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Makings of a Good Peer Review

By accepting to be a reviewer, one takes on the re-
sponsibility to read the paper thoroughly and provide
detailed comments and explanations for rejecting, re-
vising, or accepting a paper. It is also important for a
reviewer to maintain scientific objectivity so that the
decision or score for a paper is justified. Some of the
problems that I have observed in our reviews are very
similar to those experienced by the famous physicist late
Richard Feynman while he was reviewing new school
books for California.
While at Caltech, Feynman worked in the Califor-

nia State Curriculum Commission for the Los Angeles
area (excluding the city of Los Angeles) that chose new
school books for California. The book depository sent
him a large number of books weighing about three hun-
dred pounds. The book review process was a daunting
task. However, he read all the books carefully and kept
detailed notes of the review. He worked hard in the base-
ment of his house to read the books. His wife would say
that during this review period, “it was like living over a
volcano. It would be quiet for a while, but then all of a
sudden, Bllllloooooowwwww!!!!–there would be a big
explosion from the volcano below [1].” The reason for
Feynman's reaction was that the books were very poorly
written.
Feynman went to his first meeting with other mem-

bers of the commission. Some members of the commis-
sion asked him what he thought about a certain book. He
replied that he didn't receive the book from the deposi-
tory (because the book was not complete) and therefore,
he didn't have a judgment on it [1]. However, some other
members of the commission had a rating on this missing
book and in fact; the rating on the missing book was a
little bit higher than two other books in a set of three
books [1].

served as Technical Co-chairs for the Fusion 2009 con-
ference. From the peer review process for Fusion 2009
papers, I observed that some reviewers did not read the
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papers thoroughly and gave high scores without suffi-
cient explanations. This tends to happen when the ses-
sion chair of a special session reviews papers from au-
thors that he/she has contacted for the special session.
Reviewers associated with the topic of the special ses-
sion also give a high score to a paper when it doesn't
deserve that score. This causes a number of problems.
Some weak papers may get high scores and be consid-
ered for an award. Secondly, papers near the border-
line between acceptance and rejection can be rejected.
Therefore, it is extremely important for the reviewers to
be scientifically objective and for the Technical Chairs
to assign the papers appropriately such that these prob-
lems can be avoided. We have also observed that some
reviewers have not spent a sufficient amount of time and
have done a hasty review.
Bieber [2] provides a number of useful and practical

suggestions for reviewing a conference or journal paper.
He recommends reading the submission three times:
“the first to get a feel for it, the second reading the
paper in depth, and the third to actually mark it up.” He
suggests filling out the refereeing form right after the
third reading, while things are still fresh in memory.
Halmos [3] stresses “Honesty is the Best Policy” in

mathematical writing. The same principle also applies
while reviewing a paper. If a reviewer gives a high score
to a paper without reading the paper thoroughly, then
it violates this principle. If a reviewer does not have
time to review a paper carefully, then it is best for the

reviewer to notify the editors about it. Thorough and
fair reviewing does not go unnoticed by editors, and it
can establish a good reputation for a reviewer, which
can also spread in the research community [2].
At times, I have noticed that when an associate editor

of the JAIF recommends a paper for publication and it

figures, tables, equations, and references are found. It
is quite surprising that such errors have gone unnoticed
by all of the reviewers. Technical errors as well as these
errors should have been identified by the reviewers and
addressed by the authors and checked by the associate
editor before it was recommended for publication.
The success of JAIF strongly depends on high qual-

ity, fair, and timely reviews. Therefore, I encourage ISIF
members and non-members to contact the Editor-In-
Chief or me to be reviewers for JAIF.

Mahendra Mallick
Associate Editor-in-chief

[1] Feynman, R. P.
“Surely You're Joking Mr. Feynman!”: Adventures of a Cu-
rious Character, New York, W. W. Norton & Company,
1985.

[2] Bieber, M.
“How to Review,” http://web.njit.edu/»bieber/review.html.

[3] Halmos, P. R.
In How to Write Mathematics, American Mathematical So-
ciety, 1973, 19—48.
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Martin and Osswald [15] have recently proposed many gener-

alizations of combination rules on quantitative beliefs in order to

manage the conflict and to consider the specificity of the responses

of the experts. Since the experts express themselves usually in nat-

ural language with linguistic labels, Smarandache and Dezert [13]

have introduced a mathematical framework for dealing directly also

with qualitative beliefs. In this paper we recall some element of our

previous works and propose the new combination rules, developed

for the fusion of both qualitative or quantitative beliefs.
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1. INTRODUCTION

Many fusion theories have been studied for the com-
bination of the experts opinions expressed either quan-
titatively or qualitatively such as voting rules [11], [31],
possibility theory [6], [35], and belief functions theory
[2], [17]. All these fusion approaches can be divided
basically into four steps: modeling, parameters estima-
tion (depending on the model, not always necessary)),
combination and decision. The most difficult step is pre-
sumably the first one which depends highly on the prob-
lem and application we have to cope with. However, it
is only at the combination step that we can take into
account useful information such as the conflict (partial
or total) between the experts and/or the specificity of
the expert’s response.
The voting rules are not adapted to the modeling of

conflict between experts [31]. Although both possibility
and probability-based theories can model imprecise and
uncertain data at the same time, in many applications,
the experts are only able to express their “certainty” (or
belief) only from their partial knowledge, experience
and from their own perception of the reality. In such
context, the belief function-based theories provide an
appealing general mathematical framework for dealing
with quantitative and qualitative beliefs.
In this paper we present the most recent advances

in belief functions theory for managing the conflict be-
tween the sources of evidence/experts and their speci-
ficity. For the first time in the literature both the quanti-
tative and qualitative aspects of beliefs are presented in
a unified mathematical framework. This paper actually
extends the work in two papers [13], [15] presented dur-
ing the 10th International Conference on Information
Fusion (Fusion 2007) in Québec City, Canada on July
9—12, 2007 in the session “Combination in Evidence
Theory.”
Section 2 briefly recalls the basis of belief functions

theories, i.e. the Mathematical Theory of Evidence or
Dempster-Shafer theory (DST) developed by Shafer in
1976 [2], [17], and its natural extension called Dezert-
Smarandache Theory (DSmT) [18], [19], [20]. We in-
troduce in this section the notion of quantitative and
qualitative beliefs and the operators on linguistic la-
bels for dealing directly with qualitative beliefs. Sec-
tion 3 presents the main classical quantitative combina-
tion rules used so far, i.e. Dempster’s rule, Yager’s rule,
Dubois-Prade’s rule and the recent Proportional Con-
flict Redistribution rules (PCR) proposed by Smaran-
dache and Dezert [22] and extended by Martin and Os-
swald in [19]. Some examples are given to illustrate how
these rules work. Section 4 explains through different
examples how all the classical quantitative combination
rules can be directly and simply translated/extended into
the qualitative domain in order to combine easily any
qualitative beliefs expressed in natural language by lin-
guistic labels. Section 5 proposes new general quan-
titative rules of combination which allow to take into
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account both the discounting of the sources (if any) and
the proportional conflict redistribution. The direct ex-
tension of these general rules into the qualitative do-
main is then presented in details on several examples in
Section 6.

2. BASIS OF DST AND DSmT

A. Power Set and Hyper-Power Set

In DST framework, one considers a frame of dis-
cernment £ = fμ1, : : : ,μng as a finite set of n exclusive
and exhaustive elements (i.e. Shafer’s model denoted
M0(£)). The power set of £ is the set of all subsets of
£. The order of a power set of a set of order/cardinality
j£j= n is 2n. The power set of £ is denoted 2£. For
example, if £ = fμ1,μ2g, then 2£ = fØ,μ1,μ2,μ1 [ μ2g.
In DSmT framework, one considers £ = fμ1, : : : ,μng

be a finite set of n exhaustive elements only (i.e.
free DSm-model denotedMf(£)). Eventually some in-
tegrity constraints can be introduced in this free model
depending on the nature of the problem of interest. The
hyper-power set of £ (i.e. the free Dedekind’s lattice)
denoted D£ [18] is defined as

1) Ø,μ1, : : : ,μn 2D£,
2) If A,B 2D£, then A\B, A[B 2D£,
3) No other elements belong to D£, except those

obtained by using rules 1 or 2.

If j£j= n, then jD£j · 22n . Since for any finite set
£, jD£j ¸ j2£j, we call D£ the hyper-power set of
£. For example, if £ = fμ1,μ2g, then D£ = fØ,μ1 \
μ2,μ1,μ2,μ1 [ μ2g. The free DSm model Mf(£) corre-
sponding to D£ allows to work with vague concepts
which exhibit a continuous and relative intrinsic nature.
Such concepts cannot be precisely refined in an abso-
lute interpretation because of the unreachable universal
truth.
It is clear that Shafer’s modelM0(£) which assumes

that all elements of £ are truly exclusive is a more con-
strained model than the free-DSm model Mf(£) and
the power set 2£ can be obtained from hyper-power set
D£ by introducing inMf(£) all exclusivity constraints
between elements of £. Between the free-DSm model
Mf(£) and Shafer’s modelM0(£), there exists a wide
class of fusion problems represented in term of the DSm
hybrid models denoted M(£) where £ involves both
fuzzy continuous and discrete hypotheses. The main
differences between DST and DSmT frameworks are
(i) the model on which one works with, and (ii) the
choice of the combination rule and conditioning rules
[18], [19]. In the sequel, we use the generic notation G£

for denoting either D£ (when working in DSmT with
free DSm model) or 2£ (when working in DST with
Shafer’s model).

B. Quantitative Basic Belief Assignment (BBA)

The (quantitative) basic belief assignment (BBA)
m(¢) has been introduced for the first time in 1976 by

Shafer [17] in his Mathematical Theory of Evidence
(i.e. DST). m(¢) is defined as a mapping function from
2£! [0,1] provided by a given source of evidence B
satisfying the conditions

m(Ø) = 0, (1)X
A22£

m(A) = 1: (2)

The elements of 2£ having a strictly positive mass
are called focal elements of B. The set of focal elements
of m(¢) is called the core of m(¢) and is usually denoted
F(m). The equation (1) corresponds to the closed-world
assumption [17]. As introduced by Smets [25], we can
also define the belief function only withX

A22£
m(A) = 1 (3)

and thus we can have m(Ø)> 0, working with the
open-world assumption. In order to change an open
world to a closed world, we can always add one extra
closure element in the open discriminant space £. In
the following, we assume that we always work within a
closed-world £.
The (quantitative) basic belief assignment (BBA)

m(¢) can also be defined similarly in the DSmT frame-
work by working on hyper-power set D£ instead on
classical power-set 2£ as within DST. More generally
for taking into account some integrity constraints on
(closed-world) £ (if any), m(¢) can be defined on G£ as

m(Ø) = 0, (4)X
A2G£

m(A) = 1: (5)

The conditions (1)—(5) give a large panel of defini-
tions of the belief functions, which is one of the dif-
ficulties of the theories. From any basic belief assign-
ments m(¢), other belief functions can be defined
such as the credibility Bel(¢) and the plausibility Pl(¢)
[17], [18] which are in one-to-one correspondence with
m(¢).
After combining several BBAs provided by several

sources of evidence into a single one with some cho-
sen fusion rule (see next section), one usually has also
to make a final decision to select the “best” hypoth-
esis representing the unknown truth for the problem
under consideration. Several approaches are generally
adopted for decision-making from belief functions m(¢),
Bel(¢) or Pl(¢). The maximum of the credibility function
Bel(¢) is known to provide a pessimistic decision, while
the maximum of the plausibility function Pl(¢) is often
considered as too optimistic. A common solution for
decision-making in these frameworks is to use the pig-
nistic probability denoted BetP(X) [25] which offers a
good compromise between the max of Bel(¢) and the
max of Pl(¢). The pignistic probability in DST frame-
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work is given for all X 2 2£, with X 6=Ø by

BetP(X) =
X

Y22£ ,Y 6=Ø

jX \Yj
jYj

m(Y)
1¡m(Ø) , (6)

for m(Ø) 6= 1. The pignistic probability can also be
defined in DSmT framework as well (see Chapter 7 of
[18] for details).
When we can quantify/estimate the reliability of

each source of evidence, we can weaken the basic be-
lief assignment before the combination by the classical
discounting procedure [17]

m0(X) = ®m(X), 8 X 2 2£ n f£g
m0(£) = ®m(£)+1¡®,

(7)

where ® 2 [0,1] is the discounting factor of the source of
evidence B that is in this case the reliability of the source
of evidence B, eventually as a function of X 2 2£. Same
procedure can be applied for BBAs defined on G£ in
DSmT framework.

C. Qualitative Basic Belief Assignment (QBBA)

1) Qualitative operators on linguistic lables

Recently Smarandache and Dezert [13], [19] have
proposed an extension of classical quantitative belief
assignments and numerical operators to qualitative be-
liefs expressed by linguistic labels and qualitative op-
erators in order to be closer to what human experts
can easily provide. In order to compute directly with
words/linguistic labels and qualitative belief assign-
ments instead of quantitative belief assignments over
G£, Smarandache and Dezert have defined in [19]
a qualitative basic belief assignment qm(¢) as a map-
ping function from G£ into a set of linguistic labels
L= fL0, L̃,Ln+1g where L̃= fL1, : : : ,Lng is a finite set
of linguistic labels and where n¸ 2 is an integer. For
example, L1 can take the linguistic value “poor,” L2 the
linguistic value “good,” etc. L̃ is endowed with a to-
tal order relationship Á, so that L1 Á L2 Á ¢¢ ¢ Á Ln. To
work on a true closed linguistic set L under linguis-
tic addition and multiplication operators, Smarandache
and Dezert extended naturally L̃ with two extreme val-
ues L0 = Lmin and Ln+1 = Lmax, where L0 corresponds
to the minimal qualitative value and Ln+1 corresponds
to the maximal qualitative value, in such a way that
L0 Á L1 Á L2 Á ¢¢ ¢ Á Ln Á Ln+1, where Á means inferior
to, less (in quality) than, or smaller than, etc. Labels
L0,L1,L2, : : : ,Ln,Ln+1 are called linguistically equidistant
if: Li+1¡Li = Li¡Li¡1 for all i= 1,2, : : : ,n where the
definition of subtraction of labels is given in the se-
quel by (14). In the sequel Li 2 L are assumed lin-
guistically equidistant1 labels such that we can make
an isomorphism between L= fL0,L1,L2, : : : ,Ln,Ln+1g

1If the labels are not equidistant, the q-operators still work, but they
are less accurate.

and f0,1=(n+1),2=(n+1), : : : ,n=(n+1),1g, defined as
Li = i=(n+1) for all i= 0,1,2, : : : ,n,n+1. Using this
isomorphism, and making an analogy to the classical
operations of real numbers, we are able to justify and
define precisely the following qualitative operators (or
q-operators for short).

² q-addition of linguistic labels

Li+Lj =
i

n+1
+

j

n+1
=
i+ j
n+1

= Li+j , (8)

we set the restriction that i+ j < n+1; in the case
when i+ j ¸ n+1 we restrict Li+j = Ln+1 = Lmax.
This is the justification of the qualitative addition we
have defined.

² q-multiplication of linguistic labels2
a) Since

Li ¢Lj =
i

n+1
¢ j

n+1
=
(i ¢ j)=(n+1)

n+1
,

the best approximation would be L[(i¢j)=(n+1)], where
[x] means the closest integer to x (with [n+0:5] =
n+1, 8n 2N), i.e.

Li ¢Lj = L[(i¢j)=(n+1)]: (9)

For example, if we have L0, L1, L2, L3, L4, L5,
corresponding to respectively 0, 0.2, 0.4, 0.6, 0.8,
1, then L2 ¢L3 = L[(2¢3)=5] = L[6=5] = L[1:2] = L1; using
numbers: 0:4 ¢ 0:6 = 0:24¼ 0:2 = L1; also L3 ¢L3 =
L[(3¢3)=5] = L[9=5] = L[1:8] = L2; using numbers 0:6 ¢ 0:6
= 0:36¼ 0:4 = L2.
b) A simpler approximation of the multiplication, but
less accurate (as proposed in [19]) is thus

Li ¢Lj = Lminfi,jg: (10)

² Scalar multiplication of a linguistic label
Let a be a real number. We define the multiplication
of a linguistic label by a scalar as follows

a ¢Li =
a ¢ i
n+1

¼
½
L[a¢i] if [a ¢ i]¸ 0,
L¡[a¢i] otherwise:

(11)

² Division of linguistic labels
a) Division as an internal operator: = : L ¢L! L. Let
j 6= 0, then

Li=Lj =
½
L[(i=j)¢(n+1)] if [(i=j) ¢ (n+1)]< n+1,
Ln+1 otherwise:

(12)

The first equality in (12) is well justified because
when [(i=j) ¢ (n+1)]< n+1, one has

Li=Lj =
i=(n+1)
j=(n+1)

=
(i=j) ¢ (n+1)

n+1
= L[(i=j)¢(n+1)]:

2The q-multiplication of two linguistic labels defined here can be
extended directly to the multiplication of n > 2 linguistic labels. For
example the product of three linguistic label will be defined as Li ¢
Lj ¢Lk = L[(i¢j¢k)=(n+1)(n+1)], etc.
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For example, if we have L0, L1, L2, L3, L4, L5, cor-
responding to respectively 0, 0.2, 0.4, 0.6, 0.8, 1,
then: L1=L3 = L[(1=3)¢5] = L[5=3] = L[1:66] ¼ L2. L4=L2 =
L[(4=2)¢5] = L[2¢5] = Lmax = L5 since 10> 5.
b) Division as an external operator: ® : L ¢L!R+.
Let j 6= 0. Since Li®Lj = (i=(n+1))=(j=(n+1)) =
i=j, we simply define

Li®Lj = i=j: (13)

Justification of b): When we divide say L4=L1 in the
above example, we get 0:8=0:2 = 4, but no label is
corresponding to number 4 which is not included in
the interval [0,1], hence the division as an internal
operator we need to get as a response label, so in
our example we approximate it to Lmax = L5, which
is a very rough approximation! Therefore, depending
on the fusion combination rules, it may be better
to consider the qualitative division as an external
operator, which gives us the exact result.

² q-subtraction of linguistic labels given by ¡ : L ¢L!
fL,¡Lg,

Li¡Lj =
½
Li¡j if i¸ j,
¡Lj¡i if i < j:

(14)

where ¡L= f¡L1,¡L2, : : : ,¡Ln,¡Ln+1g. The q-sub-
traction above is well justified since when i¸ j, one
has Li¡Lj = i=(n+1)¡ j=(n+1) = (i¡ j)=(n+1).
The previous qualitative operators are logical due to

the isomorphism between the set of linguistic equidis-
tant labels and a set of equidistant numbers in the in-
terval [0,1]. These qualitative operators are built exactly
on the track of their corresponding numerical operators,
so they are more mathematically defined than the ad-
hoc definitions of qualitative operators proposed in the
literature so far. The extension of these operators for
handling quantitative or qualitative enriched linguistic
labels can be found in [13].

Remark about doing multi-operations on labels

When working with labels, no matter how many
operations we have, the best (most accurate) result is
obtained if we do only one approximation. That one
should be at the end. For example, if we have to
compute terms like LiLjLk=(Lp+Lq) as for qualitative
proportional conflict redistribution (QPCR) rule (see
example in Section 4), we compute all operations as
defined above. Without any approximations (i.e. not
even calculating the integer part of indexes, neither
replacing by n+1 if the intermediate results is bigger
than n+1). Then

LiLjLk
Lp+Lq

=
L(ijk)=(n+1)2

Lp+q

= L (ijk)=(n+1)2

p+q ¢(n+1)

= L (ijk)=(n+1)
p+q

= L ijk
(n+1)(p+q)

, (15)

and now, when all work is done, we compute the
integer part of the index, i.e. [ijk=((n+1)(p+ q))] or
replace it by n+1 if the final result is bigger than
n+1. Therefore, the term LiLjLk=(Lp+Lq) will take the
linguistic value Ln+1 whenever [ijk=((n+1)(p+ q))]>
n+1. This method also insures us of a unique result,
and it is mathematically closer to the result that would
be obtained if working with corresponding numerical
masses. Otherwise, if one approximates either at the
beginning or end of each operation or in the middle
of calculations, the inaccuracy propagates (becomes
bigger) and we obtain different results, depending on
the places where the approximations were done. If we
need to round the labels’ indexes to integer indexes, for
a better accuracy of the result, this rounding must be
done at the very end. If we work with fractional/decimal
indexes (therefore no approximations), then we can
normally apply the qualitative operators one by one
in the order they are needed; in this way the quasi-
normalization is always kept.

2) Quasi-normalization of qm(¢)
There is no known way to define a normalized qm(¢),

but a qualitative quasi-normalization [19], [24] is never-
theless possible when considering equidistant linguistic
labels because in such case, qm(Xi) = Li, is equivalent
to a quantitative mass m(Xi) = i=(n+1) which is nor-
malized if X

X2G£
m(X) =

X
k

ik=(n+1) = 1,

but this one is equivalent toX
X2G£

qm(X) =
X
k

Lik = Ln+1:

In this case, we have a qualitative normalization, similar
to the (classical) numerical normalization. However, if
the previous labels L0,L1,L2, : : : ,Ln,Ln+1 from the set L
are not equidistant, the interval [0,1] cannot be split into
equal parts according to the distribution of the labels.
Then it makes sense to consider a qualitative quasi-
normalization, i.e. an approximation of the (classical)
numerical normalization for the qualitative masses in
the same way X

X2G£
qm(X) = Ln+1:

In general, if we don’t know if the labels are equidis-
tant or not, we say that a qualitative mass is quasi-
normalized when the above summation holds. In the
sequel, for simplicity, one assumes to work with quasi-
normalized qualitative basic belief assignments.
From these very simple qualitative operators, it is

possible to extend directly all the quantitative combi-
nation rules to their qualitative counterparts as we will
show in the sequel.
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3) Working with refined labels

² We can further extend the standard labels (those with
positive integer indexes) to refined labels, i.e. labels
with fractional/decimal indexes. In such a way, we
get a more exact result, and the quasi-normalization
is kept.
Consider a simple example: If L2 = good and L3 =
best, then L2:5 = better, which is a qualitative (a re-
fined label) in between L2 and L3.

² Further, we consider the confidence degree in a label,
and give more interpretations/approximations to the
qualitative information.
For example: L2=5 = (1=5) ¢L2, which means that we
are 20% confident in label L2; or L2=5 = (2=5) ¢L1,
which means that we are 40% confident in label
L1, so L1 is closer to reality than L2; we get 100%
confidence in L2=5 = 1 ¢L2=5.
4) Working with non-equidistant labels: We are not

able to find (for non-equidistant labels) exact corre-
sponding numerical values in the interval [0,1] in order
to reduce the qualitative fusion to a quantitative fusion,
but only approximations. We, herfore, prefer the use of
labels.

3. CLASSICAL QUANTITATIVE COMBINATION
RULES

The normalized conjunctive combination rule also
called Dempster-Shafer (DS) rule is the first rule pro-
posed in the belief theory by Shafer following Demp-
ster’s works in sixties [2]. In the belief functions theory
one of the major problems is the conflict repartition en-
lightened by the famous Zadeh’s example [36]. Since
Zadeh’s paper, many combination rules have been pro-
posed, building a solution to this problem [4], [5], [7]—
[9], [14], [21], [26], [27], [34]. In recent years, some
unification rules have been proposed [1], [12], [29].
We briefly browse the major rules developed and used
in the fusion community working with belief functions
through last past thirty years (see [30] and [19] for a
more comprehensive survey).
To simplify the notations, we consider only two

independent sources of evidence B1 and B2 over the
same frame £ with their corresponding BBAs m1(¢)
and m2(¢). Most of the fusion operators proposed in
the literature use either the conjunctive operator, the
disjunctive operator or a particular combination of them.
These operators are respectively defined 8A 2G£, by

m_(A) = (m1 _m2)(A) =
X
X,Y2G£
X[Y=A

m1(X)m2(Y),

(16)

m^(A) = (m1 ^m2)(A) =
X
X,Y2G£
X\Y=A

m1(X)m2(Y):

(17)

The global/total degree of conflict between the sources
B1 and B2 is defined by

k
¢
=m^(Ø) =

X
X ,Y2G£
X\Y=Ø

m1(X)m2(Y): (18)

If k is close to 0, the BBAs m1(¢) and m2(¢) are almost
not in conflict, while if k is close to 1, the BBAs are
almost in total conflict. Next, we briefly review the
main common quantitative fusion rules encountered in
the literature and used in engineering applications.

EXAMPLE 1 Let’s consider the 2D frame £ = fA,Bg
and two experts providing the following quantitative
belief assignments (masses) m1(¢) and m2(¢) as described
in Table I.

TABLE I
Quantitative Inputs for Example 1

A B A[B
m1(¢) 1=6 3=6 2=6
m2(¢) 4=6 1=6 1=6

The disjunctive operator yields the following result

m_(A) =m1(A)m2(A) = (1=6) ¢ (4=6) = 4=36,
m_(B) =m1(B)m2(B) = (3=6) ¢ (1=6) = 3=36,

m_(A[B) =m1(A)m2(B) +m1(B)m2(A)
+m1(A)m2(A[B) +m2(A)m1(A[B)
+m1(B)m2(A[B) +m2(B)m1(A[B)
+m1(A[B)m2(A[B)

= (1=6) ¢ (1=6)+ (3=6) ¢ (4=6)
+ (1=6) ¢ (1=6)+ (4=6) ¢ (2=6)
+ (3=6) ¢ (1=6)+ (1=6) ¢ (2=6)
+ (2=6) ¢ (1=6)

= 29=36,

while the conjunctive operator yields

m^(A) =m1(A)m2(A) +m1(A)m2(A[B)
+m2(A)m1(A[B)

= (1=6) ¢ (4=6)+ (1=6) ¢ (1=6)+ (4=6) ¢ (2=6)
= 13=36,

m^(B) =m1(B)m2(B) +m1(B)m2(A[B)
+m2(B)m1(A[B)

= (3=6) ¢ (1=6)+ (3=6) ¢ (1=6)+ (1=6) ¢ (2=6)
= 8=36,
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m^(A[B) =m1(A[B)m2(A[B) = (2=6) ¢ (1=6)=2=36,

m^(A\B)
¢
=m^(A\B) =m1(A)m2(B)
+m2(B)m1(B)

= (1=6) ¢ (1=6)+ (4=6) ¢ (3=6) = 13=36:
² Dempster’s rule [3]
This combination rule has been initially proposed

by Dempster and then used by Shafer in DST frame-
work. We assume (without loss of generality) that the
sources of evidence are equally reliable. Otherwise a
discounting preprocessing is first applied. It is defined
on G£ = 2£ by forcing mDS(Ø)

¢
=0 and 8A 2G£ n fØg

by
mDS(A) =

1
1¡ km^(A) =

m^(A)
1¡m^(Ø)

: (19)

When k = 1, this rule cannot be used. Dempster’s rule
of combination can be directly extended for the combi-
nation of N independent and equally reliable sources of
evidence and its major interest comes essentially from
its commutativity and associativity properties. Demp-
ster’s rule corresponds to the normalized conjunctive
rule by reassigning the mass of total conflict onto all
focal elements through the conjunctive operator. The
problem enlightened by the famous Zadeh’s exam-
ple [36] is the repartition of the global conflict. In-
deed, consider £ = fA,B,Cg and two experts opinions
given by m1(A) = 0:9, m1(C) = 0:1, and m2(B) = 0:9,
m2(C) = 0:1, the mass given by Dempster’s combina-
tion is mDS(C) = 1 which looks very counter-intuitive
since it reflects the minority opinion. The generalized
Zadeh’s example proposed by Smarandache and Dez-
ert in [18], shows that the results obtained by Demp-
ster’s rule can moreover become totally independent of
the numerical values taken by m1(¢) and m2(¢) which
is much more surprising and difficult to accept with-
out reserve for practical fusion applications. To resolve
this problem, Smets [26] suggested in his Transferable
Belief Model (TBM) framework [28] to consider £ as
an open-world and therefore to use the conjunctive rule
instead Dempster’s rule at the credal level. At credal
level m^(Ø) is interpreted as a non-expected solution.
The problem is actually just postponed by Smets at the
decision/pignistic level since the normalization (division
by 1¡m^(Ø)) is also required in order to compute the
pignistic probabilities of elements of £. In other words,
the non-normalized version of Dempster’s rule corre-
sponds to the Smets’ fusion rule in the TBM frame-
work working under an open-world assumption, i.e.
mS(Ø) = k =m^(Ø) and 8A 2G£ n fØg,mS(A) =m^(A).
EXAMPLE 2 Let’s consider the 2D frame and quantita-
tive masses as given in example 1 and assume Shafer’s
model (i.e. A\B =Ø), then the conflicting quantitative
mass k =m^(A\B) = 13=36 is redistributed to the sets

A, B, A[B proportionally with their m^(¢) masses, i.e.
m^(A) = 13=36, m^(B) = 8=36 and m^(A[B) = 2=36
respectively through Demspter’s rule (19). One thus
gets

mDS(Ø) = 0,

mDS(A) = (13=36)=(1¡ (13=36)) = 13=23,
mDS(B) = (8=36)=(1¡ (13=36)) = 8=23,

mDS(A[B) = (2=36)=(1¡ (13=36)) = 2=23:
If one prefers to adopt Smets’ TBM approach, at the
credal level the empty set is now allowed to have
positive mass. In this case, one gets

mTBM(Ø) =m^(A\B) = 13=36,
mTBM(A) = 13=36,

mTBM(B) = 8=36,

mTBM(A[B) = 2=36:
² Yager’s rule [32]—[34]
Yager admits that in case of high conflict Dempster’s

rule provides counter-intuitive results. Thus, k plays the
role of an absolute discounting term added to the weight
of ignorance. The commutative and quasi-associative3

Yager’s rule is given by mY(Ø) = 0 and 8A 2G£ n fØg
by

mY(A) =m^(A),

mY(£) =m^(£) +m^(Ø):
(20)

EXAMPLE 3 Let’s consider the 2D frame and quantita-
tive masses as given in example 1 and assume Shafer’s
model (i.e. A\B =Ø), then the conflicting quantitative
mass k =m^(A\B) = 13=36 is transferred to total ig-
norance A[B. One thus gets

mY(A) = 13=36,

mY(B) = 8=36,

mY(A[B) = (2=36)+ (13=36) = 15=36:
² Dubois & Prade’s rule [5]
This rule supposes that the two sources are reliable

when they are not in conflict and at least one of them
is right when a conflict occurs. Then if one believes
that a value is in a set X while the other believes that
this value is in a set Y, the truth lies in X \Y as long
X \Y 6=Ø. If X \Y =Ø, then the truth lies in X [Y.
According to this principle, the commutative and quasi-
associative Dubois & Prade hybrid rule of combination,
which is a reasonable trade-off between precision and
reliability, is defined by mDP(Ø) = 0 and 8A 2G£ n fØg

3Quasi-associativity was defined by Yager in [34], and Smarandache
and Dezert in [22].
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by

mDP(A) =m^(A) +
X
X,Y2G£
X[Y=A
X\Y=Ø

m1(X)m2(Y): (21)

In Dubois & Prade’s rule, the conflicting information
is considered more precisely than in Dempster’s or
Yager’s rules since all partial conflicts involved the
total conflict are taken into account separately through
(21).

The repartition of the conflict is very important be-
cause of the non-idempotency of the rules (except the
Denœux’ rule [4] that can be applied when the depen-
dency between experts is high) and due to the responses
of the experts that can be conflicting. Hence, we have
defined the auto-conflict [16] in order to quantify the
intrinsic conflict of a mass and the distribution of the
conflict according to the number of experts.

EXAMPLE 4 Taking back example 1 and assuming
Shafer’s model for £, the quantitative Dubois & Prade’s
rule gives the same result as quantitative Yager’s rule
since the conflicting mass, m^(A\B) = 13=36, is trans-
ferred to A[B, while the other quantitative masses re-
main unchanged.

² Proportional Conflict Redistribution (PCR) rules
PCR5 for combining two sources
Smarandache and Dezert proposed five proportional

conflict redistribution (PCR) methods [21], [22] to re-
distribute the partial conflict on the elements implied
in the partial conflict. The most efficient for combining
two basic belief assignmentsm1(¢) and m2(¢) is the PCR5
rule given by mPCR5(Ø) = 0 and for all X 2G£, X 6=Ø
by

mPCR5(X)

=m^(X) +
X
Y2G£
X\Y´Ø

μ
m1(X)

2m2(Y)
m1(X) +m2(Y)

+
m2(X)

2m1(Y)
m2(X) +m1(Y)

¶
,

(22)

where m^(¢) is the conjunctive rule given by (17).
EXAMPLE 5 Let’s consider the 2D frame and quantita-
tive masses as given in Example 1 and assume Shafer’s
model (i.e. A\B =Ø), then the conflicting quantitative
mass k =m^(A\B) = 13=36 is redistributed only to el-
ements involved in conflict, A and B (not to A[B). We
repeat that

m^(A\B) =m1(A)m2(B) +m2(B)m1(B)
= (1=6) ¢ (1=6)+ (4=6) ¢ (3=6) = 13=36:

So (1=6) ¢ (1=6) = 1=36 is redistributed to A and B
proportionally to their quantitative masses assigned
by the sources (or experts) m1(A) = 1=6 and m2(B)

= 1=6
x1,A
1=6

=
y1,B
1=6

=
1=36

(1=6)+ (1=6)
= 1=12,

hence
x1,A = (1=6) ¢ (1=12) = 1=72,

and
y1,B = (1=6) ¢ (1=12) = 1=72:

Similarly (4=6) ¢ (3=6) = 12=36 is redistributed to A and
B proportionally to their quantitative masses assigned
by the sources (or experts) m2(A) = 4=6 and m1(B) =
3=6

x2,A
4=6

=
y2,B
3=6

=
12=36

(4=6)+ (3=6)
= 2=7,

hence
x2,A = (4=6) ¢ (2=7) = 4=21,

and
y2,B = (3=6) ¢ (2=7) = 1=7:

It is easy to check that

x1,A+ y1,B + x2,A+ y2,B = 13=36 =m^(A\B):
Summing, we get

mPCR5(A) = (13=36)+ (1=72)+ (4=21)

= 285=504' 0:57,
mPCR5(B) = (8=36)+ (1=72)+ (1=7)

= 191=504' 0:38,
mPCR5(A[B) = 2=36' 0:05,

mPCR5(A\B =Ø) = 0:
PCR6 for combining more than two sources
A generalization of PCR5 fusion rule for combining

altogether more than two experts has been proposed
by Smarandache and Dezert in [22]. Recently Martin
and Osswald [14], [16] studied and formulated a new
version of the PCR5 rule, denoted PCR6, for combining
more than two sources, say M sources with M ¸ 2.
Martin and Osswald have shown that PCR6 exhibits a
better behavior than PCR5 in specific interesting cases.
PCR6 rule is defined as follows: mPCR6(Ø) = 0 and for
all X 2G£, X 6=Ø,

mPCR6(X) =m^(X) +
MX
i=1

mi(X)
2

XTM¡1
k=1

Y¾i (k)
\X´Ø

(Y¾i (1)
,:::,Y¾i (M¡1))2(G

£ )M¡1

¢
Ã QM¡1

j=1 m¾i(j)
(Y¾

i
(j))

mi(X) +
PM¡1

j=1 m¾i(j)
(Y¾

i
(j))

!
, (23)

where Yj 2G£ is the response of the expert j, mj(Yj)
the associated belief function and ¾i counts from 1 to
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M avoiding i

¾i(j) = j if j < i,

¾i(j) = j+1 if j ¸ i:
(24)

The idea is here to redistribute the masses of the
focal elements giving a partial conflict proportionally
to the initial masses on these elements.
In general, for M ¸ 3 sources, one calculates the

total conflict, which is a sum of products; if each
product is formed by factors of masses of distinct
hypothesis, then PCR6 coincides with PCR5; if at
least a product is formed by at least two factors of
masses of same hypotheses, then PCR6 is different from
PCR5:
² for example: a product like m1(A)m2(A)m3(B), herein
we have two masses of hypothesis A;

² or m1(A[B)m2(B [C)m3(B [C)m4(B [C), herein
we have three masses of hypothesis B [C from four
sources.

EXAMPLE 6 For instance, consider three experts
expressing their opinion on £ = fA,B,C,Dg in the
Shafer’s model as described in Table II.

TABLE II
Quantitative Inputs for Example 6

A B A[C A[B [C [D
m1(¢) 0.7 0 0 0.3
m2(¢) 0 0.5 0 0.5
m3(¢) 0 0 0.6 0.4

The global conflict is given here by 0:21+0:14+
0:09 = 0:44, coming from

–A, B and A[C for the partial conflict 0.21,
–A, B and A[B [C [D for 0.14,

–and B, A[C and A[B [C [D for 0.09.
With the generalized PCR6 rule (23), we obtain:

mPCR6(A) = 0:14+0:21+0:21 ¢ 718 +0:14 ¢ 716
' 0:493,

mPCR6(B) = 0:06+0:21 ¢ 518 +0:14 ¢ 516 + 0:09 ¢ 514
' 0:194,

mPCR6(A[C) = 0:09+0:21 ¢ 618 +0:09 ¢ 614 ' 0:199,
mPCR6(A[B [C [D) = 0:06+0:14 ¢ 416 +0:09 ¢ 314 ' 0:114:

EXAMPLE 7 Let’s consider three sources providing
quantitative belief masses only on unions.
The conflict is given here by

m^(Ø) =m1(A[B)m2(A[C)m3(B [C)
= 0:7 ¢ 0:6 ¢ 0:5 = 0:21:

TABLE III
Quantitative Inputs for Example 7

A[B B [C A[C A[B [C
m1(¢) 0.7 0 0 0.3
m2(¢) 0 0 0.6 0.4
m3(¢) 0 0.5 0 0.5

With the generalized PCR rule, i.e. PCR6, we obtain

mPCR6(A) = 0:21,

mPCR6(B) = 0:14,

mPCR6(C) = 0:09,

mPCR6(A[B) = 0:14+0:21: 718 ' 0:2217,

mPCR6(B [C) = 0:06+0:21: 518 ' 0:1183,

mPCR6(A[C) = 0:09+0:21: 618 = 0:16,

mPCR6(A[B [C) = 0:06:
In the sequel, we use the notation PCR for two and more
sources.

4. CLASSICAL QUALITATIVE COMBINATION RULES

The classical qualitative combination rules are di-
rect extensions of classical quantitative rules presented
in previous section. Since the formulas of qualitative
fusion rules are the same as for quantitative rules, they
will be not reported in this section. The main difference
between quantitative and qualitative approaches lies in
the addition, multiplication and division operators one
has to use. For quantitative fusion rules, one uses addi-
tion, multiplication and division operators on numbers
while for qualitative fusion rules one uses the addition,
multiplication and division operators on linguistic labels
defined as in Section 2.C1.

EXAMPLE 8 Below is a very simple example used
to show how classical qualitative fusion rules work.
Let’s consider the following set of linguistic labels L=
fLmin = L0,L1,L2,L3,L4,L5,Lmax = L6g and let’s assume
Shafer’s model for the frame £ = fA,Bg we want to
work on. In this example, we consider only two experts
providing the qualitative belief assignments (masses)
qm1(¢) and qm2(¢) as described in Table IV.

TABLE IV
Qualitative Inputs for Example 8

A B A[B
qm1(¢) L1 L3 L2
qm2(¢) L4 L1 L1

The qualitative belief assignments qm1(¢) and qm2(¢)
have been chosen quasi-normalized since L1 +L3 +
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L2 = L6 = Lmax and respectively L4 +L1 +L1 = L6
= Lmax.

² Qualitative Conjunctive rule (QCR)
This rule provides qm^(¢) according following

derivations

qm^(A) = qm1(A)qm2(A) + qm1(A)qm2(A[B)
+ qm2(A)qm1(A[B)

= L1L4 +L1L1 +L4L2 = L 1¢4
6
+L 1¢1

6
+L 4¢2

6

= L 4+1+8
6
= L 13

6
,

qm^(B) = qm1(B)qm2(B) +qm1(B)qm2(A[B)
+ qm2(B)qm1(A[B)

= L3L1 +L3L1 +L1L2 = L 3¢1
6
+L 3¢1

6
+L 1¢2

6

= L 3+3+2
6
= L 8

6
,

qm^(A[B) = qm1(A[B)qm2(A[B) = L2L1 = L 2¢1
6

= L 2
6
,

qm^(A\B) = qm1(A)qm2(B) +qm2(B)qm1(B)
= L1L1 +L4L3 = L 1¢1

6
+L 4¢3

6
= L 1+12

6
= L 13

6
:

We see that not approximating the indexes (i.e. work-
ing with refined labels), the quasi-normalization of the
qualitative conjunctive rule is kept

L 13
6
+L 8

6
+L 2

6
+L 13

6
= L 36

6
= L6 = Lmax:

But if we approximate each refined label, we get

L[ 136 ]
+L[ 86 ] +L[ 26 ] +L[ 136 ]

= L2 +L1 +L0 +L2 = L5 6= L6 = Lmax:

Let’s examine the transfer of the conflicting qualita-
tive mass qm^(A\B) = qm^(Ø) = L 13

6
to the non-empty

sets according to the main following combination
rules.

² Qualitative Dempster’s rule (extension of classical
numerical DS rule to qualitative masses)
Assuming Shafer’s model for the frame £ (i.e.

A\B =Ø) and according to DS rule, the conflicting
qualitative mass qm^(A\B) = L 13

6
is redistributed to the

sets A, B, A[B proportionally with their qm^(¢) masses
L 13

6
, L 8

6
, and L 2

6
respectively,

xA
L 13

6

=
yB
L 8
6

=
zA[B
L 2
6

=
L 13

6

L 13
6
+L 8

6
+L 2

6

=
L 13

6

L 23
6

= L( 136 ¥ 23
6 )¢6 = L( 1323 )¢6 = L 78

23
:

Therefore, one gets

xA = L 13
6
¢L 78

23
= L( 136 ¢ 7823 )¥6 = L 169

138
,

yB = L 8
6
¢L 78

23
= L( 86 ¢ 7823 )¥6 = L 104

138
,

zA[B = L 2
6
¢L 78

23
= L( 26 ¢ 7823 )¥6 = L 26

138
:

We can check that the qualitative conflicting mass,
L 13

6
, has been proportionally split into three qualitative

masses

L 169
138
+L 104

138
+L 26

138
= L 169+104+26

138
= L 299

138
= L 13

6
:

Thus,

qmDS(A) = L 13
6
+L 169

138
= L 13

6 +
169
138
= L 468

138
,

qmDS(B) = L 8
6
+L 104

138
= L 8

6+
104
138
= L 288

138
,

qmDS(A[B) = L 2
6
+L 26

138
= L 2

6 +
26
138
= L 72

138
,

qmDS(A\B =Ø) = L0:
qmDS(¢) is quasi-normalized since:

L 468
138
+L 288

138
+L 72

138
= L 828

138
= L6 = Lmax:

If we approximate the linguistic labels L 468
138
, L 288

138
and

L 72
138
in order to work with original labels in L, still

qmDS(¢) remains quasi-normalized since:
qmDS(A)¼ L[ 468138 ] = L3
qmDS(B)¼ L[ 288138 ] = L2

qmDS(A[B)¼ L[ 72138 ] = L1
and L3 +L2 +L1 = L6 = Lmax.

² Qualitative Yager’s rule
With Yager’s rule, the qualitative conflicting mass

L 13
6
is entirely transferred to the total ignorance A[B.

Thus,
qmY(A[B) = L 2

6
+L 13

6
= L 15

6

and
qmY(A\B) = qmY(Ø) = L0

while the others remain the same

qmY(A) = L 13
6
,

qmY(B) = L 8
6
:

qmY(¢) is quasi-normalized since
L 13

6
+L 8

6
+L 15

6
= L 36

6
= L6 = Lmax:

If we approximate the linguistic labels L 13
6
, L 8

6
and L 15

6
,

still qmY(¢) happens to remain quasi-normalized since
qmY(A)¼ L[ 136 ] = L2,
qmY(B)¼ L[ 86 ] = L1,

qmY(A[B)¼ L[ 156 ] = L3,
and L2 +L1 +L3 = L6 = Lmax.
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² Qualitative Dubois & Prade’s rule
In this example the Qualitative Dubois & Prade’s

rule gives the same result as qualitative Yager’s rule
since the conflicting mass, qm^(A\B) = L 13

6
, is trans-

ferred to A[B, while the other qualitative masses re-
main unchanged.

² Qualitative Smets’ TBM rule
Smets’ TBM approach allows keeping mass on the

empty set. One gets

qmTBM(A) = L 13
6
,

qmTBM(B) = L 8
6
,

qmTBM(A[B) = L 2
6
,

qmTBM(Ø) = L 13
6
:

Of course qmTBM(¢) is also quasi-normalized.
However if we approximate, qmTBM(¢) does not re-

main quasi-normalized in this case since

qmTBM(A)¼ L[ 136 ] = L2,

qmTBM(B)¼ L[ 86 ] = L1,

qmTBM(A[B)¼ L[ 26 ] = L0,

qmTBM(Ø)¼ L[ 136 ] = L2,
and L2 +L1 +L0 +L2 = L5 6= L6 = Lmax.
² Qualitative PCR (QPCR)
The conflicting qualitative mass, qm^(A\B) = L 13

6
,

is redistributed only to elements involved in conflict, A
and B (not to A[B). We repeat that
qmPCR(A\B) = qm1(A)qm2(B)+ qm2(B)qm1(B)

= L1L1 +L4L3 = L 1¢1
6
+L 4¢3

6
= L 1+12

6
= L 13

6
:

So L 1
6
is redistributed to A and B proportionally to their

qualitative masses assigned by the sources (or experts)
qm1(A) = L1 and qm2(B) = L1

x1,A
L1

=
y1,B
L1

=
L 1
6

L1 +L1
=
L 1
6

L2
= L( 16¥2)¢6 = L 1

2
:

Hence
x1,A = L1 ¢L 1

2
= L(1¢ 12 )¥6 = L 1

12

and
y1,B = L1 ¢L 1

2
= L 1

12
:

Similarly L 12
6
is redistributed to A and B proportionally

to their qualitative masses assigned by the sources (or
experts) qm2(A) = L4 and qm1(B) = L3

x2,A
L4

=
y2,B
L3

=
L 12

6

L4 +L3
=
L 12

6

L7
= L( 126 ¥7)¢6 = L 12

7
:

Hence
x2,A = L4 ¢L 12

7
= L(4¢ 127 )¥6 = L 8

7

and
y2,B = L3 ¢L 12

7
= L(3¢ 127 )¥6 = L 6

7
:

Summing, we get

qmPCR(A) = L 13
6
+L 1

12
+L 8

7
= L 285

84
,

qmPCR(B) = L 8
6
+L 1

12
+L 6

7
= L 191

84
,

qmPCR(A[B) = L 2
6
= L 28

84
,

qmPCR(A\B =Ø) = L0:
qmPCR(¢) is quasi-normalized since

L 285
84
+L 191

84
+L 28

84
= L 504

84
= L6 = Lmax:

However, if we approximate, it is not quasi-normalized
any longer since

L[ 28584 ]
+L[ 19184 ] +L[ 2884 ] = L3 +L2 +L0 = L5 6= L6 = Lmax:

In general, if we do not approximate, and we work
with quasi-normalized qualitative masses, no matter
what fusion rule we apply, the result will be quasi-
normalized. If we approximate, many times the quasi-
normalization is lost.

5. GENERALIZATION OF QUANTITATIVE FUSION
RULES

In [1], [29] we can find two propositions of a
general formulation of the combination rules. In the
first one, Smets considers the combination rules from
a matrix notation and find the shape of this matrix
according to some assumptions on the rule, such as
linearity, commutativity, associativity, etc. In the second
one, a generic operator is defined from the plausibility
functions.
A general formulation of the global conflict repar-

tition have been proposed in [8], [12] for all X 2 2£
by

mc(X) =m^(X) +w(X)m^(Ø), (25)

where
P
X22£ w(X) = 1. The problem is the choice of

the weights w(X).

A. How to Choose Conjunctive and Disjunctive Rules?

We have seen that conjunctive rule reduces the im-
precision and uncertainty but can be used only if one of
the experts is reliable, whereas the disjunctive rule can
be used when the experts are not reliable, but allows a
loss of specificity.
Hence, Florea [7] proposes a weighted sum of these

two rules according to the global conflict k =m^(Ø)
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given for X 2 2£ by:
mFlo(X) = ¯1(k)m_(X) +¯2(k)m^(X), (26)

where ¯1 and ¯2 can admit k =
1
2 as symmetric weight:

¯1(k) =
k

1¡ k+ k2 ,

¯2(k) =
1¡ k

1¡ k+ k2 :
(27)

Consequently, if the global conflict is high (k near 1)
the behavior of this rule will give more importance
to the disjunctive rule. Thus, this rule considers the
global conflict coming from the non-reliability of the
experts.
In order to take into account the weights more

precisely in each partial combination, we propose the
following new rule. For two basic belief assignments
m1 and m2 and for all X 2G£, X 6=Ø we have:

mMix(X) =
X

Y1[Y2=X
±1(Y1,Y2)m1(Y1)m2(Y2)

+
X

Y1\Y2=X
±2(Y1,Y2)m1(Y1)m2(Y2): (28)

Of course, if ±1(Y1,Y2) = ¯1(k) and ±2(Y1,Y2) = ¯2(k)
we obtain Florea’s rule. In the same manner, if ±1(Y1,Y2)
= 1¡ ±2(Y1,Y2) = 0 we obtain the conjunctive rule and
if ±1(Y1,Y2) = 1¡ ±2(Y1,Y2) = 1 the disjunctive rule. If
±1(Y1,Y2) = 1¡ ±2(Y1,Y2) = 1lY1\Y2=Ø we retrieve Dubois
and Prade’s rule and the partial conflict can be con-
sidered, whereas the rule (26).
The choice of ±1(Y1,Y2) = 1¡ ±2(Y1,Y2) can be done

by a dissimilarity such as:

±1(Y1,Y2) = ±(Y1,Y2)
¢
=1¡ C(Y1 \Y2)

minfC(Y1),C(Y2)g
,

(29)
or

±1(Y1,Y2) = ´(Y1,Y2)
¢
=1¡ C(Y1 \Y2)

maxfC(Y1),C(Y2)g
,

(30)

where C(Y1) is the cardinality of Y1. In the case of
the DST framework, C(Y1) is the number of distinct
elements of Y1. In the case of the DSmT, C(Y1) is the
DSm cardinality given by the number of parts of Y1
in the Venn diagram of the problem [18]. ±(¢, ¢) in
(29) is actually not a proper dissimilarity measure (e.g.
±(Y1,Y2) = 0 does not imply Y1 = Y2), but ´(¢, ¢) defined
in (30) is a proper dissimilarity measure. We can also
take for ±2(Y1,Y2), the Jaccard’s distance, i.e. ±2(Y1,Y2) =
d(Y1,Y2) given by

d(Y1,Y2) =
C(Y1 \Y2)
C(Y1 [Y2)

, (31)

used by [10] on the belief functions. Note that d is not
a distance in the case of DSmT. Thus, if we have a

partial conflict between Y1 and Y2, C(Y1 \Y2) = 0 and the
rule transfers the mass on Y1 [Y2. In the case Y1 ½ Y2
(or the contrary), Y1 \Y2 = Y1 and Y1 [Y2 = Y2, so with
±1(¢, ¢) = ±(¢, ¢) the rule transfers the mass on Y1 and with
±1(¢, ¢) = 1¡ d(¢, ¢) it transfers the mass on Y1 and Y2
according to the ratio (C(Y1)=C(Y2)) of the cardinalities.
In the case Y1 \Y2 6= Y1,Y2 and Ø, the rule transfers
the mass on Y1 \Y2 and Y1 [Y2 according to ±(¢, ¢) and
d(¢, ¢).
EXAMPLE 9 (on the derivation of the weights) Let’s
consider a frame of discernment £ = fA,B,Cg in
Shafer’s model (i.e. all intersections empty).
a) We compute the first similarity weights ±2(¢, ¢) =
1¡ ±(¢, ¢) using values presented in Table V.

TABLE V
Values for 1¡ ±(¢, ¢)

±2(¢, ¢) = 1¡ ±(¢, ¢) A B C A[B
A 1 0 0 1
B 0 1 0 1
C 0 0 1 0

A[B 1 1 0 1

We have

±2(A,A) =
C(A\A)

minfC(A),C(A)g =
C(A)
C(A) = 1,

±2(A,B) =
C(A\B)

minfC(A),C(B)g = 0,

because A\B =Ø and C(Ø) = 0. Then

±2(A,A[B) =
C(A\ (A[B))

minfC(A),C(A[B)g =
C(A)
C(A) = 1,

etc.
Whence, the first dissimilarity weights ±1(¢, ¢) de-

fined by (29), i.e. ±1(X,Y) = 1¡ ±2(X,Y) take the val-
ues as presented in Table VI.

TABLE VI
Values for ±(¢, ¢)

±1(¢, ¢) = ±(¢, ¢) A B C A[B
A 0 1 1 0
B 1 0 1 0
C 1 1 0 1

A[B 0 0 1 0

The first similarity and dissimilarity weights ±2(¢, ¢)
and ±1(¢, ¢) are not quite accurate, since for example:
±2(A,A[B) = 1, i.e. A and A[B are 100% similar
(which is not the case since A 6= A[B) and ±1(A,A[
B) = 1¡ ±2(A,A[B) = 1¡ 1 = 0, i.e. A and A[B are
100% dissimilar (which is not the case either since
A\ (A[B) 6=Ø).
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b) The second similarity weights ±2(¢, ¢) = 1¡ ´(¢, ¢)
given by (30) overcomes this problem. We obtain
on the previous example with values given in
Table VII.

TABLE VII
Values for 1¡ ´(¢, ¢)

±2(¢, ¢) = 1¡ ´(¢, ¢) A B C A[B
A 1 0 0 1/2
B 0 1 0 1/2
C 0 0 1 0

A[B 1/2 1/2 0 1

Then,

±2(A,A) = 1¡ ´(A,A) =
C(A\A)

maxfC(A),C(A)g =
C(A)
C(A) = 1,

±2(A,B) = 1¡ ´(A,B) =
C(A\B)

maxfC(A),C(B)g = 0,

because A\B =Ø and C(Ø) = 0. Hence,

±2(A,A[B) = 1¡ ´(A,A[B) =
C(A\ (A[B))

maxfC(A),C(A[B)g

=
C(A)

C(A[B) =
1
2

which is better than ±2(A,A[B) = 1¡ ±(A,A[B) = 1.
etc.
Whence, the second dissimilarity weights ´(¢, ¢)

take the values presented in Table VIII.

TABLE VIII
Values for ´(¢, ¢)

±1(¢, ¢) = ´(¢, ¢) A B C A[B
A 0 1 1 1/2
B 1 0 1 1/2
C 1 1 0 1

A[B 1/2 1/2 1 0

Then, ´(A,A[B) = 1¡ 1
2 =

1
2 , which is better than

±1(A,A[B) = ±(A,A[B) = 0.
The second similarity weight coincides with Jac-

card’s distance in Shafer’s model, but in hybrid and
free models, they are generally different. Hence if
we consider a Shafer’s model, one gets for all Y1, Y2
in G£

d(Y1,Y2) = 1¡ ´(Y1,Y2):
Smarandache defined in [23] the degree of intersec-
tion of two sets as Jaccard’s distance, and also the
degree of union of two sets, and the degree of in-
clusion of a set into another set and improved many
fusion rules by inserting these degrees in the fusion
rules’ formulas.

EXAMPLE 10 (with Shafer’s model) Consider the fol-
lowing example for two (quantitative) experts provid-
ing m1(¢) and m2(¢) on £ = fA,B,Cg and let’s assume
that Shafer’s model holds (i.e. A, B and C are truly
exclusive). Consider the following example given by
Table IX for two (quantitative) experts.

TABLE IX
Quantitative Inputs and Fusion Result

mMix,´
m1(¢) m2(¢) m^ mMix,± mMix,d

Ø 0 0 0.2 0 0
A 0.3 0 0.3 0.24 0.115
B 0 0.2 0.14 0.14 0.06

A[B 0.4 0 0.12 0.18 0.18
C 0 0.2 0.06 0.06 0.02

A[C 0 0.3 0.09 0.15 0.165
A[B [C 0.3 0.3 0.09 0.23 0.46

When taking ±1(¢, ¢) = ±(¢, ¢) according to (29), one
obtains the results given in Table X.

TABLE X
Values for ±(¢, ¢)

±1(¢, ¢) = ±(¢, ¢) A A[B A[B [C
B 1 0 0
C 1 1 0

A[C 0 1/2 0
A[B [C 0 0 0

where the columns are the focal elements of the basic
belief assignment given by the expert 1 and the rows are
the focal elements of the basic belief assignment given
by expert 2. The mass 0.2 on Ø come from the responses
A and C with a value of 0.06, from the responses A and
B with a value of 0.06 and from the responses A[B
and C with a value of 0.08. These three values are
transferred respectively on A[C, A[B and A[B [C.
The mass 0.12 on A given by the responses A[B and
A[C is transferred on A with a value of 0.06 and on
A[B [C with the same value.
When taking ±1(¢, ¢) = ´(¢, ¢) or ±1(¢, ¢) = 1¡ d(¢, ¢)

according to (30) and (31), one obtains the results pre-
sented in Table XI.

TABLE XI
Values for ´(¢, ¢) or 1¡ d(¢, ¢)

±1(¢, ¢) = ´(¢, ¢)
±1(¢, ¢) = 1¡ d(¢, ¢) A A[B A[B [C

B 1 1/2 2/3
C 1 1 2/3

A[C 1/2 2/3 1/3
A[B [C 2/3 1/3 0
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With ±1(¢, ¢) = ´ or ±1(¢, ¢) = 1¡ d(¢, ¢), the rule is more
disjunctive: more masses are transferred on the igno-
rance.
Note that ±1(¢, ¢) = ±(¢, ¢) can be used when the ex-

perts are considered reliable. In this case, we con-
sider the most precise response. With ±1(¢, ¢) = ´(¢, ¢)
or ±1(¢, ¢) = 1¡ d(¢, ¢), we get the conjunctive rule only
when the experts provide the same response, otherwise
we consider the doubtful responses and we transfer the
masses in proportion of the imprecision of the responses
(given by the cardinality of the responses) on the part
in agreement and on the partial ignorance.

EXAMPLE 11 (with a hybrid model) Consider the same
example with two (quantitative) experts providing m1(¢)
and m2(¢) on the frame of discernment £ = fA,B,Cg
with the following integrity constraints: A\B 6=Ø, A\
C =Ø and B \C =Ø (which defines a so-called
DSm-hybrid model [18]). The results are given in
Table XII.

TABLE XII
Quantitative Inputs and Fusion Result

m1(¢) m2(¢) m^ mMix,± mMix,´ mMix,d

Ø 0 0 0.14 0 0 0
A\B 0 0 0.06 0.03 0.03 0.02
A 0.3 0 0.3 0.26 0.205 0.185
B 0 0.2 0.14 0.14 0.084 0.084

A[B 0.4 0 0.12 0.15 0.146 0.156
C 0 0.2 0.06 0.06 0.015 0.015

A[C 0 0.3 0.09 0.15 0.1575 0.1575
A[B [C 0.3 0.3 0.09 0.21 0.3625 0.3825

When taking ±1(¢, ¢) = ±(¢, ¢) according to (29), one
obtains results presented in Table XIII.

TABLE XIII
Values for ±(¢, ¢)

±1(¢, ¢) = ±(¢, ¢) A A[B A[B [C
B 1/2 0 0
C 1 1 0

A[C 0 1/3 0
A[B [C 0 0 0

When taking ±1(¢, ¢) = ´(¢, ¢) according to (30), one
obtains results presented in Table XIV.

TABLE XIV
Values for ´(¢, ¢)

±1(¢, ¢) = ´(¢, ¢) A A[B A[B [C
B 1/2 1/3 1/2
C 1 1 3/4

A[C 1/3 1/3 1/4
A[B [C 1/2 1/4 0

When taking ±1(¢, ¢) = 1¡ d(¢, ¢) according to (31),
one obtains results presented in Table XV.

TABLE XV
Values for 1¡ d(¢, ¢)

±1(¢, ¢) = 1¡ d(¢, ¢) A A[B A[B [C
B 2/3 1/3 1/2
C 1 1 3/4

A[C 1/3 1/2 1/4
A[B [C 1/2 1/4 0

For more than two experts, say M > 2, if the inter-
section of the responses of the M experts is not empty,
we can still transfer on the intersection and the union,
and (29) and (30) become

±1(Y1, : : : ,YM) = ±(Y1, : : : ,YM) = 1¡
C(Y1 \ ¢¢ ¢ \YM)
min1·i·M C(Yi)

,

(32)
and

±1(Y1, : : : ,YM) = ´(Y1, : : : ,YM) = 1¡
C(Y1 \ ¢ ¢ ¢ \YM)
max1·i·M C(Yi)

:

(33)

From (31), we can define ±1 by:

±1(Y1, : : : ,YM) = 1¡
C(Y1 \ ¢ ¢ ¢ \YM)
C(Y1 [ ¢ ¢ ¢ [YM)

: (34)

Finally, the mixed rule for M ¸ 2 experts is given
by:

mMix(X) =
X

Y1[¢¢¢[YM=X
±1(Y1, : : : ,YM)

MY
j=1

mj(Yj)

+
X

Y1\¢¢¢\YM=X
(1¡ ±1(Y1, : : : ,YM))

MY
j=1

mj(Yj):

(35)

This formulation can be interesting according to the
coherence of the responses of the experts. However, it
does not allow the repartition of the partial conflict in
an other way than the Dubois and Prade’s rule.

B. A Discounting Proportional Conflict Repartition
Rule

The PCR6 redistributes the masses of the conflict-
ing focal elements proportionally to the initial masses
on these elements. First, the repartition concerns only
on the elements involved in the partial conflict. We
can apply a discounting procedure in the combination
rule in order to transfer a part of the partial conflict on
the partial ignorance. This new discounting PCR (noted
DPCR) can be expressed for two basic belief assign-
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ments m1(¢) and m2(¢) and for all X 2G£, X 6=Ø by
mDPCR(X) =m^(X)

+
X
Y2G£
X\Y´Ø

® ¢
μ
m1(X)

2m2(Y)
m1(X) +m2(Y)

+
m2(X)

2m1(Y)
m2(X) +m1(Y)

¶

+
X
Y1[Y2=X
Y1\Y2´Ø

(1¡®) ¢m1(Y1)m2(Y2), (36)

where ® 2 [0,1] is the discounting factor. Note that we
can also apply a discounting procedure on the masses
before the combination as shown in (7). Here the dis-
counting factor is introduced in order to transfer a part
of the partial conflict on partial ignorance. We propose
in (39) and (40) different ways for choosing this fac-
tor ®.
Hence, DPCR fusion rule is a combination of PCR

and Dubois-Prade (or DSmH4) rules. In an analogue
way we can combine other fusion rules, two or more in
the same formula, getting new mixed formulas. So that
in a general case, for M ¸ 2 experts, we can extend the
previous rule as

mDPCR(X) =m^(X) +
MX
i=1

mi(X)
2

XTM¡1
k=1

Y¾i (k)
\X=Ø

(Y¾i (1)
,:::,Y¾i (M¡1))2(G

£ )M¡1

¢® ¢
Ã QM¡1

j=1 m¾i(j)(Y¾i(j))

mi(X) +
PM¡1

j=1 m¾i(j)(Y¾i(j))

!

+
X

Y1[¢¢¢[YM=X
Y1\¢¢¢\YM´Ø

(1¡®) ¢
MY
j=1

mj(Yj), (37)

where Yj 2G£ is a response of the expert j, mj(Yj) its
assigned mass and ¾i is given by (24).
Hence, if we choose as discounting factor ®= 0:9 in

the previous example, we obtain

mDPCR(A) = 0:14+0:21+0:21 ¢ 718 ¢ 0:9

+0:14 ¢ 716 ¢ 0:9' 0:479,

mDPCR(B) = 0:06+0:21 ¢ 518 ¢0:9

+0:14 ¢ 516 ¢ 0:9+0:09 ¢ 514 ¢ 0:9

' 0:181,
mDPCR(A[C) = 0:09+0:21 ¢ 618 ¢0:9

+0:09 ¢ 614 ¢ 0:9' 0:187,

4The DSmH rule is an extension of Dubois-Prade’s rule which has
been proposed in the DSmT framework in order to work with hybrid
models including non-existential constraints. See [18] for details and
examples.

mDPCR(A[B [C) = 0:21 ¢ 0:1 = 0:021,

mDPCR(A[B [C [D) = 0:06+0:14 ¢ 416 ¢ 0:9

+0:09 ¢ 314 ¢ 0:9+0:14 ¢ 0:1

+0:09 ¢ 0:1' 0:132:

However, in this example, the partial conflict due
to the experts 1, 2 and 3 saying A, B, and A[C
respectively, the conflict is 0.21. Nonetheless, only the
experts 1 and 2 and the experts 2 and 3 are in conflict.
The experts 1 and 3 are not in conflict.
Now, consider another case where the experts 1, 2

and 3 say A, B, and C respectively with the same conflict
0.21. In both cases, the DPCR rule transfers the masses
with the same weight ®. Although, we could prefer
transfer more mass on £ in the second than in the first
case.
Consequently, the transfer of mass can depend on

the existence of conflict between each pair of experts.
We define the conflict function giving the number
of experts in conflict two by two for each response
Yi 2G£ of the expert i as the number of responses
of the other experts in conflict with i. A function fi
is defined by the mapping of (G£)M onto [0,1=M]
with

fi(Y1, : : : ,YM) =

PM
j=1 1lfYj\Yi=Øg
M(M ¡ 1) : (38)

Hence, we can choose ® depending on the response
of the experts such as

®(Y1, : : : ,YM) = 1¡
MX
i=1

fi(Y1, : : : ,YM): (39)

In this case ® 2 [0,1], we do not transfer the mass
on elements that can be written as the union of the
responses of the experts.
Therefore, if we consider again our previous exam-

ple we obtain

®(A,B,A[C) = 1¡ 2
3 =

1
3 ,

®(A,B,A[B [C [D) = 1¡ 1
3 =

2
3 ,

®(A[B [C [D,B,A[C) = 1¡ 1
3 =

2
3 :

Thus the provided mass by the DPCR is

mDPCR(A) = 0:14+0:21+0:21 ¢ 718 ¢ 13
+0:14 ¢ 716 ¢ 23 ' 0:418,

mDPCR(B) = 0:06+0:21 ¢ 518 ¢ 13 +0:14 ¢ 516 ¢ 23
+0:09 ¢ 514 ¢ 23 ' 0:130,
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mDPCR(A[C) = 0:09+0:21 ¢ 618 ¢ 13 + 0:09 ¢ 614 ¢ 23
' 0:139,

mDPCR(A[B [C) = 0:21 ¢ 23 = 0:140,

mDPCR(A[B [C [D) = 0:06+0:14 ¢ 416 ¢ 23 + 0:09 ¢ 314 ¢ 23
+0:14 ¢ 13 +0:09 ¢ 13 ' 0:173:

We want to take account of the degree of conflict (or
non-conflict) within each pair of expert differently for
each element. We can consider the non-conflict function
given for each expert i by the number of experts not
in conflict with i. Hence, we can choose ®i(Y1, : : : ,YM)
defined by the mapping of (G£)M onto [0,1=M]
with

®i(Y1, : : : ,YM) =
1
M
¡fi(Y1, : : : ,YM) =

PM

j=1,j 6=i 1lfYj\Yi 6´Øg

M(M ¡ 1) :

(40)

The discounting PCR rule (37) can be written for M
experts, for all X 2G£, X 6=Ø as:

mDPCR(X) =m^(X) +
MX
i=1

mi(X)
2

XTM¡1
k=1

Y¾i (k)
\X=Ø

(Y¾i (1)
,:::,Y¾i (M¡1))2(G

£ )M¡1

¢®i¸
Ã QM¡1

j=1 m¾i(j)(Y¾i(j))

mi(X) +
PM¡1
j=1 m¾i(j)(Y¾i(j))

!

+
X

Y1[¢¢¢[YM=X
Y1\¢¢¢\YM´Ø

Ã
1¡

MX
i=1

®i

!
MY
j=1

mj(Yj), (41)

where ®i(X,Y¾i(1), : : : ,Y¾i(M¡1)) is noted ®i for notations
convenience and ¸ depending on (X,Y¾i(1), : : : ,Y¾i(M¡1)),
is chosen to obtain the normalization given by (2). ¸ is
given when ®i 6= 0, 8i 2 f1, : : : ,Mg by:

¸=
PM
i=1®i
h®,°i , (42)

where h®,°i is the scalar product of ®= (®i)i2f1,:::,Mg
and ° = (°i)i2f1,:::,Mg with:

°i =
mi(X)

mi(X)+
PM¡1
j=1 m¾i(j)(Y¾i(j))

, (43)

where °i(X,Y¾i(1), : : : ,Y¾i(M¡1)) is noted °i for notations
convenience.
With this last version of the rule, for ®i given by

(40), we obtain on our illustrative example ¸= 36
13 when

the experts 1, 2 and 3 say A, B, and A[C respectively
(the conflict is 0.21), ¸= 16

5 when the conflict is 0.14
and ¸= 56

17 when the conflict is 0.09. Thus, the masses

are given by:

mDPCR(A) = 0:14+0:21+0:21 ¢ 718 ¢ 16 ¢ 3613
+0:14 ¢ 716 ¢ 16 ¢ 165 ' 0:420

mDPCR(B) = 0:06+0:14 ¢ 516 ¢ 16 ¢ 165
+0:09 ¢ 514 ¢ 16 ¢ 5617 ' 0:101

mDPCR(A[C) = 0:09+0:21 ¢ 618 ¢ 16 ¢ 3613
+0:09 ¢ 614 ¢ 16 ¢ 5617 ' 0:143

mDPCR(A[B [C) = 0:21 ¢ 23 = 0:14
mDPCR(A[B [C [D) = 0:06+0:14 ¢ 416 ¢ 13 ¢ 165

+0:09 ¢ 314 ¢ 13 ¢ 5617 +0:14 ¢ 13
+0:09 ¢ 13 ' 0:196:

This last rule of combination allows one to consider
a “kind of degree” of conflict (a degree of pair of non-
conflict), but this degree is not so easy to introduce in
the combination rule.

C. A Mixed Discounting Conflict Repartition Rule

In this section, we propose a combination of the
mixed rule (35) with the discounting PCR (37). This
new mixed discounting conflict repartition rule (MDPCR
for short) for two quantitative basic belief assignments
m1(¢) and m2(¢) is defined by mMDPCR(Ø) = 0 and for all
X 2G£, X 6=Ø by:
mMDPCR(X) =

X
Y1[Y2=X,
Y1\Y2 6´Ø

±1(Y1,Y2) ¢m1(Y1)m2(Y2)

+
X

Y1\Y2=X,
Y1\Y2 6´Ø

(1¡ ±1(Y1,Y2)) ¢m1(Y1)m2(Y2)

+
X
Y2G£ ,
X\Y´Ø

® ¢
μ
m1(X)

2m2(Y)
m1(X) +m2(Y)

+
m2(X)

2m1(Y)
m2(X) +m1(Y)

¶

+
X

Y1[Y2=X,
Y1\Y2´Ø

(1¡®) ¢m1(Y1)m2(Y2): (44)

® can be given by (39) and ±1(¢, ¢) by (32) or (34).
The weights must be taken in order to get a kind of con-
tinuity between the mixed and DPCR rules. In actuality,
when the intersection of the responses is almost empty
(but not empty) we use the mixed rule, and when this
intersection is empty we chose the DPCR rule. In the
first case, all the mass is transferred on the union, and
in the second case it will be the same according to the
partial conflict. Indeed, ®= 0 if the intersection is not
empty and ±1 = 1 if the intersection is empty. We can
also introduce ®i given by (40), and this continuity is
conserved.
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This rule is given in a general case for M experts,
by mMDPCR(Ø) = 0 and for all X 2G£, X 6=Ø by:

mMDPCR(X) =
X

Y1[¢¢¢[YM=X ,
Y1\¢¢¢\YM 6´Ø

±1(Y1, : : : ,YM) ¢
MY
j=1

mj(Yj)

+
X

Y1\¢¢¢\YM=X,
Y1\¢¢¢\YM 6´Ø

(1¡ ±1(Y1, : : : ,YM)) ¢
MY
j=1

mj(Yj)

+
MX
i=1

mi(X)
2

XTM¡1
k=1

Y¾i (k)
\X=Ø

(Y¾i (1)
,:::,Y¾i (M¡1))2(G

£ )M¡1

¢® ¢
Ã QM¡1

j=1 m¾i(j)(Y¾i(j))

mi(X) +
PM¡1

j=1 m¾i(j)(Y¾i(j))

!

+
X

Y1[¢¢¢[YM=X,
Y1\¢¢¢\YM´Ø

(1¡®) ¢
MY
j=1

mj(Yj), (45)

where Yj 2G£ is the response of the expert j, mj(Yj) the
associated belief function and ¾i is given by (24). This
formula could seem difficult to understand, but it can
be implemented easily as shown in [15].
If we take again the previous example, with ±1(¢, ¢)

given by (32), there is no difference with the DPCR. If
±1(¢, ¢) is calculated by (34), the only difference pertains
to the mass 0.09 coming from the responses of the three
experts: A[B [C [D, A[B [C [D and A[C. This
mass is transferred on A[C (0.06) and on A[B [C [D
(0.03).
The rules presented in the previous section, propose

a repartition of the masses giving a partial conflict only
(when at most two experts are in discord) and do not
take heed of the level of imprecision of the responses
of the experts (the non-specificity of the responses).
The imprecision of the responses of each expert is only
considered by the mixed and MDPCR rules when there
is no conflict between the experts. To try to overcome
these problems Martin and Osswald have proposed a
begin of solutions toward a more general rule [15].

6. GENERALIZATION OF QUALITATIVE FUSION
RULES

This section provides two simple examples to show
in detail how to extend the generalized quantitative fu-
sion rules proposed in the previous section (i.e. the
Mixed, the Discounted, and the Mixed Discounted fu-
sion rules) to their qualitative counterparts using our
operators on linguistic labels defined in Section 2.C1.

EXAMPLE 12 Fusion of two sources Consider a set of
labels L= fLmin = L0,L1,L2,L3,L4,L5,Lmax = L6g, and
a frame of discernment £ = fA,B,Cg in Shafer’s model

(i.e. all intersections empty). Consider the two following
qualitative sources of evidence described in Table XVI.

TABLE XVI
Qualitative Inputs for Example 12

A B C A[B
qm1(¢) L2 L0 L0 L4
qm2(¢) L3 L2 L1 L0

Now let’s apply the qualitative versions of Mixed,
Discounted, and Mixed Discounted Quantitative Fusion
rules (28), (36) and (44) respectively.

² Qualitative Mixed Dubois-Prade’s rule
From (28) and Table VI, one gets:

qm±Mix(A) = ±(A,A)qm1(A)qm2(A)

+ (1¡ ±(A,A))qm1(A)qm2(A)
+ (1¡ ±(A,A[B))qm1(A)qm2(A[B)
+ (1¡ ±(A[B,A))qm1(A[B)qm2(A)

= 0 ¢L2L3 +1 ¢L2L3 +1 ¢L2L0 +1 ¢L4L3
= L0 +L 2¢3

6
+L 2¢0

6
+L 4¢3

6
= L 6

6
+L 12

6
= L 18

6
:

Similarly, qm±Mix(B) = L 8
6
and

qm±Mix(C) = ±(C,C)qm1(C)qm2(C)

+ (1¡ ±(C,C))qm1(C)qm2(C)

= 0 ¢L0L1 +1 ¢L0L1 = L0,

qm±Mix(A[B) = ±(A[B,A[B)qm1(A[B)qm2(A[B)
+ ±(A,A[B)qm1(A)qm2(A[B)
+ ±(A[B,A)qm1(A[B)qm2(A)
+ ±(B,A[B)qm1(B)qm2(A[B)
+ ±(A[B,B)qm1(A[B)qm2(B)
+ ±(A,B)qm1(A)qm2(B)

+ ±(B,A)qm1(B)qm2(A)

+ (1¡ ±(A[B,A[B))qm1(A[B)qm2(A[B)

= L0 +L0 +L0 +L0 +L0 +1 ¢L2L2 +1 ¢L0L3
= L 2¢2

6
+L 0¢3

6
= L 4

6
:

Note: The first five terms of previous sum take value L0
since ±1(¢, ¢) = 0 for each of them. Then

qm±Mix(A[C) = ±(A,C)qm1(A)qm2(C)
+ (1¡ ±(C,A))qm1(C)qm2(A)

= 1 ¢L2L1 +1 ¢L0L3 = L 2¢1
6
+L 0¢3

6
= L 2

6
,
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qm±Mix(A[B [C) = ±(C,A[B)qm1(C)qm2(A[B)
+ ±(A[B,C)qm1(A[B)qm2(C)

= 1 ¢L0L0 +1 ¢L4L1 = L 4
6
:

This coincides with normal qualitative Dubois-
Prade’s and DSmH fusion rules. qm±Mix(¢) is quasi-nor-
malized both ways:
² without approximation, since

L 18
6
+L 8

6
+L 0

6
+L 4

6
+L 2

6
+L 4

6

= L 18+8+0+4+2+4
6

= L 36
6
= L6 = Lmax,

² and with approximations

L[ 186 ]
+L[ 86 ] +L[ 06 ] +L[ 46 ] +L[ 26 ] +L[ 46 ]

= L3 +L1 +L0 +L1 +L0 +L1 = L6 = Lmax:

Compute qmMix(¢) using the second similarity/dis-
similarity weights given by (30) (which are equal in
this case with Jaccard’s distance similarity/dissimi-
larity weights). In this case, we get better results.
Since from Table VIII and (28), one gets

qm´Mix(A) = ´(A,A)qm1(A)qm2(A)

+ (1¡ ´(A,A))qm1(A)qm2(A)
+ (1¡ ´(A,A[B))qm1(A)qm2(A[B)
+ (1¡ ´(A[B,A))qm1(A[B)qm2(A)

= 0 ¢L2L3 +1 ¢L2L3 + 1
2 ¢L2L0 + 1

2 ¢L4L3
= L0 +L 2¢3

6
+L 2¢0

6¢2
+L 4¢3

6¢2
= L0+ 6

6 +0+
6
6
= L 12

6
,

qm´Mix(B) = (1¡ ´(B,A[B))qm1(B)qm2(A[B)
= 1

2 ¢L2L4 = L 4¢2
6¢2
= L 4

6
,

qm´Mix(A[B) = ´(A[B,A[B)qm1(A[B)qm2(A[B)
+ ´(A,A[B)qm1(A)qm2(A[B)
+ ´(A[B,A)qm1(A[B)qm2(A)
+ ´(B,A[B)qm1(B)qm2(A[B)
+ ´(A[B,B)qm1(A[B)qm2(B)
+ ´(A,B)qm1(A)qm2(B)

+ ´(B,A)qm1(B)qm2(A)

+ (1¡ ´(A[B,A[B))qm1(A[B)
¢ qm2(A[B)

= 0 ¢L4L0 + 1
2 ¢L2L0 + 1

2 ¢L4L3 12 ¢L0L0
+ 1

2 ¢L4L2 + 1 ¢L2L2 +1 ¢L0L3 +1 ¢L4L0
= L0 +L0 +L 4¢3

6¢2
+L0 +L 4¢2

6¢2
+L 2¢2

6
+L0

= L 6+4+4
6
= L 14

6
,

qm´Mix(A[C) = ´(A,C)qm1(A)qm2(C)
+ (1¡ ´(C,A))qm1(C)qm2(A)

= 1 ¢L2L1 +1 ¢L0L3 = L 2¢1
6
+L 0¢3

6
= L 2

6
,

qm´Mix(A[B [C) = ´(C,A[B)qm1(C)qm2(A[B)
+ ´(A[B,C)qm1(A[B)qm2(C)

= 1 ¢L0L0 +1 ¢L4L1 = L 4
6
:

Similarly, qm´Mix(¢) is quasi-normalized both ways.

² Discounted Qualitative PCR (36)
We show how to apply the Discounted Qualitative

PCR rule (36) in this example with the fixed discount-
ing factor ®= 0:6, hence 1¡®= 0:4. First, apply the
qualitative conjunctive rule.

TABLE XVII
Qualitative Inputs and Conjunctive Rule

A B C A[B
qm1(¢) L2 L0 L0 L4
qm2(¢) L3 L2 L1 L0
qm^(¢) L 18

6
L 8
6

L0 L0

Indeed, one has

qm^(A) = L2L3 +L2L0 +L3L4 = L 2¢3
6 +0+

3¢4
6
= L 18

6
,

qm^(B) = L0L2 +L0L0 +L2L4 = L0+0+ 2¢4
6
= L 8

6
,

qm^(C) = L0L1 = L0,

qm^(A[B) = L4L0 = L0:

Applying the proportional conflict redistribution ac-
cording to PCR, one has

x1,A
L2

=
y1,B
L2

=
L2L2
L2 +L2

=
L 4
6

L4
= L( 46¥4)¢6 = L1:

Therefore,

x1,A = L2L1 = L 2
6
,

y1,B = L2L1 = L 2
6
,

x2,A
L2

=
z1,C
L1

=
L2L1
L2 +L1

=
L 2
6

L3
= L( 26¥3)¢6 = L 4

6
,

x2,A = L2L 4
6
= L 4=3

6
,

z1,C = L1L 4
6
= L 2=3

6
,

z2,C
L1

=
w1,A[B
L4

=
L1L4
L1 +L4

=
L 4
6

L5
= L( 46¥5)¢6 = L 4

5
,
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and

z2,C = L1L 4
5
= L 1¢4=5

6
= L 0:8

6
,

w1,A[B = L4L 4
5
= L 4¢4=5

6
= L 3:2

6
:

Summing, we get

qmDPCR(A) = L 18
6
+ 0:6 ¢

³
L 2
6
+L 4=3

6

´
= L 18

6
+ 0:6 ¢L 10=3

6
= L 18

6
+L 2

6
= L 20

6
,

qmDPCR(B) = L 8
6
+ 0:6 ¢ (L 2

6
) = L 8

6
+L 1:2

6
= L 9:2

6
,

qmDPCR(C) = L0 +0:6 ¢
³
L 4=3

6
+L 0:8

6

´
= L0 +L 0:62=3+0:8

6
= L 0:88

6
,

qmDPCR(A[B) = L0 +0:6 ¢ (L 3:2
6
+ 0:4 ¢ (L2L2 +L3L2)

= L 1:92
6
+ 0:4 ¢L 2¢2

6
= L 1:92

6 + 1:60
6
= L 3:52

6
,

qmDPCR(A[C) = 0:4 ¢ (L2L1 +L3L0)
= 0:4 ¢ (L 2¢1

6
+L0) = L 0:8

6
,

qmDPCR(A[B [C) = 0:4 ¢ (L0L0 +L1L4)

= 0:4 ¢
³
L0 +L 1¢4

6

´
= L 1:6

6
:

We can check that qmDPCR(¢) is quasi-normalized both
ways.
² Mixed Discounted Qualitative PCR (44)
In this example, we still set the discounting factor to

®= 0:6.
1) Using the first kind of similarity/dissimilarity
weights (see Table VI), one obtains

qm±MDPCR(A) = ±1(A,A)qm1(A)qm2(A)

+ ±2(A,A)qm1(A)qm2(A)

+ ±2(A,A[B)qm1(A)qm2(A[B)

+ ±2(A[B,A)qm1(A[B)qm2(A)

+® ¢
³
L 2
6
+L 4=3

6

´
= 0 ¢L2L3 +1 ¢L2L3 +1 ¢L2L0
+1 ¢L4L3 +0:6 ¢

³
L 2
6
+L 4=3

6

´
= L 18

6
+ 0:6 ¢L 10=3

6
= L 18

6
+L 2

6
= L 20

6
:

The term L 4=3
6
in the sum above comes from the

previous Discounted Qualitative PCR example.
One gets the same result as in the previous example
(Discounted Qualitative PCR).

2) Using the second kind of similarity/dissimilarity
weights (see Table VIII), one obtains:

qm´MDPCR(A) = ´(A,A)qm1(A)qm2(A)

+ (1¡ ´(A,A))qm1(A)qm2(A)
+ (1¡ ´(A,A[B))qm1(A)qm2(A[B)
+ (1¡ ´(A[B,A))qm1(A[B)qm2(A)

+® ¢
³
L 2
6
+L 4=3

6

´
= 0 ¢L2L3 +1 ¢L2L3 + 1

2 ¢L2L0

+ 1
2 ¢L4L3 +0:6 ¢

³
L 2
6
+L 4=3

6

´
= L 12

6
+L 2

6
= L 14

6
:

Similarly

qm´MDPCR(B) = 0 ¢L0L2 +1 ¢L0L2 + 1
2 ¢L0L0

+ 1
2 ¢L4L2 +0:6 ¢L 2

6

= 1
2 ¢L4L2 +L 1:2

6
= L 4¢2

6¢2
+L 1:2

6

= L 4
6
+L 1:2

6
= L 5:2

6
,

qm´MDPCR(C) = 0 ¢L0L1 +1 ¢L0L1 +0:6 ¢
³
L 2=3

6
+L 0:8

6

´
= L0 +L0 +L 0:88

6
= L 0:88

6
:

The term L 0:8
6
in the sum above comes from the

previous Discounted Qualitative PCR example. We
get

qm´MDPCR(A[B) = ´(A[B,A[B)qm1(A[B)
¢ qm2(A[B)
+ ´(A,A[B)qm1(A)qm2(A[B)
+ ´(A[B,A)qm1(A[B)qm2(A)
+ ´(B,A[B)qm1(B)qm2(A[B)
+ ´(A[B,B)qm1(A[B)qm2(B)
+ (1¡ ´(A[B,A[B))qm1(A[B)
¢ qm2(A[B)
+® ¢L 3:2

6
+ (1¡®)qm1(A)qm2(B)

+ (1¡®)qm1(B)qm2(A),
= 0 ¢L4L0 + 1

2 ¢L0L1 + 1
2 ¢L4L3 12 ¢L0L0

+ 1
2 ¢L4L2 +1 ¢L4L0

+0:6 ¢L 3:2
6
+ 0:4 ¢L2L2 +0:4 ¢L0L3

= L 4¢3
6¢2
+L 4¢2

6¢2
+L 1:92

6
+L 1:60

6

= L 6
6
+L 4

6
+L 1:92

6
+L 1:60

6
= L 13:52

6
,
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qm´MDPCR(A[C) = (1¡®)qm1(A)qm2(C)
+ (1¡®)qm1(C)qm2(A)

= 0:4 ¢L2L1 +0:4 ¢L3L0 = L 0:8
6
,

qm´MDPCR(A[B [C) = (1¡®)qm1(C)qm2(A[B)
+ (1¡®)qm1(A[B)qm2(C)

= 0:4 ¢L0L0 +0:4 ¢L4L1 = L 1:6
6
:

qm´MDPCR(¢) is quasi-normalized without approxima-
tions, but it is not with approximations.

EXAMPLE 13 Fusion of three sources
Consider a set of labels L= fLmin = L0,L1,L2,L3,L4,L5,
Lmax = L6g, and a frame of discernment £ = fA,B,Cg
in Shafer’s model (i.e. all intersections empty). Let’s
take the three following qualitative sources of evidence
described in Table XVIII.

TABLE XVIII
Qualitative Inputs for Example 13

A B B [C A[B [C
qm1(¢) L2 L0 L0 L4
qm2(¢) L0 L3 L0 L3
qm3(¢) L0 L0 L5 L1

² Qualitative conjunctive rule
If one applies the Qualitative Conjunctive Rule

(QCR), one gets

qm^(A) = qm1(A)qm2(A[B [C [D)qm3(A[B [C [D)
= L2L3L1 = L 2¢3

6
L1 = L 2¢3¢1

6¢6
= L 1

6
:

Similarly,

qm^(B) = L4L3L1 +L4L3L5 = L 4¢3¢1
6¢6
+L 4¢3¢5

6¢6

= L 2
6
+L 10

6
= L 12

6
,

qm^(B [C) = L4L3L5 = L 4¢3¢5
6¢6
= L 10

6
,

qm^(A[B [C [D) = L4L3L1 = L 4¢3¢1
6¢6
= L 2

6
:

The total conflict is

qm^(Ø) = qm1(A)qm2(B)qm3(B [C)
+ qm1(A)qm2(B)qm3(A[B [C [D)
+ qm1(A)qm2(A[B [C [D)qm3(B [C)

= L2L3L5 +L2L3L1 +L2L3L5

= L 2¢3¢5
6¢6
+L 2¢3¢1

6¢6
+L 2¢3¢5

6¢6

= L 5
6
+L 1

6
+L 5

6
= L 11

6
:

² Qualitative PCR
Applying the proportional conflict redistribution for

the first partial conflict qm1(A)qm2(B)qm3(B [C), one
gets

x1,A
L2

=
y1,B
L3

=
z1,B[C
L5

=
L2L3L5

L2 +L3 +L5

=
L 5
6

L10
= L( 56¥10)¢6 = L 3

6
:

Therefore,

x1,A = L2L 3
6
= L 2¢3

6¢6
= L 1

6
,

y1,B = L3L 3
6
= L 3¢3

6¢6
= L 1:5

6
,

z1,B[C = L5L 3
6
= L 5¢3

6¢6
= L 2:5

6
:

Applying the proportional conflict redistribution for
the second partial conflict qm1(A)qm2(B)qm3(A[B[
C [D), one gets

x2,A
L2

=
y2,B
L3

=
w1,A[B[C[D

L1
=

L2L3L1
L2 +L3 +L1

=
L 1
6

L6
= L( 16¥6)¢6 = L 1

6
:

Therefore,

x2,A = L2L 1
6
= L 2¢1

6¢6
= L 1=3

6
,

y2,B = L3L 1
6
= L 3¢1

6¢6
= L 1=2

6
= L 0:5

6
,

w1,A[B[C[D = L1L 1
6
= L 1¢1

6¢6
= L 1=6

6
:

Applying the proportional conflict redistribution for
the third partial conflict qm1(A)qm2(A[B [C [D)
¢ qm3(B [C), one gets
x3,A
L2

=
w2,A[B[C[D

L3
=
z2,B[C
L5

=
L2L3L5

L2 +L3 +L5
= L 3

6
,

so,
x3,A = L2L 3

6
= L 1

6
,

w2,A[B[C[D = L3L 3
6
= L 1:5

6
,

z2,B[C = L5L 3
6
= L 2:5

6
:

Summing, we get

qmPCR(A) = L 1
6
+L 1

6
+L 1=3

6
+L 1

6
= L 10=3

6
,

qmPCR(B) = L 12
6
+L 1:5

6
+L 0:5

6
= L 14

6
,

qmPCR(B [C) = L 10
6
+L 2:5

6
+L 2:5

6
= L 15

6
,

qmPCR(A[B [C [D) = L 2
6
+L 1=6

6
+L 1:5

6
= L 22=6

6
:

We can check that qmPCR(¢) is quasi-normalized without
approximations (i.e. when working within the refined
set of linguistic labels by keeping fractional indexes),
but it is not quasi-normalized when using approxima-
tions of fractional indexes if we want to work back
within the original set of linguistic labels L= fLmin =
L0,L1,L2,L3,L4,L5,Lmax = L6g.
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² Discounted Qualitative PCR (37)
Let’s consider the discounting factor ®= 0:6. Con-

sider the previous example and discount it according to
(37) applied in the qualitative domain. One obtains:

qmDPCR(A) = L 1
6
+ 0:6 ¢

³
L 1
6
+L 1=3

6
+L 1

6

´
= L 1

6
+ 0:6 ¢L 7=3

6
= L 2:4

6
,

qmDPCR(B) = L 12
6
+ 0:6 ¢

³
L 1:5

6
+L 0:5

6

´
= L 1

6
+ 0:6 ¢L 2

6
= L 13:2

6
,

qmDPCR(B [C) = L 10
6
+ 0:6 ¢

³
L 2:5

6
+L 2:5

6

´
= L 10

6
+ 0:6 ¢L 5

6
= L 13

6
,

qmDPCR(A[B [C) = (1¡®)qm1(A)qm2(B)qm2(B [C)
= 0:4 ¢L2L3L5 = 0:4 ¢L 5

6
= L 2

6
,

qmDPCR(A[B [C [D) = L 2
6
+ 0:6 ¢

³
L 1=6

6
+L 1:5

6

´
+0:4 ¢ (L2L3L1 +L2L3L5)

= L 2
6
+ 0:6 ¢L 5=3

6
+ 0:4 ¢

³
L 1
6
+L 5

6

´
= L 2

6
+L 1

6
+ 0:4 ¢L 6

6

= L 3
6
+L 2:4

6
= L 5:4

6
:

qmDPCR(¢) is quasi-normalized without approximations,
but it is not with approximations.

7. CONCLUSIONS

With the recent development of qualitative methods
for reasoning under uncertainty developed in Artificial
Intelligence, more and more experts and scholars have
expressed great interest on qualitative information fu-
sion, especially those working in the development of
modern multi-source systems for defense, robot navi-
gation, mapping, localization and path planning and so
on. In this paper, we propose some solutions to han-
dle the conflict and to weigh the imprecision of the re-
sponses of the experts, from the classical combination
rules for qualitative and quantitative beliefs. Hence, we
have presented a mixed rule given by a weighted sum
of the conjunctive and disjunctive rules. The weights
are defined from a measure of non-specifity calculated
by the cardinality of the responses of the experts. This
rule transfers the partial conflict on partial ignorance.
Again, the proportional conflict distribution rule redis-
tributes the partial conflict on the element implied in
this conflict. We propose an extension of this rule by
a discounting procedure, thereby, a part of the partial
conflict is also redistributed on the partial ignorance.
We have introduced a measure of conflict between pair
of experts and another measure of non-conflict between
pair of experts, as to quantify this part. In order to take

heed of the non-specifity and to redistributed the partial
conflict, we propose a fused rule of these two new rules.
This rule is created in such way that we retain a kind of
continuity of the mass on the partial ignorance, between
both cases with and without partial conflict. Illustrating
examples have been presented in detail to explain how
the new rules work for quantitative and qualitative be-
liefs. The study of these new rules shows that the clas-
sical combination rules in the belief functions theory
cannot take precisely into account the non-specifity of
the experts and the partial conflict of the experts. This
is specially important for qualitative belief.
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called Truncated Search Tree algorithm (TruST) has been devel-

oped. The inexact graph matching is used to identify meaningful

patterns in volumous amounts of data. This heuristic is based on the

popular branch-and-bound technique with constraints on breadth

and depth. To reduce the dimensionality of the matches found, the

results are grouped using a clustering algorithm. A novel Hypercube

distance measure is used in clustering the matched subgraphs. This

measure is then compared with a relatively new Fuzzy Hamming
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1. INTRODUCTION

Currently, analysts receive enormous amount of in-
formation from multiple sensors and resources. In ad-
dition to knowledge bases and traditional databases,
enormous volumes of unstructured information are now
available and are presented to the analyst [1], [35],
[26]. This presents a significant challenge since different
pieces of information from several heterogeneous data
sources must be fused in order to generate conclusions
relevant to the task at hand. The analyst is then left to sift
through the information to analyze and interpret their
contents and infer (uncover) what he or she is seeking.
This process can be tedious and time-consuming and in
many cases impractical when important events are un-
folding rapidly. An automated means for this extraction
of relevant pieces of information and their unification
into a useful product for the analyst is much needed.
In order to address the problems of data gathering,

fusion and extraction, The Joint Directors of Labora-
tories (JDL) Data Fusion Sub-panel developed a five-
level Data Fusion Model [36]. Level 1 on Object re-
finement seems to have received the most attention.
Level one processing functions include: data alignment,
association, tracking, and identification. Less mature
are Level 2 processing [17], [30], situation assessment,
which seeks a higher level of inference above level
one processing, and Level 3 processing which performs
threat/impact assessment. Threat assessment is an itera-
tive process of fusing the combined activity and capabil-
ity of enemy forces to infer their intentions and assess
the threat that they pose. Level 1 is very often called as
“low-level” processing, and the others as “high-level”
processing.
Higher level fusion problems are generally more dif-

ficult than level 1 because they involve higher dimen-
sionality corresponding to the relationships among en-
tities identified at level 1. Higher level fusion also con-
cerns modeling behavior of aggregate entities, through
the understanding of their individual behaviors and re-
lationships. Some commonly recognized relationships
are spatio-temporal relationships, part/whole relation-
ships, organizational relationships, various causal re-
lationships, semantic relationships, similarity relation-
ships, etc. To represent these relationships we use
(ARGs) Attributed Relational Graphs [11]. ARGs are
rich data structures to represent level 1 objects along
with higher level relationships as outlined above. In
these ARGs, nodes represent people, organizations, lo-
cation, individuals or facilities. Edges represent rela-
tionships like communication, radio, electronic, or tele-
phone. Attributes store the details of each node and
edge, like a individual’s name or an event’s time of oc-
currence. When we represent data as ARGs the problem
of graph matching is of most importance when retriev-
ing relevant information.
In this research we enhance level 2 and 3 fusion

capability through a new class of hierarchical models

90 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 3, NO. 2 DECEMBER 2008



and algorithms based on graph representations and tech-
niques. In [31], a method for imperfect subgraph match-
ing [6] between a Template Graph and Data Graph
is developed. This method produces multiple graphs
corresponding to the alternate optimal or near optimal
matches defined by the maximum value of similarity
criterion. Depending on the truncation parameters used
and the dimension of the data graph a large number
of matches may be found. A number of these matches
differ from each other in minor aspects reflected by one
(or a few) nodes/arcs. It is difficult for the analyst to
browse through each match to ascertain the distinguish-
ing characteristics that characterize the set of matches.
To reduce dimensionality of the matches found and to
provide a hierarchical aggregation of these matches, a
distance measure is employed between the matching
graphs which is then used to group them using clus-
tering algorithms. We employ two distance measures:
Hypercube graph distance and Fuzzy Hamming distance
[19], and use a simple K-means algorithm for cluster-
ing. We are also interested in the difference between the
performance of the two distance measures. Finally, once
we have obtained a cluster of similar matches, we would
like to aggregate the match information for higher level
interpretation.
The remainder of the paper is organized as follows.

Section 2 is a brief literature review on graph distances.
Section 3 presents the TruST algorithm [31]. Section 4
presents the K-means clustering using the Hypercube
distance, while Section 5 presents the K-means cluster-
ing using the Fuzzy Hamming distance. The numerical
comparison of the two distance measures using silhou-
ette index is presented in Section 6. Section 7 presents
the aggregation of clusters while Section 8 explores the
neighborhood structure of the matches and clusters. Fi-
nally the conclusions are presented in Section 9.

2. LITERATURE REVIEW

There is a need to understand the situation and
infer the enemy intent in the battlefield. To accomplish
this the analyst needs to analyze the data at hand,
to get an idea of the environment. There are many
computational techniques implemented in high level
data fusion (level 2 and 3). To mention some of them:
Knowledge based expert systems [3], [2], Graph based
matching techniques [12] [18], Bayesian belief systems
approach [13], [14], Fuzzy Logic approach [27] [37],
Genetic algorithms approach [4], [5], Artificial neural
systems approach [24], [10]. The main concentration
of this paper is on using the large number of matches
(results) from TruST algorithm and providing a concise
report to the analyst. Here we target most of the paper
on using the fuzzy measures to find distance between
graphs and cluster the matches. Being this target the
literature survey concentrates mainly on graph distance
measures. More detailed literature survey on Graph
matching algorithms is being provided in [31].

There are currently many approaches in finding the
similarity based distance between graphs. One such
approach, suggested by Bunke and Shearer [8], uses
a maximum common subgraph isomorphism algorithm
to identify the largest substructure common to a pair
of graphs, with the size of this maximum common
subgraph (MCS) being determined by some function
of the numbers of common vertices and edges. The
distance metric between graphs G1 and G2, based on
maximum common subgraph is given as:

d(G1,G2) = 1¡
m(G1,G2)

max(jG1j, jG2j)
(1)

where m(G1,G2) = jG12j is the number of vertices of the
maximal common subgraph (G12) of G1 and G2.
This provides a natural way of calculating the degree

of similarity between a pair of graphs but the NP-
complete nature of the maximum common subgraph
isomorphism problem rules out the large-scale use of
MCS-based similarities. Fernández and Valiente [15]
extended the MCS based distance metric by combining
maximum common subgraph and minimum common
supergraph. This distance metric does not depend on
the edit operations and is formulated as:

d(G1,G2) = j²Gj ¡ jĜj (2)

where ²G and Ĝ are respectively, the maximum common
subgraph and minimum common supergraph of G1 and
G2. Wallis et al. [38] extended the MCS by defining
the problem size using the union of two graphs being
measured rather than the larger of the two graphs being
used currently. The distance metric is formulated as
follows:

d(G1,G2) = 1¡
m(G1,G2)

(jG1j+ jG2j ¡ jG12j)
: (3)

Chartrand et al. [9] and Kubicka and Kubicki [25]
have defined the distance between graphs of equal or-
der and size in terms of edge rotation and deletion. The
authors [25] have shown that the distance is a metric
and its application in matching a template graph with a
database of graphs. The algorithm is limited to planar
graphs and has the problem of computational explo-
sion. The MCS algorithm and its variants are NP-hard
and can be computationally expensive for large scale
graphs. To avoid these exorbitant calculations, fuzzy
distance measures are employed. In these methods the
graphs are represented as vectors or points in a Hyper-
cube and the distance is calculated based on the fuzzy
theoretic measures. Fuzzy operations are computation-
ally less expensive compared to MCS algorithms. A few
fuzzy distance measures are addressed subsequently in
Section 4 and Section 5.
One such interesting fuzzy distance metric is sug-

gested by Ionescu and Ralescu [19], [20], [21], [22]
called the (FHD) Fuzzy Hamming Distance. FHD met-
ric name is also used by Bookstein et al. [7] to describe a
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Fig. 1. Neighborhood scoring.

fuzzy distance measure based on edit distance cost. The
metric used in this paper is the one devised by Ionescu
and Ralescu. They have implemented this technique in
banknote validator [22], image retrieval system [20] and
image partitioning [19], [21]. The detail description of
FHD is given in Section 5.
In this paper we use the inexact graph matching

based heuristic [31], where through the control of trun-
cation parameters we can control the state space. The
use of truncated branch-and-bound as a heuristic gives
better results [39] than most of the heuristics. This
heuristic produces a large number of results and the an-
alyst can be over whelmed from them, so the resulting
matches are clustered. To cluster these results a novel
Hypercube distance metric is being suggested and com-
pared with a Fuzzy Hamming Distance measure. Sec-
tion 3 gives details of the suggested heuristic, while Sec-
tions 4 and 5 respectively, give details on the Hypercube
distance metric and Fuzzy Hamming distance metric.

3. TRUNCATED SEARCH TREE (TRUST) [31]

The TruST algorithm [31] expands on the idea of
1-Hop neighborhood distance. These 1-Hop neighbor-
hoods consist of a root node and all other nodes of
edge distance 1 away. For a pair of template node and
data graph node, a linear assignment problem is solved
over their neighborhood. The linear assignment prob-
lem takes the score matrix with individual elements as
the average of the neighboring node-to-node score and
connecting edge-to-edge score. So each 1-Hop neigh-
borhood score will be a unique score depending on its
corresponding neighborhood.
We define two parameters of the procedure to in-

crease the flexibility of the solution and allow the algo-
rithm to be configured for different domains of data.

1. ® (root weight score): weights the value of the match
between neighborhood root versus the value of the
assignment of its neighbors. This will be discussed
in more detail later.

2. t (score threshold): The algorithm will not return
matches with a value below this threshold. The

higher this threshold is set, the fewer 1-Hop neigh-
borhood assignments would be determined, which
in turn leads to improved performance (but potential
loss of optimality).

Step 1 of the procedure is to compute a node-to-
node score (Cij) for each node in the template graph to
each node in the data graph. For each node we then sort
this list in descending order. Using the threshold value
(t) input to the algorithm, we can prune the amount
of assignments we must run for this template node by
the equation (t¡ 1+®)=® (See proof in [31]). Root
node scores which are below this value do not have
the possibility of having an overall score above the
threshold even when there is a perfect neighborhood
assignment score.
Step 2 of the procedure is to compute the scores for

the 1-Hop neighbors of each root node pair. This returns
the optimal assignment of neighbors of the root node in
the template graph to the neighbors of the root node in
the data graph. Then the neighborhood score (shown in
Fig. 1) between template graph node i and data graph
node j is given by (®£Cij +(1¡®)£Wij), where Cij
is the score of the root node pair and Wij is the score
of the neighborhood assignment, which is given by (4).
® characterizes the amount of weightage to be given to
the neighbors. ® varies between [0,1], and its value has
inverse proportion with the neighborhood assignment.

Wij =
Sum of neighborhood assignment scores
Number of neighbors to root template node

:

(4)

1-hop neighborhood score takes care of “node-to-
node” assignment as well as “edge-to-edge” assignment.
The score of neighborhood assignment is solved using a
linear assignment problem between the root nodes with
the adjacent nodes and edges forming the solution ma-
trix. Using the results of the above two steps, a truncated
search tree algorithm for matching is formulated.
A typical example of truncated search tree algorithm

is shown in Fig. 2. The search tree is developed dynam-
ically during the search and initially consists of only the
root. At each iteration of this algorithm, a subproblem is
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Fig. 2. An example of the truncated greedy algorithm.

selected for exploration from the pool of live subprob-
lems using the scores of the current match. We use here
a strategy which is similar to the breadth first search
strategy found in the literature. The basic principle is
to process all the nodes at one level of the search tree
before any node at a deeper level.
In what follows, we consider the branching rule for

the selected subproblem. Each subproblem is developed
by adding one pair to its parent problem. Topology is
the most important factor considered in this step. Those
(template, data graph) node pairs which are qualified to
be added should be connected respectively to at least
one template and one data graph node in the parent
problem. The way in which a newly added template
node connects with the existing template node must be
exactly the same as the way that connects the data graph
nodes in the corresponding pairs. When a new data
graph node is added, the score at that level is calculated
using the average of the scores of all the node pairs
and edge pairs connecting them, at that level. So as
the level increases the new nodes are added and the
score is revised in correspondence with the new pair
score.
Note that each subproblem at level i (i = 0,1,2, : : :)

has exactly i pairs (one data graph node and one tem-
plate node). In summary, the more pairs exist in a sub-
problem, the more neighboring nodes we have to con-
sider. That causes the search tree to explode exponen-
tially as it goes deeper. In order to avoid such a problem,
we do not consider all the feasible pairs. We use a para-
metric mechanism to control the state space growth. For
a subproblem at level i, we only choose at most ki+1 best
child subproblems. In our work, we first set k0 to be a
fairly large number. The rationale is to make the starting
points cover the data graph as much as possible. And
then we set ki = k (8i¸ 1) with k being relatively small
in order to reduce the exponential growth. However the
search tree still remains very large. For instance, at level
i, the number of sub-problems is given by k0k

i¡1, which
is extremely large even if the values of k and i are rel-
atively small. Therefore, we introduce two additional
parameters ¯i and ±. The parameter ¯i is to control the
breadth of the search tree, i.e., the total number of sub-
problems at each level is at most ¯i. The parameter ± is

TABLE I
Ranking of 1-Hop Matched Values

T1 T2 T3 T4

D3 0.90 D1 0.80 D6 0.77 D10 0.60
D1 0.80 D5 0.75 D1 0.75 D7 0.45
D9 0.75 D3 0.71 D2 0.63 D2 0.40
D6 0.73 D7 0.68 D4 0.52 D6 0.35
D5 0.70 D9 0.55 D8 0.44 D4 0.28
D4 0.65 D6 0.53 D9 0.27 D8 0.18
D2 0.40 D4 0.23 D3 0.23 D1 0.15
D7 0.17 D2 0.21 D7 0.17 D3 0.14
D10 0.15 D10 0.13 D11 0.11 D5 0.12
D11 0.11 D8 0.09 D5 0.09 D9 0.10
D8 0.09 D11 0.05 D10 0.05 D11 0.07

to control the depth of the search tree, i.e., the search
progress stops at level ± with only part of the template
explored. If two or more sub-problems at the same level
have exactly the same matched pairs, we only retain one
of them and fathom the others. It is preferable to let ±
be equal to the number of nodes in the template graph
for complete exploration.
After running this algorithm, each branch yields a

series of matched pairs. Then the data graph nodes in the
matched pairs form a subgraph, which is a final match
for the template. There are a bunch of such resulting
subgraphs with various matched values and topologies,
referred to as leaf nodes. At each level in algorithm the
best ¯i leaf nodes are selected. If any of the leaf nodes
cannot be extended at level i, then there are no adjacent
nodes in the data graph corresponding to the template
graph. So a penalty is added to the node and tree is
expanded with some non-adjacent node having lower
1-hop neighborhood score. The worst-time complexity
of full enumeration of the algorithm is O(mnm), but in
terms of user parameters the complexity is O(k0¯

±).
We will use the example shown in Fig. 1 to illustrate

the TruST algorithm. Table I shows the 1-Hop neighbor-
hood scores calculated by the linear assignment prob-
lem. For each node in the template, all nodes in the data
graph are ranked in accordance with the corresponding
matched values. A higher rank denotes a more simi-
lar pair concerning the two nodes themselves and their
neighbors. There are a total of 44 matching pairs with
threshold, t= 0.
Before running the TruST algorithm, we need to

determine the values of the parameters. We first set k0 =
3, and then set ki = 3 (8i¸ 1). For illustrative purposes
the value of k0 is set at the same value as ki. Since
the number of template nodes is 4, we just set ± = 4
to explore all the template nodes. Finally, we set ¯i = 7
(8i¸ 1).
The results are shown in Fig. 3. At the top level

the root node is branched k0 times. Here only the top
three subproblems are selected for further exploration.
At each subsequent level each node pair is branched
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Fig. 3. A sample result of the truncated greedy algorithm.

ki times. After level 1 we get lot of subproblems, but
we only have a choice to continue with ¯ subproblems.
After ± level there are no more template nodes left to
explore, so at the bottom level in Fig. 3 we find four
resulting matches.

4. K-MEANS CLUSTERING USING HYPERCUBE
DISTANCE MEASURE

Despite the truncation parameters in the search pro-
cedure, it is possible that the user/analyst can be over-
whelmed with the number of matched sub-graphs. It is
therefore desirable to group subgraphs with similar fea-
ture into a fewer number of aggregates. To determine
the similarity between a pair of matched subgraphs, we
employ the Hypercube distance metric between graphs.
Therefore one can use a K-means clustering [33], [23]
algorithm to group similar subgraphs. First we try to
represent graphs as points in a unit Hypercube. Let M
be a score (or 1-hop neighborhood score) matrix for
a result graph R(G), with entries in the interval [0,1],
where each odd entryMij indicates a strength of connec-
tion between nodes i and j, where i 2 VDG; j 2 VTG and
each even entry indicates a strength of connection be-
tween edges i and j, where i 2 EDG; j 2 ETG. In general,
matrices of this type can represent graphs as a whole
with neighborhood scores between associated template
and graph nodes.
The Hypercube graph representation is obtained by

mapping the elements of M into a higher dimensional
space, namely, the unit Hypercube of dimension equal to
N = (min(±,m))£ (min(±,m)¡ 1) for the results of the
TruST algorithm, as illustrated in Fig. 4. Of necessity,
this mapping induces an ordered indexing correspon-
dence between the matrix elements M and the elements
of a vector A in this higher dimensional space.

Fig. 4. Embedding a connection matrix into a higher-dimensional
unit Hypercube.

The indexing convention we employ to relate the
elements Ak of the vector A with the elements Ri,1 of
the matrix R is as follows:

A1$ R1,1

...

AN $ RN,1

or, relating the index k to the row, column pair (i,1)
of R,

k$ i,

i= 1, : : : ,N:
(5)

Thus the graph represented by the result now be-
comes a point A in the N dimensional Hypercube, anal-
ogous to a set with corresponding coordinates in each
of the latter dimensions [28]. A is a set defined on a uni-
verse X, so for universe with only one element, the func-
tion is defined on a unit interval [0,1]. For a two-element
universe thefunction is defined on the unit square; and
for a three-element universe, the function is defined on
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Fig. 5. Graphs as points in the unit hypercube.

the unit cube. For a universe of n elements, we define the
function on the unit Hypercube, In = [0,1]n. These map-
pings are shown in Fig. 5. This mapping can obviously
be extended to the different cases of graphs where the
total number of elements is different. This Hypercube
description allows us to invoke set theoretic concepts
for graph representation and characterization.

4.1. Mutual Subsethood of Graphs A and B

Mutual subsethood E(A,B) provides a normalized
similarity measure between two graphs. E(A,B) mea-
sures the degree to which a set A is similar to another
set B. This can be viewed as the degree to which A is
a subset of B, AND B is a subset of A. This obviously
symmetric relationship is defined by:

E(A,B) =
¹(A\B)
¹(A[B) (0· E(A,B)· 1) (6)

where ¹(A) is the Hamming norm of the function values
mA(yi) of set A:

¹(A) =
nX
i=1

mA(yi) (7)

and the union (or intersection) operator invokes the
component wise maximum (or minimum) operation.
Geometrically, mutual subsethood can be visualized as
in Fig. 6, as the ratio of the Hamming lengths of two
vectors, the numerator vector having as its coordinates
the element-wise minima of A and B, while the denomi-
nator vector has as it coordinates the element-wise max-
ima of A and B.
Note that E(A,B) = 1, A= B, and E(A,B) = 0 if A

or B = Á where Á denotes the null set at the origin of
In. The mutual subsethood measure can also straightfor-
wardly incorporate dimensional importance weighting.

Fig. 6. Geometric interpretation of mutual subsethood as the ratio
of Hamming lengths of the two vectors shown.

4.2. Hypercube Distance between Graphs A and B

The most important benefit of this Hypercube rep-
resentation is that it immediately suggests the use of
a simple function of mutual subsethood as a distance
metric between pairs of labeled graphs. Since E(A,B) =
1, A´ B and E(A,B) = 0 if and only if A and B share
no links in common, the normalized distance metric
¢(A,B) between two arbitrary labeled graphs can be
defined as the complement of E(A,B):

¢(A,B) = 1¡E(A,B), (0·¢(A,B)· 1): (8)

The distance achieves a maximum of unity if A and
B have no common links. In this case, we define the
indeterminate ratio in (6) to have zero value, so that the
distance between two such graphs as defined by (8) is
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unity. This avoids the introduction of a discontinuity in
the value of ¢(A,B) in the limit as the number of edges
in a pair of statistically independent graphs A and B
approaches zero. Note that the computation of ¢(A,B)
is very fast, even for large graphs, since it involves only
pair wise comparator calculations within each dimen-
sion, as opposed to the more numerically sensitive and
computationally intensive calculations involved in the
eigen analysis of a graph.
Clearly, ¢(A,B)¸ 0 and ¢(A,B) = 0, A= B. We

now prove that ¢(A,B) is a proper metric, i.e., that it
also satisfies the triangle inequality for distinct graphs
A, B and C:

¢(A,C)·¢(A,B) +¢(B,C): (9)

From (6), we have

¢(A,C) = 1¡
PN(N¡1)=2

k=1 min(Ai,Ci)PN(N¡1)=2
i=1 max(Ai,Ci)

· 1¡
PN(N¡1)=2

k=1 min(Ai,Ci)PN(N¡1)=2
i=1 max(Ai,Bi,Ci)

=

PN(N¡1)=2
i=1 max(Ai,Bi,Ci)¡

PN(N¡1)=2
k=1 min(Ai,Ci)PN(N¡1)=2

i=1 max(Ai,Bi,Ci)
:

(10)
Similarly, we have Equation (11)

¢(A,B) +¢(B,C)

=

PN(N¡1)=2
i=1 max(Ai,Bi)¡

PN(N¡1)=2
i=1 min(Ai,Bi)PN(N¡1)=2

i=1 max(Ai,Bi)

+

PN(N¡1)=2
i=1 max(Bi,Ci)¡

PN(N¡1)=2
i=1 min(Bi,Ci)PN(N¡1)=2

i=1 max(Bi,Ci)

¸
PN(N¡1)=2
i=1 max(Ai,Bi) +

PN(N¡1)=2
i=1 max(Bi,Ci)¡

PN(N¡1)=2
i=1 min(Ai,Bi)¡

PN(N¡1)=2
i=1 min(Bi,Ci)PN(N¡1)=2

i=1 max(Ai,Bi,Ci)
: (11)

Since the latter terms in both (10) and (11) have
a common denominator, it suffices to show that the
numerators of these terms satisfy the inequality

N(N¡1)=2X
i=1

max(Ai,Bi,Ci)¡
N(N¡1)=2X
k=1

min(Ai,Ci)

·
N(N¡1)=2X

i=1

max(Ai,Bi) +
N(N¡1)=2X

i=1

max(Bi,Ci)

¡
N(N¡1)=2X

i=1

min(Ai,Bi)¡
N(N¡1)=2X

i=1

min(Bi,Ci):

(12)

This inequality can be demonstrated straightfor-
wardly to hold for each value of the index i by consider-

ing each of the six possible rankings of the magnitudes
of Ai, Bi and Ci, and thus the triangle inequality holds
for the distance metric ¢(A,B).
The graph matching example solved using the TruST

algorithm results in matches shown in Fig. 3. Using this
distance metric, we treat graphs as vector samples, upon
which vector processing operations can be performed.
In our example we have four resulting subgraphs and
so we can create (¯¡ 1) = 3 clusters. The Hypercube
distance measure is used to calculate K-means cluster.
Based on the distances the leaf nodes are distributed to
different clusters. The whole process continues until the
clusters rearrangement stops. Cluster 1 and 2 each have
only one leaf node while cluster 3 has two leaf nodes.
Here the clusters formed are:

Cluster 1 : DP1

Cluster 2 : DP2

Cluster 3 : DP3,DP4:

5. K-MEANS CLUSTERING USING FUZZY
HAMMING DISTANCE MEASURE

In this type of representation, the graphs are repre-
sented as vectors in Hypercube space. This method of
graph representation is similar to the one used in Section

4 but Fuzzy Hamming distance measure is used instead
of the mutual subsethood. Each graph in the result set
is represented as a vector shown by Equation 6.
Given two real-valued vectors, FHD is the (fuzzy)

number of components along which the two vectors
are different. Degree of difference between vectors is
defined as “Given the real values x and y, the degree
of the difference between x and y, modulated by ® > 0,
denoted by d®(x,y), is defined as:”

d®(x,y) = 1¡ e¡®(x¡y)
2
: (13)

For the same value of (x¡ y), ® will vary the value
of d®(x,y). The membership function d® has following
properties:
1. 0· d®(x,y)< 1 with equality , x= y;
2. d®(x,y) = d®(y,x);
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3. for x= a§ c, d®(x,a) = e¡c
2
;

4. d®(x,y) = d®(0, jx¡ yj).
The first three points above prove that FHD is a

metric. The difference fuzzy set corresponding to the
d®(x,y) is given as D®(x,y) with membership function
¹D®(x,y) such that:

¹D®(x,y)(i) = d®(xi,yi) (14)

where xi and yi are the ith component in n dimensional
vector x and y respectively. The difference fuzzy set
gives the measure of degree of difference between vec-
tors along their ith component. Ionescu and Ralescu
[19] define FHD as:

“Given two n dimensional real-valued vectors, x and
y, for which the difference fuzzy set D®(x,y), with
membership function ¹D®(x,y), the Fuzzy Hamming
Distance between x and y, denoted by FHD®(x,y)
is the fuzzy cardinality of the difference fuzzy set,
D®(x,y).”

Cardinality CardA of a fuzzy set A=
Pn
i=1 xi=¹i:

CardA´
nX
i=0

i=¹CardA(i) (15)

where ¹CardA(i) = min(¹i, (1¡¹i+1)). ¹i denotes the ith
largest value of ¹. The set is appended with 1 at start
and 0 at end for convenience of calculation. So, ¹0 = 1
and ¹n+1 = 0.
These values are the fuzzy equivalent of the graph

vector. To get a distance measure the fuzzy values are to
be defuzzified to get a crisp distance value. The litera-
ture on fuzzy inference system has many different types
of defuzzification techniques. The most used among
these is the “Center of Gravity (COG).” Ionescu and
Ralescu [19] have proposed a crisp cardinality (nCard)
to get a integer defuzzified value

nCard(A)´ jx;¹A(x)> 0:5j: (16)

The COG is defined as per its name, as the center
of gravity of the area underlying the resulting graph
of Fuzzy Hamming set and its membership function
values. It gives the number of different components that
exists between vectors x and y. nCard gives the integer
number of components that are different in the fuzzy
set. The COG is given by the equation:

COG=
Pn
i=1 xi¹iPn
i=1¹i

: (17)

The main issue in this distance measure is calcula-
tion of ®. ® can vary the measure of the FHD. ® acts as
a control for sensitivity of variation. It is given as:

®=
ln
μ
1
²

¶
MAX2

1
¯2

(18)

where MAX is the maximum value in the column
domain and ¯ is the percentage of MAX which is

considered a difference in the column values of vectors
x and y. In our case the graph vectors have values in the
range [0,1], so the maximum difference is going to be
1. Hence MAX= 1. The nCard decreases significantly
as we increase ¯. So to have a more sensitive analysis
of difference the value of ¯ is kept at 0.1.

5.1. Implementation

We again use the same k-means clustering but with
the distance measure as Fuzzy Hamming distance. The
graph matching example solved using the TruST algo-
rithm results in matches shown in Fig. 3. In our ex-
ample we have four resulting subgraphs and so we can
create (¯¡ 1) = 3 clusters. For K-means clustering the
3 cluster centroids are initialized with the first three re-
sults.

K1 = (0:9,0:80,0:75,0:75,0:75,0:63,0:40)

K2 = (0:9,0:80,0:75,0:71,0:63,0:59,0:45)

K3 = (0:8,0:75,0:71,0:68,0:52,0:55,0:35):

(19)

Then Fuzzy Hamming distance is calculated from
cluster centroids to each leaf node (LN). The FHD
is calculated using Equation 16. Here a sample FHD
calculation between cluster 1 centroid and Leaf Node 2
is shown. From the earlier discussion we set MAX as
1, ¯ as 0.1 and ² as 0.5. Therefore, ®= 69:31.

d®(x,y) = 1¡ e¡69:31£(x¡y)
2

d69:31(x1,y1) = 1¡ e¡69:31£(0:90¡0:90)
2
= 0

d69:31(x2,y2) = 1¡ e¡69:31£(0:80¡0:80)
2
= 0

d69:31(x3,y3) = 1¡ e¡69:31£(0:75¡0:75)
2
= 0

(20)
d69:31(x4,y4) = 1¡ e¡69:31£(0:75¡0:71)

2
= 0:1045

d69:31(x5,y5) = 1¡ e¡69:31£(0:75¡0:63)
2
= 0:6310

d69:31(x6,y6) = 1¡ e¡69:31£(0:63¡0:59)
2
= 0:1050

d69:31(x7,y7) = 1¡ e¡69:31£(0:40¡0:45)
2
= 0:1590

nCard(A)´ jx;¹A(x)> 0:5j= 1: (21)

Based on the distances the leaf nodes are distributed
to different clusters. The whole process continues un-
til the clusters rearrangement stops. Here the clusters
formed are:

Cluster 1 : DP1,DP2,DP3

Cluster 2 : –

Cluster 3 : DP4:

Cluster 1 has three data points, while cluster 3 has
one data point. Cluster 2 is empty in this case. This
clustering method groups graphs differently than the
Hypercube based k-means clustering, where cluster 1
and 2 each have only one leaf node while cluster 3
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TABLE II
Silhouette Indices

FH HYP SA Silhouette Index

FH S(FH,FH) S(FH,HYP) S(FH,SA) (S(FH,FH)+S(FH,HYP)+S(FH,SA))/(3)

HYP S(HYP,FH) S(HYP,HYP) S(HYP,SA) (S(HYP,FH)+S(HYP,HYP)+S(HYP,SA))/(3)

SA S(SA,FH) S(SA,HYP) S(SA,SA) (S(SA,FH)+S(SA,HYP)+S(SA,SA))/(3)

has two leaf nodes. Analysis of these measures is done
in next section, to see which distance measure is more
efficient.

6. NUMERICAL TESTING

Cluster validation is a very important issue in clus-
tering analysis because the result of clustering needs to
be validated in most cases. It is defined as measuring
goodness of a clustering relative to others created by
the same algorithms using different parameter values.
In most clustering algorithms, as k-means, the number
of clusters is set as user parameter. There are many ap-
proaches toward cluster validation. One of such tech-
niques which we use is the “Silhouette validation tech-
nique.”
The Silhouette validation technique [29] calculates

the silhouette width for each sample, average silhou-
ette width for each cluster and overall average silhou-
ette width for a total data set. Using this approach each
cluster could be represented by a so called silhouette,
which is based on the comparison of its tightness and
separation. The average silhouette width could be ap-
plied for evaluation of clustering validity and can also
be used to decide how good is the number of selected
clusters. To construct the silhouettes S(i) the following
formula is used:

S(i) =
(b(i)¡ a(i))
max(a(i),b(i))

(22)

where a(i) is the average dissimilarity of i object to all
other objects in the same cluster; b(i) is the minimum
of average dissimilarity of i object to all objects in other
cluster (in the closest cluster).
It is followed from the formula that ¡1· S(i)· 1.

If silhouette value is close to 1, it means that sample is
“well clustered” and it was assigned to a very appropri-
ate cluster. If silhouette value is near zero, it means that
the sample could be assigned to another closest clus-
ter as well, and the sample lies equally far away from
both clusters. If silhouette value is close to ¡1, it means
that sample is “misclassified” and is merely somewhere
in between the clusters. The overall average silhouette
width for the entire plot is simply the average of the
S(i) for all objects in the whole dataset. The largest
overall average silhouette indicates the best clustering.
Therefore, the number of cluster with maximum overall
average silhouette width is taken as the optimal number
of the clusters.

Here we have two distance measures Hypercube dis-
tance (HYP) and Fuzzy Hamming distance (FH). We
also used a simple average distance measure (SA) which
is independent of template graphs. The HYP and FH
distance are bound by the axes which are defined by the
template nodes and edges to which the nodes and edges
in data graph are matched. In SA distance the K-medoid
algorithm is used. The distance between two matches
is calculated using the average of data graph node-to-
node scores (DGN) and data graph edge-to-edge scores
(DGE). In HYP and FH distance the data graph node
(edge) to template graph node (edge) scores are used.
Let’s say there are two matches for a template graph
(T1¡ET1 ¡T2¡ET2 ¡T3) given as (D1¡ED1 ¡D2¡ED2 ¡
D3) and (D4¡ED3 ¡D5¡ED4 ¡D6). Then the SA dis-
tance is given as:

SA=

(DGN(D1,D4) +DGE(E
D
1 ,D

D
3 )

+DGN(D2,D5) +DGE(E
D
2 ,E

D
4 ) +DGN(D3,D6))

5
:

Now we have used three distances for clustering
and we have three Silhouette indices for each of them.
Each clustering algorithm is analyzed using all the
three distance measures. The Silhouette index for each
clustering is calculated as an average (Table II) of
the three Silhouette indices from the three distance
measures. After generating 100 random sample runs for
each of the clustering algorithms, we found that, only 2
times SA performed better or equal to FH and HYP. So
we will just compare FH and HYP based clustering. But
the Silhouette index from SA is used during analysis.
The two methods are independent of each other so

the best way to compare them is to conduct a statistical
analysis. A “2 sample t-test” is planned for comparing
the two distances. A power and sample size capability
analysis is conducted to evaluate sample size before
we design and run an experiment. It tells us the right
amount of runs required to detect a notable difference
during the statistical analysis. After conducting some
sample runs we have the data with standard deviation
of 0.27. The type 1 error (®) is set at 0.05 and type 2
error (¯) at 0.2. These values are used to determine the
sample size. To detect a difference of 0.1 we require
116 runs and for 0.15 we require 55 runs. To detect the
difference accurately, the experiment was decided to be
conducted on 100 runs.
T-test requires data to be normally distributed and

the samples to have equal variance. To check for the
assumptions, normality test and F-test are conducted.
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The normality test for Fuzzy Hamming and Hypercube
suggested that the p-values are less than ®, therefore we
rejectH0, i.e. the data is not normally distributed. The F-
test has a null (H0) hypothesis that the variances of both
the methods are equal and alternative (H1) hypothesis
that they are not equal. If the p value is greater than ®
then we fail to reject H0 and else we reject H0. Here the
p value is greater than ®, so the variances of both the
distance measures are equal.
The assumption of equal variances is satisfied, while

the test for normality is rejected, so t-test cannot be
conducted. The data is not normal, so a non-parametric
test is conducted. There are a number of non-parametric
tests that can be used to test the difference between two
non-normal sets of sample data. In those cases, we are
testing the difference in medians, and not means. Mann-
Whitney test is the nonparametric test equivalent to the
2 sample t-test. In Mann-Whitney test the hypotheses
are:

H0 : ´1 = ´2

H1 : ´1 6= ´2, where ´ is the population median:

The sample medians of the ordered data are 0.2597
and 0.3334. The 95.0% confidence interval for the dif-
ference in population medians (´1¡ ´2) is [¡0:0627 to
0.0737]. The test statistic W = 10131 has a p-value of
0.8441 when adjusted for ties. Since the test is sig-
nificant at 0.8441, we conclude that there is sufficient
evidence to reject H0. Therefore, the data supports the
hypothesis that there is a difference between the popula-
tion medians. Now the two-sided hypothesis is changed
to one-sided hypothesis comparing the medians. Look-
ing at the medians for Fuzzy Hamming (FH) and Hy-
percube (HYP) we change the hypotheses to:

H0 : ´1 = ´2

H1 : ´1 < ´2:

The test is significant at 0.4220. This implies that
the null hypothesis is rejected only if median of HYP
is larger than the median of FH. Based on this result
we can say that Hypercube based K-means clustering
performs better than Fuzzy Hamming based K-means
clustering. For those runs where FH performed better
than HYP, the difference between the Silhouette indices
was less than 13% for 75% of the runs.

7. AGGREGATING CLUSTERS

Using the Truncated Search Tree algorithm, we got
multiple matches for the template. The matches were
clustered using K-means clustering algorithm. For K-
means clustering we experimented with two distance
measures “Hypercube distance” and “Fuzzy Hamming
distance.” Section 6 shows that “Hypercube distance”
performed better than “Fuzzy Hamming distance.” Now
to find the important nodes and edges in the formed

Fig. 7. Aggregation results. (a) Cluster 1. (b) Cluster 2.

TABLE III
Cluster 3

DP3 DP4
D1 D1
ED2 ED1
D3 D2
ED3 ED3
D4 D4
ED6 ED6
D6 D6

cluster we aggregate the matches. The aggregation helps
reduce the analyst’s area of concentration to a small
region of data graph.
To aggregate the clusters we combine the matches

using union and intersection operation. Union opera-
tion is a way of diversification zooming on the data
graph while intersection operation is a way of inten-
sification zooming. Union of clusters gives us a more
diverse information to concentrate on, while intersec-
tion gives us the most important information. In the
union operation all the unique nodes and edges in the
cluster are marked significant. In the intersection opera-
tion the common nodes and edges between the clustered
matches are marked significant. In this section an exam-
ple is presented to show the union and intersection of
clusters. The example previously used in this paper will
be used for further aggregation.
As Section 6 shows that “Hypercube distance” per-

formed better than “Fuzzy Hamming distance,” we will
use the clusters formed using “Hypercube distance”
for further aggregation. As clusters 1 and 2 have only
one result node so there won’t be any aggregation and
the results will be displayed as a whole match. The
aggregation results for cluster 1 and 2 are shown in
Fig. 7(a). and 7(b) respectively. But in case of cluster
3 there are two result nodes DP3 and DP4 (Shown in
Table III).
Using the intersection method of aggregation, we

obtain the nodes and edges shown in Table V. We can
see that nodes D1, D4 and D6 and edges E

D
3 and ED6

are common to both result nodes. The nodes and edges
obtained using union method of aggregation are shown
in Table IV. In addition to nodes and edges in Table V,
we have nodes D2 and D3 and edges E

D
1 and ED2 that

are uncommon in the two result nodes.
The aggregation results for union and intersection

method in Cluster 3 are shown in Fig. 8(a) and 8(b)
respectively.
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Fig. 8. Cluster 3 aggregation result. (a) Union. (b) Intersection.

TABLE IV
Cluster 3 Union

Nodes Edges

D1 ED1
D2 ED2
D3 ED3
D4 ED6
D6

TABLE V
Cluster 3 Intersection

Nodes Edges

D1 ED3
D4 ED6
D6

8. NEIGHBORHOOD INFORMATION

“Neighborhood” is a word with many different lev-
els of meaning in mathematics. One of the most gen-
eral concepts of the neighborhood of a point x in (Rn)
²-neighborhood or infinitesimal open set, is the set of
points inside an n-ball with center x and radius ² > 0.
The neighborhood of a vertex v in a graph is the set
of all the vertices adjacent to v. More generally, the ith
neighborhood of v is the set of all vertices that lie at the
distance i from v.
In graph theory, the neighborhood of a vertex v in

a graph G is the induced subgraph of G consisting of
all vertices adjacent to v and all edges connecting two
such vertices. Two vertices u and v are considered ad-
jacent if an edge exists between them. This is denoted
by u # v. The neighborhood [34] is often denoted NG(v)
or (when the graph is unambiguous) N(v). The same
neighborhood notation may also be used to refer to sets
of adjacent vertices rather than the corresponding in-
duced subgraphs. The neighborhood described above
does not include v itself, and is more specifically the
open neighborhood of v; it is also possible to define

a neighborhood in which v itself is included, called
the closed neighborhood and denoted by NG[v]. When
stated without any qualification, a neighborhood is as-
sumed to be open.
If all vertices in G have neighborhoods that are iso-

morphic to the same graph H, G is said to be locally H,
and if all vertices in G have neighborhoods that belong
to some graph family F,G is said to be locally F. Neigh-
borhoods are also used in the clustering coefficient of a
graph, which is a measure of the average density of its
neighborhoods. In [16], authors have presented a neigh-
borhood broadcast and gossiping problem. For neigh-
borhood broadcast the authors have considered nodes
which are one edge away and for gossiping problem
they have considered nodes, which are accessible from
the main node. Schenker et al. [32] have compared a
vector based graph representation, combined with a k-
Nearest Neighbor (k-NN) algorithm to the graph match-
ing approach, to represent web documents. There is a
limited amount of literature available in the field of
neighborhood structure, but we have found the concept
of neighborhood of nodes used in various fields to cal-
culate distances, get density of graphs, etc.
We have applied the truncated branch and bound

method to match the templates to data graphs. Based on
the settings for the algorithm parameters, we get various
matches for the given template. The matches are clus-
tered using K-means clustering, to find the most sig-
nificant information among them. But this information
is limited to the template we are trying to match. Con-
sider a terrorist template which we are trying to match
against a given social network represented as data graph.
We can find the most plausible terrorist networks in
the given data graph. Having this information we have
no idea as to what the terrorists are planning. So the
neighborhood of a match is as important as the match.
To get more information about the neighborhood of the
matches we have developed an algorithm to find the
neighborhood score for each node in data graph.

8.1. Problem Definition

8.1.1. Neighborhood Structure of Matches
The data graph represented as GD can be divided

into two sets. The first set is the match of the template
graph in the data graph, called “Core graph,” CD. The
other set contains the remaining nodes in graph GD
called periphery nodes (GD ¡CD). Now to find the
most relevant neighborhood structure, we need to find
the neighborhood scores for the periphery nodes with
respect to the match. The neighborhood score must
represent the connectivity of the periphery nodes to the
core nodes. In the case of terrorist networks, all the
members have a single aim and they will concentrate
their energies toward that target. To reach the target,
members will use covert routes to hide their intent. To
find these targets we need the most accurate possible
neighborhood information. This score can be calculated
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using this formula:

Pi =

P
j dij
NT

:

Here Pi is the periphery node score for node i, NT
is the number of nodes in the match, while dij is the
distance between periphery node i and core node j. dij is
the distance measure between core and periphery nodes.
This distance is the weighted shortest path distance
divided by the length of the path. As the edge weights
lie in the interval [0,1], the distance measure, dij , also
lies in the interval [0,1]. Therefore, (0· Pi · 1)
The neighborhood score takes into consideration the

distance and connectivity of the periphery node to the
match. The distance dij is the measure of importance of
node i with respect to node j in CD, i.e. a relationship
between the possible target and the member of the
terrorist cell. Hence, Pi helps to find the probability
that node i is the most common target sought by all
the members in the group (match).
In some cases the neighborhood structure can con-

tain a person or contact of interest and the contact may
not be accessed by all the members. The contact can be
a very vital link between two groups. To find this type of
information in neighborhood we need to find the nodes
which have the maximum weight connectivity to the
core nodes. The neighborhood score is calculated using
this formula:

Pi =max
j
(dij):

The problem of finding relevant neighborhood in-
formation can be also viewed in the sense of maximum
weight connectivity and here it is considered out of
scope, and hence won’t be considered for analysis.

8.1.2. Ranking Matches based on Neighborhood
Scores

After finding the neighborhood structure, we have
a lot of information which is scattered around the
matches. The matches by themselves have a ranking
mechanism, but that is independent of the neighbor-
hood structure they represent. The neighborhood struc-
ture may be important for a match with a low ranking
score. Therefore, we would like to find out which match
has the highest neighborhood score. To rank the matches
based on neighborhood structure, we take the average of
the neighborhood scores for all the nodes in periphery
graph (GD¡CD). Using this new score, we will rank the
matches and this will signify the importance of matches
based on the profile of the target they are attacking.

8.1.3. Neighborhood Structure of Clusters
After calculating the neighborhood structure for the

matches, we want to find the most important structure
around the clusters since this is the aggregated result
presented to the analyst. Now with these aggregated
results, the neighborhood information will be different.

TABLE VI
Edge Weights

Edge From Node To Node Weights

ED1 D1 D2 0.488388
ED2 D1 D3 0.886889
ED3 D4 D1 0.268496

ED4 D2 D7 0.774886
ED5 D3 D5 0.046768

ED6 D4 D6 0.437913

ED7 D8 D4 0.427433
ED8 D4 D9 0.361861

ED9 D11 D5 0.211624

ED10 D6 D10 0.772303

ED11 D2 D3 0.277781

ED12 D9 D10 0.090555
ED13 D5 D10 0.486635

To calculate the neighborhood of a cluster we take the
data graph represented as GD and divide it into two sets.
The cluster formed using the matches of the template
graph in the data graph, represents CD. Now to find the
most relevant neighborhood structure, we need to find
the neighborhood scores for the periphery nodes with
respect to the cluster. This neighborhood information
will be different from the information we get in Section
8.1.1. In Section 8.2 an illustrative example is presented
to show the calculation for neighborhood structures of
matches, clusters and ranking of matches.

8.2. Implementation

For the given data and template graph, we first find
the weights for the edges in data graph. The weights for
all the edges in data graph are given in Table VI. Using
the edge weights, the shortest path distance between all
the nodes in the data graph is calculated.
To calculate the neighborhood structure of the

matches we select one of the subgraphs generated by
the matching process in Section 3. For illustration pur-
pose let us select match 1. Fig. 9 shows the match with
respect to the data graph. In this example the node set
fD1,D2,D3,D5g; along with edge set fED1 ,ED2 ,ED5 g rep-
resents the core nodes for the given data graph. The rest
of the nodes in the data graph represent the periphery
nodes and edges for match 1. For match 1, there are 7
neighborhood nodes. For data graph node D4 we can
calculate the neighborhood score as follows:

P4 =

P
j
d4j

NT
=
0:488388+0:270395+0:178724+0:277781

4

= 0:303822:

If the problem of finding relevant neighborhood
information is viewed in the sense of maximum weight
connectivity then match 1 will have nodes D4, D6, D7,
D8, D9, D10 and D11 as the periphery nodes. Here node
D2 is connected to node D7 only. Node D1 is connected
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TABLE VII
Match Neighborhood based on Maximum Edge Connectivity

D4 D6 D7 D8 D9 D10 D11

D1 0.268496 0.3532045 0 0.3479645 0.3151785 0.492904 0
D2 0 0 0.774886 0 0 0 0
D3 0 0 0 0 0 0 0
D5 0.565617 0.629469 0 0.531071 0.288595 0.486635 0.211624

Neighborhood 0.565617 0.629469 0.774886 0.531071 0.3151785 0.492904 0.211624
Score

TABLE VIII
Subgraph Ranking based on Neighborhood Score

Match 4 0.364657
Match 3 0.344861
Match 1 0.332481
Match 2 0.326449

Fig. 9. Match neighborhood structure.

to all the nodes except D7 and D11. D3 being a central
node has no periphery associated to it. D5 has node D7
in the periphery, which is not connected. Based on the
edge weights given in Table VI, the neighborhood score
for all the periphery nodes with respect to match 1 are
shown in Table VII.
After calculating the neighborhood scores for all

neighborhood nodes, we would like to rank the sub-
graph matches based on the importance of neighbor-
hood. To find the neighborhood score for each match
we take the average of the neighborhood scores for all
the nodes in the periphery of the given match. This is
the new match score based on the neighborhood values.
Then based on these scores we rank the subgraphs. The
matches are ranked as shown in Table VIII.
To calculate the neighborhood structure of the clus-

ters we select one of the clusters generated by the aggre-
gating process in Section 7. For illustration purpose let
us select cluster 3, as cluster 1 and 2 have only one leaf
node. Cluster 1 and 2 will have a neighborhood struc-
ture similar to match 1 and 2 respectively. Fig. 10 shows
the cluster union with respect to the data graph. In this
example the node set fD1,D2,D3,D4,D6g; along with
edge set fED1 ,ED2 ,ED3 ,ED6 g represents the core nodes for

Fig. 10. Cluster 3 (union) neighborhood structure.

the given cluster in data graph. The core node and edge
sets are marked in Fig. 10. The rest of the nodes in
the data graph represent the periphery nodes and edges
for cluster 3 union. For the cluster 3 union, there are
6 neighborhood nodes. Similar to Match neighborhood
we calculate the neighborhood scores for Cluster aggre-
gates.

9. CONCLUSION

High level Data Fusion, also recognized as Level 2
(situation assessment) and Level 3 (impact assessment)
in the JDL architecture involves understanding relation-
ships between level 1 objects, which can be well mod-
eled using attributed graphs. These graphical models
can be applied in a wide range of applications such as,
Cyber Security, Asymmetric Warfare, Disease Surveil-
lance, Intelligence and Knowledge Discovery, and Im-
provised Explosive Device Detection. In these domains
a complex situation of interest to analyst can be for-
mulated as a template graph which represents alterna-
tive hypothesis. The analyst is interested in determin-
ing the occurrence of that situation in a sensor database
which is in turn represented as a data graph. This gives
rise to an inexact subgraph matching problem, which is
NP-Hard and can lead to large number of matches. To
overcome the problem associated with the large num-
ber of matches, an approach is necessary to fuse the
resulting subgraphs. The dimensionality of the result-
ing inexact matches can be reduced using a clustering
algorithm which can quantify the similarity between any
two graphs via a selected similarity measure.
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We presented a TRUncated Search Tree algorithm
[31] to find the appropriate subgraphs of the data graph
for the template. Since the state space of a branch-and-
bound method explodes as the search tree goes deeper
and deeper, this algorithm considers only part of the
state space and truncates those with relatively small val-
ues. The resulting subgraphs generated using TruST al-
gorithm are then aggregated using the K-means cluster-
ing algorithm. The algorithm makes use of Hypercube
distance measure. This distance measure finds similar-
ity distance between any two given subgraphs. Then the
TruST algorithm is compared with a similar fuzzy dis-
tance measure called as Fuzzy Hamming distance met-
rics. To find the best distance measure Silhouette indices
are calculated. The results show that Hypercube based
K-means clusters are well separated. Then the Hyper-
cube based K-means clusters are fused using union and
intersection based aggregation method. The aggregation
of clusters gives analyst a particular location to con-
centrate his analysis. The neighborhood structure of the
matches and aggregated clusters is explored to find sig-
nificant nodes. These nodes found in the neighborhood
structure do not form the initial hypothesis, but can be
of real importance to the analyst.
We have applied TruST along with Hypercube based

K-means clustering and aggregation, in modeling and
simulation of asymmetric warfare situations with en-
couraging results. The algorithm matches the complex-
ity of the domains of application and user parameter
settings. A further insight on how to select the breath
and depth control parameters is provided in [31]. An-
other interesting area of research will be developing a
dynamic algorithm for level 2 fusion. In this algorithm
the relationship between newly added information and
generated clusters will be checked and new aggregated
clusters will be developed eventually.

REFERENCES

[1] M. Balazinska, A. Deshpande, M. Franklin, P. Gibbons,
J. Gray, S. Nath, M. Hansen, M. Liebhold, A. Szalay and
V. Tao
Data management in the worldwide sensor web.
Pervasive Computing, IEEE, 6, 2 (Apr.—June 2007), 30—40.

[2] D. Ballard and L. Rippy
A knowledge-based decision aid for enhanced situational
awareness.
In IEEE/AIAA 13th Digital Avionics Systems Conference,
1994, 340—347.

[3] S. B. Banks and C. S. Lizza
Pilot’s associate: A cooperative, knowledge-based system
application.
IEEE Intelligent Systems and Their Applications, 6, 3 (1991),
18—29.

[4] E. Bengoetxea, P. Larranaga, I. Bloch and A. Perchant
Estimation of distribution algorithms: A new evolutionary
computation approach for graph matching problems.
In EMMCVPR ’01: Proceedings of the Third International
Workshop on Energy Minimization Methods in Computer
Vision and Pattern Recognition, London, UK: Springer-
Verlag, 2001, 454—468.

[5] E. Bengoetxea, P. Larranaga, I. Bloch, A. Perchant and
C. Boeres
Inexact graph matching using learning and simulation of
bayesian networks.
In Proceedings of CaNew workshop, ECAI, 2000.

[6] E. Bengoetxea, P. Larranaga, I. Bloch, A. Perchant and
C. Boeres
Inexact graph matching by means of estimation of distri-
bution algorithms.
Pattern Recognition, 35, 12 (2002), 2867.

[7] A. Bookstein, S. T. Klein and T. Raita
Fuzzy hamming distance: A new dissimilarity measure.
In CPM ’01: Proceedings of the 12th Annual Symposium
on Combinatorial Pattern Matching, London, UK: Springer-
Verlag, 2001, 86—97.

[8] H. Bunke and K. Shearer
A graph distance metric based on the maximal common
subgraph.
Pattern Recognition Letters, 19, 3—4 (1998), 255.

[9] G. Chartrand, F. Saba and H. B. Zou
Edge rotation and distance between graphs.
Cas. Pest. Mat. (Mathematica Bohemica), 110 (1985), 87—
91.

[10] L. Chin-Teng and C. S. G. Lee
Reinforcement structure/parameter learning for neural-
network-based fuzzy logic control systems.
IEEE Transactions on Fuzzy Systems, 2, 1 (1994), 46—63.

[11] T. Coffman, S. Greenblatt and S. Marcus
Graph-based technologies for intelligence analysis.
Communications of the ACM, 47, 3 (Mar. 2004), 45—47.

[12] D. Conte, P. Foggia, C. Sansone and M. Vento
Thirty years of graph matching in pattern recognition.
International Journal of Pattern Recognition & Artificial
Intelligence, 18, 3 (May 2004), 265—298.

[13] B. Das
Pepresenting uncertainties using Bayesian networks.
DSTO Electronics and Surveillance Research Laboratory
(dsto-tr-0918), Salisbury South Australia, Australia, 199.

[14] N. Denis and E. Jones
Spatio-temporal pattern detection using dynamic Bayesian
networks.
In 42nd IEEE Conference on Decision and Control, vol. 5,
2003, 4533—4538.

[15] M.-L. Fernandez and G. Valiente
A graph distance metric combining maximum common
subgraph and minimum common supergraph.
Pattern Recognition Letters, 22, 6—7 (2001), 753.

[16] S. Fujita
Neighborhood information dissemination in the star graph.
IEEE Transactions on Computers, 49, 12 (2000), 1366—
1370.

[17] D. L. Hall and J. Llinas
An introduction to multisensor data fusion.
Proceedings of the IEEE, 85, 1 (1997), 6.

[18] A. Hlaoui and W. Shengrui
A new algorithm for inexact graph matching.
In Proceedings of 16th International Conference on Pattern
Recognition, vol. 4, 2002, 180—183.

[19] M. Ionescu and A. Ralescu
Fuzzy hamming distance as image similarity measure.
In Proceedings of IPMU-2004, Perugia, Italy, 2004, 1517—
1523.

[20] M. Ionescu and A. Ralescu
Fuzzy hamming distance in a content-based image retrieval
system.
In IEEE International Conference on Fuzzy Systems, vol. 3,
2004, 1721.

HIERARCHICAL HIGHER LEVEL DATA FUSION USING FUZZY HAMMING AND HYPERCUBE CLUSTERING 103



[21] M. Ionescu and A. Ralescu
The impact of image partition granularity using fuzzy ham-
ming distance as image similarity measure.
In Fifteenth Midwest Artificial Intelligence and Cognitive
Sciences Conference, Chicago IL, 2004, 111—118.

[22] M. Ionescu and A. Ralescu
Fuzzy hamming distance based banknote validator.
In The 14th IEEE International Conference on Fuzzy Systems,
2005, 300—305.

[23] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko,
R. Silverman, and A. Y. Wu
An efficient k-means clustering algorithm: analysis and
implementation.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24, 7 (2002), 881.

[24] N. K. Kasabov
Hybrid fuzzy connectionist rule-based systems and the role
of fuzzy rules extraction.
In International Joint Conference of the Fourth IEEE Inter-
national Conference on Fuzzy Systems and The Second Inter-
national Fuzzy Engineering Symposium, vol. 1, 1995, 49—56.

[25] E. Kubicka, G. Kubicki, and I. Vakalis
Using graph distance in object recognition.
ACM Eighteenth Annual Computer Science Conference
(CSC90), New York, NY, 1990, 43—48.

[26] N. C. Oza, A. N. Srivastava, and J. Stroeve
Improvements in virtual sensors: Using spatial information
to estimate remote sensing spectra.
In International Geoscience and Remote Sensing Symposium
(IGARSS), vol. 8, Seoul, South Korea, 2005, 5606—5609.

[27] C. Qu and Y. He
A method of threat assessment using multiple attribute
decision making.
In 6th International Conference on Signal Processing, vol. 2,
2002, 1091—1095.

[28] T. J. Ross
Fuzzy Logic with Engineering Applications.
New York: Wiley, 2nd ed., Aug. 1, 2004.

[29] P. J. Rousseeuw
Silhouettes: A graphical aid to the interpretation and vali-
dation of cluster analysis.
Journal of Computational and Applied Mathematics, 1987,
53—65.

[30] J. Salerno, M. Hinman, and D. Boulware
Building a framework for situation awareness.
Proceedings of the Seventh International Conference on In-
formation Fusion, FUSION 2004, vol. 1, 2004, 219—226.

[31] K. Sambhoos, R. Nagi, M. Sudit and A. Stotz
Enhancements to high level data fusion using graph match-
ing and state space search.
Submitted to Information Fusion, 2008.

[32] A. Schenker, M. Last, H. Bunke and A. Kandel
Classification of web documents using graph matching.
International Journal of Pattern Recognition and Artificial
Intelligence, 18, 3 (2004), 475—496.

[33] S. Selim and M. Ismail
K-means-type algorithms: A generalized convergence the-
orem and characterization of local optimality.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 6, 1 (Jan. 1984), 81—87.

[34] H. Shiow-Fen and J. C. Gerard
k-neighborhood-covering and -independence problems for
chordal graphs.
Society for Industrial and Applied Mathematics, 11, 4 (1998),
633—643.

[35] A. Srivastava, N. Oza and J. Stroeve
Virtual sensors: Using data mining to efficiently estimate
spectra.
IEEE Transactions on Geosciences and Remote Sensing,
Special Issue on Advances in Techniques for Analysis of
Remotely Sensed Data, 43, 3 (2005), 590—600.

[36] A. Steinberg, C. Bowman and F. White
Revisions to the JDL data fusion model.
In Proceedings of the SPIE–The International Society for
Optical Engineering, vol. 3719, 1999, 430—41.

[37] S. C. Stubberud and K. A. Kramer
Data association for multiple sensor types using fuzzy
logic.
In Proceedings of the IEEE Instrumentation and Measure-
ment Technology Conference., vol. 3, 2005, 2154—2159.

[38] W. D. Wallis, P. Shoubridge, M. Kraetz and D. Ray
Graph distances using graph union.
Pattern Recognition Letters, 22, 6—7 (2001), 701.

[39] W. Zhang
Depth-first branch-and-bound versus local search: A case
study.
In In Proceedings of the 17th National Conference on Artifi-
cial Intelligence, 2000, 930—935.

104 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 3, NO. 2 DECEMBER 2008



Kedar Sambhoos received his B.E. degree in production engineering from the
University of Pune, India, in 2002, and M.S. and Ph.D. degree from the Department
of Industrial and Systems Engineering, State University of New York at Buffalo,
NY, in 2004 and 2007, respectively.
He joined Information Fusion Division of CUBRC as a research scientist in

February 2007. His current research interests are in general areas of information
fusion with applications to soft and hard message data, and graph matching
techniques applied to high level data fusion applications.

Rakesh Nagi is a Professor of Industrial and Systems Engineering at the University
at Buffalo (SUNY). He received his Ph.D. (1991) and M.S. (1989) degrees in
mechanical engineering from the University of Maryland at College Park, while he
worked at the Institute for Systems Research and INRIA, France, and B.E. (1987)
degree in mechanical engineering from the University of Roorkee (now IIT-R),
India.
He is a recipient of Business First of Buffalo’s “40 under Forty” award (2004),

SME’s Milton C. Shaw Outstanding Young Manufacturing Engineer Award (1999),
IIE’s Outstanding Young Industrial Engineer Award in Academia (1999), and Na-
tional Science Foundation’s CAREER Award (1996). His papers have been pub-
lished in journals including IIE Transactions, International Journal of Production Re-
search, Journal of Manufacturing Systems, International Journal of Flexible Manufac-
turing Systems, Journal of Intelligent Manufacturing, Computers in Industry, Computer
Integrated Manufacturing Systems, Operations Research, Naval Research Logistics,
European Journal of Operational Research, Annals of Operations Research, Com-
puters and Operations Research, Computers and Industrial Engineering, and ASME
and IEEE Transactions. Dr. Nagi’s major research thrust is in the area of produc-
tion systems and applied operations research. His research interests are in location
theoretic approaches to facilities design, agile enterprises and information-based
manufacturing, just-in-time production of assemblies, and information fusion.

Moises Sudit obtained his Bachelor of Science in industrial and systems engineering
from Georgia Institute of Technology, his Master of Science in operations research
from Stanford University and his Doctorate in operations research from Purdue
University.
Dr. Sudit’s primary research interests are in the theory and applications of

discrete optimization. More specifically, he has been concerned in the design
and analysis of methods to solve problems in the areas of integer programming
and combinatorial optimization. One primary goal of this research has been the
development of efficient exact and approximate (heuristic) procedures to solve
large-scale engineering and management problems. As Managing Director of the
Center for Multisource Information Fusion, Dr. Sudit has merged the interests of
operations research with information fusion. He has an appointment as research
professor in the School of Engineering and Applied Sciences at the University at
Buffalo. He is a NRC Fellow through the Information Directorate at the Air Force
Research Laboratory and has received a number of scholarly and teaching awards.
He has a number of publications in distinguished journals and has been the principal
investigator in numerous research projects.

HIERARCHICAL HIGHER LEVEL DATA FUSION USING FUZZY HAMMING AND HYPERCUBE CLUSTERING 105



John T. (Terry) Rickard (S’67–M’75–SM’01) received the B.S. and M.S. degrees
in electrical engineering from Florida Institute of Technology, Melbourne, FL, in
1969 and 1971, respectively, and a Ph.D. degree in engineering physics from the
University of California at San Diego, La Jolla, California, in 1975. He also received
Series 7 and 63 General Securities Licenses in 1995 and a Series 24 General
Securities Principal License in 1995.
He has 34 years of experience in technology and financial organizations, all of it

in management and technology development positions. He began his career working
in digital design and testing with Harris Corporation in 1969. He worked part-time as
a graduate student for what was then the Naval Electronics Laboratory Center (now
SPAWAR Systems Center) in San Diego, California from 1973 to 1975. In 1975,
he cofounded ORINCON Corporation, a San Diego-based company specializing
in the design and development of state-of-the-art data and information processing
solutions for government and commercial customers. He ended his first career with
ORINCON in 1994 as Senior Vice President and Technical Director. From 1994
to 2001, he served as President and later Chief Scientific Officer of OptiMark
Technologies, Inc. He is a co-inventor of the OptiMark transaction matching system
and was instrumental in the company’s development from a start-up enterprise to an
operating entity. Rejoining ORINCON in 2001 as senior vice president, his focus
has been on broadening the company’s technology base, particularly in machine
intelligence. When ORINCON was acquired by Lockheed Martin in 2003, he was
appointed to the position of Senior Principal Research Scientist. In 2005, he was
elected a Senior Fellow of Lockheed Martin. In 2008, he retired from Lockheed
Martin and joined Distributed Infinity, Inc., for whom he now works from his home
in Larkspur, CO. His technical expertise includes signal processing, optimization,
neural networks, fuzzy and expert systems, and graphical knowledge representation
and inference for machine intelligence. His additional expertise includes financial
engineering disciplines such as transaction systems, market structures, financial
analytics, data mining, derivatives pricing, risk analysis, and trading strategies.
His current research interests are in computational intelligence, conceptual spaces,
information fusion, content based information retrieval, and nanotechnology.
Dr. Rickard has served on the boards of directors of three companies and has

authored numerous technical publications that have appeared in refereed technical
journals, books, and conference proceedings. In addition, he has authored several
patents, and has several pending patent applications. He currently serves as the Vice
Chairman of the IEEE Computational Intelligence Society, Denver Chapter and as
a Technical Advisory Board member of a nanotechnology hedge fund. In 2006, he
received the Author of the Year Award from Lockheed Martin Integrated Systems
and Solutions.

106 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 3, NO. 2 DECEMBER 2008



 



Covariance Reconstruction for
Track Fusion with Legacy Track
Sources

YAAKOV BAR-SHALOM
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The problem of track-to-track association and track fusion has

been considered in the literature where the fusion center has access

to multiple track estimates and the associated estimation error

covariances from local sensors, as well as their crosscovariances.

Due primarily to the communication constraints in real systems,

some legacy trackers may only provide the local track estimates

to the fusion center without any covariance information. In some

cases, the local (sensor-level) trackers operate with fixed filter gain

and do not have any self assessment of their estimation errors. In

other cases, the network conveys a coarsely quantized root mean

square (RMS) estimation error of each local tracker. Thus the fusion

center needs to solve the track association and fusion problem

with incomplete data from legacy local trackers. The problem of

track fusion with legacy track sources which lack covariances is

handled by reconstructing them using sensor covariance and target

maneuvering index information and then using the appropriate

association and fusion algorithms. The situation when a coarsely

quantized RMS estimation error is available is also discussed. A

two-sensor tracking example is used to illustrate the effectiveness of

the proposed covariance reconstruction method for track fusion and

compared with a centralized interacting multiple model estimator.
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1. INTRODUCTION

In multisensor target tracking, each sensor can have
its own target state estimate based on the local sensor
measurements. Most existing communication networks
between local trackers/sensors transmit to a fusion cen-
ter the local track estimates–sometimes without any
estimation error covariances, sometimes with partial co-
variance information and only rarely with full covari-
ance information. In order to form a global picture of
the existing tracks, it is necessary to associate multi-
ple local tracks and fuse them to obtain the global tar-
get state estimates. Under this tracking configuration,
the fusion center can carry out this association and fu-
sion of the (latest) local track estimates on demand,
which, in general, is less frequent than the measurement
rate at each local sensor. Another important reason that
track fusion (TrkF) is a viable alternative to centralized
tracking (CenT), which requires transmission of all the
measurements to the fusion center, is that the perfor-
mance of TrkF is very close to that of CenT [4]. The
problem of associating tracks represented by their local
state estimates and covariances from multiple sources
has been studied extensively in literature. While differ-
ent sensors typically have independent measurement er-
rors, the local state estimation errors for the same target
are dependent due to the common process noise (and
the prior, if common). This dependence is character-
ized by the crosscovariances of the local estimation er-
rors [3]. Methods have been proposed to fuse the local
tracks that carry out decorrelation [11, 12, 13]. Other
techniques include track fusion that explicitly utilizes
the crosscovariance information in a Bayesian setting
[7, 10], with asynchronous sensors [1], and more gen-
erally, with possible common priors [15, 16, 17]. The
work of [20] dealt with simultaneous general track-to-
track association and bias estimation. In addition, the
“covariance intersection” method proposed in [14] can
fuse two estimates with unknown correlation. However,
it is a very conservative method that avoids the is-
sue of crosscovariances but may yield a fused covari-
ance with diagonal elements that indicate a degradation
in each component from the best estimate before fu-
sion [9].
A legacy sensor and tracking system is one that was

built in the past under different requirements, specifi-
cally, with no requirements to support network fusion.
Thus no hardware/software facilities (or inadequate fa-
cilities) were included in the system to support the kind
of track fusion that is desired now. To get the rele-
vant data that one would like out of the system (i.e.,
covariances) requires a significant hardware/software
modification to the system, which is impractical. Con-
cisely, legacy can be defined as “you are stuck with
what you’ve got.” Before fusing local tracks, the fusion
center has to decide whether they are from the same
target. Track association is a hypothesis testing prob-
lem where local tracks are considered as having com-
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mon origin (from the same target) vs. different ones
by comparing a certain test statistic with a threshold to
obtain desired test power [5, 18]. However, no previ-
ous results are available for the association and fusion
of local tracks with legacy trackers that do not provide
the necessary covariance information of the estimation
errors.
In this paper we first consider the approximation

of the covariance of the estimation error from a legacy
tracker with a fixed filter gain. Then we use a two-sensor
tracking scenario to compare the performance of the
track fusion algorithm with the centralized target state
estimator where the fusion center uses the state-of-the-
art interacting multiple model (IMM) algorithm. Both
the estimation accuracy and the credibility (consistency
[2]) of the distributed tracker are compared with those
of the centralized one. The results indicate that the
performance degradation is small even during target
maneuvers.
The rest of the paper is organized as follows. Sec-

tion 2 describes the model used for legacy track sources.
Section 3 presents a method to obtain the covariance of
a legacy filter’s track estimate as well as an approxi-
mation of the crosscovariance between two tracks. The
reconstruction of the track covariance from a coarsely
quantized estimation RMS error is also discussed. Sec-
tion 4 presents a tracking example where two distributed
tracking configurations are compared with the central-
ized estimator. Concluding remarks are provided in Sec-
tion 5.

2. LEGACY TRACK SOURCES

In this section the model used for legacy track
sources is formulated assuming the trackers are Kalman
filters. To simplify the discussion, the model is pre-
sented for one generic coordinate with the target mo-
tion given by a discretized continuous time white noise
acceleration (DCWNA) model [2]. For asynchronous
sensors this model should be used to consistently handle
the white process noise for all values of the sampling
interval.
For sampling interval T, the state and measurement

equations are

x(k+1) = Fx(k) + v(k) =
·
1 T

0 1

¸
x(k)+ v(k) (1)

z(k) =Hx(k) +w(k) = [1 0]x(k) +w(k) (2)

where v(k) is the zero mean white process noise se-
quence with covariance

E[v(k)v(k)0]
¢
=Q(tk+1¡ tk) =Q(T) =

264
T3

3
T2

2
T2

2
T

375 q̃
(3)

where q̃ is the (continuous time) process noise power
spectral density (PSD)1 and w(k) is zero mean white
measurement noise sequence, uncorrelated with the pro-
cess noise, with variance

E[w(k)2] = ¾2w: (4)

This describes the target motion along one dimension.
For target motion in 2 or 3 dimensions, the model
will consist of 2 or 3 such models with an appropriate
stacked state vector.
The target maneuvering index, subscripted by “c” to

indicate that it is based on the continuous time process
noise [2], is defined as

¸c =

s
q̃T3

¾2w
: (5)

Then the steady state filter gain is

W =
·
®

¯

T

¸0
(6)

where

®= ¯
p
u (7)

¯ =
12

6
¡
u+

p
u
¢
+1

(8)

u=
1
3
+

s
1
12
+
4
¸2c
: (9)

The steady state solution for the state estimation covari-
ance matrix is given by

P =
·
p11 p12

p12 p22

¸
=

264 ®
¯

T
¯

T

¯(®¡¯=2)
(1¡®)T2

375¾2w: (10)

The above solution is valid for the steady state of the
DCWNA filter, but only with the optimal values of ®
and ¯ as given in (7)—(8).
A legacy tracker uses a fixed gain W, not necessar-

ily the optimal one, in each of its ®-¯ filter updates and
sends the state estimates to the fusion center, typically,
without covariance information. Since track association
and track fusion algorithms require such information in
order to combine local tracks from different sources,
a procedure to obtain this missing information is dis-
cussed next.

3. APPROXIMATION OF THE ESTIMATION ERROR
COVARIANCE AND CROSSCOVARIANCE

Because of the time-varying target-sensor geometry,
an ®-¯ filter, even though it uses fixed gains, is not nec-
essarily in steady state. This is due to the nonstationar-
ity of the measurement noises, which is accounted for in

1See [2] on why it is incorrect to call this the variance of the process
noise.
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Subsection 3.1. Our model will assume that the tracking
filter has a “slowly varying” (quasi-) steady state. The
covariance of the target state estimate will be evaluated
accounting for the fact that the sensor measurements
(typically in polar or spherical coordinates for a radar),
while having uncorrelated measurement noises between
their components (range, azimuth/crossrange), have a
coupling (correlation) between the track state estimation
errors in different Cartesian coordinates. Subsection 3.2
deals with the case where the communication network
provides partial covariance information in addition to
the state estimates. A procedure to reconstruct the full
state covariance matrix is presented. Since in the real
world multiple sensors are practically never operating
in a synchronized manner, the procedure for track fu-
sion from asynchronous sensors is discussed in Sub-
section 3.3. Subsection 3.4 presents a simple method
to approximate the crosscovariances between the state
estimation errors of two local tracks from the same tar-
get by assuming constant correlation coefficients, whose
exact values are shown to vary relatively little over the
practical range of target maneuvering indices.
The hypothesis testing for track association and the

fusion equations with the crosscovariance can be found
in [3, Sec. 8.4].

3.1. Coupling Between Coordinates and
Nonstationarity

For tracking in more than one dimension of the
measurement space, the measurement covariance can
be converted from the sensor coordinates (typically
polar or spherical) into the coordinates in which the
state is defined (usually Cartesian).2 This will result in
correlation between the state estimation errors in the
Cartesian coordinates. It is important to preserve the
coupling between the coordinates when the uncertainty
ellipse for position is elongated and slanted, e.g., a
“cigar” with the main axes at 45± and 135±. Neglecting
the correlation between the coordinates would yield a
much larger uncertainty region.
To preserve the coupling between the state space

coordinates due to the measurements, the fusion center
should run the Joseph form of the covariance update
iteration3 at time k [2]

P(k) = [I¡WH][FP(k¡ 1)F 0+Q][I¡WH]0+WR(k)W0

(11)

with the appropriate sampling interval. The Joseph form
is needed because the legacy filter gain is not optimal
and only this equation is valid for the covariance (ac-
tually MSE matrix) update when arbitrary filter gains
are used. The process noise covariance Q should be se-
lected by the fusion center to model the target motion

2While some tracking systems keep the measurements in polar/spheri-
cal coordinates, the conversion to Cartesian allows exact debiasing
when necessary [2].
3A single time argument is used here for the covariance.

uncertainty to the extent possible. The filter gain W in
(11) should be the same as in the legacy filter. If W is
not known at the fusion center, it should be “replicated”
using (6). The measurement noise covariance R(k), as-
sumed to be known,4 in (11) is the covariance of the
measurements converted from polar to Cartesian. The
measurement conversion should be linearized at the lat-
est measurement or the measurement prediction using
the latest state. When P(k¡ 1) is unavailable at the fu-
sion center, one can assume that P(k¡ 1) = P(k) in (11),
resulting in an algebraic Riccati equation. This will yield
a (slowly) time-varying covariance matrix that accounts
for the nonstationarity of measurement noise.

3.2. Approximation of the Estimation Error Covariance
of Legacy Trackers with Partial Information

When the communication network can provide a
coarsely quantized (i.e., an approximate) 2-dimensional
root mean square (RMS) position error, denoted as
RMSp, to the fusion center, the state estimation error
covariance can be obtained as follows.
We shall model RMSp as the (steady state) error of

two independent ®-¯ filters, one in the range direction,
the other in the cross-range direction. Denote the mea-
surement noise RMS values in these directions as ¾r
and ¾£r, respectively. These are assumed to be known,
based on the radar specifications and the radar-target
geometry.
The position gains for these two filters are, accord-

ing to (6),
®r = ®(¸cr ) (12)

and
®£r = ®(¸c£r ) (13)

respectively, where the corresponding target maneuver-
ing indices are, similarly to (5),

¸cr =

s
q̃T3

¾2r
(14)

and

¸c£r =

s
q̃T3

¾2£r
(15)

with q̃ the continuous time process noise PSD that
models the motion uncertainty (in both the range and
cross-range directions, uncorrelated between them) and
T the sampling interval.
The RMS position error from the above filters is,

based on (10), given by

RMSp =
q
®r¾

2
r +®£r¾

2£r: (16)

4The measurement noise variances are, particularly in azimuth/eleva-
tion (and thus in cross-range), dependent on the target SNR (inversely
proportional to the SNR [6]; in range the variance depends primarily
on the pulse waveform). However, unless one assumes these variances
as known (for an “average” SNR), one cannot reconstruct the track
errors. Consequently, R(k) is assumed known.
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Assuming the value of RMSp is available and the mea-
surement noise variances are known (as discussed previ-
ously), one can solve (16) (after substituting (14)—(15)
into (12)—(13) and the result into (16)) to find q̃. Once
this is obtained, one can use (10) or (11) to reconstruct
(approximately) the covariance of the entire state esti-
mate. Note, however, that while this is in a Cartesian
coordinate system, this system is aligned with the line
of sight from the radar to the target and it has to be ro-
tated into the local (common) Cartesian system, which
is, typically, East-North.
The above procedure allows to reconstruct (approx-

imately) the estimation error covariance of the legacy
tracker from a coarsely quantized position RMS error,
which is assumed to be conveyed by a communica-
tion network. A similar approach can be taken when
RMSp is a position prediction error, as well as for the
3-dimensional case.

3.3. Prediction to Fusion Time for Asynchronous
Sensors

For asynchronous sensors, the state prediction (to
the time for which fusion will be carried out) based on
the legacy tracker’s latest estimate should be used by the
fusion center. Assume that the fusion is done at time k
and the most recent estimate at the fusion center from
the legacy tracker is x̂(·) at time5 ·, with · < k. Then
the fusion center needs to (i) approximate the estimation
error covariance6 P(·) at time · using (10) or (11)
and (ii) apply the standard prediction equations given
by

x̂(k) = F(k,·)x̂(·) (17)

P(k) = F(k,·)P(·)F(k,·)0+Q(k,·) (18)

to obtain the state prediction and the corresponding er-
ror covariance for time k. For the motion model (1),
Q(k,·) is given by (3) with T = tk ¡ t·.
Thus what is needed to evaluate the covariance of

the estimate from a legacy tracker are:

² the sampling times
² the process noise PSD
² the measurement noise covariance.
It should be noted that the parameters based on

which the legacy tracker has been designed are unlikely
to be the same as listed above. Thus, what the fusion
center should do is to replicate the performance of the
legacy tracker to the extent possible.

5We use for simplicity the notations · and k instead of t· and tk .
6A single time argument is used here for the covariance. This covari-
ance can be an updated covariance at the current time for one sensor,
or a prediction to the current time for another sensor.

3.4. Approximation of the Crosscovariance of the
Estimation Errors

When two local tracks have correlated estimation
errors, assuming they are operating synchronously7 and
use the same target motion and measurement models,
in the steady state, the crosscovariance matrix is given
by [3]

P£ = [I¡WH][FP£F 0+Q][I¡WH]0: (19)

The above Lyapunov type matrix equation can be solved
numerically for any given target maneuvering index
by simple forward iteration starting from P£ = 0. For
a distributed tracking system, the calculation of the
crosscovariance using (19) is not practical.
The following approximation is considered [8]. De-

note by Pij the approximate crosscovariance matrix be-
tween local tracks i and j. Each element of Pij , which
is a 2£ 2 matrix for the model considered in (1), is ap-
proximated by constant correlation coefficients as fol-
lows

Pijlm = ½lm[P
i
llP

j
mm]

1=2, l,m= 1,2 (20)

where ½11 is the position-position correlation coeffi-
cient, ½12 is the position-velocity correlation coefficient
and ½22 is the velocity-velocity correlation coefficient.
Assuming equal variances of the measurement er-

ror for both sensors, we can solve the Lyapunov equa-
tion for the steady state DCWNA model. The resulting
crosscorrelation coefficients between the estimation er-
rors from the two local trackers, namely, ½11, ½22 and
½12, are shown in Fig. 1 for target maneuvering index
values within [0:05,2]. These results are similar to those
in [8] where the discrete time white noise accelera-
tion model (DWNA) [2] is used. For the simulations
to be presented in Section 4, we choose, in view of
the fact that, as it can be seen from Fig. 1, these co-
efficients are nearly constant, the following fixed val-
ues

½11 = 0:15, ½12 = 0:25, ½22 = 0:7 (21)

to compute the approximate crosscovariance according
to (20).
Legacy trackers can be assumed as being decou-

pled across coordinates since the process noise is as-
sumed uncorrelated between different coordinates. Con-
sequently, the crosscorrelation between one sensor’s
tracking errors in one coordinate and another sensor’s
tracking errors in another coordinate will be zero due to
the lack of common process noise. Thus the crosscovari-
ance matrix will be assumed to have blocks consisting
of zeros between different coordinates.

7The exact general recursion of the crosscovariance for asynchronous
sensors is presented in the Appendix.
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Fig. 1. Crosscorrelation coefficients vs. target maneuvering index for DCWNA model.

Fig. 2. Target trajectory with true positions where measurements are made by the two sensors.

4. EXAMPLE OF TRACK FUSION WITH A LEGACY
TRACK SOURCE

We consider a ground target tracking scenario where
two sensors are located at (¡50,0) km and (50,0) km,

respectively. Both sensors measure the target range and
bearing with the same standard deviations of the mea-
surement error given by ¾r = 50 m and ¾b = 2 mrad.
The sampling interval of sensor 1 is T1 = 2 s while the
sampling interval of sensor 2 is T2 = 5 s.
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Fig. 3. Steady state filter gains vs. target maneuvering index for DCWMA model.

The target is initially at (0,86:6) km moving at
a speed of 300 m/s toward south-east on a course
of approximately ¡135±. Then at t= 15 s the target
makes a course change with a constant turn rate of 4±/s
(acceleration of about 2.1 g over a duration Tman of about
11 s) and heads toward east. The target makes a second
course change at t= 35 s with a constant turn rate of
4±/s and heads toward north-east. The target trajectory
is shown in Fig. 2 where the true target positions are
indicated at the time instances at which a measurement
is made by sensor 1 or sensor 2. The total time for the
target to complete the designated trajectory is 60 s. Note
that the target range is around 100 km at the beginning
for both sensors, where the standard deviation of the
crossrange measurement error is around 200 m. The true
target motion has no process noise in this case.
We consider the following three tracking configura-

tions for performance comparison.
(i) A centralized estimator which uses an IMM with

two models and sequentially updates the target state
with measurements from both sensors. This IMM es-
timator has a DCWNA model with low process noise
PSD q̃l to capture the uniform target motion and a
DCWNA model with high process noise PSD q̃h to
capture the two turns. We use q̃l = 1 m

2=s3 and q̃h =
8000 m2=s3 which, for T1 = 2 s, corresponds to a target
maneuvering of

p
q̃h=T1 ¼ 6:4 g. The process noise is

the same in east and north of the Cartesian coordinates
and uncorrelated between these coordinates. The transi-
tion between the modes is modeled according to a con-
tinuous time Markov chain with the expected sojourn
times [2, Sec. 11.7.3] in these modes given by 1=¸1

and 1=¸2, respectively. These correspond to exponential
sojourn time distributions with parameters ¸1 and ¸2,
respectively. The transition probability matrix between
the two models (generalized version of Eq. (11.6.7-1)
in [2]) from any time t1 to time t2 is [19]

¦(t2, t1) =
1

¸1 +¸2

·
¸2 +¸1e

¡(¸1+¸2)T ¸1¡¸1e¡(¸1+¸2)T
¸2¡¸2e¡(¸1+¸2)T ¸1 +¸2e

¡(¸1+¸2)T

¸
(22)

where T = jt2¡ t1j. For the scenario used in simulation,
we chose ¸1 = (1=20) s

¡1 and ¸2 = (1=10) s
¡1.

(ii) In the first decentralized tracking configuration
both sensor 1 and sensor 2 use an IMM estimator and
the fusion center fuses the local estimates every TF =
10 s using the two local state estimates with the corre-
sponding covariances. The local tracker at sensor 1 uses
q̃l = 1 m

2=s3 and q̃h = 8000 m
2=s3. The local tracker at

sensor 2 uses q̃l = 1 m
2=s3 and q̃h = 20000 m

2=s3.
(iii) In the second decentralized tracking configura-

tion sensor 1 uses the same IMM estimator as in (ii)
while sensor 2 uses a legacy filter (in both north and
east coordinates) with a fixed filter gain. The optimal
filter gain components ® and ¯ vs. the target maneu-
vering index are shown in Fig. 3. The values we used
are ®= 0:86 and ¯ = 0:74 which correspond to a target
maneuvering index around 2. To implement the track-
to-track fusion with a legacy tracker, the fusion cen-
ter needs first to obtain the covariance (approximate
MSE matrix) of the local state estimate from the legacy
tracker. This is done according to the procedure dis-
cussed in Section 3.1. The track fusion is done with
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Fig. 4. RMS position errors for centralized IMM estimator vs. two local IMM estimators.

Fig. 5. RMS position errors for centralized IMM estimator vs. two local estimators (IMM and legacy).

crosscovariances calculated using the fixed crosscorre-
lation coefficients as in (ii).
Fig. 4 shows the root mean square (RMS) position

errors of the centralized IMM estimator vs. the two
local IMM estimators at sensor 1 and sensor 2 from

100 Monte Carlo runs. Special symbols indicate the
times when track-to-track fusion is carried out. The
local tracker at sensor 1 has better estimation accuracy
in position than the local tracker at sensor 2 since it has
a higher measurement rate.
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Fig. 6. Comparison of the RMS position errors for centralized IMM estimator vs. track fusion with an IMM estimator and a legacy filter.

Fig. 5 shows the RMS position errors of the central-
ized IMM estimator vs. two local estimators at sensor
1 and sensor 2 where the local tracker at sensor 1 uses
an IMM estimator and the local tracker at sensor 2 uses
a legacy filter from 100 Monte Carlo runs. Compared
with Fig. 4, we can see that the performance degrades
when sensor 2 uses a legacy filter rather than an IMM
estimator.
Fig. 6 shows the RMS position errors at the fusion

center for the above three tracking configurations as
well as that by sensor 1 alone. In configurations (ii)
and (iii), both approximate crosscovariance and zero
crosscovariance were used in the track fusion procedure.
We can see that the track fusion of two local IMM
estimators has the RMS position error close to that of the
centralized estimator. Assuming zero crosscovariance
does not affect the position estimation accuracy by
much. However, the track fusion with a legacy filter
has a moderate performance gap compared with the
centralized estimator for the RMS position error. We
can also see that the performance of the fused estimate
using a legacy track is clearly better than that using
sensor 1 alone.
Fig. 7 shows the normalized estimation error squared

(NEES) [2] at the fusion center for the above three
tracking configurations as well as that by sensor 1
alone. The 99% percent confidence interval is also
shown assuming that the NEES statistic is chi-square
distributed with the appropriate degrees of freedom. We
can see that nearly all fusion results are pessimistic
during the non-maneuver motion segments owing to the
zero process noise of the true target motion. However,
configurations (ii) and (iii) yield larger NEES than
the centralized estimator during the target turns, i.e.,

the estimation error covariance at the fusion center is
more optimistic compared with that of the single sensor
estimate. Assuming zero crosscovariance can make the
situation even worse. Thus caution has to be exercised
when fusing local estimates that are not consistent with
their calculated covariances.

5. CONCLUDING REMARKS

In this paper a procedure for reconstruction of legacy
trackers’ state estimation error covariances was de-
scribed for use in track-to-track association and fusion
algorithms that account for the crosscovariance of the
estimation errors between local tracks. In addition, a
practical way to approximate these crosscovariances has
been presented. A two-sensor tracking example, with
one of the trackers being a legacy tracker, indicates the
effectiveness of the resulting distributed tracking system
with track fusion on demand. The performance of this
system exhibits only a modest degradation compared
with a centralized tracker using an interacting multiple
model estimator.

APPENDIX. THE EXACT CROSSCOVARIANCE FOR
ASYNCHRONOUS SENSORS

The recursion for the crosscovariance given in Eq.
(8.4.2-3) of [3] is for synchronous sensors. The recur-
sion for the case of asynchronous sensors is as follows.
Let ftimgN

i

m=1 and ftjngN
j

n=1 be the sampling times at
sensor i and j, respectively. The union of these sets,
with the times ordered, is denoted as

T ij ¢=ftijk gN
i+Nj

k=1 : (23)
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Fig. 7. Comparison of the NEES for centralized IMM estimator vs. track fusion with an IMM estimator and a legacy filter.

Then the generalized version of the crosscovariance
recursion will be iterated on the ordered union set (23)
as follows

Pij(tijk )
¢
=E[x̃i(tijk )x̃

j(tijk )
0]

= [I¡Wi(tijk )H
i(tijk )][F(t

ij
k , t

ij
k¡1)P

ij(tijk ¡ 1)F(tijk , tijk¡1)0

+Q(tijk , t
ij
k¡1)][I¡Wj(tijk )H

j(tijk )]
0 (24)

where the estimation error x̃ has tijk as its single argument
indicating the current time. This error might correspond
to a current estimate, or a prediction as in (17). The gain
for filter i in the above is

Wi(tijk ) = 0 if tijk = t
j
n (25)

i.e., it is zero at the times when only filter j carries
out an update, and the other way around; F(tijk , t

ij
k¡1) is

the state transition matrix from tijk¡1 to t
ij
k and Q(t

ij
k , t

ij
k¡1)

is the covariance of the process noise over the interval
tijk ¡ tijk¡1. The initial condition for (25) is Pij(tij1 ) = 0,
assuming the filters use independent initial information.
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The overall goal of the research presented in this paper is to

design an intelligent system to aid geologists in processing com-

plex geologic characteristics for interpreting eruption patterns, and

thereby to aid eruption forecasting for volcanic chains and fields.

The objective of this paper is twofold. First it describes applications

of data fusion techniques to designing such an intelligent system.

The paper discusses the system architecture and applicability and

benefits of evidential decision fusion methods for processing un-

certain rock characteristics. Second, it introduces a new evidential

method of combining several clustering results and presents the re-

sults of application of this fusion method to clustering geochemical

data characterizing volcano magma chambers.
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1. INTRODUCTION

Volcanoes erupt mixtures of gas and rocks (gener-
ically known as tephra) [37]. The tephra settles to the
earth’s surface and leaves a record of the eruption. By
looking at the separate tephra layers preserved within
the soil layers, we are able to understand the history of
eruptions of a volcano. Because volcanoes are creatures
of habit, they tend to act in the future as they did in
the past. Thus we are able to forecast future behaviour
by observing the features of the tephra layers from past
eruptions. Unfortunately, the preservation of the tephra
layers is not complete. Erosion removes the tephra from
many locations, and eventually the tephra is buried un-
der enough younger layers that it is difficult to reach
by excavation. Thus the data may be sparse. Variability
within the tephra grains, and insufficient sampling often
result in relatively large variances and imprecision in
the dataset. Finally, we must match (correlate) the same
tephra layer from one locality to another to characterize
the layer thoroughly and understand its story. However,
the correlation process is rarely straightforward owing
to uncertainties about specific tephra layer identity.
There are two groups of characteristics that are used

for the correlation process: physical and geochemical.
Physical features include such variables as layer thick-
ness, size of grains of different types, arrangement of
the grains within the layer, and relative abundance of
the different grain types (Fig. 1).

Fig. 1. Physical features of tephra layers shown in a hand-dug pit.
The white rocks are pumice; black rocks are mostly obsidian.

Some of the physical characteristics (e.g., thikness)
are easy to observe and measure while “in the field”
and looking at the layers; others represent expert opin-
ion on their values. Thus, the physical characteristics
are the primary features used in identification and cor-
relation. However recognition of stratigraphic patterns
among different workers, and even for one worker, can
be difficult because of the variability. The result of such
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analysis depends on one’s level of expertise and can be
subjective and time consuming. Therefore it is benefi-
cial to develop an intelligent system to aid geologists in
recognition of tephra layers.
The geochemical make-up of a tephra layer helps us

not only with correlation, but also tells us much about
the reservoir (magma chamber) from which the tephra
layer was erupted. A magma chamber is a subterrenean
feature and is therefore inaccessible to direct observa-
tion. The chemical make-up of the rocks that came from
the chamber therefore carries indicators of some fea-
tures of the chamber. For example, by observing the
concentrations of different elements found within dif-
ferent rocks, we can determine whether there was one
coherent batch of magma responsible for the layers,
or whether there were different, but variously intercon-
nected batches.
The paper presents the first attempt to develop a

systematic approach to processing complex geologic
characteristics for interpreting eruption patterns. This
processing utilizes decision fusion techniques devel-
oped in the framework of the Transferable Belief Model
[35, 36]. Although utilization of different types of data
by geologists has been used in the study of seismic
and other geophysical data relating to volcanic eruption
forecasting [5], application of information fusion tech-
niques in eruption forecasting is a new field [8, 31].
The paper comprises two parts. The first one de-

scribes an intelligent system for assisting geologists
in processing uncertain geological data for interpreting
eruption patterns as well as the applicability and benefits
of evidential decision fusion methods for processing un-
certain rock characteristics. The second part introduces
an evidential method of combining several clustering re-
sults and application of this method to defining magma
chambers by clustering vent geochemical characteris-
tics.

2. DECISION FUSION FOR INTERPRETING THE
PATTERN OF VOLCANO ERUPTION

2.1. The Processing

Information flow in the intelligent system of strati-
graphic layer characterization designed to support ge-
ologists in interpretation of eruption patterns loosely
follows the major steps of geological data analysis per-
formed by geologists (Fig. 2), which is comprised of
two interrelated tasks:

1. Identification of groups of vents (magma chambers)
by utilizing geochemical data.

2. Tephra layer correlation based on both lithostrati-
graphic (physical) and geochemical data.

Most of the tasks related to identifying magma cham-
bers and correlating tephra layers are currently per-
formed manually. Nevertheless, the complexity and

amount of data are ever increasing, thus it is becom-
ing increasingly necessary to provide geologists with
an aid in processing the information. This system is not
supposed to replace a geologist. Geologists are deeply
integrated into the processing. Geologist domain knowl-
edge is utilized to:

² Select a relevant set of chemical elements to be con-
sidered in the process of defining magma chambers

² Constrain the number of vent groups to be consider
for layer correlation

² Provide subjective opinion about qualitative strati-
graphic layer attributes

² Supply a limited training set (correlated layers) for
the layer recognition process

Fig. 3 shows the information flow in the intelligent
system for interpreting eruption patterns. The system
is built within the framework of the Transferable Be-
lief Model (TBM) [35, 36], which is a model to repre-
sent and combine quantified beliefs based on the belief
function theory developed by Shafer [34]. The TBM
assumes the existence of basic belief mass m(A) 2 [01],
where £ = fμ1, : : : ,μng is a frame of discernment and
Aμ 2£. m(A) exists independently of any probabilis-
tic model and represents “the amount of belief that
specifically supports that the actual value of the vari-
able on which beliefs are expressed belongs to A, and
that supports nothing more specific due to a lack of
information, but that might support any strict subset
of A if further information justifies it” [36]. The TBM
works under the open world assumption and does not
assume, as do other models, that the set of hypothe-
ses in the frame of discernment is exhaustive and that
m(Ø) = 0. Several basic belief masses based on inde-
pendent pieces of evidence can be combined by the
so-called unnormalized Dempster rule. The TBM de-
fines a two-level structure composed of a credal level
where beliefs are estimated, and a pignistic level where
decisions are made. Beliefs at the credal level are quan-
tified by belief functions. When a decision has to be
made, beliefs are transformed into pignistic probabil-
ities using the so-called pignistic transformation. Uti-
lization of the TBM allows for dealing with the lack
of statistical data as well as uncertainty, vagueness, and
imprecision inherited in the problem of rock character-
ization.
The following two subsections will discuss the uti-

lization and benefits of decision fusion to the processing
presented in Fig. 2.

2.2. Decision Fusion for Tephra Layer Correlation

As mentioned in the introduction, both geochemical
(a percentage of each chemical element in the rocks
selected by an expert) and stratigraphic characteris-
tics, such as the fraction of pumice, grading, zoning,
thickness, and size of large pumice or lithic fragments
can provide information for recognition of stratigraphic
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Fig. 2. Information flow in the intelligent system for interpreting eruption pattern.

eruption patterns. In many simple cases, it is straightfor-
ward for the geologist to manually categorize different
layers based on these features. However, utilization of
these features for tephra layer correlation faces signif-
icant challenges once the data become more complex.
First, it is usually costly to collect information on past
eruptions at a large number of sites as well as conduct
a thorough chemical analysis of the tephra collected at
these sites; hence the number of patterns used for train-
ing of the recognition system is small as compared with
the dimensionality of the feature space used for recog-
nition. Second, the features under consideration are het-
erogeneous and require different processing. While the
chemical composition of a layer depends mostly on the
magma source and characterizes a group of vents a layer
could have been erupted from, the lithostratigraphic fea-
tures depend on the dynamic characteristic of each erup-
tion and geographical location relative to a single vent
among many, the locations and number of which are not
known at the beginning. In addition, although some of

the lithostratigraphic tephra characteristics can be ob-
tained by direct measurements, others represent vague
subjective expert opinions about their values. The non-
measurable features comprise descriptive depositional
features such as zoning (e.g., more pumice on bottom
than on top) and grading (e.g., bigger particles on bot-
tom than on top) and are usually expressed in the lin-
guistic form. For example, bedding can be characterized
as reversely graded, graded, planar bedded, massive,
and cross-bedded. These characteristics are subjective
and uncertain since there is not always a sharp differ-
ence between, e.g., massive and graded characteristics.
In many cases the uncertainty is so high that an expert
may have multiple opinions about the characteristics
and can assign more than one linguistic value with a
certain confidence. For example, an expert could say
that grading is massive with confidence 0.3 and graded
with confidence 0.4. As a result it is necessary to com-
bine the levels of confidence assigned to the value of
each characteristic to convert multiple opinions about
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Fig. 3. Location of the Mono-Inyo Craters, showing the different
types of eruptions (inset photographs) and geochemical groups of

the rocks (represented by different volcano coloration).

the value of the attribute into one value to be used in a
classifier [32, 46]. The measurable features comprise the
data types related to eruption size in a loose sense, for
example, maximum pumice, maximum lithic, and bed
thickness. Their values are imprecise and depend on the
expertise of the geologist doing the measurements. Fi-
nally, experts are not always sure about the labels of the
patterns in the training set so the labels are uncertain.
All this calls for an iterative processing, which can

deal with a small training set, heterogeneous features,
uncertainty, vagueness, and imprecision characterizing
features, as well as the lack of information about the
number and location of the vents. To deal with insuf-
ficient number of training patterns and heterogeneous
rock features a combination of the decisions of sev-
eral classifiers is considered, with each of them built
to treat different types of features. The classifiers are
combined via an intelligent voter designed within the
framework of the TBM, which is appropriate for deal-
ing with the lack of statistical data, vague and uncer-
tain subjective expert opinions about non-measurable
tephra features as well as the open world assumption
that a layer in question can be classified not only into
known layers but also into a layer that has not yet been
observed.
The result of the classifier combination in an intelli-

gent voter is used for either assigning a pattern in ques-
tion to a particular known class or to label this pattern
as unknown. The patterns are labeled as unknown if

m(Ø)¸PAμ2£ m(A). Otherwise the pattern is assigned
to a particular known layer under consideration based
on pignistic probabilities. The patterns classified either
as unknowns or belonging to a certain known class can
be used for augmenting the training set. The problem
with patterns classified as unknown is that we cannot
say whether they belong to the same class. To over-
come this problem we will perform clustering of all
such layers to identify the number of possible unknown
classes and which unclassified layers belong to the same
class.
Some preliminary results showing feasibility of uti-

lizing the belief model and decision fusion for tephra
layer correlation are presented in [8]. In [8] pairwise
recognition of layers based on lithostratigraphic features
was performed by combining two neural network clas-
sifiers within the framework of the TBM. Input to the
first neural networks represented layer characteristics
related to eruption size (maximum pumice, maximum
lithic, and bed thickness). Input to the second neural
network comprised descriptive deposit features (fraction
of pumice and grading). Utilization of decision fusion
allowed us to deal with an extremely small number of
patterns available for training of the classifiers.
The results of the lithostratigraphic layer correlation

can be improved by incorporating the knowledge of
which batch of magma is responsible for the layer
into the system. This knowledge can be obtained by
processing geochemical characteristics of the rocks, as
described in the next subsection.

2.3. Ensemble of Clusters for Defining Magma
Chambers

Information about the size and location of magma
chambers independently contributes to the knowledge
about the age and eruption pattern in an area. It also
provides important constraints for the process of lithos-
tratigraphic layer correlation. Geochemistry has been
used extensively to attempt to delineate separate magma
batches and sources that have persisted for over a mil-
lion years (see, e.g. [2, 3, 16, 18, 37]).
Information processing of geochemical data for

defining location and size of magma chambers can be
of two types. One of these types is based on statistical
methods such as chi-square hypothesis testing utilizing
a quasi-Euclidian distance between mean chemical com-
positions of pairs of tuff outcrops [25, 26], and factor
analysis [21, 44] based on a correlation matrix for ex-
tracting common “factors” from a given data set. As
summarized in [39], the use of correlation coefficients
requires a multivariate normal distribution for all the
input data [30]. This condition is almost never fulfilled
when working with geochemical data [29]. Further-
more, geochemical data are “closed” data, which sum
up to a constant. Hence multivariate statistical methods
may deliver biased results [1, 40]. While these meth-
ods may provide insight into the underlying structure
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of a data set, their use may require further analysis to
identify distinct groups [39].
A more attractive method for generating correlations

among tephra and dome-rock samples is clustering,
aimed at discovering structure in a given set of P-
dimensional feature vectors by organizing them into k
groups based on their similarity in the feature space.
Clustering is an unsupervised technique, which does
not require any additional information, neither on which
pattern belongs to which class, nor on which subgroup
of patterns belongs to the same class.
One of the problems with utilizing clustering for def-

inition of magma chambers is the existence of many
different clustering methods, which may produce dif-
ferent results. There are two major classes of cluster-
ing methods: relational clustering and partitioning (see,
e.g. [17, 10]). Relational clustering assigns patterns to a
cluster based on a similarity matrix, e.g., distances be-
tween the patterns based on their attributes or subjective
expert judgments. The most popular similarity based
algorithms are hierarchical algorithms [17], which are
used to either merge smaller clusters into larger ones,
or to split larger clusters. The result of the algorithm is
a tree of clusters, called dendrogram, which shows how
the clusters are related. By cutting the dendrogram at a
desired level, a clustering of the data items into disjoint
groups is obtained.
Partitioning directly decomposes the data set into a

set of disjoint clusters. More specifically, partitioning at-
tempts to determine K partitions that optimize a certain
criterion function in an iterative procedure. Very pop-
ular partitioning algorithms are the k-means algorithm
and its modification, fuzzy, possibilistic and evidential
k-means [6, 17, 22], in which observations can be as-
signed to multiple clusters with various degrees, par-
ticipation or membership coefficients. A different parti-
tioning approach is based on probability density func-
tion estimation using Gaussian mixtures. The specifica-
tion of the parameters of the mixture is based on the
expectation-maximization (EM) algorithm [9].
In spite of the advantages of clustering methods as

compared to multivariate statistical methods, utilization
of the former for assisting in making decisions on cor-
relation of igneous rocks and volcanic deposits presents
certain problems, since clustering suggests several pos-
sible groupings, which makes it difficult to select the
best one to be used for decision making. Domain knowl-
edge about the data to be clustered and correctness of
the result is very limited or does not exist. Indeed, there
are many clustering algorithms available and the result
of these algorithms depends on selection of algorithm
parameters, such as the number of clusters to consider,
the proximity measure used in the objective function,
or the selection of the distance measure for building
the similarity matrix and the termination point for the
hierarchical algorithms. The nature of geochemical data
(neither normal nor log-normal, strongly skewed, often
multi-modal data distributions) makes cluster analysis

results strongly dependent on the clustering algorithm
selected, which allows for employing them as an “ex-
ploratory data analysis tool” [40].
In many cases a cluster validity measure may be used

to select a clustering algorithm and a set of parameters
producing the best clustering result. At the same time,
there are several cluster validity measures reported in
the literature (see, e.g. [4, 7, 27]), and selecting the best
one greatly depends on the data to be clustered.
Recently, inspired by the success of combination of

decisions of supervised classifiers, several papers on
combining clustering results have appeared (see e.g.
[11, 12, 14, 20, 38]). They demonstrate the superior
performance of combinations in discovering clusters of
arbitrary shape and size as compared to the performance
of a single clustering algorithm. Thus the incorporation
of the combination of clustering results into the pro-
cess of defining magma chambers makes the clustering
results more accurate and thereby leads to improved in-
terpretation.
The next section will discuss the problem of com-

bining the results of several clustering algorithms in
more detail and introduce a new combinational method
designed in the framework of the Transferable Belief
Model.

3. COMBINING SEVERAL CLUSTERING RESULTS

3.1. Related Work

The general problem of combining several parti-
tions can be formulated the following way. Let P =
fp1, : : : ,pNg be an ordered set of N patterns to be clus-
tered and let C be a set of K different partitions of
P: C = fC1, : : : ,CKg with each partition Ck containing
nk clusters. The goal is to find a combined partition C
containing n clusters.
The problem of cluster combination is more diffi-

cult than the problem of combining several supervised
classifiers. First, it is not clear which cluster label in
one partition corresponds to a cluster label in another
partition since the cluster numbers have only symbolic
meaning. Second, in the case of fusion of supervised
classifiers the number of classes, to which patterns have
to be assigned is usually known and is the same for all
classifiers under consideration. This is not usually the
case when several clustering results are combined.
Several approaches to the problem of combining

clustering results are reported in the literature. One
approach employs the fact that clustering is an opti-
mization procedure based on a specific clustering crite-
rion and regards clustering combination as a technique
that constructs and processes multiple clustering criteria
rather than a single criterion [45]. One of the disadvan-
tages of this type of method is that it requires access to
the original features of the data points, which are not
always available. Another one is that it requires a set of
a priori parameters to perform the combination.
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Another clustering combination method utilizing
original pattern features is described in [22]. This
method involves two steps. The first step creates credal
partitions via an optimization of an objective function
defined within the framework of the belief functions.
The second step performs a direct combination of credal
partitions obtained with the Dempster rule. This method
also requires the knowledge of the number of clusters
in the resulting partitions.
A different type of method combines clustering re-

sults via a consensus function, which maps multiple
clustering results to a final partitioning. The advantage
of such methods is that they generally do not require
the knowledge of the original features of the patterns to
be clustered but use stored results of clustering partic-
ipating in combination. The authors of [23] identified
four major classes of approaches to building consen-
sus functions: Voting or direct “re-labeling” methods,
Mixture models, Hypergraph methods, and information
theory-based methods.
Direct “re-labeling methods” [10, 13, 41] involve

two steps. The first step is designed to solve the label
correspondence problem or the problem of finding the
best permutations, which is a major difficulty in obtain-
ing a consensus-based combination. The second step
combines the clustering results of correspondent clus-
ters. In [13, 41] the problem of finding the best permu-
tation can be rewritten as a weighted bipartite matching
problem solved by the Hungarian method. The majority
[13] or plurality [41] voting is exploited for finding the
final partitions.
In [10] a direct re-labeling method is applied to the

combination of the results of the evidential clustering
method (EVCLUS). The EVCLUS is an approach to
clustering proximity data within the framework of the
Dempster-Shafer theory of evidence [34]. The EVCLUS
results in a so-called “credal partition,” which provides
an assignment of objects to each possible subset of
classes. Combination of credal partitions is obtained
by the conjunctive rule of combination from evidence
theory. The best match between partitions is found by
minimizing the degree of conflict between different
permutations.
Hypergraph-based methods represent clusters as hy-

peredges of a graph while the nodes correspond to the
objects to be clustered. The problem of consensus clus-
tering is then reduced to finding the minimum-cut of
a hypergraph. An example of the hypergraph-based al-
gorithms can be found in [38], in which three effective
algorithms for solving the k-way min-cut partitioning
problem are proposed. A probabilistic model of con-
sensus, which uses a finite mixture of multinomial dis-
tributions in a space of clusterings, is given in [42].
An example of the information theoretic approaches is
given in [43], in which consensus functions related to
intra-class variance criteria are described.
The majority of the consensus methods need a priori

knowledge about the data such as a predefined number

of clusters in the combination results. The direct re-
labeling methods often also require the same number of
clusters in each partition used in combination. In many
cases these models involve optimization that makes
them computationally expensive, especially when ap-
plied to a large number of patterns.
A more attractive combination approach resembling

the hard voting scheme for classifier fusion is described
in [11, 12, 15]. This “pairwise approach” utilizes a
square co-association matrix − = (!ij), i,j = 1,N, (N is
the number of patterns), which represents an average of
consensus matrices built for each partition Ck:

− = 1=N
KX
k=1

−k (1)

where −k = (!ki,j) and !
k
ij = 1 if pi and pj are in the same

cluster in partition Ck and 0 otherwise. Elements !ij of
the consensus matrix are used to define whether patterns
pi and pj belong to the same cluster in the resulting
partition C. Similar to a hard voting algorithm for deci-
sion fusion in supervised classification !ij is considered
as evidence of the consensus between partitions under
consideration. Matrix − can be used as input to any
algorithm based on similarity patterns, for example, in
the single link and the average-link methods [11].
The pairwise approach has become quite popular de-

spite the fact that it can be rather expensive computa-
tionally if the number of patterns is very large. There are
several reasons for the popularity: it is straightforward,
can work with a different number of clusters in each
partition to be combined, and does not require defin-
ing a priori the number of clusters in the ensemble. At
the same time the pairwise approach described above
has the same drawback as any hard voting algorithm,
namely it does not consider the level of confidence that
pi and pj are in the same cluster for each partitioning.
The next subsection introduces an evidential voting

method representing a soft modification of the pair-
wise approach, which takes into account a level of cer-
tainty of assigning each pattern to a certain cluster. This
method represents a refined version of the method de-
scribed in [31].

3.2. Evidential Method for Combining Clustering
Results

The method described in this section utilizes the
stored outputs of partitioning to be combined for build-
ing an evidential consensus matrix, which represents a
new natural pattern proximity measure to be used in
any clustering algorithm based on the distance between
patterns. We start with the description of this method for
combining the results of the fuzzy k-means algorithms.
Let us consider a frame of discernment £ = fμ1,μ2g,

where μ1 and μ2 are the hypotheses that each pair
of patterns pi and pj belongs to the same or dif-
ferent clusters. First, we need to represent beliefs in
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each hypothesis for each partition Ck. The beliefs for
each partitioning have to preserve the assignment of a
pattern to a cluster based on the maximum membership.
Let Uk = (ukit) be a membership matrix for partition

Ck defining the level of participation of pattern pi in
cluster t. The values of Uk are used to produce a col-
lection of basic probability assignments that represent
evidence pro and against each hypotheses μi, i= 1,2.
Let t= argmaxm(u

k
im) and l = argmaxm(u

k
jm). If t = l pat-

terns pi and pj are assigned to the same cluster in par-
titioning Ck, a degree of support for this assignment
can be represented by (1¡ jukit¡ ukjlj), which reflects our
belief that the smaller is the difference between the re-
spective values of the membership matrix, the higher is
the evidence that pi and pj belong to the same cluster.
The reliability of this assignment for each partition can
be variable, and we need to use a discounted degree of
support with reliability coefficients for patterns pi and
pj respectively:

Rki = (n
k ¢ ukit¡ 1)=(nk ¡1) and

Rkj = (n
k ¢ ukjl¡ 1)=(nk ¡ 1):

(2)

The reliability coefficients represent the difference
between the maximum coefficient defining the assign-
ment of patterns pi and pj to clusters t and l respec-
tively and an average of the rest of the membership
coefficients, and reflect the level of confidence in this
assignment. The discounted degree of support defines a
simple support function with focus μ1:

mk1ij (μ1) = (1¡ jukit¡ukjlj) ¢Rki ¢Rkj
mk1ij (£) = 1¡mk1ij (μ1):

(3)

Similarly, if t 6= l, we can define degrees of support for
assignment of patterns pi and pj to different clusters:
jukit¡ ukjtj and jukil¡ ukjlj, and corresponding discounted
separable support function with focus μ2:

mk2ij (μ2) = 1¡ (1¡Rki jukit¡ukilj)
¢ (1¡Rkj jukjl¡ ukjtj)

mk2ij (£) = 1¡mk2ij (μ2):
(4)

For each pair of patterns pi and pj a set of partitions
under consideration fCkg can be considered as a union
of two subsets: fCkg= fCijsameg[ fCijdiffg, where fCijsameg
is a subset of Ksame partitions in which pi and pj belong

to the same clusters, while fCijdiffg is a subset of Kdiff
partitions in which pi and pj belong to the different
clusters. The combination of all support functions with
focus μ1 defined by members of subset fCijsameg is

msameij (μ1) = 1¡
KsameY

k:Ck½fCijsameg
(1¡mk1ij (μ1))

msameij (£) = 1¡msameij (μ1):

(5)

The combination of all support function pro hypothesis
μ1 defined by members of subset fCijdiffg is

mdiffij (μ2) = 1¡
KdiffY

k:Ck½fCijdiffg
(1¡mk2ij (μ2))

mdiffij (£) = 1¡mdiffij (μ2):

(6)

The result of combination ofmsameij (μ1) and m
diff
ij (μ1) with

the normalized Dempster rule defines the combined
belief that patterns pi and pj belong to the same or
different clusters:

belij(μ1) =m
same
ij (μ1) ¢ (1¡mdiffij (μ2))=C

belij(μ2) =m
diff
ij (μ2) ¢ (1¡msameij (μ1))=C (7)

belij(£) = (1¡mdiffij (μ2)) ¢ (1¡msameij (μ1)=C

where C = 1¡mdiffij (μ2) ¢msameij (μ1) is a normalizing co-
efficient and bel(£) represents our ignorance. The com-
bined similarity matrix eij is defined by the correspond-
ing pignistic probability, and the combined partition C
can be obtained by using any hierarchical algorithm
based on the similarity matrix. For the crisp k-means
clustering algorithm, the values of Uk used in equations
(2)—(7) can be replaced by 1¡ dkim, where dkim is a rel-
ative distance between each pattern pi and all cluster
centers.
Multiple partitions can be created by considering:

1. A different subset of chemical elements characteriz-
ing rocks.

2. A different set of features characterizing patterns,
for example, features obtained by different chemical
analysis methods (X-ray diffraction or microprobe)
or different chemical components can be considered
for clustering volcanic vents.

3. Various algorithm parameters such as initial number
of clusters and cluster centers. Although very pop-
ular, this method of creating multiple partitions has
a serious drawback since it can generate an infinite
number of results. Here we propose the consideration
of different cluster validity measures instead. Each
cluster validity measure allows for selecting the best
set of initial parameters and reduces the number of
partitions to consider.

4. Various distance measures used in the algorithm ob-
jective functions, for example Euclidian or Maha-
lanobis distances.

The next section describes experiments and results
of application of the combination method introduced
above to understand the number of separable magma
batches currently active and underlying the Mono-Inyo
Craters [18], a rhyolitic volcanic field with a compli-
cated eruption history.
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TABLE I
Fuzzy Clustering Results Corresponding to Optimal Values of Different Validity Indices and Results of their Ccombinations as Compared

with Partitioning Suggested by Experts (average over 7 trails)

Fukuyama-Sugeno Combination with Hard Combination with Evidential
Method Rezaee Index Index Xie-Beni Index Consensus Matrix Consensus Matrix

Average % of patterns
grouped incorrectly

38.74% 35.93% 36.58% 28.79% 20.56%

TABLE II
Fuzzy Clustering Results Corresponding to Optimal Values of Different Validity Indices and Results of their Combinations as Compared

with Partitioning Suggested by Experts (“knowns” only)

Fukuyama-Sugeno Combination with Hard Combination with Evidential
Method Rezaee Index Index Xie-Beni Index Consensus Matrix Consensus Matrix

Average % of patterns
grouped incorrectly

37.88% 33.33% 37.88% 33.33% 19.70%

# of clusters 9 3 9 9 8

4.3. Experiments and Results

The Mono-Inyo Craters volcanic chain cuts across
ancient Long Valley caldera, and consists of volcanic
domes, craters and lava flows that stretch for 50 km
north-south, subparallel to the eastern front of the Sierra
Nevada (Fig. 3). Although there may be some older
events, almost all eruptions within the chain occurred
less than 50,000 years ago. Because of the variety of
magma and eruption types, and the migration of vents
in time and space, it is nontrivial to discern patterns of
eruption behavior.
We conducted experiments with patterns from the

Mono-Inyo Craters characterized by the concentration
of 15 chemical elements, representing an indication of
originating from different magma chambers. Magma
chambers are inaccessible to direct observation and the
information on ground truth for determining the accu-
racy of the result of clustering of geochemical data is
rarely available. However the ground thruth for the par-
titioning of some patterns can be established by check-
ing the distribution of the resulting clusters on a map
and evaluating this distribution against known proper-
ties of the survey area [40] with further confirmation of
the result by consensus of a group of experts.
Our database included 66 patterns, for which parti-

tioning into 7 clusters was confirmed by expert consen-
sus (“knowns”) and 68 patters without annotated class
labels (“unknowns”). The data used for clustering com-
prised 91 patterns from the database, which included 66
“knowns” and 25 randomly selected “unknowns.” The
performace of the proposed combination method was
evaluated based on an accuracy score [15] computed
as the proportion of the correctly partitioned “known”
patterns.
The experiments were conducted with combination

of fuzzy k-means clustering, which is more appropri-
ate for clustering geochemical data for defining magma
chambers since the level of participation of each pat-

tern in each cluster allows for consideration of a degree
of partial membership, which can be construed to be a
measure of the degree of mixing of magma. The max-
imum number of clusters considered in all the experi-
ments was 9. The clustering results selected for combi-
nation corresponded to the optimum values of various
cluster validity measures obtained in 25 runs each. Uti-
lization of validity measures allowed for reducing the
number of partitions to be combined and helped to avoid
inclusion of very weak partitioning in the combination.
The combined partition was obtained by applying the
single-link method over the similarity matrix by using a
natural fixed threshold of 0.5 over pignistic probability.
The results of the fuzzy k-means algorithms included

in the combinations were obtained with a degree of
fuzziness m= 2, as used in the majority of practical
applications [7]. Three well known cluster validity mea-
sures were employed: Xie-Beni and Fukuyama-Sugeno
indices optimizing different functions of cluster com-
pactness and separation (see, e.g. [24], and Rezaee in-
dex based on measures of the degree of variance within
each cluster [27]. The combination results were aver-
aged over 7 trails: one with the “known” patterns only
and 6 with both “knowns” and 25 “unknowns” selected
randomly. The fusion results were compared with indi-
vidual partitions participating in the combinations, the
fusion results obtained with a similar method based
on concensus matrix obtained with majority voting
[11, 12], and ground truth (Tables I and II).
The results presented in Tables I and II demonstrate

a superior performance of the evidential combination
method as compared with the results corresponding to
the best values of the validity indecies as well as the
hard combination method.

6. CONCLUSIONS

The paper presents applications of fusion techniques
to designing an intelligent system to support geologists
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in processing complex rock characteristics for interpret-
ing eruption patterns. The paper has also discussed the
system architecture and applicability and benefits of de-
cision fusion within the framework of the Transferable
Belief Model to designing of such a system.
Special attention has been paid to the description

of a new evidential method for clustering combination
aimed at improved vent partitioning based on geochem-
ical features for defining the size and position of magma
chambers. This soft method utilizes the belief model for
building and combining the evidential consensus matrix,
which represents a new natural pattern proximity mea-
sure and can be used in any clustering algorithm based
on the distance between patterns.
The research reported in the paper is a step in de-

signing an intelligent system to support geologists in
eruption forecasting for volcanic chains and fields, areas
that would otherwise be difficult, perhaps impossible to
characterize and understand for large amounts of com-
plex data. For a single geologist working in a complex
region with large amounts of geochemical and lithos-
tratigraphic data, the techniques provide a route to ob-
taining a “second opinion” about the meaning of those
data. For the Mono-Inyo Craters used in the present ex-
ample, these results allow us to gain confidence about
our estimates regarding the number and positions of dif-
ferent batches of magma in the subsurface that could
potentially generate a future eruption.
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duction should be sufficiently informative to illuminate
the essence of the manuscript to the broadest possible
audience and to place the contributions in context with
related work. The body of the manuscript should be
understandable without undue effort by its intended au-
dience. Correspondence should be less discursive but
equally lucid. Authors should be aware that a well-
written correspondence are usually published more
rapidly than a regular paper.
Submission of Manuscript for Review: Manuscripts

are submitted electronically via the internet at http://jaif.
msubmit.net. For peer review, manuscripts should be
formatted in a single column and double spaced.
General Information for JAIF Authors and Submis-

sion of Final Manuscript: General information for JAIF
authors is available at http://www.isif.org/jaif.htm, and
specific document preparation information for final
manuscript for publication is given below and can be
found at http://www.isif.org/JAIF Manuscript Prepara-
tion1.doc.
Copyright: It is the policy of the ISIF to own the

copyright to the technical contributions it publishes; au-
thors are required to sign an ISIF copyright transfer
form before publication. This form appears in JAIF from
time to time and is available on the web site listed above.
If a copyright form is not submitted with the manuscript,
it will be requested upon contribution acceptance. Publi-
cation will not take place without a completed copyright
form.
Page Charges: Since ISIF has elected to support the

publication of JAIF with the revenues of conferences
and membership dues, page charges are not mandated
for publication in JAIF. Page charges for journals of
professional societies are traditional, and at some time
in the future, page charges may be introduced to cover
the expenses associated with the publication of JAIF.
Payment of page charges will not be a prerequisite for
publication.
Discloseability: The ISIF must, of necessity, assume

that material submitted for publication is properly avail-
able for general dissemination to the audiences for
which JAIF serves. It is the responsibility of the au-
thor, not ISIF, to determine whether disclosure of ma-
terials requires prior consent of other parties, and, if so,
obtain it.
Preparation of Manuscript for Publication: After a

manuscript is recommended for publication by the
editorial staff, the corresponding author prepares the
manuscript according to the guidelines below and
submits the final version of the manuscript as a pdf
file and the supporting manuscript files. Before prepar-
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ing their manuscript for publication, authors should
check for the more update version of the guidelines at
http://jaif.msubmit.net.
All manuscripts must be submitted electronically

in pdf format with the supporting files in one of the
following formats: Plain TeX, AMS-TeX, LaTeX, or
MS-Word with the MathType extension for equations
and in-text mathematical material. The pdf file must
be created with graphics resolution set to 300 dpi or
greater. The author must approve the pdf file because it
will be used as the basis for rectifying any inconsisten-
cies in the supporting files. The supporting files must
be prepared according to the following guidelines.

² Text files should include title, authors, affiliations,
addresses, a footnote giving the dates for submis-
sion and revision and name of the editor that handed
the review, and an optional footnote acknowledging
a sponsor for the research. The information must be
included in the text files in this order.

² Abstract must be included. The abstract must include
the key words for the manuscript and include no more
than 300 words for a regular paper and 150 words for
a correspondence.

² Authors should number main section headings as 1,
2, 3, etc., and subsections as 1.1, 1.2, or 2.1. All head-
ings should be typed with title format (i.e., first letter
caps and lower case)–not in ALL CAPS. The type-
setter will convert to all caps in final formatting as
required.

² Authors should format references very carefully ac-
cording to the examples given below. Style for au-
thors’ names are initials followed by last name and it
must be followed precisely. References must be listed
alphabetically by (i) last name of first author, (ii) ini-
tials of first author, (iii) last name of second author,
(iv) initials of second author, etc. For manuscripts
with common authors and order of authors, the date
of publication should be used to select order with
the earlier publications being list first. The names of
publications must be spelled completely. In the refer-
ences, the author should use only approved abbrevi-
ations that include: No., Vol., p., pp., AIAA, IEEE,
IEE, and SPIE.

² Authors who use one of the TeX variants must pro-
vide a list of their macros and the files for the macros.
Authors who use LaTeX must include the bbl and aux
files.

² All figures must be submitted electronically as HIGH
resolution (300 dpi or better) in Color graphics
or GRAYSCALE (where shading is involved) or
BLACK AND WHITE (if simple line art) graphics
files (tif, eps, jpg, bmp). Each figure must be sup-
plied as a separate graphics file. Graphics (or cap-
tions) should NOT be embedded in the text files. The
figures must be included in the pdf file of the full
article and the pdf file must be created with graphics
resolution set to 300 dpi or greater.

² A separate file including all figure captions must be
included.

² Each table must be submitted in a separate file. Tables
(or captions) should NOT be included in text files and
should be in form of DATA–rather than graphics–
files.

² A separate file including all table captions must be
included.

² A separate text of the biography of each author must
be submitted. The text file should be less than 500
words.

² Separate graphics files of each author's photo should
be provided as a grayscale graphics file or a color
graphics file.

Examples of the references are alphabetized cor-
rectly and listed below.

BOOK:
[1] R. E. Blahut

Theory and Practice of Error Control Codes. Reading, MA:
Addison-Wesley, 1983.

PROCEEDINGS ARTICLE:
[2] T. Fichna, M. Gartner, F. Gliem, and F. Rombeck

Fault-tolerance of spacebome semiconductor mass memo-
ries.
In Twenty-Eighth Annual International Symposium on
Fault-Tolerant Computing, Digest of Papers, 1998, 408—
413.

BOOK:
[3] P. K. Lala

Fault Tolerant and Fault Testable Hardware Design. Engle-
wood Cliffs, NJ: Prentice-Hall, 1985.

WEB SITE:
[4] National Semiconductors Inc.

Homepage: http://www.national.com.

PROCEEDINGS ARTICLE:
[5] C. Paar and M. Rosner

Comparison of arithmetic architectures for reed-solomon
decoders in reconfigurable hardware.
In Proceedings of the Symposium on Field-Programmable
Custom Computing Machines, Apr. 1997, 219—225.

JOURNAL ARTICLE:
[6] N. R. Saxena and E. J. McCluskey

Parallel signature analysis design with bounds on aliasing.
IEEE Transactions on Computers, 46, 4 (Apr. 1997), 425—
438.

[7] C. I. Underwood and M. K. Oldfield
Observations on the reliability of cots-device-based solid
state data recorders operating in low-Earth orbit.
IEEE Transactions on Nuclear Science, 47, 4 (June 2000),
647—653.

WEB SITE:
[8] Xilinx Inc.

Homepage: http://www.xilinx.com.
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