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From the Editor-In-Chief
June 2011

Transforming a Conference Paper into a
Journal Article

The ISIF VP for Conferences and the editorial board

for JAIF regularly encourage authors to submit their pa-

pers that have been published in the Proceedings of the

International Conference on Information Fusion (ICIF)

to JAIF. Papers published in peer-reviewed journals

such as JAIF receive much broader archival exposure, as

I discussed in my editorial in the June 2008 issue. How-

ever, the expectations and standards for peer-reviewed

journal papers are quite higher than those for conference

papers. Over the years, I have authored numerous con-

ference papers and after some maturing of the contribu-

tions in two or three of those papers, I have integrated

the results into a journal submission. For example, I au-

thored a paper in the 2008 ICIF on the design of nearly

constant velocity track filters for sustained maneuvers.

After the conference, I decided that the design proce-

dures should be extended to brief maneuvers to make

a contribution worthy a journal paper. I also noted that

improvements were needed in the notation and presenta-

tion of the method. In the 2011 ICIF, I authored a paper

that extended the results of 2008 to brief maneuvers

and used the improved notation. Now, I am preparing

a journal submission on the design of nearly constant

velocity filters for tracking maneuvering targets.

Based on my experience, I have developed some

suggestions for transforming a conference paper into

a manuscript that will be successful in the peer review

process of JAIF or other peer-reviewed journal.

1. Significance of Contribution One should first con-
sider the significance of the contribution of the con-

ference paper. Is the contribution novel? Will others

build upon this research? Will others use it in their

research or work? In five years, will the results still

be important? If the results are novel and the an-

swers to a couple of these questions are yes, then

you should consider preparing a journal submission.

An author of a conference paper is rarely left with-

out an idea for improving the contribution in their

paper. Then, make a list of potential improvements

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 1 JUNE 2011 1



that you have identified in the process of writing and

presenting the paper. From the list of improvements,

identify the ones that make the contribution whole

without a disproportionately large level of effort and

then complete those contributions.

2. Introduction Revise the introduction as needed to

clearly describe the problem under consideration and

include a very thorough survey of the related liter-

ature with references. Carefully and succinctly de-

scribe the contribution of the paper. Authors tend to

be a little ambiguous in the description of the contri-

bution of their paper, and this is a common mistake

because referees are expected (and can be relied on)

to doubt and challenge the contribution of a paper.

Ambiguity in the statement of the contribution tends

to raise concerns with the referees. Remember that

it is better to have a small contribution that is well

elucidated than a great contribution that is question-

able.

3. Problem Definition and Background Material Re-
view your formulation, notation and definition of the

problem and make improvements based on your ex-

perience with the conference paper. Also, add or re-

move background material as appropriate.

4. Contribution Examine the core contributions of the
paper for potential improvement in the presentation

of those contributions. Look for missing items and

potential extensions in the development of the contri-

butions. If a referee cannot follow the development

of the contributions, your manuscript is likely to be

rejected.

5. Example or Simulation Results Consider improving
the paper with a better example or different results.

You should consider using a different example and

pointing the reader to the example in your conference

paper for additional results. Also, make sure that you

have included all of the parameters and simulation

details needed to reconstruct the results. (Otherwise,

the only suitable place for submission is JIR–the

Journal of Irreproducible Results.) Failure to give a

proper level of details from the simulation results

raises questions with the referees. The feedback that

one receives at a conference most often addresses this

topic. Compare your results with what you think is

the best “competition” in the literature.

6. Concluding Remark In the concluding section (and

there must be one!), concisely summarize the con-

tributions of the paper and include any limitations

of your research. If you do not provide the limi-

tations of your results, the referee will likely make

an assessment based on an application you do not

want, and he/she will have less motivation to have the

manuscript published in the JAIF. Also, address the

significance of the contribution. This is the author's

opportunity to make the case for publication of the

manuscript. Then, the author should provide some

comments on further research and these comments

will support the significance of the paper.

7. Abstract After finishing your revision of the manu-
script for journal submission, review the abstract to

ensure that it accurately reflects the new version of

the manuscript.

I encourage authors of ICIF papers to transform

their conference papers for journal submissions for

JAIF. Publication of your research in a peer-reviewed

journal such as JAIF will give it much broader archival

exposure. Furthermore, the peer-review process will

certainly improve your research and leave you with the

sense of accomplishment.

William Dale Blair

Editor In Chief
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Tracking with Multisensor

Out-of-Sequence

Measurements with Residual

Biases

SHUO ZHANG

YAAKOV BAR-SHALOM

GREGORY WATSON

In multisensor target tracking systems, measurements from dif-

ferent sensors on the same target typically exhibit biases. These bi-

ases can be accounted for as fixed random variables by the Schmidt-

Kalman filter. Furthermore, measurements from the same target

can arrive out of sequence. Recently, a procedure for updating the

state with a multistep-lag “out-of-sequence” measurement (OOSM)

using the simpler “1-step-lag” algorithm was developed for the sit-

uation without measurement biases. The present work presents the

solution to the combined problem of handling biases from multi-

ple sensors when their measurements arrive out of sequence. The

state update with an OOSM is derived first for a KF tracker. This

technique is then extended to the case where the tracker is an IMM

estimator.
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1. INTRODUCTION

In multisensor target tracking systems, measure-

ments from different sensors on the same target typi-

cally exhibit biases. These biases can be accounted for

as fixed random variables by the Schmidt-Kalman filter.

Furthermore, measurements from the same target can

arrive out of sequence. Recently, a procedure for up-

dating the state with a multistep-lag “out-of-sequence”

measurement (OOSM) using the simpler “1-step-lag”

algorithm was developed for the situation without mea-

surement biases. The present work presents the solu-

tion to the combined problem of handling biases from

multiple sensors when their measurements arrive out of

sequence. The state update with an OOSM is derived

first for a KF tracker. This technique is then extended

to the case where the tracker is an IMM estimator.

The OOSM problem has been discussed in the liter-

ature starting with the initial work of [6] (discussed also

in [5]), which presented an approximate solution to the

problem of updating the current state of a target with an

one-step-lag OOSM, called “algorithm B” in [2]. The

optimal solution to the one-step-lag OOSM problem,

called “algorithm A,” was derived in [2]. It was also

shown in [2] that algorithm B is nearly optimal for a

one-step-lag OOSM. In [10], the comparison of algo-

rithms A and B is discussed. In the case of receiving

more that one OOSM in succession, one needs to mod-

ify algorithm A slightly (to preserve the optimality): in

addition to updating the state at the current time, one

also needs to update the state at the OOSM time using

the standard Kalman updating algorithm. Alternatively,

one can also stack multiple OOSMs in a single vector

and use (the augmented version of) algorithm A to up-

date the state with multiple OOSMs optimally in one

step (see [17] for more details). In all these works it

was assumed that the OOSM lag is less than a sam-

pling interval. This has been designated as the “one-

step-lag OOSM problem,” and thus the corresponding

algorithms can be called A1 and B1. The first solution

to the general l-step-lag OOSM problem, Bl, was pre-

sented in [11] in the framework of B1. The algorithm

Bl requires the storage of the sequence of filter gains

and measurement matrices. The approach presented in

[3] obtains the update with an l-step-lag OOSM in a

single step (a “giant leap”), i.e., it generalized the pre-

vious algorithms to an arbitrary l. Furthermore, the re-

sulting algorithms, Al1 and Bl1, have practically the

same requirements as those of A1 and B1, respectively,

for all l > 1. These algorithms have also been shown

to perform nearly optimally in [3]. A general optimal

solution to the OOSM problem was presented in [19],

but it is substantially more complicated than [3].

A particle filter (PF) approach for dealing with

OOSMs with arbitrary lags is proposed in [14], which

presented a general solution to the nonlinear/non-

Gaussian tracking problem in the presence of OOSMs.

It was observed in [12] that, accuracywise, PF has no
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advantage over KF with converted Cartesian measure-

ments or EKF, but takes much more CPU time. It was

shown in [13] that the OOSM problem can be posed

as a generalized smoothing or retrodiction problem and

the Rauch-Tung-Streibel (RTS) smoother was used to

obtain (in the linear case) an optimal algorithm for l-

step-lag OOSM. Recently, a joint probability density

approach called Accumulated State Density (ASD) is

introduced in [8] with applications to the OOSM prob-

lem. By using ASD, the standard filtering and retrodic-

tion are achieved in a unified manner. Rather than only

updating the current state, ASD evaluates the effects of

the OOSMs to all the states inside a certain window.

Section 2 presents the formulation of the OOSM

problem for biased multiple sensors. Section 3 gener-

alizes the Schmidt-Kalman filter (SKF), originally de-

veloped for tracking with a single sensor in the pres-

ence of residual biases, to the multisensor case. While

the OOSM problem with biases from multiple sensors

can be solved by augmenting the target state with all

the sensor biases, this would not be practical for real

systems. Section 4 derives the modified Joseph form

for OOSM, which considers both the cases with and

without biases. The combined problem of OOSM with

biases from multiple sensors is solved in Section 5 us-

ing the Bl1 approach combined with the SKF without

state augmentation resulting in the SKF/OOSM algo-

rithm. These techniques are also described for the case

where the tracker is an IMM estimator in Section 6.

Section 7 discusses the heuristic “covariance inflation”

approach for biases. The simulation results are given in

Section 8. Section 9 presents a discussion of the results.

2. FORMULATION OF THE PROBLEM

The state of the system, x, of dimension nx, is

assumed to evolve from time tk¡1 to time tk according
to

x(k) = F(k,k¡ 1)x(k¡ 1)+ v(k,k¡ 1) (1)

where, using only the index of the time arguments,

F(k,k¡ 1) is the state transition matrix to time tk from
time tk¡1 and v(k,k¡ 1) is the (cumulative effect of
the) process noise for this interval. The order of the

arguments in both F and v follows here the convention

for the transition matrices. Typically, the process noise

has a single argument, but here two arguments will be

needed for clarity.

The measurement equation is

zi(k)(k) =Hi(k)x (k)x(k)+wi(k)(k) +Hi(k)b (k)bi(k),

i 2 f1, : : : ,NSg (2)

where i(k) is the index of the sensor which provided the

measurement1 from time tk (the “time stamp”), w
i(k)(k)

is the corresponding measurement noise, modelled to be

1The superscript i(k) will be shortened to i wherever this does not

cause confusion.

zero-mean, and bi(k) is the residual bias for this sensor.

The dimension of the above measurement is nzi and the

dimension of the bias in this measurement is denoted

as ni. The matrix Hb multiplying the bias has been

discussed in [15] for various nonlinear measurements.

It is assumed that bias correction has been done sep-

arately (externally to the OOSM problem) following a

sensor registration procedure. Consequently, the resid-

ual bias, assumed to be a time-invariant random variable,

is zero-mean

E[bi] = 0, i 2 f1, : : : ,NSg (3)

and

cov[bi,bj] = E[bi(bj)0] = Pbibj ±ij , i,j 2 f1, : : : ,NSg
(4)

where the shorter superscripts are used.

The noises are assumed zero-mean, white with co-

variances

E[v(k,j)v(k,j)0] =Q(k,j)

E[wi(k)(k)wi(k)(k)0] = Ri(k)(k)
(5)

and, together with initial state error and the residual

biases, mutually uncorrelated.

The time ¿ , at which the OOSM was made, is

assumed to be such that

tk¡l < ¿ < tk¡l+1: (6)

This will require the evaluation of the effect of the

process noise over an arbitrary noninteger number of

sampling intervals. Note that l = 1 corresponds to the

case where the lag is a fraction of a sampling inter-

val; for simplicity this is called the “1-step-lag” prob-

lem, even though the lag is really a fraction of a time

step.

The relationship between the current state x(k) and

the state observed by the OOSM is as follows. Similarly

to (1), one has

x(k) = F(k,·)x(·)+ v(k,·) (7)

where · is the discrete time notation for ¿ . The above

can be rewritten backward as

x(·) = F(·,k)[x(k)¡ v(k,·)]: (8)

where F(·,k) = F(k,·)¡1 is the backward transition ma-
trix.

The problem is as follows: At time t= tk one has

x̂(k j k) ¢=E[x(k) j Zk]

P(k j k) ¢=cov[x(k) j Zk]
(9)

based on the (multisensor) cumulative set of measure-

ments at tk

Zk
¢
=fzi(`)(`)gk`=1: (10)
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Subsequently, the earlier measurement from time ¿ ,

denoted from now on with discrete time notation as ·,

zi(·)(·)
¢
=zi(·)(·) =Hi(·)

x (·)x(·) +wi(·)(·) +Hi(·)
b (·)bi(·)

(11)

arrives after the state estimate (9) has been calculated.

We want to update this estimate with the earlier mea-

surement (11), namely, to calculate

x̂(k j ·) = E[x(k) j Z·]
P(k j ·) = cov[x(k) j Z·]

(12)

where

Z·
¢
=fZk,zi(·)(·)g: (13)

This update should be done without reordering and

reprocessing the measurements according to their time

stamps.

3. THE MULTISENSOR SCHMIDT-KALMAN FILTER

This section presents the multisensor Schmidt-

Kalman Filter (SKF) for the case of state estimation

in the presence of residual biases but without OOSMs.

The SKF procedure [16, 7] consists of augmenting the

target state vector with the measurement bias vector,

calculating the KF gain for this augmented state but

then updating only the target state. While the bias is not

updated, its covariance stays constant, but the crossco-

variance between the bias and the state does change

when the state is updated.

In the multisensor case there are, however, as many

bias vectors as the number of sensors from which mea-

surements are obtained. Consequently, the straightfor-

ward approach would be to augment the target state

with all the biases and, while only the target state is

updated, the entire updated covariance matrix of such

an augmented state has to be calculated, yielding all the

updated state-bias crosscovariances. This approach can

be, however, very costly because of the possibly high

dimension of the augmented state–typically 6 for the

target state and with a minimum of 3 bias components

from possibly as many as 10 sensors (not an unlikely

scenario), one has at least a 36£ 36-dimensional covari-
ance matrix to be updated. The major problem with this

high-dimensional matrix occurs in the update with the

OOSM, which requires the inversion of the augmented

state covariance matrix (which is a full matrix), and this

can be computationally expensive for real time imple-

mentation.

In the development below it is shown that one can

augment the target state only with the bias of the sensor

which provided the measurement to be used for the

update and a “generic” other sensor. This allows to

obtain the updated crosscovariances of the state with

all the biases, block by block, rather than having to

update the covariance matrix of the state augmented

with all the biases. A similar procedure will be used in

the update with the OOSM to avoid the need to invert

a very large matrix. Furthermore, in the OOSM case,

the inversion will have to be done only for the (nx£ nx)
state covariance matrix, without any augmentation.

Let the augmented state, of dimension nx+ ni+nj ,

be

x
¢
=

264 xbi
¯j

375 (14)

where i is the index of the sensor that provided the mea-

surement to be used for the update at time k (the time ar-

gument of this index is now dropped for simplicity) and

j is the index of a “generic” other sensor. The “generic”

sensor bias ¯j includes all the sensor biases except that

from the current measurement, e.g.,

¯j =

·
b2

b3

¸
, bi = b1 (15)

for the case NS = 3 and the current measurement is from

sensor 1. The use of a single notation ¯j is just for

simplicity. The state equation for this augmented state

is

x(k) = F(k,k¡ 1)x(k¡ 1)+ v(k,k¡ 1) (16)

where

F(k,k¡ 1) ¢=

264F(k,k¡ 1) 0 0

0 Ini 0

0 0 Inj

375 (17)

Ini denotes the ni£ ni identity matrix and

v(k,k¡ 1) ¢=

264v(k,k¡ 1)0

0

375 (18)

i.e., the biases are assumed constant between their (ex-

ternal) updates. The measurement at time k is

zi(k) =Hi(k)x(k) +wi(k) (19)

where

Hi(k)
¢
=[Hi

x(k) Hib(k) 0]: (20)

Let the prediction covariance of x(k) be

P(k j k¡ 1)

¢
=

264 Pxx(k j k¡ 1) Pxbi (k j k¡ 1) Px¯j (k j k¡ 1)
Pxbi (k j k¡ 1)0 Pbibi (k j k¡ 1) 0

Px¯j (k j k¡ 1)0 0 P̄ j¯j (k j k¡ 1)

375

=

264 Pxx(k j k¡ 1) Pxbi (k j k¡ 1) Px¯j (k j k¡ 1)
Pxbi (k j k¡ 1)0 Pbibi 0

Px¯j (k j k¡ 1)0 0 P̄ j¯j

375 :
(21)
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Then the optimal filter gain for updating x(k) is

Wi(k)OPT = P(k j k¡ 1)Hi(k)0Si(k)¡1

= P(k j k¡ 1)Hi(k)0

¢ [Hi(k)P(k j k¡ 1)Hi(k)0+Ri(k)]¡1

=

264W
i
x (k)

Wi
bi
(k)

Wi
¯j
(k)

375 (22)

which consists of three blocks.

The idea of the SKF is to use only the top block

from the above, i.e., the actual gain will be

Wi(k) =

264W
i
x (k)

0

0

375 (23)

The expression of this block is

Wi
x (k) = [Pxx(k j k¡ 1)Hi

x(k)
0+Pxbi (k j k¡ 1)Hi

b(k)
0]Si(k)¡1

(24)

where the innovation covariance is

Si(k) =Hi
x(k)Pxx(k j k¡ 1)Hi

x(k)
0+Hi

x(k)Pxbi (k j k¡ 1)Hi
b(k)

0

+Hi
b(k)Pbix(k j k¡ 1)Hi

x(k)
0+Hi

b(k)PbibiH
i
b(k)

0+Ri(k):

(25)

Since (23) is a suboptimal gain, the state covariance2

update equation to be used in this case is the Joseph

form (see, e.g., [1], Eq. (5.2.3-18)), which is the only

one valid for an arbitrary gain. Thus, we have

P(k j k) = [Inx+ni+nj ¡Wi(k)Hi(k)]P(k j k¡ 1)

¢ [Inx+ni+nj ¡Wi(k)Hi(k)]0

+Wi(k)Ri(k)Wi(k)0: (26)

Using (20), (21), and (23), the blocks of (26) are

obtained as

Pxx(k j k) = [Inx ¡Wi
x (k)H

i
x(k)]Pxx(k j k¡ 1)[Inx ¡Wi

x (k)H
i
x(k)]

0

¡Wi
x (k)H

i
b(k)Pxbi (k j k¡ 1)0[Inx ¡Wi

x (k)H
i
x(k)]

0

¡ [Inx ¡Wi
x (k)H

i
x(k)]Pxbi (k j k¡ 1)Hi

b(k)
0Wi
x (k)

0

+Wi
x (k)H

i
b(k)PbibiH

i
b(k)

0Wi
x (k)

0+Wi
x (k)R

i(k)Wi
x (k)

0

(27)

2Actually this is not “state covariance” but “state-error covariance,”

since the state estimate is not the conditional mean any more due to

the use of the suboptimal gain. However, for simplicity we still use

the term “state covariance.”

Pxbi (k j k) = [Inx ¡Wi
x (k)H

i
x(k)]Pxbi (k j k¡ 1)¡Wi

x (k)H
i
b(k)Pbibi

(28)

Px¯j (k j k) = [Inx ¡Wi
x (k)H

i
x(k)]Px¯j (k j k¡ 1), 8j 6= i(k)

(29)

Pbibi (k) = Pbibi (k¡ 1) = Pbibi (30)

P̄ j¯j (k) = P̄ j¯j (k¡ 1) = P̄ j¯j (31)

Pbi¯j (k) = 0: (32)

The state update is done, in view of (23), according

to

x̂(k j k) = x̂(k j k¡ 1)+Wi
x (k)º

i(k) (33)

where the innovation corresponding to zi(k) is

ºi(k) = zi(k)¡Hi
x(k)x̂(k j k¡ 1): (34)

The prediction equations, based on the model (16)

are the standard ones, namely,

x̂(k j k¡ 1) = F(k,k¡ 1)x̂(k¡ 1 j k¡ 1) (35)

and for the covariance

P(k j k¡ 1) = F(k,k¡ 1)P(k¡ 1 j k¡1)F(k,k¡ 1)0

+Q(k,k¡ 1): (36)

where

Q(k,k¡ 1) ¢=diag[Q(k,k¡ 1),0ni ,0nj ]: (37)

The blocks of the prediction covariance (36) are calcu-

lated as

Pxx(k j k¡ 1) = F(k,k¡ 1)Pxx(k¡ 1 j k¡1)F(k,k¡ 1)0

+Q(k,k¡ 1) (38)

Pxbi (k j k¡ 1) = F(k,k¡ 1)Pxbi (k¡1 j k¡ 1) (39)

Px¯j (k j k¡ 1) = F(k,k¡ 1)Px¯j (k¡ 1 j k¡ 1),
8j 6= i(k): (40)

Equations (28) and (29) yield the updated crossco-

variances of the state with the bias in the measurement

used in the update and with each bias in the other mea-

surements, respectively. This procedure avoids having

to handle the update of a potentially very large covari-

ance matrix. The crosscovariance of the state with the

bias in another sensor’s measurement will be needed

when that sensor’s measurement becomes available for

updating the state. Similarly, the predicted crosscovari-
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ances are obtained using (39) and (40) and they are the

same for all the biases.

Thus, the above equations show how one can obtain

the state estimate of the target accounting for all the

biases in a multisensor situation, without resorting to

state augmentation as far as the computations are con-

cerned. The augmentation was used only to obtain the

covariance matrix block updates.

4. MODIFIED JOSEPH FORM FOR OOSM

As discussed above, since the filter gain in the SKF

is not optimal, the Joseph form should be used for

covariance update. For an out-of-sequence measurement

(OOSM), the time of the OOSM is not at the current

time, so the Joseph should be modified accordingly.

First, we consider the standard Joseph form. Then, the

modified Joseph forms for OOSM are derived for the

cases with and without residual biases.

4.1. Standard Joseph Form

The state model and measurement model are given

by

x(k) = F(k)x(k¡ 1)+ v(k¡1) (41)

z(k) =H(k)x(k) +w(k) (42)

where v(k) and w(k) are mutually independent white

noise sequences with covariance Q(k) and R(k), respec-

tively. The state estimate using a Kalman Filter is given

by

x̂(k j k) = x̂(k j k¡ 1)+W(k)º(k) (43)

whereW is the filter gain and º is the innovation, which

is given by

º(k) = z(k)¡H(k)x̂(k j k¡ 1)
=H(k)x(k)+w(k)¡H(k)x̂(k j k¡ 1): (44)

By substituting (44) into (43), the state estimate can be

written as

x̂(k j k) = x̂(k j k¡ 1)+W(k)H(k)[x(k)¡ x̂(k j k¡1)]
+W(k)w(k): (45)

Then, using (45) the estimation error at time k is given

by

x̃(k j k) = x(k)¡ x̂(k j k)
= [I¡W(k)H(k)][x(k)¡ x̂(k j k¡ 1)]¡W(k)w(k)
= [I¡W(k)H(k)]x̃(k j k¡ 1)¡W(k)w(k)

(46)

where x̃(k j k¡ 1) is the prediction error. Thus, the

error covariance P(k j k) can be obtained as

P(k j k) = covfx̃(k j k)g

= [I¡W(k)H(k)]covfx̃(k j k¡ 1)g
¢ [I¡W(k)H(k)]0+W(k)covfw(k)gW(k)0

= [I¡W(k)H(k)]P(k j k¡ 1)[I¡W(k)H(k)]0

+W(k)R(k)W(k)0 (47)

due to the fact that the prediction error x̃(k j k¡1) is
independent of the measurement noise w(k). Formula

(47) is known as the Joseph form.

4.2. Modified Joseph Form For OOSM Without
Residual Biases

Now, we consider an OOSM z(·) (· < k). The most

recent state estimate after receiving z(·) is given by

[3]

x̂(k j ·) = x̂(k j k)+W(k,·)º(·) (48)

where º(·) is the innovation at time · of the OOSM,

that is

º(·) = z(·)¡H(·)x̂(· j k): (49)

Using the suboptimal technique B [5] (performed within

1% of the optimum when the OOSM has a one-step lag),

the state retrodiction x̂(· j k) is given by
x̂(· j k) = F(·,k)x̂(k j k) (50)

and º(·) is obtained as

º(·) = z(·)¡H(·)F(·,k)x̂(k j k)

=H(·)x(·) +w(·)¡H(·)F(·,k)x̂(k j k)

=H(·)F(·,k)[x(k)¡ v(k,·)]
+w(·)¡H(·)F(·,k)x̂(k j k)

=H(·)F(·,k)[x(k)¡ x̂(k j k)]
¡H(·)F(·,k)v(k,·) +w(·) (51)

which has made use of (8). Substituting (51) into (48),

we have

x̂(k j ·) = x̂(k j k) +W(k,·)H(·)F(·,k)[x(k)¡ x̂(k j k)]
¡W(k,·)H(·)F(·,k)v(k,·)+W(k,·)w(·):

(52)
Thus, the estimation error is

x̃(k j ·) = x(k)¡ x̂(k j ·)

= [I¡W(k,·)H(·)F(·,k)][x(k)¡ x̂(k j k)]
+W(k,·)H(·)F(·,k)v(k,·)¡W(k,·)w(·)

= [I¡W(k,·)H(·)F(·,k)]x̃(k j k)
+W(k,·)H(·)F(·,k)v(k,·)¡W(k,·)w(·):

(53)
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Using (53), the error covariance is given by

P(k j ·) = covfx̃(k j ·)g
= [I¡W(k,·)H(·)F(·,k)]covfx̃(k j k)g
¢ [I¡W(k,·)H(·)F(·,k)]0

+W(k,·)H(·)F(·,k)covfv(k,·)g
¢ [W(k,·)H(·)F(·,k)]0

+W(k,·)covfw(·)gW(k,·)0

+[I¡W(k,·)H(·)F(·,k)]
¢ covfx̃(k j k),v(k,·)g
¢ [W(k,·)H(·)F(·,k)]0

+W(k,·)H(·)F(·,k)covfv(k,·), x̃(k j k)g
¢ [I¡W(k,·)H(·)F(·,k)]0

= [I¡W(k,·)H(·)F(·,k)]P(k j k)
¢ [I¡W(k,·)H(·)F(·,k)]0

+W(k,·)H(·)F(·,k)Q(k,·)

¢ [W(k,·)H(·)F(·,k)]0

+W(k,·)R(·)W(k,·)0

+[I¡W(k,·)H(·)F(·,k)]Pxv(k,· j k)
¢ [W(k,·)H(·)F(·,k)]0

+W(k,·)H(·)F(·,k)Pxv(k,· j k)0

¢ [I¡W(k,·)H(·)F(·,k)]0 (54)

due to the fact that the measurement noise w(·) of the

OOSM is independent of the estimation error x̃(k j k)
and the process noise v(k,·). Note that, we have (as in

[2] Eq. (22))

Pxv(k,· j k) = covfx̃(k j k),v(k,·)g
= covfx(k),v(k,·) j Zkg (55)

since the covariance is independent of the conditioning

Zk. Therefore, when OOSM is considered and the state

estimation is given by the technique B, the Joseph form

should be modified as in (54).

4.3. Modified Joseph Form For OOSM With Residual
Biases

Next, we derive the Joseph form by considering both

OOSM and residual biases of the sensors, i.e., (54) for

the state augmented with the biases. Using (14), the state

equation for this augmented state evolving from · (the

time of the OOSM) to the current time k is given by

x(k) = F(k,·)x(·)+ v(k,·) (56)

where

F(k,·) =

264F(k,·) 0 0

0 Ini 0

0 0 Inj

375 (57)

and

v(k,·) =

264v(k,·)0

0

375 : (58)

The corresponding covariance of v(k,·) is

Q(k,·) =

264Q(k,·) 0 0

0 0 0

0 0 0

375 : (59)

The OOSM at time · obtained from sensor i is

zi(·) =Hi(·)x(·)+wi(·) (60)

where

Hi(·) = [Hix(·) Hi
b(·) 0]: (61)

Let the updated covariance of x(k) be

P(k j k) =

264 Pxx(k j k) Pxbi (k j k) Px¯j (k j k)
Pxbi(k j k)0 Pbibi 0

Px¯j (k j k)0 0 P̄ j¯j

375
(62)

and the crosscovariance between x(k) and v(k,·) be

Pxv(k,· j k) =

264Pxv(k,· j k) 0 0

0 0 0

0 0 0

375 (63)

due to the independence between the sensor biases and

process noise. The SKF gain using the OOSM z(·) at

time k is

Wi(k,·) =

264W
i
x (k,·)

0

0

375 : (64)

Then, using the modified Joseph form given in (54), the

covariance for the state augmented with residual biases

can be written as

P(k j ·) = [Inx+ni+nj ¡Wi(k,·)Hi(·)F(·,k)]P(k j k)
¢ [Inx+ni+nj ¡Wi(k,·)Hi(·)F(·,k)]0

+Wi(k,·)Hi(·)F(·,k)

¢Q(k,·)[Wi(k,·)Hi(·)F(·,k)]0

+Wi(k,·)Ri(·)Wi(k,·)0

+[Inx+ni+nj ¡Wi(k,·)Hi(·)F(·,k)]Pxv(k,· j k)
¢ [Wi(k,·)Hi(·)F(·,k)]0

+Wi(k,·)Hi(·)F(·,k)Pxv(k,· j k)0

¢ [Inx+ni+nj ¡Wi(k,·)Hi(·)F(·,k)]0: (65)
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Using (56)—(64), the blocks of (65) are obtained as

Pxx(k j ·) = [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]Pxx(k j k)

¢ [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]

0

¡Wi
x (k,·)H

i
b(·)Pxbi (k j k)0

¢ [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]

0

¡ [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]

¢Pxbi (k j k)Hi
b(·)

0Wi
x (k,·)

0

+Wi
x (k,·)H

i
b(·)PbibiH

i
b(·)

0Wi
x (k,·)

0

+Wi
x (k,·)R

i(·)Wi
x (k,·)

0

+Wi
x (k,·)H

i
x(·)F(·,k)Q(k,·)

¢ [Wi
x (k,·)H

i
x(·)F(·,k)]

0

+[Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]Pxv(k,· j k)

¢ [Wi
x (k,·)H

i
x(·)F(·,k)]

0

+Wi
x (k,·)H

i
x(·)F(·,k)Pxv(k,· j k)0

¢ [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]

0: (66)

The crosscovariance of the state at k with the bias of the

OOSM evolves as

Pxbi(k j ·) = [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]Pxbi(k j k)

¡Wi
x (k,·)H

i
b(·)Pbibi : (67)

The crosscovariance of the state at k with the other

biases evolve as

Px¯j (k j ·) = [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]Px¯j (k j k),

8j 6= i(k) (68)

and the bias covariances stay unchanged, as in (30)—

(32).

5. ONE-STEP ALGORITHM FOR MULTISTEP-LAG
OOSM FOR MULTIPLE SENSORS WITH
BIASES–SKF/OOSM

Using the approach of [3], one can perform in one

step the update with an l-step-lag OOSM. Suitable mod-

ifications will be made to account for the fact that the

measurements are biased. Two procedures, designated

as Al1 and Bl1, were presented in [3] for the situation

without biases. Both procedures retrodict the current

state to the time of the OOSM, calculate the covariance

of the retrodicted state, the retrodicted measurement and

its the covariance, the crosscovariance between the cur-

rent state and the retrodicted measurement and, with

these, one can perform the direct update of the current

state with the OOSM.

These algorithms are based on the 1-step-lag OOSM

algorithms, designated in [2] as A and B, respectively.

The difference between algorithms A and B is in the

retrodiction of the current state to the time of the

OOSM:

A) uses the exact conditional mean, which turns out

to be an affine function of the current state estimate,

with a second term being a linear transformation of the

latest innovation;

B) uses a linear function of the current state esti-

mate, which is the first term from the above.

Algorithm Al1, is similar to A but, using an (approxi-

mate) “equivalent measurement” for the measurements

in the interval [k¡ l+1,k], its second term is a linear

transformation of the innovation corresponding to the

equivalent measurement. Algorithm Bl1 uses, similarly

to B, only the first term from Al1 and it does not need

the equivalent measurement.

As shown in [3], both algorithms, while subopti-

mal, performed within 1% of the optimum obtained by

reordering and reprocessing the measurements, which

would not be practical in real systems. In view of their

performance and the fact that, in the presence of bi-

ases, the statistical relationship between the “equivalent

measurement” and the biases is difficult to quantify, the

proposed approach is to modify Bl1 to account for the

biases.

The suboptimal technique Bl1 [3] assumes the retro-

dicted noise to be zero. The retrodiction of the state to

· from k is3

x̂(· j k) = F(·,k)x̂(k j k) (69)

i.e., a linear function of x̂(k j k), rather than an affine
function. The covariance of this state retrodiction is

Pxx(· j k) = F(·,k)[Pxx(k j k)+Pvv(k,· j k)¡Pxv(k,· j k)
¡Pxv(k,· j k)0]F(·,k)0 (70)

where

Pvv(k,· j k) =Q(k,·) (71)

Pxv(k,· j k) = Pxx(k j k)Pxx(k j k¡ l)¡1Q(k,·) (72)

are the covariances of the process noise for the retro-

diction interval and its crosscovariance with the cur-

rent state, respectively. Equation (72) above follows by

substituting in Equation (37) of [3] its preceding Equa-

tions (24) and (18) and simplifying the result.

The covariance of the retrodicted measurement, as

given in Equation (39) of [3] for the situation without

biases, is, assuming the OOSM is from sensor i, given

3The superscript B used in [3] to distinguish between the variables

in algorithm versions A and B is dropped, since here we use only

algorithm B.
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by

Si(·) =Hix(·)P(· j k)Hi
x(·)

0+Ri(·): (73)

For the situation of the state augmented with biases,

(73) is replaced by

Si(·) =Hi(·)P(· j k)Hi(·)0+Ri(·)
=Hi

x(·)Pxx(· j k)Hi
x(·)

0+Hi
x(·)Pxbi (· j k)Hi

b(·)
0

+Hi
b(·)Pbix(· j k)Hi

x(·)
0+Hi

b(·)PbibiH
i
b(·)

0+Ri(·)

(74)
where, using (8), (69), one has

Pxbi (· j k) = Ef[x(·)¡ x̂(· j k)][bi]0g
= Ef[F(·,k)[x(k)¡ v(k,·)]¡F(·,k)x̂(k j k)][bi]0g
= F(·,k)Pxbi (k j k) (75)

because the residual bias and the process noise are

independent.

The crosscovariance between the state at k and the

OOSM is, for the case without biases, given by Equa-

tion (40) of [3] as

Pxzi(k,· j k) = [Pxx(k j k)¡Pxv(k,· j k)]F(·,k)0Hi
x(·)

0:

(76)

In the case with biases one has

Pxzi (k,· j k) = Ef[x(k)¡ x̂(k j k)][zi(·)¡ ẑi(· j k)]0g

= Ef[x(k)¡ x̂(k j k)][Hi
x(·)x(·) +w

i(·) +Hib(·)b
i¡Hi

x(·)F(·,k)x̂(k j k)]0g

= Ef[x(k)¡ x̂(k j k)][Hi
x(·)[F(·,k)(x(k)¡ v(k,·))]+wi(·)+Hi

b(·)b
i¡Hi

x(·)F(·,k)x̂(k j k)]0g

= [Pxx(k j k)¡Pxv(k,· j k)]F(·,k)0Hi
x(·)

0+Pxbi(k j k)Hi
b(·)

0: (77)

Therefore, the gain for the update of the current state

estimate with the OOSM zi(·) in the presence of biases

is (the first block of Wi(k,·)OPT = Pxzi (k,· j k)Si(·)¡1)

Wi
x (k,·) = Pxzi(k,· j k)Si(·)¡1 (78)

with Pxzi(k,· j k) given in (77) and Si(·) given in (74).
The update with the OOSM zi(·) of the most recent

state estimate x̂(k j k) is thus

x̂(k j ·) = x̂(k j k)+Wi
x (k,·)º

i(·) (79)

where the innovation corresponding to the OOSM zi(·)

is

ºi(·) = zi(·)¡ ẑi(· j k) (80)

and the retrodicted OOSM is

ẑi(· j k) =Hix(·)x̂(· j k) (81)

which uses the retrodicted state x̂(· j k) given in (69).
Using the filter gain given in (78) and the (approximate)

crosscovariance in (72), the covariance for the state

estimate and the crosscovariances of the state with the

biases can be obtained from (66)—(68).

As it can be seen from (72), the need to invert the

state covariance and the augmentation of the state with

all the sensor biases would make the algorithm pro-

hibitive for real-time implementation. The procedure

presented above avoids the need to invert the augmented

covariance matrix since it does not use any state aug-

mentation.

6. THE IMM ESTIMATOR IN THE PRESENCE OF
MEASUREMENT BIASES

As discussed above, one can carry out target state es-

timation with biased measurements from multiple sen-

sors without augmenting the state with all the biases.

This was shown in the context of Kalman filtering,

i.e., when a single target motion model is used. Next,

these results are extended to the case where multiple

motion models are used and the tracking filter is an

IMM estimator [1]. In this case, because of the bi-

ases, each of the r modules of the IMM will be an

SKF.

6.1. Update With A Current Measurement

In the IMM algorithm, the first step is mixing.

Using the augmented representation, the mixed state and

mixed covariance are given by

x̂0m(k¡ 1 j k¡1)

=

rX
n=1

x̂n(k¡ 1 j k¡ 1)¹njm(k¡ 1 j k¡ 1) (82)

P0m(k¡ 1 j k¡ 1)

=

rX
n=1

¹njm(k¡ 1 j k¡ 1)

¢ fPn(k¡ 1 j k¡ 1)
+ [x̂n(k¡ 1 j k¡ 1)¡ x̂0m(k¡ 1 j k¡ 1)]
¢ [x̂n(k¡ 1 j k¡ 1)¡ x̂0m(k¡1 j k¡ 1)]0g

(83)
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for m= 1, : : : ,r, where ¹njm is the mixing probability

[1], and the augmented state estimate x̂n(k¡1 j k¡ 1)
and state covariance Pn(k¡ 1 j k¡ 1) matched to mode
n are

x̂n(k¡ 1 j k¡ 1) =

264 x̂n(k¡1 j k¡ 1)0

0

375 (84)

Pn(k¡ 1 j k¡ 1) =

264 Pxnxn(k¡ 1 j k¡ 1) Pxnbi (k¡ 1 j k¡1) Pxn¯j (k¡ 1 j k¡ 1)
Pxnbi (k¡ 1 j k¡ 1)0 Pbibi 0

Pxn¯j (k¡ 1 j k¡ 1)0 0 P̄ j¯j

375 (85)

with the bias terms in (84) being zero in view of

(23). Using (82)—(85), the blocks of (82) and (83) are

obtained as

x̂0m(k¡ 1 j k¡ 1)

=

rX
n=1

x̂n(k¡ 1 j k¡ 1)¹njm(k¡ 1 j k¡ 1) (86)

P0xmxm(k¡ 1 j k¡1)

=

rX
n=1

¹njm(k¡ 1 j k¡ 1)

¢ fPxnxn(k¡ 1 j k¡ 1)

+ [x̂n(k¡1 j k¡ 1)¡ x̂0m(k¡ 1 j k¡ 1)]
¢ [x̂n(k¡1 j k¡ 1)¡ x̂0m(k¡ 1 j k¡ 1)]0g

(87)

P0xmbi (k¡ 1 j k¡1)

=

rX
n=1

¹njm(k¡ 1 j k¡ 1)Pxnbi (k¡1 j k¡ 1)

(88)

P0xm¯j (k¡ 1 j k¡ 1)

=

rX
n=1

¹njm(k¡ 1 j k¡ 1)Pxn¯j (k¡ 1 j k¡ 1)

8j 6= i(k): (89)

The likelihood of mode m at time k is, assuming

the mode-conditioned innovations to be Gaussian dis-

tributed (the common assumption [1]) is

¤m(k) =N [ºim(k);0,Sim(k)], m= 1, : : : ,r

(90)

where, with x̂m(k j k¡1) being the mode-m-conditioned
predicted state, the innovation corresponding to mode m

is, similarly to (34),

ºim(k) = z
i(k)¡Hi

x(k)x̂m(k j k¡ 1) (91)

and the innovation covariance is, similarly to (25),

Sim(k) =H
i
x(k)Pxmxm(k j k¡1)Hi

x(k)
0

+Hi
x(k)Pxmbi (k j k¡ 1)Hib(k)0

+Hi
b(k)Pbixm(k j k¡ 1)Hi

x(k)
0

+Hi
b(k)PbibiH

i
b(k)

0+Ri(k) (92)

where Pxmxm(k j k¡ 1) and Pxmbi (k j k¡ 1) are the pre-
dicted state covariance and state-bias crosscovariance

matched to mode m. In the above it is assumed that

the measurement equations are the same for all the

modes. The values of x̂m(k j k¡ 1), Pxmxm(k j k¡ 1), and
Pxmbi(k j k¡1) are obtained from (35)—(39) using the

mixed state estimate and mixed covariances given in

(86)—(89).

Based on the mode likelihoods, the model probabili-

ties at current time k, f¹m(k j k)gm=1,:::,r, can be obtained
[1], which are then used to calculate the combined state

estimate and state covariance, namely,

x̂(k j k) =
rX

m=1

x̂m(k j k)¹m(k j k) (93)

P(k j k) =
rX

m=1

¹m(k j k)

¢ fPm(k j k) + [x̂m(k j k)¡ x̂(k j k)]
¢ [x̂m(k j k)¡ x̂(k j k)]0g: (94)

Similar to the mixing step, the blocks of (93) and (94)

are obtained as

x̂(k j k) =
rX

m=1

x̂m(k j k)¹m(k j k) (95)

Pxx(k j k) =
rX

m=1

¹m(k j k)

¢ fPxmxm(k j k) + [x̂m(k j k)¡ x̂(k j k)]
¢ [x̂m(k j k)¡ x̂(k j k)]0g (96)

Pxbi (k j k) =
rX

m=1

¹m(k j k)Pxmbi (k j k) (97)

TRACKING WITH MULTISENSOR OUT-OF-SEQUENCE MEASUREMENTS WITH RESIDUAL BIASES 11



Px¯j (k j k) =
rX

m=1

¹m(k j k)Pxm¯j (k j k), 8j 6= i(k)

(98)

where the values of x̂m(k j k), Pxmxm(k j k), Pxmbi(k j k), and
Pxm¯j (k j k) are obtained from (27)—(33) for each mode.

6.2. Update With An OOSM

Using the same notations–subscripting with m the

mode-m-conditioned state estimates, covariances, in-

novations–the equations from Section 5 provide the

procedure for using an OOSM in each module. The

likelihood of each mode based on an OOSM will be,

analogously to (90),

¤m(·) =N [ºim(·);0,Sim(·)], m= 1, : : : ,r

(99)

where, with x̂m(· j k) being the mode-m-conditioned

retrodicted state, the innovation corresponding to mode

m is, similarly to (80),

ºim(·) = z
i(·)¡Hi

x(·)x̂m(· j k) (100)

where x̂m(· j k) is given by
x̂m(· j k) = Fm(·,k)x̂m(k j k): (101)

The innovation covariance is, similarly to (74),

Sim(·) =H
i
x(·)Pxmxm (· j k)Hi

x(·)
0+Hi

x(·)Pxmbi (· j k)Hi
b(·)

0

+Hi
b(·)Pbixm (· j k)Hi

x(·)
0+Hi

b(·)PbibiH
i
b(·)

0+Ri(·):

(102)

Using the likelihood function (99), the current mode

probabilities updated with the OOSM are as in [4],

namely,

¹m(k j ·) =
1

c

"
rX
n=1

¤n(·)¦mn(·,k)

#
¹m(k j k):

(103)
where the normalization constant is

c=

rX
m=1

rX
n=1

¤n(·)¦mn(·,k)¹m(k j k): (104)

The mode transition probability ¦mn(k2,k1) from time

k1 to k2 is defined as

¦mn(k2,k1) = PfM(k2) = n jM(k1) =mg (105)

which is an element (row m, column n) in the tran-

sition matrix ¦(k2,k1). For r = 2, the transition matrix

¦(k2,k1) according to a continuous-time Markov chain

is given by [4]

¦(k2,k1) =
1

¸1 +¸2

·
¸2 +¸1e

¡(¸1+¸2)T ¸1¡¸1e¡(¸1+¸2)T
¸2¡¸2e¡(¸1+¸2)T ¸1 +¸2e

¡(¸1+¸2)T

¸
(106)

where T = jtk2 ¡ tk1 j, and 1=¸m is the expected sojourn
time for mode m.

Similar to (95)—(98), the combined state estimate

and covariances with the OOSM are given by

x̂(k j ·) =
rX

m=1

x̂m(k j ·)¹m(k j ·) (107)

Pxx(k j ·) =
rX

m=1

¹m(k j ·)

¢ fPxmxm(k j ·)+ [x̂m(k j ·)¡ x̂(k j ·)]
¢ [x̂m(k j ·)¡ x̂(k j ·)]0g (108)

Pxbi(k j ·) =
rX

m=1

¹m(k j ·)Pxmbi(k j ·) (109)

Px¯j (k j ·) =
rX

m=1

¹m(k j ·)Pxm¯j (k j ·), 8j 6= i(k)

(110)

where the values of x̂m(k j ·), Pxmxm(k j ·), Pxmbi (k j ·),
and Pxm¯j (k j ·) are obtained from (79) and (66)—(68)

for each mode. Note that the mixing step is not carried

out with the OOSM [4].

7. THE HEURISTIC “COVARIANCE INFLATION”
APPROACH FOR BIASES

This approach increases the measurement noise vari-

ance by the variance of the biases (assumed to have

mean zero). Note that this amounts to treating the biases

as if they were an additional zero-mean white noise,

which is clearly not correct. Only the SKF correctly

treats the biases as fixed random variables. The reason

this heuristic approach is considered here is that it has

been used due to its simplicity, but as it will be shown,

it yields inconsistent estimates.

Consider a measurement model given by

z(k) = h(x(k),b) +w(k) (111)

which may be a nonlinear function of the target state

and residual biases. The superscript i has been dropped

for simplicity. Using the first-order Taylor expansion at

x(k) = x̂(k j k¡ 1) and b = 0, the measurement z(k) can
be approximated as

z(k)¼ h(x̂(k j k¡ 1),0)+Hx(k)(x(k)¡ x̂(k j k¡ 1))
+Hb(k)(b¡ 0)+w(k)

= h(x̂(k j k¡ 1),0)+Hx(k)x̃(k j k¡ 1)
+Hb(k)b+w(k) (112)

where

Hx(k) =
@h(x,b)

@x

¯̄̄̄
x(k)=x̂(kjk¡1),b=0

(113)

Hb(k) =
@h(x,b)

@b

¯̄̄̄
x(k)=x̂(kjk¡1),b=0

(114)
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TABLE I

Sensor Indices and Corresponding Time Stamps

Sensor Index 1 1 2 1 2 1 2 1 2 1 2 1 2 1

Time Stamp (s) 0 5 2.5 10 7.5 15 12.5 20 17.5 25 22.5 30 27.5 35

and x̂(k j k¡1) is the state prediction at time k using the
set of measurements zk¡1. The MMSE estimate of z(k)
is given by

ẑ(k j k¡ 1) = Efz(k) j zk¡1g ¼ h(x̂(k j k¡ 1),0)
(115)

which has used the Taylor approximation given in (112)

(this is actually the estimate using EKF). The corre-

sponding error covariance, which has the same expres-

sion as in (25), is

S(k) = covfz(k)¡ ẑ(k j k¡ 1)g
¼ covfHx(k)x̃(k j k¡1)+Hb(k)b+w(k)g
=Hx(k)covfx̃(k j k¡1)gH 0x(k)
+Hb(k)covfbgH 0b(k)+ covfw(k)g
+Hx(k)covfx̃(k j k¡ 1),bgH 0b(k)
+Hb(k)covfb, x̃(k j k¡ 1)gH 0x(k) (116)

due to the fact that the measurement noise w(k) is inde-

pendent of the prediction error x̃(k j k¡ 1) and residual
biases b. If the crosscovariances between the estimation

error and residual biases are set to be zero, S(k) can be

written as

S(k) =Hx(k)covfx̃(k j k¡ 1)gH 0x(k) +Hb(k)covfbgH 0b(k)
+ covfw(k)g (117)

which amounts to a covariance inflation with the infla-

tion term Hb(k)covfbgH 0b(k), similar to that in [18]. The
effect of ignoring the crosscovariances will be evaluated

in the simulation results.

8. SIMULATION RESULTS

8.1. Example 1: One-Dimensional Motion With
Position Measurement Only

The target starts at origin and moves with a constant

velocity of 10 m/s along the x-axis. The power spectrum

density (PSD) of the process noise is q= 0:5 m2=s3.

Two sensors are used, which are located at (¡50,0) km
and (50,0) km. The (unaugmented) target state is de-

noted by x as

x= [x _x] (118)

and the measurement model is

zi = (1+®i)[1 0](x¡ xip)+¢i+wi, i= 1,2

(119)

TABLE II

Bias Standard Deviations for Position Measurement (Example 1)

Bias Level Offset Bias ¢ Scale Bias ®

Small 10 m (= ¾w) 10¡4

Large 20 m (= 2¾w) 2£ 10¡4

where ¢ denotes an offset bias and ® denotes a scale

(multiplicative) bias. The superscript i is the sensor in-

dex and xip is the state of the ith sensor. The measure-
ment noise s.d. is ¾w = 10 m for both sensors. The sam-

pling interval for each sensor is 5 s, but they are not

synchronized. The times at which the measurements are

taken (their “time stamps”) and the order of the mea-

surements arriving at the fusion center are shown in

Table I, where sensor 2 has all its measurements delayed

with 1 step lag.

Two levels of biases are considered with the bias s.d.

given in Table II (the same for both sensors).

For each bias level, two options are considered:

1. Reorder the measurements (in-sequence data).

2. Process OOSM.

The option of ignoring OOSMs has been shown in [3]

to lead to significant performance loss.

For each scenario, we compare three filters: Kalman

filter4 without covariance inflation (KFwoINF), Kalman

filter with covariance inflation (KFwINF), and SKF

(Schmidt-KF). Each of these is modified appropriately

when processing OOSM. The modified SKF to process

OOSM is the SKF/OOSM from Section 5.

The discretized CWNAmodel (DCWNA) [1] is used

as the target’s dynamic model. Since the smallest time

interval between the time stamps shown in Table I is

2.5 s, we use T = 2:5 s as the filter’s sampling interval.

The results below are based on 1000 Monte Carlo sim-

ulations. The two-sided 99% probability region of the

NEES (normalized estimation error squared, [1] Sec-

tion 5) based on the Â22000 distribution [1] is [1:84,2:16],

marked by two dashed lines in the figures.

All filters were initialized with “one point” initial-

ization (see [1], Section 5) according to which the first

position measurement is used as the initial estimate and

the initial velocity estimate is set to zero; the standard

deviation of the latter is set at half the maximum speed

in each coordinate.

The RMSE at the times when OOSMs are processed

(at the time stamps of sensor 1 in our case) in Figs. 3

4Here, “Kalman filter” may also refer to extended Kalman Filter for

nonlinear cases. We use the same acronym “KF” for simplicity.
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Fig. 1. Position RMSE for target with position measurement only

(small bias, reordering measurements).

Fig. 2. NEES for target with position measurement only

(small bias, reordering measurements).

and 7, is nearly the same as the RMSE from the in-

sequence data in Figs. 1 and 5 at the corresponding

times. From the NEES in Figs. 2, 4, 6 and 8, we can see

that SKF is consistent (i.e., its NEES falls in its proba-

bility region [1]) for both in-sequence data and process-

ing OOSMs. KFwoINF is the most inconsistent (overly

optimistic) and its inconsistency increases with the bias

level. KFwINF improves the filter’s consistency but it

is still not consistent due to ignoring the correlation be-

tween the bias and estimation error (because it assumes

the bias to be white noise, as indicated in Section 7).

The inconsistency of KFwINF also increases with the

bias level. The results also show that KFwINF and SKF

do not improve the estimation accuracy in this example

with position only measurements. However, in the next

example we will see that the SKF does improve the es-

timation accuracy for the case of GMTI measurements,

which include additional range rate measurements.

Fig. 3. Position RMSE for target with position measurement only

(small bias, OOSM processing).

Fig. 4. NEES for target with position measurement only

(small bias, OOSM processing).

Tables III and IV show a comparison of the three

algorithms for various levels of process noise in the

case of small bias for in-sequence data and process-

ing OOSMs, respectively. SKF is consistent in almost

all cases.5 For all process noise PSD levels, KFwoINF

is inconsistent (optimistic). For KFwINF, when the

PSD is around 10 m2=s3 (with the maneuvering index

around 1), KFwINF is consistent and for the other cases,

KFwINF is inconsistent.

For large bias, the results are shown in Tables V

and VI for in-sequence data and processing OOSMs,

respectively. The consistency of SKF is the best, though

it seems a little “pessimistic” when the process noise

PSD is below 0:01 m2=s3. For this case of large bias,

KFwINF is always inconsistent. Also, from the RMS

5Since the multiplicative bias requires linearization, minor inconsis-

tencies (NEES slightly outside the probability region) can occur.
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Fig. 5. Position RMSE for target with position measurement only

(large bias, reordering measurements).

Fig. 6. NEES for target with position measurement only

(large bias, reordering measurements).

in Tables III—VI we can notice a small improvement in

estimation accuracy using SKF at the final estimate (as

in Figs. 1, 3, 5 and 7). However, as shown in Figs. 1,

3, 5 and 7, this improvement is not significant and may

not be achieved for every point.

In a realistic scenario, the target is usually tracked in

3D space and a more complicated bias model should be

used [15]. However, the results with the use of SKF are

similar to the above 1D case and this simple example

provides a good illustration of the effect of biases.

8.2. Example 2: Target With Low Process Noise And
GMTI Measurements

This example considers a target that moves in a

2-dimensional space with a nearly constant velocity.

The target state consists of position and velocity along

each coordinate (x and y). The initial target state is

Fig. 7. Position RMSE for target with position measurement only

(large bias, OOSM processing).

Fig. 8. NEES for target with position measurement only

(large bias, OOSM processing).

[100 m,9 m/s,200 m,5 m/s]. The PSD of the process

noise is q= 0:5 m2=s3 for both x and y coordinate.

The motion model considered is DCWNA. Two GMTI

radars are located with nearly perpendicular LOS to the

target. One is at (¡48,13) km with a slant range around
50 km to the target and the other is at (¡26,¡96) km
with a slant range around 100 km to the target. The

measurements are range (r), azimuth (μ) and range rate

(_r) with s.d. ¾r = 10 m, ¾μ = 1 mrad and ¾_r =1 m/s,

respectively, for both sensors. The measurement model

is

zi = (I3 +¤
i)h(x¡ xip)+¢i+wi, i= 1,2

(120)

where

x= [x _x y _y]0 (121)

denotes here the (unaugmented) target state and and xip
denotes the ith sensor state, the function h :R4!R3 is
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TABLE III

Comparison of RMS Errors at Final Estimate for Different Maneuvering Index Based on 1000 Monte Carlo Runs

(Small Bias, Reordering Measurements)

Maneuvering Process Noise Position Velocity

Algorithm Index ¸ PSD (m2=s3) RMS (m) RMS (m/s) NEES

KFwoINF 0.0125 0.001 10.4110 0.3176 9.6063

KFwINF 0.0125 0.001 10.2422 0.2914 4.8272

Schmidt-Kalman 0.0125 0.001 10.1193 0.2832 1.9872

KFwoINF 0.0395 0.01 10.5154 0.4651 6.2039

KFwINF 0.0395 0.01 10.3116 0.4382 3.4659

Schmidt-Kalman 0.0395 0.01 10.2021 0.4299 1.8121

KFwoINF 0.125 0.1 11.7715 1.0856 4.7297

KFwINF 0.125 0.1 11.4237 1.0669 2.8152

Schmidt-Kalman 0.125 0.1 11.3450 1.0640 1.9334

KFwoINF 0.3953 1 14.0554 2.2643 4.0057

KFwINF 0.3953 1 13.9014 2.2850 2.3912

Schmidt-Kalman 0.3953 1 13.8626 2.2634 1.9900

KFwoINF 1.25 10 14.0609 4.8089 3.3235

KFwINF 1.25 10 14.1587 4.9487 2.0359

Schmidt-Kalman 1.25 10 13.9012 4.8435 1.8791

TABLE IV

Comparison of RMS Errors at Final Estimate for Different Maneuvering Index Based on 1000 Monte Carlo Runs

(Small Bias, OOSM Processing)

Maneuvering Process Noise Position Velocity

Algorithm Index ¸ PSD (m2=s3) RMS (m) RMS (m/s) NEES

KFwoINF 0.0125 0.001 10.4110 0.3176 9.6063

KFwINF 0.0125 0.001 10.2422 0.2914 4.8271

Schmidt-Kalman 0.0125 0.001 10.0202 0.2829 2.0357

KFwoINF 0.0395 0.01 10.5155 0.4651 6.2039

KFwINF 0.0395 0.01 10.3116 0.4382 3.4658

Schmidt-Kalman 0.0395 0.01 10.0704 0.4254 1.8400

KFwoINF 0.125 0.1 11.7723 1.0856 4.7301

KFwINF 0.125 0.1 11.4239 1.0669 2.8153

Schmidt-Kalman 0.125 0.1 11.0296 1.0564 1.9419

KFwoINF 0.3953 1 14.0557 2.2639 4.0057

KFwINF 0.3953 1 13.9006 2.2848 2.3909

Schmidt-Kalman 0.3953 1 13.5495 2.2835 1.9692

KFwoINF 1.25 10 14.0624 4.8086 3.3233

KFwINF 1.25 10 14.1590 4.9481 2.0351

Schmidt-Kalman 1.25 10 13.8653 4.8579 1.8629

given by

h(x) =

264 rμ
_r

375=
2664

p
x2 + y2

tan¡1
y

x

_xcosμ+ _y sinμ

3775 : (122)

I3 denotes the 3£ 3 identity matrix, ¤ represents the

scale bias, having the form

¤=

264®r 0 0

0 ®μ 0

0 0 ®_r

375 (123)

with the bias terms on its main diagonal and ¢ denotes

the offset bias, that is,

¢= [¢r ¢μ ¢_r]
0: (124)

The extended Kalman filter (EKF) is used with the

Jacobian terms given in Appendix A. The order of the

measurements arriving at the fusion center is shown

in Table I. Two bias levels are considered, with the

bias s.d. given in Table VII. The results are based

on 500 Monte Carlo simulations. The two-sided 99%

probability region of the NEES is [3:68,4:33] based on

the Â22000 distribution.
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TABLE V

Comparison of RMS Errors at Final Estimate for Different Maneuvering Index Based on 1000 Monte Carlo Runs

(Large Bias, Reordering Measurements)

Maneuvering Process Noise Position Velocity

Algorithm Index ¸ PSD (m2=s3) RMS (m) RMS (m/s) NEES

KFwoINF 0.0125 0.001 18.0346 0.4642 29.3834

KFwINF 0.0125 0.001 17.3345 0.3283 5.9046

Schmidt-Kalman 0.0125 0.001 16.8580 0.2902 1.7161

KFwoINF 0.0395 0.01 18.9462 0.6461 18.9844

KFwINF 0.0395 0.01 17.7781 0.4978 4.8489

Schmidt-Kalman 0.0395 0.01 17.2558 0.4684 1.7761

KFwoINF 0.125 0.1 20.6240 1.3104 13.7247

KFwINF 0.125 0.1 19.4403 1.1497 3.7531

Schmidt-Kalman 0.125 0.1 19.1942 1.1357 1.9113

KFwoINF 0.3953 1 23.4515 2.7203 9.7744

KFwINF 0.3953 1 22.6597 2.6533 2.7582

Schmidt-Kalman 0.3953 1 22.5325 2.6332 1.9727

KFwoINF 1.25 10 25.3687 4.9322 8.5757

KFwINF 1.25 10 25.4763 5.4990 2.3465

Schmidt-Kalman 1.25 10 24.7708 5.1617 1.9618

TABLE VI

Comparison of RMS Errors at Final Estimate for Different Maneuvering Index Based on 1000 Monte Carlo Runs

(Large Bias, OOSM Processing)

Maneuvering Process Noise Position Velocity

Algorithm Index ¸ PSD (m2=s3) RMS (m) RMS (m/s)NEES

KFwoINF 0.0125 0.001 18.0346 0.4642 29.3835

KFwINF 0.0125 0.001 17.3345 0.3283 5.9043

Schmidt-Kalman 0.0125 0.001 16.5600 0.2960 1.7797

KFwoINF 0.0395 0.01 18.9465 0.6461 18.9847

KFwINF 0.0395 0.01 17.7781 0.4978 4.8488

Schmidt-Kalman 0.0395 0.01 16.7486 0.4635 1.8212

KFwoINF 0.125 0.1 20.6255 1.3103 13.7260

KFwINF 0.125 0.1 19.4405 1.1497 3.7531

Schmidt-Kalman 0.125 0.1 18.5341 1.0975 1.9393

KFwoINF 0.3953 1 23.4517 2.7192 9.7738

KFwINF 0.3953 1 22.6590 2.6530 2.7580

Schmidt-Kalman 0.3953 1 21.1264 2.6219 1.9659

KFwoINF 1.25 10 25.3720 4.9349 8.5752

KFwINF 1.25 10 25.4715 5.4991 2.3454

Schmidt-Kalman 1.25 10 24.3123 5.3158 1.9246

TABLE VII

Bias Standard Deviations for GMTI Measurements

Bias Level Offset Bias Offset Bias Offset Bias Scale Bias Scale Bias Scale Bias

¢r ¢μ ¢_r ®r ®μ ®_r

Small 10 m (1£¾r) 1 mrad (1£¾μ) 1 m/s (1£¾_r) 1£ 10¡4 1£ 10¡4 1£ 10¡4

Large 20 m (2£¾r) 2 mrad (2£¾μ) 2 m/s (2£¾_r) 2£ 10¡4 2£ 10¡4 2£ 10¡4

From the RMSE in Figs. 9 and 11 we can see that

SKF improves estimation accuracy compared to KF-

woINF and KFwINF for in-sequence data as well as

in case of processing OOSM. KFwINF is even worse

than KFwoINF in this case. With the bias level increas-

ing, the improvement in RMSE using SKF (shown in

Figs. 13 and 15) becomes more significant. For con-

sistency, from the NEES shown in Figs. 10 and 12 we

can see that SKF takes some time to become consistent

since the initial crosscovariance between the estimation
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Fig. 9. Position RMSE for target with GMTI measurement

(small bias, reordering measurements).

Fig. 10. NEES for target with GMTI measurement

(small bias, reordering measurements).

error and the bias is set to be zero6 and the SKF needs

several updates to obtain the correct crosscovariance.

When the bias level increases, SKF needs more

updates for the covariance to become consistent (as

shown in Figs. 14 and 16). KFwoINF is the most

inconsistent (with NEES around 40 in Fig. 14 for the

case of large bias). KFwINF improves the consistency

but is still not consistent (with NEES around 10 in

Fig. 14 for the case of large bias).

8.3. Example 3: Maneuvering Target With GMTI
Radar Measurements

This example considers a target with realistic

maneuvers. The initial state of the target is [100 m,

6The initial crosscovariance between the estimation error and the bias

is not available exactly since one needs the true state x to evaluate this

crosscovariance due to the scale bias. Using the initial state estimate

in the crosscovariance yields the same minor initial inconsistency as

when the initial crosscovariance is set to be zero.

Fig. 11. Position RMSE for target with GMTI measurement

(small bias, OOSM processing).

Fig. 12. NEES for target with GMTI measurement

(small bias, OOSM processing).

10=
p
2 m/s,200 m,10=

p
2 m/s]. The target moves with

a constant velocity, 10 m/s during t 2 [0,15 s]. Then,
it makes a left turn with a constant speed V = 10 m/s

and a constant turn rate w = 5±=s¼ 0:09 rad/s during
t 2 [15 s,35 s]. In addition to the maneuver it subjects
to process noise with PSD of q1 = 0:01 m

2=s3 for the

entire period. The maneuver corresponds, over the sam-

pling interval T = 2:5 s, to a velocity change of (ap-

proximately) ¢V = wVT = 2:25 m/s. Equating this to

the RMS velocity change due to the process noise over

interval T, which is given by
p
q2T [1], yields for this

case q2 = (wVT)
2=T ¼ 2 m2=s3.

Two GMTI radars are used in this scenario as Ex-

ample 2. An IMM estimator is used to track the maneu-

vering target with two nearly constant velocity (NCV)

[1] models. One has a low process noise PSD q1 =

0:01 m2=s3 and the other has a high process noise PSD

q2 = 2 m
2=s3. The mode transition matrix is (106) with
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Fig. 13. Position RMSE for target with GMTI measurement

(large bias, reordering measurements).

Fig. 14. NEES for target with GMTI measurement

(large bias, reordering measurements).

the sojourn times: ¸¡11 = 15 s, ¸¡12 = 20 s. The motion

model used is DCWNA. The measurement sequence re-

ceived at the fusion center is as shown in Table I. The

bias s.d. is as given in Table VII. The simulation results

below are from 500 Monte Carlo runs.

From the NEES in Figs. 18, 20, 22, and 24 we

can see that, due to the use of IMM filter, SKF is

not consistent anymore,7 especially during the mode

transition period. However, compared to KFwoINF and

KFwINF, the consistency is still improved significantly.

At the times when the OOSMs are processed (at the time

stamps of sensor 1 in our case), the RMSE for OOSM

processing (as shown in Figs. 19 and 23) and the RMSE

for in-sequence data (in Figs. 17 and 21) are almost

the same. As in Example 2, SKF improves estimation

7No IMM estimation can be perfectly consistent because the incon-

sistency of a model drives it “soft switching”.

Fig. 15. Position RMSE for target with GMTI measurement

(large bias, OOSM processing).

Fig. 16. NEES for target with GMTI measurement

(large bias, OOSM processing).

accuracy compared to KFwoINF and KFwINF, even

though not significantly in the case of small bias.

9. SUMMARY AND CONCLUSIONS

The single sensor algorithm Bl1, which updates the

current state of a target with an OOSM from a single

sensor without bias has been extended to the multisen-

sor situation where each sensor exhibits a residual bias.

This has been accomplished using the proposed algo-

rithm SKF/OOSM, without having to use an augmented

state consisting of the target state and the sensor biases,

which can become prohibitive for real-time implemen-

tation. This method was presented in the context of a

Kalman filter and has also been extended to an IMM

estimator. The SKF/OOSM algorithm was compared

with the plain Kalman filter without compensation and

the (heuristic) Kalman filter with covariance inflation,

in the presence of residual biases. The simulation re-
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Fig. 17. Position RMSE for maneuvering target with GMTI

measurement (small bias, reordering measurements).

Fig. 18. NEES for maneuvering target with GMTI measurement

(small bias, reordering measurements).

sults show that, compared to the other two methods, the

major benefit of the SKF/OOSM algorithm is the sig-

nificant improvement in filter consistency for both in-

sequence data and processing OOSMs. For the estima-

tion error, in the case using position only measurements,

neither the SKF/OOSM algorithm nor the covariance-

inflation method provide improvement in estimation ac-

curacy over the plain Kalman filter without compen-

sation. However, when GMTI measurements are used,

which include additional range rate measurements, the

SKF/OOSM algorithm outperforms the other two meth-

ods in both estimation accuracy and filter consistency.

APPENDIX A. DERIVATIONS OF JACOBIAN FOR
GMTI MEASUREMENTS

As in (120), the GMTI measurement model is

z = (I3 +¤)h(x¡ xp) +¢+w (125)

Fig. 19. Position RMSE for maneuvering target with GMTI

measurement (small bias, OOSM processing).

Fig. 20. NEES for maneuvering target with GMTI measurement

(small bias, OOSM processing).

where the superscript is dropped for simplicity and h is

as in (122)

h(x) =

264 rμ
_r

375=
2664

p
x2 + y2

tan¡1
y

x

_xcosμ+ _y sinμ

3775 : (126)

In the sequel, the bias vector b, which consists of the

elements of ¢ (the offset biases) as well as the diago-

nal elements of ¤ (the multiplicative biases), is defined

as

b= [b0¢ b0¤]
0 (127)

where

b¢ =¢, b¤ = [®r ®μ ®_r]
0: (128)
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Fig. 21. Position RMSE for maneuvering target with GMTI

measurement (large bias, reordering measurements).

Fig. 22. NEES for maneuvering target with GMTI measurement

(large bias, reordering measurements).

The Jacobian with respect to the target state, Hx, is

Hx =
@z

@x

¯̄̄̄
x=x̂,b=0

= (I3 +¤)
@h(x¡ xp)
@(x¡ xp)

@(x¡ xp)
@x

¯̄̄̄
¯
x=x̂,b=0

=H(x̂¡ xp), (129)

where H(x) is

H(x) =
@h(x)

@x

=

26664
x

r
0

y

r
0

¡ y
r2

0
x

r2
0

l sinμ cosμ ¡lcosμ sinμ

37775 (130)

Fig. 23. Position RMSE for maneuvering target with GMTI

measurement (large bias, OOSM processing).

Fig. 24. NEES for maneuvering target with GMTI measurement

(large bias, OOSM processing).

and

l =
_xsinμ¡ _y cosμ

r
: (131)

The value of x̂ is x̂(k j k¡ 1) for a normal update and is
x̂(· j k) for OOSM.
The Jacobian with respect to the bias, Hb can be

divided into two parts, that is,

Hb = [Hb¢ Hb¤] (132)

where Hb¢ is the Jacobian with respect to the offset bias

b¢ and Hb¤ is the Jacobian with respect to the scale bias
b¤, which are given by

Hb¢ =
@z

@b¢

¯̄̄̄
x=x̂,b=0

=
@¢

@b¢

¯̄̄̄
x=x̂,b=0

= I3 (133)
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Hb¤ =
@z

@b¤

¯̄̄̄
x=x̂,b=0

=
@¤h(x¡ xp)

@b¤

¯̄̄̄
x=x̂,b=0

= diag[h(x̂¡ xp)] (134)

where diag[a] is a square matrix with the elements of
the vector a on its main diagonal and the other elements
zero.
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In a previous paper [7], the problem of bearings-only tracking

of targets whose trajectory is composed of two legs from a non-

maneuvering observer was addressed and the maximum likelihood

estimate (MLE) proposed. We named it bearings-only maneuvering

target motion analysis (BOMTMA). Recently in [9], we proposed

another estimate based on leg-by-leg tracking and compare its

performance to the MLE. We give here the extended version of [9],

together with some comparison between the conventional bearings-

only target motion analysis (BOTMA) and the BOMTMA.
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1. INTRODUCTION

The conventional problem of bearings-only target

motion analysis consists of estimating the trajectory of a

target (or source) whose velocity is constant during the

period of measurement [13]. This requires an efficient

maneuver of the observer to guarantee observability

[6][12] and to obtain an accurate estimate [11][15]. In

a recent paper [7], we proved that, conversely, if the

observer has a constant velocity and the source changes

its heading (so its trajectory is composed of two legs at

constant speed–see Fig. 5), then, subject to a condition

on velocity vectors of the two mobiles, the source

is observable. For this problem, called bearings-only

maneuvering target motion analysis (BOMTMA), we

proposed the maximum likelihood estimate (MLE) and

compared its performance with the Cramér-Rao lower

bound (CRLB), revealing that this estimate is relatively

efficient. The major criticisms are

1) The operator must wait until the source has

changed its heading to run the computation of the esti-

mate.

2) The computation by a numerical routine needs a

“good guess” (to reduce the risk of converging toward

a local minimum).

3) The computation takes time.

In this paper, we propose a new approach to this

problem which consists of estimating what is observable

during the first leg of the source, then during the second

one, and finally of fusing these two estimated state vec-

tors to obtain an estimate of the source trajectory. Note

that in the classic BOTMA, the leg-by-leg approach has

been employed for the same reasons [2][14][16]. We

will assume that the maneuver time is known, hence we

will not address the problem of detecting the maneuver

(see [5] and [17] for this topic).

The paper is composed of three main sections:

² In Section 2, we present the problem of target motion
analysis (TMA) when neither the source nor the

observer maneuvers.

² A new bearings-only maneuvering target motion anal-
ysis by a non-maneuvering observer is proposed in

Section 3.

² In Section 4, some examples are provided to compare
respective performances of BOTMA and BOMTMA,

in terms of estimated range accuracy.

2. PROBLEM FORMULATION WHEN NEITHER THE
SOURCE NOR THE OBSERVER MANEUVERS

We consider in this section the case where the source

and the observer are moving in the same plane with their

own constant velocity vectors (see Fig. 1).

2.1. Measurement Equation and Trajectory Model

Consider a source and a passive observer (also called

own ship). From here on, the subscript S is used to
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Fig. 1. Example of observer and source trajectories.

represent source quantities and O to represent observer

quantities.

At time t, the respective location vectors of the

source and of the observer are PS(t) = [xS(t) yS(t)]
T

and PO(t) = [xO(t) yO(t)]
T relative to a Cartesian coor-

dinate system. Similarly, the vectors VS = [_xS _yS]
T and

VO = [_xO _yO]
T denote the source and own ship velocity

vectors, respectively. We define also the relative velocity

vector of the source w.r.t. the observer as VR = VS ¡VO.
The corresponding speeds and headings (or courses) are

denoted vS , vO, vR, cS , cO and cR.

At time tk, the observer measures the azimuth of the

line of sight in which it detects the source:

¯k = atan

·
xS(tk)¡ xO(tk)
yS(tk)¡ yO(tk)

¸
+ "k (1)

where "k is assumed to be a zero-mean Gaussian random

noise of variance ¾2k .

The BOTMA aims to estimate

XS = [xS(t
¤) yS(t

¤) _xS _yS]
T

from the collected measurement set f¯1,¯2, : : : ,¯Ng pro-
vided observability is guaranteed (t¤ is an arbitrary ref-
erence time). The vector XO = [xO(t

¤) yO(t
¤) _xO _yO]

T

is known. It is well known that if the observer does

not maneuver or if its maneuver is ambiguous (see [6]

and [10]), then the vector XS is not observable. In the

coming paragraph, we explore the situations where the

observer keeps its velocity vector during the scenario.

2.2. The Set of Homothetic Trajectories

The trajectory of a vehicle moving at a constant

velocity vector [ _x _y]T is described by the following

classic equations:

x(t) = x(t¤) + (t¡ t¤) _x
y(t) = y(t¤) + (t¡ t¤) _y:

(2)

Such a trajectory is hence defined by the vector X =

[x(t¤) y(t¤) _x _y]T.
The equation of the noise-free bearings being μ(t) =

atan[(xS(t)¡ xO(t))=(yS(t)¡ yO(t))], it is straightforward
to check that the set of trajectories producing the same

noise-free-bearings from the observer is

¤= fX(¸) = ¸(XS ¡XO)+XO, for ¸ > 0g:
If μ(t) is not constant, there is no other trajectory

set that generates the same noise-free data when the

source and observer are moving at constant velocity

vectors [10]. From now on, we will assume that μ(t)

is not constant.

Note that the vector

X(¸) = [x1(¸) x2(¸) x3(¸) x4(¸)]
T

defines a ¸-homothetic trajectory (in particular, X(1) =

XS).

It follows that XS is not observable from the bearing

measured by the observer. In short, in this context,

the BOTMA is impossible. We can however estimate

a parameter (or a state vector) that characterizes ¤. We
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call the estimation of this parameter (or any equivalent

parameter) partial bearing-only target motion analysis

(see Subsection 2.4).

The previous set ¤ can be characterized by any of its

elements X(¸). At any X(¸) of ¤, there is a correspond-

ing unique three dimensional vector Y = [y1 y2 y3]
T de-

fined by

y1 = atan

·
x1(¸)¡ xO(t¤)
x2(¸)¡ yO(t¤)

¸

y2 =

p
(x3(¸)¡ _xO)2 + (x4(¸)¡ _yO)2p

[x1(¸)¡ xO(t¤)]2 + [x2(¸)¡ yO(t¤)]2

y3 = atan

·
x3(¸)¡ _xO
x4(¸)¡ _yO

¸
:

(3)

Indeed, the coordinates of Y are independent of ¸:

y1 = μ(t¤), y2 =
vR
½a(t

¤)
and y3 = cR

where ½a(t
¤) is the actual range between the source and

the observer at time t¤ (see [6, 7]). Note that because
μ(t) is not constant, we have VS 6= VO, hence y2 > 0.
We can plot the set of homothetic trajectories ¤

using the graphs of the two functions

½ 7! v(½) =

q
(½y2 siny3 + _xO)

2 + (½y2 cosy3 + _yO)
2

(4a)

½ 7! c(½) = atan

·
½y2 siny3 + _xO
½y2 cosy3 + _yO

¸
(4b)

where [v(½) c(½)]T are the polar coordinates of the

velocity vector of any source of ¤ at a distance ½ (¸ 0) at
time t¤ (the corresponding ¸ is equal to ½=½a(t

¤)). Note
that v(½a(t

¤)) = vS and c(½a(t
¤)) = cS .

We insist on the fact that

1) any element of ¤ allows us to construct the vector

Y (see Eq. (3));

2) conversely, the vector Y allows us to construct

any element of ¤, thank to the following equation

X

μ
½

½a(t
¤)

¶
=

½

½a(t
¤)
(XS ¡XO)+XO

=
½

½a(t
¤)

26664
½a(t

¤)siny1
½a(t

¤)cosy1
½a(t

¤)y2 siny3
½a(t

¤)y2 cosy3

37775+XO:
This equivalence between Y and ¤ is the fundamental

property of the partial bearings-only TMA which will

be developed in Section 3. As a consequence, we can

choose the vector Y as well any vector in ¤. The choice

of a state vector must be guided by simplicity.

Because it is expressed in polar coordinates, Y is

subject to a constraint: y2 > 0, whereas any vector of

¤ (expressed in Cartesian coordinates) is not. So, from

the point of view of the estimation, choosing a particular

vector of ¤ as state vector is more convenient. A way to

“stay” in ¤ is to fix one coordinate of a 4-dimensional

vector X and “adjust” the remained coordinates to Y:

For example, if we fix the first coordinate of an par-

ticular element of ¤ to the value xfix, the corresponding

¸ will be ¸= (xfix¡ xO(t¤))=(xS(t¤)¡ xO(t¤)); however,
we must choose xfix such that ¸ be positive. This will

help us in Subsection 2.4.

2.3. Properties of v(½) and c(½)

First of all, we note that v(0) and c(0) are equal

to the observer’s speed and heading, respectively. This

corresponds to the degenerate case where the observer

and the source are located at the same position.

2.3.1. Study of vS(½)
Let us compute its derivative w.r.t. ½.

d

d½
v(½) =

1

v(½)
[(½y2 siny3 + _xO)y2 siny3

+ (½y2 cosy3 + _yO)y2 cosy3]

=
y2
v(½)

[½y2 + _xO siny3 + _yO cosy3]

=
y2
v(½)

·
½y2 +

1

vR
VTO (VS ¡VO)

¸
:

The sign of this derivative is hence the sign of ½y2 +
_xO siny3 + _yO cosy3. It is equal to 0 when ½=¡(1=y2vR)
¢VTO (VS ¡VO).
If VTO (VS ¡VO)¸ 0 or equivalently VTO VS ¸ v2O, the

function vS(½) is injective, i.e. the mapping ½ 7! v(½)

satisfies the one-to-one condition.

We draw two other conclusions:

1) The one-to-one condition holds if and only if
_xS sincO + _yS coscO ¸ vO.
2) The set of source’s velocity vectors VS satisfying

the one-to-one condition of the speed is½
VS = ®

·
sincO

coscO

¸
¡¯

·
coscO

sincO

¸
,

for any ®¸ vO (no condition for ¯) and VS 6= VO
¾

Note that ® and ¯ that help define the above set are

dummy variables.

2.3.2. Study of c(½)
First of all, note that c(½) goes to cR when ½!1.
A basic computation yields

d

d½
c(½) =

y2( _yO siny3¡ _xO cosy3)
v2(½)

which has the same sign as

vR( _yO siny3¡ _xO cosy3) =¡det[VO, (VS ¡VO)],
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Fig. 2. (a) Some elements of ¤. (b) The corresponding speed and heading graphs.

which is independent of ½. Hence the mapping ½ 7! c(½)

is monotonic while the mapping ½ 7! v(½) can be not.

Fig. 2 gives an example of an increasing speed

function for VO = [3 0]
T (m/s) and VS = [4 2]

T (m/s)

corresponding to (®,¯) = (4,2); the initial positions are

PS(t0) = [3:8 1:4]
T (km) and PO(t0) = [2 0]

T (km). Note

that the condition _xS sincO+ _yS coscO ¸ vO is satisfied.
In Fig. 2(a), letters O and S denote the initial position
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Fig. 3. (a) Some elements of ¤. (b) The corresponding speed and the heading graphs.

of the observer and that of the actual source and several

homothetic solutions. Fig. 2(b) depicts ½ 7! v(½) and

½ 7! c(½); the small circles correspond to the actual

speed and heading.

Fig. 3 illustrates the case of a non-monotonic speed

function for VO = [3 0]
T (m/s) and VS = [1 2]

T (m/s)

corresponding to (®,¯) = (1,2). The initial positions are

PS(t0) = [6:2 6:7]
T (km) and PO(t0) = [2 0]

T (km). Here,

28 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 1 JUNE 2011



the condition _xS sincO+ _yS coscO ¸ vO is violated.
In this case, due to the non-monotony of the map-

ping ½ 7! v(½), a speed v would yield two corresponding

estimated ranges and courses as shown in Fig. 3(b).

2.4. Estimation of the Set of Homothetic Trajectories
(partial bearings-only TMA)

The available measured bearings (¯1,¯2, : : : ,¯N) are

taken at times (t1, t2, : : : , tN). Without loss of general-

ity, we choose t¤ = tN . Assuming the covariance ma-
trix of the random vector ("1 "2 ¢ ¢ ¢"N)T to be diagonal,
the log-likelihood function to be maximized is propor-

tional to the least squares criterion. The vector Y or

any vector in ¤ can be chosen as state vector. Because

of the simplicity of use of Cartesian coordinates, we

propose to estimate a particular element of ¤ by fix-

ing its first coordinate x1 to ½̄sin¯N + xO(tN) for con-

venience, ½̄ being arbitrarily chosen. We call it X. So

we only have to compute the last three coordinates of

X = [½̄sin¯N + xO(tN) y _x _y]T for which the criterion

C(X) =
PN
k=1(1=¾

2
k )[¯k ¡ μk(X)]

2 is minimal.

The Gauss-Newton method [3] is used for the min-

imization, initialized at

Xinit =

266666664

½̄sin¯N + xO(tN)

½̄cos¯N + yO(tN)

½̄sin¯N + xO(tN)¡ ½̄sin¯1¡ xO(t1)
tN ¡ t1

½̄cos¯N + xO(tN)¡ ½̄cos¯1¡ xO(t1)
tN ¡ t1

377777775
:

As pointed out previously, the maximum likelihood

estimate X̂ allows us to construct the set of estimated

homothetic trajectories presented as the graphs of the

pair of functions

½ 7! v̂(½) =

q
(½ŷ2 sin ŷ3 + _xO)

2 + (½ŷ2 cos ŷ3 + _yO)
2

(5a)

½ 7! ĉ(½) = atan

·
½ŷ2 sin ŷ3 + _xO
½ŷ2 cos ŷ3 + _yO

¸
(5b)

where Ŷ = [ŷ1 ŷ2 ŷ3]
T is the vector corresponding to X̂

(with (3)).

The behavior of the estimator X̂ has been evaluated

for the following scenario: given a coordinate system,

the initial location of the source is [1000 2300]T (m)

with a velocity vector of [1 1:5]T (m/s). The ob-

server starts from [0 0]T (m) with a velocity vector

[1 0]T (m/s). The number of measurements is N = 450,

the time tk is equal to k£¢t, with ¢t= 4 s. The time
of reference is chosen to be tN . The standard deviation

of the measurements is 1±. The final range is 5,099 m.
For the initialization of the Gauss-Newton method, we

have chosen ½̄= 20 km.

Fig. 4 depicts an example of a 500-run Monte-Carlo

simulation: the 500 graphs are plotted in grey, while

the graphs of the functions v(½) and c(½) are in black,

together with the 95% confidence bands (deduced from

the CRLB). Detail of the computation of these bands is

given in the Appendix.

3. LEG-BY-LEG BOMTMA

3.1. Problem Formulation

Suppose now that the trajectory of the source is com-

posed of two legs at constant speed (cf. Fig. 5): the first

leg starts at t1 and finishes at time tM (assumed to be

known). Similarly, the second leg starts at tM and fin-

ishes at tK . This model of trajectory is simple, but it has

been widely adopted in the past, especially in submarine

environment (see [1] pp. 175—176 and [4]). The time

of the maneuver is assumed to be known; in reality, it

has to be estimated, for example by a sequential test;

this point, which is out of the scope of this paper, has

been addressed in [8]. Such a trajectory is hence param-

eterized by the vector Z = [xS(tK) yS(tK) vS cS,1 cS,2]
T

(coordinates of position at time tK , speed, courses of the

first and of second leg). Provided that VTO (VS,1¡VS,2) 6= 0
(observability condition-see its proof in [7]), the entire

source trajectory is observable. For this problem, we

proposed the maximum likelihood estimate in [7].

We propose here another estimate denoted Z̃ the

principle of which is as follows: First, we compute, for

leg #1, the estimate

X̂1 = [½̄sin¯M + xO(tM) ŷ1 _̂x1 _̂y1]
T

and for leg #2, the estimate

X̂2 = [½̄sin¯M + xO(tM) ŷ2 _̂x2 _̂y2]
T

with the common reference time tM and after having

fixed their respective first coordinates to a common

value, say ½̄sin¯M + xO(tM). These estimates are com-

puted following the partial BO-TMA principle as pre-

sented in Section 2.4. Second, we compute the two ho-

mothetic estimates, ¹(X̂1¡XO) +XO for the first leg and
¹(X̂2¡XO) +XO for the second, such that the estimated
velocities on each leg are equal, i.e.

k¹(V̂1¡VO)+VOk= k¹(V̂2¡VO)+VOk (6)

with V̂1 = [ _̂x1 _̂y1]
T and V̂2 = [ _̂x2 _̂y2]

T in order to satisfy

the constraint (6) (which is the strong assumptions of

the BOMTMA). The solution of (6), denoted ¹̃, and

equal to

¹̃=¡ 2(V̂1¡ V̂2)TVO
(kV̂1k2¡kV̂2k2¡2(V̂1¡ V̂2)TVO)

allows us to compute the corresponding homothetic

estimates on each leg

X̃1 = ¹̃(X̂1¡XO) +XO = [x̃1 ỹ1 _̃x1 _̃y1]
T

X̃2 = ¹̃(X̂2¡XO) +XO = [x̃2 ỹ2 _̃x2 _̃y2]
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Fig. 4. Results of 500 Monte-Carlo runs (on left v̂(½), and on right ĉ(½)).
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Fig. 5. Example of observer and source trajectories composed by two legs.

and the corresponding leg-by-leg BOMTMA Z̃ =

[x̃S(tK) ỹS(tK) ṽS c̃S,1 c̃S,2]
T, with

[x̃S(tK) ỹS(tK)]
T = [x̃2 ỹ2]

T

ṽS =

r
_̃x
2

2 + _̃y
2

2

c̃S,1 = atan

Ã
_̃x1

_̃y1

!

c̃S,2 = atan

Ã
_̃x2

_̃y2

!
:

REMARK by construction, x̃1 = x̃2 and

q
_̃x
2

1 + _̃y
2

1 =q
_̃x
2

2 + _̃y
2

2, but there is no reason that ỹ1 = ỹ2. So, an-

other solution must be [x̃S(tK) ỹS(tK)]
T = [x̃2 ỹ1]

T.

3.2. Problem Formulation

A 500-run Monte Carlo simulation allows the be-

havior of this new estimator to be appreciated. To com-

pare the MLE BOMTMA estimate Ẑ and the leg-by-leg

BOMTMA estimate Z̃, we use the scenario presented in

[7] which is illustrated in Fig. 6: let us recall that the

observer starts from the origin with a speed of 5 m/s

and a heading of 90±. Meanwhile, the source, with a
speed of 4 m/s, starts its trajectory at [0 km,10 km]T

with an initial heading of 90±. At time tM = 20 min,

it suddenly changes its course and its new heading is

240±. The total duration of the scenario is 30 min cor-
responding to 450 measurements (the sampling time is

¢t= 4 s). The standard deviation of the measurement

noise is 1±.
The average values of the coordinates of the two es-

timates, their respective biases and their empirical stan-

dard deviations are given in Table I. They are compared

to the true vector and the minimum standard deviations

deduced from the CRLB.

We observe an increase in the bias and the standard

deviation, but the quality of the leg-by-leg BOMTMA

estimator is only weakly degraded. Moreover, the com-

putation time of the leg-by-leg BOMTMA estimator is

2.5 times less than the BOMTMA computation time. A

compromise can probably be found: the leg-by-leg es-

timate can be used as an initial point for the BOMTMA

numerical routine. It will reduce the risk of stalling at

a local minimum. Fig. 7 shows the 500 estimates to-

gether with the 90% confidence ellipsoid deduced from

the CRLB.

4. COMPARISON OF THE RESPECTIVE
PERFORMANCES OF THE BOMTMA AND THE
CONVENTIONAL BOTMA

One can ask a relevant question concerning tactical

aspects: do situations exist in which the performance

of the BOMTMA is superior to the performance of

the BOTMA in terms of estimated range accuracy,

assuming that the antennas are the same?
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Fig. 6. 500 MLE BOMTMA estimates of the final position.

TABLE I

Comparison of Performances of the Two Estimators

ZK Units ZK,True Average of ẐK Average of Z̃K Bias of Ẑ Bias of Z̃ ¾CRLB ¾̂ of Ẑ ¾̃ of Z̃

xS(tK ) km 2.921 2.897 2.872 0.024 0.049 0.153 0.175 0.213

yS(tK ) km 8.800 8.828 8.875 0.028 0.075 0.283 0.308 0.364

vS m/s 4 4.10 4.10 0.10 0.10 0.03 0.13 0.17

cS,1 degree 90 90.5 89.4 0.5 0.6 12 12 13

cS,2 degree 240 240 241 0 1 7.5 7 9

For the conventional BOTMA, the observer must

correctly maneuver and it has to estimate a 4-dimen-

sional state vector [13], whereas for the BOMTMA, the

observer does not maneuver but it has to estimate a 5-

dimensional vector. Because the number of unknown is

less in BOTMA than in BOMTMA, one can think that

the BOMTMA returns a less accurate estimated range

than the BOTMA. Surprisingly, for some scenarios,

this statement is wrong. We give three examples: the

first one contradicts the intuition; for the second, the

performances are similar, and the last is an example of

the superiority of the BOTMA to the BOMTMA.

We consider two mobiles: one maneuvers (denoted

hereafter by the letter “M”) and the second (denoted

“N”) does not. Each of them performs a TMA against

the other.

For each example, the speeds of M and N are

4 m/s and 5 m/s, respectively. The heading of the non-

maneuvering platform is equal to 90 degrees. The kinds

of maneuvering source trajectory have been chosen: a

“surrounding” trajectory (see Fig. 8(a)) and two “es-

caping” trajectories (see Figs. 9(a) and 10(a)). The total

duration is 30 min. The maneuvering platform changes

its course at 15 min. At this time, its location is aligned

with the course of the observer.

The bearings, collected at a sample time of 4 seconds

by each platform, are corrupted by an additive Gaussian

noise with the same standard deviation equal to 1 de-

gree. We have computed the relative accuracy of the

estimated range (at the final time tK) by the mean of the

CRLB: In ¾½(tK )=½(tK), given in percentage, ¾½(tK ) is the

CRLB of the estimated final range.

Typical scenarios are plotted in Figs. 8, 9 and 10,

(“M” and “N” give the initial positions of the two plat-

forms) together with the corresponding ¾½(tK )=½(tK) vs.

½(tK). In these figures, the lines joining circles are re-

lated to the conventional BOTMA and the lines joining

the “+” are for the BOMTMA. We have changed the

final range by modifying the initial position of the non-

maneuvering platform along the x-axis.
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Fig. 7. 500 leg-by-leg BOMTMA estimates of the final position.

EXAMPLE 1 In this scenario, the first and the second

headings of the maneuvering source are respectively

¡135± and 135±.
EXAMPLE 2 The first and the second headings of the

maneuvering source are respectively 135± and ¡135±.
EXAMPLE 3 The first and the second headings of the

maneuvering source are respectively ¡135± and 135±.

5. CONCLUSIONS

We have presented the problem of bearing-only tar-

get motion analysis when neither the source nor the

observer maneuvers. This yields the so called partial

BOTMA, since the observability is missing. Then, we

have proposed another estimate for a two-leg source tra-

jectory by bearings-only TMA from a non-maneuvering

observer, which is an alternative solution of the maxi-

mum likelihood estimate proposed in [7]. The compu-

tation time is reduced by a factor of approximately 2.5.

The price is a small degradation in the statistical per-

formance. We have also shown, by three examples, that

the superiority of the BOTMA to the BOMTMA is not

always guaranteed.

Further work will be carried out to extend this

estimation principle (leg-by-leg estimates, then fusion

of them) to the case of several legs. Robustness to

the assumption of constant speed and of the immediate

change of heading will be the topic of another paper [8].

But the challenge remains to construct a powerful

test to detect the maneuver of the source.

APPENDIX. COMPUTATION OF THE CONFIDENCE
BANDS

To conduct properly the computation, we need to

define the following vector X̃ = [y _x _y]T whose com-

ponents are the last there components of X (defined

in Subsection 2.4). We rename the components of X̃ as

follows: X̃ = [x1 x2 x3]
T for convenience and we define

the function

μk(X̃) = atan

·
½̄sin¯t¤ +(tk ¡ t¤)(x2¡ _xO)
x1¡ yO(t¤)+ (tk ¡ t¤)(x3¡ _yO)

¸
which would be the noise-free bearing of a source at

time tk, whose trajectory would be defined by X.

Under classic Gaussian assumption about the addi-

tive noise, the Fisher information matrix is

F(X̃) =

KX
k=1

1

¾2k
r
X̃
μk(X̃)rTX̃μk(X̃)

and the CRLB of X̃ is B(X̃) = F(X̃)¡1.
We go into detail about the expression of r

X̃
μk(X̃)

by defining the following quantities

¢t(tk) = tk ¡ t¤

¢x(tk) = ½̄sin¯t¤ +¢t(tk)(x2¡ _xO),
¢y(tk) = x1¡ yO(t¤)+¢t(tk)(x3¡ _yO),

r(tk) =
q
¢2x(tk) +¢

2
y(tk):
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Fig. 8. (a) Typical surrounding maneuvering platform trajectory for Example 1. (b) The relative accuracies of the estimated ranges for the

first example (“o” for the conventional BOTMA, “+” for the BOMTMA).
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Fig. 9. (a) Typical escaping maneuvering platform for the second example. (b) The relative accuracies of the estimated ranges for the

second example (“o” for the conventional BOTMA, “+” for the BOMTMA).
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Fig. 10. (a) Typical escaping maneuvering platform trajectory for the third example. (b) The relative accuracies of the estimated ranges for

the third example (“o” for the conventional BOTMA, “+” for the BOMTMA).
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We deduce that

r
X̃
μk(X̃) =

1

r2(tk)

264 ¡¢x(tk)
¢t(tk)¢y(tk)

¡¢t(tk)¢x(tk)

375 :
The computation of the confidence bands is based

on the Jacobians of the two following mappings

X̃ =

264x1x2
x3

375 7! Y =

264y1y2
y3

375 7!V(½) =

·
v(½)

c(½)

¸
,

with

Y =

266666664

atan

·
½̄sin¯t¤

x2¡ yO(t¤)

¸
p
(x3¡ _xO)2 + (x4¡ _yO)2p
(½̄sin¯t¤ )

2 + [x2¡ yO(t¤)]2

atan

·
x3¡ _xO
x4¡ _yO

¸

377777775
and

V(½) =

24v(½) =
p
(½y2 siny3 + _xO)

2 + (½y2 cosy3 + _yO)
2

c(½) = atan

·
½y2 siny3 + _xO
½y2 cosy3 + _yO

¸ 35 :
The CRLB of V(½) is then

B(V(½)) = J2J1B(X̃)J
T
1 J

T
2

where J1 is the Jacobian of the mapping X̃ 7! Y and J2
is the Jacobian of the mapping Y 7! V(½). We evaluate

the confidence bands of each component of v(½) and of

c(½) from the diagonal terms of B(V(½)).
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Anomaly Detection using

Context-Aided Target Tracking
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The main objective of this work is to model and exploit avail-

able contextual information to provide a hypothesis on suspicious

vehicle maneuvers. This paper presents an innovative anomaly de-

tection scheme, which utilizes L1 tracking to perform L2/L3 data fu-

sion, i.e., situation/threat refinement and assessment. The proposed

concept involves a context-aided tracker called the Con-Tracker, a

multiple-model adaptive estimator, and an L2/L3 hypothesis gen-

erator. The purpose of the Con-Tracker is to incorporate the con-

textual information into a traditional Kalman filter-based tracker

in such a way that it provides a repeller or attractor characteristic

to a specific region of interest. Any behavior of the vehicle that

is inconsistent with the repeller or attractor characteristic of the

current vehicle location would be classified as suspicious. Such in-

consistent vehicle behavior would be directly indicated by a high

measurement residual, which then may be used to estimate the

process noise covariance associated with the context-aware model

using a multiple-model adaptive estimator. Based on the rate of

change of the estimated process noise covariance values, an L2/L3

hypothesis generator red-flags the target vehicle. Simulation results

indicate that the proposed concept involving context-aided tracking

enhances the reliability of anomaly detection.
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1. INTRODUCTION

Anomaly detection refers to the problem of finding

patterns in data that do not conform to expected nor-

mal behavior. Anomaly detection is extensively used in

a wide variety of applications such as monitoring busi-

ness news, epidemic or bioterrorism detection, intrusion

detection, hardware fault detection, network alarm mon-

itoring, and fraud detection [13]. Anomaly detection in

target tracking is an essential tool in separating benign

targets from intruders that pose a threat. This paper

presents a new, innovative anomaly detection scheme

using context-aided target tracking.

Various data, feature, and knowledge fusion strate-

gies and architectures have been developed over the last

several years for improving the accuracy, robustness,

and overall effectiveness of anomaly detection technolo-

gies. Singh et al. [41] illustrate the capabilities of hid-

den Markov models (HMMs), combined with feature-

aided tracking, for the detection of asymmetric threats.

In [41], HMMs are integrated into feature-aided track-

ing using a transaction-based probabilistic model and

a procedure analogous to Page’s test is used for the

quickest detection of abnormal events. An information

fusion-based decision support tool is presented in [8]

to aid the identification of a target carrying out a pat-

tern of activity, which could be comprised of a wide

variety of possible sub-activities. Barker et al. [8] pro-

pose the time series anomaly detection methods to pro-

cess multi-modal sensor data, which are then integrated

by a Bayesian information fusion algorithm to provide

a probability that each candidate under observation is

carrying out the target activity. While the traditional

anomaly-based intrusion detection approach builds one

global profile for normal activities and detects intrusions

by comparing current activities with the normal profile,

Salem and Karim [39] propose a context-based profil-

ing methods for building more realistic normal profiles

than global ones. Moreover, contextual information is

also exploited to build attack profiles that can be used

for diagnosis purposes. Jackson et al. [21] propose a

cognitive fusion approach for detecting anomalies ap-

pearing in the behavior of dynamic self-organizing sys-

tems such as sensor networks, mobile ad hoc networks,

and tactical battle management. Fusion of relevant sen-

sor data, maintenance database information, and out-

puts from various diagnostic and prognostic technolo-

gies have proven effective in reducing false alarm rates,

increasing confidence levels in early fault detection, and

predicting time to failure or degraded condition requir-

ing maintenance action. Roemer et al. [38] provide an

overview of various aspects of data, information, and

knowledge fusion, including the places where fusion

should exist within a health management system, the

different types of fusion architectures, and a number of

different fusion techniques. Compared to these existing

context-aided anomaly detection schemes, the proposed
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approach has five main advantages:

² Existing context-aided anomaly detection schemes

are strictly observation-based while the proposed ap-

proach utilizes a dynamic model of the target. In cur-

rent approaches, observations are compared to a nom-

inal/begin target activity, while the proposed approach

compares the target model to that of a nominal model.

² The presented approach can be easily modified so
that the target model refinement is a byproduct of the

proposed anomaly detection scheme.

² The dynamic target model can be used to predict
future target states or activities.

² The proposed scheme is easily compatible with exist-
ing target tracking algorithms.

² The context-aided anomaly detection technique pre-
sented here is more general compared to existing

methods that are tailored to a specific scenario.

While early tracking algorithms have relied almost

exclusively on target location measurements provided

by sensors such as radars [31], [40], more advanced

techniques have incorporated information pertaining to

the orientation, velocity, and acceleration of the target

[18], [25]—[27], [43], [46]. This progression suggests

that increasing the amount of information incorporated

into the algorithm can improve the quality of the track-

ing process. In ground-based target tracking, a map of

terrain features affecting target motion is usually avail-

able. A terrain-based tracking approach that accounts

for the effects of terrain on target speed and direction

of movement is presented in [36]. In [34], it has been

shown that the incorporation of local contextual infor-

mation, such as the terrain data, can significantly im-

prove tracker performance. In recent years, researchers

have explored the overt use of contextual information

for improving state estimation in ground target tracking

by incorporating them into the tracking algorithm as

potential fields to provide a repeller or attractor charac-

teristic to a specific region of interest [44], [45]. In [19],

the local contextual information, termed “trafficability,”

incorporates local terrain slope, ground vegetation, and

other factors to put constraints on the vehicle’s max-

imum velocity. Simulation results given in [19] show

that the use of trafficability can improve estimate accu-

racy in locations where the vehicle path is influenced

by terrain features.

There exist several constrained target tracking algo-

rithms. The kinematic constraints on target state pro-

vides information that can be processed as a pseudo-

measurement to improve tracking performance. For ex-

ample, Alouani [3] shows that the filter utilizing the

kinematic constraint as a pseudo-measurement is un-

biased when the system with the kinematic constraint

is observable and the use of the kinematic constraint

can increase the degree of observability of the system.

Alouani and Blair [1], [2] propose a new formulation

Fig. 1. System flowchart.

of the kinematic constraint for constant speed targets,

which is shown to be unbiased and, under mild restric-

tion, uniformly asymptotically stable. Though the pro-

posed approach exploits contextual information to place

constraints on target velocity, an explicit expression for

the kinematic constraints on target state cannot be easily

obtained since the contextual information depends on

the current target position. Also, the use of a kinematic

constraint as a pseudo-measurement would severely de-

grade the performance of the proposed anomaly detec-

tion scheme.

The main goal of this work is to exploit available

contextual information to provide a hypothesis on sus-

picious vehicle maneuvers and perform L2/L3 data fu-

sion,1 i.e., situation and threat, refinement and assess-

ment (see [24] for the Joint Directors of Laboratories’

description of the various data fusion levels). Although

the approach presented herein can be applied to any

vehicle system, such as air-, ground- or sea-based ve-

hicles, the particular application here involves maritime

tracking and contextual information. For example, it is

desired to “red-flag” a boat that approaches a restricted

high-value unit area. Also, a vessel that is erratically

zigzagging across a marked shipping channel may be

red-flagged for suspicious activity. The process to pro-

vide a hypothesis of this notion is depicted in Fig. 1.

The proposed concept involves exploiting the math-

ematically rigorous approaches of L1 tracking in an

L2/L3 situation and threat, refinement and assessment

scheme. In [37], a statistical anomaly detection scheme

for maritime vessels using adaptive kernel density es-

timation scheme is presented. The methodology pre-

1Level 1 (L1) fusion is aimed at combining sensor data to obtain

accurate system states, Level 2 (L2) fusion dynamically attempts to

develop a description of relationships among entities and events, and

Level 3 (L3) fusion projects the current situation into the future to

draw inferences about threats.
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sented here consist of three main components: a context-

aided tracker, called “Con-Tracker,” a Multiple-Model

Adaptive Estimator, and a hypothesis generator.

The Con-Tracker combines contextual information

with L1 measurement information to provide state esti-

mates (position and velocity). Depth, marked shipping

channel locations, and high-value unit information are

a few examples of contextual information pertaining to

the particular maritime scenario considered here. The

purpose of the Con-Tracker is to use the contextual in-

formation in such a way that it provides a repeller or

attractor characteristic to each region developed through

a grid-spaced map of a particular area of interest. In the

propagation stage of the Con-Tracker, vehicle states are

propagated according to the repeller or attractor char-

acteristic of the current location of the vehicle. Any

behavior of the vehicle that is inconsistent with the re-

peller or attractor characteristic of the current location

would be classified as suspicious. Such inconsistent ve-

hicle behavior would be directly indicated by a high

measurement residual, which may then be used to es-

timate the process noise covariance associated with the

target model. Thus, Con-Tracker accuracy is not only

a function of the contextual information provided; its

performance also depends on the usual Kalman “tuning”

issue, i.e., determination of the process noise covariance

[4], [15]. The tuning process is a function of the actual

vehicle motion, which can vary. This variation is the

key to the hypothesis generator. This is best explained

by an example. Suppose that when a vehicle is heading

towards a high-value unit, the contextual information in-

corporated into the Con-Tracker would repel the vehicle

away from the high-value unit during the propagation

stage of the tracker. However, if the vehicle still pro-

ceeds towards the high-value unit, which is shown di-

rectly through the measurements of the vehicle location,

then in order to provide good tracker characteristics, a

large value of process noise covariance must be chosen,

i.e., tuned.

The aforementioned tuning issue is usually per-

formed in an ad-hoc manner. However, mathematical

tools can be used to automatically tune the tracker.

Multiple-model estimation schemes are useful for the

process noise identification (tuning) problem. Multiple-

model estimation approaches run parallel trackers,

where each tracker uses a different value for the pro-

cess noise covariance. The covariance is identified us-

ing the likelihood function of the measurement residu-

als, which provides weights on each individual tracker

[4]. There exist several multiple-model-based target

tracking schemes, such as the Multiple-Model Adap-

tive Estimator (MMAE), Interacting Multiple Model

(IMM), Adaptive-Interacting Multiple Model (A-IMM),

and Variable Structure-Interacting Multiple Model

(VS-IMM). All of these approaches are based on a

near-constant velocity model in some form. Kastella

and Kreucher [23] describe the design and implemen-

tation of a multiple-model nonlinear filter (MMNLF)

for ground target tracking using ground moving tar-

get indicator (GMTI) radar measurements. While target

tracking in an arbitrarily dense multitarget-multisensor

environment is a formidable problem, the interacting

multiple model algorithm techniques have been shown

to achieve reliable tracking performance [6], [10], [16],

[28]—[30]. The IMM estimator, originally proposed by

Blom [9], is a suboptimal hybrid filter that was shown to

achieve an excellent compromise between performance

and complexity. Munir and Atherton [17], [32], [33]

describe an A-IMM algorithm for maneuvering target

tracking. The algorithm proposed in [33] estimates the

target acceleration using a two-stage Kalman estimator,

and the estimated acceleration value is fed to the sub-

filters in an IMM algorithm, where the subfilters have

different acceleration parameters. A detailed survey of

existing IMM methods for target tracking problems is

presented in [30].

The main difference between IMM-based approach-

es and MMAE schemes is that IMM involves interaction

between the models that require the explicit knowledge

of transition probabilities between the modes. Since the

calculation of transition probabilities could be computa-

tionally expensive, an MMAE approach is utilized here

for the selection of appropriate process noise covari-

ance. The MMAE scheme implemented here consists of

a bank of Con-Trackers, each with a different process

noise covariance. Assuming the estimated process noise

covariance values are consistent with the truth, a small

value of process noise covariance corresponds to a case

where the context-aware target model is an accurate rep-

resentation of the true target, and a large value of pro-

cess noise covariance indicates that the context-aware

target model is a poor representation of the truth and

the target does not comply with the available contextual

information. The process noise covariance is estimated

as a weighted sum of all the process noise covariances

used and the weight associated with each covariance is

calculated using the likelihood of the process noise co-

variances conditioned on the current-time measurement-

minus-estimate residual. The estimated covariance is in-

corporated into an L2/L3 hypothesis scheme that pro-

vides a hypothesis on whether or not a vehicle motion

should be alerted to an analyst. The L2/L3 hypothe-

sis generator red-flags the vehicle based on the rate of

change of the process noise covariance and the contex-

tual information provided. Details of these processes are

provided in the subsequent sections.

2. CON-TRACKER

The main difference between a traditional tracker

and the context-aided Con-Tracker is that the target

model used in the Con-Tracker accounts for the lo-

cal contextual information. The local contextual infor-

mation is incorporated into the Con-Tracker model as

trafficability values. Trafficability is a value between

zero and one, where zero indicates a region that is
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Fig. 2. Maritime trafficability values database.

not traversable and one indicates a region that is

completely traversable. For the maritime applications

considered here, these trafficability values are based

on local traversability information and accounts for the

following four “contextual” data:

² Depth information,
² marked channel information,
² anti-shipping reports (ASR), and
² locations of high-value units (HVU).
The individual trafficability values corresponding to

each contextual information are combined into a single

value, which is used to indicate the repeller or attractor

characteristic of a specific region. Details of this proce-

dure are given next.

First, a particular area of interest is divided into a

grid-field, similar to a 15£ 20 grid-field, as shown in
Fig. 2. In Fig. 2, the purple channels indicate marked

shipping lanes. As shown in Fig. 2, the area of inter-

est contains three high-value units centered around cells

(2,11), (6,14), and (11 : : :15,8). The area also contains

two anti-shipping areas centered about cells (4,2) and

(5,17). Finally, low-depth areas are mainly indicated us-

ing different shades of brown. According to the vehicle

type that is being tracked, a single trafficability value,

ºi, is assigned to each cell. This variable is a decimal

value between 0 and 1 and corresponds to the fraction

of maximum velocity that the vehicle can attain in that

grid location. For example, the grid cell (10,17) has a

trafficability of zero due to the depth information, and

therefore, the vessels are supposed to avoid and navigate

around this particular cell.

Trafficability data is also used to deflect the direction

of target motion given by the past velocity information.

In order to implement this, at each propagation stage

in the Con-Tracker, we consider a 3£ 3 trafficability
grid-field that depends on the current vehicle position.

For example, if the vehicle is located in cell (13,3),

the 3£ 3 trafficability grid-field consists of cells (12,2),
(12,3), (12,4), (13,2), (13,3), (13,4), (14,2), (14,3),

and (14,4). A generic representation of the 3£ 3 traf-
ficability grid-field is shown in Fig. 3. The vehicle is

assumed to be located in square 5 of the 3£ 3 grid. The
3£ 3 grid is continually re-centered about the vehicle as
it moves throughout the region so that it is always lo-

cated in the center (square 5) of the 3£ 3 trafficability
grid-field. In Fig. 3, the unit vector Ĝtg 2 R2 represents
the preferred direction of the vehicle strictly based on

the trafficability information of the surrounding cells,

Ĝ¡ 2 R2 is a unit vector in the direction of target motion
given by the past state information, and the unit vec-

tor Ĝ+ 2 R2 represents the nudged velocity direction. A
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Fig. 3. 3£ 3 Trafficability grid-field: Ĝ¡ is the direction of target
velocity, Ĝtg is the preferred direction of target, Ĝ

+ is the nudged

velocity direction, and ºi indicate the trafficability of ith cell.

preferred direction based on the velocity constraint is
calculated as

Ĝtg =

P
j(ºjĜj)°°°Pj(ºjĜj)

°°° (1)

where j 2 f1,2,3,4,6,7,8,9g. The unit vector Ĝj 2 R2
points from the current vehicle location to the center of
square j. Now the nudged velocity direction of motion
is given as

Ĝ+ =
Ĝ¡+¹Ĝtg
kĜ¡+¹Ĝtgk

(2)

where ¹ is a weighting coefficient that is calculated
based on the absolute average difference in the traf-
ficability values between the current location and the
surrounding feasible locations

¹=

P
j jºj ¡ º5j
8

: (3)

Note that the proposed technique for determining the
nudged velocity direction is chosen because it is least
expensive in terms of computational requirements.

2.1. Filter Algorithm

The theoretical developments of the Con-Tracker
algorithm, which is based on the standard near-constant
velocity tracker, are now shown. The state vector used
in the filter is x 2R4, i.e.,

x= [¸ Á v¸ vÁ]
T (4)

where ¸, Á, v¸, and vÁ are the longitude and latitude
locations of the target vehicle and the corresponding
rates. In the case of the near-constant velocity models
used in the ®-¯ tracker, zero-mean Gaussian white
process noise is added to the model to account for the
possible variations in velocity [7], [22]. Our approach
modifies this concept by using the following discrete-
time model

xk+1 =

26666664

¸+ v¸¢t

Á+ vÁ¢t

º5

q
v2¸+ v

2
Á cosμ

º5

q
v2¸+ v

2
Á sinμ

37777775

¯̄̄̄
¯̄̄̄
¯̄̄̄
k

+wk (5)

where

E[wkw
T
k ] =¨Qk¨

T

=

266666666664

¢t3

3
q1k 0

¢t2

2
q1k 0

0
¢t3

3
q2k 0

¢t2

2
q2k

¢t2

2
q1k 0 ¢tq1k 0

0
¢t2

2
q2k 0 ¢tq2k

377777777775
with

¨ 2 R4£2 and Qk ´
·
q1k 0

0 q2k

¸
:

The angle μ, the angle between the velocity vector

and the local y-axis (north axis), defines the assumed

direction of motion of the vehicle, Ĝ+, i.e.,

Ĝ+ = [cosμ sinμ]T: (6)

The unit vector Ĝ+ is determined using the trafficabil-

ity data as explained in (2). The coefficient º5 is the

trafficability of the current cell. The
q
v2¸+ v

2
Á term is

simply the magnitude of the vehicle velocity and the

trigonometric terms are used to project this value onto

the appropriate axes. When no trafficability informa-

tion is present, º5 defaults to one, and the trigonometric

terms are given by

cosμ =
v¸q
v2¸+ v

2
Á

, sinμ =
vÁq
v2¸+ v

2
Á

(7)

which reduce (5) to the standard near-constant velocity

model used in the ®-¯ tracker. Notice that the Ĝ¡ in (2)
is given as

Ĝ¡ =

24 v¸q
v2¸+ v

2
Á

vÁq
v2¸+ v

2
Á

35T : (8)

The measurement vector is assumed to be

y= [¸ Á]T+[v¸ vÁ]
T (9)

where v= [v¸ vÁ]
T is the zero-mean Gaussian white-

noise sequence, i.e., E[v] = 0 and E[vjv
T
k ] = R±jk.

Let

H =

·
1 0 0 0

0 1 0 0

¸
then the measurement equation can be written as

yk =Hxk + vk: (10)

The near-constant velocity target model without the

velocity nudging can be written in concise form as

xk+1 =ªxk +wk (11)
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where

ª =

26664
1 0 ¢t 0

0 1 0 ¢t

0 0 1 0

0 0 0 1

37775 :
The estimation error covariance is defined as Pk =

E[(xk ¡ x̂k)(xk ¡ x̂k)T], and the following equations are
used to propagate and update the error covariance ma-

trix

P¡k+1 =ªP
+
k ª

T+¨Qk¨
T (12)

P+k = [I¡KkHk]P¡k (13)

where P¡k = E[(xk ¡ x̂¡k )(xk ¡ x̂¡k )T] is the a priori er-
ror covariance and P+k = E[(xk ¡ x̂+k )(xk ¡ x̂+k )T] is the
a posteriori error covariance. The matrix Kk is the usual

Kalman gain and can be calculated using

Kk = P
¡
k H

T[HP¡k H
T+R]¡1: (14)

The vector x̂¡k is referred to as the a priori state estimate
and the vector x̂+k is referred to as the a posteriori

state estimate. The estimates are propagated and updated

using

x̂¡k+1 =

26666664

ˆ̧ + + v̂+¸ ¢t

Á̂+ + v̂+Á ¢t

º
q
(v̂+¸ )

2 + (v̂+Á )
2 cosμ

º
q
(v̂+¸ )

2 + (v̂+Á )
2 sinμ

37777775

¯̄̄̄
¯̄̄̄
¯̄̄̄
k

(15)

x+k = x
¡
k +Kk[yk ¡Hx¡k ]: (16)

The Con-Tracker algorithm is summarized in Table I.

Note that the Con-Tracker algorithm is very similar to

that of a traditional Kalman filter-based tracking algo-

rithm without the velocity nudging during the propa-

gation stage. Since the process noise is added to the

context-aware near-constant velocity model to account

for variations in velocity, the process noise covariance

Qk indicates the accuracy of target model in (5), i.e.,

how well a target complies with the given contextual

information and the constant velocity assumption. If

the target vehicle follows the model precisely, then Qk
would be fairly small. If the vehicle maneuvers are er-

ratic and inconsistent with the model, then the process

noise covariance would be large. Since one does not

know the precise value of the process noise covariance,

an MMAE approach is implemented to estimate the pro-

cess noise covariance based on the measurement resid-

ual.

3. MULTIPLE-MODEL ADAPTIVE ESTIMATION

A brief overview of the MMAE approach is pre-

sented in this section. More details on the formulation

of MMAE can be found in [4], [11], [42]. MMAE is a

recursive estimator that uses a bank of filters that depend

TABLE I

Summary of Con-Tracker Algorithm

Initialize x̂(t0) = x̂
¡
0
, P¡
0
= E[(x0 ¡ x̂¡0 )(x0 ¡ x̂¡0 )T]

Kalman Gain Kk = P
¡
k
HT[HP¡

k
HT +R]¡1

Update x̂+
k
= x̂¡

k
+Kk[yk ¡Hx̂¡k ]

P+
k
= [I¡KkHk]P¡k

Velocity Nudging
Ĝ¡ =

"
v̂+
¸p

(v̂+
¸
)2 + (v̂+

Á
)2

v̂+
Áp

(v̂+
¸
)2 + (v̂+

Á
)2

#¯̄̄̄
¯
k

Ĝtg =

P
j
(ºjĜj )°°P
j
(ºjĜj )

°°
Ĝ+ = Ĝ¡+¹Ĝtg

[cosμ sinμ]T = Ĝ+

Propagation P¡
k+1

=ªP+
k
ªT +¨Qk¨

T

x̂¡
k+1

=

26664
ˆ̧ + + v̂+

¸
¢t

Á̂+ + v̂+
Á
¢t

º
p
(v̂+
¸
)2 + (v̂+

Á
)2 cosμ

º
p
(v̂+
¸
)2 + (v̂+

Á
)2 sinμ

37775
¯̄̄̄
¯̄̄̄
¯
k

on some unknown parameters. In the problem under

consideration, these unknown parameters are the pro-

cess noise variances (diagonal elements of the process

noise covariance) denoted by the vector qk = [q1k q2k ]
T.

For notational simplicity, the subscript k is omitted for

q. Initially, a set of distributed elements is generated

from some known probability density function (pdf) of

q, denoted by p(q), to give fq(`); `= 1, : : : ,Mg. Here,
M denotes the number of filters in the filter bank.

The goal of the estimation process is to determine

the conditional pdf of the `th element q(`) given the

current-time measurement yk. Application of Bayes’ law

yields

p(q(`) jYk) =
p(Yk,q

(`))

p(Yk)

=
p(Yk j q(`))p(q(`))PM
j=1p(Yk j q(j))p(q(j))

(17)

where Yk denotes the sequence fy0,y1, : : : ,ykg. The
probabilities p(q(`) jYk) can be written as

p(q(`) jYk) =
p(yk,Yk¡1,q

(`))

p(yk,Yk¡1)

=
p(yk jYk¡1,q(`))p(Yk¡1,q(`))

p(yk,Yk¡1)
:

Since p(Yk¡1,q
(`)) = p(q(`) jYk¡1)p(Yk¡1), p(q(`) jYk)

can be written as

p(q(`) jYk) =
p(yk jYk¡1,q(`))p(q(`) jYk¡1)p(Yk¡1)

p(yk jYk¡1)p(Yk¡1)
:
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Fig. 4. Uniform distribution and Hammersley quasi-random sequence comparison. (a) Uniform distribution. (b) Hammersley

quasi-random sequence.

Now the probabilities p(q(`) jYk) can be computed

through [4]

p(q(`) jYk) =
p(yk j x̂¡(`)k )p(q(`) jYk¡1)PM
j=1[p(yk j x̂¡(j)k )p(q(j) jYk¡1)]

(18)

since p(yk, jYk¡1,q(`)) is given by p(yk j x̂¡(`)k ) in the

Kalman recursion. The recursion formula can be cast

into a set of defined weights $(`)
k , so that

$(`)
k =$(`)

k¡1p(yk j x̂¡(`)k ) (19)

$(`)
k Ã

$(`)
kPM

j=1$
(j)
k

(20)

where $(`)
k ´ p(q(`) j ỹk). The weights at time t0 are ini-

tialized to $
(`)
0 = 1=M for `= 1,2, : : : ,M. The conver-

gence properties of the MMAE are shown in [4], which

assumes ergodicity in the proof. The ergodicity assump-

tions can be relaxed to asymptotic stationarity and other

assumptions are even possible for non-stationary situa-

tions [5]. The conditional mean estimate is the weighted

sum of the parallel filter estimates

x̂¡k =
MX
j=1

$
(j)
k x̂

¡(j)
k : (21)

Also, the error covariance of the state estimate can be

computed using

P¡k =
MX
j=1

$
(j)
k [fP¡k g(j) + (x̂¡(j)k ¡ x̂¡k )(x̂¡(j)k ¡ x̂¡k )T]:

(22)

The specific estimate for q at time tk, denoted by q̂k,
and error covariance, denoted by Pk, are given by

q̂k =

MX
j=1

$
(j)
k q

(j) (23a)

Pk =
MX
j=1

$
(j)
k (q

(j)¡ q̂k)(q(j)¡ q̂k)T: (23b)

Equation (23b) can be used to define 3¾ bounds on the

estimate q̂k.
At time t0, all the filters have the same weight

associated with them and there are many possibilities for

the initial distribution of the process noise covariance

parameters. A simple approach is to assume a uniform

distribution. We instead choose a Hammersley quasi-

random sequence [20] due to its well-distributed pattern.

A comparison between the uniform distribution and the

Hammersley quasi-random sequence for 500 elements

is shown in Fig. 4. Clearly, the Hammersley quasi-

random sequence provides a better “spread” of elements

than the uniform distribution. In low dimensions, the

multidimensional Hammersley sequence quickly “fills

up” the space in a well-distributed pattern. However,

for very high dimensions, the initial elements of the

Hammersley sequence can be very poorly distributed.

Only when the number of sequence elements is large

enough relative to the spatial dimension, the sequence

is properly behaved. This is not much of a concern for

the process noise covariance adaption problem since the

dimension of the elements will be much larger than the

dimension of the unknown process noise parameters.

4. L2/L3 HYPOTHESIS GENERATOR

As mentioned in Section 2, the estimated process

noise covariance is indicative of how well the target ve-

hicle follows the context-aware near-constant velocity

model. If the target vehicle follows the model precisely,

then the estimated process noise covariance would be

fairly small, and if the vehicle maneuvers are erratic

and inconsistent with the model, then the process noise

covariance would be large. The incorporation of con-

textual data into the model allows variations in target

vehicle velocity that are consistent with the given con-

textual information. For example, if the target vehicle

in cell (7,13) of Fig. 2 that is traveling toward cell

(5,15) makes a sharp right turn to avoid the high value

unit in cell (6,14), then the sudden change in the ve-

hicle’s velocity is consistent with the contextual data

provided, and therefore, would not result in an increase
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in the estimated process noise covariance. However, if

the target vehicle in cell (6,3) that is traveling toward

cell (3,1) continues to travel in a straight line with a

constant velocity, then there would be an increase in

the estimated process noise covariance and the vehicle

would be red-flagged despite its consistent behavior in

accordance with the near-constant velocity model. This

is because its passage into cell (5,2) is in contrast to

the anti-shipping activities reported in that area. Thus,

a hypothesis on suspicious vehicle maneuvers can be

synthesized based on the change in estimated process

noise covariance.

The near-constant velocity model combined with the

trafficability information is given by

xk+1 =

26666664

¸+ v¸¢t

Á+ vÁ¢t

º5

q
v2¸+ v

2
Á cosμ

º5

q
v2¸+ v

2
Á sinμ

37777775

¯̄̄̄
¯̄̄̄
¯̄̄̄
k

+wk: (24)

Any abrupt maneuver of the target vehicle that is in-

consistent with the context-aware model can be treated

as system process noise. This would, in turn, result in

a sudden increase in the process noise covariance es-

timated by the MMAE. The two main objectives of

the L2/L3 hypothesis generator is to red-flag a vehicle

based on the anomalies in its behavior that are indicated

by the change in process noise covariance and identify

the reason behind the red-flagging.

Since any anomaly in target behavior is indicated

by a change in estimated process noise covariance, the

proposed red-flagging algorithm is based on two sets

of process noise covariance values. One set, fq̂1k , q̂2kg,
is the MMAE estimate based on the Con-Tracker mea-

surement residual values and the second set, f³q1k , ³q2kg,
is a second pair of MMAE estimates obtained using

the standard Kalman filter-based tracker. The only dif-

ference between these two trackers is that the standard

Kalman filter-based tracker does not make use of any

contextual information. The second set of estimates,

f³q1k , ³q2kg, is used to normalize the first set of process
noise covariance values. The normalized process noise

covariances values are given as

q̄1k =
q̂1k
³q1k
, q̄2k =

q̂2k
³q2k
: (25)

Normalization would eliminate any minor deviations

in the process noise covariance values due to additive

measurement noise. It also helps to clearly identify any

abrupt maneuver of the target vehicle that is inconsistent

with the given contextual information. After normaliz-

ing the elements of the process noise covariance matrix,

their Euclidian norm is calculated as

kqkk=
q
(q̄1k )

2 + (q̄2k )
2: (26)

The rate of change of the normalized process noise

covariance norm can be calculated as

¢qk =
1

¢t
[kqkk¡kqk¡1k]: (27)

The “change” in process noise covariance indicates the

“occurrence” of target activity that is inconsistent with

the prior knowledge. Therefore, a vehicle is red-flagged

if the rate of change on the normalized process noise

covariance norm is greater than a prescribed threshold,

i.e.,

¢qk >¢qmax) Red-Flag: (28)

Considering the rate of change of the normalized pro-

cess noise covariance norm instead of the absolute mag-

nitude helps to circumvent the slow transient response

of the MMAE and thus, to avoid red-flagging a target

long after the occurrence of an anomaly.

A second red-flagging algorithm can be formulated

based on a simple Â2-test [7], [12], [35]. Suppose that

a measurement residual is defined by ek = yk ¡Hx¡k ,
where yk is the measurement and Hx

¡
k is its correspond-

ing estimate. For our case, the length of the measure-

ment vector is m= 2, corresponding to longitude and

latitude coordinates. The theoretically correct covari-

ance associated with ek, denoted by Ek, can be derived

from the Kalman filter equations, i.e., it is known from

the Kalman tracking process. Define the following nor-

malized error square (NES)

"k = e
T
kEkek: (29)

The NES can be shown to have a Â2 distribution with

m degrees of freedom. A suitable check for the NES is

to numerically show that the following condition is met

with some level of confidence

Ef"kg=m: (30)

Typically, one writes the Â2 variable with its degrees of

freedom as Â22. A probability region can be constructed

by cutting off the percent-difference upper tail. For

example, a 99% probability region for a Â2 variance can

be taken as the one-sided probability region (cutting off

the 1% upper tail)

[0, Â22(0:99)] = [0, 9:210]: (31)

Other values can be found on page 84 of [7]. If the

calculated Â2 value from (29) falls within this region,

then an Â2 test indicates that the vehicle follows the

Con-Tracker model with a high confidence of 99% and

should not be red-flagged.

The red-flagging reasoner deals with identifying the

contextual information that is conflicting with the cur-

rent target vehicle location. For example, the grid cell

(2,11) of Fig. 2 has a trafficability of zero due to the

high-value unit location. Therefore, if a vehicle is lo-

cated in cell (2,11), then the conflicting contextual in-

formation is the high-value unit locations. Since the
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Con-Tracker is assumed to have access to all the con-

textual information, the simplest red-flagging reasoner

can be synthesized by identifying which of the four

contextual data contributes to the zero trafficability at

the current location. The main assumption behind this

approach is that there is only one piece of contextual

information that is contributing to the zero trafficability

at any specific time.

A second red-flagging reasoner can be formulated

as a hypotheses testing problem. Assuming that the

hypotheses for the red-flagging reasoner problem can

be stated as:

² H1: Track is influenced by all contextual data except
depth.

² H2: Track is influenced by all contextual data except
marked channels.

² H3: Track is influenced by all contextual data except
anti-shipping factor.

² H4: Track is influenced by all contextual data except
high-value unit factor.

² H5: Track is influenced by all contextual data.
Five different Con-Trackers can be designed according

to the five different hypotheses given above. The hy-

pothesis corresponds to the Con-Tracker that has the

maximum likelihood value p(yk j x¡k ) is selected as the
candidate hypothesis. The a priori probability density

function p(yk j x¡k ) can easily be obtained from the ap-

propriate Con-Tracker equations.

5. RESULTS

In order to evaluate the performance of the a priori

subsystem, a test case scenario is developed where we

consider Hampton Roads Bay, Virginia, near the Nor-

folk Naval Station. The area of interest is first divided

into a 15£ 20 grid-field as shown in Fig. 2. Afterward,
a trafficability value is assigned to each cell based on

the target vessel type and the individual contextual data.

Since we consider four different contextual data here, a

combined trafficability value is also assigned to each

cell by combining the four individual trafficability val-

ues. As shown in Fig. 2, the harbor area contains three

high-value units centered around cells (2,11), (6,14),

and (11 : : :15,8). The harbor area also contains two anti-

shipping areas centered about cells (4,2) and (5,17).

There are several marked shipping lanes in the harbor

area that are indicated by shaded purple channels. For

simulation purposes, we consider four different target

vessels.

1) Two Ski Boats: Both ski boat tracks are indicated by

red lines in Fig. 2. Details on the individual ski boats

are given below:

² Ski Boat 1: Ski boat 1 starts in cell (15,8) and
travels toward cell (2,1). Ski boat 1 crosses over two

different marked channels at cells (14,7) and (11,5).

Finally, the ski boat 1 crosses over a anti-shipping

Fig. 5. Ski boat 1 trajectories: Measured position (Meas),

Con-Tracker estimate (ConT) & tracker estimate (Trac).

area located around cell (14,2) and travels towards

cell (2,1).

² Ski Boat 2: Ski boat 2 starts in cell (15,1) and
travels toward cell (4,20). Ski boat 2 crosses over a

marked channel in cell (11,7) and an anti-shipping

area located around cell (5,17) while traveling to-

ward cell (4,20).

2) Tugboat: Tugboat starts in cell (1,20) and travels

along the marked channel toward cell (13,1). Its

track is indicated by green lines in Fig. 2.

3) Sailboat: This boat is considered as a distressed

vessel that is stranded in cell (7,3) due to low water

depth.

For simulation purposes, the measurements are as-

sumed to be obtained from an X-band coastal radar

with a sampling frequency of 1/6 Hz. More details on

state-of-the-art maritime surveillance technologies can

be found in [48] and [47]. The measurement covariance

is assumed to be of magnitude 1£ 10¡7 to 2£ 10¡7.
In the MMAE algorithm, 200 different filters are im-

plemented using process noise covariance values in the

range of 1£ 10¡10 to 2£ 10¡20. The initial error covari-
ance is selected to be 10¡6£ I4 and the initial process
noise covariance estimate is selected to be the ensemble

mean of process noise covariance values. Details of the

simulation results are given next.

5.1. Ski Boat 1

As shown in Fig. 2, ski boat 1 starts in cell (15,7)

and travels toward cell (2,1). Fig. 5 shows the measured

and estimated trajectories for ski boat 1. Fig. 5 contains

the estimated trajectories from both context-aided Con-

Tracker (denoted as ConT) and the traditional Kalman

filter-based tracker (denoted as Trac). Fig. 6(a) shows

the estimated process noise covariance variance values

from the Con-Tracker/MMAE fq̂1k , q̂2kg and the Kalman
filter tracker/MMAE f³q1k , ³q2kg. The normalized process
noise covariance norm, kqkk, is given in Fig. 6(b). Note
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Fig. 6. Con-Tracker & tracker-estimated process noise covariance and normalized norm for ski boat 1. (a) Estimated q1 and q2.

(b) Normalized process noise covariance norm.

Fig. 7. Rate of change of normalized process noise covariance norm and trafficability values for ski boat 1. (a) Rate of change of kqkk.
(b) Trafficability values.

the sudden increase in kqkk at times 50 sec, 150 sec,
and 350 sec. The first increase in the process noise co-

variance values occur when the ski boat crosses over the

marked channel located about cell (14,7). The second

increase in process noise covariance values occurs when

the ski boat crosses over the second marked channel lo-

cated about the cell (11,5) at around 145 sec. The final

increase in the process noise covariance values occurs

when the ski boat enters the anti-shipping area located

about cell (4,2) at around 350 sec.

Shown in Fig. 7 are the rate of change of normalized

process noise covariance norm, ¢qk, and the trafficabil-

ity values, º, for ski boat 1. The target vehicle (ski boat

1) is red-flagged based on the rate of change of nor-

malized process noise covariance norm. The maximum

allowable ¢qk is selected to be ¢qmax = 0:8. Note that

at times 50 sec, 150 sec, and 350 sec, ¢qk is higher than

its threshold value, and therefore, the target vehicle is

red-flagged at these instances. Also note the low traffi-

cability values at these instances as shown in Fig. 7(b).

Fig. 8(a) shows μ, which is the angle between the

velocity vector and the local y-axis, for the Con-Tracker

and the traditional Kalman filter-based tracker. The an-

gle is measured positive clockwise and negative coun-

terclockwise. Note that the angle obtained from the

Kalman filter based tracker is much smoother compared

to the one obtained from the Con-Tracker. The discrep-

ancies in the Con-Tracker’s angle is due to the velocity

nudging that occurs when the target vehicle encounters

a zero-trafficability area. Also note that when the boat

is traveling in a completely traversable region, μ ob-

tained for the Con-Tracker and the traditional Kalman

filter-based tracker are very similar. Fig. 8(b) shows the

red-flag alerts for ski boat 1. Here, zero indicates a no

red-flag alert and one indicates a red-flag occurrence.

Note that the red-flag occurrence and the large devia-

tions in μ are consistent with the results shown in Fig. 7.

5.2. Ski Boat 2

As depicted in Fig. 2, the second ski boat starts

in cell (15,1) and travels toward cell (4,20). Fig. 9

shows the measured and estimated tracks for ski boat

2. Fig. 10(a) contains the estimated process noise co-

variance variance values from the Con-Tracker/MMAE
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Fig. 8. Con-Tracker & tracker-estimated direction and red-flag indicator for ski boat 1. (a) Boat direction. (b) Red-flag indicator.

Fig. 9. Ski boat 2 trajectories: Measured position (Meas),

Con-Tracker estimate (ConT) & tracker estimate (Trac).

Fig. 10. Con-Tracker & tracker-Estimated process noise covariance and normalized norm for ski boat 2. (a) Estimated q1 and q2.

(b) Normalized process noise covariance norm.

fq̂1k , q̂2kg and the Kalman filter-based tracker/MMAEf³q1k , ³q2kg. Fig. 10(b) shows the normalized process

noise covariance norm, kqkk, for ski boat 2. Note the
sudden increase in kqkk at times 400 sec and 850 sec.
The first increase in the process noise covariance values

occurs when ski boat 2 crosses over the marked chan-

nel located about cell (11,7). The second increase in the

process noise covariance occurs when ski boat 2 enters

the anti-shipping area located about cell (5,17) around

850 sec.

Shown in Fig. 11 are the rate of change of nor-

malized process noise covariance norm, ¢qk, and the

trafficability values, º, for ski boat 2. The maximum

allowable ¢qk for ski boat 2 is also selected to be

¢qmax = 0:80. Note that at times 400 sec and 850 sec,

¢qk is higher than its threshold value, and therefore, the

target vehicle would be red-flagged at these instances.

Also note the low trafficability values at these instances

as shown in Fig. 11(b).
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Fig. 11. Rate of change of normalized process noise covariance norm and trafficability values for ski boat 2. (a) Rate of change of kqkk.
(b) Trafficability values.

Fig. 12. Con-Tracker & tracker-estimated direction and red-flag indicator for ski boat 2. (a) Boat direction. (b) Red-flag indicator.

Fig. 13. Tugboat trajectories: Measured position (Meas),

Con-Tracker estimate (ConT) & tracker estimate (Trac).

Fig. 12(a) shows the the angle between the velocity

vector and the local y-axis, for the Con-Tracker and

the Kalman filter-based tracker. Similar to the results

obtained for ski boat 1, the angle obtained from the

Kalman filter-based tracker is much smoother compared

to the one obtained from the Con-Tracker. The discrep-

ancies in the Con-Tracker’s angle is due to the velocity

nudging that occurs when the target vehicle encounters

a zero-trafficability area. Fig. 12(b) shows the red-flag

alerts for ski boat 2. Note that the red-flag occurrence

and the large deviations in μ are consistent with the re-

sults shown in Fig. 11.

5.3 Tugboat

The tugboat starts in cell (1,20) and travels along

the marked channel toward cell (13,1). Fig. 13 shows

the measured and estimated tracks for the tugboat.

Fig. 14(a) contains the estimated process noise co-

variance variance values from the Con-Tracker/MMAE

fq̂1k , q̂2kg and the Kalman filter-based tracker/MMAEf³q1k , ³q2kg. Fig. 14(b) shows the normalized process

noise covariance norm, kqkk, for the tugboat. Shown
in Fig. 15 are the rate of change of normalized pro-

cess noise covariance norm, ¢qk, and the trafficability

values, º, for the tugboat.
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Fig. 14. Con-Tracker & tracker-estimated process noise covariance and normalized norm for tugboat. (a) Estimated q1 and q2.

(b) Normalized process noise covariance norm.

Fig. 15. Rate of change of normalized process noise covariance norm and trafficability values for tugboat. (a) Rate of change of kqkk.
(b) Trafficability values.

Fig. 16. Con-Tracker & tracker-estimated direction and red-flag indicator for tugboat. (a) Boat direction. (b) Red-flag indicator.

Fig. 16(a) shows the the angle between the velocity

vector and the local y-axis, for the Con-Tracker and

the Kalman filter-based tracker. Fig. 16(b) shows the

red-flag alerts for the tugboat. Note that there is no red-

flag occurrence for the tugboat since it remains in the

marked shipping channel.

5.4 Sailboat

A sailboat is considered as a distressed vessel that

is stranded in cell (7,3) due to low water depth. Fig. 17

shows the measured and estimated tracks for the sail-

boat. Fig. 18(a) contains the estimated process noise co-

variance variance values from the Con-Tracker/MMAE
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Fig. 17. Sailboat trajectories: Measured position (Meas),

Con-Tracker estimate (ConT) & tracker estimate (Trac).

fq̂1k , q̂2kg and the Kalman filter-based tracker/MMAEf³q1k , ³q2kg. Fig. 18(b) shows the normalized process

noise covariance norm, kqkk, for the sailboat. Shown
in Fig. 19 are the rate of change of normalized process

Fig. 18. Con-Tracker & tracker-estimated process noise covariance and normalized norm for sailboat. (a) Estimated q1 and q2.

(b) Normalized process noise covariance norm.

Fig. 19. Rate of change of normalized process noise covariance norm and trafficability values for sailboat. (a) Rate of change of kqkk.
(b) Trafficability values.

noise covariance norm, ¢qk, and the trafficability val-

ues, º, for the sailboat. The maximum allowable ¢qk
for the sailboat is also selected to be ¢qmax = 0:80.

Fig. 20(a) shows the the angle between the velocity

vector and the local y-axis, for the Con-Tracker and

the Kalman filter-based tracker. Fig. 20(b) shows the

red-flag alerts for the sailboat. Note that the red-flag

occurrences of the sailboat are consistent with the low

trafficability values given in Fig. 19(b).

6. FINAL REMARKS

The objective of this work is to develop a context-

aware target model and exploit available contextual

information to provide a hypothesis on suspicious target

maneuvers. The proposed concept involves utilizing the

L1 tracking approach to perform L2/L3 situation and

threat, refinement and assessment. A new context-aided

tracker called the Con-Tracker is developed here. This

tracker, which has its foundation in the standard Kalman

filter based tracker, incorporates the available contextual

information into the target vehicle model as trafficability

values. Based on the trafficability values, the target
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Fig. 20. Con-Tracker & tracker-estimated direction and red-flag indicator for sailboat. (a) Boat direction. (b) Red-flag indicator.

vehicle is either attracted or repelled from a particular

area. Though the traditional Kalman filter-based tracker

uses a near-constant velocity model, the Con-Tracker

allows reasonable variations in velocity that are consis-

tent with the contextual information. Any abrupt vari-

ations in velocity that is inconsistent with the context-

aware target model would account for suspicious target

maneuvers. Also, target maneuvers that are inconsistent

with the given contextual information are also consid-

ered to be suspicious. Similar to the traditional Kalman

filter-based tracker, the accuracy of the Con-Tracker es-

timates depends on the estimator parameters, such as the

measurement noise covariance and the process noise co-

variance. While the measurement noise covariance can

be readily obtained from sensor calibration, the process

noise covariance value is usually treated as a tuning pa-

rameter. The proposed scheme utilizes a MMAE to esti-

mate the process noise covariance value. Since the pro-

cess noise is added to the near-constant velocity model

to account for reasonable variations in velocity, target

maneuvers involving large variations in velocity that are

inconsistent with the contextual information would re-

sult in an increase in the estimated process noise covari-

ance value. Based on the rate of change of the estimated

process noise covariance values, an L2/L3 hypothesis

generator red-flags the target vehicle. Simulation results

indicate that the context-aided tracking enhances the re-

liability of erratic maneuver detection.

There are several parts of the proposed scheme that

can be further modified and improved. The current

L2/L3 hypothesis generator uses the process noise co-

variance estimated using the MMAE approach. One of

the main drawbacks of the MMAE approach is that it

requires a long convergence period. Once the process

noise covariance value increases due to an erratic vehi-

cle maneuver, the MMAE approach requires the vehicle

to travel through a perfect trafficability area for a long

period of time before the process noise covariance value

settles back at its initial low value. The convergence

properties of the MMAE can be improved by incorpo-

rating correlations between various measurement times,

i.e., replacing the MMAE with the generalized MMAE

(see [14]). The red-flagging design considered here de-

pends on a threshold value for the rate of change of

the normalized process noise covariance norm. A prob-

abilistic red-flagging scheme, which integrates the cur-

rent posterior error covariance and estimated process

noise covariance, may be considered for future work.

Finally, the accuracy and performance of the proposed

scheme can be improved by considering more refined

trafficability grid-field and more frequent and accurate

measurements.
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Multi-Stage

Multiple-Hypothesis Tracking
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CRAIG CARTHEL

While multiple hypothesis tracking (MHT) is widely acknowl-

edged as an effective methodology for multi-target surveillance,

there is a challenge to manage effectively a potentially large number

of track hypotheses. Advanced single-stage track-while-fuse does not

always offer the best processing scheme. We study two instances

where multi-stage MHT processing is beneficial–dense target sce-

narios and complementary-sensor surveillance–and propose two

processing schemes for these challenges: track-break-fuse and track-

before-fuse, respectively. We provide simulation results demonstrat-

ing the advantages of these schemes over track-while-fuse. More gen-

erally, we argue that multi-stage MHT offers a powerful and flexible

paradigm to circumvent limitations in conventional MHT process-

ing.
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1. INTRODUCTION

A broad overview of approaches to data fusion is

provided in [1]. The most powerful current approach

to real-time, scan-based data fusion is multi-hypothesis

tracking (MHT), which was first introduced in the late

1970s [11] and made feasible in the mid-1980s with the

track-oriented approach [9]. A number of enhancements

to the basic approach have appeared over the years [1].

If contact measurement information is available at

the tracker output, one can think of a multi-target tracker

as a filter of sorts that discards spurious contacts and

associates the remaining ones through track labeling.

As such, tracking is a modular operator which, when

applied to contact-level data, takes as input singleton

(i.e. single-measurement) tracks. More generally, a mix

of track-level and contact-level feeds may be provided

to the tracker. Upstream track labels are preserved in

downstream processing, except in cases where discrep-

ancies are detected in downstream tracking. This tracker

modularity allows for arbitrarily complex multi-stage

data fusion architectures. This philosophy, combined

with the necessary software modularity, is the basis for

the multi-stage MHT approach that we consider in this

paper. We find that in some applications multi-stage

MHT processing outperforms single-stage MHT pro-

cessing.

In this paper, we introduce two multi-stage MHT

architectures and compare these to single-stage, track-

while-fuse processing. The first multi-stage architecture,

track-break-fuse, is computationally efficient without

sacrificing the tracking performance of track-while-fuse.

The second architecture, track-before-fuse, provides fur-

ther computational efficiency at the cost of some track-

ing performance. The track-while-fuse approach is in-

tractable when the application requires deep hypothe-

sis trees; conversely, both of the multi-stage MHT ap-

proaches that we introduce here identify a small set of

relevant association hypotheses, enabling deep hypoth-

esis trees.

The paper is organized as follows. In Section 2, we

provide a short introduction to standard (track-while-

fuse) track-oriented MHT, following closely on the for-

malism introduced in [9]. The multi-stage MHT archi-

tectures of interest, track-break-fuse and track-before-

fuse, are introduced in Section 3. In Section 4 we study

track-break-fuse for a challenging, slowly-crossing tar-

gets problem. In Section 5 we study track-before-fuse for

multi-sensor surveillance with complementary, multi-

scale sensors. Concluding remarks are in Section 6.

Early results on the multi-stage processing intro-

duced here are in [6] (track-break-fuse) and [3] (track-

before-fuse). A related MHT approach to track-before-

fuse is discussed in [4], which introduces group-tracking

logic to enable deep hypothesis trees. Additionally,

within the MHT framework, some techniques to hypoth-

esis management do exist, including K-best assignment

or hypothesis-clustering approaches [7, 10]. However,
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the difficulty is that one must maintain relevant track

hypotheses for significant time duration, and often the

top-scoring global hypotheses do not have sufficient di-

versity to insure that this is achieved. Hypothesis clus-

tering may only partially ameliorate the situation. Pos-

sibly, one might adopt a probabilistic data association

framework to address the problem, leveraging the ap-

proach introduced in [8].

2. TRACK-ORIENTED MULTIPLE HYPOTHESIS
TRACKING

A key challenge in multi-sensor multi-target tracking

is measurement origin uncertainty. That is, unlike a

classical nonlinear filtering problem, we do not know

how many objects are in the surveillance region, and

which measurements are to be associated. New objects

may be born in any given scan, and existing objects may

die.

We assume that for each sensor scan, contact-level

(or detection-level) data are available, in the sense that

signal processing techniques are applied to raw sensor

data yielding contacts for which the detection and lo-

calization statistics are known. We are interested in a

scan-based (or real-time) approach that, perhaps with

some delay, yields an estimate of the number of objects

and corresponding object state estimates at any time.

Several approaches to contact-level scan-based

tracking exist. In this section, we employ a hybrid-

state formalism to describe the track-oriented multiple-

hypothesis tracking approach. Our approach follows

closely the one introduced in [9]. We assume Poisson

distributed births at each scan with mean ¸b, Poisson

distributed false returns with mean ¸fa, object detection

probability pd, object death or termination probability

pÂ at each scan. (We neglect the time-dependent nature

of birth and death probabilities as would ensue from an

underlying continuous-time formulation, and we neglect

as well inter-scan birth and death events.)

We have a sequence of sets of contacts Zk = (Z1, : : : ,

Zk), and we wish to estimate the state history X
k for all

objects present in the surveillance region. Xk is com-

pact notation that represents the state trajectories of tar-

gets that exist over the time sequence (t1, : : : , tk). Note

that each target may exist for a subset of these times,

with a single birth and a single death occurrence i.e.

targets do not reappear. We introduce the auxiliary dis-

crete state history qk that represents a full interpretation

of all contact data: which contacts are false, how the

object-originated ones are to be associated, and when

objects are born and die. There are two fundamental

assumptions of note. The first is that there are no tar-

get births in the absence of a corresponding detection,

i.e. we do not reason over new, undetected objects. The

second is that there is at most one contact per object per

scan.

We are interested in the probability distribution

p(Xk j Zk) for object state histories given data. This

quantity can be obtained by conditioning over all pos-

sible auxiliary states histories qk.

p(Xk j Zk) =
X
qk

p(Xk,qk j Zk)

=
X
qk

p(Xk j Zk,qk)p(qk j Zk): (1)

A pure MMSE approach would yield the following:

X̂MMSE(Z
k) = E[Xk j Zk]
=
X
qk

E[Xk j Zk,qk]p(qk j Zk): (2)

The track-oriented MHT approach is a mixed

MMSE/MAP one, whereby we identify the MAP es-

timate for the auxiliary state history qk, and identify

the corresponding MMSE estimate for the object state

history Xk conditioned on the estimate for qk.

X̂(Zk) = X̂MMSE(Z
k, q̂k) (3)

q̂k = q̂MAP(Z
k) = argmax

qk
p(qk j Zk): (4)

Each feasible qk corresponds to a global hypoth-

esis. (The set of global hypotheses is generally con-

strained via measurement gating and hypothesis genera-

tion logic.) We are interested in a recursive and computa-

tionally efficient expression for p(qk j Zk) that lends itself
to functional optimization without the need for explicit

enumeration of global hypotheses. We do so through

repeated use of Bayes’ rule. Note that, for notational

simplicity, we use p(¢) for both probability density and
probability mass functions. Also, as discussed in Sec-

tion 2, the normalizing constant ck does not impact MAP

estimation.

p(qk j Zk) = p(Zk j Zk¡1,qk)p(qk j Zk¡1)
ck

=
p(Zk j Zk¡1,qk)p(qk j Zk¡1,qk¡1)p(qk¡1 j Zk¡1)

ck

(5)

ck = p(Zk j Zk¡1)

=
X
qk

p(Zk j Zk¡1,qk)p(qk j Zk¡1): (6)

Recall that we assume that in each scan the number

of target births is Poisson distributed with mean ¸b,

the number of false returns is Poisson distributed with

mean ¸fa, targets die with probability pÂ, and targets are

detected with probability pd. The recursive expression

(5) involves two factors that we consider in turn, with

the discrete state probability one first. It will be useful

to introduce the aggregate variable Ãk (consistent with

the approach in [9]) that accounts for the number of

detections d for the ¿ existing tracks, the number of

track deaths Â, the number of new tracks b, and the
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number of false returns r¡ d¡ b, where r is the number
of contacts in the current scan.

p(qk j Zk¡1,qk¡1) = p(Ãk j Zk¡1,qk¡1)p(qk j Zk¡1,qk¡1,Ãk) (7)

p(Ãk j Zk¡1,qk¡1) =
½μ

¿

Â

¶
pÂÂ(1¡pÂ)¿¡Â

¾
¢
½μ

¿ ¡Â
d

¶
pdd(1¡pd)¿¡Â¡d

¾
¢
½
exp(¡¸b)pbd¸bb

b!

¾

¢
(
exp(¡¸fa)¸r¡d¡bfa

(r¡ d¡ b)!

)
(8)

p(qk j Zk¡1,qk¡1,Ãk) =
1μ

¿

Â

¶μ
¿ ¡Â
d

¶μ
r!

(r¡ d)!
¶μ

r¡ d
b

¶ : (9)

Substituting (8—9) into (7) and simplifying yields the

following.

p(qk j Zk¡1,qk¡1) =
½
exp(¡¸b¡¸fa)¸rfa

r!

¾
pÂÂ((1¡pÂ)(1¡pd))¿¡Â¡d

Ã
(1¡pÂ)pd

¸fa

!dÃ
pd¸b
¸fa

!b
: (10)

The first factor in (5) is given below, where Zk =

fzj ,1· j · rg, jJdj+ jJbj+ jJfaj= r, and the factors on
the R.H.S. are derived from filter innovations, filter ini-

tiations, and the false contact distribution (generally uni-

form over measurement space). For example, in the lin-

ear Gaussian case, fd(zj j Zk¡1,qk) is a Gaussian resid-
ual, i.e. it is the probability of observing zj given a se-

quence of preceding measurements. If there is no prior

information on the target, fb(zj j Zk¡1,qk) is generally
the value of the uniform density function over mea-

surement space. Similarly, ffa(zj j Zk¡1,qk) is as well
usually taken to be the value of the uniform density

function over measurement space, under the assump-

tion of uniformly distributed false returns. Note that the

expressions given here are general and allow for quite

general target and sensor models.

p(Zk j Zk¡1,qk) =
Y
j2Jd

fd(zj j Zk¡1,qk) ¢
Y
j2Jb

fb(zj j Zk¡1,qk)

¢
Y
j2Jfa

ffa(zj j Zk¡1,qk): (11)

Substituting (10—11) into (5) and simplifying results

in (12—13). This expression is the key enabler of track-

oriented MHT. In particular, it provides a recursive ex-

pression for p(qk j Zk) that consists of a number of fac-
tors that relate to its constituent local track hypotheses.

p(qk j Zk) = pÂÂ((1¡pÂ)(1¡pd))¿¡Â¡d
Y
j2Jd

·
(1¡pÂ)pdfd(zj j Zk¡1,qk)
¸faffa(zj j Zk¡1,qk)

¸Y
j2Jb

·
pd¸bfb(zj j Zk¡1,qk)
¸faffa(zj j Zk¡1,qk)

¸
p(qk¡1 j Zk¡1)

c̄k
(12)

c̄k =
ck½

exp(¡¸b ¡¸fa)
r!

¸rfa

¾Q
j2Jd[Jb[Jfa ffa(zj j Zk¡1,qk)

: (13)

An implicit reduction in the set of hypotheses in

(12—13) is that target births are assumed to occur only

in the presence of a detection (i.e. there is no reasoning

over un-detected births). Correspondingly, the factor

pd reduces the effective birth rate to pd¸b (though

surprisingly the factor is absent in [9]). Further, in the

first scan of data, it would be appropriate to replace

pd¸b by pd¸b=pÂ to account properly for the steady-state

expected number of targets. (More generally, target birth

and death parameters should reflect sensor scan rates,

as the underlying target process is defined in continuous

time.) Further reduction in the set of hypotheses is

generally achieved via measurement gating procedures

[1]. Finally, for a given track hypothesis, one usually

applies rule-based spawning of a missed detection or

termination hypothesis, but not both (e.g. only spawn

a missed detection hypothesis until a sufficiently-long

sequence of missed detection is reached).

One cannot consider too large a set of scans be-

fore pruning or merging local (or track) hypotheses in

some fashion. A popular mechanism to control these

hypotheses is n-scan pruning. This amounts to solving

(4), generally by a relaxation approach to an integer

programming problem [4, 6, 11], followed by pruning

of all local hypotheses that differ from q̂k in the first

scan. This methodology is applied after each new scan
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of data are received, resulting in a fixed-delay solution

to the tracking problem.

Often, n-scan pruning is referred to as a maximum

likelihood (ML) approach to hypothesis management.

ML estimation is closely related to maximum a posteriori

(MAP) estimation. In particular, we have:

X̂MAP(y) = argmaxf(y j X)f(X) (14)

X̂ML(y) = argmaxf(y j X): (15)

Note that ML estimation is a non-Bayesian approach

as it does not rely on a prior distribution on X. ML

estimation can be interpreted as MAP estimation with a

uniform prior. In the track-oriented MHT setting, n-scan

pruning relies on a single parent global hypothesis, thus

the ML and MAP interpretations are both valid.

Once hypotheses are resolved, in principle one has

a state of object histories given by X̂(Zk). In practice, it

is common to apply track confirmation and termination

logic to all object histories [1]. A justification for this is

that it provides a mechanism to remove spurious tracks

induced by the sub-optimality inherent in practical MHT

implementations that include limited hypothesis gener-

ation and hypothesis pruning or merging.

Given the need for post-association track confirma-

tion and termination logic, a reasonable simplification

that is pursued in [5] is to employ equality constraints in

the data-association process, which amounts to account-

ing for all contact data in the resolved tracks. Spurious

tracks are subsequently removed in the track-extraction

stage.

3. MULTI-STAGE MHT

Multi-stage fusion as performed here has two defin-

ing characteristics that differ from many legacy systems

that exist today [1]. The first is that each tracker mod-

ule retains measurement-level information at the output.

That is, each module performs the following: it removes

large numbers of measurement data, and associates the

remaining measurements to form tracks over time. If

the tracker is working well and the data are of rea-

sonable quality, false measurements will largely be re-

moved and target-originated measurements will mostly

be maintained and associated into tracks that persist

over time with limited fragmentation. Since measure-

ment data are available at the tracker output, optimal

track fusion and state estimation is achievable in down-

stage tracker modules; the cost to achieve this perfor-

mance benefit is a slightly larger bandwidth requirement

between processing stages. The second defining char-

acteristic is that track fusion is achieved in a real-time,

scan-based manner. Often, track fusion is performed in a

post-processing batch mode that is not readily amenable

to real-time surveillance application [1].

The theoretical optimality of unified, batch and cen-

tralized approaches to fusion and tracking (track-while-

fuse) is at odds with a number of practical considera-

tions. Principally, in many surveillance settings optimal

Fig. 1. Track-while-fuse: single-stage processing.

processing algorithms are either not known, or are com-

putationally infeasible. Thus, improved performance of-

ten can be achieved with multi-stage processing that in-

volves simpler and less computationally intensive algo-

rithms than with centralized processing.

The multi-stage paradigm is seemingly at odds with

fundamental results in the nonlinear filtering and dis-

tributed detection literature [13]. However, this is not

actually the case. Rather, multi-stage approaches may

outperform single-stage ones for two reasons: (1) like all

trackers, single-stage tracking approaches are necessar-

ily sub-optimal as they must contend with measurement

origin uncertainty; and (2) measurement information is

carried to downstream stages of multi-stage processing.

As such, multi-stage processing as defined here is not

in fact an instance of distributed processing.

A systems representation of track-while-fuse, track-

break-fuse, and track-before-fuse is illustrated in Figs. 1—

3. Note that use of these architectures need not require

the availability of multi-sensor feeds: indeed our appli-

cation of track-break-fuse (Section 4) is in the context

of single-sensor surveillance.

In our two approaches to multi-stage MHT process-

ing, we first seek to identify relevant, target-originated

contact-level data from the high-rate sensor in a first

tracker processing stage. We are not particularly con-

cerned that multi-target interactions be handled prop-

erly. Indeed, the first-stage tracker need not be an MHT

module, though it is important that it perform hard data

association and that the module provide contact-level

data associated with tracks.

In many multi-sensor settings, one has high-rate sen-

sors (perhaps providing a scan every several seconds)

that provide detection information but without much

target feature information, if any. An example of this

is a surveillance radar. Additionally, one may have a

low-rate sensor (perhaps providing a scan every several

hours) that provides detection information with signifi-

cant target features, or attributes, besides kinematic in-

formation. An example of this is synthetic aperture radar

(SAR) imagery that may provide target dimensions or

target type. A standard single-stage processing architec-

ture is illustrated in Fig. 1.

In the track-break-fuse architecture (Fig. 2), track la-

bels are removed from the single-sensor tracks, and the

resulting contact-level data are fed to the second-stage

tracker along with the low-rate feature-rich contacts
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Fig. 2. Track-break-fuse: multi-stage processing with removal of

track labels after first tracker module.

from the second sensor (if available). With the track-

before-fuse architecture (Fig. 3), single-sensor tracks are

fed to the second-stage MHT module along with the

low-rate feature-rich contacts from the second sensor.

An important requirement for the track-before-fuse

architecture is to have track-breakage logic in the sec-

ond tracking module. Specifically, in instances in which

the first-stage tracking has incorrectly introduced a track

swap, subsequent feature information may identify that

a tracking error has occurred. We wish to recover grace-

fully from the error, without the time-rollback solution

that is operationally infeasible in large-scale surveil-

lance. Error identification is prevalent when the feature-

rich sensor has unambiguous target identification infor-

mation. Correspondingly, when an infeasible update to

a fused track is received, the fused track is terminated,

and each upstream track of which the fused track is

composed is subsequently treated as a new input track

and made available for fusion with other fused tracks

or for fused track initiation.

4. DENSE TARGET SCENARIOS AND THE
TRACK-BREAK-FUSE ARCHITECTURE

A fundamental difficulty in target tracking is multi-

target ambiguity, exhibited for example in a slowly-

crossing target scenario. We find that MHT process-

ing with large hypothesis tree depths improves track-

ing performance including a reduction of track swap

occurrences. However, this poses a significant process-

ing challenge as deep hypothesis trees are required. In-

deed, hypothesis trees must be deep enough and rich

enough so that the (local) track hypotheses associated

with crossing and non-crossing tracks are maintained

until ambiguities are resolved.

We will see that two-stage MHT processing with

a track-break-track architecture does not impact track-

ing performance, it provides a dramatic computational

benefit.

Fig. 3. Track-before-fuse: multi-stage processing with logical track

breakage as needed in second tracker module.

The track-break-track architecture includes a first

stage of tracking, followed by removal of all track la-

bel information and a second stage of MHT tracking

applied only to those contacts that are included in the

first-stage tracks. Thus, the first tracking stage can be

regarded as a filter that identifies target-originated con-

tacts. Multi-target association ambiguities are resolved

in the second stage. The motivation for this architecture

is that the first stage of processing can be executed quite

effectively with no or small hypothesis tree depth, while

the second stage requiring a larger hypothesis tree depth

contends with much less contact data. Thus, we expect

and find comparable performance to single-stage MHT

in crossing-target scenarios, but at significant computa-

tion savings.

We now study the percentage of success for the

crossing-target scenario, with track-while-fuse and track-

break-fuse architectures and a range of hypothesis tree

depths (n-scan). A key issue in this study is how we

define success in a way that captures successful tracking

through the target-crossing event. For the scenario of

interest, this is well-captured by requiring a track hold

or track PD that exceeds 75+% (note that in the case of

a track swap, tracks are classified as false.)

Key parameters in this simulation are the following:

² Target: angle of approach=22 deg; speed=76:5 m/s;
² Sensor: PD=0:7, FAR=10=scan; positional measure-
ment error standard deviation–1 m in both x and y;

scan rate = 1 Hz; number of scans = 150;

² Tracker: process noise = 10¡3 m2s¡3; initiation rule:
4-of-4; termination rule: 4 misses; association gate =

99%;

² Monte Carlo settings: 500 realizations of sensor data
are generated. For each, six track-while-fuse tracker

executions are performed (with n-scan from 0 to 5),

as well as six track-break-track executions (n-scan= 0

in first stage, n-scan from 0 to 5 in the second stage).

Fig. 4 illustrates execution timing results. As ex-

pected, for small n-scan values, centralized tracking

is faster. For larger n-scan values, track-break-track is

faster. Fig. 5 illustrates tracking performance. With

both tracking architectures, we find that there is in-

creased tracking performance with increasing hypothe-

sis depth, at the cost of increased execution time. We see
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Fig. 4. Tracker timing results as a function of architecture and n-scan setting.

Fig. 5. Tracking performance as a function of architecture and n-scan setting.

that track-break-fuse matches the performance of track-

while-fuse with significant computational savings.

An illustration of two tracker outputs for one run in

the simulation study is illustrated in Figs. 6—7. Fig. 6

illustrates the sensor footprint with false contacts (black

dots) and target-induced contacts (magenta dots). Target

trajectories are in magenta, track-while-fuse tracks are

in blue and red, indicating true and false tracks, respec-

tively. (Note that the track swap occurrence is classified

as a false track.) The (true) tracks resulting from track-

break-fuse processing (n-scan= 5) are in green.

5. MULTI-SENSOR SURVEILLANCE AND THE
TRACK-BEFORE-FUSE ARCHITECTURE

Fig. 8 illustrates the feature-aided tracking problem.

We consider a situation where a high revisit rate sen-

sor, e.g. surveillance radar, provides contact data to the

fusion center. A second sensor provides contact data

intermittently. Examples for the second sensor might

include a SAR imaging sensor, a passive signal intelli-

gence (SIGINT) sensor, or a passive transponder-based

sensor such as the automatic identification system (AIS)

in the maritime domain [12]. In the figure, target trajec-

tories are shown in black. Surveillance radar contacts

are shown in blue and black, for target detections and

false returns, respectively. Intermittent, feature-rich re-

turns are shown in red.

We consider again a target-crossing scenario. Sensor

1 has coverage of the entire surveillance region, while

sensor two has coverage over a subset of the region

that does not include the target-crossing event. The two

sensors have the same nominal revisit rate, but sensor 2

is intermittent due to the more limited coverage. Both

sensors provide positional measurements.

Sensor 2 is representative of a transponder-based

passive sensor, like AIS. As such, it has a high revisit

rate but intermittent coverage. While the detection prob-

ability is non-unity due to electromagnetic propagation

effects and measurement collision with the time-division

message allocation scheme [2], the false alarm rate is

zero. Consistent with AIS data, sensor two provides pre-

cise target identification information.

Simulation parameters are given in Table I. Note that

the track management criteria in the track-while-fuse and

1st stage of the multi-stage architectures differ slightly:

this is done to achieve comparable data rates, and is

required to account for intermittent coverage of sensor

2. The hypothesis tree depths in track-while-fuse and in

the 2nd stage of the multi-stage architectures are chosen

to be the same and sufficient to ensure good tracking
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Fig. 6. One realization of sensor data, with two tracker outputs.

Fig. 7. Close-up view of track-while-fuse processing (red, blue) and track-break-fuse processing (green).

performance given the gap in sensor 2 coverage. The

track break parameter is used to identify infeasible track

updates that initiate fused track termination in the track-

before-fuse architecture. The track classification metric

is relevant to performance evaluation, as it is used to

identify true tracks based on average localization error.

One scenario realization is illustrated in Figs. 9—

12. In this instance, track swap has occurred in single-

sensor (sensor 1) tracking. We see that single-stage

track-while-fuse architecture does not exhibit the swap,

nor does the multi-stage track-break-fuse architecture.

The track-before-fuse architecture recovers from the up-

stream track swap by fragmenting the fused tracks, un-

der the track-breakage logic described in Section 3.

As noted above, tracker performance evaluation re-

lies on a track classification step whereby those tracks
Fig. 8. A notional illustration of the feature-aided tracking

problem.
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TABLE I

Parameter Settings for the Simulation Study

Parameter Setting

Monte Carlo realizations 200

Scenario duration 150 sec

Target number 2

Target start locations (¡75 m,5 m),
(¡75 m,¡5 m)

Target velocities (until crossing) (1 m/s,¡0:067 m/s),
(1 m/s,0:067 m/s)

Target velocities (after crossing) (1 m/s,¡0:33 m/s),
(1 m/s,0:33 m/s)

Sensor 1 footprint (180 m)2

Sensor 1 scan rate 1 Hz

Sensor 1 detection probability 0.8

Sensor 1 false alarm rate per scan 20

Sensor 1 measurement error covariance

·
1 0

0 1

¸
m2

Sensor 2 footprint (180 m)2 minus central

swath, jxj< 5 m
Sensor 2 scan rate 1 Hz

Sensor 2 detection probability 0.8

Sensor 2 false alarm rate per scan 0

Sensor 2 measurement error covariance

·
1 0

0 1

¸
m2

Track filter process noise parameter 0:1 m2s¡3

Track filter prior velocity covariance
·
1 0

0 1

¸
m2s¡2

Track correlation gate 99%

Track break (2nd stage track-before-fuse) 99.99%

Track initiation (track-while-fuse) 3-of-4

Track initiation (1st stage

track-before-fuse & track-break-fuse)

4-of-4

Track kill (track-while-fuse) 6 misses

Track kill (1st stage track-before-fuse &

track-break-fuse)

4 misses

Track kill (2nd stage track-before-fuse &

track-break-fuse)

6 misses

N-scan (track-while-fuse) 10

N-scan (1st stage track-before-fuse &

track-break-fuse)

0

N-scan (2nd stage track-before-fuse &

track-break-fuse)

10

Track classification distance threshold 2 m

with sufficiently large average localization error with

respect to all target trajectories are classified as false;

otherwise, the closest target trajectory is identified. Sub-

TABLE II

Performance Results

Track-While-Fuse Track-Before-Fuse Track-Break-Fuse

PD 0.6067 0.9866 0.9861

FAR 23.40 22.07 42.35

FRAG 1.2229 2.1575 1.4175

ERROR 1.0348 1.061 0.9449

TIME 119.58 21.12 35.74

sequently, the following performance metrics are iden-

tified:

² Track hold (PD): ratio of total true track duration and
total trajectory duration;

² False track rate (FAR): average number of false

tracks [hr¡1];
² Track fragmentation (FRAG): average number of true
tracks per tracked target;

² Track localization error (ERROR): average positional
error between a true track and the corresponding

target trajectory [m];

² Tracker execution time (TIME): average tracker exe-
cution time on a DELL OPTIPLEX GX620 with Intel

Pentium D processor [sec]; note that 150 sec corre-

sponds to real-time processing.

Performance results for the three feature-aided track-

ing architectures of interest are in Table II. An assess-

ment of these results leads to the following conclusion:

² In terms of track detection performance (PD, FAR),
track-before-fuse outperforms both track-while-fuse

and track-break-fuse;

² In terms of track continuity (FRAG), the finding is
reversed: track-while-fuse and track-break-fuse outper-

form track-before-fuse;

² In terms of track accuracy (ERROR), the architectures
are comparable;

² In terms of track computational load (TIME), both
multi-stage architectures perform significantly better

than track-while-fuse.

Overall, we find that the track-while-fuse architecture

has good performance, but it is not scalable to large

hypothesis tree depths as would be required if the

feature-rich sensor has a very low revisit rate, or has

intermittent coverage with significant special gaps.

From a target-detection perspective, track-break-fuse

performs comparably to track-while-fuse. In the simula-

tion study, both track PD and track FAR are higher in

track-break-fuse, since the effective track-level receiver

operating characteristics (ROC) curve operating point

is different between the two architectures. Similarly, the

track fragmentation rate (FRAG) is roughly comparable.

We conclude that the two architectures yield comparable

tracking performance, but the track-break-fuse architec-

ture exhibits significant computational savings.

The track-before-fuse architecture exhibits better

target-detection performance than track-break-fuse. This
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Fig. 9. One scenario realization.

Fig. 10. Same realization as Fig. 9, with close-up on target

crossing. Single-sensor (red) tracks exhibit swapping;

track-before-fuse (green) exhibits track fragmentation after targets

enter region of sensor 2 (feature-rich) coverage; both

track-break-fuse (cyan) and track-while-fuse (black) are successful.

can be explained as follows: unlike track-break-fuse,

there is no need to reacquire track in the second pro-

cessing stage, since track associations are preserved. On

the other hand, its track fragmentation rate is worse than

that achieved with track-break-fuse, since first-stage as-

sociation errors, when detected, lead to track termina-

tion and correspondingly to an increase in the overall

fragmentation rate. As expected, the track-before-fuse

architecture is the most efficient from a computational

perspective.

To conclude, track-while-fuse is not scalable to large

scenarios and large hypothesis-tree depths. Two feasible

alternatives are track-break-fuse and track-before-fuse.

Depending on the application, one or the other of these

may be best.

6. CONCLUSIONS AND FUTURE DIRECTIONS

This paper proposes two multi-stage architectures

for challenging surveillance problems that include dense

Fig. 11. Same as Fig. 9, with track-before-fuse result on top overlay

(note fragmentation).

Fig. 12. Same realization as Fig. 9, with track-break-fuse result on

top overlay (similar to track-while-fuse, with no fragmentation).

target scenarios and multi-scale or intermittent multi-

sensor coverage. In single-sensor benchmarking, the

track-break-fuse architecture provides the same perfor-

mance as track-while-fuse but with significant compu-

tational savings. In multi-sensor benchmarking, both

multi-stage architectures achieve comparable track-level

detection, localization, and track-continuity perfor-

mance as single-stage, track-while-fuse processing.

However, both architectures do so with dramatically re-

duced execution times. Further, the multi-stage archi-

tectures are extensible to larger hypothesis tree depths,

while the single-stage architecture is not. The first multi-

stage architecture, track-before-fuse, has higher track

fragmentation than single-stage processing. The second

multi-stage architecture, track-break-fuse, achieves com-

parable track fragmentation as in single-stage process-

ing, at the cost of a small computational increase over

track-before-fuse.
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Future work will include analysis of an architec-

ture that includes some track breakage after first-stage

tracking, but less than the complete breakage prescribed

under the track-break-fuse architecture. As such, this

hybrid architecture should trade off the benefits of the

track-break-fuse architecture (limited sensitivity to first-

stage tracking errors) with those of the track-before-fuse

architecture (computational savings, particularly in sce-

narios where multi-target association ambiguities persist

for a long time).

Such a (hybrid) architecture would provide im-

proved surveillance performance and would be partic-

ularly applicable to large sensor surveillance networks,

where ambiguities may persist for a very large number

of sensor scans, thus providing a flexible architecture

for large-scale surveillance. The approach shares sim-

ilarities with [4] but without requiring group-tracking

logic.
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