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From the Editor in Chief:
June 2009

JAIF Editorial Board

The Board of Directors of ISIF voted in 2004 to
establish JAIF as a peer reviewed journal publishing
articles in the area of information fusion. The critical
and key element of a peer review journal is its edito-
rial board. As Editor-in-Chief (EIC) for JAIF, I have at-
tempted to assemble a strong editorial board with inter-
national representation from both academia and indus-
try. The editorial board includes 15 editors from seven
different countries and six editors from academia and
nine editors from industry.
The editorial board for JAIF includes an EIC, an

associate EIC, administrative editors, area editors, and
associate editors. The inside cover of each issues iden-
tifies the individuals that hold these positions and the
list of the technical areas represents the scope of JAIF.
The EIC is responsible for the day-to-day editorial

operations of the JAIF. The EIC is responsible for
identifying and maintaining the appropriate technical
areas of JAIF. Editorial operations primarily relate to
the timely review of manuscripts submitted to JAIF.
The EIC consults with the vice president of ISIF for
publications (VP-Pubs) on extraordinary issues. The
EIC and the VP-Pubs consult on the strategic vision
for JAIF. For 2005—2010, Yaakov Bar-Shalom served
and continues to serve as the VP-Pubs.
The associate EIC serves in roles of the EIC as des-

ignated by the EIC. The EIC consults with the associate
EIC on strategic and management issues. Generally, an
associate EIC will also be an Area Editor for JAIF.
The administrative editor is responsible for manu-

script post-acceptance handling and subsequent publica-
tion. This includes management of copy-editing, type-
setting, assembly of complete issues of JAIF, and de-
livery to ISIF of properly meta-tagged and indexed
manuscripts.
Each technical area of JAIF is managed by an area

editor, who is directly responsible for all manuscripts
submitted to that area. A manuscript is assigned to an
associate editor (AE) who directly manages its review.
Area editors will also serve in the role of an AE in
their area of expertise and can assign manuscripts to
themselves for review management.
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Each manuscript submitted to the JAIF is assigned to
an AE. The AE assigns reviewers and assures that these
referees deliver their reviews in a timely fashion. The
AE delivers the ultimate decision (accept/reject/revise)
on each manuscript. Unless the AE is also the area
editor, the AE is responsible to the area editor of their
technical area.
Area editors are appointed by the EIC. In consulta-

tion with the associated area editors, AEs are appointed
by the EIC. While the EIC has ultimate authority over
the selection of AEs and area editors, it is expected that
in most cases that the VP-Pubs will be consulted on ap-
pointments by the EIC. Appointments are made based
on publication record, familiarity with the subject area,
prior relationship and contribution to the ISIF commu-
nity, and recommendations from relevant experts. Pub-
lication record must include multiple articles in peer re-

viewed journals with publication standards similar to
JAIF. Familiarity with the subject area and prior rela-
tionship to the ISIF community is best demonstrated by
quality reviews of articles for JAIF. Each editor's per-
formance (acceptance rate, timeliness, etc.) is continu-
ously reviewed by the area editor and EIC. The EIC is
appointed by the VP-Pubs and serves at the pleasure of
ISIF BoD–normally for a term of six years, beginning
in January.
Further details on the editorial policies and proce-

dures of JAIF are available for review at www.isif.org.
These peer review guidelines establish the peer review
standards for JAIF and it is the intent of the editorial
board to maintain those standards.

William Dale Blair
Editor in Chief
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Application of Intent
Inference for Air Defense and
Conformance Monitoring

PEK HUI FOO

GEE WAH NG

KHIN HUA NG

RONG YANG

Intent inference involves the analysis of actions and activities of a

target of interest to deduce its purpose. This paper proposes an ap-

proach for intent inference based on aircraft flight profile analysis.

Simulation tests are carried out on flight profiles generated using

different combinations of flight parameters. In each simulation test,

Interacting Multiple Model-based state estimation is carried out to

update the state vectors of the aircraft being monitored. Relevant

variables of the filtered flight trajectory are subsequently used as

inputs for a Mamdani-type fuzzy inference system. Research on two

applications is reported. The first application involves the determi-

nation of the likelihood of weapon delivery by an attack aircraft

under military surveillance. Test results verify that the method is

feasible and is able to provide timely inference. By extending the

method to take the environmental context of the tracked aircraft

into consideration when executing the inference process, it is likely

that the military defenders would be able to raise their alert earlier

against potential adversaries. This would provide them with more

time to react and devise pre-emptive counteraction. The second ap-

plication concerns conformance monitoring in air traffic control sys-

tems. Experimental results show that the proposed solution can be

used to assist air traffic control system operators in determining if

aircraft navigate according to planned trajectories. Consequently,

corrective action can be taken on detection of anomalous behavior.

A brief discussion on extending the proposed method to deal with

multiple aircraft is also presented.

Manuscript received September 16, 2007; released for publication Oc-
tober 13, 2008.

Refereeing of this contribution was handled by Pierre Valin.

Authors’ address: DSO National Laboratories, 20 Science Park Drive,
Singapore 118230, Singapore.
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1. INTRODUCTION

The human brain has remarkable capabilities in per-
ception and reasoning. However, the amount of com-
plex data/information that can be processed by the hu-
man brain is constrained by the limited memory capac-
ity. Hence, computational tools are necessary to provide
cognitive aid to the human brain in attaining better per-
formance in intellectual tasks, such as decision making.
Intent inference is about analyzing the actions and

activities of an opponent or a target of interest to ob-
tain a conclusion (prediction) on its purpose [3, 10,
18, 24]. Generally, data (collectively called observables)
concerning the opponent are first collected from avail-
able sources. Next, the data are fused to obtain useful
information. Finally, the fused information is utilized to
derive the inferred intent of the opponent. It is desirable
that intent inference be able to provide three kinds of
hypotheses about an opponent’s objective [3, 18]:

² Descriptive intent inference–provides insight into
the motivations behind preceding actions;

² Predictive intent inference–anticipates theopponent’s
future actions given his deduced goals;

² Diagnostic intent inference–detects differences be-
tween predicted and observed actions to reveal pos-
sible errors.

Accurate prediction of an opponent’s intention, ac-
tions and reactions would be useful for the purpose of
devising effective responses to his actions, as well as
planning for one’s own operations.
Intent inference has been used in applications such

as intelligent transportation systems (infer and detect a
driver’s intent [36]) and air traffic management (ATM)
(predict the future trajectory of an air vehicle and the
states of nearby aircraft [20, 42]). Other applications
include the medical domain, recommender systems, tu-
toring systems and team intent identification [18].
In this paper, we report our research on two ap-

plications of intent inference [9, 25]. The first task is
to determine the intent of the pilot (equivalently, the
flight mission) of an aircraft being tracked by a military
surveillance system [25]. The second involves confor-
mance monitoring in air traffic control (ATC) systems
[31].
This paper is organized as follows. Section 2 pro-

vides a general discussion on intent inference and a brief
review on related work from the research literature. Sec-
tion 3 describes our proposed fuzzy logic approach for
intent inference based on the analysis of flight profiles
for attack aircraft. In addition, the environmental context
of the tracked aircraft is taken into consideration during
the execution of the inference process. The impact of
this additional factor on the inference outcome is inves-
tigated. Four different test scenarios are used to eval-
uate the feasibility of the proposed method. Section 4
is focussed on conformance monitoring in ATC/ATM
systems. Section 5 presents simulation tests and results.
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Fig. 1. The OODA Loop.

Section 6 gives a discussion on handling an approach
by multiple aircraft. Section 7 provides a summary on
this paper.

2. INTENT INFERENCE

The Boyd Control Loop (also called Boyd’s Decision
Loop or the Observe, Orient, Decide, and Act (OODA)
Loop) [11, 27] is a popular model that has been used for
formalizing concepts of tactical command and decision
making. It describes human and organizational behavior
as a continuous, iterative and cyclic process of Obser-
vation (represents event perception), Orientation (cor-
responds to the process of memory and cognition, the
activity that provides environmental context and indi-
vidual expectations), Decision (describes the process of
cognitive comparison) and Action (equals the resulting
behavior). In particular, the function Orientation shapes
the way the other functions, Observation, Decision and
Action, are done.
The emphasis of this model is placed on shortening

the cycle to perform the Observe to Act loop (see
Fig. 1):

² Observe–gather data from the environment via hu-
man and related senses,

² Orient–gain situation awareness and perform situa-
tion and impact/threat assessment based on the infor-
mation derived from the data obtained,

² Decide–respond to situation and work out follow-up
actions,

² Act–execute the planned response,
to the extent that the opponent cannot respond in time to
carry out countermeasures, thus gaining superiority in
the engagement. The OODA Loop can also be applied
to computer-assisted cognition.
An intent inference system provides reasoning about

the opponent’s intent, mission objective, or motivation.
By nature of the inference mechanism, the intent in-
ference system will also be able to provide prediction
on the opponent’s possible future actions or activity ac-
cording to the inferred intent. Thus, it serves as useful
decision support to the decision maker. In this way, the
inference system not only contributes to better situation
awareness and aids in resolving ambiguity that arises
from multi-source fusion, but further assists the deci-

sion maker in his cognitive task and helps in shortening
the decision making process.
Intent inference is a relatively young and challeng-

ing research area as compared to the maturing lower
level data fusion. Emerging interest in the application
of this research area can be found in the military arena
[3, 37] and antiterrorism [12, 16]. Generally, intent
and activity inference requires a cognitive architecture
with knowledge-based modeling. Inputs to the infer-
ence system are information gathered through intelli-
gent autonomous agents or provided by multiple sens-
ing sources, including reports from human intelligence.
Through modeling, the structure and pattern of oppo-
nent entities, as well as their behavior and relationships,
are captured. The focus of the inference mechanism is
on contextual and relational reasoning as opposed to
single entity reasoning at lower level fusion processes.
The inference mechanism may be based on a rule-based
system or a more dynamic reasoning system such as
Bayesian networks. In this paper, a fuzzy inference sys-
tem (FIS), also known as a fuzzy-rule-based system, is
used.

2.1. Related Research Work

A method for pilot intent inference in real-time
was investigated in [19]. It was based on plausible
models of intent and a process for identifying models
that matched observed aircraft motion best. The models
were ranked based on their correlation with measured
aircraft motion. The highest ranked plausible models of
intent made up the best estimate of the aircraft intent.
Sequences of actions were executed to infer guidance
and navigation task intents of the tracked aircraft. The
inferred intent was then used as a basis for trajectory
prediction.
The authors of [41] proposed an intent-based tra-

jectory prediction algorithm to carry out maneuvering
aircraft tracking, aircraft intent inference and trajectory
prediction. A hybrid estimation algorithm was used for
estimating the states and flight mode of the aircraft. In-
tent inference was posed as a maximum likelihood prob-
lem. Pilot intent inference was obtained via the combi-
nation of the state and flight mode estimates, air traffic
control regulations, the flight plan of the aircraft and
environment information. The inferred intent and the
aircraft motion (state and flight mode estimates) were
used for the computation of trajectory prediction. The
proposed algorithm was tested and analyzed through
simulations in different scenarios representative of air-
craft operations.
In [1], a hybrid system model of intent inference

was constructed for air traffic controllers. An algorithm
based on the Interacting Multiple Model (IMM) Kalman
filter (the State Dependent Transition Hybrid Estima-
tion algorithm) was implemented for state estimation,
as well as the generation of residuals (discrepancies)
between the observed aircraft states and the expected

4 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 4, NO. 1 JUNE 2009



aircraft states. The residual mean was generated based
on probabilistic methods. The proposed model was ap-
plied to an example problem on conformance monitor-
ing. A statistical test was carried out on the residual
means for both the conformance monitoring model and
the actual aircraft system to obtain a conclusion/decision
on conformance or non-conformance.
Conformance monitoring in air traffic control is a

relatively new application of intent inference. Some re-
search work based on fault detection has been done
in this area [30—35] and will be discussed in Sec-
tion 4.

2.2. Inference Mechanism

Classification is the process of inferring the con-
cept behind an available collection of observations. This
task covers any context in which some decision or
forecast is made based on available information. It in-
volves the establishment of a mapping from a mea-
surement (an observation) space to a decision space.
Input measurement/observation data is assigned into
one or more predetermined classes based on the selec-
tion/extraction, as well as the processing or analysis, of
significant features or attributes. Some commonly used
approaches to classification are briefly discussed below
[17].

2.2.1. Statistical Approach
Statistical (or decision theoretic) classifiers are gen-

erally characterized as having an explicit underlying
probabilistic model. In a parametric classification pro-
cedure, a set of characteristic measurements (features)
are extracted from the input data, and are used to assign
each feature vector to one of the predetermined classes.
Features are assumed to be generated by a state of na-
ture, the underlying model represents a state of nature,
set of probabilities, or probability density functions, that
are conditional on the classes.
There are cases when there is insufficient prior in-

formation available, or when it is not necessary, to make
assumptions about the distribution associated with the
feature vector in the different classes. Under such cir-
cumstances, it is possible to use non-parametric estima-
tion of the pdf involved to build distribution-free meth-
ods of classification (that is, non-parametric classifiers).
Statistical classifiers generally work reasonably well

for problems in which structures are not deemed signif-
icant.

2.2.2. Neural Network Approach
A neural network assumes that a set of input data

and their correct classifications are given. The architec-
ture of a neural net includes layers of interconnected
nodes. It is characterized by a set of weights and ac-
tivation functions which determine the transmission of
information from the input layer to the output layer. The
training data is used to train the neural network and

adjust the weights until the correct classifications are
obtained. The complete network generally represents a
complex set of interdependencies, which may incorpo-
rate an arbitrary degree of nonlinearity.
Neural networks are suitable for solving problems

with a large amount of features and classes. They can be
applied to problems that involve generalization, parallel
processing, or discrimination among classes with highly
nonlinear boundaries.

2.2.3. Fuzzy Logic Approach
Classification is often done with some degree of un-

certainty. In problems with data that are noisy and dis-
torted, complications can arise and lead to ambiguous
situations in which classified data may belong in some
degree to more than one class, or the classification out-
come itself may be in doubt. Fuzzy logic (or fuzzy set
theory) can be introduced to deal with such problems.
In fuzzy classification, an input data entity is assigned
a membership value in the interval [0,1] in each prede-
termined class.

2.3. Proposed Approach

We propose that intent inference be carried out via a
fuzzy logic approach (conceptual information on fuzzy
logic used in this paper [15, 38, 39] is given in the
Appendix). The main reasons that motivate the use of
the proposed approach are as follows.
Firstly, compared to statistical and probabilistic

methods used in most related research work, fuzzy logic
techniques are particularly suitable for modeling prob-
lems with inherent imprecision properties [11, 23]. The
problems to be discussed in this paper involve observa-
tion/information associated with human cognitive pro-
cesses such as thinking and reasoning, in which uncer-
tainties and imprecision are usually inherent. Therefore,
it is appropriate to use fuzzy logic to deal with these
problems.
Secondly, fuzzy logic techniques are useful for the

fusion of information from multiple input sources and
the application of heuristics to determine the overall
status of the inputs [7]. Hence, for each problem in
this paper, the information obtained from tracking the
subject aircraft can be fused to determine the pilot
intent, which is required by the surveillance/monitoring
system users concerned for decision making.
Thirdly, implementation of fuzzy logic is simple,

fast and efficient [21, 38]. This would be useful for
problems in which computational load/time is a critical
factor, such as the two problems of interest here. For
the first task on air defense, it is essential to take pre-
emptive action against potential adversaries as quickly
as possible, in order to avert possible attacks. For the
second problem on conformance monitoring in air traf-
fic control systems, it is important to minimize the de-
lay in correcting any deviant aircraft behavior that is
detected.

APPLICATION OF INTENT INFERENCE FOR AIR DEFENSE AND CONFORMANCE MONITORING 5



Fig. 2. Flight profile for offset pop-up delivery.

A fuzzy inference system is a computing framework
based on the concepts of fuzzy set theory, fuzzy rules
and fuzzy reasoning (an inference procedure which de-
rives conclusions from a set of fuzzy rules and available
information) [15]. The basic structure of a fuzzy infer-
ence system comprises three conceptual components:

² rule base–contains a selection of fuzzy rules,
² database–defines the membership functions used in
the fuzzy rules,

² reasoning mechanism–performs the inference pro-
cedure upon the rules and known facts to derive a
reasonable output or conclusion.

The inference mechanism used in this paper is based on
the widely accepted Mamdani’s fuzzy inference method
[15], which was one of the first control systems built
using fuzzy set theory. It was proposed as an attempt
to control a steam engine and boiler combination by
synthesizing a set of linguistic control rules obtained
from experienced human operators.
The Mamdani-type FIS used here is generated using

the MATLAB Fuzzy Logic Toolbox [38, 39]. The fuzzy
inference process has five parts, namely, fuzzification
of the input variables, application of the fuzzy operator
in the antecedent, implication from the antecedent to
the consequent, aggregation of the consequents across
the rules, and defuzzification. Details on each part of
the fuzzy inference process implemented for the two
applications discussed in this paper are provided in
Sections 3 and 4.

3. WEAPON DELIVERY BY ATTACK AIRCRAFT

Effective intent inference will greatly enhance the
defense capability of a military force in taking pre-
emptive action against potential adversaries. It serves as
a form of advance warning in the prevention of a crisis
(for instance, enemy attack) or facilitates the moderation

of the impact of such a crisis. For an air defense system,
the ability to accurately infer the likelihood of a weapon
delivery by an attack aircraft is critical.
The type of weapon delivery for attack aircraft con-

sidered in this paper is offset pop-up delivery. The defi-
nitions for some terms pertaining to this form of weapon
delivery are stated below. Section 3.1 provides a brief
description of offset pop-up delivery [40].

² Pop Point (PUP)–a position at which the pop-up
attack is initiated, the point where climb is initiated.

² Pull-Down Point (PDP)–a maneuver point where
one transitions from the climbing to the diving portion
of a pop-up delivery.

² Apex–the highest altitude in the pop-up delivery
profile.

² Track Point (TP)–the starting point of tracking prior
to arriving at planned release altitude.

² Release Point (RP)–the point at which weapon is
released.

A tracked aircraft is considered to have constant
speed, with the velocity components in the horizon-
tal plane (parallel to ground) and the vertical axis
(parallel to altitude) varying in different phases of
the trajectory. In this application, altitude, distance
and velocity are measured in feet above ground level
(AGL), feet and knots respectively, unless otherwise
stated.

3.1. Typical Offset Pop-up

The pop-up approach heading, as shown in Fig. 2
[8], is at an angle (varies with the planned climb angle)
from 15± to 90± from the final attack heading. This
allows the pilot to acquire the target as soon as possible
and maintain visual contact until weapon delivery is
completed.

6 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 4, NO. 1 JUNE 2009



Fig. 3. Overview of proposed system.

The pilot initiates the pop-up over a preplanned pop
point at a minimum airspeed of 450 knots calibrated
airspeed (KCAS). He selects his desired power, makes
a 3—4 G wings-level pull to the desired climb angle and
initiates a chaff/flare program. After popping, he has
to maintain the planned climb angle and monitor the
altitude gained.
When approaching the preplanned pull-down alti-

tude, the pilot makes an unloaded1 roll in the direc-
tion of the target. He then performs a 3—5 G pull-down
to intercept the planned dive angle. Interception of the
planned dive angle while pointed at the aim-off point is
a critical factor in attaining preplanned delivery param-
eters. It is usually acceptable to have minor deviations
in the attack heading.
During the maneuver, corrections are made to com-

pensate for minor errors in the pop point or unexpected
winds in the climb to the apex at the planned altitude.
The planned apex altitude is normally achieved about
half way through the pull-down maneuver.
For safety reasons, a pilot would most probably

abort a pop-up attack immediately if at least one of the
following conditions arises:

² the actual dive angle exceeds the planned one by more
than 5±,

1In aeronautics, the lift on an aircraft is the component of total air
force acting on the aircraft which is perpendicular to the direction of
flight and is normally executed in an upward direction. The load factor
is the ratio of the lift on an aircraft to the weight of the aircraft, which
is expressed in multiples of G, with 1 G representing conditions in
straight and level flight.
Unloaded: the situation in which the load factor is 0 G, where every

occupant of an aircraft experiences a feeling of weightlessness.

² the airspeed goes below 350 KCAS (300 KCAS
above 10000 feet AGL).

The occurrence of such conditions would result in in-
accuracy in the impact point of the released weapon.

3.2. Process and Techniques

Our proposed procedure for inferring the possibility
of weapon delivery by a tracked attack aircraft, based
on flight profiles, is given below.

Procedure 1

1. For an aircraft being tracked, record its state informa-
tion (sensor measurement data) through observation.

2. Apply the IMM algorithm [22, 24] to update the
track state estimates.

3. For each track state estimate, use the position com-
ponents to identify the environmental context and
hence the corresponding location sensitivity index
(LSI) (details in Sections 3.2.1 and 5.1).

4. Fuzzy inference process
a. Input

i. relevant parameters of the filtered flight trajec-
tory, and

ii. LSI obtained in Step 3,
to a Mamdani-type fuzzy inference system gener
ated using the MATLAB Fuzzy Logic Toolbox
[38, 39].

b. Output produced by the FIS is the inferred possi-
bility of weapon delivery by the tracked aircraft.

APPLICATION OF INTENT INFERENCE FOR AIR DEFENSE AND CONFORMANCE MONITORING 7



Fig. 4. Fuzzy inference system.

An overview of the system for the proposed ap-
proach is shown in Fig. 3. The entire fuzzy inference
process is shown in Fig. 4. The following subsections
provide details on the fuzzy inference process.

3.2.1. Fuzzification of the Input Variables
In the first step, each input variable is a crisp/non-

fuzzy numerical value within its universe of discourse
and is assigned a linguistic value in the interval [0,1] via
a membership function. The input variables considered
in the current application are obtained from kinematic
parameters of the filtered flight trajectory. Elaboration
on each of the input variables, with respect to the tracked
aircraft, is given below.
The first variable is the velocity along the ver-

tical axis (abbreviated vz). It is classified as either
positive (denoted by “> 0”) or negative (denoted by
“< 0”), indicating either upward or downward mo-
tion respectively. The second variable is the magni-
tude of vz (abbreviated vzmag). The third variable
is the altitude. The fourth variable is an indicator
for the occurrence of a change in heading (measured
in radians, abbreviated dhdg) during the time inter-
val between consecutive scans. A change in head-
ing is considered to have occurred when the differ-
ence in heading between two consecutive records along
the filtered flight trajectory exceeds a chosen thresh-
old value (¼=180 radians in the current application).
The fifth variable is an indicator for the likelihood
of a weapon delivery (abbreviated delivery) by the

TABLE I
Symbols used for Membership Functions

Symbol VL L M H VH

Linguistic value Very Low Low Medium High Very High

tracked aircraft. A weapon delivery is considered un-
likely when at least one of the following conditions
occurs:

² the actual dive angle exceeds the planned one by more
than 5±,

² the airspeed goes below 350 KCAS (300 KCAS
above 10000 feet AGL).

The sixth variable is an index representation of the
environmental context of the tracked aircraft, named
location sensitivity index (abbreviated LSI). The LSI
is based on the degree of sensitivity of the spatial
domain in which the tracked aircraft is traveling. High
LSI corresponds to highly sensitive locations, including
vicinities of critical infrastructure such as government
establishments. Low LSI corresponds to locations with
low sensitivity, including regions that are remote or not
habitable.
Figs. 5 to 10 show the membership functions for

the six input variables. Table I shows the symbols and
their corresponding linguistic values for membership
functions (where applicable).
The number of levels for the linguistic values for

membership functions can vary according to the amount

8 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 4, NO. 1 JUNE 2009



Fig. 5. Membership functions of “vz.”

Fig. 6. Membership functions of “vzmag.”

of information available. Labels that are more de-
scriptive can be used for various levels of linguis-
tic values of a variable. An example is to use words
such as fast, slow and constant when labeling dif-
ferent degrees of membership for variables related to
velocity/speed.

3.2.2. Application of Fuzzy Operators
After fuzzification of the inputs, the degree to which

each part of the antecedent is satisfied for each rule is
known. When an antecedent of a given rule has multiple

parts, a fuzzy operator (such as those defined in the
Appendix) has to be applied to the multiple membership
values from fuzzified input variables, in order to obtain
one single truth value. This output value (which lies in
[0,1]) represents the result of that antecedent for that
rule and will be applied to the output function.

3.2.3. Application of Implication Method
For each rule, apply a weight (1 is used in this paper)

to the single truth value given by the antecedent. Then
implement the implication on this weighted value using

APPLICATION OF INTENT INFERENCE FOR AIR DEFENSE AND CONFORMANCE MONITORING 9



Fig. 7. Membership functions of “altitude.”

Fig. 8. Membership function of “dhdg.”

the built-in AND method: min (minimum) function [38,
39]. The implication process yields an output fuzzy set
(assigned by the consequent) which is truncated to the
level of the weighted truth value of the antecedent. The
rules used in the current application are listed in Table II.
They are based on the expected characteristics of the
motion along an offset pop-up delivery profile.
Fig. 11 shows the membership functions for the

output variable (inferred possibility of weapon delivery
by the tracked attack aircraft, abbreviated pos). The

complexity of the rules can be modified according to
the amount of information available.

3.2.4. Aggregation of All Outputs
It is necessary to determine an approach to combine

the rules in a fuzzy inference system in order to reach
a decision/conclusion. The output fuzzy sets of each
rule (obtained via the preceding implication method)
are unified to form a single output fuzzy set, whose
membership function assigns a weighting for every
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Fig. 9. Membership function of “delivery.”

Fig. 10. Membership functions of “LSI.”

output value. The aggregation process inputs are the
truncated output membership functions returned by the
preceding implication process for each rule. The output
of the aggregation process is one fuzzy set for each
output variable. This paper utilizes the built-in OR
method: max (maximum) function [38, 39] for the
aggregation process. Therefore, the final membership
function value is given by the maximum value among
the consequent membership function values for each of
the rules in the fuzzy inference system.

3.2.5. Defuzzification
In the last step of the fuzzy inference process, let F

denote the output fuzzy set of the preceding aggregation
process and Z denote the universe of discourse that F
is in. Let ¹F(¢) be the aggregated output membership
function representing F. Defuzzification of F yields the
output of the fuzzy inference system, which is a single
crisp/non-fuzzy number [15]. The built-in method of
centroid calculation [38, 39] is used in this paper. The
defuzzified output, zCOA, is the center of area under
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TABLE II
Rules for Fuzzy Inference System (Weapon Delivery by Attack Aircraft)

R1. (altitude is VL) ! (pos is VL).
R2. (vz > 0) & (dhdg is NOT occurred) & (LSI is VL) ! (pos is L).
R3. (vz > 0) & (dhdg is NOT occurred) & (LSI is L) ! (pos is L).
R4. (vz > 0) & (dhdg is NOT occurred) & (LSI is M) ! (pos is M).
R5. (vz > 0) & (dhdg is NOT occurred) & (LSI is H) ! (pos is M).
R6. (vz > 0) & (dhdg is NOT occurred) & (LSI is VH) ! (pos is H).
R7. (vz > 0) & (vzmag is L) & (dhdg is occurred) & (LSI is VL) ! (pos is L).
R8. (vz > 0) & (vzmag is L) & (dhdg is occurred) & (LSI is L) ! (pos is M).
R9. (vz > 0) & (vzmag is L) & (dhdg is occurred) & (LSI is M) ! (pos is M).
R10. (vz > 0) & (vzmag is L) & (dhdg is occurred) & (LSI is H) ! (pos is H).
R11. (vz > 0) & (vzmag is L) & (dhdg is occurred) & (LSI is VH) ! (pos is H).
R12. (vz > 0) & (vzmag is VL) & (dhdg is occurred) & (LSI is VL) ! (pos is M).
R13. (vz > 0) & (vzmag is VL) & (dhdg is occurred) & (LSI is L) ! (pos is M).
R14. (vz > 0) & (vzmag is VL) & (dhdg is occurred) & (LSI is M) ! (pos is H).
R15. (vz > 0) & (vzmag is VL) & (dhdg is occurred) & (LSI is H) ! (pos is H).
R16. (vz > 0) & (vzmag is VL) & (dhdg is occurred) & (LSI is VH) ! (pos is VH).
R17. (vz < 0) & (altitude is NOT VL) & (delivery is NOT unlikely) & (LSI is VL) ! (pos is M).
R18. (vz < 0) & (altitude is NOT VL) & (delivery is NOT unlikely) & (LSI is L) ! (pos is H).
R19. (vz < 0) & (altitude is NOT VL) & (delivery is NOT unlikely) & (LSI is M) ! (pos is H).
R20. (vz < 0) & (altitude is NOT VL) & (delivery is NOT unlikely) & (LSI is H) ! (pos is VH).
R21. (vz < 0) & (altitude is NOT VL) & (delivery is NOT unlikely) & (LSI is VH) ! (pos is VH).
R22. (vz < 0) & (delivery is unlikely) & (LSI is VL) ! (pos is L).
R23. (vz < 0) & (delivery is unlikely) & (LSI is L) ! (pos is M).
R24. (vz < 0) & (delivery is unlikely) & (LSI is M) ! (pos is M).
R25. (vz < 0) & (delivery is unlikely) & (LSI is H) ! (pos is H).
R26. (vz < 0) & (delivery is unlikely) & (LSI is VH) ! (pos is H).

¹F(¢), defined by

zCOA =

Z
Z

¹F(z)z dzZ
Z

¹F(z)dz
:

4. CONFORMANCE MONITORING

In conventional air traffic control and air traffic
management operations, the controller creates a visu-
alization of the current and future state dynamics of
all aircraft under his control. For each individual air-
craft, the controller determines if its observed behav-
ior conforms to the expected or planned path [30, 35].
Unintentional deviations can result from noise in the
surveillance systems, atmospheric effects and dynam-
ics of the aircraft navigation systems. Such deviations
can be used as threshold values in the definition of a
“conformance region.” An observed flight profile that
lies within the region would be considered conforming,
while one that lies beyond the region would be con-
sidered non-conforming. In the latter case, knowledge
of the conformance status provides a basis for the air
traffic controller to implement rectifying measures for
the aircraft concerned.
In [31], an analysis framework was developed for

the purpose of investigating issues pertaining to con-
formance monitoring in ATC/ATM. The conformance
monitoring task was put forward as a fault detection
problem. Fault detection and isolation techniques were
used to determine if observable aircraft states were con-

sistent with behavior that was normal (that is, conform-
ing) or abnormal (that is, non-conforming). In other
words, non-conforming behavior of an aircraft was re-
garded as a “fault” to be detected in the ATC/ATM sys-
tem. The proposed framework comprised the following
components:

² conformance basis– basis from which expected state
behaviors of an aircraft are generated and against
which observed behaviors of the subject aircraft are
compared;

² actual system representation– key elements that ex-
ecute instructions that form the communicated con-
formance basis;

² conformance monitoring model– generates expected
state behaviors against which observed state behav-
iors are to be compared (requires appropriate level of
fidelity to carry out effective conformance monitor-
ing);

² conformance monitoring functions– determine at
any time if observed state behaviors are consistent
with expected state behaviors that are output by the
conformance monitoring model.

The framework was implemented for several confor-
mance monitoring tasks in air traffic control [32—34].
Enhancement and/or improvement of techniques for

conformance monitoring is of much interest because of
its importance in proper operation of ATC/ATM sys-
tems. In addition, there is much awareness of poten-
tial hazards to the air transport system posed by non-
conforming aircraft that deviate from expected traffic
patterns.
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Fig. 11. Membership functions of “pos.”

In order to maintain the safety, security and effi-
ciency of ATC/ATM systems, timely detection of non-
conforming behavior in aircraft is essential. Our objec-
tive in this application is to use a fuzzy inference ap-
proach to determine if a tracked aircraft is navigating
within conformance limits.

4.1. Process and Techniques

The proposed procedure (a slight modification of
Procedure 1 in Section 3.2) for inferring the possibility
of non-conformance in the behavior of a tracked aircraft
is stated below.

Procedure 2

1. For an aircraft under surveillance, record its state in-
formation (sensor measurement data) through obser-
vation.

2. Apply the IMM algorithm [22, 24] to update the
track state estimates.

3. Fuzzy inference process
a. Input relevant parameters of the filtered flight
trajectory to a Mamdani-type fuzzy inference sys-
tem generated using the MATLAB Fuzzy Logic
Toolbox [38, 39].

b. Output produced by the FIS is the inferred pos-
sibility of non-conformance in the behavior of the
tracked aircraft.

The system diagram for the proposed approach is
identical to that shown in Fig. 3, omitting the consider-
ation of environmental context. Fig. 4 shows the fuzzy
inference process, with input and output variables re-
placed by those described in Section 4.1.1.

4.1.1. Fuzzy Inference Process
Firstly, fuzzification of the input variables is as de-

scribed in Section 3.2.1. The input variables considered
in the current application are obtained from kinematic
parameters of the filtered flight trajectory. Each of the
input variables, with respect to the tracked aircraft, is
defined below.
The first variable is the deviation of the estimated

position from the planned position (measured in feet,
abbreviated dp). The second variable is the deviation of
the estimated velocity from the planned velocity (mea-
sured in feet per second, abbreviated dv). The third
variable is the deviation of the estimated heading from
the planned heading (measured in radians, abbreviated
dh). Figs. 12 to 14 show the membership functions for
the three input variables. The symbols and their corre-
sponding linguistic values for membership functions are
shown in Table I (where applicable).
Next, rule evaluation (application of the fuzzy oper-

ator in the antecedent, followed by implication from the
antecedent to the consequent) is carried out as stated in
Sections 3.2.2 and 3.2.3. The rules used in the current
application are listed in Table III. They are based on pre-
determined threshold values for state deviations in the
definition of a “conformance region.” Fig. 15 shows the
membership functions for the output variable (inferred
possibility of non-conformance in the behavior of the
tracked aircraft, abbreviated pnc).
As mentioned in Sections 3.2.4 and 3.2.5, the out-

put fuzzy sets (assigned by the consequents) of each
rule are aggregated to form a single output fuzzy set.
Defuzzification of this final output fuzzy set yields the
output of the fuzzy inference system, which is a single
crisp/non-fuzzy number.
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Fig. 12. Membership functions of “dp.”

Fig. 13. Membership functions of “dv.”

5. SIMULATION TESTS AND RESULTS

We carry out simulation tests to verify the plausibil-
ity of the proposed approach. The state estimation com-
ponent of the method is as follows. Consider a three-
dimensional kinetic model described by the discrete-
time dynamic system

Xk+1 = f(Xk,wk) (1)

and the measurement/observation equation

Zk+1 = h(Xk+1,vk+1): (2)

At time step k, the state vector is Xk = [xk,yk,zk, _xk,
_yk, _zk]

T. The process noise vector wk is assumed to be
white Gaussian with covariance matrix Q. The measure-
ment vector is Zk and the measurement noise vector vk
is assumed to be white Gaussian with covariance matrix
R. Scalar matrices are used for Q and R. The sampling
interval is T = 1 (second).
The IMM algorithm used in this section comprises

a constant velocity model and two coordinated turn
models (one left-turn and one right-turn). The transi-
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Fig. 14. Membership functions of “dh.”

Fig. 15. Membership functions of “pnc.”

tion probability matrix and the initial mode probability
are
2
64
0:9 0:05 0:05

0:1 0:8 0:1

0:1 0:1 0:8

3
75 and [0:9 0:05 0:05]

respectively. The choices made for the transition prob-
ability matrix values [2, 29] are based on the following
reasons. The frequency of mode switches for a tracked

target is expected to be low, compared to that of it stay-
ing in the same mode (that is, remaining in the same
type of motion). The probability of a switch from the
current mode to another is expected to be the same for
each of the remaining modes. The expected sojourn time
of the system in the constant velocity mode is likely to
be higher than in the other modes. In addition, the two
coordinated turn models only differ in their turning di-
rections, so the transition probabilities for them are set
in the same way.
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TABLE III
Rules for Fuzzy Inference System

(Conformance Monitoring)

R1. (dp is L) & (dv is L) & (dh is L) ! (pnc is L)
R2. (dp is L) & (dv is L) & (dh is M) ! (pnc is M)
R3. (dp is L) & (dv is L) & (dh is H) ! (pnc is M)
R4. (dp is L) & (dv is M) & (dh is L) ! (pnc is M)
R5. (dp is L) & (dv is M) & (dh is M) ! (pnc is M)
R6. (dp is L) & (dv is M) & (dh is H) ! (pnc is H)
R7. (dp is L) & (dv is H) & (dh is L) ! (pnc is M)
R8. (dp is L) & (dv is H) & (dh is M) ! (pnc is H)
R9. (dp is L) & (dv is H) & (dh is H) ! (pnc is VH)
R10. (dp is M) & (dv is L) & (dh is L) ! (pnc is M)
R11. (dp is M) & (dv is L) & (dh is M) ! (pnc is M)
R12. (dp is M) & (dv is L) & (dh is H) ! (pnc is H)
R13. (dp is M) & (dv is M) & (dh is L) ! (pnc is M)
R14. (dp is M) & (dv is M) & (dh is M) ! (pnc is H)
R15. (dp is M) & (dv is M) & (dh is H) ! (pnc is VH)
R16. (dp is M) & (dv is H) & (dh is L) ! (pnc is M)
R17. (dp is M) & (dv is H) & (dh is M) ! (pnc is H)
R18. (dp is M) & (dv is H) & (dh is H) ! (pnc is VH)
R19. (dp is H) & (dv is L) & (dh is L) ! (pnc is M)
R20. (dp is H) & (dv is L) & (dh is M) ! (pnc is H)
R21. (dp is H) & (dv is L) & (dh is H) ! (pnc is VH)
R22. (dp is H) & (dv is M) & (dh is L) ! (pnc is M)
R23. (dp is H) & (dv is M) & (dh is M) ! (pnc is H)
R24. (dp is H) & (dv is M) & (dh is H) ! (pnc is VH)
R25. (dp is H) & (dv is H) & (dh is L) ! (pnc is H)
R26. (dp is H) & (dv is H) & (dh is M) ! (pnc is VH)
R27. (dp is H) & (dv is H) & (dh is H) ! (pnc is VH)

5.1. Weapon Delivery by Attack Aircraft

We use the simulation results for the following test
examples to evaluate the effectiveness of the proposed
method.

EXAMPLE 1. Aircraft in surveillance region of low to
high LSI.

We use computation formulas in [40] to determine pop-
up delivery parameters. Simulation is carried out on 100
different flight trajectories which are generated using
various pop-up delivery parameter values.
For each test, as described in Procedure 1 (see

Section 3.2), the IMM algorithm is applied to update
the state vectors obtained from each flight trajectory.
In the filter used, the discrete-time dynamic system of
each model is of the form represented by Equations 1
and 2. Next, for each state estimate, determine the
environmental context and the corresponding location
sensitivity index.
Let A denote the xy-plane (horizontal plane) por-

tion of the entire surveillance region, with the naviga-
tion convention (azimuth = 0 along the positive y-axis).
Consider the partition

A=
2[
i=1

8[
j=1

Aij

where
A1j is the jth octant with x

2 + y2 < B22 , j = 1, : : : ,8,
A2j is the jth octant with B

2
2 · x2 + y2 < B21 ,

Fig. 16. Partition of surveillance region (xy-plane).

j = 1, : : : ,8, and bounds B1 and B2 are given positive
constants.
The environmental contexts of the partition subsets

of A are predetermined and can vary. Let M be a given
matrix corresponding to the partition of A, where the
LSI for each partition subset Aij is M(i,j), i= 1,2,
j = 1, : : : ,8. Fig. 16 shows the layout for A, with each
partition subset denoted according to its subscript by
(i,j), i= 1,2, j = 1, : : : ,8. For each state estimate Xk of
the flight trajectory obtained from the filtering process,
use the position components xk and yk to identify the
partition subset, Ai(k),j(k), that Xk is in and the corre-
sponding LSI, M(i(k),j(k)). The relevant parameters of
the flight trajectory obtained from the filtering process
and the LSI obtained for the track state estimates are
input to a Mamdani-type fuzzy inference system gener-
ated using the MATLAB Fuzzy Logic Toolbox [38, 39].
The output produced by the fuzzy inference system is
the inferred possibility of the tracked aircraft carrying
out a weapon delivery. In this application, we propose
to classify a tracked aircraft as having adversarial intent
when the fuzzy inference system output exceeds 0.85.
Fig. 17 shows typical results obtained at different

phases of the filtered flight trajectory (lower graph), in
a scenario where the tracked aircraft travels from re-
gions of low to high sensitivity (and LSI). In the up-
per graph, the solid curve shows the FIS output values
(denoted by P henceforth, in this and subsequent test
examples) obtained with only the flight profile consid-
ered during simulation. The dash-dot curve shows the
FIS output values (denoted by P 0 henceforth, in this and
subsequent test examples) obtained via simulation with
both the flight profile and the environmental context of
the tracked aircraft considered. Table IV shows P and
P 0 corresponding to the five specific points (defined in
Section 3) on the filtered flight trajectory.
It can be observed that P increases as time passes

during the tracking process. The surge in P at scan 19
is triggered by motion that is characterized/interpreted
by the FIS as the onset of transition from the climb-
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Fig. 17. Example 1–Fuzzy inference system output.

TABLE IV
Example 1–Fuzzy Inference System Output

(to 3 decimal places)

Position on
Flight Profile PUP PDP Apex TP RP

Without LSI 0.105 0.350 0.728 0.816 0.832
With LSI 0.105 0.329 0.838 0.839 0.848

ing to the diving portion of a pop-up delivery. Thus,
the FIS returns a significant increase in P, for warning
purposes. P attains its peak around (and beyond) the
apex. P remains high in the later part of the tracking
process. This observation provides verification for the
feasibility of our proposed approach for adversarial in-
tent inference, based on the assumption that the aircraft
is approaching its weapon release point.
In regions of low (respectively, high) sensitivity,

low (respectively, high) corresponding LSI brings about
P 0 < P (respectively, P 0 > P). In the latter situation,
the higher P 0 is likely to be useful in raising military
defenders’ alert against a potential adversary.
It appears from the simulation results that a tracked

aircraft is very likely to carry out a weapon delivery
when P (or P 0) exceeds 0.85. It is probably appropri-
ate for military defenders to raise the level of vigilance
when P (or P 0) exceeds 0.7. This would allow them to
have more time to devise and take pre-emptive action
against the potential adversary. Fig. 17 shows that P 0

exceeds 0.7 earlier than P. This provides justification
that taking into consideration the environmental context
of the tracked aircraft is useful for improving the effi-
ciency of our approach for adversarial intent inference.

EXAMPLE 2. Aircraft in surveillance region of low
LSI.

This example is analogous to Example 1, with the entire
surveillance region being of low LSI. Typical simulation
results obtained are shown in Fig. 18.
The shapes of the plotted curves are similar to the

corresponding ones in Fig. 17. During the early stages
of tracking, P and P 0 are low and almost identical.
As in Example 1, there is a surge in P at scan 21,
which is triggered by motion that is interpreted by the
FIS as the onset of transition from climbing to diving
portion of a pop-up delivery. Towards the later part of
the tracking process, P exceeds 0.7, which is reasonably
high. On the other hand, P 0 < P and remains below 0.6,
which is moderate. In addition, P does not exceed 0.75,
which is below the proposed threshold value of 0.85 for
classifying an aircraft as having adversarial intent.
Compared to Example 1, there appears to be less

critical need/urgency in taking action against the tracked
aircraft. This is due to the low sensitivity in the surveil-
lance region, which leads to relatively lower P 0 values
when corresponding P values become high. However, it
would probably be advisable for the defenders to main-
tain their vigilance against such an aircraft, whose flight
profile closely resembles that of a pop-up delivery.

EXAMPLE 3. Aircraft cruising at high altitude.

We consider an aircraft that cruises at high altitude
throughout the approach. Two possible scenarios are
described as follows.

EXAMPLE 3a. Aircraft cruising in surveillance region
of low to high LSI.
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Fig. 18. Example 2–Fuzzy inference system output.

Fig. 19. Example 3a–Fuzzy inference system output.

It can be observed from Fig. 19 that a relatively high
value of P > 0:7 is reached during tracking. However,
there is no further flight motion that indicates an im-
pending attack, which would have caused an increase
in P. In this situation, P 0 > P, with P 0 2 (0:8,0:85) at-
tained. In view of the high values for P and P 0, it is
very likely for the defenders to be on high alert against
possible attack by the aircraft.

EXAMPLE 3b. Aircraft cruising in surveillance region
of low LSI.

This example is analogous to Example 3a, with the en-
tire surveillance region being of low LSI. It is appar-
ent from Fig. 20 that the values of P obtained are al-
most identical to those obtained in Example 3a. Due
to the low LSI of the surveillance region, P 0 remains
at a lower level of about 0.5 throughout the approach.
It appears from the simulation results that there is no
immediate need to raise the defenders’ alert against the
aircraft.

EXAMPLE 4. Aircraft unlikely to launch an attack.
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Fig. 20. Example 3b–Fuzzy inference system output.

Fig. 21. Example 4–Fuzzy inference system output.

Fig. 21 shows an instance of results obtained for the
simulated flight trajectory of an aircraft which is un-
likely to carry out a weapon delivery, such as one that
is performing aerobatics. It can be seen that P, as well as
P 0, is always below the proposed threshold value of 0.85
for classifying an aircraft as having adversarial intent.

5.2. Conformance Monitoring

Consider the planned flight trajectory shown in
Fig. 22. Simulation tests are carried out on 100 flight

profiles generated using different combinations of flight
parameters (based on existing computation formulas
and constraints). For each test, Procedure 2 (see Sec-
tion 4.1) is carried out to obtain the inferred pos-
sibility of non-conformance in the behavior of the
tracked aircraft. We categorize aircraft behavior into
three types, namely, conforming, non-conforming and
ambiguous [31], in our discussion. Fig. 23 depicts typi-
cal simulation results obtained.
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Fig. 22. Planned flight trajectory.

For the conforming case, FIS output values (de-
noted by P00 henceforth) remain consistently moder-
ate throughout the tracking process. The correspond-
ing deviations from planed states (namely, position, ve-
locity and heading) are relatively small. For the non-
conforming case, P 00 rises rapidly after an initial period
of low to moderate values during tracking. The surge
in P 00 is due to significant increases in state deviations.
The third type of aircraft behavior is considered am-
biguous due to indefiniteness in the behavioral traits
represented by P 00. In this case, there exist instances
when P 00 increases to become sufficiently large to indi-

cate non-conformance, where corresponding state devi-
ations manifest aberrant behavior in aircraft maneuver.
However, P 00 subsequently decreases to the extent that
conformance is signified, where corresponding state de-
viations provide evidence of a shift towards the right
direction of travel.
It appears from the simulation results that aircraft

behavior can be deemed non-conforming when P 00 >
0:85. It is suggested that alert against non-conformance
should be raised when P00 > 0:7. This would enable
ATC/ATM system controllers to provide the pilot with
early warning against navigating beyond safety limits.
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Fig. 23. Fuzzy inference system output (conformance monitoring).

Consequently, the pilot would likely be able to execute
necessary maneuvers to steer back towards the planned
trajectory with less delay.

6. APPROACH BY MORE THAN ONE AIRCRAFT

Our proposed method deals with intent inference for
a single aircraft. The problem on handling an approach
by multiple aircraft in military surveillance and air
traffic control/management would be more complex
and would require much additional consideration. Some
issues associated with this problem are discussed below.

6.1. Flight Formation

The flight approach can be in individual form or in
a formation. Some examples of flight formations em-

ployed by tactical combat aircraft are briefly described
in this section [40].

6.1.1. Two-ship Formation
In a line abreast formation, the position of the wing-

man2 relative to the flight leader is 0± to 20± aft, 4000 to
12000 feet spacing with altitude separation. A vertical
stack of 2000 to 6000 feet is used, when applicable, to
minimize the chance of simultaneous detection by an
opponent.
For a fighting wing formation, the wingman is given

a maneuvering cone from 30± to 70± aft of line abreast
and lateral spacing between 500 and 3000 feet. This

2Wingman: in a formation of aircraft, the pilot who flies behind and
to the side of the leader.
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formation is employed when maximum maneuvering
potential is desired.

6.1.2. Four-ship Formation
The four-ship formation is employed under the con-

trol of one flight leader. It is employed as a single entity
as long as it is not forced to separate into a lead element
(flight leader and his wingman) and a second/trailing
element (second leader and his wingman).
In a box formation, the two-ship elements use ba-

sic line abreast maneuvering and principles concern-
ing lookout responsibilities. Depending on terrain and
weather, the trailing element takes 1.5 to 3 nautical miles
separation from the lead element. The spacing serves the
purpose of maximizing separation to avoid easy visual
detection of the entire flight formation. maneuvers are
initiated by the element leaders in this formation.
For a fluid four formation, the element leaders main-

tain line abreast formation, while their wingmen assume
fighting wing. The flight leader is at the front of the for-
mation, with his wingman to his rear left. The second
leader is to the rear right of the flight leader, while his
wingman assume fighting wing. The assembly of four
of these formations forms a squadron formation.
In a spread four formation, the element leaders main-

tain the same spacing as for the fluid four formation.
The wingmen position themselves 0± to 30± to the rear
of their respective element leaders at 6000 to 9000 feet
spread. The increase in lateral spacing for wingmen fa-
cilitates maneuvering. The elements need not always be
line abreast. There may be instances when are briefly
in trail. Spread formation makes it difficult to visually
acquire the entire flight formation.
A three-ship contingency formation can be consid-

ered as an alternative for a four-ship formation mission
in some occasions. It is obtained from the four-ship for-
mation concerned by having an appropriate flight mem-
ber fall out from the original formation.

6.1.3. Echelon Formation
The flight members are arranged diagonally in an

echelon formation. Each member is positioned to the
rear right, or to the rear left, of the member ahead. These
two types of formations are known as a right echelon
and a left echelon respectively.

6.2. Multiple Target Tracking and Identity
Management

The problem of dealing with approach by more
than one aircraft requires the employment of multiple
target tracking techniques [4—6, 13, 14, 26, 28] for
the state estimation component of our proposed intent
inference method. For each tracked aircraft, information
based on the estimated kinematic states need to be taken
into consideration for processing by a fuzzy inference
system, in order to derive the pilot intent.

As mentioned before, the amount of computational
load/time is a critical factor for the two intent inference
problems discussed here. Hence, it is desirable to select
multiple target tracking algorithms with modest time
complexities.
Another point of concern is the detection and identi-

fication of the targets under surveillance. It may be dif-
ficult to distinguish the targets from one another during
tracking when there is close proximity and/or interac-
tion among them, such as in the case of a tactical aircraft
formation.
To address the aforementioned issues, the multiple-

target tracking and identity management (MTIM) al-
gorithm developed in [14] could be considered. The
MTIM algorithm is constituted of the following com-
ponents:

² data association–uses a computationally efficient al-
gorithm based on the joint probabilistic data associ-
ation algorithm [24], in which measurement data is
associated with targets via the use of target kinematic
information (position and velocity);

² tracking/hybrid state estimation–uses residual-mean
IMM algorithm based on multiple aircraft dynamics
models; and

² identity management–uses an algorithm with the
ability to keep track of target identities via the use
of local attribute information about them (either ex-
plicitly available from sensors or inferred from a tech-
nique based on the multiple hypothesis tracking algo-
rithm [24]).

The applicability of the MTIM algorithm for incorpo-
ration into the intent inference method proposed in this
paper could be investigated as part of our future re-
search.

7. SUMMARY

In this paper, we have presented an approach for
intent inference, which concerns the use of available
knowledge on the preceding activities of a target of
interest to predict its future action. The approach is
based on the analysis of aircraft flight profiles. The
method is implemented for two applications.
Firstly, it has been shown that it is possible to in-

fer the intent of an attack aircraft, particularly on its
weapon delivery. The proposed approach is extended
to consider the environmental context of the tracked
aircraft when executing the inference process. Simula-
tion is carried out on four test examples with different
scenarios to evaluate the performance of the method.
The results verify the feasibility of the method and its
ability to provide timely inference. It is also justifiable
to consider the environmental context, which is useful
in raising military defenders’ level of vigilance early
against potential adversaries, hence allowing more time
to prepare for pre-emptive action.

22 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 4, NO. 1 JUNE 2009



In the second application, experimental results show
that the proposed solution has much potential in being a
useful tool for conformance monitoring in ATC/ATM.
It can be used to assist ATC/ATM system controllers
in determining whether aircraft are deviating from or
adhering to designated courses of travel. As a result,
corrective/remedial actions can be taken once deviant
behavior is detected.
Our proposed intent inference method has only con-

sidered an approach by a single aircraft. We briefly dis-
cuss the extension of the proposed method to deal with
an approach by multiple aircraft, such as that by a flight
formation. Some of the main issues concerned include
multiple target tracking and management of the target
identities. These topics are of interest in our future re-
search.

APPENDIX. FUZZY LOGIC

Generally, vagueness and imprecision exist in data/
information concerning real-world problems. Fuzzy
logic [15, 38], an extension of Boolean logic, was devel-
oped to deal with uncertainties associated with problems
from practical applications.
In classical set theory, a set has a crisp (sharp and

clear) boundary and it completely includes or excludes
an arbitrarily given element. On the other hand, in fuzzy
set theory, boundaries between sets of values need not
be distinctly defined. A fuzzy set expresses the degree
to which an element belongs to a set, where an element
can have gradual transition in status from “belongs to a
set” to “does not belong to a set.”
Let X be a space of objects and x be an arbitrary

element of X. For a classical set C, C � X, define a
characteristic function f : X 7! f0,1g by

f(x) =
½
0, x =2 C,
1, x 2 C:

Then C can be represented by a set of ordered pairs,

C0 = f(x,f(x)) j x 2 Xg: (3)

DEFINITION 1 Fuzzy sets and membership functions.
Let X be a space of objects which are generically
denoted by x. A fuzzy set F in X is defined as a set
of ordered pairs

F = f(x,¹F(x)) j x 2 Xg (4)

where ¹F : X 7! Y is known as the membership function
for F. The membership function maps each element
x of the input space (or universe of discourse) X to a
degree of membership (also known as membership value
or membership grade) ¹F(x) in the output space (or
membership space) Y. For each x 2 X, ¹F(x) 2 [0,1].
REMARK The definition of a fuzzy set is an extension
of the definition of a classical set. In Definition 1, if
Y = f0,1g, then F is reduced to a classical set and ¹F(¢)
is the characteristic function of F.

Fuzzy logic is a superset of standard Boolean logic.
There exist fuzzy logical operations for fuzzy sets that
correspond to Boolean logical operations for classical
sets. In the case when membership function values are
restricted to the set f0,1g, fuzzy logical operations and
Boolean logical operations are equivalent.

DEFINITION 2 Fuzzy complement.
A fuzzy complement operator is a continuous function
N : [0,1]! [0,1] that meets the basic axiomatic require-
ments:

N(0) = 1 and N(1) = 0 (boundary)

N(a)¸N(b) if a· b (monotonicity):
(5)

An optional requirement imposes involution on a fuzzy
complement:

N(N(a)) = a (involution) (6)

which guarantees that the double complement of a fuzzy
set is still the set itself.
The complement of a fuzzy set F is the fuzzy set F̄

(or :F, NOT F), whose membership function is related
to that of F by

¹F̄(x) =N(¹F(x)) (7)

with the fuzzy complement operator commonly defined
by N(a) = 1¡ a.
DEFINITION 3 T-norm.
A T-norm operator is a binary function T : [0,1]£
[0,1]! [0,1] that satisfies:

T(0,0) = 0, T(a,1) = T(1,a) = a (boundary)

T(a,b)· T(c,d) if a· c and b · d (monotonicity)

T(a,b) = T(b,a) (commutativity)

T(a,T(b,c)) = T(T(a,b),c) (associativity):

(8)

DEFINITION 4 T-conorm (or S-norm).
A T-conorm (or S-norm) operator is a binary function
S : [0,1]£ [0,1]! [0,1] satisfying:

S(1,1) = 1, S(0,a) = S(a,0) = a (boundary)

S(a,b)· S(c,d) if a· c and b · d (monotonicity)

S(a,b) = S(b,a) (commutativity)

S(a,S(b,c)) = S(S(a,b),c) (associativity):

(9)

DEFINITION 5 Fuzzy intersection (conjunction).
The intersection of two fuzzy sets F1 and F2 is a fuzzy
set F, written as F = F1 \F2 or F = F1 AND F2. F is
specified in general by a T-norm operator T : [0,1]£
[0,1]! [0,1], which aggregates the membership values
of F1 and F2 as

¹F(x) = T(¹F1 (x),¹F2 (x)): (10)

A frequently used T-norm operator is defined by T(a,b)
= min(a,b), the minimum of fa,bg (also denoted by
a^b).
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DEFINITION 6 Fuzzy union (disjunction).
The union of two fuzzy sets F1 and F2 is a fuzzy set F,
written as F = F1 [F2 or F = F1 OR F2. F is specified in
general by a T-conorm (or S-norm) operator S : [0,1]£
[0,1]! [0,1], which aggregates the membership values
of F1 and F2 as

¹F(x) = S(¹F1 (x),¹F2 (x)): (11)

A frequently used S-norm operator is defined by S(a,b)
= max(a,b), the maximum of fa,bg (also denoted by
a_b).
For an input vector x 2 X, a fuzzy inference process

utilizes a set of fuzzy rules to interpret the values of
x and assign appropriate values to an output vector
y 2 Y. Each rule is of the form “if S1 then S2,” or
equivalently, “S1! S2.” The if-part of the rule “S1” is
called the antecedent, while the then-part of the rule “S2”
is called the consequent. Each rule outputs a fuzzy set.
Aggregation of the output fuzzy sets for the rules yields
a single output fuzzy set. Defuzzification is carried
out on the resultant set to obtain the final desired
conclusion, in the form of a single number.
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On Fusion of Multiple
Objectives for UAV Search
& Track Path Optimization

VESSELIN P. JILKOV

X. RONG LI

This paper addresses the problem of designing a fused scalar

objective function for autonomous surveillance–target search and

tracking (S&T)–by unmanned aerial vehicles (UAVs). A typical

S&T mission includes multiple, most often inherently conflicting,

objectives such as detection, survival, and tracking. A common

approach to coping with this issue is to optimize a fused scalar

objective–a convex combination (weighted sum) of the individual

objectives. In practice, determining the fusion weights of a mul-

tiobjective combination is, more or less, a guesswork whose suc-

cess is highly dependent on the designer’s assessment and intuition.

An optimal (trade-off) point in the performance space is hard to

come up with by varying the weights of the individual objectives.

In this paper the problem of designing optimal fusion weights is

treated more systematically in a rigorous multiobjective optimiza-

tion (MOO) framework. The approach is based on finding a set of

optimal points (Pareto front) in the performance space and solving

the inverse problem–determine the fusion weights corresponding

to a chosen optimal performance point. The implementation is done

through the known normal boundary intersection (NBI) numerical

method for computing the Pareto front. The use of the proposed

methodology is illustrated by several case studies of typical S&T

scenarios.
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1. INTRODUCTION

Due to the significant advancement of the unmanned
vehicle (UV) technologies in recent years, a great deal
of research effort has been devoted to the problem of
path optimization (planning and dynamic replanning)
of a single or multiple UVs in uncertain and possibly
hostile environments. While various UV mission sce-
narios have been considered in the literature, this paper
is focused on UAV surveillance missions which typi-
cally include search (detection and localization) of new
targets and possibly tracking of detected targets. The
techniques considered, however, can be easily applied
to other types of missions as well.
Most of the literature on autonomous UAV surveil-

lance deals with search oriented systems, e.g., [8], [7],
[4], [15], [14]. Multiple-UAV tracking has been ad-
dressed in [9], [12], and tracking combined with de-
tection has been dealt with in [10], [11]. In all of its
variations an S&T mission includes multiple objectives,
often conflicting to each other. At a high level these
objectives can be grouped into several different types
including, but not limited to, target detection, target
tracking (classification, recognition), UAV survivability,
UAV cooperation, UAV efficiency, and possibly others
[7]. Quantifying various objectives and defining a fused
scalar mission objective function to be optimized dur-
ing a mission is a crucial issue in the design of S&T
systems. Commonly, search-only systems use mission
objective functions made up of, most often probability-
based, gain/loss functions–e.g., cumulative detection
probability, survival probability, etc. [8], [7], [4], [15],
[14]. The tracking oriented systems of [9], [12] use in-
formation gain based mission objectives, in terms of the
Fisher information matrix (FIM) of the tracking filters,
and [10], [11] further include the detection objective
measured also in terms of FIM. This makes it possible to
use standard estimation fusion techniques [1] to fuse the
detection and estimation objectives into a scalar objec-
tive. However, expressing all objectives through FIMs is
difficult to extend to more complicated practical scenar-
ios, e.g., to include efficiency (UAV flight regime cost)
or other objectives.
Achieving the mission goal is inherently a multi-

objective optimization (MOO) problem and in this pa-
per the problem of designing a mission objective func-
tion is treated as such–within the framework of the
MOO methodology. There are two issues associated
with the MOO formulation. First, due to the conflict
among the individual objectives the solution in general
is not unique. There is a set of optimal points (referred
to as Pareto front) such that, loosely speaking, each
optimal point corresponds to a certain trade-off among
the values of the objective functions. A decision has to
be made as to which Pareto optimal point provides the
“best trade-off” among all the alternatives. The second
issue is implementational–solving an MOO problem
by the known computational methods is usually asso-
ciated with solving a great number of single nonlinear
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optimization problems and thus is not feasible in “real-
time” for an S&T mission.
A natural approach that circumvents these issues is

to optimize a weighted sum (WS)–convex combination
–of the individual objectives as a fused scalar mission
objective. Any unique solution of a WS optimization
problem is Pareto optimal, and for each Pareto opti-
mal point there exists a set of weights such that solving
the WS problem yields this point if the MOO problem
is convex. These properties as well as its simplicity is
what makes the WS objective attractive for online im-
plementation in S&T problems. It should be noted that
WS objectives have been used in a number of algo-
rithms for cooperative UAV target search systems [8],
[7], [15]. In the sequel we also assume that the mis-
sion objective function used for online optimization,
referred to as a fused mission objective, is a WS of
the individual mission objectives. Our focus is on the
problem of determining the fusion weights in an op-
timal manner when a WS fused mission objective is
designed.
Implementing a WS as a fused mission objective for

online UAV flight path optimization presumes knowl-
edge of the fusion weights and its effectiveness de-
pends heavily on these weights. In practice, their spec-
ification is done a priori, based on subjective consid-
erations about, e.g, the importance of the individual
objective functions. It is more or less a guesswork
whose success is highly dependent on the designer’s
assessment and intuition, and other uncertain factors.
For example, [8], [7], [15] state that priorities to the
specific individual objectives can be achieved by “ad-
justing” the values of the weights. However, to make
such an adjustment optimally is a nontrivial task for
the designer. The problem is that the choice of the
weights based on importance or priorities is not made
in the feasible objective space–the real performance
space. For complicated nonlinear and conflicting ob-
jective functions (such as in an S&T mission), a “rea-
sonable choice” of importance weights may lead to
a rather unacceptable trade-off (Pareto optimal point)
in the performance space. At the same time accept-
able trade-offs may be available for other, non-obvious
choices of fusion weights. In addition a trade-off point
in the performance space is hard to come up with by
simply varying the weights of the individual objec-
tives.
We argue that a more systematic and rigorous

way for designing the fusion coefficients that achieve
the “best trade-off” among the possible alternatives is
needed. Our approach is based on finding a set of
optimal points (Pareto front) and solving the inverse
problem–determine the fusion weights corresponding
to a chosen optimal performance point. The implemen-
tation is done through the normal boundary intersection
(NBI) numerical method of [3] for computing the Pareto
front.
The underlying idea for application of our method-

ology is to design the weights of the fused criterion for

path optimization such that an acceptable trade-off is
achieved by this criterion when applied online to real-
life scenarios. This can be done by a comprehensive
trade-off analysis through Monte Carlo simulation of an
ensemble of typical S&T mission scenarios with differ-
ent detection maps, threat models, efficiency functions,
etc. Overall, the approach proposed in this paper is in-
tended to facilitate the design of fused mission objective
functions through more insightful determination of the
fusion coefficients of the individual objectives.
The mathematical formulation of the problem is

given in Section 2. Section 3 provides some necessary
background information about MOO and describes an
algorithmic solution. Results of several case studies,
illustrating the use of the proposed methodology, are
presented in Section 4. Conclusions are provided in
Section 5.

2. PROBLEM FORMULATION

We consider a team of UAVs engaged in searching
a given surveillance region for new (undetected) tar-
gets and tracking of detected targets in an uncertain,
dynamic, and risky environment. A UAV (sensor suite,
or just sensor for short) is denoted by s, s= 1,2, : : : ,Ns;
a (detected) target that is being tracked is denoted by
t, t= 1,2, : : : ,Nt. The 2D surveillance region is parti-
tioned into Nn cells numbered by n= 1,2, : : : ,Nn and
pn = (xn,yn) denotes the center location of the nth cell
in Cartesian coordinates. n will also stand for indexing
a new (undetected) target at position pn = (xn,yn), i.e.,
in cell n.
Next we present modeling of several objective func-

tions involved in typical UAV S&T mission scenarios,
and then we discuss the multiple objectives of a single
UAV.

2.1. Detection

For a sensor s, a detection event is modeled through
the detection probability ¼sD = ¼D(ps,p), where ps =
(xs,ys) and p= (x,y) denote sensor and target locations,
respectively. In general ¼sD is a function of the sensor
type and parameters, target type and parameters, sensor-
target geometry, environment, etc. Here for simplicity
we consider the dependence of ¼sD only on the distance
between ps and p. For example, for a ground mov-
ing target indicator (GMTI) sensor a typical detection
function ¼sD = ¼D(ps,p) = ¼D(kps¡pk) with kps¡pk=p
(xs¡ x)2 + (ys¡ y)2, similar to the one used in [10],

is shown in Fig. 1.
The probability of detecting a target t, known to

exist, by sensor s is ¼s,tD = ¼D(ps,pt) = ¼D(kps¡ptk). If
a new target n exists at a given location pn = (xn,yn)
with probability ¼E(pn), then the probability of detection
by sensor s is ¼s,nD = ¼D(kps¡pnk)¼E(pn). The target
existence1 probabilities f¼E(pn)gNnn=1 are assumed known

1More precisely, it should be target perceivability [5], which is, how-
ever, beyond the scope of this paper.
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Fig. 1. Detection and survival probabilities.

to the UAVs during the S&T mission via a map of
the expected distribution of targets over the surveillance
region.

2.2. Survivability

It is assumed that each target (either new or being
tracked) poses a threat to a UAV. The event that a sensor
s will survive a fire from a given threat � located at
p� is modeled through the survival probability function

2

¼S(kps¡p�k). The probability of surviving the threat
from an existing target t is ¼s,tS = ¼S(kps¡ptk). If a threat
(new target n) exists at location pn with probability
¼E(pn) then the probability of survival is

¼s,nS = 1¡ (1¡¼S(kps¡pnk))¼E(pn): (1)

A survival probability function, assumed in the simula-
tion, is shown in Fig. 1.

2.3. Tracking

For simplicity we assume that a Kalman filter is
used for tracking. The tracking objective of a UAV s
that tracks a target t can be quantified through the filter
information matrix (IM) I = P¡1 where P is the filter
covariance matrix.3 We adopt ln jIj as a scalar measure4
of I, and the following approximate relationship for

2For simplicity, collision with other UAVs is ignored here but it can
be easily modeled in a similar manner.
3The superscript indices s, t and the subscript time index k are dropped
here to simplify notation.
4An alternative scalar measure that can be used is tr(I).

updating the expected IM [10]

I = Ī+¼S¼DH
0R¡1H (2)

where Ī is the predicted IM, H is the measurement
matrix, and R is the measurement error covariance.
Thus the expected tracking information gain (TIG) °T
is measured by

°T = ln jIj ¡ ln jĪj= ln jĪ+¼S¼DH 0R¡1Hj ¡ ln jĪj:
(3)

The expected TIG for sensor target pair (s, t) is a func-
tion of the distance kps¡ptk, i.e., °s,tT = °T(kps¡ptk)
through ¼s,tS = ¼S(kps¡ptk), ¼s,tD = ¼D(kps¡ptk), and
R = R(kps¡ptk) since the observation error depends on
the distance. The tracking objective of s is to maximize
°T(kps¡ptk) with respect to ps.

2.4. Other Objectives/Constraints

There are a number of other relevant objectives, such
as cooperation, engagement, efficiency, whose detailed
analysis is not needed for the description of our ap-
proach. The reader is referred to, e.g., [7], [15] for a
formulation and a more detailed analysis of other ob-
jectives. We limit our consideration here to the above
three objectives since they are the most significant for
an S&T mission but our approach is not limited to these
objectives–it allows other objectives to be easily incor-
porated.

2.5. Fusion of Multiple Objectives

We explain the approach and formulate the problem
for a generic single UAV S&T mission scenario since
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the mission objectives of a group of UAVs strongly de-
pend on many other factors such as the overall system
network architecture (distributed or centralized), co-
operation strategy, communication capabilities, whose
consideration is beyond the scope of this paper. The ap-
proach is, however, directly applicable to such multiple
UAV scenarios as well.
Denote by s the sensor under consideration, by

n1,n2, : : : ,nRs the cells that can be reached by the sensor
in the next time step, and by t1, t2, : : : , tTs the targets that
are being tracked by s. Let

¼sD = [¼
s,n1
D , : : : ,¼s,nRsD ]0

¼sS = [¼
s,n1
S , : : : ,¼s,nRsS ,¼s,t1S , : : : ,¼

s,tTs
S ]0

°sT = [°
s,t1
T ,°s,t2T , : : : ,°s,tTsT ]0

be the vectors of the detection, survival and tracking
objective functions of s.
Given target locations pni , i= 1, : : :Rs and ptj , j =

1, : : :Ts, the immediate (one time-step ahead) goal of s
can be rigorously formulated as the following MOO
problem

max
ps

2
64
¼sD(ps)

¼sS(ps)

°sT(ps)

3
75 (4)

where ps is the sensor position at the next time.
The dimension of the vector problem (4) can be sig-

nificantly reduced if the threats are assumed indepen-
dent. In this case the vector objective ¼sS(ps) can be
replaced by the scalar objective

¼sS(ps) =
RsY
i=1

¼s,niS

TsY
j=1

¼
s,tj
S :

As motivated in Section 1, in order to avoid the prob-
lems associated with a complete mathematical solution
of (4) for online implementation we assume that the
mission objective for online optimization is formulated
as the following WS single objective optimization prob-
lem

max
ps
[w0D¼

s
D(ps)+w

0
S¼

s
S(ps) +w

0
T°

s
T(ps)] (5)

where w= [w0D,w
0
S,w

0
T]
0 is a fusion weight vector with

components wi ¸ 0 and
P

i wi = 1.
We aim at finding numerically (off line) the Pareto

front for problem (4) and for each point (¼sD(p
�
s ),¼

s
S(p

�
s ),

°sT(p
�
s )) on the front determining the fusion weight vec-

tor w� such that the solution of (5) is p�s , where w
� is the

“best” fused combination of objectives given the trade-
off point in the performance space (¼sD(p

�
s ),¼

s
S(p

�
s ),

°sT(p
�
s )).

3. SOLUTION METHODOLOGY

3.1. MOO Background Concepts

Here we provide brief information about some basic
concepts of the MOO needed later. For details the reader
is referred to [6], [13].

A multiobjective optimization problem in mathemat-
ical notation is posed as follows

minimize f(x) =

2
66664

f1(x)

f2(x)
...

fM(x)

3
77775 , M ¸ 2

subject to x 2 C = fx : h(x) = 0,g(x)· 0g

(6)

where fi :R
n!R, i= 1, : : : ,M, are the objective func-

tions, x is the decision variable vector, C is the feasible
set, and h(x) and g(x) are the constraint functions. Usu-
ally f(x), g(x), and h(x) are assumed twice continuously
differentiable. The image of the feasible set f(C)� RM
is referred to as feasible objective set, which is a subset
of the objective space RM .
In general, no single x exists that minimizes every

fi simultaneously. A common concept of optimality for
MOO problems is that of Pareto optimality. A decision
vector x� 2 C is Pareto optimal (PO) if there does not
exist another decision vector x 2 C such that fi(x)·
fi(x

�) for all i= 1, : : : ,M and fj(x)< fj(x
�) for at least

one index j. An objective vector y� = f(x�) is PO if its
corresponding decision vector x� is PO. Simply put,
an objective vector is PO if any attempt to improve a
component (individual objective) will deteriorate at least
an other component (individual objective). The set of all
PO objective vectors is referred to as the Pareto optimal
set, or Pareto front (PF). The complete mathematical
solution is to find the PF.
There are usually infinitely many PO solutions. In

practice solving an MOO means finding a PO solution
that satisfies the needs and requirements of a decision
maker. This is usually a person (e.g., a designer or end-
user) that supposedly has an insight into the problem,
can express preference relations between different so-
lutions, and can select a final, “best,” single solution.
Such an approach has been used in engineering appli-
cations to facilitate solving complex design problems.
The power of using the PF stems from the fact that it
reveals the entire spectrum of efficient alternatives for
a particular practical problem and allows to select the
“best” among them.
Perhaps the most natural approach to the MOO

problem is that of the weighted sum (WS): minimize
a convex combination of the individual objectives

minimize w0f(x) =
MX
i=1

wifi(x)

subject to x 2 C
(7)

where wi ¸ 0 and
PM

i=1wi = 1. Any unique solution of
(7) is PO for the problem (6), and for each PO point
of (6) there exists a weighting vector w such that solv-
ing (7) yields this point if the problem (6) is convex
[6]. Unfortunately, despite the above properties, finding
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points on the PF by varying the weighting coefficients
w has been found to suffer serious drawbacks. It has
been observed that small changes in w may cause
dramatic changes in the objective vectors and large
changes in w may result in almost unnoticeable changes
in the objective vectors. This instability is due to the
fact that the WS is not a Lipschitzian function of w
[6]. Clearly, this makes the relation between weights
and performance very complicated and non-intuitive.
Obtaining a good approximation of the PF directly,
by uniform sampling of w, may be extremely ineffi-
cient since it may lead to very uneven sampling of the
PF [2].
An effective method for numerical computation of

evenly distributed points on the PF for the MOO prob-
lem (6) is the normal boundary intersection (NBI)
method of [3]. This method suits very well our “in-
verse” problem, formulated at the end of Section 3–
determine the fusion weights corresponding to a cho-
sen optimal performance point–since it provides a di-
rect link between the NBI computed PF points and their
corresponding weights in the problem (7).

3.2. Fusion Weights Determination via NBI

A formal description of the algorithm that we use
for determination of the fusion weights through the NBI
computed PO points is given below. Its validity follows
from Claims 1 and 2, Section 6 of [3].

ALGORITHM
(I) NBI WEIGHTS: Generate ¯ = [¯1, : : : ,¯M]

0 such
that ¯i ¸ 0 and

PM
i=1¯i = 1.

(II) NBI MINIMIZER: Obtain a point x� = x�¯ by
solving (numerically) the nonlinear optimization problem

min
x,t
¡t

s.t. ©¯+ tn̂= f(x)¡ f�

x 2 C
(8)

determined by computing the following:
1) x�i = argminx2C fi(x), i= 1, : : : ,M–minimizers of

the individual objectives of (6);
2) f� = [f1(x

�
1),f2(x

�
2), : : : ,fM(x

�
M)]

0–vector of indi-
vidual minima (utopia point) of (6);
3) ©= [f(x�1)¡ f�, f(x�2)¡ f�, : : : , f(x�M)¡ f�]–pay-off

matrix of (6);
4) n̂=¡©[1,1, : : : ,1]0–quasi-normal search direc-

tion for (8).
(III) FUSION WEIGHTS: Obtain w� = [w�1, : : : ,w

�
M]

0

which corresponds to x� as

w�i =
¸(1)

�
iPM

i=1¸
(1)�
i

, i= 1, : : : ,M

if all ¸(1)
�

i , i= 1, : : : ,M have the same signs, where ¸(1)
�
=

[¸(1)
�

1 , : : : ,¸(1)
�

M ]0 is the vector of the Karush-Kuhn-Tucker
(KKT) multipliers for the equality constraint ©¯+ tn̂=
f(x)¡ f�.

REMARK 1 In our Matlab program implementation
of the above algorithm, in Step II, we used the stan-
dard function for nonlinear constrained minimization
fmincon from the Matlab optimization toolbox for min-
imizing the individual objectives of (6) and solving the
problem (8). This function provides the KKTmultipliers
¸(1)

�
i , i= 1, : : : ,M, needed in Step III, as output parame-
ters.

REMARK 2 As shown in [3], the WS problem (7) with
w=w� determined in Step III has the solution x� = x�¯
determined in Step II. If w� cannot be determined in
Step III, i.e., some ¸(1)

�
i has a sign which is different

from the sign of
PM
i=1¸

(1)�
i 6= 0 then either the NBI

computed point x� = x�¯ is not PO or x� is PO but lies
in a nonconvex part of the PF and cannot be obtained
by minimizing a WS of the objectives. For convex
problems (as most real problems are) such an issue does
not exist.

REMARK 3 An even spread of NBI points fx�¯ºgNº=1
will be obtained if the set of points f©¯ºgNº=1 forms
an uniformly-spaced grid on the simplex f©¯g¯ . This
is due to the fact that, according to (8), the points
obtained by the NBI are restricted to lie on a set of
parallel vectors (all parallel to the normal n̂) emanating
from the uniformly spread points f©¯ºgNº=1. A simple
algorithm to achieve this is to generate the NBI weights
f¯ºgNº=1 uniformly, i.e., each component of ¯º has a
value in [0,1=p,2=p, : : : ,1] where p¸ 2 is an integer and
all components sum up to 1. This yields an uniform grid
with a total of N =

¡
M+p¡1

p

¢
points.

4. CASE STUDIES

As formulated in Section 2, a WS single objective
optimization problem given by (5) is to be solved on-
line during an S&T mission. The fusion weights w=
[w0D,w

0
S ,w

0
T]
0 are designed (determined off-line) based

on a comprehensive trade-off analysis such that an ac-
ceptable trade-off will be achieved by the WS crite-
rion when applied online to real-life scenarios. As il-
lustrated below, such an analysis can be done through
Monte Carlo simulation of an ensemble of typical S&T
mission scenarios with different detection maps, threat
models, efficiency functions, etc. It includes obtaining a
representative set of trade-off points f(¼sD,¼sS ,°sT)g for
the problem (4), along with their corresponding weights
fwg in the problem (5), and can be done efficiently by
means of the NBI-based algorithm of Section 3.2. A
decision upon the “best” trade-off point (¼s�D ,¼

s�
S ,°

s�
T ),

made by the designer, gives in turn the “best” fusion
weights w� to be implemented in the online optimiza-
tion problem (5).
To illustrate the use of the proposed technique in the

trade-off analysis for determination of the “best” fusion
weights we present next four case studies of UAV S&T
scenarios.
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Fig. 2. PF generated by NBI.

4.1. Detection vs. Survivability

1) Single target search: For a trade-off analysis
between the detection and survivability objectives we
consider first a simple scenario of one sensor s and
one new target n located at pn = (xn,yn). The UAV s
aims at solving the following two-objective optimization
problem

max
ps

·
¼D(kps¡pnk)
¼S(kps¡pnk)

¸
: (9)

By using the algorithm of Section 3.2 we obtain a
uniform representation of the Pareto front

¼D(kps¡pnk) vs. ¼S(kps¡pnk)
and for each trade-off point (¼D(kp�s ¡pnk),¼S(kp�s ¡
pnk)) of the PF we determine the corresponding weights
w�D and w

�
S such that the solution of the single-objective

optimization problem

max
ps
[w�D¼D(kps¡pnk)+w�S¼S(kps¡pnk)] (10)

is p�s .
The simulated scenario parameters are as follows.

The assumed detection and survival functions, shown
in Fig. 1, are

¼D(d) = exp(¡(d=20)4) (11)

¼S(d) = 1¡ exp(¡(d=10)4) (12)

where d = kps¡pnk is the distance. Without loss of
generality it is assumed that pn = (0,0).
The Pareto front generated by the algorithm of Sec-

tion 3.2 is shown in Fig. 2. Its computation required

solving 24 nonlinear single objective optimization prob-
lems of the type (8). For a rough comparison, the di-
rect “bruteforce” WS method for PF determination re-
quired a dramatically larger number of problems (5)
in order to provide a comparable representation of
the PF.
Next, for each optimal point on the PF (¼D(kp�s¡pnk),

¼S(kp�s ¡pnk)) we determined the corresponding fu-
sion weights w�D and w

�
S for the equivalent WS single

objective optimization problem. The results are given
in Table I. It reveals the available trade-offs between
the detection and survival probabilities and includes
the corresponding weights that yield these trade-offs
through maximizing the WS objective. What is left to
the user (or designer) is to choose one or more prefer-
able trade-off points and they will be automatically
achieved through the corresponding weights. For exam-
ple, if the selected trade-off performance from Table I
is ¼�D = 0:8665 and ¼

�
S = 0:899 (line 12) then the fu-

sion weights w�D = 0:651 and w
�
S = 0:349 are to be used

in (10). It should be also noted that Table I allows to
design a set of WSs corresponding to different tacti-
cal situations and thus give the UAV a capability to
operate in different modes depending on the situation
by simply switching the weights of the WS objective
function.
2) Multiple target search: Next we present a trade-

off analysis of the detection and survival objectives of
a sensor s in a search scenario with two targets n1 and
n2 known to exist at pni = (xni ,yni), i= 1,2.
For simplicity it is assumed that the threats are

independent, and thus the joint survival probability
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Fig. 3. Feasible objective set.

TABLE I
Trade-Off Points & Fusion Weights

¼D ¼S wD wS

0.9916 0.1256 0.9338 0.0662
0.9818 0.2541 0.9240 0.0760
0.9764 0.3172 0.9180 0.0820
0.9643 0.4406 0.9027 0.0973
0.9575 0.5006 0.8930 0.1070
0.9419 0.6161 0.8670 0.1330
0.9329 0.6711 0.8494 0.1506
0.9228 0.7237 0.8273 0.1727
0.9114 0.7735 0.7991 0.2009
0.8984 0.8198 0.7624 0.2376
0.8836 0.8619 0.7143 0.2857
0.8665 0.8990 0.6510 0.3490
0.8468 0.9301 0.5690 0.4310
0.8241 0.9548 0.4677 0.5323
0.7984 0.9727 0.3534 0.6466
0.7701 0.9847 0.2412 0.7588
0.7396 0.9920 0.1478 0.8522
0.7077 0.9960 0.0822 0.9178
0.6749 0.9981 0.0421 0.9579
0.6417 0.9992 0.0202 0.9798
0.6081 0.9996 0.0091 0.9909

is

¼sS = ¼
s,n1
S ¼s,n2S = ¼S(kps¡pn1k)¼S(kps¡pn2k)

where the function ¼S(d) is given by (12).
The UAV s aims at solving the following three-

objective optimization problem

max
ps

2
64

¼D(kps¡pn1k)
¼D(kps¡pn2k)

¼sS(kps¡pn1k,kps¡pn2k)

3
75 (13)

where ¼D(d) is given by (11).

TABLE II
Trade-Off Points & Fusion Weights

¼
n1
D

¼
n2
D

¼sS w
n1
D

w
n2
D

wsS

0.98 0.98 0.04 0.4240 0.4240 0.1520
0.95 0.95 0.27 0.4466 0.4466 0.1068
0.92 0.92 0.50 0.4383 0.4383 0.1234
0.88 0.88 0.72 0.4112 0.4112 0.1776
0.83 0.83 0.89 0.3298 0.3298 0.3404
0.73 0.73 0.98 0.1130 0.1130 0.7740
0.59 0.59 0.99 0.0059 0.0059 0.9882
0.44 0.44 1.00 0.0001 0.0001 0.9998

Note that without the above threat independence as-
sumption ¼s,n1S and ¼s,n2S should be considered as indi-
vidual objectives (as in the general MOO problem for-
mulation (4)), which would lead to a four dimensional
problem.
The parameters of the simulation are the same as in

the previous scenario. In addition, the second target n2
is located at pn = (10,0).
Fig. 3 shows the feasible objective region for detec-

tion and survival, and Fig. 4 shows the obtained Pareto
front.
Table II gives the fusion weights wn1�D , wn2�D and ws�S

of the WS objective function

wn1�D ¼D(kps¡pn1k) +wn2�D ¼D(kps¡pn2k)
+w�S¼

s
S(kps¡pn1k,kps¡pn2k)

corresponding to the obtained Pareto optimal points
(¼D(kp�s ¡pn1k),¼D(kp�s ¡pn2k),¼sS(kp�s ¡pn1k,
kp�s ¡pn2k)).
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Fig. 4. PF generated by NBI.

Fig. 5. Pareto optimal locations of the UAV.

In addition, Fig. 5 provides information about the
locations of the UAV p�s = (x

�
s ,y

�
s ) that achieve Pareto

optimal performance.

4.2. Detection vs. Survivability vs. Tracking

1) Single target tracking: This scenario includes
tracking a single target t by a UAV s. According to (4)

the UAV aims at solving the following two-objective
optimization problem

max
ps

·
¼S(kps¡ptk)
°T(kps¡ptk)

¸
: (14)

The parameters of the simulation are as follows. The
target is located at pt = (10,0). The assumed detection
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Fig. 6. PF generated by NBI.

and survival functions ¼D(d) and ¼S(d) are the same
as in Case A.1 (see Fig. 1). It is assumed that the
measurement error covariance is R(d) = (¾2min +d

2)I2
with ¾2min = 0:1, and Ī = I4 where d = kps¡ptk and
I denotes the identity matrix. H = [I2 O2] where O
denotes the null matrix. Under these assumptions it can
be calculated from (3) that

°T(d) = 2ln
�
1+

¼S(d)¼D(d)
¾2min +d

2

¶

where ¼S(d) and ¼D(d) are given by (12) and (11),
respectively (see Fig. 1).
Fig. 6 shows the obtained Pareto front. Table III

gives the fusion weights w�S and w
�
T of the WS objective

w�S¼S(kps¡ptk) +w�T°T(kps¡ptk)
corresponding to the obtained Pareto optimal points
(¼S(kp�s ¡ptk),°T(kp�s ¡ptk)).
2) Joint search & tracking: This scenario includes

tracking a single target t and detecting a new target n
by a UAV s. The UAV aims at solving the following
three-objective optimization problem

max
ps

2
64

¼D(kps¡pnk)
¼sS(kps¡pnk,kps¡ptk)

°T(kps¡ptk)

3
75 (15)

where under the independent threats assumption

¼sS = ¼
s,n
S ¼

s,t
S = ¼S(kps¡pnk)¼S(kps¡ptk)

The parameters of the simulation are as follows. The
targets’ locations are pn = (0,0) and pt = (10,0). For

TABLE III
Trade-Off Points & Fusion Weights

¼S °T wS wT

1.0000 0.0033 0.9013 0.0987
0.9997 0.0043 0.6154 0.3846
0.9985 0.0052 0.3278 0.6722
0.9957 0.0060 0.1742 0.8258
0.9904 0.0068 0.1028 0.8972
0.9824 0.0076 0.0672 0.9328
0.9715 0.0082 0.0475 0.9525
0.9579 0.0088 0.0354 0.9646
0.9420 0.0093 0.0274 0.9726
0.9239 0.0098 0.0218 0.9782
0.9038 0.0102 0.0175 0.9825
0.8819 0.0105 0.0142 0.9858
0.8584 0.0108 0.0115 0.9885
0.8332 0.0111 0.0092 0.9908
0.8065 0.0113 0.0073 0.9927
0.7784 0.0115 0.0056 0.9944
0.7488 0.0116 0.0040 0.9960
0.7177 0.0117 0.0026 0.9974
0.6852 0.0118 0.0013 0.9987

the target under track it is assumed that R = (¾2min+
kps¡ptk2)I2 with ¾2min = 0:1, and Ī = I4. H = [I2 O2].
Under these assumptions it can be calculated from (3)
that

°T = 2ln

�
1+

¼S(kps¡pnk)¼S(kps¡ptk)¼D(kps¡ptk)
¾2min + kps¡ptk2

¶

Fig. 7 shows the feasible objective region for detec-
tion, survival and tracking, and Fig. 8 shows the ob-
tained Pareto front.
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Fig. 7. Feasible objective set.

Fig. 8. PF generated by NBI.

Table IV gives the weights w�D, w
�
S and w

�
T of the WS

objective

w�D¼D(kps¡pnk) +ws�S ¼sS(kps¡pnk,kps¡ptk)
+w�T°T(kps¡ptk)

corresponding to the obtained Pareto optimal points
(¼D(kp�s ¡pnk), ¼sS(kp�s ¡pnk,kp�s ¡ptk), °T(kp�s ¡ptk)).

In addition, Fig. 9 provides information about the
locations of the UAV p�s = (x

�
s ,y

�
s ) that achieve the Pareto

optimal performance.

5. CONCLUSIONS

A systematic and rigorous multiobjective optimiza-
tion based approach for designing a fused scalar ob-
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Fig. 9. Pareto optimal locations of the UAV.

TABLE IV
Trade-Off Points & Fusion Weights

¼D ¼sS °T wD wsS wT

0.9750 0.2455 0.0039 0.1352 0.0031 0.8617
0.9728 0.3117 0.0038 0.1886 0.0107 0.8007
0.9686 0.3763 0.0037 0.2579 0.0205 0.7216
0.9632 0.4397 0.0036 0.3466 0.0339 0.6195
0.9567 0.5023 0.0036 0.4495 0.0516 0.4989
0.9491 0.5639 0.0035 0.5526 0.0736 0.3738
0.9404 0.6246 0.0034 0.6387 0.0990 0.2623
0.9304 0.6841 0.0033 0.6967 0.1276 0.1757
0.9187 0.7422 0.0032 0.7239 0.1607 0.1154
0.9047 0.7984 0.0032 0.7217 0.2018 0.0765
0.8875 0.8517 0.0031 0.6899 0.2573 0.0528
0.8655 0.9009 0.0030 0.6222 0.3385 0.0393
0.8356 0.9434 0.0030 0.5037 0.4636 0.0327
0.7933 0.9754 0.0029 0.3220 0.6466 0.0314
0.7339 0.9929 0.0029 0.1297 0.8372 0.0331
0.6606 0.9987 0.0029 0.0299 0.9356 0.0345
0.5819 0.9998 0.0029 0.0045 0.9605 0.0350
0.5019 1.0000 0.0029 0.0005 0.9645 0.0350
0.4218 1.0000 0.0029 0.0001 0.9649 0.0350

jective function for search and track missions of un-
manned aerial vehicles through weighted combinations
of objectives has been proposed. It allows to obtain a
representative set of possible trade-off optimal alterna-
tives and determine the weights for the combination of
objectives that meets a selected “best” trade-off. The
proposed methodology can greatly facilitate the design
of mission objective functions through performing in-
sightful trade-off analysis. Its usefulness has been il-
lustrated by results from several case studies of typical
search and track mission scenarios.

It should be kept in mind that the method used as
well as all numerical methods for general multiobjec-
tive optimization can at best provide only local Pareto
optimality and thus it can be hard sometimes to find ini-
tial solutions leading to the trade-off region of practical
interest.
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T2T and M2T Association with
Combined Hypotheses
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This paper presents a procedure to combine the top association

hypotheses generated in a track-to-track (T2TA) association prob-

lem. The standard procedure for such problems consists of keeping

only the most likely hypothesis, but the extra information carried

by other hypotheses remains unused. The proposed combination

method allows for the extraction of this information in an efficient

way, improving over a similar method [5], providing system tracks

that account for the correlation ambiguity. This method will prove

useful when there is track contention (correlation ambiguity), and

the information carried by the best hypothesis alone renders opti-

mistic estimates. As a result of using this method, both better es-

timates (fused system tracks) are obtained and an estimate of the

difficulty of the association problem is obtained based on the aggre-

gation of neighboring tracks. In this work we consider two applica-

tions, one consisting of a T2T fusion (T2TF) and a dynamic tracking

problem where measurement-to-track association (M2TA) hypothe-

ses from a multiple hypothesis tracker (MHT) are combined. The

comparison of results from the proposed procedure vs. the standard

approach indicate that the latter can be improved upon in scenarios

with significant association ambiguities.
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1. INTRODUCTION

The types of problems in data association for track-
ing are (i) measurement-to-measurement association
(M2MA), i.e., track initiation, (ii) measurement-to-track
association (M2TA), i.e., track continuation, (iii) track-
to-track association (T2TA), for track fusion. Among
the M2TA algorithms, it is well known that the Multi-
ple Hypothesis Tracker (MHT) performs, due its time
window, much better than other methods, such as near-
est neighbor or PDA (which have a time window of
depth 1) when there is heavy clutter or track ambigu-
ity, i.e., when tracks are very close or cross each other.
The idea behind MHT is to maintain several track-to-
measurement association hypotheses over its time win-
dow, some of which may have low likelihood but might
later become the most likely after some frames of mea-
surements have been added. In general, however, only
the best hypothesis is retained when obtaining the re-
sults of the tracker at a particular time, thus neglecting
the information contained in the subsequent hypotheses.
In the T2TA problem, the use of the approach [3] yields
only the most likely association, in a manner similar to
the MHT.
This paper presents methods to combine the top hy-

potheses generated in M2TA and T2TA problems, ex-
tending the results from [5] which proposed the Co-
ordinated Presentation (CP). The T2TA problem con-
sists of estimating the parameters of interest for an un-
known number of targets, using the track lists obtained
by S observers, which are received by a fusion center
(FC). The fusion center generates several association
hypotheses, each of them formed by associating tracks
(the list elements) into S-tuples, using an m-best multi-
dimensional assignment (MDA) algorithm based on La-
grangean relaxation [8]. The goal is to combine those
hypotheses to obtain a better estimate than the one cal-
culated using the top hypothesis alone. The best hypoth-
esis estimate has the disadvantage of being optimistic,
especially when there is track ambiguity, i.e., tracks are
close to each other relative to their covariances (small
normalized distance). For example, if the second best
hypothesis has a likelihood close to the best, it should
be accounted for: the covariances calculated assuming
the best hypothesis is guaranteed to be true are opti-
mistic because the second best might be the true one.
The use of the top m hypotheses to asses the quality
of the association was proposed in [6]. There the best
assignment is used to update only if all of its association
S-tuples are substantially present in the subsequent hy-
potheses. If some of them do not appear in subsequent
hypothesis with high probability, an extended window
is used to hopefully clear up the problem. Our approach
is to combine the hypotheses to avoid incurring any de-
lay.
The M2TA problem considered requires the assign-

ment of noisy measurements from a single radar arising
from N targets. At time k window containing S-1 frames
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of data (lists of measurements) and the list of accepted
tracks from time k¡ S+1, i.e, a total of S lists is used to
generate the m-best association hypotheses to be com-
bined. After the new track estimates are obtained, the ac-
cepted tracks are extended to the next frame (k¡ S+2),
and a new frame (from time k+1) is incorporated, and
the process repeated with a total of S lists, shifted one
step forward.1

The paper is organized as follows: Section 2 dis-
cusses the procedure to combine the hypotheses in a
T2TA problem, and compares it to the method in [5].
Section 3 presents a track-to-track association scenario
and shows the results of applying the algorithms dis-
cussed previously. M2TA is considered in Section 4.
Finally, in Section 5 conclusions are drawn based on
the results obtained.

2. COMBINATION OF THE m-BEST HYPOTHESES IN
T2TA

Each of the m hypotheses obtained by the MDA
algorithm is formed by Ni, i= 1, : : : ,m S-tuple associ-
ations, which we will simply call ‘associations.’ Our
goal is to combine these top hypotheses in a combined
hypothesis (discussed in detail in Sec. 2.2, from which
the combined (system) track estimates are better than
the best hypothesis alone.
The hypothesis combination consists of two sub-

problems:

² Finding similar associations (deemed to represent
the same target) from different hypotheses to form
combinable association sets (called C-sets for brevity),
which is a data association/combination problem.

² Combination of these sets into a unique estimate, to
provide both an estimate of the number of targets
present, as well as estimates of the parameters of
interest and their covariances.

To be able to weight the contribution of each hypoth-
esis to the final estimate, the probability of a hypothesis
needs to be computed. This probability is obtained from
the costs of the hypotheses. The cost of hypothesis i is
the sum of the costs of the Ni associations that comprise
it. These association costs are based on the negative log
likelihood ratio (NLLR), that is, the negative of the log-
arithm of the likelihood function of the set of tracks
from an association having common origin divided by
the likelihood function of not having a common origin,
given by

`i
¢
=¡ lnL(Hi) =¡

NiX
j=1

ln(�ij��0j),

i= 1, : : : ,m (1)

1In T2TA, S is the number of observers, while in M2TA S is the time
depth of the window. In both cases one has S lists and the dimension
of the assignment is S.

where L(Hi) is the LR of Hi, �ij is the likelihood
function of the association tuple j from hypothesis
i having common origin, and �0j is the likelihood
function of this tuple not having common origin. The
probability of hypothesis i is obtained by normalization
of these costs as

PfHig=
e¡`i
mX
j=1

e¡`j
, i= 1, : : : ,m: (2)

For this to be meaningful, the probability of the mth
hypothesis should be much smaller than the highest
one, so the hypotheses left out can be deemed to have
negligible probability.
Thus, for purposes of association combination, each

association j in hypothesis i is assigned two numbers:

1. A value corresponding to the association weight
equal to PfHig, to be used to quantify the number
of tracks in each C-set.

2. A value corresponding to the probability of an as-
sociation, called combination weight. This value is
defined in a similar way to the probability of a hy-
pothesis (2) within a C-set, but using the NLLR of
the association Aij instead of the likelihood of the
complete hypothesis, as detailed below in (4). This
probability is needed at the fusion center for weight-
ing the contribution of each association in a C-set to
the overall estimate from such a set.

The association weights are used to define the to-
tal probability of a C-set. For each C-set an indicator
function is defined, which is one when association Aij
is included in Ck, namely,

Âij(Ck) =
½
1 Aij 2 Ck
0 otherwise

: (3)

Using this indicator function, the total probability of a
C-set is defined in terms of the association weights as

PfCkg=
X
i,j

Âij(Ck)PfHig: (4)

2.1. C-set Generation
The criterion for combining associations in a C-set is

based on the number of common reports (tracks in the
T2TA case, measurements in the M2TA case) shared by
associations in the set of all associations

A= fAij , i= 1, : : : ,m, j = 1, : : : ,Nig: (5)

This follows the reasoning from the Coordinated Pre-
sentation (CP) approach [5]. In that work a minimal sim-
ilarity criterion is used, i.e., if two associations share
one or more elements (tracks or measurements), they
are deemed as coming from the same origin and thus
are included in the same C-set. This approach will be
shown to be prone to incorrect combinations.
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Fig. 1. Associations from 2 hypotheses in a 3 target and 3 sensor
case (solid elements correspond to dummies–missing elements in

an association). List elements are indexed by number pairs
corresponding to (sensor, element). C-set formation criterion is

majority rule.

In the present work, the rules used for defining C-
sets are:

² Each of the associations in the best hypothesis initial-
izes a C-set.

² Associations are added to these C-sets using a K-
similarity criterion, that is, if they share at least K
common elements with an association already in the
C-set. In general K will be taken as bS=2c+1, where
S is the number of lists, thus the criterion reduces to
a majority rule criterion.

² If an association passes the K-similarity criterion for
more than one C-set, these are merged into a single
one including all the associations in the overlapping
C-sets.

Other rules for inclusion to a C-set can be used, as nor-
malized distance between tracks, or normalized distance
with respect to a centroid, but are not considered in the
sequel.
Fig. 1 shows a simple case with 2 hypotheses, where

3 targets are present and 3 sensors provide tracks. If the
C-sets are formed based on associations that satisfy the
majority rule, then there will be 3 such sets. Only one
of them, C2 is formed by the same association in each
hypothesis, the other are composed of hypotheses that
share 2 elements with common origin.

2.2. Combination in a C-set
2.2.1. Estimation of the number of targets in a C-set
Once the C-sets are generated, the combination of

the associations in each of them needs to be done.
Also, the estimation of the number of true target(s) from
which the tracks in each C-set originated is performed,
using the total probability of the hypotheses in the C-set.
Possible situations are

1. Exactly the same association is present in all hy-
potheses. In this case a set will contain only this as-
sociation, and the total probability of such set will

be PfCkg=
Pm
i=1PfHig= 1, indicating that all the

associations correspond to a unique target. Such a
case indicates the high quality of the association, and
hence it can be trusted and presented as is.

2. At least one different association satisfying the com-
mon set inclusion condition is present in each hy-
pothesis. In this case, the C-set will contain different
associations, and the total probability PfCkg of such
a set can be greater than 1, indicating that the com-
bined estimate represents closely spaced tracks.2

3. Not all the hypotheses contribute to a C-set. In this
case, the total probability of the C-set will be smaller
than 1. This can happen when there are associations
containing false tracks, or few tracks, thus having not
enough in common with established sets.

In the second case, some associations will K-overlap
some other associations, and two or more associations
from the same hypothesis may be included in the set.
If the total probability of the set is higher than 1,
this indicates that there is more than one true track in
such a set, which now represents a cluster of targets.
This cluster is considered to contain as many targets
as the (rounded up) total probability PfCkg. A unique
estimate that plays the role of a centroid can be obtained
from such a cluster by combining the estimates arising
from each association in it. If the total probability is
close to 1, the combination of the associations in the
cluster should provide a better estimate of the target it
represents, compared to the one provided by the best
hypothesis alone. This is discussed in more detail later.

2.2.2. Combination of associations in a C-set
The combination of the associations in a C-set can

be done using the CP method from [5], which we call
the Coordinated Presentation (CP) Mixture Approach.
This combines the estimates of these association using
the association weighting to define the combination
probability. Our approach, called Direct Mixture (DM),
will use a different–likelihood ratio based–weighting,
defined before as combination weighting.

CP Mixture (CP) Approach
For each association in a C-set the following events

are defined:

Ai = fset Xi of ni tracks are associatedg (6)

where Xi = fx̂ij ,Pijgnij=1 is the set of estimates and co-
variances contained in association i. Suppose that the
set of all the N associations in a C-set A is

A= fAi, i= 1, : : : ,Ng: (7)

2Suppose two hypotheses such that PfHig= :5, with two associa-
tions each. H1 contains fM1

1 —M
2
2 g and fM1

2 —M
2
1 g, while H2 contains

fM1
1 —M

2
1 g and fM1

2 —M
2
2 g, where M

j
i corresponds to element i of list

j. If the set inclusion condition is to have at least 1 common element,
then the C-set will be ffM1

1 —M
2
2 g,fM1

2 —M
2
1 g,fM1

1 —M
2
1 g,fM1

2 —M
2
2 gg,

which has PfCg= 2.
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The mixing probability pi for association event Ai
is taken as the probability of the hypothesis ki it comes
from, PfHkig, as defined before.
For each association event Ai, the combined “sys-

tem” state estimate and covariance are x̂i and Pi. The
combination of these estimates is done using the mix-
ture pdf

p(x j A) = 1
NX
j=1

pj

NX
i=1

p(x j Ai)pi: (8)

The mean and covariance of this mixture are

x̂=
1

NX
j=1

pj

NX
i=1

x̂ipi (9)

P̂x =
1

NX
j=1

pj

NX
i=1

(Pi+ x̂i(x̂i)0)pi¡ x̂x̂0: (10)

Direct Mixture (DM) Approach
Using the previous definition of event Ai, the likeli-

hood ratio (LR) of event Ai can be written as

L(Ai) =
�(Ai)
¹ni¡1

(11)

where �(Ai) is the likelihood function (LF) of associa-
tion event Ai–that Xi have common origin–and ¹

ni¡1

is the LF of not having common origin [3]. The term
¹ is the density of extraneous measurements, defined
as nex=V, where nex is the number of extraneous tracks,
and V is the volume of the state space corresponding to
the surveillance region.
The mixing probability of association i within its

C-set can be taken as
p̃i =

1
c
L(Ai) (12)

where
c=

nX
i=1

L(Ai): (13)

Using (dimensionless) likelihood ratios makes it possi-
ble to have associations with different ni in a C-set.
For each association we can obtain the combined

(system) state estimate and covariance

x̂i = '(Xi j Ai) (14)

Pi =©(Xi j Ai) (15)

according to [3].
The combination of these estimates is also done

using a mixture, with different weights p̃i based on their
individual likelihood ratios (12), rather than based on
the hypotheses probabilities. The mixture pdf is

p(x j A) =
NX
i=1

p(x j Ai)p̃i (16)

with mean and covariance

x̂=
NX
i=1

x̂ip̃i (17)

P̂x =
NX
i=1

(Pi+ x̂i(x̂i)0)p̃i¡ x̂x̂0 (18)

where the estimates coming from the combination of Xi
in (14),(15) are given by3

Pi =

0
@ NX
j=1

(Pij )¡1

1
A
¡1

(19)

x̂i = Pi

0
@ NX
j=1

(Pij )¡1x̂ij

1
A : (20)

3. SIMULATION RESULTS

The results presented in this section correspond to
the track-to-track association problem from [1], where
missile launch event parameters are estimated at a fusion
center collecting track reports from several observers.
The scenario consists of a set of Ns observers which
transmit track/event reports to a fusion center through
a particular (real-world based) communication network
among one of Nn networks. The network discards the
observer’s track identity (ID), replacing it by a network-
generated ID and the observer ID, thus losing the infor-
mation on the origin of the tracks sent by each observer.
The FC has to associate the common origin (same event)
tracks from each observer, then associate and fuse the
most recent common origin tracks across the observers.
For more details, see [1].

3.1. Problem Description

The parameters to be estimated are positions in x,
y, heading and launch time. The surveillance area is
[0,10000] distance units both in x and y, [0,30] degrees
for the heading, and [0,10] units of time for the launch
time. We assume that the sensors used have enough spa-
tial resolution to detect the events as unique, and also
that the time difference between launches is enough to
recognize them as different events. Track/event reports
are produced by 4 observers, and are transmitted to a
fusion center for processing. These reports are based on
observations corrupted by Gaussian noise with a stan-
dard deviation of 800 in both x and y coordinates, 10 de-
grees for the heading and 3 units of time for the launch
time. Fusion is performed every 20 units of time, over
a time span of 200 time units. The initial frames of data
(reports) have larger variance (because they are based
on fewer measurements) than the latter ones, which are
about 5 times more accurate due to the processing of

3Assuming as in [1] that the track errors are uncorrelated.
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Fig. 2. RMS and NEES in the x coordinate. The normalization is done w.r.t the obtained covariance from the fuser for each estimate.

Fig. 3. RMS and NEES in y coordinate. The normalization is done w.r.t the obtained covariance from each estimate.

more measurements. Thus, we expect more tracks con-
tending at the beginning and this contention should be
resolved for most cases by the final time.
Results shown are based on 500 Monte Carlo runs.

In each run, the RMS error is calculated for the CP and
DM association algorithms using the combined m-best
hypotheses, for the single best hypothesis, as well as
for the true association (known only in simulations) to
be used as a reference. Also the normalized estimation
error squared (NEES) [3] is obtained for each. The total
number of C-sets and the number of C-sets with total
probability 1 will be used to quantify the degree of
aggregation of the track estimates.

3.2. Scenario

We consider a scenario with 8 launches uniformly
distributed in a line parallel to the x axis. The distance
between neighboring launches is 800 meters. For this

case, missasociation and clustering is expected to hap-
pen often for the initial time, while towards the end time
this effect should decrease. Results for the CP approach
as well as our DM approach with K = 2,3 are shown in
Figs. 2 and 3 for the x and y coordinates, respectively.
These figures contain five curves, one corresponding
to the best hypothesis, a second one that corresponds
to doing the ideal association, i.e., using the true asso-
ciation indexes,4 and other three corresponding to the
m-best hypotheses combination methods.
From the NEES values it can be seen that for this

problem the best hypothesis estimate is optimistic for
both coordinate estimates.
The geometry of the problem results in different be-

havior for the estimates in x and y coordinates. For
the y coordinate estimation, the aggregation of tracks
does improve the estimate, as these tracks have varia-

4This curve corresponds to the unattainable lower bound (ULB).
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TABLE I
Average Number of C-sets and Average Total Number of Targets Reported by Each Method

# of single target C-sets/# of cluster C-sets/# of targets
Fusion 2 3 4 5 6 7 8 9 10

Ideal NA/NA NA/NA NA/NA NA/NA NA/NA NA/NA NA/NA NA/NA NA/NA
6.64 7.68 7.76 7.84 7.84 7.92 7.92 8.00 8.00

CP 0.82/1.02 0.91/1.04 1.22/1.08 1.30/.98 1.38/1.10 1.32/1.05 1.44/1.12 1.75/1.12 1.87/1.13
6.29 7.84 7.94 7.96 7.97 8.0 8.0 8.0 8.0

DM with 1.12/1.23 1.28/1.21 1.04/1.12 1.34/1.07 1.77/1.23 1.98/1.17 2.15/1.51 2.84/1.27 3.11/1.37
K = 2 6.24 7.76 7.92 7.92 7.92 8.0 8.0 8.0 8.0

DM with 2.42/1.18 2.54/1.73 3.21/1.45 3.56/1.41 3.63/1.85 3.88/1.15 4.01/1.42 4.23/1.27 4.40/1.36
K = 3 6.56 7.84 7.84 7.92 8.0 8.0 8.0 8.0 8.0

tion around the same value. On the other hand, for the
estimates in the x coordinate, the aggregation decreases
the quality of the estimate, as the different tracks com-
bined possess different x coordinate values. In Fig. 2
the error in x is shown for all the methods consid-
ered. It can be seen that the CP approach does pro-
vide very inaccurate x estimates as a result of its loose
set inclusion condition, which forces the combination
of insufficiently similar tracks in the same C-set. The
proposed DM combination scheme using K = 2 does
improve over the CP case, but only marginally. The
more stringent condition K = 3 provides enough dis-
crimination so as to reduce the RMS error to the level
of the top hypothesis alone (but with consistency as
good as the ideal). Overall, the methods provide con-
sistent (or nearly so) covariance calculations, as can
be seen from the normalized error plots. Fig. 3 shows
the error in estimation of the y coordinate values. As
opposed to the x estimates, all the methods using the
top m hypotheses provide good estimates, as explained
before, although the CP method does report a slightly
pessimistic variance estimate. On the other hand, the
top hypothesis alone does not only provide a more in-
accurate estimate, it also lacks consistency, reporting
very optimistic results, up to 80% off from its correct
value.
It can be concluded that the proposed DM combina-

tion method with K = 3 is able to combine similar hy-
potheses effectively and keep enough unique track sets.
As a result, the estimates in the x coordinates are as good
as the ones provided by the top hypothesis alone, and
much better than the estimates obtained by the other two
combination schemes. For the y coordinate estimates
both the estimation accuracy as well as consistency are
improved over the top hypothesis alone, while the re-
sults for the other two schemes are comparable.
Table I shows the number of C-sets with unity total

probability,5 i.e, single target, and the number of cluster

5These are the C-sets with total probability between 0.5 and 1.5.

C-sets (with multiple targets), as well as the total number
of targets declared by each method.

4. COMBINATION OF THE m-BEST HYPOTHESES IN
MHT

The M2TA combination problem is very similar to
the T2TA combination problem, differing mainly in the
way the association costs are calculated. In this problem,
the first list in the sliding window MHT implementation
consists, at the current time k, of the track estimates at
time k¡ S¡ 1 and the following S-1 lists of measure-
ments from frames k¡ S+2, : : : ,k. Thus, each of the
S-tuple associations is formed by a track and S-1 mea-
surements. The incremental cost of such an association
is obtained based on the innovation and innovation pdf
of the last measurement. The likelihood ratio for con-
tinuation of track t with measurement zj is [2]

Ltj =
ft(zj(k))

¸�
PDt(k) (21)

where ft(zj(k)) is the pdf of the predicted measurement
for track t and ¸� represents the density of extraneous
measurements.
The likelihood ratio in case a measurement is not

associated to track t is

Lt0 = 1¡PDt(k): (22)

Thus, considering independent measurement errors,
the cost of an association is obtained by summing up
the negative of the logarithm of the likelihood ratios
involved, calculated sequentially by updating the track
from frame 1.
After the m-best hypotheses have been calculated,

the C-set generation is done following the same pro-
cedure outlined in Subsection 2.1. Associations from
different hypotheses sharing K elements are to be com-
bined, and an estimate of the number of tracks in the
obtained centroid can be calculated based on the hy-
pothesis probability.

4.1. Track Combination

The combination of track estimates, which will be
used in the following cycle of the algorithm, requires
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careful analysis. The concept is that out of the S-tuple
associations to combine, only the estimates correspond-
ing to the first measurement to track association should
be taken into account. These combined tracks, originat-
ing from elements in the first and second frame, form
the new (combined) track estimate, with combination
weights based on the cost of the complete association.
A better understanding of the combination is obtained
by looking first at the way information is processed in
the conventional MHT, and then looking at the proposed
approach.

4.1.1. Conventional Implementation
From the initial time, the tree of associations is

expanded until time S (except for applying steps to
reduce the number of branches of the tree). At time
S one has the most probable hypothesis, designated by
the index l�(S), as

£S,l
�(S) ¢=£[1,S],l

�(S) = f�(1)l�(S),£[2,S],l�(S)g (23)

written decomposed into its initial part �(1)l
�(S) from

time 1, and its part £[2,S],l
�(S) from the interval [2,S].

At k = S+1 the hypotheses to be considered are

£S+1,l = f�(1)l�(S),£[2,S+1],lg (24)

i.e., all the hypotheses have a frozen common root
behind the window [2,S+1], of length S.
In general, at time k > S, the hypotheses to be con-

sidered are

£k,l = f£[1,k¡S],l�(k¡1),£[k¡S+1,k],lg (25)

i.e., behind the window [k¡ S+1,k], all the associa-
tions are frozen.

4.1.2. Implementation with Combined Hypotheses
The new alternative is to use a combination of the

hypotheses behind the window, rather than only the
most likely one.
This is accomplished as follows. Let the combined

hypothesis at time 1 based on the data at time S be

�̄(1)
¢
= �̄[�(1)i,S , i= 1, : : : ,n1] (26)

where �(1)i,S is hypothesis i based on the data at time
S, and n1 is the number of hypotheses at time 1 used in
the combination.
This leads to the set of track estimates at time 1

X(1 j 1) ¢=fx̂t[1 j 1, �̄(1)]gnt(1)t=1 = ·[x̂[1 j 1,�(1)i,S], i= 1, : : : ,n1]

(27)

where t is the target index and · is the combination
function. This will become the sufficient statistic (initial
condition) to be used in forming the new hypotheses in
the next window [2,S+1].

At time S+1, the hypotheses can therefore be writ-
ten as

£S+1,l = fX(1 j 1),£[2,S+1],lg (28)

which replaces (24). Similarly, for general k > S, (25)
is replaced by

£k,l = fX(k¡ S j k¡ S),£[k¡S+1,k],lg: (29)

The resulting algorithm is designated as Top m Hy-
potheses Tracker (TmHT).

4.2. Simulations

The results presented in this section correspond to
a simple M2TA problem where N = 2 targets move in
formation, following parallel straight line trajectories.
The purpose of the simulations is to compare the per-
formance when the targets are close to each other, such
that the measurements from one of them are likely to
be confused as originated from the target of interest.
A nearly constant velocity (NCV) motion model

based on a discretized continuous time white noise
acceleration (CWNA) model is used to characterize the
dynamics of the target [4], namely,

x(k+1) = Fx(k)+ v(k) (30)

where

F =

2
6664

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

3
7775 : (31)

The discrete time noise v(k) has covariance matrix

Q =

2
6664

T3=3 0 T2=2 0

0 T3=3 0 T2=2

T2=2 0 T 0

0 T2=2 0 T

3
7775 q̃ (32)

where q̃ is the power spectral density (psd) of the
continuous time zero-mean white process noise that
models possible target maneuvers.
The measurement vector z consists of x and y ele-

ments,
z(k) =Hx(k)+w(k) (33)

where

H =
·
1 0 0 0

0 1 0 0

¸
(34)

with measurement noise covariance matrix R. The tar-
gets are considered to travel in parallel trajectories with
velocity vx = 0 in the x direction and vy = 5 in the y
direction. The separation between the targets is param-
eterized by c, the distance in the x direction, while the
distance in y is taken to be 0. The sampling time is
T = 1, and the measurement noise is zero mean i.i.d.
Gaussian with standard deviations ¾x = 4, ¾y = 2. The
value of the density of extraneous measurements used
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TABLE II
RMS Error for x and y Coordinates for the 3 Association Methods,
as a Function of Different Separations c (in the x direction), using a

Window of S = 3 Frames

x y

c TmHT-CP TmHT-DM MHT TmHT-CP TmHT-DM MHT

14 6.36 3.45 3.70 1.19 1.50 1.31
12 5.77 3.34 4.16 1.14 1.48 1.48
10 5.33 2.78 4.53 1.06 1.45 1.48
8 4.43 2.81 5.32 1.02 1.28 1.51

is proportional to the inverse of the square root of the
volume of the measurement noise covariance matrix,
¸� = c1

¡
¼
p
det(R)

¢¡1
. The value of c1 used is 0.05. For

simplicity it is assumed that the target detection prob-
ability is unity. The approach is applicable to detection
probability less than unity using the likelihood ratio as
in (21).
The three aforementioned algorithms are used to

track the targets for each of the possible separations. The
first two pertain to the family of Top m MHT (TmHT)
algorithms, namely the CP approach (TmHT-CP) and
the DM approach using the majority rule (TmHT-DM),
while the third is the conventional MHT, which retains
only the most likely hypothesis at the rear end of the
sliding window. RMS errors are obtained from 100
Monte Carlo runs for each of the methods, and for two
different number of frames in the sliding window (the
time depth), S = 3,4.
Tables II and III present the RMS errors in x and

y coordinates for the cases of using windows of S =
3 and S = 4 lists, respectively. The more important
results correspond to the x coordinate, as it is the
resolvable one, and the one for which the separation
is varied. For the case S = 3 it can be seen that CP
is a simplistic approach, and that coalescence is too
prone to happen, thus loosing track accuracy. The MHT
gives good results when track separation is larger, but
its performance degrades as the targets get close to
each other, due to track switching. The DM approach
performs better than both of them, at the expense (when
compared to MHT) of losing the track ID whenever
tracks coalesce. This indeed may be an advantage, as it
is preferable to know that a region of potential confusion
arised, making the tracker lose the target IDs, rather than
keeping the potentially wrong IDs.
The results for the y coordinate are very similar for

all separations in this case (as well as for the case S = 4),
and provide little information as the targets have the
same y coordinate position at all times. In general the
RMS error arising from the CP approach is smaller, as
a result of the averaging effect of track coalescence and
the fact that the y position is the same for both targets.
For the case S = 4 the x coordinate RMS behaves

similarly as for the case S = 3, but including an extra list
(more time depth) has a result that less tracks coalesce
(due to the best hypothesis being in general stronger

TABLE III
RMS Error for x and y Coordinates for the 3 Association Methods,
as a Function of Different Separations c (in the x direction), using a

Window of S = 4 Frames

x y

c TmHT-CP TmHT-DM MHT TmHT-CP TmHT-DM MHT

14 6.07 2.48 2.50 1.18 1.47 1.46
12 5.59 3.03 3.41 1.14 1.47 1.45
10 5.26 3.19 4.91 1.05 1.46 1.46
8 4.49 3.16 5.29 1.02 1.30 1.51

than the subsequent), and thus the RMS error in DM
increases compared to the case of S = 3 due to some
track switches that were not captured by the algorithm.
The inital position of the targets is such that a simple

velocity gate assures correct data association. Thus the
estimate for target 1 is correctly assigned the track ID
T1, and similarly track 2 (T2) represents target 2. After
a certain time, the trajectories get closer (separated c
units in the x coordinate and 0 in the y coordinate)
and become parallel, as stated before. For the TmHT
methods, if at a certain time the track estimates are
merged (the tracks coalesce, i.e., are contained in the
same C-set, and a single track estimate is kept that
contains the two targets) the track IDs are lost. Thus,
in case of significant contention between hypotheses,
the IDs are no longer available. These IDs will be re-
initiated whenever the tracks can be uniquely identified
again. On the other hand, the conventional MHT will
keep the IDs of the tracks when there is hypothesis
contention (the algorithm has no way of discriminating
this), the worst case being the occurrence of a track
switch. That is, track Ti now represents target j, j 6= i,
i.e., the IDs represent the wrong targets. The calculation
of the RMS errors takes this into account, so that when a
single coalesced track is present, the RMS error will be
usually less than when track switch occurred as a result
of the distance between the true target and the switched
tracks being larger than the distance between the true
targets and the merged track. In the case of no track
switch, the merged estimate yields larger RMS errors.
Table IV shows measures of track switching and

track coalescence for the case of a window of S = 3
frames (the case S = 4 has similar results). Two mea-
sures are used for the track coalescence, one is the per-
centage of tracks that have coalesced at some point dur-
ing the time span of the experiment, and other is the per-
centage of time that this coalescence lasted. If there are
track switches, the percentage of them occurring is also
shown. It can be seen that the TmHT-CP does combine
track estimates for all the separations presented, as a
result of the weak condition for track combination, and
that the tracks remain combined for most of the time
span of the experiment. This prevents any track switch,
but worsens the estimation RMS, as shown before. On
the other hand, the TmHT-DM does combine tracks
when those have relevant information in common. In
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TABLE IV
Track Coalescence and Switch Measures for the 3 Association Methods, as a Function of Different Separations c (in the x direction), using a

Window of S = 3 Frames

TmHT-CP TmHT-DM MHT

c % coalescence % duration % coalescence % duration % switches % switches

14 100 94 0 0 1 1
12 100 93 9 4 2 9
10 100 98 42 14 3 20
8 100 99 98 30 4 56

this way tracks that are more likely to be confused, as
is the case when their distance diminishes, have a larger
percentage of track coalescence. Such coalescence lasts
as long as there are association hypotheses that are very
similar, thus not spanning the whole experiment time
length. Note that some track switches still occur, but
the number is significantly smaller when compared to
the MHT.

5. CONCLUSIONS

A method has been presented to combine the m
most significant hypotheses in a T2TA problem, which
gives consistent system track estimates in the case of
contention (correlation ambiguity), as opposed to using
only the best hypothesis. The use of the m-best hypothe-
ses has two main advantages. The first is the correct
calculation of the variances due to mixing of related
estimates, which improves the consistency of the esti-
mator. The second is the ability to quantify the difficulty
in the association by checking the total probability of
the C-sets (the combinable tracks). If this probability is
close to one, the estimation for the target represented by
the associations in the C-set can be considered reliable.
If the total probability is greater than one, the estimate
obtained should be considered in a special manner, as
it is based on wrong/mixed tracks due to missasocia-
tion.
The method proposed here, called Direct Mixture

(DM) is somewhat similar to the Coordinated Presen-
tation Mixture (CP) [5], but improves upon it in two
aspects: the criterion for C-set inclusion, and the use of
likelihood based probabilities for association combina-
tion, which have been shown to improve the quality of
the resulting estimates.
Overall, the proposed DM method with K = 3 (the

overlap requirement between combinable hypotheses)
yields more accurate estimates in terms of RMS error
and more consistent estimates than both the top hypoth-
esis scheme and CP.
The DM method has also been extended to a dy-

namic target tracking case. It has proven useful when the
distance between tracks is such that there is association
ambiguity (otherwise MHT, or even simpler methods as

PDA suffice). The fact that estimates are merged when
they have significant information in common, measured
as the number of common measurements, allows for a
decrease of the RMS error. This also causes the track
IDs to be lost, but has the advantage of avoiding track
switchings.
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A Market-based Approach to
Sensor Management

VISWANATH AVASARALA

TRACY MULLEN

DAVID HALL

Given the explosion in number and types of sensor nodes, the
next generation of sensor management systems must focus on iden-
tifying and acquiring valuable information from this potential flood
of sensor data. Thus an emerging problem is deciding what to pro-
duce, where, for whom, and when. Identifying and making trade-
offs involved in information production is a difficult problem that
market-based systems can “solve” by allowing user values, or util-
ities, to drive the selection process. Essentially this transforms the
traditional “data driven” approach (in which multiple sensors and
information sources are used, with a focus on how to process the
collected data) to a user-centered approach in which one or more
users treat the information collection and distribution system as a
market and vie to acquire goods and services (e.g., information col-
lection, processing resources and network bandwidth). We describe
our market-based approach to sensor management, and compare
our prototype system to an information-theoretic system in a multi-
sensor, multi-user simulation with promising results. This research
is motivated in part, by rapid technology advances in network tech-
nology and in sensing. These advances allow near universal instru-
mentation and sensing with worldwide distribution. However while
advances in service-oriented architectures and web-based tools have
created “the plumbing” for data distribution and access, improve-
ments in optimization of these distributed resources for effective
decision making have lagged behind the collection and distribution
advances.
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1. INTRODUCTION

With the advent of small, inexpensive, low-power
sensor nodes that can provide sensing, data processing,
and wireless communication capabilities, sensor net-
works can potentially generate huge amounts of diverse
data. However, just because the data can be produced,
does not mean that it should be. Sensor networks are
constrained by limits on sensor “attention” that include
limitations on battery power, bandwidth, and the num-
ber and type of measurements that the sensor can handle
at any one time. In addition, sensor networks can in-
clude data collection entities that operate on very differ-
ent timescales, from human reports to high-speed video-
frame collection of images. System users (who may be
human, software agents or data fusion processes) each
have their own individual tasks and priorities, but share
a common sensor resource pool. The sensor manager’s
job is to efficiently allocate sensors to end-user tasks
so as to maximize end-user utility while simultaneously
minimizing the cost of collecting, storing, and process-
ing the data. Sensor managers must also consider the
interplay between various network resources, weighing
tradeoffs between resource constraints such as battery
power, bandwidth, and sensor accuracy.
For our current work, we assume that end users be-

long to a common overarching non-commercial institu-
tion. Example application areas for such networks in-
clude: (1) network-centric warfare, in which multiple
sensing platforms, sensor nets, and individual soldiers
with sensors interact to allow rapid tactical situation as-
sessment and threat assessment [11, 12], and (2) mon-
itoring of the environment via ground-based, airborne
and space-based sensing systems.
In recent years, information-theoretic approaches

have emerged as a promising paradigm for the develop-
ment of a comprehensive sensor management for multi-
task, multi-sensor networks. These techniques rely on
optimization of a certain information-theoretic measure
like cross-entropy [5, 20] or information gain [6, 27].
Kastella [18] used cross-entropy to determine the opti-
mal search order for detection and classification prob-
lem. Kolba et al. [20] extended this framework to per-
mit operation with uncertain sensor probabilities. McIn-
trye et al. [25, 26] used information gain (the entropy
change in environment for a given sensor allocation
as the predicate for their hierarchical sensor manage-
ment architecture. A valuable advantage of information-
theoretic approaches is that they are highly flexible
and can be easily adapted to new problems. However,
information-theoretic sensor management is concerned
primarily with scheduling the data-collecting entities
(sensors) and other network resources such as energy
usage and communication bandwidth have to be consid-
ered separately. Additionally, information-theoretic sen-
sor management approaches are myopic in nature, since
they optimize some measure of the “quantity of infor-
mation” obtained during a particular round of schedul-
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ing and neglect the “value of information” to the mission
objectives.
Non-myopic sensor managers need to solve a highly

complex multi-period scheduling problem, since most
network tasks like target tracking occur over multiple
periods of scheduling. Techniques based on approxi-
mate dynamic programming have been developed for
this problem. In [5], Castañon considered a multi-grid,
single sensor detection problem. Under certain assump-
tions about the target distributions and probability dis-
tribution of sensor measurements, Castañon proved that
the optimal allocation policy would be to search ei-
ther of the two most likely target locations during each
round of scheduling. In [6], Castañon considered the
problem of dynamic scheduling of multi-mode sensor
resources for the classification of multiple unknown ob-
jects. To solve this problem, the author proposed a hier-
archical algorithm based on a combination of approxi-
mate dynamic programming and non-differentiable op-
timization techniques. Washburn et al. [43] formulate
a single-sensor, multi-target scheduling problem as a
stochastic scheduling problem and use the Gittin’s in-
dex rule to develop approximate solutions. Williams
et al. [44] consider a single-target, multi-sensor alloca-
tion problem with communication constraints and use
adaptive Lagrangian relaxation to solve the constrained
dynamic programming problem. Schedier et al. [37]
have used approximate dynamic programming to allo-
cate gimbaled radars for detecting and tracking targets
over a multi-horizon time period. The authors use a
three-phase rollout algorithm with the following stages
a. generation of candidate sensor allocations b. gener-
ation of alternate sensor plans based on results from
the first component c. evaluation of the alternate sensor
plans to calculate an approximation of the reward func-
tion. The details of the implementation of these compo-
nents are not explained in the original paper. However,
for the three-sensor simulation that was presented in
their paper, simple heuristics to generate feasible solu-
tions and to evaluate solution performance would have
sufficed. These approaches for non-myopic sensor man-
agement are pioneering, but substantial further research
is required to adapt them to the generic multi-sensor,
multi-task sensor management problems.
The network-centric environments that we are in-

terested in also must consider issues related to privacy
and communication costs. For example, in network-
centric warfare applications, multiple distributed enti-
ties accomplish different tasks by connecting decision
makers, effectors, and information sources to a common
network [27]. Therefore, task information may be local-
ized across individual users. Allowing all required task
information to be accessed by an optimization routine
is communication-intensive and may violate privacy is-
sues in a distributed environment. Pricing mechanisms
can be designed to address privacy issues and minimize
communication requirements [42]. Also, market-based
approaches offer an inherently distributed mechanism

that can compare “apples” and “oranges” using the com-
mon numeraire of money, thus reducing communication
overhead to the single dimension of price. Under certain
assumptions, price systems have been proven to provide
the minimum dimensionality of messages necessary to
determine Pareto-optimal allocations [16].
For the above reasons, we believe markets based

on combinatorial auction mechanisms are a promis-
ing paradigm for a comprehensive sensor management.
A combinatorial auction is an auction based on ex-
changing item bundles (e.g., sensor readings+channel
transmission) rather than single items. In earlier work
on distributed multi-agent sensor management, Lesser
et al. [22] surmised that combinatorial auctions could
be a promising path for market-based sensor alloca-
tion. Shortly after our initial work on combinatorial
auctions for sensor management [2], Ostwald et al. [32]
also published preliminary work on using combinatorial
auctions to find optimal sensor settings in a distributed
radar array. The authors optimize a domain-specific and
myopic utility function using a combinatorial auction
mechanism during each round of scheduling. Resource
constraints other than the sensor schedules are not con-
sidered.
A generic market-oriented approach to sensor man-

agement that is customizable for different sensor net-
work scenarios must address several key issues. The
first issue is the mismatch between what users want
to buy (e.g., tracking and identifying a target with a
specified accuracy) and what network resources are of-
fering (e.g., cpu, battery power, bandwidth, and sensor
directivity and operation mode). The problem becomes
even more complicated when we consider that different
combinations of sensors can be used to track a target,
but each combination of sensors may give a different
quality of service (QoS). To accurately assess and bid
for different sensor combinations, users would need to
know the operating parameters of each sensor, and to
calculate the QoS for various combinations of sensors.
This leads to the second issue of preference elicitation,
or eliciting user valuations for all possible combina-
tions of resources to different tasks/users. Clearly in this
setting, preference elicitation can be computationally
and/or communication intensive. For example, if there
are n sensors and m tasks, ((2n¡ 1)m+1) utility valua-
tions must be acquired by the sensor manager from the
user to calculate an optimal allocation. The third issue
is that winner determination, or determining an optimal
allocation given all bids, is an NP-hard problem [35].
Although fast algorithms have been developed, thanks
in part to ecommerce-driven advances, these algorithms
may not always meet real-time requirements.
To address the above issues, we proposed a frame-

work for sensor management using a market-based ar-
chitecture called MASM (Market-Architecture for Sen-
sor Management) [15, 30, 33]. The sensor manager han-
dles the mismatch between what providers (i.e., sen-
sors) offer and consumers (i.e., end users) want by
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Fig. 1. Single-platform market architecture for sensor management.

providing a mapping between user tasks and network
resources. Users bid on high-level tasks, while ser-
vice mapping components convert the high-level user
tasks to low-level sensor tasks and finally to actual
bids. Once the necessary bids are created, an auc-
tion winner determination algorithm computes the fi-
nal resource allocation. Both the bid formulation and
winner determination steps are computationally ex-
pensive. Traditionally, humans have been mainly re-
sponsible for the bid formulation step, with compu-
tational auctions focusing on the winner determina-
tion step. One of our contributions has been to de-
velop an approximate algorithm, called Seeded Ge-
netic Algorithm (SGA) [29], that combines these two
steps and achieves polynomial run times with a mod-
est loss of optimality. Our earlier work [2, 3, 28, 29]
described a high-level framework for MASM, but did
not provide any implementation details. This paper de-
scribes the implementation of MASM, including the
auction protocol, pricing algorithms for network re-
sources and heuristics for avoiding myopic scheduling
behavior.
We currently focus on a single-platform design, al-

though we plan to extend this model to multiple plat-
forms and sensor network environments. While we
draw from recent advances in ecommerce-based mar-
ket research, we describe the significant challenges in
adapting this approach to reflect typical sensor man-
agement environments. We test our prototype sensor
management system using a multi-sensor, multi-user
simulation framework that models bandwidth and bat-
tery power constraints. Comparisons to a priority-based
information-theoretic system show that market-based al-
gorithms hold promise for developing comprehensive
sensor management systems.

It should be noted that the present approach has lim-
ited applicability to smart dust environments, where the
number of sensors could be on the order of few hundred
thousands. In these environments, the communication
costs of relaying sensor measurements to the sink are
the dominant costs of network operation. For these en-
vironments, a centralized auctioneer cannot be used be-
cause of the communication costs involved. Instead, task
utility information and price information should perco-
late to the node level, where individual nodes decide
on what actions to perform. Mainland et al. [24] have
proposed a price-based decision system for smart dust
environments, and Padhy et al. [33] have proposed a
utility-based model.
Our paper is organized as follows. In Section 2, we

describe the MASM architecture and provide an illus-
trative scenario in Section 3. Section 4 talks about our
continuous combinatorial auction (CCA) protocol de-
veloped to minimize communication involved in market
operations. Section 5 describes the pricing mechanisms
that have been developed to enforce resource constraints
in the market. Section 6 introduces an agent learning
scheme for market agents to assist users in formulating
optimal bidding parameters for different tasks. Section 7
describes our simulation environment, while Section 8
describes our results. We summarize our findings and
discuss future work in the last section.

2. MASM

Our current single platform design for MASM is
shown in Fig. 1, and derives from the sensor manage-
ment architecture proposed by Denton et al. [8]. The
mission manager (MM) assesses mission-level decisions
(e.g., assigning task priority to a mission goal), allo-
cates tasks and budgets to end-users. Within the mis-
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sion manager, approaches such as goal lattices (which
relate high-level mission goals to lower-level actionable
tasks) can be used to measure the criticality of vari-
ous low-level goals to the overall mission goals, and
thus help to determine their respective budgets. Kenneth
Hintz and Gregory McIntyre [14] used goal lattices to
compute the relative weights of actionable tasks (such
as tracking) on the basis of high-level mission goals. Ra-
jani Muraleedharan and her colleagues [30] used goal
lattices to determine weights for combining various ob-
jectives to optimize routing in a sensor network. Newer
developments include dynamic goal lattices [15] that
can support more dynamic goal generation from a set
of predefined goals.
The sensor manager (SM) acts as a competitive mar-

ket for buyers and sellers of sensor resources. Sensors
and transmission channels are modeled as sellers. Sen-
sors sell their sensor schedule (i.e., their “attention”) and
transmission channels sell raw bandwidth. End users,
or consumers, of the sensor network are interested in
higher-end products such as target tracks, environmen-
tal searches, and target identification. MASM maps be-
tween these high-level tasks and actual resources avail-
able in the market using its combined service chart/bid
formulator functionality.
MASM provides this functionality in two different

modes, either exact service mappings (E-MASM) or
approximate service mappings (A-MASM). When the
number of sensors is small and the real-time constraints
are relaxed, E-MASM mode provides an exact service
mapping. In other words, given a task and a set of pos-
sible resource combinations that can be used for that
task, E-MASM will explicitly calculate the utility of
assigning each combination to the task using domain
information and task-specific utility functions provided
by a service chart. Given n sensors in the network, and
m tasks, then in the worst case, (2n¡ 1)m bids on re-
source combinations might have to be formulated. A
standard combinatorial auction winner determination al-
gorithm [1] then determines the optimal allocation. One
approach used to speed up the bid formulation auctions
and the winner determination optimization is to gener-
ically restrict the type of bids considered for resource
allocation. For example, one could place a bound on
the maximum number of items in a bid. Polynomial
algorithms for bids with certain special structures [35]
are available. However, imposing generic constraints on
bid types can lead to market inefficiency. An alternate
approach is to use domain-specific knowledge to in-
telligently restrict the number of resource bids formu-
lated. For example, if the types or locations of sensor
resources that can be used to accomplish a particular
task are limited, the combinations of resources that need
to be considered can be reduced.
When the number of sensors is large and real-time

constraints are strict, explicit mappings are no longer
feasible, and the A-MASMmode, with approximate ser-
vice mappings, is used. Instead of the bid formulator

explicitly formulating combinatorial bids for each user
task, MASM searches the search space of useful sen-
sor combinations directly using a polynomial, anytime
evolutionary algorithm [29].

3. SCENARIO EXAMPLE

To illustrate the MASM system, we describe a sim-
ple scenario with two users and two sensors. Assume
that a particular user is interested in searching and iden-
tifying reconnaissance drones approaching from a cer-
tain region R1. Let the task that the user wants to ac-
complish using the sensor network resources be the re-
duction of entropy of the probability distribution of the
existence of reconnaissance drones in region R1 to less
than a threshold "1 (task A).
The user should submit a bid to MASM in the

following format:

(type: search/identify
entity: reconnaissance drone x
region: R1
quality: (entropy< "1)
price: PA)

where PA is the user’s bid price.

Assume that another user is interested in estimating
accurately the position of an already identified slower
moving reconnaissance drone. Let the task that this user
is trying to accomplish using the sensor network re-
sources be the reduction of the track uncertainty (as
measured by some reasonable metric such as state vec-
tor covariance error) to less than "2. The user should
submit a bid to MASM in the following format:

(type: track
entity: reconnaissance drone y
quality: (covariance error< "2)
price: PB)

where PB is the user’s bid price.

Assume that two sensors, a forward looking infrared
(FLIR), or infrared camera, and a radar are available to
the SM for accomplishing these tasks. Note that any
two sensors will generally have different abilities to lo-
cate and identify targets depending on characteristics
such as environment conditions, target characteristics,
and target-sensor geometry. In other words, certain sen-
sors, or combinations of sensors, can provide more or
less value for task completion, and thus the bid values
for different sets of sensors may also vary. To express
this, MASM generates combinatorial bids in exclusive-
or format for each user’s task as shown in Table I during
each of scheduling. The exclusive-or format ensures that
task A can win either bid 1 or bid 2, but not both. For
each bid in Table I, the bid amount is represented using
the format PU,S, t where U is the task identification, S
is the given sensor combination number and t indicates
the scheduling round. This notation is used to indicate
that bid prices depend on sensor combination and user
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TABLE I
Bids Generated by MASM for Sample Scenario During the First Round of Scheduling

Task A’s XOR bids Task B’s XOR bids

Bid 1 Bid 2 Bid 3 Bid 4

(type: search/id (type: search/id (type: track (type: track

entity: reconnaissance drone x entity: reconnaissance drone x entity: reconnaissance drone 3 entity: reconnaissance drone 3

region: R1 region: R1

sensors requested: FLIR sensors requested: FLIR and Radar sensors requested: FLIR sensors requested: FLIR and Radar

quality: (entropy< "1) quality: (entropy< "1) quality: (covariance error< "2) quality: (covariance error< "2)

price: PA,S1,1) price: PA,S2,1) price: PB,S1,1) price: PB,S2,1)

task. The value of PU,S, t is calculated by the SM using
the bid prices of the original consumer bids (see Sec-
tion 4 for details). Until the tasks are complete, the SM
monitors the progress of the tasks and adjusts the bids
accordingly.
We describe the methodology used by MASM to

generate the bids for resources during each round of
scheduling in the next section. The combinatorial auc-
tion winner determination algorithm is then used to cal-
culate the optimal resource allocation, given the MASM
bids.

4. CCA PROTOCOL

In this section, we describe our continuous combi-
natorial auction (CCA) protocol. The CCA protocol was
designed to increase the computational and communi-
cation efficiency of our market-based scheduling algo-
rithm. Since MASM uses discrete time slots to sched-
ule resources, most user tasks, like tracking a target,
require acquiring resources over multiple time slots.
Each round of scheduling can either occur periodically
at fixed times, or randomly. A simplistic allocation of
resources across multiple time slots can occur in two
ways: i) Users send in a bid that covers resource needs
across multiple time slots. The SM updates the schedule
upon receiving each new user bid. ii) Users send in a bid
for the current time slot only. After each round, users
update their requirements based on what was received
in the last scheduling round, and send in an updated bid
for the next time slot.
The first approach is computationally expensive. De-

termining the optimal scheduling for n sensors over a
time horizon T is exponentially complex in n and T.
Clearly, the second approach is communication inten-
sive. We designed the CCA protocol to avoid the com-
munication and computation requirements of using mar-
kets for sensor management. Below, we describe the
CCA protocol in detail.
CCA executes each of the following steps (except

initialization, which is executed once at the start of
operations) during each round of scheduling.

4.1. Initialization

Auctioneer initializes the prices for all the resources.
It informs the users about the set of tasks that it will
accept bids for.

4.2. Update Bids

At the beginning of each round, users can i) send
new bids, ii) remove their current bids from the auction,
iii) modify the parameters of their existing bids. User
bids are of type ht,pi where t is the task description,
which includes the task type, and final task quality
desired by the user and p is the price that the user is
willing to pay. For example, the task description for
a bid to track a target x such that the trace of the
covariance matrix of the target estimate is less than
0.001 is as follows:

(type: track
entity: target x
quality: (trace of covariance matrix< 0:001))

The auctioneer predefines the set of tasks that the
user can bid for and the bid format. Here we make the
standard assumption that a scalar valued “quality” mea-
sure can be calculated using the various task parameters.
For example, for target tracking, the trace or the deter-
minant of the covariance matrix can be used as one mea-
sure of target track quality [13, 31, 36]. However, under
certain circumstances, it is advantageous to use more
elaborate task descriptions (see [17] for related discus-
sion). For example, the requirement to identify a target
with a given level of specificity and level of confidence
may require extensive models of multi-sensor perfor-
mance in complex observation environments. These are
application-specific, and would need to be developed
for the particular application being considered.

4.3. Update User Requests

Auctioneer accepts new bids or updates to existing
bids during each round of scheduling. If the auctioneer
receives no message regarding a particular bid, the bid
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stays active and competes for resources in the current
auction round.

4.4. Resource Bid Formulation

Since user bids are for high-level tasks, the auc-
tioneer needs to compose bids for actual resources
from them. This responsibility is handled by the bid-
formulator module in E-MASM (explicit formulation
of bids for resources is not required in A-MASM). Let
the user bid on a high level task T at time ti with price
PT. A high level task, such as tracking a target to a re-
quired accuracy, might require resources over multiple
rounds of scheduling. For each time slot t, the auction-
eer constructs bids on each resource set, S, that can be
allotted to task T. The auctioneer needs to calculate the
price associated with resource set S for task T during
each round of scheduling, based on the user bid price
PT. To correctly align task priorities with bidding price,
we have devised a novel mechanism for resource price
determination. For a resource set S, the auctioneer com-
putes the bid price for a resource set as the percentage
of the user task completed by the resource set given the
current task status. To determine the percentage of task
completed by a resource set S, we cast the problem in
terms of optimally scheduling sufficient readings from a
canonical sensor A to meet the quality of service (QoS)
task parameters. Let the task T require on average na
consecutive schedules of the standard sensor A to be
completed (task is considered complete, when the task
quality meets the QoS threshold in the task bid). Sup-
pose a resource bundle S is used when the task quality is
q, and the expected number of standard sensor readings
required is reduced to n̄a Then fS,T,q or the percentage of
the task completed by resource set S when the current
task quality is q, is equal to the percentage savings in
the required number of canonical sensor readings.

fS,T,q = (na¡ n̄a)=na:
There is a possibility that fS,T,q is negative (na < n̄a).
For example, in spite of allocating sensing resources,
the inaccuracy associated with a target estimate might
increase with time. To avoid negative prices for bundles
of resources, the bid price for PS,T,q (bid price for
allocating resource set S to task T during a particular
round of scheduling when the current task quality is q)
is calculated as

PS,T,q = PT�fS,T,q¡PT�fÁ,T,q
where Á is the null set.
The auctioneer uses this price to prioritize between

different tasks during a particular schedule. However,
this price is not charged to the user. Users are charged
only at the end of a successful task completion, or if
they choose to withdraw a bid before the task could be
completed by the SM (see the round termination step).
Calculation of na and n̄a can be made faster, by storing

Fig. 2. Illustration of calculation of bid prices for resource bundles
using QoS chart.

task specific performance data for the canonical sensor
as QoS charts. For example, consider a user bid for
searching a particular grid for potential threats, when
QoS is measured in terms of entropy. A sample QoS
chart is given in Fig. 2, and shows the expected fall in
entropy with standard sensor readings. Let a user bid
specify a task for reduction of entropy of a particular
grid from ei to ef . If a resource bundle S is expected to
reduce the entropy from ei to ej after the next reading,
then

fS,T,ei = (nj ¡ ni)=(nf ¡ ni):
Creating a QoS chart for a sample task is illustrated

in Section 7.
Resource formulation is the slowest link in CCA

protocol, but heuristics can speed this step up. For ex-
ample, for certain tasks, it may be feasible to use only
a few kinds of resources. Thus, if a task requires only
acoustic data, then only the acoustic radar sensors need
to be considered. However, in the worst-case scenario,
the number of bids is exponential in the number of
sensors. This is clearly infeasible in case of large sys-
tems and thus E-MASM is not scalable to large sys-
tems, limiting its effectiveness. The A-MASM formu-
lation avoids explicit bid formulation, and hence main-
tains polynomial run-times, both in number of resources
and users by using our SGA algorithm, an approximate
polynomial-time algorithm. For a detailed description
of this algorithm, and a comparison of A-MASM and
E-MASM time performance, see [34].

4.5. Resource Allocation

Resource bids, obtained from step 3 are exclusive-
OR bids in the form hS1,P1ixorhS2,P2i : : :xorhSn,Pni.
This bid indicates that during the current round of
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scheduling, the user is willing to pay a price P1 for the
resource bundle S1 and a price P2 for S2, but only the
maximum of P1 and P2 for S1 [ S2. The auctioneer needs
to translate these bids to OR bids, so that standard inte-
ger programming formulations [1] can be used. An OR
bid of the form hS1,P1iorhS2,P2i : : :orhSn,Pni indicates
that the user is willing to pay P1 +P2 for the bundle S1 [
S2. This can be done by the addition of phantom items
[9]. The idea is to translate an exclusive-OR bid B-xor
of the form hS1,P1ixorhS2,P2i : : :xorhSn,Pni into a B-OR
bid of the form hS1b [ b,P1iorhS2 [b,P2i : : :orhSn [b,Pni,
where b is a phantom item. The phantom item b ensures
that a maximum of only one bid from the OR bids can
be labeled as winner (since each item can be allocated
to maximum of one bids). Once the bids are translated
into the “OR” format, the winner determination problem
becomes a standard integer programming (IP) problem,
that can be characterized as

max
nX
j=1

pjxj s:t:
X
jji2Sj

xj · 1 8 i 2 f1 : : :mg

where xj is 1 if the bid is accepted in the final allo-
cation and 0 otherwise. The IP problem can be solved
using a commercial software package like CPLEX. The
winner determination problem is NP-hard [18] and in
theory, this resource allocation step could prove compu-
tationally expensive for E-MASM. Performance of the
IP formulation depends greatly on the characteristics of
the probability distribution from which bids are gener-
ated. For example, the time taken by a problem with
one thousand bids and hundred items on a 2.8 GHz
Pentium IV processor varied between 0.001 seconds to
5000 seconds, depending on the bid distribution. How-
ever, we found that the problems generated by the sen-
sor network simulation are relatively easy for CPLEX
(see Section 4).

4.6. Round Termination

The auctioneer updates the costs of resources ex-
pended on a particular bid by adding the price of its
allocated bundle. For each user bid b, the cost of re-
sources allocated to the bid is updated as

Cb = Cb+#
t
si

where Si is the bundle allocated to b during the tth round
of scheduling and #tsi is the price of the bundle Si during
the tth round of scheduling. This is calculated as the sum
of the prices of the individual resources comprising Si
(see Section 5 for explanation of resource pricing).
Also, the auctioneer verifies if the task quality re-

quired by each user bid was achieved. When a task is
complete, the bids for that task are removed from the
auction and the corresponding user is sent the completed
task details. The bidding user is charged the minimum
of his bid price Pb or the cost of resources spent on the
task by SM, Cb.

paymentb =min(Cb,Pb)

where paymentb is the fee charged to the user, Pb is
the bid price, and Cb is the total cost of the resources
allocated to the bid. This fee structure ensures that
no user is charged more than their bid price for any
task. When Cb < Pb, the user has a positive surplus
of Pb ¡Cb. An alternate fee structure that divides the
surplus between the SM and user is as follows:

paymentb =min(Cb,Pb)+H(Pb¡Cb):�° � (Pb¡Cb)
where H(x) is the Heaviside step function and ° is the
percentage of surplus given to SM. If the user withdraws
a bid before the task demanded in the bid is completed,
the SM charges the user

paymentb =min(Cb,f,b�Pb)+H(f,b,�Pb ¡Cb):
�° � (f,b �Pb¡Cb)

where f,b, is the percentage of the task that is already
completed by the SM. This is calculated using QoS
charts (as described in the resource bid formulation
step). This fee structure has been designed to mitigate
the impact of dishonest user behavior (see Section 8 for
details).
Finally, the auctioneer updates the prices of the

resources based on the demand in the current round.
We describe how prices are updated in the next section.
The auctioneer then updates the resources about their
schedules during the current round and sleeps until the
next round of scheduling begins.

5. PRICING MECHANISMS

To set prices for individual resources, we use a pric-
ing protocol similar to the tatonnement process. Taton-
nement is an iterative procedure for finding equilibrium
prices based on the search parameter (e.g., price or
quantity) [21, 34, 40]. The price adjustment process
starts with an auctioneer communicating an arbitrary
price set to the users. The users compute their demand
for the first good at the given prices and communicate it
to the auctioneer. Depending on whether the aggregate
demand for the first good is positive or negative, the
auctioneer either increases or decreases its price. This
process continues until a price at which aggregate de-
mand for the first good equals zero is reached. This
process is then repeated for the second good and so
on. At the end of the first cycle, only the last good is
guaranteed to have a zero demand, but assuming gross
substitutability (i.e., when the price of good j goes up,
there is a positive increase in the demand for every other
good by each user) the price set arrived at after each
cycle is closer to equilibrium than the previous one.
More refined algorithms using partial derivatives of the
demand functions have been developed to search for
equilibrium in parallel [38, 45]. Though the gross sub-
stitutability assumption is often violated (as in sensor
networks), the tatonnement process has been found to
give satisfactory results [7].
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To use the tatonnement process in MASM, we model
the supply and demand functions for a resource at a
particular price. MASM estimates these functions using
the current resource usage rate. Prices for individual re-
sources are initialized to zero during the sensor network
initialization. After each round of scheduling, the prices
(#t+1S ) for the resource S for the next round of schedul-
ing are calculated based on the current usage rate of the
resource (rtS) and the available usage rate of a

t
S .

#t+1S =max(0,#tS + ¿ � (rtS ¡ atS))
#0S = 0

where ¿ is the constant which determines the rate at
which prices are updated.
The definition of rtS and a

t
S is dependant on the

resource being modeled. For example, for sensors, we
have used the available battery power. Let sensor A be
endowed with initial battery power bi and assume that
Sensor A needs to be available for a total operating time
of T. At time t, if the available battery power is bt, then

rtA = (bi¡ bt)=t if t > 0, 0 otherwise;

atA = (bt)=(T¡ t) if t < T, 0 otherwise:

Ideally, the tatonnement process would update the price
of one resource, run the winner determination algorithm
to find the new demand for resources, then conduct
price updates for the second resource, and so on. How-
ever, because of time and communication constraints,
all the price updates are conducted simultaneously us-
ing the current rate of utilization, during every round.
We expect that the results between the two approaches
will not be very different, since the usage rates are mov-
ing averages and do not vary significantly based on the
usage during the current time slot.

6. AGENT LEARNING

In MASM, the SM accepts bids only on a set of
pre-defined tasks. The user agent is responsible for de-
composing the high level tasks or goals that it has a
utility for into a sequence of SM acceptable subtasks
on which it can bid. Also, the user agent has to assign
appropriate priorities or bid prices to these sub-tasks, so
that its overall performance is optimized. Appropriate
assignment of priorities to these sub-tasks has a signif-
icant impact on agent performance in the market. As
an initial exercise, we experimented with agent learning
that uses a simple, greedy Widrow-Hoff based learning
to optimize bid parameters based on current market data.
For reasons of brevity, the details of this approach are
not provided here, but readers are directed to [42]. A
more rigorous learning method will be the subject of
future research.

7. SIMULATION ENVIRONMENT

A simulation environment consisting of a two-
dimensional search area involving multiple targets,

multi-user and multiple sensors was developed for test-
ing MASM and comparing its performance with other
sensor management approaches. The design of the sen-
sor network, including the communication channel, is
inspired by the DARPA sensor network implemented to
carry out research in sensor management domain [22].
These sensor networks are more platform-based and dif-
fer from the emerging field of “smart dust,” where the
sensor network could consist of millions of sensors.
Our simulation environment is representative of the

types of sensors, communications resources, and mis-
sion objectives for a tactical military environment. The
various sensor parameters we used are based on real-
istic sensor models and are obtained from [26]. While
this is a basic scenario, with a limited number of sen-
sors and targets, it is representative of the types of non-
commensurate sensors that would be available for other
applications such as environmental surveillance and cri-
sis management systems (e.g., for homeland security).
We make a few simplifying assumptions about sensor
models since our main purpose is to test SM perfor-
mance rather than absolute fidelity to field conditions.
Below we describe our simulation model.

7.1. Users

Users consist of a set of software market agents that
search for and destroy targets. These agents have the
ability to attack any position within a range of r meters
and any target that falls within ° meters of an attacked
position is destroyed. The agents are not provided with
any sensing resources and they depend on the sensor
network for obtaining information about the environ-
ment. They bid for sensor resources during each round
of scheduling and update their status based on informa-
tion provided by the sensor manager. Initially, agents
move along the simulation area with constant velocity
vc, searching for targets. They use the sensor network’s
resource to search for potential targets and if the prob-
ability of target existence within their range exceeds a
threshold pthreshold, initialize target tracks. Once a tar-
get track is initialized, agents can attack a target if the
99% confidence interval of the target’s position is less
than ° meters. Hence, they are required to track the tar-
get to the required accuracy before attacking it. This is
again accomplished by buying sensing resources from
the sensor network. Agents are assumed to have a utility
ut for destroying a target. To divide the overall utility
into utilities for search and track tasks, agents initially
use equal priorities. During the simulation run, agents
update the search to track budget ratio using the learning
method, mentioned in Section 6.

7.2. Targets

Targets are randomly distributed throughout the
search area. They move randomly along the city roads
with constant velocity vt, corrupted by a Gaussian white
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TABLE II
Sensor Characteristics used in Simulation

Sensor No. Type Range Bearing Axis PD PFA

1 Doppler 90 m§ 10% 1± = 6¾ x 0.95 0.001
2 Radar 30 m§ 10% 0:1± = 6¾ x 0.95 0.001
3 FLIR NA 0:1± = 6¾ y 0.99 0.001
4 ESM NA 1± = 6¾ x 0.5 0.01
5 IR NA 100 ¹rad = 6¾ x 0.99 0.01
6 Radar 30 m§ 10% 0:1± = 6¾ y 0.95 0.001
7 Doppler 90 m§ 10% 1± = 6¾ y 0.95 0.001
8 Radar 30 m§ 10% 0:1± = 6¾ y 0.95 0.001

noise with variance Q. Two different types of targets
are modeled (T1 and T2). Users have greater utility for
destroying T2 targets. Only T1 targets were used in the
simulation experiments, unless otherwise specified.

7.3. Sensors

The simulation models several different kinds of
sensors, including sensors that provide range and bear-
ing, bearings-only sensors, and Electronic Support Mea-
sure (ESM) sensors. Measurements of two bearings only
sensors, which are not located at the same position,
can be combined to create both range and bearing es-
timates and can be used as a pseudo-sensor. A for-
mal way of modeling sensors is to model their proper-
ties, such as bandwidth, wavelength, duration of wave-
form, signal power per pulse, receiver noise strength
diameter of radar aperture. A much simpler model-
ing technique, in which a sensor’s characteristics are
characterized by three parameters, its probability of de-
tection PD, probability of false alarm PFA and bearing
[6], is used in this simulation. The simulation envi-
ronment has eight different sensors of five different
types that are located on two different platforms or-
thogonal to each other. The operating characters of the
various sensors are given in Table II. Both the plat-
forms are 100 km away from the search area. Since
the distance of the sensors from the simulation area
is large, small angle approximation s= r�d�, where
s is the length of area that falls under the sensor’s
beamwidth, d� is a beamwidth of the sensor in radi-
ans and r is the distance of the sensor platform to the
city (100 km). For a detailed description of the sensor
modeling techniques adopted in the simulation, refer to
[25, 26]. Each sensor has a battery with einitial units
of energy. For the purpose of brevity, all the sensor
tasks are assumed to cost zero energy, except the task
of transmitting messages. The energy spent in trans-
mitting a message of m bytes over a distance of d
meters is calculated as _®d2m where _® is a constant
(see Table III).

7.4. Communication Channel

For communication purposes, a RF communication
channel with capacity C is used. All the messages are

assumed to be of uniform size M bytes. The commu-
nication protocol used is a contention-based protocol
(like CSMA/CD) where each agent with a message to
communicate senses to see if the channel is busy and
transmits if it is not. If two entities start transmitting
at the same time, they back off and wait for a random
amount of time. The time taken for communication, via
this channel, for a fixed number of messages is stochas-
tic. SM enforces the bandwidth constraint by restricting
the probability that the time taken for communication is
greater than tcom to less than ¯%.

7.5. Sensor Manager (SM)

Since the number of sensors is not large, E-MASM
formulation is used. Bids on two types of tasks, search
and track, are accepted by SM. The QoS for search tasks
is in terms of entropy and for the tracking tasks, the
norm of the estimate covariance is used. To create the
QoS mapping shown in Fig. 2 for the detection task, the
following procedure is used. Let the initial probability
of target presence in a particular cell be ¼0 = 0:5. (with
¼0 = 0:5, the cell has the highest possible entropy). The
initial entropy of the grid Ho is calculated as

Ho = g(¼0) where g(¼) is defined as

¡¼ � log(¼)¡ (1¡¼) � log(1¡¼):
Assume that the canonical sensor A with probability of
detection ¸D and ¸FA is used for verifying the presence
of the target in this cell. Assume that a target is present
in the cell. Then, the estimated probability ¼tn of target
presence in the cell after n consecutive readings of A,
can be calculated using Bayesian analysis. Similarly, let
the estimated probability after n consecutive readings
by A, if the target is not present in the cell be ¼ntn . The
expected entropy of the cell after n consecutive readings
of A is

H̄n = ¼0�g(¼tn) + (1¡¼0)�g(¼ntn ):
The plot of H̄n vs. n is used as the QoS mapping for the
detection task.

7.6. Information-Theoretic Sensor Manager (ITSM)

To compare the performance of MASM, we needed
an alternate sensor manager that can handle multiple
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TABLE III
Parameter Values used in Simulation

Parameter Value Description

Total no of time slots 500 Total number of resource allocation schedules
nc 5 No of consumers
nt 10 No of targets
nt2

2 No of targets with offensive capabilities

vc 50 mps Velocity of consumers
pthreshold 0.99 Detection threshold
vt 50 mps Velocity of targets
Q 0.01 Variance of Gaussian white noise of target motion
r 50 m Maximum distance that consumers can attack
° 1.5 m Radius of destruction around attacked position
½ 99% Required confidence interval length of target's position estimate
ut 1.0 m Utility for destroying a target
¿ 0.005 Tatonement factor
C 2 Mbps Bandwidth of communication channel
M 1 Kb Size of communication message
tcom 2 millisec Maximum time allowed for communication
¯ 0.01 Required probability that time taken for communication is greater than tcom
® 1 pJ/bit/m2 Energy required to send messages per unit distance per unit message size
ei 2.5 KJ Initial energy of sensor batteries

heterogeneous tasks and multiple heterogeneous sen-
sors. As explained in Section 1, the currently available
approximate dynamic programming based approaches
were not directly applicable to this problem without
substantial additional work. For this purpose, we im-
plemented an information theoretic sensor manager
(ITSM). Hint and McIntrye [25] used information gain
(the entropy change in the environment for a given sen-
sor allocation) as the predicate for their hierarchical sen-
sor management architecture. The amount of informa-
tion gained can be measured by the change in entropy
prior to and preceding a sensor measurement. ITSM
calculates the information gain, associated with each
possible allocation and schedules the resources as per
the allocation with the highest information gain. To en-
sure that ITSM considers the “value of information,”
we optimized a weighted measure of information gain,
instead of relying on the raw information gain. We
used the formulation in Kalandros et al. [17] for pri-
ority based information-theoretic based sensor manage-
ment. Instead of multiplying the information gain by the
corresponding task weight, the authors use the formula
I0s,t = Is,t+ log(�

t
t) where I

0
s,t is the weighted information

gain, Is,t is the information gain obtained from allocating
sensor suite s to task t and �tt is the priority of task t. A
key issue in the use of ITSM is the priorities that need
to be assigned to the various tasks. We exhaustively
tested the performance of ITSM by varying the track
and search budget ratios and found that the optimal user
performance was obtained when a track to search bud-
get ratio of 0:9 : 1 was used. To enforce the bandwidth
constraint, ITSM does not consider allocations that re-
quire bandwidth, which has more than 0.01% chance
of crossing the tcom limit. The expected time taken for
a particular bandwidth consumption was determined by

using monte-carlo simulations. ITSM does not model
energy constraints and these are handled in the experi-
mental setup as explained in the results section.

8. RESULTS

8.1. ITSM vs. MASM Experiments

Information-theoretic sensor managers schedule sen-
sors to minimize the entropy of the environment. How-
ever, incorporating battery power constraints into ITSM
is not straightforward since most systems either use ad-
hoc metrics or else do not address power constraints
explicitly. Instead of initially testing against multiple ad-
hoc solutions, we compare the ITSM system using two
sets of experiments: 1) all the energy requirements of
the sensor network are assumed to be zero, and 2) ITSM
and MASM consume the same amount of energy for
different tasks (as shown in Table III), but ITSM does
not use any explicit policy for allocating battery power
across the mission. Once a sensor has exhausted its bat-
tery, it is not considered in future allocations. In the
simulation, the user’s primary goal is to destroy as many
targets as possible. Therefore, we evaluate sensor man-
agement performance by calculating the average num-
ber of targets destroyed by ITSM and MASM, as shown
in Fig. 3. The left bar graph shows experiments where
energy constraints are zero, while the right bar graph
shows experimental results when energy constraints are
enforced. In both cases, MASM was more successful in
meeting user objectives (i.e., in destroying the targets)
than ITSM. However, in the second set of experiments,
some of MASM’s success can be attributed to a better
energy enforcement policy and it is not clear from these
experiments whether MASM will outperform ITSM for
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Fig. 3. Comparison of MASM with ITSM (averaged over 100 runs). Left bar graph shows experiments where energy constraints are
neglected. Right bar graph shows experiment results when energy constraints are enforced.

any given energy usage policy. We note however, given
that MASM does achieve a higher number of targets
killed even when the sensor network battery power is
“free” for both systems, that this would appear to indi-
cate that MASM’s superior performance is not entirely
due to a better energy enforcement policy.
Two reasons that MASM outperforms ITSM in

meeting user objectives may be that MASM 1) oper-
ates to maximize user utility rather than to maximize
the information content, and 2) uses prices to prioritize
tasks. We discuss these two reasons below.
1) MASM acts to allocate resources to maximize user

utility (as indicated by their bid prices). Since a user’s
utility depends on how well the allocated resource set
contributes to the user’s goals, market-based resource
allocation automatically takes goal-related parameters
directly into consideration. On the other hand, ITSM
concentrates on maximizing information content, ne-
glecting the value of the information to the goals. The
priority-based ITSM does a better job than the stan-
dard ITSM at incorporating user goals (as priorities) but
the system itself has no means of considering a task’s
progress toward the goal. As an example of why track-
ing progress toward a goal can be useful, consider the
following simple scenario. A single sensor is used to
track two targets T1 and T2 with equal priority simulta-
neously. For the first reading, ITSM gets the most in-
formation content from tracking T1, then for the second
reading, ITSM gets the most information from track-
ing T2. When the confidence interval necessary to attack
these two targets is tight, ITSM will never get enough
sequential readings to lower the uncertainty sufficiently
and will oscillate between the two targets. On the other
hand, MASM has equal likelihood for choosing either
of the two targets, in any round of scheduling. This hap-
pens because the fraction of task completed per reading
for either of the target tracks remains constant. There-
fore, MASM finishes the tasks in a finite time.

To ensure that our intuition about ITSM vs. MASM
was accurate, we implemented the following simple
experiment, based on the above scenario, where a single
sensor tracks the two targets T1 and T2 simultaneously.
Target motion is simulated by the equation:

xT(t+1) = xT(t) +wT

where xT(t) is the target position at time t and wT
is white Gaussian noise with constant covariance Q =
0:005. Targets can be attacked and destroyed if the
99% confidence interval of their position is less than
¯threshold = 0:5 unit. The sensor makes one measurement
during each time period, and the measurement equation
is:

z(t) = x(t) + v(t),

where x(t) is the state vector, and v(t) is zero mean white
noise with constant variance, R = 0:03. Let the initial
uncertainties in the position of T1 and T2, ¯1 and ¯2 are
equal to 1 unit.
Two sensor-scheduling approaches were imple-

mented. The first approach schedules the sensor to max-
imize the information gain from the sensor measure-
ment. The second approach schedules the sensor to
maximize the utility of measurements, which is defined
as the inverse of the total number of sensor measure-
ments required for bringing the targets to threshold un-
certainty. The optimal measurement is determined using
exhaustive enumeration techniques. The change in un-
certainty of the two approaches is shown in Fig. 4 and
Fig. 5. ITSM oscillates between the two targets without
collecting enough information on any one target long
enough to successfully destroy either. The above exper-
iments give an unfair advantage to the utility-based ap-
proach since the optimization routine considers multiple
sensor schedules simultaneously. In spite of this bias,
these experiments offer an insight into the handicap suf-
fered by ITSM due to its inability to take goal related
parameters, like ¯threshold, and utility-based calculations
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Fig. 4. Change in uncertainty of target tracks, while using an information-theoretic approach.

Fig. 5. Change in uncertainty of target tracks, while using a utility-based approach.

directly into consideration. On the other hand, markets
provide a principled way to take the utility of a given
allocation to high-level goals directly into considera-
tion during scheduling. These results are analogous to
those obtained by Castañon [5]. Operating under some
assumptions, Castañon considered the problem of de-
termining the optimal sequence of measurements of a
single sensor such that the probability that at-least one
target is successfully located in a multi-cell grid is max-
imized. Results demonstrated that the greedy approxi-
mation to the optimal solution performed vastly better
than an algorithm based on entropy minimization.
2) MASM prioritizes using prices. Another advan-

tage of MASM may be due to its use of prices to pri-
oritize tasks while ITSM schedules sensors so as to op-

timize the information gain from the environment. Al-
though both ITSM and MASM used the same weights
to prioritize between tasks in the environment, price-
based task prioritization has some inherent advantages.
This is because a price-oriented approach has the ability
to implicitly reserve resources for future use by high
priority tasks, even if no high priority tasks are cur-
rently in progress. For example, consider a situation
where the first user is tracking a target and the rest of
the users are in search mode. Both MASM and ITSM
give highest priority to the track task. The first user
has a high-budget for a track-bid and bids accordingly.
However, during the tracking task, the prices associated
with the sensing resources increases since the rate of
their battery power usage during tracking is high (refer
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Fig. 6. A comparison of the number of sensors used for measurements, based on whether target tracks are currently in progress or not.

to Section 5 for a description of how prices vary with
rate of utilization). After the tracking task is completed
and only when detection tasks are in progress, prices
of the sensor schedules would have increased. Conse-
quently, sensors will be used at a slower rate during the
detection phase, effectively reserving sensors for future
higher-priority tasks. However, ITSM has no method of
prioritizing between two tasks, except when both the
tasks are currently in progress. Fig. 6 shows the num-
ber of sensors used during different rounds of schedul-
ing using MASM, where the number of sensors used
when tracking tasks are in progress is higher than the
number of sensors used when only detection tasks are
in progress. When only detection tasks are present, a
significant percent of sensors are resting, thereby pre-
serving their battery power for future use.

8.2. MASM-Specific Performance Measures

In addition to our comparison with ITSM, we
discuss other MASM-specific performance measures,
namely managing resource constraints, task deadlines,
scalability, and surplus sharing. The purpose of these
experiments is to show how the various “knobs” of a
market-based approach can be adjusted to affect perfor-
mance.

8.2.1. Resource Usage
As explained in Section 5, MASM uses a taton-

nement process for enforcing resource constraints such
as battery power constraints’ using current and avail-
able rates of utilization. Fig. 7 shows the price varia-
tions of the first three batteries using a tatonnement rate
¿ = 0:005. Figs. 8 and 9 show the fall in the energy of

the first three sensors’ battery with successive schedules
with ¿ = 0:005 and ¿ = 0 respectively. It is clear that
tatonnement process is successful in ensuring uniform
usage of sensors and in keeping them functional till the
end of network operation. For bandwidth also, a similar
procedure is adopted. The supply of capacity is con-
stant and is proportional to tcom. During round t+1, if
the price of channel is pt units/sec and bandwidth con-
sumption is w, then the bound of the 1¡ _̄ one-sided
upper confidence interval of the expected time taken
to communicate, ´, is calculated based on monte-carlo
simulations. The demand at pt is proportional to ´. Val-
ues of ´ for different bandwidth usages are calculated
at the start of network operations and stored. The price
of a channel during the current round is

pt+1 = pt+ ¿(´¡ tcom):
The price updates for process works as a soft constraint
on channel capacity. That is, if the channel is too con-
gested, then prices of the channel will increase till de-
mand for channel capacity decreases. However, it is pos-
sible that during certain schedules, the actual time taken
for communication is more than the prescribed limit.
Figs. 10 and 11 show the time taken for communica-
tion for two sample simulation runs with _¿ = 0:005 and
¿ = 0 respectively.
For the run in Fig. 10, the number of time slots

when time taken to communicate crossed the specified
threshold is 5. This is within the 0.01% tolerance limit
specified by the SM. For the run in Fig. 11, the number
of time slots where time taken to communicate crossed
the specified threshold is 124. After the 250th sched-
ule, all batteries are exhausted, and the time taken to
communicate drops to zero.
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Fig. 7. Price variation of the first three sensors with schedule number for a sample run with tatonnement _¿ = 0:005.

Fig. 8. Energy usage for the first three sensors for a sample run with tatonement _¿ = 0:0059.

8.2.2. Task Deadlines
For some high-value targets, users have a strict

deadline to destroy targets after initiating target tracks
within tkill schedules. We conducted experiments where
a certain fraction of the targets are high-valued. We
implemented a user policy of increasing track bids by
a factor k, if the detected targets are high-value. For
our initial experiments, we used a constant value of
3. However, in the future, optimal k values could be
calculated by using the market data. Users recorded an
average track time of 7.1 schedules for T2 versus an
overall average of 15.3 schedules, showing how markets
can be used to enforce task deadlines.

8.2.3. Scalability Analysis
For the current simulation environment, the IP-based

E-MASM formulation can optimally solve problem
sizes of up to 10,000 resource bids within a threshold of
10 cpu-seconds on 2.3 GHz PIV processor. Using the
SGA-based A-MASM approach, problem sizes of up to
50,000 resource bids can be solved to more than 98%
optimality under the same conditions. Larger networks
can be accommodated by the approximate technique by
compromising on the final optimality. This capability
indicates that MASM can be used for fairly large net-
works, since spatial restrictions often mean that even if
a sensor network has thousands of sensors, only a few
can be used for a given task at a time.
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Fig. 9. Energy usage for the first three sensors for a sample run with tatonement _¿ = 0.

Fig. 10. Time taken for communication for a sample run vs. schedule number for a sample run with tatonnement _¿ = 0:005.

8.2.4. Surplus Sharing
It is possible that sensor networks could have users

in a non-cooperative environment, where each agent
has an interest only in maximizing its own utility. For
example, two different organizations could be sharing
the same sensor network resources. Such scenarios re-
quire an incentive compatible auction methodology, to
make truth revelation the dominant strategy, and thus to
make the allocations optimal. For example, a payment
mechanism based on General Vickrey Auctions (GVA)
[39] might be used to make truth revelation a weakly
dominant strategy. GVA involves computation of n+1
winner determination problems for every combinatorial
auction to calculate the agent payments. In addition to

the computational complexity, the unique pricing mech-
anism used by the CCA protocol to ensure real-time re-
sponse precludes direct adaptation of GVA mechanisms.
To understand the effect of strategic bidding, a pre-

liminary analysis can be conducted by formulating some
simple strategic bidding formulations and conducting
simulation experiments. For example, Walsh et al. [41]
have analyzed the effects of strategic bidding on a com-
binatorial auction based supply chain formation algo-
rithm. It is important to note that the difficulty of analyz-
ing the effects of strategic bidding actually undermines
the benefits of lying about true utilities for users. An
added advantage with MASM is that there is disengage-
ment between the users and the actual sensor network.
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Fig. 11. Time taken for communication for a sample run vs. schedule number for a sample run with tatonnement _¿ = 0.

Though the users use the sensor network, the various
network parameters including the prices of individual
resources (which might indicate network bottlenecks)
and the actual network parameters, like position of sen-
sors, etc. is invisible to the individual user. Hence, the
threat presented by malicious entities that have clan-
destinely gained access to use the sensor network is
minimal. To analyze the effect of strategic bidding, it
can be assumed that agents play Bayes-Nash strategies
[19]. However, calculation of Bayes-Nash equilibria is
difficult, except for the simplest of markets. An easier
method for analyzing market behavior is to devise a
reasonable strategic bidding policy for users and study
resulting market behavior.
A simple strategic bidding policy for MASM users

is to overstate their task utilities. To understand the logic
behind this policy, the pricing policy of CCA should be
considered. If a MASM user bids a price P for a partic-
ular task, the price it has to pay for resources allocated
to its bid is not directly based on P. Instead, for any
resource bundle allocated to the task during resource
allocation, the user usually pays only the sum of the
prices of the resources comprising the resource bundle
(see round termination step in CCA). Therefore, a user
that overstates its utility has the advantage of getting
preferential treatment during resource allocation, while
not having to pay any additional value for resources
as compared to honest users. To analyze the impact of
strategic bidding, experiments were conducted where a
certain number of agents overstated their utility by a
factor, k. The number of targets successfully destroyed
by the users during the simulation experiment reflects
the global performance of the market-based resource al-
location. An individual user’s performance is measured
by its surplus defined as the difference between the to-

TABLE IV
Market Performance with Strategic Agent Behavior

Number of strategic agents 0 2
Honest consumer surplus 1.22 ¡:012
Strategic consumer surplus NA 2.3

tal utility it obtained from destroying the targets and the
total price it paid to SM for buying resources during the
simulation.
Two sets of experiments were conducted. In the first

set of experiments, all the users bid honestly. In the
second set of experiments, two out of the five users
overstated their utilities by a factor of two. The average
surplus achieved by the honest and strategic agents
is shown in Table IV. As expected, strategic agents
benefited from overstating their bid prices and their
average surplus increased from 1.22 to 2.3. The average
surplus of the honest agents has decreased from 1.22 to
¡0:012 as a result of strategic bidding.
As shown by the preliminary analysis, CCA proto-

col encourages strategic behavior in a non-cooperative
environment. However, the benefits of strategic bidding
can be mitigated by using surplus sharing mechanisms
where the SM charges the users a fixed percentage of
their surplus on each task bid. For example, a variant of
CCA, CCA-SS (Combination Auction Algorithm with
Surplus Sharing) has been implemented where users are
levied an additional charge of fifty percent of their ex-
pected surplus as calculated from their task bids. Under
this mechanism, the overall surplus to the strategic agent
decreased to ¡1:83. That is, they fare worse than the
honest users.
Though surplus sharing provides an effective mech-

anism that works as a disincentive against overstating
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task utilities, detailed experimentation is required to an-
alyze the complete implications of strategic behavior for
some particular environment.

9. CONCLUSION

Market-based approaches provide a valuable frame-
work for designing systems that must consider com-
plex tradeoffs in their decision-making. Although much
work has been done on individual aspects of market-
based systems (e.g., auction algorithms, agent bidding
strategies, etc.), there is very little work on developing a
complete system in a complex real-world domain such
as sensor management. Therefore, one of our contribu-
tions is to assess the design implications and compo-
nents involved in building such a system. To address
the issues that in the past have prevented the use of
market algorithms use for sensor networks, we have de-
veloped techniques including auction mechanisms for
aligning scheduling with mission objectives, approxi-
mate techniques for handling computational complexity
(A-MASM), pricing mechanisms for enforcing resource
constraints and surplus sharing mechanisms to reduce
the impact of strategic behavior. We have also shown
the system’s efficiency in a simulation environment, by
comparing with a weighted information-theoretic sensor
manager. A crucial advantage of the proposed mech-
anism is its flexibility. The proposed mechanism can
be easily adapted to an alternate sensor network sce-
nario without much additional work by suitably creat-
ing QoS charts for relevant network tasks (see Fig. 2)
and by adapting price equations to reflect utilization of
the appropriate network resources (see Section 5). This
contrasts with the current approaches based on approx-
imate dynamic programming that are based on domain-
specific and cumbersome formulation.
We are currently working on implementing these

mechanisms using real-world sensor data. We are also
working on developing an alternate non-myopic sen-
sor management approach for comparison with MASM.
Two possible choices are i) Maximum marginal return
(MMR) [4] sensor management approach that is ex-
tended to incorporate non-myopic scheduling behavior
and ii) an approximate dynamic programming based ap-
proach, similar to [37, 43, 44], that can handle multi-
sensor, multi-task sensor management problems. In fu-
ture, we plan to extend our market-based approach to
smart dust environments, which do not have a cen-
tralized sensor manager. We also plan to extend our
infrastructure to more effectively allocate information
goods and develop a market-based situation assessment
component. Current auction algorithms are generally
designed to handle the allocation of tangible goods.
However, we must adapt these e-commerce algorithms
to deal with information goods in the sensor-fusion
domain. Information goods (e.g., observations/reports),

and the sensors/processes that generate them, may be
shared between agents to effectively complete compat-
ible tasks, where applicable. For example, if two users
are engaged in the same sub-goal, and want the same
information, then a single commodity can be commu-
nicated to both agents and will satisfy both of them.
We plan to make use of the current research in digital
auctions [10], but will need to apply it appropriately to
our domain.
We would also like to develop a market-based sit-

uation assessment component that learns valuable sit-
uation assessment cues from the market bids and price
information in the system. The situation assessment that
users perform typically relates only to their immedi-
ate surroundings and pertains to local information only.
A global perspective can be obtained by observing the
overall market trends in the sensor manager’s situation
assessment module. For example, a sudden increase in
the volume of bids from the users in one particular re-
gion of the environment could suggest an impending
enemy attack in that region. Current prices can convey
information about when resources are in high demand
and/or scarce. As part of this effort, collaborative filter-
ing approaches, similar to those used by Amazon [23],
could mine information from a combination of goal and
bid behaviors to detect strategic patterns. Eventually,
one could imagine a sensor management system that
recommends a new information product (e.g., a target
track) based on what previous users in similar situations
have selected.
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