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Editor:
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Final Stages of the Production Process for JAIF
Manuscripts

When a JAIF manuscript has been accepted for

publication, the next stage in the editorial procedure

is for the authors to provide a folder containing a

complete set of manuscript production files. The cor-

rect format for the production files is specified at

http://www.isif.org/prepforpublication. Upon receipt by

the Administrative Editor, the production files go

through a complete audit. For more detail on the au-

diting process, see the editorial in the December 2007,

Volume 2, Number 2, issue of JAIF.

After the production files are determined to be ac-

ceptable, the next step in the editorial process is to as-

sign a copy editor to proofread the final manuscript.

JAIF currently utilizes two copy editors, Associate

Editor-in-Chief Uwe Hanebeck of the University of

Karlsruhe and Associate Administrative Editor Ruixin

Niu of Virginia Commonwealth University, to handle

the current production load of accepted manuscripts.

The role of a JAIF copy editor is to thoroughly

proofread each manuscript making sure that it meets

the standards established by the editorial board of

the journal. For example, typical standards used by

JAIF for publishing academic papers can be found

at http://en.wikipedia.org/wiki/Academic publishing. In

proofreading, the most common errors that a JAIF copy

editor looks for are of the typographical, punctuation,

and grammatical type. Additionally, other common er-

rors to look for involve mistakes in referencing sections,

equations, and figures or tables. With that, it is neces-

sary to check that these referenced items are not missing

labels, erroneously labeled, or formatted incorrectly. Fi-

nally, an important function of the JAIF copy edit pro-

cess is to look for issues with incorrect equations, and

improper usage of scientific terms.

When the copy editor has completed the proofing

of a manuscript, all recommended modifications are

scanned and forwarded to the corresponding author as

a marked up PDF manuscript file. The author then

reviews the changes, and makes any requested changes

of his/her own by marking up the same PDF file. These
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changes are forwarded to the copy editor for review and

approval. When the copy editor and author are satisfied

that no further modifications are required, the author

then updates the manuscript production files and sends

these to the copy editor. At that point, the copy editor

uploads the files to the JAIF system and releases the

paper for production, which notifies the typesetter to

begin preparing a first set of proofs.

The entire copy edit process typically takes four

weeks, and the typesetter takes another two weeks be-

yond that to produce first proofs (see the editorial in

the June 2010, Volume 5, Number 1, issue of JAIF).

When the proofs are ready, the authors are notified to

give the manuscript one last check for modifications. If

no modifications are required, the proofs are posted on

JAIF's web site as a first version of the paper.

Robert Lynch

Administrative Editor
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A Decision-Centric Framework
for Density Forecasting

GABRIEL TEREJANU

PUNEET SINGLA

TARUNRAJ SINGH

PETER D. SCOTT

In general, the uncertainty propagation problem, in which the

uncertain initial condition evolves through a dynamic system driven

by noise, is seen strictly from the producer’s perspective. This

means that uncertainty propagation algorithms are derived and

evaluated based on statistical measures independent of the user’s

decision needs. However accurate the uncertainty evolution given

by a particular method, it may be less than optimal to the user

or the decision maker, who takes decisions based on an implicit or

explicit utility function. While in a static environment, one may be

able to select an appropriate method for uncertainty propagation,

in a dynamic environment with an ever-changing utility function

this becomes a challenging task.

The goal of the present work is to reconcile the two views into

a decision-centric framework which provides both a more accurate

approximation to the relevant probability density function and a

more precise expected utility value for the decision maker. A numer-

ical example using a puff-based dispersion model, for forecasting

downwind concentrations of toxic materials, demonstrates the ca-

pacity of this approach to focus computational resources on regions

of particular interest such as high population density. A second

example shows improvement over alternative methods as measured

by a variety of utility-weighted metrics.
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1. INTRODUCTION

Decision makers increasingly rely on mathematical

models in choosing the right set of actions in critical

situations. The accuracy of mathematical models in pre-

dicting the physical state of the system directly affects

the accuracy of the decision making process. Such sit-

uations are often encountered in deployment of emer-

gency responders in response to extreme events such as

covert release of hazardous material, storm surge due to

a hurricane, wild fire, etc. Disaster response managers

routinely use numerical modeling to assist in hazard re-

sponse and mitigation. However, any numerical model

used to forecast physical state variables and assist in

decision making is a reflection of numerous assump-

tions and simplifications to permit the determination of

a tractable model. The error inherent in any model is a

result of model truncation, errors in model parameters,

and errors in initial and boundary conditions. Together

these factors cause overall prediction model accuracy to

degrade as the simulation evolves. Hence, it is important

to forecast the evolution of a physical state variable with

its attendant uncertainty given the uncertainties in the

inputs to the numerical model. Based on the forecast of

physical state and associated uncertainty, decisions can

be made on deploying emergency responders, evacuat-

ing cities, sheltering or medical gear caching.

The optimal decision under uncertainty corresponds

to maximizing the expected value of a utility function or

minimize the expected value of a loss function [40]. The

utility or its complement, the loss function, are defined

to measure the consequences of the decision making

process. The accurate computation of the expected loss

requires the knowledge of the probability distribution of

the physical state variable due to model and input un-

certainties. The exact time evolution of state probability

density function (pdf) is given by the Fokker-Planck-

Kolmogorov Equation (FPKE) [27].

If FPKE could be solved for the state pdf, it would be

possible to calculate statistical moments like the mean

state and the error covariance at different times as well

as different expectations such as the expected loss. Ana-

lytical solutions for the FPKE exist only for a stationary

pdf and are restricted to a limited class of dynamical

systems [9, 27]. Thus researchers are actively looking

at numerical approximations to solve the FPKE [15—

17, 20, 23], generally using the variational formulation

of the problem. However, these methods are severely

handicapped for even low dimensions because the dis-

cretization of the space over which the pdf lives is, com-

putationally impractical.

To emulate the exact methods, many approximate

techniques exist in the literature to approximate the

uncertainty evolution problem, the most popular being

Monte Carlo (MC) methods [8], Gaussian closure [12],

Equivalent Linearization [28], and Stochastic Averaging

[18, 19]. All of these algorithms except Monte Carlo

methods are similar in several respects, and are suitable
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only for linear or moderately nonlinear systems, because

the effect of higher order terms can lead to significant

errors. The Markov Chain Monte Carlo (MCMC) or se-

quential Monte Carlo methods [31] are other attractive

alternatives in the case of low-order nonlinear systems

to solve the FPKE. Their applicability to higher-order

systems, particularly in “plain-vanilla” forms, is limited

by their high computational complexity and sensitivity

to properties such as the rate of decay of the conditional

pdf. As noted by Daum [7], sequential Monte Carlo

methods are not immune to the “curse of dimensional-

ity,” and their effective use should take into account the

smoothness constraint implied by the FPKE.

Recently Terejanu et al. [36] have proposed the

Gaussian mixture model for accurately solving the

FPKE in a computationally effective manner. The key

idea is to approximate the state pdf by a finite sum of

Gaussian density functions whose mean and covariance

are propagated using linear theory. The weights corre-

sponding to different Gaussian kernels are updated by

requiring the mixture to satisfy the FPKE [36]. With

this formulation, the mixture problem can be solved

efficiently and accurately using convex optimization

solvers, even if the mixture model includes many terms.

Another advantage of the proposed method is that it

decouples a large uncertainty characterization problem

into many small scale problems. As a consequence, the

algorithm can be parallelized on today’s high perfor-

mance computing systems. Although Gaussian mixture

idea has been successfully applied to low and moder-

ate dimension systems (n=O(10)), including the uncer-

tainty propagation through two-body system and toxic

cloud transported by wind [10, 36, 37], like any other

method to solve the FPKE it only provides an approx-

imate description of the uncertainty propagation prob-

lem by restricting the FPKE solution space to a small

number of parameters.

In general, the uncertainty evolution process does

not take into account the knowledge about the decision

making process. Evaluation of the approximate state pdf

provided by different methods is based on statistical

measures, such as minimization of FPKE error, integral

square error between true pdf and its approximation

[36], mean square error [14] or expected exponential

of estimation error [4, 29]. This process is indepen-

dent of the user’s decision needs and is referred here

as the producer’s perspective where the accuracy of the

forecast is the main driver in the algorithm evaluation

[14]. These assumptions make the problem tractable and

computationally efficient, which satisfies the require-

ment of minimizing decision latency, but the approx-

imations may be of little use when computing the ex-

pected loss, since they are not sensitive to the decision

maker’s loss function [37]. For example, an approxi-

mation which underestimates a tail of the forecast pdf

where the main support of the loss function resides.

Ideally the uncertainty evolution should be per-

formed from the user’s perspective [25], i.e., it should

take into account the structure of the utility or loss

function. While in a static environment, one may be

able to select an appropriate method for uncertainty

propagation, in a dynamic environment with an ever-

changing utility function this becomes a challenging

task. The main objective of this work is to reconcile

the two views into a decision-centric framework which

provides both a more accurate approximation to the rel-

evant state probability density function and a more pre-

cise expected utility value for the decision maker. This

is achieved by incorporating contextual loss information

held by the decision maker into the density forecasting

process.

We use a Gaussian mixture approximation to the

state pdf and propose a “non-intrusive” way of com-

puting an approximate pdf that addresses the region of

interest and is closer to the true pdf in the sense of mini-

mizing FPKE error. Non-intrusive refers here to the fact

the we do not require a new uncertainty propagation

method when incorporating the loss function into the

derivation. The interaction level between the Decision

Maker (DM) and Density Forecasting (DF) is acting

at the process refinement level which manages the re-

sources of the density forecasting method, in this case

the location of the Gaussian components.

A progressive selection method is designed to add

new Gaussian components to the initial Gaussian mix-

ture, such that probabilistic support is reaching the re-

gion of interest at the decision time. The initial weights

of the added Gaussian components are set to zero and

they are modified when propagated throughout the non-

linear dynamic system to minimize the error in the

FPKE [36]. Therefore, if there is any probability density

mass in the region of interest it will be represented by

the non-zero weight of the new Gaussian components

at the decision time.

We mention that the similar ideas have been ex-

plored in risk sensitive particle filters [39], which are

not to be confused with risk sensitive filters [4, 29].

The risk sensitive particle filter modifies the sampling

density of the standard particle filter so that more sam-

ples are generated in high risk regions of the state space.

This is achieved with a risk function obtained using a

Markov decision process to approximate the future risk

of decisions from a particular state.

The structure of the paper is as follows: first the

decision making problem is stated in Section 2 and

the Gaussian Sum approximation to the forecast pdf

is presented in Section 3. The progressive selection of

Gaussian components is derived in Section 4 followed

by two numerical examples in Section 5 to motivate

and to illustrate the performance of the method. The

conclusions and future work are discussed in Section 6.

2. PROBLEM STATEMENT

Consider a general n-dimensional continuous-time

noise driven nonlinear dynamic system with uncertain
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initial conditions given by the following equations:

_x(t) = f(t,x(t)) +¡ (t)

x(t0)» p(t0,x0)
(1)

where ¡ (t) represents a Gaussian white noise process
with the correlation functionQ±(t¡ ¿), and uncorrelated
with the initial condition.

We are interested in finding the forecast proba-

bility density function p(t,x(t)) whose time-evolution
is given by the following partial differential equa-

tion known as the Fokker-Planck-Kolmogorov Equation

(FPKE) [27]:

@

@t
p(t,x) =¡@p(t,x)

T

@x
f(t,x)¡p(t,x)Tr

·
@f(t,x)
@x

¸
+
1

2
Tr

·
Q
@2p(t,x)
@x@xT

¸
: (2)

Given a state space region of interest at a particular

decision time, td, which may be represented as a loss
function by the decision maker, L(xd,ad), the expected
loss of an action ad is calculated as follows:

L(ad) =

Z
L(xd,ad)p(td,xd)dxd (3)

where xd is the state of the system at decision time,

t= td.

If the FPKE in (2) can be solved exactly for the

forecast pdf, p(td,xd), it would be possible to obtain
the expected loss and also find the optimal Bayesian

decision [24], if a set of decisions exists. Although

analytical steady state solutions for the FPKE exist

for a limited class of dynamical systems, finding the

solution for the generic nonlinear system in (1) is not

a trivial task. In practice, we only know a numerical

approximation to the state pdf p(td,xd), denoted by
p̂(td,xd). As a consequence of this, we can only compute
an approximated value of the expected loss and hence

optimal decision:

L̂(ad) =

Z
L(xd,ad)p̂(td,xd)dxd (4)

âd = argminad

Z
L(xd,ad)p̂(td,xd)dxd: (5)

The decision making process in the density fore-

casting context is presented in Fig. 1 (left). Obviously

if we have a good approximation for the forecast pdf in

the region of interest the same can be said for the ex-

pected loss. This situation becomes more dramatic when

a large deviation exists between the actual and the esti-

mated forecast pdf in the region of interest. In the case

of evaluation of a single decision, the algorithm may

underestimate the actual expected loss, L̂(ad)¿ L(ad),

or overestimate it, misguiding the decision maker with

respect to the magnitude of the situation. In the case

when a optimal decision has to be chosen, the large

Fig. 1. Left figure represents the classic approach to decision

making in the density forecasting context. The right figure shows the

proposed model.

difference between forecast pdfs may result in picking

not only a suboptimal decision but a very consequential

one.

While one can derive a new method to approximate

the forecast pdf by including the loss function in the

derivation and overweighting errors in the region of in-

terest to better approximate the expected loss, it will

accomplish this at the expense of worsening the global

approximation of the pdf. This will coarsen other es-

timates based on the forecast pdf, independent of the

utility function, such as the mean of the pdf, the modes

of the pdf, etc. The loss in global accuracy in estimat-

ing these statistics may end up misleading the decision

maker with respect to the dominant behavior of the sys-

tem.

In other words, if we name the computation of the

expected loss of a given action as impact assessment and
the computation of the moments and other quantities

based on the pdf as situation assessment, one will require
that both to be as accurate as possible. At the limit, if

we can compute exactly the forecast pdf we accurately

obtain both impact assessment and situation assessment
since we can quantify exactly the probability of all the

outcomes. The proposed decision-centric framework for

density forecasting is in agreement with the information

flow across the fusion levels of the JDL model proposed

in [32]. Both an upward flow and a downward flow is

necessary to obtain relevant inferences.

Since the decision maker holds important informa-

tion regarding the use of the pdf obtained from the den-

sity forecasting method, we can incorporate this infor-

mation in the uncertainty propagation process in a non-

intrusive manner (do not have to derive a new method),

by supplementing the inputs into the density forecast-

ing module. The proposed method is shown in Fig. 1

(right), where a new interaction level is introduced be-

tween the decision maker and the uncertainty propaga-

tion, that uses the contextual information provided by

the decision maker to supplement the inputs of the den-

sity forecasting process. In other words the proposed

method changes the environment in which the density

forecasting method is running.
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Therefore, we want to find an approximation to the

forecast pdf, p̂¤(td,xd), that addresses the interest held
by the decision maker and provides both a better impact

and situation assessment than p̂(td,xd). These objectives
can be captured by the following two relations:Z

jp(td,xd)¡ p̂¤(td,xd)j2dxd ·
Z
jp(td,xd)¡ p̂(td,xd)j2dxd

(6)

jL̂¤(ad)¡L(ad)j · jL̂(ad)¡L(ad)j: (7)

In the present paper, we will design an interaction

level between the decision maker and the uncertainty

propagation module that approximates the pdf using a

Gaussian mixture. The interaction level is adding new

Gaussian components to the initial uncertainty, such that

they will be positioned near the region of interest at

the decision time. Their initial weights will be set to

zero, thus the initial uncertainty is not changed, but

the evolution of the weights is dictated by the error in

the FPKE as in the Adaptive Gaussian Sum algorithm

used to propagate the uncertainty in [36]. Thus if any

probability density mass is moving naturally towards

the region of interest, the weights of the new Gaussian

components will become greater than zero. Therefore

the method will find if there is any probability density

mass in the region of interest.

In this paper we will consider only the forecast of

the pdf when no measurements are available between

the current time and the decision time. A suggestion,

on how this can be used in the case when we have

observations to assimilate between the current time and

the decision time, is given in Section 4. In the following

section we present the uncertainty propagation method

for DF and in Section 4, the algorithm in the DM-DF

interaction level is derived.

3. APPROXIMATION OF THE FORECAST
PROBABILITY DENSITY FUNCTION

In this section, we briefly summarize the Gaussian

mixture model approach to solve the FPKE; more de-

tails can be found in our prior work [30, 36]. The main

idea of this approach is to approximate the state pdf

by a finite sum of Gaussian density functions whose

mean and covariance are propagated using linear the-

ory. The weights corresponding to different Gaussian

kernels are updated by requiring the mixture to satisfy

the FPKE [36].

Let us consider the following equation depicting the

Gaussian mixture model approximation for the forecast

density function, p(t,x):

p̂(t,x) =
NX
i=1

witN (x(t);¹it,Pit)| {z }
pgi

N (x;¹it,Pit) = j2¼Pitj¡1=2

£ exp[¡ 1
2
(x¡¹it)T(Pit)¡1(x¡¹it)]

(8)

where ¹it and P
i
t represent the mean and covariance of

the ith component of the Gaussian pdf, and wit denotes

the amplitude of ith Gaussian in the mixture. The pos-

itivity and normalization constraint on the mixture pdf,

p̂(t,x), leads to following constraints on the amplitude
vector:

NX
i=1

wit = 1, wit ¸ 0, 8t (9)

In [2], it is shown that since all the components

of the mixture pdf of (8) are Gaussian and thus, only

estimates of their mean and covariance need to be

maintained, they can be propagated between t and t0 =
t+¢t using the linear system propagation methods

such as the Extended Kalman Filter (EKF):

_¹it = f(t,¹
i
t) (10)

_Pit =A
i
tP
i
t+P

i
t(A

i
t)
T+Q (11)

Ait =
@f(t,x(t))
@x(t)

¯̄̄̄
x(t)=¹it

: (12)

Although, in this paper we present only the EKF

model to propagate the mean and covariance of each

of the Gaussian component, one can easily use some

advanced linear propagation methods like unscented

Kalman filter [13] or quasi-Gaussian Kalman filter [5]

to propagate the mean and covariance more accurately.

The weights of the Gaussian components are not

known and must be computed as part of the solution

process. Using the following approximation for the

total derivative of the weights, _wit = (1=¢t)(w
i
t0 ¡wit),

the unknown weights wit0 are found by minimizing the

integral square FPKE error as discussed in [35, 36].

Substituting (8) in (2) leads to,

e(t,x) =
@

@t
p̂(t,x) +

@p̂(t,x)T

@x
f(t,x) + p̂(t,x)Tr

·
@f(t,x)
@x

¸
¡ 1
2
Tr

·
Q
@2p̂(t,x)
@x@xT

¸

=
1

¢t

NX
i=1

pgiw
i
t0

+

NX
i=1

Ã
@pTgi
@¹it

_¹it+Tr

·
@pgi
@Pit

_Pit

¸
¡ 1

¢t
pgi

+
@pTgi
@x

f(t,x)+pgiTr
·
@f(t,x)
@x

¸

¡1
2
Tr

"
Q
@2pgi
@x@xT

#!
wit: (13)

Since the FPKE error of (13) is linear in Gaussian

weights, the integral square FPKE error minimization

problem can be written as the following quadratic pro-
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gramming problem:

min
wi
t 0

1
2
wTt0Mcwt0 +w

T
t0Ncwt

s.t 1TN£1wt0 = 1

wt0 ¸ 0N£1

(14)

where wt 2RN£1 is the vector of weights at time t,
wt0 2RN£1 is the vector of unknown weights at time
t0, 1N£1 2 RN£1 is a vector of ones, 0N£1 2 RN£1 is a
vector of zeros and the components of the two matrices

Mc 2RN£N and Nc 2RN£N are given by

mcij =
1

¢t2
j2¼(Pit+Pjt )j¡1=2

£ exp
·
¡1
2
(¹it¡¹jt )T(Pit+Pjt )¡1(¹it¡¹jt )

¸
for i 6= j (15)

mcii =
1

¢t2
j4¼Pitj¡1=2 for i= j (16)

and,

ncij =
1

¢t
pgi

Z
V

Ã
@pTgj

@¹jt
_¹jt +Tr

"
@pgj

@Pjt
_Pjt

#
¡ 1

¢t
pgj

+
@pTgj

@x
f(t,x) +pgjTr

·
@f(t,x)
@x

¸

¡1
2
Tr

"
Q
@2pgj

@x@xT

#!
dx: (17)

Details on the derivation of the above relations can

be found in [36, 38]. Notice that to carry out this mini-

mization, we need to evaluate integrals involving Gaus-

sian pdfs over volume V which can be computed ex-

actly for polynomial nonlinearity and in general can be

approximated by the Gaussian quadrature method. By

updating the forecast weights, not only can we obtain a

more accurate estimate but also a better approximation

to the forecast probability density function [35].

The estimated pdf is used to compute the expected

loss. We require that the loss function provided is

positive, finite everywhere and it is able to distinguish

the important states from the unimportant ones. For

simplicity the loss function used in this work has the

following form:

L(xd,ad) =N (xd;¹L,§L): (18)

Due to the approximations used in propagating the

pdf it may happen that no or very little probability

density mass exists in the region of interest at the

decision time, depicted here by the loss function. In the

following section we present an algorithm which adds

new Gaussian kernels to the initial mixture such that

they will be positioned in the region of interest defined

by the loss function at the decision time, increasing the

accuracy of the expected loss.

4. DECISION MAKER—DENSITY FORECASTING
INTERACTION LEVEL

The iterative method proposed here, is adding a set

of Gaussian components to the initial pdf that are sensi-

tive to the loss function at the decision time. After prop-

agation, these Gaussian components will be located near

the center of support of the loss function at the decision

time. Initially the weights of these components are set

to zero, and they will be updated in the propagation

step, using the method in Section 3, if any probability

density mass is moving in their direction. The weights

at the decision time will give their relative contributions

in computing the expected loss with respect to the entire

pdf.

An algorithm, called the Progressive Selection of

Gaussian Components (PSGC), that bears similarity to

the simulated annealing and the progressive correction

used in particle filters [21], is proposed in selecting the

initial Gaussian components sensitive to the loss func-

tion. The means of the new Gaussian components will

be sampled from a proposed distribution, pSmp(t0,x0),
which is recursively constructed to be sensitive to the

contextual loss function. The support of the proposal

distribution or sampling pdf is gradually mapped into

a region that covers the support of the loss function at

decision time.

The main idea in constructing the sampling pdf is

as follows: initially set the sampling pdf equal to the

uncertain initial condition in (1), select the means and

covariances of a set of Gaussian components based on

this distribution, propagate each one of them using the

time update equations in the Extended Kalman Filter,

Eqs. (10)—(11), until the decision time is reached, and

based on the contributions to the expected loss find their

corresponding weights. The new sampling pdf is just the

weighted sum of the of the initially selected Gaussian

components. The sampling process is repeated until all

the Gaussian components are located in the support

region of the loss function at the decision time. The

remainder of the section details the derivation of this

procedure.

Let initially the sample pdf, pSmp(t0,x0), to be equal
to the initial uncertainty given by p(t0,x0), which is
modeled using a Gaussian sum as in (8). Compute the

mean and the variance of the sample pdf:

¹0 = E[x0] =
Z
x0pSmp(t0,x0)dx0 (19)

P0 = E[(x0¡¹0)(x0¡¹0)T]

=

Z
(x0¡¹0)(x0¡¹0)TpSmp(t0,x0)dx0: (20)
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For the first iteration the above two moments are
computed as follows:

¹0 =
NX
i=1

wi0¹
i
0 (21)

P0 =
NX
i=1

wi0[P
i
0 + (¹

i
0¡¹0)(¹i0¡¹0)T]: (22)

Assume that we want to add another M new Gaus-
sian components to the initial pdf with zero weights and
sensitive to the loss function. We sample the means of
these Gaussian components from the proposal distribu-
tion such that their equally weighted sum gives the mean
in (21).

¹i » pSmp(t0,x0) for i= 1 : : :M ¡ 1 (23)

¹M =M¹0¡
M¡1X
i=1

¹i: (24)

The default covariance of the Gaussian components
is D. We want to find the new covariance D¤ such
that the covariance of the new Gaussian components
matches the covariance of the sample pdf, P0. Let
D¤ = °D. Thus we want to find ° such that we minimize
the following expression:

J° = Tr

"
P0¡

1

M

MX
i=1

(°D+(¹i¡¹0)(¹i¡¹0)T)
#
(25)

° =
1

Tr[D]
Tr

"
P0¡

1

M

MX
i=1

(¹i¡¹0)(¹i¡¹0)T
#
:

(26)

Only solutions ° > 0 are accepted. Otherwise we re-
peat the sampling of the means, starting with (23). Once
we have the first two moments of the new Gaussian
components, we propagate them using the time update
equations in the Extended Kalman Filter, Eqs. (10)—
(11), until we reach the decision time. Let ¹id and P

i
d be

their means and covariances at the decision time, t= td.
The Gaussian components will then be weighted based
on their contribution to the expected loss. A larger con-
tribution means a more sensitive component to the loss
function, thus a larger weight.
To be able to compute the weights of the Gaus-

sian components, make sure that all of them are fairly
weighted, we are not running into numerical problems
and also create an indicator to mark the end of the algo-
rithm, we compute an inflation coefficient for the loss
function. Let §¤L = ®§L be the inflated covariance of
the loss function.
The inflation coefficient ® is found such that the

expected loss computed using the most distant Gaussian
component from the loss function is maximized. Let the
mean and the covariance of the most distant component
be denoted by ¹maxd and Pmaxd respectively.

Jmax =

Z
N (xd;¹L,®§L)N (xd;¹maxd ,Pmaxd )dxd

=N (¹L;¹maxd ,®§L+P
max
d ): (27)

An equivalent way to seek ® is by minimizing the

negative logarithm of the above expectation.

Jmin = log[det(®§L+P
max
d )]

+ (¹L¡¹maxd )T(®§L+P
max
d )¡1(¹L¡¹maxd )

(28)

Let us denote K= ®§L+P
max
d and U= (¹L¡¹maxd )

¢ (¹L¡¹maxd )T. We seek ® > 0 such that

@Jmin
@®

= 0 (29)

Tr[K¡1§L¡K¡1UK¡1§L] = 0: (30)

After a few mathematical manipulations, (30) can be

written in the following format:

Tr[K¡1§L(®I+P
max
d §¡1L ¡U§¡1L )K¡1§L] = 0:

(31)

Using the following notation, A=K¡1§L and B=
®I+Pmaxd §¡1L ¡U§¡1L , (31) can be written as Tr[ABA]
= 0. Observe that for ® > 0 the matrix A is symmetric
and positive definite. Hence, by applying Lemma 1 from

Appendix A to (31) we get,

Tr[®I+Pmaxd §¡1L ¡U§¡1L ] = 0: (32)

Therefore we accept solutions ® > 1 that satisfy the

following relation

®=
1

n
Tr[(U¡Pmaxd )§¡1L ]: (33)

For ®· 1 we stop the algorithm, because all the
Gaussian components, including the most distant one,

are located near the center of support of the loss func-

tion. Otherwise, ® is used to compute the inflated co-

variance §¤L = ®§L, and the weights of the Gaussian
components are obtained based on their approximation

to the loss function by solving the following optimiza-

tion problem:

w= argmin
w

1

2

Z Ã
N (xd;¹L,§¤

L)¡
MX
i=1

wiN (xd;¹id,Pid)
!2

dxd:

(34)

The optimization in (34) is equivalent to solving the

following quadratic programming problem:

w= argmin
w

1
2
wTMw¡wTN

subject to 1TM£1w= 1

w¸ 0M£1

(35)
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where w 2 RM£1 is the vector of weights and the entries
of M 2RM£M and N 2 RM£1 are given by:

mij =Nf¹jd;¹id,Pid+Pjdg (36)

ni =Nf¹L;¹id,Pid +§¤Lg: (37)

Given the weights found in (35), the new pdf used

to sample the new means is given by,

pSmp(t0,x0) =
MX
i=1

wiN (x0;¹i,¯D¤) (38)

where ¯ · 1 is a coefficient that controls the decrease of
the initial variance. If ® has decreased from the previous

iteration this means that the Gaussian components are

getting closer to the loss function and therefore we can

decrease the variance of the initial distribution to finely

tune the position of the Gaussian components, otherwise

¯ = 1. The process is repeated starting with (19), only

this time the first two moments in Eqs. (21)—(22), are

computed using the M components that construct the

sample pdf in (38):

¹0 =
MX
i=1

wi¹i (39)

P0 =
MX
i=1

wi[¯D¤+(¹i¡¹0)(¹i¡¹0)T]: (40)

If ® < 1 or the maximum number of time steps has

been reached, then the algorithm is stopped and the new

initial Gaussian mixture is obtained as follows:

pNEW(t0,x0) = p(t0,x0) +
MX
j=1

0£N (x0;¹j ,¯D¤)

=

NX
i=1

wi0N (x0;¹j0,Pi0) +
MX
j=1

0£N (x0;¹j ,¯D¤):

(41)

The entire algorithm to select the Gaussian compo-

nents is presented in Table I and graphical illustrations

are presented in Fig. 2. In the case of multiple loss func-

tions, the algorithm is run once for each one of the loss

functions, creating sets of initial Gaussian components

sensitive to their loss function.

While not the scope of this paper, the above method

can also be applied when measurements are available

between the current time and the decision time. The

PSGC algorithm will be applied every time a measure-

ment has been assimilated and the a posteriori pdf has

been found. The drawback of this procedure is that the

number of Gaussian components will increase linearly

with the number of measurements. Instead of adding

new Gaussian components, a better way to deal with

this situation is to allocate from the total of N Gaussian

components, M which are designated to be sensitive to

the loss function and the restM ¡N to capture the dom-
inant evolution of the pdf.

The Decision-Centric Density Forecasting is ob-
tained by running first the PSGC algorithm, derived in
this section, to supplement the initial uncertainty with
M new Gaussian components sensitive to the loss func-
tion. The new initial Gaussian mixture obtained, (41),
is then propagated using the Adaptive Gaussian Sum
algorithm presented in Section 3. The following section
presents the application of the Decision-Centric Den-
sity Forecasting method to a toxic cloud transported by
wind and a low dimensional numerical example where
a number of performance measures are computed.

ALGORITHM 1 Progressive Selection of Gaussian Com-
ponents
Require: td–decision time

p(t0,x0) =
PN
i=1w

i
0N (x0;¹j0,Pi0)–initial probability

density function
M–number of extra Gaussian components
D–default Gaussian component covariance
wtol–add only Gaussian components with weights
greater than this threshold

L(xd) =Nfxd;¹L,§Lg–loss function
maxiter–maximum number of iterations

1: pSmp(t0,x0) = p(t0,x0), ®=1, ° =¡1
2: while (® > 1) & maxiter do
3: The mean and the covariance of the sample pdf,

if first iteration (21)—(22), otherwise
(39)—(40)

¹0 = E[x0] =
R
x0pSmp(t0,x0)dx0

P0 = E[(x0¡¹0)(x0¡¹0)T]
=
R
(x0¡¹0)(x0¡¹0)TpSmp(t0,x0)dx0

4: while (° < 0) do
5: Get the means of the Gaussian components

Draw ¹i » pSmp(t0,x0) for i= 1 : : :M ¡ 1
Set ¹M =M¹0¡

PM¡1
i=1 ¹

i

6: ° =
1

Tr[D]
Tr

·
P0¡

1

M

PM
i=1(¹

i¡¹0)(¹i¡¹0)Ţ

7: end while
8: Get the covariance of the Gaussian components

Pi0 =D
¤ = °D

9: Propagate the moments from t= t0 to t= td
_¹it = f(t,¹

i
t)

_Pit =A
i
tP
i
t+P

i
t(A

i
t)
T+Q

10: Get the most distant component by computing
the Mahanalobis distance

di = (¹L¡¹id)T(Pid +§L)¡1(¹L¡¹id)
¹maxd ,Pmaxd = argmax(di)

11: Compute optimal ® and the inflated matrix §¤L

®=
1

n
Tr[((¹maxd ¡¹L)(¹maxd ¡¹L)T¡Pmaxd )§¡1L ]

12: if ® < 1 then ®= 1 end if
§¤L = ®§L

13: Elements of M 2RM£M and N 2RM£1
mij =Nf¹jd;¹id,Pid +Pjdg
ni =Nf¹L;¹id,Pid+§¤Lg

14: Compute the weights
w= argminw

1
2
wTMw¡wTN

subject to 1TM£1w= 1 and w¸ 0M£1
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Fig. 2. Illustration for the PSGC algorithm. (a) Steps 1—8. (b) Steps 9—19. (c) Steps 11—12. (d) Steps 13—14. (e) Steps 15—16.

(f) Goto Step 3 if ¾ > 1 and maximum number of iterations not reached.

15: if ® is getting smaller then choose ¯ < 1
else ¯ = 1 end if

16: Set pSmp(t0,x0) =
PM
j=1w

jNfx0;¹j ,¯D¤g
17: end while
18: Set pNEW(t0,x0) = p(t0,x0)+

PM,wj¸wtol
j=1 0

£Nfx0;¹j ,¯D¤g
19: return pNEW(t0,x0)

5. NUMERICAL RESULTS

Chemical, Biological, Radiological, and Nuclear

(CBRN) incidents are rare events but very consequen-

tial, which mandates extensive research and operational

efforts in mitigating their outcomes. Many puff dis-

persion models, such as SCIPUFF [33] and RIMPUFF

[22], try to model the atmospheric transport and diffu-

sion of toxic plumes. Similarly, BIGFLOW [1] can be

used to analyze the contaminant transport problem in the

nonlinear porous media. While inherently stochastic and

highly nonlinear, these mathematical models are able

to capture just a part of the dynamics of the real phe-

nomenon and the forward integration yields an uncer-

tain prediction. The decision maker takes actions based

on the expected loss computed using both the predicted

uncertainty and the loss function, which here maps a

region of interest in the state space into a threat level,

such as the population density in a town. Thus the abil-

ity to propagate the uncertainty and errors throughout

the dynamic system is of great importance. As men-

tioned previously, the present method can be also ap-
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Fig. 3. (a) Chemical release scenario. (b) Evolution of number of people exposed.

plied for nonlinear filtering and smoothing problem

which are relevant for source determination (localiza-

tion and characterization) in the case of covert releases

[3, 6, 34].

5.1. Example 1

To motivate the concept of incorporating contextual

information into the uncertainty propagation algorithm,

we consider the following noise driven nonlinear dy-

namic system that simulates the advection and the dis-

persion of a chemical material released from an uncer-

tain location. A similar system has been previously used

in [26, 34].

The instantaneous amount of material released is

represented using a Gaussian-shaped puff, states of

which evolve using the following equations, which de-

scribe a wind pattern as shown in Fig. 3(a).

_x(t) =¡asin(by(t)) +w1(t)
_y(t) =¡acos(by(t))+w2(t)
_s(t) = a

(42)

where (x,y) is the position of the center of the puff, and

the downwind distance from the source s(tk) = sk is used

to compute the puff radius at time t= tk,

¾k = pys
qy
k : (43)

Due to the simplicity of the model and the lack of

knowledge about the initial conditions, release location

in (44), the model forecast tends to become less accurate

for longer simulations.

p(t0,x(t0),y(t0))

=N ([x,y]T; [40,31]T,diagf[1,9]2g)
s(t0) = 0:

(44)

The puff radius depends on meteorological condi-
tions specified by the Karlsruhe-Jülich diffusion coef-
ficients [22] which are set to py = 0:466, qy = 0:866.

The wind speed is considered to be a= 10 mph and the
variable b depends on the boundaries of the domain and
is set here to ¼=50. The process noise, [w1(t),w2(t)]T,
is a vector whose components are independent Gaus-
sian white noise processes induced in the process model
due to the uncertainty in the wind field. The auto-
correlation function of the process noise is given by
Q= 2I2£2±(t¡ ¿).
The concentration at each grid point, at time t= tk,

is computed using the following relation,

Ck(xg,yg) =
M

2¼¾2k
exp

Ã
¡ (xk ¡ xg)

2 + (yk ¡ yg)2
2¾2k

!
(45)

where xk = x(tk), yk = y(tk), and the instantaneous mass
released is M = 10 kg.
These equations capture the main characteristics of

puff-based dispersion models for a particular wind field.
The weights of different Gaussian components have
been updated every ¢t= 0:25 hr using the error in the
FPKE. The impulse chemical release is done in a region
of 50£ 50 sqmi and the total simulation time is 3.5 hrs.
The source location and its uncertainty as well as the
decision region of interest, here the populated area with
10,000 residents, represented with a Gaussian function,
D(x,y) in (46), are shown in Fig. 3(a).

D(x,y) = 10,000£N ([x,y]T; [15,5]T,diagf[10,5]2g):
(46)

First, we propagate the uncertainty using the first-

order Taylor expansion. We will call this method Classic

Uncertainty Propagation. To evaluate the effect of the

uncertainty propagation in the process of decision mak-

ing, we compute the probability of the chemical concen-

tration exceeding a critical value, ct = 0:0001, which is

assumed to be harmful. The decision maker may de-

cide to evacuate or not the populated area, based on

the evolution of this probability or hazard map and the

number of people placed at risk due to exposure above

A DECISION-CENTRIC FRAMEWORK FOR DENSITY FORECASTING 81



Fig. 4. Hazard maps: Probability evolution of chemical concentrations exceeding the critical value. (a) Classic uncertainty propagation after

1 hr. (b) Classic uncertainty propagation after 2 hrs. (c) Classic uncertainty propagation after 3 hrs. (d) Reference after 1 hr (Monte Carlo

simulation). (e) Reference after 2 hrs (Monte Carlo simulation). (f) Reference after 3 hrs (Monte Carlo simulation). (g) Decision-centric

uncertainty propagation after 1 hr. (h) Decision-centric uncertainty propagation after 2 hrs. (i) Decision-centric uncertainty propagation after

3 hrs.

safe concentration thresholds. Fig. 4(a), (b), (c) shows

the probability evolution of the chemical concentration

exceeding the consequential value for the Classic Un-

certainty Propagation.

As reference, we use a Monte Carlo simulation,

using 5,000 samples to evaluate as close as possible

the probability of consequential concentrations. The

evolution of the probability is presented in Fig. 4(d), (e),

(f). We observe that in reality, consequential chemical

concentrations are well into the populated area after

2 hrs. We refer to this method as Reference.

We apply the method presented in this paper to gen-

erate at most 5 new Gaussian components to be added

to the initial condition. Their means and variances are

returned by the PSGC algorithm, Algorithm 1. The ini-

tial weights of the new Gaussian components have been

set to zero. The default value for the ¯ coefficient is

0:9 and Gaussian components are included only if their

weights are greater than wtol = 10
¡3. The label used for

this method is Decision-Centric Uncertainty Propaga-

tion and its corresponding hazard map is presented in

Fig. 4(g), (h), (i).

By accounting for the populated region, we are able

to track the probability that consequential chemical con-

centrations are reaching that region. The expected num-

ber of people exposed to critical concentrations at dif-
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ferent times are presented in Fig. 3(b) and is computed

using (47). The classic uncertainty propagation is un-

derestimating the magnitude of the situation, misguid-

ing the decision maker to make a consequential decision

such as not evacuating the region.

Ne =

Z
D(x,y)P(Ck(x,y)¸ ct)dxdy: (47)

Our method, while still using the same principles of
first-order Taylor expansion, is able to capture the prob-
ability density mass in the region of interest by adding
Gaussian components that are sensitive to this area and
to estimate the expected number of people exposed in
the same order of magnitude as the Reference.
While this example presents a particular wind pat-

tern, the method can also be applied in more realistic
scenarios using the Lagrangian puff atmospheric dis-
persion model RIMPUFF [22] in connection with any
wind forecasting module such as WRF or MM5 [11].
The next example evaluates the performance of the

decision centric forecasting method against a number of
performance measures.

5.2. Example 2

To better illustrate the steps of the proposed method,
as well as to evaluate its performance against a number
of performance measures, we also consider the follow-
ing low dimensional continuous-time dynamic system
with uncertain initial condition given by:

_x= sin(x) +¡ (t) where Q = 1

p(t0,x0) =N (x0;¡0:3,0:32):
(48)

The noise free dynamic system in (48) is of particu-
lar interest since it exhibits chaotic behavior caused by
multiple equilibrium states. The state space region of
interest is depicted by the following loss function, and
the time of decision is at td = 8 sec.

L(xd) =N
³
xd;
¼

2
,0:12

´
: (49)

First we compute an accurate numerical solution
based on the discretization of the FPKE, and this will
stand as the reference probability density function. The
performance measures for this method will be labeled
as REF. The evolution of the pdf using this method can
be seen in Fig. 5(a).
Three other approximations for the pdf are pro-

vided including the method presented in this paper. The
first approximation propagates the initial uncertainty us-
ing the Extended Kalman Filter time update equations,
Eqs. (10)—(11), labeled later as EKF. The evolution of
the pdf for this method is presented in Fig. 5(b).
For the next approximation method, we add 5 Gaus-

sian components to the initial uncertainty, creating a
Gaussian mixture with 6 components. The means of the
new components are just the result of back propagation
(from td = 8 sec to t0 = 0 sec) of 5 equidistant samples
taken in the 3 sigma bound of the loss function support.
The variance of the new components is set to 10¡10 and
their initial weights are set to zero. The label used for

TABLE 1

Performance Measures–500 Monte Carlo Runs

L̂d R̂err ISD WISD

REF 0.0332 N/A N/A N/A

EKF 4.93E-09 1.0000 0.1840 0.0015

GS BCK 0.0001 0.9968 0.0536 0.0015

GS DEC (mean) 0.0256 0.2300 0.0470 0.0004

GS DEC: Percentile Table–500 Observations

Percent L̂d R̂err ISD WISD

0.0% 0.0010 0.0151 0.0368 0.0002

5.0% 0.0142 0.0230 0.0378 0.0003

10.0% 0.0177 0.0271 0.0380 0.0003

25.0% 0.0229 0.0566 0.0387 0.0003

50.0% 0.0257 0.2270 0.0491 0.0003

75.0% 0.0313 0.3090 0.0514 0.0004

90.0% 0.0323 0.4670 0.0574 0.0006

95.0% 0.0324 0.5710 0.0601 0.0007

100.0% 0.0327 0.9700 0.0705 0.0014

this method is GS BCK and the evolution of the pdf
is shown in Fig. 5(c). While all the means of the new
Gaussian components are positioned in the loss func-
tion support region, their variances get large and the
probability density mass in that region is difficult to be
visualized.
We apply the method presented in this paper to

generate at most 5 new Gaussian components to be
added to the initial condition. Their means and variances
are returned by the progressive selection algorithm,
Algorithm 1. The initial weights of the new Gaussian
components have been set to zero. The default value
for the ¯ coefficient is 0.9 and Gaussian components
are included only if their weights are greater than wtol =
10¡3. The label used for this method is GS DEC and its
corresponding pdf is presented in Fig. 5(d).
The evolution the Gaussian components for the

last two methods is also achieved using the Extended
Kalman Filter time update equations, but it is interrupted
every ¢t= 0:5 sec to adjust the weights of different
Gaussian components using the optimization in (14).
The following performance measures have been

computed for the methods used in the experiment:

L̂d =

Z
L(x)p̂(td,xd)dxd (50)

R̂err =
1

Ld
jLd ¡ L̂dj (51)

ISD =

Z
jp(td,xd)¡ p̂(td,xd)j2dxd (52)

WISD =

Z
L(x)jp(td,xd)¡ p̂(td,xd)j2dxd: (53)

In Fig. 5(e) the forecast pdf is plotted at time td
for all the methods, for a particular Monte Carlo run.
Our method, GS DEC, is able to better estimate the
probability density mass in the region of interest.

In Table I, we present the performance measures

after 500 Monte Carlo runs. The expected loss given
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Fig. 5. The evolution of the forecast pdf and the sampling pdf. (a) REF: Numerical approximation FPKE. (b) EKF: first order Taylor

expansion approximation. (c) GS BCK: back propagated means. (d) GS DEC: progressive selection of Gaussian components. (e) Probability

density function at fd = 8 sec. (f) The evolution of the pdf, psmp(t0,x0), used to sample the means of the Gaussian components.

by the GS DEC method is consistently better over all

the Monte Carlo runs than the EKF and the GS BCK

method. We are also able to consistently give an overall

better approximation to the pdf and in the region of

interest than the EKF method, which justifies the use

of this method. Compared with the GS BCK we do a

better job on average in approximating the pdf which

suggests that there is a trade off in selecting the Gaus-

sian components regarding their means and variances.

In Fig. 5(f) it is plotted the evolution of the pdf,

pSmp(t0,x0), used to sample the means of the new Gaus-
sian components for a particular Monte Carlo run. The

pdf used in the first iteration is our initial uncertainty

and we see how it converges, as the number of iterations

increases, to a particular region in the state space that is

sensitive to the loss function at the decision time.

6. CONCLUSIONS AND FUTURE WORK

A decision-centric view to create an interaction level

between the decision maker and the density forecasting

module has been designed, such that we can incorporate

contextual information held by the decision maker into

the uncertainty propagation process to better approxi-

mate the probability density function and the expected

loss value.

The Progressive Selection of Gaussian Components

algorithm is run once at the beginning of the simulation
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to supplement the initial uncertainty with new Gaussian

components that are sensitive to the loss function at the

decision time. The weights of all the Gaussian compo-

nents are then updated during the propagation based on

the error in the Fokker-Planck-Kolmogorov Equation.

This way we obtain not only a better approximation of

the probability density function in the region of interest

but also a better approximation overall. The cost of this

overall improvement is an increase in the number of

Gaussian components. The principal benefit is not the

modest increase in accuracy overall, but the significantly

enhanced accuracy within the decision maker’s region

of interest.

Although the novel method in this paper is presented

only in the pure forecast context, it is equally relevant

in solving nonlinear filtering problems when measure-

ments are available. The implementation of the method

in stochastic filtering context is briefly discussed in the

paper, and its performance evaluation on numerical ex-

amples is set as future work.

APPENDIX

LEMMA 1 If Tr[ABA] = 0 and A is symmetric and
positive definite then Tr[B] = 0.

PROOF Let A=VSVT be a singular value decompo-
sition of matrix A, where V is a unitary matrix and S
is a diagonal matrix. Our trace can now be written as

Tr[ABA] = Tr[VSVTBVSVT] = Tr[S2B].
If Tr[S2B] = 0 then S2B is a commutator. Thus there

is X and Y such that S2B=XY¡YX. But B= S¡2XY¡
S¡2YX=X¤Y¡YX¤, where X¤ = S¡2X. Therefore B is
also a commutator, hence Tr[B] = 0.
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Feature-Aided Tracking of
Ground Vehicles using Passive
Acoustic Sensor Arrays

VISHAL CHOLAPADI RAVINDRA

YAAKOV BAR-SHALOM

THYAGARAJU DAMARLA

Tracking of a moving ground target using acoustic signals ob-
tained from a passive sensor network is a difficult problem as the
signals are contaminated by wind noise and are hampered by road
conditions, terrain and multipath, etc., and are not deterministic.
Multiple target tracking becomes even more challenging, especially
when some of the vehicles are light (e.g., wheeled) and some are
heavy (e.g., heavy wheeled vehicles like trucks, tracked vehicles like
tanks, etc.). In such cases the stronger acoustic signals from the
heavy vehicles can mask those from the light vehicles, leading to
poor detection of such targets. The full position estimates of emit-
ters (targets), obtained following the association of the DoA angle
estimates from multiple sensor arrays at each time scan, are used
for target tracking. However, because of the particular challenges
encountered in multiple ground vehicle scenarios, this association
using kinematic (DoA angle) measurements only is not always reli-
able and can lead to lost as well as false tracks.
In this paper we propose a new feature-augmented static associ-

ation algorithm where feature augmented DoA angle measurements
from multiple sensors are associated to localize targets and obtain
composite measurements (position estimates) using a static multidi-
mensional assignment (MDA) framework. We present a novel DoA
detection scheme followed by a feature extraction technique de-
signed from and for real data. Dynamic S-D and feature-aided S-D
(multidimensional) assignment algorithms are presented to assign
composite measurements and feature-augmented composite mea-
surements, respectively, to tracks. The techniques are developed
based on real data sets and tested on real data based on a field
experiment.
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1. INTRODUCTION

Ground vehicle tracking using acoustic data ob-

tained from passive sensor networks is a very challeng-

ing problem as the signals are contaminated by wind

noise, and are hampered by road conditions, terrain,

multipath, etc., and are not deterministic. Multiple ve-

hicle tracking becomes even more challenging, espe-

cially when some of the vehicles are light vehicles, some

are heavy wheeled vehicles and some are tracked like

tanks, and are closely spaced. Passive acoustic sensors

are gaining in popularity because of their low cost, ease

of deployment, and the fact that they can be deployed

on the ground. As passive sensors do not emit their

own signals, unlike active sensors, there is no danger

of being detected. Passive acoustic sensor networks are

being used in battlefield monitoring as well as in civilian

surveillance applications.

In single target scenarios with active sensors, kine-

matic measurements (such as range, bearing, etc.) are

obtained which can be used to estimate the trajectory

of targets [2]. When a network of passive sensors is

used, however, the range of a target can be obtained

only after associating the direction of arrival (DoA, or

line of sight–LoS) angle estimates obtained by at least

three sensors. This is because ghosting or false intersec-

tions occur with just two sensors with multiple targets

in the same plane. Hence, in order to eliminate or re-

duce ghosting one has to use DoAs from at least three

sensors (see [1, Sec. 8.8.2]). This makes the problem

computationally expensive for a large number of mea-

surements. There is added difficulty in data association

when targets stay close together over an extended pe-

riod of time (as acoustic signals from some targets can

fade and then re-appear or can be masked by stronger

signals from other targets), because one has to associate

the DoA angle estimates from the same target to obtain
its position.

Feature-aided tracking (FAT) is a rapidly developing

research area [15, 16, 19, 33], as various FAT techniques

exploit certain properties of the received signals at the

sensor level to augment the kinematic measurements to

alleviate the difficulties encountered in data association

and tracking using kinematic measurements only. For

scenarios such as the one considered in the present pa-

per, traditional data association and target tracking al-

gorithms can be enhanced by integrating features with

the kinematic data. Typical features are estimated tar-

get dimensions, radar cross-section, signature data and

received signal properties among others. Features have

been typically used to enhance target identification, i.e.,

classification, discrimination or recognition [7] and to

enhance data or track association [1, 15].

Classification aided tracking is presented in [15, 16]

where it is offered as an alternative to the traditional ap-

proach (with the classifier being treated separately from

the tracker). However, a unique mathematical model is

needed to be constructed for each target type in order
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to make such an algorithm robust. In [8] a multilevel

feature-based association algorithm to simultaneously

track and identify targets is presented, where features

extracted from high range resolution (HRR) profiles are

correlated with target signatures for identification. The

simultaneous use of target classification information and

target kinematic measurements for target tracking using

a multidimensional assignment framework is presented

in [4]. Another paper [28] studies the combining of

identification and tracking, as each task can be enhanced

by fusing it with the other; however, these methods re-

quire the availability of target signatures beforehand.

In [22] kinematic measurements from ground moving

target indicator (GMTI) and local motion features from

HRR are combined in a probabilistic logic based tracker

for dense multitarget scenarios. Features extracted from

HRR profiles, by approximating it with a Gaussian mix-

ture density using the expectation maximization (EM,

see [17]) algorithm, are combined with kinematic mea-

surements in a probabilistic framework for multiple tar-

get tracking in [33]. Another algorithm is presented in

[21] to combine GMTI measurements with features ex-

tracted in the wavelet domain from HRR profiles for

multitarget tracking in a joint probabilistic data associ-

ation (JPDA, see [1, 3]) context. Various feature-aided

classification and FAT techniques for single target as

well as multiple targets have been proposed and imple-

mented in the recent past for ground vehicle scenarios

using acoustic signals from sensor arrays. Classification

and identification of multiple targets using acoustic sig-

natures is presented in [12]. In this approach, bearing

tracking and data association is first performed. Once

the bearings of the targets are established, beamforming

is performed in each individual direction to extract har-

monic features, and a multi-variate Gaussian classifier is

applied on each feature set for identification and clas-

sification. Many target classification algorithms based

on acoustic signatures in the literature [20, 24, 25, 34]

assume that a single target is present and use statistical

parameters, namely the mean and variance of several

harmonics of the fundamental engine firing rate of each

target for identification and classification. When mul-

tiple targets are present within the surveillance region

of acoustic sensor arrays, the measurements no longer

exhibit the same statistics as they did for the individual

targets when alone, due to masking and interference.

Hence, the algorithms developed with a single target

assumption perform poorly [12]. In [11] an algorithm

to track multiple ground vehicles was presented based

on a template of the DoA angles for the leading target

or the target closest to the sensor array and hence the

loudest with the strongest signal to noise ratio (SNR).

This template was used to predict the DoA angles of

all the other targets. A distributed fusion algorithm is

developed in [38] that extracts features in time as well

as frequency domain from the acoustic signals and inte-

grates classification results from different sensor arrays

to increase the classification accuracy. Acoustic signa-

tures from air and ground vehicles produced from their

engine or propulsion mechanisms are used by neural

network based pattern recognition algorithms for classi-

fication in [35]. Target tracking is easier if the identities

of signal sources (targets) are known beforehand based

on classification techniques [12, 13]. However, this is

an unreasonable assumption in the scenario considered

in the present paper due to the various challenges dis-

cussed earlier. Moreover, the extraction of reliable sig-

natures is challenging because of the environment, in-

terference from other moving parts and nearby vehi-

cles and their nonstationarity. Further, a majority of the

classification techniques require building reliable math-

ematical models and templates as well as an extensive

library of training data for each target type.

In the present paper we present a feature-aided data

association technique that employs a feature-augmented
measurement set (as compared to just kinematic mea-

surements) in a static as well as dynamic assignment

framework for target localization and tracking. The ma-

jor challenge is the development of reliable models to

extract and characterize features. Section 2 describes

the generation of the PSD of the signals received by

the passive sensors using the minimum variance distor-

tionless response (MVDR, see [36]) spectral estimation

technique, and a novel DoA angle detection scheme

using the PSD. Section 3 describes a novel algorithm

used to extract features from the PSD. Section 4 in-

troduces and describes the target localization problem,

i.e., obtaining their full position estimates (compos-

ite measurements) using a multidimensional assignment

(MDA1) framework. The composite measurements are

assigned to tracks using both conventional as well as

feature-aided dynamic MDA algorithms in Section 5.

This multisensor information processing is configura-

tion III from [1, Sec. 8.2]. Section 6 describes the real

data scenario considered in the present paper and Sec-

tion 7 provides the target localization and tracking per-

formance comparison results between the conventional

and feature-aided MDA algorithms. The techniques are

developed based on real data sets and tested on real data

based on a field experiment.

2. PSD GENERATION AND DOA DETECTION

Circular 2-D passive sensor arrays made up of M

microphones arranged equidistantly, as shown in Fig. 1,

are employed in a passive sensor network on the ground

to listen to multiple ground vehicles. Assuming that

the vehicles are at a sufficiently large distance from

the sensor array, so that the received signals from the

targets can be approximated by a planar wavefront,

various wideband beamforming algorithms described in

1MDA is also known as S-D assignment. Note the use of S for the

dimension of the assignment (the number of lists).
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Fig. 1. Circular sensor array made up of 7 microphones.

[9, 10, 13, 23, 26, 27, 36, 37, 39, 41] can be used to

detect signal sources and estimate their DoA angles with

respect to the known sensor array positions.

At each sampling time, a fast Fourier transform

(FFT) is performed on the raw acoustic data from each

microphone in an array and a discrete frequency band

from f1 to fnb , where nb is the number of bins with

bin intervals of 1 Hz, is chosen for processing. The fre-

quency bins are chosen to conform to the typical fre-

quencies of the acoustic signals emitted by engines and

other moving vehicle parts. As a result, we have a wide-

band processing algorithm that uses data from nb fre-

quency bins. We denote the FFT data used for process-

ing at each sample by X(m,fb), where m 2 f1, : : : ,Mg
represents each microphone and fb 2 ff1, : : : ,fnbg indi-
cates the frequency bins. The minimum variance distor-

tionless response (MVDR) algorithm provides, for each

sensor array, an estimate of the power spectral density

(PSD) of the acoustic signals impinging the array at a

particular scan

P̂(μd,fb) =
1

a(fb)
0R̂(fb)¡1a(fb)

,

μd 2 fμ1, : : : ,μDg and fb 2 ff1, : : : ,fnbg (1)

and
a(fb) = fXg0fbV (2)

with fXgfb denoting the column of the matrix X corre-
sponding to column fb, V denoting the steering matrix

(of dimension M £ 360, representing all possible direc-
tions in degrees, see Ch. 2, [36]), and

R̂(fb) =
1

M

MX
m=1

X(m,fb)
¤X(m,fb) (3)

the estimated covariance matrix.

The DoA angles are estimated in the present paper
by a novel DoA angle detection scheme from the PSD
(illustrated in Fig. 2). DoA detection, at each angle μ,
can be performed by applying a thresholding algorithm
on the frequency averaged estimated power spectrum
corresponding to direction μ

P̂(μ) =
1

nb

nbX
b=1

P̂(μ,fb): (4)

Fig. 2 shows a snapshot of the estimated PSD at a
particular scan for a sensor array. Along each angle

μ the frequency averaged PSD denoted by P̂(μ) in
(4) is illustrated in Fig. 3(a). In [13], thresholding on

P̂(μ) was used to detect DoA angles, i.e., a DoA angle
detection was declared at μd if a peak was observed in

the spectrum P̂(μ) at μd. The first derivative dP̂(μ)=dμ is
shown in Fig. 3(b). A DoA detection is made at angle

μd if a positive peak is detected at μd in ¡d2P̂(μ)=dμ2
shown in Fig. 3(c). This is because a thresholding
algorithm based just on the frequency averaged power
spectrum is likely to miss peaks which can be detected
by a thresholding algorithm that is based on the second
derivative of the spectrum. In the example shown in
the figure, the DoA angles detected are 239±, 123±,
219± and 189±, arranged in decreasing order of their
corresponding amplitudes.
In a typical ground vehicle tracking scenario where

the targets are moving on road or off-road conditions,
there are a variety of extraneous factors which affect the
acoustic signal, such as road conditions, sound gener-
ated by moving parts, wind, etc. This results in numer-
ous false alarms, i.e., power detections in frequency-
angle bins not directly due to the engine or moving
parts of the targets. There are also missing DoA angle
estimates (missed detections) due to signal attenuation
or the possible masking of signals from lighter vehicles
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Fig. 2. Power spectral density as a function of DoA angles and frequency bins obtained from the MVDR algorithm for one sensor array at

a particular scan (data set [12]).

by those from the heavier vehicles, especially when the

targets are closely spaced. As a result, the quality of the
data association is low if just the DoA angle estimates
are used as measurements. Therefore, the power spec-

trum will be exploited to generate features which could
enhance the accuracy of data association. Motivated by

this, a new feature extraction procedure is described in
the next section.

3. FEATURE EXTRACTION

In feature-aided ground vehicle tracking applications

the peak amplitudes of the spectrum have been used
as features [12, 35] in the past; however, due to signal

attenuation and masking in the case of multiple vehicle
road convoys, they are not reliable as features. The

location and the spread of the peaks carry more useful
information about the signal source, compared to the

amplitude, because they are not as affected by signal
attenuation and because a vehicle causes frequency

peaks in similar locations of the spectrum across all
the sensor arrays at any given time.2 In this paper we

propose a statistical modeling of the power distribution
in the frequency bins along each detected DoA and use

a Gaussian mixture model (GMM) to extract feature
vectors instead of just scalar features. For the problem

considered only scalar features were used in [12, 13].

2Doppler has been neglected as it amounts to less than 1—3(assuming

5—10 m/s vehicle speed).

3.1. Fitting of a Gaussian Mixture Model (GMM)

The observed data d(x), i.e., the estimated power

spectrum in a particular direction x, is modeled as

d(x) = y(x;¯) + ²(x) (5)

where y(x;¯) is the fitted parametric model, ¯ is the pa-

rameter vector and ²(x) is the fitting error. The objective

is to estimate the parameters of the model such that the

error (noise) is minimized in a statistical sense.

The nonlinear least squares (NLLS) method is used

to estimate the parameters of a nonlinear model–a

GMM–used to fit the data. The Gaussian mixture

modeling, useful for peak finding applications, is given

by

y(x;¯) =

nX
l=1

®l exp

"
¡1
2

μ
x¡¹l
¾l

¶2#
(6)

where ¯ = [(®1,¹1,¾1), : : : , (®n,¹n,¾n)]0 is the parameter
vector of the GMM such that ®l is the weight (ampli-

tude), ¹l is the location and ¾l is the width of the peak

of component l, and n is the number of components of

the GMM. The NLLS method can be used to estimate

the parameters of the GMM which best fit the observed

data in (5). Fig. 4 illustrates the GMM fitting results

when applied to power spectrum data for certain DoA

detections obtained by three sensor arrays at a particular

time. A GMM with n= 4 components was used to ex-
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Fig. 3. The thresholding used to detect DoAs from a particular sensor array at a certain scan: (a) frequency averaged power spectrum as a

function of angles only, (b) the first derivative of the function in (a), and (c) the negative of the second derivative of the function in (a).

tract the location, width and the amplitude of the peaks

from the power spectrum data.3

From the example illustrated in Fig. 4, one can see

that there are at most n= 4 frequency peaks from each

of the S = 3 sensors, corresponding to three detected

DoA angles μ1, μ2 and μ3 (subscripted by the sensor

index). These peak locations form a matrix of dimension

n£ S (with the column elements listed in decreasing
amplitude order)

L=

0BBBB@
40 78 40

15 40 18

36 117 37

49 15 14

1CCCCA : (7)

3The selection of n is taken as a design parameter, a larger n was

found to lead to excessive uncertainty in the feature model for the

application considered.

The peak location matrix given in (7) for the three

sensor arrays in Fig. 4 shows that the peak locations are

not necessarily matched across the S sensors, i.e., a peak

location is not necessarily matched with the peak loca-

tions shown in the same row of the other S¡1 columns
(lists). For example, in (7), the first row is [40 78 40].

The location of the peak in the second column (at 78 Hz)

is not close to the location of the peaks in the first and

third columns (at 40 Hz). Hence, in order to properly

order peak locations across lists (sensors), each peak

location should be matched to other peak locations (in

the other lists) in such a way that each matched S-tuple

of peak locations consists of peak locations which are

close to each other. If a peak is located in such a way

that it cannot be matched to any other peaks in the re-

maining lists, it is matched to a dummy element which

indicates a missing peak detection. Each peak location

is matched to at most one corresponding peak location

from another list. This matching of peak locations is
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Fig. 4. Gaussian mixture model fitting to extract features: (a) feature data from sensor array 1 (DoA angle μ1, peak locations:

[40, 15, 36, 49]), (b) feature data from array 2 (DoA angle μ2, peak locations: [78,40,117,15]), and (c) feature data from array 3

(DoA angle μ3, peak locations: [40, 18, 37, 14]).

done by solving a generalized multidimensional assign-

ment (MDA)4 algorithm [1, 14, 29, 30, 31, 32] that is

described in Sections 4 and 5.

3.2. Frequency Peak Location Matching to Obtain
Feature Vectors

The peak location vectors (e.g., columns of the ma-

trix in (7)), estimated by the GMM algorithm, cor-

responding to each of the detected DoA angles are

©
p
1i1,:::,SiS

= [Á
p
1i1
,Á
p
2i2
, : : : ,Á

p
SiS
] where each peak location

vector Á
p
sis
corresponding to DoA angle μsis , s= 1, : : : ,S,

is of the form

Á
p
sis
= [® ¹1sis ¹2sis ¢ ¢ ¢¹nsis]0 (8)

where ¹lsis is the location of the lth component (peak)

of the GMM (6) used to fit P̂(μsis) and ® indicates the

4The assignment problem is called generalized assignment if dummies

are used.

dummy element5 that signifies the missed detection of

a peak.

The MDA algorithm is solved, for the purpose of

matching of peak locations across lists, to obtain the fol-

lowing S-tuple of feature vectors corresponding to the
S-tuple of detected DoA angle estimates μ1i1 ,μ2i2 , : : : ,μSiS

©1i1,:::,SiS = [Á1i1 ,Á2i2 , : : : ,ÁSiS ] (9)

where
Ásis = [® ¹

js1
sis

¹
js2
sis
¢ ¢ ¢¹jsnmsis ]0 (10)

where ¹
jsq
sis
2 f®,¹lsisg and q= 1, : : : ,nm. Each element

¹lsis from (8) appears exactly once in Ásis while ® ap-

pears nm¡ n times. It has to be noted that nm could vary
with each S-tuple of DoA angle estimates being consid-

ered, while n remains the same as it is a GMM fitting

design parameter and is fixed. This leads to “matched”

5Indexed by zero, and shown as the top row.
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feature vectors which is shown using the illustrative ex-
ample in (7) and (11). The example presented corre-

sponds to the same triplet (S = 3) of DoA angle esti-

mates μ1,μ2,μ3, which gives rise to the peaks illustrated

in Fig. 4. The triplet of peak location vectors of length
n= 4 are as shown in (7). The triplet of feature vectors,

each of length nm = 7, obtained after performing the

matching of peak locations as described above is

Lmatched =

0BBBBBBBBBBB@

40 40 40

15 15 14

36 ® 37

49 ® ®
® 78 ®
® 117 ®
® ® 18

1CCCCCCCCCCCA
: (11)

4. STATIC MDA PROBLEM: GENERATION OF FULL
POSITION ESTIMATES

One of the most important issues in multisensor-

multitarget tracking is data association [1]. Static data

association, i.e., measurement to measurement associ-

ation at each time scan is especially important in the

case of passive sensor networks, where each sensor ar-

ray obtains only DoA angle measurements at each scan.

At each scan, the DoA angle measurements from the

same target, from at least three sensor arrays (in order

to reduce ghosting, see [1, Sec. 8.8.2]), have to be asso-

ciated in order to obtain the full position estimate of its

location. Recently, a class of algorithms called multidi-

mensional assignment (MDA) algorithms have been de-

veloped to solve the data association problem using an

assignment approach [6, 14, 29, 30, 31, 32]. The present

paper uses the MDA approach to solving the data asso-

ciation problem. This approach, designated as Multisen-

sor Information Configuration III in [1], requires first a

static association of DoA angle measurements to DoA
angle measurements across sensor arrays at each time

k, resulting in full position estimates called “composite

measurements” (CM). If the DoA angle measurements

are augmented by features, the result will be feature-

augmented composite measurements. This is to be fol-

lowed by dynamic association of the CMs to tracks and
filtering which then yields target tracks.

4.1. Conventional-Cost Based MDA

For the static problem considered, at any given time

k, we are given S scans (lists) of measurements from S

passive sensors gathering data in a surveillance region.

Each list contains a certain number of detections, not

necessarily equal to the number of targets. The objec-

tive is to obtain the full position estimates of an un-

known number of targets using the S lists of DoA an-

gle measurements. The sensors obtain measurements at

discrete time samples,6 k = 1, : : : ,K, with a time period

of T s.

Each list consists of DoA angle measurements μsis ,

where is = 1,2, : : : ,ns. Each measurement either origi-

nated from a true target t or from some spurious source

of clutter (t= 0). If the measurement μsis is originated

from target t, it is modeled as

zsis = h(xt,xs)+wsis (12)

where xt is the true target position, xs is the (fixed)
sensor array position, h is the measurement function,

wsis »N (0,¾2sis) is the measurement noise and ¾sis rep-
resents the sensor error. If the measurement μsis is origi-

nated from clutter, it is modeled as uniformly distributed

within the field of view of the sensor array s, i.e.,

p(μsis j t= 0) =
1

Vs
(13)

where Vs is the volume of the field of view of the sensor

s. In addition, the probability of detection of a target

is PD.

The goal is to localize the targets by estimating

their positions at time k. A generalized likelihood ratio7

which uses estimated target positions instead of true

target positions (which are unavailable) for candidate

associations, is used to attach costs to each feasible

S-tuple of measurements (or candidate associations)

[1]. To account for missed detections that give rise to

incomplete S-tuples a dummy measurement is added
to each list which simplifies the notation for these

incomplete measurement-to-target associations caused

by missed detections. The MDA algorithm is then used

to globally minimize the cost in order to obtain feasible
associations.

The likelihood that an S-tuple of measurements Zr
(where r stands for the S-tuple index), originated from

target t, with position xt at some instant k is

¤(t) = p(Zr j t) =
SY
s=1

[1¡PDs]1¡±is [PDsp(μsis j xt)]±is ,

is 2 f0,1, : : : ,nsg (14)

where ±is is the measurement detection indicator func-

tion. The likelihood that the measurements Zr are all

spurious or unrelated to target t, i.e., (t= 0) is

¤(t= 0) = p(Zr j t= 0) =
SY
s=1

·
1

Vs

¸±is
: (15)

The cost of associating the S-tuple Zr to target t

is given by the negative log-likelihood ratio (NLLR),

where the likelihoods that make up the numerator and

the denominator are given in (14) and (15), respectively.

However, since xt in (14) is unknown, it will be replaced

6All the sensors are assumed synchronized with respect to time.
7An extensive treatment on the choice of a likelihood ratio as a cost

function can be found in [5].
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by its maximum likelihood estimate (MLE)

x̂t = argmaxxt
p(Zr j t) (16)

and the cost is

cr =¡ ln
¤̂(t)

¤(t= 0)
(17)

where

¤̂(t) =

SY
s=1

[1¡PDs]1¡±is [PDsp(μsis j x̂t)]±is : (18)

Using (12), (15) and (18) in (17), the cost of the

candidate association of the S-tuple of measurements

Zr to a target t is

cr =¡
SX
s=1

[1¡ ±is] ln(1¡PDs)+ ±is ln[PDsVsp(μsis j x̂t)]:

(19)

4.2. Feature-Aided MDA

In the feature-aided MDA problem, at time k, we are

given S lists of feature-augmented measurement vec-

tors instead of S lists consisting only of DoA angle

measurements. An S-tuple of DoA angle measurements

Zr can be augmented with an S-tuple of feature vec-

tors ©r = fÁ1i1 , : : : ,ÁSiSg, where Ásis denotes the feature
vector corresponding to a DoA angle measurement μsis ,

to form an S-tuple of feature-augmented measurement

vectors (denoted by boldface)

Zr = [Zr,©r]
0: (20)

The generalized likelihood that the feature-augment-

ed S-tuple Zr consists of feature-augmented measure-
ment vectors from a target t is8

¤̂(t) = p(Zr j t) = p([Zr,©r] j (x̂t, '̂t)) (21)

where x̂t is the MLE of the target position given in

(16) and '̂t is the estimated feature vector of target t.

Assuming that the DoA angle measurement errors and

the feature vectors are independent, we have

¤̂(t) = p(Zr j x̂t)p(©r j '̂t) = ¤̂K(t)¤̂Á(t) (22)

where ¤̂K(t) and ¤̂Á(t) represent the kinematic and

feature generalized likelihood functions, respectively.

Note that ¤̂K(t) is the same as the generalized likelihood

function given in (18).

The generalized likelihood that an S-tuple of feature-

vector measurements, ©r, corresponding to an S-tuple of

angle measurements Zr are from a target t with feature

estimate '̂t is given by

¤̂Á(t) = p(Á1i1 ,Á2i2 , : : : ,ÁSiS j '̂t) (23)

8The likelihood based on the augmented (kinematic and feature) mea-

surements is denoted by boldface (¤).

where Ásis is the feature vector corresponding to the

DoA angle measurement μsis from the sth list

Ásis = [¹
1
sis
,¹2sis , : : : ,¹

nr
sis
]0 (24)

where ¹lsis (l = 1, : : : ,nr) represents either a feature (de-

tected matched peak location) or a dummy (missed de-

tection of the peak in list s), as described in Section 3.2.9

Assuming independence between the measurement

errors across lists, (23) can be simplified

¤̂Á(t) =

SY
s=1

fp(Ásis j '̂t)g±is : (25)

Substituting (24) in (25), and assuming that the com-

ponents Ásis of the feature vector are uncorrelated, we

have

¤̂Á(t) =

SY
s=1

(
nrY
l=1

[1¡PDls]1¡±sl [PDlsp(¹lsis j '̂t)]±sl
)±is
(26)

where PDls is the (nonunity) probability of detection of

the features in list s, while ±sl is the detection indicator

function for the feature ¹lsis . The feature ¹
l
sis
is assumed

to be distributed as follows

p(¹lsis j '̂t) =N (¹lsis ; ¹̂l(t), (¾lsis)2), is 2 f1, : : : ,nsg
(27)

where

¹̂l(t) =

PS
s=1¹

l
sis
±slPS

s=1 ±sl

: (28)

The standard deviation ¾lsis of the feature ¹
l
sis
is obtained

from the GMM fitting in (6).

The likelihood that the S-tuple Zr consists of feature-
augmented measurement vectors which are all spurious

or are unrelated to a target t is

¤(t= 0) = p(Zr j t = 0) =
SY
s=1

fp(μsis j t= 0)p(Ásis j '(t) = 0)g±is

=

SY
s=1

8<:p(μsis j t= 0) ¢
"

nrY
l=1

p(¹lsis j '(t) = 0)
#±sl9=;

±is

:

(29)

Assuming that the angle and feature clutter measure-

ments are uniformly distributed, we have

¤(t= 0) =
SY
s=1

8<: 1

Vs

"
nrY
l=1

1

V
f
s

#±ls9=;
±is

(30)

where Vs and V
f
s are the surveillance volumes in angle

and frequency, respectively, of array s.

9The length of the feature vector nr varies for each candidate S-

tuple of feature-augmented measurement vectors, as explained in Sec-

tion 3.2. Additional notation is omitted for simplicity.
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The cost of assigning the S-tuple Zr is given by the
NLLR obtained from the likelihood functions (22) and

(30), and substitution from (18) and (26)

cr =¡ ln
¤̂(t)

¤(t= 0)
=¡ ln ¤̂K(t)¤̂Á(t)

¤(t= 0)
: (31)

This cost function can be simplified to the following

form

cr =¡
SX
s=1

[1¡ ±is ] ln(1¡PDs ) + ±is ln[PDsVsp(μsis j x̂t)]

+ ±is

(
nrX
l=1

(1¡ ±ls) ln(1¡PDls ) + ±
l
s ln[PDls

Vfs p(¹
l
sis
j '̂(t))]

)
:

(32)

The most likely set of S-tuples such that each feature-

augmented measurement vector in a list is assigned to

either other measurement vectors, or declared false, with

the constraint that each assigned S-tuple receives at most

only one measurement vector from each list, is obtained

by solving a global MDA optimization problem using

the cost function (32). The assignment problem for-

mulation can be found in [1, 14, 29, 30, 32]. Various

Lagrangian relaxation techniques have been developed

[14, 30, 31] to solve the MDA problem and the details

are discussed in the following section. The solution to

the MDA problem at each scan k results in a set of

assigned feature-augmented measurement vectors (with

at least 3 non-dummy DoA angles), and using trian-

gulation (see Ch. 8, [1]) on the assigned S-tuples of

DoA angle measurements the full position estimates (the

composite measurements) are obtained.

5. TARGET TRACKING WITH DYNAMIC
ASSIGNMENT

The static multidimensional assignment algorithm

described in Section 4 yields composite measurements

(CM) at each scan. The classical dynamic assignment

problem [1, 29], i.e., the assignment of CMs from the

current scan k or a window of scans up to scan k¡ S+1
to established tracks from the previous scan k¡ 1, can
be solved using an S-D10 dynamic assignment frame-

work. When the list of CMs at the current scan only is

considered, the 2-D11 dynamic assignment framework

is used. Solving a 2-D problem is computationally less

demanding than the case where S > 2, as it can be solved

optimally in polynomial time using a generalized auc-

tion algorithm [6, 18]. In a 2-D dynamic assignment

framework, each CM at scan k is to be assigned to either

an established track Tu(k¡ 1) from scan k¡ 1, where

10S denotes the number of scans in dynamic assignment, it has no

relation to the number of sensor arrays used in the static case.
11The 2-D dynamic assignment is a special case of the S-D sliding

window dynamic assignment algorithm where the size of the window

is 1, i.e., S = 2.

u 2 f1, : : : ,U(k¡ 1)g, or is used to start a new track if
assigned to u= 0 (a dummy), based on the global so-
lution of a 2-D generalized assignment algorithm using
a likelihood ratio-based cost function. However, the in-
formation about track evolution which can be gained by
using multiple scans of CMs, is lost. By using multiple
scans it is also possible to modify previous assignments
(excluding assignments from the scan at the tail of the
sliding window, which cannot be modified in the next
scan) which is not possible in 2-D dynamic assignment.
Using a multidimensional algorithm (S-D) rather than a
2-D algorithm may yield better tracking results. In S-D
dynamic assignment a sliding window of the latest S¡ 1
scans of CMs is to be assigned to a list of established
tracks. At scan k, a list of pre-existing tracks from scan
k¡ S+1, is to be assigned to CMs from the window
of scans with depth S¡ 1, i.e., measurements from scan
k¡ S+2 to the current scan k, using a likelihood ratio
based cost function. It is well known that when S ¸ 3,
the MDA is an NP-hard problem, i.e., the complexity of
an optimal algorithm increases exponentially with the
size (number of dimensions) of the problem, as a result
suboptimal algorithms with acceptable accuracy have to
be solved that have polynomial complexity. In [30] a 3-
D assignment problem was solved using a Lagrangian
relaxation technique that successively solves a series of
generalized 2-D assignment problems with the worst
case complexity of O(3in3) [30], where i is the number
of relaxation iterations and n is the number of reports in
each scan (or from each sensor in the case of static MDA
discussed in Section 4). However, when S ¸ 4 multiple
sets of constraints have to be relaxed. In [31] the con-
straints are relaxed one set at a time corresponding to
each list and the resulting S¡ 1-D assignment problem
is solved iteratively with a feasible solution to the orig-
inal S-D problem being reconstructed subsequently. In
the present paper the technique developed in [14] is used
where all the S-2 lists are relaxed simultaneously. The
problem then is a 2-D assignment problem and can be
solved optimally in polynomial time. The Lagrangian
multipliers associated with multiple constraint sets are
updated simultaneously for faster convergence [14]. The
computational complexity is O(i(S¡ 1)Cn3) where i is
the maximum number of iterations, C is the range of
the cost coefficient and n is the number of reports at
each scan.

5.1. Conventional-Cost Based S-D Dynamic
Assignment

The likelihood that the S¡ 1-tuple of CMs
zmk¡S+2(k¡ S+2), : : : ,zmk (k) is from track Tu(k¡ S+1),
where m 2 f0,1, : : : ,Mg and u 2 f1, : : : ,U(k¡ S+1)g is
given by

¤mk¡S+2,:::,mk ,u(k)

= p[zmk¡S+2 (k¡ S+2), : : : ,zmk (k) j Tu(k¡ S+1)]

=

kY
i=k¡S+2

(1¡PD)1¡±i ¢ [PD¤mi ,u(i)]±i (33)
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where

¤mi,u(i) = p[zmi(i) j Tu(k¡ S+1),fzmj (j)gi¡1j=k¡S+2]
(34)

is the likelihood if the CM zmi (i) is associated with

track Tu(k¡ S+1) continued with measurements

fzmj (j)gi¡1j=k¡S+2 [4]. The kinematic CM prediction errors

are assumed to be independent across lists, and zmi (i) is

the mith CM at scan i. The probability of detection and

the indicator function of measurement zmi(i) are PD and

±i, respectively, with the latter defined as

±i =

½
1 if mi > 0

0 if mi = 0
: (35)

The likelihood that the measurements forming the

S¡ 1-tuple zmk¡S+2(k¡ S+2), : : : ,zmk (k) are from none of
the established tracks (i.e., they are from false alarms)12

is

¤mk¡S+2,:::,mk ,0(k)

= p[zmk¡S+2(k¡ S+2), : : : ,zmk (k) j T0(k¡ S+1)]

=

kY
i=k¡S+2

·
1

V

¸±i
(36)

where a uniform distribution is assumed, with V being

the volume of the surveillance region.

The cost of assigning an S¡ 1-tuple, zmk¡S+2(k¡ S
+2), : : : ,zmk (k), of CMs to a track Tu(k¡ S+1) where
u 2 f0,1, : : : ,N(k¡ S+1)g is

cm,u,S =

8><>:
0 if u= 0

¡ ln
"
¤mk¡S+2,:::,mk ,u(k)

¤mk¡S+2,:::,mk ,0(k)

#
if u > 0

(37)

where the two likelihood functions are defined in (33)

and (36).

5.2. Feature-Aided S-D Dynamic Assignment

In the conventional-cost based S-D dynamic assign-

ment approach, only the kinematic CMs obtained by

the sensor network are used for target tracking and the

information contained in the feature vectors is lost. The

solution of the static MDA algorithm described in Sec-

tion 4 results in M(i) CMs, at scan i, that include the

feature vectors corresponding to the assigned DoA an-

gle measurements that give rise to each CM. A com-

posite feature vector −mi (i), where i is the scan index

i 2 fk¡ S+2, : : : ,kg, can be obtained from the S-tuple

of feature vectors corresponding to the S-tuple of as-

signed DoA angle measurements that give rise to zmi (i).

Appendix A describes the procedure to obtain a com-

posite feature vector.

12All the measurements from time k¡ S+2 deemed false by the as-
signment are used to initialize new tracks.

In feature-aided S-D dynamic assignment, a slid-

ing window of the latest S¡ 1 scans (lists) of feature-
augmented CM vectors, rather than just kinematic CMs,
is assigned to an established track list. At scan k, one

has a list of existing tracks at scan k¡ S+1. To this
list one assigns the feature-augmented CM vectors from

a window of scans with a window depth of S¡1, i.e.,
measurement vectors from scan k¡ S+2 to current scan
k, using a likelihood ratio based cost function. Each CM

zmi(i), at scan i 2 fk¡ S+2, : : : ,kg, is augmented by its
corresponding composite feature vector −mi (i) to form a

feature-augmented CM vector (using bold face notation)

zmi (i) = [zmi(i)
0 −mi (i)

0]0: (38)

The likelihood that the S¡ 1-tuple of feature-aug-
mented CM vectors zmk¡S+2 (k¡ S+2), : : : ,zmk (k) is from
track Tu(k¡ S+1), where m 2 f0,1, : : : ,Mg and u 2
f1, : : : ,U(k¡ S+1)g is given by (again using bold face
notations)

¤mk¡S+2,:::,mk ,u(k)

= p[zmk¡S+2 (k¡ S+2), : : : ,zmk (k) j Tu(k¡ S+1)]

=

kY
i=k¡S+2

(1¡PD)1¡±i ¢ [PD¤mi,u(i)]±i (39)

where

¤mi ,u(i) = p[zmi (i) j Tu(k¡ S+1),fzmj (j)gi¡1j=k¡S+2]
(40)

where PD and ±i are the probability of detection and

the indicator function, respectively, of zmi (i). Assuming

independence between the kinematic CM prediction er-

rors and their corresponding composite feature vectors,

we have using (38)

¤mi ,u(i)

= p[zmi (i) j Tu(k¡ S+1),fzmj (j)gi¡1j=k¡S+2]p[−mi ,u(i)]

= ¤mi ,u(i)p[−mi ,u(i)] (41)

where ¤mi,u(i) is the (kinematic) likelihood defined in

(34) and −mi,u(i) is the composite feature vector at scan

imatched to the features from track u whose distribution

is derived in Appendix A.

The likelihood that the feature-augmented CM vec-

tors forming the S¡ 1-tuple zmk¡S+2(k¡ S+2), : : : ,zmk (k)
are false alarms, assuming independence between the

kinematic measurement errors and the features as be-

fore, is

¤mk¡S+2,:::,mk ,0(k)

= p[zmk¡S+2 (k¡ S+2), : : : ,zmk (k) j T0(k¡ S+1)]

=

kY
i=k¡S+2

fp[zmi (i) j T0(k¡ S+1)]p[−mi (i) j T0(k¡ S+1)]g
±i :

(42)
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Assuming uniform distributions like before, we have

¤mk¡S+2,:::,mk ,0(k) =
kY

i=k¡S+2

½
1

V
p[−mi ,0(i)]

¾±i
(43)

where V is the volume of the surveillance region,

−mi ,0(i) represents the matched feature vector at scan

i, if its elements are from clutter, and its distribution is

given in Appendix A.

The cost of assigning an S¡ 1-tuple of feature-
augmented CM vectors zmk¡S+2(k¡ S+2), : : : ,zmk (k) to
a track Tu(k¡ S+1) where u 2 f0,1, : : : ,N(k¡ S+1)g
is

cm,u,S =

8><>:
0 if u= 0

¡ ln
"
¤mk¡S+2,:::,mk ,u(k)

¤mk¡S+2,:::,mk ,0(k)

#
if u > 0

(44)

where the two likelihood functions are defined in (39)

and (43).

5.3. Track Initiation

A one-point initialization technique [40] is used to

initialize tracks at the beginning of the scenario (i.e.,

k = 0),13 whereM(0) tracks are initialized at scan 0 from

fzm(0)gM(0)m=1 measurements. The initial state estimate

of each track is of the form x̂u(0 j 0) = [»m ´m
_»m _́

m]

where u is the track index. The velocity state compo-

nents _»m and _́
m are initialized at 0 m/s, as the mo-

tion direction of the target is assumed unknown. The

initial state estimate covariance of each track is of the

form

Pu(0 j 0) =
24 Rm 02£2

02£2
³vmax
2

´2
I2£2

35 (45)

where vmax is the assumed maximum target speed

and Rm is the measurement covariance matrix of the

2-dimensional Cartesian CM zm. As it is not readily

available, it is approximated by the Cramer-Rao lower

bound (CRLB) [2, 29, 32] corresponding to the like-

lihood function of the S-tuple of DoA angle measure-

ments that yielded it, and 0n£m and In£m are the all-zero
matrix and the identity matrix of dimension n£m, re-
spectively. The maximum target speed vmax is assumed

to be 9 m/s in the present paper.

An interacting multiple model (IMM) estimator with

two second-order linear kinematic models (white noise

acceleration, WNA) with two process noise levels is

used (see [2], Ch. 11). The one with the lower noise

level (with standard deviation 0:25 m/s2) is used to

model the uniform motion and the other one with stan-

13This is preferable to two-point initialization when, due to the small

sampling interval (1 s) the variance of the two-point velocity estimate

[1] is significantly larger than the maximum speed.

dard deviation 5 m/s2 for the maneuvers. The mode

transition probability matrix

¼ij =

·
0:95 0:05

0:05 0:95

¸
(46)

is used. A 5-sigma (° = 25) validation region (see

[1], Ch. 3) is used for gating, and in both 2-D and

S-D dynamic assignment, only measurements that fall

within the validation regions of tracks are candidates

for assignment. A probability of detection of 0.85 is

assumed for the CMs and 0.8 for the features used in

feature-aided dynamic assignment. The volume of the

entire surveillance region of the sensor network is as-

sumed to be 100,000 m2.

5.4. Track Confirmation and Deletion

After solving the S-D dynamic assignment problem

(Sections 5.1 and 5.2) at each scan, each assigned mea-

surement from scan k¡ S+2, i.e., the scan at the tail
of the sliding window, is used to update the existing

tracks, and the unassigned measurements are allowed

to form new candidate tracks. The unassigned measure-

ments from scans k¡ S+3 to k are retained as is in
the sliding window for the S-D assignment at the next

scan. Hence, they are given again a chance to be as-

signed to tracks. Candidate tracks are formed solely

for track initiation and they can be thought of as “sec-

ond class” members of the track list while the estab-

lished tracks can be thought of as “first class” mem-

bers. A candidate track is either confirmed as an up-

dated track or rejected, after a maximum of 5 scans,

using a Markov chain cascaded logic (2/2&2/3) (see

[1, Sec. 2.6.3]). A confirmed track is deleted if it is

not assigned any measurements in 3 consecutive scans.

Fig. 5 is a flowchart describing the S-D dynamic as-

signment based tracker.

6. REAL DATA SCENARIO

The algorithm developed above was exercised on

real data obtained from a field experiment conducted by

the U.S. Army Research Laboratory [12] at Aberdeen

Proving Ground, Maryland. A passive acoustic sensor

network was placed within a path that was traveled by

two targets, a heavy vehicle and a light vehicle. Fig. 6

shows the actual trajectories based on the instrumen-

tation that was installed in the two vehicles. However,

due to some alignment errors these could not be used as

ground truth for our evaluation. They will, however, be

used to compare the life of the tracks with the duration

of these trajectories.

All the acoustic sensor arrays used in the experiment

were circular arrays of microphones. The sampling rate

for each array was set at 1024 Hz, with a cutoff fre-

quency of 312 Hz and a gain of 100 selected for all

microphones in the array. The acoustic sensor arrays

that make up the passive sensor network were located

at known fixed positions xs, s= 1, : : : ,S, where S = 4 is
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Fig. 5. Flowchart describing the dynamic S-D assignment-based tracker.

the number of sensor arrays. Each sensor array has a

field of view of 360± and is made up of 7 equi-distant
microphones as shown in Fig. 1. DoA angle measure-

ments are estimated at each sampling time (1 s), from

the PSD of the acoustic signals received by each sen-

sor array, with an angular measurement error standard

deviation of 1±, as described in Section 2. A low-pass

spectrum of 1—120 Hz, divided into 120 bins of 1 Hz

each, is used by the MVDR algorithm to estimate the

PSD. The probability of detection of a DoA angle is

assumed to be 0.8, the probability of detection of the

features is assumed to be 0.8 and the surveillance region

volume in frequency is assumed to be Vfs = 120 Hz (the

width of the frequency spectrum).

7. RESULTS

Fig. 7 shows the tracking results obtained using

the 2-D dynamic assignment algorithm for a 2 target

scenario: one target (a heavy vehicle) traveling counter-

clockwise on an oval gravel path and the other target

(a light vehicle) on a southeast-northwest asphalt path.

The scenario starts at time 50 s and ends at time 185 s.14

Fig. 7(a) shows the tracks obtained when the

2-D dynamic assignment tracker uses the CMs obtained

from the conventional-cost based static (without fea-

14This is the time interval when there is a significant ambiguity due to

the interference between the two vehicles–the second target appears

shortly after time 50 s.
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Fig. 6. True trajectories along with the start and end times (in seconds) for each target.

tures) MDA algorithm described in Section 4.1. One

can see from comparing Fig. 7(a) with Fig. 6 that there

are two false tracks at the bottom of the oval path when

target 1 is turning. Track 2 is confirmed at scan 96 and

continues towards the north, incorrectly, between scans

120 and 126 after which it gets back on track (compare

with Fig. 6). In the case where the tracker uses CMs

obtained from the feature-aided static MDA algorithm

(Section 4.2), shown in Fig. 7(b), the tracker is able to

follow the maneuver of target 1 at the bottom of the

oval path better than the one in Fig. 7(a). Track 2 is

confirmed at scan 89 (i.e., 7 s earlier) and is not lost

until scan 117, after which it is reacquired at scan 125.

It can also be seen from both Figs. 7(a) and 7(b) that

track continuity is not as good at the bottom of the oval

track as when the target is closer to the sensors, as the

CMs obtained in that region are ill-conditioned because

the DoA angle measurements from all 4 arrays are very

closely spaced.

Fig. 8 shows the results obtained when the S-D

assignment tracker with S = 4, i.e., when 2 additional

lists of measurements are added. This improves over

the performance when S = 2, as well as when S = 3

(the latter not shown). For S > 4, there is no fur-

ther perceptible performance improvement. In the result

shown in Fig. 8(a), when the CMs obtained from the

conventional-cost based (without features) static MDA

algorithm are used, target 1 is lost at scan 119 and there

is a false track between scans 130—135. Target 1 is reac-

quired at scan 136 and continues till the end of the sce-

nario (scan 185), along the oval path. The tracker has

a false track between scans 83—89 and reacquires target

2 at scan 96 and keeps it until scan 127. In the result

shown in Fig. 8(b), one can see that while track 1 is lost

between scans 117—130, there are no false tracks like in

Fig. 8(a). Track 2 is confirmed at scan 86 (10 s sooner

than without features) and is not lost till it stops mov-

ing (130 s). The 4-D dynamic assignment based tracker

performs much better at the bottom of the oval track

when features are used to obtain CMs, when compared

to the case where features are not used to obtain CMs.

Fig. 9 shows the results obtained when the feature-

aided dynamic 2-D and feature-aided dynamic 4-D as-

signment based trackers are used. In the scenario shown

in Fig. 9(a), when the feature-aided dynamic 2-D tracker

is used, target 1 is lost at scan 120 (instead of 117 in

the dynamic assignment without features) and is reac-

quired at scan 128 (vs. 130). Track 2 is confirmed at

scan 86 and is not lost till target 2 stops moving. In the

results shown in Fig. 9(b), target 1 is lost between scans

120—128. Track 2 is confirmed at scan 86 and is not lost

till target 2 stops moving. From Fig. 9(a) it can be seen

that when the 2-D feature-aided tracker is used, target

1 is lost between scans 65—69; this loss is eliminated

when the 4-D feature aided tracker is used, as shown in

Fig. 9(b). While there is a clear benefit from using fea-

tures in the static association, the results in the dynamic

part indicate that the benefits are that target 1 is lost at

the bottom of the oval path for a shorter duration when

compared to the dynamic assignment scenarios where

features are not used.
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Fig. 7. Target tracking using conventional-cost based 2-D dynamic assignment: (a) using CMs obtained from conventional-cost based static
MDA, and (b) using CMs obtained from feature-aided static MDA.

8. CONCLUSIONS

In this paper a static data association algorithm to

obtain full position estimates (composite measurements

–CMs) of multiple ground targets using real acoustic

signal data, obtained by a passive sensor network, has

been presented using a novel feature-aided static MDA

(multidimensional assignment) framework. While the

methodology developed is general, it is illustrated on

real data collected by a sensor network comprised of

four sensor arrays which listen to two vehicles, a heavy

vehicle and a lighter vehicle. The CMs are assigned

to tracks using dynamic 2-D and S-D (with S = 4)

assignment.

A novel detection scheme has been presented to de-

tect DoAs from real acoustic data and a new feature

extraction technique based on GMM (Gaussian mixture

model) based fitting and multidimensional matching has

been presented to extract feature vectors which aug-
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Fig. 8. Target tracking using conventional-cost based 4-D dynamic assignment: (a) using CMs obtained from conventional-cost based static
MDA, and (b) using CMs obtained from feature-aided static MDA.

ment the corresponding DoA angle measurements. An

MDA algorithm is solved at each scan, using feature-

augmented likelihood ratio based cost functions, to ob-

tain composite measurements that are the full position

estimates of targets. Composite measurements are as-

signed to tracks using both conventional cost-based as

well as feature-aided S-D dynamic assignment.

It is observed from running the dynamic 2-D and

4-D assignment algorithms on real data that the track-

ing performance is significantly better when features are

used to generate the CMs. One track is initiated earlier,

and the breakages in the other are reduced. It is also

observed that the tracks using the feature-aided tracker

have shorter breakages. Its performance could be im-

proved if the shifts in frequency due to the motion of

vehicles are accounted for. This is a topic for further

research.

Modeling of the variation in time of the features and

track segment association can be further future topics of

investigation.
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Fig. 9. Target tracking using feature-augmented cost based 2-D and 4-D dynamic assignment: (a) feature-aided 2-D dynamic assignment,

and (b) feature-aided 4-D dynamic assignment.
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APPENDIX A. THE COMPOSITE FEATURE VECTOR

The composite feature vector −mi(i) corresponding

to the CM zmi (i) is given by

−mi (i) = [!
1
mi
(i),!2mi (i), : : : ,!

nmi
mi (i)]

0: (47)

Each element !lmi (i) in (47) is the weighted average of

the lth elements of the feature vectors corresponding to

the assigned S-tuple of DoA angle measurements that

give rise to zmi (i) and is obtained using (28).
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The composite feature vector corresponding to track

Tu is the composite feature vector corresponding to the

CM that has been assigned and used to update the track

u and is given by

−u = [!
1
u ,!

2
u , : : : ,!

nu
u ]

0: (48)

The composite feature vector in (47) is matched to

the composite feature vector in (48) using the same

matching technique described in Section 3.2. The

matched composite feature vector at scan i, i.e., −mi,u(i),

is given by

−mi,u(i) = [!
j1
mi
(i),!j2mi (i), : : : ,!

jnmi ,u
mi (i)]0 (49)

where f!jqmignmi ,uq=1 2 f®,!lmi(k)g; the resulting dummy el-
ements (missed detections) after matching are repre-

sented by ® and !lmi (i) is an element of the composite

feature vector in (47), with l 2 f1, : : : ,nmig being the in-
dex of its elements.15 Similarly, the matched composite

feature vector of track Tu is given by

−†u(k¡1) = [!j1u ,!j2u , : : : ,!
jnmi ,u
u ]0 (50)

where f!jqu gnmi ,uq=1 2 f®,!lug, with l 2 f1, : : : ,nug being the
index of the elements of the composite feature vector

(48).

The likelihood that the matched composite feature

vector −mi,u(i) at scan k is from track Tu is given by

p[−mi,u(i)] =

nmi ,uY
q=1

(1¡PDq)1¡±(miq) ¢ [PDqp(!
jq
mi (i))]

±(miq)

(51)

assuming that the individual matched composite fea-

ture vector elements are uncorrelated and where PDq and

±(miq) represent the probability of detection and the in-

dicator function for the elements of the matched com-

posite feature vector (49). The elements of the matched

composite feature vector are assumed to be distributed

as

p(!
jq
mi (i)) =N (!jqmi(i); !̂jq(i),¾2jq) (52)

where

!̂jq(i) =
!
jq
mi(i)±(miq)+!

jq
u (i)±(uq)

±(miq) + ±(uq)
(53)

±(uq) is the indicator function of the elements of the

matched composite feature vector (48), and ¾jq is the

standard deviation of the distribution of !
jq
mi (k) and

is assumed to be the minimum of all the standard

deviations ¾lsis (see Section 4.2) of the features that give

rise to the composite feature vector.

The likelihood that the matched composite feature

vector −mi,u(i) at scan i is from a source of clutter,

assuming a uniform distribution with Vf being the

15Each element of (47) appears only once in (49).

volume of the surveillance region of the sensor network

in frequency, is given by

p[−mi,0(i)] =

nmi ,uY
q=1

·
1

Vf

¸±(miq)
: (54)
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Measurement-Guided
Likelihood Sampling for
Grid-Based Bayesian Tracking

JASON M. AUGHENBAUGH

BRIAN R. LA COUR

A grid-based Bayesian tracking approach is proposed that uses

the observed measurements to guide the sampling of the likelihood

function during the measurement update step. This leads to com-

putational savings over standard sampling methods while also pro-

viding a more accurate estimate of the likelihood function. The like-

lihood model assumes an exponential distribution of returns with

a mean based on a predictive model that incorporates an assumed

signal-to-noise ratio (SNR) of the targets, background clutter, beam

response, and waveform ambiguity functions. Two variations of an

example based on simulated frequency modulated (FM) and con-

tinuous wave (CW) signals are used to assess target detection, lo-

calization, and computational performance.
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1. INTRODUCTION

Bayesian inference is recognized as a general frame-
work for performing optimal target tracking. Funda-
mentally, it assumes that the uncertainty in our knowl-
edge of the state of the target (or targets) may be well
represented by probabilities. Bayes’ theorem then pro-
vides the basic mechanism whereby measurements up-
date these probabilities and, hence, our knowledge of
the target state.
For computer implementation of a Bayesian scheme,

a representation of the probabilities must be selected.
Various approaches have been developed, including
Kalman filters, grid-based models, and particle filters,
as summarized in [1, 35]. Existing approaches are valu-
able in a diverse set of applications, but there is room
for improvement in other applications.
The application area driving this research involves

the goal of detecting and localizing a single target
in a very loud environment, such as an active sonar
system trying to detect and track a quiet target in a
cluttered, reverberant environment. The undersea active
sonar presents a rich diversity of contextual information,
which can be vital for situational awareness, but too
often is ignored by automated tracking and classification
systems.
In order to incorporate such details in the tracker, we

pursue a track-before-detect paradigm. In this approach,
the normalized matched filter output of the signal pro-
cessing chain is incorporated directly into the tracker, as
opposed to a contact-level approach in which clustered
data is used. At this lower level in the signal processing,
more information should be available. In order to keep
the data load manageable, the matched filter output is
thresholded. This thresholding, as well as details of the
waveform ambiguity functions and beam patterns, are
folded directly into the likelihood functions used in the
Bayesian tracker.
The form of these functions, which is described in

Section 3, requires a detailed sampling of the likelihood
function. We propose an advanced grid-based approach
to Bayesian tracking in which the likelihood evaluations
are performed using an intelligent sampling procedure.
Previous work on Bayesian tracking is described

in Section 2. The mathematical models used for our
tracking applications are described in Section 3. The
advanced implementation of the measurement update,
which is the core contribution of this paper, is described
in Section 4. The example problems and results compar-
ing the proposed measurement update to standard im-
plementations are given in Section 5. Additional discus-
sion is given in Section 6, and a brief summary closes
the paper in Section 7. An appendix contains a deriva-
tion of the likelihood function.

2. CONTEXT AND OVERVIEW OF GRID-BASED
METHODS

Most early target tracking algorithms were based on

the Kalman filter, which can be derived via either least-
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squares optimization or as a special case of Bayesian

filtering [14]. The Kalman filter represents an exact so-

lution to the Bayesian filtering problem under the con-

ditions of linearity in the relationship between the state

and the measurements, linearity in the motion update,

Gaussian errors in the measurements, and Gaussian pro-

cess noise in the motion updates. Various modifications

and approximations have been made to relax these as-

sumptions, such as the extended Kalman filter (see the

edited collection of papers in [33]) and the unscented

Kalman filter [17]. Other early Bayesian methods are

summarized in [29]. Non-parametric approaches, such

as the grid-based methods described in the following,

move away from any assumptions of linearity and nor-

mality.

2.1. Overview of Grid-Based Methods

As early as 1971, researchers suggested non-para-

metric models using point masses on a rectangular grid,

but computational limitations prohibited any realistic

implementations for continuous problems [7, 11]. How-

ever, when the target state is inherently discrete, a dis-

crete tracker is optimal. Early examples include the

Baum-Welsh filter [28] and dynamic programming ap-

proaches, such as those based on the Viterbi algorithm

[4, 5, 40]. The goal of the dynamic programming ap-

proaches is to find the most likely path through the state

space over time. While still based on hidden Markov

models, these approaches are not Bayesian in nature

and are based instead of maximum likelihood model-

ing. These methods are extended to continuous state es-

timation problems by using a discretized approximation

[16, 38].

By 1987, computational power had increased suf-

ficiently for Kitagawa to resurrect the idea of direct

numerical approaches for modeling posterior probabil-

ity distributions in Bayesian parameter estimation prob-

lems, specifically suggesting the use of piece-wise con-

stant approximations to the density function across a

set of defined nodes, or essentially over a grid [19].

Kitagawa also suggests the potential for adaptive grids,

moving grids, and higher order models. Around the

same time, Kramer and Sorenson implemented their

own piecewise constant Bayesian estimator and com-

pared its results to both Kalman filter and point-mass

approaches [20, 21], showing the superiority of the

grid based method for a particular system identification

problem.

Another approach that uses a grid is the histogram

probabilistic multi-hypothesis tracker (H-PMHT) [36].

However, this is not directly a Bayesian filtering ap-

proach. Rather, the grid is used to aggregate measure-

ments into weightings based on received power in a par-

ticular grid cell, and the weightings for each cell are then

used to form synthetic measurements and measurement

error covariances that are handed to the PMHT [37],

which is based on point measurements. The advantage

of this approach is that the computational costs of the

likelihood evaluations are saved, and the disadvantage

is that the detailed structure of the measurements is not

leveraged for better localization.

The first prominent use of a piecewise constant

approximation over an adaptive grid in Bayesian target

tracking was by Stone et al. [34, 35]. This approach and

variations have performed well in a variety of Bayesian

target tracking applications, such as [23, 32, 35]. The

proposed research is an extension of these approaches.

2.2. Particle Filters

An alternative implementation for Bayesian track-

ing is a particle filter (see a summary in [1]). Early

particle-based approaches such as the boot-strap filter

[13] suffered from the limitation that the updating of

particle positions was done without regard to the current

observations, potentially leading to important regions of

the state space not having enough particles to capture

the new information. Later approaches sought to rem-

edy this by using importance sampling to redirect some

particles to areas with potentially high likelihoods [12].

Many other variations of the measurement update algo-

rithm have been proposed and used in a wide variety of

problems [22, 26, 27, 30, 31].

While such methods have been used successfully for

many applications, they are not the most effective for

applications in which the likelihood function has very

fine structure. In these applications, it is not sufficient

just to place particles near peaks; the particles must also

be placed in particular locations near the peaks. This

motivation is relevant in both particle filters and grid-

based methods, although this paper will focus on the

implementation only in a grid-based tracker.

2.3. Track-before-Detect Paradigm

In many trackers, the sensor data is processed ex-

tensively in order to extract a small number of contacts.

A process of data association relates each contact to

an existing or proposed track. A particular tracking al-

gorithm, such as a Kalman filter or a particle filter, is

then used to update the tracks. A related track man-

agement scheme is used to initiate and drop tracks. One

drawback of these approaches is their poor performance

when trying to track a target that is barely detectable.

For these scenarios, a paradigm of track-before-detect

has been introduced (see the special issue introduced by

[6], or the comparisons of methods in [10, 30]). In these

approaches, the data is not aggregated into contacts, but

rather is used in a form closer to a full map or image

of the sensor data.

2.4. Mathematics of Grid-Based Methods

In Bayesian tracking, the uncertainty in the state of

the target (or targets) is represented by a probability

density function (PDF) for a continuous state, or a

probability distribution for a discrete state. There are
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two main steps in this tracking procedure. The first is the

measurement update (also known as the filter step) that
takes the prior PDF and incorporates the information

from a measurement into it using Bayes’ rule. The

second is a motion update (also known as the system
update or the prediction step) that takes the current

estimate and “moves” it forward in time. The purpose

of the motion update is to account for the evolution of

the state (in this case due to the target velocity) over

time between measurements.

In a grid-based representation of a PDF, the state

space is discretized into a multidimensional grid [3, 15,

23, 35, 39]. For a continuous state space, the grid

represents a piece-wise constant approximation of the

PDF.

Beginning with the continuous form of the measure-

ment update for a Bayesian filter, we illustrate a basic

grid-based approach. We define the posterior density

½n(s j yn) over the state s, meaning posterior to receiv-
ing the nth measurement yn. The motion updated prior is
denoted ½¡n (s), and the likelihood is given by Ln(yn j s).
The posterior density is found using Bayes’ rule as

½n(s j yn) =
Ln(yn j s)½¡n (s)R
Ln(yn j s0)½¡n (s0)ds0

: (1)

In the discretized version, we will refer to each grid

cell Ci, which contains a set of states. In this formula-

tion, the density is approximated as ½n(s)¼
P
i pi,n1Ci (s),

where 1Ci (s) is an indicator function equal to 1 when
s 2 Ci and zero otherwise, and pi,n is the constant value
across the ith grid cell. In a piece-wise constant grid-

based method, the likelihood function is integrated ap-

propriately to capture the local behavior over a cell, such

that letting p¡i,n be the motion updated prior probability
value for cell i then Bayes’ rule becomes

pi,n =
p¡i,n
R
Ci
L(yn j s0)ds0P

k p
¡
k,n

R
Ck
L(yn j s0)ds0

: (2)

An important note is the use of the integral in the

numerator, which means the value in the grid cell is

updated considering the entire local behavior, not just a

point estimate. This increases the accuracy of the piece-

wise constant approximation. However, the evaluation

of this integral can be challenging, as discussed in Sec-

tion 4. The efficient and accurate approximation of this

integral is the focus of this article.

2.5. Motion Updates for Grid-Based Methods

The purpose of the motion update is to account for

the evolution of the state over time. Even if the state

is perfectly measured at time t1, the state is uncer-

tain at future time t2 due to process noise. By mak-

ing assumptions about the target’s motion, one can pre-

dict the state at some time in the future. In traditional

grid-based methods, the motion update is computation-

ally expensive as it involves integration with a Markov

kernel, which is nominally a costly O(N2) operation,

where N is the number of grid cells.

The basic motion model that we use is described in

[25] and summarized as follows. The target is taken to
follow an Integrated Ornstein-Uhlenbeck (IOU) process

[35]. Rather than applying a Markov kernel to evaluate

the state transitions [18, 35], we instead draw inspira-
tion from particle filters. The idea is to model the actual

transitions using particles by reversing the way the prob-

lem is viewed–instead of focusing on the transitions to
each cell, we focus on the transitions from each cell. The
resulting algorithm has complexity of O(MN), when M
is the number of particles, and generally M¿N. On-

going research is comparing the performance of dif-

ferent motion updates for grid-based methods, but this
model has been used successfully in other work [2] and

is accurate and efficient enough for its use in this paper.

2.6. Grid Cell Mesh Size

Central to the success of a grid-based method is the

definition of the grid, or mesh. This defines the bound-
aries of each cell, and thereby the volume contained in

cell. Large grid cells lead to lower computational costs

(since larger grid cells mean fewer cells), but at the cost
of less precision in the posterior estimate. For example,

assume the position grid cells are 5 km by 5 km and are

referenced using the coordinates of their center. When
using the maximum a posteriori (MAP) estimate, the tar-
get location can at best be known to within §3.5 km of
distance because the MAP estimate is the grid cell with

the highest posterior probability, but the actual state can

be anywhere within the cell. Smaller grid cells lead to
a higher precision, but at higher computational costs.

Three main considerations drive mesh selection,

whether constant or locally adaptive. The first is the de-
sired resolution in target localization from the PDF. The

second is the structure of the likelihood function. The

final consideration is the trade-off between localization
and computational cost.

Ideally, one would use a resolution that refines the
localization to a level that is strategically or tactically

relevant. For example, if the user only needs to refine

the position to a 1 km by 1 km block, then a mesh size
of 10 m by 10 m is wasteful. Conversely, if the user

requires 1 km by 1 km resolution, then a 10 km by

10 km mesh does not suffice. However, the properties
of the likelihood function also dictate the scale.

A straightforward implementation of a grid-based

method would be to refine the grid until the likelihood
function is reasonably well modeled by the resultant

piecewise constant model. In our applications, the scale
of the variations in the likelihood function can be quite

small in the context of the state space, and the grid

would need to be made very fine in many regions in
order to capture the necessary detail. Also, the over-

all uncertainty in the posterior distribution dominates

this scale, making fine detail at the PDF level unneces-
sary.
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In the approach described in Section 4, a balance

is struck whereby the PDF is modeled at a tactically

relevant resolution, but the integration of the likeli-

hood function is approximated using an intelligent,

measurement-guided numerical integration. The idea of

the intelligent approach is to base the sampling of the

likelihood on its known properties and the received mea-

surements. One can then focus the sampling on the areas

that contain the most information. This detailed sam-

pling is only used to evaluate the integral of the like-

lihood over each grid cell. By contrast, adaptive grid

methods refine the state space itself. This could achieve

the necessary resolution in likelihood evaluation, but at

a higher computational cost due to the high resolution

being carried forward to subsequent measurement and

motion updates.

3. APPLICATION DESCRIPTION

Consider a Bayesian tracking scheme for which the

state space consists of the number of targets present

(either zero or one) and the target’s kinematic state, s,
given that it is present. Let Pn be the probability that a

single target is present in a particular region of interest,

and let ½n(s) be the posterior probability density func-
tion after the nth measurement is incorporated. (Note

that n= 0 corresponds to the prior distribution.) Two

likelihood functions are relevant. The target likelihood

function Ln(yn j s) denotes the likelihood of receiving
measurement yn given that the target is in state s. The
clutter likelihood function Ln(yn jØ) denotes the like-
lihood of receiving measurement yn when there is no
target present. Measurement updates on the kinematic

PDF are performed using Bayes’ theorem, which for

notational purposes we rewrite as

½n(s) = Ln(yn j s)½¡n (s)=En (3)

where the partial Bayesian evidence En for a target

present is given as

En :=

Z
Ln(yn j s)½¡n (s)ds: (4)

Similarly, the target probability Pn, meaning the proba-

bility that a target is present in the modeled state space,

is updated by

Pn =
EnP

¡
n

(1¡P¡n )Ln(yn jØ)+P¡n En
(5)

where P¡n is the motion updated target probability, as

derived in [24]. Additional description of the motion

model and birth/death process used in the tracker is

provided in [25].

3.1. Likelihood Functions

The form of the likelihood function is an important

aspect of the problem. We choose a model that is based

closely on the actual signal processing, as described in

more detail in [3]. The model is part of a track-before-

detect paradigm using the normalizer output. We define

the likelihood model in terms of measured signal-to-

noise (SNR) values from the normalized matched filter

output of a standard active signal processing chain. Both

frequency modulated (FM) and continuous wave (CW)

transmit waveforms are considered so that, in general,

each SNR value (in units of squared amplitude) zk is

associated with a particular echo time of arrival (TOA)

¿k, angle of arrival (AOA) Ák, and (for CW) Doppler

frequency shift ºk. Each measurement y consists of K
returns yk such that y= (y1, : : : ,yK)

T, where for a CW

waveform yk = (zk,¿k,Ák,ºk), and for an FM waveform

yk = (zk,¿k,Ák).

It is common to model responses such that a target

can result in measurements in a neighborhood of the

true location [8, 31]. In a basic model, the fluctuations

of the SNR values about the means are assumed to be

independent and follow an exponential distribution (or

more generally, one could use the generalized Pareto

distribution), so the likelihood function for the overall

measurement y is

L(y j s) =
KY
k=1

1

¹k(s)
exp(¡zk=¹k(s)) (6)

where ¹k(s) represents the mean SNR that one would

expect to receive from measurement element yk (e.g.

the SNR zk at ¿k and Ák for an FM source signal), given

that the target state is s. The calculation of ¹k(s), which
models details of the signal processing chain such as the

beam response, is described in Section 3.2. The assump-

tion of independence is valid for measurement spaces

that are appropriately constructed to reflect the actual

sensitivity of the sensors and signal processing. For nu-

merical stability, all likelihood calculations are actually

implemented using logarithms of the likelihood values.

This substantially reduces the chances of underflow due

to the many small values potentially multiplied in (6).

We choose to use a relatively low threshold for the

measurements in order to reduce the computational cost

without decreasing detection performance. Accordingly,

only individual elements with SNRs that exceed a set

threshold ´ are incorporated in to the measurement. Let

k= (k1, : : : ,kI) denote an ordered sequence of indices
corresponding to these threshold crossings. If there are

no threshold crossings, then k=Ø. A derivation and

statement of the likelihood function for such measure-

ments is provided in the Appendix.

3.2. SNR Predictive Modeling

Under the hypothesis that no target is present and

there are no persistent clutter objects, we assume a uni-

form clutter background for all points in measurement

space, i.e.,
¹k(Ø) = ¾

2
0 : (7)

If a single target is presumed to be present, then

¹k(s) = ¹k(Ø)+¾
2
Thk(s) (8)

MEASUREMENT-GUIDED LIKELIHOOD SAMPLING FOR GRID-BASED BAYESIAN TRACKING 111



where ¾2T is the target SNR and hk(s) 2 [0,1] is the re-
sponse function, specifically (using CW as an example)

the product of the array beam response b(Á) and wave-

form ambiguity function ÂCW(¿ ,º) for a target in state

s. Note that for this equation, the SNR should be given
in units of amplitude squared and not in dB.

The beam response, as modeled here, is given by

b(Á) = sinc(Á=¢Á)2 (9)

where Á= Á(s)¡Ák, Á(s) is the bearing to the hypoth-
esized target state, and ¢Á is the nominal beam width,

which is set to 0.0873 radians (i.e., 5 degrees). In

practice, the actual beam pattern of the beam forming

method used would be modeled here.

For the CW waveform, the ambiguity function for

¿ · T is
ÂCW(¿ ,º) =

μ
1¡ j¿ j

T

¶
sinc

μ
ºT

μ
1¡ j¿ j

T

¶¶
(10)

where T is the pulse length, ¿ = ¿(s)¡ ¿k, º = º(s)¡ ºk,
and ¿ (s) and º(s) are respectively the TOA and Doppler
shift corresponding to the hypothesized target state s.
For ¿ > T, ÂCW(¿ ,º) = 0. For a linear FM waveform, it

is given by

ÂFM(¿ ,º) = ÂCW(¿ ,º¡ ¿B=T) (11)

where B is the bandwidth. Combining these results, we

have the response function

hk(s) = b(Á(s)¡Ák)jÂ(¿ (s)¡ ¿k,º(s)¡ ºk)j2: (12)
As described in [3], one can also include known clut-

ter objects (such as persistent bathymetric features or

tracked merchants ships) in the model, though this is

not included in this paper. The predictive SNR mod-

eling also accounts for detection ranges and blanking

regions.

3.3. The Measurement Space

The measurements are based on the normalized

matched-filter output of the signal processing chain.

A consequence of this is that the time, bearing, and

Doppler measurements are discretized. For example, if

there are 72 beams, then Ák 2 f0±,5±,10±,15±, : : : ,355±g.
In the remainder of the paper, frequent mention will be

made to the measurement space. This refers to the grid

on which the SNRs are measured, meaning the set of

triples (¿k,Ák,ºk) for CW and the set of pairs (¿k,Ák) for

FM.

4. MEASUREMENT UPDATES

In a grid implementation, the measurement up-

date appears trivial: it simply involves a point-wise-

multiplication of prior grid cells with the value of the

likelihood function in each grid cell. However, the value

of the likelihood function associated with a particular

grid cell is the integral of the likelihood function over

that grid cell, as in (2).

In order to properly perform the measurement up-

date, one must approximate this integral. The complex-

ity of this operation depends on the complexity of the

likelihood function and its scale relative to the grid cell.

For example, if the likelihood is reasonably constant

over a grid cell, then the integral may be reasonably

approximated by a few samples–perhaps even a sin-

gle one–within the grid cell. However, the likelihoods

for the applications of interest are generally not so well

behaved, and a more detailed sampling is necessary.

4.1. General Motivation for Likelihood Sampling
method

The basic motivation for this method stems from

three things. First, the set of possible measurements

generally reflects inherent information about the struc-

ture of the response function. Second, there is a natural

mapping from the state space to the measurement space.

Finally, points in the state space that are “far” from any

measurement are essentially unaffected by that measure-

ment.

4.1.1. Measurement Bins Reflect Response Structure
The key assumption made in this method is that the

measurement bins are appropriate for the underlying

signal processing, and therefore they reflect the approx-

imate scale of ambiguity functions. Thus, they provide a

good starting point for defining the likelihood sampling.

For example, if the measurements are divided into bins

of bearing that are 5± wide, then it is implied that the res-
olution of the sensor is approximately that fine. It would

therefore be incorrect to sample the likelihood function

only every 10± because one would be missing states that
are perfectly aligned with other measurements.

At the same time, there is structure between the

beams that can affect the likelihood function. For ex-

ample, if there is one beam centered at 15± and another
centered at 20±, a target with bearing 17± would affect
each beam differently. One needs to sample more finely

than the beam width to capture such details. The exact

resolution may depend on other features of the problem,

and some customization and tuning of the sampling will

be necessary to adequately capture the properties of the

ambiguity functions.

Such a method can be used for time-delay-only

measurements, bearing-only measurements, combined

time-and-bearing measurements, and full time-bearing-

Doppler measurements. We address the time-and-bear-

ing (Section 4.2) and time-bearing-Doppler (Section

4.3) cases in this paper.

4.1.2. Mapping between Measurement Space and
State Space

The relationship between points in measurement

space and points in state space is simplest for TOA

and AOA measurements. A particular TOA and AOA

pair defines a specific point in position; the mapping

depends only on the states of the source and receiver,
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as follows. Let c denote the speed of sound, xT and yT
denote the target position, xR and yR denote the receiver

position, xS and yS denote the source position, and D

denote the distance from the source to the receiver. For

a received time delay ¿ and bearing Á corresponding to

a target, one finds

xT = xR +R cos(Á) (13)

yT = yR +R sin(Á) (14)

where the range from the receiver to the scatterer is

given in [9] as

R =
c¿

2

1¡
μ
1

c¿
D

¶2
1¡ 1

c¿
Dcos(Á¡Ã)

(15)

where

Ã = arctan

μ
yS ¡ yR
xS ¡ xR

¶
: (16)

This makes the measurement updates for FM source

waveforms independent of velocity, saving considerable

computational expense, as will be described in Sec-

tion 4.2.

The addition of Doppler information with CW

source waveforms complicates the mapping. Let unit

vector ûST point from the source to the target, and let

unit vector ûRT point from the receiver to the target. Let
~VT = (_xT, _yT), ~VS = (_xS , _yS), ~VR = (_xR, _yR) denote the ve-

locities of the target, source, and receiver respectively.

Then the observed Doppler shift for source frequency

f0 found from [41] is

º =

Ã
c¡ ûST ¢ ~VT
c+ ûRT ¢ ~VT

!Ã
c+ ûRT ¢ ~VR
c¡ ûST ¢ ~VS

!
f0¡f0: (17)

The solution to (17) results in a line of ambiguity in

target velocity with slope m given by

m=
¡(R¡1ax+D¡1cx)
R¡1ay +D¡1cy

(18)

and y-intercept by given by

by =

cº

f0
¡R¡1(ax _xR + ay _yR)¡D¡1(cx _xS + cy _yS)

¡(R¡1ay +D¡1cy)
(19)

where ax = xR ¡ xT, ay = yR ¡ yT, cx = xS ¡ xT, and cy =
yS ¡ yT.
This complicates the sampling of the likelihood

function, as discussed in Section 4.3.

4.1.3. Measurement-Guided Likelihood Sampling
In order to perform the measurement update, one

needs to evaluate the integral of the likelihood func-

tion in every grid cell. In general, this could be com-

putationally expensive. For example, one might choose

the naïve approach of randomly sampling 1000 points

within each grid cell. However, this would be wasteful

(not to mention computationally infeasible), as that level

of detail is not needed in every cell. An adaptive method

that places more samples where they are needed and

fewer samples where acceptable would be much more

efficient. Fortunately, such a method can be constructed

for this application.

Based on the functions described in Section 3.1, the

likelihood of getting a measured time delay of 30 s when

the target is actually at a point corresponding to 10 s is

low (assuming only direct-path signals; multipath mod-

eling would require a more complex ambiguity func-

tion). Similarly, large bearing errors are very unlikely

(unless the target is very loud and side-lobing). The

combination of a large bearing error and a large time

delay error is even less likely. Hence, when evaluating

L(y j s) in Bayes’ rule, the values are essentially zero
unless y is “near” s, where “near” is loosely defined
in terms of the distance between the measurement and

the mapping of the hypothesized state space into the

measurement space.

This concept can be used to determine where to ex-

pend computational resources for sampling the likeli-

hood function. An example response function hk(s) for
an FM signal is shown in Fig. 1.

In the figure, the scales of the state space, like-

lihood function, and measurement space are different

from those used in the actual modeling in order to high-

light the structure. Additionally, the ambiguity func-

tion for time delay of arrival is defined to fall off ex-

ponentially instead of with a sinc function to high-

light the beam behavior. The height of the surface re-

flects the SNR (in dB) at a given point in the posi-

tion state space. The white dots represent the discretized

points in state space at which actual measurements can

occur.

It is apparent that large regions of the xy-plane

have a response of zero, which leads to essentially

zero likelihood. There is no reason to sample the like-

lihood densely in these regions, as one can directly de-

fine the likelihood as zero in these regions and make

no evaluations. This saved computational effort can

then be invested in sampling the non-zero region more

densely. The sampling scheme (and areas with no sam-

pling) can be determined as described in the following

sections.

4.2. Bearing and Time-Delay Measurements

We first restrict ourselves to the FM case, in which

there is no Doppler information, and hence no velocity

dependence. Therefore, one can work entirely in the xy-

plane, which saves considerable computational expense.

To get back to the 4-dimensional state space, one must

replicate the likelihood values in the xy-grid across

the velocity dimensions of the grid, which is a trivial

operation.
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Fig. 1. Example response function for FM waveform.

4.2.1. Identifying Important Regions of State Space
We direct this discussion around one particular mea-

surement yk = (zk,¿k,Ák). This can be mapped to Carte-

sian coordinates using (13) and (14). We then can deter-

mine an approximate range from the hypothesized tar-

get state st = (xt,yt) around this measurement in which
the likelihood L(yk j st) is non-negligible. Essentially, the
target will only appear to reflect acoustic energy at a hy-

pothesized point (xh,yh) if the target location st = (xt,yt)
is near it.

A contour plot of the example response from Fig. 1

is shown in Fig. 2. Each discrete measurement point is

shown with a small black £. Two different sets of pro-
posed sampling points are labeled, one with larger red

£s, and one with green circles. The red set clearly cov-
ers the regions of the response that have non-negligible

values and serves as example of a sampling scheme that

samples more finely than the measurements in bearing.

The green set is a more aggressive approach to sav-

ing computational effort, as it only samples the highest

peak. The selection of an exact set will be problem-

dependent.

Revisiting Fig. 1, the secondary peaks are at 4.3 dB,

considerably lower than the primary peak of 15 dB.

For the types of applications that we are pursuing,

this is a substantial drop-off, and almost always would

fall below the threshold level. For larger SNR targets,

the side lobes may become more important. A similar

relationship exists with the ambiguity functions used

in the actual examples, which differ in structure from

the simplified example in this section. The sensitivity

to the selection of a sampling region is discussed in

Section 5.4.

4.2.2. Selecting Specific Sample Points
The preceding discussion focused on selecting the

region of the state space to sample. The secondary ques-

tion is which actual points within that region to sam-

ple. There are two factors that help to guide this de-

cision. The first is a sampling based argument similar

to the Nyquist criterion. Essentially, we want to sam-

ple densely enough to capture the general form of the

function. We do not need to meet a strict Nyquist crite-

rion, because the goal of the sampling is to approximate

the integral of the likelihood function over the region

of interest, rather than reconstructing the function. The

appropriate rate will depend on the ambiguity functions

and beam pattern of the specific problem, but in most

cases it is sufficient to sample every beam and time step

that is a possible measurement, as well as two or three

samples in between (assuming the measurement bins

appropriately reflect the underlying signal processing).

The second requirement stems from the relationship

between the state space, the likelihood function, and the

grid. Particularly in regions far from the source and re-

ceiver, the measurements can be relatively sparse in state

space due to spreading of the beams in Cartesian space

as distance from the receiver increases. For example, if

beams are 5 degrees apart, then at a distance of 25 km

the beams are roughly 2 km apart. If the grid resolution

is such that each grid cell has position sides of length

1 km, then a cell could fall entirely in between measure-

ment. Consequently it is necessary to ensure explicitly

that each grid cell is sampled, although the sampling can
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Fig. 2. Intelligent sampling example for FM waveform.

be relatively sparse because the original lack of samples

in such a cell reflects the assumption that the likelihood

is relatively smooth and flat there.

At a distance of 2 km, the beams are roughly 200 m

apart. Thus at short distances, the state space needs to be

sampled much more finely. This is another motivation

for basing the sampling scheme on the measurement

space (rather than the state space): the measurement

space inherently reflects the necessary detail across the

entire space, whereas the necessary detail varies as one

moves across state space.

Once the relevant sampling area is determined for a

given problem, an offset template is created. The tem-

plate defines the points in the neighborhood of a thresh-

old exceedance that should be sampled. These points are

defined using constant step sizes¢¿ in time and¢Á and

bearing and the number of steps in either direction from

the threshold exceedance. Once a generic template is

defined, it can be reused for each threshold exceedance.

The result is a list of points that are important to sample

in measurement space, which can be mapped directly to

points in Cartesian state space. Note that points that are

affected by more than one threshold exceedance are still

only sampled once, so duplicates are removed.

Onemay contemplate usingmore advanced schemes,

such as making a non-constant template (e.g. one that

is SNR dependent) or a non-symmetric template (e.g.

one that has different step-sizes and/or ranges in the

positive and negative directions). These options are not

considered in this paper.

4.2.3. Handling Regions that are Not Sampled
Explicitly

We consider now a single cell. If the cell does not

contain any sample points, then the likelihood function

is given a default value for that cell. This default value

is essentially the value of the likelihood function at a

point very far from any observed threshold exceedance.

If the cell does contain sample points, then the sampling

is planned as described in the preceding section.

The sampled points may not cover the entire grid

cell. For example, consider the hypothetical grid cell la-

beled in Fig. 2. Assume that the green circles represent

the points that are actually sampled. The grid cell also

contains many un-sampled points that fall on the poten-

tial sampling grid (those with just the red £s). Because
the quantity of interest is the integral of the likelihood

function over the grid cell, one must account for the

sampled regions and the unsampled regions.

Defining the sampled area as the region of interest

(ROI) in a particular grid cell Ci and assuming uniform

sampling, the approximation of the integral of the like-

lihood function requires all of these points, but it can

be broken into two summations as

Li(yk j s 2 Ci)

=
1

N

0@ X
sk2ROI

L(yk j sk)+
X
sk =2ROI

L(yk j sk)
1A :
(20)
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TABLE I

Grid Data Structure

Cell x y vx vy

1 10 10 0 0

2 20 10 0 0

3 10 20 0 0

4 20 20 0 0

5 10 10 1 0

6 20 10 1 0

7 10 20 1 0

8 20 20 1 0

9 10 10 0 1

10 20 10 0 1

: : : : : : : : : : : : : : :

For potential sample points in the ROI, the likeli-

hood function is evaluated directly. For points outside

of the ROI, the default value is used. This replaces the

second summation on the right with a constant times an

integer (the number of points in the cell but not in the

ROI), which yields large computational savings when

most points in the cell fall outside a ROI. In practice, a

more complex form of (20) should be used that includes

a Jacobian term for mapping between the measurement

space and state space.

4.2.4. Additional Implementation Details
In order to improve performance of the approach,

additional optimizations have been made. First, the

number of potential samples in each grid cell is pre-

computed (when possible) for all grid cells to facilitate

the calculation of (20).

This is highly efficient when the sensors are static,

but because this relationship changes if the sensors

move, it is not always possible. In cases in which the

sensors are moving, it is suboptimal because time might

be spent calculating this relationship for cells for which

it its unnecessary (i.e. cells that contain no ROIs).

Second, a constant, uniform (per dimension) grid

is used. Specifically, each 4-dimensional grid cell has

sides of length of ¢x, ¢y, ¢vx, and ¢vy. The grid

cells are identified according to the state at their center,

and a data structure is created that, in matrix notation,

contains columns corresponding to the x, y, vx, and vy
dimensions, where each row is a different grid cell. The

rows are sorted first by ¢vy, then by ¢vx, then by ¢y,

and finally by ¢x.

Using a dimensionless example, if the possible cen-

ter speeds are 0 and 1 and the possible center positions

are 10 and 20, then the grid data structure has the first

10 rows as in Table I. We are assuming that ¢x= 10,

¢y = 10, ¢vx = 1, and ¢vy = 1.

Using this format, an efficient mapping can be made

from states to grid cells. We introduce the method with

a specific example. Assume we want to the grid cell that

contains the state (13, 21, 1.4, 0.4). First consider the

x-coordinate and determine in which sub-grid cell (i.e.

which x-grid cell) it falls. There are two x-grid cells: one

with center 10 and one with center 20, with respective

bounds of [5,15] and [15,25]. Clearly it falls within the

first cell, but mathematically this can be found as

xid = b(x¡ xmin)=¢xc+1 (21)

where xmin is the minimum in the x-direction (in this

case 5), and the b:c operator indicates rounding down
to the nearest integer. So for example, in this case with

x= 13, one finds: b(13¡ 5)=10c+1 = b8=10c+1 = 1.
Analogously for the y-coordinate, one has

yid = b(y¡ ymin)=¢yc+1 (22)

which in this case yields b(21¡ 5)=10c+1 = 2, and so
on for the velocities. The result is the knowledge that

the point of interest falls in the first x-cell, the second

y-cell, the second vx-cell, and the first vy-cell.

The next step is to map from these marginal indices

into the overall grid. Looking at Table I and considering

the cell widths, we can determine that the answer should

be 7. Let Nx, Ny , Nvx, and Nvy be the number of cells

in each dimension (in this case equal to two for all

dimensions). Then one can find the overall grid cell

index numerically as

cellid = xid + (yid¡ 1)£Nx
+(vxid ¡ 1)£Nx£Ny
+(vyid ¡ 1)£Nx£Ny £Nvx: (23)

In this example, this corresponds to 1+ (2¡ 1)£ 2+
(2¡1)£ 4+ (1¡ 1)£ 8 = 7, as expected. This series of
calculations exploits the static nature of the grid and is

considerably more efficient than brute force searching

the grid in order to map every state into a grid cell. Note

that additional care must be taken with the boundary

cases, i.e. a state that falls exactly on the boundary

between grid cells or the state space boundary.

4.3. Method for Doppler, Bearing, and Time-Delay
Measurements

The method described in Section 4.2 applies to

measurements that contain only bearing, time delay, and

SNR information. For CW applications (and potentially

for some FM applications), Doppler shift information

is also available. The incorporation of this information

into the tracker and the likelihood sampling scheme

increases computational complexity.

4.3.1. Motivation
Just as with the FM measurements described in Sec-

tion 4.2, the basic approach is to sample the likelihood

function in detail only in areas near actual threshold

exceedances. The bearing can be handled as in the FM

case, but in general, the ambiguity function for CW in-

volves a coupling of the Doppler and the time delay

measurements. However, the response still tends to fall

off considerably as one moves several time steps and/or

Doppler steps away from the peak.
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Considering the functions in detail for a particular
application, one can create an offset template that de-
fines the relevant step sizes ¢¿ , ¢Á, and ¢º, as well as
the boundaries of the sample region. These can then be
applied to each threshold exceedance to create a list of
sample points (with duplicates removed). One maintains
the option of using more advanced schemes as relevant
for the particular application.

4.3.2. Mapping CW Measurements to Grid Cells
The bistatic time, bearing, and Doppler measure-

ments must be converted to Cartesian coordinates in
order to evaluate the likelihood for each grid cell. As
discussed in Section 4.1.2, a single Doppler shift corre-
sponds to a line of ambiguity in the velocity state space.
The likelihood function has a constant value across this
line, but that value is mapped into many different grid
cells. The approach taken for mapping this line into state
space grid cells is to uniformly sample this line. As ex-
plained in Section 4.2.2, one must have samples in every
grid cell that the line intersects. The heuristic approach
for sufficiently sampling this line is as follows.
First, define a sampling increment ¢d along the

line. Generally, this should be chosen to be smaller
than both ¢vx and ¢vy of the state space grid. For
example, if ¢vx =¢vy = 1 m/s then one may choose
to sample every 0.5 m/s. This appears sufficient for
characterizing the velocity for the types of scenarios
discussed in Section 5. For faster moving targets or
applications in which the measurements are farther apart
in time, the velocity is more important due to the
motion update projecting the state forward over a larger
effective distance in state space. Such scenarios may
require more detailed modeling of the velocity space,
either by using a finer grid or by sampling the line of
ambiguity more densely.
Using (18) and (19), one can determine where the

line of velocity ambiguity intersects the boundaries of
the velocity state space. Define one such intersection as
vB and define the unit vector of the line of ambiguity
(found from the slope) as v̂a. Then the set of sample
points fvj = (vxj ,vyj )g along the line is given by

vj = vB + v̂aj¢d (24)

where j takes on integer values such that the resultant
sample point remains inside the modeled velocity state
space.
As with the FM case, the time and bearing can be

mapped directly to specific points in position space (see
(13) and (14)). Combined with the velocity points from
(24), a set of points in Cartesian space is defined. Using
the method in Section 4.2.4, these points can be related
to particular grid cells. Finally, the average likelihood
function over the grid cell can be found analogously to
the procedure in Section 4.2.3.

4.3.3. Additional Information
In order to facilitate the efficient processing of (20),

the number of points on the measurement grid that fall

into each Cartesian state space grid cell is precomputed.

This operation is more difficult than in the FM case

due to the importance of the velocity dimensions and

their relationship to the position dimensions. To reduce

the computational load, we assume that the Doppler to

velocity mapping changes slowly with respect to the

x and y coordinates. Effectively, this assumption says

that within a particular grid cell, the radial direction is

constant. We can then calculate the number of samples

in the velocity projection of the state space grid cell

using a single point in xy-projection of the cell. The total

number of points in each grid cell is this quantity times

the number of potential measurement points in the xy-

plane, which can be found from the direct relationship

between time and bearing and x and y.

This approximation is reasonable far away from the

source-receiver pair, but is less valid at close range. At

close range, the angle between the target point and the

source and receiver can change significantly over a grid

cell. For example, consider a source and receiver spaced

5 km apart, and consider a 1 km by 1 km grid cell

centered 5 km perpendicular from the midpoint of the

source-receiver segment. For this cell, the radial angle

can vary by as much as 11:5±, which in extreme cases
can lead to an error of 3.5 m/s in the velocity estimate.

For the examples of Section 5, this corresponds to one

or two grid cells in velocity space. For these examples,

this is considered a fair trade-off for the savings in com-

putational cost realized by the approximation, especially

as this is only used to the determine the number of po-

tential sample points in each grid cell; for the actual

likelihood evaluation at each sample point, the true val-

ues are used.

4.4. Summary of Measurement Update Approach
The approach outlined in the preceding sections is to

use adaptive sampling of the likelihood function while

maintaining a constant grid mesh for representing the

PDF. The motivation for this approach is similar to the

motivation for adaptive grid methods–to use the most

detail where it is most needed. The evaluation of the

likelihood function at a small scale is important for

identifying the presence of a target and for localizing.

This scale is defined by the properties of the likelihood

function, and the important regions are identified by

the threshold exceedances. In the following section, this

approach is tested with an example problem for both the

FM and CW cases.

5. EXAMPLE PROBLEMS AND RESULTS
The sampling method described in Section 4 in-

volves some heuristics, tuning parameters, and approx-

imations. To assess its validity, we compare our method

to a fixed grid method in which the likelihood function

is sampled randomly in each grid cell. We compare the

localization, velocity estimation, target detection perfor-

mance, and computational costs of these approaches to

our proposed method for FM and CW waveforms. We
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Fig. 3. Example problem geometry.

consider five approaches for each waveform:

1. Intelligently sampling the likelihood

2. Randomly sampling one point in each grid cell

3. Randomly sampling five points in each grid cell

4. Intelligently sampling the likelihood and using a

finer state space grid

5. Randomly sampling one point in each grid cell

and using a finer state space grid

The details of the examples follow.

5.1. Example Descriptions

The fixed grids used in the problem cover a region

from ¡33 km to 33 km north and ¡33 km to 33 km

east, as well as velocities in the region ¡12 m/s to
12 m/s north and ¡12 m/s to 12 m/s east. We con-
sider two different grids. For the “base grid” case, there

are 51 grid cells in each of the north and east direc-

tions, and 7 grid cells in each velocity dimension. In

other words, Nx =Ny = 51 and Nvx =Nvy = 7, for a to-

tal of N = 127,449 grid cells. This leads to ¢x=¢y =

1:29 km and ¢vx =¢vy = 3:43 m/s.

For the “fine grid” case, Nx,fine =Ny,fine = 73 and

Nvx,fine =Nvy ,fine = 11, for a total of Nfine = 644,809 grid

cells. This leads to ¢x=¢y = 0:90 km and ¢vx =

¢vy = 2:18 m/s. This finer grid is constructed such that

the total number of samples in the base grid when

sampling five points per cell is approximately equal to

the total number of samples using the finer grid when

sampling one point per grid cell, that is Nfine ¼ 5N.
The tracking scenario is summarized in Fig. 3. The

source is located at the origin, and the receiver is lo-

cated at (0,5) km. The receiver has uniform resolution

in bearing and can distinguish 72 beams (for a beam

width of 5±). For both waveforms, the maximum de-

tection range corresponds to a time delay of arrival of

34.05 s (approximately 25 km) and the minimum (due

to blanking region) is 4.333 s. The maximum is a hard

cutoff due to the amount of time that is processed. There

are no fading effects near the detection limit (i.e. the

nominal SNR of the target is independent of range).

The nominal mean target SNR is 9.5 dB for FM and

CW. Scans are performed every 3 minutes, with either

the FM or CW waveform in use, depending on the ex-

ample problem. No persistent clutter is modeled, but

random background clutter with mean SNR of 0 is in-

cluded.

For FM data, we assume a center frequency of

2350 Hz, a pulse length of 1 s, and a bandwidth

of 400 Hz. We use a measurement space with ¢¿ =

0:0017 s and ¢Á= 0:0873 rad. For the likelihood sam-

pling for FM, we sample a region that includes five time

delays and three beams on either side of a measurement

yk. Thus, the sampled swatch is §5¢¿ by §3¢Á cen-
tered on (¿k,Ák). We sample three points between each

beam (so the spacing is 0.0218 radians) and at each

¢¿ for the base grid. The fine grid requires more dense

sampling in order to make sure each grid cell in a ROI

is sampled at least once, so four points between each

beam (every 0.0175 radians) are sampled.

For CW, we assume a center frequency of 2575 Hz

and the pulse length is 1.5 s. We define a measurement

space with ¢¿ = 0:4186 s, ¢Á= 0:0873 radians, and

¢º = 1:14 Hz. The maximum captured Doppler shift

(due to assumed windowing in the signal processing) is

§40 Hz. For the likelihood sampling for CW, we sample
a region that includes three time delay increments, three

beams, and three Doppler increments on either side of

a measurement yk. Thus the sampled swatch is §3¢¿
by §3¢Á by §3¢º, centered on (¿k,Ák,ºk). We sample
three points between each beam (so the spacing is

0.0218 radians) and at each¢¿ and¢º for the base grid.

As with FM, we use 0:0175 radians bearing spacing

with the fine grid.

We consider a target that originates at (¡30,25) km
and moves with a constant velocity of (5:500,

¡4:125) m/s. The target begins outside of the region of
detection and enters such that measurement 11 (time 30

min) is the first scan that could potentially contain en-

ergy reflected by the target. The target enters the blank-

ing region such that measurement 30 (time 87 min) is

the first scan for which the target is blanked. Finally, the

target has exited the blanking region at measurement 34

(time 99 min). The last scan in which the target is in the

detection region is at measurement 51 (time 150 min).

The data used in the simulation is generated accord-

ing to the models assumed by the tracker. Specifically,

the nominal mean target SNR is input into (8). The

nominal mean background clutter SNR is defined to be

0 dB after normalization. The mean at any given point

in measurement space is calculated using (12), and then

a random variate is generated from the the appropriate

exponential distribution. Consequently, the actual data

are stochastic.
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For localization estimation, a point estimate of the

target state is needed. We use the maximum a posteriori
(MAP) estimate. This yields the grid cell with the

highest posterior probability, and the center of this grid

cell is used as the point estimate of the state.

The use of the MAP estimate with a grid constrains

the ultimate accuracy of the estimate. For example, if the

true state is near the corner of a cell, then the best the

tracker can do in position is an error of 0.91 km for the

base grid and 0.64 km for the fine grid (from geometry,p
2¢x=2). Since the true position will not always be in

a corner, actual expected minimum error would be less

for a perfect tracker. For these examples, the velocity is

constant and therefore falls in the same spot in a grid

cell the entire simulation. The minimum attainable error

can be found to be 1.5 m/s for the base grid and 1.1 m/s

for the fine grid.

We consider 150 different sets of input data for FM

and 150 different sets of input data for CW. The target

trajectory and source and receiver positions are the same

in each run, but the simulated measurements differ, and

the random samples (in the random methods) are also

different. The localization, detection, and computational

performance is averaged across the appropriate 150 FM

or CW runs for each approach.

5.2. FM Data Example

For the FM example, the normalized match filter

output is thresholded at 10 dB. In this manner, we are

trying to track a relatively quiet target (9.5 dB) in a

relatively loud environment.

5.2.1. Tracker Performance for FM Data
The root mean squared error (RMSE) in localization

for the FM example is given in Fig. 4 for the five

sampling methods. The regions in which the target is

not detectable are shaded in gray. The “minimum” error

value of 0.91 km (as discussed at the end of Section 5.1)

for the base grid is also shown. This provides some

guidance into the potential accuracy of a particular grid.

The value for the fine grid (0.64 km) is not shown to

preserve clarity in the figure.

We first consider the base grid examples. The intelli-

gent sampling method clearly outperforms the other two

methods. As expected, sampling five points randomly in

each grid cell is superior to sampling a single point in

each grid cell. The intelligent method yields localization

errors on the order of the grid resolution, which suggests

that the likelihood sampling is sufficient for realizing

something close to a “best possible” performance for

the set grid resolution.

The standard deviations on the localization error

(shown in Fig. 5) reveal that the superiority of the intel-

ligent sampling method is statistically significant. The

error in the position estimates with the random sam-

pling, combined with the lack of any direct measure-

ment of velocity, leads to very poor estimation of the

velocity, as shown in Fig. 6. This in turn will feed back

Fig. 4. Localization error for FM data. Gray regions indicate where

the target is inherently undetectable.

Fig. 5. Standard deviation of position error for FM data.

Fig. 6. Velocity error for FM data.
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Fig. 7. Target probability for FM data.

into the position estimates via the motion updates. The

intelligent sampling characterizes the likelihood much

more accurately, and this accuracy helps to reinforce

itself over successive updates. The velocity estimation is

much better with the intelligent method, and approaches

the actual minimum error, as labeled in Fig. 6. The

probability of there being a target present in the modeled

region is shown in Fig. 7. The prior probability of there

being a target is set to 0.5 before the first measurement

update. The results for the intelligent sampling method

reflect what one would expect. Initially, the target is

outside of the detection region, so the target probability

falls. Once the target enters the detection region at

measurement 11 (time 30 min), the target probability

begins to increase. It increases fastest for the intelligent

sampling method, whereas the random methods lead

to a significantly lower probability of there being a

target present, even though the target is present and

theoretically detectable.

Even though the nominal mean SNR of 9.5 dB

is below the threshold, the target is visible for two

reasons. First, the actual SNR is random, so it fluctuates

above the mean. Second, energy from the target shows

up at multiple points in the state space due to the

waveform ambiguity function and the beam response,

leading to more opportunities for random threshold

exceedances. The tracker expects to find this energy if

a target is present. In the random sampling approaches,

these regions are not sampled densely enough to capture

all of the details of the functions, so some of the energy

is missed. This leads to a lower probability of there

being a target present and to a poorer estimate of where

the target is.

The target is also tracked reasonably well through

the blanking region with the intelligent method. The

blanking region is incorporated into the predicted SNR

model, so essentially the tracker “knows” that a target is

undetectable in that region. With the intelligent method,

the target is well localized just before it enters the blank-

ing region, and the velocity is well characterized. The

motion update projects the estimate into the blanking

region. The tracker now estimates the target to be in

the blanking region, where it is undetectable. The sub-

sequent lack of received echoes from the target is con-

sistent with the state estimate, so the target probability

barely drops. In the random methods, the tracker is less

certain where the target is, and therefore it expects to be

receiving measurements from the target. Since there are

no strong measurements when the target is in the blank-

ing region and the tracker has not localized the target as

inside the blanking region, the target probability drops.

There is evidence of another effect in Fig. 4 and es-

pecially in Fig. 7. For the localization, the performance

of the method of randomly choosing five points per grid

cell starts to degrade before the target enters the blank-

ing region. The degradation in target probability is more

obvious and applies to both random methods. The cause

of this is the mapping between the grid cell (Cartesian)

state space and the measurement space (range and bear-

ing).

As the range to the target decreases, the measure-

ment points are more densely packed in Cartesian space

(refer back to Fig. 2). Consequently, there is more detail

contained in a particular grid cell, and denser sampling

is appropriate. Adaptive grid methods are designed to

meet this sort of challenge indirectly by increasing the

resolution in the state space (see for example [35]).

While this may provide benefit in some applications,

our approach is to base the sampling of the likelihood

directly on the likelihood properties and the received

measurements, while maintaining a reasonable grid size

in state space. Consequently, the intelligent methods do

not show this effect; the performance does not drop until

the target actually enters the blanking region, and even

there it is reasonably good due to the accurate modeling

of the uncertainty and blanking region in the likelihood

structure.

The intelligent method continues to track the target

relatively well after it leaves the detection region. This

is again due to the good localization and velocity es-

timates before it exits the region. The motion model

projects the estimate forward and outside of the detec-

tion region, and the lack of measurements on the target

is consistent with this estimate. Eventually the increase

in uncertainty with successive motion updates (and no

relevant measurement data) leads to a drop in target

probability, and eventually the mass moves outside the

modeled state space (and is appropriately reapportioned

across the entire state model, in this case uniformly by

the birth/death process).

We now consider the examples with the finer grid

resolution. First, we note that the two methods in which

the total number of samples is approximately equal–

randomly sampling one point per grid cell with the fine

grid and randomly sampling five points per grid cell
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TABLE II

Comparison of Computational Costs of One Measurement Update for FM

Total Samples Initial Update Subsequent Update

(avg) avg. run time in sec. avg. run time in sec.

Intelligent Sampling 16,269 6.8 1.8

Intelligent Sampling, fine grid 20,270 13.3 6.9

Random sampling one/cell 127,449 6.0 5.8

Random sampling one/cell, fine grid 644,809 30.0 29.0

Random sampling five/cell 637,245 31.9 30.8

with the base grid–have very similar RMSE perfor-

mance across all localization and detection metrics. This

suggests that the additional stratification in the sampling

in the finer grid and the additional resolution of the

grid itself do not improve the overall estimation–the

sampling is still just too sparse. These methods both

yield results that are inferior to the intelligent sampling

method.

For the intelligent sampling method, there is a slight

improvement in localization using the finer grid, espe-

cially in velocity (Fig. 6), where the estimate follows

the absolute minimum error very closely. In the next

section, we address the computational costs of these is-

sues and discuss whether this improvement is worth the

additional cost of using a finer grid.

5.2.2. Computational Costs for FM Data
The total number of samples taken (on average

across all trials, all measurements) by each method for

the FM example is shown in Table II, as well as two dif-

ferent run times for the measurement update. The initial

update run time is the average for the first measurement

update of each run. This includes the overhead involved

in setting up some reusable data structures, especially in

the intelligent sampling methods. If the sensors move or

are in some other way reconfigured between measure-

ments, then this is the average time needed for measure-

ment updates. If the data structures can be reused, there

is substantial savings in computational load for subse-

quent updates. The second column shows the average

time required for subsequent updates when the overhead

data is reused, which for static sensors is every update

except the first.

We first compare the sampling methods for the base

grid resolution. For the first update, the intelligent sam-

pling method is slightly slower than the randomly sam-

pling one point per grid cell method, but when the sen-

sors are static it is much faster in the long run. Even

considering the initial cost, the large increase in track-

ing performance strongly favors the intelligent method.

The intelligent sampling method is considerably faster

than randomly sampling five points per grid cell, and

the tracking performance is much better, too. Taken to-

gether, these results argue strongly for the superiority

of the intelligent sampling method in this example.

Because run times are very implementation-depen-

dent, we also display the actual number of samples

taken. This performance criterion suggests the best

method is the intelligent sampling, which yields the best

performance in terms of localization and target detec-

tion with the fewest degrees of freedom in likelihood

sampling. The run times do not align perfectly with the

number of samples due to the overhead involved in dif-

ferent methods, and particularly the initial overhead in

the intelligent sampling method. Nevertheless, the to-

tal samples reveal how much more efficient the intelli-

gent method is at sampling the likelihood function–it

provides significantly better tracking performance than

randomly sampling five points per grid cell with less

than three percent of the number of samples.

If the two approaches with the finer grid are consid-

ered, the intelligent sampling method is the all-around

winner. Not only is the localization and detection per-

formance superior to random sampling with the finer

grid, but so is the likelihood update run time and the

total number of samples.

An additional factor in the total run time is apparent

when the motion update is considered. The average run

time for the first motion update is about 6 s for the base

grid and 105 s for the finer grid. The timing for the

first update is used because subsequent updates depend

on the observed measurements due to optimizations in

the code that lead to faster run times with better lo-

calization. Here, the additional cost of using the finer

grid resolution is obvious. Not only does each mea-

surement update take longer, but the motion updates are

considerably slower, and with little benefit for localiza-

tion and detection. While there are scenarios in which

this additional resolution may be useful, the trade-off

is a large increase in computational costs. The intelli-

gent sampling method appears to allow for significantly

improved tracking performance at a much lower cost

than refining the grid globally. Adaptive grid methods

combined with the intelligent sampling of the likelihood

would likely yield even larger gains in performance, but

that is left as an item for future research.

5.3. CW Data Example

For the CW example, the normalized matched fil-

ter output is thresholded at 9.5 dB. In this manner, we

are trying to track a relatively quiet target in a rela-

tively loud environment, although the thresholding is

not as extreme as in the FM example. We can use a

lower threshold in the CW example than in the FM
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example because on average there are fewer threshold

crossings for CW. Specifically, there are around 368,000

measurement points in the CW example, compared to

1,296,000 in the FM example. Assuming uniform back-

ground clutter with a mean SNR of 0 dB, this yields an

average of 58 threshold crossings for FM (with a 10 dB

threshold) and 50 for CW (with a 9.5 dB threshold). In

other examples, there may be motivations for raising or

lowering the threshold, such as computational consid-

erations or the need to track low SNR targets.

5.3.1. Tracker Performance for CW Data
The RMSE in localization for the CW example

is given in Fig. 8. The shaded gray regions indicate

regions in which the target is not detectable by the

sonar system. The MAP is again used for the point

estimate of the state. We first discuss the cases with

the base grid. The intelligent sampling method appears

to outperforms the other two methods, but not nearly by

as much as in the FM example. As expected, sampling

five points randomly in each grid cell is superior to

sampling a single point in each grid cell. The standard

deviations on the localization error (shown in Fig. 9)

suggest that there is so much variation in the random

methods that the results are not statistically significant.

However, further analysis reveals that the large standard

deviations are due to outliers in which the performance

is exceptionally poor. The standard deviation of the

intelligent method is much smaller, reflecting that it

does not perform too badly, even in the extreme cases.

The performance of the three methods in estimating

the velocity of the target, shown in Fig. 10, reveals a

greater separation between the methods. The intelligent

sampling across bearing, range, and Doppler provides

more information about the velocity than random sam-

pling. This is in part due to the low resolution in velocity

of the grid in state space.

Because not many velocity grid cells are needed to

adequately model the target dynamics, not many were

defined in the grid. Consequently, they are relatively

coarse, and the example results suggest that this reso-

lution is not sufficient for sampling the velocity depen-

dence of the likelihood function.

The error in velocity estimates for the random meth-

ods for CW is much smaller than it was for FM. This

is partially because CW provides some direct veloc-

ity information via the Doppler shift, and partially due

to a sampling issue alluded to previously. Specifically,

the CW measurements of time delay are spaced more

widely than for the FM case, so an equivalent density

of sampling in state space is actually a finer sampling

in CW measurements than in FM measurements. This

sampling effect and the improved velocity estimate also

improve the localization in the CW results compared to

the FM results.

The target probability is shown in Fig. 11. The

intelligent method appears to be the most accurate,

Fig. 8. Localization error for CW data. Gray regions indicate

where the target is inherently undetectable.

Fig. 9. Standard deviation of position error for CW data.

Fig. 10. Velocity error for CW data.

122 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 5, NO. 2 DECEMBER 2010



TABLE III

Comparison of Computational Costs of One Measurement Update for CW

Total Samples Initial Update Subsequent Update

(avg) avg. run time in sec. avg. run time in sec.

Intelligent Sampling 58,530 22.3 10.2

Intelligent Sampling, fine grid 72,570 79.4 15.4

Random sampling one/cell 127,449 4.3 4.1

Random sampling one/cell, fine grid 644,809 21.5 20.7

Random sampling five/cell 637,245 27.9 27.1

Fig. 11. Target probability for CW data.

followed by the method sampling five points per grid

cell. However, the differences are much less than were

seen in the FM case shown in Fig. 7. Across all of

the figures, there is less evidence in the degradation of

performance as the range to the target decreases. Some

degradation is visible in the velocity plot in Fig. 10 as

the range to the target decreases, but much less in the

other plots compared to the FM case. This is related

to the relationship between the grid cells size and the

likelihood function structure.

For the finer grid with CW, the results show a differ-

ent trend than in the FM examples. Again, the intelligent

sampling with the fine grid yields the best results in

RMSE for position and velocity, and the best target de-

tection performance. However, randomly sampling one

point per grid cell with the fine grid performs nearly as

well as the intelligent sampling methods, and consider-

ably better than randomly sampling five points per grid

cell with the base grid, whereas in the FM case, there

was little difference. It appears that for the CW case,

there is an advantage to sampling the state space more

evenly. The reason for this appears to be the relative

scales of the likelihoods and the grid.

As described in Section 5.1, the measurement space

is finer in range for FM than for CW (¢¿FM = 0:0017 s

and ¢¿CW = 0:4186 s). Graphically, this would trans-

late to the measurement dots in Fig. 2 being farther

apart in position space for CW than for FM. Conse-

quently, fewer samples would be needed per grid cell to

adequately sample the position. Therefore, the random

sampling methods are sampling the likelihood across

time delay and bearing at a finer scale (relative to its

features) in the CW case compared to the FM case,

and thus, are better capturing the details in the observed

acoustics. However, there is also the effect of the neces-

sary Doppler sampling to consider when the trade-offs

between performance and computational are examined.

In the FM case, even with one random sample per

grid cell and the fine grid, the time delay structure is

too fine for the sampling to capture. For example, a

0.0017 s time delay (two-way) corresponds to a range

distance (one-way) of just over 1 meter.

In contrast, the fine grid cells have sides of length

900 meters (in position). The two-way time delay of

0.4186 s for CW corresponds to about 300 meters in

range (one-way). This is not adequate to fully capture

the details of the likelihood in one grid cell with one

sample, but given the sampling across the velocity di-

mensions (of which there are 121 cells for each position

grid cell), the marginalized values for position and for

velocity lead to a relatively good estimate of the state.

The use of five samples per grid cell improves the av-

erage sampling density, but not in a stratified manner.

While on average the density increases, the sampling

can still often be quite bad due to its randomness. The

fine grid with one sample per grid achieves a similar

average density, but in a much more systematic manner.

By some standards, the localization and detection

performance of the intelligent method (with either grid)

and the randomly sampling one per grid cell with the

fine grid are comparable. However, the computational

costs are quite different, as discussed in the following.

5.3.2. Computational Costs for CW Data
The total number of samples taken (on average

across all trials, all measurements) by each method for

CW is shown in Table III, as well as the initial and

subsequent run times of the measurement update. Sev-

eral additional optimizations and approximations could

reduce the overhead involved in the intelligent method,

but the current implementation does not contain these.

As with the FM example, the first motion update takes

around 6 s for the base grid and 105 s for the fine grid

when the probability is not well localized.
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In a scenario in which the sensors are moving, the

run time for the intelligent method is five times that

of randomly sampling one point per grid cell, and

slightly less than sampling five per grid cell. The run

time for the measurement update for the intelligent

method on the base grid is about equal to the run

time of randomly sampling one point per grid cell

on the fine grid. The intelligent sampling on the fine

grid is much slower (for the initial update) than any

other example, but this run time drops significantly in

subsequent updates.

Given the performance results in Section 5.3.1 and

these run times, the intelligent sampling method with the

base grid is superior to the random methods with either

grid size. For example, in the blanking region the error

for the intelligent method is on the order of the width of

one grid cell (about 1 km, which is nearing the limit of

the possible resolution), whereas the error for randomly

sampling one point per grid cell is on the order of

eight grid cells (or 10 km). In many applications, this

difference will be significant and the extra run time of

the intelligent sampling is likely justified, as the method

still easily runs in real time (since the pings are at least

30 s apart).

If the sensors are approximately stationary, then

the intelligent method with the fine grid appears to be

the best option, as the tracking performance improves

with only a 5 s increase in run time. However, if the

sensors are moving, the increase in run time is probably

prohibitive, and the intelligent sampling with the base

grid is the best approach.

All of this neglects the costs of the motion update,

which is very high for the fine grid (105 s) compared

to the base grid (6 s). Once this is considered, the

superiority of the intelligent method with the base grid

compared to any method with the fine grid is obvious.

The actual number of samples used suggests that

the best method is intelligent sampling, which yields

the best performance in terms of localization and target

detection with the fewest degrees of freedom in likeli-

hood sampling. This suggests, but does not guarantee,

that improved methods for implementing the intelligent

sampling scheme may lead to shorter run times than the

random methods. Areas for such improvement include

the mapping of Doppler shifts into lines in velocity, and

computing the number of measurements in a given grid

cell (used to facilitate the evaluation of (20)), which

should be approximated reasonably well by geometric

arguments rather than requiring explicit, brute force cal-

culation.

5.4. Robustness of Intelligent Sampling

As a test of the method’s sensitivity to the tuning

parameters, an additional set of runs was performed

in which the intelligent sampling method sampled a

smaller region around each threshold exceedance for

the base grid.

Fig. 12. Sensitivity analysis of RMSE for FM and CW.

For the FM example, we reduce the sampling swatch

from §5¢¿ by §3¢Á centered on (¿k,Ák) to §3¢¿
by §2¢Á centered on (¿k,Ák). This leads to roughly
7,000 total samples per measurement update (compared

to 16,000 in the original case). The comparison of lo-

calization performance is shown in Fig. 12. There are

some regions in which the base sampling appears to

work better, and there are some regions in which the

under-sampled example works better, but in either case

the differences are relatively small, on the order of

the grid cell dimensions. Such small differences are

considered minor by the assumption that the grid cell

size represents acceptable error. Consequently, it ap-

pears that the results shown in Section 5.2 are not very

sensitive to under-sampling, and the gains in computa-

tional performance may even be larger than shown in

Table II.

For the CW case, an example was considered in

which the number of beams, time delay steps, and

Doppler steps sampled on either side of each measure-

ment is reduced, leading to a sample swatch that is

§2¢¿ by §2¢Á by §2¢º, centered on (¿k,Ák,ºk) (in-
stead of the original §3¢¿ by §3¢Á by §3¢º). The
total number of samples decreases to one-third of its

value using the original sampling swatch (from 58,530

samples down to 20,000 samples). The resulting change

in error was not significant, as shown in Fig. 12. For the

most part, the results are indistinguishable, with the re-

duced sampling outperforming the original sampling at

two updates early in the run, and the original sampling

outperforming the reduced at one later update.

These results reveal the robustness of the method to

the specifics of the sampling scheme. They reemphasize

that the intelligent sampling method yields better local-

ization than the random sampling methods even if the

likelihoods are slightly under-sampled. This supports

the general result that intelligent sampling based on the

observed measurements and the scale of the likelihood
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functions provides improved tracking performance over

methods that do not explicitly consider these character-

istics.

6. DISCUSSION
In Bayesian tracking, the measurement information

is incorporated into the probability density via the likeli-

hood function. In a grid-based method, the proper value

to use when updating the probability mass in a grid cell

is the integral of the likelihood function across all states

in that grid cell. In this paper, a method for adaptively

sampling the likelihood function for this integration has

been introduced. This method scales to the actual mea-

surements received and can be customized for the like-

lihood model that is relevant for a particular applica-

tion.

In certain applications, such as finding a single

quiet target in a very loud and cluttered environment,

it may be necessary to base tracking on a level of

detail that preserves information from sensor outputs.

When the sensors provide very detailed information,

then accurate likelihood functions will have a very de-

tailed structure, too, in order to reflect the associated

uncertainties correctly. Consequently, the implementa-

tion of the tracker should evaluate these likelihoods ac-

curately. In other applications, smooth and broad likeli-

hood models may be appropriate, in which case existing

methods such as standard particle filters or grid-based

methods with random likelihood sampling are likely

adequate.

The intelligent sampling approach presented in this

article allows computational resources to be invested in

sampling the areas where there are the most relevant

details. At the same time, a relatively coarse grid can

be used to represent the probabilities over the state

space, which further reduces the computational effort

compared to methods that refine the state space to

indirectly improve likelihood sampling.

The example problems reflect these qualities, show-

ing that the intelligent method can lead to significant

performance gains at reasonable computational costs.

Specifically, the trade-offs between improving the like-

lihood sampling and refining the grid cell size reveal

that large gains can be made by carefully sampling the

likelihood sampling.

The value of this method extends beyond the spe-

cific case of a fixed grid-based Bayesian tracker be-

cause all Bayesian methods require accurate modeling

and evaluation of the likelihood function. In an adap-

tive grid, one must still adequately integrate the like-

lihood function over each grid cell, so the method is

directly applicable. By extension, the likelihood sam-

pling may also indicate the regions in which a refined

grid is useful. The combination of a locally adaptive

grid method with the intelligent sampling presented in

this article should further improve the overall efficiency

of the modeling, although this is not examined in this

article.

The lessons regarding sampling presented in this ar-

ticle can also be applied to particle filtering, because

those methods still require adequate sampling of the

likelihood to capture the subtleties of a likelihood func-

tion such as described in Section 3. This fine sam-

pling of the likelihood model requires the develop-

ment of new, advanced importance sampling methods

for particle filters. Such adaptations are left for future

work.

7. SUMMARY

In certain applications, small details in the received

signals are important for distinguishing a target from

clutter and effectively tracking it. By adopting a track-

before-detect paradigm and using unclustered normal-

izer output data, these details can be extracted. However,

the likelihood function in a Bayesian tracker must then

reflect these details, leading to a function that varies at a

relatively small scale compared to the state space. In this

paper, an adaptive likelihood sampling scheme is pre-

sented that appropriately samples the likelihood accord-

ing its structure and the measurements actually received.

Two example problems reveal that this method can lead

to significantly improved detection and localization per-

formance while realizing a computational savings over

more traditional grid-based methods. Although it was

applied to a fixed grid for the sake of comparison, the

basic sampling concepts can be extended to adaptive

grid and particle filter methods.

APPENDIX

Consider a sequence of independent, univariate

random variables Y1, : : : ,YK with corresponding PDFs

f1, : : : ,fK and CDFs F1, : : : ,FK . In the context of this pa-

per, each Yk corresponds to, say, the measured SNR at a

given point (i.e., time delay, bearing, and Doppler shift)

in measurement space. The distribution of each Yk will

also depend upon whether we assume a target is present

or not.

Now suppose we are interested in the subset of val-

ues which exceed a given threshold ´ > 0. LetK1 < ¢ ¢ ¢<
KI 2 f1, : : : ,Kg denote the (random) indices of those ex-
ceedances. If these threshold exceedances constitute our

definition of a measurement, then the corresponding

likelihood function is the probability density of obtain-

ing the particular set of indices (i.e., points in measure-

ment space) k= (k1, : : : ,kI) with a corresponding set of
values y= (y1, : : : ,yK). We shall denote this likelihood
function L(k,y).
For I = 0, this takes the simple form

L(Ø,y) =
KY
k=1

Fk(´) (25)

while, for I =K, we have

L(1, : : : ,K,y) =
KY
k=1

[1¡Fk(´)]fk(yk j ´) (26)
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where the conditional PDF is

fk(yk j ´) :=
fk(yk)

1¡Fk(´)
1[´,1)(yk): (27)

If, however, I = 1, then

L(k1,y) = P[Yk1 = yk1 j I = 1,K1 = k1]P[I = 1,K1 = k1]]

= fk1 (yk1 j ´)
k1¡1Y
k=1

Fk(´)[1¡Fk1 (´)]
KY

k0=k1+1

Fk0(´)

= L(Ø,y)
1¡Fk1 (´)
Fk1 (´)

fk1 (yk1 j ´): (28)

More generally, for I 2 f1, : : : ,Kg and 1· k1 < ¢ ¢ ¢<
kI ·K, we have

L(k,y) = L(Ø,y)
IY
i=1

1¡Fki (´)
Fki (´)

fki(yki j ´): (29)
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Algorithms for Asynchronous
Track-to-Track Fusion

XIN TIAN

YAAKOV BAR-SHALOM

Most track-to-track fusion (T2TF) algorithms for distributed

tracking systems in the literature assume that the local trackers are

synchronized. However, in the real world, synchronization cannot

be usually achieved among distributed local trackers where local

measurements are obtained and local tracks are updated at differ-

ent times with different rates. In addition, communication links be-

tween local trackers and the fusion center (FC) are subject to possi-

ble delays, which results in delayed local tracks for the fusion at the

FC. This paper presents and compares algorithms for asynchronous

Track-to-Track Fusion (AT2TF) for the fusion of asynchronous and

delayed tracks. First, the optimal algorithm for AT2TF with no

memory and with partial information feedback (AT2TFwoMpf) is

presented. The algorithm, denoted as AT2TFwoMpfOpt, serves as

the baseline algorithm for performance comparison. Three approx-

imate AT2TF algorithms from the literature are compared with

AT2TFwoMpfOpt and are shown to have consistency problems and

loss in fusion accuracy. Then the Information Matrix Fusion (IMF)

algorithm from the literature is generalized for the fusion of asyn-

chronous tracks. Based on the generalized IMF (GIMF), AT2TF

algorithms are derived for the information configurations with both

partial and full information feedback. These algorithms are shown

to have good consistency and nearly optimal fusion accuracy. Due

to the simplicity of their implementation, these algorithms are ap-

pealing candidates for practical applications.
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1. INTRODUCTION

Algorithms for synchronous track-to-track fusion
(T2TF) have been widely studied. For the optimal T2TF,
it is critical to take into account the crosscovariances
between tracks of the same target due to (i) the com-
mon process noise, and (ii) information feedback [2].
The optimal memoryless (without memory–“woM”)
T2TF with no information feedback (T2TFwoMnf) was
studied in [3], [11]. In [15], the complete set of in-
formation configurations and the optimal algorithms
for the synchronous T2TF were presented. These are
T2TF without memory (T2TFwoM) with no, partial and
full information feedback (designated as T2TFwoMnf,
T2TFwoMpf and T2TFwoMff, respectively), as well as
T2TF with memory (T2TFwM) with no, partial and
full information feedback (designated as T2TFwMnf,
T2TFwMpf and T2TFwff). The information matrix fu-
sion (IMF) [14, 8] is a special case of T2TFwM. The ad-
vantage of IMF over the optimal T2TF is that it does not
require the crosscovariances between the local tracks,
which greatly simplifies its implementation. However,
IMF is optimal only when the fuser operates at full rate
[8, 7]. For reduced rate, IMF is heuristic. As reported in
[6], IMF has consistency problems for extremely large
process noise levels; however for most tracking scenar-
ios it is consistent and has good tracking accuracy.
In the real world, synchronization cannot be usually

achieved among distributed local trackers where local
measurements are obtained and local tracks are updated
at different time instants. In addition, the communica-
tion between local trackers and the fusion center (FC) is
subject to possible delays, and thus the fusion of delayed
tracks should also be addressed. In [5] the problem of
the fusion of delayed tracks is converted and solved as
the fusion of out-of-sequence measurements (OOSM).
However, the algorithm deals only with the fusion of
delayed synchronous tracks at full rate. A pseudo mea-
surement approach of fusing asynchronous tracks can
be found in [12]. In [13], three approximate algorithms
for AT2TF were proposed. Later in the present research,
they are evaluated by simulations and shown to have
consistency problems. This is because the crosscorrela-
tion between the central and local tracks due to infor-
mation feedback is not accounted.

In this paper, first, the optimal (under linear Gaus-

sian–LG–assumption) synchronous T2TF algorithm

is generalized for the asynchronous situation, where the

information configuration of memoryless fusion with

partial information feedback (feedback only to the cen-

tral track) [15] is used. The resulting algorithm accounts

exactly for the crosscovariances between the central and

local tracks. It handles both the asynchronous sampling

times of the local trackers and the fusion of delayed

tracks, and guarantees the consistency of the fused es-

timates. The optimal algorithms for the more compli-

cated AT2TF with memory is not considered here, due

to the limited gain in tracking accuracy, especially when

significant geometric diversity exists among the local
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tracks.1 The drawback of the optimal AT2TF algorithm

is its high communication cost and high complexity,

which is very difficult to use for scenarios with more

than two trackers and AT2TF with full information feed-

back.

Then the Information Matrix Fusion (IMF) is gen-

eralized for the fusion of asynchronous tracks. The

algorithm for AT2TF with partial information feed-

back (AT2TFpf) based on the generalized IMF (GIMF)

approach, denoted as AT2TFpfIMF, is presented and

compared with AT2TFwoMpfOpt. It is shown that

AT2TFpfIMF, although heuristic, is consistent and has

a similar level of fusion accuracy as AT2TFwoMpfOpt.

Due to the simplicity of AT2TFpfIMF compared to

AT2TFwoMpfOpt, it is an appealing candidate for prac-

tical applications. Finally, the use of the GIMF approach

for AT2TF with full information feedback (AT2TFff) is

presented. The resulting fusion algorithm AT2TFffIMF

is shown to yield consistent and accurate fusion results.

Its variations with further savings in communication and

little loss in fusion consistency and accuracy are also

investigated.

The paper is organized as follows. Section 2 for-

mulates the AT2TF problem. Section 3 presents the

optimal fusion algorithm, AT2TFwoMpfOpt. Section 4

compares AT2TFwoMpfOpt with three approximate al-

gorithms from [13]. Section 5 presents and evaluates

the GIMF based algorithms for AT2TF with partial and

full information feedback. The paper is summarized in

Section 6.

2. PROBLEM FORMULATION

For the sake of simplicity, the basic scenario of the

fusion of two tracks of a target from two local trackers is

considered.2 The trackers operate asynchronously with

sampling intervals T1 and T2. Tracker 1 is collocated

with the FC, whose track is available for fusion with no

time delay. Tracker 2 is a remote tracker which sends

its track (x̂2(tc j tc),P2(tc j tc)) to the FC once in a while,
where the communication time tc is the time stamp of

the local track. The track arrives at the FC with a random

communication delay TD. When track 2 is received, the

FC fuses track 1 with the delayed track 2 at fusion time

tf (with tf ¸ tc+TD), which can be written as
[x̂c(tf j tf),Pc(tf j tf)]

= f[x̂1(tf j tf),P1(tf j tf), x̂2(tc j tc),P2(tc j tc), : : :]
(1)

where (x̂c(tf j tf),Pc(tf j tf)) is the fused track. Depend-
ing on the fusion algorithm, additional information will

be required, which is indicated by the “: : :” in (1).

For the configuration with partial information feedback,

1In such cases, track estimates from the local trackers provide com-

plementary perspectives of the target state.
2The problem of track-to-track association is not considered.

after the fusion, track 1 continues with the fused track

(x̂c(k j k),Pc(k j k)) which has improved accuracy, while
local tracker 2 operates by itself unaffected by the fu-

sion. For AT2TF with full information feedback, the

fused track is sent back to tracker 2. When the feedback

arrives, tracker 2 will fuse it with its local information

and continue with the fused result. (See Section 5.3 for

the details.)

3. THE OPTIMAL ALGORITHM FOR AT2TFPF
WITHOUT MEMORY AND WITH PARTIAL
INFORMATION FEEDBACK–AT2TFWOMPFOPT

The optimal algorithm for asynchronous T2TF

(AT2TF) is presented only for the configuration of fu-

sion with no memory and with partial information feed-

back, in view of the following facts:

² T2TF with no memory has some performance loss
compared to the T2TF with memory; however, this

is not significant especially when there is significant

geometric diversity among the local trackers.

² For AT2TF in the presence of communication delays,
the exact algorithm for the configuration with full

information feedback is impractical.

The objective of the AT2TF is to fused track 1,

given by x̂1(tf j tf),P1(tf j tf), with the predicted track
2, given by x̂2(tf j tc),P2(tf j tc). Compared to the syn-
chronous T2TF [15], there are two additional issues to

address. The first one is that the sampling (measure-

ment) times of the two trackers are different. This causes

difficulties for the calculation of the crosscovariances

between tracks. The solution to this problem is to use

the union of the sampling times, where zero filter gains

are used for the tracks at sampling times when there is

no actual measurement available for update. Then the

crosscovariance between tracks can be calculated as in

the synchronized case using (2) below.

Fig. 1 illustrates the idea of the union of the sampling

times. Fig. 1(a) shows the time axis of tracker 1, on

which the black circles indicate when tracker 1 received

measurements and did actual track updates.3 Fig. 1(b)

shows the same for track 2. Fig. 1(c) shows the union of

the sampling times of the two trackers on the same time

axis. Then tracks 1 and 2 are discretized according to

the union of the sampling times in Fig. 1(d)—(e), where

the black circles represent actual track updates and the

white circles represent virtual track updates, i.e., with

zero filter gains.

To differentiate the original tracks and the dis-

cretized tracks according to the union of the sampling

times, the latter are denoted as x̂i¤ with “*” superscript

for the track index. The exact crosscovariance between

the two tracks at the any time ta > tl is calculated as

3It is assumed that the local trackers have no delay between when a

measurement is taken and the track update. Delay is assumed in the

communication between tracker 2 and the FC.
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Fig. 1. The union of the sampling times.

follows

P1¤2¤(ta j ta) =We
1¤(ta, tl)P1¤2¤(tl j tl)We

2¤(ta, tl)
0

+

aX
i=l+1

Wv
1¤(ta, ti¡1)Q(ti, ti¡1)W

v
2¤(ta, ti¡1)

0

(2)

where tl, designated as the “prior time,” is the most
recent time at which the crosscovariance between the
two tracks is available; the summation in (2) is over the
set ftl, : : : , tag, which is the union of the sampling times
in the time interval [tl, ta]; and

We
s¤ (ta, tl) =

a¡l¡1Y
i=0

[I¡Ks¤ (ta¡i)Hs¤ (ta¡i)]F(ta¡i, ta¡i¡1) (3)

Wv
s¤ (ta, ti¡1) =¡

(
a¡i¡1Y
j=0

[I¡Ks¤ (ta¡j)Hs¤ (ta¡j)]F(ta¡j , ta¡j¡1)
)

¢ [I¡Ks¤ (ti)Hs¤ (ti)], s= 1,2: (4)

where Ks¤(ti), i = l+1, : : : ,a are the local Kalman filter
gains, which are zero for the virtual updates; Hs¤(ti) are
the observation matrices at local tracker s and F(ti, ti¡1)
are the state transition matrices from ti¡1 to ti. Note that
the calculation of the exact crosscovariance between two
tracks requires the local filter gains and observation ma-
trices at every sampling time, which puts a high require-
ment on communication capacity. An approximate ap-
proach to save communication cost can be found in [15].
Note that, for the synchronous T2TF, the system can

use either the Discretized Continuous-time Kinematic
Model or the Direct Discrete-Time Kinematic Model
(see [1] Secs. 6.2 and 6.3). However, for AT2TF, the
use of the union the sampling times requires to break
the local process noises down to finer pieces (shorter
time intervals). To preserve the process noise white-
ness after the finer discretization, only the Discretized
Continuous-Time Kinematic Model should be used.

The second issue is that the fusion of local estimates

with time delays makes it more difficult to calculate the

crosscovariance between the local tracks. The flowchart

in Fig. 2 for the crosscovariance calculation and track-

to-track fusion should be carefully followed. Starting

from the first fusion, as shown in Fig. 2(a), tl(1) denotes

the prior time of the 1st fusion when the most up-

to-date covariances and crosscovariances between the

two tracks, i.e., P1(tl(1) j tl(1)), P2(tl(1) j tl(1)) and P12(tl(1) j
tl(1)), are available at the FC. The communication time

tc(1) is the time when track 2, namely, (x̂2(tc(1) j tc(1)),
P2(tc(1) j tc(1))), is sent to the FC for the first fusion. Due
to the time delay in data transmission, at fusion time

tf(1), track (x̂1(tf(1) j tf(1)),P1(tf(1) j tf(1))) will be fused
with the predicted track (x̂2(tf(1) j tc(1)),P2(tf(1) j tc(1))).
The first fusion is done as follows

² Discretize both track 1 and the delayed track 2 from
tl(1) to tf(1) according to the union of the sampling

times.

² Propagate the prior information from tl(1) to tc(1)

P1¤(tc(1) j tc(1))

=

8>>><>>>:
P1(tc(1) j tc(1)), if an actual track 1

update occurred at tc(1)

F(tc(1), tc1)P1(tc1 j tc1)F(tc(1), tc1)0
+Q(tc(1), tc1), otherwise

(5)

where tc1 is the latest time before tc(1) when track 1

was updated and Q(tc(1), tc1) is the cumulative effect

of the process noise in the interval (tc1, tc(1)]. For

tracker 2

P2¤(tc(1) j tc(1)) = P2(tc(1) j tc(1)) (6)

and the crosscovariance P1¤2¤(tc(1) j tc(1)) is calculated
using (2) from tl(1) to tc(1).

Note that, with x̂2(tc(1) j tc(1)) and P2(tc(1) j tc(1)) sent
to the FC, at this point the covariances and crossco-

variances between the two tracks, namely, P1¤(tc(1) j
tc(1)), P2¤(tc(1) j tc(1)) and P1¤2¤(tc(1) j tc(1)), are available
at tc(1), which makes tc(1) the new prior time tl(2) for

the second fusion.

² Then predict the received track 2 from tc(1) to the

fusion time tf(1)

x̂2¤(tf(1) j tf(1)) = x̂2(tf(1) j tc(1))
= F(tf(1), tc(1))x̂2(tc(1) j tc(1)) (7)

P2¤(tf(1) j tf(1)) = P2(tf(1) j tc(1))
= F(tf(1), tc(1))P2(tc(1) j tc(1))F(tf(1), tc(1))0

+Q(tf(1), tc(1)) (8)

where F(tf(1), tc(1)) is the state transition matrix from

time tc(1) to tf(1) and Q(tf(1), tc(1)) is the cumulative

effect of the process noises in [tc(1), tf(1)].
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Fig. 2. Flowchart of T2TFwoMpf with feedback to tracker 1 and delayed track 2 (“- - - -” shows prediction).

² With (5)—(6), the crosscovariance P1¤2¤(tf(1)f j tf(1)) is
calculated using the union of the sampling times using

(2) from tc(1) to tf(1).

² x̂1¤(tf(1) j tf(1)) and P1¤(tf(1) j tf(1)) are available at the
FC.

² With the information above, the optimal AT2TF is
done using the LMMSE fuser [1]

x̂c(tf(1) j tf(1)) = x̂1¤ (tf(1) j tf(1)) + [P1¤ (tf(1) j tf(1))¡P1¤2¤ (tf(1) j tf(1))]
¢ [P1¤ (tf(1) j tf(1)) +P2¤ (tf(1) j tf(1))¡P1¤2¤ (tf(1) j tf(1))0 ¡P1¤1¤ (tf(1) j tf(1))]¡1[x̂2¤ (tf(1) j tf(1))¡ x̂1¤ (tf(1) j tf(1))]

= x̂1¤ (tf(1) j tf(1)) +K1¤2¤ (tf(1))[x̂2¤ (tf(1) j tf(1))¡ x̂1¤ (tf(1) j tf(1))]
= (I¡K1¤2¤ (tf(1)))x̂1¤ (tf(1) j tf(1)) +K1¤2¤ (tf(1))x̂2¤ (tf(1) j tf(1)) (9)

Pc(tf(1) j tf(1)) = P1¤ (tf(1) j tf(1))¡ [P1¤ (tf(1) j tf(1))¡P1¤2¤ (tf(1) j tf(1))]
¢ [P1¤ (tf(1) j tf(1)) +P2¤ (tf(1) j tf(1))¡P1¤2¤ (tf(1) j tf(1))¡P1¤2¤ (tf(1) j tf(1))0]¡1[P1¤ (tf(1) j tf(1))¡P1¤2¤ (tf(1) j tf(1))0]:

(10)

The second fusion, as illustrated in Fig. 2(b),4 is

slightly different from the first fusion in propagating the

4Note that, in Fig. 2, it is assumed that the second communication

happens after the previous fusion. For scenarios where this assumption

does not hold, the scheme can be easily modified to accommodate the

change.

crosscovariance between track 1 and the delayed track

from the prior time tl(2) to the new communication time

tc(2), which needs to take into account the impact of the

previous fusion. This time (2) can not be used directly,

since, after the first fusion, track 1 continued with the

fused track (due to the partial information feedback),

which contains two parts: one from the old track 1

(indicated by index “o1”), the other from the predicted

track 2 (indicated by index “o2”). The crosscovariances

P1¤2¤(tc(2) j tc(2)) in the second fusion is calculated as
follows:

² Calculate the crosscovariances Po1¤2¤(tf(1) j tf(1)) and
Po2¤2¤(tf(1) j tf(1)) using (2) from tc(1) to tf(1).
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² Then, by evaluating the crosscovariance between the
fused track estimate (9) and local track 2 at tf(1), one

has

P1¤2¤(tf(1) j tf(1)) = (I¡K1¤2¤(tf(1)))Po1¤2¤(tf(1) j tf(1))
+K1¤2¤(tf(1))Po2¤2¤(tf(1) j tf(1)):

(11)

² Propagate the crosscovariance P1¤2¤(tf(1) j tf(1))
from tf(1) to tc(2) using (2). Now, with the new

P1¤2¤(tc(2) j tc(2)) calculated, tc(2) becomes the new prior
time for the next fusion, namely tl(3) = tc(2), and the

old prior information can be discarded.

The rest of the second fusion can be done exactly the

same as in the first fusion. The third fusion and the ones

afterwards are done as the second fusion.

4. AT2TFWOMPFOPT VS. THREE APPROXIMATE
ALGORITHMS FROM THE LITERATURE

Three approximate algorithms for AT2TF from

[13], denoted as AT2TFpfApprC, AT2TFpfApprB and

AT2TFpfApprA, are compared with AT2TFwoMpfOpt

proposed in Section 3. AT2TFpfApprC is the simplest

one which assumes the errors of the local tracks are

independent. AT2TFpfApprB and AT2TFpfApprA con-

sider the crosscovariance between local tracks due to the

common process noises. However, neither takes into ac-

count the crosscovariance due to the partial information

feedback from FC to tracker 1.

A 2-D tracking scenario with two local trackers 1

and 2 tracking one target is used. The target motion

follows a CWNA model5 in [1] with process noise

power spectral density (PSD) q̃. The target state is de-

fined as x= [» _» ³ _³]0, i.e., position and velocity in 2-D
Cartesian coordinates, with initial value set, without loss

of generality, as [2000 m, ¡2 m/s, 5000 m, ¡5 m/s].
Tracker 1 is collocated with the FC at the origin

(0,0), while tracker 2 is located at (X2,Y2). Tracker i

(i= 1,2) takes position measurements of the target in

its polar coordinates every Ti with zero mean white

noise errors. The range standard deviation for both

trackers is ¾ri = 10 m and the azimuth standard de-

viation is ¾ai = 1
±. The local tracks are generated us-

ing the Converted Measurement Kalman Filter [1].

Tracker 2 sends its track at prespecified time instants

to the FC with a communication delay of TD. The

simulation results are obtained from 100 Monte Carlo

runs.

Scenario 1: Fusion of tracks with high process

noise intensity and significant geometric diversity.

Tracker 2 location: (10000,0) m; Sampling intervals:

T1 = 2 s, T2 = 2:5 s; Process noise PSD: q̃= 1 m
2=s3

(maneuvering index 0.03—0.3); Comm.; delay: TD = 2 s;

Fusion times: [9 : 6 : 147] s.

5As explained in Section 3, only the discretized continuous-time kine-

matic models can be used for AT2TFpfwoMopt.

Fig. 3. AT2TFwoMpfOpt vs. three approximate AT2TF algorithms:

Consistency test (Scenario 1: high process noise).

Fig. 4. AT2TFwoMpfOpt vs. three approximate AT2TF algorithms:

RMS position errors (Scenario 1: high process noise).

As shown in Figs. 3—4, the optimal fusion algo-

rithm AT2TFwoMpfOpt is consistent by checking the

Normalized Estimation Error Squared (NEES), and it

has small tracking errors especially at the fusion times.

Algorithms AT2TFpfApprA—C, however, have consis-

tency problems, because the crosscorrelation due to the

partial information feedback is not accounted for. When

the process noise level is high, the impact of this on the

RMSE is less significant since the track estimates have

short memories.

Scenario 2: Fusion of tracks with low process

noise intensity and significant geometric diversity.

Tracker 2 location: (10000,0) m; Sampling intervals:

T1 = 2 s, T2 = 2:5 s; Low process noise PSD: q̃=

0:01 m2=s3 (maneuvering index 0.003—0.03); Comm.

delay: TD = 2 s; Fusion times: [9 : 6 : 147] s.

As shown in Figs. 5—6, when the process noise level

is low, the RMSE performance of the three approxi-

mate algorithms becomes worse and their consistency

is much worse.

COMMENTS ON AT2TFWOMPFOPT

² The optimal algorithm for AT2TF needs to take into

account the crosscorrelation between the local tracks

due to the common process noise and, especially, the

information feedback.
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Fig. 5. AT2TFwoMpfOpt vs. three approximate AT2TF algorithms:

Consistency test (Scenario 2: low process noise).

Fig. 6. AT2TFwoMpfOpt vs. three approximate AT2TF algorithms:

RMS position errors (Scenario 2: low process noise).

² The drawbacks of the optimal fusion algorithm are its
high communication cost and complexity. Approxi-

mate algorithms that lower the cost of AT2TFwoMpf-

Opt can be found in [16].

To avoid the calculation of the crosscovariance, a

generalized Information Matrix Fusion (GIMF) [9, 6,

14] can be used for AT2TF. This is discussed in Sec-

tion 5.

5. THE GENERALIZED INFORMATION MATRIX
FUSION FOR AT2TF

The Information Matrix Fusion (IMF) [14, 8] is

optimal (equivalent to the CMF) only at full rate. At

a reduced rate, the algorithm is heuristic, but it works

remarkably well over the practical range of process

noise levels [7]. In this section, the generalized form

of the IMF is presented for asynchronous T2TF. Then,

based on the generalized IMF (GIMF), algorithms for

AT2TF with partial and full information feedback are

presented and evaluated.

5.1. The Generalized Form of the Information Matrix
Fusion

Consider the fusion of track 1 at the FC and a

delayed local track from tracker 2. Suppose one has

Fig. 7. Information flow of AT2TFpfIMF.

² track (x̂1(tf j tf),P1(tf j tf)), from tracker 1 (same as

FC)

² tracks (x̂2(t1 j t1),P2(t1 j t1)) and (x̂2(t2 j t2),P2(t2 j t2))
from tracker 2, t1 < t2 · tf .

All the above are from the same target. The fused track

at tf according to the Generalized Information Matrix

fusion (GIMF) is given by

P(tf)
¡1 = P1(tf j tf)¡1 + [P2(tf j t2)¡1¡P2(tf j t1)¡1]

(12)

P(tf)
¡1x̂(tf) = P

1(tf j tf)¡1x̂1(tf j tf)
+ [P2(tf j t2)¡1x̂2(tf j t2)¡P2(tf j t1)¡1x̂2(tf j t1)]

(13)

which contains the information from (x̂1(tf j tf),
P1(tf j tf)) and the information gain fZ2gt2t1 from track 2
which is due to the local measurements during t1 < t· t2
and quantified by the expression in the brackets in (12).

While the GIMF defined by (12)—(13) is not optimal,6

these equations will be used to obtain several near-

optimal practical fusers in the sequel.

5.2. AT2TF with Partial Information Feedback Using
GIMF–AT2TFpfIMF

This subsection presents the algorithm for AT2TF

with partial information feedback using IMF (AT2TFpf-

IMF) and compares it with the exact algorithm AT2TF-

woMpfOpt in Section 3.

Fig. 7 shows the information flow of AT2TFpfIMF.

Suppose at time t1, for the first time, tracker 2 sent its

track (x̂2(t1 j t1),P2(t1 j t1)) to the Fusion Center (FC),
which represents the information set fZ2gt1t0 . The track
arrived at the FC at time t2 and was fused with track 1

using the GIMF from Section 5.1 as

PF(t2)
¡1 = P1(t2 j t2)¡1 + [P2(t2 j t1)¡1¡ 0]

(14)

PF(t2)
¡1x̂F(t2) = P

1(t2 j t2)¡1x̂1(t2 j t2)
+ [P2(t2 j t1)¡1x̂2(t2 j t1)¡ 0]: (15)

Note that at t0 we assume zero initial information about

the target state (P2(t0 j t0)¡1 = 0) which accounts for
the zero terms above. The fused track contains the

6As indicated before the IMF optimality requires the fusion to be

performed at every time any of the local tracks are updated [2].
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information set

ZF(t2) = fZ1gt2t0 + fZ2gt1t0 (16)

where fZ1gt2t0 is from track 1 and fZ2gt1t0 is from the

delayed track 2. After the fusion, according to the partial

information feedback, tracker 1 continues with the fused

track, namely,

x̂1(t+2 j t+2 ) = x̂F(t2) (17)

P1(t+2 j t+2 ) = PF(t2) (18)

where t+2 means at t2 after the fusion.

For the next fusion, local tracker 2 sends its track

(x̂2(t3 j t3),P2(t3 j t3)) to the FC at t3; the fusion at t4 is
done using the GIMF approach as follows

PF(t4)
¡1

= P1(t4 j t4)¡1 + [P2(t4 j t3)¡1¡P2(t4 j t1)¡1] (19)

PF(t4)
¡1x̂F(t4)

= P1(t4 j t4)¡1x̂1(t4 j t4)
+ [P2(t4 j t3)¡1x̂2(t4 j t3)¡P2(t4 j t1)¡1x̂2(t4 j t1)]:

(20)

The fused track contains the information set

ZF(t4) = fZF(t2)+ fZ1gt4t2g+ fZ2gt3t1 (21)

where fZF(t2)+ fZ1gt4t2g is from track 1 at t4 and fZ2gt3t1
is from the information gain at tracker 2 from t1 to t3.

The subsequent fusions are done in the same fashion.

The performance of AT2TFpfIMF is compared next

with AT2TFwoMpfOpt in a tracking scenario similar

to those used in Section 3.

Scenario 3: Tracker 2 location: (5000,0) m; Sam-

pling intervals: T1 = 2 s, T2 = 2:5 s; Process noise PSD

q̃= 10¡1 m2=s3 (maneuvering index 0.009—0.09);

Comm. delay: TD = 7 s; Fusion times: [11 : 8 : 150] s.

As shown in Figs. 8—9, AT2TFpfIMF, although

heuristic, is consistent and has small errors as

AT2TFwoMpfOpt. Compared to tracker 1 operating by

itself, the improvement in tracking accuracy from the

information feedback is very significant, primarily be-

cause of the geometric diversity between the two track-

ers. At the fusion times, the performance gap between

AT2TF and the CMF is caused by the communication

delay.

Following reasons contribute to the applicability of

GIMF in AT2TF:

² The information gain from track 2, fZ2gt2t1 , quanti-
fied by [P2(tf j t2)¡1¡P2(tf j t1)¡1] in (12), is due
to the local measurements from (t1 t2] and can be

viewed as approximately independent from the other

tracks. This coincides with the idea of the tracklet

fusion [10].

² The subtraction structure of the information gain

[P2(tf j t2)¡1¡P2(tf j t1)¡1] provides a desirable fea-
ture that cancels (approximately) its crosscorrelation

Fig. 8. AT2TFwoMpf vs. AT2TFpfIMF: Consistency test

(Scenario 3).

Fig. 9. AT2TFwoMpf vs. AT2TFpfIMF: RMS position errors

(Scenario 3).

with other local tracks caused by the common process

noises with the use of prediction.

Thus GIMF for AT2TF has close to optimal fusion per-

formance and is much simpler than the exact fusion of

the local tracks. It is also applicable to the configuration

of full information feedback, which will be discussed in

Section 5.3.

5.3. AT2TF with Full Information Feedback Using
GIMF–AT2TFffIMF

Due to the random communication delay in the asyn-

chronous T2TF problem, it is too complicated to de-

rive the optimal AT2TF algorithm with full information

feedback. However, without the need of calculating the

crosscovariance between the tracks, the GIMF approach

allows full information feedback in AT2TF and the fu-

sion algorithm can be used for an arbitrary number of

local trackers.

Fig. 10 shows the information flow of AT2TF with

full information feedback (AT2TFff) using the GIMF

approach. The fusion at t2 is the same as in Section 5.2

for AT2TFpf. The fused track (x̂F(t2),P
F(t2)) from (14)—

(15) contains the information set

ZF(t2) = fZ1gt2t0 + fZ2gt1t0 (22)
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Fig. 10. Information flow of AT2TFffIMF.

where fZ1gt2t0 is from track 1 and fZ2gt1t0 is from the

delayed track 2.

Then track 1 continues with the fused track which

is also sent as feedback to local tracker 2. At time t3
the feedback arrives at tracker 2, and is fused with the

local information gain from time t1 to t3 using the GIMF

approach as follows

PF(t3)
¡1 = [P2(t3 j t3)¡1¡P2(t3 j t1)¡1] +PF(t3 j t2)¡1

(23)

PF(t3)
¡1x̂F(t3) = [P

2(t3 j t3)¡1x̂2(t3 j t3)¡P2(t3 j t1)¡1x̂2(t3 j t1)]
+PF(t3 j t2)¡1x̂F(t3 j t2) (24)

where track (x̂F(t3 j t2),PF(t3 j t2)) is the prediction of
track (x̂F(t2),P

F(t2)) from t2 to t3.

The information set of the fused track (x̂F(t3),P
F(t3))

is

ZF(t3) = fZ2gt3t1 +ZF(t2) (25).

Tracker 2 then continues with the fused track

x̂2(t+3 j t+3 ) = x̂F(t3) (26)

P2(t+3 j t+3 ) = PF(t3) (27)

where t+3 means at t3 after the fusion.

At time t4, tracker 2 sends the local information gain

from (t1 t4] to the FC,
7 which contains the information

sets fZ2gt3t1 and fZ2gt4t3 . Note that the two information
sets are separated at t3 by the event of the fusion of the

previous information feedback from the FC.

The information from fZ2gt3t1 can be retrieved from
the local the track pair (x̂2(t1 j t1),P2(t1 j t1)) and

(x̂2(t3 j t3),P2(t3 j t3)), which were sent to the FC. Sim-
ilarly, the information from fZ2gt4t3 is retrieved using
(x̂2(t+3 j t+3 ),P2(t+3 j t+3 )) and (x̂2(t4 j t4),P2(t4 j t4)) which
need to be sent to the FC.8 When the local tracks arrive

at the FC at t5, they are fused with track 1 using the

7Here it is assumed that t4 > t3, which means tracker 2 sent its track to

the FC after it got the information feedback from the previous fusion.

However, this assumption is not essential. The information flow can

be easily modified to accommodate the other case.
8Note that this causes additional communication cost. Algorithms that

reduces this communication cost will be discussed in Section 5.4.

GIMF as follows

PF(t5)
¡1

= P1(t5 j t5)¡1 + [P2(t5 j t3)¡1¡P2(t5 j t1)¡1]
+ [P2(t5 j t4)¡1¡P2(t5 j t+3 )¡1] (28)

PF(t5)
¡1x̂F(t5)

= P1(t5 j t5)¡1x̂1(t5 j t5)
+ [P2(t5 j t3)¡1x̂2(t5 j t3)¡P2(t5 j t1)¡1x̂2(t5 j t1)]
+ [P2(t5 j t4)¡1x̂2(t5 j t4)¡P2(t5 j t+3 )¡1x̂2(t5 j t+3 )]:

(29)

The fused track at t5 contains the information set

ZF(t5) = fZF(t2)+ fZ1gt5t2g+ fZ2gt3t1 + fZ2gt4t3
(30)

where fZF(t2)+ fZ1gt5t2g is from track 1, namely

(x̂1(t5 j t5),P1(t5 j t5)) before the fusion.
Then tracker 1 continues with the fused track (x̂F(t5),

PF(t5)) which is also sent back to local tracker 2. At t6,

when the feedback arrives, the local information fusion

is done similarly to the fusion at t3. Thus

PF(t6)
¡1 = [P2(t6 j t6)¡1¡P2(t6 j t4)¡1] +PF(t6 j t5)¡1

(31)

PF(t6)
¡1x̂F(t6) = [P

2(t6 j t6)¡1x̂2(t6 j t6)¡P2(t6 j t4)¡1x̂2(t6 j t4)]
+PF(t6 j t5)¡1x̂F(t6 j t5) (32)

where track (x̂F(t6 j t5),PF(t6 j t5)) is the prediction of
(x̂F(t5),P

F(t5)) from the feedback. The information set

of the fused track (x̂F(t6),P
F(t6)) is

ZF(t6) = fZ2gt6t4 +ZF(t5): (33)

The subsequent fusions repeat the procedure de-

scribed above. The performance of AT2TFffIMF is

demonstrated in the tracking scenario introduced in Sec-

tion 3 with the parameters specified next.

Scenario 4: Tracker 2 location: (5000,0) m;

Sampling intervals: T1 = 2 s, T2 = 3:5 s; Process noise

PSD: q̃= 10¡1 m2=s3 (maneuvering index 0.009—0.09);
Comm. delay: TD = 6 s (both directions); Fusion times:

[5 : 17 : 150] s.

Figs. 11—12 show that the local tracks with informa-

tion feedback are consistent and both achieve signifi-

cantly improved tracking accuracy. At the fusion times,

the performance gap in the RMS position errors be-

tween the fused track and the CMF is due to the com-

munication delay.

5.4. AT2TFffIMF with Reduced Communication

As discussed in Section 5.3, at time t4, two pairs

of tracks (x̂2(t1 j t1),P2(t1 j t1)), (x̂2(t3 j t3),P2(t3 j t3))
and (x̂2(t+3 j t+3 ),P2(t+3 j t+3 )), (x̂2(t4 j t4),P2(t4 j t4)) were
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Fig. 11. AT2TFffIMF: Consistency test (Scenario 4: low process

noise).

Fig. 12. AT2TFffIMF: RMS position errors (Scenario 4: low

process noise).

needed to retrieve the local information gain from t2
to t4. To reduce the communication cost, one option is

to fuse these two information gains into a single one

before the transmission. Using the GIMF, one has

P2(t+4 j t+4 )¡1

= [P2(t4 j t3)¡1¡P2(t4 j t1)¡1]
+ [P2(t4 j t4)¡1¡P2(t4 j t+3 )¡1] (34)

P2(t+4 j t+4 )¡1x̂2(t+4 j t+4 )
= [P2(t4 j t3)¡1x̂2(t4 j t3)¡P2(t4 j t1)¡1x̂2(t+4 j t1)]
+ [P2(t4 j t4)¡1x̂2(t4 j t4)¡P2(t4 j t+3 )¡1x̂2(t4 j t+3 )]:

(35)

Then the fused track (P2(t+4 j t+4 )¡1x̂2(t+4 j t+4 ),
P2(t+4 j t+4 )¡1), which summarizes the information gain
from fZ2gt3t1 and fZ2gt4t3 , is sent to the FC.9
For AT2TF at t5 at the FC, the straightforward

way is to predict the track from t4 to t5, which yields

(x̂2(t5 j t+4 ),P2(t5 j t+4 )) and fuse it with track (x̂1(t5 j t5),

9Here the information form of the track is used, which is equivalent

to the regular form as long as the covariance of the track is invertible.

P1(t5 j t5)) as if their errors were independent, i.e.,
PF(t5)

¡1 = P1(t5 j t5)¡1 +P2(t5 j t+4 )¡1 (36)

PF(t5)
¡1x̂F(t5) = P

1(t5 j t5)¡1x̂1(t5 j t5)
+P2(t5 j t+4 )¡1x̂2(t5 j t+4 ): (37)

However, this direct prediction approach, denoted
as AT2TFffIMFDP, ignores completely the crosscovari-

ance between the predicted track and track 1 due to the

common process noise.

A more sophisticated approach, denoted as AT2TF-

ffIMFFBP, uses fusion before prediction, where track
(P2(t+4 j t+4 )¡1x̂2(t+4 j t+4 ),P2(t+4 j t+4 )¡1) is fused first with
track 1 at t4, which gives

PF(t4 j t4)¡1

= P1(t4 j t4)¡1 +P2(t+4 j t+4 )¡1 (38)

PF(t4 j t4)¡1x̂F(t4 j t4)
= P1(t4 j t4)¡1x̂1(t4 j t4)
+P2(t+4 j t+4 )¡1x̂2(t+4 j t+4 ): (39)

Then the fusion at t5 can be done using the GIMF as

PF(t5)
¡1

= P1(t5 j t5)¡1 + [PF(t5 j t4)¡1¡P1(t5 j t4)¡1]
(40)

PF(t5)
¡1x̂F(t5)

= P1(t5 j t5)¡1x̂1(t5 j t5)
+ [PF(t5 j t4)¡1x̂F(t5 j t4)¡P1(t5 j t4)¡1x̂1(t5 j t4)]

(41)

where [PF(t5 j t4)¡1¡P1(t5 j t4)¡1] is the information
gain between predicted tracks (x̂F(t5 j t4),PF(t5 j t4)) and
(x̂1(t5 j t4),P1(t5 j t4)) due to the fusion of (P2(t+4 j t+4 )¡1
¢ x̂2(t+4 j t+4 ),P2(t+4 j t+4 )¡1).
The performances of AT2TFffIMFDP and AT2TFff-

IMFFBP are compared by simulations in a tracking sce-

nario similar to those used in Section 3 with the param-

eters specified next.

Scenario 5: Tracker 2 location: (5000,0) m; Sam-

pling intervals: T1 = 2 s, T2 = 3:5 s; Process noise PSD:

q̃= 1 m2=s3 (maneuvering index 0.03—0.3); Comm. de-

lay: TD = 6 s (both directions); Fusion times: [5 : 17 :

150] s. As before, the simulation results are obtained

from 100 MC runs.

Fig. 13 shows that AT2TFffIMFFBP has better con-

sistency at the fusion times than AT2TFffIMFDP. This is

because AT2TFffIMFFBP by using the fusion before pre-

diction approach has better crosscorrelation cancelation

effect. For the tracking scenario considered, the moder-

ate inconsistency of AT2TFffIMFDP causes little loss in

fusion accuracy. The accuracies of both of these fusion

algorithms are practically as good as AT2TFffIMF.
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Fig. 13. AT2TFffIMFDP vs. AT2TFffIMFFBP: Consistency test

(Scenario 5: high process noise).

6. CONCLUSIONS

The optimal algorithm for Asynchronous Track-to-

Track Fusion (AT2TF) was obtained for the informa-

tion configuration of fusion with no memory and partial

information feedback–AT2TFwoMpfOpt. It accounts

exactly for the crosscorrelation between the two local

tracks due to the common process noise and informa-

tion feedback. The drawback of the exact AT2TF fusion

algorithm is that it has high communication and com-

putation cost, and is very difficult to use when there are

more than two trackers or for the configuration with full

information feedback.

An approximate algorithm (AT2TFpfIMF) for

AT2TF with partial information feedback based on the

GIMF was presented. It has low communication and

computation cost and is shown to have good consistency

and near optimal fusion accuracy. The use of the GIMF

approach for AT2TF with full information feedback was

also presented. The proposed algorithm (AT2TFffIMF)

was shown to be consistent and have excellent fusion

accuracy. Two variations of the algorithm, which have

lower communication cost, were derived as well. Both

have practically the same fusion accuracy as the original

algorithm.

The proposed suboptimal AT2TF algorithms based

on GIMF have low complexity and can be easily used

for an arbitrary number of local trackers, which makes

them appealing candidates for practical applications.
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