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From the ISIF Vice President

for Publications
December 2009

We want YOUR papers for JAIF!

The Journal for Advances in Information Fusion
(JAIF), the flagship publication of ISIF, started in
2006 and this (eighth) issue completes its 4th year.
While JAIF is a free-access and no-fees-for-authors
on-line journal, hard copies of it were distributed as
part of the registration package at several FUSION
Conferences.

As indicated in a previous editorial, one of our
goals is to ensure the high standards of this flagship
publication, as appropriate for an archival publication
that is worth of this designation. JAIF is fortunate to
have as Founding Editor-in-Chief, W. Dale Blair, who
with his extensive experience as Editor-in-Chief of the
IEEE Transactions on Aerospace and Electronic Systems,
managed to put together the publication mechanism and
orchestrate, together with a dedicated Editorial Board
and referees, a reviewing process that is both thorough
and is completed (most of the time...) in a timely
manner. While the review process can be sometimes
painful (I am speaking from my own experience—when
I was at the receiving end of harsh reviewer comments)),
the final result is always a better paper that is worthy to
be archived.

However, there is another part that is needed: YOU,
the authors of good papers. Many of the papers pre-
sented at the annual FUSION conferences are suitable
for submission to JAIF. We approached the candidates
for the best paper awards and invited them to sub-
mit their papers to JAIF. Since all conference papers
can use revisions and improvements, we suggested to
the authors to put on their “best dress” for the jour-
nal submission. We would also like to invite other au-
thors of papers at FUSION to consider submission to
JAIF if they feel the paper is ready for an archival
publication.

I realize how difficult and time consuming such a
revision can be. I also realize that in non-academic
jobs such an endeavor can have negative repercussions.
Since in most cases this is not part of the “day job”,
it requires spending time that otherwise could be used
for family, recreation, or other purposes. Furthermore,
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speaking from my own personal experience (as well I want to take this opportunity to thank the entire
as actual events that occurred to colleagues), there can Editorial Board (all volunteers) for their work and solicit
be other consequences, like having a boss who could additional volunteers for both editorial work as well as
develop a negative attitude towards the author because reviewers.

of this. Nevertheless, in the long run the talents and

perseverance will prevail, so such an endeavor is bound Yaakov Bar-Shalom
to bear fruits that that are not obvious when the author Vice President for Publications
“sweats it out”. International Society for Information Fusion
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A Generalized Framework
for Multi-Criteria Classifiers
with Automated Learning:
Application on FLIR Ship
Imagery

KHALED JABEUR
ADEL GUITOUNI

This paper reviews Multi-Criteria Classifiers (MCCs) or com-
monly multi-criteria classification methods. These methods have
many advantages including flexibility, the integration of human
judgments and prevention of black box syndrome. However, these
advantages come with a price: large number of parameters to be
setup. In particular, this paper focuses on Nominal Concordance/
Discordance-based MCCs (NCD-MCCs). A generalized framework
is proposed to synthesize the underlying computation algorithm for
each MCC. In order to address MCCs disadvantages, an Automated
Learning Method (ALM) based on Real-Coded Genetic Algorithm
(RCGA) is proposed to infer these parameters. The empirical re-
sults of some MCCs are compared with those obtained by other
classifiers (e.g. Bayes and Dempster-Shafer classifiers). A military
dataset of 2545 Forward Looking Infra-Red (FLIR) images repre-
senting eight different classes of ships is therefore used to test the
performance of these classifiers. In this paper, we argue the benefits

of cross-fertilization of MCCs and information fusion algorithms.
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1. INTRODUCTION

Supervised classification often consists in assign-
ing a set of entities (e.g. alternatives, images, projects,
subjects) into pre-defined and homogeneous categories.
Categories are known a priori either by defining pro-
files limit between them or by a set of typical profiles
(reference prototypes or elements) for each category.
Ordinal Classification (or Sorting) usually refers to an
order relationship between the categories, and nominal
classification otherwise. Recently, a variety of classifi-
cation methods—based on Artificial Intelligence (Al)
and Operations Research (OR) techniques—have been
proposed to solve classification problems [41]. Neural
Networks (NN), Machine Learning (ML), Rough Sets
(RS), Fuzzy Sets (FS) and Multi-Criteria Decision Anal-
ysis (MCDA) were used for the development and the
validation of these methods. This paper focuses on clas-
sification methods based on MCDA methodology.

In this paper we use Multi-Criteria Classifiers
(MCCs) to designate supervised classification methods
based on MCDA methodology. The most MCCs are
based on either outranking or multi-attribute utility
approaches. Roy and Moscarola [35], Masaglia and
Ostanello [24], Yu [42], Perny [31], Belacel [3] and
Henriet [15] have proposed MCCs based on the out-
ranking approach, while M.H.DIS (Multi-group Hi-
erarchical DIScrimination) method [40] and UTADIS
(UTilités Additives DIScriminantes) method and its
variants ([21], [39], [10]) are typical methods based on
multi-attribute utility theory. This paper focuses essen-
tially on outranking-based nominal MCCs where there
is no order relationship between the categories. These
MCC:s are based on concordance/discordance concepts.

Limitation of outranking-based methods is due to the
large number of parameters (e.g. discrimination thresh-
olds, weights, reference alternatives, etc.) required. In
MCDA context, these parameters are generally elicited
using interactive approaches from the decision-maker
to articulate his relational preference system: it’s the
Direct Elicitation Approach (DEA). However, it is diffi-
cult for the decision-maker to provide such information
in a coherent way when the number of these parameters
is considerable. Indirect Elicitation Approach (IEA) or
Automatic Learning Methods (ALMs) might be the so-
lution to elicit automatically the values of these param-
eters based on a training set of pre-assigned examples.
These two elicitation approaches will be discussed in
Section 3.

This paper makes three main contributions. First,
we propose a generalized framework for Nominal
Concordance/Discordance-based MCC (NCD-based
MCCs). Second, we develop an ALM based on Real-
Coded Genetic Algorithm (RCGA) to estimate the pa-
rameters of NCD-based MCCs. Then we illustrate and
assess the performance of the proposed approach on
selected NCD-based MCCs. Even if the purpose of the
comparison might be seen limited, we present exper-
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Fig. 1. NCD-based MCCs concepts.

imental results by comparing NCD-based MCCs with
other classifiers such as Bayes and Dempster-Shafer
classifiers. A dataset of 2545 Forward Looking Infra-
Red (FLIR) images representing eight different classes
of ships is used for the empirical validation.

This paper is organized as follows. Section 2 pre-
sents a generalized framework for NCD-based MCCs.
Section 3 proposes an ALM based on RCGA to infer
the parameters of the NCD-based MCCs. Section 4
presents a brief description of the dataset used to test
the performance of the different classifiers. In Section 5,
computational results of some NCD-based MCCs are
presented and compared with those obtained by other
classifiers. Finally, conclusions, discussions and future
works are presented in Section 6.

2. A GENERALIZED FRAMEWORK FOR NCD-BASED

MCCs

In our opinion, there are at least three major advan-
tages which distinguish MCCs from the other classi-
fiers:

1. MCCs are designed to incorporate objective and sub-
jective information and deal “correctly” with quan-
titative and qualitative data. In fact, it is possible to
take into account human judgments and compute in-
formation obtained on conflicting and heterogeneous
dimensions [10]. Therefore, these methods are es-
sential when it is important to explicitly integrate

76

human judgments (decision-maker’s preferences), to
consider many conflicting criteria, and to deal with
data obtained on heterogeneous measurement scales
(see Fig. 1);

. MCCs allow pairwise comparisons between the ob-
jects to be assigned and the profiles (or reference ele-
ments). The pairwise comparison might be seen as a
projection isomorphism for each pair of alternatives
from the attributes spaces to the preferences spaces.
The result of the comparison is a valued function
between each pair of alternatives/elements. The ag-
gregation and exploitation of these valued functions
avoid computing distance measures obtained on het-
erogeneous measurement scales (as in K-NN classi-
fier) and allow handling qualitative and/or quantita-
tive information;

. MCCs avoid the black box situation: it is easy to
explain the classification result in natural language.

The advantages or strengths of MCCs could also be
seen as weaknesses if subjective human judgments are
to be avoided and the information is not heterogeneous
and highly correlated. Moreover, these methods require
a quite large set of parameters to be determined, which
could also be seen as a strength (offering many degrees
of freedom). To overcome these limitations, an IEA may
be used to infer automatically these parameters. To our
knowledge, there exist in the literature four NCD-based
MCCs: (i) TRI-NOMEC classifier [23], (i) PROAFTN
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Fig. 2. Indifference relation principle.

classifier [3], (iii)) PIP and K-PIP classifiers [15] and
(iv) FBI classifier [31].! The concordance and discor-
dance concepts were introduced by Bernard Roy [32]
when he defined the outranking relation in ELECTRE
I method. Indeed, according to many authors ([7], [33],
[38]), an outranking relationship can be defined as fol-
lows: an alternative a; outranks an alternative a,, if and
only if there are enough arguments to decide that a; is at
least as good as a, (concordance concept) while there is
no essential reason to refute that statement (discordance
concept). Recently, Perny [31], Belacel [3] and Henriet
[15] extended the above definition by developing an in-
difference relation measuring the similarity between two
alternatives a; and a,. The main idea of this relation is
to compare the strength of the arguments supporting a
proposition to the strength of the arguments opposing
the same proposition (see Fig. 2). In fact, it’s on the
basis of this relation that NCD-based MCCs assign an
object (project, alternative, image, etc.) into a predefined
category. Hence, according to the NCD-based MCCs,
assigning an object consists in computing its member-
ship degree into a predefined category. Membership de-
gree is an aggregate of the evaluation of the indifference
between the object to be assigned and each prototype
characterizing each category. Each indifference evalua-
tion considers parameters such as discrimination thresh-
olds and criteria/attributes weights.
Let’s consider the following notations:

—Let A = {a,};_, ,, be aset of m objects to be assigned;
—Let C ={C"},_,,  be a set of H nominal and
predefined categories or classes. Each category C" is
characterized by a set of profiles or reference objects
B" = {b!},_,.;,- The set of all profiles is noted by

B = UZI:lBh?

'Figueira er al. [11] have recently proposed an extension of
PROMETHEE method for classification purposes. This method will
not be considered in this paper because, according to these authors,
some improvements must be done to finalize it.

—Let F ={g;},_,_, be a set of n criteria. We assume
that the criteria are to be maximized (transforming a
minimization to a maximization is a straight forward).
To each criterion g;, we assign a weight wj? (=
1...n) which expresses its relative importance in the
category C";

—Each object g; (respectively profile b}) is evaluated on
all criteria by the vector: a;, = (g,(a,),8,(a;),....8,(a;))
(respectively by bl = (g,(b!),g,(b!),....g,(b1))).

Most NCD-based MCCs compute for each object a;

a fuzzy number called p(a;,C h) € [0, 1], which measures

the membership degree of g, to a given category or class

C". Hence, if j(a;,C") = 1 we say that g; belongs per-

fectly to the category C”. However, when p(a;,C") = 0,

we say that a; has no common ground with the category

C". Fig. 1 presents a functioning schema of NCD-based

MCC:s. Fig. 3 shows a generalized framework used by

NCD-based MCCs to compute p(a;,C").

The membership degree of an object g; to a cate-
gory C" is computed using the concordance and dis-
cordance concepts. A local concordance C j(ai,b,’j) and

discordance D ; (a;, b/?) indices are computed for each ob-
ject a; to be assigned, for each criterion g; (j =1...n)

and for each profile b,’z (k=1...L,) characteristic of
C".2 For instance, PROAFTN method [3] proposes lin-
ear functions—similar to those used in ELECTRE III
method [34]—for the local concordance and discor-
dance indices (see Fig. 4). In TRINOMFC method [23],
only local concordance indices are computed using cri-
teria functions similar to those used in PROMETHEE
method [6]. According to [23], it’s not appropriate to
consider discordance concept when dealing with nomi-
nal classification. The computation of local concordance
and discordance indices of all NCD-based MCCs are
summarised in Tables I and II (see pages 80 and 81).
The computation of local concordance and discor-
dance indices is based on the following types of thresh-
olds: indifference, preference and veto thresholds. The
indifference (qj) and the preference (pj) thresholds
are used to nuance the distinction between two ob-
jects into weak and strong preference relationships. The
veto threshold (vj) represents the limit of the toler-
ance for partial compensation between evaluations. In
other word, if the evaluation of a, is at least v; differ-
ent than the evaluation of a; on criterion g;, then we
may refuse/confirm some propositions about ¢; and a,
without regarding their evaluations on the other crite-
ria. Note that these thresholds are established: i) for
each criterion in FBI classifier, ii) for each criterion
and category in PIP, K-PIP and TRI-NOMFC classi-
fiers and iii) for each criterion, category and profile
in PROAFTN classifier. The aggregation operators 7
and 7, are used in order to compute respectively the
global concordance and discordance indices (see Ta-

2In PROAFTN classifier [3] each profile b,i’ is defined, for each cri-
terion g i by an interval [S} (b,’j),Sj?(b,’})] which is an exception with
regards the other MCCs.
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Fig. 3. Generalized framework of NCD-based MCCs to compute u(a;,C my,

bles I and II). For all NCD-based MCCs, the opera-
tor n. (respectively 7,) is often equal to the weighted
sum (respectively weighted geometric mean). The com-
putation of these global indices takes into account the
criteria weights. For PROAFTN, TRI-NOMFC, PIP and
K-PIP classifiers these weights are determined for each
criterion and category whereas for FBI classifier these
weights are computed only for each criterion.

The similarity index SI for each pair of objects
(a;,b") is computed as shown in Table III (see page
81). In general, two kinds of aggregation operator

78

~ are used to combine the quantities C(ai,b,’(’) and
(1 —D(a;,bM): the Product and the Minimum. Since
for TRI-NOMEC classifier there is no discordance, the
global concordance index is equal to the similarity in-
dex; i.e. C(a;,bl) = SI(ai,b,’j). The aggregation opera-
tor ¢y computes the membership degree u(a;,C") of
a; to C" as shown in Table IV (see page 82). Fi-
nally, based on these membership degrees fi(a;,C"), Ta-
ble V (see page 82) presents the decision rules used
by NCD-based MCCs to assign an object g; to a cate-
gory C.
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Three interesting elements should be considered
from Tables IV and V. The first one is that K-PIP
classifier constitutes a generalization of the fuzzy K-
NN algorithm [22] where neighbouring is defined by
the similarity index SI. Thus, according to this classi-
fier an object a; has likelihood to be assigned to cat-
egory C" if and only if at least one of its profiles b
(k=1...L,) belongs to the set of the K more similar
profiles to a; in B = |Jj_, B". Secondly, TRI-NOMFC
classifier [23] has introduced weight coefficients w/(b})
for each profile. Indeed, we believe that the idea of
assigning weights to profiles is very interesting since
it is possible that, in the same category, a profile b,’jl
is more representative of the category C” than another
profile b,ilz. Finally, the third element is related to the
decision rule used in TRI-NOMEFC classifier [23] to as-
sign an object g; to a category C". In fact, the advantage
of this rule, also known as Hurwitz rule, is to com-
bine an optimistic (MaxiMax) and a pessimistic (Max-
iMin) behaviour in order to provide a more nuanced
behaviour in which the optimism level is controlled
by the parameter « € [0,1]; When « =1 (respectively
«a = 0) Hurwitz rule is equivalent to the optimistic rule
(MaxiMax) (respectively to the pessimistic rule (Max-
iMin)).

3. ELICITATION OF NCD-BASED MCCs PARAMETERS

According to [41], any multiple criteria classifica-
tion methodology faces two issues: (i) The specifica-
tion of the aggregation model to be used, and (ii) the
assessment of the parameters of the model. In the above
section the first issue is discussed. In this section, we
propose first a mathematical model that provides the
optimal parameters values of the aggregation model.

A GENERALIZED FRAMEWORK FOR MULTI-CRITERIA CLASSIFIERS WITH AUTOMATED LEARNING

Since, as it will be shown later, the proposed mathemat-
ical model can not be solved using classical optimiza-
tion methods, an Automatic Learning Method (ALM)
based on Real-Coded Genetic Algorithm (RCGA) is
then proposed to approximate the optimal solution of
this model and consequently to infer the parameters val-
ues of NCD-based MCCs.

3.1. A Mathematical Model to Provide the Optimal
Values of NCD-Based MCC Parameters

It is essential to estimate the best values for aggre-
gation model’s parameters (e.g. criteria weights, substi-
tution ratios, indifference, preference and veto thresh-
olds). In MCDA literature, two approaches are proposed
to elicit the parameters of MCCs: the Direct Elicitation
Approach (DEA) and the Indirect Elicitation Approach
(IEA). In the first approach, through an interactive ques-
tioning, the decision-maker provides the values of these
parameters. The aim of this interaction is to ensure that
the provided parameters values represent properly the
decision-maker judgments and preference system (value
or expertise). However, in many other decision-making
situations, the determination of the values of these pa-
rameters represents a difficult task due to many reasons
such as the size of the problem (i.e. high number of
parameters), the imprecise nature of the data, the con-
fusing meaning of the parameters, the analyst ability
to perform efficiently the elicitation process, etc. Thus,
the DEA is often time-consuming and consequently it
may discourage the decision-maker from participating.
To overcome the drawbacks of the DEA, the IEA em-
ploys ALMs to infer automatically the values of these
parameters based on examples (or prototypes) known
as training objects (part of a training set). In MCDA
literature, this second approach is called Preference De-
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TABLE 1
Local and Global Concordance Indices

Method

Formula

PIP and K-PIP
classifiers [15]

C(a,b}) =3 W' xC,(a,,b) or C(a,,b})= Min C,(a,b}) , where

(0 if g(a)-g,(b)<-p!

1 b4
P

1 ;
—+—sIn *—q:f
if |g(a)-g,0))|<q}

2727 | o}
= o
p—

1
] ]
0 otherwise

h h
pi+a) .
Ig;(a.)—g,(bfh—’z—i] if -p;<gla)-g,b)<-q]

C;(ar!b:)=‘

L e
———s5in
2 2

L]
J

Ig,(a,)—g,(b:)#"“—;ﬂ if ¢'<g(a)-g,B)<p

! !

w) =1 and g} and p] are respectively the indifference and the preference thresholds.
7=l

C(a,,b!) =Y W' xC,(a,,b!), where C,(a,,b) = Min{C; (a,,b!), C} (a,,b})},
Jul

p; (b)) - Min{S' (b))~ g, (a,), p; (b))}

C; (aa’b:) e —rh 3 1 h L
PROAFTN dlassifier P} (1)~ MiniS;(6})~g,(a,). 0f
[31] “(b!) - Mimg, —S83(b), pr(b!
C!(a,b)= P, ) i '"{*?f(“f) i ;} ;"f( ‘)}, g,(b}) s defined by the interval [S7(b!), S2(8})],
P} (6})~ Minig,(a)) - S} (5}), 0]
Zw:' =1 and p;(b})and p; (b)) are two preference thresholds.
=1
C(a,,b;)= wa xC,(a,,b;), where C (a,,b;) = Mf"{s,- (a,,b)), S,(8;,a, }} ’
FBI classifier [31 - Mi bi)- ; -
= S (a,b})= ] l_n{g’{ i} AC) p’}, Zw: =1 and ¢,and p, are respectively the indifference and
p,—Minig, (b)) -g,(a).p,}' &
the preference thresholds.
TRINOMEC C(a,,b]) = Z]w;’ xC,(a,,b;), where C (a,,b})=F, (g, (a)—g, (b)) and F, isan adaptation of some
classifier [23] ~

PROMETHEE criterion functions and ) w/ =1.

Jj=1

segregation Approach (PDA) (e.g. [4], [8], [9], [10] and
[36]). In artificial intelligence, the IEA is known as Ma-
chine Learning (ML) (e.g. [2] and [28]).

Indeed, the mathematical model that provides the
optimal values of NCD-based MCCs parameters is pre-
sented as follows:

H
I = ZZ(M,»;,(PpPzwn,PX) - 7751)2

Minimize
nep a€Z h=1
(A): ’ ,
Subject to Structural Constraints (SC)
Decision-Maker’s Constraints (DMC)
where
i 1 if aecCh
= . > Hip Eﬂ(ai’ch)’ P={p}i_i
0 otherwise
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is the parameters set and Z is the training set (i.e. a set of
objects which assignments is known in advance).’ T is
the objective function of cumulative classification errors
and should be minimised, i.e. the difference between
the estimated membership degree of a; (i.e. u(ai,Ch))
obtained by applying a NCD-based MCC and the true
membership degree 0" of a; given a priori in the training
set Z. Two types of constraints are considered in A:
Structural Constraints (SC) and Decision-Maker’s Con-
strains (DMC). In general, the first type of constrains
are articulated in function of the characteristics of the
parameters and their mutual relationship (e.g. the sum

3The training set is obtained by partitioning the entire dataset in two
subsets: the first one, called training subset, is used to elicit the values
of the parameters and the second subset, called test subset, is used to
evaluate the performance of the MCCs.
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TABLE II
Local and Global Discordance Indices

Method

Formula

J=

PIP and K-PIP s

classifiers [15] D,(a,b})=40 if |g,(a)-g,(b})

Vi~V

1 otherwise

L

D(ﬂubf)=l-Iﬁ_[(l-D;(anbf)) or D(a,b;) = Max D,(a,,b;) , where
1 if g(a)-g,G)s-v,

1. L. T V.-,, +v;‘k § + h -
———Sm[ ——— ][g}-(a.)—g,{bfﬁ—‘ ] if -v,<ga)-g,b)<-v,
2 2 vV, —Vv 2

=V, ’

+ v
%%sin[ = ][g,(a,.)—gj(b:}+”’*—2"‘“] I vi<g,(a)-g By

v, and "’:-;, are respectively two veto thresholds.

J=

" W;
D(a,b!)=1-[]{1-D,(a,,5!)) where D,(a,,b!) = Max{D; (a,,b}), D} (a,,b!)}

g,(a) - Max{g (a), S\(6}) - p; (b))}

Di(a,b)= Min{l, Max{(],

D;(a,b}) ==+ . '
PROAFTN classifier [3] p; (b))~ MaxiS)(b!) - g,(a,), v, (B
- Minlg (a), S*(b!)+ p’ (b} -
Dj(a,,b})= gi{a;} m{g}(a;) k‘{ )+ P (+ )1. whereZw: =1, p;(b/)and p; (b})are two
- p; (b)) - Max{-S; (b)) + g,(a), v} (b))} 4
preference thresholds and v; (b;) and v} (b,') are two veto thresholds.
D,(a,b}) =1~ [(1-D!(a,b}) where D!(a,,b})= Max{D? (a,,b), D (8',a)},
J=
FBI classifier [31] g,(b))-g,(a)-p,

v,=p,
the degree of synergy between criteria and p; and v , are respectively the preference and the veto thresholds.

}} , E [l,n] is a technical parameter introduced to modify

TRI-NOMFC classifier

[23] No discordance

TABLE III
Similarity Index Computation

Method

Formula

PIP and K-PIP classifiers [15]

- SI(a,b!)=C(a,b!)x(1- D(a,,b"))
- SI(a,.b!)= Min(C(a,,b/),1- D(a,.b"))

PROAFTN classifier [3] =

SI(a,,b!) = C(a,,b!)x(1- D(a,,b"))

FBI classifier [31]

SI(a,,b!") = Min(C(a,,b]"),1- D(a,,b"))

TRI-NOMFC classifier [23] B

SI(a,,b) = C(a,,b') since there is no discordance.

of the criteria weights for each category is equal to 1,
i.e. Z;;l wj-’ = 1; the indifference threshold is smaller or
equal than the preference threshold for each criterion,
ie. ¢} <p/(j =1...n)). The second group of constrains
expresses the preferences of decision-maker with re-
spect to the NCD-based MCC parameters. For instance,
the decision-maker may specify, for a particular cate-
gory, that >, wh>3", wh where I,/ C {1...n} and
InJ=0.

It’s noteworthy that Belacel [3] and Henriet [15]
have proposed similar mathematical models to infer the
parameters values of their respective NCD-based MCC.
When the values of the different thresholds are known,
Henriet [15] has shown that for specific configurations
of global concordance, discordance and similarity in-
dices, the mathematical model (A) can be easily relaxed
into linear program and then solved by classical opti-
mization methods. In addition, Henriet [15] has pro-
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TABLE IV
Membership Degree Computation

Method Formula
, Max kSI(a:.,bf) if Ve(a)nB"£0
pIp: f(a,,C") = {teVx(ans 7
0 otherwise
1= (1-SI(a,,b})) if Vi(a)NB"#0
PIP and K-PIP K-p1p: y(a,,C") = bieVy (a,)nB" ,
classifiers [15] i
0 otherwise
where B”" is the profile set of the category C", Vi (a,)is the set of the K more indifferent
H
(or similar) profiles to @, in B = UB;' .
h=1
ER]OAFrN classifier U(a,, C”) = M;ax Sl(a,, bf)
FBI classifier [31] Ma,C"= Max SI (a,,b])
M(a,C")= Min SI(a,,b;)
p(a,,C*)= Max SI(a,b})
TRI-NOMFC L,
classifier [23] H(a,,C") = w (b})xSI(a,b}') where W] (b}') is the likelinood degree of object
k=1
L
by and Y w} (b)) =1.
k=1
TABLE V
Decision Rules to Assign a Given Object
Method Decision rule

PIP and K-PIP
classifiers [15]

= a{ € C- At )u{ahct) = A{a‘)“ ﬂ(a‘-.,Ch)

PROAFTN classifier [3] i

ae C o ua,C)= M:a.\‘ u(a,,C")

FBI classifier [31]

aeC o ua,C)= Max u(a,,C")

TRI-NOMFC classifier
[23]

a‘x(
aeC & pa,C")= Max

de [0, l] is a coefficient of relative optimism.

a,€ C" & p(a,C")= Max u(a,C")

Max { SI(a,b! ]
a-e{l..a.-.}{ (b0} where
h

+(1—a)><k5.{/ﬁﬂ}{ SI(a,, b))}

posed two methods based respectively on K-Means and
Genetic algorithms to identify the profiles which char-
acterize each category. In this same perspective, Belacel
et al. [4] have presented a methodology to infer the
parameters of PROAFTN classifier. In their methodol-
ogy, these authors have made some simplifications: only
concordance concept is considered, the criteria weights

are assumed to be equal and each category is character-
ized by only one profile. Hence, the parameters that are
inferred in their learning process are: the upper and the
lower bounds of the interval [S} (b,’c‘),SjZ(b,il)] and the two
preference thresholds p]?(b,i’) and p7(b}). Belacel et al.
[4] solved a mathematical model similar to (A) by us-
ing a training set and the Reduced Variable Neighbour-
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hood Search (RVNS) meta-heuristic recently proposed
by [29]. Belacel et al. [4] have reported that the Average
Identification Rate (AIR)* of PROAFTN is, in general,
better than the AIR of other classification methods re-
ported on the same datasets.

Since the objective function I' of (A) is neither con-
vex nor concave and may have many local optima,
it will be difficult to find a global optimum for (A).
Therefore, it’s not possible to use classical optimization
methods (e.g. gradient algorithms and interior-point al-
gorithms) to solve (A). To overcome this difficulty, an
ALM based on RCGA is proposed to approximate the
optimal solution of (A) and consequently to infer the
parameters values of NCD-based MCCs.

An ALM Based on RCCA to Infer the Values of
NCD-Based MCC Parameters

3.2.

Genetic Algorithms (GAs) are stochastic algorithms
based on the mechanism of the genetic evolution (se-
lection, cross-over and mutation) to solve complex and
large optimization problems. GAs were initially intro-
duced by John Holland [19], but they were popular-
ized thanks to the book of Goldberg [12]. The main
idea of GAs is to start with an initial population of po-
tential solutions (or chromosomes) arbitrarily selected.
Then, evaluate the relative performance of each solution
through a fitness function. Then, on the basis of so-
Iutions performances, generate a new population using
three evolutionary operators: selection, crossover and
mutation. The selection operator identifies both the rel-
atively “good” solutions that will be used to generate
the new population and the relatively “bad” solutions
that will be removed from the current population. The
crossover operator swaps the structures of two “parent
solutions” in order to form two similar “offspring so-
lutions” that will be involved in the new population.
The mutation operator alters arbitrarily the features of
one or more solutions in order to increase the structural
variability of the population. The above three opera-
tors are repeated until a stopping condition is met. A
simplified structure of genetic algorithm is shown in
Fig. 5.

The application fields of GAs are considerable. For
instance, these algorithms are used in:

—Optimization, when the functions to optimize are
complex, irregular and with high dimensionality;

—Physics, as optimization methods for real problems
(e.g. structures optimization);

—Artificial intelligence, where the adaptive abilities of
GAs are exploited;

—Economy, to model the behaviour of agents for in-
stance;

—Image recognition, for example to classify the un-
known objects to pre-defined categories;

4This is a performance measure of a classifier. It’s defined by the
following ratio: the number of objects that are correctly classified
divided by the total number of objects.

Begin

= =0

= Initialize Population (1)

= Evaluate Population (1)

While (not stopping condition) do
w r=r+1
= Select Population (t) from Population (t —1)
* Recombine (Crossover and Mutation) Population (r)
= Evaluate Population (1)

End do
End

Fig. 5. A simplified architecture of a GA.

—Graph and game theories, to solve for example the
Traveling Salesman Problem (TSP) or some problems
in repetitive and differential games;

The success of GAs is mainly due to their ability to
exploit vast unknown search spaces in order to orient
subsequent searches into useful subspaces. This feature
makes GAs more efficient and effective search tech-
nique to explore large, complex, and poorly understood
search spaces, where classical search tolls are inappro-
priate. Since many years, binary coded solutions (or
chromosomes) have dominated GAs research. However,
Michalewicz [25] has showed that this kind of represen-
tation for optimization problems with continuous vari-
ables may involves at least three drawbacks:

o It’s difficult to use binary coding for optimization
problems with high dimension and numerical preci-
sion. For instance, with 100 variables belonging to
the interval [—500,500] and a precision of 6 decimal
numbers, the size of a binary coded solution is 3000.
This generates a search space of about 10'°%, For this
kind of binary coded problems GAs will have weak
performance [27];

e The Hamming® distance between two neighborhood
real numbers may be large in binary coding. For ex-
ample, the Hamming distance between 0111 (which
is equal to 7) and 1000 (which equal to 8), is equal
to 4;

e When the crossover and the mutation operators are
applied on binary coded continuous chromosomes
they may generate new infeasible solutions.

The above drawbacks of the binary coding have mo-
tivated the development of other coding types. Real cod-
ing is particularly natural when optimization problems
involve real variables. GAs with this type of coding
are called real-coded GAs (RCGAs) [18]. In the recent
years, RCGAs have been used to solve various continu-

5The Hamming distance between two binary coded strings is defined
as the number of bits which are different in the two strings.
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ous optimization problems (e.g. [26], [16], [17], [1]). In
RCGAs, each solution (or chromosome) is treated as a
vector of real numbers. Since the conventional crossover
and mutation operators for binary coding are not appli-
cable for real coding, many other adapted operators are
proposed in the literature for real coding [18].

In this work, RCGAs will be used to infer the
parameters of the NCD-Based MCCs since all of them
are real numbers (e.g. thresholds, weights, etc.). To
implement the RCGA, some technical choices have
been made on its parameters (e.g. selection methods,
crossover and mutation operators, etc). These choices
will be specified in Section 5. In next section, we briefly
describe the military dataset that will be used to test the
performance of the different classifiers.

4. MILITARY DATASET DESCRIPTION

The military dataset that will be used in this work
includes 2545 Forward Looking Infra-Red (FLIR) im-
ages belonging to eight different classes of ships. These
images were provided by the U.S. Naval Weapons Cen-
ter and Ford Aerospace Corporation. Typical silhouettes
of the best image of each class and other related infor-
mation about classes are listed in Table VI (see page
85).

Based on these 2545 FLIR images, Park and Sklan-
sky [30] proposed to extract 11 features® (or attributes/
criteria). These attributes are obtained as follows:

e The first seven (7) attributes are represented by Hu’s
[20] moments m;. These moments are invariant un-
der scaling (different zoom factors), rotation (differ-
ent look angles) and translation (silhouette not nec-
essarily centered). The moments m; are computed by
using the second and the third order moment formula,
let:

P = Y =X =",
(x,y)eS
where (n + m) is the moment order; x (respectively y)
is the horizontal (respectively the vertical) coordinates
in the silhouette S; x and y are the coordinates of
the centroid of S. For instance, the first four (among
the seven attributes) Hu’s [20] invariant moments
(i =1...4) are given as follows:

—g, =my =r/B, where r = /[,y + 15, the radius of
gyration and B is the distance between the camera
and the ship.

_ (g — pop)® + 43

_g2 = m2 r4

I 3p12)* + Bpigg — p130)
—83=m3 = ’,6

_ o (pge + f12)* + (g + p130)°
8y =My = 70

A feature is an abstraction of the raw data in order to represent the
original information.

The seven Hu’s [20] invariant moments are noted
by g, =m; for i =1...7. It's worth noting that the
weakness of invariant features is that they contain
only information that deals with the general shape
of the ship and thereby they represent poorly the
other details of the observed object. To overcome this
disadvantage, Hu [20] proposed four other attributes
which provide more information details about ship;

e The last four (4) attributes represent the parameters
of an Auto Regressive (AR) Model. They were ex-
tracted by fitting an AR model to one-dimensional
sequence which represents the projection of a ship
image onto horizontal axis. Let 7(i),i = 1...N, denote
the sequence of the projected ship image sampled at
N equally spaced points. Based on these sequences,
an AR model is defined recursively by:

r(i) = Zﬂjr(i — ) + o+ /Be(i).
j=1

The above model expresses the projection r; (i =
1...N) as a linear combination of the previous pro-
jections (i —j) (j =1...m),” plus a bias o and the
error (i) associated with the model. The parameters
are estimated by a least square fit of the model to the
gne—dimensional sequence r(1),7(2),...,r(N). Thus, if
0, & and ﬂA denote the least squares estimates of 6, «
and g respectively, the four (4) AR parameters (m = 3,
N = 30) are presented as follows:

— g =0,i=1..3

(0%

—811 = %

Park and Sklansky [30] have shown that all AR pa-
rameters are invariant to rotation, translation and scal-
ing, so that they may be used as features for classifica-
tion purpose.

5. COMPUTATIONAL RESULTS

Only two NCD-based MCCs are implemented in
this work: PROAFTN classifier [3] and K-PIP classifier
[15]. This choice is justified by the two following facts.
The first one is that K-PIP classifier is an enhanced
version of the FBI classifier [31] (see [5]). Second, since
we want to experiment the effects of both concordance
and discordance concepts on classification results, TRI-
NOMEC classifier [23] is removed from our list.

In the ALM proposed in this paper, only thresholds
will be estimated for both PROAFTN and K-PIP clas-
sifiers:

—For PROAFTN classifier [3], we consider the upper
and the lower bounds of the interval [S}(b}),S7(b)],

the two preference thresholds p; (b and P; (b1 and

"Here m denotes the number of weight parameters.
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TABLE VI
Military Dataset Description

Class |  Class of ship N:I;‘ah;;:f Typical silhouette
1 Destroyer (D) 340
2 Container (CO) 455
3 Civilian Freighter (CF) 186
4 Replgl}l:li'::'lign??:\OR) 490
s | lnarsmer | g
6 Frigate (F) 279
7 Cruiser (CR) 239 _
8 GuidD:dStlr-‘?inge“Ei&M) 208 -

the two veto thresholds v;(b,}(’) and v} (by) for j =
1...11,h=1...8and k=1...L;

—For K-PIP classifier® [15], we infer the indifference
threshold ¢”, the preference threshold p” and finally
the two veto thresholds Vin and vj+h forj=1...11 and
h=1...8.

It’s obvious that the dimensionality (or the num-
ber of parameters to infer) of the ALM for the above
two classifiers is not the same. For instance, in K-PIP
classifier there is only 352 parameters (4 x 11 x 8)
to estimate while in PROAFTN classifier there is
5280 parameters (6 x 11 x 8 x 10) to estimate if we

8In this computational experiment, the number K of K-PIP classifier
(see Table 1V) is fixed to 5.
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assume that each category is represented by only 10
profiles.

Since the criteria weights are not included in the
ALM, they are estimated by the Entropy method [43].
Hence, the more the criterion discriminates between
images the more it will be important. In the other
hand, the profiles of each category are identified by
using an improved version of K-Means algorithm.’
The number of profiles in each category is deter-
mined by a percentage of the total number of ob-
jects in this category. This percentage varies from
1% to 10%. Many others technical choices have been
made to implement the RCGA on which is based the

%In this improved version of K-means algorithm, we remove each
profile that forms an empty group.
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ALM:

—Four selection methods are implemented: (1) Rou-
lette Wheel Selection (RWS), (2) Stochastic Remain-
der Without Replacement Selection (SRWRS), (3)
Linear Rank based Selection (LRS) and (4) Tourna-
ment Selection (TS)!?;

—Five crossover operators are implemented: (1) Flat
Crossover (FC), (2) Arithmetical Crossover (AC),
(3) BLX-a Crossover (BLXC), (4) Extended Line
Crossover (ELC) and (5) Simple Crossover (SC)'?;

—Four mutation operators are implemented: (1) Ran-
dom Uniform Mutation (RUM), (2) Non Uniform
Mutation (NUM), (3) Muhlenbein Mutation (MM)
and (4) Gaussian Mutation (GM)'?;

—The crossover and mutation probabilities vary respec-
tively from 0.6 to 0.8 and from 0.05 to 0.1;

—The size of the generated populations varies from 30
to 80. Note that the initial population (or the set of
initial chromosomes) in generated at random. How-
ever, the random values of parameters that constitute
each chromosome are generated within specific inter-
vals. These intervals are determined based on some
statistical measures on the training dataset for each
class and each feature (some examples of these sta-
tistical measures are presented in Fig. 6). The aim of
these measures is to limit the variation domains of
the parameters and thereby to make easy the random
generation of the initial population;

—The maximum iteration number—fixed to 100—is
used as stopping criteria for the RCGA. In fact,
this number is not fixed at random. Indeed, by test-
ing many data splits, we have observed that—in
general—beyond 100 iterations the improvement of
the classification accuracy of the tested classifiers be-
comes insignificant regarding the computational ef-
fort (in time) provided to execute an additional itera-
tion;

—The method used for the evaluation of the classifica-
tion accuracy is a cross-validation method called re-
peated random sub-sampling validation. This tech-
nique randomly splits the initial dataset into training
and validation (or test) subsets. For each such split,
the classifier is retrained with the training subset and
validated (or tested) on the remaining subset. The re-
sults from each split are then averaged. Hence, ac-
cording to this cross-validation technique the military
dataset is randomly divided into two subsets: a train-
ing subset (which size varies from 50% to 70% of the
entire dataset) used to infer the values of NCD-based
MCC parameters and a test (or a validation) subset
(which size varies from 50% to 30% of the entire
dataset) used to evaluate the performance of the
different MCCs.!! Hence, for each MCC, 20 dif-

10To learn more about these evolutionary operators (crossover and
mutation) and methods (selection), we refer the reader to the work of
Herrera et al. [18].

"Note that each subdivision constitutes a partition of the entire
dataset, i.e. the union of the training subset and the test subset form
the entire dataset.

ferent random splits are generated to test its perfor-
mance.

All algorithms in the ALM—ie. the RCGA,
PROAFTN and K-PIP classifiers—are coded in Visual
Basic (VB) and tested on a Pentium IV processor with
2.8 GHz and 512 Mb of RAM. The developed soft-
ware involves some visualization and statistical tools
on the entire, training and test datasets. For instance,
Fig. 6 presents some statistical measures on the training
dataset for each class and each attribute (or feature).

It’s important to underline that two prior works ([37]
and [30]) have used the same military dataset to test
the performance of four different classifiers: Dempster-
Shafer-based (DS) classifier, Modified-Bayes-based
(MB) classifier, K-Nearest Neighbors (K-NN) classifier
and Neural Net (NN) classifier. The results, expressed
in Average Identification Rate (AIR), obtained by these
works are presented in Table VII.

Note that the above works, i.e. Valin et al. (2006)
and Park and Sklansky (1990), use the repeated random
sub-sampling cross-validation method to evaluate the
classification accuracy of all their tested classifiers.
Valin et al. (2006) generate many random splits by using
Monte-Carlo runs'* whereas Park and Sklansky (1990)
generate only one random split.

The application of PROAFTN and K-PIP classifiers
on the military dataset provides the results presented re-
spectively in Tables VIII and IX. An example of screen
showing the application of the ALM for K-PIP classi-
fier is presented in Fig. 7. By observing Tables VIII and
IX, we conclude that both PROAFTN and K-PIP NCD-
based MCCs give, in general, good results: the AIR of
FROAFTN is 86.78% and the AIR of K-PIP is 80.69%.
Hence, these two MCCs have an AIR better than those
of MB and DS classifiers but worse than those of K-NN
and NN classifiers.

Some other comments may be made on the classifi-
cation results of both PROAFTN and K-PIP classifiers:

—The AIRs of both classifiers on the training and test
datasets are stable since they are situated around their
average (small standard deviation for both classifiers
and datasets). We can also use the coefficient of
variation (CV = (0y1rs/Xars)%)"° as measure of the
robustness (or the stability) of the obtained results.
For instance, the CV of the PROAFTN AIRs for the
test dataset is equal to CV = 1.65/86.78 = 1.9% (see
Table VIII) which is small.

—The AIRs obtained on the training and the test
datasets are too different for PROAFTN classifier (av-
erage range 7.04%), while these AIRs are nearly the
same for K-PIP classifier (average range 2.53%). We
believe that this is due both to the high number of

14The number of splits is not specified by these authors.

15Note that more the CV is small the more the observations are homo-
geneous, i.e. that the observations are concentrated around the mean.
In this case we said that the mean is representative of its observations.
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Fig. 6. Descriptive statistical tools.

TABLE VII
The Different Results of Prior Works on the Same Military Dataset
Papers MB classifier DS classifier K-NN classifier NN classifier
Valin et a/. [37] 77.7% 74.5% 94.8%" 92.7%
Park and Sklansky [30] ok *hk 88.3%" *k%

12In this work, the K-NN classifier is applied with K = 3 and by using an Euclidean distance weighted
by the inverse of the inter-categories covariance matrix.

13In this work, the K-NN classifier is applied with a simple Euclidean distance. The value of K that
produces the highest AIR is chosen among the values of K between 1 and 17.

parameters in PROAFTN classifier and to the over-
specification (or over-fitting) problem. This problem
occurs when the parameters of the classifier became
much specific to the data set from which they are
assessed. Hence, when these parameters are used to
classify another data set, the classification results
obtained on this latter will be much different from
those obtained on the first data set. Since PROAFTN
classifier use more parameters than K-PIP classifier,
the over-specification problem will be more apparent
with the former classifier;

—According to our computational experiments, all se-
lection methods and evolutionary operators (mutation

and crossover) seems to perform equally. However,
we have observed that, in general, the AIRs of both
MCC:s increase when the population size increases;

—Some AIRs obtained by PROAFTN classifier for the

training dataset exceed the best AIR obtained by
all other classifiers (i.e. 94.8%). This is shows the
ability of this classifier to provide better results and
thereby we believe that it constitutes a promising
classifier which merits to be improved (see Section 6
for eventual improvements);

—The AIR obtained by PROAFTN classifier is better

than that of K-PIP classifier since, for a specific cri-
terion, the first consider that the profiles of the same
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TABLE VIII
PROAFTN Results

Genetic Algorithm Crossover Step Mutation Step

Problems Training Database | Testdatabase il ficianys e e Cross.Oper | Cross.Prob | Muta. Oper | Muta.Prob
Problem 1 92,62% 86,23% 30 RWS FC 0,60 RUM 0,05
Problem 2 91,78% 85,03% 30 SRWRS AC 0,65 NUM 0,07
Problem 3 94,33% 88,54% 30 LRS SC 0,70 MM 0,09
Problem 4 90,44% 85,09% 40 TS BLX 0,75 GM 0,10
Problem 5 95,22% 89,67% 40 RWS ELC 0,80 RUM 0,05
Problem & 93,02% 84,88% 40 SRWRS FC 0,60 NUM 0,07
Problem 7 96,17% 88,98% 50 LRS aC 0,65 MM 0,09
Problem 8 94,01% 86,11% 50 15 SC 0,70 GM 0,10
Problem 9 93,28% 85,96% 50 RWS BLX 0,75 RUM 0,05
Problem 10 93,72% 86,31% 60 SRWRS ELC 0,80 NUM 0,07
Problem 11 95,12% 88,17% 60 LRS FC 0,60 MM 0,09
Problem 12 91,73% 84,39% 60 TS aAC 0,65 GM 0,10
Problem 13 95,09% 87,81% 70 RWS sc 0,70 RUM 0,05
Problem 14 96,00% 89,42% 70 SRWRS BLX 0,75 NUM 0,07
Problem 15 93,08% 86,12% 70 LRS ELC 0,80 MM 0,09
Problem 16 94,65% 88,23% 70 15 FC 0,60 GM 0,10
Problem 17 95,00% 87,93% 80 RWS AC 0,65 RUM 0,05
Problem 18 93,75% 85,59% 80 SRWRS Sc 0,70 NUM 0,07
Problem 13 92,82% 85,07% 80 LRS BLX 0,75 MM 0,09
Problem 20 94,68% 86,12% 80 TS ELC 0,80 GM 0,10

category don’t have necessarily the same thresholds,
while the second assumes that the profiles of the same
category have identical thresholds. Hence, for a par-
ticular category and criterion, PROAFTN classifier
provides more thresholds to each profile (i.e. more
degree of freedom) than K-PIP classifier.

6. DISCUSSIONS AND CONCLUSIONS

In this paper, a classification methodology that com-
bines the advantages of multi-criteria decision analy-
sis and automated learning algorithms has been pro-
posed. This classification methodology uses some se-
lected NCD-based MCCs as aggregation models and an
IEA to assess the parameters values of these MCCs. To
understand the implementation of NCD-based MCCs,
we have proposed a generalized framework to explain
how these classifiers proceed to assign an object to a
given category. The strength of the MCCs could be
seen along three dimensions: (i) integration of sub-
jective information like the decision-maker knowledge
and preferences, (ii) rigorous manipulation of heteroge-
neous, conflicting and non commensurable information,

and (iii) easy to explain, and therefore are not black
boxes. The IEA is implemented using a mathematical
model that provides automatically the “optimal” values
of the NCD-based MCCs parameters. An ALM based
on RCGA has been proposed to approximate its “opti-
mal” solution and consequently to infer the parameters
values of these classifiers because the proposed model
could not be solved by classical optimization tools (e.g.
gradient algorithms and interior-point algorithms). The
proposed ALM overcomes some simplifications made
in prior works (e.g. [4]): both concordance and dis-
cordance concepts are taken into account, the criteria
weights are used in the computation of the membership
degree of an object to a pre-defined category and finally
each category may be characterized by many profiles.
A military dataset of 2545 Forward Looking Infra-
Red (FLIR) images representing eight different classes
of ships is used to test the performance of two NCD-
based MCCs (PROAFTN classifier [3] and K-PIP clas-
sifier [15] with respect four other classifiers (Dempster-
Shafer-based (DS) classifier, Modified-Bayes-based
(MB) classifier, K-Nearest Neighbors (k-NN) classifier
and Neural Net (NN) classifier). The computational re-
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TABLE IX
K-PIP Results

Genetic Algorithm T ] Crossover Step Mutation Step
Population size | Selection Method

Problems Training batebase Test database Cross, Oper | Cross, Prob | Muta, Oper Muta, Prob
Problem 1 83,38% 80,63% 30 RWS FC 0,60 RUM 0,05
Problem 2 81,47% 79,84% 30 SRWRS AC 0,65 NUM 0,07
Problem 3 82,31% 80,89% 30 LRS 5C 0,70 TvIvl 0,09
Problem 4 82,54% 79,58% 40 ] BLX 0,75 GM 0,10
Problem S 84,31% 81,03% 40 RWS ELC 0,80 RUM 0,05
Problem & 83,25% 80,22% 40 SRWRS FC 0,60 NUM 0,07
Problem 7 85,02% 82,41% 50 LRS AC 0,65 MM 0,09
Problem 8 84,59% 81,19% 50 15 SC 0,70 GM 0,10
Problem 9 83,69% 80,07% 50 RWS BLX 0,75 RUM 0,05
Problem 10 82,58% 80,97% 60 SRWRS ELC 0,80 NUM 0,07
Problem 11 85,17% 83,72% 60 LRS FC 0,60 MM 0,09
Problem 12 80,77% 78,61% 60 5 AC 0,65 GM 0,10
Problem 13 85,04% 82,51% 70 RWS sC 0,70 RUM 0,05
Problem 14 82,54% 79,91% 70 SRWRS BLX 0,75 NUM 0,07
Problem 15 84,00% 81,25% 70 LRS ELC 0,80 MM 0,09
Problem 16 80,87% 77,88% 70 15 FC 0,60 GM 0,10
Problem 17 83,36% 80,11% 80 RWS AC 0,65 RUM 0,05
Problem 18 82,43% 80,81% 80 SRWRS SC 0,70 NUM 0,07
Problem 19 85,65% 83,09% 80 LRS BLX 0,75 MM 0,09
Problem 20 81,47% 79,17% 80 15 ELC 0,80 GM 0,10

sults show that NCD-based MCCs provide AIRs bet-
ter than those provided by MB and DS classifiers but
worse than those obtained by K-NN and NN classi-
fiers. Although NCD-based MCCs don’t provide the
best AIRs in this application, we believe that they are
promising classifiers and merit to be further explored.
Note that NCD-based MCCs are not optimized for this
kind of dataset. In fact, if qualitative information and
human judgment are introduced, we are confident that
NCD-based MCCs will certainly outrank K-NN and NN
classifiers. Moreover, NCD-based MCCs are not black
boxes and all their results are automatically explained.

Many improvements could be made to enhance the
AlIRs of NCD-based MCCs like:

—Integrating the profiles and the criteria weights in the
ALM;

—Using other improved versions of K-Means algorithm
for the profile identification (e.g. Y-Means [13] or J-
Means [14]);

—Integrating the profile weights in the membership
degree computation;

—Combining the aggregation operators of different
NCD-based MCCs;

—Using the concept of specified classifier, i.e. for the
classification purpose we only use a subset of criteria
that discriminate more between objects;

—Implementing a parallel version of NCD-based MCCs
to reduce the computation time. For instance concor-
dance and discordance indices may be computed si-
multaneously;

—Since Genetic Algorithms (GAs) are inefficient to ex-
ploit local information of solutions in each popula-
tion, it will be benefit to integrate, in each iteration of
the GA, a local search strategy (e.g. steepest descent
strategy) to fine-tuning these solutions locally.

We uphold that cross fertilization of multi-criteria
decision analysis and information fusion concepts could
be beneficial to both domains. Multiple criteria classi-
fiers are designed to consider human in the loop and to
support human decision making.
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1. OVERVIEW

Since its creation by Streit and Luginbuhl in 1993
[60], much research has been done on the Probabilis-
tic Multi-Hypothesis Tracker (PMHT). In this paper,
we combine concepts from past works and provide a
general version of the PMHT algorithm allowing for
tracking in the presence of clutter (false alarms) and
missed detections and the utilization of classification
data, range rate information, and multiple synchronous
sensors. This version makes no changes to the basis of
the original algorithm, which is the Expectation Maxi-
mization (EM) algorithm. As a result, this generalized
PMHT algorithm may be used as an improved foun-
dation for other versions of the PMHT that build upon
or alter the basis of the algorithm, such as the Multi-
Frame Assignment PMHT (MFPMHT) accounting for
missed detections by Blanding, Willett, Streit, and Dun-
ham [7]. Being a generalized version of the PMHT, the
algorithm might be interchangeably named the PMHT
or the Multi-Sensor PMHT (MSPMHT), in line with the
naming convention of previous work.

In the subsequent sections, we derive the general
form of the PMHT algorithm while discussing imple-
mentation difficulties. In Section 2, an overview of pre-
vious contributions to the algorithm is provided. Sec-
tion 3 describes the EM algorithm, which forms the ba-
sis of the PMHT. Section 4 derives the state estimates
within the PMHT, discussing implementation issues as-
sociated with precision problems in 4.3, how and why
one might wish to include deterministic annealing to
improve performance in 4.3, what to do if each sen-
sor has a different field of view in 4.4, and out-of-
order measurement delivery in 4.5. In Section 5, we
compare the complexity of the PMHT against that of
the Joint Probability Data Association Filter (JPDAF),
which is a popular non-batch tracking algorithm.! We
describe the conditions under which the PMHT has a
lower complexity than the MSJPDAF. Section 6 ex-
plains how the PMHT, a batch algorithm, can be used
over data sequences longer than the batch. Section 7
then discusses state covariance estimation in the PMHT.
The algorithm is summarized in Section 8. Section 9
provides a simulation of the PMHT with multiple sen-
sors to verify that the covariance estimation procedure
of Section 7 provides, under certain conditions, con-
sistent estimates when multiple targets are used, and
demonstrates that deterministic annealing can signifi-
cantly improve tracker performance when using multi-
ple sensors. Section 10 summarizes the paper. The ap-
pendices provide derivations of the target-measurement
association probabilities conditioned on the observa-
tions, and the target-measurement association proba-
bilities conditioned only on the number of observa-
tions.

1t is also referred to as the Multi-Sensor JPDAF (MSJPDAF) in the
multisensor case.
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2. PREVIOUS WORK ON THE PMHT ALGORITHM

The Probabilistic Multi-Hypothesis Tracker (PMHT)
is a linear-complexity, EM algorithm based, batch target
tracking algorithm for use in tracking multiple targets
in the presence of clutter when the target-measurement
associations are unknown.”> Having a memory of the
last N scans of data, it attempts to find the maximum a
posteriori estimate of the target state in the current scan.
This is similar to a later algorithm by Pulford and Logo-
thetis [50], which estimates the target-measurement as-
sociations under different measurement models. Being
a batch algorithm, it can easily handle delayed measure-
ments, which may simply be added to the batch when
they arrive, as was mentioned by Efe, Ruan and Willett
[19]. For use as a practical tracker, which must produce
track estimates before receiving a full N scans of data,
the PMHT can be run at each step on a growing window
until a full N scans of data have been acquired, at which
point the window slides. This growing and sliding win-
dow has been shown to be more effective than other
methods by Willett, Ruan, and Streit [70].

The first EM based tracking algorithm was a max-
imum-likelihood (ML) batch algorithm by Avitzour [2].
This tracker had a high complexity, requiring the calcu-
lation of all target-measurement association probabili-
ties. A later algorithm by Molnar and Modestino [41]
was a non-batch EM approach to tracking that calculates
the maximum a posteriori (MAP) estimate and uses a
Markov random field to model the target-measurement
associations, resulting in a significantly lower complex-
ity. Jeong and Park [31] used an alternative version of
the EM algorithm to produce a recursive MAP target
tracker that also estimates various parameters, reducing
its complexity by approximating the joint association
event probabilities reducing its complexity by approxi-
mating multiple target joint association event probabil-
ities as products of single target joint association event
probabilities. Pulford and La Scala [49] used the EM al-
gorithm coupled with the Viterbi algorithm to estimate
target maneuvers.

In contrast, the PMHT uses an arguably incorrect
measurement model in order to reduce its complexity.
That is, when told that a particular measurement origi-
nated from a particular target, it ignores any condition-
ing this may imply when determining the posterior as-
sociation probabilities of the other measurements. As a
result, the probability of a particular measurement com-
ing from a particular target is independent of whether
that or any other target produced any of the other mea-
surements, and each target is allowed to produce any
number of measurements. However, each measurement
can only originate from a single target, which is realis-
tic when the targets are well resolved. A version of the
PMHT accounting for unresolved targets has also been
developed by Davey [11].

2A though the focus is on target tracking, the PMHT algorithm has
found use in other applications, such as cartography [10].

It should be noted that the PMHT is not the only
algorithm utilizing an “incorrect” measurement model.
Particle filter based trackers by Hue, Le Cadre, and
Pérez [27], [28] as well as by Gilholm, Godsill, Maskell,
and Salmond [25] utilize the same model. The mea-
surement model has some appeal when high resolution
sensors are able to over-resolve the target.

The PMHT was first proposed by Streit and Lugin-
buhl in 1993 [60] with the first full statement of the
algorithm appearing in a Naval technical report two
years later [61]. The PMHT algorithm was defined
very generally in [61], allowing for the target dynamics
and measurement model to have arbitrary distributions.
However, such a generic model did not allow for the
maximization step of the EM algorithm, upon which
it is based, to be easily performed, and thus the prac-
tical implementation presented had a discrete-time lin-
ear motion model, as used in the Kalman filter. Since
then, quite a few variants of the PMHT algorithm have
emerged, many of which have been compared by Wil-
lett, Ruan, and Streit in [71].

The best performing variants of the PMHT, that
is those having better track-loss characteristics than
the JPDAF, are the Turbo PMHT, by Ruan and Wil-
lett [56] and Willett, Ruan, and Streit [69] and Multi-
Frame PMHT (MFPMHT) algorithms. The currently
best-performing version of the PMHT is the MFPMHT
that accounts for missed detections, by Blanding, Wil-
lett, Streit, and Dunham [7], which is a modification of
an earlier MFPMHT by Streit [59]. However, the better
performance of the MFPMHTSs comes with an increased
complexity, being roughly exponentially complex over
the last L frames of an N frame batch.

The homeothetic PMHT, first derived by Rago, Wil-
lett, and Streit in [53], was an ad-hoc approach to im-
proving the performance of the PMHT through the use
of multiple measurement models with different noise
covariances. The different covariances were intended to
overcome estimation problems in the PMHT and not to
function as multiple models for states inherent to the
targets. However, this may be thought of as a forerun-
ner to multiple model PMHT algorithms. Logothetis,
Krishnamurthy, and Holst [35]° were the first to develop
a form of the PMHT algorithm involving multiple mod-
els to account for target maneuvers. The transition be-
tween model states was governed by a Hidden Markov
Model (HMM). The maneuvers were handled using ad-
ditional unknown “control” inputs to the Kalman filter.
Willett, Ruan, and Streit [69] also did this, modeling the
maneuvers as increases in the process noise of the tar-
gets forming the MPMHT. In both approaches, the ac-
tive model of the target was modeled as one of the “nui-
sance” variables in the EM algorithm. Pulford and La
Scala [49] took a different approach, making the maneu-
vers part of the quantity to be estimated in the EM algo-
rithm. Their maneuver-estimation approach can be used

3This is the journal version of an earlier conference paper [34].
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with various EM-algorithm based trackers including the
PMHT. Willett, Ruan, and Streit created an interactive
multiple model approach to tracking using the PMHT
in the presence of maneuvers (IMM-PMHT), replacing
the backward-forward algorithm used in [69] with an
interacting multiple model (IMM). They also derived
a turbo-coding based extension to the MPMHT, which
they dubbed the Turbo MPMHT. This later matured into
the Turbo PMHT, as described by Ruan and Willett
[56]. More recently, Luginbuhl, Ainsleigh, Mathews,
and Streit [36] demonstrated how to derive the observed
data likelihood function for the family of manoeuvring
PMHT trackers.

The basic PMHT is an algorithm that tracks targets
based upon discrete observations at each scan. How-
ever, a variant called the Histogram PMHT (H-PMHT)
allows the PMHT to process continuous data directly
from a sensor. The concept was first introduced by Lug-
inbuhl and Willett [37] as a method of tracking a general
frequency-modulated signal in noise (explained in more
detail in [38]), and a variant appeared in [58]. Walsh,
Graham, Streit, Luginbuhl, and Mathews [64] later pre-
sented a one-dimensional application of the algorithm.
Pakfiliz and Efe [44] presented a two-dimensional ap-
plication, and most recently, Davey, Rutten, and Cheung
[15] compared it against other track-before-detect meth-
ods. In this paper, we do not consider the processing of
continuous sensor measurements. The use of the PMHT
in tracking problems with bearing-only measurements
has been studied by Giannopoulos, Streit, and Swaszek
[23].

In its original version, the PMHT did not account
for clutter. Rago, Willett, and Streit [52] extended the
PMHT to cluttered environments under a number of as-
sumptions, regarding the probability of a measurement
originating from clutter, by modifying the target mea-
surement assignment probabilities wy (7). In the next
year, Hutchins and Dunham produced a similar version
of the PMHT for use in cluttered environments [29], in-
volving an ad-hoc constant in the denominator of the tar-
get measurement assignment probabilities. In later pub-
lications, an analytically derived solution has been used,
but no complete derivation has been given. In this paper,
we provide an explicit derivation of the PMHT includ-
ing clutter, and we provide a full Bayesian derivation of
the prior and posterior association probabilities m; ,(1,)
and wy ., (7). The probabilities 7, (,,(n,) have previously
been derived by Wieneke and Koch [66], but here it
is developed in such a way that the solution could be
simplified by omitting “fictitious targets” that had been
used in [66].

Davey, Gray, and Streit [14] introduced the use
of target classification measurements into the PMHT.
Namely, extra data can be used to identify the type
of each observations, e.g., whether an observation is
clutter, a plane or a missile. A more complete analysis
of this work is given in Davey’s PhD thesis [9]. In this
paper, we show how classification measurements can be
used in a multisensor environment.

A CRITICAL LOOK AT THE PMHT

The simplest approach to multisensor tracking with
the PMHT was first considered by Rago, Willett, and
Streit [51]. They pooled all of the measurements from
all of the sensors together and ran the PMHT as if all of
the measurements came from a single sensor. One can
justify this by the fact that the PMHT s measurement
model allows for a single target to produce multiple
observations. Hempel [26] considered the robustness of
the PMHT to registration errors when the measurements
from all sensors are pooled. However, versions of the
PMHT specifically accounting for multiple sensors by
modifying the likelihood function to reflect their pres-
ence have been developed, and have been shown to im-
prove the performance of the tracker over the pooled
measurement approach. These were developed concur-
rently by Krieg and Gray [33], by Giannopoulos, Streit,
and Swaszek [24] and by Gauvrit, Le Cadre, and Jauf-
fret [22]. All of these derivations used the Levenberg-
Marquadt method (described, for example in [5]) for
performing the maximization step of the EM algorithm.
In this paper, we show that a simpler, non-iterative ap-
proach exists.

In its original form, the PMHT algorithm was meant
to track a known number of targets and lacked any no-
tion of track discovery, termination or merging. How-
ever, such tasks are necessary for a tracker to be usable
in real-world situations. Several advances have been
made in integrating track discovery and termination fea-
tures into the PMHT. A complete track management
system, in which tracks were discovered and terminated
by separate algorithms outside of the PMHT algorithm,
was first introduced by Luginbuhl, Sun, and Willett
[39], whereby track extraction was done via the Hough
transform. Alexiev [1] also considered the use of the
Hough transform with the PMHT. Davey and Gray [12]
later gave a comparison of various methods of track ini-
tiation, and Dunham and Hutchins [17] considered us-
ing the MHT as a track-finding front-end to the PMHT,
whereby once tracks were stable they were handed off
to the PMHT. Since then, however, additional methods
of track management have emerged. Davey and Gray
introduced the Hysteresis PMHT [13], which treats the
existence of a target as an extra state in the estima-
tor. Musicki and Wang [43] used an ad-hoc approach
of modifying the posterior association probabilities to
do the same thing. Wieneke and Willett [68] looked at
methods of determining track deletion and Wieneke and
Koch looked at hypothesis tests for estimating the num-
ber of tracks present [67].

3. THE EXPECTATION MAXIMIZATION ALGORITHM
AND DETERMINISTIC ANNEALING

The PMHT is based on the EM algorithm. The EM
algorithm, discovered by Dempster, Laird, and Rubin
[16], is a method of determining the ML or MAP es-
timate of data given incomplete information. Redner
and Walker [54] specifically looked at the use of the
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EM algorithm for ML estimation of parameters of mix-
ture densities, a topic that is relevant to EM algorithm
based target tracking. The EM algorithm is summarized
here, which is extensively covered in the monograph
by McLachlan and Krishnen [40], and we must note
the tutorial by Moon in [42]. It should be noted that
the EM algorithm does not provide the covariance of
its estimate. This is, however, necessary for the tracker
to be useful and is discussed in Section 7.

Let X be an unknown random quantity the MAP
estimate of which we would like to find. Let Z be
the set of observations, which are dependent upon X
and a set of unobservable random variables K. We
would like to find the MAP estimate of X without
having to determine K, which might be a difficult or
computationally complex task. The MAP estimate of X
may be expressed as

A

Xpmap = argm)?xE{log(p(X | 7))}, (1)

in which p represents a probability density function
(PDF). The expectation comes from the Law of Total
Probability eliminating the unobservable random vari-
able K. However, in many cases the expectation may
be difficult to evaluate. The EM algorithm avoids direct
computation of this expectation. Define the following
function:

QXD X )
A / log(p(X"*V. K | Z))p(K | X, Z)dK. (2)
K

The integration in (2) is defined over whichever measure
is appropriate for K, which may be discrete. The EM
algorithm is as follows: in each step, X"+ is found as

XD = arg max Q(X"+D; X)), 3)
X

(n+1)

n is then incremented and one continues until a desired
level of convergence has been attained.

In some instances, the PDF p(X"+D K | Z) may be
difficult to determine. If this is the case, by the definition
of conditional expectation, it can be noted that
p(Z,X,K)

pZ) -
Substituting (4) into (2) and separating the logarithm
we get

O(X"*V:X™)

pX.K|Z) = “

- / log(p(Z. X"V, K))p(K | X", Z)dK — log p(Z).
K
)

Because p(Z) is a constant, that term may be dropped
from (5), since it has no effect on the location of the
maximum and thus p(X"*Y K |Z) and p(Z,X"*D K)
may be used interchangeably in the EM algorithm.
Boyles [8] and Wu [30] studied the convergence
properties of the EM algorithm, correcting a mistake

in Theorem 2 of Dempster, Laird, and Rubin’s origi-
nal paper [16]. They showed that the EM algorithm is
guaranteed to converge to a saddle point or a local max-
imum, which need not be the desired global maximum.
To which critical point it converges is highly dependent
upon the initial estimate XV,

Over the years, a number of versions of the EM algo-
rithm have been developed, many of which are summa-
rized by McLachlan and Krishnen [40] and by Roche
[55]. Most sought to increase the convergence speed
of the algorithm. However, for the PMHT algorithm,
the primary concern is avoiding convergence to local
maxima. In order to reduce dependence on the initial
estimate and encourage convergence to the global max-
imum, the Deterministic Annealing (DA) EM algorithm
was developed by Ueda and Nakano [62], who recog-
nized that solving the maximum likelihood problem is
analogous to similar problems linking concepts in ther-
modynamics and information theory. This was applied
to the PMHT first in 1999 by Strandlie and Zerubia
[57] and was later applied in a more general form by
Wieneke and Koch [66]. When tracking a single target,
the basic PMHT algorithm with deterministic anneal-
ing is identical to the Deterministic Annealing Filter by
Fruhwirth and Strandlie [20]. As shall be described after
the basic derivation of the PMHT, deterministic anneal-
ing can be added to almost any version of the PMHT
algorithm. To derive the DA-EM algorithm, we shall use
the definition of conditional expectation to note that

P(Z,K,X™)

K|X",Z) = )
p( | ) le p(Z,Kl,X(”))dKl

6)

The denominator in (6) is equal to p(Z,X). The DA-EM
algorithm substitutes (6) into (2) and introduces the term

3 as
QDA (X(n+ 1) : X(n))

P(Z,K, X"
le p(Z.K,, X")3dK,

= / log(p(X"*D K | Z))
K

(N

In the original description of the DA-EM algorithm, £,
the inverse of which corresponds to the “temperature”
in an analogous thermodynamic problem, is initially set
to a value between 0 and 1. Qp, is then iterated with
respect to X"*D and X until convergence, as is done
in the regular EM algorithm. Then (3 is increased to
a value closer to one and Qp, is again iterated until
convergence. The DA-EM algorithm is complete when
G has finally been increased to 1. Note however, that
the original version of the DA-EM algorithm did not
specify exactly how (8 was to be increased.

When 3 < 1, the PDF p(K | X™,Z) becomes flat-
ter, which reduces dependence of the algorithm on X,
The reasoning behind the DA-EM algorithm is that by
slowly increasing (3, the effect of p(K|X®™,Z) is in-
creased at the same time that the estimate X improves.
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In the final step § =1 and (7) is equivalent to (2) and
the EM algorithm should be more likely to converge to
the global MAP estimate, because of the improved prior
estimate X®.

In order to use the DA-EM algorithm in a practical
implementation, one must have a method of increasing
G. If B is increased very slowly, then in general, one
iteration should be enough for convergence at each
value of 5. Thus, in [57] and [66], the DA-EM algorithm
was carried out as follows:

Let n,,, be the number of iterations that one
wishes to do. For each iteration from n =1 on-
wards, set 5 =n/n,,,. Now iterate the EM algo-
rithm as would normally be done. That is, X"*! is
the set to the value maximizing Qp, (X"*1;X®)
at each step. In the final iteration § =1 and the

result is the EM algorithm result.

Although convergence to the global MAP estimate is
not guaranteed, as long as n,,, is large enough, this
approach will generally outperform the basic EM algo-
rithm. In Section 9, we demonstrate how deterministic
annealing improves tracking performance when multi-
ple sensors are used. Although the above method is the
procedure needed to get the MAP estimate, the ML es-
timate can be attained by replacing p(X"*D K | Z) with
PZ.K | XO+D),

4. THE PMHT ALCORITHM: STATE ESTIMATES

We shall now derive a general form of the PMHT
algorithm allowing for the presence of clutter, multiple
synchronous sensors and the use of classification infor-
mation. The most general form of the PMHT allows for
a very generic target motion and measurement model
[61]. However, due to the difficulty of the maximiza-
tion step of the EM algorithm under a generic model,
practical implementations of the PMHT are often based
upon the motion models that, in the absence of target-
measurement association uncertainty, contain the as-
sumptions inherent to the basic Kalman filter (see, e.g.,
[4]). We shall derive the PMHT under such a model,
accounting for clutter, taking advantage of multiple sen-
sors, and utilizing classification data. It shall be assumed
that the measurement noise between sensors is uncorre-
lated and that sensors have the same field of view. The
case where the sensors have different fields of view and
gating is present, is discussed in the following section.

Given M targets, the state vector at time ¢ for the
mth target shall be designated as x,,. The observation
originating from the mth target shall be designated
¥,.(t). The basic discrete-time kinematic motion and
observations equations are given by*

x,(+1)=F, (O, () + v, (1) (8)

4The Kalman filter and Kalman smoother equations associated with
this model are summarized in Appendix D.

A CRITICAL LOOK AT THE PMHT

and
Y,.® =H, (Ox, @) +w,(@1). 9

The process noise at time ¢, v, (f), is assumed to be
Gaussian distributed with zero mean and covariance
Q,,(t). The measurement noise w,,(¢) is also modeled as
a zero-mean Gaussian random variable with covariance
R,,(t) and is assumed to be uncorrelated with the process
noise. The covariance of the true measurement from the
mth target R, (¢) describing w,, (¢) from (9), corresponds
to the covariance of one of the measurements out of the
set of all measurements at time 7, whereby R, ((7) shall
represent the covariance of measurement r from sensor
s based upon the location of the observation, without
stating a particular associated target.

Let Z be all of the measurements and classification
information from time ¢t = 1 to N. Let X be the states of
all of the targets over the same time period and K be the
set of associations between targets and measurements.
Let there be a total of S sensors that take measurements
synchronously. If z, (¢) is the measurement r at time
t from sensor s that came from target m, then we
shall denote said association by k, (r) = m. We would
like to use the EM algorithm to estimate X without
explicitly determining which set of k, (r) from the set
of all possible target to measurement associations, K, is
correct. We shall consider clutter to be target m = 0.

The inclusion of classification measurements in the
PMHT was first discussed by Davey, Gray, and Streit
[14]. We shall assume that some type of classification
has already been done for each measurement, giving us
z£,(1), the classification data associated with measure-
ment » from sensor s at time ¢. Including classification
in the PMHT means estimating the type of each target.
This is done via a confusion matrix C whose elements
are defined as

c(i,m) = Pr(zC,(1) = i | k, (1) = m). (10)

i in (10) represents the ith classification out of the set
of all M. possible classifications. The true classification
of each target is assumed to be time-invariant, which
is why ¢;,, is not indexed against time.> That is, the
appearance of each target is assumed to be constant. It
shall also be assumed independent of that state. The
confusion matrix is the estimated probability that a
target or a clutter measurement has a certain associated
appearance. The confusion matrix shall be estimated
along with X in the PMHT algorithm. Thus, argmax;c; ,
will be the MAP estimate of the classification of target
m at the end of the algorithm.

Let us find the first PDF in (5), including C next
to X as an unknown to be estimated. Let n,(s) be the
number of measurements at time ¢ that came from

SThis assumption plays a role in our subsequent estimation of the
confusion matrix via the EM algorithm as part of the PMHT. However,
if one does not wish to perform EM algorithmic estimation of the
confusion matrix, then a time-varying confusion matrix may be used
without modification to the rest of the PMHT.
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sensor s. In order for p(Z,X,K,C) to be written, it
shall be conditioned on n,(s). However, we will not
explicitly write this conditioning except when necessary.
p(Z,X,K,C) is given as

p(Z.X.K,C)
= pX)p(Z,K,C[X)

pX)

(Hp(x (1))Hp(x () x,(t, — 1)))
m=1

P(ZK[X)

(11a)

S N m(s)

< TTTTTIPrk,. @ 1% 0@ m)p(2, (0 | &, (0).%, ()

s=1 t=1 r=1

p(C|Z.X.K)
e N
X c(z5,(1),k, ().

In (11b), the PDF p(z, (1) | k. (), X, () depends
upon whether the measurement came from clutter or
from a target and is given by

p(zr,s(t) | kr,s(t)’ Xkr,s(t) (t))

(11b)

{u(t, () if k. (1)=0
N{Zr,x(t);3’k,vs(t)(t)’Rr,s(t)} if kr,s(t) ;é 0 ‘
(12)

In (12), o denoted the PDF of the clutter, which we shall
assume to be continuous as a function of z, (r), and
which need not be uniform, and ffk'_y\_(t)(t) is the estimate
of y from (9). That is,

Ye0® =H_ (0%, _,(®). (13)

Define wkm_(,),r(t, s) 2 Pr(k, (1) | Xkr’b\_(,)(t),Z(t),C,n,(s)) as

the probability of a particular measurement-target as-
signment at time 7, whereby clutter is target k, (1) = 0
We shall refer to these as the “posterior association
probabilities.” One instance of K defines k, ((f) over all

Tt (0 DNAZ, (0): ¥, (O, R, (D }e(zE(0),k, (1))

Under the basic PMHT assumption, because each tar-
get can produce more than one measurement, all of the
values of w; . .(t,s) at a particular time are indepen-
dent. Additionally, because the current state and obser-
vation set are given, the values of wy_, .(z,5) are also
independent as a function of time. Because of this in-
dependence, p(K | X, C,Z), the second PDF in (5), may
be obtained directly by multiplying the marginal prob-
abilities over all time and measurements for all of the
assignments:
S N n(s)

p(K [ X.C.2) = [T ] w0, @)

s=11=1r=1

(15)

In order to make the notation in the above equation
correct if there are no observations at a particular sensor
at a certain time, that is if n,(s) =0, the following
definition must be used:

0
A
ITwe.o @9 =1 (16)

r=1

We would now like to determine the posterior
association probability wy ., .(z,s). In previous pub-
lished works on the PMHT, no formal derivation of
this in the presence of clutter has been done and be-
cause it is not immediately obvious, it shall be in-
cluded here for completeness, in Appendix A. Define

T 0(1,(8).1) 2 Pr(k, (1) = m | ,,(1),1,(s)). This shall be

referred to as a “prior association probability.”® The
Ty, (11 (5),1) values were derived using “imaginary”
targets by Wieneke and Koch [66] and we have red-
erived them in a simpler form in Appendix B. The orig-
inal PMHT algorithm made them a parameter to be es-
timated by the EM algorithm.

Using the solution from Appendix A for k, ((¢) # 0,
that is when measurement r from sensor s is not clutter,
then the posterior association probabilities for non-
clutter targets are as follows (in the final solution to the
PMHT algorithm, it will turn out that one never needs
to evaluate w . (7,5)):

Wi (0. (1:8) =

measurements r and sensors s, for all time in the batch.
The sum over K is equal to the sum over all sensors of
the sum over K, which is defined as

ZO—ZZ DN SR o

k]:(l) OkZV(l) 0 nl(x):(l) Okls(z) 0 nN(x):(N) 0

(14)

17)

mo(n,(5), D, 2, (D) E(D,0) + iz, 7, (n,(8), DN {2, (00§, (1), R, (D }e(zE (1), m)

In a simple model where all targets have the same
probability of detection, F,(s), when viewed by sensor
s, and the number of clutter points at each sensor

S<“prior association probability” is somewhat of a misnomer, since
Trkr.s(r)(n[(s),t) is conditioned on the number of observations. How-
ever, this naming convention helps differentiate it from the posterior
association probabilities.
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is Poisson distributed with mean A(s)V(s) where A(s)
represents the mean amount of clutter per unit volume
at sensor s and V(s) is the volume of the viewing area
for that sensor, then, as derived in the Appendices B
and C, the prior association probabilities are the same
for all non-clutter targets and may be divided across
the numerator and denominator giving us the following
expression for wy . ,.(t,s)

NA{z, (03, O, R, (D} (1)K, (1)

Equation (21) comes from the fact that at any given
time the observations must have originated from a target
or from clutter. K\\k, ((#;,) represents the set of all
assignments involving sensor s except for k, ((#,) and
(22) comes directly from the definition of w,ﬁ‘r_\_(,)’r(t, s).
Note that when k, ((r) =0, that is when observation

r is clutter, p(z, (1) |k,gs(t),xk”(t)(t)) contains no terms

Wi (o (658) = (18)
. T (n,(5), D1, 2, (1)c(zE,(1),0) + M Nz, (0:3,,0.R, (O }ezE,(0), m)’
P, (s)
Fy {M G — }
T(n(s),0) = —M (1 PD(S?/\(is))V(S) ’ (19)
2Fy [l —M,1—n/s); D }
(1 =By (s)AS)V(s)

here the function ,Fyla,,a,;z] is a hypergeometric func-
tion.

Combining (15) and (11b) and omitting the constant
p(Z) we may form the Q function for the basic EM
algorithm in (5):

Q(Xn+1’cn+1;xn,cn) — Zlog(p(Z,X(’Hl),C(n+1),K))p(K | Xn,Cn,Z)
K

involving X. Therefore, for purposes of maximizing Q,
we may omit all clutter terms from the second set of
sums, because they disappear when the derivative is
taken. Using this fact and (21) and (22), Equation (20b)
may be simplified as follows:

(20a)

log Hp(X(IHI)(l)) Hp(x(n+l)(t ) | X(n+1) —1)

m=1 Iy=

N n(s)

S N

n(s1
+ ZZZZIOg(Wk (0 (8),1) H H H (:l])vl(,])rl(tl,sl)

K s=1t=1r=1

N ni(s)

s1=16,=0

N

N (s
+Zzzzmg<e<zﬂ<n ko) [T 11 H Wi o (81

K s=1 =1 r=1

N n(s)

K s=1t=1r=1

si=11=0 11 =1

S N n(s1)
+ ZZZ > tog(p(, () [ kX" O TT T TT Wi o o5 (20b)
s1=11=0r =1

The superscripts in parentheses in (20b) indicate wheth-
er the values in question are to be calculated using
the current or the previous estimate of X in the EM
algorithm. As pointed out by Davey [9] in his thesis,
(20Db) is simplified by use of the two identities

N n
Y I 09 =1 1)
K; t=1r=1
and
N n
Z HHWkr.S(t),r(t’ )= We s E8)- - (22)

K\ky, () 1=1r=1

A CRITICAL LOOK AT THE PMHT

Q(X71+I.Xn)
N m(s) M

Z Z Z Z log(r, (n, (), WL, s)} 0y

s=1 t=1 r=1 m=1
N m(s) M

Z Z Z Z log(c(zE (), m)wir (t, v)} Oc

s=1 t=1 r=1 m=1

+log (Hm PN, PG D) [ x40, — “’)
ne(s)
+Zs 12: IZm 12 Ox-

xlog(N{z, ((1); yo+D @), R, (t)})w(”) (t,s)

m,r

(23)
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The maximization of the state component of the Q-
function, Qy, from (23), is performed indirectly by
finding an equation with the same gradient, Vy,.10Ox,
and thus the same inflection points. Omitting constant
terms, the derivative taken over the innermost sum may

sensors but no data observation uncertainty. The second
term of (27) may be rewritten as follows:

N M
333G, R, 0 G, H X0,

t=1 m=1

be transformed as follows: (28)
n(s)
Vo Yo win.s)(, () —H, X" DO)R, (0 (2, () —H, x" V(@)Y (24a)
r=1
n(s)
=Y win@oH R, () (z, (1) —H, x" @) (24b)
r=1
ny(s) n,(s)
=> wit.oH, R, (0 'z, ()= wi@.9H, R, ()"H, x"*V() (24c)
r=1 r=1
n(s)
- (S0 n,)
r=1
n(s) -1 n,(s)
X (Z wi (t, s)H;,SRr’S(t)lHr,S> (Z wf,f’)r(t,s)Hf.JRr’s(t)lzr,s(t)> —x"*D(p) (24d)
r=1 r=1
=R,,,,,—x""V(1) (24e)
= V.G, (1) —x"DO)R,, ()7 @, O —x" D). (24f)

The synthetic measurements z, (1) and li,w(z‘)*1 are
defined by

n(s)

R, (07 =Y wi@.oH, R, ()"'H,, (25
r=1
and
_ ny(s)
z,, =R, ) (Z WS,’:’)r(t,s)H’r’sR,’s(t)lzr’s(t)> )
r=1
(26)

Note that R,, ((r)"' may not be invertible, so a pseu-
doinverse may be necessary. The equivalency between
(24a) and (24f) means that Oy from (23) has the same
derivative as

Q(XnJrl ’Xn)

M N
= log (Hp(xis“)(l))l'[p(x::*“(r) X0+ 1)))

m=1 1=2

| S N M
R 9)3) STV

s=1 t=1 m=1

xR, ()7 (E,, — X"V @0). (27)

Equation (27) is the joint likelihood function of M
targets for which there are observations from multiple
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Letting I, be an identity matrix whose width is equal

to the number of states in x,,, z,,(f) and R,,(¢) are given
by

z,(1) = [z,,,(0), Z,,(),....z, 1)), (29)

H,=[ L ,...5L (30)
and

R, () = diag[R,, |, R, 5....R, ] (31)

Substituting equation (28) into (27) is equivalent to
a single-sensor system with no data association uncer-
tainty having measurements given by (29), (30), and
(31). The maximization of Q is thus the maximiza-
tion of a single sensor system, the solution of which
is well known (e.g., [4]) to be the use of the Kalman
smoother (the equations for the Kalman smoother are
summarized in Appendix D). This is a simpler ap-
proach than using the Levenberg-Marquardt nonlinear
regression procedure, as suggested by Giannopoulos,
Streit, and Swaszek [24] in the original derivation of
the PMHT with multiple sensors. The use of the Kalman
smoother was also present in the original single sensor
PMHT algorithm.

This method of stacking measurements is a com-
mon method of measurement fusion for the Kalman
filter when there is no target-measurement association
uncertainty. Gan and Harris [21] showed that if at a
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particular time for a particular track all sensors have the
same measurement matrix, which being I, , is true in
this case, then the above method of merging the states
is equivalent to a simpler method. Namely, each track is
updated using a single, merged measurement given by

s -1
2Wl(l‘) = (Z ﬁlﬂ,s(t)l> Zl’i’ﬂ,s(l‘)ilin‘l,s(l‘)
s=1 s=1

(32)
and

(33)

The Kalman smoother may be thought of as running
a forward Kalman filter, and then running a backwards
smoothing operation on the track estimate resulting
from the Kalman filter step. Note that the use of the
pseudoinverse in (26) may be completely avoided if
the information filter (described, for example, in [4])
is used in place of the Kalman filter in the first half of
the Kalman smoother. The information filter calls for
R, () 7'z,, (1), obviating the need to invert R, (1)~" in
(26).

In general, except when range-rate information is
provided by the sensors, all H, | for a particular sensor
s will be the same for all measurements. In this instance,
the steps leading up to (24f) may be simplified, resulting
in the following simplified synthetic measurements

ny(s)
z,,0t) = (Zw(”’(t SR, (1) )

B Vl/(\)

Zw(")(t SR, (1) 'z, (1)

(34)
and :

(35)

()
R, ()= (ZWW (t,9R, () )

The form of the synthetic measurements in (34) and
(35), allowing for each measurement to have a differ-
ent covariance matrix was first given in [66]. Previous
versions assumed that all measurements have the same
covariance. The forms given in (25) and (26) allow-
ing for different measurement matrices, as occurs with
doppler measurements, are unique to this paper. Note
that if each sensor has a different measurement matrix,
then the measurement fusion method given in (32) and
(33) is no longer optimal. In this case, the merged mea-
surement given in (29) and (31) should be used with the
modified merged measurement matrix,

H, = [H H,.... H] (36)

where H is the measurement matrix of the sth sensor.
The maximization of the confusion matrix via the
gradient V.1 Q¢ from (23) is performed under the

constraint e
Zci’m =1 (37)
i=1

A CRITICAL LOOK AT THE PMHT

Using (23) and (37), the Lagrangian to maximize is:

N nm(s) M

Lo = ZZZZIog(c(Z, L), m))w(”) (,5)

s=1 t=1 r=1m=1

M Mc
+) X (1 - Zc(i,m))

m=1 i=1

(38a)

N n(s) M Mc

S
=353 ST S 6GE, — logleli, mywit.s)
s=1

t=1 r=1m=1i=1

M M
+Y A (1 —Zc(i,m)). (38b)
m=1 i=1
Equation (38a) is equivalent to (38b), where 6(¢) is the
Kronecker Delta function, which is one for ¢t =0 and
zero otherwise. Differentiating (38b) with respect to a

particular c(i,m) gives

S N n
1 : N (n
Cim = 3¢ DN D 6GE —wins).  (39)
ms=1t=1 r=1
Applying the constraint given in (37) gives
N N ny M(;
S=D D DTN 8 —bwit,s)  (40a)
s=1 t=1 r=1 i=1
S N nm
ZZZW%(L ). (40b)

s=1 t=1 r=1

Combining (39) and (40b) gives us the update for the

Cim:

L 6(zE — Wi (t,5)

ci,m Zv th IZ o m,r ) (41)
ch—lZzl—lZn lwmrl(tl’ 1)

4.1. Regarding the Kalman Smoothing Step

The equations for the Kalman smoother are given in
Appendix D. It should be noted that although the EM
algorithm might call for the initial state estimate for each
track, x,(1), to be smoothed along with the rest, prac-
tically the algorithm is not usable in this manner. The
first part of the Kalman smoother is done by running
a Kalman filter forward on the data. This requires a
covariance estimate for the initial state. On the first iter-
ation of the EM algorithm, this is not a problem. On ad-
ditional iterations, however, we do not have a valid esti-
mate for the covariance of the smoothed initial estimate.
If one were to use the covariance estimate coming out
of the Kalman smoother, then this value would decrease
every iteration as a result of “information incest.” That
is, the initial state would repeatedly get smoothed by
using much of the same data as before, but the Kalman
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smoother would interpret this data as being “new” and
at every iteration the covariance estimate of the initial
state would decrease. After enough iterations, the co-
variance assumed for the initial state will approach zero
even though we would not have supreme confidence in
the initial state.

A solution to this problem is to forego smoothing
the initial state at each step and to use its initial state
covariance at every iteration. That is equivalent to taking
the initial state out of the set of states X that are to be
estimated by the EM algorithm.

4.2. Precision Problems with the PMHT

Being based thereupon, all versions of the PMHT
algorithm suffer the same precision problems that can
occur with regular Kalman filter. Verhaegen discusses
the source of some of these problems as well as their
remedies [63] and such problems are also discussed
in most textbooks, such as [4]. The PMHT, however,
has a number of its own precision problems that must
be taken into account when designing any implementa-
tion.

At any step when calculating the posterior associ-
ation probabilities values for non-clutter targets, if all
valid measurements are far from the predicted value
Yi (0, then it is quite likely that precision limitations
will render all of the ws to be zero.” In many such
instances, one can forego the use of the ws and as-
sume that there was a missed detection. In compari-
son with other algorithms, precision is a serious prob-
lem in the PMHT, because the non-clutter PDFs in w

Wi (0 (t,8)

(T 0 (), DCCE D, (OIN {2, (05, @R, (O}

4.3. Using Deterministic Annealing

The use of deterministic annealing can both help the
PMHT to converge to the global MAP estimate as well
as ameliorate precision problems associated with the
posterior association probabilities. Which maxima the
EM algorithm converges to is highly dependent on the
initial state estimates over the entire batch. Deterministic
annealing is an approach to reduce the dependence of
the algorithm on the initial estimates. However, this may
require more iterations of the EM algorithm than if
deterministic annealing were not used. As a result, just
incorporating deterministic annealing without changing
the number of iterations used could theoretically worsen
performance.

As shown in (7), the EM function with determin-
istic annealing replaces p(K | X",Z) in the regular EM
algorithm with

p(Z,K, X", C"’
YK, p(Z,K, ., X",C"PdK, "
(42)
The solution for p(K | X",Z) given in (15) is a product
of w terms. The addition of the 8 terms in (42) to
(15) can take place without explicitly decomposing
p(K | X",Z) into the parts listed in (42).

We note that each w term in (15) has a single
value in the numerator as well as a sum of values
in the denominator. The inclusion of the (s is done
by modifying the w terms as follows. For non-clutter
association probabilities, each w shall be adjusted from
(17) according to

p(K[X",C"Z) =

B (mo(n,(8), Dt 2, () (ZE,(1), 005 + S0 (7, (1,(5), )cZE, (). N {2, ((1);3,, (). R, (D })P

are normally distributed having a covariance equal to
that of the measurement. In instances where the process
noise covariance is large and the measurement noise
covariance is small, precision errors can cause all of the
ws for a particular target to be zero much of the time.
Thus, paradoxically, the performance of the PMHT can
worsen as the magnitude of the measurement covariance
decreases. In instances where no measurement noise is
present, the PMHT is unusable.

7If a clutter model is present, then there will always be a nonzero
(clutter) term in the denominator of the ws, thus precision problems
can render all of the ws to be zero. However, if there is no clutter
term, then precision problems couples with distant measurements can
result in the fraction computed for the w to evaluate as 0/0. This can
signify that the target was not detected, or that the observation from
the target was very far from the predicted position.

(43)

Equation (43) is equivalent to raising the numerator and
each term in the denominator of (17) to the power of £.
The same would be done with the w for the clutter as-
signment, which we have omitted; there too one would
raise the numerator and each term of the denominator
to 3. Once all of the w terms have been multiplied, as in
(15) the result is thus the same as (42) except all com-
mon terms have been canceled out between the numera-
tor and denominator. That is, the result is still a numera-
tor raised to 5 and a denominator consisting of a sum of
terms each raised to 3. This is the same as the solution
given by Wieneke and Koch [66] without derivation and
similar to what Strandlie and Zerubia [57] derived.
For precision purposes, the exponentiation of the
normal PDFs in (43) is best performed by distributing
[ to the terms of the normal PDF, rather than evaluat-
ing the normal PDF and then exponentiating it. Because
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(6 <1, this increases the argument of the exponential
function of the PDF, which is where underflow prob-
lems are most likely to occur.

4.4. Sensors with Different Fields of View

The state estimate for the PMHT was derived assum-
ing that all sensors have the same field of view. When
the sensors have different fields of view, the calcula-
tion of the posterior association probabilities (the ws) is
different for each sensor.

Generally, a particular target will have a certain
probability of detection when viewed by a particular
sensor. In calculating the posterior association proba-
bilities, this detection probability is necessary for calcu-
lating the prior association probabilities. This detection
probability can be considered to be the product of the
probability that the target is located within the field of

5. THE COMPLEXITY OF THE JPDAF VS. THE PMHT

The most complex part of the JPDAF is the evalu-
ation of the posterior association probabilities. These
are equivalent to the posterior association probabili-
ties in the single-sensor PMHT, but with slightly dif-
ferent conditioning. The evaluation of these probabili-
ties is complex, because it requires the evaluation and
normalization of the likelihoods of all possible target-
measurement assignment combinations, a task requiring
the evaluation of the exponential function for every like-
lihood.

In the worst-case scenario, every measurement at
time step ¢ would fall in every target’s gating region. Let
n, be the number of measurements at step t and M be
the number of targets. The number of possible target-
measurement assignments may be decomposed based
upon the number of targets observed and is given as
follows:

min(n,,M)

A ) M " I (442)

= ! a

JPDAF l ! N~~~
=0 N——— N——— Assign the measurements
Sum over the number Co0se which targets Choose which measurements to the targets
of targets observed are observed are observed
=, Fy[—n,—M;1]. (44b)

view of the sensor times the probability that the sensor
detects the target given that it is in its field of view.

As shown in Appendix B, the computation of the
prior association probabilities (the 7s) is combinatori-
ally complex if all of the targets have different prob-
abilities of detection. This is the case when one takes
into account the probability that each target is within
the field of view of each sensor. The complexity of this
situation may be reduced either by assuming a constant
detection probability for all targets within the field of
view of a sensor and gating to targets that should be
within the field of view given the state estimates. Once
gating has been done, this means that the prior and pos-
terior association probabilities for each sensor are calcu-
lated assuming a reduced number of targets: only those
that fall within the gate for that sensor.

4.5. Out-of-Sequence Measurements

In many practical data fusion schemes, measure-
ments may arrive at the fusion center out of sequence.
As was noted by Efe, Ruan, and Willett [18], the PMHT
handles such situations with ease. Because the PMHT is
a batch algorithm, as long as newly received measure-
ments correspond to a step that has not left the sliding
window, the measurements may be added to the batch
at any time and are used in the state update.

A CRITICAL LOOK AT THE PMHT

I, refers to a generalized hypergeometric function. The
step from (44a) to (44b) was performed by noting that
the ratio of the g, ; and the g;th term of the sum in (44a)
is:
a, _ (U—n)(U—-M)

a 1+ ' (43)
More information on the conversion of sums to hyper-
geometric functions may be found in [48].

In contrast, although the PMHT allows for more pos-
terior association probabilities than the JPDAF, due to
their product form (i.e., the assumed independence of
the associations) these do not need to be enumerated
individually. The evaluation of each measurement asso-
ciation probability w requires evaluating a single normal
PDF, and in the end normalizing over all w terms and
a clutter term. Thus, the number of evaluations of the
exponential function that need be done for one iteration
at one time step in the PMHT is equal to the number
of w terms, which is n,M. Thus, if the batch length of
the PMHT is N, and [ iterations are used then, noting
that the first estimate in the batch does not change with
each iteration, the overall complexity of the PMHT is:

N

Apyir = IM Zn,.
=2

(46)

As shown in Table I, when the number of targets is
small, the PMHT will have a higher complexity than
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TABLE I
Number of Combinations Considered by the JPDAF versus the
PMHT as a Function of the Number of Targets

M AJPDAF APMHT

1 n+1 13N n,
2 nt2+nt+1 2125\72”:
3 n?+2nt+1 3125\?2":
4 nt—2n3 +5n% + 1 41y m,

n, is the number of measurements in the frame considered, M is the
number of targets and / is the number of iterations that the PMHT
uses.

the JPDAF. Consistent with the simulation results of
Pao [46], practical implementations of the PMHT will
never have a lower complexity when there is only one
target. However, the complexity of the JPDAF scales
exponentially with the number of targets, whereas the
complexity of the PMHT scales linearly. So keeping the
batch length N fixed, the PMHT has a lower complexity
as the number of targets becomes large.

6. USING THE TRACKER OVER TIME

6.1. Growing and Sliding the Batch

The PMHT requires an initial estimate for all of
the states in the batch, as well as a the covariance of
the state estimate at the first time step. As empirically
demonstrated by Willett, Ruan, and Streit [70], a prac-
tical, efficient way of running the PMHT using a finite-
length batch is by growing and then sliding the batch.
In other words, at time =1 one is given the initial
state estimates of the targets x,,(1). From time ¢ = 2 to
time t = N, where N is the maximum batch-length, the
PMHT is run while increasing the batch length by one
each time. As mentioned in Section 4.1, in order to elim-
inate “data incest,” the state estimates at the beginning
of the batch should be removed from the estimation that
is not updated as part of the Kalman smoothing step.
The initial estimates of the states for the rest of the batch
are very important for convergence. Even with the use
of deterministic annealing, as described in Section 4.3,
if the initial state estimates for the batch are particularly
bad, then the EM algorithm probably will not converge
to the global maximum, nor to a nearby local maximum.
For that reason, the best initial state estimates are the
estimates from the previous time step. The best initial
state estimate for each target at the new step, which was
not estimated at the previous time step, is the the best
a priori estimate, which is the Kalman filter estimate
x,(t|t—1).

At all time steps after the batch length has reached N,
the batch should slide one step forward, as demonstrated
in Fig. 1 by the Single Shift batch with respect to the
Pre-Shift Batch for a length N = 4 batch. In this case,
the previous estimate from the first time step becomes
the new initial state of the first step of the batch, which
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Fig. 1. Different methods of shifting the window for the next time
step as shown on a length-4 batch. Each method has its own
concerns regarding the consistency of the estimator and the

avoidance of “data incest.”

Pre-Shift Batch

Single Shift Batch

must have an accurate covariance. Section 7 looks at
ways of estimating the covariance of this state estimate
as well as those of the other state estimates in the batch.

6.2. Other Methods of Sliding the Batch

It should be noted that the aforementioned method
of sliding the batch is somewhat ad-hoc. Much literature
has also focussed on sliding the batch over multiple time
steps at once, as shown with the Multishift Batch in
Fig. 1. If this approach is taken, one can not obtain
a real-time estimate of the target’s location, but must
wait until another batch of information has arrived.
Ruan, Willett, and Streit [52] suggested that the batches
should not overlap by more than one time step and
later suggested [70] that the initial state of the slid
batch, be it slid one step or many, be calculated using
only information equal to or prior to that time period.
For example, in the Single-Shift batch in Fig. 1, only
information from times 0 and 1 could be used to create
the initial state estimate at time 1. However, a length-one
PMHT is not a very good tracker. As a result, by using
this approach the initial estimates become progressively
worse.

The main concern regarding reusing smoothed past
state estimates is that it introduces “information incest”
in the smoothed state. However, it should be noted that
this concern only exists with the initial estimate at the
beginning of the batch. The rest of the initial estimates
in the batch affect to which local maximum the EM
algorithm is likely converge, but they do not affect the
location of the maxima in the likelihood function.

The new initial state when using a Single-Shift batch
from Fig. 1 and the smoothed state estimate from the
previous batch as the initial state, introduces information
incest in that it has already been smoothed from future
observations. In the Multi-Shift batch, where only a
single state overlaps, no information incest is present.
However, in the example of Fig. 1, the initial estimate
for time steps 4, 5, and 6 in the slid batch would have
to be Kalman filter predictions from the estimate at
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time 3. If these are far from the true track location,
then it is likely that the precision errors will occur, as
described in Section 4.2 or that the EM algorithm is
likely to converge to a local maximum far from the
global maximum.

Thus, there is a tradeoff between how far one slides
the batch and how much “information incest” one
wishes to allow in the state estimate at the beginning of
the slid batch. Wieneke and Koch [66] decided to shift
a small number of steps, less than the batch length, and
use deterministic annealing. However, in many practical
situations, a state estimate is desired at every time step,
and thus the method of growing and sliding the batch
described in Section 6.1 is a simple approach.

7. COVARIANCE ESTIMATION IN THE PMHT

When sliding the batch, as described in the previous
section, an accurate covariance is needed for the new
estimate of the first time step of the batch. Additionally,
at any time during tracking, one may wish to have a co-
variance for the target state estimate. Being based upon
the EM algorithm, the PMHT does not directly provide
this. The simplest approximation is to use the covariance
estimates that are produced by the Kalman smoother at
each step. However, based upon the Normalized Esti-
mation Error Squared (NEES), which is more closely
defined in Setion 9, this has been shown to be inconsis-
tent.

In this section, we will look at two methods of
producing covariance estimations for the PMHT. One
approach, originally presented by Walsh [65], is to use
the inverse of the observed information to predict the
covariance. A simpler ad-hoc approach by Blanding,
Willett, Streit, and Dunham [6] is to obtain covariance
approximations by normalizing the posterior association
and using the covariance estimate from the JPDAF, (as
described, for example, in [3]).

7.1.  Using the Observed Information to Estimate the
Covariance

Letting D be the dimensionality of the state, the
observed information matrix is defined as the DM N x
DMN Hessian of the joint likelihood function of the
states and observations over all time, evaluated at the
state estimate, in this case the EM estimate:

2 A
11X,Z]= -Vxlog p(Z,X)y ¢ (47)
= [-Vxlog p(X) — Vi log p(Z | X)1|5_g
(48)
= Iprior[f(] + Idata[Z | 5\(] (49)

The inverse of the observed information gives the co-
variance for all states over all time. The covariances of
the individual state estimates are in the D x D blocks
lying on the diagonal of the matrix.

A CRITICAL LOOK AT THE PMHT

Walsh is the first of have derived these Hessians for
the PMHT. We shall give a multisensor adaptation of
the observed information matrix as explained by [6],
assuming that all observations for a particular sensor at
a particular time haveAthe same covariance and measure-

ment matrices. [, [X] is given as

B . x@® - —o6()
Iprior[X] = diag H_é([)/ i+ 1)} :ot=1,...,N—1
(50)
with
diag[P,,(1 [ 1)~ +F,,(1YQ, (1) 'F,(1):
m=1,....M] for t=1
diag[Q,'(t— 1) + F,(1)Q,' OF,, () :
x(@) = m=1,...,M]
for t=2,....T -1
diag[Q, (T — 1) :
m=1,....M] for t=T
and D
6(t) = diag[F,,(1)Q,, (1"
m=1,....M] for t=1,....T -1
(52)

x(#) and 6(t) are MN x M N matrices. The contribution
from the data is given by

N
Il Z | X1 = Y (B(s) — C(s) + D(s)). (53)
s=1
B(s) = diag[B(t,s): t=1,...,T], (54)
C(s) = diag[C(t,s): t=1,....T], (55)
D(s) = diag[D(t,s): t=1,...,T], (56)
B(t,s) = diag[H,,,('R,,,()"'H,, () :
m=1,....M], (57)

C(t,5) = diag [H,(t) R (1) !

()
X (Z W, (8, s)um,,,(s,t)um,r(s,t)’>

r=1

xR H(t): m= 1,...,M] ,

) (58)
D(1,5) =Y D, (15D, (t,s), (59)
r=1
and
Wm,r(t’ S)Hs(t)/Rfl (I)Vl,r(t)
Dr(f, S) = (60)

Wy (6 OH 'R (v, (1)
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Note that B(t,s) contains the synthetic measurement co-
variance R, ((¢), whereas the other equations only con-
tain the covariance of the measurements. The innova-
tions are defined as follows:

Uy (5,5 = Hy(D)X,, (1) — 7, (1)

The derivation of the observed information was per-
formed under the assumption that the transition matrix F
and the process noise covariance matrix Q are invertible.
This is true when using the discretized continuous white
noise acceleration model for the motion, but is not true
when using the discrete white noise acceleration model
[4], in which case a pseudoinverse would be necessary.®?

(61)

7.2. A Simpler, Ad-hoc Approach to Covariance

Estimation

We shall extend the ad-hoc covariance estimation
approach taken by Blanding, Willett, Streit, and Dun-
ham [6] to the multisensor case. That is, we shall show
that estimator consistency is improved when the pos-
terior assignment probabilities are normalized and the
covariance estimate from the MSJPDAF is used. The
MSIJPDAF is a generalization of the JPDAF to multiple
sensors (see, for example [3] for information on the ba-
sic JPDAF). There exist two forms of the MSJPDAF, a
sequential and a parallel one, which were contrasted by
Pao and Frei [45]. Because the sensor fusion is done in
parallel at each step of the PMHT, we shall consider the
parallel version of the MSJPDAF.

The MSJPDAF requires that the posterior associa-
tion probabilities sum to one over all measurements for
a particular target plus the probability that target was
not detected. This is because the MSJPDAF does not
make the same assumption as the PMHT, that each tar-
get can produce more than one measurement at a par-
ticular time. By noting that in the PMHT measurement
model the assignment of one measurement to the target
has no bearing on the probability that another measure-
ment is assigned to the same target, the probability that
a particular target m was not detected by a particular
sensor s at a particular time ¢ is given as follows:

n

Bu0s@® = [J(A = w,,,@5).

r=1

(62)

Thus, the normalization over the observations, not
changing the probability of a missed detection is:

B ) = wm,,a,s)Zln,%m

r=1 Wm,r(t’ S) . (63)

8The Moore-Penrose pseudoinverse of matrix A is Al = @A) 1A If
AA’ is poorly conditioned, then the pseudoinverse can produce bad re-
sults. In simulations using the discrete white noise acceleration model,
we have observed that conditioning is often a problem in evaluating
the observed inverse of the information matrix.

The covariance update from the parallel MSJPDAF is:

P, (t|t)= (Z B O, ot | 1) +X,,0(t | DX, (1 | z)’))
C

—x,,(t|Ox,(]1). (64a)

Equation (64a) is the form given by Pao and Frei [45].
C represents a particular combination of assignments
between sensors for a particular target. Each 3, . is a
product of 3, . (¢) terms over all sensors for a combi-
nation of assignments 7, for each sensor. The whole set
of C is the set of all possible measurement to target and
clutter assignments at a particular time over all sensors.
This means that the covariance calculation is roughly
exponentially complex as a function of the number of
Sensors.

In (64a), x,, (1 | 1) represents the state update of the
Kalman filter if the measurement-assignment for all sen-
sors given by C is correct. This means fusing the actual
observations in the same way that the synthetic mea-
surements were fused in (29), (30), and (31) and then
updating the state estimate from the PMHT. By updat-
ing the PMHT state estimate reusing the observations,
a certain degree of “data incest” is added, but again this
method is ad-hoc and problems with the “incest” were
not observed in previous work using a single sensor [6].
The covariance P, (¢ |7) is likewise what the covari-
ance would be if assignment C is correct. Since only the
first state of the PMHT has a covariance, the pre-update
covariance at time ¢ would consist of P, (t |t — 1), that
is the forward predicted covariance from the previous
estimate. In this manner, this covariance estimation al-
gorithm must be done in order from the first to the last
state estimate. x,,(7 | 7) is a the weighted average of these
other state updates:

X, (010 =" BueXpel |0, (65)
c

8. A SUMMARY OF THE BASIC ALGORITHM

We shall give a summary of the basic PMHT algo-
rithm assuming that all targets have the same probability
of detection and that the measurements all have the same
measurement matrix H. If the detection probabilities are
different for all targets, then the prior and posterior as-
sociation probabilities referenced from the appendices
should be used. If the observations have different mea-
surement matrices, as might be the case if range-rate
information is available, then the alternative state update
equations given in Section 4 should be used.

1) Set the initial state estimate for each target at the
current time step to the Kalman filter predicted
value of the state x,,(f | — 1).

2) For each sensor and observation, calculate the pos-

terior assignment probabilities w_ ) ,(7,s) accord-
ing to (18) and (19).
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3) Create the synthetic measurements im,s(t) with their

corresponding measurement covariances R, ((¢) for
each target, measurement and sensor according to
(25) and (26) or (35) and (34).

4) Merge the synthetic measurements between sensors
according to (32) and (33).

5) Using the fixed initial state estimate x,,(1) and state
covariance estimate P, (1) for each track, run the
Kalman smoother, as described in Appendix D us-
ing the merged measurements as the observations.
Do not smooth the initial state.

6) Update the confusion matrix using (41).

7) Go to step 2. Repeat until convergence of the EM
algorithm.

8) If desired, estimate the covariance of the updated
state estimate x,,(f | ) using a consistent approxima-
tion, such as (64a) or as described in Section 7.1.

9) Slide the batch window forward, using the proper
covariance estimate for the new initial state, such
as in (64a) or as described in Section 7.1.

10) Go to 1.

9. SIMULATION

We compared the consistency and track retention
rates of the MSJPDAF and the MSPMHT with and
without deterministic annealing and using the various
covariance estimation methods of Section 7 when us-
ing two sensors and two targets. The sequential ver-
sion of the MSJIPDAF was used.” We used the two-
dimensional discretized continuous white noise acceler-
ation model.!? Both sensors had the same field of view
and measured in Cartesian coordinates without classifi-
cation information. The ordering of the elements of the
state was [x,y,x,y]. Using an 80% probability of detect-
ing each track at each sensor, the simulation parameters
were

‘10 T 0
01 0T
F=10 0 1 ol (66)
00 0 1
T33 0 T2 0
o T3 0 T2,
Q=lpp o 17 o |77 ©
L 0 T?/2 0 T
10 0 0
H=10 1 0 o) (68)

9[47] discusses the sequential MSJPDAF algorithm, but provides an
incorrect state covariance estimate. [32] provides the correct state co-
variance estimate when solving a different problem.

10The one dimensional version is described in [4]; the two-dimension-
al version follows from it.
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Fig. 2. A typical run of the simulation. The observations from the
first sensor and the last frame of clutter for that sensor are shown.

and

(69)

The sampling time 7 was set to 30 seconds. 1,000
Monte Carlo Runs were performed. The first target was
placed at the origin given an initial velocity of 7 m/s
at a 59° angle from the x axis. The second target was
assigned the same speed, and was placed at 500 m on
the y axis. Ascending at a 52° degree angle from the x
axis. o,, was chosen to be 50 m for both sensors and o,
0.1 m?/s3. Clutter was generated uniformly in a view-
ing rectangle bounded between (—200 m,—200 m) and
(3.5 km, 6 km). The number of clutter points was deter-
mined at each time step by a Poisson random variable
having mean 23. The MSPDAF was gated to observa-
tions within a 99.97 percent probability region around
the estimated location of the target. The simulation was
initialized by giving two correctly assigned measure-
ments for each track to information filters (the informa-
tion filter is described in [4]). For the PMHT, a window
growing to a maximum of length 10 was used. After
the 10th time step, the window slid. The PMHT was
performed using 10 iterations at each step.

Fig. 2 shows a typical run. The proportion of tracks
not lost at each step was calculated. A track was consid-
ered lost if at any point, the true location of the target
was outside of the 99.97 percent confidence interval of
the estimated target location. Fig. 3 shows the track-loss
performance. As expected, deterministic annealing sig-
nificantly improved the track-loss performance of the
MSPMHT.

To evaluate the consistency of the trackers, the av-
erage normalized estimation error squared (NEES) for
tracks that were not lost was calculated and averaged
over all tracks and Monte Carlo runs. The NEES is de-
fined as

NEES = (x(t) — x(¢ | )P(t | )" (x(t) — x(t | 1))'.
(70)
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Fig. 4. The average NEES for tracks not lost by any of the trackers. The horizontal lines mark the 95 percent confidence interval of the
NEES. (a) Without DA. (b) With DA.

The NEES for a particular track is a random variable
with 4 degrees of freedom. The average NEES over
n Monte Carlo Runs is a chi-squared random variable
with 4n degrees of freedom. As mentioned in [4],
the inverse Cumulative Distribution Function (CDF)
of a chi-squared random variable given v degrees of
freedom, where v > 100, is approximately

X(p)~1 (Q(p) + m)z.

p is the probability at which the inverse CDF is to
be evaluated. G(p) is the inverse CDF of the standard
normal distribution. Thus for the 95 percent confidence
interval we get:

[G(0.025), G(0.975)] =[-1.96, 1.96]. (72)

As can be seen in Fig. 4, the use of MSJPDAF
covariances in the two-sensor MSPMHT improves the
consistency of the tracker, even outperforming those ob-

(71)
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tained by using the observed information approxima-
tions. However, as can be seen in Fig. 3, the use of
improved covariances has little effect on track reten-
tion. The apparent inconsistency of the initial estimate
in Fig. 4 stems from the fact that those tracks most often
lost by the PMHT were those where the covariance of
the initial estimate was underestimated. Deterministic
annealing significantly improves track retention. This
coincides with previous results done using a single sen-
sor on a single track [57] and [66].

All together, the MSPMHT performs worse than the
MSJPDAF in the two sensor scenario. However, the
poor performance of the basic PMHT has been shown
in previous literature and was one of the motivations
for the creation of other PMHT algorithms, such as the
MF-PMHT by Blanding, Willett, Streit, and Dunham
[7]. The multisensor PMHT presented in this paper can
form the basis of such modified algorithms.
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10. CONCLUSION

We derived a general form of the PMHT involv-
ing clutter, multiple sensors, and classification measure-
ments. We provided a simpler method of performing
the maximization step when using multiple sensors. We
demonstrated that deterministic annealing can signif-
icantly improve tracker performance and we showed
that the JPDAF covariance approximations provide the
most consistent covariance estimates in the simulation,
but this consistency has little effect on the track reten-
tion as compared to using the synthetic covariances. We
also provided a simplified solution for the prior asso-
ciation probabilities (the 7s). Although having worse
performance than comparable algorithms, such as the
MSPDAF, the PMHT algorithm derived here can form
the basis of other modifications of the PMHT, such as
the Turbo PMHT and the MFPMHT, which achieve bet-
ter track retention.

APPENDIX A. A DERIVATION OF THE POSTERIOR
ASSOCIATION PROBABILITIES w (z,s)

The derivation of the posterior association proba-
bilities for the PMHT is dependent upon the sensor in
question. For simplicity, we shall assume that we are
only considering that which is seen by sensor s and
we shall suppress s from the notation. As has typically
been done, we shall derive it assuming that all sensors
see everything and that there is no gating.

In order to highlight the complexity reduction of the
PMHT measurement model, we shall begin by assum-
ing the regular target-measurement assignment model
(i.e., that a target can produce only one observation per
sensor at each time) before finishing the solution using
the PMHT measurement model. Let there be a total of
M non-clutter targets and one clutter target m = 0. Let
X(?) be the state of the Kalman filters for all non-clutter
targets at time t. Define z.(¢f) € Z(¢) to be the rth mea-
surement out of the set of Z(r) measurements at time
t, which consists of n, measurements (in order to sim-
plify the notation, we shall omit the subscript on n).
zrc(t) shall be the classification value associated with
measurement z,(¢). Define k,(f) to be source of the rth
measurement at time 7. C shall be the set of all classifica-
tion probabilities c(i,m) = Pr(z,c(t) =1i|k.(t) =m). The
classification of the target is assumed independent of
time and the target state. The probability that measure-
ment z, at time ¢ came from target m given the current
set of observations, the set of classification probabili-
ties, and the estimated state of the set of Kalman filter
is w,, (1) =Pr(k (1) =m | X(2),Z(1),C,n). Using Bayes

Rule, this may be decomposed as follows:

Pr(Z(1) | kr(t) = m,X(l),C,n)Pr(kr(t) =m|X(),C,n)
Z[A:Izo Pr(Z(t) | k(1) = p.X(1),C,nm)Pr(k,.(t) = p | X(1),C,n)
(73a)

W, (0 =

__ Pz | k() = m,X(@@),m)m, (n)c(zC,m) (73b)

SO P [, (0 = p,X(0),mm, (Me(zE.p)

A CRITICAL LOOK AT THE PMHT

Once we fix k() = m, the probability of observing z,
is independent of the other track-measurement associ-
ations. Therefore, we may decompose Pr(Z(r) | k.(t) =
m,X(t),n) into two parts:

Pr(Z(1) | k(1) = m,X(t),n)
= Pr(Z(t)\z,(1) | X(1)\x,,(1),n) - Pr(z, (1) | k,(£) = m,x,,(£),n).
(74)

Z(1)\z,(t) represents the set Z(f) without measurement
z,(1). X(1)\x,,(r) represents the set X(¢) without the el-
ements corresponding to track m. Let f,,(q) be the
PDF of the estimated target location at time ¢ for tar-
get m given X(¢). If target m is not clutter, then this
is the Kalman filter estimate, which is normally dis-
tributed. This normal distribution comes directly from
the Kalman filter in (9) and has a covariance R(¢) equal
to that associated with the measurement. If target m is
clutter, i.e., m = 0, then f; ,(¢) is the PDF of the clutter
at point g. Usually this is assumed to be uniformly dis-
tributed over the field of view, but we shall designate it
by u(t,q) to allow for the use of a generic continuous
distribution to be used. We shall assume that pu(z,q) is
continuous as a function of ¢. Hence we obtain

wt,q) m=0
N@HXO.R,1) m#0’

Because the PDFs of the measurements coming from
targets and those originating from clutter are assumed
continuous, Pr(z, | k.(f) = m,X(¢),n) may be expressed
as the probability of the observation being within a
certain region around the observation as the size of
that region approaches zero. We shall denote the size
of this region as A and the region itself, which is
centered about the observation z, as A(z,). Formulating
this probability as a limit allows us to deal with zeros
in the numerator and denominator of (74).

fonl@) = { 5)

Pr(z, | k(1) = m,X(1),n) = lim fim(@)dq
A=0JyeA)
(76)
= lim £,,,(z)A. (77)

Substituting (77) and (74) into (73b) we get

_ PrZ®\z,() | X(0)\x,, (0),n) - f, ,(z,) - Am,, (n) - ¢(zE ,m)
Wm,r(t) = lim i
A=0 %" =0 PIZO\z, () [ X(0)\x,,(),m), () A, (m)e(z(, p)

(782)

_ PrZ)\z, () | X0\, (0.1) - £,,,(z,) -, (n) - e(z€,m)
fozo Pr(Z(n)\z,(1) | X()\x,(),n)f, ,(z)7,(m)e(zE , p)

(78b)

The jump from (78a) to (78b) was accomplished by
noting that A could be factored out of the sums and
products and thus cancels in the numerator and denom-
inator.
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Equation (78b) is the solution assuming that each
target can produce only a single measurement. The
evaluation of Pr(Z(r)\z,(r) | X(?)\x,,(t),n) is combinato-
rially complex. However, under the PMHT measure-
ment model, whereby a single target can produce any
number of measurements at one time, this becomes sim-
pler. Under the PMHT measurement model, (74) sim-
plifies as follows:

Pr(Z(t) | k.(t) = m,X(t),n)
= Pr(Z(t)\z,(t) | X(t),n) - Pr(z, (1) | k(1) = m,x,,(£),n).
(79)

This thus leaves a common term in (78b) that can be
cancelled, giving us:

fim@m (W m)
S o £y @ (m)e(zE . p)

Substituting the appropriate distributions for f;, (z,) and
1. p(z,) gives us the form given in (17).

W (1) = (80)

APPENDIX B. A DERIVATION OF THE PRIOR
ASSOCIATION PROBABILITIES

T (1,(5),1)

B.1. A General Derivation of the Prior Association

Probabilities

Adopting the notation from the previous section, the
prior association probabilities are defined as

m,,(n) = Pr(k.(r) = m | X(),C,n). (81)

In this case, we are suppressing the conditioning on X()
and C in the notation of 7, because, assuming that the
clutter is uniformly distributed in the viewing area, the
actual location of the target has no bearing on the so-
lution. In this section, we shall also suppress the condi-
tioning on time in order to simplify notation. We shall
derive the prior association probabilities assuming that
no gating is taking place and that all sensors have the
same field of view. It should be noted that the deriva-
tion of the 7 values are the embodiment of the PMHT
measurement model. However, the PMHT measurement
model is only an approximation. For this purpose we
shall derive the 7s based upon the usually more realis-
tic model that a single sensor can only observe at most
one measurement of each target at each time step.

The derivation of the 7s takes place under the con-
straint that each measurement came either from a target
or from clutter, that is:

M
PRENOESE
m=0

Thus, solving for the value of the non-clutter 7 is
sufficient to tell us the value of the clutter = for a
particular n. Let us now determine the values of =, (n)

(82)
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given that m > 0. Using the Law of Total Probability to
perform a decomposition based upon the number n,,, of
targets observed we may thus write:

7, (n) 2 Pr(k, = m | n) (83a)
min(n,M)
= Z Pr(k, =m|n, n, =k)Pr(n, = k| n).
k=1
(83b)

The Law of Total Probability may be used to sim-
plify the first term of (83b) by adding conditioning upon
whether observation z, originated from a target. The
first term of (83b) may be simplified as follows:

Prk, =m|n, n, =k)
=Prk, =m|n, n, =k, z, € M)

xPr(z, e M |n, n, =k). (84)

The second term in (84) can be found by counting:
if k targets are observed, then the probability that a
particular observation is a target is simply the ratio of
the number of targets observed to the total number of
observations. We thus have

Pr(z, e M |n, n, =k) = Z (85)
The first term of (84) may be decomposed using the

Law of Total Probability:
Pr(k, =m|n, n, =k, z. € M)
=Pr(k, =m|n, n, =k, z. € M, m observed)

x Pr(m observed | n, n, =k, z. ¢ M) (86a)

1
= <%> Pr(m observed | n, n, =k, z. € M).

(86b)

The notation “m observed” in the conditioning is an
abbreviation for “the mth target was observed.” The
jump from (86a) to (86b) was done by noting that if
we know that target m was observed, observation r
is a target and that k targets were observed, then by
counting, we know that the association probability is
1/k.

Let us define some additional notation. Let M be the
set of all measurements originating from a target, and p,,
be the probability of detecting target m on a particular
scan. There shall be no p,, for clutter. We shall designate
the set of all p,, as P,. There are (}/) ways of choosing
which k targets are observed for each item in the sum.
Let P,(k) be the set of all products of k-combinations
from P, without repetition. For example, if k =2 and
M =3, then P,(2) = {p,p,, P1P3» P2P3} (the specific
ordering of the terms in not important). Define ¢,(y) to
be an enumerating function over P, giving us the yth
ordered element from P (k). M, (y) shall represent the
set of k targets whose detection probabilities are part of
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e, (), i.e, it is a set of observed targets. Let ¢,(y) be, if
k < M, the product of all M — k elements of P, that are
not used in e,(y), or ¢, (y) =1 if k = M. For example,
for k=2 and M =3, then e,(y) for y =1 is p,p,, for
y=21is p,ps, and for y = 3 is p,p;. Likewise e,(y) for
each y is respectively 1 — p;, 1 —p,,and 1 — p,. Let I(x)
be an indicator function that is 1 if x is nonzero.

Equation (86b) is equal to the sum of the probabili-
ties of all combinations of k observed targets such that
the mth target is observed:

Pr(m observed | n, n, = k, z. € M)

_ 2 0@ n € M)
CPROA)

Combining (87) with (86b) and (85) to form (84),
we get the following solution to the first term of (83b):

Pr(k, =m|n, n, =k)
SO eI e 1
= i ~.(88)
z=k1 e (Dey (D)

n
The second term of (83b) may be simplified using
Bayes’ Theorem:

(87)

Pr(n | ny = k)Pr(ny = k)

min(n,M)
> j=0

Pr(n, =k |n) =

Pr(n | ny = j)Pr(ny = j)

(89)

Pr(n | ny = k) from (89) is the probability that there are

n —k clutter points. We shall designate this probability

by the function {(n —k). Pr(n, = k) from (89) is the

probability that k targets are observed and may be
written as follows:

(¥)
Pr(ny = k)= > _e,(3)g,().

y=1

(90)

Substituting (90) into (89), we get
) (252 ek(y>ék<y))

Se M (n — i) (292 q(y)%(y))
1)

Substituting (91) and (88) back into (83b), we get the
following expression for m,,(n):

M
1—Z7rj(n) m
j=1

_ min(n,M)
m,(n) = ol

Pr(ng =k |n) =

1l
(=)

61— Y1) e, ()2 MIm € ML () -

P = (S e 00

m#0
92)

A CRITICAL LOOK AT THE PMHT

B.2. Simplifying the Prior Association Probabilities

Typically, the detection probability of the targets is
unknown a priori. In this case, it is often simplest to
assume that all of the targets have the same detection
probability F,, which would be chosen based upon the
properties of the sensor and typical targets. When that
is the case, Pr(ny = k) from (90) is the same as the
probability of having k successes out of M Bernoulli
trials each with a success probability of F:

M

Pr(n, =k) = (k (93)
Additionally, Pr(m Observed |n, n, =k, z. €M)
from (86b) may easily be solved by counting. With M
targets total and k targets observed, the probability of
observing any particular target is just k/M. Hence we

obtain

>P,§(1 — Pk,

Pr(m Observed | n, n, =k, z, € M) = %

94)
Using these simplifications, ,,(n) is the same for all
m # 0 and (92) may be written in the following simpli-
fied form:

1— Mﬂl(n) "=t
T = Sk (BB
My s — i) () Bi(L — B
(95)

The probability £(k) of observing k clutter points at
time ¢ is often modeled as a Poisson probability mass
function with mean AV where A represents the mean
amount of clutter per unit volume and V is the volume
of the viewing area. Thus, we have

k
(A]Z) eV, (96)

Substituting (96) into (95) for m # 0, we get

§(k) =

min(n,M) k M -
P e v e vTA Ao
m m#0 — . 1 ] .
min(n,M) M\ pi _ M—i
Mn2i=0 ()\V)i(nfl')!(i)PD(l PD)

o7

It can be noted that the ratio of consecutive terms of
the sums in the numerator and denominator of (97) are
ratios of polynomials in k. That is, the ratio of the g,
and the g,th term of the sum in the numerator is

g _ (k—M)k—n) B,
a, k <(1—PD))\V)' ©8)

Likewise the ratio of the a,,, and the a,th term of the
sum in the denominator is

_ (k—=M)(k—n) B
) ((1 —PDW)' o
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TABLE II
Examples of «, (n)|,, 40 and  when all Targets have the Same Detection Probability and a Poisson Clutter Model is Used

M Wm(n)lm#o

us

PD
nPy + (1 —Py)AV
2 P3(n—1-\V)+PyAV
P2n(n— 1)+ 2nPyA\V(1 — Py) + (1 — P,)2\2V2

<%1) +n—1

Py(n—1) 1
— Db 7 i —=——1)+n-1
P,(l—n+\V)—\V "\ B,

Thus, following the method in [48], the sums may be
rewritten in terms of hypergeometric functions

1 —Mm,(n) m=0
. (n) = 2 Fy {I—M,I—H;OJ)W} .
— 7 m#0
J%{AL”%1—EQAV}
(100)

The function ,Ky(a,,a,;z) in (100) is a hypergeometric
function.

Table II shows m,,(n)l,,., from (100) for one and
two targets. Previous publications, such as [3], have also
derived (100) for a single target under a Poisson clutter
model.

APPENDIX C. FURTHER SIMPLIFICATIONS TO THE

wSs

If the probability of detection is the same for all
targets, then the ws and the ws may be simplified one
step further. Examining (95), it can be seen that all of the
m values are the same for all targets. Using the simplified
form of the ws in equation (17), we can divide the 7 term
from the numerator into the denominator to get

Some expressions for 7 as a function of the number
of targets are given in Table II.

APPENDIX D. THE KALMAN SMOOTHER

In this section, we summarize the equations for the
Kalman smoother, as described in [4]. x(z, | t,) repre-
sents the state estimate at time f; given all observa-
tions from time 1 to f,, whereby x(0 | 0) is the initial
estimate. P(z, | ,) is the covariance of the aforemen-
tioned state estimate. F(7) is the state transition matrix
and H(¢) the measurement matrix, as shown in the dy-
namic equations in (8) and (9). In keeping with the dy-
namic model, Q(?) is the process noise covariance and
R(r) the measurement noise covariance, the noises be-
ing zero-mean and white. z(¢) is the observation at time
t and R(?) is its covariance. The Kalman smoother con-
sists of a Kalman filtering step, after which a smooth-
ing step is applied. Letting I be the identity matrix,
the Kalman filter equations to calculate x(7 |f) from
x(r—1]t—1) and the observations at time ¢ are given
by

W0 (8) =

xt|t—1)=F@Ox@—1|r-1), (103)
y(©) = H@Ox( [ 1 - 1), (104)
NA{z, (0:3;, .. R, () }c (25 (1), k, (1)) (101)
T(n,(8), )t z, (())c(zE,(1),0) + S N {z, ((0:¥,,(0),R, (D) }c(zE (1), m) '
Pit|t—1)=F@®OPt—1|r— DF@ + Q), (105)

This lowers the total number of multiplications needed
and it is more efficient to calculate 7 than to calculate
the 7 values for clutter and targets separately. When a
Poisson clutter model is used, as is the case in (100),
then, maintaining the notation from Section B, 7 is given
as follows:

7= _T0_

Tnz0

(102a)

. PD
26{_M"%%1—BQMJ

= _M—

P
Ell-M1-n—"2>
270 { ’ ”’(1-—15)Ax1]

(102b)

W() = P(t |1 — DH@)'[R@) + HOP( |1 — HH)]T,

(106)
P( | 1) = [I-W@OH]IP( |t — D[I- W@OH®)]
+ WOROWQ), 107)
and
X(t | 1) = x(t | 1— 1) + WO)[z() - 501 (108)

Assuming that there are N time-periods of data avail-
able, the smoothing is performed by starting with the
final estimate x(N | N) and going backwards along the
previous estimates, smoothing them using the following
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equations

and

Ct) =Pt | DFO'PE+ 1|7, (109)

X(t|N) =x(t| 1) + COX(Et+ 1| N)—x(t +1|D)],

(110)

Pt |N)=P@|)+ CO[P(r+1|N)—P@¢+1|1)]C@).
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Multitarget Multisensor
Tracking in the Presence of
Wakes
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In this paper we focus on targets which, in addition to reflecting
signals themselves, also have a trailing path behind them, called
a wake, which causes additional detections. When the detections
are fed to a tracking system like the probabilistic data association
filter (PDAF), the estimated track can be misled and sometimes
lose the real target because of the wake. This problem becomes
even more severe in multitarget environments where targets are
operating close to each other in the presence of wakes. To prevent
this, we have developed a probabilistic model of the wakes in a
multitarget environment. This model is used to augment the joint
probabilistic data association filter (JPDAF) for both coupled and
decoupled filtering.

This paper provides a systematic comparison of the standard
data association filters (PDAF and JPDAF) and their modified
versions presented here in a multitarget multisensor environment.
Simulations of two targets with wakes in four different scenarios
show that this modification gives good results and the probability
of lost tracks is significantly reduced. The targets are observed by
two sensors and it is shown that tracks estimated in a centralized
fusion configuration are better than those from the local sensors.
It is also shown that applying the wake model to targets that do
not generate a wake, yields almost no deterioration of the tracking
performance.
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1. INTRODUCTION

Targets in real tracking scenarios may be detected
by their reflection of signals emitted from a radar [6], a
sonar [26], or by the use of optical sensors [24]. In addi-
tion to target-originated measurements there will also be
a number of detections due to noise and clutter, called
false alarms. A well-known tracking method to handle
targets in clutter is the probabilistic data association fil-
ter (PDAF) [3, ch. 3.4]. The PDAF accounts for the
measurement origin uncertainty by calculating for each
validated measurement at the current time the associa-
tion probabilities to the target of interest.

In a multitarget environment [5] the association of
measurements is more problematic because the indi-
vidual targets no longer can be considered separately
as in the PDAF. For this purpose the joint probabilis-
tic data association filter (JPDAF) [3, ch. 6.2], [14]
was developed to consider a known number of tar-
gets in the data association simultaneously. This method
evaluates the measurement-to-target association prob-
abilities for the latest set of measurements and then
combines them into the state estimates. In the JPDAF
the targets’ states, conditioned on the past, are as-
sumed independently distributed so that filtering can be
done decoupled. As an alternative, the targets’ states,
given the past, can be considered as correlated. This
leads to the joint probabilistic data association cou-
pled filter JPDACF) [2], [3, pp. 328-329], where the
correlation between the targets’ estimation errors is
accounted for. A modified version of the JPDACEF,
called coupled data association filter (CPDA), was pre-
sented in [9] to also account for partial target detec-
tions. In this paper an equivalent filter to the CPDA,
but where the covariance calculation is in symmetri-
cal form (to avoid numerical problems experienced by
the CPDA), is modified to also account for targets in
the presence of wakes. This filter is called modified
JPDACFE.

A more powerful source of false measurements than
those due to noise and clutter, is the wake phenomenon
that appears behind certain targets. This could be air
bubbles from a diver, the wake behind a ship, or the
wake from ballistic vehicles in the re-entry stage. One
possible approach to this problem is to handle both
the target and the wake behind it as an extended tar-
get. A problem with this approach is the varying and
unknown size of the wake which may reach far be-
hind the target yielding a large bias. In this paper the
wake is not considered as part of the target, but rather
as a special kind of clutter. When these measurements
are fed to the tracking system, it becomes important
to associate them correctly to prevent a lost track. In
[1] a probabilistic editing method is used to handle
the wake-dominated measurements in the tracking al-
gorithm. This probabilistic editing method is based on
a single measurement extracted for each time step, and
that this measurement originates from either the tar-
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get or the wake. In [21] a modified PDAF is devel-
oped to handle false measurements originating from the
bubbles behind a diver (the wake). This modified sin-
gle target tracking method does not restrict the num-
ber of false measurements for each time step, but as-
sumes a set of measurements where each false mea-
surement originates from either random clutter or the
wake. In this paper we extend the modified PDAF to
handle multiple targets in the presence of wakes. A
probabilistic wake model is used for each target in
the multitarget environment that has a wake behind it.
These single wake models are combined to form a joint
wake model, and the modified JPDAF and JPDACF
are developed to incorporate this additional joint wake
model.

In recent years there has been an extensive inter-
est in using multiple sensors in surveillance systems.
This leads to data fusion where there exist several pos-
sible configurations [3, ch. 8.2]. Primarily due to the
bandwidth constraints in real systems, it is sometimes
not feasible to transmit all measurement information
to a fusion center (centralized configuration). Instead,
only local estimates are transmitted to a fusion cen-
ter (at a reduced rate), and a track-to-track associa-
tion followed by track fusion is carried out (decen-
tralized configuration). However, the best performance
is achieved using the centralized configurations where
all measurements are transmitted from the local sen-
sors to a fusion center. In this paper we use the cen-
tralized configuration with sequential filtering [3, p.
88] where the global estimate is updated by the mea-
surements from each local sensor, one sensor at the
time.

In Section 2 the tracking problem in the presence
of a wake is reviewed for a single target. In Section 3
the modified JPDAF is developed for a multitarget
environment, and the modified version of the JPDACEF,
which accounts for partial target detections, is derived.
In Section 4 a brief review of multisensor tracking is
given. The data association methods are then compared
in Section 5 by simulations of two targets with wakes in
four different multisensor scenarios, before conclusions
are given in Section 6.

2. BACKGROUND

2.1. Model of Tracking

The standard discrete linear model in tracking is

X = Fx + vy, e = Hxy +w, 1
where

X: target state F: transition matrix

Z: measurement measurement matrix

Vv process noise w: measurement noise

k: time index

The process and measurement noises are assumed inde-
pendent, white and Gaussian with covariance matrices

E{vpyvi}=0 E{w,wl}=R. )

For this system, a Kalman filter is optimal as long as the
measurement z, originates from the target at each time
k. In many real world problems this is unfortunately
not true due to the presence of false measurements
originating from noise and clutter. Instead, a set of my,
measurements Z, = {z,(1),z,(2),...,z,(m;)} is available
at time k so that data association is needed. A simple
and efficient method to solve this problem is the PDAF.

and

2.2. Standard PDAF

The approach of the PDAF is to calculate the as-
sociation probabilities for each validated measurement
(that falls in a gate around the predicted measurement)
at the current time to the target of interest. The pos-
terior track probability density is therefore a mixture
of Gaussian probability density functions (pdf), but is
then forced back to Gaussianity by moment-matching
for the succeeding scan. For a derivation of the PDAF
see [3, ch. 3.4], and in the following a brief overview
of the PDAF will be given.

Assume that the target state at time k — 1 is estimated
as %k71|k71 with associated covariance F_;_;. This
means that the estimate is conditioned on the entire past
up to time k — 1. Then the following assumptions are
made:

a) The track is already initialized.
b) The past information about the target is summa-
rized approximately by the Gaussian pdf

plx | 25 QN(xk;)%k\k—l’Pk\kfl) 3

where
ZM1=1Z70,2,,...Z, \}. 4)

¢) A validation region or gate is set up for each time
step to select the candidate measurements for associa-
tion.

d) At time k there are m, validated measurements
but at most one of them can be target-originated. The
rest are assumed to be due to i.i.d. uniformly spatially
distributed false alarms, independently across time.

e) Detections of the real target occur independently
over time with known detection probability F,.

At each time k, the algorithm goes through the following
steps:

1) Predict the target state, associated covariance and
measurement at time k based on the estimates at k — 1:

)%k\k—l = F;Ckfl\kfl
By_1 = FB_j F' +0 &)

k-1 = ka\k—l'
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Ilustration of the pdfs for the measurements originating from the target, noise or wake in: (a) regular PDAF, (b) modified PDAF

with wake model.

2) Compute the innovation covariance for the true
(target-originated) measurement

(6)

and use S, to form the measurement validation gate
where the validated measurements Z, result in m, in-
novations:

Sy =HBy H" +R

i=1,.. @)

3) Calculate the association probabilities 3, (i), i =
1,...,m, that measurement z, (i) originates from the true
target, and 3, (0) as the probability that all measurements
are false alarms

l/k(i) = Zk(i) - 2k|k71 <My,

ce— (/2" )

1-P;PB,
Viby

B () =

c|2mS, |2 my

(®)
Here ¢ is a normalizing constant to ensure that
S B(i) = 1, V, is the volume of the gate and Fj; is
the probability that the true measurement falls inside
the gate. In (8) a diffuse prior [3, p.135] is used for
the point mass function (pmf) of the number of false
measurements in the validation region.
4) Calculate the Kalman gain and the combined
innovation

and  y = Zﬁk(i)yk(i)

i=1

W = Pk\k—lHTSl;1
)
to update the track according to
X = Xepemr + W (10)
5) The state estimation covariance is updated by
Bc\k = ﬁk(O)Pk\kfl
+[1 = B OIBe1 — WS W)

my
+ W, | DB O — vl | W
i=0

1D

MULTITARGET MULTISENSOR TRACKING IN THE PRESENCE OF WAKES

where the last term in (11) is the “spread of the inno-
vations.”

2.3. Modified PDAF

Targets with a wake behind them may cause detec-
tions from the wake that mislead the tracking algorithm
and are likely to result in a lost track. This is because
the uniform distribution assumption for the false mea-
surements (assumption (d) in Section 2.2) is violated.
To prevent this, an extension of the regular PDAF in-
corporating a special probabilistic model of the wake
was developed in [21]. The PDAF with the wake model
is illustrated in Fig. 1. The modified PDAF takes into
account that the false measurements can originate from
either the wake with pdf py,(-) with a priori probability
By, or from i.i.d. uniformly distributed noise/clutter with
a priori probability 1 — P, independently across time.
This modification affects the PDA in the calculation of
the 3,(7) in (8) and yields

o1/ O7S; wieli)

c i=1,...,m
v | b B i
CICER S BT
1-P.P
278, |"2m, —-2 i=0
k"D
(12)

The bracketed parenthesis in the denominator in 3, (i)
fori=1,...,m, is the pdf of a false measurement

p(z,(i) | measurement i is false)

1-B, B, .
= +
v, PGpr(Zk(l))

(13)

where F;y; is used to account for restricting the density
of the wake model py;(z,(i)) to the validation gate. The
calculation of £y, for a linear py,(-) is presented in detail
in [21]. As expected, in the limit as F,, goes to zero, (12)
becomes (8).

2.4. Track Formation and Termination

The data association filters discussed above assume
that the track is already initialized, and when a track
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is established, there are no included rules for how to
terminate the track. Hence, procedures for formation
and termination of tracks are necessary. A simple and
common method to initialize tracks is the two-point
differencing method [4, p. 247]. Any successive pair of
detections within a maximum distance based on target
maximum motion parameters and measurement noise
variances initiates a preliminary track. This preliminary
track, containing the initial state and the corresponding
covariance, can now initialize the PDAF. To reduce
the amount of false tracks, a “p/q” logic-based track
formation procedure can be used. In this procedure a
preliminary track has to receive measurements for a
minimum of p time steps during the first ¢ scans to
become valid.

To terminate a track a logic suitable for the applica-
tion is needed, and a set of rules has to be made. The
rules used in this paper, called termination events, are
described in Section 5.4. It should also be noted that
in some filters, such as the integrated probabilistic data
association filter (IPDAF) [18] or the version of the in-
teracting multiple model probabilistic data association
filter (IMMPDAF) presented in [3, ch. 4.4], the track
formation and termination are included.

3. PROBABILISTIC DATA ASSOCIATION FOR
MULTIPLE TARGETS IN THE PRESENCE OF
WAKES

In a multitarget environment the data association al-
gorithm needs to handle situations where a measure-
ment could originate from different targets. For this pur-
pose, the JPDAF was developed, and a derivation of this
standard algorithm is given in [3, ch. 6.2]. Another prob-
lem arises when these targets have wakes behind them
that result in misleading wake detections. In this section
we will modify the JPDAF to handle this problem.

3.1.  Assumptions

Assume there is a known number N; of established
targets at time k — 1. Notice that these targets are already
initialized, e.g., by the method in Section 2.2. For each
target ¢, where t = 1,...,N,, the target state is estimated
as 25(71‘ 1 With associated covariance B -1+ Then the
following assumptions are made:

a) Measurements from one target can fall in the
validation gate of a neighboring target.

b) The past information about target 7 is summarized
approximately by the Gaussian pdf

PO | Z5 D = N, X1 Bi—1)-

¢) At time k there are m, validated measurements in
the union of their validation gates, but for each target ¢
at most one measurement can be target-originated. The
rest are assumed to be due to the wakes with pdf py,(-)
with a priori probability By, or from i.i.d. uniformly

(14)
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Fig. 2. Probability density functions for two targets with crossing
trajectories. The distributions of the targets are Gaussian and overlap
each other. Each wake behind the two targets is modeled as a pdf,
linearly increasing from the target and backwards, and the sum of
each single target’s wake model forms the joint wake model. The
noise/clutter is uniformly spatially distributed inside the joint
validation region.

distributed noise/clutter with a priori probability 1 — B,
independently across time.

In Fig. 2 an example of the pdfs for two targets that are
starting to cross each other is shown. Here both targets
have a wake behind them, and the joint wake model
(the sum of each target’s single wake model) increases
linearly behind the targets inside the joint validation re-
gion. The joint validation region contains all the candi-
date measurements, and restricts the spatially uniform
distribution representing the noise/clutter. It should be
noted that the linearly increasing wake models are not
developed to approach the true density of the wake since
the wake density would seemingly be higher close to
the targets rather than farther away. Such an approach
would easily misassociate true target-originated mea-
surements as wake-originated ones. At the same time,
in practice, a false wake-originated measurement is less
detrimental when it is very close to the true target than
farther behind. The adopted wake model is therefore
a pragmatic approach to let the probability of hav-
ing a wake-originated measurement instead of a target-
originated one increase with the distance behind the true
target. Further details about the joint wake model and
the validation region are given in Appendix A.

3.2. Joint Association Events

Define the validation matrix () to represent all fea-
sible association events at time k (the time index k is
omitted for simplicity where it does not cause confu-
sion)

Q=[w(,n]l j=1,...m and t=0,... N,

(15)
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Fig. 3. Two targets with a measurement in the intersection of their
validation gates are shown with corresponding validation matrix 2.

Here, w(j,t) is a binary element indicating whether mea-
surement j lies in the validation gate of target 7. The
index ¢ = 0 means that the measurement is from none
of the targets and therefore it is a false measurement. An
example where a measurement may originate from ei-
ther of two targets, i.e., it lies in both targets’ validation
gates, is shown with the corresponding validation ma-
trix 2 in Fig. 3. For all these possible joint association
events, conditional probabilities have to be derived.

A joint association event © describes an unambigu-
ous association between the measurements and the tar-
gets at time k

© = (0G.1)

Jj=1

(16)

where

e 0(j.t;) is the event that measurement j originates from
target 7;.

e 1; is the index of the target to which measurement j
is associated in the event under consideration.

The event © can also be represented by the matrix
Q@ = [W(_)(J,t)]

consisting of the units in 2 corresponding to the asso-
ciations in ©

(U(_)(j,t) = {

A7)

1 if the event 6(j,¢) is part of ©
0 otherwise '
(18)

Using this, a feasible association event needs to fulfill
the following requirements:

1) A measurement can have only one source, i.e.

Nr
Y welin=1 Y] (19)
t=0

2) At most one measurement can originate from a
target

662> wol <1
j=1

t=1,....N..  (20)

The binary variable 0 is called the target detection
indicator since it indicates whether a measurement is

associated to a target ¢ or not in event O. It is also
convenient to define two more binary variables

Nr
UED PN 1)

t=1

6= 1 —7o()] (22)

Jj=1

where 74(j) is the measurement association indicator
to indicate if measurement j is associated to a target
or not, and ¢, is the number of false (unassociated)
measurements in event ©.

3.3. Modified JPDAF with a Wake Model

The joint association event probabilities are derived
using Bayes’ formula

P{O, |Zk} = P{6, |Zk7mk7zk_l}

1 _ _
EP[Zk \ @k7mk7zk l]P{ek |Zk lvmk}

(23)

1
Ep[Zk | 0y, Z11P{O, | my}

where ¢ is a normalizing constant. In the last line of
the above equation the irrelevant conditioning term Z*~!
has been omitted. The pdf of the measurements in (23)
is derived by assuming that the states of the targets,
conditioned on the past observations, are mutually in-
dependent

PIZ; | ©pmy, Z8 11 = [ [ plaa(i) | 6,6t ), 2511
j=1
(24)

Measurements not associated to a target are assumed
either from the wakes with pdf py,(z,(j)) with a priori
probability P, or from uniformly distributed noise/
clutter with a priori probability (1 —By). Defining V;
as the volume of the joint validation gate, the pdf of a
measurement given its origin is

pla | 6,G.1).Z5 1]

Nz ()32 155¢1 if 76,(j)=1
Pw (@) 1 :
P, W L (1—-P)—  if 175()=0
Y Ry a7 o
(25)

where 2,1" 41 is the predicted measurement for target ¢;

with associated innovation covariance S,’j . The constant
P,y 1s used for restricting py,(z,(j)) to the joint vali-
dation region, and has an analytical expression derived
in Appendix A. Using the above equation, (24) can be
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written as

plZ, ‘ @k’mk’zk—l]

= H{N [Zk(j);i,?lk_l,s,if]}fe<f>

j=1

: 1-70())

Pw (@) 1

Py—/——=+(1-PFy)— .
{rPp P ra-rg

(26)

Next, the last term in (23) will be derived. Let 6, be the

vector of detection indicators corresponding to event ©,

g = [04s---,007 1. 27)

The vector 0, and the number of false measurements
¢ follow from the event O under consideration. Using
the definition of conditional probabilities [20, p. 28],
this yields

P{O | m} = P{©,;.,60,00 | m}
= P{O, | b0, 90,m }P{0g,dg | m}.
(28)

The first term in (28) is obtained using combinatorics:

1) In event ©, there are assumed my — ¢ targets
detected.

2) The number of events O,, where the same targets
are detected, is given by the number of ways of associat-
ing m; — ¢ measurements to the detected targets from
a set of m;, measurements.

By assuming each such event a priori equally likely, one

has
1 _ P!

my Pmk —do ny !

P{Oy | bg,Pg.mi} = (29)

The last term in (28) is, assuming 6 and ¢ independent,

]VT
P{ég, 0 | My} = H(Pﬂ)%(l —Pé)li%liF((ﬁ(—))
=1

(30)

where Bj is the detection probability of target ¢ and
pp(@g) is the prior pmf of the number of false mea-
surements. The indicators 6f, have been used to select
the probabilities of detection and no detection events ac-
cording to the event ©, under consideration. Combining
(29) and (30) into (28) yields the prior probability of a
joint association event

Nr
! 4 Y
PO ) = S T (1 =B i),
Tr=1

(3D
The pmf of the number of false measurements pi;(¢)

can, as in the case of the PDA, have two versions,
parametric or nonparametric.

122

1) Parametric JPDA uses a Poisson pmf
v (AV)?
@!

which requires the spatial density A of the false mea-
surements.
2) Nonparametric JPDA uses a diffuse prior

pp(@) =€ Vo

which does not require the parameter \.

pp(@) =e (32)

(33)

Using the nonparametric model and combining (31)
and (26) into (23) yields the joint association event
probabilities

Nr
! 1 Cr
P{O|Z"} = —¢§ [I®sye Ry

t=1

my
x [N TG 2y S 13709

j=1
; 1-76())

Pw(z () 1

X {PWWP—k +(1=Ry)y

GW k
(34)
where the constants ¢ and m, ! are brought into the nor-
malization constant c¢. For comparison, the joint associ-

ation event probabilities derived in [3, p. 318] for the
standard JPDAF is

bl VO '
P{O;| 2"} = =——T B’ (1 - Ry

t=1

my
x [Nz 2f o SUTY9)

Jj=1

(35)

where the third line in (34) is replaced by Vk_‘/’@. As
for the modified PDAF, (34) reduces to (35) in the
limit as £, goes to zero. Finally, marginal association
probabilities are obtained by summing over all the
joint association events in which the marginal event of
interest occurs

B EPLO,G.D | 2} = Y PLO, | ZMwe o)
O

(36)

BUOE1-Y B

j=1

(37)

By using these association probabilities in (8), the state
estimation equations are exactly the same as in the
PDAF, (5)-(11).

3.4. Modified JPDACF

The state estimation above is based on the assump-
tion that the targets, conditioned on the past observa-
tions, are mutually independent. When measurements
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are inside the validation gates for two or more targets
at the same time, we say that the targets are “sharing”
measurements. For targets that share measurements for
several sampling times, a dependence of their estima-
tion error ensues, and this can be taken into account
by calculating the resulting error correlations [7]. The
resulting JPDACEF algorithm [3, pp. 328-329] does the
filtering in a coupled manner, yielding a covariance ma-
trix with cross-covariances that reflect the correlation
between the targets’ state estimation errors. The effec-
tiveness of the JPDACF approach in combination with
the IMM was demonstrated on splitting targets in [2].
This JPDACF approach does not account for situations
with partial target detections since the association events
where all targets are detected are not separated from
events where only some of them are detected. The asso-
ciation events need to be separated in groups where the
group member events have the same vector of detection
indicators 04, see (27). This situation was accounted for
in the CPDA filter, derived in [9], where the CPDA in
combination with hypothesis pruning was developed to
avoid track coalescence. In our simulations, however,
the CPDA approach did lead to numerical problems in
the covariance calculations. An equivalent solution to
the CPDA, but where the covariance calculation is in a
symmetrical form, is therefore developed and used in
this paper to avoid numerical problems. The modified
JPDACEF accounting for partial target detections and the
presence of wakes, is derived next.

Assuming only two targets, the stacked state vector
and its associated covariance are denoted as

1 1 12
S Xklk—1 s B B
by = and P, =
k=1 = k-1 =

~2 21 2
Xlk—1 Bl-1 Bl

(38)

where Edlkz_l is the cross-covariance between target 1 and
2. This cross-covariance will be zero before these targets
become coupled, i.e., start to share measurements. The
updated state estimate is

5\6%1( = )Aci\kfl + ZP{@k | ZMIEWE GV (©)  (39)
O
where

O =5O) -5, (40)

(,(©))
5(0) = r" } 41
* 2(h(©))

Zipor = HoX (42)

and j,(©,) is the index of the measurement associated
with target ¢ in the event O, at time k. The filter gain in
(39) is

T T _
WP =B<fk—1HS [Hsﬂcs\k—lHS + R (43)
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s [H' 0O s [R' O
H° = and R = .
0 H? 0 R?
(44)

The matrices I3 and I§ in (39) are used to choose only
the innovation from the target(s) that are detected, given
by the detection indicator in (20), such that

I3 = bolh, 0 45

6= s (45)
0 &3,

- oI, 0

§ = |- (46)
0 &3,

Here, I, and I, are n,xn, and n, x n, identity ma-
trices, where n, and n_ are the dimensions of a single
target state vector and a single target measurement, re-
spectively. Notice that if a target is undetected in the
joint association event ©, under consideration, the cor-
responding part of the innovation vector needs to be set
to zero even though [ is multiplied to the Kalman gain
WS, This is accomplished by I3.

The updated stacked covariance Pks conditioned

k>
on all measurements up to time k, Zk is derived in

Appendix B and yields

BY =) P{6,|7"}
O

< {AISWSIE (S (O3 (©) + ROIEWS I3
F U~ ISWSIGHOBS, (1~ IZWEIRHS)}

~(Sorie 1 zmwss©
O

T

x| D P{O, | ZEWEIE 1 (©) (47)
O

The joint association event probabilities P{O, | Z¥} are
calculated as for the decoupled filter in Section 3.3, and
the prediction step is as in (5), but with stacked state
and covariance.

4. MULTISENSOR TRACKING

The best performance in multisensor data fusion
is achieved using centralized configurations where all
measurements are transmitted from the local sensors to
a fusion center.! Primarily due to the bandwidth con-
straints in real systems, the centralized configuration is
sometimes not feasible because its requirement to trans-
mit all measurement information to a fusion center. This
is the motivation for the interest in decentralized track-

Ut is assumed that the sensors are properly registered and have no
biases.
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ing, with track-to-track association followed by track
fusion, which has been compared to centralized track-
ing in [10], [11]. To make the centralized tracking more
feasible for real systems, the measurement data can be
compressed in the local sensors before they are trans-
mitted [12]. When the measurements are transmitted to
a fusion center in the centralized tracking, there are two
different schemes for the way the state is updated. In
parallel filtering the measurements from all sensors (if
synchronized) are taken into account at the same time.
The other alternative is sequential filtering where mea-
surements from each sensor is processed one sensor at
a time. The first sensor updates the state (and covari-
ance) based on predictions from the previous time step
as in a single-sensor algorithm. Then, this new updated
state is used as a zero-time prediction to update with
the measurements from the second sensor and so on.
In [19] the sequential and parallel filtering schemes are
compared in a multisensor JPDAF approach, and it is
shown that sequential filtering is less computationally
expensive as the number of sensors increases. Accord-
ing to [19], the sequential method yields better track-
ing performance on the average when data association
is needed. This is primarily due to the fact that bet-
ter filtered estimates are available after processing each
sensor’s data.

Another problem regarding multisensor systems is
the positioning of the sensors, where there are several
aspects to consider:

The sensors’ joint ability to cover the required area.
The sensor specifications.

The most likely target locations and trajectories.
The possibility of tracking the targets from various
view angles.

These factors, among others, have to be considered
separately and in light of the main purpose of each
specific tracking problem.

5. SIMULATIONS AND RESULTS

In this section the data association methods de-
scribed previously (PDAF, Modified PDAF, JPDAF,
Modified JPDAF and Modified JPDACF) are compared
in four different multitarget simulation scenarios in the
presence of wakes. These simulations consider an un-
derwater surveillance system with active sonar sensors
and scuba divers as the targets. The wakes are generated
by the air bubbles from the divers. Results are shown
using two sensors, working both as independent single
sensors and together in a centralized tracking system.
When the filters discussed above are used in multisen-
sor (MS) situations in the centralized tracking config-
uration, they will be denoted as MSPDAF, Modified
MSPDAF, MSJPDAF, Modified MSJPDAF and Mod-
ified MSJPDACF.
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5.1.  Simulation Scenarios

The four simulation scenarios are shown in Fig. 4,
and are in the sequel denoted as:

1) Crossing scenario: The targets are starting in
positions (25,32.5) m and (25,67.5) m with speed 1 m/s
and course according to the trajectory crossing angle
v =20° see Fig. 4. The nearly straight trajectories
are crossing the 200 s run midway. In [22] a similar
scenario with varying trajectory crossing angle v =
[5°,6°,...,30°] is simulated for a single sensor, showing
significant reduction of track loss for the modified
filters.

2) Parallel scenario: The targets are starting in po-
sitions (25,40) m and (25,60) m with speed 1 m/s
and course according to the trajectory crossing angle
~v = 15°. When the distance between the targets is less
than 3 m, their velocities are both set to [1,0] m/s, cre-
ating parallel trajectories with 3 m spacing. Then, after
130 s they separate in the same way as they joined each
other.

3) Sequential scenario: The targets are starting in
positions (22.5,40) m and (27.5,60) m with speed 1 m/s
and course according to the trajectory crossing angle
~v = 15°. When the distance between the targets is less
than 0.5 m in the y-direction their velocities are both set
to [1,0] m/s. Since the first target started 5 m behind
the second target in the x-direction, they will now move
after each other in the same direction with about 5 m
spacing. Then, after 130 s they separate in the same way
as they joined each other. Note that Target 1 is moving
inside the wake created by Target 2 before they separate.

4) Meeting scenario: The targets are starting in
positions (25,50) m and (225,50) m with speed 1 m/s
and course directly towards each other. The targets are
passing each other without changing course. Note that
both targets are moving inside the wake of the other one
after the passing.

5.2. Simulation Setup

Two sensors, with the same specifications, are lo-
cated in the positions (0,0) m and (250, 100) m respec-
tively. The sensors have 180° field of view with resolu-
tion about 0.7° in bearing (256 non-overlapping beams)
and 0.2 m in range. Their maximum range of 250 m is
assumed large enough to cover the targets throughout
the 200 s long runs, consisting of 200 scans with sam-
pling period T = 1 s. For both targets a two-dimensional
direct discrete time nearly constant velocity model [4]

is used in (1) and (2):
1 T O
{1 0 0 O]
H=
0010

0
01 0 0
F =
0O 01T
0 0 0 1

(48)
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Fig. 4. Simulation scenarios of two targets observed by two sensors. Four different scenarios are shown. (a) Scenario 1: Crossing
trajectories with trajectory crossing angle v = 20°. (b) Scenario 2: Parallel trajectories where the targets are moving side by side with spacing
d =3 m. (c) Scenario 3: Sequential trajectories where Target 1 is moving behind in the wake created by Target 2, with spacing d =5 m.
(d) Scenario 4: Meeting trajectories where the targets are moving towards each other, and passing each other inside the wake of the other

target.
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TABLE 1
Specification of Parameters

Parameter Value Specification
T 1.0s Sampling period
B 0.7 Detection probability
F; 0.99999 Gate probability
By, 0.9 Wake probability
Fea 0.001 False alarm probability
ag(s) (0.001 m/ s2)2 Process noise (simulation model)
alzl(f) (0.05 m/s2)2 Process noise (filter model)
(rrz 0.2 m)? Measurement noise (range)
012 (3.5-1073 rad)? Measurement noise (bearing)
N 256 x 1250 Number of resolution cells
S 180°, 250 m range Sensor coverage area
M 250 x40 m Measurement generation area
w 5x30m Wake area
Vs 98174 m? Volume of S
Vi 10000 m? Volume of M
W 150 m? Volume of W
Adlutter 16.3 Expected number of correlated

clutter measurements

The parameters in (48)—(50) and other simulation design
parameters are given in Table L.

Originally, the position measurements are in po-
lar coordinates (r,1) with (time invariant) measure-
ment noise covariance Rp, but are transformed to Carte-
sian coordinates (x,y) with corresponding measure-
ment noise covariance R, using the standard conversion
[4, pp- 397-399]. This results in a purely linear model
so that a Kalman filter can be used in the tracking algo-
rithm. The measurement noise matrix R, is calculated
assuming a uniformly distributed position error inside
the resolution cell. Hence, the variance of the uniformly
distributed error is given by the resolution, and this vari-
ance is heuristically used as the variance in the Gaussian
distributed R,

»_ 027 d 2 _ (7/256) o
O'r—?m an JG)—Tra .
(5D

Due to the high resolution in range (0.2 m), the targets
will cover several resolution cells in the range direc-
tion, resulting in extended targets. Because of this, the
actual range resolution is used as the standard devia-
tion (o, = 0.2 m) instead of the calculation in (51). This
modification of o, in the simulations seems more rea-
sonable since the targets (scuba divers) are extended
in the range direction. To ensure controlled trajecto-
ries for the true targets, the added process noise in
the simulation model o7 (s) = (0.001 m/s*)?* is set low,
but not to zero. The process noise in the filter model
crz(f) = (0.05 m/s?)? is set to approximate about 5 cm/s
change in the velocity components between each scan.

When the targets are following after each other in the
sequential scenario, there will be a problem using the
filter modifications as described above. This problem

especially affects the target following behind the first
target, because there will be wake detections surround-
ing this target both in front and behind it. If the wake
model is used in this situation, the wake-dominated
measurements behind the target will get lower weights
than the wake-dominated measurements in front. These
measurements in front, which originate from the wake
of the first target, will mislead the tracker, and the es-
timated track will speed up until it catches up with the
target in front. It is therefore likely that this target will
be lost. An approach to prevent this is to only apply
the wake model to the target in front, and use a regu-
lar data association filter for the target that is following
the first one. By handling the two targets separately in
two single-target tracking filters, the track of the target
behind the first one will have better chance to survive
in this hard situation. In the simulations a target follow-
ing behind another one will therefore not use the wake
model if the following criteria are fulfilled:

1) The target is inside the wake area W of the target
in front. The wake area W is defined as a rectangle,
L, wide and reaching L; backwards from the target
(L, =5m, L, =30 m).

2) The target is at least 2 m behind the target in
front.

3) The difference between the moving direction of
the following target and the target in front is less than
10°.

To reduce the computational load, the different ver-
sions of the multitarget tracking algorithms are substi-
tuted with their analogous single target tracking algo-
rithms as long as targets are not ‘“sharing” measure-
ments. In other words, the standard PDAF is used in-
stead of the JPDAF, and the modified PDAF is used
instead of the modified JPDAF and JPDACF when the
targets are apart. The multisensor (MS) filters are treated
in the same way, i.e., the MSPDAF is used instead of
the MSJPDAF.

5.3. Measurement Generation

The directional information (bearing) in an active
sonar is given by the beamforming. Since no beamform-
ing can achieve an ideal directivity pattern, there will be
a leakage or scattering of the signal in one beam to the
neighboring beams [16, ch. 5.3]. This is also known
as the point spread function (psf) [25], and may yield
detections from a point target in more than one bearing
cell. In [22] the true target-originated measurements are
simulated as single point detections, which, as described
above, is a simplification of the real world. To generate
measurements from the targets and their wakes in this
paper, detections from a real data set of a scuba diver
with an open breathing system are used. The data set
consists of 500 scans, and is recorded by an active sonar
with the same specifications as the sensors used in the
simulations. The diver is swimming in a nearly straight
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Tllustration of how each detection is specified by using the distance behind the target d and a bearing offset. The bearing offset

describes the number of cells in the bearing direction between a detected cell and the cell where the target trajectory passes through, and
with the same range as the detected one. As an example, the four detections marked with A, B, C and D are the same distance behind the
target, but with offsets —1, 0, 1 and 2 respectively.

line, and its trajectory is estimated mainly by using a
modified PDAF [21], but some manual corrections are
done to get better position estimates. For each scan a cell
averaging—constant false alarm rate (CA-CFAR) detec-
tor [15] is used to obtain the detections. The parameters
of the CA-CFAR algorithm are the same as in [21],
except for the following parameters:

e The average false alarm rate (probability of a false
detection in a resolution cell) is set to Fz, = 0.001.

e The size of the averaging window used to estimate
the local background noise parameter is increased to
51 cells in the range direction due to the increased
resolution of the sensors used in this paper.

For each scan, the detections are stored and specified
by a distance d behind the true target position and
a bearing offset, see Fig. 5. The bearing offset de-
scribes the number of cells in the bearing direction
between a detected cell and the cell where the tar-
get trajectory passes through, and with the same range
as the detected one. As an example, the four detec-
tions marked with A, B, C and D in Fig. 5 are the
same distance behind the target, but with bearing off-
sets —1, 0, 1 and 2 respectively. Finally, after go-
ing through the 500 scans in the real data set, this
gives 500 different sets of detections of the true tar-
get and its wake, where the scattering in the bearing-
direction is accounted for. In the simulations the detec-
tions originating from the target and its wake are gen-
erated by drawing from these 500 sets according to a
first order Markov model. If set s was drawn at scan
k, the probability of drawing the succeeding set s+ 1
at time k+1 is 7 (,; = 0.7, and the probability of a
random drawing u € [1,500] (uniformly distributed) is

=1—m 1 =0.3. The targets’ states are generated
dlrectly from (1), and with the position and velocity
known, the target and wake originated measurements
are added.

Another part of the measurements is the clutter or
false measurements, and a standard assumption in sim-
ulations is that clutter is uniformly distributed in the
surveillance area. In this paper the generation of clutter
is done in two steps. The first step is under the standard
assumption, where the probability of generating a clut-
ter measurement in a resolution cell is B, /2 = 0.005,
uniformly distributed across all cells in range and bear-
ing. The second step is to generate spatially correlated
clutter. These measurements are generated from a mul-
timodal Gaussian pdf with equal weights for the dif-
ferent modes. This is an approach to reflect that some
areas in the surveillance region yields more clutter, due
to, e.g., a rough surface of the sea bed, banks, hills,
large stones and other objects that creates variation in
the surveillance area. The multimodal Gaussian pdf is
regenerated for each run, and the number of modes is
drawn as a uniform discrete variable between 1 and 10.
The mean of each Gaussian mode is drawn uniformly
in the surveillance area, and the covariance matrix is
diagonal with standard deviations in the x and y direc-
tions drawn as uniform variables between 0 and 10. The
number of correlated clutter measurements for each scan
is Poisson distributed with parameter A . Denote the
coverage area for a sensor as § (180°, 250 m range),
and the measurement area covering the full trajectories
of the targets as M (250 x 40 m), with volume V; and

Vi respectively. The Poisson parameter A, is then
given by
Vi
)\clutter = O-SPFANVM ~16.3 (52)
s

where F;, is the probability of a false alarm in a res-
olution cell, and N is the number of resolution cells
in S. Hence, in average there will be 16.3 correlated
clutter measurements in M for each scan. An example
of all measurements in one time frame for the crossing
scenario is given in Fig. 6. Notice that the detections
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Fig. 6. Snapshot of all detections/measurements at Sensor 1 and Sensor 2 during a run in the crossing scenario.

of the targets are more spread out sideways in Sensor 2
than in Sensor 1. At this time the targets are closer to
Sensor 1 than Sensor 2, and they are therefore better re-
solved by Sensor 1. The targets are also moving towards
Sensor 2, and because of the scattering of the signal to
the neighboring beams, the detections will be spread
out more sideways from the direction of motion. Also
notice how in some places the detections are located in
groups due to the non-uniform spatial distribution of the
clutter measurements. It is also possible that a target can
be undetected, which is the case for the lower target at
Sensor 1 in Fig. 6.

5.4. Track Formation and Termination

As can be seen in Fig. 6, the targets are often de-
termined by a cluster of detections rather than a single
point detection. In the simulations the tracks are initial-
ized by two-point differencing [4, p. 247] of the cluster
centroids from succeeding scans. The reason for this is
to avoid confusion due to the many possibilities of two-
point differencing that could have been set up among
the point detections from one single target. The cluster-
ing method of the single point detections is described
in [21], and is based on mathematical morphology [23].
Any successive pair of clusters within a maximum dis-
tance based on target maximum motion parameters and
cluster measurement noise variances initiates a prelimi-
nary track. For the motion parameters, a maximum dis-
tance d,,,, = 1 m together with the process noise matrix
0 in (2) is used. The measurement noise for the clusters
is computed from the different cells included in the clus-
ter as a Gaussian mixture [4, pp. 55-56]. A preliminary
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track has to receive measurements for a minimum of 4
time steps during the first 6 scans to become a confirmed
track. This is also referred to as a “4/6” logic-based track
formation procedure. Note that the clustering method is
only used for the two-point differencing in the track
initialization.

In the centralized tracking the multisensor filtering
is described in Section 4, first updating with measure-
ments from Sensor 1 and then with measurements from
Sensor 2 in a sequential updating scheme. The track ini-
tialization in the centralized tracking algorithm is based
on measurements that also contain velocity information.
First, the two-point differencing is used at Sensor 1 to
make an initial state. Then, the two-point differencing
1s used at Sensor 2, but these initial states are now used
as measurements (including both position and velocity)
to update the initial state from Sensor 1. The updating
is done as in a regular PDAF, but since these measure-
ments are formed by two-point differencing of cluster
centroids from succeeding scans, they will not have the
same measurement noise, yielding a varying innovation
covariance (S, in (6)). The innovation covariance is nor-
mally used to form the measurement validation gate in
the PDAF, but in this case a fixed matrix

2. 0 0 0
2 0

S o (53)
o 0

is used instead of the non-constant innovation covari-
ance to form a constant measurement validation gate.
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The values used in S, is set based on the assumption
that the standard deviation for these measurements are
about 1 m for the position elements, and 0.5 m for the
velocity elements (o,,,, = 1 m and o, = 0.5 m).

In the modified filters, the wake assumption also af-
fects the track initialization in the way that measure-
ments inside the wake area W (defined in Section 5.2)
are excluded in the initialization procedure.

To terminate a track one of the following events
(termination events) must occur:

1) The estimated speed is outside the interval
[Vinins Vmax]» Where v .. = 0.1 m/s and v, = 3 m/s.
2) The estimate moves more than 5 m between two
scans.
3) The position state estimation variance exceeds
rosmax> Where o2 =50 m?,
4) There are no validated measurements received in
a track within 5 successive scans.
5) The track is closer than d ;| to another older track

during 10 succeeding scans, where d,;, = 0.5 m.

g

These track termination criteria are adopted rather
than using more rigorous methods, such as the joint
version of the IPDAF [17], because of their sensitivity to
inaccurate estimates of the clutter density. In real sensor
measurements, the signal is often scattered resulting
in more than one target-originated detection. This will
increase the clutter density resulting in an unrealistic
low probability for the track to survive. This may be
solved by the use of clustering, but for targets in the
presence of wakes it is undesirable to blend the wake-
originated detections together with the target-originated
ones. The above termination criteria are more strict than
those used in [21] due to the higher sensor resolution
used in this paper.

5.5. Performance Analysis

The performance evaluation of a multitarget tracking
system is always a difficult problem, and the quality of
the results is difficult to quantify in terms of a few vari-
ables. When the evaluation is based on real data, where
not all parameters are known, this problem becomes
even harder. The results also depend on the simulation
scenarios, and the performance of the JPDAF may, ac-
cording to [13], show large local maxima and minima
as a function of scenario parameters. However, by con-
sidering the basic scenarios described above and using a
relatively large set of measures of performance (MOP),
a certain amount of meaningful information should be
obtained. The MOP considered are the following:

1) The percentage of lost tracks among all true
tracks.

2) The percentage of swapped tracks among all true
tracks (measured only when the targets are closer than
10 m).

3) The average fraction of each trajectory’s total
duration where the target is tracked (by a true track).

4) The average life length of a true track relative to
its true target’s life length.

5) The average time for target acquisition.

6) The number of false tracks per scan.

7) The average life length of a false track.

8) The position RMS error.

This section describes how these MOP are obtained
before the corresponding results, based on 500 Monte
Carlo runs for each of the four given scenarios, are
shown. At a given time k there might exist several
tracks, but for each target, at most one of them can
be defined as true. The rest of the tracks are therefore
by definition false. A track is first defined as true if
the position estimation error is less than 1 m during
the next 5 scans, and at the same time there are no
other true track associated to the target. If there is more
than one track fulfilling these requirements at the same
time, the track with lowest average position estimation
error during these 5 scans is defined as the true one.
The true track will stay as such until either the position
estimation error exceeds 5 m, or the position estimation
error associated to a neighboring target is less than 1 m
during the next 5 scans. In both situations the track will
be declared as lost, but in the latter case it will also be
defined as a swapped track.

1) The percentage of lost tracks among all true tracks:
In Fig. 7 the percentage of lost tracks is shown. The
standard filters (PDAF and JPDAF) have the highest
track loss percentage, and the JPDAF shows no im-
provement compared to the PDAF. The modified sin-
gle target tracking algorithm (PDAF) performs better
than the standard filters, but the best performance is
achieved with the modified JPDAF and JPDACF. The
difference between the standard filters and the modified
PDAF is largest in the meeting and crossing scenarios
where the targets are close to each other during a short
time. When the targets stay together for a longer period
of time, the modified PDAF is not significantly better
than the standard filters because it does not account for
the neighboring target and its wake like the modified
JPDAF and JPDACF do. Also notice that there is al-
most no difference between the decoupled and coupled
modified JPDAF, which indicates that the correlation
between the targets’ estimation errors is insignificant.

In the different scenarios considered the best per-
formance is achieved for the meeting scenario. This is
maybe a bit surprising since the density of the joint wake
model after the passing is lowest between the targets, the
area opposite to their moving direction. However, the
high wake density in the whole joint validation region
will at the same time give more confidence in the pre-
dicted target motion than the measurements. Because of
this, and the fact that the velocities of the two targets are
totally opposite to each other, the tracks will be less af-
fected by the false measurements. The percentage of the
lost tracks in the crossing scenario is the next best, and
the good performance in both the meeting and crossing
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cenarios. (a) Scenario 1: Crossing trajectories. (b) Scenario 2: Parallel

trajectories. (c) Scenario 3: Sequential trajectories. (d) Scenario 4: Meeting trajectories.

scenarios is as expected since the targets are only close
to each other a short time. In these scenarios the results
from the single sensor filters are almost as good as from
the multisensor filters in the centralized tracking. This
is not true for the parallel scenario where the perfor-
mance is significantly improved by fusing the sensors’
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data in the modifed MSJPDAF and MSJPDACEF. In this
scenario the targets are separated by only 3 m, which
is close to the limit for having multiple targets in a sin-
gle resolution cell (unresolved targets). By using two
sensors in this situation, Sensor 1 resolves the targets
relatively good in the beginning of the run, and Sen-
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sor 2 does the same at the end of the run. Because of
this, the fusion of these two sensors data improves the
performance significantly.

The most difficult scenario is the sequential, where
a target is moving behind another target, surrounded by
the wake. In this case the centralized tracking performs
best, and a track loss under 40% is achieved by the
modified MSJPDAF and MSJPDACEF. In practice this
means that, even in a hard case like this, at least one
track will be kept throughout the run.

2) The percentage of swapped tracks among all true
tracks (measured only when the targets are closer than
10 m): The percentage of the swapped tracks, shown
in Fig. 8, is only measured when the distance between
the targets is less than 10 m. The reason for this is
to find the percentage of swapping among only the
tracks where the two associated targets are close to
each other. The swapping is, as expected, highest in
the parallel scenario where the tracks are moving in
parallel for a longer period of time. In this situation it is
easy for a track to switch over to the neighboring target
only 3 m away. In the meeting scenario the swapping
phenomenon is totally absent for the modified filters,
and practically absent for the standard filters (PDAF and
JPDAF). The reason for this is the same as discussed
under the previous MOP.

The modified PDAF has the most problems, espe-
cially in the parallel scenario, since it accounts for its
own wake, but does not take into consideration that there
is another target in the surrounding area. The standard
filters, which do not consider the wakes, are more dis-
posed to turn into their own wake than to swap to the
neighboring target. Therefore, even if their track loss is
higher, they have a lower swapping percentage than the
modified PDAF.

The best performance is achieved by the modified
MSJPDAF and MSJPDACF in the centralized track-
ing. This improvement is most significant in the parallel
scenario, where the percentage of swapped tracks
are almost halved for the modified MSJPDAF and
MSJPDACF compared to the other filters.

3) The average fraction of each trajectory’s total
duration where the target is tracked (by a true track): In
Fig. 9 the average percentage of the tracked part of the
trajectories’ duration is shown. Also here the modified
JPDAF and JPDACF perform best, and by using the
modified MSJIPDAF or MSJPDACEF in the centralized
tracking, about 90% of the trajectories are tracked.
Notice that the percentage of the tracked trajectory can
be very good even with a high track loss percentage if
tracks are quickly reacquired after a loss. It is therefore
important to consider other MOP to get the total picture.

4) The average life length of a true track relative to
its true target’s life length: In Fig. 10 the average life
length (in %) of the true tracks is shown. It is clear
that the track length is significantly increased by the
modified filters, and most by the modified multitarget
tracking filters (JPDAF and JPDACF). The best perfor-

mance is achieved by the modified filters in the meeting
scenario, where the average track length is about 80%
of the true target’s life length, more than twice as long
as for the standard PDAF and JPDAF. The improve-
ment by using multiple sensors is most significant for
the modified MSJPDAF and MSJPDACEF in the paral-
lel scenario. In this situation the combination of both
using the multitarget wake model, and for the targets
to be well resolved by at least one sensor all the time
throughout the run, is vital. In the sequential scenario
the best track length is almost 60% for the same modi-
fied multisensor filters. This is due to the fact that when
a track is first lost inside the wake of another target in
front, it is very hard to reacquire a track on the rear
target.

5) The average time for target acquisition: In many
situations it is important to quickly initiate tracks and
reacquire them once lost. Let the time for target ac-
quisition be the time before a track is defined as true
either in the beginning of a run or after a track was
lost. The average time for target acquisition (or reac-
quisition) is shown in Fig. 11. For the crossing, the
parallel and the meeting scenarios, the modified fil-
ters perform slightly better than the standard filters. At
the sequential scenario the behavior is different in the
way that the standard filters outperform the modified
filters. This is due to the assumption that the measure-
ments behind a target originate from a wake and not
a target. Therefore, when the target following the tar-
get in front is lost, the real target-originated measure-
ments will not be considered for a new track as long
as they are inside the wake area W of the target in
front.

In the first three scenarios it is harder to initi-
ate/reacquire true tracks at Sensor 2 than for Sensor 1.
The reason for this is that tracks are starting close to
Sensor 1, and far from Sensor 2, and the detections of
the targets (and wakes) will therefore be more spread
out in the view of Sensor 2. This can be seen in Fig. 6,
and makes it harder to acquire tracks in the two-point
differencing of the cluster centroids from succeeding
scans.

6) The average life length of a false track: As men-
tioned above, all tracks that are not defined as true, are
considered false. The average life length of a false track
is shown in Fig. 12, and the performance is almost the
same for all filters, with an insignificant tendency for
shorter life length of the false tracks in the modified
filters.

7) The number of false tracks per scan: Another
MOP considering the false tracks, is the average number
of false tracks per scan, shown in Fig. 13. This number
is higher for the standard filters than for the modified
ones because the standard filters do not restrict the track
formation inside the wake areas behind the targets. Also,
there are more false tracks for the centralized tracking
due to the fact that this tracking algorithm takes into
account false measurements from both sensors.
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Fig. 8. Average percentage of swapped tracks in the three simulation scenarios. (a) Scenario 1: Crossing trajectories. (b) Scenario 2:
Parallel trajectories. (c) Scenario 3: Sequential trajectories. (d) Scenario 4: Meeting trajectories.

8) The position RMS error: The last MOP in this
analysis is the position RMS error, given in Fig. 14.
The RMS error is based only on the true tracks in
the simulation scenarios. In all scenarios the position
RMS error is larger for the standard filters than for the
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modified filters. This is because the standard filters do
not consider the wake-originated measurements like the
modified filters do, and the state estimate is therefore
likely to be drawn into the wake. It can also be seen
that the RMS error, at least for the modified JPDAF
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and JPDACE, is slightly reduced in the centralized track- is seen as a “jump” in the error when the targets
ing. are crossing between 80 s and 120 s. In the parallel

In the two first scenarios (crossing and parallel), scenario, this jump starts at about 60 s and ends at
the error increases during the periods when the targets 140 s, which are the period the targets are moving in
are close to each other. For the crossing scenario this parallel. In these situations the estimate for one target
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will be drawn towards the other target, also known
as track coalescence [8]. Among the modified filters,
this is most problematic for the single target tracking
algorithm because it accounts for the wake behind its
own target, but has no information about the nearby
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target which also has a wake behind it. The modified
multitarget filters perform similarly, and their RMS
errors are almost constant throughout the run.

In the meeting scenario only a small tendency of the
jump phenomenon is noticeable shortly after the pass-
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ing. As discussed above, the totally opposite velocities In the sequential scenario the targets are never closer
of the two targets and the high wake density in the whole than about 5 m, so the RMS error does not increase
joint validation region, make the targets’ passing rela- much during the period the tracks are following after
tively easy. each other. In this scenario, the modified single target
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tracking filter performs better than the modified multi-
target tracking filters. The reason for this is because the
RMS error is measured only among the true tracks, not
when they become lost. In this scenario, where the tar-
gets are following after each other, the estimation error

is larger for the target behind the one in front, because
it is surrounded by wakes. From the percentage of lost
tracks in Fig. 7, the modified single target filter will
lose the target more often than the modified multitarget
filters, and it is most likely that the lost target is the

136 JOURNAL OF ADVANCES IN INFORMATION FUSION  VOL. 4, NO.2 DECEMBER 2009



B scnsor |

B sensor 2

[ Centralized fusion

Average mmiber of false tracks per scan

10 T T T T T T T

T T T T T T T T

Average mumber of false tracks per scan

10 T T T T T T T

Average munber of false tracks per sean

10 T T T T T T T

T T T T T T T T

Averge mumber of false tracks per scan

10— T T T T

S — T T T T T T

Fig. 13. Average number of false tracks per scan in the four simulation scenarios. (a) Scenario 1: Crossing trajectories. (b) Scenario 2:
Parallel trajectories. (c) Scenario 3: Sequential trajectories. (d) Scenario 4: Meeting trajectories.

one with largest estimation error. Therefore, when the
RMS error is calculated, the modified multitarget filters
are based on tracks with larger estimation error than
what the modified single target filter is based on, only
because these tracks were not lost.

MULTITARGET MULTISENSOR TRACKING IN THE PRESENCE OF WAKES

5.6 Usage of the Wake Model on Targets Without
Wakes

In this section the erroneous use of wake models on
targets without wakes is considered. The crossing sce-
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Fig. 14. Position RMS error from 500 Monte Carlo runs in: (a) Scenario 1: Crossing trajectories, (b) Scenario 2: Parallel trajectories,

(c) Scenario 3: Sequential trajectories, (d) Scenario 4: Meeting trajectories.

nario (see Fig. 4) is used as before, but without wakes
behind the targets.” Each target is simulated as a point-
target (only one measurement) with detection probabil-
ity A, = 0.7, independently across time. The results after
500 Monte Carlo runs are shown in Fig. 15, and the
performance is clearly better than in the wake-scenario
due to the fact that each target is never simulated by
more than one detection at a time. This shows that the
scattering effect in real sensors, due to the beamforming,
makes the tracking problem considerably harder and is
an important element in further research.

2This would correspond to “closed breathing system” scuba divers or
mechanical underwater vehicles.
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It is also interesting to see that even though the mod-
ified PDAF performs worse than the standard PDAF,
the modified multitarget algorithms perform almost the
same as the standard JPDAF. This indicates that apply-
ing the modified JPDAF or JPDACEF on targets without
wakes will not degrade the tracking performance. For
tracking in environments with different kinds of tar-
gets, with and without wakes, this is a desirable prop-
erty.

Another issue worth mentioning is the increasing
trend of the position RMS error for Sensor 1, and
the decreasing trend for Sensor 2. This is due to the
fact that the estimated position error increases with the
distance to the sensors, and the targets are starting close
to Sensor 1, and moving towards Sensor 2. Notice how
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Section 5.5 are shown.

these trends in the single sensors are averaged out in
the centralized tracking where the sensors’ data are
fused.

It is also shown that the use of multiple sensors is
more effective in preventing lost tracks in this special

case than in the previous cases where the targets had
wakes. This gives an another justification of using mul-
tiple sensors when tracking targets in the presence of
wakes, because a target could be mistaken for having a
wake even when it does not have one.
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6. CONCLUSIONS

An important factor in a multitarget tracking sys-
tem is to correctly associate each measurement received
from a detector to its origin. The JPDAF has been a
solution to this problem due to its effectiveness and
low computational demand. In the JPDAF all false mea-
surements are assumed due to i.i.d. uniformly spatially
distributed noise or clutter. This assumption is not ade-
quate for targets that generate wakes, because detections
originating from the wake are not uniformly distributed
and may result in a lost track if they are not properly
modelled. The solution presented incorporates a model
of the wakes behind the targets in a multitarget envi-
ronment. The purpose of this wake model is to weight
wake-originated measurements lower than in a regular
JPDAF to avoid the tracks following these measure-
ments and therefore be forced to turn into the wake.
To achieve this, we presented a model formed by the
sum of single models each linearly increasing behind
their associated targets.

A systematic comparison of the standard data as-
sociation filters (PDAF and JPDAF) and their corre-
sponding modified versions are presented in a multitar-
get multisensor environment. Four different simulation
scenarios are examined where two targets in the pres-
ence of wakes are crossing, moving in parallel to each
other, one following after another, and finally meeting
and then passing each other. It is shown that the wake
model presented is a useful modification of the JPDAF
in all four scenarios. The only stated drawback using
the wake model is when a target is moving after another
one, surrounded by the wake from the target in front.
In that case, if the rear target is lost, it is harder to reac-
quire the track because the measurements are assumed
originating from the wake and not the true target.

This paper also presents the coupled version of
the JPDAF, called JPDACF, and a modified JPDACF
(with a wake model) is developed and tested. The
simulations show that the modified JPDACF is not
improving the performance compared to the simpler
modified JPDAF, indicating that there is no significant
correlation between the targets’ estimation errors.

The simulation scenarios consider two sensors, and
the data association filters at the local sensors are
compared with multisensor (MS) filters in a central-
ized tracking configuration. A sequential state updating
scheme is used in the multisensor filters, and the results
show that the data fusion provides significant improve-
ment in the tracking performance.

This paper also examines the effect of applying
the wake model on point-targets without wakes. The
results show that the modified JPDAF and JPDACF
perform almost the same as the standard JPDAF. This
makes the modification practical for real systems where
both targets with wakes and targets without wakes are
operating in the same environment.
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L \

Fig. 16. Specification of variables for integration of the wake
model, with length L; and width L, inside the joint validation
region with center ¢ and radius r. The wake has front corners [a p]
and [ p] and is oriented behind the target with position z and
velocity v.

APPENDIX A.
MODEL

SPECIFICATION OF THE JOINT WAKE

In this appendix the joint wake model py(z,) in-
troduced in Section 3 is presented, and an analytical
expression for the probability F;y, is derived. The joint
wake model is the sum of all N; single wake models
P (2,) behind each target ¢ under consideration

1 &
Pw(z) = 37> Py (@0). (54)
T =1

Next, consider the single wake model pj,(z,) of target
t, and let 7 and v be the predicted position and velocity
of the target, respectively. Reference to Fig. 16 may
be helpful in the following. The single wake model is
assumed linearly increasing with length L; behind the
predicted position of the target, i.e., in the direction
opposite to v, and uniform with width L, in the direction
perpendicular to the target’s velocity v. This model can
be expressed by defining the independent variables [
and w as the respective distances behind and sideways
(relative to v) to the target. From the above assumption,
[ and w have the following densities

21
PO=7  0<i<L
(55)
W=  O<w<lw
P =T ="=7
which yields
, 21
pw(z) = p(Dp,, (W) = (56)

2L,
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Notice that even though a current estimate of the veloc-
ity v is available in the filter, a better way in practice is
to use an average of the latest estimates since the wake
will not change direction as rapidly as the current target
velocity estimate. In the simulations an average of the
latest 6 estimates is used.

The joint validation region containing all candidate
measurements in the multitarget environment is defined
as a circle with radius r and center c. The center c is
calculated as the average between all the predicted target
positions, and the radius r is defined as the distance to
the farthest validated measurement.

The probability F;y in (25), used to restrict the
density of the joint wake model py(z,) to the joint
validation region, has to be calculated for each scan
by integration of py,(z,) inside the region. Since py,(z;)
is the sum of all single wake models pj,(z;), Py is
obtained by calculating B’ for each target ¢ and then
summing them up

IVT
Fow = ZP Gw-
=1

(37)

The calculation of Py, is derived next. Assume a Carte-
sian coordinate system with origin at position ¢ and
y-axis parallel to v but in the opposite direction, see
Fig. 16. Define the two front corners of the wake model
with elements « and f for the x-axis, and p for the y-axis

=(c—2"v/|

p
a=+/lc—z]>—p>—w/2

B=1/lc—z]>=p*+w/2.

(38)

The integration depends on if the front corners [a p]”
and [3 p]” are inside or outside the joint validation
region (circle), and will be broken into one, two or three
parts. To do this, define three binary variables 6 , ¢, and
65 as follows:

1 if p<O0
6, = ) (59)
0 otherwise
1 if /a?+p?>
5, = { Boverweer (60)
0 otherwise
1 if /B2+p2>r
5, = { T (61)
‘ 0 otherwise
Then the integral can be written as
e e
PGW L2L /max(a —r) /— rzfxz (y B p)dy a
8654857/ 22 p/ra?
+ / / (y —pdydx
a(1=84)—=ba /1% —p?
min(3,r)
+ 6,6, / / (yfp)dydx .
(62)
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For simplicity we substitute the limits of integration
along the x-axis as follows:

a = max(a, —r)
b=—\rr—p
8,) = 6,\/12 = p?
d=B(1—85)+85/12—p?

e=/r2—p?
f =min(3,r)
which yields

13
Fow = L2L{ // (}’*P)dydx
d V2
+ / / (y — p)dydx
c Jp
;o2
+6p6ﬂ// (y —p)dydx
e JP2

7 (o (smesin aresin )
= —— < pr* | arcsin — — arcsin —
L, r r
_ g3
d +2péaé‘p(a\/rLaLb\/rLzﬂ)

—c(?+1r) + 2p68, (e\/r2 —e? —f\/r2 —fz)

c=a(l—

(63)

3

C
+

+ a’(p2 +r)+ 2pé, (Spr2 (arcsing — arcsin g)
+pc\/rt—c+ 2p§‘36‘pr2 (arcsin ; — arcsin é)
—pdr/r? 7d2}.

(64)

APPENDIX B. COVARIANCE UPDATE IN THE
MODIFIED JPDACF

In this section the updated stacked covariance for
the JPDACEF in (47) is derived. The updated covariance
B(fk, conditioned on all measurements up to time k, AR
is

Bcfk =E {[xf -

Bl =307 1 255 (65)

This can be expressed as a weighted sum of all joint as-
sociation event conditioned estimation error covariances
by using the total probability theorem

By =Y P{6y1Z"}

Ok

x E{lq —%dlq — %17 [ Z5,6,}. (66)

Let )Ack‘k((%) be the state estimate conditioned on the
joint association event ©,. By using this, (66) can be
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rewritten as Substituting (under the assumption that all targets are

observed)
RS =Y P(6,17") N
O v () =22(0) —H F Xy
xE {[(Xf —}i\k(@) + ii\k(@) —%f\k)] =HFSx] | +H%v | +w} _HSstcf—l\k—l
X[ = 55,(0) + £,(©) = H1" | 25,0, } = H P55 + Hvi_ + W} (73)

in (72) yields
= P{e,z"
o ¥(O) = - W IZH)F%,

< E{(f = 06 - @) F (- IWSIEHSWS | — WS

+ (0 — H(ONE(©) — H" (74)

ns N PR - Using this in (71) gives

+(Xk‘k(@)ka‘k)(xk *x}f\k(@)) S 1 1S mS R
N . N . Fy = -IgW2IGH )Bc\k—l(l_l(—)vvk I§H”)
+E(0) ~HEO) ~ " 1240,

- ZP{@k |Zk} where
O

x E{(q} — X O — 3, 00" | 25,6,}

+ISWSIERSIZWS' I (75)

B =FBS  \FS" + 05 (76)

In (75) the assumptions in (2) are used together with
+ Z P{o, | Z"} the following independence assumptions between the
o estimation error and the two noises

X (3,(0) = 3G (0) - 35 )T E{x 1250, =0 (77)
=S P{e,| 7" E{% w7503 =0. (78)

O

s A § - —— The last term P in (67) is
x E{(xy — X (©)(xy —xgu(©)" | 25,6, }

P =" P{O, | ZVA}(O)F,(0) — F &

Py

O
* 2 PO 2 @) (O — B 5" =S P{O | Z5)Gyy + WIS (©))
O -
O
. X Gl + W I ©)
=> P{6,|Z"}Py+P (67)
O S ky xSz, S
+ P{O, | Z"} [IZW 1 (C]
where the identity (xklkl ;k 1O [ ZFHa W 5 vic( ))
> _P{e,z} =1 (68) r
> x| &1+ Y P{O| Z AW I51(©)
is used together with the fact that O
5u(0) = E{xi | 2", 6,} (69) (79)
A N which after cancellations becomes the spread of inno-
=Y P{6, | ZM%,(0). (70)  otions
O
D _ kypxywSyz S SconT §Tyx
Next, B, in the first term of (67) will be derived P = ZP{@k | ZFHEW TG v (©)vg (©) 16 W I
O
By = E{(x) — %, (0N ¥ ©0)" |20} (T1)
where the conditioned estimation error is - (ZP{@k | ZVIEWS T8 (@))
#(©) =x —1,(0) i
T
:FS S S _FS"S _IstIZ 59'
Xe—1 Vi1 xk*“k*l 0"k (‘)Vk( ) X ZP{@]( | Zk}lém(s]é%f(@) . (80)
(72) O
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Using (80) and (75) in (67) yields the updated stacked
covariance

B =Y P{6,]Z"}

O
X T X
x {Iew,f 2SO (O) + ROIEWSTE

U = ISWEISHO )RS (1~ ISWS IS HS)' |

o DA CAVANI A A C)
O
T

D CAVAI A ARAC) 81)
O

REFERENCES

(1]

(2]

(3]

(4]

[6]

(7]

(8]

(9]

[10]

[11]

M. Athans, R. H. Whiting and M. Gruber
A suboptimal estimation algorithm with probabilistic edit-
ing for false measurements with applications to target track-
ing with wake phenomena.
IEEE Transactions on Automatic Control, 22, 3 (June 1977),
372-384.

Y. Bar-Shalom, K. C. Chang and H. A. P. Blom
Tracking of splitting targets in clutter using an interacting
multiple model joint probabilistic data association filter.
In Proceedings of the 30th IEEE Conference on Decision and
Control, Brighton, UK, Dec. 1991, 2043-2048.

Y. Bar-Shalom and X. R. Li
Multitarget-Multisensor Tracking: Principles and Techniques.
Storrs, CT: YBS Publishing, 1995.

Y. Bar-Shalom, X. R. Li and T. Kirubarajan
Estimation with Application to Tracking and Navigation.
New York: Wiley-Interscience, 2001.

Y. Bar-Shalom
Tracking methods in a multitarget environment.
IEEE Transactions on Automatic Control, 23,4 (1978), 618—
626.

D. K. Barton
Modern Radar System Analysis.
Norwood, MA: Artech House, 1988.

S. Blake and S. Watts
A multitarget track-while-scan filter.
In Proceedings of the IEE Radar 87 Conference, London,
England, Oct. 1987.

E. A. Bloem and H. A. P. Blom
Joint probabilistic data association methods avoiding track
coalescence.
In Proceedings of the 34th IEEE Conference on Decision and
Control, vol. 3, New Orleans, LA, Dec. 1995, 2752-2757.

H. A. P. Blom and E. A. Bloem
Probabilistic data association avoiding track coalescence.
IEEE Transactions on Automatic Control, 45, 2 (Feb. 2000),
247-259.

H. Chen, T. Kirubarajan and Y. Bar-Shalom
Comparison of centralized and distributed tracking algo-
rithms using air-to-air scenarios.
In Proceedings of the SPIE Conference on Signal and Data
Processing of Small Targets, vol. 4048, July 2000, 440-451.

H. Chen, T. Kirubarajan and Y. Bar-Shalom
Performance limits of track-to-track fusion versus central-
ized estimation: Theory and application [sensor fusion].
IEEE Transactions on Aerospace and Electronic Systems, 39,
2 (Apr. 2003), 386—400.

(12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

H. Chen, K. Zhang and X. R. Li
Optimal data compression for multisensor target tracking
with communication constraints.
In Proceedings of the 43rd IEEE Conference on Decision and
Control, vol. 3, Dec. 2004, 2650-2655.

R. J. Fitzgerald
Development of practical PDA logic for multitarget track-
ing by microprocessor.
In Y. Bar-Shalom (Ed.), Multitarget Multisensor Tracking,
Norwood, MA: Artech House, 1990, 1-23.

T. E. Fortmann, Y. Bar-Shalom and M. Scheffe
Sonar tracking of multiple targets using joint probabilistic
data association.
IEEE Journal of Oceanic Engineering, 8, 3 (July 1983),
173-184.

P. P. Gandhi and S. A. Kassam
Analysis of CFAR processors in homogeneous background.
IEEE Transactions on Aerospace and Electronic Systems, 24,
4 (July 1988), 427-445.

X. Lurton
An Introduction to Underwater Acoustics.
New York: Springer, 2002.

D. Musicki and R. Evans
Joint integrated probabilistic data association: JIPDA.
IEEE Transactions on Aerospace and Electronic Systems, 40,
3 (July 2004), 1093-1099.

D. Musicki, R. Evans and S. Stankovic
Integrated probabilistic data association.
IEEE Transactions on Automatic Control, 39, 6 (June 1994),
1237-1241.

L. Y. Pao and C. W. Frei
A comparison of parallel and sequential implementations
of a multisensor multitarget tracking algorithm.
In Proceedings of the American Control Conference, vol. 3,
Seattle, WA, June 1995, 1683-1687.

A. Papoulis and S. U. Pillai
Probability, Random Variables and Stochastic Processes 4th
Edition.
New York: McGraw-Hill, 2002.

A. Rgdningsby and Y. Bar-Shalom
Tracking of divers using a probabilistic data association
filter with a bubble model.
IEEE Transactions on Aerospace and Electronic Systems,
2009.

A. Rgdningsby, Y. Bar-Shalom, O. Hallingstad and J. Glattetre
Multitarget tracking in the presence of wakes.
In Proceedings of the 11th International Conference on In-
formation Fusion, Cologne, Germany, 2008, 1536-1543.

J. P. Serra
Image Analysis and Mathematical Morphology.
London, UK: Academic Press, 1982.

W. Smith
Modern Optical Engineering: The Design of Optical Systems
(2nd ed.).
New York: McGraw-Hill, 1990.

S. M. Tonissen and Y. Bar-Shalom
Maximum likelihood track-before-detect with fluctuating
target amplitude.
IEEE Transactions on Aerospace and Electronic Systems, 34,
3 (July 1998), 796-808.

R. Urick
Principles of Underwater Sound (3rd ed.).
New York: McGraw-Hill, 1983.

MULTITARGET MULTISENSOR TRACKING IN THE PRESENCE OF WAKES 143



144

Anders Rgdningsby was born on May 19, 1979 in Kongsberg, Norway. He received
the B.E. degree from Gjgvik University College, Norway, in electrical engineering
and the M.S. degree from the University of Oslo, Norway, in applied mathematics,
mechanics and numerical physics, in 2003 and 2005, respectively.

He is currently a research scientist at the Norwegian Defence Research Estab-
lishment (FFI), and a Ph.D. candidate at the Norwegian University of Science and
Technology. His research interests include detection theory, navigation and target
tracking.

Yaakov Bar-Shalom was born on May 11, 1941. He received the B.S. and M.S.
degrees from the Technion, Israel Institute of Technology, in 1963 and 1967 and
the Ph.D. degree from Princeton University in 1970, all in electrical engineering.

From 1970 to 1976 he was with Systems Control, Inc., Palo Alto, CA. Currently
he is Board of Trustees Distinguished Professor in the Dept. of Electrical and
Computer Engineering and Marianne E. Klewin Professor in Engineering at the
University of Connecticut. He is also Director of the ESP (Estimation and Signal
Processing) Lab.

His current research interests are in estimation theory and target tracking and
has published over 370 papers and book chapters in these areas and in stochastic
adaptive control. He coauthored the monograph Tracking and Data Association
(Academic Press, 1988), the graduate texts Estimation and Tracking: Principles,
Techniques and Software (Artech House, 1993), Estimation with Applications to
Tracking and Navigation: Algorithms and Software for Information Extraction (Wiley,
2001), the advanced graduate text Multitarget-Multisensor Tracking: Principles and
Techniques (YBS Publishing, 1995), and edited the books Multitarget-Multisensor
Tracking: Applications and Advances (Artech House, Vol. I, 1990; Vol. 11, 1992; Vol.
111, 2000).

He has been elected Fellow of IEEE for “contributions to the theory of stochastic
systems and of multitarget tracking.” He has been consulting to numerous compa-
nies and government agencies, and originated the series of Multitarget-Multisensor
Tracking short courses offered via UCLA Extension, at Government Laboratories,
private companies and overseas.

During 1976 and 1977 he served as Associate Editor of the IEEE Transactions
on Automatic Control and from 1978 to 1981 as Associate Editor of Automatica.
He was Program Chairman of the 1982 American Control Conference, General
Chairman of the 1985 ACC, and Co-Chairman of the 1989 IEEE International
Conference on Control and Applications. During 1983—87 he served as Chairman
of the Conference Activities Board of the IEEE Control Systems Society and during
1987-89 was a member of the Board of Governors of the IEEE CSS. He was a
member of the Board of Directors of the International Society of Information Fusion
(1999-2004) and served as General Chairman of FUSION 2000, President of ISIF
in 2000 and 2002 and Vice President for Publications in 2004-08.

In 1987 he received the IEEE CSS Distinguished Member Award. Since 1995
he is a Distinguished Lecturer of the IEEE AESS and has given numerous keynote
addresses at major national and international conferences. He is corecipient of the
M. Barry Carlton Award for the best paper in the IEEE Transactions on Aerospace
and Electronic Systems in 1995 and 2000 and the 1998 University of Connecticut
AAUP Excellence Award for Research. In 2002 he received the J. Mignona Data
Fusion Award from the DoD JDL Data Fusion Group. He is a member of the
Connecticut Academy of Science and Engineering. He is the recipient of the 2008
IEEE Dennis J. Picard Medal for Radar Technologies and Applications.

JOURNAL OF ADVANCES IN INFORMATION FUSION  VOL. 4, NO.2 DECEMBER 2009



Oddvar Hallingstad was born on October 17, 1945 in Hol, Norway. He received the
M.E. degree from the Norwegian Technical University (NTH) in 1971 and his Ph.D.
in 1978 also from NTH. His thesis covered “Transient stability models: Parameter
estimation and model reduction.”

Oddvar joined the Norwegian Defence Research Establishment (FFI) in 1977
where he worked on the inertial navigation system for the new costal vessels and
the inertial navigation system for the Penguin air to sea missile. Since 1989 he has
been at The Graduate University Center at Kjeller lecturing estimation theory and
being an advisor for master and Ph.D. students. He is also an adjunct professor
at The Norwegian University of Science and Technology (NTNU) and a part-time
employee at FFI.

John Glattetre was born on November 7, 1944 in Brooklyn, NY and moved to
Norway in 1957. He received the B.E. from Oslo Technical College in 1971,
the MLE. degree from the Norwegian Technical University in 1977 and his Ph.D.
from the Norwegian Technical University in 1986. His thesis covered “Interaction
between water borne waves and seismic waves in the ocean bottom: The forward-
and inverse problem.”

John was an authorized aircraft radio mechanic in SAS. He performed flight
calibration of aeronautical navigation systems (VOR, ILS, VDF) for the Norwegian
Directorate of Civil Aviation. After a short period with micro electronics, he joined
the Norwegian Defence Research Establishment (FFI) as a research scientist and
worked with sound propagation and signal processing in underwater acoustics. John
presently does R & D for Kongsberg Maritime AS where his emphasis is on active
sonar, sound propagation, design and signal processing including tracking. He is
co-advisor for two Ph.D. students. John is a member of the Acoustical Society of
America's Technical Committee on Underwater Acoustics.

MULTITARGET MULTISENSOR TRACKING IN THE PRESENCE OF WAKES 145



Track-to-Track Fusion
Configurations and Association
in a Sliding Window

XIN TIAN
YAAKOV BAR-SHALOM

Track-to-track fusion (T2TF) is very important in distributed
tracking systems. Compared to the centralized measurement fusion
(CMF), T2TF can be done at a lower rate and thus has potentially
lower communication requirements. In this paper we investigate the
optimal T2TF algorithms under linear Gaussian (LG) assumption,
which can operate at an arbitrary rate for various information con-
figurations. It is also assumed that the tracking system is synchro-
nized. Namely, all the trackers obtain measurements and do track
updates simultaneously and there are no communication delays be-
tween local trackers and the fusion center (FC). The algorithms
presented in this paper can be generalized to asynchronous scenar-
ios. First, the algorithms for T2TF without memory (T2TFwoM)
are presented for three information configurations: with no, partial
and full information feedback from the FC to the local trackers.
As one major contribution of this paper, the impact of information
feedback on fusion accuracy is investigated. It is shown that using
only the track estimates at the fusion time (T2TFwoM), informa-
tion feedback will have a negative impact on the fusion accuracy.
Then, the algorithms for T2TF with memory (T2TFwM), which are
optimal at an arbitrary rate, are derived for configurations with no,
partial and full information feedback. It is shown that, operating
at full rate, T2TFwM is equivalent to the CMF regardless of in-
formation feedback. However, at a reduced rate, a certain amount
of degradation in fusion accuracy is unavoidable. In contrast to
T2TFwoM, T2TFwM benefits from information feedback.

For nonlinear distributed tracking systems, an approximate
implementation of the T2TF algorithms is proposed. It requires
less communications between the FC and the local trackers, which
allows the algorithms to be implemented in distributed tracking
systems with low communication capacity. Simulation results show
that the proposed approximate implementation is consistent and has
practically no loss in fusion accuracy due to the approximation. For
the sensors-target geometry considered, it can meet the performance
bound of the CMF at the fusion times.

The problem of track-to-track association (T2TA) is also inves-
tigated. The sliding window test for T2TA, which uses track esti-
mates within a time window, is derived. It accounts exactly for the
crosscovariances among the track estimates and yields false alarm
rates that match the theoretical values. To evaluate the test power
when using more data frames, a comparison between the single time
association test and the sliding window test is performed. Counter-
intuitively, it is shown that the belief “the longer the window, the
greater the test power” is not always correct.
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1. INTRODUCTION

In a multisensor tracking system, the fusion center
(FC) is meant to gather and process information from
local sensors or trackers. There are generally two ap-
proaches for this purpose. One is the centralized mea-
surement fusion (CMF), in which the local measure-
ments are sent directly to the FC, where the central
tracker performs measurement to track association and
track update. The other approach is track-to-track fu-
sion (T2TF) in which local tracks are sent to the FC
where tracks of the same target are fused for improved
accuracy. In this paper, each track is assumed to be
generated by a Kalman filter, which is optimal under
linear Gaussian (LG) assumption and the same as the
linear minimum mean square error (LMMSE) estima-
tor for linear systems without the Gaussian assumption.
It is also assumed that the tracking system is synchro-
nized. Namely, all the trackers obtain measurements and
perform track updates simultaneously and there are no
communication delays between local trackers and the
FC. The T2TF algorithms presented in this paper can
be generalized to asynchronous cases which will be
discussed in [26]. Although the CMF approach pro-
duces the best results, it requires constant and reliable
communication links between local senors and the FC.
Lags in the communication links will result in out-of-
sequence measurements (OOSM), thus requiring spe-
cial algorithms [2]. If the communication links become
saturated because there are too many measurements to
transmit, the sensor network will lose information and
might fail. The T2TF approach is more attractive for
practical implementations. It allows the local trackers to
communicate with the FC once in a while, sending local
tracks for T2TF and possibly receiving as feedback the
fused tracks from the FC. The major benefit is that there
is no restriction on when and how often the local tracks
should be transmitted. This can reduce the requirements
on the capacity of the communication links.

For the problem of T2TF, the crosscorrelation among
tracks of the same target due to common process
noises was first observed in [1], where a formula for
the calculation of the crosscovariance was also pre-
sented. Based on the formula in [1], the algorithm
for the one-scan T2TF, i.e., T2TF without memory
(T2TFwoM) was studied in [5], which derived the al-
gorithm for T2TFwoM without information feedback
(T2TFwoMnf) at an arbitrary rate (see also [17, 18, 19,
20, 21, 22, 27]). Another type of T2TF algorithm—the
information matrix fusion (IMF)—was proposed in [13,
25]. Note that, unlike T2TFwoM, the IMF belongs to the
class of fuser with memory, since it uses track estimates
from the previous fusion. The IMF is equivalent to the
CMF when the fuser is operating at full rate [9, 13].
Comparisons between the IMF and the T2TFwoMnf
can be found in [8, 9], where it is shown that, oper-
ating at full rate, the T2TFwoMnf is not as accurate as
the IMF, and it was concluded that the suboptimality of
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T2TFwoMnf is because it is optimal only in ML sense.!

However, the IMF is not optimal when the fuser is op-
erating at reduced rate and, as reported in [10], it causes
inconsistency and even divergence. A simulation based
comparison on existing fusion algorithms can also be
found in [23].

In this paper, the T2TF algorithms that can operate at
an arbitrary rate are investigated for various information
configurations:

1. T2TFwoMnf (T2TFwoM with no information feed-
back)

2. T2TFwoMpf (T2TFwoM with partial information
feedback)

3. T2TFwoMff (T2TFwoM with full information feed-
back)

4. T2TFwMnf (T2TFwM with no information feed-
back)

5. T2TFwMpf (T2TFwM with partial information feed-
back)

6. T2TFwMff (T2TFwM with full information feed-
back)

Except for T2TFwoMnf presented in [5], the results
for all the other configurations are new. The impact of
information feedback and memory on the accuracy of
T2TF is thoroughly examined.

For T2TFwoM, depending on the existence of infor-
mation feedback, the three information configurations
[6, 15] are illustrated in Fig. 1. Suppose there are two
tracks (that pertain to the same target) which are fused at
certain times. The first configuration is the T2TFwoM
without information feedback (T2TFwoMnf) [3], des-
ignated as Type Ila configuration for multisensor track-
ing in [6]. As indicated in Fig. 1(a), the two local tracks
evolve independently without the information from each
other, thus the improved accuracies are achieved only
at the fusion times at the FC. The second configura-
tion is the T2TFwoM with partial information feedback
(T2TFwoMpf) which belongs to the Type IIb configu-
ration in [6]. In this case, as shown in Fig. 1(b), track 1
is fused with track 2 and continues with the fused track
(feedback) from the FC. However, track 2 does not re-
ceive the fused track in view of the partial information
feedback. The third configuration is the T2TFwoM with
full information feedback (T2TFwoMff), which also be-
longs to the Type IIb configuration in [6]. As shown in
Fig. 1(c), both local trackers receive and continue with
the fused track.

As shown in this paper T2TFwoM has a degradation
in fusion accuracy compared to the CMF, and informa-
tion feedback has a negative impact on the fusion accu-
racy of T2TFwoM. However the degradation in fusion
accuracy of T2TwoM can be recovered by using also the
track estimates from the previous fusion. Accordingly,

IThe actual reason that T2TFwoMnf is (slightly) inferior to IMF op-
erating at full rate (when it is algebraically equivalent to CMF, see [6]
Section 8.6) is the lack of memory of T2TwoMnf. This is discussed
in detail in Section 2.4 and Section 3.4.

TRACK-TO-TRACK FUSION CONFIGURATIONS AND ASSOCIATION IN A SLIDING WINDOW

Tracker | = P —_— e — — —
Fusion Fusion Fusion
Center Center Center
Tracker2 = p — — — e
(a)
Tracker | =——p et o el e
Fusion Fusion Fusion
Center Center Center
Tracker2 — p —_ —p o — — — —
(b)
Tracker 1 = p i — — i
Fusion Fusion Fusion
Center Center Center
TrackerZ—p'__p.'___y o S il
(c)
Fig. 1. Information configurations for T2TFwoM (horizontal axis

is time). (a) T2TFwoM with no feedback. (b) T2TFwoM with partial
feedback (Fusion Center to Tracker 1). (¢) T2TFwoM with full
feedback (Fusion Center to Tracker 1 and Tracker 2).

the algorithms for T2TFwM are derived for configura-
tions with no, partial and full information feedback. It
is shown that, when operating at full rate, T2TFwM is
equivalent to the CMF (which is the global optimum) re-
gardless of information feedback. However, at reduced
rate, a certain amount of loss in fusion accuracy is un-
avoidable, and in contrast to the case of T2TFwoM,
information feedback improves the fusion accuracy of
T2TFwM. Furthermore, unlike the IMF, the T2TFwM
algorithms derived in this paper are optimal at any rate.

As pointed out in [8], the major difficulty for the
practical implementation of the optimal T2TF algorithm
is that it requires all the local filter gains and observation
matrices since the last fusion. In nonlinear distributed
tracking systems, the local information is not directly
available at the FC. In view of this, we propose an ap-
proximate implementation of the T2TF algorithms. It is
based on the idea of reconstructing local information
at the FC with minimum amount of information from
the local trackers, which has much less communication
requirements than the transmission of those local matri-
ces [12]. Simulation results show that this approximate
implementation is consistent and has practically no loss
in accuracy due to the approximation.

Studies on the problem of track-to-track association
(T2TA) can be found in [4, 24], in which the tests for
T2TA are made based on a single frame of data. In
[16], it is claimed that the test based on an average of
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TABLE I
List of Acronyms

configuration IV
special configuration IT™

configuration II
configuration IT ;
configuration IIpf
configuration II
configuration 1™
configuration II%
configuration IIII;/%

CMF Centralized Measurement Fusion
IMF Information Matrix Fusion
T2TF Track-to-Track Fusion
T2TFwoM Track-to-Track Fusion without memory
T2TFwoMnf T2TFwoM with no information feedback
T2TFwoMpft T2TFwoM with partial information feedback
T2TFwoMff T2TFwoM with full information feedback
T2TFwM Track-to-Track Fusion with memory
T2TFwMnf T2TFwM with no information feedback
T2TFwMpf T2TFwM with partial information feedback
T2TFwM(f T2TFwM with full information feedback

- : M
configuration II

the single time tests within a time window has improved
performance over the single time test. However, this
conclusion was drawn ignoring the state errors’ cross-
correlation in time [7]. In this paper the chi-square based
sliding window test for T2TA, which uses track estimates
within a time window, is derived. It accounts exactly for
all the crosscovariances among the track estimates and
yields false alarm rates that match the theoretical values.
To evaluate the test power when using more data frames
(longer window), a comparison between the single time
test and the sliding window test is performed. Coun-
terintuitively, it is shown that the belief “the longer the
window, the more the power” is not necessarily correct.
This is because the power of the test depends on both the
noncentrality parameter and the degrees of freedom of
the (chi-square) test statistic. When the multiple frames
of data selected for T2TA are strongly correlated, which
happens for motion with low process noises (because
the filter has “longer memory” in this case), the gain in
the noncentrality parameter by using more data frames
is too small to overcome the negative impact of the in-
creased degrees of freedom on the power of the test.
Thus, the sliding window test may be counterproductive
and has lower power than the single time test.

All the results presented are optimal under the LG
assumption.” The paper is organized as follows. Sec-
tion 2 discusses the algorithms for T2TFwoM with no,
partial and full information feedback. Section 3 derives
the algorithms for T2TFwM with no, partial and full
information feedback and shows the impact of informa-
tion feedback on T2TFwM. In Section 4, the approx-
imate implementation of the T2TF algorithms is pro-
posed and evaluated in a tracking scenario with a non-
linear measurement model. The problem of T2TA test is
investigated in Section 5, where the sliding window test
is derived and compared with the single time test. Sec-
tion 6 summarizes the paper with conclusions. For the
convenience of readers, Table I lists the acronyms used
in this paper and extends the configurations discussed
in [6].

2. TRACK-TO-TRACK FUSION WITHOUT MEMORY
(T2TFwoM) AT AN ARBITRARY RATE

2In the case of fusion the algorithms presented constitute the LMMSE
fuser, also called BLUE in, e.g., [18].

This section investigates the algorithms of
T2TFwoM (configuration II [6]) at an arbitrary rate.
Section 2.1 formulates the problem. In Section 2.2
the T2TFwoM algorithms are presented for informa-
tion configurations: with no, partial and full information
feedback. Section 2.3 presents the simulation results
that compare the fusion accuracies of T2TFwoMnf,
T2TFwoMpf, T2TFwoMff and CMF. This leads to the
observation that, in T2TFwoM, information feedback
will cause a degradation of the fusion accuracy. This
phenomenon is further explained in Section 2.4.

2.1. Problem Formulation: T2TFwoM

Consider the basic scenario with two local track-
ers (designated as 1 and 2) at different locations. Each
tracker obtains measurements with its local sensor and
maintains local tracks of the targets. For the sake of
simplicity, it is assumed that the system operates in a
synchronous fashion, where all the trackers obtain mea-
surements and do local track updates simultaneously
with sampling interval 7. Communication links, which
have no delay in time, are available between the FC and
the local trackers. Each local tracker is allowed to com-
municate with the FC once in a while, sending its tracks
to the FC and possibly receiving the fused tracks (when
there is information feedback). At the FC, the fusion of
the tracks of a target from trackers 1 and 2 is formulated
as follows.? Let X, (k | k), P,(k | k) and X, (k | k), By(k | k)
represent the two local tracks at the fusion time. As-
suming the crosscovariance of the two tracks P,,(k | k)
is available at the FC, T2TFwoM should be performed,
so that

EACIONACINI)
= f[3,(k | k), P (k | k), %, (k | k), Py(k | k), Py (K | )]
)

where X, (k | k) and P.(k | k) represent the fused track. Af-
ter the fusion, the local tracks and their crosscovariance
should also be updated to Xi(k | k), P*(k | k), x5(k | k),

3 Association (see [6] Section 8.4) is assumed to have been already
performed.

148 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 4, NO.2 DECEMBER 2009



Py(k | k) and P%(k | k) according to the information con-
figuration of the fusion (possible feedback from the FC).
Throughout the paper, superscript “«” is used to indi-
cate post-fusion tracks. Note that (1) implies that only
the local track estimates at the fusion time are used for
T2TFwoM, i.e., this is a fuser without memory of fused
and local track estimates from the previous fusion time.*

2.2. The Algorithms for T2TFwoM

If the local tracks x, (k | k), P, (k | k), X, (k | k), By(k | k)
and their crosscovariance Py,(k | k) are available at the
FC, the optimal® T2TFwoM can be done according to
Egs. (8.4.4-4)—(8.4.4-5) in [6], namely,

X (k [k) =% (k | k) + [P (k | k) = Py (k | k)]
IRk | K) + Bk [ K) = Py(k [ k) — Py (k| )1
Xk [ k) — Xy (k [ 5)]
=X,k | k) + K ,(K)[x,(k | k) — X, (k | k)] (2)
F (k| k) =Pk |k)—[Fk|k) =Pk | k)]
[Pk k) + Pk | k) = Pk [ k) — Py (k [ )17
[Pk [ k) = Py (k| k)] 3)
where
P,(k | k) = Py (k | k) = Cov[x,(k | k),x,(k | k)]. (4)

To calculate P,(k | k), suppose the previous fusion was
performed at discretized time /, after which one has the
errors

XD =X [ —x0) (&)
D =251 —x(0) (6)

where x() denotes the true state of the target at /. Let

PRl | 1) = CovlF(L | .5} | )] (7)
(L | 1) = CovlF5( | 1).33( | 1)] ®)
Pyl | 1) = CovlF( | 1,33 | D). ©)

From Eq. (8.4.2-2) in [6], one has

x(+1|l+)=[—-K(+DH(+ DIF(Dx,(|1])
- -K,(+ DH((+ D]v({)
+K(+Dw(+1) s=1,2.
(10)

4A fuser with memory (of the previous track estimates) uses the track
estimates from the previous fusion time, which, as shown in Sec-
tion 3.4, improves fusion accuracy.

SMMSE if all the estimation errors are Gaussian and LMMSE other-
wise [7].

Using (10) recursively for both the cental and local
tracks from discrete time [/ to k, it follows that

k
x(k | k) =Wk,Dx;(L| 1) + Z WY (k,i—1)v(i—1)

i=l+1

k
+ Y Wk Dw, (),

s=1,2 a1
i=l+1
where the weights are defined as
k—i—1
Wetk,ly = T 1 — Kk —DH (k= )IF(k —i— 1)
i=0
(12)
Wl (k,i—1)
k—i—1
=— [ U —K k= pH k= HIFt—j—1)
j=0
U — K (DH ()] (13)
and
W (k. 1)

k—i—1
= { 1 U —K (k= pH k= pIFKk—j— 1)}&@

j=0
(14)

in which K (i), i=1+1,...,k are the Kalman filter
gains and H (i) are the observation matrices at local
tracker s and F(i — 1) are the state transition matrices.
Eq. (11) is the expression of the errors of the tracks
from Kalman filters as weighted sums of the previous
error at a certain point and the intervening process and
measurement noises. The significance of this expression
is that it shows explicitly all the sources of uncertainty
and provides the general tool for the derivations of the
T2TF and T2TA algorithms in the absence or presence
of memory and feedback.

From (11) and the whiteness assumption of the mea-
surement noises and the process noises, the crossco-
variance Py, (k | k), required by the T2TFwoM given in
(2)—(3), can be calculated as

P(k | k) = We(k, P | DWs (k. 1)

k
+ 37 Wtk — DOG — DWy (ki — 1)’
i=l+1

(15)

where Q(i) is the covariance of the process noises at
time i. Similarly to (11), the error of the fused track (2)
can be expressed as

Xe(k [ k) =X, (k [ k) + K (R)[Xy(k | k) =X, (k | k)]
= [ — K, (1%, (k | k) + K, (k | K)E (K | k).
(16)
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After the fusion, local tracks 1 and 2 and their crossco-
variance should be updated according to the information
configuration.

In configuration T2TFwoMnf (see Fig. 1(a)), one
has

xj(k | k) = x,(k | k) 7)
Bk |k) =P (k| k) (18)
X5k | k) = x,(k | k) (19)
Py (k[ k) = Py(k | k) (20)
Pi(k | k) = Py(k | k) 2D
where P,,(k | k) is given in (15).
In configuration T2TFwoMpf (see Fig. 1(b))
xj(k | k) =x.(k | k) (22)
Pk | k) = Pk | k) (23)
5k | k) = xy(k | k) (24)
Pk [ k) = Py(k | k) (25)
and according to (16)
Pk [ k) = I = Kp(k)FR,(k | k) + Ky ()P (k | k).
(26)
In configuration T2TFwoMff (see Fig. 1(c))
X3k [k) = xj(k [ k) = x.(k | k) 27
Pk |k)=P'(k|k)=P(k|k) (28)
Pk | k) = Bk | k). (29)

The algorithm of T2TFwoM is summarized as fol-
lows:

e At the FC, the local tracks are fused according to
(2)-(3).

e The fusion can be done exactly, if the following data
are available:

(i) The local tracks to be fused: x,(k | k), P,(k | k) and
&y (k| K), By(k | k)

(i) The covariances and crosscovariance from the
previous fusion at time I: P*(I|1), B'(L|1), P5(l]
l) (see (7)—(8))—mneeded for the calculation of the
current crosscovariance.

(iii)) The local weights (12)—(13).

e Depending on the information configuration, the local
tracks are updated accordingly using (17)—(21) for
T2TFwoMnf, or (22)—(26) for T2TFwoMpf, or (27)—
(29) for T2TFwoMIt.

The algorithm of T2TFwoM has no theoretical limit on
the number of the local trackers. Only the crosscovari-
ances among all the tracks of the same target need to be
properly calculated. See [11] for the n-sensors version
of the fusion equations (2)—(3). The use of the results
from [11] in the general case requires Eqgs. (11)-(13)
for each sensor.

TABLE II
Fuser Variances (at fusion times) in Steady State
(fusion interval: 5 s)

FC Track at Fusion Time
Fusion Type
Pos Vel
T2TFwoM{f 133 6.29
T2TFwoMpf 131 6.30
T2TFwoMnf 125 6.30
CMF 119 6.03

2.3. Comparison of the T2TFwoM Algorithms and the

CMF

The algorithms for T2TFwoM are evaluated first in
the following tracking scenario. The target state is de-
fined as [x x]'. The target motion is modeled as the
discrete white noise acceleration (DWNA) model in [7],
Section 6.3.2. It is assumed that two sensors obtain posi-
tion measurements of the target with a sampling interval
of T =1 s. The standard deviation of the measurement
noise is o,, =30 m and the process noise variance is
g =1 m?/s*. T2TFwoM takes place every 5 s, i.e., at a
reduced rate.

All the fusers are consistent in the simulations (their
covariance calculations are exact). In view of the consis-
tency, the performance comparison can be made using
the calculated covariances. Table II shows the steady
state variances of position and velocity at the FC. All
the fused tracks are more accurate than the single-sensor
(local) tracks without fusion, which have steady state
variances as 205 in position and 7.26 in velocity. Note
that at the fusion time the position estimates of all
the fused tracks have a small degradation compared to
the CMF: 5% for T2TFwoMnf, 10% for T2TFwoMpf,
12% for T2TFwoMff. This shows that T2TFwoM has
a degradation in fusion accuracy compared to the CMF
and the degradation increases in the presence of infor-
mation feedback. This apparently counterintuitive result
is further discussed in the next subsection.

2.4. The Impact of Information Feedback on
T2TFwoM

To show the impact of information feedback on
T2TFwoM, consider the following two-step scalar es-
timation problem. At time 0, two local estimators have
independent prior information: x; ~ N(x(0),P,) at esti-
mator 1 and x, ~ N(x(0),P,) at estimator 2. At time 1,
x(1) =x(0) + v, where the process noise v, ~ N(0,Q).
The estimators have independent measurements of the
state: 7, =x(1) +w; (w; ~N(O,R,)) at estimator 1 and
25 =x(1) + wy, (wy ~ N(O,R,)) at estimator 2. The errors
in the prior information, the process noise and the mea-
surement noises are all independent. For the sake of sim-
plicity itis assumed that b, =P, =R, =R, =1land Q =
1/2. Consider the fusion at time 1 and the fuser uses
only the track estimates at time 1, namely T2TFwoM.
Fig. 2 shows the information flow of the centralized

150 JOURNAL OF ADVANCES IN INFORMATION FUSION  VOL. 4, NO. 2 DECEMBER 2009



-
X( tlg /

i I |

N
lxv/

xa('l”)/xztllll

|
1]

= 7 = ! A
E_yxl{osm—r‘xlu 0) > X OIDNG
/' X

Z

X, 3?2(0|0)—>‘.£3(1||J};—> .722(1“)

‘ z 3
(c)

Fig. 2. Information flow (CMF and T2TFwoM). (a) CMF
(configuration IV). (b) T2TFwoMI{f (configuration IIff).
(c) T2TFwoMnf (configuration IInf).

measurement fusion (CMF), T2TFwoM with full in-
formation feedback (T2TFwoMTff) and T2TFwoM with
no information feedback (T2TFwoMnf). Note that in
T2TFwoMTff the information feedback (sharing) occurs
at time 0O in this example.

Using CMF (Configuration IV in Section 8.2.5 of
[6]), one has

~ MF - -
ML) = 3% + Iy + 4z + 4z, (30)
with error (using the weighted sum form)
IME D = 4% + 15, — v + 3w+ 3w, (D)

where X, and x, denote the errors of X, and x,. It is easy
to calculate the covariance

Cov[xMF(1| D] = (32)
In T2TFwoMTf,° one has
A =3x + i+ 47+ 10 (33)

with error

X1 = ix] + %xzf %vl + %w] + %wz (34)

SNote that, following Section 8.2.3 of [6], Configuration IIb does not
have a memory of past estimates at the FC. It is T2TFwoM.

and ‘
Cov[xT(1|1)] =3 (35)

In T2TFwoMnf (Configuration Ila in Section 8.2.3
[6]), it follows that

~nf 1~ .1z .3 3
XN D) = 3% + 3% + 7521 + 5% (36)

with error
£ 3
AMATD =35+ 3%, - 2v + Sw + 5w, (37)

and
Cov[3"(1| )] = £.

Then one has
Cov[x™F(1 | 1)] < Cov[x™(1 | 1)] < Cov[x™(1 | 1)].

(39)

There are losses in accuracy in T2TFwoMIff and
T2TFwoMnf compared to the CMF, although they are
relatively small, due to the large process noise in the
example. Comparing (31), (34) and (37), it can be
seen that the weights of the measurements are lower
in T2TFwoMnf than in the CMF. They become even
lower in T2TFwoMIff due to the information feedback,
which leads to the further loss in fusion accuracy.

3. THE ALGORITHMS FOR T2TFwM AT AN
ARBITRARY RATE

The results in Section 2.4 show that, at full rate,
T2TFwoM is less accurate than the CMF and informa-
tion feedback is detrimental to T2TFwoM. However, the
IMF is equivalent to the CMF when operating at full
rate [13]. In this case, T2TFwoM is inferior to the IMF.
This is because T2TFwoM uses only local estimates at
the fusion time, which contain most but not all of the
information for T2TF. In contrast, the IMF belongs to
the class of T2TFwM. However, at reduced rate, the
IMF algorithm is not optimal anymore.

To account for the information from the fused and
local track estimates from the previous fusion time,’ the
algorithm for T2TFwM at an arbitrary rate is derived
in the next three subsections for configurations with
no, partial and full information feedback, designated as
T2TFwMnf, T2TFwMpf and T2TFwMIf respectively.
Fig. 3 shows the information flow of the three configu-
rations.

3.1. The Algorithm for T2TFwMnf

As shown in Fig. 3(a), for T2TFwMnf, at fusion
time k, the track estimates to be fused are local track

7This implies one-step memory. In fact, there is no need for more,
since one-step memory summarizes, under the LG (or LMMSE) as-
sumptions, all the information from the previous track estimates. This
is confirmed by the simulation results in Section 3.4, which show that,
at full rate, T2TFwM (using one-step memory) yields the globally op-
timal fusion results.
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estimates x,(k | k), X,(k | k) and the predicted track es-
timates X, (k | I), X,(k | I) and X.(k | [) from the previous
fusion, where subscript “c” indicates the (fused) track
at the FC. Stacking the estimates and the predicted es-
timates as a vector, one has

p=x,k k) x|k x(k|D) x| xk|D].
(40)

The fusion of these track estimates requires the covari-
ance of y, denoted as Cov(y). To obtain this covariance,
a slight modification of (11) gives

k
Xk | D)= Wk, DX [ D)+ Y Wy'k,i— (i — 1)
i=l+1
(41)
where s = 1,2,¢ and
k—1—1
Witk = I Fk—i—1) (42)
i=0
k—i—1
Wytk,i—1)=— [ Flk—j—1) (43)
j=0

which are obtained by substituting the filter gains K, (i)
in (12) and (13) by zero matrices, since the filter gains
are zero in the predicted track estimates. From (12),
(13), (42) and (43), Cov(y) can be easily calculated with
linear algebra.

For T2TFwMnf, define the following difference ma-
trix

1 0 -1 00
01 -1 00

M = (44)
00 -1 10
00 -1 0 I

where I denotes identity matrix of appropriate dimen-
sion, such that

Xy (k| k) —x.(k D)
Xk [ k) =X (k| 1)
v=| R =My. (45)
X (k[ D—x.(k|1])
Ryl | =R,k | D

Using the standard MMSE estimator from [7], the fused
estimate is given by

Xk | k) = X,(k | 1) + Cov[x(k),v]Cov(v) v (46)
where x(k) is the true state of the target at time k, and

Cov[x(k),v] = =[Cov(1)]3.,,M’ 47)

Cov(v) = MCov(u)M' (48)

where [Cov(y1)]; ., denotes the ith row of matrix Cov(y).
In (46) x.(k | [) plays the role of the prior at the FC and
the other elements of u play the role of the observations.
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From (45)—(48), the fused estimate is
X (k| k)y=X,(k|D— [Cov(,u)](l:)M’(MCOV(,u)M’)’IM;L

=x.(k|D)+K,u (49)
where

K, = —[Cov(p)](3,:)M’(MCOV(;L)M’)’lM. (50)
The fused covariance is
P.(k | k) = P.(k | I) — Cov[x(k),]Cov(v) ' Cov[x(k), ]
= B(k| D)= [Cov(1)) 5, M'(MCov(oM") "' M
[[Cov(1)] 3,
= B(k| 1) + K, [[Cov()] s, (51)

For T2TFwMnf the crosscovariances between the fused
track and the tracks from trackers 1 and 2 can be
obtained from (49) as

P,.(k | k) 2 Cov[x, (k| k).%,(k | k)]

= [Cov(i)] 1 3 + [Cov()] ,K;  (52)
P (k | k) 2 Cov[x, (k| k).%,(k | k)]
= [COV(M)](2,3) + [COV(M)](z,:)K[L (33)

where [Cov(u)](i, h is element (i, j) of Cov(pu).

Since there is no information feedback, both local
tracks are not changed after the fusion is performed at
the FC. One has

Xi(k | k) =X, (k | k) (54)
Br(k| k) = Pk k) (55)
X5k | k) = xy(k | k) (56)
Py(k| k) = Py(k | k) (57)
Pk [k) = Py(k | k) (58)
Pk | k) = P (k| k) (59)
P (k| k) = B.(k | k). (60)
3.2. The Algorithm for T2TFwMpf
Unlike T2TFwMnf, in T2TFwMpf, one has

X, (k| 1)=Xx.(k|1). Consequently, the elements x,(k |l)
in (40) should be removed. In this case, redefine y in
(40) and M in (44) as

p=1xk k) Xk k) X(k|D Xk |D] (61)

and I 0 -1 0
M2|l0o I -1 0 (62)
00 —I I
It follows that
R,k [ =&,k | D)
v= k| —3K&|D| =M (63)

Xk | D) =X (k| D)

Then, similarly to T2TFwMnf, the fused estimate
x.(k | k) is obtained using (49) and the fused covariance
P.(k | k) follows from (51) using the modified definitions
(61) and (62).

After the fusion, the local tracks and the track cross-
covariances are updated as follows

xj(k | k) =x.(k | k) (feedback) (64)
P'(k|k)=P.(k|k) (feedback) (65)
Pl(k|k)=P.(k|k) (teedback) (66)
x5k | k) = X,(k | k) (no feedback) (67)
P (k| k) =PR(k|k) (no feedback) (68)
Pk | k) = Py (K | K (69)
Pk | k) = B(k | ) (70)

where P,.(k | k) is given by (53) using the modified
definitions (61) and (62).

3.3.  The Algorithm for T2TFwMff

In contrast to T2TFwMnf, in T2TFwMIf, one has
x,(k | 1) = xy(k | 1) = x.(k | ). Consequently, the elements
x,(k | I) and x,(k | I) in (40) should be removed. In this
case, redefine ;1 in (40) and M in (44) as

p=lkKklb) SHklk) ZkDI (7D
and
= [1 0 —I} (72)
= 0 I _I *
It follows that
. [fl(mk)—icc(kll)} = My (73)
Rk [ k) =X (k | D)

Then, similarly to T2TFwMnf, the fused estimate is
obtained using (49) and the fused covariance follows
from (51) using the modified definitions (71) and (72).

Due to full information feedback, the local tracks
and the track crosscovariances are updated as

Xk k) =%.(k | k) (feedback) (74)
Pr(k|k)=P(k|k) (feedback) (75)
Pi(k| k) = Pk |k) (feedback) (76)
%3k | k) =%.(k | k) (feedback) (77)
Py(k | k) = P(k| k) (feedback) (78)

Pk | k) = PGk | k) = P(k | k) (feedback). (79)

Note that in T2TFwMIff the crosscovariances be-
tween the fused track and the local tracks after the infor-
mation feedback are the same with the fused covariance
(51). This is different from the updated crosscovariances
in T2TFwMnf, i.e., (59) and (60).

TRACK-TO-TRACK FUSION CONFIGURATIONS AND ASSOCIATION IN A SLIDING WINDOW 153



TABLE III
Fuser and Tracker 1 Calculated Variances at Fusion Times for Nf =1 (full rate), g =0.3, R, =R, =1

Time 1 2 3 4 5 6
T2TFwMnf Tracker 1 1.0000 0.5652 0.4639 0.4331 0.4230 0.4196
Fuser 0.5000 0.3077 0.2743 0.2673 0.2658 0.2654
T2TFwMpf Fuser 0.5000 0.3077 0.2743 0.2673 0.2658 0.2654
T2TFwMIt Fuser 0.5000 0.3077 0.2743 0.2673 0.2658 0.2654
CMF 0.5000 0.3077 0.2743 0.2673 0.2658 0.2654
TABLE IV

Fuser and Tracker 1 Calculated Variances at Fusion Times for Nf =3 (reduced rate), g =0.3, R, =R, = 1

Time 1 3 6 9 12 15
T2TFwMnf Trackerl 1.0000 0.4639 0.4196 0.4180 0.4179 0.4179
Fuser 0.5000 0.2772 0.2698 0.2694 0.2694 0.2694
T2TFwMpf Fuser 0.5000 0.2763 0.2690 0.2688 0.2688 0.2688
T2TFwMIt Fuser 0.5000 0.2755 0.2683 0.2682 0.2682 0.2682
CMF 0.5000 0.2743 0.2654 0.2653 0.2653 0.2653

3.4. Performance Comparison: T2TFwMnf vs.

T2TFwMff and CMF

To evaluate the performance of the optimal T2TF
with memory (T2TFwM) at an arbitrary rate, consider
the following tracking scenario. The state of the target
(taken as a scalar for simplicity) evolves according
to
k=2.3,...

x(k) = x(k — 1) + v(k), (80)

where v(k) is the process noise with variance g.

There are two trackers, 1 and 2, taking measure-
ments of the target with measurement noises w; and
w,, namely,

z;(k) = x(k)y + wik), =12 (81)

where w;(k) are zero-mean Gaussian noises with vari-
ance R;. The two trackers calculate tracks of the tar-
get with their own measurements using a Kalman filter.
Each local track is initialized at time 1 with the first
local measurement. The first T2TF happens at time 1.
Then T2TFwM occurs every N, sampling times.

Table III shows the fuser- and tracker-calculated
variances of the errors of the track estimates when the
fuser is operating at full rate. It can be seen that, at full
rate, the fuser with memory (with no, partial and full
information feedback) is equivalent to the CMF.

Table IV shows the fuser- and tracker-calculated
variances when the fuser (with memory) is operating
at reduced rate. In this case, T2TFwM, with or without
information feedback, has a small loss in fusion accu-
racy compared to the CMF. This is because, in T2TF,
information from the common process noises and the
common prior information (due to information feed-
back) appears simultaneously in different local tracks,
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which causes their weights (and, consequently, also the
weights of the new measurements) in the fused track
to deviate from the global optimum. This is similar to
the T2TFwoM example discussed in Section 2.4. When
T2TFwM is done at full rate, these deviations are fully
corrected by fusing the previous track estimates (see [6],
Section 8.6). However, at a lower rate, the deviations can
not be fully corrected, thus, a certain amount of degra-
dation in fusion accuracy is unavoidable. Also note
that, in contrast to the case of T2TFwoM, T2TFwMIff
is more accurate than T2TFwMpf and T2TFwMnf,
namely information feedback improves fusion accuracy
in T2TFwM (as expected). While it is too involved to
provide a theoretical proof of this result, simulations in
different settings confirm this.

Another fusion algorithm that also uses the previous
track estimates (i.e., it has memory) is the IMF [13, 25].
When operating at full rate, the IMF is algebraically
equivalent to the CMF (see [6], Section 8.6) and also to
the algorithms for T2TFwM presented in this section.
However, at a lower rate, the IMF is not an optimal
algorithm. As reported in [10], this may even lead to
divergence. In contrast, the algorithms for T2TFwMnf,
T2TFwMpf and T2TFwMI{f are optimal at any rate.

3.5. Summary of the Various T2TF Configurations

To summarize the discussion in Section 2 and Sec-
tion 3:

e For T2TFwoM (which uses only the track estimates
at the fusion time), information feedback will cause a
degradation in fusion accuracy (see Section 2.4). This
is because the local trackers use locally optimal but
globally suboptimal filter gains, which leads to lower
gains for the new measurements in the fused track.
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TABLE V
Data Required from Local Tracker 2 for each Fusion with Fusion Interval of M

Data Required

The Total Amounts (bits)

Exact algorithm

WEk,D), Wy (k,i — 1), 2y, By

(M + Dn? +n_+0.5(n, + Dn ln,,

Approximate

algorithm X, P,

Measurement time stamps,

Mnp +[n,+0.5@n, + Dn ln,

n,..: The number of the bits for each element in the state and covariance (accuracy)

n,: Dimension of the state

ny: The number of bits for each measurement time stamp

Information feedback will lower the gains further, and
cause more degradation in fusion accuracy.

e The algorithms for T2TFwM (which uses also the
track estimates from the previous fusion) at an ar-
bitrary rate for different information configurations
(with and without information feedback) are de-
rived for the first time. When operating at full
rate, T2TFwM, with no, partial or full information
feedback, is equivalent to the CMF (global opti-
mum). When operating at a reduced rate, T2TFwMnf,
T2TFwMpf and T2TFwMIt all have a small degrada-
tion in fusion accuracy compared to the CMF. How-
ever, unlike the case of T2TFwoM, the degradation
is smaller for T2TFwMIff than for T2TFwMpf and
T2TFwMnf. Namely information feedback improves
fusion accuracy in T2TFwM.

4. THE APPROXIMATE IMPLEMENTATION OF THE
T2TF ALGORITHMS

The T2TF algorithms at an arbitrary rate require the
local weight matrices (12)—(13) at the FC. However,
transmission of these matrices might not be affordable
in practical distributed tracking systems due to limit in
communication capacity. The idea of the approximate
implementation is to approximately reconstruct the local
information required by the T2TF algorithms at the FC
using a minimum amount of information from the local
trackers. Section 4.1 presents the approximate imple-
mentation which has significantly lower communication
requirements than the original algorithms. Simulation
results in Section 4.2 show that this implementation is
consistent and has practically no loss in the fusion ac-
curacy due to the approximation.

4.1.  The Approximate Algorithm

Note that the local weighting matrices (12)—(13) are
functions of F(i — 1), H(i), K,(i), i =[+1,...,k. At the
FC, if estimates of the target positions (i.e., an approx-
imate trajectory of the target) are available, using also
the locations of the local sensors and the times when
the local measurements are taken, the observation ma-
trices used by the local tracker and the related track
updates can be approximately reconstructed, yielding
H@), K,(i), i =1+1,...,k. Note that these reconstruc-
tions do not need the actual measurements due to the

nature of the Kalman filter that the covariance updates
do not depend on the actual measurements. Thus the
approximate evaluation of (12)—(13) is given by®
k—1—-1
Wetk,) = T U — Kk = H k= DIF(k—i— 1)

i=0

(82)

k—i—1
x@an={[]qup&®ﬁw0jn}

j=0

[ — K,()H, ()] (83)

where overbar denotes the approximate values. For
T2TF, (15) can be approximated by

Btk | k) = Wet, P | DWS (k. 1)

k
+ 3" W ki — DQG — DWy (ki — 1),
i=l+1

(84)

Thus, to approximately calculate the local weights
(12)—(13) required in the T2TF algorithms, the FC
needs to know the following: (i) the locations of the
local sensors, (ii) the time when the local measurements
are obtained (considering the possibility of missed de-
tections in practical systems) and (iii) an approximate
trajectory of the target. Note that, at the FC, (iii) is avail-
able when there is a tracker running at the FC or it can
be obtained by interpolation between the track estimates
at the fusion times. Although extra computations are re-
quired at the FC to obtain the approximate weights at
the local trackers, these computations are affordable due
to the simplicity of the expressions involved. A brief
analysis of the savings in communication is given be-
low.

In distributed tracking systems with sensors at fixed
locations, there is no need to transmit the locations. As-
sume further that tracker 1 is collocated with the FC
and, thus, the approximate track trajectory can be ob-
tained from its track estimates. Table V compares the
amount of data that needs to be transmitted from lo-
cal tracker 2 to the FC in the exact algorithm and in

81f the measurements are linear (as in [18]) there is no need for this
approximation. In the problem considered later, the measurements are
nonlinear (range and azimuth); consequently, this approximation will
be needed.
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Fig. 4. Filter consistency test: NEES (T2TFwoMff).

the approximate implementation. Given that transmis-
sion of measurement time stamps is much less expen-
sive than transmission of the local weights, namely,
(M + D)n2n,,, > Mny, the savings in communication
using the approximate algorithm is significant.

4.2. Simulation Results

The approximate implementation of the T2TF al-
gorithms is tested in a 2-D multisensor tracking sce-
nario, in which one target is tracked by two trackers.
The target motion is modeled as a DWNA process [7]
with process noise variance g. The target state is defined
as x =[£ § ¢ é]’. Tracker 1 is located at [0 O] m and
tracker 2 is at [0 10000] m. The local sensors (radars)
obtain position measurements of the target in their polar
coordinates, namely, range and azimuth, every 7' =1 s.
The filter used by the trackers is the converted mea-
surement Kalman filter (CMKEF) [7]. It is assumed that
tracker 1 is collocated with the FC, i.e., the FC has ac-
cess to the estimates of tracker 1, and tracker 2 sends
its track (X,(k | k), P,(k | k)) to the FC every 10 sampling
intervals. The simulation results are obtained from 100
Monte-Carlo (MC) runs.

4.2.1. T2TFwoM with full Information Feedback
(T2 TFwoMff)

Figs. 4-5 show the performance of the approxi-
mate implementation in the case of T2TFwoMff. As
shown in Fig. 4, the fused tracks are always consis-
tent (the normalized estimation error squared (NEES))
are in their 95% probability region [3.46 4.69]). In
Fig. 5, significant improvement in track accuracies
from both trackers is observed at the fusion times
k =10,20,...,100. The results of the CMF are also
presented as the bound of the tracking performance.
The root mean square (RMS) position errors indicate
that the fused track practically meets the performance
bound of the CMF at the fusion times. Between the
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*  Local Tracker 2
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201
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Sample Index (k)

Fig. 5. RMS position errors (T2TFwoMff).

fusion times the errors increase because each tracker
is on its own. The loss of accuracy because of the
information feedback in the fused track (discussed in
Section 2.3) becomes insignificant due to the geomet-
ric diversity of the two tracks.” The results for veloc-
ity are similar. Since the approximate implementation
performs practically as well as the CMF, there is no
need in this case to evaluate the exact algorithm for
T2TFwoMTff.

4.2.2. T2TFwoM with Partial Information Feedback
(T2TFwoMpf)

Figs. 6-7 show the performance of the approximate
implementation in the case of T2TFwoMpf for the
same tracking scenario with the following modification:
tracker 2 does not receive the fused track from the FC.
Fig. 6 shows that the fused track is consistent. In terms
of achieved accuracy, it also meets the performance

bound of the CMF at the fusion points.

4.2.3. The Effect of Ignoring the Crosscovariance in
T2TFwoMff

Figs. 89 show the statistics from the same track-
ing scenario, but the T2TFwoMIf is performed assum-
ing that the two tracks are uncorrelated. The diver-
gence of the filter—very rapid in NEES, slower but
noticeable in RMSE—demonstrates the importance of
taking into account the crosscovariances. This hap-
pens because the excessive optimism (fused covariances
that are too small) due to ignoring the crosscovari-
ances.

9With the two sensors widely separated (10000 m apart in the simula-
tion), and the measurements much more accurate in the range direction
than the crossrange direction, the two tracks are geometrically com-
plementary to each other in the scenario considered. In such cases,
the improvements of accuracy of the fused track are very significant,
and they are less affected by the crosscorrelation between the tracks.
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5. SLIDING WINDOW TEST FOR T2TA

The chi-square based track-to-track association
(T2TA) test is investigated in this section. Note that the
chi-square based T2TA test is based only on the likeli-
hood function (LF) under H,, (the two tracks belong to
the same target). The optimal (likelihood ratio—LR) test
can not be used for T2TA, since the exact LF under H,
(the two tracks do not belong to the same target) is not
available. Although a diffuse prior may be used to calcu-
late the LF under H,, which leads to a LR test that is the
same as the chi-square based test. The test still has vir-
tually no information about H,.!” The test can be done
based on a single frame of track estimates, or using track
estimates at multiple times. Conventional belief is that,
given the same false alarm rate, using multiple frames
of data will yield higher power. Accordingly the sliding
window test is proposed in Section 5.1, which is shown

10Also note that the chi-square based test uses only the Gaussian
exponent (This has the disadvantage that large covariance leads to
acceptance but it has low power). The assignment, however, will use
the full LF, i.e., there is penalty for large covariance matrix.
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to yield false alarm rates that match the theoretical val-
ues. Then we compare the power of the sliding window
test to that of the single time test. Counterintuitively,
it is observed that the sliding window test, which uses
more data, does not necessarily have more power than
the single time test. The reason for this phenomenon is
discussed in Section 5.2.

5.1. The Algorithm of the Sliding Window Test for
T2TA

Consider the basic T2TA test of whether two tracks
originated from the same target. For the single time test
at time k, the data includes the tracks x,(k | k), P,(k | k)
from tracker 1 and x,(k | k), P,(k | k) from tracker 2, as
well as their crosscovariance Py,(k | k). Define

Ak) =3, (k | k) — xy(k | k).
It follows that
Py(k) = P (k | k) + Py(k | k) — Py (k | k) — Py (k | K)'
(86)

(85)
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where Py, (k | k) is calculated from (15). The test statistic
is

T(k) = A(k) Py (k)™ Ack) (87)

which, under H, (the two tracks are for the same target),
is a random variable with a y7 distribution (n, is the
dimension of the state). However, for data association at
subsequent times, similar test statistics 7(g), g > k, are
correlated with T'(k), thus the sum of single time test
statistics (87) within a time window does not have a x?
distribution [4, 24].11

The sliding window test based on the most recent N
frames of data needs to account for the crosscovariances
among data at different times. Without loss of general-
ity, consider the T2TA that occurs at time f,,. Define

Ay@,) =[AR,) AR, )...Al, v, (88)

where subscript N is the window length and A(z,,),...,
A(t,,_n41) are from the N most recent track estimates
received by the FC. The test statistic 7y(z,) for this
sliding window of N times is

Ty(t,) = Ay(t,) Cov[Ay )] 'Ay@,)  (89)

which, under Hy, has a y? distribution with Nn, degrees
of freedom.

Given Cov[A(t,,_,)] from the previous sliding win-
dow, to obtain Cov[A(,)], the new diagonal term

Cov[A(z,)] = PA(2,,) (90)
is calculated from (86). The new off-diagonal terms are
Cov[A(t,), A(t)]
= Covlx, @@, |1,) = %,(1, | £,).%,(t; [ 1) = X, (1, | 1)]
= Cov[x,(, |1,).X%, ¢ | t)] + Cov[x,(z, | t,).X,(t; | 1,)]
—Cov[x,(t, | 1,).%,(t, | 1)] — Cov[x,(t, | 1,).%,(t | )],
i=m—N+1,....m—1. (91

From (11), it follows that

Cov[A®,), Alt)] = W'

DB 1 1)+ W2, 1B | 1)
A AL NCIEA R A CRAL IS
92)
where P(t; | 1;), Py(t; | t;) are from the tracks at time ¢
and P,,(t; | #;) is calculated using (15).

5.2. The Sliding Window Test vs. the Single Time Test

The sliding window test using test statistics (89) and
the single time test with test statistics (87) are compared
in a 1-D multisensor tracking scenario as in Section 2.3.
Target 1 starts at 5000 m with an initial velocity —3 m/s.
Target 2 starts at 5030 m with the same initial velocity

HThis is contrary to the assertion in [16].
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Fig. 10. Miss probability (wrong rejection) from 100 MC runs for
0.025 theoretical value (associations are done every 3 s).

(the initial target separation is 30 m).'? Both targets
have process noises with variance ¢ =2-1072 m?/s*.
These noises are independent across the targets, leading
to their eventual separation. Two sensors, designated
as 1 and 2, obtain position measurements of targets 1
and 2 every 1 s and maintain separate tracks for the
targets. The T2TA tests are performed every 3 s, which
is the time interval between two consecutive local track
estimates used in the window test. The sliding window
test uses a window of N =5 times. For comparison,
two tests based on the sum of the single time tests are
also performed. One is the cumulative sum over all the
previous single time tests; another is the sum of the
single time tests within a sliding window of N as the
approach proposed in [16, 24]. Both are not optimal
because the correlations in time are ignored.

Fig. 10 shows the miss probability when the track
of target 1 at sensor 1 is associated with the track of the
same target at sensor 2. The theoretical miss probability
is 2.5% (correct acceptance 97.5%). The “single time
test” (based on single frame of data) and the “sliding
window test” match the theoretical error probability.
However, the miss probabilities of the other two tests
based on the sum of the single time test statistics are
significantly larger than the theoretical value. This is
due to the fact that these tests ignore the correlation
among the single time test statistics.

Fig. 11 shows the probability of correct rejection
(power of the test) for 0.025 miss probability when
the track of target 1 at sensor 1 is associated with the
track of target 2 at sensor 2. Surprisingly, the sliding
window test has lower power than the single time test.
This counterintuitive phenomenon is further analyzed in
the Section 5.3 with an illustrative example.

12This small separation is only for the purpose of comparing the
power of different tests for T2T association. It is assumed that these
closely spaced targets are resolved by the sensors.

158 JOURNAL OF ADVANCES IN INFORMATION FUSION  VOL. 4, NO. 2 DECEMBER 2009



— 16} Sum of single time test statistics
‘g (ignoring correlations in time)
@ — = — Single time tests (exact)
£ 141 Sliding window test with length 5 (exact)
= Sum of single time test statistics over a window of 5
2 42 (ignoring carrelations in time)
<
c
g’ 5eeR90ARRQQRRRRRY
8 880 T e s e n s e e
3 Q - * E S S
o 0.8 a,
g e ®
506 ,'/ * Tests when track 1 at sensor 1 is
9 ® associated with track 2 at sensor 2
=] : W
2045 /‘ *
E & The tests are done every 3s
ozt A,
]
0 i i 1 '
0 18 33 48 63 78
Time (s)

Fig. 11. Power of test for 0.025 miss probability from 100 MC

runs.
5.3. The Effect of Window Length on the Power of
the T2TA Test

Consider a scalar state estimation problem with two
sensors/estimators. Estimator 1 has prior information
%,(0) ~ N(x,(0),P,), where x,(0) denotes the true state
of the target corresponding to track 1 at time 0, B
is the variance of the estimate X,(0). At time I, this
true state propagates to x;(1) =x;(0) +v where v~
N(0,0Q). A measurement is taken at time 1 as z;(1) =
x,(1) +w,, where w;, ~ N(O,R,). Estimator 2 has prior
information on the target corresponding to track 2,
X,(0) ~ N(x,(0),B). At time 1, the state of this target
evolves as x,(1) =x,(0) +v and the measurement of
sensor 2 is z,(1) = x,(1) + w,, where w, ~ N(O,R,). It is
assumed that the states of the two targets have the same
process noise v, so the difference between their true
states stays constant (they are moving in formation).'3
When the two targets are the same, x,(t) — x,(t) =0, t =
0,1, otherwise the target separation is |x,(t) —x,(?)| =
d>0, t=0,1. It is assumed that the errors in the
prior information and the measurement noises are all
independent and for the sake of simplicity P, = B, =
R, =R, = o2

For the T2TA test based on the prior information at
time 0, one has

A(0) = X,(0) — x,(0) (93)
Var[A(0)] = P, + B, = 20° (94)
T(0) = Var[A(0)] ' A(0)* = A(O)2 95)

under H,, (the two tracks are from the same target),
E[A(0)] = 0; under H, (the two tracks are from two
different targets), E[A(0)] =

At time 1, with the measurements z; and z,, the
updated estimates for the target (under H,) or targets

13 As later discussed, this assumption is necessary to obtain the actual
theoretical performance of the test.
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(under H,) are

. R, P+0
MO O B R
o o? +0
T 202+ Qx'( U e, & (96)
R P +0
SO TR O g
o o? +Q
02+Q2() 22+ 0°2 7
Thus
A1) = &,(1) ~ &y(1)
2 2
= 5 g RO RO+ 7 - )
(98)
Var[A(1)] = ot 7 (P+P)+ (o + Q) T TE) (R +R,)
Q2+ 1T T R T
B 20%02 +4Q0* + 40°
B (202 + Q)2 ©9)
T(1) = Var[A(1)] ' A(1)?
_ (20 + Q) 5
" 20202 +4Q0* + 406 A (100)
under Hy, E[A(1)] =0 and under H,, E[A(1)] =
For the window test,
A (D) =[AW0) AT (101)
204
202 0
202+ Q
Cov[A,(1)] =
oVl (D] 20 20252 +40Q0* + 40°
202+ Q (202 + Q)?
(102)
T,(1) = A,(1Y{Cov[A,(DI} ' Ay (1)  (103)

with E[A,(1) |Hy] = [0 0] and E[A,(1) |H,1=[d 4T

Since the single time test is a special case of the
window test with a window length of 1, T(0) can also
be denoted as 7;(0) and 7(1) as 7;(1). The tests statistics
T(0), T(1) and T,(1), which are quadratic forms, have
non-central Chi-square distributions with N degrees
of freedom and noncentrality parameter A [14]. The
number of the degrees of freedom of the test statistic
is the window length N and the noncentrality parameter
A is given by

Av(®) = E[A (O] {Cov[Ay ()]} ' E[AN ()],

t=0,1 (104)
with the expectation taken conditioned on H, (“same
target,” i.e., d = 0) or H, (d > 0). Specifically,

Ty(@®) ~ (N Ay (@),  1=0,1. (105)
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TABLE VI
Statistical Properties of the Test Statistics: Single Time Test vs.
Sliding Window Test

Noncentrality parameter \

- ?\.2[1} for 2 point window test

— .?\.1[1) for the single time test | |

Test statistic Degrees of
~x3(N,\) Freedom N H, H,
7(0) = T;(0) 1 0 L p
202
T(1) = T;(1) 1 0 (2o% +Q)? )
20202 + 4Qa* + 4o
L »
(1) 2 0 —d

Notice that (105) holds only when the covariance matri-
ces of Ay (t) are the same under both H, and H,, which
requires the targets to have the same process noise. This
happens when the targets move in formation. However,
in general, different targets do not necessarily have the
same process noise. In such cases, the test statistic 7y (f)
does not follow a non-central y? distribution under H,;
and the difference between the true states of the targets
is nonstationary. Thus the power of the test can not be
obtained theoretically.

The cumulative distribution function (cdf) of a
x*(N,\) random variable is given by [28]

/2) 1 +k/2.x/2)
TGk
(106)

Softwares are available for the calculation of (106).

The statistical properties of the above test statistics
under H, and H; are shown in Table VI. Notice that, in
this example, the noncentrality parameter of the window
test 7T,(1) doesn’t depend on the value of the process
noise variance Q. This holds for this specific example
but is not true in general. However, it is easy to show
that the noncentrality parameter of the sliding window
test is always greater than or equal to that of the single
time test.

Assuming o> = 1, Fig. 12 compares the noncentral-
ity parameters for the window test (N = 2) and the sin-
gle time test at time 1. It can be seen that, if Q =0,

PPN N <x} =Y & (\
j=0

0.5
0

5 10 15 20
Q

Fig. 12. The noncentrality parameters (normalized by the
separation squared) vs. process noise variance.

then the noncentrality parameters of 7,(1) and 7'(1) are
the same. However, T,(1) has 1 more degree of free-
dom than 7'(1), thus the sliding window test 7,(1) re-
quires a higher threshold for the same miss probability
of H, and, consequently, is less powerful than the
single time test T(1). As the variance of the process
noise Q increases, the noncentrality parameter of 7,(1)
remains constant, and will be significantly larger than
the noncentrality parameter of 7'(1), which decreases
with Q, as shown in Fig. 12. This compensates for the
larger number of degrees of freedom of 7,(1) and makes
T,(1) eventually more powerful than 7'(1).

Table VII compares the power of the tests under
different process noise variances Q when d =3 and
02 = 1. The “Threshold for rejection” and “Power of the
test” are from the theoretical calculations. The “Miss
probability” and “Correct rejection” are from Monte
Carlo simulations and they match the theoretical values.
The results show that when the process noise level is
high (Q = 6), the window test has higher power than the
single time test; however, counterintuitively, the window
test has lower power than the single time test when the
process noise level is low (Q = 0.1).

Note that the power of the test depends on (i) the
number of degrees of freedom N of the chi-square

TABLE VII

Performance of the Tests (d = 3, 0> = 1 and Probability of Correct Acceptance 1 — o = 0.975). Q is the Process Noise Variance; N is the
Degrees of Freedom of the Test Statistic and ) is the Noncentrality Parameter. The Miss Probability and Correct Rejection (power) are

Obtained form 1000 Monte Carlo (MC) Runs.

Test | @ | N A Threshold (rejection Theoretical MC Miss MC Correct
Stat under Hy of Hp, o = 0.025) power of the test | Prob of Hy | Rejection of Hy
T(1) | 0.1 8.08 5.02 [0.775] 0.026 0.76
T5(1) 2 9 7.38 0.678 0.030 0.69

(1) 6 1 5.76 5.02 0.56 0.031 0.57
To(1) . 9 7.38 m 0.029 0.66
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test statistic (which determines the threshold) and (ii)
the noncentrality parameter A. Two explanations from
different perspectives to this seemingly counterintuitive
phenomenon are given next.

1. In this example, the power of the window test 7,(1)
remains the same over different process noise levels
Q as a result of the constant noncentrality parameter,
i.e., the window test is not sensitive to process noise
levels. When the process noise level is low (Q = 0.1
in this example) the power of the single time test is
higher than the window test’s because it has almost
the same noncentrality parameter as the window test
but only one degree of freedom (i.e., lower thresh-
old). However, with a high level of process noise
(when Q = 6) the noncentrality parameter decreases
and the power of the single time test drops below
that of the window test.

2. Attime 1, by incorporating the data from time 0, the
window test has a noncentrality parameter larger than
that of the single time test (for both cases when Q =
0.1 and Q = 6). However, the inclusion of the data
from time O also increases the degrees of freedom of
the test statistic (from 1 to 2), which has a negative
impact on the power of the test (for the same false
alarm rate, this raises the threshold to 7.38 from 5.02
for the single time test). When the crosscorrelation
between the data at time 1 and time O is large
(which happens for low process noise Q = 0.1), the
increase in the noncentrality parameter is too small to
overcome the negative effect of the increased degree
of freedom. In such cases, the window test has lower
power than the single time test.

The discussion above indicates that the advantage of
the window is negated by the crosscorrelation in time,
which is higher for low process noise.'* This suggests
that, to enhance the power of the sliding window test,
it is necessary to make sure that the multiple frames of
data selected for the test are not strongly correlated. This
can be accomplished by increasing the time difference
between the selected frames.

To confirm this guideline, Fig. 13 shows the power
of the tests under a theoretical false alarm rate of o =
0.025 in the same simulation scenario as in Section 5.2
except that the tests for T2TA are done every 15 s (e.g.,
the time interval of two consecutive track estimates used
in the window test) as opposed to 3 s and the length of
the sliding window is set to 4. It is shown that, in this
case, the sliding window test has more power than the
single time test.

The phenomenon that using more data may lead to
lower power in the classical chi-square test seems coun-
terintuitive. However, it can be better understood given
the fact that the test uses only the likelihood function
(LF) under H, and the LF under H, is unknown. Thus

14This is because with lower process noise the “memory” of the filter
is “longer.”
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Power of the test: sliding window test vs. single frame test
with a increased testing interval of 15 s.

Fig. 13.

it is unclear how the available data should be combined
to better differentiate the two hypothesis. The loss in
power of the chi-square based window T2TA test is the
result of the lack of information under H,. A likelihood
ratio (LR) test would be more powerful but it requires
knowledge of the target separation, i.e., it is not practi-
cal.

6. CONCLUSIONS

In this paper the optimal T2TF algorithms at an arbi-
trary rate are investigated for various information con-
figurations. First algorithms for T2TF without memory
(T2TFwoM: fuser uses only the local track estimates
at the fusion time) are presented for three informa-
tion configurations, namely, T2TFwoM with no, par-
tial and full information feedback. It is shown that, for
T2TFwoM, information feedback is detrimental to fu-
sion accuracy. Then algorithms for T2TF with memory
(T2TFwM: fuser uses also the fused and local track es-
timates from the previous fusion) at an arbitrary rate are
derived for information configurations with no, partial
and full information feedback. It is shown that, at full
rate, T2TFwM, with or without information feedback, is
equivalent to the centralized measurement fusion (CMF,
which is the global optimum). However, when operating
at a lower rate, a certain amount of loss in fusion accu-
racy (compared to the CMF) is unavoidable. In contrast
to the case of T2TFwoM, it is shown that information
feedback improves the fusion accuracy of T2TFwM.
And, unlike the information matrix fusion (IMF) which
is optimal (same as CMF) only at full rate, the algo-
rithms for T2TFwM are optimal at any rate.

An approximate implementation of the T2TF algo-
rithms is also proposed based on the reconstruction of
local information at the fusion center (FC). For non-
linear distributed tracking systems, it has much lower
communication requirements and practically no loss in
fusion accuracy due to the approximation. Simulation
results show that it is consistent and, for the sensors-

TRACK-TO-TRACK FUSION CONFIGURATIONS AND ASSOCIATION IN A SLIDING WINDOW 161



target geometry considered, it meets the performance
bound of the centralized measurement fusion at the fu-
sion points.

The hypothesis test for T2TA is also studied in this
paper. The sliding window test for T2TA is presented.
It uses track estimates in a time window and yields false
alarm rates that match the theoretical values. The sliding
window test was compared with the single time test
and the results show that, counterintuitively, the sliding
window test may have lower power than the single time
test. This is because using more data also increases the
degrees of freedom of the test statistics which has a
negative impact on the power of the test. When the
multiple frames of data selected for T2TA are strongly
correlated, which happens for motion with low process
noise, the increase in the noncentrality parameter is too
small to overcome the negative effect of the increased
degree of freedom. In such cases, the sliding window
test may be counterproductive and has lower power
than the single time test. In practice, this should be
avoided by, e.g., increasing the time difference between
the selected data frames.
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ing the activities of world-wide information fusion related societies or organizations. Serve as a professional
liaison to industry, academia, and government.

Disseminate
To propagate the ideas for integrated approaches to information fusion so that others can build on them in
both industry and academia.



Call for Papers

The Journal of Advances in Information Fusion (JAIF) seeks original
contributions in the technical areas of research related to information
fusion. Authors of papers in one of the technical areas listed on the
inside cover of JAIF are encouraged to submit their papers for peer
review at http://jaif. msubmit.net.

Call for Reviewers

The success of JAIF and its value to the research community is
strongly dependent on the quality of its peer review process. Re-
searchers in the technical areas related to information fusion are en-
couraged to register as a reviewer for JAIF at http://jaif. msubmit.net.
Potential reviewers should notify via email the appropriate editors of
their offer to serve as a reviewer.
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