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From the Editor-In-Chief
December 2011

Where Are the Design Methods for
Information Fusion Algorithms?
The community of information fusion researchers is

a very prolific group that publishes papers in numerous

annual conferences and journals. However, the number

of success stories associated with fielding systems that

include information fusion is relatively small. When

considering the low rate of transitions of information

fusion techniques to real-world systems, I noticed that

for all practical purposes no design methods exist for

information fusion algorithms. Since engineers, not re-

searchers, design and build systems, tools and design

processes for design engineers are critical to the imple-

mentation of information fusion methods in real-world

systems.

According to the Accreditation Board for Engineer-

ing and Technology (ABET), engineering design is the

process of devising a system, component, or process

to meet desired needs. It is a decision-making process

(often iterative), in which the basic sciences, mathemat-

ics, and the engineering sciences are applied to con-

vert resources optimally to meet these stated needs. This

ABET guidance implies a design process that achieves

a guaranteed performance. The technical domain of in-

formation fusion includes very little for which engineers

can draw upon in their design process and almost none

of the information fusion algorithms have any perfor-

mance guarantees for which the designer can utilize to

ensure the needs of the design will be met the needs or

requirements. In this editorial, I focus on the need for

design processes, while system requirements and per-

formance guarantees will be discussed in the June 2012

editorial.

Until recently [1, 2], the wealth of literature on

the well-studied and rather straightforward problem of

tracking maneuvering targets did not include design

methods. The model mismatch present in the Kalman

filter (zero-mean white process noise) to model (de-

terministic but unknown) target maneuvers complicates

the design process, and the lack of attention from the

information fusion community on a design method has
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left this as an open problem for over 30 years. Prior

to [1, 2], conventional wisdom for the design of nearly-

constant filters for tracking maneuvering targets [3] sug-

gests that the process noise standard deviation should be

chosen greater than one half the maximum acceleration

of the target and less than the maximum acceleration.

This guidance was based on experience and the design

criterion was never quantified. In fact, using this de-

sign guidance can lead one to design a track filter that

produces errors greater than the errors in the sensor

measurements [4]. In [1, 2], the maximum acceleration

of the target and duration of the maneuvers along with

the sensor parameters were used to define upper and

lower limits on the process noise standard deviation.

The lower limit on the process noise standard deviation

is defined to prevent the estimation errors from exceed-

ing the measurement errors, while the upper limit is set

to minimize the maximum mean squared error. Thus,

a systematic method for the design of nearly constant

velocity filters for tracking maneuvering targets is in-

troduced in [1, 2]. That technique is extended to radar

tracking in [5].

This problem of tracking maneuvering targets has

more open issues with respect to design methods. For

example, the choice between a nearly constant accel-

eration filter and a nearly constant velocity filter for a

specific tracking problem is an open issue. The choice

between a multiple model estimator and a Kalman filter

is another open issue that was originally addressed in

[6]. A shortcoming of the results in [6] is the need to se-

lect the process noise standard deviation which we know

was an open issue during its publication. The technical

domain of information fusion is full of open problems

related to the design of information fusion algorithms.

Some examples include selection of the gating thresh-

old, choice between probabilistic data association and

multiple hypothesis tracking (MHT), selection of the

memory depth of an MHT, and selection of the costs of

missed detections and no assignment in measurement-

to-track assignment.

Development of effective design methods for infor-

mation fusion algorithms is the next frontier for the in-

formation fusion community. Every implementation of

information fusion cannot be treated as a new research

problem, if information fusion algorithms are going to

be implemented in real-world systems. Readily avail-

able design methods with performance guarantees are

a prerequisite for the transition of information fusion

methods into real-world systems. Development of de-

sign methods needs to become the newest research topic

for the information fusion community.

William Dale Blair

Editor In Chief
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Track-to-Track Association and
Ambiguity Management in the
Presence of Sensor Bias

DIMITRI J. PAPAGEORGIOU

MICHAEL HOLENDER

The track-to-track association problem is to determine the pair-

ing of sensor-level tracks that correspond to the same true target

from which the sensor-level tracks originated. This problem is cru-

cial for multisensor data fusion and is complicated by the presence

of individual sensor biases, random errors, false tracks, and missed

tracks. A popular approach to performing track-to-track associa-

tion between two sensor systems is to jointly optimize the a poste-

riori relative bias estimate between the sensors and the likelihood

of track-to-track association. Algorithms that solve this problem

typically generate the K best bias-association hypotheses and corre-

sponding bias-association likelihoods. In this paper, we extend the

above approach in two ways. First, we derive a closed-form expres-

sion for computing “pure” track-to-track association likelihoods,

as opposed to bias-association likelihoods which are weighted by

a unique relative bias estimate. Second, we present an alternative

formulation of the track-to-track association problem in which we

optimize solely with respect to marginal association likelihoods. Fi-

nally, we provide two algorithms that find theK provably best track-

to-track associations with respect to our new likelihood function.

These results facilitate what is commonly known as system-level

track ambiguity management.
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1. INTRODUCTION

A fundamental problem in multisensor data fusion

is associating data from different sensor systems in the

presence of sensor bias, random errors, false alarms,

and missed detections. Level 1 of the JDL Fusion [10]

model encompasses many different processes while at-

tempting the overall goal of Object Refinement. Raw

data are input into the system and the first problem that

is considered is determining what that data refer to and

which elements of data associate to one another. In our

case, associating data is crucial to providing a coher-

ent, integrated picture to the user, as well as pertinent

track and attribute information about various targets of

interest.

A typical multiple target tracking (MTT) system is

composed of a suite of heterogeneous sensor systems

and one or more fusion nodes which receive and process

the raw data provided to the system. Each sensor pro-

cesses its own data to generate and maintain sensor-level

(also known as locally-fused) tracks, while each fusion

node fuses the sensor-level tracks into a set of system-

level tracks. This architecture is hierarchical in nature

and has become a widely accepted system design choice

in many circles because of the lack of single points of

failure and information processing bottlenecks [21].

It is within the context of this hierarchical MTT

system that the track-to-track association problem be-

comes so crucial. Before continuing forward with the

fusion process, a fusion node must first have high con-

fidence that the track data (from different sensors) to

be combined correspond to the same target. A host of

factors can complicate this association. First, participat-

ing sensors operating under different phenomenology

may track different subsets of the truth. Second, closely-

spaced objects may be difficult to resolve due to individ-

ual sensor sensitivity. A third issue concerns error due to

sensor biases, which result from misalignment of mea-

surement axes and sensor location error often arise and

are difficult to estimate. Proper estimation and removal

of this error is important to making correct assignments

[3, 19, 20].

As discussed in [3], [11], and [19], there are several

potential sources of error that bias removal algorithms

attempt to rectify. Moore and Blair [19] group these

sources into three broad categories: sensor errors, sen-

sor/platform position and heading errors, and transfor-

mation errors from one sensor to another. Sensor regis-

tration attempts to estimate errors associated with biases

that are constant or changing very slowly with time so

that they can be removed before filtering takes place.

Sensor biases, which may arise in both range and angle

dimensions, often account for the majority of the total

error. Moreover, they are typically the most difficult to

estimate and eliminate. While range error can consist

of offset and scaling errors, the offset error is typically

the culprit of the error that sensor registration seeks to

remove. In this paper, we only consider the presence of
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Fig. 1. The track-to-track association problem using positional densities only.

a random relative bias between sensors, without the aid

of so-called targets of opportunity [15] or absolute bias

estimates [12].

The track-to-track association problem is to deter-

mine the pairing of sensor-level tracks that correspond

to the same true targets from which sensor-level tracks

originated. The focus of this paper concerns track-to-

track association between two sensor systems in the

larger context of system-level tracking and discrimina-

tion. Fig. 1 depicts a simple example of the track-to-

track association problem in which it is imperative to

account for the presence of sensor bias. Sensor A sees

four tracks, whereas sensor B sees seven, including the

four seen by sensor A. The positional error volume of

each sensor’s tracks can be viewed as an ellipsoid in

3D. Despite the fact that several ellipsoids overlap, the

true relative bias is such that no two corresponding track

volumes overlap in the graphic.

Our point of departure is a track-to-track associa-

tion problem posed by Levedahl [17], which he termed

the Global Nearest Pattern Matching (GNPM) problem.

The primary purpose of the GNPM problem was for a

one-time sensor-to-sensor handover in which one sen-

sor system transmits a frame of data to another sensor

upon which a correlation algorithm is employed to cor-

relate the information with its local track database. The

novelty of Levedahl’s approach, as well as Kenefic’s

[14] before him, was the explicit incorporation of a rel-

ative bias term into the likelihood function used to per-

form track-to-track association. For years, researchers

and practitioners had acknowledged the existence of

systematic sensor biases, but the vast majority of algo-

rithms developed to resolve the problem were sequential

in nature. That is, correlation algorithms would first at-

tempt to estimate and remove the relative sensor bias,

and then perform track-to-track association by solving

a standard two-dimensional linear assignment problem

(e.g., [27]). The fundamental drawback of this sequen-

tial approach lies in the infamous “chicken or the egg

dilemma”: The determination of the relative bias is in-

extricably linked with the correct track-to-track asso-

ciation and vice versa. Kenefic and Levedahl formally

coupled the two problems and the resulting formulation

has seen increasing use within the MTT community. A

precise description of the GNPM problem is given in

Section 2.

Algorithms that solve the GNPM problem typi-

cally generate the K best bias-association hypotheses

and rank them according to their corresponding bias-

association likelihood. One of the questions that we

hope to address is: Is this information adequate for help-

ing a system operator overseeing not just a suite of sen-

sors, but weapon systems and other technology as well,

make a more informed decision concerning whether or

not to fuse the track data? In the air and missile defense

domain, system-level tracking carries inherent uncer-

tainties as heterogeneous sensors with different viewing

geometries that observe closely-spaced objects disperse

in a random manner. This inherent uncertainty in track

formation and association has led to an area known as

track ambiguity management.

Since identifying a single bias-association hypoth-

esis whose likelihood “stands out” from the other hy-

potheses is an elusive task given this uncertainty, a sec-

ondary (and arguably less optimistic/more pragmatic)

objective is to enumerate a subset of K bias-association

hypotheses so that individual track pairings can be eval-

uated. Specifically, if there are a number of highly

likely hypotheses whose likelihoods differ by negligi-

ble amounts, it is beneficial from a system-level per-
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spective to know if there is a subset of track pairings

that are common among all or most of the K best hy-

potheses. For example, in missile defense, one is often

most interested in correctly associating a subset of the

tracks, namely those that may represent objects of con-

cern. Going a step further, it may be beneficial at the

system-level for a correlation algorithm to quantify the

likelihood that sensor A track i should be paired with

sensor B track j. Unfortunately, one cannot produce

these likelihoods using the bias-association likelihoods

produced by an algorithm for the GNPM problem as

will be discussed in Section 3.

In this paper, we argue that the information returned

after solving the GNPM problem for track-to-track asso-

ciation may be insufficient in assisting a system operator

make an informed decision concerning whether or not

two tracks should be fused, especially in the case when

a one-time sensor-to-sensor handover is necessary. In-

stead, we suggest that a closely-related, but different,

likelihood function, which we call a marginal track-to-

track association likelihood function, can be used either

in lieu of the GNPM likelihood function or for the com-

putation of individual track pairing likelihoods to im-

prove system-level ambiguity management.

Our main contributions to the fusion community are

the following: (1) We derive a closed-form solution

for our proposed likelihood function and provide a

procedure for computing likelihoods for individual track

pairs. (2) We illustrate the usefulness of these track pair

likelihoods with a detailed example based on four track

scenes of increasing ambiguity. (3) We propose two

exact algorithms for identifying the K provably best

solutions to our new association problem, one of which

may be suitable within an operational system.

The outline of this paper is as follows: In Section 2,

a common set of assumptions is given and the GNPM

problem is presented. In Section 3, we formally derive a

closed-form expression for our marginal track-to-track

association likelihood and contrast it with the GNPM

likelihood function. A detailed example then follows of

the practicality of the marginal track-to-track associa-

tion likelihood function for system-level track ambigu-

ity management. In Section 5, motivated by the find-

ings presented in the example of Section 4, we propose

an alternative formulation for performing track-to-track

association using our marginal track-to-track associa-

tion likelihood function in lieu of the GNPM likelihood

function and two exact algorithms for solving this prob-

lem in Section 6. Computational results are presented in

Section 7 followed by conclusions in Section 8.

2. PROBLEM DESCRIPTION

Consider two independent sensor systems–sensor A

and sensor B–tracking an unknown number of targets

in space. Let NA = f1, : : : ,nAg and NB = f1, : : : ,nBg de-
note the set of tracks formed by sensors A and B, respec-

tively. Without loss of generality, we assume through-

out that nA · nB . Due to a host of factors, including
geometry and sensor resolution, the number of tracks

formed by sensors A and B will often differ from the

true number of targets and from one another. Let xAi and
Pi, for i 2NA, denote the state estimate and error co-
variance matrix, respectively, of the ith sensor A track.

Similarly, let xBj and Qj , for j 2NB , denote the state
estimate and covariance matrix, respectively, of the jth

sensor B track. We assume that estimation errors for

each sensor reporting on a common target are uncorre-

lated. This is only an approximation since, in general,

track errors from different sensors are correlated. We

assume all state estimates and covariance matrices have

been extrapolated to a common time point and have

been converted to a common D-dimensional reference

frame.1

A key assumption in this track-to-track association

framework is that each track state is corrupted by a con-

stant, but unknown, sensor bias2 [5, 17, 21, 25]. Ideally,

these individual sensor biases would be estimated and

removed prior to performing track-to-track association,

but this is not always possible [3, 19]. Consequently, a

distinguishing facet of this approach is our attempt to es-

timate the inter-sensor bias, or the relative bias, between

the two sensors via maximum a posteriori (MAP) esti-

mation. That is, this is a Bayesian estimation framework.

The relative bias b is modeled as a Gaussian random
vector having mean 0 and covariance R in a Cartesian
coordinate frame. It is assumed that sensor bias only

degrades a sensor’s capability of measuring target state,

and not its ability to detect a target.
We denote a track-to-track association by the vector

j. Consequently, the association of the ith track in NA
with the jth track in NB is denoted by (i,ji). It is

convenient to think of the pair (i,j) as an undirected
arc in a bipartite graph and the vector j as a compact
notation for writing f(1,j1), (2,j2), : : : , (nA,jnA)g. It is
possible that the ith track in NA is not assigned to
any track in NB , in which case we still write (i,ji),

but ji = 0. We refer to such an assignment as a null
assignment, or by saying that track i was assigned to
the dummy track. We sometimes refer to partial and
complete assignments. A partial assignment is one in

which a strict subset of the sensor A tracks are assigned,
while in a complete assignment, all sensor A tracks are
assigned. A partial assignment can be made complete
by assigning the currently unassigned sensor A tracks

to the dummy track. It is implicitly assumed that at

1All vectors are column vectors. All vectors and matrices are written

in bold font. All covariance matrices are assumed positive definite.
2It is worth noting that the assumption that average biases in syn-

chronized data, transformed to a common reference frame, are equal

is seldom true, even for identical sensors, unless they are collocated.

This is the case for radars because during the process of spatial trans-

formation to a common coordinate frame, the two biases get magnified

nonlinearly and differently, as the latitudes, longitudes, and the ECR

coordinates of the two sensors are different. Hence, this assumption

is an approximation.
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most one sensor A track can be assigned to a sensor

B track and vice versa. We refer to the pair (b,j) as a
bias-association hypothesis, a hypothesis, or a solution

to the GNPM problem.

A popular objective for track-to-track association is

to simultaneously find the most likely track-to-track as-

sociation and relative bias estimate. To do so, a likeli-

hood function is needed to compare different solutions.

Here, we follow the derivation of the likelihood func-

tion given in [17]. A general derivation of the a pos-

teriori joint-probability-mass-density mixture function

for more than two sensors is given in [16] before being

specialized to the case of two sensors. The likelihood

function for the GNPM problem is based upon the mar-

riage of an a posteriori bias estimation problem and the

standard two sensor track-to-track association problem.

The first term
e¡b

TR¡1b=2

(2¼)D=2
pjRj

(where jRj denotes the determinant of R) is nothing
more than a prior probability density on the relative

bias, which we assume is available. We refer the reader

to [5] for further discussion on the construction of

priors in this framework. The second term consists

of the product of the incremental likelihoods of track

assignment. Specifically, given a bias estimate b, the
likelihood of assigning track i 2NA and track j 2NB is

¯TPAB
e¡d

2
ij
(b)=2

(2¼)D=2
q
jSij j

where

² ¯T is the target density, i.e., the number of targets per
unit volume in D-dimensional space;

² PAB is the probability that a target is tracked by sensor
A and sensor B;

² Sij = Pi+Qj ;
² d2ij(b) = (xAi ¡ xBj ¡b)TS¡1ij (xAi ¡ xBj ¡b) is the squared
Mahalanobis distance between tracks i and j, param-

eterized by a bias estimate b.

It is also possible for track i 2NA to be unassigned,
in which case the incremental likelihood is the null

assignment likelihood ¯NTA¯NTB , where

² ¯NTA = ¯TP̄AB +¯FA represents a target density of no
target existing for sensor A, and P̄

AB
is the probability

of tracking an object with sensor B but not with

sensor A;

² ¯NTB = ¯TPAB̄ +¯FB represents a target density of no
target existing for sensor B, and P

AB̄
is the probability

of tracking an object with sensor A but not with

sensor B;

² the densities ¯FA and ¯FB represent the false track
densities for sensor A and B, respectively. False tracks

are not uncommon when tracking extended objects,

i.e., objects for which a sensor may receive multiple

detections on a given data frame.

Multiplying these likelihoods together, we arrive at

the GNPM likelihood function:

L(b,j) =
e¡b

TR¡1b=2

(2¼)D=2
pjRj

£
nAY
i=1

8>><>>:
¯TPAB

e
¡d2

iji
(b)=2

(2¼)D=2
q
jSiji j

if ji > 0

¯NTA¯NTB if ji = 0

9>>=>>; :
(1)

It should be noted that we, like many others, abuse ter-

minology by referring to L(b,j) as a likelihood function,
when, in fact, it is a posterior joint-probability-mass-

density mixture function as in Corollary 1 in [16], al-

though our L(b,j) differs by a factor from that given

in Corollary 1 in [16]. Note that we have assumed that

assignment likelihoods for track pairs are independent.

From a computational perspective, it is more convenient

to work with the negative log likelihood. After some

algebra and the removal of unnecessary constants, we

obtain a modified version of the negative log likelihood

function

¡ logL(b, j) = bTR¡1b+
nAX
i=1

ciji (b) (2)

where

cij(b) =

(
d2ij(b) + log jSij j if j 2NB
g if j = 0

and

g =¡2log
μ
¯NTA¯NTB(2¼)

D=2

¯TPAB

¶
(3)

is the so-called (log likelihood) gate value, which can

be interpreted as a cost incurred for assigning the ith

sensor A track to the dummy track j = 0. Extensions

for feature-aided association have been made (see, e.g.,

[2, 7, 27]), but this topic lies beyond the scope of this

work.

Having characterized the fundamentals of how a

bias-association hypothesis is “scored” via the GNPM

likelihood function, we now explicitly formulate the

GNPM problem as a mathematical program, specifically

as a mixed-integer nonlinear program (MINLP) [5, 25].

This formulation will be necessary in Section 5 as we

contrast it with an alternative formulation. The standard

assumption in track-to-track association, which we fol-

low, is that each sensor A track can be assigned to at

most one sensor B track and vice versa. After introduc-

ing binary decision variables yij , for i= 1, : : : ,nA and

for j = 0, : : : ,nB , such that yij takes value one if sensor

A track i is assigned to sensor B track j (or possibly the

dummy track j = 0), and is zero otherwise, we can now

cast the GNPM problem as the following constrained
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Fig. 2. Undirected bipartite graph.

minimization problem:

min bTR¡1b+
nAX
i=1

nBX
j=0

cij(b)yij

s.t. y 2 Y , b 2 RD (4)

where Y = fy 2 f0,1gnA£(nB+1) :PnB
j=0 yij = 1, for i 2NA,PnA

i=1 yij · 1, for j 2NBg is the set of all feasible track-
to-track associations and y is a vectorized form of the

yij variables. The above notation is standard in mathe-

matical programming.

Basic characteristics and important observations of

the GNPM problem are provided in [25]. Although

Danford et al. [5] offer a similar formulation which

they classify as a modified general network flow prob-

lem, we prefer to think of the GNPM problem as a

two-dimensional nonlinear assignment problem, which

is an extension of the traditional two-dimensional linear

assignment problem used to perform track-to-track as-

sociation. For those unfamiliar with mathematical pro-

gramming, it may be convenient to interpret the GNPM

problem (4) as a matching problem on a bipartite graph,

depicted in Fig. 2, in which the objective is to minimize

the sum of total arc costs subject to the constraint that

each sensor A track can be assigned to at most one sen-

sor B track and vice versa, where the arc costs are a

function of the relative bias vector b, and, hence, are
nonlinear in the decision variables. Note that in Fig. 2

each non-dummy node on the left is connected to each

non-dummy node on the right with a cost of cij(b). Each
dummy node is also connected to every node on the

opposite side with a cost of g.

3. DERIVATION OF A MARGINAL TRACK-TO-TRACK
ASSOCIATION LIKELIHOOD

In certain circumstances, we may wish to rank as-

sociation hypotheses with respect to a “pure” track-

to-track association likelihood, which we refer to as a

marginal track-to-track association likelihood or MTTA
likelihood for short. In particular, we continue to as-
sume that the relative bias is a Gaussian random vector,
but rather than optimize the joint bias-association likeli-
hood, we optimize only the marginal likelihood of track-
to-track association. In addition to reporting MTTA like-
lihoods to a system-user, another purpose of isolating
the likelihood solely in terms of a track-to-track asso-
ciation is to facilitate the computation of pairwise as-
sociation likelihoods for track ambiguity management,
as will be explained below. After the initial release of
this paper, we learned that Ferry [9] also advocates us-
ing MTTA likelihoods, which he calls exact association
probabilities, and provides a comprehensive derivation
of what follows for the more general setting involving
more than two sensors and feature data.
To obtain our desired MTTA likelihood function,

we remove the likelihood term for the relative bias
in Equation (1) by integrating over all possible bias
estimates. This yields L(j) =

Z
b2RD

nAY
i=1

8>><>>:
¯TPAB

e
¡d2

iji
(b)=2

(2¼)D=2
q
jSiji j

if ji > 0

¯NTA¯NTB if ji = 0

9>>=>>;
£ e¡b

TR¡1b=2

(2¼)D=2
pjRjdb: (5)

We would like to show that for a given complete assign-
ment j, Equation (5) has a convenient closed-form so-
lution. For simplicity, assume that ¯TPAB = 1, that ji > 0
for all i, and let xiji = x

A
i ¡ xBji and Siji = Pi+Qji , for

i 2NA. Then, Equation (5) becomes L(j) =Z
b2RD

nAY
i=1

e
¡(1=2)(xiji¡b)TS¡1iji (xiji¡b)

(2¼)D=2
q
jSiji j

e¡b
TR¡1b=2

(2¼)D=2
pjRjdb:

(6)

Defining x0j0 = 0 and S0j0 =R, Equation (6) becomes

L(j) =
Z
b2RD

nAY
i=0

e
¡(1=2)(b¡xiji )TS¡1iji (b¡xiji )

(2¼)D=2
q
jSiji j

db: (7)

Notice that if we let Xi denote a multivariate Gaussian
random variable with dimension D, mean xiji , and co-
variance Siji , for i= 0, : : : ,nA, then Equation (7) is noth-
ing more than the integral of the product of nA+1 in-
dependent Gaussian random variables

L(j) =
Z
b2RD

nAY
i=0

fXi(b)db:

It can be shown that

L(j) =

p
(2¼)DjVjqQn
i=0(2¼)

DjSiji j
e¡(1=2)³

where V= (
PnA
i=0S

¡1
iji
)¡1, ³ = (

PnA
i=0 x

T
iji
S¡1iji xiji)¡uTVu,

and u=
PnA

i=0S
¡1
iji
xiji (see [23] or [9]).
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Returning to the more general case in Equation (5),

let I denote the set of sensor A tracks assigned to

a sensor B track, i.e., I = fi 2NA : ji > 0g, and let I0
denote the set of unassigned sensor A tracks, i.e., I0 =

fi 2NA : ji = 0g. Let I+ = I [f0g. Then,

L(j) = (¯NTA¯NTB)
jI0j(¯TPAB)

jIj

£
p
(2¼)DjVjqQ

i2I+(2¼)DjSiji j
e¡(1=2)³ (8)

whereV= (
P
i2I+ S

¡1
iji
)¡1, ³ = (

P
i2I+ x

T
iji
S¡1iji xiji)¡uTVu,

and u=
P
i2I+ S

¡1
iji
xiji . Note that in the remainder of the

paper, when we refer to theMTTA likelihood function we

typically have Equation (8) in mind since it is in closed-

form, but one can also think of Equation (5) since this

is the typical form of a marginal density function.

3.1. Implications for Track Ambiguity Management

Track-to-track association is one of many compo-

nents in a multi-sensor MTT system. The decision logic

used to create a single integrated air picture from multi-

sensor data can vary widely from system to system, bat-

tle manager to battle manager. For this reason, modern

association algorithms are being asked to return quan-

tities besides the single most likely association to fa-

cilitate track ambiguity management, i.e., to assist the

highest-level decision maker in managing track ambi-

guities. In this paper, we contend that the following

information should often be included in the output re-

turned by such an algorithm: (1) The K best GNPM

bias-association solutions, (2) the K best MTTA solu-

tions, and (3) a table of individual track pairing likeli-

hoods or probabilities.

Having derived a closed-form expression for a mar-

ginal association likelihood over all possible relative

bias values, we are now in a position to describe how

one can generate a confusion matrix of individual track

pairing likelihoods. As argued in the introduction, pos-

sessing individual track pairing likelihoods can be ben-

eficial at the system-level where inherent uncertainties

make it difficult to rank one association of track sets

over another. Fundamentally, individual track pairing

likelihoods provide a system-level tracking and discrim-

ination architecture a quantifiable level of confidence

that certain objects of interest should be paired together.

Let j1, : : : ,jr denote all r possible track-to-track as-
sociation vectors and L(j1), : : : ,L(jr) the corresponding
likelihoods as computed in Equation (8). Let Tk denote

the set of track pairings in the kth best association hy-

pothesis, for k = 1, : : : ,r. For all (i,j) pairs of tracks

with i= 0,1, : : : ,nA and j = 0,1, : : : ,nB , we can compute

a pairwise likelihood

Lij =
1

LN

rX
k=1:
(i,j)2Tk

L(jk)

where LN =
Pr
k=1L(j

k) is a normalizing constant. To-

gether these pairwise likelihoods form what is often

called a confusion matrix.

An obvious intractability in the above calculation is

that the correct pairwise likelihood Lij and the correct

normalizing likelihood require the explicit enumeration

of all r possible track-to-track association hypotheses,

which grows factorially in the number of tracks nA
and nB as noted in [17] and [25]. Since exhaustive

enumeration is all but impossible except when nA and nB
are sufficiently small, a heuristic approach is to compute

approximate pairwise likelihoods

L̂ij =
1

L̂N

r̂X
k=1:
(i,j)2Tk

L(jk) (9)

where r̂ (< r) is the number of association hypothe-

ses that are returned by an algorithm for solving the

track-to-track association problem in a limited amount

of time and L̂N =
Pr̂
k=1L(j

k) is an approximate normal-

izing constant.

Three remarks are in order. First, track-to-track like-

lihoods Lij could also be computed using techniques

employed in the joint probabilistic data association

(JPDA) method for calculating track-to-measurement

probabilities (see, e.g., [28]). The computational com-

plexity of these methods is exponential rather than fac-

torial. We have suggested the heuristic above since it

does not require any additional computation once the

K best MTTA solutions have been found, which are

useful to the battle manager in their own right. Second,

those familiar with multiple hypothesis tracking (MHT)

might recognize that a similar heuristic approach for

computing approximate track hypothesis likelihoods is

commonly used in MHT since one cannot enumerate all

possible detection-to-track associations (see, e.g., Chp.

16 of [3]). Third, note that it would be incorrect to use

the bias-association likelihoods L(b,j) in computing the
pairwise likelihoods Lij since each L(b,j) is weighted by
a unique relative bias probability. Since the relative bias

estimate differs from association to association, it does

not make sense to compute pairwise likelihoods in this

manner. Moreover, empirically we and others (see, e.g.,

Ferry [8]) have found that even approximating pairwise

likelihoods in this manner can lead to unsatisfactory re-

sults.

3.2. Comparison of the MTTA and GNPM Likelihood
Functions

The purpose of this subsection is to answer the

following question: When might one prefer the MTTA

likelihood function over the GNPM likelihood function?

Below we provide three possible answers.

The first reason why one might favor the MTTA

likelihood function over the GNPM likelihood function

is a matter of interpretation. Recall that the fundamen-

tal objective of track-to-track association is to deter-
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mine which sensor-level tracks correspond to the same

true target from which the sensor-level tracks originated.

Those who interpret this question to mean “What track-

to-track association has the highest likelihood when

weighted by the best relative bias estimate for that asso-

ciation?” are implicitly favoring the GNPM likelihood

function in which the contribution of the best relative

bias estimate for each association is used to compute

the likelihood. Equivalently, one is implicitly placing a

nontrivial emphasis on the relative bias estimation prob-

lem as they are on the association problem. On the other

hand, those who interpret the fundamental question as

“What track-to-track association has the highest likeli-

hood over all possible relative bias values?” are implic-

itly placing a primary focus on the association problem

and a secondary (minimal) focus on the relative bias

estimation problem.

The second reason, which is closely related to the

first, is to eschew overconfidence in any one particular

association hypothesis. In certain instances, the differ-

ence between the GNPM likelihood of the best and next

best bias-association hypotheses is large, even though

the relative bias estimate for the best hypothesis is ex-

tremely unlikely. In some cases, this large difference

can be misleading when deciding which tracks to fuse.

This phenomenon can occur when the track-to-track as-

sociation likelihood component of the joint likelihood

function is large enough to offset the small likelihood

of the corresponding relative bias estimate, for example,

when many tracks with small track errors align nearly

perfectly after an extremely unlikely relative bias is cho-

sen. On the other hand, when all relative bias estimates

are considered, the difference between the best and next

best hypothesis is often less pronounced, and the or-

dering of the best hypotheses is often different, as will

be shown in Section 4. In this case, a decision logic

which uses association probabilities will perceive the

bias-association ordering as being overly confident in

the best bias-association hypothesis. See Ferry [8, 9]

for related concerns.

The third reason why the MTTA likelihood function

may be preferable is to facilitate the computation of

individual track pairing likelihoods. Specifically, after

computing the K best MTTA hypotheses, the calcula-

tion of approximate track pairing likelihoods requires

virtually no additional computational effort. Since the

goal of computing pairwise track-to-track association

likelihoods implicitly emphasizes the association as-

pect, it seems natural to use the MTTA likelihood func-

tion. At the same time, it does not make mathemat-

ical/probabilistic sense to use bias-association likeli-

hoods since each likelihood is weighted by a unique bias

estimate that is different from hypothesis to hypothesis.

In summary, we are not suggesting that the marginal

track-to-track association likelihood function presented

in this paper is universally “better” than the GNPM like-

lihood function. However, we do advocate that it should

be used to compute pairwise track-to-track association

likelihoods and that it is a viable option when perform-

ing track-to-track association. Indeed, it may be more

appropriate in certain circumstances in which one is em-

phasizing the association aspect of the fusion problem.

4. AN ILLUSTRATIVE EXAMPLE

The goal of this section is to present four track

scenes illustrating (1) the differences between the

GNPM and the MTTA likelihood functions, and (2) the

benefits of the MTTA likelihood function in generating

pairwise track-to-track association likelihoods for aid-

ing system-level track ambiguity management. Specif-

ically, we draw attention to the way in which pairwise

association likelihoods can assist a system-user make

an informed decision concerning whether or not to fuse

two tracks.

Fig. 3 depicts four track-to-track association prob-

lem instances (track scenes) of increasing difficulty.

Only three-dimensional positions are estimated and po-

sitional error baskets are shown. Our goal is to asso-

ciate the four sensor A tracks (in blue) with the sensor

B tracks (in red). Assume that the cost of a null as-

signment is relatively large, but not astronomical, so as

to encourage actual track-to-track assignments. Scene

1 (upper left) is very easy as there are four sensor A

tracks and four sensor B tracks. The correct associa-

tion is identifiable by the eye. Scene 2 (upper right)

has a nontrivial relative bias present; however, it is still

easy to identify which tracks should be paired together.

Scene 3 (lower left) has three tracks which can easily

be associated, but there are two sensor B tracks in the

upper right corner of this scene that could be paired

with the fourth sensor A track in the same region of the

figure. It is quite realistic that such a track scene can

arise within certain domains of interest. For example,

in ballistic missile tracking, a split track could occur in

which sensor A collects detections during a given phase

of the trajectory of a missile and forms four tracks. At

some later point in time, sensor B begins observing the

missile and forms five tracks because one of the objects

splits into two after leaving sensor A’s field of view.

Scene 4 (lower right) is ambiguous. In one case, the

four blue tracks could be paired with their neighboring

red tracks (the ones touching the outer edge of the ellip-

soids). In another case, the blue tracks 2, 3, and 4 could

be paired with the red tracks 5, 6, and 7, respectively,

towards the back right of the cube. We will see later that

the former association is preferred.

Associated with each track scene are two tables. The

first table lists the hypothesis number, the association

vector j, the negative log GNPM likelihood ¡ logL(b, j)
as computed in Equation (2), and the negative log

MTTA likelihood ¡ logL(j), as would be computed by
taking the negative log of Equation (5), corresponding

to the top twenty hypotheses that would be returned by

an algorithm for the GNPM problem. Note that these

hypotheses are ordered in nondecreasing order accord-
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Fig. 3. Track scenes.

ing to ¡ logL(b, j). As there are four track scenes, this
information is presented in Tables I, III, V, and VII.

The association vector is read as follows: Since there

are four sensor A tracks in each scene, the assignment

(j1,j2,j3,j4) means that sensor A track i is associated

with sensor B track ji, for i= 1, : : : ,4. If ji is 0, then

sensor A track i is unassigned (assigned to the dummy

track). For example, the thirteenth best hypothesis (hy-

pothesis 13) for track scene 1 has the assignment vector

(0,2,1,4), which means that sensor A track 1 is unas-

signed, while sensor A tracks 2, 3, and 4 are assigned

to sensor B tracks 2, 1, and 4, respectively.

The second table associated with each track scene

provides pairwise track-to-track association likelihoods

as computed in Equation (9). Specifically, in Tables II,

IV, VI, and VIII, one can look up in row i column j

the likelihood that sensor A track i should be associated

with sensor B track j. Similarly, the likelihood that sen-

sor A track i should be unassociated (associated with a

dummy track) is listed in row i and the column labeled

0. Note that in each row and column with a non-zero in-

dex the individual likelihoods sum to one. Although the

pairwise likelihoods presented in these particular tables

were computed using only the top twenty hypotheses,

the pairwise likelihoods computed using all hypotheses

gave the same result to six decimal places. As a matter

of convenience, in the descriptions given for Tables I,

III, V, and VII, the term “likelihood” should be inter-

preted to mean the negative log likelihood.

Track Scene 1: Very Easy

Table I provides the results for the K best (K = 20)

hypotheses ordered with respect to the GNPM likeli-

hood ¡ logL(b, j). Notice that the first hypothesis has
a significantly smaller negative log likelihood (hence,

larger likelihood) than the next. This makes intuitive

sense given that this particular scenario is very easy due

to a small relative bias and a similar spatial configura-

tion of the tracks from each sensor. Also, note that the

ordering of the hypotheses would be slightly different

if the MTTA likelihood ¡ logL(j) were considered in
lieu of the GNPM likelihood. This occurs throughout

each of the four cases that we present and motivates the

remaining sections of the paper.

Using the MTTA likelihoods L(j), Table II was cre-
ated to help the system-user understand the pairwise as-

sociations between tracks. As described in Section 3.1,

one simply adds each L(j) in the K-best hypotheses table
for which the desired pairwise association exists and di-

vide that value by the sum of all L(j) values in the same
table. In this example, the entries along the diagonal

of Table II each achieve a high value of approximately

0.95 since the top hypothesis f(1,1),(2,2),(3,3),(4,4)g
is so much more likely than any other.

In considering a real-life fusion system, the end-user

would find both of these tables useful in terms of as-

sessing the current situation. The first table provides

a list of complete track associations along with their

relative likelihood values. This enables the user to con-

sider all sensor tracks together. In addition, the user can

utilize the second table to obtain information regarding

individual track-to-track pairings. This can prove highly

useful in a situation wherein the top two hypotheses are

very close in terms of likelihood. In this case, it is cer-

tainly possible that the individual track-to-track associ-
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TABLE I

Scene 1–Top 20 Bias-Association Hypotheses

Hyp Assignment ¡ logL(b, j) ¡ logL(j)
1 1 2 3 4 15.6093 42.5388

2 1 0 3 4 25.0251 45.9716

3 1 2 3 0 25.0251 45.9717

4 0 2 3 4 25.0254 45.9717

5 1 2 0 4 25.0267 45.9722

6 2 1 3 4 28.1048 48.7875

7 1 2 4 3 28.1098 48.7890

8 1 4 3 2 28.1177 48.7936

9 3 2 1 4 28.1486 48.8081

10 1 0 3 2 29.3494 48.1344

11 2 0 3 4 29.3654 48.1421

12 1 2 4 0 29.3679 48.1430

13 0 2 1 4 29.3946 48.1560

14 0 1 3 4 29.8910 48.4052

15 3 2 0 4 29.8935 48.4055

16 1 2 0 3 29.8949 48.4064

17 1 4 3 0 29.9172 48.4179

18 1 0 2 4 33.6744 50.2973

19 1 0 4 2 33.6920 50.3055

20 2 0 1 4 33.7341 50.3264

TABLE II

Scene 1–Pairwise TTA Likelihood Table

Sensor B

Sensor A 1 2 3 4 0

1 0.9575 0.0052 0.0041 0.0000 0.0333

2 0.0041 0.9567 0.0000 0.0041 0.0352

3 0.0051 0.0004 0.9568 0.0052 0.0326

4 0.0000 0.0052 0.0041 0.9574 0.0333

0 0.0333 0.0326 0.0351 0.0334 0.0000

ation pairing table can shed some additional light onto

the situation allowing the user to properly associate all

tracks as needed.

Track Scene 2: Biased But Easy

Tables III and IV are configured in the same manner

as Tables I and II. This will continue to be true for

Scenes 3 and 4 in the following.

This scene has more bias than the previous and

therefore the GNPM and MTTA likelihood values are

slightly closer to one another with respect to the top

two hypotheses. This logically provides values along

the diagonal of Table IV that remain rather high, but are

slightly lower than in the previous scene. This reduction

in track pairing likelihoods along the main diagonal

should be intuitively clear as the increased relative bias

in the optimal hypotheses causes the contribution of the

relative bias term in the likelihood functions to decrease

(hence, the negative log likelihoods will increase). It

is also worth noting that, just as in Track Scene 1,

hypotheses 2 through 5 resemble the best hypothesis,

hypothesis 1, except that only three of the four sensor

A tracks are assigned, while the other is unassigned.

If the gate value g were increased, these hypotheses,

TABLE III

Scene 2–Top 20 Bias-Association Hypotheses

Hyp Assignment ¡ logL(b, j) ¡ logL(j)
1 1 2 3 4 19.2874 44.2384

2 1 0 3 4 28.2314 47.4431

3 1 2 0 4 28.2361 47.4453

4 1 2 3 0 28.2388 47.4470

5 0 2 3 4 28.2438 47.4491

6 1 4 3 2 29.2532 49.2220

7 3 2 1 4 29.3967 49.2927

8 2 1 3 4 30.3936 49.7926

9 1 2 4 3 30.3991 49.7941

10 1 0 3 2 30.6948 48.6756

11 0 2 1 4 30.8173 48.7358

12 0 1 3 4 31.5877 49.1219

13 1 2 0 3 31.6002 49.1274

14 1 2 4 0 33.1373 49.8961

15 2 0 3 4 33.1447 49.9002

16 3 2 0 4 33.2380 49.9460

17 1 4 3 0 33.2405 49.9478

18 0 1 3 2 34.0486 50.3533

19 0 2 1 3 34.1829 50.4186

20 0 2 3 1 34.2054 50.4304

TABLE IV

Scene 2–Pairwise TTA Likelihood Table

Sensor B

Sensor A 1 2 3 4 0

1 0.9336 0.0059 0.0078 0.0000 0.0527

2 0.0110 0.9358 0.0000 0.0082 0.0450

3 0.0158 0.0000 0.9369 0.0059 0.0414

4 0.0016 0.0168 0.0109 0.9326 0.0381

0 0.0380 0.0415 0.0444 0.0533 0.0000

as well as all other hypotheses with null assignments,

would become less favorable.

Track Scene 3: Slightly Ambiguous

This scene contains little bias but is more ambigu-

ous than the previous two due to the existence of a

fifth sensor B track. The results reflect this increased

ambiguity in that the difference between hypotheses 1

and 2 is very slight. This is a case wherein the system-

user may wish to look closely at Table VI for more

information on the pairwise association confidence val-

ues. Although lower than in the previous two scenes,

the diagonal values for tracks 1, 2 and 3 remain rela-

tively high. However, the ambiguous portion (sensor A

track 4 associates with either sensor B track 4 or 5) is

readily observed as the values are 0.5043 and 0.4681,

respectively. If the system-user is required to make a

call regarding whether or not to fuse tracks, he may

use this discrepancy to select f(1,1),(2,2),(3,3),(4,4)g
as the association vector. However, it is certainly ac-

ceptable in the fusion world to suggest that the results

are inconclusive due to too much ambiguity. Indeed,

in this scene, a reasonable alternative would be to fuse

sensor A and B tracks 1, 2, and 3, while postponing
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TABLE V

Scene 3–Top 20 Bias-Association Hypotheses

Hyp Assignment ¡ logL(b, j) ¡ logL(j)
1 1 2 3 4 20.5577 41.3645

2 1 2 3 5 21.1202 41.6245

3 1 2 4 5 23.0836 42.6061

4 1 5 3 4 24.0485 43.0883

5 3 2 4 5 26.1490 44.1384

6 1 4 3 5 26.2722 44.2006

7 2 5 3 4 27.1338 44.6312

8 4 2 3 5 27.5214 44.8247

9 3 2 1 4 27.8584 45.0145

10 1 2 4 3 28.2426 45.2068

11 3 2 1 5 28.4286 45.2784

12 1 5 3 2 28.7029 45.4161

13 2 4 3 5 29.3567 45.7431

14 1 2 5 4 29.3879 45.7586

15 1 2 3 0 29.7613 44.7182

16 2 1 3 4 29.8116 45.9925

17 0 2 3 4 30.1844 44.9294

18 1 0 3 4 30.1853 44.9300

19 1 2 0 4 30.1870 44.9307

20 2 1 3 5 30.3742 46.2526

TABLE VI

Scene 3–Pairwise TTA Likelihood Table

Sensor B

Sensor A 1 2 3 4 5 0

1 0.9118 0.0254 0.0405 0.0117 0.0000 0.0106

2 0.0065 0.8689 0.0000 0.0266 0.0874 0.0106

3 0.0172 0.0000 0.8283 0.1393 0.0046 0.0106

4 0.0000 0.0065 0.0080 0.5043 0.4681 0.0131

0 0.0646 0.0992 0.1232 0.3180 0.4399 0.0000

a decision on sensor A track 4 and sensor B tracks 4

and 5.

Track Scene 4: Ambiguous

This scene is the most ambiguous of the four, which

is reflected in the likelihoods of Tables VII and VIII.

Tracks 1, 2, and 3 continue to have a high confidence

of being the correct association. To some, the results

may still look favorable, but to others the associations

may not be strong enough to make a call. We leave these

types of decision to the system-user.

With four concrete examples in hand, we close

this section by briefly mentioning two ad hoc methods

TABLE VIII

Scene 4–Pairwise TTA Likelihood Table

Sensor B

Sensor A 1 2 3 4 5 6 7 0

1 0.8928 0.0475 0.0403 0.0194 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.6438 0.0000 0.0000 0.3562 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.5485 0.1174 0.0000 0.3340 0.0000 0.0000

4 0.0000 0.0000 0.0000 0.4122 0.1255 0.0752 0.3871 0.0000

0 0.1072 0.3087 0.4111 0.4509 0.5184 0.5908 0.6129 0.0000

TABLE VII

Scene 4–Top 20 Bias-Association Hypotheses

Hyp Assignment ¡ logL(b, j) ¡ logL(j)
1 1 2 3 4 19.6996 38.2521

2 1 2 3 7 21.5482 39.1769

3 1 2 6 4 21.7231 39.2636

4 1 5 3 4 21.8086 39.3065

5 1 2 3 5 21.9579 39.3816

6 1 2 3 6 22.3714 39.5884

7 1 5 6 7 22.4929 39.6492

8 1 2 6 7 22.5048 39.6553

9 1 5 3 7 22.5512 39.6784

10 1 5 6 4 22.8158 39.8099

11 1 2 4 7 23.2260 40.0157

12 1 5 4 7 23.4778 40.1416

13 1 2 6 5 23.5040 40.1546

14 1 2 4 5 23.6384 40.2217

15 2 5 6 7 23.9242 40.3653

16 2 5 4 7 24.1012 40.4535

17 3 5 6 7 24.1288 40.4670

18 1 5 3 6 24.2284 40.5168

19 4 5 6 7 24.4117 40.6084

20 3 2 6 4 24.5709 40.6874

for computing individual track pairing likelihoods that

were used in preliminary computational experiments
[23]. We believe these approaches are inferior, but not
altogether useless. First, it seems reasonable that one

can get a general sense of how likely a particular
track pairing is by simply counting the number of
times sensor A track i is paired with sensor B track

j among the top K hypotheses. For example, in the
first track scene, sensor A track 1 is assigned to sensor
B track 1 twelve times, to sensor B track 2 three
times, to the dummy track three times, and to sensor

B track 3 two times. Since sensor A track 1 and B
track 1 are paired the most frequently, one might be
willing to conclude that their data should be fused.

Unfortunately, this approach quickly breaks down when
considering the fourth track scene. In this scene, the
most ambiguous of the four, we see that sensor A

track 2 is assigned to sensor B tracks 2 and 5 ten
times each. The “tallying” method is inadequate in this
setting.

A second option is to augment the “tallying” method
by giving each hypothesis an additional weight (as
opposed to the uniform weight 1=K above). Rather

than just count the number of times sensor A track
i is paired with sensor B track j, one could choose
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to weight the hypotheses in some logical fashion. For

example, hypothesis 1 out of 20 could get a weight of

20, hypothesis 2 a weight of 19,: : : , hypothesis 20 a

weight of 1. As another example, one could use the

GNPM likelihoods as weights. Finally, one could sum

the total weights of the hypotheses in which tracks i

and j are paired and normalize. Empirically, we have

seen that employing a non-uniform weighting scheme

often works reasonably well, and so the next logical

question is: What is the correct weighting scheme?

Indeed, in this paper, we argue that the MTTA likelihood

values provide the “best” weights for the hypotheses.

Moreover, while the ad hoc approaches in this second

option may work, they lack probabilistic rigor. The

MTTA likelihood has a solid mathematical backbone

and, as these examples illustrate, furnishes insightful

information for the system-user.

In summary, the above example illustrates the bene-

fits of providing the system-user with several represen-

tations of the information that will be needed to assess

the current situation and act appropriately. Although

somewhat contrived, these vignettes clearly convey how

both sensor bias and ambiguity could affect the results

in a realistic tracking problem setting. We present both

the GNPM and MTTA likelihood functions as measures

for confidence in track-to-track association with sensor

bias as well as illustrate how results will differ based on

which one is chosen.

5. OPTIMIZING WITH RESPECT TO THE MTTA
LIKELIHOOD

Equipped with a marginal association likelihood

function that accounts for the presence of a random

relative bias, it is natural to ask whether we can and

should optimize track-to-track associations with re-

spect to this likelihood function. In the last section,

we attempted to provide a modestly compelling an-

swer to the latter question regarding why one should

at least consider using the association likelihood func-

tion for track-to-track association. In this section and

the next, we answer the former question by describ-

ing how one can perform track-to-track association

by optimizing with respect to the association likeli-

hood function. In order to formalize this optimization

problem, our objective in this section is to cast the

track-to-track association problem, using the associa-

tion likelihood function (8), as a mathematical pro-

gram, specifically, as a 0-1 nonlinear optimization prob-

lem.

Starting from Equation (8), we collect the (2¼)D=2

terms and use the fact that jIj+ jI0j= nA to write

L(j) = (¯NTA¯NTB)
nA(e(1=2)g)jIj

pjVjqQ
i2I+ jSiji j

e¡(1=2)³

where g is the gate value defined in Equation (3). Tak-

ing the logarithm and multiplying through by ¡2

yields

¡2logL(j) =¡2log(¯NTA¯NTB)nA ¡jIjg

¡ log(jVj)+
X
i2I+

log(jSiji j) + ³:

Replacing S0j0 with R and ³ with (
P
i2I x

T
iji
S¡1iji xiji)¡

uTVu, where V= (R¡1 +
P
i2I S

¡1
iji
)¡1, we obtain

¡2logL(j) = ·+ jI0jg¡ log(jVj)

+
X
i2I
(xTi S

¡1
iji
xiji +log(jSiji j))¡uTVu

(10)

where ·=¡2log(¯NTA¯NTB)nA ¡ nAg+ log(jRj).
As in the GNPM problem, we introduce binary de-

cision variables yij such that yij = 1 if sensor A track i

is assigned to sensor B track j (or possibly the dummy

track j = 0), and yij = 0 otherwise, as well as the set Y
of all feasible associations. Finally, since · is indepen-

dent of the track-to-track association made, we treat it

as a constant and remove it from the likelihood function

when we optimize.

The problem of finding an optimal track-to-track

association over all possible relative bias values can

now be formulated as the following constrained 0-1

optimization problem, which we will henceforth refer

to simply as the Marginal Track-to-Track Association

problem or MTTA problem for short:

min
y

cTy¡ log(jV(y)j)¡ (Ay)TV(y)(Ay)

s.t. V(y) =

0@R¡1 + nAX
i=1

nBX
j=1

S¡1ij yij

1A¡1

, y 2 Y

(11)

where A is a D£ nA(nB +1) matrix of reals whose
columns are such that

Ay=
nAX
i=1

nBX
j=0

(
S¡1ij (x

A
i ¡ xBj ) if j > 0

0 if j = 0

)
yij

the coefficients

cij = cij(0) =

(
d2ij(0)+ log jSij j if j 2NB
g if j = 0

for i 2NA, are given, and g is the gate value defined
in Equation (3). The mathematical program (11) can be

classified as a nonconvex nonlinear matching problem,

which is a class of optimization problems that is gener-

ally difficult to solve to provable optimality. In contrast

with the GNPM problem (4), which includes a continu-

ous decision variable (vector) to model the relative bias

that we hope to determine and, consequently, is formu-

lated as a MINLP, the MTTA problem does not include

any continuous decision variables.
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6. SOLUTION METHODS

In this section, we discuss solution techniques for

solving the MTTA problem. In general, the class of 0-1

nonlinear optimization problems is challenging compu-

tationally and there are very few commercially-available

optimization software packages that can solve them to

provable optimality. Instead, highly-tailored algorithms

that exploit idiosyncrasies of the particular problem are

required. The MTTA problem is no exception. The ef-

fort needed to identify a provably optimal solution (i.e.,

a track-to-track association hypothesis) grows exponen-

tially in the number of tracks to be associated.

On the other hand, finding near optimal solutions

(and, perhaps, an optimal solution) without any guar-

antee on the solution quality, is frequently possible. It

can be shown that under certain conditions [23], which

often arise given realistic data, the GNPM problem dis-

cussed in Section 2 provides a close approximation to

the MTTA problem. As a consequence, one approach to

generating near optimal solutions as quickly as possible

is first to solve the GNPM problem by applying the

multistart local search heuristics described in [5] and

[25]. Essentially, these heuristics apply a fast iterative

local search method from various starting points (hence

the term “multistart”) and find good bias-association hy-

potheses, (b,j) pairs, to the GNPM problem. To recover

the “pure” association likelihood of association hypoth-

esis j, one can solve Equation (8). Because these are
heuristics, no optimality guarantee is provided. Nev-

ertheless, these methods are extremely fast and have

proven to be important when faced with real-time pro-

cessing constraints.

Given that heuristics are already available for find-

ing good association hypotheses, we turn to the ques-

tion of solving the MTTA problem exactly, i.e., identify-

ing a provably optimal solution or the K provably best

solutions. Typical approaches for solving 0-1 nonlin-

ear optimization problems exactly include branch-and-

bound methods, cutting-plane algorithms, and hybrids

of these two known as branch-and-cut methods. An-

other interesting approach discussed in [18, 26], which

is worthy of further investigation, is based on a tech-

nique known as “lifting” for 0-1 optimization problems

and has gained increasing attention in the optimization

community.

Below, we describe two different approaches for

solving the MTTA problem to provable optimality. In

the first approach, we solve the MTTA problem using

a branch-and-bound method in which at each node in

the search tree we solve (not necessarily to provable

optimality) a quadratic assignment problem relaxation

of the problem. As this approach does not scale well as

the number of tracks increases, we provide a second ap-

proach in which we reformulate the MTTA problem as

a mixed-integer linear optimization problem, which has

many more variables and many more constraints than

the original MTTA formulation, but performs remark-

ably well for a much larger set of instances of practical

interest.

In what follows, we will need the following notation:

² The partial orderings MÂ 0 and Mº 0 mean that
a square matrix M is positive definite and positive

semidefinite, respectively. Given another square ma-

trix N, MÂN and MºN mean that M¡NÂ 0 and
M¡Nº 0, respectively.

² We writeG ¢H=Pi

P
j gijhij to denote the Frobenius

inner product of matrices G and H.

6.1. Approach 1: A Branch-and-Bound Framework
with Quadratic Assignment Problem Relaxations

In this section, we describe a branch-and-bound

method that uses bounds obtained from solving a vari-

ant of the quadratic assignment problem at each node in

the search tree. Branch-and-bound methods have been

developed for the GNPM problem [5, 25] and closely

resemble the one described below. The key difference

between these methods and the one below is the con-

struction of a lower bound at each node.

A systematic way of finding an optimal solution

or the K best solutions to the MTTA problem is via

a divide-and-conquer procedure known as branch-and-

bound. In this approach, one creates a search tree con-

sisting of nodes at varying depths, where each node

represents a partial or complete association. Branch-

and-bound methods pervade the field of discrete op-

timization and are discussed in virtually every introduc-

tory textbook on the subject (see, e.g., [22]). They are

founded upon the idea of exploring nodes (or partial

associations) in the search tree in an intelligent man-

ner so that not all associations need be examined. The

term branch refers to the manner in which partial as-

sociations are constructed, i.e., the partitioning of the

solution space into smaller and smaller subproblems.

The term bound refers to deterministic bounds that are

computed during the search process, which can be used

to prune partial associations that cannot possibly lead

to (i.e., be a parent of) an optimal solution. All children

of a pruned node are said to be implicitly enumerated.

We now describe a non-traditional branching strat-

egy that has worked well in practice in which a par-

ent node may have more than two children.3 Without

loss of generality, we assume that sensor A tracks are to

be associated in increasing order with sensor B tracks,

i.e., first track 1 2NA must be assigned, then track 2
2NA, and so on. The root node has no associations and
is said to be at depth 0. From the root node, nB +1

branches are created giving rise to nB +1 nodes at depth

1, which represent the association of sensor A track 1

3In most commercial and non-commercial mixed-integer program-

ming solvers, a parent node gives rise to at most two child nodes so

that a so-called binary tree is maintained. Empirically, we have found

that the branching scheme described here works very well for the

GNPM and MTTA problems.
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with all nB sensor B tracks plus the null partial associ-

ation f(1,0)g. From each node at depth 1 with an asso-

ciation of the form f(1,j1)g with j1 2NB , nB branches
are created. Each of these nodes has a partial associ-

ation of the form f(1,j1), (2,j2)g, where j1 = 1, : : : ,nB
and j2 2 f0,1, : : : ,nBgnfj1g. From the node with partial

association f(1,0)g, nB +1 branches are created since
sensor A track 2 can be associated with any track in

NB plus the dummy track. This branching continues un-

til a depth nA is reached or until all nodes have been

implicitly enumerated.

Of course, a primary goal in branch-and-bound is

to avoid having to expand a node by determining in

advance if it has the potential of leading to an opti-

mal solution or one of the K best solutions. If it can

be deduced that no child node of a node that is be-

ing considered for expansion can be better than the best

complete association(s) found thus far in the search pro-

cess, known as the incumbent solution(s), then the node

can be pruned. Pruning is essential when solving large

problem instances because it reduces the time and mem-

ory needed to explore the search tree. In our solution

approach, we advocate finding K good incumbent so-

lutions quickly by first solving the GNPM problem and

then launching branch-and-bound to prove the optimal-

ity of these solutions or to find better solutions.

In order to compute a valid lower bound at each

node in the search tree to be used for pruning, we solve

(not necessarily optimally) a variant of the quadratic

assignment problem (QAP). The QAP is one of the most

studied and notoriously difficult optimization problems.

For more details, we refer the reader to [4] and [29].

When stated as a facility location problem, the classical

QAP is to assign n facilities to n locations such that

the total interaction cost of all possible flow-distance

products between the locations to which the facilities are

assigned and the allocation costs of facilities to locations

are minimized [29]. If we let N = f1, : : : ,ng be a set of
nodes, A= f(i,j) 2N £Ng be a set of arcs, then the
Koopmans-Beckmann form of the classical QAP is

min
X
(i,j)2A

X
(k,l)2A

dijklxijxkl¡
X
(i,j)2A

fijxij (12a)

s.t.
X
j2N

xij = 1, 8i 2N (12b)

X
i2N
xij = 1, 8j 2N (12c)

xij 2 f0,1g, 8(i,j) 2A (12d)

where xij are assignment variables analogous to the yij
variables in the MTTA problem, and dijkl and fij are

data. In the generalized QAP, the number of facilities

and locations need not be the same. In addition, the

equality constraints (12c) are replaced with the more

general inequality constraints
P

i2M aijxij · bj , 8j 2N,
where aij and bj are data. Thus, constraints (12b) and

(12c) are replaced byX
j2N

xij = 1, 8i 2M
X
i2M

aijxij · bj , 8j 2N

where M is the set of locations and N is the set of

facilities. The constraint set Y for the MTTA problem

is therefore a special case of that of the generalized QAP

in which aij and bj are 1 for all i 2M and j 2N.

6.1.1. Deriving Lower Bounds via QAP Relaxations
The basic idea behind obtaining a QAP relaxation of

the MTTA problem at each node is as follows: At each

depth d 2 f0,1, : : : ,nA¡ 1g in the search tree, we replace
the matrix V(y), which depends on the decision vector
y and consequently introduces unwieldy nonlinearities,
with a suitable chosen positive definite matrix Vd such
that

V¡1d :=R¡1 +
dX
i=1

nBX
j=1

S¡1ij yij :

This leads to the following special case of the General-

ized QAP at each node:

zQAP =¡ log(jVdj)+min cTy¡ yTQdy (13a)

s.t. y 2 Y (13b)

where Qd =A
TVdA. Notice that after replacing the ma-

trix V(y) with a fixed matrix Vd, the term ¡ log(jVdj)
becomes a constant and can be removed from the min-

imization. In what follows, we refer to the minimiza-

tion problem in (13) as NodeQAP. In addition, note

that NodeQAP is a special case of the generalized QAP

stated as a maximization problem rather than as a min-

imization problem, which is more typical.

We now justify that this approach of replacing the

matrix V(y) with the matrix Vd and solving NodeQAP
provides a valid lower bound at each node in the search

tree. The following proposition leads directly to the

justification.

PROPOSITION 1 For all depths d 2 f0,1, : : : ,nA¡ 1g, de-
fine V¡1d :=R¡1 +

Pd
i=1

PnB
j=1S

¡1
ij yij . Then,

V¡1d+1 ºV¡1d and ¡ log jVd+1j ¸ ¡ log jVdj:

PROOF Since the matrices Sij and S
¡1
ij are positive

definite for all i 2NA and j 2NB , it follows that V¡1d+1 =
V¡1d +S¡1d+1,jyd+1,j ºV¡1d for d = 0, : : : ,nA¡ 1 and for all
j 2 f0, : : : ,nBg. Moreover,

V¡1d+1 ºV¡1d ()Vd+1 ¹Vd
() jVd+1j · jVdj
() log jVd+1j · log jVdj
()¡ log jVd+1j ¸ ¡ log jVdj
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where the first equivalence is a linear algebra exercise

and the second equivalence holds because the determi-

nant of the sum of two positive definite matrices is al-

ways greater than the determinants of either of those

matrices.

In words, the proposition tells us that the matrix

V¡1d+1 associated with a child node is at least as positive
definite as that of its parent, and can only become

more positive definite than that of its parent if sensor

A track d+1 is assigned to a sensor B track j 2NB .
The implication of the proposition is: Since

yTATVdAy¸ yTATVd+1Ay, 8y 2 Y 4

and ¡ log jVd+1j ¸ ¡ log jVdj, the optimal value zQAP of
(13) at a parent node at depth d will always be no

greater than the optimal value at one of its descendants

at depth d+1,d+2, : : : ,nA. Therefore, z
QAP is a valid

lower bound for the optimal objective function value of

a node at depth d in the search tree.

6.1.2. Solving NodeQAP
There are several issues to consider when solving

NodeQAP: How much time should be spent computing

a lower bound at each node? Which formulation to use?

Which algorithm to use?

We start with the first question. Our main goal of

using a QAP relaxation at each node is to obtain as

quickly as possible a good lower bound to facilitate

pruning. Thus, it is not necessary to solve NodeQAP

to optimality at every node since we simply need to

determine whether or not this node has the potential to

lead to one of the K best solutions. One is then faced

with the following trade-off:

² Option 1: Spend a small amount of time at each

node so that many nodes can be processed quickly,

while possibly sacrificing our ability to prune nodes

early in the tree;

² Option 2: Spend more time computing the best pos-

sible lower bound so that fewer nodes need to be ex-

panded.

Since the classical QAP is a very difficult problem in its

own right, empirically we have found it best to obtain a

lower bound on NodeQAP at nodes with a small depth

while forgoing optimality. Specifically, in our compu-

tational experiments, we set a time limit of a fraction

of a second to obtain a lower bound at each node. We

observed that even solving NodeQAP to provable op-

timality at a small depth (e.g., d · nA=4) in the search
tree rarely allows us to prune nodes. Consequently, it

makes sense not to waste computational effort comput-

ing a bound that will not be immediately useful. On

the other hand, as we dive deeper in the search tree,

the lower bound furnished by (13) becomes stronger

and more useful, while also becoming easier to solve to

optimality since more assignments are fixed.

4Actually, this inequality holds for all y 2 RnA(nB+1).

Regarding the question of which formulation to use,

we have experimented with two approaches: reformu-

lating NodeQAP as a mixed-integer linear program and

relaxing NodeQAP as a semidefinite program. Semidef-

inite programming approaches are discussed in [4] and

our initial semidefinite programming formulation is dis-

cussed in [24]; we will not discuss this approach here

since, despite extensive experimentation, semidefinite

programming software is not yet as mature as that for

mixed-integer programming.

In our computations, we use the Kaufman-Broeckx

linearization (1.12) on p.9 of [4], which is arguably

the smallest linearization in terms of the number of

variables and constraints in the model. The Kaufman-

Broeckx formulation is a mixed-integer programming

formulation of the QAP, which we solve using the

commercially-available solver CPLEX 11.2 [13]. As

discussed above, at shallow depths in the search tree,

we have CPLEX compute the best lower bound for the

Kaufman-Broeckx formulation of NodeQAP that it can

provide in a fraction of a second (typically, by solv-

ing the linear programming relaxation of the Kaufman-

Broeckx formulation of NodeQAP and performing a

partial branch-and-bound). Later, at deeper depths in

the search tree, CPLEX can solve the Kaufman-Broeckx

formulation of NodeQAP to provable optimality in un-

der a second.

Another important algorithmic enhancement is to

recognize that it is not necessary to solve NodeQAP

from scratch at each node. Indeed, information from

the solution at a parent node should be exploited to

help solve the QAP at a child node. In particular,

there are two items that change from a parent node

at depth d to a child node at depth d+1: the matrix

ATVdA of the quadratic term in the objective function

becomes ATVd+1A and an additional assignment con-

straint yd,jd = 1 appears in the child node QAP. At ev-

ery node, we store the best lower bound and the best

feasible solution computed in the allotted time limit.

We then use this information to warm-start the solu-

tion procedure at each child node. Most mixed-integer

programming solvers have options for warm-starting an

algorithm using one or more known feasible solutions

(see, e.g., [13]).5

6.1.3. A Branch-and-Bound Algorithm
We conclude this subsection with a high-level de-

scription of our branch-and-bound algorithm and with

a proof of its correctness. Pseudocode is provided in

Algorithm 1. Let z(y) = cTy¡ log jV(y)j¡(Ay)TV(y)(Ay).
Let zQAP(node) be the value of zQAP in (13) at a particu-
lar node, call it node, in the search tree. Recall that at a

5In fact, it is precisely our ability to re-optimize NodeQAP at a child

node given the solution at its parent that makes the mixed-integer

programming formulation more attractive than the semidefinite pro-

gramming formulation. Current semidefinite programming software

does not have this algorithmic enhancement available.
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node at depth d 2 f0,1, : : : ,nAg in the search tree, the as-
signments of first d sensor A tracks are fixed. As is typ-

ical in a branch-and-bound implementation, we main-

tain a priority queue pq of nodes, whose push(node)
method places node on the queue and whose pop()
method (sometimes called a findMin() method) re-
turns and removes the node with a minimum zQAP(node)
value from the queue. Note that this is a best-first search

implementation and that the zQAP(node) value of the
node returned by the pop() method always provides a
lower bound on the objective function value of the Kth

provably best solution. Finally, the algorithm makes use

of another method createBranches(node,pq), which
takes a given non-leaf node, creates its children as de-

scribed in the beginning of this subsection, and adds

these descendant nodes to the priority queue.

ALGORITHM 1 BranchAndBoundforMTTA(K)
1: Find K high-quality incumbent solutions y1, : : : ,yK

with z(y1)· ¢¢ ¢ · z(yK)
2: Initialize a priority queue of nodes: pq=fg
3: Set zUB = z(yK); pq.push(rootnode)
4: while pq is not empty do
5: node=pq.pop()
6: if node is a leaf node then
7: Let ŷ be the solution associated with node
8: if z(ŷ)< zUB and ŷ =2 fy1, : : : ,yKg then
9: Update list of K best solutions to include ŷ
10: Update zUB: zUB = z(yK)
11: else
12: Prune node
13: end if
14: else if zQAP(node)> zUB then
15: Prune node
16: else
17: createBranches(node,pq)
18: end if
19: end while
20: return K best track-to-track association solutions

THEOREM 1 (Algorithm 1 is exact) The proposed

branch-and-bound procedure finds the K provably best

(globally optimal) solutions to the MTTA problem (11).

PROOF The proof is by contradiction. Suppose Algo-

rithm 1 returns the solutions y1, : : : ,yK with z(y1)· ¢¢ ¢ ·
z(yK). Suppose, to arrive at a contradiction, that there
exists some solution ŷ 6= yk, for k = 1, : : : ,K, such that
z(ŷ)< z(yK). There are only two possible ways for (the
leaf node corresponding to) the solution ŷ to have been
pruned: implicitly or explicitly. If ŷ was pruned implic-
itly, then one of its ancestors in the search tree, call this

node ancestor, had to be pruned in Step 15 because
zQAP(ancestor)> zUB . Note that zUB ¸ z(yK) since zUB
is an upper bound on the objective function value of

the Kth best solution. But this immediately implies a

contradiction since

zQAP(ancestor)· z(ŷ)< z(yK)
· zUB < zQAP(ancestor)

where the first inequality follows from Proposition 1

and the discussion that followed. On the other hand, if

ŷ was pruned explicitly, then ŷ was pruned in Step 12.
But this too implies a contradiction since, by assump-

tion, z(ŷ)< z(yK). Hence, Algorithm 1 never incorrectly
prunes a node, and therefore finds the K certifiably best

solutions to the MTTA problem.

6.2. Approach 2: A Branch-and-Cut Algorithm for a
MIP Reformulation

For our second approach, we reformulate the MTTA

problem as a mixed-integer linear program (MIP) and

then solve it using a branch-and-cut algorithm with a

commercially-available MIP solver. A branch-and-cut

algorithm is a more advanced branch-and-bound algo-

rithm in which valid inequalities, known as “cutting

planes” or simply as “cuts,” are appended to the origi-

nal formulation at each node in order to strengthen the

formulation, improve bounds, and expedite node prun-

ing. Virtually all commercial MIP solvers use a branch-

and-cut algorithm rather than a pure branch-and-bound

algorithm (see, for example, [13]).

Arriving at our proposed MIP reformulation takes

two steps. In the first step, we introduce additional con-

tinuous auxiliary decision variables to reformulate the

MTTA problem as a MINLP which possesses a special

structure. Namely, the objective function consists of a

submodular set function and a linear function, while

the feasible region is a mixed-integer linear set, i.e., a

set comprised of continuous and integer decision vari-

ables and linear inequalities. In other words, the only

nonlinearity appears in the form of a submodular set

function. In the second step, using well-known tech-

niques for submodular function minimization, we re-

place the submodular function with a continuous auxil-

iary decision variable bounded below by a finite num-

ber of linear inequalities. This substitution gives rise to

the desired MIP formulation, albeit one with a facto-

rial number (in the number of tracks) of inequalities.

Finally, we show how to generate only those cuts that

are necessary in the formulation on an “as-needed” ba-

sis. Empirically, we have found this approach to be far

superior to the branch-and-bound approach described

above.

6.2.1. Towards a MINLP Reformulation
As outlined above, our first step towards achieving

the desired MIP model is to reformulate the MTTA

problem as a MINLP, which is a mixed-integer linear

model except for a submodular function appearing in

the objective function. To this end, note that the term

yTATV(y)Ay in the objective function of (11) appears
to be quadratic in y, but is not because the matrix V(y)
is the inverse of a sum of positive definite matrices
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which depend on the decision variable y. Our first
goal is to circumvent the need to take an inverse by

linearizing this term into a form suitable for a MIP

solver. Consequently, we introduce an auxiliary decision

vector z=V(y)Ay such that V¡1(y)z=Ay. Recall that
the inverse exists since all matrices are assumed to be

positive definite. Then,

Ay=R¡1z+
nAX
i=1

nBX
j=1

S¡1ij zyij

=R¡1z+
nAX
i=1

nBX
j=1

S¡1ij wij

where wij is a D-dimensional vector of auxiliary deci-
sion variables such that

wij = zyij

=

½
z if yij = 1,

0 if yij = 0,
8i 2NA, j 2NB [f0g

and wi0 = 0, 8i 2NA. Furthermore, we can linearize the
nonlinear equations wij = zyij (recall that both z and
yij are decision variables) by replacing them with the

following linear constraints:

¡Myij1·wij ·Myij1 (14a)

¡M(1¡ yij)1· z¡wij ·M(1¡ yij)1 (14b)

for all i 2NA and j 2NB , where M is an appropriately

chosen parameter and 1 is a D-dimensional vector of
ones. This type of linearization of bi-linear terms is a

standard “trick” in discrete optimization. Moreover, the

nonlinear term yTATV(y)Ay in the objective function
becomes A ¢W, where W 2 RD£nA£(nB+1) is the matrix
satisfying A ¢W= yTATz. This done, we have arrived
at the following MINLP reformulation of the MTTA

problem:

min f(y)+ cTy¡A ¢W (15a)

s.t. Ay=R¡1z+
nAX
i=1

nBX
j=1

S¡1ij wij (15b)

(14a), (14b), wi0 = 0, 8i 2NA, 8j 2NB
(15c)

wij 2 RD, 8i 2NA, 8j 2NB [f0g (15d)

y 2 Y , z 2 RD (15e)

where f(y) :=¡ log(jV(y)j) = log(jV¡1(y)j) = log(jR¡1
+
PnA

i=1

PnB
j=1S

¡1
ij yij j). To reiterate, with the exception of

the nonlinear function f(y) in the objective function, the
above formulation is a MIP.

6.2.2. Towards a MIP Reformulation
The second step in obtaining the desired MIP refor-

mulation is to show that the function f(y) is a submod-
ular set function and then describe how to exploit this

submodularity in a branch-and-cut algorithm. Submod-

ular functions have undergone extensive study in the op-

timization and computer science communities. We refer

the reader to [1] and the references therein.

In what follows, let n= nA(nB +1) and define the set

N := f1, : : : ,ng. We also follow the common practice in
the submodular function literature of abusing notation

so that we may refer to a set function h(S), for some

S μN, as h(x), where x 2 f0,1gn is the indicator vector
of subsets of N. In addition, let x(S) denote the indicator
vector of a set S μN, i.e., xi(S) = 1 if i 2 S, and 0
otherwise, for each component i= 1, : : : ,n. Let Sx denote

the support of a vector x, i.e., i 2 Sx if xi = 1 and i =2 Sx
if xi = 0.

DEFINITION 1 A set function h : 2N 7!R is submodular
on N if

h(S)+ h(T)¸ h(S [T)+ h(S \T), 8S,T μN:
A submodular function can also be characterized by its

difference function ½k(S) := h(S [fkg)¡ h(S) for S μN
and k 2NnS. It is easy to verify that a set function h
is submodular if and only if its difference function is

nonincreasing; that is, ½k(S)¸ ½k(T), 8S μ T μN and

all k 2NnT. The following proposition shows that the
function f(y) is submodular on N by validating that the
difference function of h is nonincreasing.

PROPOSITION 2 Let N = f1, : : : ,ng and suppose that
Ai Â 0, 8i 2N [f0g. Then, the function g(S) := log(jA0
+
P
j2SAj j) is submodular on N.

PROOF Let S μ T μN and k 2NnT. Let B=A0 +P
j2SAj , C=A0 +

P
j2TAj , and note that CÂ B and

B¡1 ÂC¡1. Then,
g(S [fkg)¡ g(S) = log(jB+Akj)¡ log(jBj)

= log

μ jB+Akj
jBj

¶
= log(jI+AkB¡1j)
¸ log(jI+AkC¡1j)
= g(T[fkg)¡ g(T)

where the inequality follows from the fact that B¡1 Â
C¡1 and multiplying both sides by a positive definite
matrix does not affect this ordering, nor does adding a

positive definite matrix to both sides.

Since f satisfies the conditions of Proposition 2,

f is submodular on N. We now present some well-

known results from the theory of submodular function

minimization, which will allow us to reformulate the

MINLP as a MIP. The majority of the background

material below is taken from Section 2 of Atamtürk and

Narayanan [1]. Our basic goal is to replace the problem

of minimizing a submodular set function h(S) over all

possible subsets S of N with an equivalent optimization

problem of minimizing an auxiliary continuous variable
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μ, representing h(S), over the convex lower envelope

of h, which is a polyhedron whose linear inequality

description is already known to us due to the fact that

h is submodular. With these linear inequalities in hand,

we can transform our MINLP into a MIP, which can be

solved by a MIP solver.

Suppose we are trying to minimize a submodular set

function h : 2N 7!R over the set N:

minfh(S) : S μNg: (16)

This is equivalent to

minfμ : μ ¸ h(x), x 2 f0,1gng
or

minfμ : (μ,x) 2Qhg (17)

where

Qh := convf(μ,x) 2 R£f0,1gn : μ ¸ h(x)g
is the convex hull of the epigraph of h, which Atamtürk

and Narayanan [1] refer to as the convex lower envelope

of h; Qh is also a polyhedron.6 Without loss of gener-
ality, we may assume that h(Ø) = 0, since otherwise we

can solve the equivalent minimization problem for the

shifted function h0 with h0(S) := h(S)¡ h(Ø), 8S μN.
It turns out that the linear inequalities describing

Qh are intimately related to the points in the extended
polymatroid associated with h, which is defined as

EPh := f¼ 2 Rn : ¼(S)· h(S), 8S μNg
where ¼(S) :=

P
i2S ¼i. Atamtürk and Narayanan [1] for-

malize this relationship between the points in EPh and

the valid inequalities for Qh in the following proposi-
tion.

PROPOSITION 3 (Atamtürk and Narayanan [1]) The

inequality ¼Tx· μ is valid for Qh (i.e., ¼Tx· μ, 8(μ,x) 2
Qh) if and only if ¼ 2 EPh.
PROOF Given ¼ 2 EPh, we have ¼Tx= ¼(Sx)· h(Sx)·
μ. Conversely, if ¼ =2 EPh, then ¼(S)> h(S) for some
S μN; but then for μ = h(S), ¼(S) = ¼Tx(S)> μ, con-

tradicting the validity of ¼Tx· μ.

A fundamental goal in integer programming is to

identify which are the important linear inequalities that

are necessary in describing a polyhedron or a set of in-

teger points and, therefore, provide the tightest formula-

tion possible; these “important” inequalities are known

as facets [22]. We call the bound constraints 0· x· 1
trivial facets of Qh since they can be shown to be facets
of Qh and are obtained trivially from relaxing the con-

straint x 2 f0,1gn to x 2 [0,1]n. Although Proposition 3
allows us to determine whether or not a linear inequal-

ity is valid for Qh, it does not tell us if the inequality
is a nontrivial facet of Qh. The next proposition allows
us to identify nontrivial facets of Qh and gives us an

6This fact is important as it assures us that Qh can be described by a
finite number of linear inequalities.

important relationship between the extreme points of

the extended polymatroid and the convex hull of the

epigraph. Since the proof given below was provided in

an earlier version of [1], but does not appear in their

published version, we state the proof for completeness.

PROPOSITION 4 The inequality ¼Tx· μ is a nontrivial

facet for Qh if and only if ¼ is an extreme point of EPh.
PROOF ) From Proposition 3, if ¼ =2 EPh, inequality
¼Tx· μ is not valid for Qf . If ¼ 2 EPh is not an extreme
point of EPh, then ¼ = ¸¼

1 + (1¡¸)¼2 for some ¸ 2
(0,1) and distinct points ¼1,¼2 2 EPh and ¼Tx· μ is

implied by (¼1)Tx· μ and (¼2)Tx· μ.

( Conversely, if ¼ is an extreme point of EPh, it is

the unique solution to a set of n linearly independent

equations ¼(Si) = h(Si) for i= 1, : : : ,n. Then, the corre-

sponding linearly independent points (x(Si),h(Si)), for
i= 1, : : : ,n of Qh and the origin (0,0) are on the face
f(x,μ) 2Qh : ¼Tx= μg. Finally, as (0,1) 2Qh, but is not
on the face, the face is proper.

REMARK 1 Note that if h(Ø) 6= 0, the nontrivial facets
for Qh take the form ¼Tx· μ¡h(Ø), 8¼ 2 EPh0 , where
h0 := h¡ h(Ø). Consequently, since f(Ø) = log(jRj), the
nontrivial facets of Qf are of the form μ ¸ log(jRj) +
¼Ty, 8¼ 2 EPf .
The significance of Proposition 4 is that it tells us

almost precisely which inequalities are needed to define

the polyhedron Qh; the only piece of information that is
missing is how to compute the coefficients ¼k of these

facets. Fortunately, this is provided in the following

important result due to Edmonds [6].

THEOREM 2 (Edmonds [6]) The point ¼ is an extreme

point of EPh if and only if ¼i = h(S(i))¡ h(S(i¡1)), where
S(i) = f(1),(2), : : : , (i)g, for i= 1, : : : ,n, and S0 = Ø, for
some permutation ((1),(2), : : : , (n)) of N.

In words, Proposition 4 and Theorem 2 state that

there are n! nontrivial facets needed to describe the poly-

hedron Qh, one for each permutation of the elements of

N, and the precise value of each coefficient depends on

the corresponding permutation. When specialized to the

submodular function f, Proposition 4, Remark 1, and

Theorem 2 lead immediately to the following corollary.

COROLLARY 1 The n! nontrivial facets of the polyhe-

dron Qf , which we refer to as extended polymatroid (EP)

inequalities, are of the form

μ ¸ log(jRj)+
nX
k=1

¼
Ã
k yÃ(k), 8Ã 2ªn (18)

where ªn is the set of all permutations of f1, : : : ,ng and
¼
Ã
k is the kth coefficient in permutation Ã = f(1), : : : , (n)g
ofªn. More precisely, ¼

Ã
k = f(S(k))¡f(S(k¡1)) = log(jR¡1

+
Pk
a=1S

¡1
(a) j)¡ log(jR¡1 +

Pk¡1
a=1S

¡1
(a) j), where a denotes

the track pair (i,j) associated with the ath element of the

permutation Ã.
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REMARK 2 If μ < f(y) and y 2 [0,1]n, then, by defini-
tion, the point (μ,y) =2Qf and hence, by Corollary 1, at
least one EP inequality (18) is violated.7

Using the equivalence that allowed us to express

(16) as (17), and by applying Corollary 1 to provide

us with an explicit polyhedral representation of Qf , we

can transform Formulation (15) and pose the MTTA

problem as the following MIP:

min μ+ cTy¡A ¢W (19a)

s.t. Ay=R¡1z+
nAX
i=1

nBX
j=1

S¡1ij wij (19b)

(14a), (14b), wi0 = 0, 8i 2NA, 8j 2NB
(19c)

wij 2 RD, 8i 2NA, 8j 2NB (19d)

z 2RD, y 2 Y , μ ¸ log(jRj) (19e)

μ ¸ log(jRj)+
nX
k=1

¼
Ã
k yÃ(k), 8Ã 2ªn: (19f)

In contrast to the original formulation of the MTTA

problem (11) and the formulation of NodeQAP (13),

both of which operate in the space (Rn) of the original
decision variables y, Formulation (19) requires us to
introduce O(Dn) auxiliary decision variables, thus forc-

ing us to operate in a higher-dimensional space, and

O(3n) additional constraints prior to introducing con-

straints (19f). At first glance, such a transformation may

seem “indirect” and fruitless. However, the advantage of

this formulation is that it is a MIP and can, in theory,

be solved by an off-the-shelf MIP solver. Indeed, the

benefits of working in a higher-dimensional space will

become clear in Section 7.

6.2.3. A Branch-and-Cut Algorithm
Unfortunately, the above MIP formulation requires

a factorial number (n!) of EP inequalities (19f), which

is unwieldy for instances of practical interest. However,

it turns out that this drawback can easily be overcome.

Since very few of these EP constraints will be tight at

an optimal solution, rather than include them all in the

initial formulation, we omit all of them from the outset,

and then generate those that are necessary on an “as-

needed” basis. Specifically, we initially formulate the

MIP (19a)—(19e). Then, at every node in the search tree,

we check if μ̂ ¸ f(ŷ) = log(jR¡1 +PnA
i=1

PnB
j=1S

¡1
ij ŷij j)

where μ̂ and ŷ are partial solutions (obtained from

the linear programming relaxation) at that node. Note

that ŷ will have fractional components at a non-leaf
node in the search tree. If μ̂ < f(ŷ), then, by definition,

7Up to this point, we have described f as a set function, i.e., as a

function f(S) whose argument is a subset S of N or, equivalently,

as a function f(y) whose argument is a binary vector y 2 f0,1gn.
Henceforth, when we write f(y), we will treat f as a continuous

function of y 2 [0,1]n.

(μ̂, ŷ) =2Qf and so we “cut off” the solution at that node
by appending the most violated EP inequality, which is

guaranteed to exist by Remark 2. Edmonds [6] showed

that finding the most violated EP inequality can be

solved very efficiently using “the Greedy Algorithm” 2.

ALGORITHM 2 GreedyAlgorithm(f, ŷ)
1: Sort the ŷi variables in nonincreasing order, ŷ[1] ¸
¢¢ ¢ ¸ ŷ[n], breaking ties arbitrarily

2: Define S[i] := f[1], [2], : : : , [i]g, for i= 1, : : : ,n, and
S0 := Ø

3: Define ¼[i] := f(S[i])¡f(S[i¡1]), for i= 1, : : : ,n
4: return The EP inequality ¼Ty· μ¡f(Ø)
A high-level sketch of the algorithm used to find the

single provably best (optimal) solution to the MTTA

problem (11) is outlined in Algorithm 3. The pseu-

docode is more terse than that given in Algorithm 1 be-

cause we have implemented our algorithm in a commer-

cial solver (CPLEX [13]) which manages the branch-

and-bound tree for the user and provides all of the nec-

essary functionality for solving linear and mixed-integer

programs. Algorithm 3 takes a single input parameter:

MIPmodel. Initially, MIPmodel represents the MIP for-
mulation (19a)—(19e). The only advanced technique that

we employ is in telling the solver how to identify if

a violated EP constraint (19f) exists. This step is im-

plemented through a “callback” function, which virtu-

ally all of the leading commercial and open-source MIP

solvers provide.

ALGORITHM 3 BranchAndCutforMTTA (MIPmodel)
1: Write a callback function to do the following at each

node in the search tree:

2: while μ̂ < f(ŷ) do
3: Call GreedyAlgorithm(f, ŷ) and append the re-

turned EP inequality ¼Ty· μ¡f(Ø) to MIPmodel
4: Re-solve the LP relaxation of MIPmodel to pro-

duce an updated partial solution (μ̂, ŷ)
5: end while
6: Invoke the MIP solver’s solve() method with the
callback function

7: return The single best track-to-track association so-
lution ŷ¤ to MIPmodel

When solving a MIP, all leading MIP solvers relax

the binary constraints y 2 f0,1gn with linear constraints
y 2 [0,1]n so that a linear program (LP) is solved at

every node in the search tree. Before branching on a

decision variable that is required to be integral, but is

currently fractional at the optimal solution of the LP

relaxation, the solver will attempt to generate a number

of default cuts that apply to all MIPs as well as those

cuts that the user requested the solver to attempt to

generate through a callback function. Thus, if in Step 2

the solver finds that μ̂ < f(ŷ), the most violated EP cut
(19f) is appended to MIPmodel and the LP relaxation of
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MIPmodel is re-solved in Step 4 for an updated partial
solution (μ̂, ŷ). In the event that the node being processed
is a leaf node, which implies that ŷ is binary, the solver
will still call the callback function (Step 2) to check for

violated EP inequalities. This loop is repeated at every

node until no more violated EP inequalities are found.

When Algorithm 3 has terminated, MIPmodel will likely
have a very small subset of EP constraints as well as

a number of default MIP cuts that were added by the

solver. This is an important observation because we will

re-use this updated MIPmodel when finding the K best

solutions.

THEOREM 3 (Algorithm 3 is exact) The proposed

branch-and-cut procedure finds the provably best (glob-

ally optimal) solution to the MTTA problem (11) when the

input parameter MIPmodel represents the MIP formula-
tion (19a)—(19e).

PROOF Let (μ¤,w¤,y¤,z¤) be an optimal solution to
(19) with corresponding objective function value °¤. Let
(μ¤¤,w¤¤,y¤¤,z¤¤) be the solution returned by Algorithm
3 with corresponding objective function value °¤¤. Note
that °¤¤ · °¤since, upon termination, MIPmodel does not
necessarily (and most likely does not) contain all EP

constraints (19f) and is, therefore, a relaxation of (19).

Meanwhile, (μ¤¤,w¤¤,y¤¤,z¤¤) is feasible to (19) since in
Step 3 no more violated EP constraints could be found,

which by Corollary 1 occurs if and only if (μ¤¤,y¤¤) 2
Qf . Thus, (μ

¤¤,w¤¤,y¤¤,z¤¤) must be an optimal solution
to (19) and the assignment y¤¤is an optimal solution to
the MTTA problem (11).

Thus far, we have described how to find the single

provably best solution to the MTTA problem. In order

to find the K provably best solutions, we essentially

make K calls to Algorithm 3. A high-level description

of the algorithm for finding the K provably best solu-

tions to the MTTA problem is presented in Algorithm 4.

In Step 1, we formulate MIPmodel as the MIP formula-
tion (19a)—(19e). It is important to note that MIPmodel
will be modified throughout the algorithm as other con-

straints are appended to it. Step 2 is not necessary, but

is almost always a good idea since MIP solvers gener-

ally perform better when good incumbent solutions are

already available. The main while loop in Steps 4—10
requires the most computation time. Initially, we find

the kth best solution for k = 1. In general, after find-

ing the kth best optimal solution ŷk, we add a so-called
enumeration cut

nX
j=1:ŷk

j
=1

(1¡ yj)+
nX

j=1:ŷk
j
=0

yj ¸ 1 (20)

to MIPmodel to render the current optimal solution in-
feasible and thus allow us to find the solution cor-

responding to the next best association. Re-solving

MIPmodel in Step 5 starting from the formerly opti-

mal, but now infeasible, solution will yield the next best

provably optimal solution.

ALGORITHM 4 MIPforMTTA(K)
1: Formulate the MIP (19a)—(19e). Call this formula-

tion MIPmodel.
2: Obtain high-quality incumbent solutions by solving

the GNPM problem for the K best bias-assignment

solutions ŷ1, : : : , ŷK using a good heuristic
3: Set numSolnsFound=0
4: while numSolnsFound <K do
5: Call BranchAndCutforMTTA (MIPmodel) for an

optimal assignment ŷ¤ to MIPmodel
6: Update the list of the K best solutions, if possible

7: numSolnsFound++
8: if numSolnsFound<K then
9: Append an enumeration cut to MIPmodel:Pn

j=1:ŷ¤
j
=1(1¡ yj) +

Pn
j=1:ŷ¤

j
=0 yj ¸ 1

10: end if
11: end while
12: return The K best track-to-track association solu-

tions ŷ1, : : : , ŷK

THEOREM 4 (Algorithm 4 is exact) Algorithm 4 finds

the K provably best (globally optimal) solutions to the

MTTA problem (11).

PROOF By induction. Let k = numSolnsFound. When
k = 0, Algorithm 4 calls Algorithm 3 without any

enumeration cuts appended to MIPmodel. By Theo-

rem 4, the solution returned by Algorithm 3 with-

out any enumeration cuts is a provably optimal so-

lution to (19). For the inductive step, assume that at

the start of Step 4 when 0< k < K, the k provably

best associations y1, : : : ,yk have been found and that
MIPmodel includes k enumeration cuts (20) that ren-
der the k best associations infeasible. Since all so-

lutions to the MIP (19a)—(19e) are still feasible to

MIPmodel, except for those whose y-component corre-
sponds to one of the k best associations, the next call

to BranchAndCutforMTTA(MIPmodel) will solve a MIP
over a smaller feasible region and, by using arguments

virtually identical to those given in the proof of Theo-

rem 4, will return a solution whose y-component corre-
sponds to the (k+1)th globally optimal association.

7. PERFORMANCE STUDIES

The purpose of this section is to compare the per-

formance of the two exact algorithms described in the

previous section. It will be shown that the branch-and-

cut algorithm (Approach 2) is vastly superior to the

branch-and-bound method (Approach 1). We will also

see empirical evidence that the K best MTTA solutions

are often a subset of the 3K best GNPM solutions. It

is for this reason, as well as for the arguments given in

Section 4 with the illustrative example, that we do not

specifically evaluate the suitability of the MTTA likeli-

hood function for performing track-to-track association

in comparison to the GNPM likelihood function. The

TRACK-TO-TRACK ASSOCIATION AND AMBIGUITY MANAGEMENT IN THE PRESENCE OF SENSOR BIAS 95



TABLE IX

Density Guidelines

Overlap % MMD PCA

[0,2) [0,0:75)

100% [2,4) [0:75,0:95)

[4,1) [0:95,1]

[0,4) [0,0:75)

70% [4,8) [0:75,0:95)

[8,1) [0:95,1]

superiority of one over the other is an open question,

although we contend that the MTTA likelihood function

is more suitable in the case of a one-time handover.

7.1. Instance Generator

For ease of explanation and reproducibility for other

researchers, we present computational results for 3-

dimensional “box” instances of the MTTA problem.

Although numerous experiments involving more real-

istic tracking scenarios in 6 dimensions have been com-

pleted, we believe that the same insights about the algo-

rithms can be gleaned from these contrived instances.

Track states are maintained in a 3-dimensional Carte-

sian reference frame. All covariance matrices are diag-

onal matrices: R= Pi =Qj = I so that Sij = 2I, 8i 2NA,
8j 2NB . The symmetry (i.e., the homogeneity of the co-
variances matrices) of these instances leads to difficul-

ties for the algorithms as they cannot help distinguish

between choosing one track pairing over another. So

while these instances may appear simple, they are actu-

ally more difficult than most instances encountered in

practice in which disparate covariances are typical.

A particular “box” instance is created as follows:

After choosing nA and nB (with nA · nB), nB objects
are created by randomly generating position compo-

nents uniformly in a cube with a given side length and

assigned to sensor B. Next, nA of the nB objects are

identified and assigned to sensor A. The true bias is

drawn randomly from a Gaussian(0,R) distribution and
is added to each track in NA. Finally, each track in NA
and NB receives a random measurement error, drawn

randomly from a Gaussian(0,I) distribution.
The side length of the cube from which the position

estimates of the tracks are randomly drawn influences

the track scene density, i.e., how closely spaced the ob-

jects are to one another. In general, the more closely

spaced are the tracks, the more difficult it is to cor-

rectly associate tracks (with respect to truth) and the

more computational effort is required to find provably

optimal solutions. While many metrics could be used to

gauge scene density, one that has been used in a num-

ber of studies is the minimum Mahalanobis positional

distance (MMD) computed over all tracks in each track

set. It is a unitless metric sometimes referred to as the

minimum nearest neighbor distance. Based on several

computational studies, e.g., [25], [23], [7], Table IX was

TABLE X

3D Cube Side Lengths

Density

nB High Medium Low

5 5.26 10.51 15.77

6 6.10 12.20 18.29

7 6.89 13.79 20.68

8 7.65 15.29 22.94

9 8.36 16.72 25.08

10 9.06 18.11 27.17

11 9.72 19.44 29.16

12 10.37 20.73 31.10

13 10.99 21.98 32.97

14 11.61 23.22 34.83

15 12.20 24.39 36.59

constructed to provide rough guidelines regarding the

difficulty to correctly associate tracks in terms of the

probability of correct association (PCA), defined to be

the fraction of the nA sensor A tracks that the association

algorithm correctly associates based on truth. For exam-

ple, when nA = nB (100% overlap between the two track

sets) and the MMD is less than 2, Table IX indicates that

PCA is, on average, less than 0.75. Similar guidelines

are given for an overlap of 70%, meaning nA = 0:7nB .

Using the above density guidelines, we evaluated the

performance of our algorithms at three different scene

densities: low, medium, and high. A high density scene

corresponds to a MMD in the interval [1,2), a medium

density in [2:5,3:5], and a low density in [4,5]. For low,

medium, and high densities, we expected and confirmed

that the average PCA was at least 0.95, between 0.75

and 0.95, and less than 0.75, respectively. To generate

instances with these densities, we generated nB points

from a cube with the side length given in Table X.

These parameters were computed through simulation

and yield, on average, a MMD in the desired interval.

If the MMD did not fall within the desired interval,

this instance was discarded and new instances were

generated until the MMD fell within the desired interval.

7.2. Computational Results

All computations were carried out on a Linux ma-

chine with kernel 2.6.18 running on a 64-bit x86 pro-

cessor and 32GB of RAM. For every choice of param-

eter settings tested, 100 Monte Carlo experiments were

performed. Both algorithms were implemented in Java

and the MIP solver of CPLEX 11.2 [13] was used for

the branch-and-cut algorithm. A solution was declared

optimal if the relative optimality gap (z¤ ¡ zLB)=z¤ was
at most 0.0001, where z¤ is the value of the current best
solution, and zLB is a lower bound on the value of the

MTTA problem. At the start of each exact algorithm, we

employed the “All-Pairs” heuristic proposed in [5] to

obtain K near-optimal solutions to the GNPM problem.

While there are many heuristics available, we chose the
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TABLE XI

Branch-and-Bound CPU Times (seconds)

# Tracks Density

nA nB Low Medium High

5 5 1.6981 1.8756 2.3923

6 6 16.5326 19.6353 25.1325

7 7 123.4889 131.6625 213.7652

8 8 287.4124 294.4444 –

9 9 – – –

10 10 – – –

5 10 60.7861 69.8828 87.3136

6 11 142.4322 155.6128 –

7 12 259.7773 274.3616 –

8 13 – – –

9 14 – – –

10 15 – – –

“All-Pairs” heuristic for its simplicity and determinis-

tic behavior. As will be explained in Fig. 5, we have

empirical evidence that the GNPM likelihood function

closely approximates the MTTA likelihood function (at

least in the region of optimal solutions), and so the K

near-optimal GNPM solutions returned by the heuristic

are near-optimal for the MTTA problem. This is good

news since it means that good heuristics already exist

and new heuristics do not need to be developed. Since

the heuristic is typically able to find a subset of the K

best solutions, most of the effort carried out by the exact

algorithms is in proving that these solutions are, indeed,

optimal.

Tables XI and XII show the average solution times

in seconds needed for the branch-and-bound and the

branch-and-cut algorithms, respectively, to identify the

K = 10 provably best solutions for various track sizes

and scene densities. A dash (–) in the table means that,

on average, an algorithm did not terminate within a five

minute time limit. Even after significant experimenta-

tion with different parameter settings, the branch-and-

bound method is vastly inferior to the branch-and-cut

algorithm. Indeed, the branch-and-bound method can-

not solve instances with more than 8 tracks in each set

in under five minutes. Meanwhile, for low and medium

scene densities, the branch-and-cut algorithm performs

remarkably well with average solution times under five

seconds. The standard deviation in solution time was

also under a second for each parameter setting.

Although the solution times for the high density

track scenes may appear discouraging, empirically we

have observed that any association algorithm optimizing

with respect to the GNPM or MTTA likelihood function

will have a low PCA at such a high density. In fact,

these track scenes are so congested that one is likely to

question the fidelity of the tracks that were formed, i.e.,

the observation-to-track assignments that were made to

produce the tracks are likely to be flawed. In light of

this caveat, the solution times presented for the high

density track scenes should be considered a “stress test”

TABLE XII

Branch-and-Cut CPU Times (seconds)

# Tracks Density

nA nB Low Medium High

5 5 0.3599 0.4417 1.4738

6 6 0.4976 0.6367 1.5398

7 7 0.6778 0.7988 4.0195

8 8 0.9395 1.1405 7.1438

9 9 1.1608 1.4496 10.3954

10 10 1.5551 1.8486 23.5589

11 11 1.9391 2.2815 29.5981

12 12 2.6192 2.7251 31.3729

13 13 3.2803 3.3583 56.5361

14 14 4.1458 4.2619 74.1426

15 15 4.4676 4.8745 78.0808

5 10 0.4654 0.5369 1.5663

6 11 0.6787 0.7290 2.9092

7 12 0.8933 0.9331 4.2180

8 13 1.1667 1.2309 6.4942

9 14 1.5173 1.5502 10.0925

10 15 1.9460 1.9844 12.3069

for the algorithm under extreme conditions. And if these

conditions are encountered in practice, then one might

verify that the track states and covariances are valid.

We attribute this marked discrepancy in performance

between the two algorithms to two facts. First, in the

branch-and-bound method, the QAP relaxations at shal-

low depths in the search tree are poor and do not permit

early pruning, which leads to many nodes being ex-

panded early in the search. Second, once the bounds do

become useful for pruning, one still has to solve a small

QAP, which may require roughly a second of compu-

tation time. Coupling these two facts, we see that many

small QAPs, each requiring a small, but non-negligible

amount of time, quickly adds up. On the other hand,

the branch-and-cut method fully exploits the power and

efficiencies that are now standard in MIP solvers, which

leads to impressive computation times.

Another interesting question is: How well does the

branch-and-cut algorithm scale as the user requests

more and more provably optimal solutions, i.e., as the

parameter K increases? Fig. 4 illustrates that, for various

track sizes with a medium scene density, the algorithm

scales almost linearly in K.

Fig. 5 shows the approximate number of provably

optimal GNPM solutions that must be generated in order

to ensure, with a high probability, that the K provably

best solutions are obtained. From a theoretical perspec-

tive, this figure shows the close relationship between the

GNPM and MTTA likelihood functions. From a prac-

tical perspective, this figure is important because it in-

dicates that a user who does not wish to implement the

branch-and-cut method, or any other exact algorithm for

that matter, but who already has access to a good heuris-

tic for the GNPM problem, can use the existing heuristic

to generate optimal or near-optimal solutions with high
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Fig. 4. Solution time (seconds) as a function of K .

Fig. 5. Number of GNPM solutions needed.

confidence. Indeed, after choosing the number K of op-

timal MTTA solutions desired on the x-axis, the user

can get a rough sense of the number of GNPM solutions

that should be generated in order to be confident that the

K best MTTA solutions have been found. Specifically,

for a given choice of K, Fig. 5 shows the mean num-

ber (plus three standard deviations) of provably optimal

GNPM solutions needed to obtain the K provably best

MTTA solutions. Ideally, the K best MTTA hypotheses

would coincide with the K best GNPM hypotheses in

which case the fast multistart local search heuristics that

are already available for the GNPM problem could be

used for the MTTA problem without any loss of opti-

mality. In this ideal setting, we would obtain the thick

black line emanating from the origin. Unfortunately,

the best hypotheses for the different likelihood function

generally do not move in lock step.

Although we only present results up to the 10 best

solutions, we have found that this pattern continues.

Thus, we suggest that if a user wishes to obtain the

K best MTTA solutions with high confidence without

implementing one of our exact algorithms, he should

find the 3K best GNPM solutions to achieve this goal.

At various times, we have used the superlative “re-

markable” to describe the branch-and-cut algorithm. We

close this section to explain why we believe the re-

sults for the branch-and-cut algorithm are so impres-

sive. First, operational requirements for most associa-

tion algorithms typically allow at most a few seconds

of computation time. Thus, having the ability to return

provably optimal solutions in such a small time window

is a desirable feature. Second, since many heuristics for

the GNPM problem require one- or two-tenths of a sec-

ond to return a number of near optimal solutions, it

appears that the increase in computation time to iden-

tify provably optimal solutions is roughly an order of

magnitude. Given that the increase in solution time to

find a single provably optimal solution over a heuristic

solution is often several orders of magnitude for many

difficult 0-1 optimization problems, having an order of

magnitude increase is good news.

8. CONCLUSIONS

The primary goal of this paper was to introduce a

marginal track-to-track association likelihood function

for track ambiguity management, which takes into ac-

count all of the major issues considered by other popular

association likelihood functions, but is more suitable for

system-level track ambiguity management, especially

for a one-time handover. We described how pairwise

track-to-track likelihoods could be constructed to quan-

tify the confidence in pairing two tracks together. Our fi-

nal contribution was the introduction of two exact algo-

rithms that can solve a track-to-track association prob-

lem using the likelihood function that we introduced.

The second approach, which exploits well-known re-

sults from submodular function minimization, performs

quite well.

As there is on-going effort to develop efficient and

robust algorithms for performing track-to-track associ-

ation between more than two sensors, we believe that

understanding the possible types of information that can

be extracted when only two sensors are participating and

the shortcomings of the related algorithms to obtain this

data are crucial when considering more complex multi-

sensor problems. In addition, since data association is

a low level step in the data fusion process, improving

metrics and algorithms for track correlation can have a

significant impact on system performance.
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Decision-Level Fusion
Performance Improvement
From Enhanced HRR Radar
Clutter Suppression
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Airborne radar tracking in moving ground vehicle scenarios is

impacted by sensor, target, and environmental dynamics. Moving

targets can be characterized by 1-D High Range Resolution (HRR)

Radar profiles with sufficient Signal-to-Noise Ratio (SNR). The am-

plitude feature information for each range bin of the HRR pro-

file is used to discern one target from another to help maintain

track or to identify a vehicle. Typical radar clutter suppression al-

gorithms developed for processing moving ground target data not

only remove the surrounding clutter, but a portion of the target

signature. Enhanced clutter suppression can be achieved using a

Multi-channel Signal Subspace (MSS) algorithm, which preserves

target features. In this paper, we (1) exploit extra feature informa-

tion from enhanced clutter suppression for Automatic Target Recog-

nition (ATR), (2) present a Decision-Level Fusion (DLF) gain com-

parison using Displaced Phase Center Antenna (DPCA) and MSS

clutter suppressed HRR data; and (3) develop a confusion-matrix

identity fusion result for Simultaneous Tracking and Identification

(STID). The results show that more channels for MSS increase iden-

tification over DPCA, result in a slightly noisier clutter suppressed

image, and preserve more target features after clutter cancellation.

The paper contributions include extending a two-channel MSS clut-

ter cancellation technique to three channels, verifying the MSS is

superior to the DPCA technique for target identification, and a com-

parison of these techniques in a novel multi-look confusion matrix

decision-level fusion process.
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1. INTRODUCTION

Many surveillance systems incorporate High Range

Resolution (HRR) radar and Synthetic Aperture Radar

(SAR) modes to be able to capture moving and station-

ary targets. Feature-, signature-, and categorical-aided

tracking and Automatic Target Recognition (ATR) ap-

plications benefit from HRR radar processing. Success-

ful Simultaneous Tracking and Identification (STID)

[6, 12, 65] applications exploit feature information to

determine the target type and dynamics. Throughout the

paper, we use identification, as opposed to recognition,

to clarify the process of distinguishing between two tar-

gets of the same classification label or allegiance type.

To maximize a search area, airborne systems op-

erate at standoff ranges to detect targets and initiate

tracks [3, 5]. After target acquisition and track initia-

tion, tracking systems then transition into a track main-

tenance mode. However, closely spaced targets require

feature analysis to identify the targets. In track mainte-

nance, HRR radar affords dynamic processing analysis

for vehicle tracking and signal feature extraction (range,

angle, aspect, and peak amplitudes) for target detection

and identification [7].

Pattern recognition algorithms applied to ATR prob-

lems are typically trained on a group of desired objects

in a library to gain a statistical representation of each

objects’ features. One-dimensional (1-D) HRR classi-

fiers exploit the location and peak amplitude informa-

tion contained in the HRR signatures [19, 38]. HRR

classifiers align input signatures to the library templates

or models [16] and determine the best correlation value

for the aligned features. HRR ATR algorithms often ap-

ply a threshold to the best score to reject questionable

objects before making identification or class label deci-

sions. As per the previous work on target identification

from HRR signatures, we improve existing capabilities

by increasing the peak amplitudes and refine range-bin

locations through clutter suppression techniques.

A number of papers have been published that evalu-

ate one-dimensional (1-D) HRR ATR solutions [22, 27,

46, 62, 63]. Classifiers have been developed for cor-

relation [34], Bayes and Dempster Shafer information

fusion [11], entropy and information theory analysis

[8], and neuro-fuzzy methods [10]. The classifier results

have been used for tracking [9, 66] and multi-look HRR

identification [53, 67]. Other approaches include eigen-

value template matching [51], Eigen-Extended Maxi-

mum Average Correlation (EEMACH) filters [31] and

likelihood methods accounting for Rician, amplitude,

specular, and diffuse, Cisoid scattering [18]. Since we

utilize a combination of sensor and exploitation algo-

rithms (with reported decisions) we are not afforded

feature or signal-level fusion options. Using inspiration

from the above ATR fusion methods, we incorporate

maximum-likelihood Bayesian methods into our novel

Confusion Matrix Decision-Level Fusion (CM-DLF)

algorithm.
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Although the ATR process seems straightforward,

misidentification or rejection of an input object as a

viable target occurs because of feature extraction dif-

ferences over different operating conditions. Extended

operating conditions (EOCs) such as the target being

obscured from the sensor, targets adjacent to another

object, and target transitions from moving to station-

ary and back to a moving state in a traffic scenario

unexpectedly alter the features. The importance and

impact of EOCs is critical to ATR performance [25].

The quality of the information used in joint track-

ing, classification, and identification [1, 32, 36, 64]

can be determined through Bayes, Dempster-Shafer,

or Dezert-Smarandache Theory (DSmT) analysis meth-

ods [60]. The clutter-suppressed CM-DLF approach en-

hances both EOC target identification through mini-

mizing residual range and Doppler noise and enhanc-

ing track accuracy through pose angle determination

with the correct target shape (features in range-Doppler

space).

HRR ATR algorithm performance is impacted by the

quality of the features available in the 1-D HRR profiles.

Missing target features in training data will alter the li-

brary templates formed resulting in poorer identification

performance. The presence of EOCs will degrade 1-D

test signatures and the corresponding classifier perfor-

mance. Since the signature data used by ATR algorithms

is not always pristine, information fusion methods have

been developed such as multi-look ATR, decision level

fusion (DLF), and feature level fusion (FLF) in an ef-

fort to enhance identification performance from HRR

radar data. Improved HRR processing prior to 1-D HRR

profile formation (i.e., clutter cancellation) should im-

prove the target features available or reveal more target

features, resulting in higher quality 1-D signatures and

improved ATR performance.

For many decades, researchers have been develop-

ing methods for target identification (ID) through HRR

analysis either focused on the radar data itself (e.g., clut-

ter suppression) or the target classification (e.g., pattern

recognition methods), which lack the ability to deal with

high-density closely-spaced moving target IDs. As si-

multaneous tracking and identification methods are be-

ing applied to urban areas, targets are closer together,

have maneuvering dynamics, and are of similar shape.

To compensate for these needs, we have coordinated the

development of (1) MSS clutter suppression enhance-

ments to deal with closely spaced targets, (2) designed

a novel confusion-matrix decision-level fusion approach

to take sensor-exploitation likelihood results and update

target ID tracks, and (3) combined clutter suppression

and CM-DLF for enhanced target signature analysis

through movements. Conceptually, target identification

improves from having more (a) salient features, (b) spa-

tially and temporally refined features in range-Doppler

space, and (c) recursively fused features from different

perspectives.

Fig. 1. 1-D HRR profile formation process.

This paper reviews HRR data processing in Sec-

tion 2, discusses the implementation of a standard two-

channel DPCA clutter cancellation method, presents an

improved multi-channel signal subspace (MSS) clut-

ter suppression algorithm, and compares the resulting

clutter-canceled target chips and target-to-clutter ratios.

In Section 3, a multi-look decision level fusion iden-

tification method is presented along with performance

metrics. Section 4 presents the DPCA and MSS 1-D

HRR identification performance in both single-look and

multi-look scenarios and Section 5 discusses conclu-

sions and future work.

2. HRR DATA PROCESSING

Focused 1-D HRR radar profiles of moving targets

may be generated with enhanced target-to-clutter ratios.

The moving target is first chipped from the motion-

compensated video phase history (MCVPH) radar data

for each channel available. The chipped target of the

trailing channel is aligned to the target chip of the

lead channel for clutter suppression and focusing, as

illustrated in Fig. 1. The processing results in a two-

dimensional range-Doppler (RD) chip (shown in Fig. 5)

that is masked using binary morphology to determine

the mean clutter level, target length, and target edges in

the chip. The range-Doppler chip is then cropped about

the Doppler extent of the target mask before computing

the mean of all sub-aperture images. The integration

over the dwell time is conducted, which is the duration

that the target remains in the radar’s beam during each

scan. The maximum scatters from each range bin are

kept to form the 1-D HRR profile.

Stationary targets from SAR imagery may also be

formed into 1-D HRR profiles using a similar process.

For targets in SAR imagery, constant-false alarm rate

(CFAR) detection is performed first, followed by target

mask formation using binary morphology. The forma-

tion process crops around the target mask and computes

the mean of all sub-aperture images, keeping the maxi-

mum scatters from each range bin to form the stationary

HRR profile. Shown in Fig. 1 is the general profile for-

mation process flow.

Recent research [19] has shown that HRR profiles

formed from SAR imagery of stationary targets have

comparable features to profiles of the same target mov-

ing at corresponding collection geometries as shown in

Fig. 2. The amplitude of the moving target range profile

(dashed red line) is lower relative to the stationary target

profile (solid blue line) because some of the moving
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Fig. 2. Comparison of moving/stationary 1-D HRR profiles.

target energy is lost during clutter cancellation while

forming the HRR profile. HRR profiles formed from
SAR images do not require clutter cancellation in the
range profile formation process. However, the strongest
scattering features of the target still correlate in range
between the moving and stationary target HRR profiles.
Since HRR profiles can be formed directly from moving
platform HRR collections or extracted from SAR target
chips, we are able to utilize collected SAR images for

HRR testing and analysis.

2.1. General Clutter Suppression

Clutter suppression of airborne radar data for mov-
ing ground targets is a crucial step in target detection
and identification. Clutter suppression is needed to en-
hance the target signature while reducing the compet-
ing ground clutter energy surrounding the moving target
[13]. As shown in the results in Section 2.4, three visible
improvements in Figs. 8—10 that compare two-channel

versus three-channel MSS are: (1) better estimate of en-
ergy return to range resulting in the estimate of the tar-
get length, (2) reduced Doppler clutter to enhance target
movement estimates for tracking, and finally, (3) more
salient features from which to do a target identification
from either template or model matching.
Typically, clutter suppression techniques have the

unintentional side effect of reducing some of the target

energy while suppressing the ground clutter. Although
the target-to-clutter ratio may improve greatly, a reduc-
tion in the target features is inevitable, which impacts
target tracking and identification performance. The pro-
cessing of airborne multi-channel radar data to cancel
the clutter near moving ground targets can be accom-
plished through a variety of techniques such as Doppler
filtering, space-time adaptive processing (STAP), or dis-

placed phase center antenna (DPCA) processing [13].
Doppler filtering is a technique used with adaptive

radars that sense the Doppler distribution of clutter and
adjust the radar parameters in an attempt to maximize
the signal to clutter ratio. Clutter suppression is accom-
plished by obtaining a separate coherent output from
each channel of an antenna array and applying a unique

Fig. 3. Three-channel antenna configuration.

complex weight to each channel. Then the weighted
channels are added coherently to cancel the clutter en-

ergy [13, 21, 33].
A two-dimensional filtering technique known as

Space Time Adaptive Processing (STAP) [21, 28, 29, 49]
uses the Doppler frequency, sensor platform velocity,
and direction of arrival information to achieve clutter

cancellation. Adaptive filter weights are determined for
the temporal and spatial domains after sampling a co-
herent train of pulses. These weights then form a two-
dimensional space-time clutter filter that can be applied
to the data to eliminate ground clutter. STAP process-
ing is robust to errors and can simultaneously suppress

clutter returns and jamming signals [17, 40, 48].
In DPCA processing, radar motion compensation re-

duces the Doppler spread of ground clutter induced by
the sensor platform [30, 35, 41]. A multi-channel air-
borne radar configuration often has a pair of antennas
positioned so that as the platform travels in time, the

position of the trailing antenna will occupy approxi-
mately the same position of the lead antenna at some
delta time. Essentially, for a given time interval, one
antenna position is fixed. Clutter suppression is accom-
plished by subtracting the received signal from the trail-
ing antenna at the delta time from the received signal

of the lead antenna at the initial time of the processing
interval [37, 39, 58].
Both STAP and DPCA are capable of cancelling

main beam and side lobe clutter for multi-channel air-
borne radars with two or more antenna phase centers
[40]. In this paper, an available DPCA two-channel al-

gorithm was chosen for comparison to the multi-channel
signal subspace algorithm.
A three-channel antenna configuration is shown in

Fig. 3, where antenna number 1 is the lead channel for
the collected data. The concept of DPCA processing is

illustrated in Fig. 3 for a three-channel antenna array
configuration. The positions of the antennas are shown
at the initial time, ti, and with platform motion at some
time interval, ti+¢t, where ¢t is the change in time.
Through DPCA processing, two antenna positions will
appear to be at the same physical location for the array

depicted in Fig. 3. Therefore, clutter cancellation is
possible where channel 2 at ti and channel 3 at ti+¢t
line up and where channel 1 at ti and channel 2 at ti+¢t
are aligned.

The radar data processed for this paper was collected

at X-Band with the aircraft traveling in a linear flight

path north of the scene center collecting in spotlight

mode at a depression angle of 8.97 degrees and at

a weighted resolution of approximately 12 inches. As
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Fig. 4. SAR image of collection site.

Fig. 5. Example of target chip before clutter suppression.

illustrated in the SAR image of Fig. 4, the center of the

collection site was a rectangular grassy area with roads

along the western, eastern, and southern borders of the

target area. Wooded areas surround the grassy rectangle

along the northern, eastern, and southern portions of the

scene. In the scenario, civilian vehicles (i.e., trucks and

cars) are traveling along the roads in all directions.

The image chips used in the processing discussion

are of the test vehicle moving south along the western

Fig. 6. Two-channel DPCA process flow.

road. In Fig. 5, an example range-Doppler chip of the

target vehicle from channel 1, the lead channel, before

clutter suppression is shown. The y-axis is a function

of the range bins, which when multiplied by the pixel

spacing, is measured in meters (m). The x-axis is in

Hz, where the maximum Doppler shift for the clutter is

determined as (2¤velocity of the sensor)/wavelength.
The two-channel DPCA processing approach is ex-

plained in Section 2.2. Section 2.3 explains the multi-

channel signal subspace algorithm and the clutter sup-

pression results of the target chip are presented in Sec-

tion 2.4.

2.2. DPCA Technique

In Section 2.1, the DPCA processing was intro-

duced. The DPCA algorithm used in this work was de-

veloped for measured data from a radar array of two an-

tennas oriented along the sensor platform path of travel.

In general, the data from the trailing antenna (channel 2

of Fig. 6) is aligned to the lead channel (channel 1 of

Fig. 6), where the phases are adjusted so that the aligned

channels appear to be at the same location in space, and

finally, the channels are subtracted to suppress the sta-

tionary clutter. Fig. 6 illustrates the processing steps and

data flow of the DPCA technique.

The DPCA algorithm is provided motion-compen-

sated phase history data for both the lead (channel 1)

and trailing (channel 2) channels. Channel 2, the trail-

ing channel data, contains extra pulses to address mi-

nor offset delays between the channels. Alignment of

the range and pulse offset is conducted to roughly get

channel 2 to approximate channel 1. Then, the antenna

patterns are estimated for each channel and an antenna

pattern correction is applied to channel 2 so that the

channels are similar. A phase correction is determined

in the Doppler compressed domain to account for dif-

ferences in the frequency direction not already corrected

by coarse channel alignment and to address small phase

variations between the channels caused by any minor

hardware differences in the collection system. The phase

correction factor is applied to the data of channel 2.

Further phase adjustments are determined in the range-

Doppler domain and applied to channel 2 to account for

any shift in the fast-time samples. A series of additional

phase corrections are applied to channel 2 by the DPCA

algorithm to improve the fine alignment of channel 2 to

channel 1 to maximize the target-to-clutter ratio. These
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additional corrections require that any target-like objects

in the data be avoided so that the target energy is not

included in phase correction estimates as was done in

the determination of the previous correction factors. The

correction factors account for time varying phase differ-

ences between both channels being applied to channel 2.

Next, a fast-time magnitude and phase correction is ap-

plied in the Doppler compressed domain to the data of

channel 2. Then a smoothing technique is applied to the

data resulting in a trailing channel that has been equal-

ized to the lead channel. This completes the alignment

process of channel 2 to channel 1. Now that channel 2

appears to be the same as channel 1, the subtraction of

the channels result in the cancellation of stationary clut-

ter in the scene. The baseline clutter suppressed data

is represented by fd(k,n) = f1(k,n)¡f2(k,n), where f1
is channel 1, f2 is the equalized phase history data of

channel 2 to that of channel 1, k is the fast-time index,

n is the pulse number, and fd is the clutter-cancelled

result.

The DPCA adaptive clutter cancellation method pre-

sented will be applied to the data used in this work to

ultimately produce the DPCA 1-D HRR profiles. In an

effort to improve the 1-D HRR profiles and preserve

more target features, a multi-channel signal subspace

technique is developed in Section 2.3.

2.3. Multi-channel Signal Subspace Technique

The exploitation of the additional information of a

third channel in the phased array radar yields more pre-

cise clutter estimation and results in better suppression

of unwanted clutter returns. By using the information

of all three channels, more target features are preserved

in the clutter canceled image [26]. Increasing available

target features should translate into better target identi-

fication performance. This section will briefly explain

the background, the theory behind two channel clutter

suppression, and extend this technique to three-channel

clutter cancellation.

2.3.1. Signal Subspace Background
The Multi-channel Signal Subspace (MSS) technique

is based on 2-D adaptive filtering principles. The pro-

cess has been applied to a wide variety of data pro-

cessing problems in the literature [54] such as SAR

change detection, [47] image fusion of radar surveil-

lance data, [56, 57] medical imaging, and video pro-

cessing [20, 54]. Most of the work with signal subspace

processing has focused on data pairs either separated

spatially (e.g., two channel phased array radar data) or

separated temporally (e.g., such as electro-optical im-

ages collected at different times) as discussed in the

literature by Soumekh and others [54, 55, 57].

The development of a true multi-channel, greater

than two, signal subspace algorithm for use with a multi-

channel radar system consisting of a planar antenna ar-

ray of 22 receiver channels seemed likely [2]. However,

the received power at each channel was too weak to

form an image of sufficient quality for further process-

ing. This issue was resolved by splitting the data from

the 22 channels into a pair of 11 receiver channel groups

that were summed to improve the signal to noise level

[57]. Once the planar antenna array is represented by

two receive channels, the signal subspace processing

technique is applied to clutter-cancel the data. In the

next section, the process for two-channel clutter sup-

pression will be explained.

2.3.2. Dual-Channel Signal Subspace Technique
The dual-channel radar system discussed in this sec-

tion will have a pair of antennas in a phased array

similar to what is illustrated in Fig. 3, but without the

third channel being present. Channel 1 will be the lead

channel and channel 2 will be the trailing channel. In

keeping with the convention found in the literature, let

f1(x,y) represent the range-Doppler image formed from

the motion-compensated data from channel 1 over a

coherent processing interval (CPI) of 128 ms. Then,

f2(x,y) will be the range-Doppler image formed from

the motion-compensated data from channel 2 after a

slow-time alignment with channel 1. Since the channel 2

range-Doppler image is a linear combination of chan-

nel 1 and any shifted versions, f2(x,y) can then be mod-

eled by [54, 20], f2(x,y) = f1(x,y)− h(x,y) +fe(x,y);
where − is the convolution operator, fe(x,y) repre-

sents the target motion in the range-Doppler image, and

h(x,y) is the impulse response representing the relative

shift in each range-Doppler image due to differences in

the two receive channels of the sensor system.

Gain and phase ambiguities caused by known and

unknown factors, such as differences between the an-

tenna patterns or antenna vibration, in the two receive

channels may dominate the moving target signature in

the imagery. These differences are treated as an error

signal in the collected data. The DPCA approach re-

duces the error signal to a set of pre-determined func-

tions that are estimated and accounted for deterministi-

cally. The MSS technique applied to a dual antenna sen-

sor system views the error estimation process as com-

pletely stochastic.

Signal subspace theory estimates h(x,y) from f1(x,y)

and f2(x,y) resulting in the error function, ĥ(x,y)

[54, 56]. This is accomplished by minimizing the

squared error between f2(x,y) and its estimated version

given by

f̂2(x,y) = ĥ(x,y)−f1(x,y) (1)

where f̂2(x,y) is determined by projecting f2(x,y) on to

a set of orthogonal basis functions defined by f1(x,y)

[54]. The orthogonal basis functions can be computed

using any one of accepted decomposition/orthogonal-

ization techniques such as singular value decomposi-

tion, QR orthogonalization, or the Gram-Schmidt pro-

cedure. QR orthogonalization was used in the MSS im-

plementation that generated the results of this paper

where in practice ĥ(x,y)−f1(x,y) is estimated instead
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of ĥ(x,y). In general, the spatially-invariant difference

over the entire image is represented by [20, 54],

f̂d(x,y) = f2(x,y)¡ f̂2(x,y): (2)

To suppress unwanted clutter in radar data, the er-

ror function is estimated with overlapping odd-sized

blocks over the entire image to account for the spatially

varying nature of the phase in the imagery. The entire

range-Doppler image is divided into rectangular blocks

containing an odd number of pixels and processed to

estimate the error function. The blocks of image pix-

els were moved so that some portion of the rectangular

patch overlapped a previously processed block until the

entire subdivided image had been processed. This re-

sults in a clutter-cancelled image given by [56],

f̂d(xi,yi) =

LX
l=1

[f2(xi,yi)¡ f̂2(xi,yi)]Il(xi,yi) (3)

for a two channel phased array radar system. L is the

number of overlapping blocks processed, i is the odd

number of pixels per block, and Il is an identity matrix.

The MSS implementation in this paper used square

patches in the processing represented by (xi,yi), but

in general a rectangular block represented by (xi,yj)

could be used for an i-by-j-dimensional block. The next

section discusses the extension of this technique to data

collected with a three-channel phased array radar.

2.3.3. Three Channel Signal Subspace Technique

The two-channel signal subspace method explained

in Section 2.3.2 is extended for use with all three

channels of the phased array radar depicted in Fig. 3.

Once again, the lead channel will be channel 1 and the

trailing channels will be 2 and 3. The Multi-channel

Signal Subspace (MSS) extension to three channels will

first project the range-Doppler image formed from the

aligned motion compensated data of channel 2, f2(x,y),

on to the basis functions defined by the range-Doppler

image formed from the motion compensated data of

channel 1, f1(x,y), and determine the spatially varying

difference, f̂d2(xi,yi), given by Equation 3. The resulting

range-Doppler difference image of channels 1 and 2

is treated as a new independent channel, f4(x,y), as

shown by

f4(x,y) = f̂d2(x,y) = f2(x,y)¡ f̂2(x,y): (4)

Then the range-Doppler image formed by the align-

ed motion compensated data of channel 3, f3(x,y), is

projected on to the basis functions defined by the range-

Doppler image formed from the motion compensated

data of channel 2, f2(x,y). The spatially varying differ-

ence, f̂d3(xi,yi), from (3) is then determined. The result-

ing range-Doppler difference image of channels 2 and

3 in f5(x,y) = f̂d3(x,y) = f3(x,y)¡ f̂3(x,y) is treated as a
second new independent channel, f5(x,y), at a slightly

different look angle.

Now the second new independent channel, f5(x,y),

is projected on to the orthogonal basis functions of the

first new independent channel, f4(x,y), represented by

f̂5(x,y) = f4(x,y)− ĥ45(x,y).
The three-channel spatially-invariant difference im-

age is represented as f̂d(x,y) = f5(x,y)¡ f̂5(x,y). The
block processing represented by Equation 3 was applied

to account for the spatially varying nature of the range-

Doppler images.

Since each of the new independent channels is essen-

tially a clutter-canceled range-Doppler image, this tech-

nique represents the fusion of two dual-channel clutter-

suppressed range-Doppler images. The resulting clutter-

suppressed range-Doppler image should contain more

target features from the slightly different viewing an-

tenna geometries in the array. The MSS method im-

proves target features without enhancing any residual

clutter in the new input images. Examples of this pro-

cessing are presented in the section that follows.

2.4. Clutter-Suppression Results

The clutter-suppressed range-Doppler chips pre-

sented in this section were generated from the same

part of the collected data discussed in Section 2.1. The

moving target, a sedan, is slowing down while heading

south, away from the radars’ location. All of the range-

Doppler chips presented in this section have a dynamic

range of 50 dB with Doppler increasing from the left

of the image to the right, and range increasing from

the bottom of the image to the top. The DPCA algo-

rithm result is presented first, then the two-channel MSS

processed chips, and finally the three-channel clutter-

suppressed result. The signal-to-noise ratio for all of

the clutter-suppressed range-Doppler chips is computed

for algorithm performance comparison.

The implementation of the DPCA algorithm re-

quired the first channel to be the lead channel and lim-

ited the amount of shifting that may occur to align the

two channels. Therefore, only channels 1 and 2 could

be processed to yield a clutter-cancelled range-Doppler

image. The result is shown in Fig. 7. As stated earlier,

the dynamic range is constant for all the results present

in this section. However, adjusting the dynamic range of

the DPCA range-Doppler chip would help better define

the target.

Although the DPCA method could only produce

clutter-cancelled chips from two of the three chan-

nels available, the multi-channel signal subspace (MSS)

technique utilized all three channels in the processing.

Fig. 8 is the clutter-suppressed range-Doppler image

produced from channels 1 and 2. In comparing Fig. 8

to Fig. 7, the MSS approach does a better job of clutter

cancellation than the baseline technique using the same

data channels.

In Fig. 9, the clutter cancelled result of the MSS

algorithm using channels 2 and 3 is presented. The

relative reduction of clutter is similar to that of Fig. 8.
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Fig. 7. DPCA clutter suppression technique.

Fig. 8. MSS Two-channel clutter suppression technique: channels 1

and 2.

Close examination of Figs. 8 and 9 reveal scattering

from different locations of the target as well as more

features in the range-Doppler imagery. This is caused

in part by minor variations in the collection geometry

due to the spacing of the antennas in the phased array

radar.

Found in Fig. 10 is the clutter suppressed range-

Doppler chip produced by the enhanced MSS algorithm

using all three channels of the motion compensated data.

A minor reduction in the level of clutter cancellation

can be seen when comparing the results of Fig. 10 to

that of Figs. 8 and 9. However, careful examination

of the range-Doppler image in Fig. 10 shows more

target features are present. The three-channel clutter

suppressed image has a signal to noise level comparable

to that of the MSS two-channel clutter-cancelled results

and is an improvement over the baseline technique.

Finally, a signal-to-clutter ratio was determined for

the chips presented in this section to help gauge the

relative performance levels of the various techniques.

This ratio was determined by finding the largest pixel

value in the image; which is the brightest point on

the target and dividing it by the average clutter in a

one pixel wide frame around the entire range-Doppler

chip. A comparison of the signal-to-clutter levels for the

range-Doppler images formed from the three techniques

discussed in this paper can be found in Table I.

Fig. 9. MSS Two-channel clutter suppression technique: channels 2

and 3.

Fig. 10. MSS Three-channel clutter suppression technique.

TABLE I

DPCA vs. MSS Target to Clutter Ratio Comparison

DPCA processing 33.20 dB

MSS: 2 channel SS: channels 1 and 2 42.81 dB

MSS: 2 channel SS: channels 2 and 3 42.99 dB

MSS: 3 channel SS 42.57 dB

The MSS performance scales based on the compara-

ble target-to-clutter ratios for both the two-channel and

three-channel processing, with the three-channel MSS

method resulting in a slightly noisier clutter-suppressed

image, but with the added benefit of more target features

being preserved after clutter cancellation. The results in

Table I indicate that the MSS technique for traditional

two-channel clutter cancellation and for multi-channel

clutter suppression performs much better, nearly 10 dB

in target to clutter ratio, than the DPCA method.

3. TARGET IDENTIFICATION FUSION

The ability to perform track and identity fusion

requires sensor-processed classifications/identifications

from different levels. Multi-target data association al-

gorithms that accurately track targets in the presence of

clutter assume that the detected targets can be tracked

from a sequence of center-of-gravity and pose positional

data. Detected classification can effectively discern the
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target for a given scenario using experience of target

movement, training, or predicted information. For ex-

ample, two targets of the same type may be crossing in

space, but since they can not occupy the same location,

they would each have a different orientation relative to

a sensor. By exploiting the orientation, velocity, and

multi-resolution feature information, each target can be

assessed for the correct track-ID association.

The capability of a sensor to track and identify tar-

gets simultaneously requires the target center, the target

pose, and neighboring characteristics to discern salient

features for target type association. For example, fea-

tures [59] can be used to identify targets with a level

of uncertainty. However, if many features are fused,

the identity improves and helps eliminate clutter. The

tracker must use the available features to discern an ob-

ject (identify a target), which is a subset of Automatic

Target Recognition (ATR). Certain features are inher-

ently more useful in recognizing a target than others,

but obtaining these features is a function of sensor res-

olution and collection geometry.

The 1-D HRR ATR known as the Baseline Auto-

mated Recognition of Targets (BART) algorithm has

been used to generate identification results [22, 27].

BART is a template matching algorithm using the dom-

inant range-space eigenvector. Eigen-templates have

been used for 2D ATR problems using electro-optical

[43], SAR, [42, 43], and Forward-Looking IR (FLIR)

analysis [14, 15]. In each of these methods, the eigen-

template matching provides a stable analysis for a single

look. The eigenvector approach was then adapted and

refined by Shaw [4, 52, 45] and others [18] for 1-D

template formation using HRR profile data.

By leveraging knowledge about target features, fu-

sion algorithms can significantly reduce processing time

for tracking and identifying targets. For separated tar-

gets, resources may exist to identify each target. How-

ever, when resources and processing time are limited,

a trade-off exists between the identification and track-

ing of a target. In the case of multiple ATR systems

observing the same area, the HRR profiles can be at

significantly different sensor-to-target geometries. Dif-

ferent geometries result in different features for target

classification. In such a case, a decision-level fusion

approach is a good solution since the ATR decisions

are fused and not the features of the target signatures.

By leveraging knowledge about target types, fusion al-

gorithms can significantly reduce processing time for

tracking and identifying targets. Increased robustness is

achieved with a multi-look approach utilizing the eigen-

template feature analysis [22], summarized by a classi-

fier confusion matrix, and combined for enhanced HRR

target identification.

3.1. Decision Level Fusion (DLF) Method
The decisions from an ATR are often stored in a

confusion matrix (CM), which is an estimate of like-

lihoods. For the single-look ATR performance, these

estimates are treated as priors [61]. Decisions from

multiple ATRs or from multiple looks from different

geometric perspectives are fused using the Decision

Level Fusion (DLF) technique presented. With respect

to the DLF, the CMs represent the historical perfor-

mances of the ATR system. Assume that we have two

ATRs each described in a confusion matrix designated

as CA and CB . The elements of a confusion matrix are

cij = PrfATR decides oj when oi is trueg, where i is the
true object class, j is the assigned object class, and

i= 1, : : : ,N for N true classes. The CM elements can

be represented as probabilities as cij = Prfz = j j oig=
pfzj j oig. To determine an object declaration, we need
to use Bayes’ rule to obtain pfoi j zjg which requires the
class priors, pfoig. We denote the priors and likelihoods
as column vectors1

p(ō) =

266664
p(o1)

p(o2)

...

p(oN)

377775

p(zj j ō) =

266664
p(zj j o1)
p(zj j o2)

...

p(zj j oN)

377775 :
(5)

For M decisions, a confusion matrix would be of the

form

C =

266664
p(z1 j o1) p(z2 j o1) ¢ ¢ ¢ p(zM j o1)
p(z1 j o2) p(z2 j o2) ¢ ¢ ¢ p(zM j o2)

¢ ¢ ¢ ¢ ¢ ¢ . . . ¢ ¢ ¢
p(z1 j oN) p(z2 j oN) ¢ ¢ ¢ p(zM j oN)

377775 :
(6)

The joint likelihoods are similar column vectors, where

we assume independence for two confusion matrices A

and B (denoted here as superscripts),

p(zAj ,z
B
k j ō) =

2664
p(zAj j o1) ¢p(zBk j o1)
p(zAj j o2) ¢p(zBk j o2)

¢ ¢ ¢
p(zAj j oN) ¢p(zBk j oN)

3775 (7)

where k is used to distinguish between the different as-

signed object classes between the two confusion matri-

ces when the CMs are not symmetric.

Using the priors and the likelihoods, we can calcu-

late a posteriori from Bayes’ Rule

p(ō j zAj ,zBk ) =
p(zAj ,z

B
k j ō)p(ō)

NX
i=1

p(zAj ,z
B
k j ō)p(ō)

: (8)

1Based on FITE Memo, 15 May 2006, from Tim Ross.
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Fig. 11. Confusion matrix pseudo code.

Note that there are similar column matrices for the

posteriors p(ō j zj) and p(ō j zAj ,zBk ). A decision is made
using the maximum likelihood estimate

di = argmax
j;k

p(oijzAj ,zBk ) (9)

where the final decision of the true object class i is

determined from the largest value from the vector.

Note that the subscripts indicate the value of a

variable and the superscripts indicate the ATR source.

For example, zA = z3 indicates that source A made a

decision z3; where source A might be the first look of a

HRR ATR and decision z3 might be target type “sedan.”

The absence of a superscript implies an unspecified

single source. We represent the particular states from

each source with the subscripts a and b such as zA = zAa
indicating that source A’s decision was za.

For the developments of the pseudo code, shown

below in Fig. 11, we shorten the notation to zA = za,

while keeping track of the confusion matrix source

A or B.

3.2. Naïve Bayes DLF Pseudocode

Inputs to the fuser are the decisions of ATR A and B,

i.e., za and zb respectively. The output of the fuser is the

decision d based on a maximum a posteriori probability

(MAP) decision rule, where the posterior is p(ō j za,zb).
The fuser must know the prior probabilities p(ō) and the

confusion matrices (one for each source).

Pseudo code for DFL is represented as:

² za = za and zb = zb are the integer decisions between
1 : : :M of sources A and B, respectively

² pObar = p(ō) is a vector of priors, represented as
either constants or input variable

² CA= CA and CB= CB are the confusion matrices
derived from sources A and B, respectively

² pZaObar = p(za j ō) and pZbObar = p(zb j ō) are the
likelihoods as extracted columns from the confu-

sion matrices [pZaObar = CA(:,za); and pZbObar =

CB(:,zb)]

² pZaZbMbar = p(za,zb j ō) is the joint likelihood de-
rived from the point-wise product of the source like-

lihoods (pZaZbObar = pZaObar.¤pZbObar);
² pObarZaZb = p(ō j za,zb) = (p(za,zb j ō)p(ō))=(

PN
i=1

¢p(za,zb j ō)p(ō))

–the numerator is:

posteriorNum= pZaZbObar.¤pObar;
–the denominator is:

posteriorDen = sum(posteriorNum);

–pMbarZaZb = posteriorNum=posteriorDen;

² d =max(pObarZaZb), which is the fused decision,
di 3 p(oi j za,zb)¸ p(oi j za,zb) 8i,j where i,j 2 1,
: : : ,N.

The DLF function pseudo code is presented for verifi-

cation.

3.3. Metric Presentation

We used the eigen-value HRR target identification

approach as a baseline method [27]. The likelihood vec-

tors were compiled into a confusion matrix (CM). Thus,

each single look provided a full analysis of the classi-

fier, presented as a CM, for all target comparisons. The

likelihood vectors of the confusion matrix allowed for a

more thorough analysis with such performance criteria

as declaration, PD, and false alarm, PFA, probabilities.

The confusion matrix lists a set of likelihood values

with the real targets as the rows fT1, : : : ,TNg, and the
testable hypothesis as the columns fT1, : : : ,TN , otherg.
For example, if the true target is T1, the CM is

CM =

T1 T2 TN Other

T1

T2

TN

: (10)

266664
A B ¢ ¢ ¢ B O

E D ¢ ¢ ¢ D O

...
...

...
...

...

E D ¢ ¢ ¢ D O

377775
Selecting the likelihood values in the CM, one can com-

pare the performance metrics for different size CMs.

From the CM and a defined target-to-confusion ratio as

m (as set by the operational ATR requirements), a set of

metrics can be identified to support analysis including

PDeclaration =
A

A+B
(11)

PFalseAlarm =
E

E+D
(12)

PCorrectClassification =
m ¢PD

(m ¢PD)+PFA
: (13)

Using Fig. 21 as an example, let A be the fact that

target 1 is choice (row) and that target 1 is declared

(column) by the ATR to produce a normalized likeli-

hood of 0.63. The rows are normalized to one but round-

ing errors lead to values close to but not exactly equal to

1. B = 0:075+0:12+0:56+0:042 = 0:293. E = 0:039

+0:047+0:081+0:12+0:21 = 0:497. O is the entire

right column of 0:084+0:02+0:054+0:039+0:025+

0:21 = 0:432. Finally, D is the remaining value D =

4:146. Using the results from Fig. 21, then PDec = 0:63=

[0:63+0:293] = 0:683. PFA = 0:497=[0:497+4:146] =

0:107. If we letm= 1, then PCC = 0:683=[0:683+0:107]

= 0:865. These metrics are important in the fact that the
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system is not forced to make a target declaration (col-

umn other) as well as ability to discern whether there is

enough evidence to declare a target in the library [50].

By choosing a different target truth (row) to selec-

tion (column) as defined by the diagonal, the process is

repeated for each true target and the resulting metrics

are summed and normalized for the number of targets.

For example, the second true target is

CM =

T1 T2 ¢ ¢ ¢ TN Other

T1

T2

...

TN

(14)

266664
D E D ¢ ¢ ¢ D O

B A B ¢ ¢ ¢ B O

...
...

...
...

...
...

D E D ¢ ¢ ¢ D O

377775 :

4. IDENTIFICATION PERFORMANCE

Identification (ID) performance varies over three op-

erating conditions: environment, sensors, and targets. To

demonstrate environment variations, we compare adja-

cent versus separated target IDs for moving targets in

Sections 4.1 and 4.2. To highlight the variations in sen-

sors, we acknowledge the variations between the sensor-

processing methods (DCPA versus MSS) throughout

Section 4. Finally, for target variation, we show the con-

fusion matrices results for single-look and multi-look

comparisons in Sections 4.3—4.5.

The results that follow are from collected HRR pro-

files from moving targets. Simultaneous target tracking

and ID requires using HRR radar mode that supports

feature analysis in-between point movements (Moving

Target Indicator–MTI mode) and 2-D stationary im-

ages (Synthetic Aperture Radar–SAR mode). In ad-

dition to enhanced target ID through higher-diagonal

CM results, the clutter-suppression results demonstrate

improved target localization. HRR feature analysis be-

gins with aligning the HRR profile. Higher signature

matches presented in the CM cell’s results are indica-

tive of more feature matches (including the length of

the HRR target profiles).

Single-look confusion matrices were produced for

1-D HRR profiles formed from DPCA and MSS clut-

ter canceled target chips for ten ground vehicles travel-

ing along the roads shown in Fig. 4. Obscuration from

nearby vegetation along the streets impacted identifi-

cation performance depending on collection geometry.

The DLF technique was then applied to five DPCA and

five MSS single-look confusion matrices each produced

with a unique sample set. The results of these experi-

ments are presented in the subsections that follow.

4.1. Adjacent Vehicles

A subset of the data was selected to address a

common target tracking issue, vehicle adjacency, and to

compare identification performance among the various

types of clutter canceled data in benign conditions.

Three cars moving south along the western road shown

in Fig. 4 were chosen because the vehicles are in the

open and not obscured by vegetation. A bend in the road

required the vehicles to decelerate and cluster closer

together (less than one car length apart) while making

the turn. The vehicle data near the bend in the road

was divided from the vehicle data of the cars traveling

south toward the bend in the road, creating two data

sets: adjacent and separated. Note that these results are

for an aspect angle centered around 180 degrees or near

the rear of the vehicles.

Confusion matrix results were produced for the

closely associated vehicles near the turn in the road.

As targets slowed approaching the turn, the data was

treated as the adjacency data set. The lead target had

the fewest samples, and the trailing target had the most

samples since it was waiting for the other targets to

make the turn. Using the ID counts for each sample,

we turned them into the scores in the single-look CM.

Identification performance for the first two vehicles to

arrive at the bend in the road was consistently poorer

than the trailing vehicle that was less obscured. Note

that the data included in Section 4.1 was used later in

the overall results.

The identification performance using data sets for all

clutter suppression methods are found in Figs. 12—15.

4.2. Separated Vehicles

The data of the three vehicles separated while travel-

ing in the open was used to produce a “best case” iden-

tification performance comparison of each clutter sup-

pression method. The recognition results for separated

targets are presented in Figs. 16—19. It is noted from the

CM, that the ID performance of all vehicles increases

from » 0:5 to » 0:85. The ID performance of separated
targets can be used in target confirmation, track mainte-

nance, as well as afford resources to be applied to other

search areas to acquire targets. To compare separated

versus adjacent methods using the clutter cancellation,

we summarize the results from the CMs.

A mean identification performance was computed

for each matrix by averaging the diagonal of the CMs

and is presented in Fig. 20 for comparison of the

relative identification performance gains achieved by

the techniques used. The three-channel signal subspace

showed the best overall performance, followed by two

channel signal subspace clutter cancelation with the

two-channel DPCA having the poorest performance of

the techniques compared. As expected, a high level

of target identification of separated vehicles in benign

conditions was achieved for all techniques examined.

4.3. Single-Look Performance

The identification performance comparisons pre-

sented in Sections 4.3, 4.4, and 4.5 are between the

best (three-Channel MSS) and worst (DPCA) perform-

ing techniques in Sections 4.1 and 4.2.
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Fig. 12. DPCA single-look performance with target adjacency.

Fig. 13. Two-channel (1 and 2) MSS single-look performance with

target adjacency.

Five vehicles were selected for the library and the

remaining five vehicles were used as confusers as was

done in the companion papers [23, 24] for a total of ten

templates. The libraries of target profiles were created

from the off-line collected target signatures for this data

set and compared to the on-line test data as used in [6].

To ensure 360 degree coverage, we used the entire data

set to locate enough signatures to develop a 360 degree

target signature database for training. After capturing

the necessary training set, we used the remaining data

for testing. For example, of the 1800 samples, we used

about 1500 for training and the remaining 300 for

testing.

The DPCA single-look identification results are

shown in Fig. 21 with a mean target identification rate of

65%. The three-channel MSS single-look 1-D HRR ID

performance is presented in Fig. 22 with an improved

mean identification rate of 73.6% relative to the DPCA

results.

The distribution of the confuser vehicles was spread

across the not-in-library row for both the DPCA and

Fig. 14. Two-channel (2 and 3) MSS single-look performance with

target adjacency.

Fig. 15. Three-channel MSS single-look performance with target

adjacency.

MSS confusion matrices indicating no strong bias to-

ward a library object.

A comparison of the receiver operator curve (ROC)

associated with each of the HRR clutter cancelled data

sets is presented in Fig. 23. The MSS clutter-suppressed

data performs better with respect to the DPCA pro-

cessed data.

4.4. Multi-look DLF Performance

Wider angle changes (different perspectives) would

increase the ATR results. Instead of processing wider

(n-channel) clutter suppression, we utilized Decision-

Level Fusion (DLF) to incorporate angle changes for

enhanced ATR results. The test data used for the DLF

was the same as that used to create the single-look

analysis. The DLF data included the entire scenario of

the ten targets (five selected, five confusers) moving

through different operating conditions of adjacency and

separation, while the single-look analysis was a subset

of only three targets in the specified operating condition

over a shorter time interval.
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Fig. 16. DPCA single-look performance with separated targets.

Fig. 17. Two-channel (1 and 2) MSS single-look performance with

separated targets.

The DLF algorithm described in Section 3.2 was

run with confusion matrices 1 and 2 with the remaining

confusion matrices being incorporated sequentially and

the fused decision from the previous run being treated

as prior knowledge of the targets of interest. This proce-

dure was followed for both the DPCA and MSS single-

look matrices. The fused DPCA target recognition re-

sults can be seen in Fig. 24 with significant performance

gains relative to the single-look DPCA results of Fig. 21

and improved performance relative to the MSS single-

look results of Fig. 22. Since the multi-look DPCA is

better than the single-look MSS, there is value in utiliz-

ing multi-look DLF no matter which clutter suppression

technique is used.

The best identification results for this scenario are

shown in the MSS confusion matrix of Fig. 25 for multi-

look DLF. The DLF off-diagonal target confusion was

significantly reduced while correct ID was greatly en-

hanced relative to the DPCA processed data or single-

look MSS target recognition. Average MSS DLF target

ID increased to 89.2% for this moving target scenario

relative to the single-look average DPCA vehicle recog-

Fig. 18. Two-Channel (2 and 3) MSS single-look performance

with separated targets.

Fig. 19. Three-channel MSS single-look performance with

separated targets.

nition performance of 64.8%. Since the targets in the

dynamic scenario are not always well separated, through

DLF and three-channel MSS clutter suppression, the av-

erage target ID was better than the average DCPA best

single look condition (Fig. 16) and equivalent to that of

the average two-channel MSS best single look condition

(Figs. 17 and 18).

A ROC comparison of the multi-look DLF perfor-

mance is shown in Fig. 26. The Multi-channel Signal

Subspace clutter suppressed data set has the best per-

formance with respect to the fused DPCA data set and

the single-look target identification results. The single-

look performance of the MSS data set is comparable

to the fused DPCA performance as illustrated by both

the confusion matrices of Figs. 22 and 24 and the ROC

curves found in Figs. 23 and 26. To further assess the

similarities and differences in target identification per-

formance relative to enhanced clutter suppression and

fusion technique, the metrics of Section 3.2 are used

on a per target basis and presented in the section that

follows.
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Fig. 20. Comparison of Mean Single-Look Identification

Performance.

Fig. 21. DPCA single-look performance.

Fig. 22. Three-channel MSS single-look performance.

4.5. Performance Metrics

Fig. 27 shows the performance metrics computed

using Equations 11—13 for each of the five in-library

targets. Declaration, false alarm, and correct classifica-

tion probabilities were compared for single-look DPCA

(first blue bar), single-look MSS (second red bar), de-

cision level fused multi-look DPCA (third yellow bar),

and multi-look decision level fused MSS (fourth green

bar) performance.

Fig. 23. Single-look ROC comparison.

Fig. 24. DPCA decision-level fusion performance.

Fig. 25. Three-channel MSS decision-level fusion performance.

In general, target identification improves with en-

hanced clutter suppression and fused multi-look perfor-

mance versus a single look ID. However, it is noted that

not every example of MSS clutter cancellation results in

improved individual target identification. An example of

a false alarm increase was seen using the MSS in target

5. Using the DLF, both declaration and correct classifi-

cation were improved. More importantly, with CMDLF,

the false alarms were significantly reduced.
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Fig. 26. Multi-look fusion ROC comparison.

Fig. 27. DPCA and MSS single-look to multi-look performance

metrics.

5. DISCUSSION AND CONCLUSIONS

The capability to collect and process three chan-

nels of radar data from a system configured with three

phased-array antennas oriented in the along-track di-

mension has been demonstrated. The application of

traditionally accepted two-channel clutter suppression

techniques has been extended to true multi-channel data.

The Multi-channel Signal Subspace (MSS) technique

for two channels of data was demonstrated to be a

superior clutter suppression technique to that of the

Displaced Phase Center Antenna (DPCA) method. The

MSS methodology was extended to exploit the addi-

tional information provided by the third channel of the

phased array interrogating the scene.

The MSS technique applied to three channels of

data suppressed the clutter well while preserving the

features of the moving target. The signal-to-noise level

of the three-channel MSS technique is approximately

that of the two-channel MSS results. The availability of

more target features in the range-Doppler image, while

maintaining a good clutter suppression level, makes the

MSS approach beneficial to automatic target recognition

(ATR) applications. A significant ATR performance

improvement is achieved with clutter suppressed data

using the MSS algorithm relative to ATR performance

with DPCA suppressed data.

A major factor not addressed in this paper; how-

ever, is that the processing time for the MSS algorithm

is quite significant, especially when compared to the

DPCA method. The processing times will need to be

drastically reduced for the MSS algorithm to be practi-

cal in a data processing or operational environment. A

potential solution is the parallelization of the time con-

suming block processing steps. This remains an area of

future study.

The Confusion Matrix (CM) Decision-Level Fusion

(DLF) multi-look technique improved target identifica-

tion performance in comparison to the single-look ATR

results. The CM-DLF algorithm performed extremely

well with the MSS clutter suppressed data showing sig-

nificant performance gains over both the single-look re-

sults and the DPCA fused performance. The DLF iden-

tification performance benefited from the target features

preserved by the three-channel MSS clutter cancellation

technique. For ATR applications, improved clutter sup-

pression of HRR radar data greatly increases vehicle

recognition and further enhances the resulting decision

level fusion target identification of moving targets.
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Estimating Network Parameters
for Selecting Community
Detection Algorithms

LETO PEEL

This paper considers the problem of algorithm selection for

community detection. The aim of community detection is to identify

sets of nodes in a network which are more interconnected relative

to their connectivity to the rest of the network. A large number

of algorithms have been developed to tackle this problem, but as

with any machine learning task there is no “one-size-fits-all” and

each algorithm excels in a specific part of the problem space.

This paper examines the performance of algorithms developed

for weighted networks against those using unweighted networks

for different parts of the problem space (parameterised by the

intra/inter community links). It is then demonstrated how the choice

of algorithm (weighted/unweighted) can be made based only on the

observed network.
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1. INTRODUCTION

The study of large scale networks has revealed a

number of properties about the behaviour and topology

of naturally occurring networks. One such property is

the presence of community structures; sets of nodes in a

network which are more interconnected relative to their

connections to the rest of the network. The aim of com-

munity detection is to identify these structures. Com-

munity detection is a problem which has attracted much

interest in recent years [7], [12], [19], [23], [27] and has

consequently produced a wide range of approaches to

the problem; an in-depth review of most contemporary

methods is given in [8].

One of the reasons why the ability to detect commu-

nities is so attractive lies in the phenomenon known as

assortative mixing, where entities in a network are ob-

served to associate preferentially with similar entities.

This suggests that detecting communities may be used

for identifying entities which share common attributes

or purposes. An example of community structures cor-

responding to entity similarity is given in [20] where

community structures in a friendship network corre-

spond to similarities in race and age. The wide range of

complex systems that can naturally be expressed as net-

works (human interaction patterns, metabolic networks,

WWW, and the brain) implies that community detection

has applications spanning domains as diverse as biology

[11], [14], [29], sociology [2], [11], [28], computer sci-

ence [26], [30] and intelligence [1], [10], [16].

The implications of community detection in the in-

telligence domain are that it could be used to identify

groups of people who share common goals or purposes.

To this effect, community detection could potentially be

used to constrain the inference problem when investi-

gating or detecting malicious activities, e.g. rather than

monitoring all people, use community detection as a

pre-processing step to select a subset of people to mon-

itor. In this setting, the network nodes would represent

people and the links would represent interactions or re-

lationships between them; such a network can be con-

structed from a database of phone records, email logs

or other transactional data.

With a large selection of algorithms available to

undertake the task of community detection, choosing

an appropriate algorithm becomes problematic. This is

largely due to the lack of formal or commonly accepted

evaluation procedures. The networks used to evaluate

community detection tend to be a small selection of real

networks and/or networks generated from simple mod-

els, where these networks vary widely between authors.

Recent work to address this has focused on developing

benchmark networks [17] on which comparative anal-

ysis [18] can be drawn to determine the reliability of

different algorithms. However, it is commonly accepted

across the machine learning community that there is

no one-size-fits-all solution and so this work considers

the idea that for different situations, different classes
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of algorithms may outperform other classes of algo-

rithms. The range of community detection algorithms in

itself poses the intelligence analyst with the challenge

of choosing an appropriate solution or combinations of

solution techniques for the specific problem at hand. It is

therefore desirable to be able to provide the intelligence

analyst, who will likely not have expert knowledge of

these algorithms, with appropriate guidance. This paper

considers the problem of automatically selecting com-

munity detection algorithms based on observations of

the community structure.

The algorithm selection problem can be solved in

part by design. For example, consider the class of al-

gorithms involving modularity [22] optimisation. Simu-

lated annealing [15] produces good results, but for large

networks it may be preferable to substitute performance

for speed by using a greedy algorithm such as in [5]. In

this situation the trade off is straight forward, a choice

of speed vs. quality. However, some algorithms address

other limitations for which the trade off is not so clear

cut. For example the modularity function suffers from

a resolution limit [9] meaning that in some networks

several communities become merged into one (e.g. com-

munities consisting of two cliques connected by a single

link). Some algorithms [3], [4] address this issue but it is

not clear what weaknesses (if any) this might introduce.

In cases such as these further investigation is required

to determine the appropriate algorithm. In this work the

class of algorithms which incorporate link weight infor-

mation is examined to determine when these are most

appropriate.

It has been previously observed how structural prop-

erties of communities affect the performance of commu-

nity detection algorithms [18]. These properties cannot

be measured from the network data alone as they require

knowledge of the underlying community assignment.

The main contribution of this work is to demonstrate

how these structural properties can be estimated from

features of the observed network. Therefore a predic-

tion about which algorithm will perform best can be

made. This is achieved by considering algorithms for

weighted networks and algorithms for unweighted net-

works as two separate classes and demonstrating how

the performance of these two classes differs across the

problem space (defined in Section 2). Finally, a Support

Vector Machine (SVM) [6] is used to classify the net-

works according to the algorithm which will perform

best.

The rest of the paper is organised as follows: Sec-

tion 2 defines the problem space by defining the net-

work and community structure types and the target algo-

rithm classes. The performance of the algorithm classes

with respect to the structural parameters is evaluated in

Section 3. Section 4 describes the observable network

parameters and how a mapping can be made from these

to the underlying structural parameters. The results of

using the observable parameters to choose an appropri-

ate class of algorithms are given in Section 5. Conclu-

sions are given in Section 6.

2. PROBLEM SPACE

A network is a structure made up of nodes, rep-

resenting entities, and links or edges, representing re-

lationships or interactions between entities. The total

number of links connected to a node is known as its

degree. The network links may also have weights asso-

ciated with them which may represent the relative im-

portance of the link. For example, in an interaction net-

work representing a phone record database, the nodes

would represent people and the links phone calls. The

link weights could then represent the frequency of calls.

Network links may also be directed, but this will not be

considered in this work.

The premise of community detection is that there

is some underlying assignment of nodes to commu-

nities which has to be discovered. But despite the

large amount of literature on the subject there is still

a lack of agreement on what defines a community be-

yond the intuitive concept that community structures

have more intra-community links than inter-community

links. Without a common definition it is difficult to draw

a comparison between algorithms. However, it may not

be necessary (or even desirable) to define a specific

common definition of community, as definitions may be

dependent on the application. Instead, perhaps all that is

required is a suitably comprehensive parameter set for

describing the space of community types and structures

of interest.

A reasonable starting point is the parameter set

used to generate networks and communities using the

Lancichinetti-Fortunato-Radicchi (LFR) benchmark

generator [17] as not only do these describe a number

of network properties, but by using the generator it is

possible to obtain networks and community assignments

with those properties. This parameter set is described in

Section 2.1.

2.1. Network-Community Parameterisation

The parameter set used to describe the problem

space are the parameters used by the LFR benchmark

which is fully described in [17]. The LFR benchmark

was designed to generate datasets to test community de-

tection algorithms and mimic the observed properties of

large-scale real complex networks [21], such as power-

law degree and community distribution.

The parameters are best described in the context of

the graph generation procedure:

1. N nodes are assigned to communities such that

the community size distribution conforms to a power-

law with minus exponent ¿2.

2. Each node is assigned a degree such that the

degree distribution conforms to a power law with minus

exponent ¿1 and mean degree k.
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3. Links are initially assigned randomly according

to the degree distribution. A topological mixing parame-

ter, ¹t, is set to define the proportion of each node’s links

which link outside its community. Topological consis-

tency with this parameter is achieved through an itera-

tive re-wiring procedure.

4. Each node is then assigned a strength according

to a power-law distribution with minus exponent ¯. The

strength of a node is the weighted analogy of degree and

as such represents the sum of the weights of the links

for a given node.

5. To assign the link weights a similar process to

step 3 is carried out according to the weight mixing

parameter, ¹w.

Networks and their communities can be generated

for a specified set of parameter values using the above

procedure. In addition other constraining parameters

can be specified including the maximum degree (maxk),

and the minimum and maximum sizes of communities

(cmin and cmax respectively). Using these parameters

to describe the problem space has the advantage that

by using the generative procedure outlined above it is

possible to obtain a network for a given set of parameter

values. It is accepted that these may not be a full set

of parameters to comprehensively describe the space

of all possible network-community structures. Even so,

the space is one of high dimensionality and so full

exploration of all the parameters is beyond the scope

of this paper and remains for future work. To constrain

the problem, the values of all parameters were fixed

with the exception of ¹t and ¹w, which from initial tests

were found to have the greatest impact on use of link

weights.

2.2. Algorithm Overview

The algorithm selection problem has been con-

strained to choosing between the class of algorithms

which use link weight information and the class that

does not. In light of this, it was decided to use algo-

rithms suitable for unweighted or weighted networks.

This way a controlled comparison can be drawn be-

tween the performances of the unweighted and weighted

algorithms without being concerned about differences in

algorithms. Two such algorithms are examined:

² Infomap [27]: This algorithm approaches the com-

munity detection problem by identifying a duality

between community detection and information com-

pression. By using random walks to analyse the in-

formation flow through a network it identifies com-

munities as modules through which information flows

quickly and easily. Coding theory is used to compress

the data stream describing the random walks by as-

signing frequently visited nodes a shorter codeword.

This is further optimised by assigning unique code-

words to network modules and reusing short code-

words for network nodes such that node names are

unique given the context of the module. This two

level description of the path allows a more efficient

compression by capitalising on the fact that a random

walker spends more time within a community than

moving between communities.

² COPRA [13]: This is an extension of the label prop-

agation based RAK algorithm [25]. The algorithm

works as follows; to start, all nodes are initialised

with a unique label. These labels are then updated

iteratively, where a node’s new label is assigned ac-

cording to the label used most by its neighbours.

If there is more than one most frequently occur-

ring label amongst the neighbours, then the label is

chosen randomly. At termination of the algorithm,

nodes with the same label are assigned to the same

community. The Community Overlap PRopagation
Algorithm (COPRA) extends the RAK algorithm to

deal with the possibility of overlapping communities

(although this aspect of community detection is not

explored within this work). This is done by augment-

ing the label with a belonging factor such that for

a given node these sum to 1. To prevent all nodes

becoming a member of all communities, a threshold

is set below which the labels are discarded. Due to

the stochastic nature of the algorithm, the algorithm

is run a number of times and the “best” community

assignment is decided according to the one which has

the highest modularity [22]. In the weighted instance

of the algorithm, the weights of the network are in-

corporated by weighting the frequency of the labels

according to the link weight connecting the respective

node.

3. ALGORITHM PERFORMANCE

A number of different metrics are used in the lit-

erature to measure the performance of community de-

tection algorithms, however the Normalised Mutual In-

formation [19] metric is one which has become fairly

standard recently and so will be used here. This metric

provides a measure of similarity between the algorithm

output assignment and the true community assignment,

where a value of 1 denotes a perfect match. Using the

networks described in Section 2.1, experiments were

run to examine the effect of varying the two mixing

parameters ¹t and ¹w, the results of which can be seen

in Fig. 1.

Fig. 1 shows the mutual information scores for the

weighted algorithms (COPRAw, INFOMAPw) and un-

weighted algorithms (COPRAuw, INFOMAPuw) as ¹w
is changed. The plots (a)—(d) show the performance for

different values of ¹t. Each point on the graphs rep-

resents the average mutual information over 100 gen-

erated networks (using the LFR benchmark generator

described in Section 2.1) with the indicated parameter

values. It can be seen that the unweighted algorithms

perform well when ¹t is low and are unaffected by ¹w
for all values ¹t. This is because these algorithms only

ESTIMATING NETWORK PARAMETERS FOR SELECTING COMMUNITY DETECTION ALGORITHMS 121



Fig. 1. Mutual information scores (y-axis) as ¹w (x-axis) changes. Each subplot shows a different fixed value for ¹t. The values of the

other parameters were fixed: N = 100, k = 25, maxk = 50 ¿1 = 2, ¿2 = 1, ¯ = 1:5, cmin = 15, cmax = 50. (a) ¹t = 0:2. (b) ¹t = 0:4.

(c) ¹t = 0:6. (d) ¹t = 0:8.

rely on the topological information. The weighted al-

gorithms on the other hand are affected by both pa-

rameters, but are seen to consistently perform well for

low ¹w. The effect of ¹t is probably best observed in

Fig. 2. Here it can be seen that the weighted algorithms

perform well when ¹t is at least as high as ¹w (in this

case ¹w = 0:3). A similar observation was made in [18]

where it was seen that weighted algorithms performed

better overall at ¹t values of 0.5, in comparison to lower

values. It was explained that the reason for this is that a

low ¹t relative to ¹w means that there is a lower propor-

tion of inter-community links relative to the proportion

of inter-community weights. The effect of this is that

a small number of inter-community links receive high

link weights relative to the intra-community weights,

see Fig. 4.

The effect of this is that there are regions of the prob-

lem space, parameterised by community mixing propor-

tions, in which a weighted algorithm will outperform

an unweighted one and vice versa. This can be seen in

Fig. 2 where the two regions are labelled w (weighted)

and uw (unweighted). This result indicates that a choice

can be made, based on the community structure, as to

the class of community detection algorithms.

In order to take advantage of this information and

select the best class of algorithms for a given network,

some knowledge of the underlying community structure

is required. It may be possible to make some assump-

tion about the communities that are sought after based

on some knowledge of the specific domain. In most

community detection problems however, this informa-

tion about the community structure is unknown.

4. PARAMETER ESTIMATION

In order to use the information from the previous

section, it is required to know the values of the mixing

parameters of the communities. Without knowledge of

the communities (i.e. prior to community detection) it is

not possible to evaluate these parameters. In this section

it will be shown how parameters of the observable
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Fig. 2. Mutual information scores for the weighted (w) and

unweighted (uw) algorithms as ¹t is varied. The value of ¹w is fixed

at 0.3. It is noticeable that the two classes of algorithm perform for

complimentary settings of ¹t.

network can be mapped to these community parameters

and how these values can be used to build a classifier

to determine the class of community detection most

suitable for the given network.

4.1. Observable Parameters

There are a range of metrics associated with de-

scribing network topology: degree distribution, average

diameter, and centrality measures are a few of them.

The problem here is that a parameter is required which

describes the way that the community structures inter-

act, without explicitly knowing the community struc-

tures.

To approach this, the node measure called clustering

coefficient [31] is considered. This is defined as:

C(v)unweighted =

P
i,j2Nv eij

kv(kv ¡ 1)=2
(1)

where the local clustering coefficient, C(v)unweighted, repre-

sents the proportion of the neighbours, Nv, of node v

which are connected (i.e. edge eij = 1 if there is a link

between neighbouring nodes i and j) out of the possi-

ble connections between its neighbours, kv(kv ¡ 1)=2.1
It was found that the mean value of the local cluster-

ing coefficient, taken over all the nodes in the network,

showed a strong correlation with the topological mixing

parameter, ¹t (Fig. 3(a)). This is similar to an obser-

vation in [24] where high clustering coefficients were

observed in Girvan-Newman networks [11] with low ra-

tios of inter- to intra-modular connectivity (a parameter

1If the degree of a node is less than or equal to 1 then the clustering

coefficient is defined as 0.

Fig. 3. Scatter plots of the unweighted (x-axis) and weighted

(y-axis) mean local clustering coefficient for the networks in Fig. 1,

(a) shows the value of the topology mixing parameter, ¹t. Similarly

(b) shows the weight mixing parameter, ¹w.

Fig. 4. An example node with links and weights from a network

with ¹t = 0:2 and ¹w = 0:3. As a result the single inter-community

link (orange) receives a higher weight relative to the

intra-community links.

which bears resemblance to the topological mixing pa-

rameter, ¹t, in the more realistic LFR networks used

here).
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Fig. 5. Clustering coefficients scatter plots (the same networks used in Fig. 1) with colours showing the mutual information score for

(a) unweighted infomap, (b) weighted infomap, (c) unweighted COPRA and (d) weighted COPRA.

This observation suggests that the mean clustering

coefficient could be used to estimate the mixing param-

eter ¹t. If the mean clustering coefficient could be used

to estimate the topological mixing then it follows that a

weighted extension to this may yield information about

the weighted mixing parameter (Equation 2).

C
(v)
weighted =

P
i,j2Nv (wvi+wvj)eijP
i2Nv wvi(kv ¡1)

(2)

where wvi is the weight associated with the link between

nodes v and i. The mean of this value over the network

was found to correlate with ¹w (Fig. 3(b)). The results

in Fig. 3 suggest that the mixing parameters can be es-

timated from observed network characteristics without

knowledge of the community structure.

The reason for this can be explained by considering

the general principle of a community; that nodes within

a community are more likely to be connected compared

to overall probability of connection due to the sparse

nature of the network. Hence, if two neighbours are

within the same community, it is reasonable to expect

them to be connected. However, if neighbours are not in

the same community it is more likely that they are not

connected. Based on this reasoning, the local clustering

coefficient is an estimate of the individual node’s mix-

ing parameter, which averaged over the network yields

a global estimate.

4.2. Algorithm Classification using SVM
The results of the previous section suggest that it

is possible to estimate the mixing parameters of the

communities. Now returning to the reason why it may

be useful to estimate these parameters, i.e. to determine

the class of algorithm, it is suggested that rather than

estimate the mixing parameters and in turn predict

the algorithm class, it may be more useful to use the

clustering coefficients to directly predict the algorithm

class. Fig. 5 shows similar plots as Fig. 4, but with

the colour indicating the performance for the different
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Fig. 6. Algorithm selection pipeline for classification of real

networks. The shaded box indicates a step which requires further

work to define.

algorithms. It can be seen that the weighted algorithms

have a distinctly different performance pattern from the

unweighted ones.

In order to confirm that these observable parameters

can effectively predict the algorithm class, a simple clas-

sifier was built using support vector machines (SVM)

[6] with a Gaussian kernel. To do this, each of the

networks was assigned a class weighted, unweighted,

none based on the class of algorithm which performed

best in terms of its mutual information score. A class

of “none” was assigned to any network where the mu-

tual information score for the best performing algorithm

was below some threshold. The reasoning for this is that

for low performance values the output is not meaning-

ful and therefore the choice of algorithm is irrelevant.

As SVMs are restricted to two classes, three classifiers

were trained (weighted vs. unweighted, weighted vs.

none, unweighted vs. none) and the predicted class ob-

tained by using a voting scheme over the three outputs,

i.e. the predicted class is the most frequent output of

the three classifiers. The results are discussed in Sec-

tion 5.

4.3. Applicability to Other Networks

So far all the networks examined have had the same

network properties except for the mixing parameters. To

investigate if this relationship still holds for networks

with different parameter settings, the experiments were

repeated for: larger networks (N = f1000,5000g), small
and large community sizes (cmin = f15,25g, cmax =
f50,100g), and different average degree (k = f25,35g).

TABLE I

Classifier Confusion Matrix (100 nodes)

Predicted Class

Weighted Unweighted None

True Weighted 160 6 146

Class Unweighted 8 369 18

None 29 51 1213

Fig. 7 shows the clustering coefficient scatter plots

indicating the mixing parameter values of the different

graphs at each of the parameter settings. It can be seen

that as long as the other parameter values are fixed there

is still a correlation between the unweighted clustering

coefficient and topological mixing parameter ¹t and

between the weighted clustering coefficient and weight

mixing parameter ¹w. It can also be seen from the

scatter plots that these relationships are more or less

the same for most of the different parameter settings.

The main differences occur when the community size

changes relative to the number of nodes in the network,

i.e. as the ratio of community size to network size

increases the points on the scatter plots become more

compressed.

In order to apply the algorithm classification method

presented in this paper to real networks, a classifier

could be trained on a set of artificial networks which

resemble the real network. This process is outlined in

Fig. 6. There are a number of limitations with this

method. First, the step which estimates the community

size range (indicated by the shaded box) is currently un-

defined and requires further investigation to identify a

method for estimating this range prior to detecting com-

munities. Second, the process relies on the assumption

that the artificial networks used for training are repre-

sentative of the real network.

5. RESULTS

A SVM with a Gaussian kernel was trained on 8000

100 node networks (described in Section 3) taking the

unweighted and weighted mean clustering coefficients

as inputs. The “none” class was defined as networks

for which the maximum mutual information score was

below 0.6. The output classes for the test set (2000

networks) are displayed in Fig. 9. This can be compared

to the true class labels in Fig. 8. The overall performance

on the test set was 87.1%. A confusion matrix of the test

set performance is shown in Table I.

To confirm these results, Fig. 10 shows the mean

performance, according to mutual information, when

selecting the algorithm class using this classifier. This is

compared against the performance of the best weighted

algorithm and the best unweighted algorithm.

Table II shows the confusion matrix for the same

experiment run on all the networks described in Sec-

tion 4.3 where the number of nodes in the network

equals 1000 (11966 training networks, 17955 test net-
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Fig. 7. Scatter plots of the unweighted (x-axis) and weighted (y-axis) mean local clustering coefficient for networks with different

parameter settings, the left column shows the value of the topology mixing parameter, ¹t. Similarly the right column shows the weight

mixing parameter, ¹w. (a) N = 1000, k = 25, cmin = 15, cmax = 50 (topology mixing parameter, ¹t). (b) N = 1000, k = 25, cmin = 15,

cmax = 50 (weight mixing parameter, ¹w). (c) N = 5000, k = 25, cmin = 15, cmax = 50 (topology mixing parameter, ¹t). (d) N = 5000,

k = 25, cmin = 15, cmax = 50 (weight mixing parameter, ¹w). (e) N = 1000, k = 25, cmin = 25, cmax = 100 (topology mixing

parameter, ¹t). (f) N = 1000, k = 25, cmin = 25, cmax = 100 (weight mixing parameter, ¹w). (g) N = 1000, k = 35, cmin = 15, cmax = 50

(topology mixing parameter, ¹t). (h) N = 1000, k = 35, cmin = 15, cmax = 50 (weight mixing parameter, ¹w). (i) All networks where

N = 1000 (topology mixing parameter, ¹t). (j) All networks where N = 1000 (weight mixing parameter, ¹w).
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Fig. 8. The true classification of the 100 node networks in the

test set.

Fig. 10. Mutual information scores on 100 node networks for when algorithm class is selected by the classifier compared to the individual

algorithm classes. Each graph shows the performance (y-axis) as ¹t (x-axis) is varied for different ¹w values. (a) ¹w = 0:1. (b) ¹w = 0:3.

(c) ¹w = 0:5. (d) ¹w = 0:7.

Fig. 9. The predicted classification of the 100 node networks in the

test set using a SVM classifier.
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Fig. 11. Mutual information scores on all networks of 1000 nodes for when algorithm class is selected by the classifier compared to the

individual algorithm classes. Each graph shows the performance (y-axis) as ¹t (x-axis) is varied for different ¹w values. (a) ¹w = 0:1.

(b) ¹w = 0:3. (c) ¹w = 0:5. (d) ¹w = 0:7.

TABLE II

Classifier Confusion Matrix (1000 nodes)

Predicted Class

Weighted Unweighted None

True Weighted 7650 477 467

Class Unweighted 85 5237 0

None 320 17 3702

works). Similarly, Fig. 11 shows the mean performance

when selecting the algorithm class using this classifier.

From these graphs it can be seen that the classifier is

able to select an appropriate class of algorithm such that

it can achieve near optimum performance, constrained

by the algorithms considered.

From these results it can be seen that even with a

simple classifier it is possible to obtain accurate predic-

tions for the best class of community detection algo-

rithm based on properties of the network alone.

6. CONCLUSION
To the best of the author’s knowledge, no previ-

ous work has explored the problem of choosing an

appropriate community detection algorithm based on

the underlying structural properties. This work has pre-

sented community detection algorithms as examples of

two classes of algorithm: weighted or unweighted. It

is demonstrated that for different types of network and

community structure, the class of algorithm has an ef-

fect on the performance. It has been shown that for some

weighted networks, unweighted algorithms can produce

better results than their weighted counterparts. Further-

more it has been shown that it is possible to choose

the algorithm class based only on the observed network

parameters without prior knowledge of the community

structure or assignment.

The algorithm selection demonstrated in this work

relies on the training networks (and their communities)

to share similar properties as the test network(s). In par-

ticular the community size in relation to the size of the
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network is shown to have an effect on the relationship

between the observable clustering coefficients and the

underlying mixing parameters. It is left to future work

to identify a means to determine this ratio of community

to network sizes.

In addition, the algorithm selection in this work

is constrained in terms of the classes of algorithms

considered. Future work will reduce these constraints

by considering a more comprehensive set of algorithms

and classes.
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[14] R. Guimerà and L. A. Nunes Amaral

Functional cartography of complex metabolic networks.

Nature, 433, 7028 (Feb. 2005), 895—900.
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Heterogeneous Track-to-Track
Fusion
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Track-to-track fusion using estimates from multiple sensors can

achieve better estimation performance than single sensor track-

ing. If the local sensors use different system models in different

state spaces, the problem of heterogeneous track-to-track fusion

arises. Compared with homogeneous track-to-track fusion that as-

sumes the same system model for different sensors, the heteroge-

neous case poses two major challenges. The first one is that we

have to fuse estimates from different state spaces (related by a cer-

tain nonlinear transformation). The second is the estimation errors’

dependence problem, which is generally recognized as the “com-

mon process noise effect.” Different heterogeneous track-to-track

fusion approaches, namely, the linear minimum mean square er-

ror approach and the maximum likelihood approach, are presented

and compared with the corresponding centralized measurement

tracker/fuser (also known as measurement-to-track fuser).
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1. INTRODUCTION
In a multisensor tracking system, the best target state

estimation performance is obtained by a centralized

tracker/fuser (CTF), by directly sending to the fusion

center (FC) all the measurements of the local sensors.1

However, in many practical situations, because of com-

munication constraints, each local sensor has its own

information processing system and sends only tracks to

the FC, which appropriately fuses tracks from different

local sensors to achieve comparable estimation perfor-

mance to that of the CTF [3].

For track-to-track fusion (T2TF) from homogeneous

local trackers (which use the same target state space),

the “common process noise effect” (quantified by the

crosscovariance matrix) has been theoretically well-

established [3]. However, there is no known way for

the calculation of the crosscovariance matrix in the

case of heterogeneous local trackers (which use the

different target state spaces). The difficulty to evaluate

the crosscovariance matrix in the heterogeneous case

is that it requires to capture the “common” part of

process noises from different state spaces to quantify

the crosscorrelation.

In the literature there are few works dealing with

the model heterogeneity. A heterogeneous T2TF fusion

approach was presented in [6] to fuse the tracks from

an active sensor and a passive sensor with different state

vectors. However, the fusion was done by using the full

Cartesian state estimates (from an active sensor) to up-

date the smaller angular state estimates (from a pas-

sive sensor). An expression for the steady state cross-

covariance matrix for dissimilar sensors (of the same

state vector but with different measurement noise vari-

ances) employing ®-¯ filters was derived in [9]. For this

specified case, a condition to guarantee the positivity of

crosscovariance matrix was presented, which does not

always hold in the heterogeneous case.

The goal of this paper is to fuse the tracks from het-

erogeneous local sensors (an active and a passive one)

with different state spaces to yield fused estimates in the

full state space and evaluate the performance of the re-

sulting heterogeneous T2TF. The fusion configuration

considered is the one without memory at the FC and

no feedback to the local sensors (T2TFwoMnf in the

terminology of [10]).

In view of the fact that there is no known way to

evaluate the crosscovariance of the estimation errors in

the case of heterogeneous sensors, a Monte Carlo (MC)

investigation of these errors’ crosscorrelations is carried

out.

The paper is organized as follows. Section 2 for-

mulates the heterogenous T2TF problem. Two ap-

proaches, namely, the linear minimum mean square er-

ror (LMMSE) and maximum likelihood (ML) hetero-

geneous T2TF are presented in Section 3. The cross-

1The superiority of CTF over other configurations can be proved only

for the linear case [3].
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correlation analysis by MC simulations is presented in

Section 4. Section 5 evaluates the proposed approaches

in a tracking scenario with an active sensor and a passive

sensor. Section 6 provides conclusions.

2. THE HETEROGENOUS TRACK-TO-TRACK FUSION
PROBLEM

Without loss of generality, consider the following

state-space models

xi(k+1) = fi(xi(k))+ vi(k) (1)

zi(k) = hi(xi(k)) +wi(k) (2)

at sensor i and

xj(k+1) = fj(xj(k)) + vj(k) (3)

zj(k) = hj(xj(k))+wj(k) (4)

at sensor j. In the above, fs[¢] and hs[¢], s= i,j, are
different and can be nonlinear; vs(¢) and ws(¢), s= i,j,
are the process and measurement noises, respectively.

Further, note that xi and xj are in different state
spaces. Let xi be the larger dimension state (e.g.,

full Cartesian position and velocity in two-dimensional

space for tracking with an active sensor)

xi = [x _x y _y]0 (5)

and xj be the smaller dimension state (e.g., angular
position and velocity for tracking with a passive sensor)

xj = [μ _μ]0: (6)

These state vectors have the nonlinear relationship

xj
¢
=g(xi): (7)

The two sensors are assumed synchronized2 and the

time index k for sampling time tk will be omitted if

there is no ambiguity.

The corresponding estimates (approximate condi-

tional means) at these heterogeneous local sensors are

x̂i with (conditional) covariance matrix

Pi
¢
=E[(xi¡ x̂i)(xi¡ x̂i)0] (8)

and x̂j with (conditional) covariance matrix

Pj
¢
=E[(xj ¡ x̂j)(xj ¡ x̂j)0]: (9)

The problem is how to carry out the fusion of the

estimate x̂i with Pi and the estimate x̂j with Pj to achieve
a better estimation performance for the full state of

interest xi.

2Generalization to asynchronous sensors is possible [11], but the nota-

tions become very cumbersome. Without considering the crosscovari-

ance matrix, the extension to asynchronous case is straightforward. If

the crosscovariance matrix is considered (for the configuration with

no memory at the FC and no information feedback to the local track-

ers), each track’s latest estimate available at the FC is predicted to the

fusion time and then they are fused using the corresponding covari-

ance matrices.

3. THE HETEROGENOUS TRACK-TO-TRACK FUSION
To illustrate the effect of the crosscovariance, con-

sider the simple homogeneous T2TF in the linear-

Gaussian and symmetric case with the local track co-

variance matrices P1S = P
2
S = PS and the crosscovariance

matrices P12S = P21S = PXS . The resulting fused estimate

and its covariance matrix are [3]

x̂FS =
1
2
(x̂1S + x̂

2
S) (10)

PFS = P
1
S ¡ (P2S ¡P12S )(P1S +P2S ¡P12S ¡P21S )(P1S ¡P21S )

(11)

= 1
2
PS +

1
2
PXS : (12)

In this case, the fused estimate x̂FS in (10) is independent
of the crosscovariance because of the assumed sym-

metry. However, the corresponding covariance PFS in

(11) has a term that depends on the crosscovariance.

If PXS > 0, the fusion is optimistic if one ignores the

crosscovariance (in which case the fuser calculated co-

variance is 1
2
PS , i.e., smaller than what it should be); if

PXS < 0, the fusion is pessimistic.

The crosscovariance for homogeneous fusion fol-

lows from a Lyapunov equation [3] and, consequently,

it is always positive semi-definite. In the heterogeneous

case while there is no known way to compute the cross-

covariance matrix, shown in Appendix C using MC sim-

ulations, some of the crosscorrelations are positive and

some are negative. They depend on the relative geom-

etry of the two sensors and the target, as well as the

target maneuvers. To further complicate the situation,

the maneuvers are unknown deterministic, rather than

(zero-mean white) process noise and the crosscovari-

ance based on the process noise can be substantially

different from what the maneuver causes.

The following subsections present two fusers that

assume the crosscovariance is available.

3.1. The LMMSE Fuser
The first approach to heterogeneous T2TF is to use

the linear technique based on the fundamental equations

of LMMSE estimation [2]. Considering the full state es-

timate x̂i as the prediction and the smaller state estimate
x̂j as the measurement, we have the LMMSE fused es-
timate

x̂iLMMSE = x̂
i+PxzP

¡1
zz [x̂

j ¡ g(x̂i)] (13)

with the corresponding fused covariance matrix

PiLMMSE = P
i¡PxzP¡1zz P

0
xz (14)

where (as the details shown in Appendix A)

Pxz
¢
=E[(xi¡ x̂i)(x̂j ¡g(x̂i))0]

¼ Pi(Gi)0 ¡Pij (15)

Pzz
¢
=E[(x̂j ¡g(x̂i))(x̂j ¡ g(x̂i))0]

¼ Pj ¡GiPij ¡Pji(Gi)0+GiPi(Gi)0 (16)
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with Gi the Jacobian of g(xi)

Gi
¢
=[rxi g(xi)0]0xi=x̂i (17)

and Pij the crosscovariance matrix

Pij
¢
=E[(xi¡ x̂i)(xj ¡ x̂j)0]: (18)

3.2. The ML Fuser

Under the Gaussian assumption, the heterogeneous

T2TF problem can be solved by minimizing the negative

log-likelihood function3

L=¡ lnp(x̂i, x̂j jxi)

/
μ·
x̂i

x̂j

¸
¡
·
xi

xj

¸¶0
P¡1
μ·
x̂i

x̂j

¸
¡
·
xi

xj

¸¶
(19)

where (7) has been used and

P =

·
Pi Pij

Pji Pj

¸
: (20)

Then the ML fused estimate is the solution of

rxiL= 0: (21)

Because of the nonlinearity of the function g(xi),
there is no explicit expression for the solution of (21).

It can be solved by a numerical search, e.g., the gradient

projection algorithm. The result is denoted as x̂iML and
the corresponding covariance matrix is

PiML =

μ
[I Gi]P¡1

·
I

Gi

¸¶¡1
(22)

where Gi is defined in (17) and I is the identity matrix

(4£ 4 in our case).
The results of x̂iLMMSE with P

i
LMMSE and x̂

i
ML with P

i
ML

will be examined and compared with the CTF which

processes all the measurements (from both the active

and the passive sensor) in the FC in the simulation

section.

4. THE CROSSCORRELATION IN HETEROGENEOUS
FUSION

It has been recognized that, although different local

sensors typically have independent measurement noises,

the process noises for the motion models at these sen-

sors belong to the same target and, consequently, will

lead to (cross)correlated state estimation errors. This is

the so-called “common process noise effect” [3]. For

the heterogenous case, the common process noise ef-

fect, as it is embedded into the estimates from dif-

ferent sensors for the same target, also exists. How-

ever, since the estimates are in different state spaces,

there is no known way to capture the “common” part

exactly.

3As it is pointed out in [4], the LMMSE T2TF approach is, in the

linear Gaussian case, optimal in ML sense.

The dependence of the estimation errors can be

quantified by the crosscovariance matrix, and the more

accurately the crosscovariance matrix is obtained, the

better the heterogeneous track-to-track fusion perfor-

mance will be. However, the difference between the

motion models for different sensors prohibits the evalu-

ation of the crosscovariance matrix by the exact method

described in [3] (limited to the homogeneous case

and linear systems). Even this exact method is not

considered practical since it requires information that

is typically not available at the FC (the local filter

gains).

While process noise is used in the motion equations

to model the target maneuvers,4 these maneuvers are,

however, not stochastic processes. Consequently, MC

simulations will be used to evaluate the crosscorrela-

tion of the estimation errors from different sensors. As

shown in Appendix C, considering the estimates from

different local sensors in each MC run as one sam-

ple and evaluating the sample crosscorrelation coeffi-

cients, we observe both negative and positive cross-

correlations of the estimation errors from the hetero-

geneous local sensors in different parts of the target

trajectory.

The fact that these crosscorrelations can be, unlike

in the linear homogeneous case (when they are always

positive), sometimes positive and sometimes negative is

shown as follows. According to (14), the information

matrix (assuming Pij is available) is

J = (PF)¡1

= [Pi¡ [Pi(Gi)0 ¡Pij][Pj ¡GiPij ¡Pji(Gi)0+GiPi(Gi)0]¡1

£ [Pi(Gi)0 ¡Pij]0]¡1
¢
=[Pi¡ [Pi(Gi)0 ¡Pij][Pj +GiPi(Gi)0+U]¡1

£ [Pi(Gi)0 ¡Pij]0]¡1 (23)

where

U
¢
=¡GiPij ¡Pji(Gi)0: (24)

Assuming Pij = 0 (its elements are all zero), desig-

nated as the “uncorrelated” assumption (denoted con-

cisely as “uncorr”), then (23) can be simplified (by the

matrix inversion lemma) as

J(Pij = 0) = [Pi¡Pi(Gi)0[Pj +GiPi(Gi)0]¡1Gi(Pi)0]¡1

= (Pi)¡1¡ [(Pi)¡1Pi(Gi)0]
£ [Gi(Pi)0(Pi)¡1Pi(Gi)0 ¡Pj ¡GiPi(Gi)0]¡1

£ [(Pi)¡1Pi(Gi)0]0

= (Pi)¡1 + (Gi)0(Pj)¡1Gi: (25)

4The whiteness is necessary so the state is a Markov process, a sine

qua non prerequisite for any recursive estimation algorithm [2].
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If Pij 6= 0 (this is denoted as “corr” for conciseness),
then we have

J(Pij 6= 0) = (Pi)¡1¡ [(Gi)0 ¡ (Pi)¡1Pij]
¢ [[Pi(Gi)0 ¡Pij]0(Pi)¡1[Pi(Gi)0 ¡Pij]
¡ [Pj +GiPi(Gi)0+U]]¡1

¢ [(Gi)0 ¡ (Pi)¡1Pij]0

¢
=(Pi)¡1 + [(Gi)0 ¡ (Pi)¡1Pij]

¢ [Pj +W]¡1[(Gi)0 ¡ (Pi)¡1Pij]0 (26)

where

W
¢
=[GiPi(Gi)0+U]¡ [Pi(Gi)0 ¡Pij]0(Pi)¡1[Pi(Gi)0 ¡Pij]

=¡Pji(Pi)¡1Pij : (27)

Equation (26) can be written as (the generic matrix

inversion lemma is used)

J(Pij 6= 0) = (Pi)¡1 + [(Gi)0 ¡ (Pi)¡1Pij]
¢ [(Pj)¡1¡ (Pj)¡1W(Pj)¡1[I+W(Pj)¡1]¡1]
¢ [(Gi)0 ¡ (Pi)¡1Pij]0

¢
=(Pi)¡1 + [(Gi)0 ¡ (Pi)¡1Pij][(Pj)¡1¡K]

¢ [(Gi)0 ¡ (Pi)¡1Pij]0

¢
=(Pi)¡1 + (Gi)0(Pj)¡1Gi¡Kc
= J(Pij = 0)¡Kc (28)

where I is the identity matrix and

K
¢
=(Pj)¡1W(Pj)¡1[I+W(Pj)¡1]¡1 (29)

Kc
¢
=[(Gi)0 ¡ (Pi)¡1Pij]K[(Gi)0 ¡ (Pi)¡1Pij]0

+(Pi)¡1Pij(Pj)¡1Gi+[(Pi)¡1Pij(Pj)¡1(Gi)]0

¡ [(Pi)¡1Pij](Pj)¡1[(Pi)¡1Pij]0: (30)

Setting Pij = 0 and Pij 6= 0 for the estimation from
the heterogenous local sensors correspond to “uncorr”

and “corr” assumptions, respectively. For the homoge-

neous case, the crosscovariance matrix is always posi-

tive; this follows from the Lyapunov equation (9.3.2—3)

in [3]. However, in the heterogeneous (and nonlinear)

case, Kc may be indefinite (some eigenvalues are posi-

tive and some negative). Therefore, accounting for it (as

opposed to assuming it zero) yields the exact (optimal)

variance larger in some state components and smaller

in others.

The results using a simple functional model of

the crosscorrelation of the estimation errors (x̃i and
x̃j), based on the polar-to-Cartesian transformation, are
shown in Appendix D and they do not provide any per-

ceivable benefits. As discussed above, for the linear-

Gaussian and symmetric case, neglecting the common

process noise makes the fusion optimistic. For the non-

linear case examined, neglecting it makes the fusion

sometimes optimistic and sometimes pessimistic, but the

effect is small. This supports the approach of ignoring

the dependency between the tracks from different lo-

cal sensors.5 Thus, since the maneuvers are unknown

and scenario dependent, we pursue the heterogeneous

T2TF without considering the crosscorrelation between

the estimation errors.

5. SIMULATION RESULTS

A typical two-dimensional scenario for heteroge-

nous T2TF is with an active sensor located at (xa,ya),

with measurements of target range and azimuth angle

r =

q
(x¡ xa)2 + (y¡ ya)2 +wr (31)

μa = tan
¡1
μ
y¡ ya
x¡ xa

¶
+wa (32)

and a passive sensor located at (xp,yp), with the azimuth

angle measurements

μp = tan
¡1
Ã
y¡ yp
x¡ xp

!
+wp (33)

where wr, wa and wp are mutually independent zero

mean white Gaussian noises with standard deviations

(SD) ¾r, ¾a and ¾p, respectively.

The ground truth is a target moving with a constant

speed of 250 m/s with initial state in Cartesian coordi-

nates (with position in m)

xi(0) = [x(0) _x(0) y(0) _y(0)]0

= [0 0 20000 250]0: (34)

At t = 100 s it starts a left turn of 2±/s (about 30 mrad/s)
for 30 s, then continues straight until t= 200 s, at which

time it turns right with 1±/s for 45 s, then left with 1±/s
for 90 s, then right with 1±/s for 45 s, then continues
straight until 50 s.

The measurements of the active sensor located at

(¡6 ¢ 104,2 ¢ 104) m are made every Ta = 5 s, starting

from k = 0 with measurement noise SD as ¾r = 20 m

and ¾a = 5 mrad. An unbiased measurement conver-

sion from polar coordinates to Cartesian coordinates

(denoted as zi with wi for polar coordinates and zic
with wic for Cartesian coordinates, respectively) is done
for the active sensor measurements for filtering [2].

The measurements of the passive sensor located at

(¡5 ¢ 104,4 ¢ 104) m are made every Tp = 1 s, starting

from k = 0 with measurement noise ¾p = 1 mrad. This

scenario is shown in Fig. 1.

The active sensor uses an interacting multiple model

(IMM) estimator using continuous time white noise

5We are grateful for the anonymous reviewer who summarized so

well our findings.
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Fig. 1. The scenario.

acceleration (CWNA) model [2]. The passive sensor

uses, for reasons shown in Appendix E, a linear Kalman

filter (KF) using a continuous time Wiener process

acceleration (CWPA) model [2].

5.1. The Active Sensor IMM Estimator Design

For the active sensor IMM, in order to cover the

uniform motion segments and maneuvering segments

in the trajectory, two modes are used: one mode using

a linear nearly constant velocity (NCV) model that

includes 4 state components (the Cartesian position

and velocity in X- and Y-coordinates) and the other

mode using a nearly coordinated turn (NCT) model

that includes that 5 state components (the Cartesian

position and velocity in X- and Y-coordinates and the

turn rate −)

xia(k)
¢
=[x(k) _x(k) y(k) _y(k) −(k)]0

= [xi(k)0 −(k)]0: (35)

Since the conventional mixing [2] in an IMM es-

timator with modes that have unequal dimension state

vectors will lead to bias in the estimates of the non-

common state component(s), the unbiased mixing ap-

proach described in [13] is used to overcome this bias

problem (for the turn rate in this case).

The NCV model for uniform motion segment is

implemented as the following discretized CWNA model

[2] (with low-level process noise)

xi(k+1) = Fi(k)xi(k) + vi(k) (36)

zic(k) =H
i(k)xi(k) +wic(k) (37)

where, with Ta is the sampling interval of the active

sensor,6

Fi =

26664
1 Ta 0 0

0 1 0 0

0 0 1 Ta

0 0 0 1

37775 (38)

Hi =

·
1 0 0 0

0 0 1 0

¸
(39)

and the covariance matrix of the process noise vi(k) is

Qi(k)
¢
=E[vi(k)vi(k)0]

=

26666666664

264
T3a
3

T2a
2

T2a
2

Ta

375qa 02£2

02£2

264
T3a
3

T2a
2

T2a
2

Ta

375qa

37777777775
(40)

where the continuous time process noise “intensities”

qa is the power spectral density (PSD). Note that the

process noise induced root mean square (RMS) change

in the velocity over a sampling interval Ta is

da
¢
=

p
qaTa
Ta

(41)

whose physical dimensions is linear acceleration [12].

6Different sampling rates may be possible and Ta is replaced by the

time-variant Ta(k)
¢
= t(k+1)¡ t(k).
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The NCT model, commonly refers to a target ma-

neuver executed under nearly constant speed along a

nearly circular path, is implemented as the following

discretized continuous-time coordinated turn dynamic

model [8]

xia(k+1) = f
i
a [x

i
a(k)]+ v

i
a[x

i
a(k)] (42)

zic(k) =H
i
ax
i
a(k)+w

i
c(k) (43)

where

fia [x
i
a(k)] =

26666664

x(k) +Ta _x(k)¡T2a −(k) _y(k)=2
_x(k)¡Ta−(k) _y(k)¡T2a −(k)2 _x(k)=2
y(k) +Ta _y(k) +T

2
a −(k) _x(k)=2

_y(k)+Ta−(k) _x(k)¡T2a −(k)2 _y(k)=2
−(k)

37777775
(44)

Hi
a =

·
1 0 0 0 0

0 0 1 0 0

¸
(45)

and the process noise for the NCT model depends

on current target state (target velocity components and

turn rate). The covariance matrix of the target state-

dependent process noise via[x
i
a(k)] can be roughly shown

as (the detailed form can be found in Appendix B)7

Qia[x
i
a(k)]

¢
=Efvia[xia(k)]via[xia(k)]0g=

26666666664

T3a
3

_x(k)2

_x(k)2 + _y(k)2
qa £ £ £ £

£ £ £ £ £
£ £ T3a

3

_y(k)2

_x(k)2 + _y(k)2
qa £ £

£ £ £ £ £
£ £ £ £ Tq−

37777777775
(46)

where the continuous time process noise “intensities”

qa and q− are the PSDs.

Note that the process noise induced RMS change

over a sampling interval Ta in the velocity is as in (41)

and in the turn rate is

d−
¢
=

p
q−Ta
Ta

(47)

whose physical dimensions is turn acceleration [12].

The da and d− are the design values used to select the

process noise PSDs. A guideline for the choice of these

process noise intensities for the NCT model is shown

in Appendix B.

As the NCT model described in (42) is nonlinear,

extended KF (EKF) has been used as the mode-matched

7This “target state-dependent” process noise covariance matrix from

[8] yielded superior RMSE performance (but no major change in the

consistency) compared with the simplified covariance matrix from [2],

Sec. 11.7.

TABLE I

The RMS Change Rate Due to Process Noise

da (m/s
2) d− (mrad/s

2)

Mode 1 (NCV) 0.2 N/A

Mode 2 (NCT) 1 2

filter for the NCT model in active sensor IMM. We only

use the estimate x̂i(k) (from x̂ia(k)) and the correspond-
ing covariance matrix Pi(k) for the fusion.

For the active sensor IMM estimator with unbiased

converted measurements (in Cartesian coordinates), the

process noises design values are summarized in Table I

and the corresponding transition probability matrix is

(based on the mean sojourn time [2])

¼CT =

·
0:9 0:1

0:1 0:9

¸
(48)

with initial mode probability vector [0:9,0:1].

5.2 The Passive Sensor KF Estimator Design

For the passive sensor, as pointed out in Appendix

C, the target maneuvering index is very small and the

target maneuvers are nearly unobservable by the passive

sensor. Consequently, a single model filter (i.e., a linear

KF) has been chosen as the local estimator, with the

state vector

xjp
¢
=[μ _μ μ̈]0 = [xj(k)0 μ̈]0: (49)

The discretized CWPA model [2] in the angle, angle

rate and angle acceleration space is

xjp(k+1) = F
j
p x

j
p(k)+ v

j
p(k) (50)

zjp(k) =H
j
px
j
p(k) +w

j
p(k) (51)

where, with Tp the sampling interval of the passive

sensor, we have

Fjp =

26664
1 Tp

T2p

2

0 1 Tp

0 0 1

37775 (52)

Hj
p = [1 0 0] (53)
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Fig. 2. The maneuvering mode probability (NCT) in the active sensor IMM and CTF IMM.

and the covariance matrix of the process noise is

Qjp(k)
¢
=E[vjp(k)v

j
p(k)

0] =

266666664

T5p

20

T4p

8

T3p

6

T4p

8

T3p

3

T2p

2

T3p

6

T2p

2
Tp

377777775
qp:

(54)

Note that for the PSD qp, the process noise induced

RMS change in the angular acceleration over Tp is

dp
¢
=

p
qpTp

Tp
(55)

whose physical dimension is angular jerk (derivative of

acceleration).

The process noise design value chosen for the pas-

sive sensor is dp = 0:04 (mrad/s
3). We only use the es-

timate x̂j(k) (from x̂jp(k)) and the corresponding covari-
ance matrix Pj(k) for the fusion.

5.3. The Heterogeneous T2TF

The LMMSE and ML heterogeneous T2TF are car-

ried out at the FC every Tf = 5 s under the “uncorr”

assumption, with the local estimates x̂i(k) (from x̂ia(k))
and x̂j(k) (from x̂jp(k)) and their corresponding covari-
ance matrices Pi(k) and Pj(k). The CTF uses the same

IMM design (CTF IMM for short) as the active sen-

sor IMM estimator. The FC can run the fusion at an

arbitrarily low rate or “on demand.”

1) The LMMSE Fuser: In Figs. 3 and 4, the root

mean square errors (RMSE) for the LMMSE fuser (with

Tf = 5 s under the “uncorr” assumption) are compared

with those for the active sensor’s IMM estimator and

the CTF IMM in position and velocity, respectively.

It can be seen that the LMMSE heterogeneous T2TF

approach always provides significantly better estimation

performance than the single (active) sensor case.

The LMMSE heterogeneous T2TF provides larger

RMSE than the CTF IMM in the non-maneuvering

intervals but smaller RMSE if there is a maneuver. This

degradation of the CTF in both position and velocity

during the maneuvering intervals is because the CTF

is using an IMM estimator, which is inappropriate for

the passive sensor (due to the very small maneuver

index). While using the IMM estimator is generally

beneficial for maneuvering targets, the use of an IMM

estimator with a sensor that cannot “see” the maneuvers

can lead to performance degradation (the CTF IMM’s

performance at some fusion points is even worse than

the active sensor IMM’s). As shown in Appendix E, the

maneuvering index from the passive sensor’s view is so

small that when the passive sensor measurements (with

higher sampling rate than those of the active sensor) are

sent to FC and processed centrally, these measurements

increase the uncertainty about the target maneuvers.

From the maneuvering mode probability (NCT) in

the active sensor IMM and in the CTF IMM, shown in

Fig. 2, it can be seen that the CTF IMM cannot “see”

the maneuvers at the times when there is only a passive

sensor measurement and its maneuvering mode proba-

bility becomes too small. The use of the passive mea-

surements in the CTF IMM “clouds” the maneuvers–it

is preferable to have an active sensor IMM (which does

detect the maneuvers) and a passive sensor KF (since

the passive sensor is almost “blind” to the maneuvers)

and fuse the outputs of these two local trackers.
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Fig. 3. The position RMSE for LMMSE fuser.

Fig. 4. The velocity RMSE for LMMSE fuser.

The observation from Figs. 3 and 4 that the CTF

IMM performs during target maneuvers worse than the

heterogeneous T2TF points out that the heterogeneous

T2TF benefits from the freedom of having more suitable

filters for the individual local sensors. This freedom can

provide final fusion results comparable or even better

than the corresponding CTF estimator.

We evaluate the fusion consistency of the LMMSE

fuser by the normalized estimation error square (NEES)

consistency test [2]. The NEES for the LMMSE fu-

sion approach are shown in Fig. 5. The reason for

the inconsistency of the fused estimates are (i) the

local IMM estimator (for the active sensor) and the

KF estimator (for the passive sensor) are not entirely
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Fig. 5. The NEES for LMMSE fuser.

consistent8 (as shown in Appendix F) and (ii) the cross-

covariance has been assumed zero. Nevertheless, the

quality of the estimates is improved by fusion, which

justifies the approach. At this point, there is no known

way to improve the sometimes optimistic, sometimes

pessimistic behavior of the IMM–it is the inconsistency

that drives its adaptation.

2) The ML Fuser: Using a numerical search (the

gradient projection algorithm), the RMSE in position

and velocity for the ML fuser are shown (with Tf = 5 s

under the “uncorr” assumption) in Fig. 6 and Fig. 7,

respectively. It can be seen that both the LMMSE fuser

and the ML fuser give practically the same RMSE in

position and velocity and both have better performances

than the single (active) sensor case. As pointed out in

[4], the LMMSE fuser is, in the linear-Gaussian case,

actually optimal in the ML sense. Since the ML fuser

in the heterogenous case (with nonlinearity) needs to

be implemented by a time-consuming numerical search,

the LMMSE fuser can be considered as an efficient and

effective alternative for the ML fuser.

6. CONCLUSIONS

Examining the differences between the heteroge-

neous and homogeneous T2TF, this paper investigates

the major difficulties of heterogenous T2TF. The

8The IMM estimator is the worst estimator in terms of consistency

except for all the other estimators [3]. However, it is the “short term”

inconsistency that is the key for the capability of the IMM estimator to

adapt itself to the observed behavior of the target (large innovations).

LMMSE and the ML approaches for heterogenous

T2TF are presented and compared with the correspond-

ing CTF. The simulation study shows that both ap-

proaches can effectively achieve improved performance

over the single sensor track quality and comparable per-

formance to the CTF track. The use of the passive mea-

surements in the CTF IMM “clouds” the maneuvers–it

is preferable to have an active sensor IMM (which does

detect the maneuvers) and a passive sensor KF (since

the passive sensor is almost “blind” to the maneuvers)

and fuse the outputs of these two local trackers. The

freedom available to each local sensor to flexibly de-

sign a more suitable local estimator allows the hetero-

geneous T2TF approach to achieve a better estimation

performance than the CTF IMM in the scenario con-

sidered. As the LMMSE T2TF has practically the same

performance as the ML T2TF, it can be considered as

an effective and efficient alternative for the numerical

search required by the ML approach. The estimation

errors’ crosscorrelation has been examined by MC sim-

ulations. As it is impossible to predict maneuvers in a

trajectory and there is no known way to correctly quan-

tify the crosscorrelation of the estimation errors from

heterogeneous local sensors, the heterogeneous T2TF

was carried out assuming the tracks from the heteroge-

neous local sensors as uncorrelated.

APPENDIX A. TAYLOR SERIES APPROXIMATION FOR
THE LMMSE FUSER

By the first order Taylor expansion, we have

g(xi)¼ g(x̂i)+Gi(xi¡ x̂i) (56)
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Fig. 6. The position RMSE for ML fuser.

Fig. 7. The velocity RMSE for ML fuser.

where Gi is the Jacobian of g(xi) evaluated at x̂i, as
defined in (17). Then (with the knowledge that xj =
g(xi))

x̂j ¡ g(x̂i) = x̂j ¡g(xi) +Gi(xi¡ x̂i)

=Gi(xi¡ x̂i)¡ (xj ¡ x̂j): (57)

So

Pxz
¢
=E[(xi¡ x̂i)(x̂j ¡ g(x̂i))0]
¼ E[(xi¡ x̂i)(Gi(xi¡ x̂i)¡ (xj ¡ x̂j))0]
= E[(xi¡ x̂i)(xi¡ x̂i)0](Gi)0 ¡E[(xi¡ x̂i)(xj ¡ x̂j)0]
= Pi(Gi)0 ¡Pij (58)
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and

Pzz
¢
=E[(x̂j ¡ g(x̂i))(x̂j ¡ g(x̂i))0]

¼ E[(Gi(xi¡ x̂i)¡ (xj ¡ x̂j))(Gi(xi¡ x̂i)¡ (xj ¡ x̂j))0]

= Pj ¡GiPij ¡Pji(Gi)0+GiPi(Gi)0: (59)

APPENDIX B. THE TARGET STATE-DEPENDENT
PROCESS NOISE COVARIANCE MATRIX FOR THE
NCT MODEL

As shown in [8], the target state-dependent process

noise (in the Cartesian velocity model) is

via[x
i
a(k)] =D

i
a[x

i
a(k)]v

i
c(k) (60)

where vic(k)»N (0,I4) and
Dia[x

i
a(k)] = S

i
a[x

i
a(k)]V

i
a (k) (61)

with

Sia[x
i
a(k)] =

26666666664

p
qas1(k) 0 0 0

0
p
qas3(k) ¡pq− _y(k) 0

p
q−s2(k) 0 0 0

0
p
qas4(k)

p
q− _x(k) 0

0 0 0
p
q−

37777777775
(62)

Via (k) =

26666666664

p
T3a =3 0 0 0p
3Ta
2

p
Ta
2

0 0

0 0
p
T3a =3 0

0 0

p
3Ta
2

p
Ta
2

37777777775
(63)

where qa and q− are the continuous-time process noise

PSDs and

s1(k) =
_x(k)p

_x2(k) + _y2(k)
(64)

s2(k) =
_y(k)p

_x2(k) + _y2(k)
(65)

s3(k) =
_x(k)¡Ta−(k) _y(k)p
_x2(k) + _y2(k)

(66)

s4(k) =
_y(k)+Ta−(k) _x(k)p
_x2(k) + _y2(k)

: (67)

We have the corresponding target state-dependent

process noise covariance matrix (the time index k is

ignored for conciseness)

Qia[x
i
a(k)]

¢
=Efvia[xia(k)]via[xia(k)]0g (68)

= Ef[Dia[xia(k)]vic(k)][Dia[xia(k)]vic(k)]0g (69)

=

26666666666666664

T3a
3
s21qa

T2a
2
s1s3qa

T3a
3
s1s2qa

T2a
2
s1s4qa 0

T2a
2
s1s3qa

T3a
3
_y2q− +Tas

2
3qa

T2a
2
s2s3qa ¡T

3
a

3
_x _yq− +Tas3s4qa ¡T

2
a

2
_yq−

T3a
3
s1s2qa

T2a
2
s2s3qa

T3a
3
s22qa

T2a
2
s2s4qa 0

T2a
2
s1s4qa ¡T

3
a

3
_x _yq− +Tas3s4qa

T2a
2
s2s4qa

T3a
3
_x2q− +Tas

2
4qa

T2a
2
_xq−

0 ¡T
2
a

2
_yq− 0

T2a
2
_xq− Taq−

37777777777777775
: (70)

Guideline for Choice of Target State-Dependent Pro-

cess Noise Intensity for the NCT Model

Observing the diagonal elements of Qia[x
i
a(k)] in

(71), the process noise induced RMS change rate in the

velocity (X- and Y-coordinate) and in the turn rate over

a sampling interval Ta are

dxa
¢
=

r
T3a
3
_y2q− +Tas

2
3qa

Ta
(71)

dya
¢
=

q
T3a
3
_x2q− +Tas

2
4qa

Ta
(72)

d−
¢
=

p
Taq−
Ta

(73)

respectively. It is obvious that the choices of the design

values da (d
x
a and d

y
a) and d− need to be considered

simultaneously.

To make things simpler, we consider an extreme case

with _x= 0 (similar case for _y = 0). Given a target with

speed Vs (which is equal to the magnitude of _y in this
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extreme case), we have

s¤1 = 0 (74)

s¤2 = 1 (75)

s¤3 =¡Ta−(k) (76)

s¤4 = 1: (77)

This leads to

dx¤a =

r
T3a
3
Vs
2q− +T

3
a −

2(k)qa

Ta
(78)

dy¤a =

p
Taqa
Ta

: (79)

Since the assumption is _x= 0, the process noise

induced RMS change in X-coordinate velocity should

be more sensitive compared with that in Y-coordinate.

Given a conjectured choice as d− and da, the process

noise induced RMS change in X-coordinate velocity

contributed by the PSD q− and qa are,

dx¤a (q− ,qa = 0) =

r
T3a
3
Vs
2q−

Ta
=
Ta _yd

¤
−p
3

(80)

dx¤a (q− = 0,qa) =

p
T3a −

2(k)qa
Ta

=

q
Ta−

2(k)qa:

(81)

It is important to compare those two values. The pro-

cess noise induced RMS change rate for both the linear

velocity and the turn rate should be within reasonable

ranges over time interval Ta.

REMARKS

Without loss generality, based on (80), (81) and (82),

the selections of the design values da and d− for the

NCT model are shown as (sequentially)

i) Select d− , then d
x¤
a (q− ,qa = 0) has been obtained

and should be in a reasonable range.

ii) Select da, then d
x¤
a (q− = 0,qa) has been obtained

and should be in a reasonable range. Further, dx¤a should
be not too big and dy¤a should be not too small.

APPENDIX C. THE MC RESULTS FOR THE SAMPLE
CROSSCORRELATION

The sample crosscorrelation coefficient between the

lth component of xi and the hth component of xj in M
MC runs at a particular point in time (not indicated, for

conciseness) is

½̂M
xi
l
xj
h

¢
=

PM
m=1(x̂

i
l,m¡ xil)(x̂jh,m¡ xih)rhPM

m=1(x̂
i
l,m¡ xil)2

ihPM
m=1(x̂

j
h,m¡ xjh)2

i :
(82)

The sample crosscorrelation coefficients of different

heterogeneous components from 1000 MC runs, for the

scenario described in Section 5, are shown in Figs. 8—

11. It can be seen that the “common process noise

effect,” driven by real maneuvers here, leads to signifi-

cant crosscorrelation between the estimation errors from

the heterogeneous local sensors. Furthermore, both pos-

itive and negative crosscorrelations are observed. This

motivates the geometry-based “functional model” dis-

cussed in Appendix D.

APPENDIX D. AN APPROXIMATION TECHNIQUE
FOR THE CROSSCOVARIANCE MATRIX

By considering the steady-state case for a KF, an ap-

proximation technique for the evaluation of the cross-

covariance matrix in the homogeneous case has been

developed recently [5]. This technique, which relies on

the crosscorrelation coefficients between the local esti-

mates of the same state components, namely, position

and velocity and the maneuvering indices at the differ-

ent sensors, can be extended to heterogeneous case as

follows.

The components of the state xi are grouped by

coordinates (c= 1,2) as follows

xi1 = [x _x]0 (83)

xi2 = [y _y]0 (84)

which can be “aligned” with those of xj as it will
be shown in the sequel. Then the first components

of xic, c= 1,2 and xj are position and the second

components are velocity, albeit in different spaces.

The covariance submatrix Pic , corresponding to esti-

mate x̂ic, follows from the corresponding elements

of Pi.

Extending the crosscovariance matrix approximation

technique for the homogeneous case in [5] to the het-

erogeneous case, we can then approximately reconstruct

the crosscovariance matrix elements using the following

expression

P
ij
c,lh = a

ij
c,lh½

ij
c,lh

q
Pic (l, l)P

j(h,h), c= 1,2, l,h= 1,2

(85)

where c= 1,2 correspond to the first and the second part

of the state xi; l,h= 1 represent position and l,h= 2
represent velocity; ½

ij
c,lh is the maximum crosscorrela-

tion coefficient of the estimation errors in xic,l and x
j
h

and a
ij
c,lh is geometry-dependent adjustment factor in the

crosscorrelation coefficient. This factor is discussed

below.

The maximum crosscorrelation coefficients are de-

noted as ½pp for position-position, ½pv for position-

velocity, ½vp for velocity-position and ½vv for velocity-
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Fig. 8. The sample crosscorrelation for x̃ and ỹ with μ̃ and _̃μ.

Fig. 9. The sample crosscorrelation for _̃x and _̃y with μ̃ and _̃μ.

velocity. Then we have

½
ij
c,lh =

8>>>><>>>>:
½pp l,h= 1

½pv l = 1, h= 2

½vp l = 2, h= 1

½vv l,h= 2

(86)

which are chosen (similarly to [5]) as ½pp = 0:1, ½pv =

½vp = 0:15 and ½vv = 0:45 in our simulations.

There are two state variable pairs, say, x-μ and

y-μ, for the position-position crosscorrelation coeffi-

cient. The best way to quantify the crosscorrelation

difference (accounts for the geometry) for those state

variable pairs is based on the function (7).
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Fig. 10. The sample crosscorrelation for _̃x and ỹ with μ̃ and _̃μ.

Fig. 11. The sample crosscorrelation for x̃ and _̃y with μ̃ and _̃μ.

From the Cartesian to polar coordinate transforma-

tion (see, e.g., [4]), one has the following proportional-

ities
@x

@μ
/¡sinμ (87)

@y

@μ
/ cosμ: (88)

Based on the above, we have the following adjustment

factors for the crosscorrelation coefficients of the pairs

x-μ and y-μ

a
ij
1,11 =¡sinμ (89)

a
ij
2,11 = cosμ: (90)

144 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 2 DECEMBER 2011



Fig. 12. The illustrated scenario for calculating target maneuvering index.

TABLE II

The RMSE in Position for LMMSE Fuser

100 s 110 s 130 s 150 s 255 s

“uncorr” 27.6 m 37.5 m 33.6 m 28.9 m 30.3 m

“corr” 26.6 m 36.4 m 33.5 m 29.1 m 29.5 m

Then the crosscorrelation coefficients of the pairs x-μ

and y-μ are obtained from combining the adjustment

factor (90)—(91) with (87) as

½xμ =¡½pp sinμ (91)

½yμ = ½pp cosμ: (92)

Similarly, we have the adjustment factors

a
ij
c,lh =

½¡sin(μ), c= 1

cos(μ), c= 2
(93)

and the other crosscorrelation coefficients are

½
x _μ
=¡½pv sinμ (94)

½
y _μ
= ½pv cosμ (95)

½ _xμ =¡½vp sinμ (96)

½ _yμ = ½vp cosμ (97)

½ _x _μ =¡½vv sinμ (98)

½ _y _μ = ½vv cosμ: (99)

Finally, the reconstructed crosscovariance matrix is

Pij =

"
P
ij
1

P
ij
2

#
(100)

TABLE III

The RMSE in Velocity for LMMSE Fuser

100 s 110 s 130 s 150 s 255 s

“uncorr” 9.4 m/s 15.3 m/s 10.7 m/s 5.1 m/s 17.4 m/s

“corr” 9.5 m/s 14.9 m/s 10.8 m/s 6.1 m/s 18.2 m/s

with the elements of each block in (101) given by (86)

with (88)—(100).

For the scenario described in Section 5, the RMSE

in position and velocity under both “uncorr” and “corr”

assumptions at some fusion times for the LMMSE fuser

are shown in Table II and III, respectively.

Based on these results, which show negligible per-

formance differences, it seems preferable to follow the

“uncorr” assumption.

APPENDIX E. THE CHOICE OF ESTIMATOR FOR
THE PASSIVE SENSOR

The guideline for deciding whether to use an IMM

estimator or a (single model) KF can be quantified in

terms of the target maneuvering index, which is the

ratio between the standard deviation (RMS values) of

the motion uncertainty and the measurement uncertainty

[2][7]. Namely, if this index is below 0.5 then there is

no point in using an IMM.

For the passive sensor considered, the maneuvering

index can be calculated as follows. As shown in Fig. 12,

the angular velocity seen by the passive sensor is

_μp =
V sin'

rp
(101)

where V is the speed of the target and rp is the range

of the target from the passive sensor. Then the angular
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Fig. 13. The NEES for active sensor IMM.

Fig. 14. The NEES for passive sensor KF.

acceleration seen by the passive sensor is

μ̈p =
Vcos'

rp
_' (102)

where _' is the target turn rate.

The RMS effect of (103) on the (angular) posi-

tion, i.e., the angular displacement over sampling inter-

val Tp (multiplied by 2) is μ̈pT
2
p . The (target’s true)

maneuvering index, with the passive sensor noise

SD ¾p (in radians), is the (physically dimensionless)
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quantity

¸p =
μ̈pT

2
p

¾p
=
_'T2p Vcos'

¾prp
: (103)

For the scenario described in the simulation section,

with V = 250 m/s, cos'¼ 0:8, rp ¼ 5 ¢ 104 m, Tp = 1 s,
¾p = 1 mrad and _'¼ 30 mrad/s (which is the maximum
target turn rate in our simulation scenario), we have

¸p ¼ 0:12. This small target maneuvering index (less
than 0:5) leads to the choice of a KF for the passive

sensor, as done in Section 5.

APPENDIX F. THE LOCAL ESTIMATORS’
CONSISTENCY

The NEES for the active sensor’s IMM and for the

passive sensor’s KF are shown in Figs. 13 and 14 (the

results are obtained by using the estimates and the cor-

responding covariance matrices for the heterogeneous

T2TF, that is, four components’ information from the

active sensor and two components’ information from the

passive sensor), respectively. The lack of consistency of

the passive sensor KF is due to the maneuvers. The

lack of consistency of the active sensor IMM is com-

mon and this is due to its (unavoidable delay) in the

adaptation. The IMM estimator is “pessimistic” during

the no-maneuver intervals and “optimistic” when a ma-

neuver starts or ends until it “catches up.” This is the

typical behavior of the IMM, which is still superior to

any single-model based filter.
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Characterization and Empirical
Evaluation of Bayesian and
Credal Combination Operators

ALEXANDER KARLSSON

RONNIE JOHANSSON

STEN F. ANDLER

We address the problem of combining independent evidences

from multiple sources by utilizing the Bayesian and credal combi-

nation operators. We present measures for degree of conflict and

imprecision, which we use in order to characterize the behavior of

the operators through a number of examples. We introduce dis-

counting operators that can be used whenever information about

the reliability of sources is available. The credal discounting oper-

ator discounts a credal set with respect to an interval of reliability

weights, hence, we allow for expressing reliability of sources im-

precisely. We prove that the credal discounting operator can be

computed by using the extreme points of its operands. We also per-

form two experiments containing different levels of risk where we

compare the performance of the Bayesian and credal combination

operators by using a simple score function that measures the infor-

mativeness of a reported decision set. We show that the Bayesian

combination operator performed on centroids of operand credal

sets outperforms the credal combination operator when no risk is

involved in the decision problem. We also show that if a risk compo-

nent is present in the decision problem, a simple cautious decision

policy for the Bayesian combination operator can be constructed

that outperforms the corresponding credal decision policy.
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1. INTRODUCTION

Bayesian theory [5] is one of the most commonly uti-

lized theories for managing uncertainty in information

fusion [20, 12]. The theory relies on two main assump-

tions: (1) a probability function should be used for rep-

resenting belief and (2) Bayes’ theorem should be used

for belief updating when a new observation has been

made. The main criticism of Bayesian theory that can

be found in the literature (e.g., [14, 25]) is that the first

assumption is unrealistically strong since one is forced

to quantify belief precisely even if one only possesses

scarce information about the environment of interest.

For this reason, a family of alternative theories has been

introduced that usually goes under the name imprecise

probability [26], where belief can be expressed impre-

cisely.

One common theory that belongs to the family

of imprecise probability is credal set theory [2, 3, 9,

10, 19], also known as “theory of credal sets” [11] and

“quasi-Bayesian theory” [8], where one utilizes a closed

convex set of probability functions (instead of a single

function), denoted as a credal set [19], for representing

belief. An attractive feature of credal set theory is that it

reduces to Bayesian theory if singleton sets are adopted.

Furthermore, credal set theory can be thought of as

point-wise application of Bayes theorem on all prob-

ability (and likelihood) functions within operand sets

(unlike, e.g., evidence theory [23], which is inconsistent

with this point-wise Bayesian paradigm [2, 3]). Hence,

credal set theory can be seen as the most straightforward

generalization of Bayesian theory to imprecise probabil-

ity.

In this paper, we are interested in contrasting

Bayesian theory with credal set theory when used for

combining independent pieces of evidence, known as the

combination problem [16]. Arnborg [2, 3] has previ-

ously characterized the relation between robust Bayesian

theory, which can be seen as a sensitivity interpreta-

tion [4, 14] of credal set theory, and evidence theory

[23] when used for the combination problem. We ex-

tend Arnborg’s work by characterizing the Bayesian and

credal combination operators1 in terms of imprecision

and conflict and by introducing methods for account-

ing for reliability of sources. In addition, we also em-

pirically evaluate the use of the operators for decision

making regarding some state space of interest. Since

the credal combination operator is considerably more

computational demanding than the Bayesian counter-

part, such a evaluation can reveal whether or not the

additional computational expense yields an increase in

decision performance.

1Arnborg [2, 3] denoted this operator by “robust Bayesian combi-

nation operator.” We deliberately avoid using this terminology since

robust Bayesianism imposes a sensitivity interpretation of the credal

set [4, 14] and we do not want to exclude other interpretations (see

e.g., Walley [25]).
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The paper is organized in the following way: In Sec-
tion 2, we derive the Bayesian and credal combination
operators. In Section 3, we present measures for con-
flict and imprecision for the operators. Based on these
measures, we present a number of examples that high-
light the behavior of the operators. We introduce dis-
counting operators for the Bayesian and credal combi-
nation operators, which can be used whenever informa-
tion about reliability of sources is known. In Section 4,
we present two experiments; one where no risk compo-
nent is present in the decision problem, i.e., there is no
cost for making an erroneous decision, and one where
such a component exists. We discuss the design and
analyze the result of each experiment. Lastly, in Sec-
tion 5, we summarize the article and present the main
conclusions.

2. PRELIMINARIES
We derive the Bayesian and credal combination op-

erators and elaborate on how the credal combination
operator can be computed.

2.1. Bayesian Combination Operator
Let X and Y1, : : : ,Yn be discrete random variables with

state spaces −X and −Y1 , : : : ,−Yn , respectively. Assume
that we have n sources and that source i 2 f1, : : : ,ng has
made observation yi 2−Yi and reported a likelihood func-
tion p(yi j X) as a representation of the evidence provided
by yi regarding X. By assuming that the observations are
conditionally independent given X, we can construct the
joint evidence (or joint likelihood):

p(y1, : : : ,yn j X) = p(y1 j X) : : :p(yn j X): (1)

In principle, we can use (1) as a Bayesian way of
combining the evidences, however, this is not convenient
when implemented in an operational system since the
joint evidence monotonically decreases with the number
of sources n. Let us therefore elaborate on how this
problem can be solved. Let

pi(X)
¢
=

p(yi j X)P
x2−X p(yi j x)

(2)

i.e., pi(X) are probability functions (normalized likeli-
hood functions). By using Bayes’ theorem and the as-
sumption of conditional independence, we obtain

p(X j y1, : : : ,yn)

=
p(y1, : : : ,yn j X)p(X)P
x2−X p(y1, : : : ,yn j x)p(x)

=
p(y1 j X) : : :p(yn j X)p(X)P
x2−X p(y1 j x) : : :p(yn j x)p(x)

=
p1(X) : : :pn(X)p(X)P
x2−X p1(x) : : :pn(x)p(x)

=

p1(X) : : :pn(X)P
x2−X p1(x) : : :pn(x)

p(X)

P
x2−X

p1(x) : : :pn(x)P
x2−X p1(x) : : :pn(x)

p(x)

: (3)

Let

©(p1(X), : : : ,pn(X))
¢
=

p1(X) : : :pn(X)P
x2−X p1(x) : : :pn(x)

: (4)

From (3) we see that the joint evidence p(y1, : : : ,yn j X)
has the same effect on the posterior p(X j y1, : : : ,yn), ir-
respective of the prior p(X), as ©(p1(X), : : : ,pn(X)), i.e.,

p(y1, : : : ,yn j X) and ©(p1(X), : : : ,pn(X)) are equivalent
evidences. The following theorem allows us to recur-

sively combine evidences into a joint evidence.

THEOREM 1

©(: : :©(p1(X),p2(X)) : : : ,pn(X))

=
p1(X) : : :pn(X)P
x2−X p1(x) : : :pn(x)

: (5)

PROOF See Appendix.

Note that the normalization in each combination in

the recursion eliminates the problem of a monotonically

decreasing joint evidence when n increases. We use the

recursive form of © as our basis for the definition of a

Bayesian combination operator denoted by ©B (i.e., we
define the operator for two operands) [3, 2]:

DEFINITION 1 The Bayesian combination operator is

defined as

©B(p1(X),p2(X))
¢
=

p1(X)p2(X)P
x2−X p1(x)p2(x)

(6)

where pi(X), i 2 f1,2g, are conditionally independent
evidences in the form of probability functions (normal-

ized likelihood functions). The operator is undefined

when
P
x2−X p1(x)p2(x) = 0.

Note that the operator is associative and commuta-

tive.

2.2. Credal Combination Operator

The credal combination operator, also known as the

robust Bayesian combination operator (see Footnote 1)

[2, 3], can be derived by using credal set theory [19, 9,

10, 2, 3]. As we mentioned in the introduction, in credal

set theory one represents belief by a closed convex set

of probability functions. However, one is also allowed to

express evidence regarding some random variable im-

precisely, i.e., instead of a single likelihood function as

a representation of evidence, as in the Bayesian case,

one can adopt a closed convex set of such functions.

Combination of such evidences then amounts to apply-

ing the Bayesian combination operator point-wise on

all possible combinations of functions from the sets. In

order to enforce convexity of the posterior result one

applies the convex-hull operator.

One important concept within credal set theory,

which we will use extensively in the proofs is convex

combination defined as [1].
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DEFINITION 2 A convex combination of probability

functions p1(X), : : : ,pn(X) is a probability function ex-

pressed in the following form

¸1p1(X) + ¢ ¢ ¢+¸npn(X) (7)

where (8i 2 f1, : : : ,ng) (0· ¸i) and
Pn

i=1¸i = 1.

We can now define the convex hull of a finite set

as the set of all convex combinations of points in the

set [1].

DEFINITION 3 The convex hull of a finite set fp1(X), : : : ,
pn(X)g is defined as

CH(fp1(X), : : : ,pn(X)g)
¢
=

(
nX
i=1

¸ipi(X) : (8i 2 f1, : : : ,ng)

£ (¸i ¸ 0),
nX
i=1

¸i = 1

)
: (8)

Let P(X) denote a prior credal set, i.e., a closed con-
vex set of probability functions of the form p(X) and

P(X j y) a posterior credal set of functions p(X j y). Let
E(P(X)) denote the set of extreme points of P(X), i.e.,
points that belong to the set and cannot be expressed

as a convex combination of other points in the set. We

are now ready to define the notion of independence for

credal sets referred to as strong independence [7].

DEFINITION 4 The discrete random variables X and

Y are strongly independent iff all p(X,Y) 2 E(P(X,Y))
can be expressed as p(X,Y) = p(X)p(Y), where p(X) 2
P(X) and p(Y) 2 P(Y). Similarly, X and Y are strongly
conditionally independent given Z iff all p(X,Y j z) 2
E(P(X,Y j z)) can be expressed as p(X,Y j z) = p(X j z)
¢p(Y j z), 8z 2 −Z , where p(X j z) 2 P(X j z) and p(Y j z)
2 P(Y j z).
The intuition behind this definition is that each ex-

treme point of a joint credal set should fulfill the same

criteria for independence as in ordinary probability cal-

culus, i.e., the extreme points should factorize [11]. By

using this notion of independence, the credal combina-

tion operator2 can be derived as a straightforward gen-

eralization of the Bayesian combination operator.

DEFINITION 5 The credal combination operator is de-

fined as

©C(P1(X),P2(X))
¢
=CH(f©B(p1(X),p2(X)) : p1(X) 2 P1(X),

p2(X) 2 P2(X)g) (9)

2Arnborg [2, 3] defined the operator without the inclusion of a

convex-hull operator, however, he mentions in the discussion follow-

ing his definition that such operator should be utilized. See also Foot-

note 1.

where Pi(X), i 2 f1,2g, are strongly conditionally inde-
pendent evidences in the form of credal sets (closed con-

vex sets of normalized likelihood functions) and where

CH is the convex-hull operator. The ©C operator is unde-
fined iff there exists pi(X) 2 Pi(X), i 2 f1,2g, such that
©B is undefined.

The operator is associative and commutative. Note

that the operator is based on point-wise application of

the Bayesian combination operator on all combinations

of functions from the operand credal sets. Hence, the

operator is equivalent to the Bayesian combination op-

erator for singleton sets. One important credal set, that

we will use extensively throughout the article, is the

set of all probability functions for a given state space,

denoted as a probability simplex.

DEFINITION 6 The probability simplex P¤(X) for a
discrete random variable X with state space −X is de-

fined as

P¤(X) ¢=
½
p(X) : (8x 2 −X)(p(x)¸ 0),

X
x2−X

p(x) = 1

¾
(10)

In order to compute the credal combination opera-

tor, we only consider operand credal sets that has a finite

number of extreme points. Such a property can be guar-

anteed by using credal sets in the form of polytopes [1]

DEFINITION 7 A credal set P(X) is a polytope iff
P(X) = CH(fp1(X), : : : ,pn(X)g) (11)

where fp1(X), : : : ,pn(X)g ½ P¤(X) is a finite set and
where CH is the convex-hull operator.

The following theorem enables computation by ex-

treme points of the credal combination operator when

the operands are polytopes (the theorem was implicitly

mentioned by Arnborg [3], with no proof, and explic-

itly stated by Arnborg [2], but only a “proof hint” was

provided. A corresponding theorem has been stated and

proved for filtering (continuous case) by Noack, et al.

[21, Theorem 2]).

THEOREM 2

©C(P1(X),P2(X))
=©C(E(P1(X)),E(P2(X))): (12)

PROOF See Appendix.

3. CHARACTERIZATION OF THE BAYESIAN AND
CREDAL COMBINATION OPERATORS

In this section,3 we define measures for degree of

conflict and imprecision and use these for characteriz-

ing the behavior the Bayesian and credal combination

operators through a number of examples. We introduce

3This section includes material from Karlsson et al. [16].

152 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 2 DECEMBER 2011



discounting operators that can be used whenever infor-

mation about the reliability of sources is known. We

exemplify the utilization of the discounting operators

by revisiting the examples.

3.1. Degree of Conflict

One important concept when combining evidences

from multiple sources is the degree of conflict measured

on the evidences reported by the sources. Intuitively,

such measure can be thought of as an “inverse similarity

measure,” i.e., the more similar the reported evidences

are, the less conflict exists between the sources. Hence,

for the Bayesian case, we simply use the Euclidean norm

as the basis for a conflict measure.

DEFINITION 8 The degree of conflict between two

evidences in the form of probability functions p1(X)

and p2(X) is defined as

¡B(p1(X),p2(X))
¢
=
kp1(X)¡p2(X)kp

2
(13)

where k ¢ k is the Euclidean norm and where the denomi-
nator constitutes the diameter of the probability simplex

P¤(X), i.e.,

max

½
max

pj (X)2P¤(X)
kpi(X)¡pj(X)k : pi(X) 2 P¤(X)

¾
=
p
2:

(14)

Similarly to the above Bayesian conflict measure,

we base a credal conflict measure on the notion of sim-

ilarity. A similarity measure for general closed convex

sets exists under the name of Hausdorff distance [15].

The Hausdorff distance is the largest distance one can

find between a point from any of the two sets to the

closest point in the other set. By using the Hausdorff

distance we can define the following conflict measure

for credal sets:

DEFINITION 9 The degree of conflict between two

credal sets P1(X) and P2(X) is defined as

¡C(P1(X),P2(X))
¢
=
H(P1(X),P2(X))p

2
(15)

where the denominator constitutes the diameter of the

probability simplex P¤(X) and whereH is the Hausdorff
distance defined by [15]

H(P1(X),P2(X))
¢
=maxf ~H(P1(X),P2(X)), ~H(P2(X),P1(X))g

(16)
where ~H is the forward Hausdorff distance:

~H(P1(X),P2(X))
¢
=max

½
min

p2(X)2P2(X)
kp1(X)¡p2(X)k : p1(X) 2 P1(X)

¾
(17)

where k ¢ k is the Euclidean norm.

Note that the credal conflict measure reduces to

the Bayesian conflict measure for singleton sets. The

forward Hausdorff-distance can be calculated in

O(jE(P1(X))j jF(P2(X))j) [15], where F(P(X)) is the set
of faces of P(X).
3.2. Degree of Imprecision

Obviously, since credal set theory belongs to the

family of theories referred to as imprecise probabilities

[26], imprecision is an important concept to define.

Walley [25, Section 5.1.4] has introduced a measure

which he refers to as the degree of imprecision for an

event x 2−X

¢(x,P(X)) ¢= max
p(X)2P(X)

p(x)¡ min
p(X)2P(X)

p(x): (18)

However, the measure does not capture the imprecision

of a credal set since it only operates on single events. Let

us therefore base our measure of degree of imprecision

for a credal set on a simple average of Walley’s measure

in the following way.

DEFINITION 10 The degree of imprecision of a credal

set P(X) is defined as

I(P(X)) ¢= 1

j−X j
X
x2−X

¢(x,P(X)) (19)

where ¢(x,P(X)) is Walley’s measure for degree of
imprecision for a single event [25, Section 5.1.4].

As an example, if we have a credal set P(X) where
P(X) = CH(f(0:2,0:1,0:7)T, (0:5,0:2,0:3)T, (0:6,0:3,0:1)Tg)

(20)

where −X = fx1,x2,x3g and the order of the probabilities
is (p(x1),p(x2),p(x3))

T, then

I(P(X)) = 1
3

3X
i=1

¢(xi,P(X))

=
1

3
(0:6¡0:2+0:3¡ 0:1+0:7¡ 0:1)

= 0:4: (21)

3.3. Examples

We here provide a number of examples, containing

different degrees of imprecision and conflict, in order

to characterize the behavior of the Bayesian and credal

combination operators. Let us first elaborate on a con-

venient way of visualizing belief and evidence in cases

where the state space consists of three elements. As-

sume that −X = fx1,x2,x3g. In such case the probability
simplex P¤(X) constitutes the plane orthogonally pro-
jected on two dimensional space, seen in Fig. 1, which

is geometrically equivalent to the convex hull of the

points (1,0,0)T, (0,1,0)T, and (0,0,1)T. Each corner of

the triangle represents an extreme point of P¤(X), i.e., a
probability function where all probability mass lies on
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Fig. 1. Probability simplex P¤(X), where −X = fx1,x2,x3g,
projected on two dimensional space.

a single element of −X . Each point in the triangle repre-

sents a probability function. As an example, the center

of the triangle, indicated with a cross, is the uniform dis-

tribution over −X . The closer a specific point is to one of

the corners in the triangle the higher probability for the

respective state. This type of visualization is commonly

used within the imprecise probability community (see,

e.g., [25]).

Fig. 2. p1(X), p2(X), and p1:2(X) when a low degree of conflict is present. (a) p1(X) (circle) and p2(X) (square). (b) p1:2(X).

Fig. 3. p1(X), p2(X), and p1:2(X) when a high degree of conflict is present. (a) p1(X) (circle) and p2(X) (square). (b) p1:2(X).

3.3.1. Bayesian Combination Operator
Let us start with the example seen in Fig. 2 where

there only is a minor conflict among the sources. We

see that since both sources suggest x2 as most probable,

seen in Fig. 2(a), the joint evidence, seen in Fig. 2(b),

is reinforced towards this state. Now, consider the case

where there is a strong conflict among the sources

instead, seen in Fig. 3. Both sources have provided

evidences that states that x3 is unlikely to be the true

state of X. However, there is a strong disagreement,

i.e., conflict among the sources, regarding the states

x1 and x2. The joint evidence, seen in Fig. 3(b), is

approximately uniformly distributed over fx1,x2g, i.e.,
from the result we cannot single out a best choice

between these two states, however, x3 is still highly

unlikely due to the distance to that corner.

3.3.2. Credal Combination Operator
Let us again start with an example where there is

a low degree of conflict between the sources, seen in

Fig. 4. The operand credal sets in Fig. 4(a) have been

constructed by expanding equilateral triangles around

the operands in Fig. 2(a). From the figure we see

that both sources essentially agree on the state x2 as

being most probable. Therefore the combined evidence
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Fig. 4. P1(X), P2(X), and P1:2(X) when a low degree of conflict is present. (a) P1(X) (circles) and P2(X) (squares). (b) P1:2(X).

Fig. 5. P1(X), P2(X), and P1:2(X) when a high degree of conflict is present. (a) P1(X) (circles) and P2(X) (squares). (b) P1:2(X).

P1:2(X) is reinforced towards a high probability for
the state x2, as is seen in Fig. 4(b). Note that P1:2(X)
preserves the property of not favoring any of the states

x1 and x3.

Consider again an example where evidences are

strongly conflicting (a similar example has been pre-

sented by Arnborg [2]). The evidences provided by the

sources can be seen in Fig. 5. We see that the resulting

joint evidence has a high degree of imprecision. Note

that it is the combination of the lower right extreme

points of the operand credal sets that is the cause for

the lower right extreme point of the joint evidence; a

case that has similarities with the well-known Zadeh’s

example for Dempster’s combination rule [27]. This is

due to that the extreme points componentwise suppress

each other for the states x1 and x2, i.e., if we denote the

lower right extreme point of P1(X), P2(X), and P1:2(X)
by p1(X), p2(X), and p1:2(X), respectively, where

p1(x1) = 1¡ ²¡#, p1(x2) = ², p1(x3) = #

(22)

p2(x1) = ², p2(x2) = 1¡ ²¡#, p2(x3) = #

(23)

then we obtain the following expression for p1:2(x3)

p1:2(x3) =
#2

(1¡ ²¡#)²+ ²(1¡ ²¡#) +#2 (24)

which approaches one when ²! 0 (in the figure, ² > 0,
which is why the lower right extreme point of P1:2(X)
is not exactly positioned at the lower right corner of the
probability simplex P¤(X)).
Lastly, let us consider another type of conflict that

can appear in the credal case, seen in Fig. 6, where one
of the sources expresses a credal set that is highly im-
precise, i.e., approximately equivalent to the probability
simplex P¤(X) (there is a small distance between the ex-
treme points of the credal set and the extreme points of
the probability simplex which cannot be seen from the
figure), and the other source expresses a credal set that
constitutes strong evidence for the state x2. Since the
highly imprecise credal set contains probability func-
tions that constitute strong evidence for each of the
states in −X , such a credal set is not significantly af-
fected by other operands, unless these contain probabil-
ity functions that are considerably stronger.4

4Arnborg [3] denotes the probability simplex as “total scepticism,”

since such a set is impossible to affect.
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Fig. 6. P1(X), P2(X) and P1:2(X) when a high degree of conflict is present. (a) P1(X) (circles) and P2(X) (squares). (b) P1:2(X).

3.4. Discounting

In cases where a strong conflict is present among

the sources that provide evidences, as was the case

for several examples in the previous section, it may

be beneficial to account for the sources’ reliability. If

one has obtained information regarding the reliability of

sources, e.g., in terms of sensor quality, then it would be

reasonable to compensate for such information prior to

the combination. Intuitively, if a source is less reliable,

then that source should have less effect on the end result,

i.e., the joint evidence should be less influenced by

that source. Accounting for the reliability of sources is

commonly referred to as discounting in the literature

[23].

3.4.1. Bayesian Discounting Operator

Discounting with respect to the Bayesian combina-

tion operator is performed by transforming an operand

to a “more uniform” probability function. The reason

for this is that the uniform probability function repre-

sents an evidence that does not affect the joint evidence

in any way:5

DEFINITION 11 The Bayesian discounting operator for

an evidence in the form of a probability function p(X)

with state space −X is defined as

ªB(p(X),w)
¢
=wp(X) + (1¡w)pu(X) (25)

where w 2 [0,1] is a reliability weight, describing a
degree of reliability of the discounted source, and pu(X)

is the uniform distribution over −X .

Let us now revisit the example in Fig. 3 but where

we have obtained the following reliability weights for

5Arnborg [2] adopted another interpretation of discounting, which

amounts to increase the imprecision for an operand single probability

function. We have based our interpretation of discounting on evidence

theory [23], i.e., that a discounted operand should have less effect on

the end result.

the sources6

w1 = 0:85, w2 = 0:95: (26)

Let us introduce the following short-hand notation

pwi (X)
¢
=ªB(pi(X),wi) (27)

where i 2 f1,2g and

pw1,w2 (X)
¢
=©B(ªB(p1(X),w1),ªB(p2(X),w2)):

(28)

The result of applying the Bayesian discounting opera-

tor with the reliability weights in (26) is seen in Fig. 7.

In contrast to the former case, where no discounting

was performed, we can here see that due to that the

first source is slightly more unreliable, the result is less

influenced by that source. This is seen from the figure,

since the resulting probability function is closer to the

corner p(x2) = 1 than p(x1) = 1.

3.4.2. Credal Discounting Operator
Consider discounting a source that reports an oper-

and credal set for the credal combination operator. In-

stead of using a single reliability weight, we here al-

low reliability weights to be expressed imprecisely7

by a convex set of reliability weights W ¢
=[w,w̄] where

[w,w̄]μ [0,1], i.e., an interval. If we generalize the
Bayesian discounting operator to the credal case, we

obtain an operator that point-wise discounts each distri-

bution in the credal set with respect to each reliability

6We introduce the Bayesian and credal discounting operators without

specifying an exact interpretation of the reliability weights. In prin-

ciple such a interpretation can differ depending on the application.

Exploring different modeling schemas and interpretations for reliabil-

ities is a topic for future research.
7Imprecision in reliability weights was inspired by Troffaes [24].
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Fig. 7. pw1
(X), pw2

(X), and the discounted combined result pw1,w2
(X). (a) pw1

(X) (circle) and pw2
(X) (square). (b) pw1,w2

(X).

Fig. 8. PW1
(X), PW2

(X), and PW1,W2
(X). (a) PW1

(X) (circles) and PW2
(X) (squares). (b) PW1,W2

(X).

weight in W:
DEFINITION 12 The discounting operator for a credal

set P(X) given a set of reliability weights W = [w,w̄],

where [w,w̄]μ [0,1], is defined as
ªC(P(X),W)

¢
=CH(fªB(p(X),w) : w 2W,p(X) 2 P(X)g)

(29)

whereªB(p(X),w) is the Bayesian discounting operator.

The discounting operator collapses a credal set

point-wise towards the uniform distribution. The fol-

lowing theorem allows computation of the credal dis-

counting operator by using the extreme points of the

operand sets:

THEOREM 3

ªC(P(X),W) =ªC(E(P(X)),E(W)): (30)

PROOF See Appendix.

Let us now revisit the previous presented examples

where a strong conflict was present. Assume that we

have obtained the following reliability weights6 for the

example in Fig. 5

W1 = [0:80,0:90], W2 = [0:93,0:98]: (31)

Let us introduce some short-hand notation

PWi
(X)

¢
=ªC(Pi(X),Wi) (32)

where i 2 f1,2g and

PW1,W2
(X)

¢
=©C(ªC(P1(X),W1),ªC(P2(X),W2)):

(33)

The results of applying the discounting operator is seen

in Fig. 8. We see that there is a significant difference in

terms of imprecision compared to the non-discounted

case in Fig. 5(b).

Let us also revisit the example shown in Fig. 6.

Assume that one has obtained the following reliabilities

for the sources

W1 = [1:00,1:00], W2 = [0:75,0:80]: (34)

The result of discounting the sources with respect to

these weights is seen in Fig. 9. The lower bound of
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Fig. 9. PW1
(X), PW2

(X), and PW1,W2
(X). (a) PW1

(X) (circles) and PW2
(X) (squares). (b) PW1,W2

(X).

W2 will in this case not have any effect since P2(X) is
centered around the uniform distribution.

4. EMPIRICAL EVALUATION OF BAYESIAN AND
CREDAL COMBINATION OPERATORS

In a previous study8 [17], we explored the perfor-

mance of the Bayesian and credal combination opera-

tors when a single decision is made, i.e., a single state

is chosen. In order to select a single decision in the

credal case, we selected a representative function from

the joint evidence to base the decision upon. We ex-

plored three main ways of selecting such a function,

often found in the literature [3, 8], namely: a ran-

dom function, the maximum entropy function, and the

centroid function. By assuming that the sources have

an implicit uniform second-order distribution over the

operand credal set, as a representation of not favoring

any probability function within the set, we found that

using the Bayesian combination operator on centroids of

operand credal sets significantly outperform9 any of the

credal decision schemas (i.e., using the credal combina-

tion operator and any of the representative function pre-

viously mentioned). The reason for this result is that the

second-order distribution can be considerably skewed

over the joint evidence and using centroid distributions

of operand credal sets as operands for the Bayesian

combination operator constitutes a better approxima-

tion of the expected value with respect to this skewed

second-order distribution over the joint evidence.

Even though it may be better to utilize the Bayesian

combination operator than the credal counterpart when

a single decision has to be made, the question remains

whether or not the credal combination operator can

be beneficial to utilize when a set of decisions is al-

lowed. In principle, an optimal method for “set-output”

8In Karlsson, et al. [17] we considered the problem of belief updating

instead of evidence combination, however, it is the same basic operator

that is used for both cases.
9Two score functions (i.e., performance metrics) were used for com-

parison: (1) accuracy and (2) Brier loss [6].

should only output a non-singleton set when the sin-

gleton decision output from a Bayesian method is erro-

neous.

Exploring the performance of utilizing the Bayesian

and credal combination operators when decision sets are

allowed (i.e., a set of states) is the main aim with our ex-

periments that we will present in the coming sections.10

In the experiments, we use a simple state space con-

sisting of three states since we then can perform exact

computation of the credal combination operator. In real-

world applications one is likely to be forced to use some

approximations technique in order to limit the number

of extreme points of the involved credal sets, since this

number can grow exponentially in worst case (with re-

spect to the number of combinations). We present two

main experiments for combining evidences reported by

a number of sources where there exists some degree of

conflict between them. We motivate the utilization of a

decision set by a risk component, i.e., there is a large

negative cost if one reports a set that does not contain

the true state. In the first experiment there is no risk

component whereas in the second experiment such a

component exists.

4.1. Experiment A–No Risk

Let us start with a scenario that does not contain

a risk component in the sense that there is no cost of

reporting an erroneous state. Assume that we are inter-

ested in determining the state of a random variable X

with a state space consisting of three possible states,

i.e., −X = fx1,x2,x3g, and that we base our decision re-
garding X on n sources that provide us with pieces of

evidence regarding X in the form of strongly condition-

ally independent credal sets P1(X), : : : ,Pn(X). Assume
that the true state of X is x2. Obviously, if we have

selected the sources well, a majority of these provides

us with credal sets P̂(X) that constitute evidence for the

10The sections includes material from Karlsson, et al. [18].
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Fig. 10. The probability simplex P¤(X) partitioned into evidence
region (vertical lines) and counter-evidence region (horizontal line)

with respect to the true state x2.

truth solely, i.e.,

p̂(X) 2 P̂(X)) x2 = argmax
x2−X

p̂(x): (35)

Such type of credal set is completely contained in the

region with vertical lines shown in Fig. 10. Let us

assume that there is a possibility of obtaining a counter

evidence P̃(X) with respect to the truth from some of

the sources, i.e.,

p̃(X) 2 P̃(X)) x2 6= argmax
x2−X

p̃(x): (36)

The counter evidence P̃(X) is completely contained in
the region with horizontal lines shown in Fig. 10. The

imprecision of the credal evidence and counter evidence

can be thought of as a second-order uncertainty regard-

ing the strength of an evidence in the form of a proba-

bility function (i.e., a Bayesian evidence). Let us assume

that the sources have no reason to favor any probabil-

ity function in the credal evidence, i.e., the sources are

indifferent regarding the probability functions.

Now, assume that we want to combine all the evi-

dences obtained from the sources into a joint evidence.

In the Bayesian case, since we cannot apply the ©B op-
erator directly on the operand credal sets, we need to

select a single representative probability function from

the operands to be utilized for combination. Since the

sources are indifferent regarding the probability func-

tions in the operand credal sets, we can assume an im-

plicit uniform distribution over the sets. It is therefore

reasonable to utilize the expected value of this distribu-

tion as a representative function, i.e., the centroid dis-

tribution. Consequently we obtain the following joint

Bayesian evidence

p1:n(X)
¢
=©B(: : :©B(¨ (P1(X)),¨ (P2(X))) : : : ,¨ (Pn(X)))

(37)

where the operator ¨ is defined as

¨ (P(X)) ¢=EUn(P(X))[P(X)] (38)

where Un(P(X)) denotes the uniform distribution over

P(X) (i.e., ¨ (P(X)) gives the centroid distribution of
P(X)). In the credal case, the joint evidence is straight-
forwardly obtained by utilizing the ©C operator

P1:n(X)
¢
=©C(: : :©C(P1(X),P2(X)) : : : ,Pn(X)):

(39)

Now, based on the joint Bayesian and credal evi-

dences, we want to make a decision regarding the true

state of the variable X. In the Bayesian case this is sim-

ply performed by reporting the most probable state(s)

DB(p1:n(X))
¢
=fxi 2−X : (8xj 2 −X)(p1:n(xi)¸ p1:n(xj))g:

(40)

From the above equation, we see that the Bayesian

decision set DB(p1:n(X)) is singleton in a majority of
the cases. In the credal case, however, it is quite likely,

depending on the degree of imprecision reported by the

sources, that the decision set is non-singleton

DC(P1:n(X))
¢
=

[
p1:n(X)2P1:n(X)

DB(p1:n(X)): (41)

Note that unless all probability functions within P1:n(X)
agree on the most probable state, the decision set is

non-singleton. Let us also introduce a credal method

where the ©C operator is used for constructing the joint
credal evidence but where the centroid distribution of

the evidence is used for decision making in the same

way as in the Bayesian case (see (40)), i.e.,

DcC(P1:n(X))
¢
=DB(¨ (P1:n(X))): (42)

An example of using the ©B and ©C operators is seen
in Fig. 11. In Fig. 11(a), we see that one of the sources

has reported a quite strong evidence for the truth x2
while the other source has reported a counter evidence

to this state (an evidence for x1). Fig. 11(b) shows the

results of the Bayesian and credal methods. We see that

DB(p1:2(X)) = fx2g
DC(P1:2(X)) = fx1,x2g
DcC(P1:2(X)) = fx2g:

(43)

Note that the centroid of the joint credal evidence differs

from the joint Bayesian evidence.

Now, obviously a decision set D μ −X that contains

two states where one of them is the true state, i.e.,

x2, should be less valued in comparison to a decision

set that is singleton with the true state. Moreover, a

decision set that is equal to the state space is clearly non-

informative about X since we have already modeled the

set of possibilities for X by −X . Hence such decision

set is not regarded to be of any value. Based on this
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Fig. 11. The example shows the probability simplex P¤(X) where one operand constitutes evidence for the true state x2 and the other
counter evidence to the true state (in this case evidence for x1). The dashed lines show the decision regions for the state space. The extreme

points of the credal operands Pi(X), i 2 f1,2g and joint credal evidence P1:2(X) are depicted by filled circles. The centroid of P¤(X) and
P1:2(X) is depicted by a cross. The Bayesian joint evidence p1:2(X) is depicted by an unfilled circle. (a) Pi(X) and EUn(Pi(X))[Pi(X)],

i 2 f1,2g. (b) P1:2(X) and p1:2(X).

reasoning we adopt the following score function for our

experiment

f®(D)
¢
=

8>>><>>>:
1

jDj , if x2 2 D, D 6=−X

0, if D =−X

¡®, otherwise

(44)

where D μ −X and ® models a risk component. As

we stated in the beginning of this section, we first

explore the performance of the methods when no risk is

involved in the decision problem, hence, we instantiate

the score function with ®= 0, i.e., f0(D).
Let the probability for the event that a source reports

an evidence with respect to the truth (i.e., x2) be denoted

by ¯. Note that if we sum the degree of conflict for both

the Bayesian and credal conflict measures for all n¡ 1
combinations, i.e.,

¡ 1:n¡1²
¢
=

n¡1X
i=1

¡ i² (45)

where ¡ i² (Definitions 8 and 9) denotes the conflict in
the ith combination, then we expected ¡ 1:n¡1² to increase

when ¯ monotonically decreases in the interval [0:5,1],

i.e., the total amount of conflict among the sources

increases. The experiment can now be defined by the

following step-wise description:

1. Sample the number of sources n»Un([5,10]).
2. Sample the probability for obtaining an evidence

for the true state ¯ »Un([0:7,0:9]).
3. Sample evidences P1(X), : : : ,Pn(X) where the

probability of sampling an evidence P̂i(X) for the truth
is ¯ (see (35)) and 1¡¯ for a counter evidence P̃i(X)
(see (36)), i 2 f1, : : : ,ng.
4. Calculate joint evidences p1:n(X) and P1:n(X).

5. Calculate decision sets DB(p1:n(X)), DC(P1:n(X)),
and DcC(P1:n(X)).
6. Calculate the score f®(¢) for each decision set in

the previous step.

7. Repeat m= 105 times.

Remember that we have instantiated ®= 0 for this

first experiment, i.e., there is no risk component in-

volved. Let us elaborate somewhat on the implemen-

tation detail of the above description. In step three, we

sample evidences by first deciding, utilizing ¯, if a spe-

cific source should report an evidence or a counter evi-

dence for the truth. Then, when we know if it is an ev-

idence or counter evidence that we should sample, we

sample a centroid from the corresponding region (see

Fig. 10), uniformly. Given the centroid, we sample im-

precision by considering the distance from the centroid

to the corner points of an equilateral triangle, under the

condition that all corner points should reside in the same

evidence region. Hence, the credal operand that we sam-

ple are all equilateral triangles (simplices) that are com-

pletely contained in the evidence or counter-evidence

region with respect to the truth (e.g., Fig. 11(a)). Credal

sets of this form can be obtained by interval constraints

on marginal probabilities.

4.4.1. Results
The results of the experiment is seen in Table I.

We see that the expected score of the Bayesian method

DB is clearly better then the credal method DC . This
means that the credal method does not isolate the cases

for which the Bayesian method performs poorly in an

optimal way, since we would then have expected a

higher score for the credal method than the Bayesian

one. This is seen from Table I since in 21.9% of the

cases the credal method outputs a non-singleton set

while the Bayesian method only outputs an erroneous

state in 7.2% of the cases. The credal method outputs a
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TABLE I

Expected Score E[f0(¢)], with 95% Confidence Intervals, for DB(p1:n(X)), DC (P1:n(X)) and DcC (P1:n(X))

f0(¢)> 0 (%) f0(¢) = 0 (%)

Method E[f0(¢)] j ¢ j= 1 j ¢ j= 2 j ¢ j= 1 j ¢ j= 2 j ¢ j= 3
DB(p1:n(X)) 0:93§ 0:002 92.8 0.0 7.2 0.0 0.0

DC (P1:n(X)) 0:85§ 0:002 78.1 13.1 1.8 0.4 6.6

DcC (P1:n(X)) 0:92§ 0:002 91.6 0.0 8.4 0.0 0.0

decision set of no value (i.e., x2 is not in the decision

set or −X is reported) in 8.8% of the cases. In fact,

even if we would let the credal method obtain a reward

of one in cases where two states is reported and one

of them is the truth, the credal method would still

perform worse than the Bayesian method (78:1%+

13:1%= 91:2% compared to 92.8%). Also note that the

Bayesian method DB performs better than the credal
centroid method DcC , however, the difference is not as
high compared to the former case.

4.2. Experiment B–Risk

One argument that one might have for using the

credal method DC is that even though it cannot opti-
mally isolate the cases where the Bayesian method DB
performs poorly, it can still be an interesting choice

when there exists a risk component in the decision prob-

lem, i.e., reporting an erroneous state is coupled with

a negative cost. Indeed, if we use the result from Ta-

ble I, we see that the Bayesian method reports an erro-

neous state in 7.2% of the cases while the credal method

only makes erroneous reports in 1:8%+0:4%= 2:2%

of the cases. Hence, if we would have set ®= 10 in

the score function in (44), we would have obtained

an expected score E[f10(DB(p1:n(X)))]¼ 0:21 for the
Bayesian method and E[f10(DC(P1:n(X)))]¼ 0:63 for the
credal correspondence. However, when risk is incorpo-

rated in the decision problem, there clearly exist cases

when using the Bayesian method for which one would

not simply output the single state that maximizes the

probability, e.g., whenever the joint Bayesian evidence

p1:n(X) is close to the uniform distribution. Let us there-

fore modify DB to a cautious Bayesian method D±B in the
following way

D±B(p1:n(X))
¢
=fx 2 −X : p1:n(x)> ±g (46)

where ± 2 [0, j−X j¡1]. The method partitions the prob-
ability simplex into decision regions, seen in Fig. 12.

Note that a high value of ± yields a less cautious

method and vice versa. Note that when ± = 0 we get

D0B(p1:n(X)) =−X for all joint evidences p1:n(X) that do

not reside on the boundary of the probability simplex.

Also note that when ± = j−X j¡1 we still have decision
regions that are non-singleton.

Now let us use the same simulation settings as in

Experiment A (Section 4.1) but where we now intro-

duce a risk component by setting ®= 10, yielding a

Fig. 12. An example of the cautious Bayesian method in (46)

where ± = 0:2. The parameter ± imposes decision regions by planes

that are parallel to the (proper) faces of the simplex with a distance

° = ±(
p
3=
p
2). The horizontal lines depict the decision region for

−X , the vertical lines depict fx1,x2g, and lastly the region with
diagonal lines depicts fx2g.

Fig. 13. The solid line shows the cautious Bayesian method

D±B(p1:n(X)) and the dashed line the credal method DC (P1:n(X)). The
x-axis depicts ± and the y-axis E[f10(¢)]. Confidence intervals on the

95%-level are also shown.

score function f10. We perform the simulation for at

set of values of the parameter ± 2 [0, j−X j¡1] to see if
there exist parameters that cause the cautious Bayesian

method to outperform the credal method.

4.2.1. Results
The result is shown in Fig. 13. The cautious Bayesian

method outperforms the credal method when ± 2 [0:005,
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TABLE II

Expected Score E[f10(¢)], with 95% Confidence Intervals, for the Methods D0:02B (p1:n(X)) and DC (P1:n(X))

f10(¢)¸ 0 (%) f10(¢)< 0 (%)

Method E[f10(¢)] j ¢ j= 1 j ¢ j= 2 j ¢ j= 3 j ¢ j= 1 j ¢ j= 2
D0:02B (p1:n(X)) 0:69§ 0:006 69.6 22.1 7.1 0.7 0.5

DC (P1:n(X)) 0:62§ 0:010 77.9 13.2 6.7 1.8 0.4

TABLE III

The table shows the cautious Bayesian parameter ± in D±B(p1:n(X)) for different risks ®. The intervals for ± depicts the region for which
D±B(p1:n(X)) outperforms DC(P1:n(X)) with respect to E[f®(¢)] and where the 95% confidence intervals are non-overlapping for the methods.

® 0 2 4 6 8 10

± [0.05, 0.33] [0.04, 0.33] [0.03, 0.14] [0.02, 0.10] [0.01, 0.08] [0.01, 0.07]

0:07]. Let us explore the cautious Bayesian method at

its peak performance, which approximately occur at

± = 0:02. The result of this parameter value is seen in

Table II. We see that the cautious Bayesian method tends

to output a non-singleton set more often than the credal

counterpart. However, the Bayesian method only reports

an erroneous state in 0:7%+0:5%= 1:2% of the cases

compared to 1:8%+0:4%= 2:2% in the credal case and

due to the high risk component this yields a better score

for the Bayesian method. Note that since ± is quite

low and the cautious Bayesian method only outputs −X
in approximately 7.1% of the cases, we can conclude

that the joint Bayesian evidence p1:n(X) is close to the

boundary of the probability simplex in a majority of the

cases, which is quite natural since we have assumed that

a majority (¯ 2 [0:7,0:9]) of the sources output evidence
for the true state x2. Let us further study the sensitivity

of the parameter ± by exploring how a parameter set for

± changes with respect to the risk for the case where

the cautious Bayesian method outperforms the credal

method (where the 95% confidence intervals are non-

overlapping), seen in Table III. From the table we see

that when there is a low risk, ® 2 f0,2g, the parameter
sets for ± where D±B outperforms DC are quite large.
When the risk increases, ® 2 f4,6,8,10g, the parame-
ter sets becomes considerably smaller. From the table

we see that D±B with ± = 0:05 performs better than DC
irrespective of the risk ®.

5. SUMMARY AND CONCLUSIONS

We have characterized the behavior of the Bayesian

and credal combination operators through a number

of examples. We introduced measures for degree of

conflict and imprecision and explored the behavior of

the Bayesian and credal combination operators for a

number of examples where different degrees of conflict

and imprecision were present. We highlighted that when

a strong conflict is present between the sources that

report credal sets, the joint evidence can be highly

imprecise. We therefore introduced Bayesian and credal

discounting operators that can be utilized whenever

information about the reliability of sources is available.

We showed that the credal discounting operator can

be computed by utilizing the extreme points of the

operands (credal set and interval of reliability weights).

Finally, we showed that the credal discounting operator

can have a significant impact on the combined result

when used.

Both the Bayesian and credal discounting operators

have been introduced so that they are consistent with the

underlying paradigm in the respective theories, i.e., the

Bayesian discounting operator takes a single reliability

weight as an argument while the credal such operator

takes a convex set of reliability weights in the form of

an interval. Hence the Bayesian discounting operator

assumes that a precise reliability weight can always

be formulated while in the credal case imprecision

is allowed. Moreover, the credal discounting operator

preserves the intuitive paradigm of being a point-wise

version of the Bayesian counterpart, i.e., the operator

discounts each probability function within the credal

set with respect to each of the reliability weight in the

set (interval) of such weights. The credal discounting

operator has three properties that makes it unique [13]:

(1) it can discount any credal set (i.e., it is not restricted

to a particular type of credal set), (2) a credal set can be

discounted with respect to a set of reliability weights,

i.e., one can express reliability imprecisely, and (3) a

discounted credal set can be reversed to its original form

if the set of reliability weights, used for the discounting,

is known.

We also performed two experiments where we eval-

uate the Bayesian and credal combination operators. In

both experiments the sources report credal sets with an

implicit uniform second-order distribution as a repre-

sentation of not favoring any probability function within

the sets. For the Bayesian combination operator, we

have utilized the expected value of the operand credal

sets, i.e., centroids, for obtaining the joint evidence. We

evaluated the operators by using a simple score function

that gives a reward corresponding to the informativeness
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of the joint evidence and a loss according to a specified

risk.

In the first experiment, we showed that in scenarios

where there exists no risk component, i.e., no cost of

reporting an erroneous decision set, it is clearly benefi-

cial to utilize the Bayesian combination operator instead

of the credal correspondence. This is true even if one

would maintain imprecision by using the credal combi-

nation operator and lastly utilize the centroid for deci-

sion making. However, this difference in performance

was not as clear as in the previous case. Nevertheless,

the latter results show that nothing is gained by main-

taining imprecision and then using the centroid for con-

structing the decision set.

By using the result from the experiment, we con-

cluded that if a large risk component is present, the

credal method is preferred due to a lower number of

erroneous decision sets. However, we introduced a sim-

ple cautious Bayesian method, using a single parameter

that partitions the probability simplex into regions cor-

responding to different decision sets, and we showed

that such a method can outperform the credal corre-

spondence. One potential problem with the cautious

Bayesian method is that one needs to choose an ap-

propriate parameter value. However, we showed that

there exist values for which the method outperforms

the credal method for a set of risk components.

In essence our results tells us that if there is no

risk component in the scenario of interest, then one

should use the Bayesian combination operator, even

if the sources choose to report imprecision by credal

sets. Furthermore, if a risk component does exist in

the scenario, then one should use the cautious Bayesian

method that we introduced. Hence for both cases it is

sufficient to use a single probability function and the

Bayesian combination operator for representing respec-

tively combining evidences. From the perspective of

computational complexity this is indeed positive results,

considering that the number of extreme points of the

joint credal evidence in the worst case can grow expo-

nentially with the number of combinations.

The question then is if there exist cases where one

might want to maintain imprecision by using the credal

combination operator? One possible such scenario could

be when there is a human decision maker involved

in the scenario, in particular when there exists a risk

component. In such cases the decision maker might

want to use the credal combination operator in order to

maintain imprecision for the purpose of keeping track

of worst-case scenarios with respect to the risk.
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APPENDIX

THEOREM 1

©(: : :©(p1(X),p2(X)) : : : ,pn(X))

=
p1(X) : : :pn(X)P
x2−X p1(x) : : :pn(x)

: (47)

PROOF The proof is by induction. Let us introduce the

following shorthand notation

p1:n(X)
¢
=©(©(: : :©(p1(X),p2(X)) : : : ,pn¡1(X)),pn(X)):

(48)
The base case

p1:2(X) =
p1(X)p2(X)P
x2−X p1(X)p2(X)

(49)

holds by (4). Let the induction hypothesis be

p1:n¡1(X) =
p1(X) : : :pn¡1(X)P
x2−X p1(x) : : :pn¡1(x)

: (50)

We need to show that such assumption implies

p1:n(X) =
p1(X) : : :pn(X)P
x2−X p1(x) : : :pn(x)

: (51)

We have that

p1:n(X) =
p1:n¡1(X)pn(X)P
x2−X p1:n¡1(x)pn(x)

: (52)

By using the induction hypothesis in (50), we get

p1:n(X) =

p1(X) : : :pn¡1(X)P
x2−X p1(x) : : :pn¡1(x)

pn(X)P
x2−X

p1(x) : : :pn¡1(x)P
x2−X p1(x) : : :pn¡1(x)

pn(x)

=
p1(X) : : :pn(X)P
x2−X p1(x) : : :pn(x)

: (53)

By (49)—(53), the proof is complete.

THEOREM 2

©C(P1(X),P2(X))
=©C(E(P1(X)),E(P2(X))): (54)

PROOF The proof is inspired by Noack, et al. [21,

Theorem 2]. First note that

©C(E(P1(X)),E(P2(X)))μ ©C(P1(X),P2(X))
(55)

is trivial. Assume that

©C(E(P1(X)),E(P2(X)))½ ©C(P1(X),P2(X)):
(56)

Then there must exists at least one

u(X) 2 ©C(P1(X),P2(X)) (57)

such that

u(X) =2©C(E(P1(X)),E(P2(X))) (58)
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where u(X) has the following form

u(X) =
p1(X)p2(X)P
x2−X p1(x)p2(x)

(59)

and where p1(X) 2 P1(X) and p2(X) 2 P2(X), where at
least one of p1(X) and p2(X) is not an extreme point.

We can express p1(X) and p2(X) as

p1(X) =

mX
i=1

¸ivi(X) (60)

p2(X) =

nX
j=1

®jwj(X) (61)

where vi(X) 2 E(P1(X)), wj(X) 2 E(P2(X)), ¸i ¸ 0,
®j ¸ 0, 1· i ·m, 1· j · n,

Pm
i=1¸i =

Pn
j=1®i = 1, and

where there exists at least one ¸i 2 (0,1) or ®j 2 (0,1).
By using (60) and (61) in (59), we obtain

u(X) =

Pm
i=1

Pn
j=1¸i®jvi(X)wj(X)P

x2−X
³Pm

i=1

Pn
j=1¸i®jvi(x)wj(x)

´ : (62)
Let us introduce the following notation

°i,j
¢
=

¸i®j
P
x2−X vi(x)wj(x)P

x2−X
³Pm

i=1

Pn
j=1¸i®jvi(x)wj(x)

´ : (63)

We can now rephrase u(X) as

u(x) =

mX
i=1

nX
j=1

°i,j
vi(X)wj(X)P
x2−X vi(x)wj(x)

: (64)

Since

vi(X)wj(X)P
x2−X vi(x)wj(x)

2©C(E(P1(X)),E(P2(X))) (65)

and °i,j ¸ 0,
Pm

i=1

Pn
j=1 °i,j = 1, we get (cf (8)):

u(X) 2 ©C(E(P(X)),E(P(X))) (66)

which is a contradiction.

THEOREM 3

ªC(P(X),W) =ªC(E(P(X)),E(W)): (67)

PROOF First note that

ªC(E(P(X)),E(W))μªC(P(X),W) (68)

is trivial. Assume that

ªC(E(P(X)),E(W))½ªC(P(X),W): (69)

Then there must exists at least one

u(X) 2 E(ªC(P(X),W)) (70)

such that

u(X) =2ªC(E(P(X)),E(W)) (71)

where u(X) has the following form

u(X) = wp(X)+ (1¡w)pu(X), (72)

where w 2W, and p(X) 2 P(X), and where at least one
of w and p(X) is not an extreme point. There are three

cases:

Case 1–p(X) 2 E(P(X)), w =2 E(W): We know that

w = ¸w1 + (1¡¸)w2 where w1 6= w2, w1,w2 2 E(W), ¸ 2
(0,1). We get

u(X) = wp(X) + (1¡w)pu(X)
= pu(X) + (¸w1 + (1¡¸)w2)(p(X)¡pu(X))
= pu(X) +¸w1(p(X)¡pu(X))
+ (1¡¸)w2(p(X)¡pu(X))
+¸pu(X)¡¸pu(X)

= ¸(pu(X)+w1(p(X)¡pu(X)))
+ (1¡¸)pu(X)+ (1¡¸)w2(p(X)¡pu(X))

= ¸(pu(X)+w1(p(X)¡pu(X)))
+ (1¡¸)(pu(X)+w2(p(X)¡pu(X)))

= ¸(w1p(X) + (1¡w1)pu(X))
+ (1¡¸)(w2p(X) + (1¡w2)pu(X)): (73)

Hence, u(X) 2ªC(E(P(X)),E(W)) (cf (8)), which is a
contradiction.

Case 2–p(X) =2 E(P(X)), w 2 E(W): We know that

p(X) =
Pn
i=1®ipi(X), where pi(X) 2 E(P(X)), ®i ¸ 0,Pn

i=1®i = 1 where there exists at least one ®i 2 (0,1).
We get

u(X) = w

Ã
nX
i=1

®ipi(X)

!
+(1¡w)pu(X)

+

Ã
nX
i=1

®i(1¡w)pu(X)
!

¡
Ã

nX
i=1

®i(1¡w)pu(X)
!

=

Ã
nX
i=1

®i(wpi(X)+ (1¡w)pu(X))
!

+(1¡w)pu(X)

¡
Ã

nX
i=1

®i(1¡w)pu(X)
!

=

nX
i=1

®i(wpi(X) + (1¡w)pu(X)): (74)

Hence, u(X) 2ªC(E(P(X)),E(W)) (cf (8)), which is a
contradiction.

Case 3–p(X) =2 E(P(X)), w =2 E(W): Similar to

Case 1 and 2, we have that

w = ¸w1 + (1¡¸)w2

p(X) =

nX
i=1

®ipi(X):
(75)
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We get

u(X) = (¸w1 + (1¡¸)w2)
Ã

nX
i=1

®ipi(X)

!
+(1¡ (¸w1 + (1¡¸)w2))pu(X): (76)

From Case 1 we know that the above equation is equiv-

alent to

u(X) = ¸

Ã
w1

Ã
nX
i=1

®ipi(X)

!
+(1¡w1)pu(X)

!

+(1¡¸)
Ã
w2

Ã
nX
i=1

®ipi(X)

!
+(1¡w2)pu(X)

!
:

(77)

From Case 2 we know that the above equation is equiv-

alent to

u(X) = ¸

Ã
nX
i=1

®i(w1pi(X) + (1¡w1)pu(X))
!

+(1¡¸)
Ã

nX
i=1

®i(w2pi(X) + (1¡w2)pu(X))
!
:

(78)

Hence, u(X) 2ªC(E(P(X)),E(W)) (cf (8)), which is a
contradiction. Since all possible cases lead to contra-

dictions we must conclude that

ªC(P(X),W) =ªC(E(P(X)),E(W)): (79)
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Detecting a Small Boat using
Histogram PMHT

SAMUEL J. DAVEY

The Histogram Probabilistic Multi-Hypothesis Tracker

(H-PMHT) is a parametric track before detect algorithm. This ar-

ticle discusses practical issues faced in producing an operationally

relevant implementation of the algorithm. The performance of H-

PMHT is demonstrated on a high resolution radar example con-

taining a small boat in challenging clutter and compared with a

conventional solution based on image segmentation and the Proba-

bilistic Data Association Filter.
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1. INTRODUCTION

The conventional tracking paradigm is to sequen-

tially apply a single frame detector to each sensor frame

and then employ a tracking algorithm to determine

which detector outputs originate from targets and which

are false alarms. The tracker associates detections from

a particular target and estimates parameters of interest

for the target [3], [1]. The obvious shortcoming of this

approach is that it is impossible for the tracker to recover

a target if there are no detector outputs. For low signal

strength targets, this implies that the detector threshold

must be low and the tracker must attempt to suppress

a large number of false alarms. In practice, the tracker

can only do so much and for very low signal strength

targets, conventional tracking fails [8].

In contrast, track-before-detect (TkBD) algorithms

supply the whole predetection sensor frame to the

tracker. In essence the tracking problem remains the

same, but the measurement function is different. What

makes TkBD challenging is that the relationship be-

tween the sensor frame and the target state is non-linear

and often non-Gaussian, whereas point measurements

may often be treated as linear and Gaussian. Apart

from a small number of special cases, non-linear non-

Gaussian estimation problems cannot be solved with a

closed form algorithm. Instead, TkBD algorithms gen-

erally use a numerical approximation to make the prob-

lem tractable. The numerical approximation may take

the form of a fixed discrete grid in state space [17],

[2], [21], or a stochastic sampling method may be used

(i.e., a particle filter) [19], [4], [18]. Alternatively, the

data likelihood ratio may be viewed as an increasing

function and the likelihood given a particular state se-

quence approximated by incoherent or binary integra-

tion [14], [20].

The Histogram Probabilistic Multi-Hypothesis

Tracker (H-PMHT) is an exception: it is a TkBD algo-

rithm that does not use numerical approximation [22],

[24]. H-PMHT uses a unique histogram interpretation of

the sensor frame and expectation maximisation (EM) to

treat the TkBD problem as one of mixture fitting. The

algorithm has the advantage of being capable of han-

dling multiple targets whereas the numerical methods

usually assume a single target. In addition, it does not

require an assumed statistical distribution for the ampli-

tude of the scene background, which may be difficult

to adequately approximate in a realistic application.

Despite its advantages, little work has been pub-

lished on H-PMHT besides the original algorithm de-

velopment [22], [24] and its extension to spectral data

[23]. Pakfiliz and Efe presented marginalised expres-

sions for a two-dimensional filtering problem and com-

pared H-PMHT with a conventional tracking approach

(Interacting Multiple Model Probabilistic Data Associ-

ation with Amplitude Information) [16]. They showed

that H-PMHT provided lower estimation errors. How-

ever, the comparison used two independent simulated
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data sets rather than producing the point-measurements

for the conventional tracker from the sensor frame pro-

vided to H-PMHT. Also, the issue of track initiation,

which is essentially the whole purpose of TkBD, was

not considered. Davey, et al. [8] compared the initia-

tion performance of H-PMHT with other TkBD meth-

ods and with sequential detection and tracking using

simple straight line scenarios. The comparison showed

that H-PMHT provided detection and estimation perfor-

mance similar to the other TkBD approaches considered

but at a fraction of the computation cost. While these re-

sults provide strong motivation for using H-PMHT, the

scenarios were simplistic and not operationally relevant.

Also, only limited implementation information was pro-

vided. Recently, Wieneke used a Wishart prior to enable

the H-PMHT to estimate the covariance matrix of the

target signature [26] and Davey demonstrated how a

particle filter could be used for target state estimates

when the target signature is highly non-Gaussian [6].

This article builds on the comparisons already avail-

able and addresses whether the algorithm still performs

well with real sensor data, which inevitably does not

match the modeling assumptions. It shows that the ad-

vantages illustrated on thumbnail images in [8] do ex-

trapolate to larger, more relevant image sizes. The per-

formance of the algorithm is investigated as a function

of the image size, the number of targets and of the dy-

namic range in target echo strength. A matrix-vector

form of the algorithm is derived for the case of a two

dimensional sensor image frame and this is shown to

significantly improve implementation efficiency. An ef-

ficient method for incorporating non-Gaussian targets

is developed and compared with the computationally

demanding particle filter approach introduced in [6].

Finally the H-PMHT is then demonstrated on an ex-

perimental data set containing a small boat collected by

Defence Research and Development Canada (DRDC)

[13]. The performance of H-PMHT on the experimental

data is compared with a conventional tracking approach

consisting of an image segmentation detector and two

alternate trackers: a Probabilistic Data Association Fil-

ter (PDAF) and a point-measurement PMHT. The main

purpose of this example is not a quantitative compar-

ison, but rather to qualitatively investigate the scaling

performance of the algorithm to high resolution radar

imagery and the sensitivity of the algorithm to mismatch

in the target and clutter models.

The article is arranged as follows: a review of the

H-PMHT is presented in Section 2; Section 3 illustrates

the performance scaling of the algorithm as a function

of the measurement image volume, number of targets

and diversity of targets, and derives an efficient im-

plementation representation for two dimensional sensor

images; Section 4 presents a track management method

for H-PMHT; Section 5 introduces a new method for

non-Gaussian targets; and Section 6 compares the per-

formance of H-PMHT and conventional tracking on a

challenging maritime surveillance experiment.

2. REVIEW OF H-PMHT

The H-PMHT algorithm, as introduced in [22], is

now reviewed. H-PMHT is derived by interpreting the

sensor image as a histogram of observations of an

underlying random process. The received energy in each

cell is quantised, and the resulting integer is treated

as a count of the number of measurements that fell

within that cell. The sum over all of the cells is the total

number of measurements taken. The probability mass

function for these discrete measurements is modelled as

a multinomial distribution where the probability mass

for each cell is the superposition of target and noise

contributions.

The probability that an individual histogram shot

falls in cell l is
Pl(Xt)
P(Xt)

(1)

where

P(Xt)´
X
l

Pl(Xt) (2)

and

Pl(Xt) =
Z
Bl

f(¿ jXt)d¿: (3)

The spatial extent of cell l (which is of arbitrary dimen-

sionality) is Bl and Xt is the system state vector at time

t, i.e., it summarises all of the targets.

The underlying continuous spatial density, f(¿ jXt)
is the superposition of a background clutter model and

M target components

f(¿ jXt)´ f(¿ jXt;¦t) = ¼0t G0(¿) +
MX
m=1

¼mt G
m(¿ j xmt )

(4)

where xmt is the state of the mth target and the mixing
proportions form a probability vector, i.e., ¼mt ¸ 0 and

MX
m=0

¼mt = 1: (5)

The mixing proportions can be interpreted as the rela-

tive power of each target. In the simplest case, the back-

ground clutter model is uniform and G0(¿) is a constant.

In spatially non-uniform clutter, mapping approaches

such as [5], [10] may be used. The target component

Gm(¿ j xmt ) may be common across targets, e.g. it could
represent the point spread function (psf) for a sensor

observing point scatterers, or each target may have a

unique signature, such as with high resolution optical

sensors. Either way, it is assumed to have a known func-

tional form with potentially unknown parameters.

H-PMHT is an EM algorithm that treats the assign-

ment of histogram shots to model components and the

precise location of shots as missing data. In addition, it

allows for unobserved cells. These are notionally sen-

sor pixels for which no data was collected. One use

for this concept is in tracking targets near the edge of

the sensor frame [24]. The data from these unobserved
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cells is also treated as missing data. Assuming an ex-

isting estimate of the system state, X(i)t , and the mixing
proportions, ¦ (i)t , H-PMHT determines the probability

of the missing data (E-step) and then refines the state

estimate (M-step).

Denote the per-cell proportion of the contribution of

target m at time t as

Pml (x
m(i)
t ) =

Z
Bl

Gm(¿ j xm(i)t )d¿ (6)

then

Pl(X
(i)
t ) =

MX
m=0

¼m(i)t Pml (x
m(i)
t ): (7)

The observed power in cell l at time t is denoted ztl.

Define
kZtk=

X
l

ztl (8)

namely the L1 norm, and let

z̄tl =

8>><>>:
ztl

Pl(X
(i)
t )

l 2 L

kZtk
P(X(i)t )

l 2 L̄
(9)

where L is the set of all observed cells and L̄ is the set
of all unobserved cells, which may be empty. S is the
union of sets L and L̄.
The parameters to be estimated are the mixing pro-

portions, ¼mt and the target states, x
m
t . The updated mix-

ing proportion estimate is given by

¼m(i+1)t =
pm(i)tPM
m=0p

m(i)
t

(10)

where
pm(i)t = ¼m(i)t

X
l2S
z̄tlP

m
l (x

m(i)
t ): (11)

The state estimate requires the maximisation of the

function

QmX =

TX
t=1

kZtk
P(X(i)t )

logfp(xmt j xmt¡1)g

+

TX
t=1

X
l2S
¼m(i)t z̄tl

Z
Bl

Gm(¿ j xm(i)t ) logfGm(¿ j xmt )gd¿:

(12)

For the case of linear Gaussian statistics, Streit [22]

demonstrated that this maximisation problem is equiva-

lent to a point measurement filtering problem with syn-

thetic measurements

z̃m(i)t =
¼m(i)t

p
m(i)
t

X
l2S
z̄tlP

m
l (x

m(i)
t )z̃

m(i)
tl (13)

where the cell-level centroid, z̃m(i)t , is given by

z̃m(i)tl =
1

Pml (x
m(i)
t )

Z
Bl

¿Gm(¿ j xm(i)t )d¿: (14)

The associated synthetic measurement covariance is

R̃mt =
1

p
m(i)
t

Rmt (15)

and the synthetic process covariance is

Q̃mt =
P(Xit )

kZtk
Qmt : (16)

A Kalman Filter can be used to solve this point

measurement filtering problem.

The H-PMHT algorithm then consists of iteratively

equating:

² cell probabilities, (6) and (7)
² expected measurements, (9)
² cell-level centroids, (14)
² synthetic measurements and covariance matrices,

(13), (15) and (16)

² mixing proportion estimates, (10)
² target state estimates, by filtering the synthetic mea-
surements and covariances

3. EFFICIENT IMPLEMENTATION

The majority of the H-PMHT literature does not

discuss the computation resource required for the al-

gorithm. The exception is the comparison work in [8],

which shows that the algorithm is inexpensive compared

with other TkBD methods on thumbnail images. How-

ever, it is intuitive that a direct implementation of the

equations reviewed in the previous section will have a

computation cost that scales linearly with the number of

pixels in the data image. This is consistent with results

reported by Vo, et al. [25] where a non-linear growth

was found as a function of resolution (the authors of

[25] suggest that this growth is exponential, although

one should expect it to be quadratic). This growth is

clearly undesirable and potentially disastrous for video

imagery, which can be expected to contain millions of

pixels.

We now demonstrate that with a little finesse, this

quadratic complexity can be tamed, and introduce other

measures aimed at improved efficiency.

3.1. Pixel Gating

The standard H-PMHT equations as presented in

Section 2 show a linear complexity in the number of

targets and the number of pixels in the sensor image.

Put simply, there are a number of operations which (at

first blush) should be performed for each target over

every pixel. However, intuition suggests that pixels very

distant from the target state estimate will have negligible

influence.

This is nothing more than an expression of the ubiq-

uitous method of gating for point-measurement estima-

tors. For example, under Probabilistic Data Association

or point-measurement PMHT, one could calculate an

association probability for every measurement in the
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frame, but many of these measurements are so far away

from the target that we know their association probabil-

ity will be zero: there is no need to waste the computer’s

time in calculating these numbers.

To make this discussion more crisp, let Gm be the
set of cells with non-negligible probability for target m,

namely Gm ´ fl : Pml (xmt )> ²g for some arbitrary small
². Equation (11) can then be replaced with

pm(i)t = ¼m(i)t

X
l2Gm

z̄tlP
m
l (x

m(i)
t ) (17)

and similarly for (13).

It is clear that for a fixed target, the cardinality of

Gm is independent of the cardinality of S, ignoring edge
effects. That is, the complexity is independent of the

image size for a fixed target size.

3.2. Clustering

Another common method for reducing complexity

in multi-target trackers is clustering [3]. For algorithms

whose computation complexity is more than linear in

the number of targets, it makes sense to divide the

total set of targets into subsets of potentially interacting

targets such that each subset is independent of the

others. These subsets are commonly called clusters and

the process of forming them clustering. For H-PMHT

the complexity is linear in the number of targets, so

there would seem to be no real advantage in performing

clustering.

While clustering will not improve the computation

cost for H-PMHT, it will make a difference to the mem-

ory requirements. Assuming the gating approach de-

scribed above, there will be a collection of gates, Gm.
Each track only needs to operate over the pixels in its

own gate. However, there are some actions that operate

over the whole image. Specifically, the overall cell prob-

ability Pl(Xt) should be determined for the region
SGm,

and some of the track management functions to follow

operate over the whole image. If clustering is used, then

the amount of memory required for large arrays would

be reduced. The performance improvement gained can

be significant for large images where memory caching

plays an important role in overall speed.

Clustering methods are well known in the context

of point-measurement multi-target tracking and are not

pursued in this paper.

3.3. Partial EM Update

H-PMHT is an EM algorithm that iterates data as-

sociation and state estimation stages until convergence.

The proper way to measure this convergence is through

the EM auxiliary function, which can be expressed as

Q(X,¦ j X(i),¦ (i)) =
TX
t=1

Qt¦ +

MX
m=0

QmX (18)

where the term Qt¦ depends only on the mixing propor-

tions, and each term QmX depend on the state sequence

of a single target [22]. Importantly, the target state se-

quences are not coupled, so each QmX can be indepen-

dently optimised and the estimation stage is a bank of

parallel single target estimators.

EM iterations should be repeated until (18) con-

verges, i.e., all target states and the mixing proportions

are estimated repeatedly until convergence. The Qt¦
term couples all the targets together through normalisa-

tion, so this term will not converge until all of the target

states converge. However, it is likely that each target

will converge at a different rate. In particular, when a

track has been spuriously initiated without the support

of a real target, the state estimates will usually converge

very quickly, since the data association stage finds no

support for the track and it essentially dead-reckons. In

contrast, tracks that are initiated on a real target response

may take many iterations to recover from initialisation

error, particularly if the target velocity is high. So it is

likely that much effort would be spent repeating the esti-

mation of target states for some tracks that have already

converged while the algorithm waits for other tracks that

have not converged.

An intuitive way to reduce the redundant reestima-

tion of converged states is to use partial EM steps. Un-

der a partial EM step, only a subset of the states are

iterated. Because of the factorised form of the auxiliary

function (18), the only way that a change in the state

of target m will effect the target auxiliary component

for a different target p, Q
p
X , is if the change in the state

of target m affects the data association stage for target

p. Under the assumption that this will not happen if

target p has already converged, then one may employ

a partial EM iteration that keeps the state of p fixed

and refines the state of m. This not only saves on the

computation required for the estimator of p, but also the

computation required for the cell probabilities, expected

measurements, centroids and synthetic measurements.

Adopting partial EM iterations in this manner can re-

duce the overall algorithm resource requirement by as

much as an order of magnitude because the majority

of the tracks carried by the algorithm are spurious and

converge very quickly.

In practice the convergence test for the algorithm

will limit the number of iterations based on the max-

imum tolerable processing delay per frame. By using

partial updates, the time taken for each iteration is re-

duced as the iteration count increases, since fewer tracks

still require refinement. The result is that a much greater

maximum number of iterations may be used without

significant impact on the overall algorithm speed.

The partial-EM H-PMHT consists of the following

steps:

² For converged tracks, fix the cell probabilities using
the value determined on the final iteration before

convergence.
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² For non-converged tracks, determine the new cell

probabilities for this iteration using (6).

² Calculate the overall cell probabilities (7).
² For non-converged tracks determine:
² expected measurements, (9)
² cell-level centroids, (14)
² synthetic measurements and covariance matrices,

(13), (15) and (16)

² target state estimates, by filtering the synthetic mea-
surements and covariances

² For all tracks, determine new mixing proportion esti-
mates, (10)

In principle the convergence test should be based on

the cost function element QmX . However, the only reason

to determine this quantity is to test for convergence, and

this is relatively expensive. Therefore the implementa-

tion used in this paper used a convergence test based

on the target state: when the difference between the

state estimates for consecutive iterations dropped be-

low a threshold, the track was deemed converged. A

maximum of ten iterations was also applied.

3.4. Separable Measurement Function

The H-PMHT derivation uses single indexing of the

sensor cells. Single indexing does not limit the sensor

dimensionality, but it makes it more difficult to decouple

the sensor dimensions if they are independent. For the

following, assume a two dimensional sensor with an

independent grid such thatZ
Bl

G(¿ j x)d¿ ´
Z
Bi
X

Z
B
j

Y

G(u,v j x)dvdu (19)

where the arbitrary index l corresponds to the same cell

as the arbitrary double index i,j.

Assume also a separable point spread function:

G(u,v j x)´ gX(u j x)gY(v j x): (20)

The standard H-PMHT equations presented in the

previous section can solve this problem, but it’s desir-

able to exploit the structure of the target function to

achieve a factorised algorithm. The results derived here

are equivalent to the algorithm presented in [16]. Here

more detail is shown to justify the end result and com-

pact vector notation is adopted to help make compact

intuitive expressions and to point towards efficient im-

plementation.

In the following discussion, the time subscripts and

iteration indices are suppressed to simplify notation.

The per-cell target probabilities (6) directly factorise

into a product of two integrals:

Pmij (x
m
t ) =

(Z
Bi
X

gX(u j xm)du
)(Z

B
j

Y

gY(v j xm)dv
)

´ PmX (i)PmY (j): (21)

Define the stacked vectors

PmX = [P
m
X (1),P

m
X (2), : : :P

m
X (NX)]

T (22)

where NX is the number of cells in the X-dimension.

Similarly define PmY .
Let PX be a matrix of the X per-cell contributions

PX = [P
0
X ,P

1
X , : : :P

M
X ] (23)

and similarly define PY, then

P´ fPij(X)g=
(

MX
m=0

¼mPmij (x
m)

)
= PX¤P

T
Y (24)

where ¤ is a diagonal matrix of the ¼m. Note that

(24) is simply a matrix-vector version of (7). They are

equivalent, but (24) represents an explicit factorisation

of (7) exploiting the separable point spread function.

The normalised measurements are

Z̄= Zt:=P (25)

where the Matlab-style := notation denotes element-wise

division.

The unscaled mixing proportion estimate is given by

pm = ¼m
X
i,j

z̄ijP
m
X (i)P

m
Y (j) = ¼

mfPmXgT Z̄PmY : (26)

Again, (26) is equivalent to (11) but explicitly factorises

the calculation of pm due to the separable point spread

function.

The cell-level centroids are given by

z̃mij =
1

PmX (i)P
m
Y (j)

Z
Bi
X

Z
B
j

Y

·
u

v

¸
gX(u j xm)gY(v j xm)dvdu,

=
1

PmX (i)P
m
Y (j)

"R
Bi
X

R
B
j

Y

ugX(u j xm)gY(v j xmt )dvduR
Bi
X

R
B
j

Y

vgX(u j xm)gY(v j xmt )dvdu

#

=
1

PmX (i)P
m
Y (j)

"
PmY (j)

R
Bi
X

ugX(u j xm)du
PmX (i)

R
B
j

Y

vgY(v j xm)dv

#

=

"
1=PmX (i)

R
Bi
X

ugX(u j xm)du
1=PmY (j)

R
B
j

Y

vgY(v j xm)dv

#
´
·
z̃mX (i)=P

m
X (i)

z̃mY (j)=P
m
Y (j)

¸
(27)

i.e., as intuitively expected, the centroids are indepen-

dent in the sensing dimensions. Note that the term z̃ is

different to (14) in that it does not include the normalis-

ing term (abusing notation, z̃m14 = z̃
m
27=P

m). This has been

done to achieve a more efficient vector formulation in

the following step.
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Thus the synthetic measurements are

z̃m =
¼m

pm

X
i

X
j

z̄ijP
m
X (i)P

m
Y (j)z̃

m
ij ,

=
¼m

pm

· P
i

P
j z̄ijP

m
X (i)P

m
Y (j)z̃

m
X (i)=P

m
X (i)P

i

P
j z̄ijP

m
X (i)P

m
Y (j)z̃

m
Y (j)=P

m
Y (j)

¸

=
¼m

pm

24Pi z̃
m
X (i)

nP
j z̄ijP

m
Y (j)

o
P
j z̃
m
Y (j)

nP
i z̄ijP

m
X (i)

o
35

=
¼m

pm

·fz̃mXgTZ̄PmY
fPmXgTZ̄z̃mY

¸
(28)

where

z̃mX = [z̃
m
X (1), : : : z̃

m
X (NX)]

T (29)

and similarly for z̃mY .
The synthetic measurement and process covariances

remain the same, and the state estimates may now be

determined using a Kalman Filter.

The results above can be extended to higher dimen-

sions, for example if the sensor forms range, Doppler,

azimuth and elevation bins, then the sensor image would

be four dimensional. In such a case, compact expres-

sions such as (28) rely on stacking the dimensions to

take advantage of matrix algebra.

The matrix-vector formulation above does not ex-

plicitly reduce the number of operations required. How-

ever, if the algorithm is implemented in a higher level

computer language, it is likely that expressing the

mathematics this way makes the algorithm amenable

to the language’s intrinsic pipelining and paralleli-

sation capabilities. It is the author’s experience that

within the Matlab environment the speed difference is

significant.

3.5. Numerical Illustration

Consider a simplistic example to numerically verify

the scaling of the algorithm as a function of image size

and the number of targets. At this stage we have not

introduced track management, so the algorithm is ini-

tialised with the true state of each target and recursively

updated using the various efficiency measures described

above. Fig. 1 shows an example scenario with 24 targets.

All of the targets move with a speed of 1 pixel per frame

and are positioned away from the image boundaries and

each other. For small images with many targets, there

will be inevitable overlap.

Monte Carlo trials of the scenario in Fig. 1 were

performed as a function of the number of targets and

the image size. The target spacing was proportional to

the image size. For each combination of target count

and image size, 100 Monte Carlo trials were performed

(a total of 9£ 16£ 100 = 14400 trials). The CPU time

spent by H-PMHT is shown in Fig. 2 with 1-sigma

error-bars. Fig. 2(a) shows the increase in cost as a

function of the number of targets with a separate curve

Fig. 1. Scaling scenario.

for each image size. There is no statistical difference

between any of these curves. The growth appears to

be somewhat less than linear in the number of targets.

This is because of the pipelining effect mentioned in

the previous section: the code itself has a simple loop

over the targets, but the cost of executing this loop

is less than linear because of loop overheads and the

Matlab interpreter’s ability to optimise the loop. The

independence of the CPU cost from total image size

is emphasised in Fig. 2(b) where the cost for a fixed

number of targets is shown as a function of image size.

Different curves show an increasing target density, but

each curve remains flat.

Next the effect of partial EM iterations was investi-

gated using a fixed number of 4 targets and an image

size of 50,000 pixels. The target geometry was the same

as in the scaling simulations. However, track manage-

ment was used to automatically acquire the targets in-

stead of initialising with the truth, as above. The track

manager is described in Section 4. The maximum num-

ber of EM iterations for a single time update was lim-

ited to 100, but this limit was rarely met. The number

of iterations for each update of each track was counted

for 100 monte carlo trials. Under full EM iterations, all

tracks are iterated until all tracks have converged, so

the number of iterations was the same for all tracks at

a particular scan. Under partial EM iterations, iterations

were only performed on tracks yet to converge, so the

number of iterations can be different for each track.

The track manager used candidate and established

tracks as part of the initiation scheme, as described in

Section 4. Separate counts were recorded for candidate

and established tracks. The mean number of EM itera-

tions for established tracks was 2.7 under full EM iter-

ations and 2.1 under partial EM iterations. The benefit

is minor because the uncertainty in the target state is

small and only a couple of EM iterations are required.

In effect, the prior is very good because these tracks

correspond to real targets that have been under track

172 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 2 DECEMBER 2011



Fig. 2. CPU requirement scaling. (a) Growth with number of

targets. (b) Growth with image size.

for some time. In contrast, the mean number of EM

iterations for candidate tracks was 55.8 under full EM

and 12.0 under partial EM. Histograms of the number of

iterations per track under full and partial EM are shown

in Fig. 3.

In this example, the tracker only formed estab-

lished tracks on the 4 targets whereas there were an

average of 74.8 candidate tracks. This means that the

computational performance is limited by the candidate

tracks, and the partial EM iterations have delivered

roughly a factor of 5 improvement. The number of can-

didate tracks depends on the size of the surveillance

region and, in practice, the maximum number of iter-

ations would be limited to many fewer than 100. This

means that the benefit of partial EM iterations will be

application dependent and likely much less than the

factor of 5 here. Nevertheless, it offers a substantial

improvement.

Fig. 3. Benefit of partial EM iterations.

4. TRACK MANAGEMENT

The core H-PMHT algorithm updates existing

tracks, but does not provide a means for initiating new

tracks or terminating old tracks. These functions are

essential for a operationally relevant tracker, especially

since the benefit of H-PMHT is espoused as high de-

tection sensitivity. This section describes how track ini-

tiation and termination can be incorporated into the al-

gorithm.

To begin with, observe that the H-PMHT as a black-

box looks very similar to a Joint Probabilistic Data

Association tracker: there is a list of tracks, grouped

into clusters, which interact with each other, and the

algorithm modifies these tracks based on observed data.

Given this structural familiarity, it should come as no

surprise that well known track maintenance methods can

be directly used with H-PMHT.

The tracker uses two lists of tracks: established

tracks, which the algorithm has high confidence in; and

candidate tracks (also referred to as tentative tracks),

which correspond to potential targets, but do not have a

high confidence. Candidate tracks are promoted to es-

tablished based on their confidence, and track termi-

nation is also based on confidence. Established tracks

have priority access to the sensor data, followed by can-

didate tracks, and finally a process which forms new

candidate tracks, as shown in Fig. 4. In the figure, the

two track-update blocks are separate instances of the H-

PMHT algorithm. For the purposes of this paper they

are identical, although for some applications it may be

appropriate to vary their parameters. The measurements

and residual measurements are sensor images. The hi-

erarchial data access prevents the tracker from forming

duplicate tracks on targets that already have an existing

track in either the established or candidate list.

Recall that these two track lists are a representation

of a mixture model. In this light, one can view the

established track list as those components of the mixture

that are persistent and relatively strong, whereas the
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Fig. 4. Track management flow diagram.

candidate track list is a mixture representation of the

remaining image structure that is inconsistent with the

clutter model.

In order to realise the management structure in Fig. 4

the following elements are required: a measure of track

quality or confidence; a set of rules for track decisions;

a method for vetting the sensor image to enable hi-

erarchial data access; and a method for forming new

candidate tracks based on data. Each of these is now

described.

The quality of each track is quantified by estimating

the track’s SNR. In this context, define the SNR as the

ratio of the peak level of the target spread function to

the local noise floor. It will be expressed in decibels,

namely

smt ´ 10log10
¼mt maxlfPml g

¼0t
: (30)

For a rectangular image, a Gaussian point spread func-

tion and uniform clutter, the SNR is simplified to

smt = 10log10
¼mt NXNY
¼0t j2¼Rj

: (31)

The SNR equations above use the true mixing pro-

portions, ¼mt , which must be replaced by their estimates,

since they are unknown. This paper is focused on a

sequential implementation of H-PMHT, which means

that these estimates are based on a single frame of data

and are therefore expected to fluctuate. An alternative

is to introduce dynamics within the ¼mt priors through

the Hysteresis approach [7]. This method has not yet

been applied to H-PMHT. However, the algorithm is

very similar to the point-measurement PMHT used in

[7] and the application of the Hysteresis model would

be relatively straightforward.

The next element of the track manager is the set

of decision rules. Since the track confidence is driven

by SNR estimates based on a single frame of data,

the track quality statistics are expected to fluctuate and

it is appropriate to use M out of N style decisions,

much the same as might be used in a conventional

point-measurement tracker. The particular threshold and

suitable values for M and N are application dependent.

The values used in specific examples in this paper are

provided with the examples.

The data vetting function is used to give the differ-

ent status tracks hierarchial access to the sensor image.

In a point-measurement tracker, this is as simple as re-

moving measurements that have been associated with

established tracks from the measurement list before data

association with the candidate tracks. The H-PMHT re-

quires a vetting method that modifies the sensor im-

age and removes target energy associated with existing

tracks. For this, the track manager uses the whitening

method proposed in [24].

The H-PMHT estimates the parameters of a mixture

distribution. On convergence, the total cell probabilities,

P, represent the fitted distribution. Near targets, the Pl
values will be relatively high and for pixels far from

targets, the Pl value will be purely the background noise

component, ¼0P0l . The ratio of the total cell probability

to the background component, Pl=(¼
0
t P

0
l ) is a mask

which is unity far from targets and has a higher value

close to targets. Dividing the sensor image pixel-wise

by this mask suppresses the targets

z0tl =
¼0t P

0
l

Pl
ztl: (32)

This whitened image is provided as input to subsequent

stages. Namely, the established track mixture whitens

the image before candidate tracks are updated and then

the candidate track mixture whitens the image before

the manager attempts to start new candidate tracks.

Fig. 5 shows a simplified illustration of the process.

In the example, there are two targets: one broad target

at (45,60) and a more compact one at (40,40). The

background noise is uniform and Gaussian. Fig. 5(a)

shows the sensor image. Suppose that the tracker has an

established track on the broad target. Fig. 5(b) shows the

mixture model corresponding to the established track
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Fig. 5. Sensor image vetting. (a) Original sensor image. (b) Mixture pdf of existing tracks. (c) Whitened sensor image.

list. Fig. 5(c) shows the whitened image achieved by

pixel-wise dividing the image in (a) by the image in

(b). The second target is preserved but the first target,

for which a track already exists, is suppressed.

The final element of the track manager is the process

to create new candidate tracks. The author has tested

two alternatives for this process. The first alternative

is to use incoherent integration along with the process

model to accumulate data over multiple frames. When

a pixel exceeds a prescribed threshold, a new candidate

track is created in that location with zero velocity. This

is similar to one-point initialisation [3] but the detector

input is an accumulated image instead of a single frame.

The accumulated image is recursively defined as

³t = (1¡®)Zt+®f³t¡1 ? Tg (33)

where 0< ®< 1 is a forgetting factor, ? is a two dimen-

sional convolution, and T is a transition kernal which

gives the prior probability that a target in pixel (i,j) at

time t¡1 will be in pixel (i0,j0) at time t: it is spec-
ified by the prior target velocity distribution. The au-

thor found this method to work well for slow moving

targets.

The application in this paper uses the second method

for forming candidates: two point differencing [3]. Here

a single frame detector is used to locate potential targets

and then a new candidate track is formed on pairs

of detections from consecutive frames when they are

sufficiently close. This was found to work better in the

application because the target moves through tens of

pixels between each frame and so the transition kernal

T above was too broad: the accumulated image was

dominated by the current measurement Zt and too many

candidate tracks were initiated on clutter.

5. STRUCTURED TARGETS

The original presentation of the H-PMHT algorithm

[22] showed that for linear Gaussian mixture com-

ponents, i.e., G(¿ j x) =N (¿ ;Hx,R), the EM auxiliary

function is equivalent to the log-likelihood of a point-

measurement filtering problem. This is achieved by fac-

torising (12) and completing the square. Essentially (12)

is a sum of quadratics in the target state which may be

collected into a single quadratic, which is equivalent to

the log of a normal distribution.

The same method can be used for a Gaussian mea-

surement function where the mean is a non-linear func-

tion of the target state, i.e., G(¿ j x) =N (¿ ;h(x),R),
with h(x) any function of the target state. In this case
completing the square leads to an equivalent point-

measurement problem where the measurements are non-

linear and the noise is Gaussian [6]. The original non-

linear relationship between the mean of the target point-

spread-function and the target state is preserved as the

non-linear point-measurement function, i.e.,X
l2S
¼m(i)t z̄tl

Z
Bl

Gm(¿ j xm(i)t ) logfGm(¿ j xmt )gd¿

! logfN (z̃;h(x), R̃)g: (34)

Depending on the non-linearity, this might be solved

by analytic linearisation (an extended Kalman Filter) or

Monte Carlo methods.

For a target signature that is non-Gaussian, it be-

comes more difficult. For an arbitrary target, the integral

in (34) is intractable. One solution is to use a numerical

approximation: in [6] a grid-based approximation was

used to evaluate the integral in (34) which was then

used as an equivalent likelihood function to drive a par-

ticle filter. This method is capable of tracking any tar-

get structure, including a non-parametric shape estimate

derived from data. However, it is numerically intensive.

This section describes an alternative method that can

used for non-Gaussian targets based on approximating

the target signature as a Gaussian with spatially varying

parameters.

5.1. Cell-Varying Point Spread Function

Unfortunately, the application that follows has a

more complicated measurement function than above.

In the application, the sensor builds up an image by

sweeping an antenna across azimuth and measuring a

range profile at each position. This creates an array of

data in range bins and azimuths, but the data from dif-

ferent azimuths is collected sequentially, not simulta-

neously. This means that the airborne sensor platform
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Fig. 6. Point spread function distortion due to sensor motion. (a) Target-sensor geometry. (b) Fixed sensor. (c) Moving sensor.

moves between azimuth collects, and the relative tar-

get position changes. The sensor response is a non-

linear function of the relative target position. One way

to model this is through a cell-varying target response:

G(¿ j x)!Gl(¿ j x).
It can be shown (see Appendix A.1 for details) that

the point-measurement result (34) can be further ex-

tended to the cell-varying psf situation. Provided that

the target response can be expressed as a Gaussian func-

tion with a cell-dependent non-linear mean, Gl(¿ j x)
=N (¿ ;hl(x),R), then there exists an equivalent point-
measurement problem withX

l2S
¼m(i)t z̄tl

Z
Bl

Gml (¿ j xm(i)t ) logfGml (¿ j xmt )gd¿

! logfN (z̃mt ; h̃mt (xmt ), R̃
m

t )g: (35)

Refer to R̃
m

t , h̃
m
t (x) and z̃

m
t as the synthetic-measure-

ment-covariance, synthetic-mean and synthetic-mea-

surement respectively. For clarity, suppress the time and

target indices.

The synthetic measurement covariance is the same

as for the linear case, given in (15), namely

R̃=
1

pm(i)t

R

´ (¼m(i)t w)¡1R

where w =
P
l2S wl, and wl = z̄tlP

m
l (x

m(i)
t ).

The synthetic mean is defined as

h̃TR¡1h̃=
1

w

X
l2S
wlh

T
l R

¡1hl: (36)

If the psf is separable, as in the previous section, then

R will be diagonal, and (36) simplifies to

h̃(j) =

s
1

w

X
l2S
wlhl(j)2: (37)

That is, h̃ is a weighted RMS average of the hl values.
The synthetic measurement is defined as

h̃TR¡1z̃=
1

w

X
l2S
wlh

T
l R

¡1z̃l (38)

where z̃l is the cell-level centroid for the target at cell l
and is given by (14). Again, if the psf is separable, then

R will be diagonal, and (38) simplifies to

z̃(j) =
1

wh̃(j)

X
l2S
wlhl(j)z̃l(j): (39)

5.2. Application Example

For the application in this paper, the sensor forms

range and azimuth cells and it moves as it collects the

data. We now demonstrate how the cell-dependent psf

model just described can be used to account for this

motion.

Let (ustl,v
s
tl) denote the Cartesian position of the

sensor when cell l was observed. These locations change

from one scan to the next and within the scan (hence

the indices). The target state is in a Cartesian frame

xmt = [u
m
t , _u

m
t ,v

m
t , _v

m
t ]
T but the sensor response is polar,

based on the range and bearing to the target when the

particular cell was formed.

Note that both the target and the sensor move as a

function of time but only the sensor motion has been

modeled at a cell-to-cell level. The target has been

implicitly assumed to be at the same position for every

cell l. This is not correct because it’s a moving target,

but the target speed in the application is small and the

effect of target motion will be assumed to be minor.

Because the sensor moves between collecting cells,

the range and bearing equation is cell-dependent and is

given by

hl(x
m
t ) =

8><>:
q
(umt ¡ustl)2 + (vmt ¡ vstl)2

arctan

μ
vmt ¡ vstl
umt ¡ ustl

¶
9>=>; : (40)

The effect of this sensor movement is therefore to

distort the psf. Fig. 6 illustrates the difference between

the psf for a fixed sensor and for a moving one. Fig. 6(a)

shows the target-sensor geometry, (b) shows the psf

for a fixed sensor at (1000,1000) and (c) shows the

moving sensor psf. This is an exaggerated example, but

illustrates the potential effect of sensor motion.
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Fig. 7. Non-Gaussian point spread function. (a) Continuous-domain target psf. (b) Target response per cell. (c) Cell-varying spread function.

Substituting the cell-dependent hl(x
m
t ) definition into

the synthetic measurement leads to the equivalent mea-

surement function

h̃(x) =

8>>>><>>>>:

μ
1

w

P
l wl[(u

m
t ¡ustl)2 + (vmt ¡ vstl)2]

¶1=2
Ã
1

w

P
l wl

·
arctan

μ
vmt ¡ vstl
umt ¡ ustl

¶¸2!1=2
9>>>>=>>>>;
(41)

which is the weighted root-mean-square range and bear-

ing.

The estimation problem has been transformed from

an image-measurement with target distortion due to

motion, into a point-measurement with Gaussian noise.

The implementation demonstrated in Section 6 used an

extended Kalman Filter (EKF) to deal with the non-

linearity [3]. Although the weighting values, wl, are data

dependent, the synthetic measurement function may be

constructed analytically, so it is possible to determine a

Jacobian.

The sensor positions in (41) are known constants and

the derivatives required for the Jacobian can be shown

to be

@h̃(x)[1]
@umt

=
1

h̃(x)[1]

Ã
umt ¡

1

w

X
l

wlu
s
tl

!

@h̃(x)[1]
@vmt

=
1

h̃(x)[1]

Ã
vmt ¡

1

w

X
l

wlv
s
tl

!

@h̃(x)[2]
@umt

=¡ 1

h̃(x)[2]

1

w

X
l

wl
vmt ¡ vstl

(umt ¡ ustl)2 + (vmt ¡ vstl)2

@h̃(x)[2]
@vmt

=
1

h̃(x)[2]

1

w

X
l

wl
umt ¡ ustl

(umt ¡ustl)2 + (vmt ¡ vstl)2

which are unsurprisingly very similar to the terms found

in a standard range-bearing point-measurement prob-

lem [3].

5.3. Numerical Illustration
The result above may seem obscure and perhaps

only useful in special situations. However, it can ac-

tually be used as a very general tool for approximating

non-Gaussian targets. In [6] the particle filter was used

to track a non-Gaussian target with H-PMHT. The tar-

get in that example was chosen look look like the letter

C. It was shown that a non-Gaussian H-PMHT was far

superior to the Gaussian approximation on several ex-

amples, including crossing targets and track initiation.

We now demonstrate that this same letter C target can be

tracked well using a cell-varying Gaussian point spread

function. The purpose here is to qualitatively indicate

the utility of the approach, not quantitatively assess it.

The letter-C target signature is given in radial coor-

dinates by

h(r,μ) =

(
A if 5¸ r ¸ 6 and jμj> ¼

4

0 otherwise

(42)

where A is a normalising constant. This response is

shown in Fig. 7(a). The contribution of the target to

each pixel is the integral of h(r,μ) over that pixel. An

example of this is shown in Fig. 7(b).

Approximate the target signature by

hl(x,y) =

·
x

y

¸
¡
·
xl

yl

¸
(43)

where xl and yl define a cell varying mean.

Denoting the coordinates of cell l as (il,jl), and

their radial equivalent coordinates as (rl,μl), then an

appropriate cell varying mean is

·
xl

yl

¸
=

8>>>>>>>>>>><>>>>>>>>>>>:

·
il

jl

¸
if 5¸ rl ¸ 6
and jμlj>

¼

4

Hxmt +5:5

·
cos(μl)

sin(μl)

¸
if 0:9£ 5¸ rl ¸ 1:1£ 6
and jμlj> 0:9£

¼

4·¡1
¡1

¸
otherwise

(44)

with H the common cartesian position-only measure-

ment matrix.
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Fig. 8. Non-Gaussian target estimation accuracy.

Fig. 9. Small speedboat target.

The second tier allows for a graduated step down

from the C rather than a sudden drop. This gives the

algorithm an opportunity to correct for initialisation

errors. A similar method was used in [6]. The resulting

approximate target response is shown in Fig. 7(c).

The cell-varying approximation to the C psf was

implemented and compared with the particle filter al-

gorithm of [6]. Several scenarios were considered in

[6], but for brevity only one of them is repeated here.

This test scenario contains a single target under con-

stant velocity motion, which the tracker must detect

and track. The performance measure is the 2-D RMS

estimation error averaged over 100 Monte Carlo trials.

For this scenario there was a significant degradation in

performance when the C psf was estimated with a sin-

gle Gaussian compared with the particle filter H-PMHT

implementation. Both of these RMS curves are shown

in Fig. 8 along with the performance attained with the

cell-varying approximation.

It is clear that the cell-varying approximation gives

similar performance to the particle filter in this case.

Although neither of the algorithm implementations has

been optimised, it is informative to look at the com-

putation cost. For 500 particles, the H-PMHT particle

implementation took 430 seconds per monte carlo trial,

compared with 3.4 seconds for the cell varying Gaussian

and 1.7 seconds for the fixed Gaussian. Obviously this

analytic approximation method has been able to achieve

similar performance as numerical approximation at a

fraction of the cost.

The results here show only a simple scenario where

it was straightforward to devise a mapping of the non-

Gaussian target psf to a cell-varying Gaussian one. In a

more realistic situation it may be a more difficult task.

Nevertheless, the example illustrates the power of this

method: for only a minor increase in computation cost it

allows the use of an arbitrary psf, not merely a Gaussian

one.

6. DETECTING A SMALL BOAT

An implementation of H-PMHT for detecting a boat

in experimental data is now described. The data used

was collected by DRDC in Halifax harbour, Canada, us-

ing the DRDC Ottawa X-band Wideband Experimental

Airborne Radar. The sensor observed a small speedboat,

as shown in Fig. 9. A detailed description of the exper-

iment and the data characteristics can be found in [13],

[11], [12].

Some salient features of the experimental data will

now be discussed and a conventional sequential detect-

then-track processing method described. The conven-

tional algorithm is then compared with the H-PMHT

output.

6.1. Data Characteristics

Due to the high sensor bandwidth, the range reso-

lution of the sensor was quite fine compared with the

physical extent of the target, and the resulting range pro-

file was spread over many range bins. The sensor swept

through azimuth and collected range profiles. Again, the

azimuth resolution was relatively fine compared with

the beam width of the sensor, so the target response

was spread over many azimuth bins.

The volume of data from the sensor is relatively

large: each scan consists of around 13000 range bins

and over 400 azimuth bins. This makes it challenging

to process the data in a timely manner and provides

an excellent measure of the scalability of the H-PMHT

approach to realistic surveillance volumes.

Fig. 10 shows a segment of one scan. Two strong

returns are evident near the centre of the image. The

rightmost return is from a buoy which happened to be

near the target, and the leftmost one is the speedboat.

Both buoy and boat have a response that is spread over

tens of range bins and tens of azimuths. Numerous

other vertical streaks are evident. These are due to sea

clutter and are unfortunately target-like. Dividing the

environment into background noise and interference

spikes, it is clear that the signal to noise ratio is high.
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Fig. 10. Segment of a single scan showing target and clutter.

Fig. 11. Target trajectory (local cartesian frame).

However, the signal to interference ratio is not. In fact

the brightest spots on each image are usually sea clutter

spikes.

McDonald has characterised the clutter distribution

[13], [11], [12]. It was found to be well described

by a KA distribution, which has significantly higher

tails than the Rayleigh distribution typically assumed

by radar applications of TkBD. This is of no direct

consequence for H-PMHT since it does not use the data

likelihood ratio, but it may be expected to lead to higher

false track rates.

Fig. 10 also highlights that the target response in

range is not simply a broad point spread function, but

rather shows a much more complicated structure due to

scattering off various parts of the boat. The target has

the potential to be perceived by the sensor as several

targets.

The speedboat was fitted with a GPS logger. How-

ever, registration of the GPS data with the radar data has

proven difficult [13]. Thus the GPS data is useful as an

Fig. 12. Target trajectory (sensor frame).

Fig. 13. Target-sensor geometry.

indication of where the target is, but it is not useful from

the perspective of determining target localisation error.

The data of interest is a sequence of 40 frames

collected while the speedboat was manoeuvring. The

boat was initially almost stationary for around 10 frames

and then it accelerated, following a snaking trajectory

for the remaining frames. The signal to noise ratio

during the first part of the trajectory was relatively poor,

but increased when the speedboat moves more quickly.

Fig. 11 shows the speedboat trajectory in local carte-

sian co-ordinates and Fig. 12 shows the trajectory in the

measurement frame (range and azimuth cells). These

figures highlight the volatility of the target motion and

also demonstrate that the target was moving very rapidly

through the sensor field of view. Between scans 10 and

25, the target moves through roughly 1500 range cells.

Fig. 13 shows the overall scenario geometry in local

cartesian co-ordinates. Circles mark the starting position

of the aircraft and the boat and triangles mark their final

position. The aircraft maintained an approximately con-

stant altitude of 300m and moved in an approximately

straight path.
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Fig. 14. Target trajectory (sensor frame). (a) Input sensor image. (b) Smoothed sensor image. (c) Segmentation mask.

6.2. Conventional Detection and Tracking

The conventional approach is to apply a single frame

detector followed by a point-measurement tracking al-

gorithm. In this case, the size of the target response is

relatively large compared with the sensor resolution, so

it is appropriate to use an image segmentation based

detector. The general strategy is to find the centroids of

extended objects and track them using a Probabilistic

Data Association Filter (PDAF), similar to [15].

A significant effort was spent in tuning the prepro-

cessing before applying the PDAF. First, it was observed

that the target signal was spread over a greater number

of image cells than the impulsive noise returns. This

motivated the use of spatial averaging, which was imple-

mented by convolving the sensor image with a 10 beam

by 5 range uniform rectangular kernel. A threshold was

then applied to the smoothed image and adjacent pix-

els that exceed the threshold using a two-pass labeling

algorithm [9] (this can be efficiently implemented in

Matlab via the bwlabel function). The centroid of each

connected set of pixels was determined and this cen-

troid was mapped to a cartesian reference space. Mea-

surements were only retained if the number of fore-

ground pixels (i.e., threshold crossings) associated with

a particular object was within an upper and lower toler-

ance band. This single-frame detection scheme was very

CPU-intensive to perform, but yielded a high probabil-

ity of detection for very few false alarms. From this

point onwards, it was straightforward to form tracks, so

only a very simple point-tracker was considered.

Fig. 14 illustrates the preprocessing used to feed the

conventional tracker. Fig. 14(a) shows the raw radar

image with a green circle at the GPS location, which is

close to the target but not co-located with it. Fig. 14(b)

shows the result of the smoothing filter and (c) shows

the output of the segmentation algorithm. The larger

target near the middle of the image is the buoy and the

smaller one to the left of the buoy is the boat.

Each measurement was transformed into a local

cartesian reference frame on the ground using the

known sensor location. The tracker assumed a cartesian

measurement model with a fixed sensor variance, R, as

given in Table I. The X-direction in the local frame was

approximately aligned with the radial between the target

and sensor (although this varied with time) and so the

measurement noise was smaller in the X-direction than

the Y-direction.

The PDAF used was a simplified version of the

algorithm described in [5] and differed from a text-book

algorithm (e.g. [1]) only in that it used target visibility

to determine the merit of tracks for track maintenance

decisions. Uniform clutter was assumed, the target state

was Cartesian position and velocity in two dimensions

and an almost-constant-velocity model was used. The

process noise for this model, Q, is given in Table I.

Thus the measurement association weights were

given by

¯i =
biPnt
i=¡1 bi

(45)

where nt is the number of measurements in the scan and

bi =

8>>>><>>>>:

1¡Pvtjt¡1
Pvtjt¡1

i =¡1

1¡Pd i = 0

PdV

j2¼Sj expf¡
1
2
d2i g 0< i· nt

(46)

with Pd the probability of detection, V the sur-

veillance volume, S the innovation covariance, d2i =

(Hx¡ zi)TS¡1(Hx¡ zi) the statistical distance between
the track and measurement i, and Pvtjt¡1 the predicted
target visibility, given by

Pvtjt¡1 = (1¡Pdeath)Pvt¡1jt¡1 +Prebirth(1¡Pvt¡1jt¡1)
(47)

where the probability of target death and rebirth are

tuning parameters given in Table I. The updated target

visibility is given by Pvtjt = 1¡¯¡1 and is used as the
basis of track management decisions. Similar to the

H-PMHT track manager, candidate tracks are formed

using 2-point differencing.

Table I lists the parameters of the conventional de-

tection and tracking approach.
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TABLE I

Conventional Detection and Tracking Parameters

Detector Parameters

minimum segment size 75 pixels

maximum segment size none

segmentation threshold 2 £ image mean
Tracker Parameters

track state vector [x, _x,y, _y]T

x and y in metres
_x and _y in metres per frame

measurement vector [x,y]T in metres

R

·
400 0

0 900

¸
Q

100

·
Q2 0

0 Q2

¸
Q2

·
1
3
¢3t

1
2
¢2t

1
2
¢2t ¢t

¸
Pdeath 0.012

Prebirth 0

initial visibility Pv0 = 0:5

promotion threshold Pvtjt > 0:6 for any t > 4 frames

6.3. Specific H-PMHT models and Parameters

The H-PMHT was implemented as a time-recursive

filter for this analysis, that is, there was no batch; each

scan was processed sequentially and only one scan was

available to the algorithm at a time. The state estimates

were not smoothed.

Two processing strategies for H-PMHT were con-

sidered. In the first, the movement of the sensor was

ignored, and the target state was modeled in the mea-

surement frame. That is, the state was pixels and pixels

per frame. This makes life much easier for implementa-

tion, and the separable point spread function expressions

may be used. This version is referred to as H-PMHT(rb)

since the target state is in range-beam space.

The second strategy was to model the target state in

Cartesian coordinates on the ground and use the cell-

dependent non-linear method to relate the target state

to the sensor image. This approach has much higher

implementation complexity but should more accurately

model the true system. This version is referred to as

H-PMHT(xy).

The H-PMHT(rb) software was a Matlab implemen-

tation of the equations derived in Section 3.4. There are

two integrals that need to be implemented and these

are vector versions of the per-cell contribution of each

target in (6)

Pml (x
m
t ) =

Z
B
l

Gm(¿ j xmt )d¿

and the cell-level centroid in (14)

z̃mtl =
1

Pml (x
m
t )

Z
B
l

¿Gm(¿ j xmt )d¿:

TABLE II

H-PMHT Parameters

Detector Parameters (used to form candidate tracks)

minimum segment size 75 pixels

maximum segment size none

segmentation threshold 3 £ image mean
H-PMHT(rb) Parameters

track state vector [r, _r,b, _b]T

r and b in cells
_r and _b in cells per frame

Q

·
100Q2 0

0 104Q2

¸
H-PMHT(xy) Parameters

track state vector [x, _x,y, _y]T

x and y in metres
_x and _y in metres per frame

Q
1:2£ 105

·
Q2 0

0 Q2

¸
Common Parameters

measurement vector [r,b]T in cells

R

·
400 0

0 900

¸
confirmation threshold 4 frames greater than 20 dB

Appendix A.2 provides some discussion on implement-

ing these integrals. Besides those two expressions, the

remaining software is a direct encoding of Section 2.4.

The background was assumed to be uniform and

the target was assumed to be a simple Gaussian with

a diagonal covariance matrix as given in Table II. The

target was more spread in azimuth than range, so the

azimuth variance was higher.

The target model was an almost constant velocity

model in the plane. That is, the target motion was

approximated with a constant rate of movement through

range and azimuth bins. The target state was in units of

bins for position and bins-per-scan for velocity. This

was transformed into ground units as a post-processing

stage for comparison with the other trackers and the

ground truth. The process noise variance used is given

in Table II, also using bins and scans as units.

The efficiency measures described in Section 3 were

employed, including gating and a per-target conver-

gence test. A maximum of 10 EM iterations was per-

formed per frame. The single frame detector used for

the PDA was also used here to seed candidate tracks

which were initialised using two-point differences.

Candidates were promoted if they had an estimated

SNR of greater than 20 dB for four frames and termi-

nated if they had an estimated SNR of less than ¡5 dB
for two consecutive frames.

The H-PMHT(xy) software was a Matlab implemen-

tation of the cell-varying psf equations in Section 5.2.

This algorithm used the same measurement covariance
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Fig. 15. Small speedboat target.

matrix as the measurement-space implementation and

also used an almost constant velocity target model.

However, the target state was in different units, namely

metres, so a different process noise covariance matrix

was required, as given in Table II. The same track man-

agement rules were used as for the measurement-space

implementation.

For the H-PMHT(xy), the position part of the state

vector was in metres, but the measurement frame was

in range and azimuth cells. The estimator was therefore

implemented as an EKF as described in Section 5.2.

The measurement model included the scaling and offset

from range in metres to range in cells and similarly for

azimuth. The per-cell contribution of the target Pml was

calculated as described in Appendix A.2, but the cell-

centroids were replaced by the cell-dependent terms in

Section 5.2.

6.4. Results

The tracking outputs of the PDAF based approach

and the two H-PMHT approaches are now presented.

Each are compared with GPS data collected from the

target of interest.

Fig. 15 shows all of the output tracks from each of

the three trackers overlaid with the GPS measurements.

The target tracks are roughly centred in the plot and

move from left to right. As mentioned earlier, there was

a buoy that was coincidentally in the region, near to the

target. The buoy location is slightly north of the target

starting position. There are no other known targets in

the area, and the other tracks are assumed to be false.

All three trackers were able to detect the speedboat

and the buoy. The PDAF tracker shows a number of

false tracks to the south of the area, which is closer in

range to the sensor. At close range, the clutter spikes are

more prominent and so the tracker forms false tracks.

By manual inspection, the tracks that have followed

the target were determined and are shown on Fig. 16. It

is clear that none of the trackers were able to detect the

target during the initial period where it was stationary.

Fig. 16. Small speedboat target.

During this time it is not possible to detect the target

by eye in the data either: the received SNR is very low.

Once it starts moving and the SNR improves, the PDAF

tracker took a little longer to establish track.

At approximately scan 32, the target performed a

manoeuvre that caused the PDAF tracker to diverge.

Unfortunately, soon after this the target left the sensor

coverage area in scan 39 and there is insufficient data

to determine whether the PDAF would have recovered

from the error. The measurement-space H-PMHT(rb)

tracker lost the target at the same time. The ground-

space H-PMHT(xy) followed the target until the sec-

ond to last scan. However during the last ten scans it

produced a duplicate track on the target. The original

track started out following the centre of mass of the tar-

get response, but later it drifted slightly to focus on the

short-range component (recall that the target response

is a complicated superposition of multiple partially re-

solved scatterers). This caused the tracker to form a sec-

ond track on the longer-range component of the target

response.

Fig. 17 shows tracks that were manually determined

to be following the buoy. The buoy has an extremely

high SNR and is easily tracked by all of the algorithms.
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Fig. 17. Strong buoy target of opportunity.

At times, the peak level of the buoy is 40 dB higher

than the boat. However, the H-PMHT(xy) track is con-

siderably smoother than the others, especially the PDAF

which shows several large excursions. This is partly be-

cause the PDAF was tuned with a relatively high pro-

cess noise to cope with the high manoeuvrability of the

speedboat and partly because the detection process re-

ports the centroid of a group of connected pixels, which

can be highly variable.

The implementation of the algorithms was not opti-

mised, so the CPU time spent by each is not a reliable

measure of performance. Nevertheless, figures are given

as a qualitative comparison. The H-PMHT(rb) was the

fastest algorithm, requiring 280 CPU seconds to run un-

der Matlab on a quad core PC. For the PDAF approach,

the single-frame detector was orders of magnitude more

expensive than the PDAF tracker. This is because of the

very large number of pixels in the sensor image and

the double-pass clustering required to extract detections.

In fact, the single-frame detector took around twice the

computation effort of the measurement-space H-PMHT.

Substantial experimentation showed that simpler detec-

tors for the PDAF lead to an abundance of false tracks.

The PDAF total cost was 478 CPU seconds.

The ground-space H-PMHT(xy) was the slowest at

575 CPU seconds. Since the sensor image is so large,

the available memory limited the number of interme-

diate variables that could be stored. In particular, for

candidate tracks, it was not feasible to store the Pml val-

ues, which meant that they had to be calculated twice

for each EM iteration. These values alone can amount

to around half a gigabyte of storage for a modest num-

ber of tracks. Thus the trade-off between memory and

computation resulted in a longer execution time for the

ground-space H-PMHT. For the sensor-space H-PMHT,

these quantities can be stored as their marginal vectors,

which are a fraction of a percent of the size. An op-

timised implementation of the ground-space algorithm

could alleviate much of this overhead.

7. SUMMARY

This article has reviewed the Histogram PMHT algo-

rithm from an implementation perspective. It addresses

some of the practical issues arising from real applica-

tions: efficient implementation, track management, and

non-linearity. The purpose has been to demonstrate that

the encouraging simulation results obtained in recent

comparisons on thumbnail images with benevolent tar-

gets do translate to more realistic conditions.

The H-PMHT algorithm was applied to an experi-

mental data set collected by DRDC containing a ma-

noeuvring speedboat amongst highly challenging sea

clutter and close to a strong secondary target: a buoy.

The buoy return was at times 40 dB higher than the

speedboat, which had a peak signal-to-interference ratio

of less than 0 dB. Nevertheless, the H-PMHT algorithm

was able to detect the boat and follow its manoeuvres

while forming almost no false tracks. The H-PMHT

demonstrated a good ability to track multiple closely

spaced targets with a high dynamic range.

The experimental data was also processed via a

more conventional method, using image segmentation

and a PDAF. The conventional output took marginally

longer to establish track on the target and produced

more false tracks. The conventional detector was very

computationally demanding so the overall cost of the

H-PMHT was less than the conventional approach.

The good performance of H-PMHT illustrates that

the algorithm is not sensitive to the assumed target

model, since the speedboat target response was a com-

plex interaction of multiple scatterers rather than a sim-

ple Gaussian. It was also not sensitive to target-like

clutter responses in the experimental data. Although the

H-PMHT does not explicitly model the clutter ampli-

tude likelihood, intuition suggests that the maths must

make some implicit modeling assumption, which would

doubtlessly be broken by this data. Initialisation was

also poor since the target moved very quickly through

the image at an average of one hundred range bins per

scan.
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In addition to the experimental case study, several

important results were introduced. An efficient matrix

representation of the algorithm was derived for two-

dimensional sensor images and when combined with ap-

propriate gating was demonstrated to give an algorithm

independent of sensor image size for a fixed resolution.

Track management was discussed in detail, a function

that recent papers describe as lacking from H-PMHT.

Finally a novel measurement model was introduced as a

method for dealing with non-Gaussian targets by trans-

forming them into a Gaussian target with a spatially

varying mean. This model was demonstrated on a sim-

ple simulation and used to compensate for ownship mo-

tion in the experimental data.

This article has demonstrated that H-PMHT is an

effective algorithm for automatically extracting multiple

targets against a very challenging background and can

process very high data volumes at a reasonable rate.
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APENDIX

A.1. Cell-varying Point Spread Function Derivation

Consider the measurement component of the target

auxiliary function (12)

TX
t=1

X
l2S
¼m(i)t z̄tl

Z
B
l

Gml (¿ j xm(i)t ) logfGml (¿ j xmt )gd¿:

(48)

For clarity, consider one term from the temporal

summation and suppress the target and time indices,

m and t. Abbreviate G(i)l ´Gml (¿ j xm(i)t ). Using the cell-

dependent Gaussian model, one time-slice of (48) be-

comes

¼(i)
X
l2S
z̄l

Z
B
l

G(i)l logfN (¿ ;hl,R)gd¿

=¡1
2
¼(i)
X
l2S
z̄l

Z
B
l

G(i)l (¿ ¡hl)TR¡1(¿ ¡hl)d¿ +C

=¡1
2
¼(i)
X
l2S
z̄l

(Z
B
l

G(i)l h
T
l R

¡1hld¿

¡2
Z
B
l

G(i)l h
T
l R

¡1¿d¿

)
+C

=¡1
2
¼(i)
X
l2S
z̄l

(
hTl R

¡1hl

Z
B
l

G(i)l d¿

¡2hTl R¡1
Z
B
l

G
(i)
l ¿d¿

)
+C

=¡1
2
¼(i)

(X
l2S
z̄lP

m
l (x

(i))hl(x)
TR¡1hl(x)

¡2
X
l2S
z̄lP

m
l (x

(i))hl(x)
TR¡1z̃l

)
+C

(49)

where C soaks up the terms that are constant with
respect to x, and

z̃l =
1

Pml (x(i))

Z
B
l

N (¿ ;hl(x(i)),R)¿d¿ (50)

that is, the cell-level centroid defined in (14).
Let

w =
X
l2S
wl =

X
l2S
z̄lP

m
l (x

(i)): (51)

The expression in (49) can be represented as a single
quadratic by completing the square, i.e.,

¡ 1
2
¼(i)

(X
l2S
wlhl(x)

TR¡1hl(x)¡ 2
X
l2S
wlhl(x)

TR¡1z̃l

)
+C

=¡1
2
(z̃¡ h̃(x))TR̃¡1(z̃¡ h̃(x)) +C0 (52)

where C0 is another constant and the terms z̃, h̃(x),
and R̃ are to be determined. These terms allow the
measurement component of the auxiliary function to be
expressed as an equivalent point-measurement.
Choose

R̃
¡1
= ¼(i)

X
l2S
wlR

¡1 = ¼(i)wR¡1: (53)

Equating the quadratic terms gives

¡1
2
h̃(x)TR̃

¡1
h̃(x) =¡1

2
¼(i)
X
l2S
wlhl(x)

TR¡1hl(x)

¼(i)wh̃(x)TR¡1h̃(x) = ¼(i)
X
l2S
wlhl(x)

TR¡1hl(x)

h̃(x)TR¡1h̃(x) =
1

w

X
l2S
wlhl(x)

TR¡1hl(x)

(54)

which can be simplified to

h̃(x)[j] =

s
1

w

X
l2S
wlhl(x)[j]2 (55)

if R is diagonal. Here, hl(x)[j] is the jth element of
vector hl(x).
Similarly, equating the linear terms

h̃(x)TR̃
¡1
z̃= ¼(i)

X
l2S
wlhl(x)

TR¡1z̃l

h̃(x)TR¡1z̃=
1

w

X
l2S
wlhl(x)

TR¡1z̃l

(56)

which simplifies to

z̃[j] =
1

wh̃(x)[j]

X
l2S
wlhl(x)

T[j]z̃l[j] (57)

if R is diagonal.
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A.2. H-PMHT integral simplifications

Implementation of H-PMHT requires the encoding

of two integrals, namely the per-cell contribution of

each target in (6)

Pml (x
m
t ) =

Z
B
l

Gm(¿ j xmt )d¿

and the cell-level centroid in (14)

z̃mtl =
1

Pml (xmt )

Z
B
l

¿Gm(¿ j xmt )d¿:

Here analytic expressions are developed for each of

these suitable for software implementation. It will be

assumed that the sensor cells, Bl, conform to a regular

grid and that the target psf is Gaussian, i.e.,

Gm(¿ j xmt ) =
1

j2¼Rj exp
½
¡1
2
(Hxmt ¡ ¿)TR¡1(Hxmt ¡ ¿ )

¾
:

The integral in (6) is simply the area under the pdf

for cell l and can be evaluated using erf functions since

Gm(¢) is Gaussian. However, these are relatively costly
to evaluate. For efficiency, the implementation in this

paper makes the approximation that Gm(¢) is constant
over Bl and so the approximate per-cell contribution is

Pml (x
m
t )¼

¢¿
j2¼Rj exp

½
¡1
2
(Hxmt ¡ ¿̄l)TR¡1(Hxmt ¡ ¿̄l)

¾
with ¿̄l the centre of cell l and ¢¿ the cell area, which is

the same for all cells because of the regular grid. This

approximation is reasonable when R is large compared

to the cell size and the psf is thus slowly varying, as is

the case for the application considered in this paper.

The cell-level centroid is the mean of the target psf

over the cell. An expression is now developed for this

for a one-dimensional psf. The two-dimensional version

is built from two one-dimensional terms as described

in Section 3. For simplicity of notation, assume that

the target state is simply position, so H is unity. The

extension to constant velocity is simply a matter of

book-keeping. Since the psf is one-dimensional, R is

a scalar.

Since Gm(¢) is Gaussian it follows that

Gm(¿ j xmt )0 =
dGm(¿ j xmt )

d¿
=Gm(¿ j xmt )

μ
xmt
R
¡ ¿
R

¶
which implies

¿Gm(¿ j xmt ) = xmt Gm(¿ j xmt )¡RGm(¿ j xmt )0:
Substituting this back into the centroid definition

gives

z̃mtl =
xmt
Pml

Z
Bl

Gm(¿ j xmt )d¿ ¡
R

Pml

Z
Bl

Gm(¿ j xmt )0d¿ ,

= xmt ¡
R

Pml

·
Gm
μ
¿̄l +

¢¿

2

¯̄̄
xmt

¶
¡Gm

μ
¿̄l ¡

¢¿

2

¯̄̄
xmt

¶¸
which is easily implemented in software.
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Real-time Allocation of Firing
Units To Hostile Targets
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The protection of defended assets such as military bases and

population centers against hostile targets (e.g., aircrafts, missiles,

and rockets) is a highly relevant problem in the military conflicts

of today and tomorrow. In order to neutralize threats of this kind,

they have to be detected and engaged before causing any damage to

the defended assets. We review algorithms for solving the resource

allocation problem in real-time, and empirically investigate their

performance using the open source testbed SWARD. The results

show that many of the tested algorithms produce high quality

solutions for small-scale problems. A novel variant of particle swarm

optimization seeded with an enhanced greedy algorithm is described

and is shown to perform best for large instances of the real-time

allocation problem.
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1. INTRODUCTION

A severe threat encountered in many international

peacekeeping and peace forcing operations is that of

rockets, artillery, and mortars (RAM) fired by insur-

gents towards military bases, troops, and other assets.

Attacks like these have cost many human lives in places

like Iraq and Afghanistan during recent years. Similar

attacks are faced by civilians in some parts of Israel on

a regular basis, where so called Katyusha and Qassam

rockets are fired against Israeli population centers such

as Sderot and Ashkelon. Asymmetrical threats like these

have caused an increased interest in systems for detect-

ing and tracking incoming RAM before they hit their

intended targets. The detection and tracking of RAM

makes it possible to estimate the point of impact, so

that any troops or civilians in the impact area can be

alerted. However, such a warning is not always enough,

due to very quick course of events, and that buildings

and infrastructure will be destroyed no matter how early

warnings come, given that active countermeasures are

not taken. Hence, one would like to destroy incoming

RAM before they hit their intended targets (and before

they risk causing collateral damage upon destruction).

Systems for detecting, tracking, and engaging RAM are

often referred to as Counter Rocket, Artillery, and Mor-

tar (C-RAM) systems. An example of such a system

is the recently deployed Israeli Iron Dome system. An-

other kind of air defense situation is that in which we

would like to protect defended assets against maneuver-

ing targets such as fighter aircrafts, attack helicopters,

and non-ballistic missiles. For such kind of threats, we

can in general not easily predict which defended asset

(if any) is the intended target of an attack, making it

necessary to estimate the level of threat posed by de-

tected targets to the defended assets in a so-called threat

evaluation process.

When faced with many simultaneous threats, it is

unlikely that the defenders can take action against all

incoming threats, since there often are fewer firing units

available than there are threats. Even when this is not

the case, a problem is to know which firing unit to use

against which threat in order to maximize the surviv-

ability of the defended assets or minimize the total ex-

pected target value of surviving hostile targets. This can

be described as a resource allocation problem, known

as the weapon allocation problem [7] within the field

of operations research. Unfortunately, the allocation of

defensive firing units to targets has been shown to be

NP-complete [23].
The time available for weapon allocation depends on

many factors such as the type of RAM used, the range

from which it is fired, type of detection radar and type

of defensive weapons (rapid-fire guns, lasers, radar-

guided missiles, etc.). However, taking into account that

the incoming threats often have high speed and are

fired from a range of only a few kilometers, very short

time is available for detection, weapon allocation, and
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interception. Hence, empirical results for how weapon

allocation algorithms perform on problem instances of

various size are needed.

We have reviewed the available literature in order

to identify suitable weapon allocation algorithms, and

we have implemented and systematically evaluated the

real-time performance of a selection of the identified al-

gorithms on static asset-based weapon allocation prob-

lems. The results show that especially particle swarm

optimization algorithms produce high quality solutions

for small-scale problems. In this article, we describe

a novel variant of particle swarm optimization seeded

with an enhanced greedy algorithm and show that the

seeded version performs very well relative to previously

tested algorithms also for large-scale instances of the

real-time allocation problem.

The rest of this article is structured as follows. In

Section 2, we present the static asset-based weapon allo-

cation problem, which is a suitable optimization model

when the impact area of a threat can be assumed to

be known. We also present its target-based counterpart

which is more suitable for air defense situations involv-

ing maneuvering targets. In Section 3, we present a liter-

ature survey of algorithms that have been suggested for

static weapon allocation (both target-based and static-

based). Based on this survey, we have implemented al-

gorithms for static asset-based weapon allocation which

are presented in Section 4. Experiments in which we

compare the real-time performance of the implemented

algorithms are presented in Section 5, and we conclude

the article in Section 6.

2. WEAPON ALLOCATION

Informally, weapon allocation (often also referred

to as weapon assignment or weapon-target allocation)

can be defined as the reactive assignment of defensive

weapon resources (firing units) to engage or counter

identified threats (e.g., aircrafts, air-to-surface missiles,

and rockets) [29]. More formally, the weapon alloca-

tion problem can be stated as a non-linear optimiza-

tion problem in which we aim to allocate firing units so

as to minimize the expected total value of the targets,

or, alternatively, to maximize the expected survivability

of the defended assets. These alternative views are re-

ferred to as target-based (weighted subtractive) defense

and asset-based (preferential) defense, respectively. The

asset-based formulation demands knowledge of which

targets that are headed for which defended assets and

thereby assumes a high level of situation awareness

[24]. Therefore, the static asset-based weapon allocation

problem formulation is suitable for problems involving

defense against ballistic weapons, while the target-based

formulation is more appropriate when the intended aims

of the targets are not known [28]. In Section 2.1 we de-

scribe the static asset-based weapon allocation problem,

and in Section 2.2 we give a similar description of the

static target-based weapon allocation problem.

2.1. The Static Asset-Based Weapon Allocation
Problem

When presenting the static asset-based weapon

allocation problem, the following notation will be

used:

² jAj ¢= number of defended assets.
² jWj ¢= number of firing units.
² jTj ¢= number of targets.
² !j

¢
= protection value of defended asset Aj .

² Pik
¢
= probability that firing unit Wk destroys target Ti

if assigned to it.

² ¼i
¢
= probability that target Ti destroys the asset it is

aimed for.

² Gj
¢
= the set of targets aimed for defended asset Aj .

² xik =
½
1 if firing unit Wk is assigned to target Ti,

0 otherwise:

In the static asset-based weapon allocation problem,

each offensive target is assumed to be aimed at a de-

fended asset, where each defended asset is associated

with a protection value !j . Each target has an associated

lethality probability ¼i, indicating the probability that Ti
destroys the defended asset it is aimed for, given that

it is not successfully engaged. This probability depends

on the accuracy of the targets as well as the nature of the

defended assets [8]. As can be seen, we are assuming

that such probabilities are target dependent only, i.e.,

we do not take the type of the defended asset into con-

sideration. The defenders are equipped with firing units,

where each pair of firing unit and target is assigned a kill

probability Pik. Now, the objective of the defense is to

allocate the available firing units so as to maximize the

total expected protection value of surviving defended

assets [7]:

maxJ =

jAjX
j=1

!j

Y
i2Gj

0@1¡¼i jWjY
k=1

(1¡Pik)xik
1A (1)

subject to:

jTjX
i=1

xik = 1, 8k

xik 2 f0,1g, 8i8k:
(2)

In (1), the inner product
QjWj
k=1(1¡Pik)xik should be in-

terpreted as the probability that target Ti survives the

countermeasures taken against it. Hence, the productQ
i2Gj (1¡¼i

QjWj
k=1(1¡Pik)xik ) is the probability that the

defended asset Aj survives the attack of all targets aimed

for it.
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A solution to a static weapon allocation problem can

be represented as a matrix of decision variables

x=

2666664
x11 x12 : : : x1jWj
x21 x22 : : : x2jWj
...

... xik
...

xjTj1 xjTj2 : : : xjTj jWj

3777775 : (3)

Such a solution is feasible if it fulfills the constraints

given in (2), i.e., that the entries of each column in

(3) sum to one. For a problem instance consisting of

jTj targets and jWj firing units, there are jTjjWj feasible
solutions.

From the solution of the static asset-based weapon

allocation problem, we can discover which of the de-

fended assets that should be protected, and in which

way each of the defended assets should be protected

(preferential defense).

2.2. The Static Target-Based Weapon Allocation
Problem

Using the same notation as in Section 2.1, but with

the additional definition:

² Vi
¢
= target value of target Ti,

we can define the static target-based weapon allocation

problem as:

minF =

jTjX
i=1

Vi

jWjY
k=1

(1¡Pik)xik (4)

subject to the constraints given in (2). Since the product

as before is the probability that target Ti survives the

countermeasures taken against it, the objective function

should be interpreted as the minimization of the total

expected target value of surviving targets.

The estimation of target values is far from trivial, and

can be seen as a very important high-level information

fusion problem. A survey of how threat values Vijs can

be estimated (representing the threat posed by target Ti
to defended asset Aj) is presented in [11, 12]. Once

such threat values have been calculated, these can be

aggregated into target values using weighted averages

such as:

Vi =

PjAj
j=1Vij!jPjAj
j=1!j

: (5)

Nevertheless, this is only one choice of how to aggre-

gate threat values into target values. Furthermore, the

original target values rely on coarse models of what is

threatening behavior or not (typically parameters such

as distance between the target and the defended asset,

the speed and heading of the target, target type, etc).

To complicate matters, expert air defense operators fre-

quently disagree about the threat of individual aircraft

[31]. Consequently, it should be remembered that target

values will always be associated with uncertainty, and

that they to a large degree are subjective.

2.3. Properties of Weapon Allocation Problems

A few assumptions are made in the static weapon

allocation formulations. Firstly, all firing units have to

be assigned to targets, as indicated in the constraint

given in (2). Moreover, all the firing units have to

be assigned simultaneously, i.e., we can not observe

the outcome of some of the engagements before a

remaining subset of firing units are allocated. This is

what is meant by static weapon allocation, as opposed

to dynamic weapon allocation. The static formulation

makes sense for the problem domain studied here, since

the high speed of short-range RAM does not allow

for several engagement cycles. We also assume that

an engagement will not affect other engagements (e.g.,

that a firing unit can destroy another target than it is

allocated to, or that targets can destroy other assets than

they are aimed for). Without the last assumption, the

geometry of the problem must be taken into account,

creating an extremely complex problem. We also ignore

the risk of collateral damage to the protected area when

intercepting the targets.

Despite the assumptions, there is a combination of

factors that make the static weapon allocation problems

hard to solve. Firstly, the objective functions given in

(1) and (4) are non-linear, so that well-known linear

programming techniques such as the simplex algorithm

can not be used to solve the problems. Secondly, the

problems are discrete, since they only allow for integer

valued feasible solutions due to the second constraint

in (2) (i.e., fractional allocations are not possible). In

general, this kind of integer programming problems are

hard to solve. Thirdly, the problems are stochastic, due

to kill probabilities (and lethality probabilities) not equal

to zero or one. This non-determinism further compli-

cates the problems. Fourthly, it is not unusual with large-

scale problem instances, i.e., problems consisting of a

large number of firing units, defended assets, and/or tar-

gets. The asset-based formulation can be shown to be

a generalization of the static target-based weapon al-

location formulation [7] presented in Section 2.2. The

NP-completeness of the static target-based weapon al-
location problem was established in [23], and hence, we

can conclude that the static asset-based weapon alloca-

tion problem is NP-complete as well [7]. These proper-
ties taken together show that finding good solutions in

real-time to static weapon allocation problems is indeed

a very hard problem, and according to [7], rule out any

hope of obtaining efficient optimal algorithms.

3. A SURVEY OF ALGORITHMS FOR WEAPON
ALLOCATION

Initial research on the static target-based weapon al-

location problem dates back as far as the end of the

1950s (cf. [5, 25]). Much of the initial research on the
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problem seems to have been motivated by the threat

from intercontinental ballistic missiles during the Cold

War era [24]. Despite the end of the Cold War, research

on defensive weapon allocation still remains a very ac-

tive area [24]. The static target-based weapon allocation

problem has been quite well studied, especially within

the field of operations research. Despite the extensive

research, static weapon allocation is an example of a

classical operations research problem that still remains

unsolved [1], in the sense that effective methods for real-

time allocation are lacking. Moreover, the asset-based

version of the problem is much less studied than its

target-based counterpart.

Much of the original work on weapon allocation fo-

cused on the allocation of missiles to defended assets,

rather than the other way around. Hence, the problems

were often modeled from an attacker’s side, instead of

from the defending side. A brief summary and review of

unclassified literature from the first years of research on

the problem is given in [26]. Some years later, a mono-

graph describing many of the developed mathematical

models for weapon allocation problems was published

in [6]. Unlike Matlin’s review, the monograph by Eck-

ler and Burr takes on the weapon allocation problem

from a defender’s view. The authors present a num-

ber of useful techniques for weapon allocation, such

as relaxing the integer constraint and then make use

of linear programming to solve the resulting contin-

uous problem. This is a technique that is still in use

(cf. [17]). It should be noted however, that fractional

assignments of firing units to targets does not make

sense, and rounding off the optimal solution to the re-

laxation of an nonlinear integer programming problem

can yield solutions that are infeasible or far from the

optimal solution to the original nonlinear problem [36].

Other kinds of tools such as the use of Lagrange multi-

pliers and dynamic programming are also described in

[6]. As the authors make clear, their focus is on analyti-

cal approaches, since it is argued that what they refer to

as computer-oriented solutions give less insight into the

weapon allocation problem than analytical approaches.

A somewhat more recent survey of work within weapon

allocation is presented in [3]. As in the earlier men-

tioned surveys, its focus is on analytical approaches to

weapon allocation. However, it is mentioned that a shift

towards various techniques such as implicit enumeration

algorithms and nonlinear programming algorithms had

been started at that time, since mathematical formula-

tions of the weapon allocation problem are not generally

amenable to solution in closed form [3, p. 66]. In later

years, advanced computer-based techniques have been

developed which are better suited for real-time weapon

allocation [9]. In the following, we will focus on modern

heuristic/approximate approaches, but will first present

enumerative techniques, since such approaches can be

very useful for special cases of static weapon allocation

problems.

3.1. Exact Approaches

For small values of jTj and jWj, the optimal solu-
tion to a static weapon allocation problem can easily be

found by exhaustive search (also referred to as explicit

enumeration), i.e., a brute-force enumeration where all

feasible solutions are tested one after the other. How-

ever, as a static weapon allocation problem consists of

jTjjWj feasible solutions, this is not a viable approach
for air defense scenarios involving a large number of

targets and firing units.

Exact polynomial time algorithms have been iden-

tified for the special case of the static target-based

weapon allocation problem in which the kill probabili-

ties of all firing units are assumed to be identical, i.e.,

Pik = Pi. For this special case, the well known maxi-

mum marginal return (MMR) algorithm suggested in

[5], and the local search algorithm suggested in [7] can

be proven to be optimal. Some other special cases of

the static target-based weapon allocation problem can

be formulated as network flow optimization problems.

If we assume the constraint that all firing units have

kill probabilities Pik 2 f0,Pig, i.e., that firing units ei-
ther can or cannot reach a target, and in the former

case, the kill probability only depend upon the target,

the problem can be transformed into a minimum cost

network flow problem with linear arc costs, for which

several efficient algorithms exist [7]. A similar trans-

formation can be done for the special case of the static

target-based weapon allocation problem where we as-

sume that jTj · jWj, and that at most one firing unit is
to be allocated to each target. In this case, we can con-

vert the problem into a so called transportation problem,

for which efficient algorithms exist [7]. However, the

general static target-based weapon allocation problem

has been proved to be NP-complete [23], as have been
discussed earlier. This also holds true for the asset-based

version of the static weapon allocation problem, since

this can be seen as a generalization of the static target-

based version.

Another exact approach is to use branch-and-bound

algorithms for finding the optimal solution. Branch-and-

bound algorithms use tree representations of the solu-

tion space and are often able to prune away large sub-

sets of feasible solutions through calculation of lower

and upper bounds on different branches of the tree. In a

recent article by [1], three branch-and-bound algorithms

(using different lower-bound schemes) are investigated

and are shown to give short computation times on aver-

age. The results are impressive, however, in theory the

risk exists that the algorithm will require branching the

full tree for some problem instances. This means that in

worst-case, the performance of the branch-and-bound

algorithm can be at least as bad as the performance of

more naïve exhaustive search algorithms. Although it in

practice is unlikely that this worst-case scenario will ap-

pear, it is unfortunately not possible to in advance com-

pute an upper bound on the computational time it will
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take to find the optimal solution to a problem instance

when using a branch-and-bound algorithm. Hence, as

can be seen in the results reported in [1], some problem

instances of large size can be solved very quickly, while

considerably smaller problem sizes can demand consid-

erably more time for the optimal solution to be found.

In other words, we have to rely on heuristic algorithms

for large-scale problems when real-time guarantees are

needed [1, 7].

3.2. Heuristic Approaches

A well-known heuristic approach for static target-

based weapon allocation is the greedy maximum mar-

ginal return algorithm, originally suggested in [5]. A

similar greedy algorithm is presented in [18]. Basically,

the maximum marginal return algorithm works sequen-

tially by greedily allocating firing units to the target

maximizing the reduction of the expected value. It starts

with allocating the first firing unit to the target for which

the reduction in value is maximal, whereupon the value

of the target is reduced to the new expected value. Once

the first firing unit is allocated, the same procedure is

repeated for the second firing unit, and so on, until all

firing units have been allocated to targets. Pseudo code

for the maximum marginal return algorithm is shown

in Section 4.1. Obviously, the maximum marginal re-

turn algorithm is very simple and fast. This is a gen-

eral advantage of greedy algorithms, but due to their

greedy nature they are also very likely to end up with

suboptimal solutions. Since the algorithm uses target

values for choosing which target to be allocated next,

it cannot be used as is for static asset-based weapon

allocation. However, in [27] a number of greedy algo-

rithms for asset-based weapon allocation are described.

These algorithms basically work by approximating the

asset-based problem with its target-based counterpart,

by using the protection value of the defended asset to

which the target is aimed for as the target value. When

the problem has been approximated by a target-based

problem, it is suggested that the maximum marginal re-

turn algorithm returns a solution that can be used as

an approximative solution to the asset-based problem.

Another suggested approach in [27] is to use the so-

lution returned from the maximum marginal return al-

gorithm and to apply local search on the solution so

that the target allocated by one weapon can be swapped

to the target allocated by another weapon, and vice

versa.

Another kind of heuristic approach to a constrained

version of the target-based weapon allocation problem

has been suggested in [35], in which artificial neural net-

works are used. It is stated that solutions close to global

optima are found by the algorithm, but results are only

presented for a few small-scale problem instances, from

which it in the authors’ view is not possible to gener-

alize. It is in [9] also argued that artificial neural net-

work algorithms for weapon allocation sometimes are

unsteady and non-convergent, leading to that obtained

solutions may be both suboptimal and infeasible.

As an alternative, the use of genetic algorithms

seems to be popular. Such an algorithm for static target-

based weapon allocation is described in [16], while a

genetic algorithm combined with local search is pre-

sented in [22] and [21]. The quality of the solutions

returned by the greedy maximum marginal return al-

gorithm presented in [18] is in [16] compared to the

solutions returned by genetic algorithms. However, the

algorithms are only evaluated on target-based weapon

allocation problems. The standard genetic algorithm is

outperformed on large-scale problem sizes, but only one

problem instance is tested for each problem size, so the

possibility to generalize the results can be questioned.

Even though, the results seem to indicate that greedy

search works better than standard genetic algorithms on

large target-based problem instances. It is in [16] sug-

gested that genetic algorithms can be seeded with the

solution returned from a greedy algorithm, which seems

to be a suitable approach to improve the quality of ge-

netic algorithms on large problem sizes. In [2], a genetic

algorithm combined with local search is suggested for

a dynamic version of the asset-based weapon alloca-

tion problem. It is shown that local search improves

the results, but that the computational time needed is

increased. The effects of real-time requirements on the

algorithms are not tested.

The use of ant colony optimization for target-based

weapon allocation is suggested in [19, 20]. Reported

results in [19] and [20] indicate that ant colony opti-

mization algorithms perform better than standard ge-

netic algorithms on large-scale problems, and that the

algorithms can be improved upon by using local search.

However, the algorithms were allowed to run for two

hours, so it is unclear how this generalizes to settings

with real-time requirements.

A simulated annealing algorithm for static asset-

based weapon allocation is presented in [4]. Basically,

simulated annealing is based on an analogy of thermo-

dynamics with the way metals cool and anneal, in which

a liquid that is cooled slowly is likely to form a pure

crystal corresponding to a state of minimum energy for

the metal, while a quick cooling phase is likely to result

in states of higher energy levels [32]. By controlling an

artificial “temperature” when making the optimization

(corresponding to the minimization of energy levels), it

becomes possible to escape from local minima in the

hunt for the optimal solution (the purest crystal in the

thermodynamics analogy). However, no evaluation of

the quality of the solutions obtained by the algorithm

is presented in [4], so it is unknown how good their

implemented algorithm performs. Another implemen-

tation of a simulated annealing algorithm provides so-

lutions of lower quality than ant colony optimization

and genetic algorithms in a static target-based weapon

allocation experiment described in [19]. The algorithms

were, as describe above, allowed to run for two hours,
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TABLE I

Algorithmic Approaches to Weapon Allocation

Algorithmic Approach References

Branch-and-bound [1]

Genetic algorithms [16, 21]

Ant colony optimization [19, 20]

Greedy algorithms [5, 18]

VLSN [1]

Neural networks [35]

Particle swarm optimization [33, 37]

so it is not known how the algorithms perform under

more realistic time constraints.

In [1], good performance results for an approach us-

ing a minimum cost flow formulation heuristic for gen-

erating a good starting feasible solution are presented.

This feasible solution is then improved by a very large-

scale neighborhood (VLSN) search algorithm that treats

the problem as a partitioning problem, in which each

partition contains the set of firing units assigned to target

Ti. The very-large scale neighborhood search improves

the original feasible solution by a sequence of cyclic

multi-exchanges and multi-exchange paths among the

partitions. As the name suggests, the size of the used

neighborhoods are very large. To search such large

neighborhoods typically takes considerably amounts of

computations and demands implicit enumeration meth-

ods [10]. By using the concept of an improvement

graph, it becomes possible to evaluate neighbors faster

than other existing methods [1, 10].

Recently, the use of particle swarm optimization

for static target-based weapon allocation has been sug-

gested. In [33], a particle swarm optimization algorithm

is implemented and compared to a genetic algorithm.

The results indicate that the particle swarm optimiza-

tion algorithm generates better solutions than the ge-

netic algorithm, but the algorithms are only tested on

a single problem instance consisting of five targets and

ten firing units. For this reason, it is not possible to

generalize the obtained results. Experiments presented

in [37] also indicate that particle swarm optimization al-

gorithms create better solutions than genetic algorithms

for static target-based weapon allocation.

As evident from the literature survey presented

above, a lot of different algorithmic approaches have

been suggested for the static weapon allocation prob-

lem. A summary of some of the approaches presented

above is presented in Table I.

4. THE IMPLEMENTED ALGORITHMS

Based on the results from the literature survey pre-

sented in Section 3, a number of heuristic algorithms

have been implemented. Since the target-based weapon

allocation seems more well-researched than the asset-

based problem, the focus of the rest of this article will

be on the latter.

The algorithms for static asset-based weapon allo-

cation evaluated in this article share the same kind of

representation, in which a solution is represented as a

vector of length jWj. Each element k in the vector points
out the target Ti to which the weapon is allocated. As

an example of this, the vector [2,3,2,1] represents a

solution in which W1 and W3 are allocated to T2, W2 is

allocated to T3, and W4 is allocated to T1.

4.1. A Maximum Marginal Return Algorithm for Static
Weapon Allocation

A greedy algorithm for static target-based weapon

allocation, known as the maximum marginal return

(MMR) algorithm, was initially suggested in [5]. This

algorithm (described with pseudo code in Algorithm 1)

is very simple since it as already explained works greed-

ily by assigning weapons sequentially to the target that

maximizes the reduction of the expected target value.

When the first weapon has been allocated to the tar-

get for which the reduction in value is maximal, the

target value is reduced to the new expected value. Af-

ter that, the same procedure is repeated for the second

weapon, and so on, until all weapons have been allo-

cated to targets, yielding a computational complexity of

O(jWj £ jTj).
ALGORITHM 1 Maximum marginal return algorithm

for all k such that 1· k · jWj do
highestValueÃ¡1
allocatedTargetÃ 0

for all i such that 1· i· jTj do
valueÃ Vi£Pik
if value> highestValue then
highestValueÃ value

allocatedTargetÃ i

assign Wk to target TallocatedTarget
VallocatedTargetÃ VallocatedTarget¡ highestValue

return allocation

It is not obvious how to use the MMR algorithm

for the static asset-based weapon allocation problem,

since it in this version of the problem does not exist

any target values. Instead, there are protection values

associated with the defended assets, and lethality values

associated with the targets. In [27], it is suggested that

a defended asset’s weight (protection value) is equally

distributed over the targets aimed for it, so that a target’s

value is computed as Vi = !j=jGj j (where j is the index
for the set Gj of which target Ti is a member), and that
the asset-based problem is approximated with its target-

based counterpart. Similar reasoning is presented in [7]

where it is suggested that the value of a target is set to

the expected destroyed protection value of the defended

asset to which it is aimed, given that the target is not

engaged and that all other targets aimed for the defended

asset are destroyed.

We have here chosen to calculate the target value Vi
for a target Ti as:

Vi = !j £¼i (6)
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where j is the index of the defended asset to which

target Ti is aimed. Hence, the target value has been

calculated as the product of the lethality probability ¼i
of the target and the protection value !j of the defended

asset it is aimed at. In this way, we follow the approach

suggested in [7] to use the protection value of the

defended asset to impact on the target value, but we

complement this with taking the lethality of the target

into account, since this extra information otherwise is

lost.

We have also included a variant of greedy search

where we have taken the solution generated by the

MMR algorithm and improved it with a simple local

search (LS) that creates neighbor solutions by swap-

ping two positions selected at random in the solution

vector (this variant of the MMR algorithm, described

with pseudo code in Algorithm 2, will in the follow-

ing be referred to as MMR-LS). This algorithm is an

implementation of the idea briefly discussed in [27].

ALGORITHM 2 The MMR-LS algorithm

bestSolutionÃMMR()

JbestÃ CalculateFitness(bestSolution)

while termination criteria not met do
neighborSolutionÃ neighbor(bestSolution)

JnewÃ CalculateFitness(neighborSolution)

if Jnew > Jbest then
bestSolutionÃ neighborSolution

JbestÃ Jnew
return bestSolution

Obviously, the quality of the solutions generated by

the MMR-LS algorithm will always be at least as good

as the quality of the solutions returned by the MMR

algorithm.

4.2. An Enhanced Maximum Marginal Return
Algorithm for Static Weapon Allocation

What here will be referred to as the enhanced maxi-

mum marginal return algorithm (the authors’ terminol-

ogy) is quite similar to the standard maximum marginal

return algorithm. The difference is that in the enhanced

maximum marginal return (EMMR) algorithm it is not

predetermined which firing unit to allocate next. In-

stead, the choice of which firing unit to allocate next is

based on which weapon-target pair that maximizes the

marginal return. We have implemented this algorithm

based on the description in [16], and the pseudo code

for the algorithm is given in Algorithm 3. In the first

iteration it= 1, jWj £ jTj combinations are tested. The
weapon-target pair with highest marginal return is se-

lected, so that the firing unit is selected to the target, and

the target value of the corresponding target is updated

accordingly. After this, jWj ¡ 1 firing units are unallo-
cated. In next iteration, the remaining (jWj ¡ 1)£ jTj
weapon-target pairs are tested, and so on, until there

does not remain any unallocated firing units. Hence, the

time complexity of EMMR becomes O(jWj2jTj).

ALGORITHM 3 Enhanced maximum marginal return al-

gorithm (adapted from [16])

for all it such that 1· it· jWj do
highestValueÃ¡1
allocatedTargetÃ 0

allocatedWeaponÃ 0

for all k such that 1· k · jWj do
for all i such that 1· i· jTj do
valueÃ Vi£Pik
if value> highestValue then
highestValueÃ value

allocatedWeaponÃ k

allocatedTargetÃ i

assign WallocatedWeapon to TallocatedTarget
VallocatedTargetÃ VallocatedTarget¡ highestValue

return allocation

As the standard MMR algorithm, EMMR is rely-

ing on target values. Hence, we calculate target values

according to (6), solve the approximated target-based

problem using EMMR, and return the solution as the

solution to the asset-based problem.

4.3. A Genetic Algorithm for Static Weapon Allocation

In [13], we presented a genetic algorithm (GA) de-

signed for real-time allocation of defensive weapon re-

sources to targets. The original version of the algorithm

was intended for the static target-based problem, but we

have now with some modifications adapted it to also suit

the static asset-based formulation of the problem.

The algorithm is described in pseudo code in Al-

gorithm 4. First, an initial population consisting of

nrOfIndividuals is created, through generation of a vec-

tor of length jWj. In this vector each element Wk is as-
signed a random integer value in the interval f1, : : : , jTjg.
In each generation we evaluate all individuals in the

population and determine their objective function val-

ues in accordance with (1). Hence, each individual is

assigned a fitness value that is used in the follow-

ing phases of selection and recombination. After the

evaluation phase, deterministic tournament selection is

used as selection mechanism to determine which indi-

viduals in population Pop that should be used as par-

ents for Pop0, i.e., we pick two individuals at random
from Pop and select the one with best fitness value.

When two parents have been selected from Pop, we

apply one-point crossover at a randomly selected po-

sition k 2 f1, : : : , jWjg, generating two individuals that
become members of Pop0. This is repeated until there
are nrOfIndividuals in Pop0. Thereafter, we apply mu-
tation on a randomly selected position k 2 f1, : : : , jWjg
in the first individual of Pop0, where the old value is
changed into i 2 f1, : : : , jTjg. Hence, there is a probabil-
ity of 1=jTj that the individual is unaffected of the muta-
tion. The mutation operator is repeated on all individuals

in Pop0 and the resulting individuals become members
of the new population Pop. This loop is repeated until

the termination criterion is fulfilled (the upper limit on
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the computational time bound is reached). At this point,

the individual with the best fitness found during all gen-

erations is returned as the allocation recommended by

the algorithm.

ALGORITHM 4 Pseudo code for our genetic algorithm

fitnessbestÃ¡1
PopÃGenerateInitialPopulation()
while termination criteria not met do
for lÃ 1 to nrOfIndividuals do
JlÃ CalculateFitness(Pop(l))
if Jl > fitnessbest then
~gÃ Pop(l)
fitnessbestÃ Jl

Pop0 Ã Crossover(Pop)

PopÃMutate(Pop0)
return ~g

Furthermore, we have implemented a variant of the
genetic algorithm that is seeded with well-performing
individuals. Instead of creating all individuals in the
initial population at random, · individuals are created
based on the solution returned by the EMMR algorithm
(a random swap between the targets of two of the firing
units is first made for each of the seeded individuals
in order to create some diversity among them). The re-
maining individuals are created randomly just as before.
This seeded version of the genetic algorithm will in the
following be referred to as GA-S.

4.4. A Particle Swarm Optimization Algorithm for
Static Weapon Allocation

In [14], we developed a particle swarm optimization
(PSO) algorithm for the static target-based weapon allo-
cation problem. We have modified this algorithm to also
suit the static asset-based weapon allocation problem.
A particle swarm consists of nrOfParticles particles,

in which each particle is associated with a position ~x tl , a

velocity ~v tl , and a memory
~b tl storing the particle’s per-

sonal best position. Moreover, we also store the swarm’s
global best position in a vector ~g t. Each particle corre-
sponds to a solution, given by the particle’s position.

ALGORITHM 5 Pseudo code for our particle swarm

optimization algorithm

Initialization()
while termination criteria not met do
for lÃ 1 to nrOfParticles do
JlÃ CalculateFitness(~xl)

if Jl = CalculateFitness(~g) then
plÃ Reinitialize()

else
if Jl > CalculateFitness(~bl) then
~blÃ~xl
if Jl > CalculateFitness(~g) then
~gÃ~xl

for lÃ 1 to nrOfParticles do
~vlÃUpdateVelocity(~pl)
~xlÃUpdatePosition(~pl)

return ~g

The algorithm is described in pseudo code in Algo-

rithm 5. In an initialization phase, each particle is as-

signed an initial position ~x0l (where the elements in the

initial position vectors are integers randomly distributed

between 1 and jTj), and an initial velocity ~v0l (a vector
of real numbers randomly distributed from the uniform

distribution U[¡0:5jTj,0:5jTj]). A fitness value is cal-

culated for each particle, given by the objective function

value J (see (1)) that is obtained for the solution cor-

responding to the particle’s position. The new fitness

is compared to the personal best and the global best to

see whether these should be updated accordingly. Af-

ter this, the velocity and position is updated for each

particle, according to (7) and (8).

~v t+1l = !~v tl + c1~r
t
1 ± (~b tl ¡~x tl ) + c2~r t2 ± (~g t¡~x tl ) (7)

~x t+1l =~x tl +~v
t+1
l : (8)

In (7), ! is a parameter referred to as inertia or mo-

mentum weight, specifying the importance of the previ-

ous velocity vector, while c1 and c2 are positive con-

stants specifying how much a particle should be af-

fected by the personal best and global best positions

(referred to as the cognitive and social components, re-

spectively). ~r t1 and ~r
t
2 are vectors with random numbers

drawn uniformly from the interval [0,1]. Moreover, the

±-operator denotes the Hadamard product, i.e., element-
by-element multiplication of the vectors. In order to

avoid that particles gain too much momentum, a Vmax
parameter that constrains the velocities to stay in the

interval [¡Vmax,Vmax] has been introduced.
After the position update specified in (8), we round

off the particles’ positions to their closest integer coun-

terpart. In next iteration we calculate the particles’ new

fitness values, whereupon the velocities and positions

are updated, and so on. This is repeated until a termi-

nation criterion is met, i.e., that no more time remains.

When this happens, the best solution obtained so far is

returned as output from the algorithm.

A problem that must be handled is particles moving

outside the bounds of the search space. When this hap-

pens, we reinitialize the position and velocity values of

the coordinate for which the problem occurred. More-

over, in order to avoid premature convergence to local

optima (stagnation), we reinitialize the velocity vector

for particles rediscovering the current best solution. For

a more thorough explanation of the problem of stagna-

tion in particle swarm optimization, see [34].

In addition to the described particle swarm optimiza-

tion algorithm, we have also included a variant in which

we seed the starting position for · particles in the initial

population in the same way as with the GA-S algorithm

(while their initial velocities are randomized in the same

manner as for the remaining particles). This seeded par-

ticle swarm optimization algorithm will in the following

be referred to as PSO-S. To the best of our knowledge,

the use of seeded particles is novel for the weapon al-

location problem.
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5. EXPERIMENTS
In the experiments reported here, we have used

the open source testbed SWARD1 (System for Weapon

Allocation Research and Development) which we have

developed in order to allow for systematic comparison

of various weapon allocation algorithms [11, 15]. The

testbed is implemented in Java, and we have been

running the experiments on a computer with a 2.67 GHz

Intel Core i7 CPU and 8 GB RAM. By using SWARD,

we make sure that the experiments presented here are

easily reproducible, so that researchers can test other

algorithms on the same problem instances.

In order to recreate the problem instances used in

the experiment presented in Section 5.1.1, the following

settings should be used in SWARD:

² Tstart = 5, Wstart = 5,
² Tend = 9, Wend = 9,
² Tstep = 1, Wstep = 1,
² iterations= 10, DAs= 5,
² seed= 0, timeLimit= 1000 ms.
Similarly, for recreating the problem instances used in

the experiment presented in Section 5.1.2, the following

settings should be used:

² Tstart = 10, Wstart = 10,
² Tend = 30, Wend = 30,
² Tstep = 10, Wstep = 10,
² iterations= 100, DAs= 5,
² seed= 0, timeLimit= 1000 ms.
The time limits make sure that no algorithms are al-

lowed to run for more than a total time of one sec-

ond (including seeding). For the genetic algorithms

we have used the parameter setting: nrOfIndividuals=

max(jTj, jWj). Additionally, we have for the seeded
version used ·= 0:5£ nrOfIndividuals. For the part-
icle swarm optimization algorithm we have used

nrOfParticles= 50, c1 = 2:0, c2 = 2:0, ! = 0:8, and

Vmax = 0:5£ jTj. The same settings have been used for
the seeded version, with the additional parameter setting

·= 25.

5.1. Heuristic Algorithm Performance
For scenarios that demand solving the static asset-

based weapon allocation problem faster than is possi-

ble with optimal algorithms, we have to rely on heuris-

tic algorithms. In Section 5.1.1, we present experimen-

tal results obtained with the suggested heuristic algo-

rithms on small-scale problem instances, while we in

Section 5.1.2 present results on large-scale problem in-

stances.

5.1.1. A comparison against the optimal solution for
small-scale problems

We have in order to investigate the quality of the

solutions generated by the suggested algorithms com-

1The open source testbed SWARD can be downloaded from http://

sourceforge.net/projects/sward/.

TABLE II

Deviation from Optimal Solution (in %)

Averaged Over Ten Problem Instances

5£ 5 6£ 6 7£ 7 8£ 8 9£ 9
GA 0 0 0 0.1 0.7

GA-S 0 0 0 0.2 0.5

PSO 0 0 0 0 0.2
PSO-S 0 0.1 0.1 0.2 0.2
MMR 2.9 3.7 4.8 6.4 6.6

EMMR 0.3 0.8 0.8 0.8 0.9

MMR-LS 0.6 1.1 0.8 1.3 1.7

pared their obtained objective function values to the

optimal objective function values obtained by exhaus-

tive search for relatively small-scale scenarios between

(jTj= 5, jWj= 5) and (jTj= 9, jWj= 9).
The average percentage deviation from the opti-

mal solution is a common metric to use for evaluating

heuristic algorithms on small-scale optimization prob-

lems where the optimal solution can be calculated, and

therefore it also has been used here. The percentage

deviation ¢alg for a specific algorithm on a specific

problem instance has been calculated as:

¢alg =
jJalg¡ Joptj

Jopt
£ 100 (9)

where Jalg is the objective function value for the tested

algorithm and Jopt is the optimal objective function

value. In the tables, we use bold to show which obtained
objective function value that is the best for each tested

problem size.

Looking at Table II, the algorithms’ percentage de-

viations from the optimal solution show that most of the

algorithms are able to find optimal or very near-optimal

solutions for the smallest tested problem sizes. The

MMR algorithm is by far the worst of the algorithms on

the tested small-scale scenarios, but when allowed to im-

prove its initial solution by local search (i.e., the MMR-

LS algorithm), the quality is improved. The EMMR al-

gorithm produces solutions that are better than both the

MMR and MMR-LS algorithms. However, as can be

seen, all these greedy heuristics are outperformed by the

nature-inspired metaheuristics. Of the nature-inspired

metaheuristics, the PSO algorithm performs somewhat

better than the others. In fact, it produces optimal solu-

tions to all problem instances of size (jTj= 5, jWj= 5)—
(jTj= 8, jWj= 8), and for (jTj= 9, jWj= 9) it is in one
second able to generate almost optimal solutions to

problems consisting of 99 = 387,420,489 feasible solu-

tions.

It should be noted that the results obtained on small-

scale problems do not necessarily extends to large-

scale problems. For small instances of any combina-

torial problem, it is likely that algorithms such as PSO

algorithms and GAs are able to search a large fraction

of the solution space in a short period of time, making

it more probable to find a high quality solution, while
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TABLE III

Average Objective Function Value for jTj= 10
Averaged Over 100 Static Asset-Based Problem Instances

(higher objective function values are better)

10£ 10 10£ 20 10£ 30
GA 266.7 (42.0) 301.9 (49.1) 302.4 (46.5)

GA-S 268.7 (42.3) 304.1 (49.5) 303.1 (46.6)

PSO 269.2 (42.1) 303.2 (49.4) 302.3 (46.5)

PSO-S 270.0 (42.2) 304.3 (49.5) 303.2 (46.6)
MMR 251.5 (40.3) 296.8 (48.6) 301.2 (46.3)

EMMR 268.1 (42.2) 304.1 (49.5) 303.1 (46.6)

MMR-LS 267.5 (42.7) 303.6 (49.4) 302.9 (46.6)

TABLE IV

Average Objective Function Value for jTj= 20
Averaged Over 100 Static Asset-Based Problem Instances

(higher objective function values are better)

20£ 10 20£ 20 20£ 30
GA 153.7 (30.6) 219.3 (36.4) 263.5 (34.7)

GA-S 154.7 (30.9) 237.3 (37.1) 279.8 (36.0)

PSO 158.1 (30.6) 212.6 (37.2) 245.1 (34.1)

PSO-S 160.0 (31.1) 238.4 (37.5) 280.0 (36.0)
MMR 117.6 (28.6) 210.2 (36.4) 261.2 (34.0)

EMMR 127.6 (29.8) 237.0 (37.0) 279.8 (36.0)

MMR-LS 128.9 (30.2) 234.9 (37.6) 277.2 (35.4)

one wrong decision by a constructive, one-pass heuris-

tic may result in a solution differing dramatically from

the optimum of a small case [30]. Therefore, the results

should not without further tests be generalized to larger

problem sizes. With this said, it is still very relevant to

test the performance on small-scale problem instances,

not at least since it in many real-world air defense sce-

narios is likely that the number of targets and available

firing units will be close to the settings tested here.

5.1.2. A comparison between algorithms on
larger-scale problems

In a second experiment with the heuristic algorithms,

we have tested them on larger-scale problems ranging in

between (jTj= 10, jWj= 10) and (jTj= 30, jWj= 30).
The algorithms have also in this experiment been al-

lowed to run for one second on each problem instance.

The optimal solutions are hard to obtain for large-scale

problem instances, so instead of calculating the devi-

ation from the optimal solution, we have here simply

plotted the objective function values obtained (averaged

over 100 problem instances) in Tables III—V. We also

show the associated standard deviations within paren-

theses. As before, bold is used to indicate the best ob-
tained objective function value on each problem size.

A note to make is that the standard deviations shown

in many cases are larger than the differences in mean

values among the algorithms. However, this should not

be interpreted as that there are no significant differences

among the algorithms. Rather, the largest part of these

standard deviations are due to the differences between

various problem instances. In some problem instances

TABLE V

Average Objective Function Value for jTj= 30
Averaged Over 100 Static Asset-Based Problem Instances

(higher objective function values are better)

30£ 10 30£ 20 30£ 30
GA 96.8 (20.4) 147.9 (30.4) 186.2 (33.7)

GA-S 97.2 (20.3) 151.8 (29.1) 208.7 (36.9)
PSO 99.8 (21.4) 128.6 (29.2) 150.7 (29.2)

PSO-S 103.0 (19.9) 155.5 (31.3) 208.6 (36.8)

MMR 53.6 (20.4) 117.0 (27.0) 174.8 (32.2)

EMMR 59.7 (24.2) 135.7 (30.6) 208.1 (36.5)

MMR-LS 59.8 (23.9) 137.6 (31.1) 205.7 (37.0)

the optimal objective function values are lower, while

they in others are higher (as a natural result of the ran-

dom fashion in which the problem instances are gener-

ated). As a consequence of this, also optimal algorithms

would obtain large standard deviations.

When analyzing the obtained results, it can be seen

that the use of local search significantly improves the

quality of the solutions found using MMR also on

large problem sizes. A comparison of the solutions

generated by MMR-LS with the ones returned by the

EMMR algorithm shows that the performance of these

are approximately equally good (although EMMR is

significantly faster than MMR-LS). This indicates that

it in the future may be worth studying if it would be

beneficial to apply simple local search also to EMMR.

It can be seen that the seeded particle swarm op-

timization algorithm (i.e., PSO-S) is performing best

relative to the other algorithms on all tested problem

sizes except the largest, on which the seeded genetic

algorithm (GA-S) performs slightly better. We have in

earlier work [14] shown that PSO runs into some trouble

when applied to large target-based problem instances

under tight real-time constraints, and this trend can be

seen also for the large asset-based problem instances

tested here. However, when combined with the seed-

ing mechanism, particle swarm optimization seems to

work very well. It can be seen that the obtained objec-

tive function values for the greedy algorithms MMR-LS

and EMMR are reasonably close to the best algorithms’

objective function values for many of the tested problem

sizes, while they for problem instances where jTj> jWj
are much worse. These results are in line with the ana-

lytical arguments in [7], predicting that it will work well

to approximate the static asset-based weapon allocation

problem with its target-based counterpart on problem

instances involving a strong defense (a large number of

firing units compared to the number of targets), while

the approximation will work bad in cases of a weak

defense (i.e., problem instances where there are more

targets than firing units). Although the differences be-

tween e.g., EMMR and PSO-S or GA-S and PSO-S are

not very large for problem instances involving a strong

defense, the differences should not be ignored, since

such small but significant differences can have severe
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impact on the end result if such algorithms are applied

in a real-world C-RAM system.

6. CONCLUSIONS AND FUTURE WORK

We have in this article presented the static asset-

based weapon allocation problem, which is an optimiza-

tion problem that needs to be solved in a short amount

of time in air defense situations involving RAM threats

such as rockets and mortars. We have also presented

the static target-based weapon allocation problem, but

the focus has been on the asset-based case. We have

implemented two versions of a genetic algorithm, two

versions of a particle swarm optimization algorithm, and

various versions of the greedy maximum marginal re-

turn algorithm. Such algorithms have earlier been used

for the static target-based weapon allocation problem,

but as far as we know, it is previously unknown how

they perform on the asset-based version of the prob-

lem. Our experiments have shown that optimal or very

near-optimal solutions are obtained in real-time by the

genetic algorithms and the particle swarm optimization

algorithms on small-scale problems. The standard max-

imum marginal return algorithm yields worse solutions,

but these can easily be improved upon by local search,

or by using an enhanced version of the algorithm. How-

ever, the quality does not become as good as that of the

genetic algorithms or the particle swarm optimization

algorithms.

For larger problem instances the optimal solutions

are not known, and can therefore not be used for com-

parison. Instead, the objective function values produced

by the algorithms have been compared to each other. It

has been shown that the greedy algorithms create solu-

tions of good quality (compared to the other algorithms)

for scenarios with a strong defense, but that they per-

form bad on scenarios involving a weak defense, i.e.,

where there is a larger number of targets than there are

firing units.

The algorithm that has been performing the best on

large-scale problem instances is a novel improvement on

the particle swarm optimization algorithm where the ini-

tial population is seeded with individuals based on small

variations of the solution returned by the enhanced max-

imum marginal return algorithm. For the problem in-

stances where there is a strong defense, the algorithm is

not able to improve very much on the solution returned

by the enhanced maximum marginal return algorithm,

but for the problem instances involving a weak defense,

the difference is dramatic. For problems of quite small

scale, the difference in solution quality is very small be-

tween the particle swarm optimization algorithm and its

seeded version. However, as the problem size increases,

the difference in solution quality becomes very evident.

6.1. Future Work

The obtained results can be used as benchmarks for

other heuristic algorithms. Hence, it is our hope that

the used data sets (problem instances) will be used by

other researchers as well, so that a better understanding

of which algorithms that work well for static asset-based

weapon allocation is obtained. Moreover, in the current

research on static asset-based weapon allocation, it is

assumed that kill probabilities, lethality probabilities,

and target aims are known with certainty. Obviously,

these estimates will in real-world systems be associated

with uncertainty, and it would therefore be interesting

and useful to know how sensitive the solutions produced

by the algorithms are to such uncertainties.

In the experiments presented in this article, we have

been generating problem instances in which there are

no dependences among the values of the parameters.

As an example, there is no correlation between any

of the kill probabilities involving a specific target (or

rather, there might be such correlation, but if so, this is

by pure chance). This is consistent with how weapon

allocation algorithms have been evaluated earlier in

reported literature, but it can be discussed whether this

lack of structure really would be seen in estimated

kill probabilities from real-world air defense scenarios.

Thinking of such a scenario, two targets, T1 and T2,

of the same type, approaching a firing unit W1 from

the same direction and on the same altitude, would

most likely result in kill probabilities P11 and P12 being

quite similar. Likewise, two firing units W2 and W3
would obtain kill probabilities of approximately same

magnitude, given that the firing units were positioned

close together and being of the same type. Hence, the

random fashion in which problem instances have been

generated here (and in previous reported experiments

with weapon allocation algorithms) may not necessarily

create the same kinds of search spaces that would be

experienced in real-world air defense situations. An idea

that could be of interest for the future is therefore to

create problem instances with an inbound structure that

better reflect reality.
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