
tary was overwhelmed by the massive influx of refugee
boats, as well as tracking the terrorist/insurgent’s ac-
tivities using these boats and ships for illegal transfers.
The government of Bartola sought help from the United
States to provide Humanitarian Assistance/Disaster Re-
lief (HA/DR) to Bartola and the organizations operating
relief activities within it. The ESG sensor assets are de-
ployed and begin to monitor strategically significant ar-
eas (e.g., major sea and air lanes as well as several major
ports, villages, refugee camps, roads, and cities/sites) as
shown in Fig. 6.

5.2. Single HMM Scenario: Monitoring a Fishing
Village

We consider a scenario where an ISR officer needs
to dynamically allocate sensors to monitor asymmet-
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Fig. 7. A fishing village scenario for sensor scheduling problem.

ric threat activities in the notional area. The problem
of monitoring the presence of terrorists and weapons
in a fishing village is modeled using a four-state
HMM. Activities such as the presence of terrorists and
weapons, and ascertaining the crowd demeanor (normal
or protesters or terrorists) are continually monitored us-
ing six sensors; labeled 1 through 6. As shown in Fig.
7, State 1 represents the normal state of the crowd in
the fishing village. In State 2, refugees move into the
village. Terrorists disguised as refugees arrive in the
village and they also smuggle weapons into the vil-
lage; this is modeled as State 3. In State 4, the weapons
and terrorists are prosecuted/pacified and the village
resumes normalcy, which is modeled by a transition
to State 1. We specify the transition probability ma-
trix, A(k), based on state transitions and time spent in
each state. In a discrete HMM model, the probabil-
ity of staying in state j for a duration d is given by
p(d) = (ajj)

d¡1(1¡ ajj), where the expected duration is
obtained from the following equations:

E[d] =
1X
d=1

d(ajj)
d¡1(1¡ ajj) =

1
(1¡ ajj)

: (19)

The self transition probability of state j is set by
substituting E[d] in (19) with the duration provided
by the scenario. The state transition probabilities de-
pend on how many links exist from state j to other
states. Suppose that state j has n state transitions and
state i is linked to state j, then the probability aji is
assumed to be given by aji = (1¡ ajj)=n. For simula-
tions, we set the weighted priority vector w(u(k)) in (11)
to be a vector of constants and ¯ is set to 10 in (5).
The velocities of the six sensors are set as vT(u(k)) =
[300,200,300,100,450,80]. The sensor usage costs in
(10) are selected as ck(u(k)) = f11,4,8,5,6,2g, where
for simplicity, each sensor usage cost vector is assumed
to be independent of state. We used ·= 6 for the RIG
algorithm. We assume that the initial probability dis-
tribution is known. The emission matrices are set by
considering the sensing capability of each sensor, which
are modeled by the probability of detection of the true
states of each HMM. In this simulation, we assume that
the observation capabilitities of a sensor decreases as
the sensor label increases and each sensor provides one
of four observation symbols at each time epoch k. The
planning horizon K = 15 is set by considering the sum
of expected durations as given in (19). Fig. 8 shows the
total scheduling cost averaged over 1000 Monte Carlo

Fig. 8. Variation of the total scheduling cost with sensor accuracy
variable p.

runs. To assess the robustness of the algorithm, the cost
was obtained by varying the observation probability us-
ing the variable p. Here, Sensor 1 or Sensor 5 curves
indicate that a static schedule that employs Sensor 1 or
Sensor 5 for all time epochs is substantially worse than
a dynamic schedule. The rollout information gain algo-
rithm (RIG)-based sensor schedule has approximately
5—18% lower cost as compared to one using only the
information gain heuristic (IG); it also has ¼ 49% lower
cost as compared to a static schedule that employs
Sensor 5 throughout. The dual advantages of using the
RIG algorithm are that it significantly reduces the com-
plexity of dynamic programming, while improving the
accuracy over the base heuristic, viz., the information
gain heuristic (IG) algorithm.

5.3 Multiple HMM Scenario: Monitoring Multiple
Fishing Villages and Refugee Camps

In this scenario, we solve the problem of monitor-
ing multiple fishing villages (FVs) and refugee camps
(RCs) using multiple sensors. The problem of monitor-
ing for the presence of refugees, weapons, and learning
the crowd demeanor (normal or protesters or agitators or
terrorists) in FVs and RCs is modeled using 17 HMMs,
where their states are represented in a vector form (e.g.,
(refugees, weapons, crowd)), as shown in Fig. 9. For
example, (1,1,3) corresponds to the 16th state that indi-
cates that refugees, weapons, and terrorists are present.
Threat activities are continually monitored using a to-
tal of 17 sensors, which are comprised of 9 different
types, as described in Table I. The states of 10 FVs
and 7 RCs change dynamically by the departure and
entry of refugees, and terrorists/insurgents (disguised as
refugees). Fig. 10 shows the state transitions considered
in this scenario.
The schedule cost considered for this scenario is

given in (5), where sensor usage costs, ck(ur(k)), are

AN ET AL.: DYNAMIC SCHEDULING OF MULTIPLE HIDDEN MARKOV MODEL-BASED SENSORS 41



Fig. 9. States used for modeling multiple HMM scenario.

set by evaluating a weighted sum of unit price of the
sensor and the crew required to operate the sensor. We
employed the state estimation error criterion, given in
(7). The cost of moving the sensors, cm(ur(k)), is set
based on the actual mobility of the sensors and the dis-
tance from the task, as listed in Table I. The emission
matrices are set by considering the sensing capability of
each sensor as well as allocation preferences and geo-
metrical constraints of sensing operations. If a sensor,
ur(k) = q, is irrelevant to monitoring a HMM (say, rth
HMM), the entries of the emission matrix, given in (2),
are set to uniform values, i.e., the emission matrix is a
doubly stochastic matrix. We assume that each sensor
provides one of the 16 observation symbols from the
scenario. We specify the transition probability matrices,
using the same process as that used in the single HMM
case. However, since the scenario does not provide in-

TABLE I
Setup of Usage Cost and Sensing Capability

formation on all the self-transition probabilities, the un-
defined self-transition probabilities are set to reasonable
values and the remaining transition probabilities in the
same row are uniformly distributed. For example, the
transition matrix of Glorisabay, A7, is set as shown in
Table II, based on the state transition sequence of Glo-
risabay as shown in Fig. 10.
Fig. 11 shows the assignment distributions over

1500 mission scenarios, each averaged over 50 Monte
Carlo runs. The value of ¯ is set as 40 in (5) and the
values of priority vector are set to a constant vector
as in the single HMM case. The assignment distribu-
tions of RIG algorithm are obtained using ·= 2-best
assignments. We assume that the initial probability dis-
tribution is known. The planning horizon K = 30 is set
by considering the sum of expected durations as given
in (19). Table III shows the state transitions and RIG-
based sensor assignments in Glorisabay FV. Note as-
signments of Sensor 8 for RCs and Sensor 1 for FVs.
The assignments are reasonable because Sensor 8 has
difficulty in sensing the operations in RCs (e.g., patrol
ships) and an ISR officer always assigns Sensor 1 to
RCs as a first priority. To model the sensing constraints
of Sensor 1 and Sensor 8 in the extreme case, the Sensor
1 emission matrix probabilities for FVs and the Sensor
8 emission matrix entries for RCs are distributed uni-
formly. The realization of assignment constraints by the
setup of emission matrix is shown in Fig. 11, where
columns correspond to sensors and rows correspond to
HMMs. The brightness represents the number of as-
signments of HMM-sensor pair. Fig. 12 shows the total
scheduling cost. The cost of assignment by distance was
obtained using sensor assignments to minimize the sum
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Fig. 10. States transitions of multiple fishing villages and refugee camps.

TABLE II
Transition Matrix A7 Set Up of a Fishing Village Glorisabay

of travelled distances. Sensor scheduling via the RIG al-
gorithm (·= 7) has approximately ¼ 2:1% lower cost as
compared to one using only the information gain heuris-
tic (IG) and ¼ 4% lower cost as compared to scheduling

by distance. The results also suggest that, while the RIG
algorithm in multiple HMM sensor scheduling problem
improves the performance of information gain heuris-
tic, it is less effectiveness when compared to a single
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Fig. 11. Assignment distribution of IG (·= 1) and RIG (·= 2).

TABLE III
State Transition and RIG Sensor Assignment in Fishing Village Glorisabay

HMM sensor scheduling problem. This is due to the as-
signment of all available sensors to multiple HMMs. In
addition, the differences in information gains, obtained
from the ·-best assignments, are much less than those
obtained from the ·-best sensors in the single HMM
case. However, the fact that RIG and IG have nearly
identical performance gives us confidence that the IG-
based sensor schedules are near-optimal.

6. CONCLUSION

This paper formulated the sensor scheduling prob-
lem using HMM formalisms. The optimal solution of
the sensor scheduling problem via dynamic program-
ming (DP) is intractable for both single and multiple
HMM scheduling problems due to computational explo-
sion caused by the curse of dimensionality. To overcome
this, we proposed a RIG algorithm by combining rollout
concepts with the JVC and the ·-best assignment algo-

Fig. 12. Total scheduling cost of RIG, IG, and assignment by
distance.
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rithms. We illustrated its application on realistic mission
scenarios involving the monitoring of threat activities
in a fishing village modeled using a single HMM, and
multiple fishing villages and refugee camps modeled
using multiple HMMs.
Our work on HMM-based dynamic sensor schedul-

ing model assumed that the tasks are independent. In
practice, however, tasks may exhibit dependencies or
may have a hierarchical structure. We plan to develop
extensions to HMM-based sensor scheduling model to
handle dependencies and hierarchical structure among
tasks using coupled HMMs [7] and hierarchically struc-
tured HMMs [12]. In addition, we assumed that at most
one sensor is assigned to a HMM at each time epoch.
However, due to the various assignment constraints,
imposed by organizational structure, this assumption
may need to be relaxed. Finally, sensor scheduling is
a cooperative process among multiple decision mak-
ers. Auction-based algorithms may provide a mecha-
nism for implementing distributed and coordinated sen-
sor scheduling algorithms. We plan to pursue these ex-
tensions in the future.

APPENDIX

Let H(x) =¡Pi pi(x) log2pi(x) denote the entropy
of the state with a probability mass function fpi(x)g. Let
us derive the information gain defined in (14) obtained
by assigning a sensor ur(k) = q to rth HMM, where the
information state is defined in (15). The entropy of the
information state is:

H(¼r(k j k¡ 1)) =¡
nrX
i=1

¼ri(k j k¡ 1) log2¼ri(k j k¡ 1):

(20)
Recall that the joint entropy is given by:

H(x,u) =H(x) +H(u j x) =H(u) +H(x j u)
(21)

and mutual information (or information gain) is:

I(x,u) =H(x)¡H(x j u): (22)

=H(u)¡H(u j x): (23)

Using (21) and (22),

Iqr(¼r(k j k¡ 1),ur(k) = q)

=H(¼r(k j k¡ 1))¡H(¼r(k j k¡ 1) j ur(k) = q),
(24)

Iqr(¼r(k j k¡ 1),ur(k) = q)

=H(ur(k) = q)¡H(ur(k) = q j ¼r(k j k¡ 1))
(25)

where

H(ur(k) = q)

=¡
L(q)X
l=1

P(yr(k) =Orl(k) j Yk¡1r ,Uk¡1r ,ur(k) = q)

¢ log2P(yr(k) =Orl(k) j Yk¡1r ,Uk¡1r ,ur(k) = q)

(26)
and

P
¡
yr(k) =Orl(k) j Yk¡1r ,Uk¡1r ,ur(k) = q

¢
=

nrX
i=1

P(yr(k) =Orl(k),xr(k) = sri j Yk¡1r ,Uk¡1r ,ur(k) = q)

=
nrX
i=1

P(yr(k) =Orl(k) j xr(k) = sri,ur(k) = q)¼ri(k j k¡ 1)

=
nrX
i=1

brl iq(k)¼ri(k j k¡ 1): (27)

The conditional entropy of a random variable X, condi-
tioned on a random variable Y

H(X j Y) =
X
y

pY(y)H(X j Y = y): (28)

Using (26):

H(ur(k) = q j ¼r(k j k¡ 1))

=¡
nrX
i=1

¼ri(k j k¡ 1)
"
L(q)X
l=1

brl iq(k) log2 brl iq(k)

#
:

(29)

Using (24) and (27), the information gain is:

Iqr(¼r(k j k¡ 1),ur(k) = q)

=
nrX
i=1

¼ri(k j k¡ 1)
L(q)X
l=1

brl iq(k) log2 brl iq(k)

¡
L(q)X
l=1

Ã
nrX
i=1

brl iq(k)¼ri(k j k¡ 1)
!

¢ log2
Ã

nrX
i=1

brl iq(k)¼ri(k j k¡ 1)
!
: (30)

We can also derive the information gain using (23). In
this case,

H(¼r(k j k¡ 1))

=¡
nrX
i=1

¼ri(k j k¡ 1)log2¼ri(k j k¡ 1), (31)
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H(¼r(k j k¡ 1) j ur(k) = q)

=¡
L(q)X
l=1

P(yr(k) =Orl(k) j Yk¡1r ,ur(k) = q)

¢
nX
i=1

P(xr(k) = sri j Yk¡1r ,ur(k) = q,yr(k) =Orl(k))

¢ log2P(xr(k) = sri j Yk¡1r ,ur(k) = q,yr(k) =Orl(k)):

(32)

Using the forward algorithm [22],

P(xr(k) = sri j Yk¡1r ,ur(k) = q,yr(k) =Orl(k))

=
brl iq(k)¼ri(k j k¡1)Pnr
j=1brl j q(k)¼rj(k j k¡ 1)

(33)

and

P(yr(k) =Orl(k) j Yk¡1r ,ur(k) = q)

=
nrX
j=1

brl j q(k)¼rj(k j k¡ 1): (34)

Inserting (31) and (32) in (30), we get:

H(¼r(k j k¡ 1) j ur(k) = q)

=¡
L(q)X
l=1

nrX
i=1

brl iq(k)¼ri(k j k¡1)

¢ log2
brl iq(k)¼ri(k j k¡ 1)Pnr
j=1 brl j q(k)¼rj(k j k¡ 1)

=¡
nrX
i=1

¼ri(k j k¡ 1)
L(q)X
l=1

brl iq(k) log2brl iq(k)

¡
nrX
i=1

¼ri(k j k¡ 1) log2¼ri(k j k¡ 1)

+
L(q)X
l=1

Ã
nrX
i=1

brl iq(k)¼ri(k j k¡ 1)
!

¢ log2
Ã

nrX
i=1

brl iq(k)¼ri(k j k¡ 1)
!
: (35)

Since
PL(q)
l=1 brl iq(k) = 1 for i= 1,2, : : : ,nr, combining

(35) and (31) indeed gives (30).
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Correction of Selection Bias
in Traffic Data by Bayesian
Network Data Fusion

MAREK JUNGHANS

HANS-JOACHIM JENTSCHEL

In this paper a method is introduced based on the concept

of Bayesian Networks (BNs), which is applied to model sensor

fusion. Sensors can be characterised as real time variant systems

with specific physical functional principles, allowing to determine

the value of a physical state of interest within certain ranges

of tolerance. The measurements of the sensors are affected by

external, e.g. environmental conditions, and internal conditions, e.g.

the physical life of the sensor and its components. These effects can

cause selection bias, which yields corrupted data. For this reason,

the underlying process, the measurements, the external and internal

conditions are considered in the BN model for data fusion. The

effectiveness of the approach is underlined on the basis of vehicle

classification in traffic surveillance. The results of our simulations

show, that the accuracy of the estimates of the vehicle classes is

increased by more than 60%.
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1. INTRODUCTION

Bayesian Data Fusion (BDF) is a well-established
method in decision-level fusion to increase the quality
of measured data of several equal or different sensors,
e.g. [7], [13]. Although the method is powerful, the re-
sults of the fusion process are only (1) as good as the
sensors are; (2) as good as the a priori knowledge about
the sensors is and (3) as good as the a priori knowl-
edge about the underlying process is. For instance, in
case of vehicle classification for traffic surveillance by
several more or less accurate sensors (item 1), accurate
relative frequencies of correct and wrong classifications
(phantom detections, incorrect classified vehicles) are
required to achieve beneficial fusion results (item 2).
This statement is supplemented by an adequate charac-
terisation and quantification of the underlying unknown
traffic process (item 3).
For an adequate traffic management, there is a par-

ticular need for highly accurate traffic data, measured
by accurate and reliable sensors, yielding a high de-
gree of acceptance and credibility concerning the signif-
icance of the measured traffic parameters. There are a
lot of different sensor technologies with different phys-
ical functional principles, different performance, prob-
lems and thus, differing operational areas [18], [19].
Two currently important coexisting sensor technolo-
gies are for instance the inductive loop detectors and
video sensors. Loop detectors measure the traffic pro-
cess temporally, while video sensors enable temporal
and wide area measurements, yielding more compre-
hensive data about the underlying traffic process than
loop detectors. Both sensors provide a data quality
in accordance with their physical functional principle
and in accordance with the influences of the affect-
ing surrounding environment. For instance, an induc-
tive loop detector works properly under fluid traffic
conditions, whereas the measurements are not accu-
rate, if there is stop-and-go traffic. Furthermore, ve-
hicle detection and classification may be problematic
in case of overtaking procedures, when the loops are
overrun only partly, [11], [12]. That means an induc-
tive loop detector is a sensor, which is influenced by
the traffic process itself. In contrast to loop detectors,
it is a well-known fact, that the most currently em-
ployed video sensors usually work poorly under bad
weather conditions (e.g. heavy rain, fog, etc.), chang-
ing illuminations (e.g. reflections on the road surface)
and traffic process dependent problems (e.g. occlusions
among the vehicles on the road). Although new meth-
ods have recently been developed to overcome the ad-
dressed problems [11], the detection errors of currently
used video sensors increase to more than 1000%, if
the weather and illumination conditions are bad [6].
In contrast, they perform much better (they can reach
even the same accuracy as an inductive loop detec-
tor), if the conditions for an optimal operation are
maintained.
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Not only weather and illumination conditions affect
the accuracy of the measurements, but also other envi-
ronmental conditions (e.g. temperature, luminosity, hy-
grometry, etc.) and systematic causes (e.g. the instal-
lation of the sensor for overhead or sidefire detection)
may distort the detection. Without consideration of par-
ticular sensor properties and dependencies and the influ-
ences of the environmental conditions on the sensor, the
data are manipulated by selection bias. Consequently,
physically and environmentally affected sensors must be
considered in the (probabilistic) fusion model to correct
selection bias and to decrease the frequency of faulty
sensor data.
In this paper, the concept of BNs is applied to merge

biased traffic sensor data, which are affected by the
surrounding environment. The conditions affecting the
sensors are modelled in the BN data fusion model. It
will be shown that the correction of selection bias can
improve the accuracy of data fusion by more than 60%.
The paper is structured as follows: In section 2

some background on BNs is given. Subsequently, in
section 3, the naive (classical) concept of BDF is in-
troduced and then, extended to Bayesian Network Data
Fusion (BNDF) considering additional nodes contain-
ing additional information, which are important for the
fusion process. In section 4, a BNDF model is devel-
oped for the qualification of traffic data. Thereby, some
environmental conditions (e.g. weather conditions, re-
flections on the road surface) and some traffic process
related conditions (e.g. occlusions among the vehicles,
the dependency on the traffic state) are modelled as ad-
ditional nodes in the considered network. Then, in sec-
tion 5, simulation results are presented. Finally, in sec-
tion 6, conclusions and and future prospects are given.

2. BAYESIAN NETWORKS (BNS)

A Bayesian Network (BN) is a graphical formalism
of handling and processing uncertain and incomplete
knowledge in causal reasoning. BNs consist of a set of
discrete random variables or nodes and a set of directed
links or arrows. Each node is described by a set of mu-
tually exclusive states. Some of the nodes are connected
with other nodes by arrows. The arrows characterise the
conditional dependencies among the nodes. So for in-
stance, in the BN shown in Fig. 1, there is an arrow from
node X to node Z1, this indicates X causes Z1. In this
case, X is called a parent node, because it is the cause
and Z1 is the child node, because it describes the effect.
The cause-and-effect relationships are modelled by the
quantification of conditional probability tables (CPTs)
to each single node. The nodes together with the arrows
form the directed acyclic graph (DAG) [5].
Neapolitan [22] gives an adequate mathematical def-

inition of BNs: (1) Let P = P(x) be the joint proba-
bility distribution (JPD) of the space of all possible
state values x of the random variables in some set
X= fX1, : : : ,Xng, which are connected by a set of arrows

Fig. 1. A simple BN, which consists of three nodes. The variables
Z1 and Z2 are effects of the common cause X. The (conditional)

probabilities are given.

A= f(Xi,Xj) j Xi,Xj ½X, i 6= jg and the arrows pointing
from Xi to Xj . (2) Let G = (X,A) be a DAG. Then, (3)
(G,P) is a BN, if (G,P) satisfies the Markov condition,
i.e. a variable is conditionally independent of its non-
descendents given its parents. Thus, the JPD P(x) is
characterised by

P(x) =
Y
xi2x
P(xi j pa(Xi)) (1)

with pa(Xi) denoting the set of the parents states of
node Xi. If node Xi has no parent nodes, then pa(Xi)
= Ø. If Xi is a node with mi = jXij states, i.e. Xi =
fxi,1, : : : ,xi,mig, P(Xi = xi,k) denotes the probability of the
certain state xi,k. The conditional probability P(xi j xj)
denotes the conditional probability table of all condi-
tional probabilities P(xi,k j xj,l), with k = 1, : : : ,mk and
l = 1, : : : ,ml.
The simple BN shown in Fig. 1 consists of three

nodes, the parent node X and its child nodes Z1 and
Z2. The states of each node are characterised by small
letters x, z1 and z2 respectively. The causal relationships
are given by directed links and the JPD of this BN
is computed by equation (1), which can be rewritten
as:

P(x,z1,z2) = P(x)P(z1 j x)P(z2 j x): (2)

The BN in Fig. 1, which is characterised by the JPD in
equation (2), satisfies the Markov condition.
For further reading in general theory on BN the

reader is referred to [4], [22], [23].

3. BAYESIAN NETWORK DATA FUSION (BNDF)

In the following section 3.1, the naive or classical
Bayesian approach for data fusion is introduced and
then, in 3.2, extended to the more generalised Bayesian
Network Data Fusion (BNDF).

3.1. Naive Bayesian Data Fusion (BDF)

Bayesian Data Fusion (BDF) makes use of Bayes’
rule and combines objective and/or subjective knowl-
edge of the underlying and possibly unknown process–
its a priori probabilities and likelihoods–in a proba-
bilistic model. The method can principally be charac-
terised as:

P(x j z) = ® ¢P(x)P(z j x) (3)
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to infer x 2 X, which is the unknown state among jXj
possible states by the observation z 2 Z among jZj pos-
sible observations, which are also called evidences. All
the Ps are discrete probability distributions, but can be
considered in the continuous world as well. P(z j x) is
the conditional probability distribution (likelihood func-
tion) of a sensor measurement z given the true state x.
It reflects the correct and false measurements, which
can be characterised as the quantification of the ac-
curacy of the sensor. P(x) is the prior distribution of
x describing our expectation of the unknown variable
X. P(x j z) is the inference distribution (a posteriori
distribution) of the unknown state x given a specific
measurement z. It can be characterised as the trust
in a specific measurement P(z j x) expecting the prior
P(x). ® is a normalising constant, which ensures, thatP
i P(xi j z) = 1.
When the a priori probabilities and likelihoods are

determined, the given measurements z allow to infer
the unknown state x according to equation (3). That
means knowledge, which is based on evidences from
the observable variable Z is propagated towards the
unknown variable X. For more information on BDF
see [7], [13], [15], [25].
The BN in Fig. 1 is the simplest BN, which mod-

els naive BDF according to equation (3). The shown
BN consists of the variable X, which represents the un-
known process of interest and the two sensor variables
(evidence nodes) Z1 and Z2. However, the advantage of
BNDF is to extend the naive Bayesian model by a more
detailed or more characteristic modelling of the sensor
nodes and/or the underlying process. This problem is
addressed in the following section.

3.2. From BDF to BNDF

Remind the BN in Fig. 1 for naive BDF. Imagine
the two sensor variables Z1 and Z2 model an induc-
tive loop detector and a video based sensor respec-
tively, measuring the vehicle classes on a road of in-
terest. Then, the variable X represents the underlying
and unknown traffic process. Now, imagine, that some
properties of the detectors are influenced by their sur-
rounding environment, which might yield selection bias
in the measurements, resulting in faulty or corrupted
data usually being undesirable for an adequate traf-
fic management. But, if we know more about the un-
derlying process, the applied sensors and their prop-
erties and their surrounding environment, we can in-
clude this knowledge in a BN, which contains addi-
tional nodes, modelling these influences. Consequently,
the advantage of BNDF is to extend the naive BDF
model by a more detailed, more characteristic and
more realistic modelling of the sensor nodes and/or
the underlying process. This results in a data fusion
model, which is capable of correcting selection bias.
As a consequence, the resulting merged data are more
accurate.

Fig. 2. An extended BN for data fusion according to Fig. 1 with an
arbitrary sensor node Zi and an environmental influence node Ej .
The causal dependence between the environment E and the

measurement Z is shown by the directed link connecting them.
Without loss of generality, the sensor and environment nodes can be
connected several times with the traffic node X, depending on how
many sensors are in use and how many environmental dependencies

affect the performance of the sensor.

The application of these particular BNs for traffic
surveillance is a novel solution for the correction of
selection bias in manipulated traffic data. Comparable,
but different investigations were done for landmine
detection, e.g. [5], and in case of the detection of
acoustic signals, e.g. [16].
In Fig. 1, the environmental dependencies affecting

the performance of the sensors are not yet considered.
A more realistic and thus, more complex BN for data
fusion considering environmental influences is shown
in Fig. 2. According to Fig. 2 and the text above,
equation (3) has to be modified to equation (4), which
enables an improved data fusion:

P(x j z,e) = ® ¢P(x)P(z j x,e) (4)

with x representing the unknown vehicle class, e de-
scribing the set of the environmental influences on the
performance of the sensor and z the affected measure-
ments of a set of sensors. The calculation of equation (4)
yields a correction of selection bias by the influence
of the sensors’ surrounding environment and hence, the
improvement of the estimates of the unknown state vari-
able X under these conditions.
In the following section, the influences of the af-

fecting environment on a video based traffic detector
are more specified. Later, a comparison between the
performance of a weather independent inductive loop
detector and a weather dependent video sensor is made.
The correction of selection bias and thus, the improve-
ment of the fusion process are shown on the basis of
synthetic traffic data.

4. BNDF TO CORRECT SELECTION BIAS IN TRAFFIC
DATA

In this section, the BN according to Fig. 2 and its
inherent fusion equation (4) are applied to merge traffic
data and to improve the accuracy of the fusion process.
In the following paragraphs the modelling of the prior
probability distribution, the likelihood probability of
the environmental affected sensor, the resulting BNDF
model and the inference of the unknown state values for
the traffic process are discussed.
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Fig. 3. A BN modelling the time dependence of the traffic process
(node X). For each point in time Tk another BN characterises the
traffic process with different probability distributions P(x j Tk).

4.1. Modelling the Prior Probability

The prior P(x) represents the knowledge about the
underlying traffic process. If we do not know any-
thing about it, it is legitimate to model the prior as a
uniform probability distribution, weighting each state
value equally. But if we know more, the process can be
modelled considering different objective (physical) or
subjective (Bayesian) assumptions. So, for instance, the
prior can be modelled as a probability distribution con-
taining all the relative frequencies of the most expected
vehicle on a road

² depending on the ratio of actual vehicles counted in
the referred area, city, country, etc.,

² depending on the time of the day,
² depending on the type of the observed road (e.g. it
can be distinguished between play streets and transit
roads),

² depending on incidents, events and structural mea-
sures, stoppages, etc.,

² or even mixtures of some of the mentioned depen-
dencies.

An example for modelling the traffic process depend-
ing on the time of day is given in Fig. 3. The time de-
pendence can be modelled as additional control nodes
(which are not BN nodes) resulting in a different BN at
each point in time. These kinds of BNs are called Dy-
namic Bayesian Networks (DBNs), but shall not be con-
sidered throughout this paper. See [21], [26] for deeper
information.
The formalism of BNs, introduced in section 2,

allows one to model the prior probability distribution of
the traffic process and its dependencies with additional
nodes and attached known or learned probability tables
to manipulate the a posteriori probability by the given
assumptions and information in a useful way.
The necessary data for the quantification of the

probability tables can be learned, adapting the under-
lying traffic process. Adaptive learning methods, e.g.
for learning time variant prior probabilities and CPTs
are addressed in, e.g. [3], [10], [24].

Fig. 4. Reflections on the road surface usually make the
determination of relevant traffic data difficult.

4.2. Modelling the Influenced Sensors

As already stated in section 1, the performance of
a sensor is dependent on its functional principle, the
surrounding environment and other phenomena. Here,
a traffic state dependent sensor and an environmental
affected sensor are modelled.
1) Modelling the Environmental Influenced Sensor:

A video detector, as an example for an environmental
influenced sensor, can be characterised by the following
dependencies [2], [6], [14], [20]:

² Different or changing weather conditions (e.g. heavy
rain, fog, snow, etc.) mainly cause false, multiple and
phantom detections.

² Different or changing illuminations, e.g. darkness, at
nightfall, glare of the sun, sun rise and sundown,
shadows of moving or immobile objects, reflections
on the road, e.g. as shown in Fig. 4, etc., usually cause
false, multiple and phantom detections.

² Camera motion and camera vibrations can be caused
by heavy winds. Particularly in wide area traffic
surveillance erroneous detections occur.

² Particular traffic conditions can cause partial or even
total occlusions among the vehicles, yielding an un-
derdetection of some or even all vehicle classes.

² Video sensors are mounted for overhead, sidefire and
wide area detection. Depending on the installation
height partial and total occlusions occur, yielding an
underdetection of some vehicle classes.

² The physical environment, e.g. temperature, luminos-
ity, hygrometry, etc., can have a great influence on
the measurements, because the sensor is built within
a specific range of tolerance.

² The driver behaviour, e.g. overtaking and turning pro-
cedures, can lead to multiple or false detections, when
the vehicles pass through several fixed detection ar-
eas partly. Usually specific vehicle classes are over-
counted, some others are undercounted.
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² The wear and tear of the sensor and the compo-
nents during its operating life (Mean Time Between
Failure–MTBF) can cause corrupted data, lack of
data or even data terminations.

² A bad calibration of the camera, particularly of the
detection areas, cause wrong vehicle classifications,
because of multiple or underdetections and faulty
velocity and length measurements.

Some of the effects are time-dependent (e.g. shadows
of moving or standing objects, because of sun rise),
some occur by accident (rain, reflections on the road
surface) and some have systematic causes (calibration
of a camera for overhead or side fire detection).
2) Modelling the Traffic State Influenced Sensor:

An inductive loop detector, as an example for a traf-
fic state dependent sensor, is an LC-oscillator, which
is buried underneath the road surface. Its resonance fre-
quency changes, if there is an metallic object in working
area of the loop. These changes are evaluated and com-
pared with known pattern, thus, a vehicle classification
is possible. Besides environmental and other affecting
dependencies, an inductive loop detector can be charac-
terised by, e.g. [11]:

² Free flow conditions usually yield optimal detection
results, while stop-and-go traffic distorts the measure-
ments. Usually, there occur overdetections, misclassi-
fications of the vehicles, enduring occupancies, yield-
ing for instance false estimations of the traffic density.

² The driver behaviour in different traffic conditions,
e.g. if loop detectors are overrun only partly, can lead
to multiple or false detections and misclassifications
of the detected vehicles.

3) Comments on Modelling the Considered Sensors:
The most effects, which have an influence on the sen-
sors’ performance and the quality of the measured data,
are not methodical, but stochastical uncertain and can
be considered and quantified in the BNDF model. The
quantification of the influences of the most physical
conditions for an optimal sensor performance is possible
by studying the data sheets, for instance, delivered by
the original end manufacturer. In contrast, the quantifi-
cation of the performance of the sensor under different
environmental conditions is difficult, because extensive
field tests with highly accurate sensors or manual refer-
ences need to be realised. So for instance, by means of
a rain or weather sensor, the current weather situation
can be determined and relative frequencies of correct,
false and phantom vehicle classifications could be made
to decide whether the sensor is more or less influenced
by weather conditions. Then, the values for the likeli-
hood P(z j x,e) of the considered sensor can be used for
inference.

4.3. Inference and Sensor Data Fusion

The resulting BNDF model can be used to com-
pute the state values of the unknown traffic process X

Fig. 5. The probability wheel (from Heckerman [8]).

within the surrounding known (or even unknown) envi-
ronment (data e). The sensors provide measuring data
(evidences) z, allowing the vehicle class x to be inferred
from the BNDF model according to the Markov condi-
tion of the JPD in equation (1) and the extended Bayes’
rule in equation (4).
In general, the computation and evaluation of a

BN is NP-hard [22], [23]. Depending of the number
of nodes, the number of states of each node and the
algorithm used, the evaluation of a BN can be quick or
time-consuming. The consideration of these facts and
the requirements, defined by the user, e.g. concerning
the real-time applicability, the accuracy of the fusion
results, etc. determine the structure (e.g. the number
of nodes and states) and the computation methods of
the BN in question (e.g. exact or approximate inference
algorithms).
Computing equation (4) by the use of exact or ap-

proximate inference algorithms, the probability distri-
bution of the inferred state x 2 X is estimated. Typi-
cally, the unknown value x is determined by a maxi-
mum a posteriori estimation (MAP) of the a posteriori
probability

x̂= argmax
x
P(x j z,e) (5)

by maximising the confidence in the measurement. An-
other method to calculate x̂, which keeps the principle
of probability alive, is the so called probability wheel,
introduced in [8]. In this method, the probabilities of the
states of a variable are considered as regions of different
percent areas on a symmetric wheel (see Fig. 5). The
symmetry assumption implies, that any position where
the wheel can stop is equally likely. Consequently, the
probability of which state x̂ will be chosen, depends on
the percent area where the wheel will stop. Hence, in
comparison to MAP estimation the probability wheel
may stop at the percent area for even very unlikely
states, which is particularly advantageous in case of flat
probability density functions, that characterise a higher
degree of uncertainty. The application of the probability
wheel can be expressed by

x̂= argPW
x
P(x j z,e) (6)

where PW labels the probability wheel operator. There
are different methods and algorithms for realising exact
or approximate inference, which are not discussed in
this paper. Good descriptions can be found in [21]—[23].
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5. RESULTS

In this section simulation results for BNDF in com-
parison with the naive BDF in the case of vehicle classi-
fication are presented. Thereby, on the one hand, the in-
fluence of environmental conditions on the performance
of a video sensor and on the other hand, the influence
of the traffic conditions on the performance of an in-
ductive loop detector are investigated. In the case of
BNDF these influences, which affect the measurements
of the sensors, are considered as additional nodes in the
BN model. The inference of the resulting BNDF model
yields a correction of selection bias in the merged traffic
data. In contrast, naive BDF is not capable of correcting
bias, yielding manipulated data.
The investigations were made on the basis of a data

base (video based measurements) containing 65,000
measurements generated synthetically and additionally,
real 24-hour traffic data [27] containing approximately
120,000 measurements. The real traffic data were re-
corded with an ASIM TT 298 combination detector1

and an ordinary inductive loop detector at an intersec-
tion between a federal road and a less frequented city
road (Radeburger Strasse/Meinholdstrasse) in Dresden,
Germany, on 20 May 2005. This data base is charac-
terised by peak traffic in the morning and in the evening
and was used for learning the prior probability P(x).
The BNDF model, developed in the last two sections

and the given data base are used for learning and
validation of cases with sensor data. The real data set
is not used for validation. For simulations, the tools
Mathematica 4.0 and Netica 3.19 were used. The results
are compared with the naive approach of BDF without
correction of selection bias.

5.1. State Declaration and Assumptions

In the following, the states of the traffic process
node X and the sensors Z1 (loop detector) and Z2 (video
sensor) are represented by different nine vehicle classes,
which are given by the following set of symbols:

X = fC,C+,V,L,L+,D,B,M,Ng
representing C (car), C+ (car with a trailer), V (van),
L (lorry), L+ (lorry with a trailer), D (double train),
B (bus), M (motorcycle) and N (not classifiable). One
more virtual class Ø, representing the case nothing
detected, was used to decide, whether a sensor did
not detect anything, although a vehicle was present.
Thus,

Z1 = Z2 = fX,Øg:

1A final report about testing the ASIM TT 298 detector in accordance
with the German TLS standard [1], developed by Munich University
of Technology is available on http://www.asim.ch/traffic/pdf/report
tt298 d.pdf [17].

Fig. 6. Qualified data fusion with the two affected sensors Z1 and
Z2. In contrast to the classical BDF model according to Fig. 1 the
BN contains the environmental nodes W and R, modelling the
Weather conditions and the Reflections on the road surface; the

traffic process dependent nodes T and O, modelling the Traffic state
and Occlusions among the vehicles on the road; as well as the node

S, modelling the Sensor installation for sidefire or overhead
detection. The grey coloured nodes and the dashed directed link are
inconsequential, if the the nodes O, R and T are evidence nodes.

The quantification of the prior P(x) was made by EM-
(expectation maximisation) learning of the real 24-hour
data [27]. The vehicle class C was expectedly strongly
overrepresented by approximately 85%, while the other
eight classes share the remaining 15%. The relative
frequency of the most rare class N reached only 0.1%
(see equation (8) in the appendix).
We chose the simple BN in Fig. 6, which is the result

of the following assumptions and determinations made:
² The loop detector Z1 is affected only by the traffic
state T, which is characterised by the states t1 (free
flow) and t2 (stop-and-go traffic), i.e. T = ft1, t2g. It
works optimally in the case of T = t1. There should be
an explicit underdetection of the vehicle classes C+,
L+ and D in the case of T = t2 (see equation (10)
in the appendix). All other classes should be slightly
underdetected. The influence set for sensor Z1 thus is
E1 = T.

² In contrast, the video sensor Z2 should be affected
by reflections on the road surface R and current
occlusions among the vehicles O. Reflections on the
road surface should be caused by the current weather
conditions W. Occlusions should be caused by the
sensor installation S and the traffic state T. Since
we consider the nodes O and R as evidence nodes,
the influences of T, S and W on Z2 are “explained
away” [22], [23]. Thus, the influence set for the video
detector is given by E2 = fR,Og.

² The resulting influence set is given by E= fE1,E2g=
fT,R,Og.

² The nodes O and R are binary nodes, which are
characterised by the states o1 (there are not any
occlusions among the vehicles at all) and o2 (heavy
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occlusions) and r1 (there are not any reflections on
the road surface) and r2 (heavy reflections).

² The video sensor has the same performance as the
loop detector in the case of optimal conditions with
no bias. Thus, the likelihood probability of the video
sensor is given by P(z2 j x,o1,r1) = P(z1 j x, t1) yield-
ing optimal fusion results (see equations (9) and (11)
in the appendix). For this reason, the fusion process
needs only to be simulated in the case of the worst
conditions concerning the three nodes with the states
o2, r2 and t2, where the correction of selection bias is
to be proved.

² In the case of reflections on the road surface, because
of darkness and bad weather conditions and in the
case of occlusions among vehicles, it often happens,
that some vehicles are overcounted and some are un-
dercounted [2], [6], [14], [20]. Here it is assumed,
that larger vehicles, e.g. lorries and buses, are over-
counted, while smaller vehicles, like cars, motorcy-
cles and vans, are undercounted (see equations (13)
and (14) in the appendix). This causes changes in the
quantification of the likelihoods of the video sensor
and the loop detector and yields different joint likeli-
hoods P(z1,z2 j x, t,o,r).

² Phantom detections should not be present.

With the assumptions and determinations made we sim-
ulated the naive BDF approach in comparison with the
extended and qualified BNDF model, which considers
the traffic state node, the occlusions node and the re-
flections node.
In the following paragraph the results for two sensor

data fusion are presented.

5.2. BNDF vs. BDF

According to the learned a priori distribution P(x)
of the underlying traffic process and the modelled like-
lihoods of the the loop detector P(z1 j x, t) and the video
sensor P(z2 j x,o,r), which consider the made assump-
tions of the preceeding paragraph 5.1, we simulated the
fusion process with two sensors for the following cases
(see equations (9) to (14) for the applied sensor likeli-
hoods):

0. Both sensors work optimally, i.e. there are not any
internal and external influences, which affect the
measurements of the sensor. This case is only used
for reference.

1. The inductive loop detector works optimally, but the
video detector is affected
a) by occlusions, i.e. e= fo2g.
b) by reflections on the road surface, i.e. e= fr2g.
c) by occlusions and reflections on the road surface,
i.e. e= fo2,r2g.

2. The video sensor works optimally, but the inductive
loop detector is affected by the traffic state, i.e.
e= ft2g.

3. Both sensors are affected, i.e the loop detector is
influenced as in 2.) and the video sensor is influenced
as in 1.) by:
a) by occlusions, i.e. e= ft2,o2g.
b) by reflections on the road surface, i.e. e= ft2,r2g.
c) by occlusions and reflections on the road surface,
i.e. e= ft2,o2,r2g.

In case 3.c) the conditions for the detection and classi-
fication of vehicles are the worst, because both sensors
are affected by reflections on the road, heavy traffic
conditions and occlusions among the vehicles.
The simulations were done with the same number

of 65,000 measurements under the prevailing circum-
stances. Since the sensors have the same performance
in the case of optimal conditions (see paragraph 5.1),
yielding the best fusion results, it is necessary to inves-
tigate the fusion process for the cases 1.a) till 3.c). Case
0.) is used only for reference. We used the probability
wheel, according to equation (6), for the estimation of
the optimal state x, since highly influenced traffic sensor
data are merged reflecting the expected higher degree of
uncertainty of the data.
The tables I to VII show the achieved estimation

errors of the vehicle classes with naive BDF (row BDF)
according to equation (3) in comparison to the extended
BNDF (row BNDF), which considers the the nodes T,
O and R, according to equation (4) and Fig. 6.
We considered two kinds of estimation errors for the

evaluation of the comparison between BNDF and BDF.
The relative Class Related Error CRE(x) of vehicle class
x is given by:

CRE(x) =
FDV(x)

CDV(x) +FDV(x)
8 x 2 X,

with CDV(x) denoting the number of correctly detected
vehicles of class x and FDV(x) denoting the number of
false detected vehicles of class x. The calculation of the
CREs of the vehicle class of interest informs us about
the accuracy of the fusion process in a class related
context. Since some vehicle classes can be detected
more or less better than other, the CREs differ. The
accumulation of FDV(x), 8x 2 X, in relation to the sum
of all detected vehicles, yields the Total Classification
Error (TCE):

TCE =

X
x2X

FDV(x)X
x2X
(CDV(x) +FDV(x))

(7)

which allows us to state something about how accurate
and successful the fusion process is overall. Although
the TCE can be decreased by far, it might happen, that
there are vehicle classes, whose CREs increase by far
or which cannot be determined anymore, i.e. their CREs
reach 100%. Depending on the fusion task to be solved
and the underlying operational areas of the applied
sensors, the fusion process can be successful if the TCE
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decreases and some CREs increase. For instance, this
might be the case for an average estimation of the travel
times for traffic management. On the other hand, the
fusion process can be unsuccessful, if there is at least
one CRE increasing or reaching even 100%, e.g. in the
case of enforcement at tollgates on motorways. Because
of these facts, the two terms CRE-successful fusion
and TCE-successful fusion are introduced to distinguish
between the two error metrics above.
The relative discrepancies between the TCEs and the

CREs in the case of BNDF and in the case of the naive
BDF are given by ¢TCE and ¢CRE respectively.
In the following, the simulation results of the con-

sidered cases are given and interpreted. It is shown, that
modelling the affecting conditions as additional nodes
in a BN usually, but not generally, yield improvements
of the vehicle class estimates. Although the TCEs de-
crease in any cases in BNDF, the CREs of some vehicle
classes may increase.
1) None Affected Sensors–Case 0.): As mentioned

above, if both sensors work optimally, i.e. there is no af-
fecting influence set E, optimal results for vehicle clas-
sification are obtained. In this case the results for BDF
and BNDF are identical. 807 of 65,000 vehicle class
estimates are erroneous (TCE = 1:24%). The CREs for
each vehicle classes are the following: CRE(C) = 0:5%,
CRE(C+) = 19:0%, CRE(V) = 2:6%, CRE(L) = 3:9%,
CRE(L+) = 18:0%, CRE(D) = 5:3%, CRE(B) = 20:3%,
CRE(M) = 18:3% and CRE(N) = 29:2%. These results
are used for reference.
2) Affected Video Detector–Cases 1.a) to 1.c): As

expected, if there is only one sensor affected by some
influence set E, the vehicle classification with BNDF
yields much better results, than by BDF, which had al-
ready been stated in the underlying paper [9]. Here, the
TCEs decrease from 8.7% (5,644 erroneous vehicles),
10.0% (6,517) and 10.9% (7,097) to 5.0% (3,241), 3.7%
(2,430) and 4.2% (2,751) for the cases 1.a), 1.b) and
1.c) respectively. See the tables I, II and III for more
results. In almost any case the CREs decrease by far, up
to ¢CRE(M) =¡88% in case 1.b), whereas there is ex-
actly one significant increase of the CRE of vehicle class
L in the case 1.c). Since the class C ist strongly overrep-
resented by the prior probability P(x= C) = 85%, it is
not surprising, that there can be achieved an enormous
error reduction for this vehicle class up to ¢CRE(C) =
¡79% in case 1.c) as well. There are also some other
cases, where the vehicle classes C+ and N cannot be de-
tected at all, i.e. their CREs reached 100%. Furthermore,
if the classification results achieved here are compared
with the unaffected reference case 0., it can be ascer-
tained, that there is an reduction of the CREs of the class
M from 29.2% to 11.8%, i.e. we could even improve the
unaffected fusion results by far. Considering the three
cases, we can speak of a TCE-successful fusion and an
almost totally CRE-succesful fusion for vehicle classifi-
cation, if the sensor properties, affected by the modelled
conditions are considered in the BNDF model. As a

consequence, we are able to improve the measurements
of environmental influenced sensors, whose properties
and dependencies are modelled in a particular BN, by
environmental independent sensors.
3) Affected Loop Detector–Case 2.): If the video

detector works optimally and the loop detector is af-
fected by the traffic state, i.e. the influence set is e=
ft2g, the simulation results of the cases 1.a) to 1.c) are
mostly verified. Altogether, there is a reduction of the
TCE from 3.5% (2,298 erroneous vehicles) to 3.1%
(1,989). See table IV for results. The CRE for class
L+ is decreased by far: ¢CRE(L+) =¡62%. But there
are also increases of the CREs for the vehicle classes
V, L and N. As a result, vehicle class N cannot be cor-
rectly classified anymore. The fusion results can be said
to be TCE-succesful and almost CRE-successful. Com-
pletely CRE-unsuccessful are the CREs for the classes L
and N.
4) Both Sensors Affected–Cases 3.a) to 3.c): If

both sensors are affected by some influence set E, we
have the worst conditions for detecting and classify-
ing vehicles on the road. Here, the TCEs decrease from
17.4%, 27.1% and 26.3% to 10.2%, 8.8% and 9.5% in
the cases 3.a), 3.b) and 3.c) respectively. That means the
TCEs reduce by 41%, 67% and 64%, resprectively. See
table V, VI and VII for results. The overall results show
incredible improvements, due to the consideration of the
sensors’ dependencies in the BNDF model, but there are
also weightily drawbacks in accordance with the CREs
of some vehicle classes. Since class C is strongly over-
represented by the prior probabiliy P(x), the superpo-
sition of the influences make the correct classification
of C much easier, thus the CREs of class C in BNDF
are very low. In contrast, the CREs of other vehicle
classes increase and some reach 100%. Noticable is for
instance the increase of the CRE(L) by 184% and 44%
in the cases 3.b) and 3.c) respectively.
If the fusion in these cases is evaluated, we can state,

that we have very TCE-successful fusion, but CRE-
unsuccessful fusion in almost any case and for almost
each vehicle class, which is usually unacceptable. Due
to the fact, that BDF also behaves poorly, we cannot
even speak of good fusion results in general. Under
such difficult circumstances and again, depending on
the fusion task to solve in accordance with the underly-
ing traffic related problem, one should think about the
reduction of the nine vehicle classes to maybe two, for
instance combining car similar vehicles to the first class
and lorry similar vehicle to the second class.
5) Summary of the Results in the Tables I to VII:

Summarising the seven tables, we can state, that usu-
ally BDF performs poorly, because of the inherent se-
lection bias, yielding the addressed over- and under-
counting of specified vehicle classes. In contrast, in the
case of BNDF, the consideration of the sensors’ sur-
rounding environment and other phenomena like traf-
fic process related dependencies, affecting the sensors’
performance, in the fusion model, yielded an explicit
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TABLE I

CREs for Vehicle Classification in the Case 1.a) [%]

C C+ V L L+ D B M N

BDF 3.8 94.0 26.1 25.4 86.3 39.7 88.1 99.5 98.9
BNDF 2.7 100 9.0 17.3 46.6 26.1 42.7 17.9 100
¢CRE ¡27 +6 ¡66 ¡32 ¡46 ¡34 ¡52 ¡82 +1

¢TCE By consideration of e= fo2g in BNDF: ¡42:6%

TABLE II

CREs for Vehicle Classification in the Case 1.b) [%]

C C+ V L L+ D B M N

BDF 8.6 98.3 7.9 8.3 63.4 14.1 66.9 95.8 92.4
BNDF 2.5 19.2 7.3 8.6 20.1 15.9 53.5 11.8 38.0
¢CRE ¡71 ¡81 ¡8 +4 ¡68 +12 ¡20 ¡88 ¡59
¢TCE By Consideration of e= fr2g in BNDF: ¡62:7%

TABLE III

CREs for Vehicle Classification in the Case 1.c) [%]

C C+ V L L+ D B M N

BDF 7.9 99.6 16.1 21.9 72.6 26.8 80.8 96.2 94.2
BNDF 1.7 37.1 8.5 35.2 34.5 32.2 32.0 35.9 100
¢CRE ¡79 ¡63 ¡48 +61 ¡52 ¡14 ¡60 ¡634 +6

¢TCE By Consideration of e= fo2,r2g in BNDF: ¡61:2%

TABLE IV

CREs for Vehicle Classification in the Case 2.) [%]

C C+ V L L+ D B M N

BDF 1.6 71.3 5.9 8.6 79.2 28.0 36.2 30.7 88.6
BNDF 1.2 71.3 6.6 11.2 29.4 22.2 36.2 30.7 100
¢CRE ¡25 §0 +13 +31 ¡62 ¡21 §0 §0 +13

¢TCE By Consideration of e= ft2g in BNDF: ¡13:4%

TCE-successful fusion for any considered case. See
Fig. 7 for the results. The best results were obtained,
if the worst conditions were considered in the fusion
model. In the case of two sensors, one traffic process
dependent loop detector and one weather and traffic
process affected video sensor, we achieved an improve-
ment of the fusion process by more than 60%. Conse-
quently, we are able to enhance environmental indepen-
dent sensors by strongly environmental dependent sen-
sors, whose properties and dependencies are modelled
in a particular BN. That means since there is no single
sensor, which is environmentally independent, the sen-
sors should be affected in different ways and/or different
domains.

On the other hand, the results show, that BNDF (and
also BDF) is not CRE-successful in any case, particu-

TABLE V

CREs for Vehicle Classification in the Case 3.a) [%]

C C+ V L L+ D B M N

BDF 9.9 97.6 38.6 37.6 95.9 74.8 90.1 100 100
BNDF 2.8 100 36.4 44.3 100 100 100 100 100
¢CRE ¡76 +2 ¡6 +18 +4 +34 +11 §0 §0
¢TCE By Consideration of e= ft2,o2g in BNDF: ¡41:1%

TABLE VI

CREs for Vehicle Classification in the Case 3.b) [%]

C C+ V L L+ D B M N

BDF 26.0 99.6 22.5 18.7 90.6 57.0 65.8 96.8 100
BNDF 3.9 73.7 21.8 53.1 100 46.2 65.8 59.3 100
¢CRE ¡85 ¡26 ¡3 +184 +10 ¡19 §0 ¡39 §0
¢TCE By Consideration of e= ft2,r2g in BNDF: ¡67:4%

TABLE VII

CREs for Vehicle Classification in the Case 3.c) [%]

C C+ V L L+ D B M N

BDF 23.5 99.6 29.0 31.9 92.8 64.3 84.8 98.5 98.0
BNDF 3.3 100 31.3 45.9 100 66.3 84.8 47.8 100
¢CRE ¡86 +0:4 +8 +44 +8 +3 §0 ¡52 +2

¢TCE By Consideration of e= ft2,o2,r2g in BNDF: ¡63:8%

Fig. 7. The TCEs of the cases 0.) (for reference) to 3.c) are plotted
for BDF and BNDF. The most improvements occur in 3.a) to 3.c).

larly if the conditions for both sensors are bad. Depend-
ing on the fusion task to be solved and the underlying
task in traffic management, it must be decided, whether
the fusion results are beneficial or not. If necessary, the
classification domain for vehicles must be reduced to
two classes for instance.
The results show, what magnitude of improvements

in data fusion can be achieved, if external and inter-
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nal affects are considered in the fusion model. Nev-
ertheless, the obtained error reductions of the vehicle
class estimates must be interpreted in a correct man-
ner, because the simulations were done on the basis
of synthetic data (which was supplemented with real
24-hour traffic data). When using real traffic data, the
fusion error reduction results are supposed to be slightly
worse.
6) Computational Performance: The computation

and evaluation of the simple BN in Fig. 6 can be done
in real-time, since it is small and consists of mainly bi-
nary evidence nodes. However, if one wishes to consider
more external and internal influences, which are char-
acterised by more states, affecting the performance of
the sensors, the computational complexity grows expo-
nentially. Consequently, the use of larger, more realistic
BN for data fusion in traffic surveillance, has to be in-
vestigated with regard to the accuracy and reliability of
the traffic data, real-time applicability, etc.

6. CONCLUSIONS AND FUTURE PROSPECTS

In this paper a data fusion method was introduced,
that is based on the concept of Bayesian Networks,
called Bayesian Network Data Fusion (BNDF). Since
sensors are time variant systems with particular func-
tional principles, the measurements are as good as the
a priori knowledge about the sensors and the underlying
process are and as good as the measurements of the sen-
sors are. The sensors are affected by the external, e.g.
environmental conditions, and internal conditions, e.g.
the physical life of the sensor, yielding selection bias
in the resulting measuring data. Thus, the consideration
of these dependencies in a BN model are indispensable
to correct selection bias and thus, improve the fusion
process and the resulting data.
The obtained results for vehicle classification show,

that the BNDF model is able to infer vehicle classes
by systematically taking into account sensor measure-
ments (the vehicle evidences), environmental conditions
(the environmental evidences) and traffic process related
conditions (traffic state evidences and occlusions). By
the combination of two heterogeneous sensors–here, a
weather and traffic process dependent video sensor and
a traffic process dependent inductive loop detector–
the accuracy of the estimates of the vehicle classes is
improved by up to more than 60%, i.e. the fusion pro-
cess is TCE-successful in any case. The fusion results
are also CRE-successful, if it can be ensured, that the
sensors are affected by some differing influence sets.
Under certain difficult circumstances, the fusion pro-
cess is usually not CRE-successful, which means, the
CREs increase by far or reach even 100%, i.e. the ve-
hicles cannot be classified correctly at all. As a con-
sequence, the applied sensors should differ in their in-
ternal and external influences. Furthermore, the sensors

must be used carefully. Depending on the fusion task
to be solved and the underlying traffic related applica-
tion, one must decide, whether a not CRE-successful
fusion is sufficently satisfied. The decisions of a traf-
fic manager will differ in the case of simply measuring
averaged travel times and in the case of the classifac-
tion of vehicles for enforcment and monetary applica-
tions.
The obtained results must be interpreted carefully,

because the simulations were done on the basis of syn-
thetic traffic data, supplemented with real traffic data.
Moreover, the conditions for an optimal performance
of the video sensor were intentionally violated by the
modelled bad conditions. Vice versa, if the conditions
are optimal, the fusion results will be even better. The
investigation of a two homogeneous sensor fusion was
not of interest in this article. Since, homogeneous de-
tectors are affected by the same internal and external
conditions, selection bias cannot be corrected in general.
Nevertheless, an improvement of the fusion process is
obvious.
The results further show, what magnitude of im-

provements in data fusion can be achieved, if external
and internal affects are considered in the fusion model.
But, in case of real traffic data, the fusion results are
supposably slightly worse.
Our current work is characterised by the applica-

tion of the proposed method (using probability wheel
and MAP estimation) to real traffic data. Thereby not
only video sensors and their dependencies on weather
conditions, but also other sensors, e.g. inductive loop
detectors, infrared sensors, etc. and their influences by
external and internal conditions need to be investigated
and quantified in a BNDF model, because the con-
cept of BNDF is not restricted to any particular sen-
sor type, but generally valid. Thus, the creation and
application of an adequate BN sensor model is sup-
posed to improve the fusion results and to correct se-
lection bias in general. In this regard it has to be
stated, that the simulations done and the results achieved
cannot be extrapolated, since they refer only on two
specific sensors, with certain properties and applica-
tions.
Furthermore, the concept of adaptive probability

learning is to be applied to the considered probabilistic
sensor model to investigate the considered results for
an instationary traffic process with time dependent prior
probabilities [10]. This comes along with the coupling
of the environmental nodes, e.g. the weather node, with
meteorological models to achieve more sophisticated
cases.

APPENDIX

In the following the prior probability and the CPTs
of the simulated inductive loop detector Z1 and the video
sensor Z2 are given.
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Prior Probability

P(x) = (:847 :004 :094 :026 :005 :012 :005 :006 :001)T

(8)
CPTs of the Inductive Loop Detector Z1

P(z1 j x, t1)

=

0BBBBBBBBBBBB@

:91 :01 :01 :01 :01 :01 :01 :01 :01 :01
:01 :91 :01 :01 :01 :01 :01 :01 :01 :01
:01 :01 :91 :01 :01 :01 :01 :01 :01 :01
:01 :01 :01 :91 :01 :01 :01 :01 :01 :01
:01 :01 :01 :01 :91 :01 :01 :01 :01 :01
:01 :01 :01 :01 :01 :91 :01 :01 :01 :01
:01 :01 :01 :01 :01 :01 :91 :01 :01 :01
:01 :01 :01 :01 :01 :01 :01 :91 :01 :01
:01 :01 :01 :01 :01 :01 :01 :01 :91 :01

1CCCCCCCCCCCCA
(9)

P(z1 j x, t2)

=

0BBBBBBBBBBBB@

:73 :03 :03 :03 :03 :03 :03 :03 :03 :03
:18 :36 :18 :04 :04 :04 :04 :04 :04 :04
:03 :03 :73 :03 :03 :03 :03 :03 :03 :03
:03 :03 :03 :73 :03 :03 :03 :03 :03 :03
:04 :05 :05 :13 :27 :27 :13 :02 :03 :01
:04 :05 :05 :13 :27 :27 :13 :02 :03 :01
:03 :03 :03 :03 :03 :03 :73 :03 :03 :03
:10 :01 :03 :03 :01 :01 :03 :73 :03 :02
:11 :11 :11 :11 :11 :11 :11 :11 :11 :01

1CCCCCCCCCCCCA
:

(10)

CPTs of the Video Sensor Z2

P(z2 j x,o1,r1)

=

0BBBBBBBBBBBB@

:91 :01 :01 :01 :01 :01 :01 :01 :01 :01
:01 :91 :01 :01 :01 :01 :01 :01 :01 :01
:01 :01 :91 :01 :01 :01 :01 :01 :01 :01
:01 :01 :01 :91 :01 :01 :01 :01 :01 :01
:01 :01 :01 :01 :91 :01 :01 :01 :01 :01
:01 :01 :01 :01 :01 :91 :01 :01 :01 :01
:01 :01 :01 :01 :01 :01 :91 :01 :01 :01
:01 :01 :01 :01 :01 :01 :01 :91 :01 :01
:01 :01 :01 :01 :01 :01 :01 :01 :91 :01

1CCCCCCCCCCCCA
(11)

P(z2 j x,o2,r1)

=

0BBBBBBBBBBBB@

:20 :06 :06 :06 :05 :05 :06 :20 :06 :20
:20 :05 :05 :10 :05 :05 :05 :20 :05 :20
:20 :05 :10 :10 :10 :07 :10 :07 :14 :07
:10 :05 :10 :15 :125 :125 :15 :05 :10 :05
:10 :05 :10 :15 :15 :15 :15 :05 :05 :05
:10 :05 :10 :15 :15 :15 :15 :05 :05 :05
:10 :05 :15 :15 :10 :10 :15 :05 :10 :05
:01 :01 :01 :01 :01 :01 :01 :01 :01 :91
:12 :12 :12 :12 :12 :12 :12 :12 :02 :02

1CCCCCCCCCCCCA
(12)

P(z2 j x,o1,r2)

=

0BBBBBBBBBBBBBBBB@

:01 :01 :01 :91 :01 :01 :01 :01 :01 :01

:01 :01 :01 :07 :40 :40 :07 :01 :01 :01

:01 :01 :22 :70 :01 :01 :01 :01 :01 :01

:01 :01 :01 :40 :07 :07 :40 :01 :01 :01

:01 :01 :01 :07 :40 :40 :07 :01 :01 :01

:01 :01 :01 :07 :40 :40 :07 :01 :01 :01

:01 :01 :01 :40 :07 :07 :40 :01 :01 :01

:55 :05 :05 :05 :05 :05 :05 :05 :05 :05

:10 :10 :10 :10 :10 :10 :10 :10 :10 :10

1CCCCCCCCCCCCCCCCA
(13)

P(z2 j x,o2,r2)

=

0BBBBBBBBBBBBBBBB@

:03 :03 :03 :73 :03 :03 :03 :03 :03 :03

:15 :01 :03 :07 :30 :30 :07 :05 :01 :01

:10 :01 :18 :65 :01 :01 :01 :01 :01 :01

:08 :01 :07 :25 :19 :17 :20 :01 :01 :01

:05 :03 :05 :12 :30 :30 :12 :01 :01 :01

:05 :03 :05 :12 :30 :30 :12 :01 :01 :01

:08 :01 :07 :20 :19 :17 :25 :01 :01 :01

:03 :03 :03 :03 :03 :03 :03 :03 :03 :73

:10 :10 :10 :10 :10 :10 :10 :10 :10 :10

1CCCCCCCCCCCCCCCCA
:

(14)

REFERENCES

[1] Bundesanstalt für Straenwesen (BAST)
Technische Lieferbedingungen für Streckenstationen.
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which JAIF serves. It is the responsibility of the au-
thor, not ISIF, to determine whether disclosure of ma-
terials requires prior consent of other parties, and, if so,
obtain it.
Preparation of Manuscript for Publication: After a

manuscript is recommended for publication by the
editorial staff, the corresponding author prepares the
manuscript according to the guidelines below and
submits the final version of the manuscript as a pdf
file and the supporting manuscript files. Before prepar-
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ing their manuscript for publication, authors should
check for the more update version of the guidelines at
http://jaif.msubmit.net.
All manuscripts must be submitted electronically

in pdf format with the supporting files in one of the
following formats: Plain TeX, AMS-TeX, LaTeX, or
MS-Word with the MathType extension for equations
and in-text mathematical material. The pdf file must
be created with graphics resolution set to 300 dpi or
greater. The author must approve the pdf file because it
will be used as the basis for rectifying any inconsisten-
cies in the supporting files. The supporting files must
be prepared according to the following guidelines.

² Text files should include title, authors, affiliations,
addresses, a footnote giving the dates for submis-
sion and revision and name of the editor that handed
the review, and an optional footnote acknowledging
a sponsor for the research. The information must be
included in the text files in this order.

² Abstract must be included. The abstract must include
the key words for the manuscript and include no more
than 300 words for a regular paper and 150 words for
a correspondence.

² Authors should number main section headings as 1,
2, 3, etc., and subsections as 1.1, 1.2, or 2.1. All head-
ings should be typed with title format (i.e., first letter
caps and lower case)–not in ALL CAPS. The type-
setter will convert to all caps in final formatting as
required.

² Authors should format references very carefully ac-
cording to the examples given below. Style for au-
thors’ names are initials followed by last name and it
must be followed precisely. References must be listed
alphabetically by (i) last name of first author, (ii) ini-
tials of first author, (iii) last name of second author,
(iv) initials of second author, etc. For manuscripts
with common authors and order of authors, the date
of publication should be used to select order with
the earlier publications being list first. The names of
publications must be spelled completely. In the refer-
ences, the author should use only approved abbrevi-
ations that include: No., Vol., p., pp., AIAA, IEEE,
IEE, and SPIE.

² Authors who use one of the TeX variants must pro-
vide a list of their macros and the files for the macros.
Authors who use LaTeX must include the bbl and aux
files.

² All figures must be submitted electronically as HIGH
resolution (300 dpi or better) in Color graphics
or GRAYSCALE (where shading is involved) or
BLACK AND WHITE (if simple line art) graphics
files (tif, eps, jpg, bmp). Each figure must be sup-
plied as a separate graphics file. Graphics (or cap-
tions) should NOT be embedded in the text files. The
figures must be included in the pdf file of the full
article and the pdf file must be created with graphics
resolution set to 300 dpi or greater.

² A separate file including all figure captions must be
included.

² Each table must be submitted in a separate file. Tables
(or captions) should NOT be included in text files and
should be in form of DATA–rather than graphics–
files.

² A separate file including all table captions must be
included.

² A separate text of the biography of each author must
be submitted. The text file should be less than 500
words.

² Separate graphics files of each author's photo should
be provided as a grayscale graphics file or a color
graphics file.

Examples of the references are alphabetized cor-
rectly and listed below.

BOOK:
[1] R. E. Blahut

Theory and Practice of Error Control Codes. Reading, MA:
Addison-Wesley, 1983.

PROCEEDINGS ARTICLE:
[2] T. Fichna, M. Gartner, F. Gliem, and F. Rombeck

Fault-tolerance of spacebome semiconductor mass memo-
ries.
In Twenty-Eighth Annual International Symposium on
Fault-Tolerant Computing, Digest of Papers, 1998, 408—
413.

BOOK:
[3] P. K. Lala

Fault Tolerant and Fault Testable Hardware Design. Engle-
wood Cliffs, NJ: Prentice-Hall, 1985.

WEB SITE:
[4] National Semiconductors Inc.

Homepage: http://www.national.com.

PROCEEDINGS ARTICLE:
[5] C. Paar and M. Rosner

Comparison of arithmetic architectures for reed-solomon
decoders in reconfigurable hardware.
In Proceedings of the Symposium on Field-Programmable
Custom Computing Machines, Apr. 1997, 219—225.

JOURNAL ARTICLE:
[6] N. R. Saxena and E. J. McCluskey

Parallel signature analysis design with bounds on aliasing.
IEEE Transactions on Computers, 46, 4 (Apr. 1997), 425—
438.

[7] C. I. Underwood and M. K. Oldfield
Observations on the reliability of cots-device-based solid
state data recorders operating in low-Earth orbit.
IEEE Transactions on Nuclear Science, 47, 4 (June 2000),
647—653.

WEB SITE:
[8] Xilinx Inc.

Homepage: http://www.xilinx.com.
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Call for Papers 

The Journal of Advances in Information Fusion (JAIF) seeks original 
contributions in the technical areas of research related to information 
fusion.  Authors of papers in one of the technical areas listed on the 
inside cover of JAIF are encouraged to submit their papers for peer 
review at http://jaif.msubmit.net. 

 

 

 

Call for Reviewers 

The success of JAIF and its value to the research community is 
strongly dependant on the quality of its peer review process.  
Researchers in the technical areas related to information fusion 
are encouraged to register as a reviewer for JAIF at 
http://jaif.msubmit.net.  Potential reviewers should notify via email 
the appropriate editors of their offer to serve as a reviewer. 
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