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From the Editor-in-Chief:
June 2013

Content Indexing Comes to JAIF

The original vision for JAIF was to become the flag-
ship peer-reviewed journal of the International Society

for Information Fusion (ISIF). A key goal along the
road to that vision involved content indexing. Content
indexing of JAIF is important to our authors because
other researchers can find their papers and reference

them in their own publications. These references to one's
publications are used to measure the impact of one's re-
search, and the corresponding “impact factor” is often
a key component of the nomination for IEEE Fellow

and other research honors and evaluations for tenured
faculty positions and other similar positions. Thus, con-
tent indexing of JAIF has been a focus of the editorial

board of JAIF since its inception. As Editor-In-Chief
(EIC) for JAIF, I am pleased to announce that Scopus
accepted JAIF for content indexing as of July 29, 2013.
Scopus statements accompanying their decision to ac-

cept JAIF for content indexing were a “convincing jour-
nal policy” and “fulfillment of the criteria for inclusion
in Scopus.” Scopus is a bibliographic database contain-
ing abstracts and citations for academic journal articles.

It covers over 50 million entries for nearly 21,000 ti-
tles from over 5,000 publishers, of which 20,000 are
peer-reviewed journals in the scientific, technical, med-
ical, and social sciences (including arts and humanities).

Therefore, authors of articles in JAIF are now assured
that their research will receive broad exposure and cita-
tions as appropriate.

In preparing JAIF for content indexing, a strong
editorial board of researchers from both industry and
academia was organized and an operation plan that ad-
dressed the need for a rigorous and meaningful peer re-

view process was put into place. Another important fac-
tor that contributes to the decision for content indexing
is the regular and timely publication of the journal. This
was a challenge in the first few issues of JAIF. As time

progressed, the editorial board charged Robert “Bob”
Lynch to address this weakness in the journal. Bob has
led that charge for the past few years and accomplished

this goal. JAIF is now a peer-reviewed journal with in-
dexed content. ISIF certainly owes Bob Lynch a great
thank you for all of this hard and successful work. Thank
you Bob.
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Well, what is the next step toward the ISIF vision

for JAIF? That step involves a large increase in the

number of submissions to JAIF. Without more submis-

sions, JAIF cannot have the impact desired by ISIF

and its Vice President (VP) for Publications, Yaakov

Bar-Shalom. Toward that goal, the editorial board has

identified three actions. First, the news of content index-

ing for JAIF will be broadcast broadly to the research

community that includes ISIF members and others who

have attended the International Conference on Informa-

tion Fusion. Second, the VP for Publications, Yaakov

Bar-Shalom, will contact academic departments associ-

ated with information fusion and inform them of the

acceptance of JAIF into Scopus. Third, the editorial

board for JAIF will take extra measures to reduce the

time required for the rigorous peer review of JAIF to

three months. Through these three actions, JAIF should

experience an increase in the number of submissions as

researchers need to publish articles in a timely manner

and achieve a higher impact factor for promotions, ap-

plications for new positions, and nominations for honors

such as IEEE Fellow.

William Dale Blair

Editor in Chief

2 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 8, NO. 1 JUNE 2013



Bearings-Only Localization
with NLOS Reflected AoAs

XIUFENG SONG
PETER WILLETT
SHENGLI ZHOU

Bearings-only localization with light-of-sight (LOS) propagation

is well understood. This paper concentrates on bearings-only local-

ization with non-line-of-sight (NLOS) measurements, where target

images arrive at a network of sensors each after a single specu-

lar reflection. The reflecting surface can be 1) flat or 2) circular

(inner side of a circle), and is assumed known. In this paper, we

derive the least squares (LS), Stansfield, and maximum likelihood

(ML) estimators for both cases. As to the former, their estimation

performances are similar to their counterparts in LOS localization:

Stansfield is very close to ML, and both are usually significantly

better than LS. As regards the second, since the target-sensor ge-

ometry has multiple possibilities, the ML solution is extremely intri-

cate. However, if a concentric opaque circle (such as the earth) lies

within the reflecting one, e.g. the earth within the ionospheric layer,

the propagation path becomes unique; a grid search based ML is

available for such a circumstance. ML is computationally intensive

for a circularly reflecting surface; two suboptimal algorithms, LS

and Stansfield, are developed based on small angle approximation.

These algorithms perform differently from those for the flat case:

ML significantly outperforms LS and Stansfield, especially for a

large observation error; however, Stansfield is not necessarily better

than LS.

Manuscript received November 7, 2011; revised July 19, 2012;

released for publication December 12, 2012.

Refereeing of this contribution was handled by Huimin Chen.
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1. INTRODUCTION

1.1. Distributed Localization: from LOS to NLOS

Sensor networks enable the localization of a target

(or source) of interest with spatially complementary ob-

servations. Current available physical measurements in-

clude received signal strength [1], time of arrival [11],

angle of arrival (AoA) [6, 7, 10, 13, 19], and so forth.

They can be individually or cooperatively utilized in

target information extraction. In this paper, we concen-

trate on localizing a single target with distributed AoAs,

specifically bearings-only localization.

Bearings-only localization infers the position of a

target with multiple AoA lines, which share a unique

intersection–the target location–in the absence of

noise. If observation uncertainty is included, a global in-

tersection may not exist and advanced estimators are re-

quired. Least squares (LS) is a straightforward choice if

the noise distribution is unknown [6]. If noise statistics

are known, maximum likelihood (ML) is an option and

is popular [10, 13]. Its good performance is guaranteed

at the cost of computational load. The Stansfield estima-

tor is a kind of weighted LS for independent Gaussian

noise [19]; it is a compromise between estimation per-

formance and computation. Reference [10] shows that

the root mean square errors (RMSEs) of a Stansfield

estimator are not necessarily larger than those of ML

in bearings-only localization. Other approaches include

total least squares [7], and so forth.

The aforementioned works focus on line-of-sight

(LOS) propagation, where a direct path exists between

the target and sensors; nevertheless, practical problems

may not necessarily have a LOS. When the wavefront

(acoustic, light, or electromagnetic) of target radiation

meets an interface between two media, reflection will

happen [14]. The reflection is helpful for the extraction

of target information in some circumstances, especially

where LOS propagation is unavailable. An interesting

application is over-the-horizon radar (OTHR) [9, 17]

(see Fig. 1). If multiple geometrically complementary

radar sensors are available, a fusion center can infer

the position of the target with proper data association.1

Instead of LOS AoAs, this paper studies the localiza-

tion with non-line-of-sight (NLOS) reflection measure-

ments, where the radiation from a target reaches a sensor

after a single specular reflection.

1.2. Localization with Reflected Measurements

This NLOS based localization problem is motivated

by OTHR, which utilizes ionospheric reflection to cap-

ture a target beyond the horizon [9, 14, 17]. Such a

reflection based technique has been used in long-range

missile and aircraft detection, and it is considered an

1OHTRs are not the only system utilizing electromagnetic reflection

phenomenon. Some other applications such as array aperture synthesis

and low elevation target extraction can be respectively found in [4]

and [2].
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Fig. 1. An illustration of reflection based target perception with an

OHTR [17].2 The LOS path is unavailable due to the earth

curvature, and the radiation of the target reaches a radar sensor after

a single reflection on ionosphere. If multiple distributed radar

sensors are available, one could properly associate their data to infer

the location of the target.

effective means of wide-area surveillance [5]. The iono-

sphere has two typical reflection layers: E and F, whose

characteristics are frequency dependent and resolvable

[14]. In this paper, sensors are assumed to be either

frequency selective or capable of resolving echo fre-

quencies and labeling a AoA to its corresponding layer.

We thus could focus on a single layer localization with

multiple sensors, and the extension to double layers is

straightforward. In addition, a real OTHR system works

in three dimensions. This paper initiates an investigation

in two dimensions–same as do [9] and [17]–where the

reflection layer is the inner side of a circle–a slice of

the ionosphere (see Fig. 3 for an immediate perception).

As is the case for [9] and [17] we work in two dimen-

sions and do not offer any discussion of incorporating

the third.

As opposed to the usual LOS based localization

[6, 10, 13, 19], a sensor here in the NLOS case observes

the virtual image of a target. To understand the ramifi-

cations thoroughly, we investigate in two steps: flat and

circular reflecting surfaces, where the reflection is as-

sumed to be specular [9]. The ML, Stansfield, and LS

algorithms are derived for both cases. Even though the

former does not have a clear physical application, it fa-

cilitates the importation, from conventional LOS based

localization [6, 10, 13, 19] ideas, to the latter situation of

NLOS based localization with circular reflected AoAs.

As for a flat surface, the target-sensor reflection

geometry is unique, and we show that:

² the algorithm comparison for the LOS case in [6],

[10], [13], [19] still holds here: LS has the worst

performance, while the RMSE of Stansfield estimator

is not necessarily larger than that of ML.

2Reference [17] acknowledges that the picture is in turn derived from

an image provided by the US National Oceanic and Atmospheric Ad-

ministration (NOAA).

TABLE I

Coordinates Notions

Coordinate Objective

(xt,yt) target

(xs
i
,ys
i
) the ith sensor

(x̄t
i
, ȳt
i
) image of (xt,yt) corresponding to the ith mirror

(x̄s
i
, ȳs
i
) image of (xs

i
,ys
i
) corresponding to the ith mirror

(x̄n
i
, ȳn
i
) image of (xs

i
,ys
i
) corresponding to the normal line

(xc
i
,yc
i
) intersection between circle and the ith observation line

(xb ,yb) boundary of blocking circle division area

The circular NLOS case has two unique properties:
1) the reflection with a circular surface is nonlinear,
and the image of a single point with respect to it
is not unique; 2) the spatial uncertainty of the target
does not coincide with that of the AoA, since the
circular reflection nonlinearly changes the noise spatial
distribution around the target (a focusing effect, see
Fig. 7). That is, circular/NLOS is considerably more
complicated than flat/LOS, and this paper investigates
it from the following perspectives:

² We give the reflection model and reveal that multiple
reflection paths exist between a sensor and the target.
A ML solution turns out to be quite intricate.

² If an opaque blocking circle (no propagation can pass
through it) is concentric to the reflecting one, and
all the sensors are deployed on the blocking circle,
then the unblocked target-sensor reflection path is
unique and can be found numerically. Therefore, a
grid search based ML can be performed.

² The grid search is laborious; suboptimal algorithms
such as LS and Stansfield are given based on a small
arc approximation. Their performance are compared.

Note that the suboptimal algorithms for the circular
reflection case utilize the corresponding results of the
flat case.
This paper includes some material from [18], how-

ever, with significant expansions including a thorough
investigation of flat reflecting surface and explicit target-
sensor geometric analysis for circular reflecting surface.
The rest of this paper is as follows. Section 2 studies the
bearings-only localization with flat reflecting surfaces;
Section 3 analyzes the reflection geometry for a circular
surface, and gives the ML localization algorithm; subop-
timal localization approaches for circular reflection are
given in Section 4; numerical results are in Section 5,
while conclusions are drawn after that.
Notation: Boldface uppercase and lowercase letters

denote matrices and column vectors respectively. k ¢ k
stands for the Frobenius norm, while diag(a) denotes
the diagonal matrix formed by vector a. (¢)T and (¢)¡1,
respectively, represent matrix transpose and inverse. AB
and

_
AB respectively denote the line and arc through

points A and B, while 6 _AB measures the angle of _AB.
N (0,"2) is a zero-mean Gaussian distribution with vari-
ance "2. Finally, the coordinates of different locations
are collected in Table I for clarity.
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Fig. 2. Bearings-only measurement with flat reflecting surface:

(a) target image based modeling, and (b) sensor image based

modeling.

2. BEARINGS-ONLY LOCALIZATION WITH FLAT
REFLECTING SURFACES

This section investigates NLOS localization with

known flat reflection surfaces, where a LOS propaga-

tion path is assumed unavailable. The radiations of a

target arrive at a network of passive sensors after a sin-

gle specular reflection, and the AoA is recorded by an

individual sensor. Suppose that proper synchronization

and communication links are extant, and hence a pro-

cessing center can collect the reflected AoAs to infer

the location of target.

2.1. Maximum Likelihood Estimation

ML with flat reflecting surfaces has two modeling

approaches: target and sensor images based (see Fig. 2).

In the following, we will show their equivalence.

2.1.1. Target Image Based Modeling
If a reflecting surface is flat, the image of a target

is unique. A sensor actually observes the target image

instead of the target itself. Therefore, the image based

modeling as shown in Fig. 2(a) is obvious.

Let the coordinates of the target be (xt,yt), and then

the location of its image with respect to a reflecting

surface y = aix+ bi is expressed as (x̄
t
i, ȳ

t
i), where

x̄ti =
1¡ a2i
1+ a2i

xt+
2ai
1+ a2i

yt¡
2aibi
1+ a2i

ȳti =
2ai
1+ a2i

xt+
a2i ¡1
1+ a2i

yt+
2bi
1+ a2i

(1)

based on Lemma 4 in Appendix A. As a result, the

measured AoA for the ith sensor is

'i = arctan

μ
ȳti ¡ ysi
x̄ti ¡ xsi

¶
| {z }

¢
=Á0

i
(xt ,yt)

+n0i (2)

where (xsi ,y
s
i ) stands for the (known) coordinates of

sensor i, and n0i denotes its measurement noise.

2.1.2. Sensor Image Based Modeling
The measured AoA can be transformed as a function

of sensor image as shown in Fig. 2(b). Let the reflecting

surface be y = aix+bi, and then the slope of the image

of horizontal reference line is tan(2ai). Therefore, the

observed AoA for sensor i is written as

'i = 2arctanai¡ arctan
μ
yt¡ ȳsi
xt¡ x̄si

¶
| {z }

¢
=Ái(xt,yt)

+ni (3)

where (x̄si , ȳ
s
i ) denotes the coordinates of the image of

sensor i corresponding to y = aix+ bi,

x̄si =
1¡ a2i
1+ a2i

xsi +
2ai
1+ a2i

ysi ¡
2aibi
1+ a2i

ȳsi =
2ai
1+ a2i

xsi +
a2i ¡ 1
1+ a2i

ysi +
2bi
1+ a2i

(4)

and ni represents the noise for sensor image based

modeling. Note that the (x̄si , ȳ
s
i )s can be precalculated.

The measurement uncertainty of the second ap-

proach ni is an imaging transformation of that for the

first one n0i. If the reflecting surface is flat, the trans-
formation will not change the distribution. Based on

Appendix B, we obtain Ái(xt,yt) = Á
0
i(xt,yt), so the two

modeling approaches are equivalent. As for the first one,

the unknown parameters, xt and yt, are included in both

the numerator and denominator of tanÁ0i(xt,yt); direct
optimization with it will have a nontrivial computational

load. The following estimation algorithms adopt the sec-

ond modeling approach.

Suppose that the measurement uncertainty of sen-

sor i subjects to zero-mean Gaussian distribution with

variance ¾2i . Collecting the unknown parameters as

μ = [xt,yt]
T, the conditional probability density function

(PDF) of the observed AoA for the ith sensor is

f('i j μ) =
1q
2¼¾2i

exp

μ
¡j'i¡Áij

2

2¾2i

¶
(5)

where Ái
¢
=Ái(xt,yt) for notational simplicity. Let each

sensor send its bearing measurement to a central pro-

cessing unit, and then the central processor utilizes all of

them to estimate target location. Suppose that f('i j μ)s
are mutually independent; the centralized ML estimator

is given by

μ̂ML = argmax
μ

NY
i=1

f('i j μ)

= argmin
μ

NX
i=1

1

¾2i
j'i¡Áij2 (6)

where N counts the number of sensors.

2.2. Stansfield Estimation
Stansfield estimator approximates ML under small

observation errors [19]. It relies on the law of small-

BEARINGS-ONLY LOCALIZATION WITH NLOS REFLECTED AOAS 5



angle approximation: the bearing noise ni is small

enough that

ni ¼ sinni: (7)

Substituting (3) into (7), we have

'i¡Ái ¼ sin('i¡Ái) (8)

= sin

0BBBB@'i¡ 2arctanai| {z }
¢
=°i

+arctan

μ
yt¡ ȳsi
xt¡ x̄si

¶1CCCCA
=
(xt¡ x̄si ) sin°i+(yt¡ ȳsi )cos°i

di(xt,yt)
: (9)

Substituting (9) into (6), the optimization is recast as

μ̂SE = argmin
μ
(Uμ¡ v)T¤¡1D¡1(Uμ¡ v) (10)

where ¤= diag([¾21, : : : ,¾
2
N]),

U=

2664
sin°i cos°i

...
...

sin°N cos°N

3775 (11)

is a N £ 2 matrix assumed with full rank,

v=

2664
x̄s1 sin°1 + ȳ

s
1 cos°1

...

x̄sN sin°N + ȳ
s
N cos°N

3775 (12)

and

D= diag([d21(xt,yt), : : : ,d
2
N(xt,yt)]) (13)

where di(xt,yt) denotes the distance between the target

and the image of the ith sensor:

di(xt,yt)
¢
=

q
(xt¡ x̄si )2 + (yt¡ ȳsi )2: (14)

Clearly, the distance matrix D depends on target location
(xt,yt), and it is unknown.

In [19], the distance matrix D is assumed available
from secondary observations; therefore, (10) degener-

ates to a standard quadratic optimization. Later, [10]

shows that a rough estimate, say D̂, can be used in (10)
without significantly affecting the estimation accuracy,

because its objective function only weakly relies on D.
With D̂, the solution for (10) is

μ̂SE = (U
T¤¡1D̂¡1U)¡1UT¤¡1D̂¡1v (15)

which has the form of weighted LS.

2.3. Least Squares Initialization

Both ML and Stansfield estimators require a guess

of μ: the former uses it for optimization initialization,

while the latter employs it to obtain D̂. This can be
realized via LS.

The line through the target and the image of sensor

i is
y¡ ȳsi = tan(2arctanai¡'i| {z }

=¡°i

)(x¡ x̄si ) (16)

equivalently written as

(x¡ x̄si )sin°i+(y¡ ȳsi )cos°i = 0: (17)

Therefore, one can minimize

μ̂LS = argminx,y

(
NX
i=1

j(x¡ x̄si )sin°i+(y¡ ȳsi )cos°ij2
)

= argmin
μ
kUμ¡ vk2 (18)

= (UTU)¡1UTv (19)

to get an initial guess of μ. Here U and v share the same
definitions as those in the previous subsection.

2.4. Cramér-Rao Lower Bound

The Cramér-Rao lower bound (CRLB) reveals per-

formance limitation of an unbiased estimator. For a non-

random vector μ, its estimation covariance matrix is
bounded by [15]

Ef(μ̂¡μ)(μ̂¡μ)Tg ¸ J¡1μ (20)

where Jμ is the Fisher information matrix defined as

Jμ =¡E
8<:rμ

"
rμ log

Ã
NY
i=1

f('i j μ)
!#T9=;

=

NX
i=1

1

2¾2i
Efrμ(rμ j'i¡Áij2| {z }

¢
=Pi

)Tg: (21)

Clearly, Jμ is a 2£ 2 matrix, and we now specify it

element-by-element. The first-order derivatives of Pi are

@Pi
@xt

= 2(Ái¡'i)
@Ái
@xt

and
@Pi
@yt

= 2(Ái¡'i)
@Ái
@yt
:

(22)

Recall the definition of di(xt,yt) in (14), and then

@Ái=@xt and @Ái=@yt shall be specified as

@Ái
@xt

=
yt¡ ȳsi
d2i (xt,yt)

and
@Ái
@yt

=¡ xt¡ x̄si
d2i (xt,yt)

:

(23)

Based on (22), the second order derivatives of Pi are

@2Pi
@2xt

= 2

μ
@Ái
@xt

¶2
+2(Ái¡'i)

@2Ái
@2xt

(24)

@2Pi
@2yt

= 2

μ
@Ái
@yt

¶2
+2(Ái¡'i)

@2Ái
@2yt

(25)

@2Pi
@xt@yt

=
@2Pi
@yt@xt

= 2
@Ái
@xt

@Ái
@yt

+2(Ái¡'i)
@2Ái
@xt@yt

:

(26)
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Fig. 3. AoA measurement with circular reflecting surface: the

radiation of the target arrives at a sensor after a single specular

reflection. The reflection geometry can be equivalently addressed as

that the image of sensor with respect to the reflecting normal is

exactly on the line determined by target and reflection point.

Since EfÁi¡'ig= 0, we obtain

[Jμ]1,1 =
NX
i=1

1

¾2i

μ
@Ái
@xt

¶2
(27)

[Jμ]2,2 =
NX
i=1

1

¾2i

μ
@Ái
@yt

¶2
(28)

[Jμ]1,2 = [Jμ]2,1 =
NX
i=1

1

¾2i

μ
@Ái
@xt

¢ @Ái
@yt

¶
(29)

where [Jμ]j,k refers to a particular element of Jμ.

3. BEARINGS-ONLY LOCALIZATION WITH
CIRCULAR REFLECTING SURFACE

The reflecting surface was flat in the previous sec-

tion. Now we will focus on bearings-only localization

with a circular reflecting surface (inner side of a circle),

where the target and N sensors are all within a circle as

depicted in Fig. 3. The radiation from the target reaches

each sensor after a single specular reflection on the cir-

cle, where the reflection is assumed to be specular [9].

A fusion center collects the noisy AoAs to infer the tar-

get position. Note that some similar problems exist in

elastic collision and optical imaging [8, 12, 16]; results

of this paper may be useful in their cases, especially

where there is noise.

3.1. Geometric Modeling

The geometric relationships between the target and

sensors are required for localization. Suppose the re-

flection be specular, so the angle of incidence equals

the angle of reflection. Let the center of the reflecting

circle be (xc = 0, yc = 0), and let (R cosμi,R sinμi) stand

for the (unknown) reflection point for sensor i, where R

denotes the radius of the circle, and μi is an instrumental

variable as shown in Fig. 3. Instead of direct application

of the reflection law, we use an equivalent transforma-

tion: the image of sensor i corresponding to the normal

line
y = x tanμi (30)

is exactly on the line through target and reflection point

as shown in Fig. 3. Mathematically, it is expressed as

R cosμi¡ x̄ni
R sinμi¡ ȳni

=
xt¡R cosμi
yt¡R sinμi

(31)

where (xt,yt) denotes the coordinates of the target, while

(x̄ni , ȳ
n
i ) denotes the image coordinates of the ith sensor

with respect to the normal line. As the coordinates of the

ith sensor is (xsi ,y
s
i ), and hence (x̄

n
i , ȳ

n
i ) can be written as

x̄ni = cos(2μi)x
s
i +sin(2μi)y

s
i

ȳni = sin(2μi)x
s
i ¡ cos(2μi)ysi

(32)

based on Appendix A. Substituting (32) into (31), we

have

R(ysi + yt)cosμi¡R(xsi + xt)sinμi
(xsi yt+ xty

s
i )cos(2μi)¡ (xsi xt¡ ysi yt) sin(2μi)

= 1:

(33)

Now, the coordinate connection between sensor i and

target is obtained with the help of μi.

3.2. Maximum Likelihood Estimation

Suppose that μi could be expressed as a function

of xt and yt, say μi(xt,yt), and then we can choose

the reflection point (R cos(μi(xt,yt)),R sin(μi(xt,yt))) as a

reference and formulate the observed AoA Ãi as

Ãi = arctan

μ
R sin(μi(xt,yt))¡ yi
R cos(μi(xt,yt))¡ xi

¶
| {z }

¢
=´i(xt,yt)

+wi (34)

where wi »N (0,"2i ) denotes the Gaussian measurement
noise. Let the wis be independent, and hence the ML

estimation becomes

μ̂ = argmax
μ

NY
i=1

f(Ãi j μ), (35)

where

f(Ãi j μ) =
1q
2¼"2i

exp

μ
¡jÃi¡ ´i(xt,yt)j

2

2"2i

¶
(36)

denotes the conditional probability density function

of Ãi.

3.3. Challenges for Maximum Likelihood

To this point all appears as the (straightforward?)

LOS localization case. What is new? Three things are:
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Fig. 4. An illustration of the existence of multiple solutions for

(33). If a target and a sensor is symmetric about the center of the

reflection circle, four reflection points can be immediately found.

Note that reflection points are not necessarily as uniform as those in

the figure if the sensor and the target is not centrally symmetric.

1) The solution μi(xt,yt) is not unique. Therefore, the

expression of (34) is not unique, neither is the likelihood

equation (35). An example with a special target-sensor

configuration is provided in Fig. 4 for illustration.

2) The number of μi(xt,yt) depends on geometry–

the locations of target and sensor i.

3) μi(xt,yt) cannot be analytically obtained; thus, a

closed-form expression of likelihood equation is un-

available.

A thorough understanding of these is important to un-

derstand the ML formulation in (35). The first two

points relate to a famous geometric problem–circular

billiards. Reference [8] gives a comprehensive analy-

sis on the solution properties of (33) for a normalized

circle, and we briefly summarize them below for com-

pleteness.

LEMMA 1 Let (xc = 0, yc = 0) and R = 1. A sensor

is fixed at (xsi = c, y
s
i = 0), where 0· c < 1, while the

target (xt,yt) is arbitrarily located within the circle. If

jcj+ jxtj+ jytj 6= 0, the number of solutions for (33) is
either 2, 3, or 4 for a given (xt,yt). Furthermore, define

a supplementary variable h as

h= (1¡3c+2c2)t6 +3(1¡ c+2c2)t4

+3(1+ c+2c2)t2 + (1+3c+2c2) (37)

where t 2 [¡1,+1], and then the separatrix l(x,y)
x=¡ c

h
[(1¡ c)t6 +3(1¡ 3c)t4 + 3(1+3c)t2 + (1+ c)]

y =
16c2t3

h

(38)

Fig. 5. Solution number distribution within a unit circle: a sensor is

fixed at (xs
i
= 0:955, ys

i
= 0), while a target can be arbitrarily

selected within it. If the target is located in the two (four) solutions

region, equation (33) has two (four) possible nonoverlapping

reflection paths, while if the target is on the separatrix line, equation

(33) has three solutions. The sensor and the right two singular points

are concentric.

divides the circle into two parts. If the target falls into the

region that includes point (0,0), (33) has two solutions,

while if it falls into the other one, the number of solutions

for (33) is four. Finally, if the target falls (exactly) on

l(x,y), (33) has three solutions.

PROOF Proof can be found in [8].

Clearly, the shape of l(x,y) depends on the value

of c. An illustration with c= 0:955 is given in Fig. 5.

From this figure, we see that l(x,y) is continuous but

not everywhere differentiable; a nondifferentiable point

is denoted singularity [8]. For jcj ¸ 1=3, l(x,y)s share
the similar shape as that in Fig. 5: the separatrix is open

and has three singular points: (x=¡c=(1+2c), y = 0)
and ³

x= c(2c2¡1), y =§2c2
p
1¡ c2

´
: (39)

Those for jcj< 1=3 share another shape, where the

separatrix is closed, and another singular point (x=

¡c=(1¡2c), y = 0) is added in addition to the previous
three. Note that 1) the above results are valid for R = 1

and ysi = 0; any other scenario with R 6= 1 or (and) ysi 6= 0
can be obtained via a simple scaling or (and) rotation of

coordinates; 2) Lemma 1 does not include the extreme

case, c= xt = yt = 0, of which the number of solutions

is infinity.

The first two points are now clear. The geometrically

dependent multiple-solution characteristics of circular

reflection can significantly complicate ML estimation.

For example, if a sensor obtains a noisy AoA, it may be
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responsible for up to 4 propagation paths. Since we have

no knowledge to which one the AoA corresponds, a

complete case-by-case enumeration is necessary in ML

processing. As a result, for a system with N sensors, the

total number of possible combinations can be up to 4N .

The final ML result is the best estimate from all these

combinations; obviously, it is very intricate.

Regarding the third item, μi(xt,yt) cannot be analyti-

cally derived, nor can the likelihood maximization (35)

be explicitly posed. As a consequence, local search al-

gorithms such as gradient-based approaches [3] and al-

ternating projection [21] will not in general work here.

Fortunately, since the μi(xt,yt)s can be numerically cal-

culated for a given (xt,yt), a grid search based algorithm

[20] is applicable for this problem. Specifically, uni-

formly divide a search area around the initial guess into

a fine grid, and pick up the grid cell with the maximum

ML value as an optimal estimate. This algorithm works

well for low dimensions, and its performance depends

on grid fineness, the search area size, and the accuracy

of initialization. Generally, the larger the search area and

the greater the fineness, the better performance; how-

ever, the larger the search area, the greater the compu-

tational load.

3.4. Maximum Likelihood Simplification with a
Blocking Circle

In the previous subsection, target and sensors are

arbitrarily located within the enclosing reflection circle;

nevertheless, a real problem has more physical con-

straints. For example, the earth serves as a blocking

(opaque) circle; no radiation can pass through it. Fur-

thermore, the sensors are likely fixed on the earth, while

the target is always within the annulus between the two

circles. Suppose the reflection and blocking circles be

concentric; we will show that the ML estimation could

be simplified with the above constraints.

LEMMA 2 Let the radius of the blocking circle be r,

where r < R. Suppose a sensor be at A as shown in Fig. 6.

Let AC and CD be two tangents of the blocking circle,

and then we have that:

² if the target is located within region A1, enclosed by
CD,

_
DE, EF, and

_
CF, it is reflectively-invisible for

the sensor; or

² if the target is located within region A2, enclosed by
AB,

_
BC, CD, and

_
AD, it is reflectively-visible for the

sensor.

PROOF Let T be an arbitrary point within A1, and
assume AG—GT be an unblocked reflection path, where

G denotes the reflection point. To guarantee AG be free

from blocking, G must be located on arc
_
BC. Due to

the symmetry of specular reflection, GT will have an

intersection, say H, with the blocking circle. Therefore,

we have 6 _AH = 2 6 _BG < 2 6 _BC = 6 _AD, and H is located
on arc

_
AD. As a result, line GH, or, GT could not go

through A1. Obviously, this contradicts the assumption,
so an unblocked reflection path does not exist for the

first case.

The proof of the second conclusion is trivial. If a

reflection point, say J , continuously moves from C to

B on arc
_
BC, the intersection between the reflection line

and inner circle, say K, will continuously go from D to

A. Line JK will go through the entire A2. Therefore,
every point within A2 is visible, and Lemma 2 holds.
A half-plane is employed in Lemma 2, and the other

part is the same due to symmetry. The reflectively-

visible area A2 includes a LOS-visible region A3, which
is enclosed by AB,

_
BC, and AC. If a target falls into A3

of each sensor,3 direct arrivals will be utilized to esti-

mate the position of the target, and hence the problem

becomes a conventional LOS bearings-only localization

[6, 10, 13, 19]. A mixed scenario, parts of sensors ob-

taining LOS while the others measuring NLOS reflec-

tive AoAs, is also physically sound. Its localization can

be easily realized via a proper modification of (35), and

no discussion or specific example will be given. In ad-

dition, since a real system requires a certain amount

of elevation angle to avoid ground clutter, the practical

reflectively- and LOS-visible areas are smaller than their

theoretical results A2 and A3.
LEMMA 3 If the sensor is deployed at (r,0) while the

target is arbitrarily located within the reflectively-visible

region A1, then the sensor-target pair has exactly one
unblocked reflective path.

PROOF Firstly, we will show that the reflectively-

visible region A1 and the four-solution region shares no
subarea with the help of Fig. 5 and 6. Since 6 _AD =
6 _BC = 2arccosr=R, the coordinates of boundary point
D, say (xd,yd), is

xd = rcos 6
_
AD = r

μ
2
r2

R2
¡ 1
¶

yd = r sin 6
_
AD = 2

r2

R2

p
R2¡ r2:

(40)

Normalize (xd,yd) with R, say (x
0
d,y

0
d), and define c=

r=R; we see that (x0d,y
0
d) is exactly the upper singular

point of the separatrix as shown in (39). For a half-plane

as depicted in Fig. 6, since the four-solution region is

always on the left side of line OD [8], and since the

reflectively-visible region A1 is on its right side, their
intersection is empty. In the other words, A1 falls into
the two-solution region as shown in Fig. 5. Moreover, the

3The ionosphere is frequency selective, and only a certain frequency

span is useful for beyond-horizon exploration. For a real configu-

ration, an OTHR site is in general accompanied with another radar

system equipped with a non-ionospheric-reflection frequency. Their

detection results are combined to infer the target status: 1) if both of

them claim a target in a certain direction, the target actually appears

in A3; however, 2) if only the OTHR declares a detection, the tar-

get is beyond the horizon. One can properly use such information to

mitigate area uncertainty before target localization.
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Fig. 6. Reflectively-visible and -invisible areas within in the

annulus between the reflection and blocking circles. The sensor is

located at (r,0), while the target can be arbitrarily within the

annulus. If the target falls into A1, the area bounded by CD,
_
DE,

EF, and
_
CF, its radiation cannot arrive at sensor after one reflection.

However, if it falls into A2, the area enclosed by AB,
_
BC, CD, and

_
AD, the target is reflectively-visible. Note that AC and CD are two

tangents of the blocking circle, while AG and GT are two

supplementary lines in the proof of area division.

two reflection paths are separated by the line through

the sensor and target [8]; therefore, one of them will be

blocked. As a result, Lemma 3 can be proven.

With a blocking circle, only one solution of (33)

is valid; the likelihood equation (35) is unique for a

given grid sample. As a consequence, the grid search

based ML can be significantly simplified. Note that

since a closed-form likelihood function is unavailable,

the CRLB will not be given for the circular reflecting

surface.

4. SUBOPTIMAL ESTIMATION FOR CIRCULAR
REFLECTING SURFACE

Grid search based ML may obtain a globally optimal

estimate of a target; however, its computational com-

plexity is extremely high, as N calculations of μi(xt,yt)

are required for even one grid point. Suboptimal algo-

rithms with low computational load are investigated in

this section based on a small-angle approximation. The

basic idea is simple: if a sensor is close to the surface of

a circle with large radius, and its observation variance

is small, then the arc corresponding to the measurement

uncertainty has a small angle. Approximate it as flat,

and the tangent line through the intersection between

the ith AoA and the reflection circle can be considered

as a known flat reflecting surface.

Let the observed AoA of the ith sensor be Ãi; its cor-

responding observation line, say loi , can be expressed as

y = (x¡ xsi ) tanÃi+ ysi : (41)

The observation line loi intersects the reflecting circle

x2 + y2 = R2 at two points (xci ,y
c
i ), where

xci = cos
2Ãi[tanÃi(x

s
i tanÃi¡ ysi )§Ki]

yci = cos
2Ãi[(y

s
i ¡ xsi tanÃi)§Ki tanÃi]

(42)

and

Ki =

q
R2=cos2Ãi¡ (ysi ¡ xsi tanÃi)2: (43)

Since the observation line is a ray, one solution of (42)

can easily be removed. The tangent line through the

intersection (xci ,y
c
i ), say l

t
i, is

y =¡x
c
i

yci
(x¡ xci ) + yci (44)

and it can be regarded as a ‘known’ flat reflecting sur-

face to localize a target with LS or Stansfield algorithms

in Section 2 via proper slope and intercept mappings:

ai =¡xci =yci
bi = (x

c
i )
2=yci + y

c
i :

(45)

Based on these, the suboptimal LS and Stansfield

localization algorithms are briefly summarized below:

1) Get the AoA lines loi for each sensor with (41);

2) Calculate the intersections (xci ,y
c
i )s between l

o
i s

and the reflection circle with (42);

3) Compute ai and bi for each tangent line lti
with (45);

4) Take lti as a flat reflecting surface, and compute

the image coordinate, say (x̄si , ȳ
s
i ), of sensor i with (4);

5) Substitute ais, bis and (x̄
s
i , ȳ

s
i )s into (11) and (12)

and compute U and v;
6a) LS: Consider (x̄si , ȳ

s
i )s as a virtual sensor, and

estimate μ̂LS with (19).

6b) Stansfield: initialize the distance matrix D̂ of

the Stansfield estimator with μ̂LS, and calculate μ̂SE
with (15).

Note that these suboptimal algorithms can also be used

in ML initialization.

The suboptimal algorithms alleviate computational

burden, although they can introduce bias. The error

mainly results from: 1) geometric distortion, and 2) ap-

proximating non-Gaussian with Gaussian noise. The

former is straightforward. As for the latter, since a circu-

lar reflecting surface leads to nonlinear transformation,

the measurement uncertainty of the target is no longer

Gaussian. However, the suboptimal estimators employ

sensor image based modeling, which implies that the

target spatial uncertainty is Gaussian with regard to the

sensor images, and that the uncertainty span linearly

relates to the image-target distance di(xt,yt). Actually, a

circular surface may somewhat reduce this uncertainty

expansion as shown in Fig. 7, and it is smaller than that

of a flat surface due to focusing. This will be revealed

via numerical simulation in Section 5.

Note that: 1) If the target is close to the reflecting

surface and the "is are not very large, the situation that

the uncertainty boundaries cross each other and sharply

expand will not happen. 2) The ML in Section 3 as-

sumes Gaussian distribution too. However, the nonlin-

ear transformation (33) guarantees the shrink of target

location uncertainty as shown in Fig. 7.
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Fig. 7. Converting AoA uncertainty to target location uncertainty

after flat (dashed) and circular (solid) reflections. The uncertainty

span is linearly enlarged with the increase of di(xt,yt) for the former,

while the conical angle for the latter is somewhat reduced (focused,

actually) after reflection.

TABLE II

Coordinates of Target and Sensors for Flat Reflecting Surfaces (m)

Target Sensor 1 Sensor 2 Sensor 3

x 10000 ¡3300 0 5000

y 5000 0 0 ¡2500

5. NUMERICAL RESULTS

5.1. Flat Reflecting Surfaces

This part compares the performance of LS, Stans-

field, and ML estimators for flat reflecting surfaces.

Three distributed sensors are employed in the simula-

tion; their coordinates together with those of the target

are in Table II. A LOS measurement is assumed un-

available, and three passive sensors extract AoAs of a

target of interest with the help of their individual reflect-

ing surfaces, of which the corresponding slope-intercept

expressions are

Surface 1: y = x=2+5000

Surface 2: y =¡2500
Surface 3: y = x¡10000:

(46)

Sensors are not perfect; measurement uncertainty (addi-

tive zero-mean Gaussian noise), exists. For simplicity of

comparison, observation noises share the same variance:

¾2i = ¾
2 for 8i. The RMSEs versus standard variance ¾

for these three estimators together with CRLB are il-

lustrated in Fig. 8. The number of Monte Carlo runs is

1000. According to Fig. 8, we observe

² The four curves linearly depend on ¾;
² LS is biased and is the worst among them, while the
RMSE of Stansfield is close to that of ML.

Simulation results coincide with the theoretical analysis

for LOS bearings-only localization in [6], [10], [13],

[19]. This is not surprising because NLOS bearing-only

localization is mathematically equivalent to that of LOS.

The estimate of the Stansfield rather than the LS

estimator is used to initialize the ML, as the former has

slightly better localization accuracy than the latter for

flat reflecting surfaces. Then, gradient-based approach

Fig. 8. Example of RMSEs versus bearing standard deviation ¾ for

flat reflecting surfaces.

TABLE III

Polar Coordinates of the Target and Sensors for the Circular

Reflecting Surface: Parameter set A

Target Sensor 1 Sensor 2 Sensor 3 Sensor 4

rd (km) r+50 r r r r

Á (¼) 0 0.10 0.08 ¡0:09 ¡0:06

TABLE IV

Polar Coordinates of the Target and Sensors for the Circular

Reflecting Surface: Parameter set B

Target Sensor 1 Sensor 2 Sensor 3

rd (km) r+50 r r r

Á (¼) 0 0.11 ¡0:07 ¡0:12

is employed to search for the optimal solution of ML

based on (6). The computational complexity of each

method here is similar to the corresponding one for the

LOS based location [6, 10, 13, 19].

5.2. Circular Reflecting Surface

Bearings-only localization with a circular reflecting

surface is investigated in this subsection. Here the re-

flecting and blocking circles are concentric, with cen-

ter (0,0); their radii are, respectively, R = 6671 km and

r = 6371 km. Two system parameter sets are used, and

the coordinates of the target and sensors are collected

in Tables III and IV, respectively. The coordinates are

polar for simplicity, and they can be easily converted

into Cartesian via (rd cos(Á),rd sin(Á)). All sensors share

the same noise variance "2i = "
2 as the previous case.

Example of RMSEs versus " for LS, Stansfield, and

ML estimators for those two configurations are shown

in Fig. 9, where the number of runs is 1000.

From those two figures, we observe:

² RMSEs for Stansfield and LS may still linearly de-
pend on "; however, the former is not necessarily
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Fig. 9. Example of RMSEs versus AoA standard variance " for a

circular reflecting surface with circular block.

better than the latter. This may result from the fact

that multiple approximations, such as arc, noise, and

small-angle, are employed in the Stansfield estimator

for the circular surface, and these may degrade its

accuracy.

² ML outperforms LS and Stansfield at high "; how-
ever, the difference is not significant for small noise

levels. This is expected in that for a small variance

the uncertainty area is small, and the suboptimal ap-

proximations are nearly exact.

² The RMSE for ML is not a linear function of ",

since reflection with a circular surface may shrink

the uncertainty area compared to the flat one.

Apparently the Stansfield method does not significantly

outperform LS in this case, so a system designer can

make a choice between LS and ML trading off com-

putation for estimation accuracy. In addition, various

simulations reveal that "= 1:5 would be small enough

for the fearless use of suboptimal estimators in target

localization.

The estimate of LS is used to initialize the ML in this

part. Specifically, we firstly set the LS estimate as the

center of a 160£ 200 km2 rectangle, and then uniformly
divide it into 1£ 1 km2 grids. The ML estimate is the
point with the maximal likelihood value among these

161£ 201 vertices. The computational complexity of
the LS and Stansfield estimators are similar to those

for the LOS case [6, 10, 13, 19]. However, that for the

ML is much higher than its counterpart due to the grid

search and solution elimination.

The received signal of an OTHR usually undergoes

long distance propagation as well as frequency depen-

dent reflection loss. Those can result in a low signal-

to-noise ratio (SNR), which will cause low angular ac-

curacy. For example, reference [17] points out that a

tapered aperture of 3 km will lead to an angular res-

olution as large as 4 deg if the OTHR is operated at

3 MHz. Thus, a standard deviation up to 5 deg would

be reasonable in simulation, even though it sounds large

for traditional LOS radar systems such as phased array.

6. CONCLUSION

This paper studies bearings-only target localization

with NLOS reflection measurements. Two kinds of

reflecting surfaces are investigated: flat and circular. We

derive the LS, Stansfield, and ML algorithms for both

of them, and their performances are analyzed both via

theory and algorithmically.

The reflecting surfaces are idealized and assumed

known; however, the practical situation has many in-

gredients not discussed in this paper. For example, sen-

sors need not be synchronized, in which case a dy-

namic component (tracking, or at least motion vector

estimation) must be added. Multiple targets may also

be present, in which case some means of data associ-

ation is required. A practical system must also allow

for nonidealities, such as of errors in sensor position

and reflection surface, with possible extension of the

circular results to the elliptical case.

Lastly, and probably most important, a real OTHR

system operates in three dimensions. The estimators de-

rived in this manuscript can easily be extended from

the circular to the spherical case. But although we fully

expect the existence and uniqueness statements (Lem-

mas 1, 2, and 3) to be extensible (and very interestingly

so) to three dimensions, we doubt that this would be

straightforward.

APPENDIX

6.1. Image of Specular Reflection with Flat Surface
LEMMA 4 The image of a point (x0,y0) with respect to

a flat reflecting surface y = ax+ b locates at (x̄0, ȳ0) in

two dimensions, where

x̄0 =
1¡ a2
1+ a2

x0 +
2a

1+ a2
y0¡

2ab

1+ a2

ȳ0 =
2a

1+ a2
x0 +

a2¡ 1
1+ a2

y0 +
2b

1+ a2
:

(47)
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PROOF Proof is straightforward.

Lemma 4 is not universal: if the surface overlaps

with x= c (the special case is not included in y =

ax+ b), the image location is (x̄0 = 2c¡ x0, ȳ0 = y0).
However, this special case can be easily avoided via

a proper coordinate rotation, so we will no longer

separately discuss it in target localization.

6.2. Equivalence: Target and Sensor Images Based
Modelings

The equivalence of the target and sensor images

based modelings without noise are proven via tanÁi =

tanÁ0i in the following:

tanÁi =

tan(2arctanai)¡
yt¡ ȳsi
xt¡ x̄si

1+ tan(2arctanai)
yt¡ ȳsi
xt¡ x̄si

=

2ai
1¡ a2i

¡ yt¡ ȳ
s
i

xt¡ x̄si
1+

2ai
1¡ a2i

¢ yt¡ ȳ
s
i

xt¡ x̄si

=
2ai(xt¡ x̄si )¡ (1¡ a2i )(yt¡ ȳsi )
(1¡ a2i )(xt¡ x̄si )+2ai(yt¡ ȳsi )

(48)

Substitute (4) into (48), we have

tanÁi =
2aixt+(a

2
i ¡ 1)yt+2bi¡ (1+ a2i )ysi

(1¡ a2i )xt+2aiyt¡ 2aibi¡ (1+ a2i )xsi

=
ȳti ¡ ysi
x̄ti¡ xsi

= tanÁ0i: (49)
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On the bias of linear least squares algorithms for passive

target localization.

Signal Processing, 84, 3 (Mar. 2004), 475—486.
[7] K. Do³gançay
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Shooter Localization using
a Wireless Sensor Network
of Soldier-Worn Gunfire
Detection Systems

JEMIN GEORGE
LANCE M. KAPLAN

This paper addresses the problem of shooter localization using a

wireless sensor network of soldier-worn gunfire detection systems. If

the sensor is within the field of view of the shockwave generated by

the supersonic projectile, then using acoustic phenomena analysis,

the gunfire detection system can localize the source of the incom-

ing fire with respect to the sensor location. These relative solutions

from individual gunfire detection systems are relayed to the central

node, where they are fused to yield a highly accurate geo-rectified

solution, which is then relayed back to the soldiers for added sit-

uational awareness. Detailed formulation of the fusion methodol-

ogy presented here indicates that the multi-sensor fusion algorithm

for soldier-worn gunfire detection systems is essentially a weighted

nonlinear least-squares algorithm, which can easily be implemented

using the Gauss-Newton method. The performance analysis of the

proposed fusion algorithm through numerical simulations reveals

that the fused solution is much more accurate compared to the indi-

vidual best sensor solution and the simple averaged sensor solution.

Since the proposed fusion algorithm requires consistent weighting

of individual sensor solutions, a consistency-based weighting scheme

is introduced to tackle the lack of reliability among sensor provided

weights. Implementation of the proposed fusion scheme along with

the consistency-based weighting scheme on experimental data fur-

ther confirms the numerical results.
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1. INTRODUCTION

Highly accurate small-arms gunfire detection sys-

tems on individual soldiers are vital requirement for

added battlefield situational awareness and threat assess-

ment. Today, several acoustic shooter localization sys-

tems are commercially available [2, 7, 29]; an overview

of such systems can be found in [26]. A few exam-

ples of soldier-wearable shooter localization systems

include the Shoulder-Worn Acoustic Targeting System

(SWATS) by QinetiQ North America, Inc., Boomerang

Warrior-X by BBN Technologies, and PinPoint by

BioMimetic Systems. These Soldier-wearable Gunfire

Detection Systems (SW-GDSs) can provide a good level

of localization accuracy as long as the soldier is at

an ideal location relative to the shooter and the bul-

let trajectory. However, due to the dissipative nature

of acoustic signals, localization systems suffer severe

performance degradation as the distance to the shooter

and the bullet trajectory increases [22, 23, 28]. More-

over, when a relative solution, i.e., the shooter loca-

tion relative to the sensor, is transformed into a geo-

rectified solution using a magnetometer and GPS, the

solution often becomes unusable due to localization er-

rors. Geo-rectified solutions are necessary when dis-

playing hostile fire icons on a Command and Con-

trol Geographic Information System (C2 GIS) map dis-

play.

SW-GDSs use acoustic phenomena analysis of

small-arms fire to localize the source of incoming fire,

usually with a bearing and range relative to the user

[12]. Currently, the individual SW-GDSs operate sep-

arately and are not designed to exploit the sensor net-

work layout of all the soldiers within a Small Combat

Unit (SCU) to help increase accuracy. Researchers are

exploring some novel solutions that utilize the team as-

pect of these SCUs by exploiting all SW-GDSs in a

squad/platoon to increase detection rates and localiza-

tion accuracy [9, 10, 32]. Apart from soldier-wearable

systems, there exist several single-microphone as well

as microphone array-based sensor network approaches

to shooter localization [6, 15, 16, 19, 24]. Most of the

existing sensor fusion schemes for shooter localization

are centralized approaches where the individual sensor

measurements, such as time of arrival or angle of arrival

of the muzzle blast or the shockwave are combined to

yield a single estimate of the shooter position [5, 16,

19, 20, 32]. Here we consider a hierarchical approach

where the relative shooter position from the individual

sensors are fused to obtain a more accurate geo-rectified

shooter position. The proposed approach takes full ad-

vantage of the team aspect of a SCU to provide a fused

solution that would be more accurate and suitable for a

C2 GIS map display than the individual soldier’s solu-

tion. The objective here is to improve accuracy across

an entire SCU so even soldiers in non-ideal settings (out

of range, bad angle, etc.) can exploit the good solutions
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from their neighbors. Furthermore, the proposed hier-

archical approach would allow the individual sensors

to operate independently in an event of network fail-

ure.

The individual SW-GDS is composed of a passive

array of microphones that is able to localize a gunfire

event by measuring the direction of arrival for both

the acoustic wave generated by the muzzle blast and

the shockwave generated by the supersonic bullet [2, 7,

12, 23]. After detecting a gunfire, the individual sensors

report their solution along with their orientation and

GPS positions to a central node over a communication

network. At the central node, the individual sensor

solutions are fused along with the GPS positions to yield

a highly accurate, geo-rectified solution, which is then

relayed back to individual soldiers for added situational

awareness.

This paper presents a detailed account of our con-

tinuing effort in the field of shooter localization us-

ing a wireless sensor network, where the main goal is

to develop a fusion algorithm that would work well

(compared to the individual sensor solutions) across

all the off-the-shelf SW-GDSs and not tailored toward

any particular acoustic sensor [3, 9, 10, 13, 30]. Even

though the exact details of the measurement process in

an acoustic GDS is sensor dependent and may consid-

ered as proprietary, a brief description of the shooter

localization process is presented in Sections 2 and 3 for

completeness. Sections 2 and 3 are not intended to pro-

vide a detailed and comprehensive explanation of acous-

tic gunfire detection process; rather, they are presented

as a prologue to the fusion algorithm presented in Sec-

tion 4 and to point out that even with the most simplistic

measurement model, the fusion algorithm amounts to a

complex nonlinear optimization problem. Readers who

are interested in further details of the shooter localiza-

tion process are referred to [2], [23], and the references

within them.

The sensor fusion scheme presented here is a max-

imum likelihood approach and since here we consider

additive white Gaussian noise, the maximum likelihood

estimation problem can be posed as a weighted non-

linear least-squares problem. But due to the interde-

pendence between the latent parameters and the mea-

surement noise covariance, the weighted nonlinear least-

squares problem is not readily solvable considering the

practical limitations in processing time and capability.

Therefore, a variance versus bias trade-off study is con-

ducted to reduce the number of parameters in the opti-

mization problem. Furthermore, the SW-GDSs are de-

signed to provide confidence weights along with their

individual solutions. From analyzing the experimental

data, it was noticed that the weights provided by the

sensors are inconsistent with the individual solution

accuracy and therefore, a consistency-based weight-

ing scheme is provided. In summary, compared to the

existing literature, the four main contributions of this

manuscript are:

² A detailed formulation of the multi-sensor data fusion
scheme for a wireless network of SW-GDSs.

² A variance versus bias trade-off study to reduce the

number of parameters in the optimization problem for

the real-time implementation of the fusion algorithm.

² A consistency-based weighting scheme to tackle the

lack of reliability among the sensor provided weights.

² Experimental results and an in-depth analysis of data
obtained from implementing the proposed sensor fu-

sion algorithm for realistic sensor formation.

The structure of this paper is as follows: Sec-

tion 2 presents the measurement model for the soldier-

wearable acoustic sensor nodes. Section 3 presents the

localization algorithm that converts the sensor measure-

ments to a shooter position estimate. Details of the cen-

tral node data fusion and the corresponding nonlinear

least-squares problem are given in Section 4. Section 5

presents the results from numerical simulations and Sec-

tion 6 presents the results obtained from implementing

the fusion algorithm on experimental data. Finally, Sec-

tion 7 concludes the paper and discusses the current

research challenges.

2. SENSOR MODEL

Consider a SCU consisting of n individual soldiers

equipped with the SW-GDS. In order to set up the

problem and develop a sensor model, consider a sce-

nario where there is only one shooter and the SW-

GDS receives both the muzzle blast and shockwave.

The shooter or the target location and the soldier or the

ith sensor location are defined as T and Si, respectively.

For simplicity, the problem is formulated in R2, i.e.,
T ´ [Tx Ty]T 2R2 and Si ´ [Six Siy ]T 2 R2. Now define

the individual range, ri, and bearing, Ái, between the ith

sensor node and the target as

ri =
q
(Tx¡ Six)2 + (Ty ¡ Siy )2 (1)

Ái = arctan

μ
Ty ¡ Siy
Tx¡ Six

¶
§¼f¡1,0,1g

= 2arctan
(Ty ¡ Siy )q

(Tx¡ Six)2 + (Ty ¡ Siy )2 + (Tx¡ Six)
:

(2)

REMARK 1 For descriptional simplicity, we consider a

constant velocity bullet model while the sensors in real-

ity account for the decelerating bullet speed [2]. Since

we are mainly interested in developing an algorithm for

SW-GDS fusion as opposed to improving the individual

sensor capability, the simplified sensor model is pre-

sented only for completeness.

When a gun fires, the blast from the muzzle pro-

duces a spherical acoustic wave that can be heard in

any direction. The bullet travels at supersonic speeds
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Fig. 1. Geometry of the bullet trajectory and propagation of the muzzle blast and shockwave to the sensor node.

Fig. 2. Muzzle blast and shockwave field of view.

and produces an acoustic shockwave that emanates as

a cone from the trajectory of the bullet. Because the

bullet is traveling faster than the speed of sound, the

shockwave arrives at the sensor node before the wave

from the muzzle blast [19], which we simply refer to

as the muzzle blast. Figure 1 illustrates the geometry of

the shockwave and the muzzle blast for the ith sensor

node when the orientation of the bullet trajectory is !

with respect to the horizontal axis. As the bullet pushes

air, it creates an impulse wave. The wavefront is a cone

whose angle μ with respect to the trajectory is

μ = arcsin

μ
1

m

¶
(3)

where m is the Mach number [8]. The Mach number is

assumed to be known since the typical Mach number for

sniper ammunition is m= 2.1 Since the Mach number

directly influences the range (distance from the sensor to

the shooter) estimates, uncertainty in bullet speed may

be treated as a range estimation error.

1http://www.chuckhawks.com/rifle ballistics table.htm.

As indicated in Fig. 1, the angle Ái indicates the

direction of arrival (DOA) of the muzzle blast, and

'i indicates the DOA of the shockwave. The muzzle

blast DOA2 is measured counter-clockwise such that

0· Ái · 2¼. For a more detailed description of the

scenario, please refer to [12]. Figure 2 indicates the

field of view (FOV) for both the muzzle blast and the

shockwave. Note that the FOV of the muzzle blast is 2¼,

i.e., omnidirectional, and the FOV for the shockwave

is ¼¡ 2μ. SW-GDS receives the shockwave only if the
muzzle blast DOA is within the bounds

¼=2+ μ+! < Ái < 3¼=2¡ μ+!: (4)

Now, the DOA angle for the shockwave can be writ-

ten as

'i =

8<:¡
¼

2
¡ μ+!, if ¼+! < Ái <

3¼

2
¡ μ+!

¼

2
+ μ+!, if

¼

2
+ μ+! < Ái < ¼+!

:

(5)

The first case, ¼+! < Ái < (3¼=2)¡ μ+!, corresponds

to the scenario where the sensor is located above the bul-

let trajectory and the second case, (¼=2)+ μ+! < Ái <

¼+!, corresponds to the scenario where the sensor is

located below the bullet trajectory (as shown in Fig. 1).

The case where Ái = ¼+! corresponds to the scenario

when the sensor is located on the bullet trajectory and

we do not consider such a scenario here. If Ái is outside

the bounds given in (4), then the sensor node only re-

ceives the muzzle blast as it is outside the FOV of the

shockwave.

Under the assumptions that the bullet maintains a

constant velocity over its trajectory, the time difference

of arrival (TDOA) between the shockwave and the

muzzle blast can be written as [2]

¿i =
ri
c
[1¡ cos jÁi¡'ij], 8Ái 6= 'i (6)

2Equation (2) yields ¡¼ · Ái · ¼. Thus ¼ must be added to Ái to
obtain a positive Ái if Ái < 0.
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where c indicates the speed of sound. Utilizing (5),

the bullet trajectory angle, !, can be obtained from the

shockwave DOA angle. Though this paper assumes that

the bullet speed is constant over its trajectory, others

have proposed localization algorithms [1], [14], [19]

that employ more realistic bullet speed models at the

expense of computational efficiency.

When the sensor node is within the FOV of the

shockwave, the three available measurements are the

two DOA angles and the TDOA between the muzzle

blast and the shockwave, i.e.,

Á̂i = h1(T,Si,!) + ´Á (7a)

'̂i = h2(T,Si,!) + ´' (7b)

¿̂i = h3(T,Si,!) + ´¿ (7c)

where h1(¢) is given in (2), h2(¢) is given in (5), and h3(¢)
is given in (6). The measurement noise is assumed to

be zero mean Gaussian white noise, i.e., ´Á »N (0,¾2Á),
´' »N (0,¾2') and ´¿ »N (0,¾2¿ ). Actually, it is has been
shown that, with the high signal-to-noise ratio, a maxi-

mum likelihood DOA estimator is unbiased and its es-

timates approximately follow a Gaussian distribution

[21, 25]. Here (7) represents the measurement equations

and after receiving these measurements, the processing

capability internal to the individual SW-GDS converts

these measurement into shooter location estimates. It is

important to note that the typical SW-GDS is equipped

with a magnetometer to obtain the orientation of the

sensor and thus the DOA measurements are reported in

a global reference frame as shown in Fig. 1. Thus, it

is not necessary to report the individual sensor orien-

tation to the central node, unless the DOA is given in

a local sensor reference frame. Furthermore, assuming

the magnetometer measurement errors are Gaussian, the

uncertainty associated with the sensor orientation can be

simply added to the DOA uncertainty.

3. DATA FUSION AT SENSOR NODE LEVEL

Let Ẑi denote the individual sensor level estimates

on the target bearing, range, and bullet trajectory, i.e.,

Ẑi = [Á̂i r̂i !̂i]. Data fusion at the sensor node involves

calculating these individual estimates based on the three

sensor measurements.

Using (5), the bullet trajectory angle, !, can be ob-

tained from the shockwave DOA measurements. Thus,

the observations on the trajectory angle can be written as

!̂i = !+ ´': (8)

Now the likelihood function, p(!̂i j T,Si,!), can be writ-
ten as

p(!̂i j T,Si,!) =N (!,¾2'):
From (6), the range can be written in terms of the

TDOA as

ri =
c¿i

[1¡ cos jÁi¡'ij]
: (9)

The observation of ri may be written as

r̂i =
c¿̂i

[1¡ cos jÁ̂i¡ '̂ij]
: (10)

Using the first-order Taylor series, the range measure-

ment can be approximated as

r̂i ¼
c¿i

[1¡ cos jÁi ¡'ij]

+

·
c

[1¡ cos jÁi¡'ij]
¡ c¿i sin jÁi¡'ij
[1¡ cos jÁi ¡'ij]2

¸·
´¿

´Á'

¸
= ri+H(T,Si,!)´r

where

´r =

·
´¿

´Á'

¸
, ´Á' »N (0,¾2Á+¾2')

and

H(T,Si,!) =

·
c

[1¡ cos jÁi¡'ij]
¡ c¿i sin jÁi¡'ij
[1¡ cos jÁi¡'ij]2

¸
:

Now the likelihood p(r̂i j T,Si,!) can be approximated as
p(r̂i j T,Si,!)¼N (ri,¾2r (T,Si,!))

where the variance ¾2r (T,Si,!) can be written as

¾2r (T,Si,!) =H(T,Si,!)

·
¾2¿ 0

0 ¾2Á+¾
2
'

¸
HT(T,Si,!):

(11)

Thus, the likelihood function p(Ẑi j T,Si,!) can be ap-
proximated as

p(Ẑi j T,Si,!)¼N (¹Zi ,§Zi) (12)

where

¹Zi =

264Áiri
!

375 , §Zi =

264¾
2
Á 0 0

0 ¾2r (T,Si,!) 0

0 0 ¾2'

375 :
It is assumed that a GPS receiver is used to obtain an

accurate positioning on each sensor. Thus, the position

observation on the sensors are given as

Ŝi =

·
Six

Siy

¸
+

·
vix

viy

¸
(13)

where the noise terms are assumed to be zero mean

Gaussian white, i.e., vix »N (0,¾2ix) and viy »N (0,¾2iy ).
Now the GPS measurement likelihood function may be

written as

p(Ŝi j Si)»N
Ã·
Six

Siy

¸
,

"
¾2ix 0

0 ¾2iy

#!
´N (¹Si ,§Si ):

(14)

Assumption 1 Without loss of generality, it can be

assumed that the GPS observations on sensor posi-

tion are independent of target location, observations on
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target location, and the projectile trajectory informa-

tion, i.e.,

p(Ŝi j Si) = p(Ŝi j T,Si,!) = p(Ŝi j Ẑi,T,Si,!):
Based on Assumption 1, the joint probability

p(Ẑi, Ŝi j T,Si,!) can be calculated as
p(Ẑi, Ŝi j T,Si,!) = p(Ŝi j Ẑi,T,Si,!)p(Ẑi j T,Si,!):

(15)

Substituting (12) and (14), the above joint likelihood

can be written as

p(Ẑi, Ŝi j T,Si,!)¼N (¹Si ,§Si)N (¹Zi ,§Zi ): (16)

Now for a sensor located in the FOV of the shock-

wave, the target location can be estimated as

T̂xi = Ŝix + r̂i cos(Á̂i) (17)

T̂yi = Ŝiy + r̂i sin(Á̂i): (18)

When the sensor is located outside the shockwave FOV,

the only estimate would be the bearing angle. After in-

dividual estimates are obtained at the sensor node level,

the measured information is transmitted to a central

node where it is fused to obtain a more accurate estimate

of shooter location.

4. DATA FUSION AT THE CENTRAL NODE

While sensors in the FOV of the muzzle blast and

the shockwave yield a range, bearing, and trajectory

angle estimates, the gunfire detection systems outside

the FOV of the shockwave yield a muzzle blast DOA.

Also, GPS measurements are available on each sensor

locations. At the central node, this information from the

individual sensor nodes is fused to obtain an accurate

estimate of the shooter location, bullet trajectory angle,

and sensor locations.

Based on Assumption 1, the joint likelihood func-

tion associated with each sensor is given in (15). Let

S1:n = fS1,S2, : : : ,Sng, Ẑ1:n = fẐ1, Ẑ2, : : : , Ẑng, and Ŝ1:n =
fŜ1, Ŝ2, : : : , Ŝng, where n indicates the number of sensors.
Since the measurement errors for the sensor nodes are

independent of each other, the joint conditional density

p(Ẑ1:n, Ŝ1:n j T,S1:n,!) can be defined as

p(Ẑ1:n, Ŝ1:n j T,S1:n,!) =
nY
i=1

p(Ẑi, Ŝi j T,Si,!):

(19)

In the maximum likelihood estimation approach con-

sidered here, estimates of the sensor locations, shooter

location, and bullet trajectory angle are obtained so that

the joint log-likelihood function is maximized, i.e.,

max
T,S1:n ,!

lnfp(Ẑ1:n, Ŝ1:n j T,S1:n,!)g

) max
T,S1:n,!

nX
i=1

lnfp(Ẑi, Ŝi j T,Si,!)g: (20)

Based on the results given in the previous section, the

criteria for the maximum likelihood estimation can be

written as

max
T,S1:n,!

nX
i=1

[lnfN (¹Zi ,§Zi )g+ lnfN (¹Si ,§Si )g]:

(21)

Note that the density N (¹Zi ,§Zi ) may be written as

N (¹Zi ,§Zi ) =
1pj2¼§Zi j exp

½
¡1
2
(Ẑi ¡¹Zi )T§¡1Zi (Ẑi¡¹Zi )

¾
(22)

where ¹Zi and §Zi are the same quantities given in
(12) if the sensor is within the FOV of the shockwave

and

¹Zi = Ái = h1(T,Si,!), §Zi = ¾
2
Á

if the sensor is outside the FOV of the shockwave. The

density N (¹Si ,§Si ) is given as

N (¹Si ,§Si ) =
1pj2¼§Si j exp

½
¡1
2
(Ŝi¡¹Si )T§¡1Si (Ŝi ¡¹Si )

¾
(23)

where

¹Si =

·
Six

Siy

¸
, §Si =

"
¾2ix 0

0 ¾2iy

#
:

After substituting (22) and (23) into (21), the maximum

likelihood criteria may be written as

min
T,S1:n,!

nX
i=1

h
1
2
(Ẑi¡¹Zi )T§¡1Zi (Ẑi¡¹Zi )

+ 1
2
(Ŝi¡¹Si)T§¡1Si (Ŝi¡¹Si )

+ ln
nq

j2¼§Zi j
o
+ ln

nq
j2¼§Si j

oi
:

(24)

Note that the term, lnf
q
j2¼§Zi jg, in above equation is

present due to the fact that §Zi is a function of T, S, and

!. The last term, lnf
q
j2¼§Si jg can be ignored since §Si

is a known constant matrix. Since §Zi is assumed to be

a diagonal matrix, (24) can be rewritten as

min
T,S1:n,!

nX
i=1

[ ln(¾ri ) +
1
2
(Ẑi¡¹Zi )T§¡1Zi (Ẑi¡¹Zi )

+ 1
2
(Ŝi¡¹Si )T§¡1Si (Ŝi¡¹Si )]: (25)

Apart from the initial term, ln(¾r), the optimization

problem given in (25) is similar to that used in the

weighted nonlinear least-squares. Thus, the maximum

likelihood approach presented here is similar to the

weighted nonlinear least-squares estimation.

There exists no closed form solution to the nonlinear

least-squares optimization problem given in (25) and

therefore a numerical approach must be used. A few
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common approaches to solve the nonlinear least-squares

problem include the Gauss-Newton method, Nelder-

Mead simplex method, and Levenberg-Marquardt meth-

od [4]. Almost all these approaches are iterative meth-

ods that require an initial approximation to the unknown

parameters and provide successively better approxima-

tions. The iterative process is repeated until the param-

eters do not change to within specified limits. Here we

mainly utilize the Gauss-Newton method for solving

the nonlinear least-squares problem given in (25). The

main advantage of the Gauss-Newton method is that it

exhibits a “quadratic convergence,” which, simply put,

means that the uncertainty in the parameters after p+1

iterations is proportional to the square of the uncertainty

after p iterations. Once these uncertainties begin to get

small, they decrease quite rapidly. An additional advan-

tage of the Gauss-Newton method is that it only requires

calculating the first-order derivatives. Even though one

of the major problems with the Gauss-Newton method

is that it sometimes diverges if the initial approximation

is too far from truth, in the sensor fusion applications,

the Gauss-Newton method can be easily initialized us-

ing the median of the individual sensor solutions.

4.1. Parameter Reduction

One of the major problems with the real-time im-

plementation of the proposed fusion scheme is that it is

a (2n+3)¡D problem and its dimensionality increases
as the number of sensors increases. Given in this sub-

section is an analysis that will help to reduce the dimen-

sionality of the optimization problem.

Most of the SW-GDSs currently available are de-

signed so that they provide the shooter location relative

to the sensor location. Moreover, some sensors also pro-

vide the weights or the confidence numbers that indi-

cate the estimated accuracy level of the relative solution.

These confidence numbers can be used to weight the

measurements in the nonlinear least-squares estimation

problem given in (25). Thus, (25) can be rewritten as

min
T,S1:n

nX
i=1

[ 1
2
(Ẑi¡¹Zi )TWi(Ẑi¡¹Zi )
+ 1

2
(Ŝi¡¹Si )T§¡1Si (Ŝi¡¹Si)] (26)

where

Ẑi =

·
Á̂i

r̂i

¸

¹Zi =

2664
2arctan

(Ty ¡ Siy )q
(Tx¡ Six)2 + (Ty ¡ Siy )2 + (Tx¡ Six)q
(Tx¡ Six)2 + (Ty ¡ Siy )2

3775

Wi =

2664
1

¾2Ái
0

0
1

¾2ri

3775

Ŝi =

"
Ŝix

Ŝiy

#

¹Si =

·
Six

Siy

¸
:

Since the SW-GDS do not report the bullet trajectory,

!̂i is not included in Ẑi. Also,

§Si =

"
¾2ix 0

0 ¾2iy

#
is assumed to be a known matrix and Wis indicate

the weights reported by the sensors. The nonlinear

least-squares problem given in (26) is of dimension

2n+2. If the sensor reported GPS positions are taken as

absolute truth, then the nonlinear least-squares problem

given in (26) becomes two dimensional and it may be

rewritten as

min
T

nX
i=1

[ 1
2
(Ẑi¡¹Zi)TWi(Ẑi¡¹Zi)]: (27)

Note that the problem given in (26) involves estimating

more parameters compared to the problem in (27).

Thus, based on the arguments given in [11], it can be

shown that the Cramér-Rao lower bound for the latter is

always less than the lower bound for the former, i.e., the

problem in (26) yields higher variance for the shooter

location compared to the problem in (27). On the other

hand, the low dimensional problem in (27) yields biased

estimates since it considers the GPS measurements as

absolute truth. This bias grows as GPS errors increases.

For small errors, the bias is small so that (27) is more

accurate than (26) due to the lower variance. Once the

GPS errors exceed a threshold, the bias dominates and

(26) becomes more accurate. Simulations in the next

section help to determine this threshold.

4.2. Weighting Scheme

It is well known that the performance of the least-

squares problems given in (26) and (27) depends on

the weights associated with each measurements. The

fusion scheme presented earlier assumes that the sen-

sors are designed to provide these weights along with

its relative shooter position estimates. These weights

indicate the estimated accuracy level of the calculated

range and bearing. From analyzing the experimental

data, it was noticed that the weights provided by the

sensors are inconsistent with the relative solution ac-

curacy. This inconsistency is particularly visible in the

case of outliers. Using these inconsistent weights in the

fusion process would bias the fused solution toward an

outlier. Thus, we provide an ad hoc weighting scheme,

which is based on a consistency check, i.e., the weight

is selected based on how consistent a particular sensor

solution is to the rest of the relative solutions. Recently,

several consistency-function-based source localization
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algorithms have been proposed, which can provide ac-

curate solutions even if a large number of independent

outliers are present in a measurement set [17, 18, 31].

Here, the consistency check is conducted by compar-

ing the individual sensor solution to the fused solution

obtained by combining the remaining individual sensor

measurements. To this end, we first consider the en-

tire n measurement set and remove the particular sensor

measurement for which we would like to generate the

weight. Let Ẑ1:n indicate the set of all n sensor mea-
surements and Ẑfjg1:n indicate the set of measurements
excluding the jth sensor measurement. Now we obtain

a fused solution, Tfjg, by combining the remaining n¡ 1
measurements, Ẑfjg1:n , after equally weighting them, i.e.,

3

Tfjg =min
T

nX
i=1 i 6=j

1

2

0BB@
2664
2arctan

(Ty ¡ Siy )q
(Tx¡ Six)2 + (Ty ¡ Siy )2 + (Tx¡ Six)q
(Tx¡ Six)2 + (Ty ¡ Siy )2

3775¡ · Á̂ir̂i
¸1CCA

T ·
W11 W12

W12 W22

¸

£

0BB@
2664
2arctan

(Ty ¡ Siy )q
(Tx¡ Six)2 + (Ty ¡ Siy )2 + (Tx¡ Six)q
(Tx¡ Six)2 + (Ty ¡ Siy )2

3775¡ · Á̂ir̂i
¸1CCA (28)

where

W =

·
W11 W12

W12 W22

¸
is the weight matrix. After obtaining the fused solution,

it is then converted into relative range and bearing solu-

tions, rfjg and Áfjg, using the sensor GPS measurements.

·
Áfjg

rfjg

¸
=

2664
2arctan

(Ty ¡ Siy )q
(Tx¡ Six )2 + (Ty ¡ Siy )2 + (Tx¡ Six )q
(T
fjg
x ¡ Six )2 + (T

fjg
y ¡ Siy )2

3775 :
(29)

Now, the difference between the fused relative solution

and the measured relative solution is calculated.

Efjgr = (rfjg ¡ r̂j)2 (30)

E
fjg
Á = (Áfjg ¡ Á̂j)2: (31)

If the individual solution is very close to the fused

solution, then it is of high consistency and a large weight

is selected. Conversely, if the individual solution is far

from the fused solution, then it is of low consistency

and a low weight is selected. Thus, the weight are

3The arctangent formulation given in (28) is equivalent to the atan 2

function in Matlab and it has a range of [¡¼,¼].

obtained as

Wj =

26664
1

E
fjg
r

0

0
1

E
fjg
Á

37775 : (32)

This procedure is repeated n time so that a consistency-

based weight is obtained for the entire n-sensor mea-

surements.

5. NUMERICAL SIMULATIONS

This section presents numerical simulations to assess

the localization improvement due to the proposed fusion

algorithm. For the simulation scenario considered here,

we assume that there are five sensor nodes and the node

locations in meters are

S=
·
127 20 90 136 182

107 22 0 68 59

¸
:

For simplicity, we assume a constant velocity model
for the bullet. Thus, the Mach number is selected to
be m= 2 and the speed of sound is selected to be c=
342 m/sec. The measurement noise models are selected
as ¾ix = ¾iy = 5 m, ¾Á = ¾' = 4

±, and ¾¿ = 1 msec. Since
there exist several approaches to solve the nonlinear
least-squares problem, two different methods are used
to obtain solutions for both simulation scenarios. In
the first method, the optimization problem is solved
using the Gauss-Newton method [4] mentioned in the
previous section. The second approach uses the Nelder-
Simplex algorithm [27], i.e., the fminsearch function in
Matlab. Both algorithms are initialized using the median
of the sensor-reported shooter location.
For simulation, the shooter is assumed to be located

at T = [50 m 50 m]T and we select the bullet trajectory
to be ! = 30±. Figure 3 shows the first simulation sce-
nario. Due to the sensor locations, the second and the
third sensors do not receive the shockwave.

5.1. Simulation Results I

The simulation results presented in this subsection
corresponds to the results obtained from solving the
full dimensional problem given in (25), where the bullet
trajectory as well as the sensor locations are estimated
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Fig. 3. Simulation I Scenario.

Fig. 4. Simulation result I: Mean results from Monte Carlo runs.

along with the shooter location. In order to evaluate the

system performance, 1000 Monte Carlo simulations are

conducted for both the Gauss-Newton method and the

simplex algorithm. The mean shooter locations and the

associated error ellipses obtained from the Monte Carlo

simulations using the Gauss-Newton method are given

in Fig. 4. A separate plot is not provided for the results

obtained using the simplex algorithm since they are very

similar to those obtained for the Gauss-Newton method.

Figure 4 indicates that sensor five performs the worst

out of the three sensors within the shockwave FOV; this

is due to the fact that the localization accuracy is in-

versely proportional to the miss distance. Figure 4 also

indicates that the fused estimate is superior to the indi-

vidual sensor estimates, and the uncertainty associated

with the fused estimates is much less than the uncer-

tainty associated with the individual sensor estimates. It

seems that the orientation of the error ellipse depends

on what side of the trajectory the sensor is located. In

addition, the orientation of the error ellipse indicates

that the estimation error along the x and y directions

varies with the sensor location.

TABLE I

Simulation Result I: Shooter Location

Tx (m) Ty (m) RMSE (m)

Truth 50 50 –

Sensor 1 48.3513 47.2948 23.2870

Sensor 2 – – –

Sensor 3 – – –

Sensor 4 42.9248 50.2141 31.1132

Sensor 5 37.1197 52.0782 65.6542

Average 42.7986 49.8623 25.9660

Gauss-Newton 49.9066 49.9134 6.8639

Nedler-Simplex 50.0493 50.0588 6.9972

TABLE II

Simulation Result I: Bullet Trajectory

! (deg) RMSE (deg)

Truth 30 –

Sensor 1 30.0641 3.9690

Sensor 2 – –

Sensor 3 – –

Sensor 4 30.3402 3.9970

Sensor 5 29.9591 3.9029

Average 30.1211 2.2128

Gauss-Newton 30.1211 2.2128

Nedler-Simplex 30.1999 2.4674

TABLE III

Simulation Result I: Sensor Location RMSE

GPS (m) Gauss-Newton (m) Nedler-Simplex (m)

Sensor 1 7.0215 6.5453 6.5938

Sensor 2 7.0002 6.3195 6.3530

Sensor 3 7.0028 6.6513 6.6770

Sensor 4 7.1509 6.5259 6.6201

Sensor 5 7.0223 6.7883 6.8731

Table I summarizes the mean shooter location esti-

mate of the individual sensors and the fusion algorithms

over the Monte Carlo runs. The “average” estimate pre-

sented in Table I indicates the estimate obtained by

simply averaging the individual target estimates from

sensors one, four, and five. Table I also contains the

root-mean-square error (RMSE) associated with each

estimate. Based on the RMSE presented in Table I, one

can conclude that that fused estimates outperform the

individual sensors and the simple average estimate.

Table II contains the mean bullet trajectory angle

estimate obtained from the individual sensors and the

fusion algorithms over the Monte Carlo runs. Table II

also contains the RMSE associated with each trajectory

angle estimate. Note that the fused trajectory estimate

is simply the average of the individual sensor estimates

due to the way in which ! appears in (25).

Table III contains RMSE associated with the sensor

location estimates. The performance improvement in

sensor location estimate accuracy is moderate compared
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Fig. 5. Simulation result II: Mean results from Monte Carlo runs.

to the shooter location estimate accuracy since the GPS

measurements are fairly accurate to begin with. Also

note that the RMSE associated with the sensor location

estimate given in Table III is similar to that of the RMSE

associated with the fused shooter position estimate.

Based on the RMSE presented in Tables I, II, and III,

one can conclude that that fused estimates outperform

the individual sensors.

5.2. Simulation Result II

The simulation results presented in this subsection

corresponds to the results obtained from solving the

two-dimensional problem given in (27), where only the

shooter location is estimated. The mean shooter loca-

tions and the associated error ellipses obtained from

the Monte Carlo simulation using the Gauss-Newton

method are given in Fig. 5. Figure 5 indicates that the er-

ror ellipse obtained for the second simulation is smaller

compared to that obtained for the first simulation. Also

note that the increase in estimation accuracy is mostly

along the x-direction, i.e., east. This is due to the fact

that the initial error in x-direction is much larger com-

pared to that in y-direction (north). The RMSE asso-

ciated with the fused result in Fig. 5 is approximately

5.1771 m.

This performance improvement in the low-dimen-

sional problem is due to the very low GPS bias com-

pared to the shooter location estimation error. It can be

shown that, as the GPS accuracy decreases, the perfor-

mance degradation of the 2-D problem is much larger

compared to that of the full-dimensional problem. Fig-

ure 6 compares the RMSE for the shooter location for

both the 2-D problem given in (27) and the (2n+2)¡D
problem given in (26). This particular result is obtained

for the simulation scenario given in Fig. 3 using addi-

tive Gaussian white noise for measurement noise. Fig-

ure 6 indicates that for low GPS error of ¾x,y · 7 m,
the 2-D problem yields better accuracy compared to the

(2n+2)¡D problem. Moreover, for high GPS error of

Fig. 6. RMSE sensitivity plot for simulation one scenario.

¾x,y ¸ 7:5 m, taking the GPS measurements as absolute
truth and not accounting for the GPS error degrades the

shooter location accuracy.

6. EXPERIMENTAL RESULTS

This section presents the experimental results ob-

tained by implementing the fusion algorithm on gunfire

detection data, but first, the experimental setup used for

data collection is briefly explained. Experimental data

were obtained using several gunfire detection systems

provided by BioMimetic Systems.4 For data collection,

we used three soldier-wearable (SW) systems, three

unattended ground sensors (UGSs), and three vehicle-

mounted (VM) systems.

Each sensor unit had an interface unit attached, con-

sisting of an Atom processor netbook, an Enhanced Po-

sition Location and Reporting System (EPLRS) radio,

a GPS system, and an Li-145 battery. The netbook was

interfaced to the sensor through a custom driver, us-

ing serial communication over USB. A standard USB

to USB mini cable was used as the interface cable. The

netbook was used as a stand-in for the soldier computer;

the netbook has the same processor and was an inexpen-

sive substitute for testing. At the central node, the fusion

processor receives the solutions from individual sensors

via EPLRS radio. The central processor is also an Atom

processor netbook where the fusion algorithm combines

the individual solutions to obtain a fused solution. The

fused solution is then relayed back to individual sensors

via EPLRS radio. At the individual sensor nodes, GIS

map display is used to display the geo-rectified fused

solution.

Experiments were conducted for two sensor forma-

tions, the quad symmetric formation and the wedge

flank formation. Figure 7 contains the sensor layout for

both scenarios. The test pattern includes nine sensors,

4www.biomimetic-systems.com.
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Fig. 7. Sensor formation. (a) Quad symmetric formation. (b) Wedge flank formation.

TABLE IV

Shooter Locations

Shooter Position GPS-East (m) GPS-North (m)

Shooter Position 1 283309 4709539

Shooter Position 2 283270 4709567

Shooter Position 3 283337 4709632

three VM sensors (VM-blue), three SW sensors (SW-

red), and three UGSs (UGS-green). The sensor pattern

is an aggregate distribution of squad-level soldiers while

on patrol, it spreads over 25 m front to back. The shooter

position is marked by a red human figure, and the shot

line is marked by a translucent red line.

For both sensor layouts, shots were fired from three

different positions using three different weapons. Fig-

ure 7 also shows the three different shooter positions

used for the experiment. As Fig. 7 indicates, shooter

positions one and two are approximately 200 m from

the sensor formation and shooter position three is about

300 m from the sensor formation. The GPS locations

of the three shooter positions are given in Table IV.

The three different weapons used for the experiment

TABLE V

Ammunition

Weight Muzzle Velocity Velocity at

Weapon Caliber (g) (m/sec) 183 m (m/sec)

Weapon 1 7:62£ 39 mm 124 721 543

Weapon 2 5:56£ 45 mm 55 988 702

Weapon 3 7:62£ 54 mm 181 823 668

and details of the ammunition used in the weapons are

given in Table V.5 For each scenario/shooter position,

10 shots were fired using each weapon. Thus, a total of

180 shots were fired, 60 shots per weapon.

6.1. Results

This subsection presents the summary of experimen-

tal results obtained by implementing the fusion algo-

rithm on the gunfire detection data. Before we proceed

further, it is important to note that the sensor GPS ac-

curacy level is much higher than the fused solution ac-

curacy, and estimating the sensor position along with

5http://www.chuckhawks.com/rifle ballistics table.htm.
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the shooter location and bullet trajectory does not im-

prove the fused solution accuracy. This is clearly visible

in both simulations presented in the previous section,

where the fused solution accuracy is very close to the

GPS measurement accuracy for the first simulation and

the fused solution accuracy is much lower than the GPS

accuracy for the second simulation. Besides, including

the sensor location as well as the bullet trajectory within

the fusion algorithm significantly increases the prob-

lem dimensionality and thus contributes to the compu-

tational cost. Therefore, the fusion approach used for the

experiment does not try to estimate the bullet trajectory

and sensor locations based on the results presented in

Section 4.1. The sensor locations reported by the sensor

GPS is taken as the absolute truth. Thus, the 2-D non-

linear least-squares problem associated with the sensor

fusion is similar to that given in (27).

As mentioned earlier, the sensors are designed to

provide these weights along with its relative shooter

position estimates. These weights indicate the estimated

accuracy level of the calculated range and bearing. From

analyzing the experimental data, it was noticed that

the weights provided by the sensors are inconsistent

with the relative solution accuracy. This inconsistency

is particularly visible in the case of outliers. Using these

inconsistent weights in the fusion process would bias the

fused solution toward an outlier. Thus, we implemented

the fusion algorithm using three different weighting

schemes. The first weighting scheme simply uses the

weights provided by the sensors; this fusion scheme

is denoted as “Fusion-SW (Fusion-Sensor Weights).”

For the particular sensor under consideration, the sensor

provided weights are obtained based on the signal-to-

noise ratio.

The second weighting scheme involves calculating

the weights based on the true error associated with the

range and bearing estimates; this fusion scheme is de-

noted as “Fusion-TE (True Error).” For this weighing

scheme, the difference between the measured range/

bearing and the ground truth are first calculated. The

square of these errors are then taken as the weight as-

sociated with the range and the bearing measurements.

Note that this weighting scheme is not practical in re-

ality since the ground truth is unknown. We use this

weighting scheme strictly for comparative purposes.

The third weighting scheme is the consistency-based

weighing scheme presented in Subsection 4.2 and is de-

noted as “Fusion-CW (Fusion-Consistency Weights).”

Given next are the results obtained from implement-

ing the fusion algorithm on experimental data. Five dif-

ferent fused solutions are presented per scenario/shooter

location. These fused solutions correspond to i) in-

dividual best solution, ii) individual average solution,

iii) Fusion-SW solution, iv) Fusion-TE solution, and

v) Fusion-CW solution. Individual best and individual

average solutions are obtained by selecting the best sen-

sor solution or simply averaging the individual solutions

across the nine sensors.

TABLE VI

Sensor Locations and Heading for Wedge Flank Formation

Sensor GPS-East (m) GPS-North (m) Heading (deg)

SW1 283147 4709413 35

SW2 283134 4709443 40

SW3 283165 4709401 31

UGS1 283133 4709431 39

UGS2 283195 4709396 26

UGS3 283156 4709413 34

VM1 283127 4709432 40

VM2 283182 4709394 28

VM3 283184 4709384 26

6.1.1. Scenario 1: Wedge flank formation
The sensor locations and headings corresponding

to the wedge flank formation are given in Table VI.

After receiving the shot data, each sensor estimates the

shooter location relative to its position. This relative

solution, in terms of range and bearing, is then relayed

to the central node along with the GPS measurements

of the sensor locations and the sensor heading (see

Table VI). Sensors also provide weights, which indicate

the estimated accuracy level of the relative solution,

along with its relative solution estimates. After receiving

the measurements from the sensors, the central node

combines the individual solutions to yield the fused

solution.

Figure 8 shows the relative performance between the

fusion schemes using the different weighting schemes

mentioned previously. In Fig. 8(a), the fusion results

obtained from consistency-based weighting scheme

(Fusion-CW) is compared against the fusion results ob-

tained from sensor-provided weighting scheme (Fusion-

SW) and the individual average. Individual average is

the simplest form of fusion, where the fused result is

obtained by simply averaging the individual solutions.

Figure 8(a) indicates that the fusion results obtained

from consistency-based weighting scheme are within

the 20 m error circle while the fusion results obtained

from sensor-provided weighting scheme and the indi-

vidual average are mostly outside the 20 m error circle.

Figure 8(a) also indicates that the individual average

estimates are strongly biased with a Tx-error of 20 m

and a Ty-error of 10 m. This bias is clearly visible in the

Fusion-SW and Fusion-CW results.

Figure 8(b) contains the histogram of the fusion er-

ror for scenario one, shooter position one. Besides the

fusion results obtained using the three different weight-

ing schemes mentioned earlier, Fig. 8(b) also contains

the results from individual average and individual best.

In the individual best approach, the fused solution is the

one with the least error, i.e., most accurate. Note that this

approach requires knowing the true shooter position a

priori and thus it is not feasible in reality. It is important

to note that the fusion results obtained from true error

based weighting scheme (Fusion-TE) is more accurate

than the individual best sensor as shown in Fig. 8(b).
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Fig. 8. Fusion result: Scenario 1, shooter position 1. (a) Fusion error. (b) Fusion error histogram.

Fig. 9. Fusion result: Scenario 1, shooter position 2. (a) Fusion error. (b) Fusion error histogram.

Fused solution obtained from Fusion-TE yields a zero

estimation error 16 out of 30 times while the individual

best only has 5 out of 30 solutions with a zero estima-

tion error. The fused solution obtained from individual

average is the lest accurate with 20 out of 30 solutions

with an estimation error of 25 m or higher. Compared to

the individual average, the Fusion-SW yields a more ac-

curate solution. In contrast to the results obtained for the

numerical simulation, estimation errors are not Gaussian

as indicated by Fig. 8(b) except for the error obtained

from Fusion-TE.

Figure 9 shows the relative performance across the

different fusion schemes for the scenario one, shooter

position two. In Fig. 9(a), the fusion results obtained

from Fusion-CW is compared against the results ob-

tained from Fusion-SW and the individual average.

Compared to shooter position one, these results are less

biased, as indicated in Fig. 9(a). As shown in Fig. 9(a),

the individual average is biased with a Tx and Ty-errors

of approximately 8 m. Figure 9(a) also indicates that

the fusion results obtained from Fusion-CW is within

the 20 m error circle while the results obtained from

Fusion-SW and the individual average are mostly out-

side the 20 m error circle. Figure 9(b) contains the his-

togram of the fusion error for scenario one, shooter po-

sition two. Figure 9(b) indicates that the fusion results

obtained from Fusion-TE yields a perfect localization

50% of time, i.e., 15 shots out of 30 result in a fused

solution with zero error. The fused results obtained from

Fusion-SW contains two solutions with errors of 35 and

40 m. Clearly, the fusion results obtained from Fusion-

TE is more accurate than the rest of the solutions, as

shown in Fig. 9(b).

Figure 10 shows the relative performance across the

different fusion schemes for the scenario one, shooter

position three. Compared to previous two shooter po-

sitions, shooter position three yields the least accu-

rate measurements due to the increased firing dis-
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Fig. 10. Fusion result: Scenario 1, shooter position 3. (a) Fusion error. (b) Fusion error histogram.

Fig. 11. Fusion result: Scenario 2, shooter position 1. (a) Fusion error. (b) Fusion error histogram.

tance of 300 m. Figure 10(a) compares the fusion re-

sults obtained from Fusion-CW against the results ob-

tained from Fusion-SW and the individual average. Fig-

ure 10(a) indicates that the majority of fusion results

obtained from Fusion-CW, as well as the results ob-

tained from Fusion-SW and the individual average are

outside the 20 m error circle. This degradation in per-

formance compared to the previous two shooter po-

sitions might be due to the increased firing distance.

Figure 10(b) contains the histogram of the fusion er-

ror for scenario one, shooter position three. Here also,

the fusion results obtained from Fusion-TE is more

accurate than the individual best sensor as shown in

Fig. 10(b). Finally, note that the accuracy of the results

from Fusion-SW is greatly influenced by the individual

outliers while the results from Fusion-TE are insensitive

to the outliers.

6.1.2. Scenario 2: Quad symmetric formation
This subsection presents the results obtained from

scenario two, the quad symmetric sensor formation.

Compared to previous scenario, the sensors are more

clustered together in this scenario, and therefore, there

is a higher level of consistency between the sensors.

This higher consistency results in better localization

accuracy, as indicated here. The sensor locations and

headings correspond to the quad symmetric formation

are given in Table VII. Here also, 30 shots were fired

for each shooter position, 10 shots per weapon.

Figure 11 shows the relative performance across the

fusion schemes using the different weighting schemes.

In Fig. 11(a), the fusion results obtained from Fusion-

CW are compared against the fusion results obtained

from Fusion-SW and the individual average. Figure

11(a) indicates that the fusion results obtained from

Fusion-CW and Fusion-SW are mostly within the 20 m
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Fig. 12. Fusion result: Scenario 2, shooter position 2. (a) Fusion error. (b) Fusion error histogram.

TABLE VII

Sensor Locations and Heading for Quad Symmetric Formation

Sensor GPS-East (m) GPS-North (m) Heading (deg)

SW1 283130 4709427 40

SW2 283129 4709434 39

SW3 283165 4709401 31

UGS1 283133 4709431 39

UGS2 283169 4709398 30

UGS3 283168 4709405 31

VM1 283127 4709431 40

VM2 283172 4709402 30

VM3 283177 4709395 29

error circle and they are more accurate compared to the

individual average. Also note that Fig. 11(a) does not

display the strong bias we observed in Fig. 8(a) and the

majority of the fused results obtained from Fusion-CW

and Fusion-SW shows a less than 10 m error.

Figure 11(b) contains the histogram of the fusion er-

ror for scenario two, shooter position one. Besides the

fusion results obtained using the three different weight-

ing scheme mentioned earlier, Fig. 11(b) also contains

the results from individual average and individual best.

Figure 11(b) indicates that the fusion results obtained

from Fusion-TE yields a perfect localization two out

of three time, i.e., 20 shots out of 30 shots results in a

fused solution with zero error. Clearly, the fusion results

obtained from Fusion-TE is more accurate than the indi-

vidual best sensor as shown in Fig. 11(b). Also, note that

the results obtained from Fusion-CW are more accu-

rate compared to Fusion-SW, and both Fusion-CW and

Fusion-SW yield better results compared to the indi-

vidual average. Comparing Figs. 8(b) and 11(b) clearly

indicates that the results obtained for the quad formation

yield better results.

Figure 12 shows the relative performance across the

different fusion schemes for the scenario two, shooter

position two. In Fig. 12(a), the fusion results obtained

from Fusion-CW are compared against the results ob-

tained from Fusion-SW and the individual average. Fig-

ure 12(a) indicates that the fusion results obtained from

Fusion-SW, Fusion-CW, and the individual average are

mostly within the 20 m error circle or within the close

proximity of the error circle. Figure 12(b) contains the

histogram of the fusion error for scenario two, shooter

position two. Here also, the histogram indicates that the

fusion results obtained from Fusion-TE yields a perfect

localization two out of three times, i.e., 20 shots out

of 30 shots result in a fused solution with zero error.

Clearly, the fusion results shown in Fig. 12 are more

accurate compared to rest of the results presented here.

This high level of accuracy is due to two reasons: i) the

clustered quad symmetric sensor formation and ii) the

bullet trajectory with sensors distributed on both sides

of the trajectory to reduce the miss-distance.

Figure 13 shows the relative performance across the

different fusion schemes for the scenario two, shooter

position three. Figure 13(a), compares the fusion re-

sults obtained from Fusion-CW against the results ob-

tained from Fusion-SW and the individual average. Fig-

ure 13(a) indicates that the fusion results obtained from

Fusion-CW are mostly within or around the vicinity of

the 20 m error circle while the results obtained from

Fusion-SW and the individual average are outside the

20 m error circle. Figure 13(b) contains the histogram

of the fusion error for scenario two, shooter position

three. Note that the fusion results obtained from Fusion-

TE are perfect more than 50% of the time and they are

more accurate than the individual best sensor, as shown

in Fig. 13(b). The performance degradation shown in

Fig. 13 is similar to that obtained in Fig. 10 and is due

to the increased firing distance compared to the pre-

vious two shooter positions. Also note that the perfor-

mance degradation in Fig. 13 is slightly less than the one

observed in Fig. 10 due to the quad symmetric sensor

formation.
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Fig. 13. Fusion result: Scenario 2, shooter position 3. (a) Fusion error. (b) Fusion error histogram.

TABLE VIII

Summary of Fusion Results

Scenario & Fusion-TE Fusion-CW Fusion-SW Indiv. Avg Indiv. Best

Shooter Position Error (m) Error (m) Error (m) Error (m) Error (m)

Scenario 1 Shooter 1 2.9 12.1 16.3 23.3 6.0

Scenario 1 Shooter 2 3.5 10.7 14.5 20.6 6.0

Scenario 1 Shooter 3 5.0 14.2 21.9 21.9 11.8

Scenario 2 Shooter 1 3.3 11.0 13.2 26.9 6.6

Scenario 2 Shooter 2 2.7 9.7 11.1 10.8 6.7

Scenario 2 Shooter 3 3.4 13.1 20.6 19.1 9.4

Given in Table VIII is the summary of average (av-

eraged across 30 shots) localization error obtained for

six different experiments using the five different fusion

schemes explained earlier. As expected, the results ob-

tained from Fusion-TE outperform the individual best,

and on average the Fusion-CW yields better results

compared to Fusion-SW. Also note that the Fusion-CW

and Fusion-SW yield better results compared to the in-

dividual average except for scenario two, shooter posi-

tions two and three. For scenario two, shooter positions

two and three, the results obtained from individual aver-

age are slightly better than Fusion-SW. This is due to the

fact that the clustered sensors within the quad symmet-

ric formation yield consistent measurements, which are

equally distributed around the truth, and weighting them

equally yields better results compared to using inconsis-

tent weights. The consistency-based weighting scheme

presented here is just one of the ad hoc approaches to

develop synthetic weights. Numerous other schemes ex-

ist based on the consistency test that we are currently

pursuing in an attempt to achieve the performance of

Fusion-TE.

7. CONCLUSIONS

The shooter localization problem using a network

of soldier-worn gunfire detection systems is considered

here. This paper presents a fusion algorithm that utilizes

the benefits of the sensor network layout of all the sen-

sors within a small combat unit to help refine shooter

localization accuracy. Main contributions of this work

include (i) a detailed formulation of the fusion method-

ology and its performance analysis through numerical

simulations; (ii) parameter reduction of the optimization

problem and a consistency-based weighting scheme for

the real-time implementation of the fusion algorithm;

and (iii) detailed experimental results and the analysis of

data. It is shown that the multi-sensor fusion algorithm

for soldier-worn gunfire detection systems is essentially

the weighted nonlinear least-squares algorithm, which

can be easily implemented using the Gauss-Newton

method. Since the GPS accuracy of the sensors is much

higher compared to the shooter localization accuracy, it

is also shown that accepting the GPS measurements as

ground truth for the sensor locations and simply esti-

mating the shooter location greatly reduce the dimen-

sionality of the optimization problem and thus decrease

the computational cost without sacrificing performance

accuracy. The numerical results given in Section 5 in-

dicate that the fusion algorithm is able to improve the

localization accuracy by a factor of four compared to

the simple averaged solution, if the underlying assump-

tions are valid and the weights associated with individ-

ual sensor locations are consistent. Despite the lack of

consistency in the weights provided by the sensors, the
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fusion algorithm along with the proposed consistency-

based weighting scheme is able to produce a fused so-

lution twice as accurate as the simple individual average

solution.

Though the proposed fusion approach was able to

yield desirable results, there are several aspects of the

proposed approach that can be further improved. Few

of those features are (i) an improved weighting scheme

that would yield a fused solution that approaches the

accuracy obtained from the true error based weight-

ing scheme, (ii) a mathematically rigorous method to

quantify the uncertainties associated with the maximum

likelihood estimates, and (iii) an investigation of the

performance gain in fusing raw sensor measurements,

such as the two direction of arrival angles and the time

difference of arrival between the muzzle blast and the

shockwave versus the relative shooter position.
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High-level Information Fusion:
An Overview

PEK HUI FOO
GEE WAH NG

Data and information fusion (DIF) involves a process of com-

bining data and information from multiple inputs. The purpose

is to derive enriched information compared to that obtained from

each individual input. DIF techniques were first introduced to the

research community in the 1970s. The scope of applications that

use DIF techniques for problem-solving has extended tremendously

from the military arena at the initial stage to many non-military

sectors at present. The Joint Directors of Laboratories data fusion

(JDL DF) model is possibly the most widely used model for data

fusion. In this functional model, the hierarchical process of data

and information fusion comprises two stages, the low-level fusion

processes and the high-level fusion processes. After years of inten-

sive research that is mainly focused on low-level information fu-

sion (IF), the focus is currently shifting towards high-level informa-

tion fusion. Compared to the increasingly mature field of low-level

IF, theoretical and practical challenges posed by high-level IF are

more difficult to handle. Contributing factors include the lack of:

well-defined spatio-temporal constraints on relevant evidence, well-

defined ontological constraints on relevant evidence and suitable

models for causality. In this survey paper, we first review process

models proposed for data and information fusion over the past few

decades. Next, we present an overview of existing work on high-level

information fusion, based on the fusion levels of the current JDL

DF model. Finally, we discuss relevant application areas and topics

with potential for further research.
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1. INTRODUCTION

Data and information fusion (DIF) involves a pro-

cess of combining data from multiple inputs (from one

or more sources such as sensors and textual reports).1

The aim is to obtain information that is better (more

useful and meaningful) than that would be derived from

each of the sources individually (that is, without fus-

ing). DIF is emerging as an important field of multi-

disciplinary study [113, 316]. This is due to increase in

data and information flow, as well as improvement in

communication, computing and sensor technology. The

first applications of DIF techniques were in the mili-

tary arena [177, 179, 455]. The use of DIF techniques

for problem-solving has extended to many non-military

applications in the commercial and industrial sectors

[177, 179, 199, 228].

In general, data and information fusion can provide

enhancement to the outcomes of processes for solving

various application problems. Some advantages of car-

rying out DIF include [316]:

² improvement in the accuracy of data, as well as

reduction in uncertainty and ambiguity within data,

and

² improvement in situation awareness (SAW) and in-
ference that lead to better decision making.

The main objective of this paper is to provide a use-

ful aid to researchers in the field of data and information

fusion, through an extensive (albeit non-exhaustive) lit-

erature survey. We review existing models for DIF, point

to salient publications, and discuss relevant application

domains and topics for further research. It is not our

intention (and hence, beyond the scope of this paper) to

critique or evaluate (a) the research topics presented, or

(b) research in the field.

1.1. Structure of the Paper

The remainder of this paper is as follows. In Sec-

tion 2, we review process models proposed for data and

information fusion over the past few decades. Section 3

presents a discussion on the Joint Directors of Laborato-

ries data fusion (JDL DF) model, one of the most widely

used models to define the levels of the hierarchical pro-

cess of data and information fusion. The JDL DF model

has been revised and extended several times since it was

first proposed. In the current version, the data fusion

process comprises five levels, which are categorized into

two stages, the low-level fusion processes and the high-

level fusion processes. The low-level fusion processes

support data pre-processing, target discrimination and

target tracking. The high-level fusion processes support

1Generally, data entities (for example, raw sensor observations) have

limited predefined attributes; information entities have assigned at-

tributes with some logical relationships between them. Here, the terms

“data fusion” and “information fusion” are used interchangeably. The

term “sensor fusion” refers to the specific case of DIF in which each

data/information source is a sensor.
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Fig. 1. The Intelligence Cycle [27].

situation assessment, threat (or impact) assessment and

process refinement [232]. Section 4 focuses on high-

level information fusion, a field that is gaining much

interest within the DIF research community in the re-

cent years. An overview of some existing literature per-

taining to the higher levels of fusion in the JDL DF

model is also provided. Section 5 presents some appli-

cation areas of high-level information fusion. Section 6

summarizes this work and considers potential topics for

further research.

2. REVIEW OF DATA FUSION MODELS

Over the last few decades, many process models

have been proposed for DIF [179, 325]. Some of the

data fusion models introduced over the years are briefly

reviewed in the following subsections. More details on

these models are found in the respective sources and the

cited references therein.

2.1. Data Fusion Models Introduced in the 1980s

In the 1980s, the Intelligence Cycle [27, 145], the

Boyd Control Loop [106, 325, 346] and the Joint Di-

rectors of Laboratories data fusion model [59, 176, 280,

416, 422, 423] were developed.

2.1.1. The Intelligence Cycle
In the Intelligence Cycle [27, 145], the intelligence

process is described as a cycle applicable for model-

ing the data fusion process. This model consists of four

phases (shown in Fig. 1): collection (deployment of as-

sets such as electronic sensors or human derived sources

to obtain raw intelligence data, which is usually pre-

sented in the form of an intelligence report with a high

abstraction level); collation (analysis, comparison and

correlation of associated intelligence reports); evalua-

tion (fusion and analysis of collated intelligence reports)

and dissemination (distribution of the fused intelligence

to users who use the information for decision making).

2.1.2. The Boyd Control Loop
The Boyd Control Loop [106, 325, 346], also known

as the Observe, Orient, Decide, and Act (OODA) Loop,

was first proposed to model the military command and

control (C2) process. It comprises four phases (see

Fig. 2. The OODA Loop [325].

Fig. 2): Observe (gather information from the envi-

ronment); Orient (gain situation awareness and per-

form situation/threat assessment based on the informa-

tion gathered); Decide (respond to situation and work

out follow-up actions) and Act (execute the planned re-

sponse/action). The emphasis is placed on shortening

the cycle to perform the Observe to Act loop, to the ex-

tent that the opponent cannot respond in time to carry

out countermeasure, thus gaining superiority in the bat-

tlespace. This model is well received by military com-

manders and decision makers.

2.1.3. The JDL Data Fusion Model
The commonly used JDL DF model was proposed

for categorizing data fusion related functions. A detailed

discussion on this model is given in Section 3.

2.2. Data Fusion Models Introduced in the 1990s

During the 1990s, the Waterfall model [132, 145],

the Dasarathy model [110, 111], the Visual Data-Fusion

(VDF) model [59, 227], the Omnibus model [27] and

the Endsley model [59, 127, 128] were proposed.

2.2.1. The Waterfall Model
The Waterfall model [132, 145] consists of three

levels of representation (shown in Fig. 3):

² Level 1 (sensing, signal processing)–proper transfor-
mation of raw data is carried out to provide necessary

information about the surroundings, via the use of

models (based on experimental analysis or on phys-

ical laws) of the sensors and where possible, of the

measured phenomena;

² Level 2 (feature extraction, pattern processing)–with
the aim of minimizing the data content and maximiz-

ing the information delivered, feature extraction and

fusion are done to produce a list of estimates and their

associated probabilities (and beliefs), which provide

a symbolic level of inference about the data;

² Level 3 (situation assessment, decision making)–
relationships are established between objects and

events; based on the repository of information avail-

able and the human interaction, possible routes of ac-

tion are assembled.
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Fig. 3. The Waterfall model [132].

Fig. 4. The Dasarathy model [110].

The focus is on the processing functions at the lower

levels. The lack of explicit depiction of the feedback

appears to be the major limitation of this model.

2.2.2. The Dasarathy Model
The data fusion process has been commonly iden-

tified as a hierarchy with three general levels of ab-

straction: data (more specifically, sensor data), features

(intermediate-level information) and decisions (symbols

or belief values). Dasarathy [110, 111] pointed out that

fusion may occur both within and across these levels.

The Dasarathy model was proposed to expand the pre-

ceding hierarchy of fusion into five categories of input-

output based fusion (corresponding analogues stated

within parentheses): Data In-Data Out fusion (data-level

fusion); Data In-Feature Out fusion (feature selection

and feature extraction); Feature In-Feature Out fusion

(feature-level fusion); Feature In-Decision Out fusion

(pattern recognition and pattern processing) and Deci-

sion In-Decision Out fusion (decision-level fusion). This

model is based on data fusion functions (illustrated in

Fig. 4) instead of tasks and may be incorporated in each

of the fusion activities.

2.2.3. The Visual Data-Fusion Model
The Visual Data-Fusion model (see Fig. 5) was

proposed by Karakowski [59, 227] as an extension of

the JDL DF model, with a human participant added

integrally. It has the following advantages [59]:

² maximization of relevant information with minimal
display of information;

² ability to provide increasingly sophisticated problem
queries, in addition to tailor information fusion (IF)

system capabilities for use by all skill levels of users;

² problem-driven system that relates to user’s needs

directly, through response to his personal perception

of the problem situation.

The following premises are embodied in the VDF

model [59]:

² the human is a central participant in information

fusion, a creative problem-solving process;

² information derived from the fusion process that is

visualized by the human is primarily used to help him

gain fuller perception, as well as possible approaches

towards solving the problem;

² imagery is used as the perceptual transport for user vi-
sualization, in order to minimize the amount of infor-

mation required by the human to solve the problem.
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Fig. 5. The Visual Data-Fusion model [59].

Fig. 6. The Omnibus model [179].

Basic VDF models are used as building-block elements

for visual situation awareness and distributed VDF pro-

cesses. More details on these research topics can be

found in [59].

2.2.4. The Omnibus Model
The Omnibus model was proposed by Bedworth and

O’Brien [27] as a unification of the Intelligence Cycle,

the JDL DF model, the OODA Loop, the Dasarathy

model and the Waterfall model. Properties of this

model include: explicit feedback; acknowledgement of

the loop within loop concept; retention of the gen-

eral structure of the OODA Loop; incorporation of

the fidelity of representation expressed by the Water-

fall model into each of its four main modules and ex-

plicit indication of points in the processes where fu-

sion may take place. Figure 6 presents the layout of this

model.

2.2.5. The Endsley Model
The Endsley model [59, 127, 128] (shown in Fig. 7)

is widely used to model situation awareness (see Sec-

tion 4.2.1). It is a cognitive model and uses a gen-

eral definition of situation awareness that is applica-

ble across many domains: “Situation awareness is the

perception of the elements in the environment within a

volume of time and space, the comprehension of their

meaning, and the projection of their status in the near

future.” The three hierarchical phases of the definition
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Fig. 7. Endsley’s SAW model [127, 128].

are [127, 128]:

² Level 1 SAW (Perception of the elements in the

environment)–perceive status, attributes and dynam-

ics of relevant elements in the environment;

² Level 2 SAW (Comprehension of the current situation)

–based on a synthesis of disjoint Level 1 elements,

includes perceiving and attending to information, as

well as integrating multiple pieces of information and

a determination of their relevance to the operator

goals;

² Level 3 SAW (Projection of future status)–ability to

forecast/anticipate future situation events and dynam-

ics, which is achieved through knowledge of status

and dynamics of the elements and comprehension of

the situation (both Levels 1 and 2 SAW), allows for

timely decision making.

2.3. Data Fusion Models Introduced in the 2000s

The following data fusion models have been pro-

posed in the 2000s:

² the Object-Centered information fusion model [236],
² the Extended OODA model [399],
² the Transformation of Requirements for the Informa-
tion Process (TRIP) model [179, 272],

² the Unified data fusion (¸JDL) model [59, 257],

² the Dynamic OODA Loop [65],
² the JDL-User model [48].

2.3.1. The Object-Centered Information Fusion Model
Kokar, et al. [236] introduced a fusion process ref-

erence model based on object-oriented design princi-

ples. The proposed model addressed essential issues on

the design of data fusion systems with a top-down ap-

proach. Formal methods were adopted for model analy-

sis at the design stage. They also discussed the need

to develop psychological theories related to human-

computer interaction (HCI). Research in this area was

required for facilitating the proper integration of human

and computer objects by fusion system designs based

on the proposed object-oriented model.

2.3.2. The Extended OODA Model
Shahbazian, et al. [399] proposed the Extended

OODA model which enables multiple concurrent and

potentially interacting data fusion processes. This model

can be applied to obtain a high-level functional decom-

position of a system that uses data fusion for decision

making. Each high-level function is examined in terms

of the OODA decision loop and can be further decom-

posed and evaluated with respect to each OODA phase.

The Extended OODA model (see Fig. 8) has some

properties that are consistent with those of several pre-
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Fig. 8. The Extended OODA model [399].

Fig. 9. The TRIP model [179].

ceding models (stated within parentheses): closes the

loop between the decision making and its surroundings

(OODA Loop); has increasing level of abstraction for

information processing in each level (JDL DF model)

and provides the loop within loop capability (Omnibus

model).

2.3.3. The TRIP Model
The TRIP model [179, 272] (depicted in Fig. 9) was

developed with the purpose of understanding a tactical

commander’s transformation of information needs to

Fig. 10. The ¸JDL model [257].

task assignment of sensor resources. The developers

stated the following goals that they aimed to accomplish

with this model [179]:

² describe the process for developing collection tasks
from information requirements;

² understand relationships between collection manage-
ment and the situation estimation process;

² understand where the human in the loop is required;
² understand the internal and external drivers for the in-
telligence, surveillance, and reconnaissance process.

Identification of processing functions and the de-

tailed information interfaces between them was at-

tempted. A link between human information require-

ments and data collection was provided by this model.

2.3.4. The Unified Data Fusion (¸JDL) Model
The ¸JDL model [59, 257] (also known as the

deconstructed JDL DF model), a revision of the JDL

DF model (the version proposed in [423]), used the

following definitions for its fusion levels (see Fig. 10):

² Level 1 (identification of objects from their proper-

ties)–object fusion: process of utilizing one or more

data sources over time to assemble a representation of

objects of interest in an environment;
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Fig. 11. The Dynamic OODA Loop [65].

object assessment: stored representation of objects

obtained through object fusion;
² Level 2 (identification of relations between these
objects)–situation fusion: process of utilizing one
or more data sources over time to assemble a repre-
sentation of relations of interest between objects of
interest in an environment;
situation assessment: stored representation of rela-
tions between objects obtained through situation fu-
sion;

² Level 3 (identification of the effects of these relation-
ships between these objects)–impact fusion: pro-
cess of utilizing one or more data sources over time
to assemble a representation of effects of situations
in an environment, relative to user intentions;
impact assessment: stored representation of effects
of situations obtained through impact fusion.

The model was proposed for the development of
a data fusion system for fusing three distinct types of
processes that involved both humans and machines:

² psychological processes (human-related),
² technological processes (machine-related),
² integration processes (interaction between the psy-
chological and technological processes).

The model could be applied to different aspects of
the data fusion problem, depending on the different in-
terpretations of the model components (object, situation,
impact) obtained from the different combinations of the
above processes.

2.3.5. The Dynamic OODA Loop
There exist criticisms that the OODA Loop fails

to capture the dynamic nature of decision making in
the military command and control process, as it has a
limited focus on faster decisions [65]. The Dynamic
OODA Loop (shown in Fig. 11) was proposed as a
generic model of military command and control, based
on concepts from the OODA Loop and cybernetic mod-
els of C2.

This model provides the identification of functions

essential for effective C2. The problem of handling de-

lays in C2, a form of dynamic decision making, is also

dealt with. The required functions are: sensemaking (un-

derstanding of the current mission/situation in terms

of what can be done); command concept (commander’s

overall concept of the operation); planning (translation

of the command concept into decisions/orders); infor-

mation collection (guided by the command concept) and

decision (commitment to a course of action (COA)).

Other modifications of the OODA Loop include the

M-OODA Loop [370] and the C-OODA Loop [66].

2.3.6. The JDL-User Model
Discussion on the JDL-User model, which was pro-

posed to extend the JDL DF model to support a human-

in-the-loop decision process, is deferred to Section 4.4.

3. THE JDL DATA FUSION MODEL

The original JDL DF model (shown in Fig. 12) was

created by the JDL Data Fusion Group of the United

States Department of Defense [176]. It is a functional

model developed with the aim of facilitating commu-

nication, comprehension, coordination and cooperation

among diverse data fusion communities to identify and

solve problems to which data fusion can be applied.

The first revision of the initial JDL DF model was

proposed by Steinberg, et al. [423]. They broadened the

definitions of fusion concepts and functions beyond the

original focus on military and intelligence problems, as

well as described the need for an approach to the stan-

dardization of an engineering design methodology for

fusion processes. They also proposed to refine defini-

tions for the fusion “levels” characterized in the original

JDL DF model as follows [423]:

² Level 0 (Sub-Object Data Assessment)–estimation
and prediction of observable states of signals or fea-

tures;

² Level 1 (Object Assessment)–estimation and predic-
tion of entity states based on data association, as well

as continuous and discrete state estimation;

² Level 2 (Situation Assessment)–estimation and pre-
diction of relationships among entities;

² Level 3 (Impact Assessment)–estimation and predic-
tion of effects of entities’ actions on goals/missions;

² Level 4 (Process Refinement)–an element of Re-
source Management that encompasses adaptivity in

the data collection and fusion processes to support

mission objectives.

Figure 13 shows this revised version of the JDL DF

model, which included the introduction of a “Level 0”

to the original model. The five fusion levels were cate-

gorized into the low-level fusion process (Levels 0 and

1) and the high-level fusion process (Levels 2 to 4)

[232, 316].

Other recent revisions/variants of the JDL DF model

include the State Transition Data Fusion (STDF) model

[258—260], the ProFusion2 (PF2) model [347] and the

Ground C4-ISR Assessment Model (GCAM) [306].

3.1. Proposed Extension/Revision

The JDL DF model accounts for automatic machine

processing, but not for human processing. To address
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Fig. 12. JDL DF model [176].

Fig. 13. Revised JDL DF model [423].

issues related to extending the human capabilities within

the fusion process, the concept of Level 5 data fusion

process was first introduced by Hall, et al. [181] and

subsequently, in an independent work by Blasch and

Plano [48]. In both works, the authors asserted the need

to acknowledge functions necessary for supporting a

human-in-the-loop decision process. More details on

Level 5 processing are discussed in Section 4.4.

More recently, another revision to the JDL DF

model (illustrated in Fig. 14) was suggested by Stein-

berg and Bowman [422]. The refinement involved a re-

examination of the JDL DF level structure. The data fu-

sion levels were extended to a newly introduced set of

dual resource management levels (encompassed func-

tions include signal/signature management, individual

resource management, coordinated resource manage-

ment, goal management and system engineering). Based

on the entities of interest to information users, revision

of the definitions for data fusion functional levels were

suggested as follows [280, 416, 422]:

² Level 0 (Signal/Feature Assessment)–estimation and
prediction of states of signals or features;

² Level 1 (Entity Assessment)–estimation and predic-
tion of parametric and attributive states of entities;

² Level 2 (Situation Assessment)–estimation and pre-
diction of relational/situational states of entities;

² Level 3 (Impact Assessment)–estimation and pre-
diction of effects of fused entity/situation states on

mission objectives;

² Level 4 (Performance/Process Assessment)–estima-
tion and prediction of a system’s measures of perfor-

mance and measures of effectiveness based on given

desired system states and/or responses.

In the proposed revision of the JDL DF model

[280, 422], the Level 4 (Process Refinement) function

[423] was categorized as being within the Resource

Management model levels, while the proposed Level 5
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Fig. 14. Proposed revision of the JDL DF model [280].

Fig. 15. Proposed DFIG 2004 model [40, 51].

[48, 181, 422] was subsumed as an element of Knowl-

edge Management within Resource Management.

A further upgrade/revision to the JDL DF model

(see Fig. 15) was proposed and assessed by the Data

Fusion Information Group (DFIG) [40, 51]. The aim

was to separate the information fusion and management

functions. A detailed explanation on the model can be

found in [41]. The definitions for this model, based on

the version of the JDL DF model proposed in [423],

were:

² Level 0 (Data Assessment)–estimation and predic-
tion of observable states of signals or features;

² Level 1 (Object Assessment)–estimation and predic-
tion of entity states based on data association, as well

as continuous and discrete state estimation;

² Level 2 (Situation Assessment)–estimation and pre-
diction of relationships among entities;

² Level 3 (Impact Assessment)–estimation and predic-
tion of effects of entities’ actions on goals/missions;

² Level 4 (Process Refinement)–an element of Re-
source Management that encompasses adaptivity in

the data collection and fusion processes to support

mission objectives;

² Level 5 (User Refinement)–an element of Knowl-
edge Management that encompasses adaptivity in the

determination of user query and access to informa-

tion, as well as adaptivity in the retrieval and display

of data, to support cognitive decision making and ac-

tions;

² Level 6 (Mission Management)–an element of Plat-
form Management that encompasses adaptivity in the

determination of spatial-temporal asset control, as

well as route planning and goal determination to sup-

port team decision making and actions.

HIGH-LEVEL INFORMATION FUSION: AN OVERVIEW 41



4. RESEARCH IN HIGH-LEVEL DATA AND
INFORMATION FUSION

4.1. Shift of Research Focus from Low-level Fusion
towards High-Level Fusion

After many years of intensive research, low-level

fusion has become a relatively mature field [409]. The

research focus is currently shifting towards fusion at

higher levels. The significant amount of interest in high-

level information fusion is evident from the related

research activities that have been carried out in the

recent years.

North Atlantic Treaty Organization Research and

Technology Organisation Information Systems Tech-

nology Panel held a symposium on “Military Data and

Information Fusion” in October 2003 [327] and a spe-

cialists’ meeting on “Information Fusion for Command

Support” in November 2005 [328] to discuss high-level

fusion research and technology in the military domain.

Panel discussion sessions have been dedicated to ad-

dress high-level fusion research issues at the Interna-

tional Conference on Information Fusion (FUSION):

² 2004–Challenges in Higher Level Fusion: Unsolved,
Difficult, and Misunderstood Problems/Approaches

in Levels 2—4 Fusion Research [223];

² 2005–Issues and Challenges of Knowledge Repre-
sentation and Reasoning Methods in Situation As-

sessment (Level 2 Fusion) [46];

² 2006–Issues and Challenges in Resource Manage-
ment and Its Interaction with Level 2/3 Fusion with

Applications to Real-World Problems [45];

² 2007–Results from Levels 2/3 Fusion Implementa-

tions: Issues, Challenges, Retrospectives and Perspec-

tives for the Future [222];

Agent Based Information Fusion [109];

² 2008–High-level Information Fusion: Challenges to
the Academic Community [241];

² 2009–Issues and Challenges in Higher Level Fusion:
Threat/Impact Assessment [221];

Directions for Higher-Level Fusion Research: Needs

and Capabilities [445];

A Coalition Approach to Higher-Level Fusion [261];

² 2010–Issues and Challenges in Higher Level Fu-
sion: Threat/Impact Assessment and Intent Modelling

[379];

High Level Information Fusion Developments, Issues

and Grand Challenges [47];

² 2011–Social, Cultural, and Cognitive Aspects of

Situation Management: Issues and Challenges [378];

² 2012–Multi-Level Fusion: Issues in Bridging the
Gap between High and Low Level Fusion [233];

Uncertainty Evaluation: Current Status and Major

Challenges [98];

Issues of Uncertainty Analysis in High-Level Infor-

mation Fusion [43].

High-level information fusion topics have been gain-

ing considerable presence among the technical sessions

Fig. 16. Technical sessions on high-level IF topics at FUSION

conferences.

at the recent FUSION conferences (see Fig. 16). For

example, at the 13th International Conference on In-

formation Fusion held in July 2010, technical sessions

on Advances in High-level Information Fusion Design

were conducted to discuss research advances and devel-

opments in the area of high-level fusion. Areas of inter-

est included modeling, representations, systems design

and evaluation [53, 101, 155, 300, 301, 338, 368, 373,

447, 448].

The journal Information Fusion published a special

issue on high-level information fusion and situation

awareness [237, 240, 260, 276, 304, 344, 437, 472].

Das [106] authored a book with focus on fusion at

Levels 2 and 3. Steinberg [421] provided a detailed

study on principles and techniques related to situation

and impact/threat assessment.

4.2. Situation and Impact Assessment

4.2.1. Situation Assessment
Level 2 fusion, also known as Situation Assessment

(SA), is concerned with the determination and interpre-

tation of relationships among objects and of estimation

or prediction of situations; that is, of structures in the

world. The objectives at this level include the deriva-

tion of high-level inference and the identification of

meaningful events and activities [316, 421]. Situation

Awareness (SAW) involves the identification and moni-

toring of various relationships among Level 1 physical

and abstract entities, as well as various relations among

them. Situation assessment is regarded as the process

of achieving, acquiring or maintaining situation aware-

ness [377]. Models for automated situation assessment

tools include the JDL DF model (see Section 3) and the

Endsley’s Situation Awareness model [127, 128] (see

Section 2.2.5).

General issues and challenges in situation assess-

ment and situation awareness have been addressed by

different researchers with various perspectives and ap-

proaches [46].

² Gorodetsky, et al. [162] did an analysis of formal
frameworks proposed for specification of the situa-

tion models. Their focus was on approaches and al-

gorithms for on-line update of situation assessment,
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on the generic architecture of the situation assessment

systems.

² Jones, et al. [217] described the use of fuzzy cogni-
tive maps in the development of a data fusion model

to support situation awareness and human cognition,

based on the Goal-Directed Task Analysis methodol-

ogy.

² Kadar [220] addressed issues in situation assessment
and associated Knowledge Representation and Rea-

soning models, with focus on a human perceptual

reasoning-based model framework.

² Kokar [234, 235] identified and discussed problems
pertaining to automatic situation assessment/aware-

ness. Approaches for solving these identified prob-

lems were proposed and compared.

² A detailed discussion on developing a conceptual

framework for situation assessment and awareness

was given by Salerno [376]. He also addressed issues

and perspectives on high-level information fusion

processing.

² Salerno, et al. [377] explored various techniques be-
lieved to be necessary for providing situation aware-

ness. They also investigated how those techniques

could be bound together to form an overall system

architecture, as well as how various sources of in-

formation contributed to the problem of maintaining

constant awareness of the environment one was in.

² Qureshi and Urlings [356] proposed an operator as-
sistant with a flexible concept of automation, with the

objective of enhancing situation awareness.

² Settembre, et al. [398] designed a multi-agent archi-
tecture for situation assessment. The system utilized

Web Ontology Language-based reasoning for high-

level situation classification and analysis, and pro-

vided distributed assessment via the solution of dis-

agreements that might exist among different agent

conclusions. Experimental results from a real mar-

itime surveillance scenario showed that the proposed

approach had the capability to achieve performance

similar to that of a centralized architecture. In addi-

tion, the method preserved the independency of deci-

sion makers and significantly reduced the amount of

communication required.

² Smart, et al. [405] investigated knowledge-based ap-
proaches to improving situation awareness in human-

itarian operational deployment. A tool for intelligent

information fusion, Technical Demonstrator System,

was developed for the situation awareness enhance-

ment task. A functional overview of the system with

respect to several capability areas was presented.

² Steinberg [420] described an adaptive evidence-

accrual inference method for selecting context vari-

ables based on their usefulness in the refinement of

explicit variables in problems of interest; the proba-

bility of obtaining these variables with predetermined

amount of accuracy, given candidate system actions

such as data collection, mining or processing; as well

as the cost of the aforementioned actions.

4.2.2. Impact Assessment
Level 3 fusion, known as Threat Assessment in the

original JDL DF model, was redefined as Impact As-

sessment to accommodate expansion in the concept of

Level 3 fusion [421, 423]. Impact Assessment deals

with the determination of the effect of current situational

states on user objectives. It involves the prediction of the

intent (alternative courses of action) for entities, as well

as the estimation of the degree or severity with which

impending (possibly adversarial) events may occur.

Broadly speaking, Level 3 fusion involves the es-

timation of contingent (for example, possible future)

states and of their cost/benefit impacts [421]. As such

Level 3 fusion can be perceived as a subset of Level 2

fusion, due to the broad definition for the latter [423].

Assignment at Level 3 is usually inferred from Level 2

associations, although processing at the fusion levels

need not be performed in order [280]. In addition, given

corresponding inputs, any one level can be processed on

its own. Table I displays some methods that are applied

to different problems on situation and impact assess-

ment [79, 106, 421].

4.3. Process Refinement

Level 4 fusion is known as Process Refinement in the

early versions of the JDL DF model [423]. The process

involves resource management to improve the results

obtained at the lower levels of data fusion [316]. In the

recent proposed revision of the JDL DF model [280],

the data fusion levels were extended to their dual re-

source management levels. In addition, a new Level 4

of data fusion and its corresponding dual Level 4 of

resource management were introduced. A redefinition

Level 4 (Performance Assessment (PA), also known as

Performance Evaluation (PE)) was proposed with the

existing Level 4 (Process Refinement) function [423]

categorized as being within the resource management

model levels. Based on a given desired set of system

states and/or responses, the Level 4 data fusion func-

tions combined information to estimate a system’s mea-

sures of performances and measures of effectiveness. It

was proposed that the purpose of the existing JDL DF

levels would be preserved by these new data fusion and

resource management levels.

This section gives some instances of research work

that discuss PA/PE methodologies for data fusion pro-

cesses, as well as issues on data/information fusion and

resource management (subjects of management include

signals/signatures, individual resources, coordinated re-

sources, goals/mission objectives, system engineering

and operational configuration) [45].

4.3.1. Performance Assessment/Evaluation
Methodologies

A literature analysis of twenty-four journal articles

and twenty-eight conference papers on the topic of per-

formance evaluation was carried out by van Laere [450].
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TABLE I

Situation and Impact Assessment: Issues and Approaches

Application Domain Approach/Technique Reference

Data association/correlation Ontology [239, 242, 243, 292—294]

Mathematics-based metrics [428—430]

Semantic Knowledge Ontology [173, 266, 330]

Tactical defense Kohonen’s self-organizing maps [7]

–Air defense Neural networks [8, 195]

–Asymmetric warfare Ontology [17, 100, 238, 293—297, 374]

–C4ISR Hidden Markov models and time series [21]

–Enemy courses of action Bayesian inference/network/theory [26, 107, 108, 141, 195, 251, 262, 285, 285, 331,

335, 336]

–Ground battlespace Evidential theory/networks [32, 33, 203, 392]

–Information warfare Fuzzy logic/Fuzzy set theory [34, 80, 139, 140, 195, 217, 285, 321, 343, 355, 382]

–Interoperability Support measures/functionalities [37, 129, 142, 160, 349, 374]

–Maintenance of consistency Knowledge-based approaches [57, 93, 195]

in intelligence database Contextual information, target behavior [62, 63, 149, 334, 420]

–Maritime surveillance extraction/classification

–NBD/NCW Axiomatic approach [102]

–Threat analysis Genetic algorithms [157, 158, 195]

–Threat stabilization Self-organizing peer-to-peer SAW system [194]

–Video/visual surveillance Real-time automated rule-based system [200]

Modified probabilistic neural network [208]

Situation, ontology, estimation theory [216, 417, 418]

Uncertainty propagation for dynamical systems [245, 440]

Asset profiling [262]

Team SAW measurement techniques [263, 380, 402]

Statistical density estimation [267]

Cognitive system engineering [341]

Information theory [343]

Multiple attribute decision making [355]

Graph-based tools [384, 385, 425]

Multi-agent system [398]

Centralised intelligence fusion [414]

The objective was to identify the extent to which infor-

mation fusion researchers were aware of the problematic

nature of performance evaluation in practice, as well

as problems and related known solutions. He proposed

there was a need to define and study a set of compre-

hensive performance measures which were adaptable to

domain or situation context and changing circumstances

over time. He also asserted the need for incorporation

of optimality checks.

Table II shows some approaches to performance

assessment/evaluation for data fusion systems in various

application domains.

4.3.2. Data Fusion/Information Fusion and Resource
Management

Blackman and Popoli [37, Chap. 15] discussed prin-

ciples and techniques for sensor management (SM). The

main issues of interest were: the necessity to include

sensor management in the design of a modern sensor

tracking system, the understanding of the aspects of

sensor operation that required management and the fig-

ures of merit (metrics for the overall performance of an

entire sensor tracking system) to be optimized by that

management, as well as the approaches to accomplish

sensor management.

Ng and Ng [318] studied the roles of sensor manage-
ment, the motivation to use SM and presented a frame-

work for a generic SM. Ng [316, Chap. 9] discussed

classification and roles of SM and carried out simula-
tion studies to demonstrate roles of SM as a controller.

Multi-sensor management deals with the control of
environment perception activities by the management

or coordination of multiple sensor resource usage. It is
an emerging research area and has become increasingly

important in the research and development of modern
multi-sensor systems for both military and civilian ap-

plications. Xiong and Svensson [464] provided a review

of multi-sensor management in relation to multi-sensor
information fusion. The work done included description

of the role of multi-sensor management in the larger
context, generalization of main problems from existing

application needs and discussion on problem solving
methodologies. In addition, many useful related works

were cited.

A stochastic dynamic programming based approach
to solving sensor resource management problems was

described by Washburn, et al. [457]. The sensor re-
source management problem was formulated as a sto-

chastic scheduling problem and approximate solutions
based on the Gittins index rule were developed.
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TABLE II

Performance Assessment/Evaluation for Data Fusion Systems

Application Domain Approach/Technique Reference

General Formal definition of validation (references a standard fusion device) [248]

Local evaluation measures for image interpretation [256]

Measures of input scenario complexity and output quality [322, 439]

Rule-based expert system [337]

Data association, metrics estimation, Statistical DOE, ANOVA [382]

Multi-source fusion Bayesian inference [76]

Distributed fusion track-to-truth association, distributed fusion [117, 381]

track-to-track association

Correlation effect, best linear unbiased estimation criteria [19, 473]

Target tracking Measures for assessing track detection performance, accuracy,

quality and data association

[52, 95, 161, 273, 307, 393, 427,

471]

–Automatic target recognition Track-centric metrics [71]

–Classification, estimation and Information theoretic measures [87]

filtering Context metrics that characterize problem difficulty [148]

–Decentralized estimation Optimal subpattern assignment-based metrics [171, 314, 367, 395]

–Moving target identification Multi-channel signal subspace methodology [224]

–Multiple target tracking Optimization-based hierarchical PE system, Statistical DOE,

ANOVA

[283, 360]

Error bounds [400, 413]

High-level information is playing an increasingly

important role in research on sensor management. There

is concern about the appropriateness in using the term

Sensor Management to encompass the functions on the

information level. In view of the necessity of using intel-

ligent agents to perceive the environment to take suitable

actions, Johansson and Xiong [214] proposed a generic

concept of Perception Management, without having to

be particular about concrete sensor device details. The

concept referred to controlling the data acquisition pro-

cess from the external world to enhance the perception

outcomes. Two different possible interrelations between

sensor management and perception management were

considered and discussed: either sensor management is

encompassed in perception management or sensor man-

agement is separate from and independent of perception

management.

Bradley [61] gave a discussion on sensor tasking

capability pertaining to a resource allocation manager

which integrated command, control and communica-

tions functions within various types of sensor platforms

and had significant contributions to multi-platform in-

teroperability and situation awareness operations. He

gave an overview of the fusion architecture and track-

ing system in which a resource allocation manager was

integrated. Performance analysis on the resource alloca-

tion manager was done based on measured and modeled

data.

Table III provides a summary of some problems

and techniques for data fusion/information fusion and

resource management.

4.4. Cognitive Refinement

Information representation and human-computer in-

teraction are important for most data fusion systems.

For example, it has been noted that the efficacy of the

HCI had a significant influence on the overall perfor-

mance and effectiveness of a data fusion system [455].

On the other hand, the Object-Centered information fu-

sion model [236] (see Section 2.3.1) took into consid-

eration the role of a human for decision making.

The concept of Level 5 (Cognitive Refinement) pro-

cessing in the original JDL DF model was introduced

by Hall, et al. [181] to account for functions asso-

ciated with human-computer interaction explicitly. It

involved the development of functions to support a

human user in a collaborative human-computer envi-

ronment. The categories of functions associated with

Level 5 processing included [179]: HCI utilities, dia-

logue and transaction management and cognitive aids.

Figure 17 shows the resultant augmented JDL DF model

proposed. More discussion on various issues of cogni-

tive refinement and human-computer interaction can be

found in [179, Chap. 9].

In an independent work, Blasch and Plano [48]

introduced Level 5 (User (or Human) Refinement, an

element of Knowledge Management) with the purpose

of supporting cognitive workload, trust, attention and

situation awareness. In addition, the JDL-User model

(shown in Fig. 18) was proposed to extend the JDL

DF model [423] via the incorporation of the suggested

Level 5. Further issues related to User Refinement were

explored in [40—42, 49—51, 54].

More related research has been done recently. Hall,

et al. [180] discussed the development of a set of tools

to support whole-brain information analysis (combines

visually-oriented analysis of images with language-

based analysis of text and related information). Nilsson

and Ziemke [326] suggested adopting a distributed cog-
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TABLE III

Data/Information Fusion and Resource Management: Problems and Techniques

Application Domain Approach/Technique Reference

Multi-source fusion Market-based architecture [16]

Probabilistic sensor placement algorithm coverage optimization [122]

Shannon’s entropy-based probabilistic fusion of multiple information sources [135]

Sensor subset selection [151]

Distributed Bayesian inference and reinforcement learning [165]

Sensor scheduling (distributed greedy/myopic algorithms, feedback control theory) [201, 465]

Mathematical and statistical analysis [387]

Unified sensor performance modeling [451]

Hierarchically networked agent architecture [479]

Tactical defense Genetic algorithm [68]

–C4ISR Intelligent multi-agent based sensor resource management structure [88]

–Maritime operations Bayesian belief networks [159]

–Military mission planning Fuzzy logic [159, 305]

–NBD/NCW Stochastic dynamic programming [213]

Distributed fusion on multiple platforms [271]

Random sets and equivalence classes of multi-target paths [291]

Object classification/detection [391, 452]

Simulation-based tool and mixed-initiative interaction [434]

Target tracking Sensor selection [55, 357, 359]

–Attack-avoidance Bayesian technique-based approach [81, 193, 362]

–Ground target tracking Hierarchical dynamic optimal control methods [92]

and classification Algebraic framework [104]

–Multi function radar tracking Fuzzy logic, neural network system [244]

–Multiple target tracking Combine invariance, robustness and self-refusal [250]

–Target detection Reinforcement learning [252]

Machine learning (active sensing) [253]

Game theory (linear quadratic, geometric feature-aided) [268, 269]

Optimization-based dynamic algorithm (utilizes Markov models, decision trees) [348]

Clustering techniques [390]

Mathematical programming-based sensor allocation and management [443]

Geometric factors, information and measures of merit [469, 470]

Quadratic programming (numerical solver for constrained minimization problem) [480]

nition perspective to complement existing approaches to

understanding and modeling information fusion.

4.5. An Area with Increasing Interest: Hard and Soft
Data/Information Fusion

In a decision making task, accurate information is

essential for the decision makers concerned to make

precise assessment of the situation and possible im-

pact, and subsequently, appropriate and timely deci-

sions. The derivation of relevant information generally

involves a fusion process that combines and integrates

data/information from multiple sources. Data/informa-

tion can be classified into two categories, namely,

“hard” and “soft.”

“Hard information” refers to information from tradi-

tional physical sources such as radar and acoustic sen-

sors. Such information usually includes kinematic data

on the entities of interest. “Soft information” refers to

information from human-based sources such as con-

versations, documents, newspapers and internet web

sites. Such information can include possible location

and identity information, as well as activities, intent and

relationships among the entities of interest.

Hard and soft data generally contain complementary

information, so it is necessary for data and information

fusion practitioners to develop automated tools for ef-

fective fusion of these data. The disparate characteristics

of hard and soft data result in many technical challenges

for hard/soft data fusion. For example, hard data is usu-

ally structured and can be modeled mathematically. On

the other hand, soft data is generally unstructured and

inconsistent, and hence difficult to study with a mathe-

matical model.

The DIF community recognizes the importance of

hard and soft data/information fusion, and has in-

creasing interest in this research area [99, 229, 282,

466, 467]. In the past few years, technical sessions have

been held at the International Conference on Informa-

tion Fusion to discuss research and development issues

related to hard and soft data/information fusion:

² 2008–Hard/Soft Information Fusion [172, 178, 218,
351, 462];

Challenges of and Methods for Information Fusion

of Soft Data [10, 14, 36, 137, 174, 277, 309, 383,

411, 424];
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Fig. 17. Augmented JDL DF model [179].

Fig. 18. JDL-User model [48].

² 2009–Fusion of Hard and Soft Information for

Asymmetric, Urban Operations [156, 219, 339, 350,

352];

² 2010–Multidisciplinary Research in Hard and Soft
Information Fusion [44, 168, 175, 187, 282];

² 2011–Human-based Sensing: From Passive Search-

ing to Active Participation [186, 225, 302, 303, 353];

Hard/Soft Information Fusion: New Data Sets and

Innovative Architectures [2, 20, 164, 169, 209];

² 2012–Hard/Soft Fusion [1, 89, 120, 121, 170, 183,
184, 313, 366, 404, 406, 407, 461, 463].

Many applications involve the extraction of informa-

tion through processing and/or fusing huge quantities

of data from multiple sources. Topics for exploration

in the relatively immature research area of hard and

soft data/information fusion can therefore be expected

to continue to increase and evolve.

5. APPLICATIONS
Since the introduction of data and information fu-

sion techniques to the research community in the 1970s,

the scope of application areas for DIF has widened sig-

nificantly. Some of the applications that involve high-

level DIF (situation/impact assessment, resource man-

agement, and so on) are discussed in the following sub-

sections. Table IV shows a summary of the techniques

applied to the problems discussed.

5.1. Strategic/Tactical Defense
Data and information fusion was first used in mil-

itary defense research related problems. After several
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TABLE IV

Problems and Techniques in Various Application Areas that Involve High-Level DIF

Application Domain Approach/Technique Reference

Strategic/tactical defense

–Biosurveillance Information retrieval and dynamic Bayesian networks [205]

–Drug interdiction Multiple platform distributed fusion [94, 270]

–Homeland security Analytic network process [478]

–Maritime surveillance Hybrid fusion (interaction with data fusion processes at different information levels) [145]

–NBD C4ISR Dempster-Shafer clustering and template matching, particle filtering and finite set

statistics

[4]

–Undersea warfare Network-centric theatre undersea warfare architecture [5]

Computer/information security

–Dishonest behavior detection Probabilistic, scalable distributed approach [96]

Integration of rule-based filtering, Dempster-Shafer theory and Bayesian learning [340]

–Intrusion detection Logic-based data model [308]

Fuzzy set theory [286]

Adaptive non-stationary autoregressive model [454]

Probabilistic inference [436]

–Threat evaluation Multiple behavior information fusion based on Markov models and

Dempster-Shafer evidential reasoning

[90]

Modeling and simulation, and risk analysis/assessment [324]

Post-disaster management

–Casualty mitigation operations Cognitive work analysis, ontological analysis [369]

–Data fusion visualization Integrated graphical user interface framework [290]

–Decision making Bayesian networks, Dempster-Shafer theory, fuzzy logic, neural networks [279]

–Dynamic situation assessment Ontology meta-model [274]

Engine/machinery fault diagnosis Hybrid system parameter estimation and change detection [22, 23]

Dempster-Shafer evidence theory-based multi-source IF [24, 133, 134]

Biomedical Applications

–Data exploration/analysis Multidimensional analysis, self-organizing map clustering algorithm [146]

Fuzzy logic, multiple classifier network, decision level data fusion [477]

–Medical/clinical diagnosis Dempster-Shafer framework [311]

Fuzzy logic [130, 226]

–Patient monitoring Dynamic Bayesian network [29]

Environment

–Ecological evaluation of urban

biotopes

Spatial and statistical analyses of airborne hyperspectral data [188]

–Fire detection Formal theory of perception [397]

Dempster-Shafer theory [476]

–Irrigation system management Genetic algorithm, agrohydrological model [85]

–Land monitoring and projection Dempster-Shafer theory of evidence [202]

–Soil moisture estimation Support vector machines, relevance vector machines [230]

Industrial applications

–Agricultural product quality

control

Bayesian inference [371]

Neural network training [289]

–Decision support in

manufacturing

Modeling, resource simulation and databases [118, 119]

–Dislocation detection in

construction materials

Belief function theory [361]

–Information system deployment Document object model for data fusion and aggregation [354]

–System monitoring Hierarchical, multi-layered fusion architecture [154]

–Unmanned vehicle guidance Information-oriented perception management [333]

decades of development, DIF techniques are now be-

ing developed and applied in diverse non-military re-

search areas as well. Nevertheless, military defense re-

search remains a very prominent application area for

DIF [58, 70, 131, 166, 212, 433]. Here, some research

works from various defense applications are summa-

rized.

Liggins, II, et al. [94, 270] developed distributed ar-

chitectures to support relevant fusion technologies such

as multi-source fusion and sensor resource manage-

ment. The technologies were applied to problems in

defense and drug interdiction.

Gad and Farooq [145] discussed various data fusion

architectures for maritime surveillance and developed a
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system that interacted with the data fusion processes at

different information levels. This proposed data fusion

architecture was shown to perform well when employed

to support the maritime surveillance for a typical mar-

itime tactical scenario.

Aldinger and Kao [5] discussed the challenges faced

in undersea warfare and some research work done on

developing data fusion technology and other techniques

to enhance the capabilities of the undersea warfare

community.

Ahlberg, et al. [4] developed a concept demonstrator,

the Information Fusion Demonstrator 2003 (IFD03),

to demonstrate information fusion methodology ex-

pected to be suitable for a future network-based defense

command, control, communications, computers, intelli-

gence, surveillance and reconnaissance (C4ISR) system.

The focus of IFD03 was on real-time intelligence pro-

cessing in a tactical level ground warfare scenario. The

architecture, methodology and user interface of the soft-

ware system were described. The system was applied

to a concrete scenario and related fusion results were

discussed.

Introne, et al. [205] developed a novel application

that employed a two-level fusion architecture to address

the problem of biosurveillance.2 Feasibility of the ap-

proach was demonstrated via simulated outbreak events

on a simulation platform.

Zhang, et al. [478] applied a strictly quantitative

analysis-based analytic network process to model elic-

itation in large-scale nation-building simulation mod-

els. The proposed approach could be used to study

the significance of different kinds of factors and the

interdependencies among them. This approach could

circumvent the problem of possibly conflicting hu-

man expertise, which was encountered by many tra-

ditional expert knowledge-based analytic network pro-

cess methods. Numerical results demonstrated that the

proposed methodology could provide good approxi-

mate solutions to the nation-building simulation prob-

lems. The amount of computational time required for

nation-building model analysis was also significantly

less than that required for multiple replications of tradi-

tional discrete-event simulations.

5.2. Computer/Information Security

In the present age, where the use of information

technology is ubiquitous, computer and information se-

curity issues are of great importance to both system ad-

ministrators and general users. Information system is-

sues such as intrusion detection in distributed commu-

nication and computer networks are receiving increas-

ing amount of attention. Dasarathy [115] presented a

general overview on research work done on intrusion

detection.

2Biosurveillance: detection of attacks with unknown bioagents, also

known as syndromic surveillance.

Stein, et al. [415] presented an outline of emerging

concepts that were expected to guide future operations

of joint military operations, and also explained the

achievement of information superiority via the use of

network-centric computing. Experimental tests showed

the effect of employing information superiority on the

approach to fighting battles.

Browne [67] proposed that new approaches to com-

mand, control, communications, computers and intel-

ligence (C4I) defensive architecture be developed to

defend against multi-mode attacks, which were enemy

strategies using clever combinations of conventional and

non-conventional warfare. Criticism was made on some

popular existing C4I defense technologies that were

considered to be vulnerable against multi-mode attacks.

A speculative discussion was presented on new C4I de-

fense technologies and policy issues regarding informa-

tion superiority that were believed to be inadequately

addressed in existing literature.

A model based on multiple behavior information fu-

sion was developed for quantitative evaluation of net-

work security threat by Chen, et al. [90]. The proposed

method was used for tests in a real network environment

and was shown to be a reasonable and feasible tool for

its system administrators.

Nicol [324] gave a discussion on using simulation to

evaluate computer security in areas such as impact as-

sessment (determine how security measures affect sys-

tem and application performance) and emulation (com-

bine real and virtual worlds to study the interaction be-

tween malware and systems, and probe for new system

weaknesses).

Du, et al. [124] formulated the problem of unsu-

pervised classification for non-uniform attack tracks in

cyber domains. The authors discussed three methods

from distinct fields for solving this problem. The meth-

ods are, namely, “the subsequence matching technique,”

“Fourier analysis” and “the social network approach.”

The three approaches were compared with a traditional

classification algorithm, K-means clustering algorithm.

Based on the preliminary results, the three approaches

showed promise in the characterization and the catego-

rization of attack tracks.

The journal Information Fusion has published a spe-

cial issue on information fusion in computer security

[96, 97, 152, 286, 308, 340, 436, 454]. Corona, et al.

[97] gave a detailed review of issues concerning the ap-

plication of information fusion techniques in computer

security, with particular focus on intrusion detection in

computer networks. They also discussed topics such as

data organization and data reconciliation that required

further research.

Morin, et al. [308] proposed a first-order logic based

data model as a support tool reasoning about alerts

triggered by network intrusion detection systems. They
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demonstrated the practicality of the proposed frame-

work by implementing it in a hypothetical attack sce-

nario. Maggi, et al. [286] utilized a fuzzy set theory-

based technique to fuse alerts on anomalies in an in-

trusion detection system. The proposed method was

validated in experiments using two prototypes devel-

oped earlier by the authors, namely, a host anomaly

detector and a network anomaly detector. Viinikka,

et al. [454] suggested an adaptive method to model and

filter out intrusion detection alerts related to normal

system behavior from sequences of aggregated alerts.

The authors used a non-stationary autoregressive model

whose parameters were estimated by a Kalman fixed-lag

smoother to produce a series of differences between ob-

servations and model predictions. Anomaly alerts were

signaled upon detection of residuals which exceeded

pre-defined thresholds. The effectiveness of the method

was demonstrated through experiments on processing

huge amounts of aggregated alert sequences from an

operational information network.

Sy [436] proposed a probabilistic inference-based

analytical intrusion detection framework to integrate

alert information obtained from sensors deployed

throughout a distributive network-based intrusion de-

tection system. The integrated information was used to

assist in the generation of the most probable forensic

explanation. An experimental study was conducted to

evaluate the feasibility of the proposed method. The

suggested method yielded favorable results, when com-

pared to the naïve Bayes reasoning approach. Efficient

detection of node replication in a wireless sensor net-

work is required to provide authenticity of data fusion

in the network.

Conti, et al. [96] developed the Information Fu-

sion Based Clone Detection Protocol (ICD), a prob-

abilistic, scalable distributed protocol for detection of

cloned nodes. The ICD combined two different crypto-

graphic mechanisms, namely, pseudo-random key pre-

deployment and asymmetric cryptography. Simulation

results verified the robustness of the ICD for differ-

ent parameter sets considered. Panigrahi, et al. [340]

presented a credit card fraud detection system which

made use of a transaction history database and the in-

tegration of three approaches, namely, rule-based filter-

ing, Dempster-Shafer (D-S) theory and Bayesian learn-

ing. For system performance analysis, stochastic models

were used to generate simulated credit card transactions.

The proposed fraud detection system was found to yield

high accuracy in detecting fraudulent transactions.

5.3. Crisis/Disaster Management

In the event of a natural catastrophe or otherwise,

there exists a large quantity of crucial data to be dealt

with within a very short period of time immediately

after the disaster [299]. It is essential to develop ef-

ficient data and information fusion tools for effective

situation assessment and impact prediction in dynamic

post-disaster scenarios, which in turn would be useful

for decision making.

In view of the growing threats posed by potential use

of chemical and biological agents in the military battle-

field, Llinas, et al. [281] addressed issues and challenges

related to the development of technologies for effective

combat against these weapons of mass destruction, in

both military and civilian applications. Effective execu-

tion of battle management functions depends very much

on high-quality information input. The authors asserted

that it was very likely that the high-quality information

demands of Nuclear, Chemical, Biological and Radio-

logical (NCBR) battle management functions could be

met by many existing information fusion techniques. In

addition, it was possible for transition of advanced infor-

mation fusion technologies from conventional warfare

settings to NCBR-specific mission applications.

Llinas [279] described the overall strategic approach

(engineering methodology) to a multi-year research pro-

gram which addressed issues in information fusion to

support crisis centre decision makers dealing with post-

event situations. Both natural and man-made disas-

ters were considered, with emphasis placed on post-

earthquake and post-chemical attack scenarios respec-

tively. The focus was on fusion capabilities at Levels 2

and 3 (higher-level information fusion). Examples of

specific research components and subsequent research

plans for the program were also discussed.

Little and Rogova [274] worked on the design of a

general methodology for situation assessment to sup-

port crisis management. The proposed approach uti-

lized understanding the combination of both formal

and domain-specific construction methodologies and

also described a general taxonomy of relationships, one

which could encapsulate many of the complexities as-

sociated with catastrophic events.

A disaster monitoring interface for an earthquake

simulation was proposed by Mandiak, et al. [290]. The

visualization tool was an integrated graphical user in-

terface framework that enabled a user to easily com-

prehend the trend of a situation, by providing as much

information (obtained via the integration of multidimen-

sional graphic displays) as possible to him.

Rogova, et al. [369] addressed the problem of situ-

ation assessment to support casualty mitigation opera-

tions in the response phase that immediately followed an

earthquake. The proposed methodology was based on

the cognitive work analysis and ontological analysis of

a specific emergency management domain, developed

within the framework of a formal ontology.

5.4. Fault Detection and Identification/Diagnosis

The main issues of concern when applying infor-

mation fusion to fault diagnosis are the acquisition of

reliable information about potential faults by incorporat-

ing multiple sensors, as well as the derivation of fused

decisions based on data from the multiple sensors. It is
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necessary to develop fusion mechanisms that minimize

conflicts among the sensors, as well as imprecision and

uncertainty in the sensor data.

Based on Dempster-Shafer evidence theory, a multi-

sensor implementation of an engine diagnostic system

was introduced by Basir and Yuan [24]. The formula-

tion of the engine diagnostic problem in the context of

the evidence theory was explained. Novel ways were

introduced to enhance the effectiveness of mass func-

tions in modeling and in evidence combination. Ratio-

nal diagnosis decision making rules were proposed and

the entropy of evidence was introduced to facilitate in-

formation fusion performance evaluation. Experimental

results demonstrated the effectiveness of the proposed

approach in resolving decision conflicts and in improv-

ing the accuracy of fault diagnosis via multi-sensor in-

formation fusion.

Fan and Zuo [133] introduced a Dempster-Shafer

evidence theory-based method with the capability of

increasing accuracy of decision making through multi-

source information fusion. In the proposed approach,

fuzzy set theory, weight of evidence and conflict res-

olution were introduced to address the issues of evi-

dence sufficiency, evidence importance, and conflicting

evidence in the practical application of D-S evidence

theory. Test example results validated feasibility of the

proposed method, as well as its improvement over the

conventional D-S evidence theory in performing fault

diagnosis through fusing multi-source information. In

the sequel [134], successful application of the improved

D-S evidence theory to machinery fault diagnosis was

reported. Experimental results showed that the proposed

method could enhance diagnostic accuracy and auton-

omy, in comparison with conventional diagnostic meth-

ods.

Bashi, et al. [22] proposed an algorithm for fault

detection in large-scale systems with a large number

of almost identical units operating in a shared envi-

ronment. The fault detection algorithm was developed

based on the estimation of a common Gaussian-mixture

distribution for unit parameters via the Expectation-

Maximization algorithm. The estimated common dis-

tribution incorporated and generated information from

all units and was utilized for fault detection in each in-

dividual unit. The algorithm was applicable in various

industrial, chemical or manufacturing processes, as well

as sensor networks. In the companion paper [23], the au-

thors described the application of their algorithm to the

problem of fault detection in heating ventilation and air

conditioning (HVAC) systems. Implementation details

were described. Monte Carlo simulations and real data

collected from three operational large HVAC systems

were used in the evaluation of the performance of the

proposed methodology in a realistic situation.

5.5. Biomedical Applications/Informatics
Biomedical applications/informatics generally in-

volve voluminous data from multiple heterogeneous

sources. In most circumstances, the amount of useful

knowledge that can be acquired from an individual data

source is limited. Information derived frommulti-source

data fusion is often of better quality than that obtained

from the available sources separately.

Bellot, et al. [29] proposed a generic approach to

fuse data in dynamical systems. A notion of qualified

gain was defined to help determine the usefulness of

a data fusion process developed. The method was ap-

plied to a problem of monitoring kidney disease patients

who underwent dialysis at home. All the data sources

and relations among them were determined. A dynamic

Bayesian network-based model was used to fuse the

data in order to provide daily diagnosis on the hydra-

tion state of the patients. Efficiency of the proposed

approach was reflected by the experimental results ob-

tained.

Ganta, et al. [146] described data exploration and

analysis of heterogeneous biomedical informatics data

sets using an online data warehouse. Experimental re-

sults obtained from applying information fusion tech-

niques to multiple prostate cancer data sets demon-

strated the feasibility of the proposed system.

Zhang, et al. [477] presented a new approach to ex-

plore the cause of human longevity based on compre-

hensive medical data. Expert knowledge was applied to

a longevity model through artificial intelligence tech-

niques. Firstly, fuzzy logic was used in pre-processing

biomedical data. Then multiple classifier network and

decision level data fusion were applied to improve the

modeling accuracy. Simulation test results showed that

the proposed model was able to identify individuals who

belong to longevity group with high accuracy.

Muller, et al. [311] developed a modular data fusion

system with Dempster-Shafer framework. An architec-

ture of fusion was built from this system by chaining

two types of elementary modules. Modules of the first

type were used for symbolic interpretation of numerical

reports from sensors, while those of the second type

were used for the combination of these symbolic data

to obtain relevant synthetical information for diagnosis.

The data fused were generated by tagged Magnetic Res-

onance Imaging3 and Positron Emission Tomography.4

D-S theory was applied to model the uncertainty of the

data and the rules of decision. The fusion architecture

was applied to the assessment of left ventricular my-

3Magnetic Resonance Imaging (MRI): an imaging technique based on

the principles of Nuclear Magnetic Resonance, a spectroscopic tech-

nique used by scientists to elucidate chemical structure and molecular

dynamics. MRI is used primarily in medical settings to produce high

quality images of the inside of the human body.
4Positron Emission Tomography (PET): a highly specialized imag-

ing technique that uses short-lived radioactive substances to produce

three-dimensional colored images of those substances functioning

within the body. These images are called PET scans and the tech-

nique is termed PET scanning.
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ocardial viability.5 To obtain geometrical information

on the potential lesions, diagnosis results obtained from

the data of a patient were displayed on polar maps.

A fuzzy logic-based data fusion system for detec-

tion of life threatening patient states in cardiac care

units was proposed by Kannathal, et al. [130, 226].

Heterogeneous electrophysiological and haemodynamic

data were fused and analyzed. In addition, a parameter

named patient deterioration index was proposed to eval-

uate the severity of the cardiac abnormality. Test results

obtained showed that the proposed approach could give

highly accurate clinical diagnosis in monitoring the pa-

tients.

5.6. Environment

Human activities and environmental modifications

can influence the ecosystem in multiple ways. The im-

pact can be local, regional or even global. It is necessary

to develop efficient systems to monitor and control ac-

tivities that produce effects on the environment.

Hubert-Moy, et al. [202] applied Dempster-Shafer’s

theory of evidence to support spatio-temporal monitor-

ing and projections of land use and land cover changes.

Data from spatial and temporal sources were fused to

obtain spatial prediction of the location of winter bare

fields for the following season on a watershed located

in an intensive agricultural region. A highly accurate

prediction on the presence of bare soils was achieved

over the entire area of interest. The spatial distribution

of misrepresented fields provided a good indicator for

identification of change factors.

Heiden, et al. [188] proposed a methodology to facil-

itate derivation of quantitative parameters for advanced

evaluation of urban biotopes,6 an essential task in eco-

logical urban planning. The proposed approach involved

the analysis of airborne hyperspectral data and auto-

mated identification of urban surface cover types based

on their material-specific spectral reflectance charac-

teristics. The results were then integrated with vector-

based urban biotope mapping, an existing database. Fi-

nally, the required quantitative parameters were derived

from the resultant database. Spatial and statistical anal-

yses showed that using quantitative parameters to com-

plement the predominately descriptive information con-

tained in urban biotope mapping yielded improved eval-

uation of urban biotopes.

5A ventricle is a heart chamber which collects blood from an atrium

(another heart chamber that is smaller than a ventricle) and pumps

it out of the heart. A myocardium is a muscular tissue of the heart.

Ventricular myocardial viability is the potential for improvement of

dysfunction in a ventricular myocardium after a surgical procedure

for the provision of a new, additional, or augmented blood supply.
6Urban biotope: an area with uniform environment occupied by a

unified urban community.

Two data-driven tools, support vector machines7 and

relevance vector machines,8 were successfully applied

to perform reliable soil moisture estimation by Khalil,

et al. [230]. The effectiveness and efficiency of the pro-

posed models in soil moisture prediction were evaluated

with the use of weather information. The performance

and generalization capabilities of the two machines were

also compared. Support vector machines and relevance

vector machines could be utilized in industries such as

large scale water management to attain high-level infer-

ence via information, feature and decision level fusion

processes.

In order to improve management of irrigation sys-

tems, good quality of spatial and temporal data on evap-

otranspiration, the combination of soil evaporation and

plant transpiration, was essential. However, it was not

easy to attain good quality for remote sensing evapo-

transpiration data. Chemin and Honda [85] reported an

investigation on the use of genetic algorithms in assim-

ilating parameters of an agrohydrological9 model. The

aim of the research was to find optimized parameters

that would enable the model to obtain simulated evapo-

transpiration output that converged to observed remote

sensing evapotranspiration data. The proposed method-

ology involved the fusion of observed remote sensing

data of high spatial resolution, as well as those of low

spatial resolution.
²Seric, et al. [397] presented an advanced commu-

nication and networking environment with all applica-

tions and services being focused on users. The authors

detailed environmental intelligence based on a collec-

tion (network) of observers. Observer network theory

was derived from the formal theory of perception and

formed the basis for the design of their forest fire mon-

itoring system. The proposed system was implemented

on a multi agent framework. The efficiency of the for-

est fire observer was evaluated in test examples, using

numerical measures proposed by the authors.

Zervas, et al. [476] proposed a multisensor data

fusion based method for fire detection. The authors

described the system architecture and the application of

Dempster-Shafer evidential theory for inference on the

probability of fire in a geographical region monitored

using a wireless network of environmental (temperature

and humidity) and vision sensors. The feasibility of

the proposed approach was verified by simulation test

results.

7Support vector machine [453]: a constructive machine learning pro-

cedure based on statistical learning theory. It can be used to learn a

variety of representations, such as neural nets, splines, and so on.
8Relevance vector machine [444]: a machine learning technique based

on Bayesian theory that has an identical functional form to the support

vector machine.
9Agrohydrological: of or to do with agrohydrology, a research area that

deals with climate, soil, and water and how these natural resources are

managed in sustainable plant production.
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5.7. Industrial Applications

In the recent years, many industrial applications that

utilize high-level fusion techniques for problem-solving

have emerged [112]. Some instances of research work

from prominent areas are reviewed below.

Qiu [354] presented the development of an effective

data link between manufacturing and office planning to

facilitate the deployment of an integrated plant-wide in-

formation system. The information-centric data fusion

framework was proposed to help integrate all levels of

data, with the aim of achieving synchronization and

timely delivery of necessary information, in the infor-

mation system. Details on the usefulness and practical-

ity of the proposed model in the realization of a desired

plant-wide real time information system were described.

A multi-layered fusion architecture and implemen-

tation for classifiers with binary and continuous out-

puts were described by Goebel and Yan [154]. The fu-

sion scheme was structured into three major compo-

nents which were partitioned into layers. The classifier

outputs were transformed into a single continuous do-

main through logical tasks performed within the layers.

The modular design of the fusion architecture allowed

relatively easy addition/removal of modules, as well as

the re-use of the core fusion engine for other domains.

The proposed fusion framework was applied to a system

monitoring environment of industrial equipment. The

test results obtained were compared to those achieved

by a a baseline approach. An improvement in perfor-

mance over the latter was shown.

Roussel, et al. [371] proposed a Bayesian inference-

based fusion method to combine the outputs of vari-

ous sensors. The mathematical theory concerning the

Bayesian approach was discussed and the method was

applied to the problem of white grapes variety classifica-

tion. The classification results verified the effectiveness

of the proposed method in grape variety discrimination,

an important task for manufacturers in the wine indus-

try who need to determine accurately the origins and/or

varieties of the grapes used for production.

Majidi and Moshiri [289] presented a computer vi-

sion system for classification of fruits. Estimation of the

volume of a fruit was carried out by training a neural

network with simple features of profile images of the

fruit. Inspection of fruit surface defects was based on

fusion of side images of the whole area of the fruit. A

set of basic color parameters of the fruit surface was

then extracted and the fruit was classified via high level

fusion of these visual features. Test results showed that

the proposed method had acceptable performance in re-

gard to the execution time required.

Ong and Ibañez-Guzmán [333] reviewed multi-

sensor management for sensor fusion with respect to

the guidance of unmanned vehicles. An information-

oriented concept of perception management was intro-

duced for multi-sensor systems. An outline of the con-

cept of a design framework for sensor perception system

was also given.

De Vin, et al. [118, 119] reported how information

fusion research could benefit manufacturing applica-

tions. One particular area of interest was virtual man-

ufacturing. An information fusion framework involv-

ing modeling and simulation was proposed for decision

support in manufacturing. Relevant fused information

regarding the past, present and future of the manufac-

turing system were extracted for future use. Interaction

of the information fusion process with active databases

(capable of propagating abnormal conditions or events

to decision level), sensors and the simulation model was

described. In [118], they also discussed some analogies

between manufacturing and defense tasks, as well as

aspects in which the manufacturing sector could benefit

from defense research.

Razavi, et al. [361] developed a belief function-

based data fusion algorithm for detecting dislocations

(changes between discrete sequential locations) of ma-

terials on a construction site. The authors focused on

the detection of dislocations in a noisy information en-

vironment. Each piece of material to be monitored had

a Radio Frequency Identification tag attached to it. The

technical feasibility and the cost-effectiveness of the

proposed method were demonstrated by the implemen-

tation results in a construction field experiment.

6. SUMMARY AND FURTHER RESEARCH

In this survey paper, we review some process mod-

els that have been developed for data and information

fusion. We also present an overview of research publica-

tions related to high-level information fusion, which is

gaining interest in the recent years after much research

focus has been placed on low-level information fusion.

We also discuss relevant application areas that involve

high-level data and information fusion.

Active research and development on high-level fu-

sion is ongoing among the DIF community. There are

many important topics and techniques that have not

been covered in this paper. Some examples are belief

networks, situation logic, network analysis, graph the-

ory, social network analysis, scene and situation char-

acterization and multi-resolution inferencing. Future re-

search areas of interest include the following examples.

² Comparative assessment of different functional and
process models for data/information fusion;

² Critical or comparative evaluation of high-level fu-
sion techniques in applicability to various application

problems: functionality, uncertainty, complexity, data

and state diversity and dynamics, knowledge repre-

sentation, knowledge extraction and discovery, con-

text exploitation, situation characterization and pre-

diction, and so on.
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TABLE V

Topics for Further Exploration

Topic Reference

Adversarial intent inference [12, 25, 28, 38, 86, 136, 139, 140, 143, 147, 153, 198, 210, 247,

249, 284, 298, 317, 319—321, 344, 363, 365, 372, 388, 394, 401,

419, 432, 437, 438, 472]

Biologically-inspired and biomedical applications/informatics [18, 75, 114, 144, 167, 179, 332, 375, 446]

Electronic and physical anomaly/intrusion detection [56, 69, 78, 103, 115, 163, 182, 206, 207, 231, 264, 287, 310, 365,

396, 426, 441, 442, 449, 456, 472, 474]

Human cognition related research (cognitive fusion, HCI, etc.) [30, 39, 116, 179, 181, 326, 412]

Image analysis/processing [74, 185, 342, 458]

Information warfare [84, 126, 246, 254, 468]

Interoperability of joint and coalition military forces [123, 335, 336, 345, 462]

Network-centric warfare/operations and network-based defense [150, 335, 336, 372, 435, 468]

Ontology-based approaches to high-level information fusion [35, 44, 60, 72, 77, 82, 83, 105, 204, 237, 265, 275—277, 299, 304,

315, 316, 329, 364, 408, 410, 475]

Resource allocation/management [3, 6, 11, 13, 15, 31, 45, 64, 73, 75, 91, 125, 138, 189—192, 196,

197, 211, 215, 255, 288, 312, 316, 358, 386, 389, 403, 431, 437,

459, 460]

The variety of application areas which apply DIF

techniques has increased tremendously since they were

first applied in defense research in the 1970s. The scope

of applications is still expanding fast, both in the mil-

itary arena and civilian sectors (including commercial

and industrial applications). Table V provides some ex-

amples of high-level fusion concepts and contexts with

much potential for exploration.

With rapid advancement in various technologies and

accessibility to vast data and information sources, com-

plex information fusion problems are very likely to arise

in many applications that involve far more concepts and

contexts than the few listed above. It is becoming in-

creasingly necessary to explore the possibility of ex-

panding the base of diverse disciplines (including the-

ories and techniques) upon which existing tools have

been built. A lot more research is needed and can be

done to develop novel useful tools (including theories,

algorithms and architectures) for solving high-level in-

formation fusion problems.10 In addition, efficiency and

effectiveness in this multidisciplinary field of research

are likely to be enhanced if collaborative relationships

can be established/strengthened among the various re-

search groups [9, 278].

APPENDIX

Table VI: List of acronyms.

10The following paper surveys various topics and challenges in high-

level information fusion: E. P. Blasch, D. A. Lambert, P. Valin, M.

M. Kokar, J. Llinas, S. Das, C. Chong, and E. Shahbazian, High level

information fusion (HLIF): Survey of models, issues, and grand chal-

lenges, IEEE Aerospace and Electronic Systems Magazine, 27, 9 (2012),
4—20.

TABLE VI

List of Acronyms

Acronym Definition

ANOVA Analysis of variance

ATR Automatic target recognition

C2 Command and control

C4I Command, control, communications, computers and

intelligence

C4ISR Command, control, communications, computers,

intelligence, surveillance and reconnaissance

COA Course of action

DF Data fusion

DFIG Data Fusion Information Group

DIF Data and information fusion

D-S Dempster-Shafer

DOE Design of experiments

EW Early warning

HCI Human-computer interaction

HRR High range resolution

IF Information fusion

INTEL Intelligence

JDL Joint Directors of Laboratories

NBD Network-based defense

NCBR Nuclear, chemical, biological and radiological

NCW Network-centric warfare

OODA Observe, orient, decide, and act

OSPA Optimal subpattern assignment

PA Performance assessment

PE Performance evaluation

RADAR Radio detecting and ranging

SA Situation assessment

SAW Situation awareness

SM Sensor management

SONAR Sound navigation and ranging

TRIP Transformation of Requirements for the Information

Process

VDF Visual Data-Fusion
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[64] T. Bréhard, P-A. Coquelin, E. Duflos, and P. Vanheeghe

Optimal policies search for sensor management: Applica-

tion to the ESA radar.

In Proceedings of the International Conference on Informa-

tion Fusion, 2008, Session SS04.

[65] B. Brehmer

The dynamic OODA loop: Amalgamating Boyd’s OODA

loop and the cybernetic approach to command and control.

In Proceedings of the International Command and Control

Research and Technology Symposium, 2005.

[66] R. Breton and R. Rousseau

THE C-OODA: A cognitive version of the OODA loop to

represent C2 activities.

In Proceedings of the International Command and Control

Research and Technology Symposium, 2005.

[67] R. Browne

C4I defensive infrastructure for survivability against multi-

mode attacks.

In Proceedings of the 21st Century Military Communications

Conference, 1 (2000), 417—424.

[68] D. W. Burgess and C. L. Levins

Intelligent sensor resource management using evolutionary

computing techniques.

In Proceedings of the International Conference on Integration

of Knowledge Intensive Multi-Agent Systems, (2003), 325—

329.

[69] S. R. Byers and S. J. Yang

Real-time fusion and projection of network intrusion activ-

ity.

In Proceedings of the International Conference on Informa-

tion Fusion, 2008, Session RS07.

[70] Y-C. Cai, L. He, W-M. Zhang, and Z. Liu

A situation and threat assessment model based on group

analysis.

In Proceedings of the International Conference on Machine

Learning and Cybernetics, 1 (2005), 356—361.

[71] R. Canavan, C. McCullough, and W. J. Farrell

Track-centric metrics for track fusion systems.

In Proceedings of the International Conference on Informa-

tion Fusion, (2009), 1147—1154.

[72] G. T. Capraro, G. B. Berdan, J. Spina, R. A. Liuzzi, and P. B.

Berra

An architecture for providing information anytime, any-

where and on any device–an ontological approach.

In Proceedings of the International Conference on Informa-

tion Fusion, 2 (2002), 1331—1339.

[73] A. Carmi

Sensor scheduling via compressed sensing.

In Proceedings of the International Conference on Informa-

tion Fusion, 2010.

[74] G. A. Carpenter, S. Martens, and O. J. Ogas

Self-organizing information fusion and hierarchical knowl-

edge discovery: A new framework using ARTMAP neural

networks.

Neural Networks, 18, 3 (2005), 287—295.

[75] H. S. Carvalho, W. B. Heinzelman, A. L. Murphy, and C. J.

N. Coelho

A general data fusion architecture.

In Proceedings of the International Conference on Informa-

tion Fusion, 2 (2003), 1465—1472.

[76] R. N. Carvalho and K. C. Chang

A performance evaluation tool for multi-sensor classifica-

tion systems.

In Proceedings of the International Conference on Informa-

tion Fusion, (2009), 1123—1130.

[77] R. N. Carvalho, P. C. G. Costa, K. B. Laskey, and K. C. Chang

PROGNOS: Predictive situational awareness with proba-

bilistic ontologies.

In Proceedings of the International Conference on Informa-

tion Fusion, 2010.

[78] R. N. Carvalho, R. Haberlin, P. C. G. Costa, K. B. Laskey, and

K. C. Chang

Modeling a probabilistic ontology for maritime domain

awareness.

In Proceedings of the International Conference on Informa-

tion Fusion, 2011, Paper 170.

[79] M. G. Ceruti, A. Ashenfelter, R. Brooks, G. Chen, S. Das,

G. Raven, M. Sudit, and E. Wright

Pedigree information for enhanced situation and threat

assessment.

In Proceedings of the International Conference on Informa-

tion Fusion, 2006, Paper 43.

[80] H-M. Chai and B-S. Wang

A fuzzy logic approach for force aggregation and classifi-

cation in situation assessment.

In Proceedings of the International Conference on Machine

Learning and Cybernetics, 3 (2007), 1220—1225.

[81] K. C. Chang and J. P. Hill

Level I and Level II target valuations for sensor manage-

ment.

Journal of Advances in Information Fusion, 1, 2 (2006), 95—
107.

[82] S. K. Chang, E. Jungert, and X. Li

A progressive query language and interactive reasoner for

information fusion support.

Information Fusion, 8, 1 (2007), 70—83.

[83] A. I. Chao, E. Starczewski, B. C. Krikeles, and A. E. Lusignan

An extensible, ontology-based, distributed information sys-

tem architecture.

In Proceedings of the International Conference on Informa-

tion Fusion, 1 (2003), 642—649.

[84] A. R. Chaturvedi, M. Gupta, S. R. Mehta, and W. T. Yue

Agent-based simulation approach to information warfare

in the SEAS (Synthetic Environment for Analysis and

Simulation) environment.

In Proceedings of the Annual Hawaii International Confer-

ence on System Sciences, 2000.

HIGH-LEVEL INFORMATION FUSION: AN OVERVIEW 57



[85] Y. Chemin and K. Honda

Spatiotemporal fusion of rice actual evapotranspiration with

genetic algorithms and an agrohydrological model.

IEEE Transactions on Geoscience and Remote Sensing, 44,
11 Part 2 (2006), 3462—3469.

[86] G. Chen, D. Shen, C. Kwan, J. B. Cruz, Jr., and M. Kruger

Game theoretic approach to threat prediction and situation

awareness.

In Proceedings of the International Conference on Informa-

tion Fusion, 2006, Paper 245.

[87] H. Chen, G. Chen, E. P. Blasch, P. Douville, and K. Pham

Information theoretic measures for performance evaluation

and comparison.

In Proceedings of the International Conference on Informa-

tion Fusion, (2009), 874—881.

[88] K. Chen, X-S. Luo, and X. Liu

Sensor resource management research based on intelligent

agent in naval multi-platform cooperative engagement.

In Proceedings of the International Conference on Machine

Learning and Cybernetics, 1 (2005), 132—136.

[89] X. Chen, W. Hu, and H. Yang

A probabilistic fuzzy method for emitter identification

based on genetic algorithm.

In Proceedings of the International Conference on Informa-

tion Fusion, 2012, Paper 164.

[90] X-Z. Chen, Q-H. Zheng, X-H. Guan, C-G. Lin, and J. Sun

Multiple behavior information fusion based quantitative

threat evaluation.

Computers & Security, 24, 3 (2005), 218—231.

[91] B. Cheung, S. Davey, and D. Gray

Comparison of the PMHT path planning algorithm with the

genetic algorithm for multiple platforms.

In Proceedings of the International Conference on Informa-

tion Fusion, 2010.

[92] S. Chin, J. Hill, and X. Shen

Opportunistic sensor resource management for extended

regions.

In Proceedings of the International Conference on Informa-

tion Fusion, 2 (2005), 1138—1145.

[93] J. W. Choi, J. W. Joo, and D. L. Cho

Situation/threat assessment fusion system (STAFS).

In Proceedings of the International Conference on Informa-

tion Fusion, 2 (2002), 1374—1380.

[94] C-Y. Chong and M. Liggins, II

Fusion technologies for drug interdiction.

In Proceedings of the IEEE International Conference on

Multisensor Fusion and Integration for Intelligent Systems,

(1994), 435—441.

[95] R. Chou, Y. Boers, M. Podt, and M. Geist

Performance evaluation for particle filters.

In Proceedings of the International Conference on Informa-

tion Fusion, 2011, Paper 247.

[96] M. Conti, R. Di Pietro, L. V. Mancini, and A. Mei

Distributed data source verification in wireless sensor net-

works.

Information Fusion, 10, 4 (2009), 342—353.

[97] I. Corona, G. Giacinto, C. Mazzariello, F. Roli, and C. Sansone

Information fusion for computer security: State of the art

and open issues.

Information Fusion, 10, 4 (2009), 274—284.

[98] P. C. G. Costa, E. Blasch, K. B. Laskey, S. Andler, J. Dezert,

A-L. Jousselme, and G. Powell

Uncertainty evaluation: Current status and major chal-

lenges.

In Proceedings of the International Conference on Informa-

tion Fusion, 2012.

[99] P. C. G. Costa, R. N. Carvalho, K. B. Laskey, and C. Y. Park

Evaluating uncertainty representation and reasoning in HLF

systems.

In Proceedings of the International Conference on Informa-

tion Fusion, 2011, Paper 26.

[100] P. C. G. Costa, K-C. Chang, K. B. Laskey, and R. N. Carvalho

A multi-disciplinary approach to high level fusion in pre-

dictive situational awareness.

In Proceedings of the International Conference on Informa-

tion Fusion, (2009), 248—255.

[101] P. C. G. Costa, K-C. Chang, K. B. Laskey, T. Levit, and

W. Sun

High-level fusion: Issues in developing a formal theory.

In Proceedings of the International Conference on Informa-

tion Fusion, 2010.

[102] I. W. Dall

Threat assessment without situation assessment.

In Proceedings of International Conference on Information,

Decision and Control, (1999), 365—370.

[103] F. Dambreville

Evaluation of a sentry system against noisy optimal intru-

sions.

In Proceedings of the International Conference on Informa-

tion Fusion, 2008, Session RS07.

[104] F. Dambreville and J-P. Le Cadre

Spatio-temporal multi-mode information management for

moving target detection.

Information Fusion, 5, 3 (2004), 169—178.
[105] R. Dapoigny and P. Barlatier

Formal foundations for situation awareness based on de-

pendent type theory.

Information Fusion, 14, 1 (2013), 87—107.
[106] S. Das

High-level Data Fusion.

Artech House, 2008.

[107] S. Das, R. Grey, and P. Gonsalves

Situation assessment via Bayesian belief networks.

In Proceedings of the International Conference on Informa-

tion Fusion, 1 (2002), 664—671.

[108] S. Das and D. Lawless

Truth maintenance system with probabilistic constraints for

enhanced Level two fusion.

In Proceedings of the International Conference on Informa-

tion Fusion, 2 (2005), 993—1000.

[109] S. Das, J. Llinas, G. Pavlin, D. Snyder, A. Steinberg, and

K. Sycara

Agent based information fusion.

In Proceedings of the International Conference on Informa-

tion Fusion, 2007.

[110] B. V. Dasarathy

Decision Fusion.

IEEE Computer Society Press, 1994.

[111] B. V. Dasarathy

Sensor fusion potential exploitation–innovative architec-

tures and illustrative applications.

Proceedings of the IEEE, 85, 1 (1997), 24—38.
[112] B. V. Dasarathy

Industrial applications of multi-sensor multi-source infor-

mation fusion.

In Proceedings of the IEEE International Conference on

Industrial Technology, 1 (2000), 5—11.

[113] B. V. Dasarathy

Information fusion–what, where, why, when, and how?

Information Fusion, 2, 2 (2001), 75—76.
[114] B. V. Dasarathy

Information fusion in the context of biomedical applica-

tions.

Information Fusion, 3, 2 (2002), 89.

58 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 8, NO. 1 JUNE 2013



[115] B. V. Dasarathy

Intrusion detection.

Information Fusion, 4, 4 (2003), 243—245.

[116] B. V. Dasarathy

Information fusion in the context of human-machine inter-

faces.

Information Fusion, 6, 2 (2005), 117—118.

[117] S. G. Dastidar, K. Sambhoos, J. Llinas, and C. Bowman

Performance evaluation methods for data-fusion capable

tactical platforms.

In Proceedings of the International Conference on Informa-

tion Fusion, 2 (2005), 1427—1435.

[118] L. J. De Vin, S. F. Andler, A. H. C. Ng, P. R. Moore, J. Pu,

and B. C-B. Wong

Information fusion: What can the manufacturing sector

learn from the defence industry?

In Proceedings of the International Manufacturing Confer-

ence, (2005), 363—371.

[119] L. J. De Vin, A. H. C. Ng, J. Oscarsson, and S. F. Andler

Information fusion for simulation based decision support

in manufacturing.

In Proceedings of the International Conference on Flexible

Automation and Intelligent Manufacturing, (2005), 136—144.

[120] J. Dezert, D. Han, Z. Liu, and J-M. Tacnet

Hierarchical DSmP transformation for decision-making un-

der uncertainty.

In Proceedings of the International Conference on Informa-

tion Fusion, 2012, Paper 96.

[121] J. Dezert, P. Wang, and A. Tchamova

On the validity of Dempster-Shafer Theory.

In Proceedings of the International Conference on Informa-

tion Fusion, 2012, Paper 97.

[122] S. S. Dhillon, K. Chakrabarty, and S. S. Iyengar

Sensor placement for grid coverage under imprecise detec-

tions.

In Proceedings of the International Conference on Informa-

tion Fusion, 2 (2002), 1581—1587.

[123] E. Dorion, C. J. Matheus, and M. M. Kokar

Towards a formal ontology for military coalitions opera-

tions.

In Proceedings of the International Command and Control

Research and Technology Symposium, 2005.

[124] H. Du, C. Murphy, J. Bean, and S. J. Yang

Toward unsupervised classification of non-uniform cyber

attack tracks.

In Proceedings of the International Conference on Informa-

tion Fusion, (2009), 1919—1925.

[125] E. Duflos, M. de Vilmorin, and P. Vanheeghe

Time allocation of a set of radars in a multitarget environ-

ment.

In Proceedings of the International Conference on Informa-

tion Fusion, 2007, Paper 1260.

[126] A. J. Elbirt

Information warfare: Are you at risk?

IEEE Technology and Society Magazine, 22, 4 (2003/2004),
13—19.

[127] M. R. Endsley

Towards a theory of situation awareness in dynamic sys-

tems.

Human Factors, 37, l (1995), 32—64.

[128] M. R. Endsley

Theoretical underpinnings of situation awareness: A critical

review.

In M. R. Endsley, D. J. Garland (Eds.), Situation Awareness:

Analysis and Measurement, Lawrence Earlbaum Associates,

2000, pp. 3—32.

[129] E. B. Entin

The effects of dynamic updating of tactical information on

situation awareness and performance in an attack helicopter

domain.

In Proceedings of the IEEE International Conference on

Systems, Man, and Cybernetics, 4 (1998), 3602—3607.

[130] K. Er, U. R. Acharya, N. Kannathal, and C. M. Lim

Data fusion of multimodal cardiovascular signals.

In Proceedings of the Annual International Conference of the

IEEE Engineering in Medicine and Biology Society, (2005),

4689—4692.

[131] T. Erlandsson, T. Helldin, G. Falkman, and L. Niklasson

Information fusion supporting team situation awareness for

future fighting aircraft.

In Proceedings of the International Conference on Informa-

tion Fusion, 2010.

[132] J. Esteban, A. Starr, R. Willetts, P. Hannah, and P. Bryanston-

Cross

A review of data fusion models and architectures: Towards

engineering guidelines.

Neural Computing and Applications, 14, 4 (2005), 273—281.

[133] X. Fan and M. J. Zuo

Fault diagnosis of machines based on D-S evidence theory.

Part 1: D-S evidence theory and its improvement.

Pattern Recognition Letters, 27, 5 (2006), 366—376.

[134] X. Fan and M. J. Zuo

Fault diagnosis of machines based on D-S evidence theory.

Part 2: Application of the improved D-S evidence theory

in gearbox fault diagnosis.

Pattern Recognition Letters, 27, 5 (2006), 377—385.

[135] B. Fassinut-Mombot and J-B. Choquel

A new probabilistic and entropy fusion approach for man-

agement of information sources.

Information Fusion, 5, 1 (2004), 35—47.

[136] D. Fava, J. Holsopple, S. J. Yang, and B. Argauer

Terrain and behavior modeling for projecting multistage

cyber attacks.

In Proceedings of the International Conference on Informa-

tion Fusion, 2007, Paper 1384.

[137] G. Ferrin, L. Snidaro, S. Canazza, and G. L. Foresti

Soft data issues in fusion of video surveillance.

In Proceedings of the International Conference on Informa-

tion Fusion, 2008, Session SS14 II.

[138] R. Focke, L. Wabeke, J. de Villiers, and M. Inggs

Implementing interval algebra to schedule mechanically

scanned multistatic radars.

In Proceedings of the International Conference on Informa-

tion Fusion, 2007, Paper 159.

[139] P. H. Foo, G. W. Ng, K. H. Ng, and R. Yang

Application of intent inference for surveillance and confor-

mance monitoring to aid human cognition.

In Proceedings of the International Conference on Informa-

tion Fusion, 2007, Paper 1309.

[140] P. H. Foo, G. W. Ng, K. H. Ng, and R. Yang

Application of intent inference for surveillance and confor-

mance monitoring.

Journal of Advances in Information Fusion, 4, 1 (2009), 3—26.

[141] F. Fooladvandi, C. Brax, P. Gustavsson, and M. Fredin

Signature-based activity detection based on Bayesian net-

works acquired from expert knowledge.

In Proceedings of the International Conference on Informa-

tion Fusion, (2009), 436—443.

[142] G. Fountain and S. Drager

High performance real-time fusion architecture.

In Proceedings of the International Conference on Informa-

tion Fusion, 2 (2002), 1478—1485.

HIGH-LEVEL INFORMATION FUSION: AN OVERVIEW 59



[143] J. Franke, S. M. Brown, B. Bell, and H. Mendenhall

Enhancing teamwork through team-level intent inference.

In Proceedings of the International Conference on Artificial

Intelligence, 2000.

[144] R. D. Fricker and D. Banschbach

Optimizing biosurveillance systems that use threshold-

based event detection methods.

Information Fusion, 13, 2 (2012), 117—128.
[145] A. Gad and M. Farooq

Data fusion architecture for maritime surveillance.

In Proceedings of the International Conference on Informa-

tion Fusion, 1 (2002), 448—455.

[146] S. R. Ganta, J. Kasturi, J. Gilbertson, and R. Acharya

An online analysis and information fusion platform for

heterogeneous biomedical informatics data.

In Proceedings of the IEEE Symposium on Computer-Based

Medical Systems, (2005), 153—158.

[147] B. J. Garrick, J. E. Hall, M. Kilger, J. C. McDonald,

T. O’Toole, P. S. Probst, E. R. Parker, R. Rosenthal, A. W.

Trivelpiece, L. A. Van Arsdale, and E. L. Zebroski

Confronting the risks of terrorism: Making the right deci-

sions.

Reliability Engineering and System Safety, 86, 2 (2004),
129—176.

[148] A. E. Gelfand, C. Smith, M. Colony, and C. Bowman

Performance evaluation of decentralized estimation systems

with uncertain communication.

In Proceedings of the International Conference on Informa-

tion Fusion, (2009), 786—793.

[149] J. George, J. L. Crassidis, and T. Singh

Threat assessment using context-based tracking in a mar-

itime environment.

In Proceedings of the International Conference on Informa-

tion Fusion, (2009), 187—194.

[150] R. Ghanadan, P. Tufano, J. Hsu, J. Gu, and C. Connelly

Flexible access secure transfer (FAST) tactical communi-

cations waveform for airborne networking.

In Proceedings of the IEEE Military Communications Con-

ference, (2005), 1—7.

[151] F. Ghassemi and V. Krishnamurthy

Upper bounds for the sensor subset selection problem.

In Proceedings of the International Conference on Informa-

tion Fusion, (2009), 110—117.

[152] G. Giacinto, F. Roli, and C. Sansone

Information fusion in computer security.

Information Fusion, 10, 4 (2009), 272—273.
[153] R. Glinton, J. Giampapa, and K. Sycara

A Markov random field model of context for high-level

information fusion.

In Proceedings of the International Conference on Informa-

tion Fusion, 2006, Paper 375.

[154] K. F. Goebel and W. Yan

Fusing binary and continuous output of multiple classifiers.

In Proceedings of the International Conference on Informa-

tion Fusion, 1 (2002), 380—387.
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Surveillance multisensor management with fuzzy evalua-

tion of sensor task priorities.

Engineering Applications of Artificial Intelligence, 15, 6
(2002), 511—527.

[306] L. R. Moore, III and D. Gonzales

Measuring the value of high level fusion.

Technical report ADA465987, Rand Corporation, 2004.

[307] S. Mori, C-Y. Chong, and K. C. Chang

Performance prediction of feature aided track-to-track as-

sociation.

In Proceedings of the International Conference on Informa-

tion Fusion, 2011, Paper 243.
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This paper discusses the Maximum Likelihood (ML) algorithm

for the self-localization of passive (angular) or active (angle and

range) sensors using targets of opportunity. The approach, which

is considered in two dimensions, is appropriate when traditional

alternatives, such as the use of known-location targets or satellite

navigation systems, are unavailable. It is not assumed that the

sensors can “see” each other, though they are assumed to take

measurements with respect to a common (biased) axis. Unlike

previous ML algorithms, we take into account the circular nature of

the angular measurements, allowing for more accurate estimates to

be obtained. A simple least-squares method is additionally provided

for initialization. Simulations demonstrate that the accuracy of the

ML estimator approaches the Cramér-Rao Lower Bound (CRLB),

something that similar algorithms have been unable to achieve.
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1. INTRODUCTION

Due to their low cost and ease of deployment, the

use of passive acoustic sensors for target tracking has

seen increasing popularity. Such systems might consist

of individual microphones or hydrophones that self-

assemble into arrays [24], or, perhaps, sensors consist-

ing of clusters of microphones or hydrophones, each

producing measurements consisting of arrival angles

and features/attributes for use in data association [19].1

The clusters of microphones or hydrophones form indi-

vidual sensors, which can also be referred to as “nodes”

in the system. This paper focusses on the latter sce-

nario, localizing sensors with measurements taken with

respect to a common, unknown coordinate axis. Deter-

mining which detection on one sensor corresponds to

the same target on another sensor (measurement asso-

ciation) might be accomplished, for example, by utiliz-

ing acoustic patterns for classification, as has previously

been done to aid acoustic tracking [19]. Target tracking

is not considered here. The scenarios considered focus

on angular noise levels up to 2± (root-mean squared er-
ror), which is the accuracy of the sensors in [19], though

acoustic sensors can often have significantly worse an-

gular accuracies.

When considering the construction of land-based

sensor networks, it cannot be assumed that satellite-

based localization systems, such as GPS (USA) or

GLONASS (Russia), will be available, and such signals

cannot penetrate far underwater. However, many non-

satellite-based location estimation algorithms, which

have been primarily designed for use in underwater and

wireless networks may be used. A number of methods

applied to sonar channels are described in [4]. These

approaches typically utilize the communication charac-

teristics between sensors and are divided into two cate-

gories: range-based and range-free. Range-based meth-

ods utilize range (distance) measurements. Range-free

schemes do not utilize range information. Both tech-

niques might take advantage of moving anchor nodes

that broadcast their position [6, 9, 13, 22].

Our focus is on algorithms for node localization

based on the angle-only observations of the nodes,

though we do consider the case where range measure-

ments are also available. Estimates based on angle-only

measurements are particularly useful when the sensors

have a limited broadcast range. Underwater, this might

be the case when the sensor network is built using data

MULEs (Mobile Ubiquitous LAN2 Extensions) [21]. A

data MULE is a mobile device that approaches the sen-

sors to collect data. In such a network, traditional meth-

ods of sensor localization, which rely on communication

channels between sensors, are not applicable.

1Given multiple targets in a scene, features, such as the range-Doppler

profile of different targets, can be used in target tracking algorithms

to determine which measurements originated from which targets.
2Local Area Network
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The node localization algorithm considered in this

paper can also be used with networks of wireless land-

based acoustic sensors. Though many localization tech-

niques using aspects of the wireless communication

channel between sensors exist, estimates of the sensor

locations obtained using acoustic data can reasonably be

expected to be uncorrelated with those obtained using

more traditional means. Multiple uncorrelated estimates

can be easily fused, improving the overall accuracy. Un-

der the typical assumption that the noise on the estimates

is Gaussian distributed, estimate fusion via the least

squares algorithm [1, Ch. 3] requires that the covariance

matrix of the individual estimates be known. Thus, in

Section 7, the Cramér Rao Lower Bound (CRLB), a

lower bound on the error of an unbiased estimator, is

derived for the estimation problem at hand. Since the

accuracy of the ML estimation method derived in this

paper approaches the CRLB, as demonstrated in Sec-

tion 7, the CRLB should be an accurate approximation

for the covariance matrix of the estimate at low noise

levels. However, being a lower-bound, in more difficult

(nonlinear) estimation problems, or when the signal to

noise ratio is low, the CRLB tends to be overly opti-

mistic. The validity of the CRLB for estimate fusion is

not considered in this paper.

A maximum likelihood (ML) solution to localiz-

ing both passive and active nodes is outlined in [16].

Though sensors often cannot take measurements span-

ning a full 360±. Additionally, the distribution of the
noise corrupting angular measurements often depends

upon the geometry of the target with respect to the hy-

drophone or microphone array taking the measurement.

Nonetheless, it is common practice for the noise cor-

rupting angular measurements to be modeled as Gaus-

sian, which is not bounded to a range of 0 to 2¼ radians.

Since the sensors can face any direction, the angular

measurements taken by the sensors in a global coordi-

nate system can span the range of 0 to 2¼ or ¡¼ to
¼, depending upon where the boundary is placed. The

Gaussian noise approximation is often good except near

the discountinity (0—2¼ or ¡¼—¼). Figure 1 illustrates the
boundary problem. This paper rederives the ML algo-

rithm accounting for the idiosyncrasies of circular data.

Section 2 discusses the signal model and the ML solu-

tion is provided in Section 4. Since poor performance is

generally observed when using a random initialization,

Section 5 discusses the generation of initial estimates

without prior information. Though this work focusses

on angle-only networks, the case where 2D range mea-

surements are also available is additionally considered.

Section 7 demonstrates the performance of the algo-

rithms through simulation and Section 8 summarizes

the results.

With the exception of [16], few algorithms have

been developed to jointly localize and determine the ori-

entation of angle-only sensors. A significant amount of

work has been done regarding localizing users within

cellular networks [23], with very little attention paid

Fig. 1. The traditional linear measurement model as applied to

circular data with a mean of 60± does not accurately represent the
uncertainty in the likelihood of observations near the 0—2¼

boundary, as illustrated for the Normal distribution. In this case, a

significant portion of the density is clipped. A circular measurement

model (illustrated by the dashed line) more accurately reflects the

underlying uncertainty.

to the angle-only measurement case. In what has been

done, a single user must always be in range of at

least two base stations (anchor nodes). Other work has

considered similar issues for cellular networks [17],

whereby all users are in range of a number of anchor

nodes. In our solution, no target ever needs to be si-

multaneously observed by two nodes of a known lo-

cation provided that conditions for observability, which

are discussed in Section 3, are met.

In [18] an algorithm for localizing sensors that can

see their neighbors was developed. The algorithm is

deterministic and errors compound with propagation

distances. An attempt to mitigate this problem was given

in [11], where a linear programming method was used

to improve the consistency of the angular measurements

between sensors before the deterministic localization

algorithm was executed. In both instances, it is generally

assumed that if one sensor can see another, then the

reverse is true. Thus, these algorithms are not applicable

to the case where targets of opportunity are observed.

Another method involving semidefinite programming

was given in [3], but it requires the use of a heuristic

parameter that depends upon the size and geometry of

the network.

Many papers dealing with sensor registration only

correct for residual bias after an initial estimate has been

obtained. Most require full range and angle estimates

(see [5] for an extensive bibliography), though some are

adaptable to the range-only case [20]. The majority of

algorithms only estimate the sensor orientations, though

some can also estimate the sensor positions [14]. Most

approaches utilize some type of linearization and none

of them are applicable to the aforementioned estimation

scenarios when no initial estimate is available.

2. DEFINITIONS AND MODELS

We assume that all angular and, if available, range

measurements are taken in two dimensions with respect

to a common axis, which need not be known. The sen-

sors and the targets are assumed to be individual points

in space. The measurements between sensors are as-
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sumed to be synchronized. That is, in each scan, mea-

surements from disparate sensors represent the angle

from the sensor to the targets at the same time (at the

same target position).3 It should be noted that individual

observations may occur simultaneously or at different

times if a target is stationary. A measurement of the

same target at a different time shall simply be consid-

ered as another target in the context of this problem,

since tracking is not performed (admittedly such infor-

mation would help, but here we ignore it). If multiple

targets are present at the same time, then classification

information may be used to associate measurements be-

tween the sensors. We will not address the problem

where measurements cannot be associated between sen-

sors, in which case there may be multiple possible solu-

tions for the target location based upon a particular set

of observations.

When dealing with angles, it will become necessary

to utilize a four-quadrant inverse tangent function with

range (¡¼,¼], which is defined as follows

atan2[y,x]
¢
=

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

arctan
hy
x

i
x > 0

arctan
hy
x

i
+¼ x < 0, y ¸ 0

arctan
hy
x

i
¡¼ y < 0, x < 0

¼

2
x= 0, y > 0

¡¼
2

x= 0, y < 0

0 x= 0, y = 0

(1)

where arctan represents the standard inverse tangent

function with range (¡¼=2,¼=2).
Let μs,t and rs,t be the angular and (if available) range

measurements from sensor s observing target t. Both

shall be assumed corrupted with zero-mean additive

noise:

μs,t = μtrues,t +w
μ
s,t (2)

rs,t = r
true
s,t +w

r
s,t: (3)

All of the additive noises are assumed independent. The

range noise, wrs,t, is assumed to be distributed Gaussian

Nf0,¾2r g. The Gaussian noise assumption is commonly
used despite the fact that one will never measure a

negative range.4 As the targets can be assumed to be

far from the sensors compared to the standard deviation

of the noise (> 30¾), this approximation is accurate.

However, the use of a Gaussian approximation for noise

corrupting angular measurements is more problematic.

3This is equivalent to saying that the sensors are assumed to be syn-

chronized and the propagation delay between a target and a sensor is

assumed to be negligible.
4The normal distribution is unbounded, implying that there exists a

probability, however small, of measuring a negative range.

When dealing with angular measurements, many

traditional statistical concepts need to be redefined due

to the “wrapping” of the distribution about the circle

and due to problems at the 0—2¼ boundary. For example,

the traditional notions of mean and variance no longer

provide useful quantities; a sample mean of ¡¼ and ¼
would yield zero, which is the worst possible estimate,

since ¡¼ and ¼ represent the same point on the circle.
For this reason, a lot of research has been done with

regard to statistical methods relating to directional data

in multiple dimensions [7, 8, 15]. Our definition of the

mean direction and circular standard deviation are based

on the following trigonometric moments

®
¢
=E[cosμ], ¯

¢
=E[sinμ]: (4)

The mean resultant length, ½, and mean direction, ¹μ,

are defined in terms of these moments through the polar

relation
®+ j¯ = ½ej¹μ : (5)

Thus, the magnitude of ®+ j¯ is the mean resultant

length, and its phase is the circular mean. The circular

standard deviation is defined as

¾μ
¢
=
p
¡2ln½: (6)

The maximum likelihood sensor localization algo-

rithm derived in [16] using common targets of oppor-

tunity assumed that angular measurements of the target

locations were corrupted with additive Gaussian noise.

That is, the distribution of the angular measurement was

p(μ) =
1p
2¼¾2

exp

μ
¡ (μ¡¹)

2

2¾2

¶
: (7)

As will be demonstrated in Section 7, maximization

based upon the algorithm in [16] yields results that are

often very useful but, depending upon the geometry

of the sensors and the observed targets, can also be

quite far from the CRLB. In other words, the estimator

cannot be statistically efficient without accounting for

the circularity of the measurements. This paper accounts

for the circularity of the noise.

In the following subsections, we consider three noise

distributions appropriate for circular data: the wrapped

normal distribution, the clipped mod normal distribution

and the von Mises distribution. At low circular standard

deviations, less than around 20± or ¼=9 radians, all of
the distributions are essentially the same, as shown in

Fig. 2. However, as the standard deviations increase, the

differences become more profound, with the von Mises

distribution distinguishing itself the most from the other

two.

If an angular measurement is truly corrupted with

additive Gaussian noise, which is often a good assump-

tion due to the Central Limit Theorem, then the noise

effectively gets wrapped on the region from 0 to 2¼ or

¡¼ to ¼, depending upon where one wishes to make the
cut. For this reason, the wrapped normal distribution,

EFFICIENT 2D SENSOR LOCATION ESTIMATION USING TARGETS OF OPPORTUNITY 75



Fig. 2. When the circular standard deviation is low, as in (a), then the distributions shown are essentially the same. Increasing the circular

standard deviation, the von Mises differentiates itself first, and only when the circular standard deviation is very high are the two normal

distributions significantly different. The plot ranges are §1:5¾μ . (a) ¾μ = 1±. (b) ¾μ = 80±.

discussed in Section 2.1, is the most natural distribu-

tion to use. Moreover, the circular mean and standard

deviation in the wrapped normal distribution have an

easy-to-understand meaning: they are equal to the mean

and standard deviation of the linear normal distribution

that got wrapped to the circle [15]. Indeed, if the stan-

dard deviation is small and the mean is far from the

boundary, then both distributions are nearly the same.

On the other hand, array processing generally does

not directly yield angular measurements, but rather unit

vectors pointing toward the targets. Processing the mea-

surements in their original (array) coordinates can pos-

sibly avoid the boundary issues illustrated in Fig. 1.

However, many sensors only provide angular measure-

ments. If one converts such unit vectors having compo-

nents corrupted with Gaussian noise into angles, then

the angular measurements are von Mises distributed

[15, pg. 42]. The von Mises distribution is discussed

in Section 2.3.

2.1. The Wrapped Normal Distribution

The wrapped normal distribution is obtained when

Gaussian noise is added to a circular datum. As dis-

cussed, for example in [7], [15], if the additive noise is

distributed as Nf¹,¾2g, then the wrapped normal dis-
tribution has the following PDF

p(μ) =
1

2¼

Ã
1+2

1X
k=1

½k
2

cos[k(μ¡¹)]
!

(8)

where

½= e¡¾
2=2 (9)

and ¡¼ · μ < ¼. The aforementioned definitions of the

mean direction and circular standard deviation are such

that ¹μ = ¹ and ¾μ = ¾.

2.2. The Clipped Mod Normal Distribution

We developed the clipped mod normal distribution

as a simple approximation that avoids the infinite sum

present in the wrapped normal distribution. It comes

from the assumption that almost all of the mass of the

Gaussian noise added to the measurement is within §¼
of the mean. In this case, shifting the cutting region

as far as possible from the mean and discarding the

mass that would have been wrapped (in this case, almost

nothing) and renormalizing the distribution is a good

approximation of the distribution on the circle. Thus,

the wrapped normal distribution may be approximated

by the following shifted and clipped distribution

p(μ) =
1

c
exp

μ
¡ [m(μ¡¹)]

2

2¾2

¶
(10)

where

c= ©
h¼
¾

i
¡©

h
¡¼
¾

i
(11)

m(μ) =

8><>:
μ¡ 2¼ if μ > ¼

μ+2¼ if μ <¡¼
μ otherwise

(12)

and ¡¼ · f¹,μg< ¼, © is the cumulative distribution of
the standard normal distribution, and c is the normaliz-

ing constant. Because the function m(μ¡¹) is squared,
other forms for m are also valid. Note, however, that

one cannot replace m with the modulo over ¼ or over

2¼, because that would assign large penalties to small

negative offsets.

2.3. The von Mises Distribution

The von Mises distribution was derived in 1918 by

Richard von Mises in an attempt to statistically deter-

mine whether the atomic weights of elements were inte-

ger multiples of a common base unit of weight, whereby

non-integer measurements would be attributed to noise.5

The von Mises distribution (on the circle) has been

widely studied, in part to due to its similarity to the

wrapped Cauchy distribution and the wrapped normal

5He concluded that the likelihood at the zero point (that the atomic

weights are integers) was nine times greater than the average likeli-

hood across the rest of the circle, which did not tell him very much.
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distribution. More information on the von Mises dis-

tribution and its multidimensional generalizations (von

Mises-Fisher distributions) can be found in [7], [8],

[15]. The von Mises distribution is given by

p(μ) =
1

2¼I0(·)
exp(·cos[μ¡¹μ]) (13)

where ¹μ is the mean direction, ¡¼ · fμ,¹μg< ¼, and
0· · <1. The value · is a measure of the concen-
tration of the distribution and is inversely proportional

to the circular standard deviation. The function Iº is a

modified Bessel function of the first kind. For an integer

º, Iº is given by

Iº(·) =
1

¼

Z ¼

0

exp[·cos[μ]]cos[ºμ]dμ: (14)

The mean resultant length of the von Mises distribu-

tion is

½=
I1(·)

I0(·)
: (15)

The von Mises distribution approximates a wrapped

Normal distribution having the same mean and circular

standard deviation. Given ·, the circular standard devia-

tion can be calculated from (15) and (6). Finding a value

of · corresponding to a particular circular standard devi-

ation can be performed using a simple numerical search.

However, the mean resultant length in (15) can be hard

to evaluate for accurate measurements. For example, if

¾μ = ¼=180, that is a 1
± standard deviation, a reasonable

value for an accurate sensor, then ·¼ 3283. Though ½
is just under one, I1(·)¼ 5:81£101423, a number that
cannot be stored in a computer’s double-precision float-

ing point register. However, the ratio in (15) may be

expressed as an infinite sum. Methods for computing

the ratio are compared in [10] and the most efficient

method for this problem is summarized in Appendix B.

The calculation of this ratio is important for evaluating

the CRLB, as discussed in Section 6.

3. THE OBSERVABILITY OF THE SENSOR
LOCATIONS

The requirements for observability in the angle-only

case shall be considered. Figure 3 shows a system with

three sensors, s1, s2, and s3. Suppose that the location of

s1 is known. In this case, all angles in the system may

be preserved by scaling everything around s1. That is,

the locations of s2 and s3 are not observable if only s1
is known. Now suppose that both s1 and s3 have known

locations. In this case, the locations of the targets t1 and

t2 can be uniquely determined (we know this from the

angle-side-angle theorem of planar geometry).

Given that the locations of s1 and s3 are known, if

only target t1 were observed, then, having angle-only

measurements, the location of s2 could not be uniquely

determined, because the observed angle at s2 simply

defines a line passing through t1. If both t1 and t2 were

observed, then, as shown in Fig. 3(b) angles μ1, μ2 and μ3

Fig. 3. A system with three sensors and two targets in (a). If the

location of two sensors is known, then the locations of the targets

may be uniquely determined as well as the third sensor location.

are all known. Similarly, because s1 and s3 have known

locations, the locations of t1 and t2 are known exactly.

Thus, the location of s2 may be solved by considering

the intersection of the line passing through t1 at an angle

of μ3 with respect to the x-axis with the line passing

through t2 at an angle of μ1 + μ3 with respect to the x-

axis. Note that this will not work if t1 and t2 are collinear

with respect to s2.

All together, in order for the locations of sensors

in a network consisting of angle-only observations to

be observable, the locations of at least two sensors

must be known a priori (anchor nodes). Additionally,

at least two targets must be observed by the sensors.

However, the anchor nodes need not observe common

targets if connected subsets of sensors between them can

observe the targets seen by the anchor nodes. Section 5

presents an algorithm for generating initial estimates of

the sensor locations by solving a set of linear equations.

In that case, this observability criterion manifests itself

as a requirement that the matrix in the linear equation

be invertible. The fact that the anchor nodes need not

be simultaneously seen by all sensors is made clearer

through simulation in Section 7 where the anchor nodes

never see the same targets simultaneously.

When range measurements are available, the sit-

uation becomes simpler, because a single sensor can

uniquely identify the location of a target. Thus, the loca-

tion of any additional sensor seeing the target may also

be determined. This means that the location of only one

sensor needs to be known. However, if measurements

are taken with respect to a common, unknown axis, then

two sensor locations must be known in order to resolve

the angular ambiguity.

4. MAXIMUM LIKELIHOOD ESTIMATION

This section presents a general formulation of the

maximum likelihood estimator using range measure-

ments and angular measurements taken with respect to a

common, unknown axis. If range measurements are not

available or if the measurement axis is known, then the

appropriate terms in the objective function and gradient

should be omitted. Defining wri,j and w
μ
i,j to be uncor-

related additive noise corrupting the range and angular

components of the measurement from sensor i to target
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location j, [ to be the “bias” on the angular measure-

ments (representing the fact that they are taken with re-

spect to an unknown axis), then, using the measurement

model given in Section 2, a measurement consisting of

a range, ri,j and angle, μi,j is given by

ri,j =

q
(y
j
t ¡ yis)2 + (xjt ¡ xis)2 +wri,j (16)

μi,j = atan2[y
j
t ¡ yis,xjt ¡ xis]+ [+wμ

i,j (17)

where (x
j
t ,y

j
t ) are the Cartesian coordinates of target j,

and (xis,y
i
s) are the coordinates of sensor i. The assump-

tion that wri,j and w
μ
i,j be uncorrelated does not always

hold. However, there do not appear to be readily avail-

able probability distributions that can jointly represent

the linear nature of the range measurement and the cir-

cular nature of the angular measurement.

Defining the vectors s and t to be the sets of all
unknown sensor and target locations, the likelihood

function is the product of the likelihoods for the ranges

and angles

¤(s, t,μb) =
Y
i,j

pr(ri,j js,t,[)pμ(μi,j js,t,[) (18)

where the product in (18) is over all pairs (i,j) where

sensor i observes target j. It is assumed that the range

measurements are corrupted with normally distributed

noise as

p(ri,j js,t,[)»N
·q

(y
j
t ¡ yis)2 + (xjt ¡ xis)2, (¾ri,j)2

¸
:

(19)

The distribution of μi,j depends upon which model from

Section 2 we are using.

Determining the maximum of (18) is equivalent to

finding the minimum of the negative log-likelihood of

(18), designated as ¸(s,t), which (discarding constant
terms) has the following form:

¸(s,t,[)

=

¸rz }| {X
i,j

¡1
2(¾ri,j)

2

μ
ri,j ¡

q
(y
j
t ¡ yis)2 + (xjt ¡ xis)2

¶2

+
X
i,j

Ks,tf

Ã
μi,j ¡ atan2

"
y
j
t ¡ yis
x
j
t ¡ xis

#
¡ [
!

| {z }
¸μ

: (20)

The value Ki,j and function f(¢) are given depending
upon the distribution of μi,j according to Table I.

In the simulations, the minimization of (20) was car-

ried out using the Quasi-Newton optimization algorithm

[2]. For this the gradient of ¸(s, t,[) is needed. This gra-
dient is the sum of the gradients of ¸r and ¸μ, which are

TABLE I

Values and Functions Dependent upon the Distribution of μi,j that

are used in Expressions for the Likelihood

(the function m is defined in (12))

Clipped Mod

Normal von Mises Wrapped Normal

Ki,j 1=(2(¾μ
i,j)

2) ·i,j 1

f(¢) m(¢)2 cos[¢] log[1+2§1
k=1
½k
2
cos[k(¢)]

F(¢) 2m(¢) sin[¢] (2§1
k=1
½k
2
k sin[k(¢)])=

(1+2§1
k=1
½k
2
cos[k(¢))

s ¡1 1 1

defined in (20). The gradient elements of ¸r are given by

@¸r
@ai

=¡
X
j

ri,j ¡
q
di,j

(¾ri,j)
2
q
di,j

cra(i,j) (21)

@¸r
@bj

=¡
X
i

ri,j ¡
q
di,j

(¾ri,j)
2
q
di,j

crb(i,j) (22)

@¸r
@[

= 0 (23)

with a 2 fxs,ysg and b 2 fxt,ytg. The constants are
di,j = (x

j
t ¡ xis)2 + (yjt ¡ yis)2 (24)

crxs(i,j) = (x
j
t ¡ xis) (25)

crys(i,j) = (y
j
t ¡ yis) (26)

crxt(i,j) =¡(x
j
t ¡ xis) (27)

cryt(i,j) =¡(yjt ¡ yis): (28)

With the quantities F and s given by Table I, the gradient

elements of ¸μ(s, t) are

@¸μ
@ai

=
X
j

Ki,jF(μi,j ¡ atan2[yjt ¡ yis,xjt ¡ xis]¡ [)cμa(i,j)

(29)

@¸μ
@bj

=
X
i

Ki,jF(μi,j ¡ atan2[yjt ¡ yis,xjt ¡ xis]¡ [)cμb(i,j)

(30)

@¸μ
@[

= s
X
i,j

Ki,jF(μi,j ¡ atan2[yjt ¡ yis,xjt ¡ xis]¡ [) (31)

where the cμ terms are

cμxs(i,j) = (y
j
t ¡ yis)=di,j (32)

cμys(i,j) =¡(xjt ¡ xis)=di,j (33)

cμxt (i,j) =¡(y
j
t ¡ yis)=di,j (34)

cμyt (i,j) = (x
j
t ¡ xis)=di,j (35)

and di,j is as defined in (24).
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In order to be able to perform likelihood maximiza-

tion, initial estimates of the quantities being estimated

are needed. The following section discusses how these

may be obtained.

5. ALGORITHMS FOR GENERATING INITIAL
ESTIMATES

5.1. Initial Estimates Without Range Measurements

1) Joint Estimation of Sensor and Target Locations:

The angular measurement of sensor i observing target

j, μi,j , taken with respect to a known, common axis may

be expressed as follows

tan[μi,j] =
y
j
t ¡ yis
x
j
t ¡ xis

(36a)

cot[μi,j] =
x
j
t ¡ xis
y
j
t ¡ yis

: (36b)

These equations may be rearranged to get

x
j
t tan[μi,j]¡ xis tan[μi,j]¡ yjt + yis = 0 (37a)

y
j
t cot[μi,j]¡ yis cot[μi,j]¡ xjt + xis = 0: (37b)

Thus, using (37a) and (37b), one can generate a lin-

ear system of equations that, in the absence of mea-

surement noise and assuming that a sufficient number

of equations are linearly independent, can be solved

exactly for the sensor and target locations, given that

enough sensors have a priori known locations. Sensors

with known locations are necessary for the uniqueness

of a nontrivial solution and are simply put on the right-

hand side of the equation.

For example, consider the presence of three sensors

observing two targets. Assuming that the location of

sensors one and three are known a priori, the location of

the two targets and the third sensor is given by the linear

set of equations in (38), which is derived using (37a).26666666664

0 0 tan[μ1,1] ¡1 0 0

¡ tan[μ2,1] 1 tan[μ2,1] ¡1 0 0

0 0 tan[μ3,1] ¡1 0 0

0 0 0 0 tan[μ1,2] ¡1
¡ tan[μ2,2] 1 0 0 tan[μ2,2] ¡1

0 0 0 0 tan[μ2,2] ¡1

37777777775
| {z }

A

26666666664

x2s

y2s

x1t

y1t

x2t

y2t

37777777775
| {z }

s

=

26666666664

tan[μ1,1]x
1
s ¡ y1s

0

tan[μ3,1]x
3
s ¡ y3s

tan[μ1,2]x
1
s ¡ y1s

0

tan[μ3,2]x
3
s ¡ y3s

37777777775
| {z }

b

: (38)

Fig. 4. The quadrants in which one should use the tangent or

cotangent so as to minimize the effects of measurement error.

Thus, in this case, the location of the second sensor
and the target at both times is the solution to

As= b: (39)

A necessary condition for the observability of the sys-
tem is that the locations of at least two sensors are
known. However, the two sensors with known locations
do not necessarily have to observe the same target at the
same time for the matrix A to have full rank.
Due to the use of the tangent in (37a), serious

estimation inaccuracies will occur if the targets used
for estimation are close to §90± with respect to any of
the observing sensors. This is because the measurement
error causes the measured angle to be above or below
§90±, changing a very large positive entry in the A
matrix to a very large negative value or vice versa.
This problem can be minimized by using Equation
(37b), which uses the cotangent, when the observation
is between 45± and 135± or between ¡45± and ¡135±,
as shown in Fig. 4.
2) Estimation of the Sensor Locations Alone: If the

target locations are not needed, they can be eliminated
from the estimation. We shall once again assume that
all angles are taken with respect to a reference direction
common for all sensors. In this subsection, we shall also
assume that each target is observed simultaneously by
at least three sensors with an appropriate (non-collinear)
geometry. We define the measurements as being taken
with respect to the x-axis in our 2-D coordinate system.
For simplicity of notation, let us define the following
functions

¢Ta,b(j)
¢
=tan[μa,j]¡ tan[μb,j] (40)

¢Ca,b(j)
¢
=cot[μa,j]¡ cot[μb,j] (41)

ªa,b(j)
¢
=1¡ cot[μa,j] tan[μb,j] (42)

where a and b are sensor indices and j is a target
index.
As proven in Appendix A, given any three sensors

simultaneously observing the target, one can combine
(36a) and (40) using (37a) for each sensor to get an
expression relating the sensor locations independent
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of the Cartesian location of the target. For sensors 1

through 3, this gives us equations (43a)—(43d).

0 = y1s ¢
T
2,3(j)+ x

1
s tan[μ1,j]¢

T
3,2(j) + y

2
s ¢

T
3,1(j) + x

2
s tan[μ2,t]¢

T
1,3(j)+ y

3
s ¢

T
1,2(j) + x

3
s tan[μ3,j]¢

T
2,1(j) (43a)

0 = y1s cot[μ1,j]¢
T
2,3(j)+ x

1
s¢

T
3,2(j)¡ y2s ª1,3(j) + x2s tan[μ2,j]ª1,3(j)+ y3s ª1,2(j)¡ x3s tan[μ3,j]ª1,2(j) (43b)

0 = y1s cot[μ1,j]ª2,3(j)¡ x1sª2,3(j)¡ y2s cot[μ2,j]ª1,3(j)+ x2sª1,3(j) + y3s ¢C2,1(j) + x3s tan[μ3,j]¢C1,2(j) (43c)

0 = y1s cot[μ1,j]¢
C
3,2(j)+ x

1
s¢

C
2,3(j) + y

2
s cot[μ2,j]¢

C
1,3(j) + x

2
s¢

C
3,1(j) + y

3
s cot[μ3,j]¢

C
2,1(j)+ x

3
s¢

C
1,2(j): (43d)

As was the case in the previous section, the equa-

tions derived in this section can be used with multiple

observations of the targets over time to reduce the solu-

tion of sensor locations to that of solving As= b, where
in this case s consists of only the sensor locations.
Note that as the number of sensors increases, the

number of possible equations that can be written in-

creases rapidly. However, the equations are not all inde-

pendent. For example, for N sensors observing a com-

mon target, there are
¡
N
3

¢
possible variants of (43a)

that can be written depending upon which three tar-

gets are put into the equation. However, for N > 3 only

N of these equations are linearly independent and the

rest do not provide any new information, because they

are not based on new observations. Linearly depen-

dent equations may be removed by using the Modi-

fied Gram-Schmidt Orthonormalization Algorithm [12]

or other, similar methods, though, as demonstrated in

Section 7, this can hurt the performance of the algo-

rithm.

5.2. Initial Estimates With Range Measurements

1) Jointly Estimating Sensor and Target Locations:

When range measurements are available, the estimation

problem becomes much simpler. Letting the range mea-

surement of sensor i observing target j be ri,j , we can

write

ri,j cos[μi,j] = x
j
t ¡ xis (44)

ri,j sin[μi,j] = y
j
t ¡ yis: (45)

As was true in the angular case we can collect these

linear equations and solve them for the sensor and target

locations. In this instance, the A matrix is particularly

simple, being composed only of §1 and 0 elements.
2) Estimating the Sensor Locations Alone: When

two sensors simultaneously observe the same target, we

can eliminate the target location from the estimation

problem by manipulating (45) and (44) to get

r2,j cos[μ2,j]¡ r1,j cos[μ1,j] = x1s ¡ x2s (46)

r2,j sin[μ2,j]¡ r1,j sin[μ1,j] = y1s ¡ y2s : (47)

As was the case in Section 5.1.2, we can again use the

equations to find initial estimates based on a linear least

squares solution.

5.3. Measurements with Respect to an Unknown,
Common Axis

We consider the case where all sensors have the

same unknown bias in their measurements. This might

occur, for example, if all measurements are taken with

respect to magnetic north, but the anchor node locations

are given in terms of geographic north.

Figure 5 illustrates the scaling uncertainty that arises

when only one anchor node is used. The dark circles

represent sensors and the open circles anchor nodes. The

dotted lines are only present to show that the transforms

considered are affine (they do not distort the relative

angles). In the noiseless case, if we were to remove

the second anchor node and not compensate for the

bias, then Figs. 5(b), (c), and (d) are three possible

solutions for the system described by As= b using the
equations for angle-only observations from Section 5.1

(when range measurements are available, then only one

solution exists). All of the biased solutions are rotated

by the bias angle. As shown in (b) and (c), the figure can

be scaled about the single anchor node without changing

any of the measured angles (in the case where angles

are measured to targets, the apparent locations of the

targets are scaled as well). Figure 5(d) comes about due

to our use of the tangent and cotangent in Section 5.1,

whereby the equations do not change if all angles are

flipped 180±.
In the case of only two anchor nodes and angle-only

measurements, a method of estimating the sensor loca-

tions while correcting for the unknown global rotation

is as follows:

1) Find an observation from the first anchor node.

Assume that it is at a known, fixed distance from the

first anchor node (such as 10 m). Find its location using

the bias measurement under this assumption. This shall

be a pseudo-anchor node.

2) Perform the sensor location estimation as de-

scribed in Section 5.1 using the biased measurements,

the first anchor node and the previously determined

pseudo-anchor node as an anchor node assuming that

the location of the second anchor node is unknown.

3) Find the vector between the first anchor node

and the true location of the second anchor node (for

example, for the scenario in Fig. 5(a), it has been
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Fig. 5. The open circles represent the anchor sensors, whose locations are known a priori. The dotted lines show that the transformation

being considered is affine (does not distort the relative angles between the sensors). The array points from the first (fixed) anchor node to the

one that is removed. The array is the vector between the first and last nodes. Subfigure (a) shows the true setup of the problem. Subfigures

(b), (c) and (d) show possible solutions when the second anchor node is removed and a common bias is left uncompensated. All scaled

solutions are angularly consistent–even, as illustrated in (d), when the scaling factor is negative. (a) True sensor locations. (b) One biased

solution. (c) Second biased solution. (d) Third biased solution.

drawn). We shall call this v1. Also find the vector
between the first anchor node and the apparent position

of the second anchor node as given by the previous

estimation (such as the vectors in Fig. 5(b) or 5(c)).

The choice of the pseudo-anchor node rules out the

geometry of 5(d)); we shall call this v2.
4) Evaluate μ = 6 v2¡ 6 v1.
5) Perform the sensor location estimation again us-

ing the adjusted angles and both of the true anchor

nodes to get a final estimate of the sensor locations.

The algorithm finds a solution for the biased sys-

tem and then compares how that solution is rotated

with respect to the true system. The first step of the

aforementioned method creates a pseudo anchor point

to set a reference for the scaling of the solution. This

is important to make sure that we do not get a solution

that is inverted by 180±, as in Fig. 5(d). Moreover, it is
necessary for setting the scale of the figure. We would

like to find a solution, but one possible solution places

the nodes infinitesimally close to the first anchor point.

The use of such a solution would be subject to precision

problems on any computer.

A similar procedure can be performed if range mea-

surements are available. In this case, there is no need

to designate any node as a pseudo anchor node. When

more sensors are present, one may break the obser-

vations into subsets according to the connectivity be-

tween anchor nodes, and calculate separate biases be-

fore averaging them. We shall not consider that case

here.

6. THE CRAMÉR-RAO LOWER BOUND

In order to evaluate the efficiency of the estimator

(how well the estimator is performing compared to a

lower bound on the unbiased estimator), the Cramér Rao

Lower Bound (CRLB) for the particular scenarios must

be calculated [1]. The CRLB provides a lower bound

on the covariance matrix of an unbiased estimator as

Ef[x̂¡ x0][x̂¡ x0]Tg ¸ J¡1 (48)

where x is a vector parameter, x̂ is the parameter esti-
mate, x0 is the true parameter value, and J is the Fisher
Information Matrix (FIM).

The FIM is defined as

J
¢
=Ef[rx¸(x)][rx¸(x)]Tgjx=x0 : (49)

In the context of the problem at hand, s and t correspond
to the variable x. The appropriate diagonal entries of
J¡1 provide a lower bound for the mean squared error
(MSE) of each estimated parameter, assuming that the

estimator is unbiased. The FIM may be estimated by av-

eraging values of [rx¸(x)][rx¸(x)]Tjx=x0 across Monte
Carlo runs. For the case where the angular measure-

ments have a von Mises distribution, an exact closed-

form solution (in terms of modified Bessel functions)

for the elements of the FIM will be presented. In the

simulations when using the wrapped normal distribu-

tion, the CRLB was estimated by averaging the squared

gradient across Monte Carlo runs.

Consider the elements of the FIM for normally dis-

tributed range measurements and von Mises distributed

angular measurements taken with respect to a common,

unknown axis (if range or angular measurements are

not available or the measurement axis is known, then

the appropriate terms may be omitted). Each element of

the FIM is the expectation of a product of sums. Note

that the expectation of cross terms6 in the product sums

involving angular measurements is zero. This is because

the variables in question are independent and, thus the

expectation of the product is equal to the product of the

6A cross term is a product such that elements involving (i1,j1) and

(i2,j2) are multiplied where i1 6= i2 or j1 6= j2.
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expectations. Based on (29) and (30), the expectations

have the following form,Z ¼

¡¼
sin[μ¡¹]e·cos[μ¡¹]dμ = 0: (50)

Note that the product of cross terms involving ¸r are

zero, because again the variables in question are inde-

pendent and the expectation can be factorized. Based on

(21) and (22), the expectations shall have the following

form

1p
2¼¾2

Z 1

¡1

r¡pd
¾2
p
d
e¡(r¡

p
d)2=2¾2dr = 0: (51)

Due to the assumed independence of the noise cor-

rupting the range measurement and that corrupting the

angular measurement, all cross terms between deriva-

tives of ¸r and ¸μ are zero. Thus, we can write

J =

Jrz }| {
Ef[rx¸r(x)][rx¸r(x)]Tg

+

Jμz }| {
Ef[rx¸μ(x)][rx¸μ(x)]Tg : (52)

Let us compute Jμ. Because all of the cross terms

are zero, we only need to concern ourselves with the

expectation of the product of the gradient elements with

the same (i,j) values. To simplify things, we shall note

that

I1(·) =
·

2¼

Z ¼

¡¼
sin2[μ¡¹]e·cos[μ¡¹]dμ (53)

which does not depend on ¹. Thus, taking the expected

value over the elements in the FIM, we get

E

·
@¸μ

@®i1s

@¸μ

@¯i2s

¸
=

8>><>>:
X
j

·i,j½i,jc
μ
®s
(i,j)cμ¯s(i,j)

if i1 = i2 = i

0 otherwise

(54)

E

"
@¸μ

@®
j1
t

@¸μ

@¯
j2
t

#
=

8>><>>:
X
i

·i,j½i,jc
μ
®t
(i,j)cμ¯t(i,j)

if j1 = j2 = j

0 otherwise
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where (®,¯) 2 fx,yg and the mean resultant lengths are

½i,j =
I1(·i,j)

I0(·i,j)
: (60)

The calculation of the ratio of modified Bessel func-

tions in the CRLB can be problematic, as mentioned

in Section 2.3. An algorithm for calculating the ratio is

discussed in Appendix B.

Now let us consider the calculation of Jr.
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7. SIMULATIONS

7.1. The Scenario

We used a scenario involving ten sensors and four

targets over 20 time-steps (in the equations, observa-

tions of the same target at a different times are treated

as separate “targets”). The sensors were placed in x lo-

cations in the set of f¡50,100g meters and y locations
in the set of f0,100,200,300,400g meters, with the ex-
ception of the one that would have been at (¡50,100),
which was instead set to (¡100,100) in order to break
the symmetry of the arrangement so that it would be

clear if poor estimates flipped anything. This configu-

ration is shown in Fig. 6. The locations of the sensors

at (¡50,0) and (100,400) were assumed to be known
a priori, and they were used as anchor arrays.

The first target was located at an x location of ¡250
meters and traveled at a constant speed from 20 to

380 meters in y. The second target was placed at an x

location of 350 meters and traveled at a constant speed

from 0 to 400 meters in y. The third target started at

400 meters in x, traveled at a constant speed to 800

meters by step 10 and came back to 400 meters in the

x direction by step 20. In the y direction, it traveled at

a constant speed from 20 to 380. The fourth target was

placed at a y location of 500 meters and traveled at a

constant speed from ¡600 to 1000 meters in x.
To demonstrate that unlike other algorithms, no tar-

get needs to be simultaneously visible to both anchor

nodes, and the targets were only visible to a subset of the

sensors at each time. From steps 1 to 4, only the sensors

at y locations of 0 and 100 meters could see the targets.

From steps 5 through 8, the sensors between 0 and 200

meters could see the targets. From steps 9 through 12

82 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 8, NO. 1 JUNE 2013



Fig. 6. The scenario showing the true sensor (the dots) and target locations (the £s) used in the simulations. The anchor nodes are in the
upper-right and lower-left corners. The ellipses represent the 99% confidence regions based on the CRLB for the sensor locations when the

angular measurement axis is unknown. The dashed (outer) ellipses are using angle-only measurements using a von Mises angular noise

distribution with ¾μ = 2
± = ¼=90; the smaller, solid line ellipses are for the case with both angular and range measurements with ¾r = 7:5

meters. (a) Overall layout. (b) Magnified ellipses.

Fig. 7. The RMSE of the estimated sensor locations of the initialization algorithms. In (a) the measurements are taken with respect to a

common, known axis. In (b) they are taken with respect to a common, unknown axis. 1000 Monte Carlo runs were performed. (a) Known

measurement axis. (b) Unknown measurement axis.

the sensors between 100 and 300 meters could see the

targets. From steps 13 through 16 the sensors between

200 and 400 meters could see the targets and from steps

17 through 20 the sensors from 300 to 400 meters in

y could see the target. This means that the two sensors

with known locations never both simultaneously saw any

target.

7.2. The Initialization Algorithms

We compared the performance of the angle-only ini-

tialization algorithms under both known and unknown

measurement axes, as shown in Fig. 7, where the RMSE

of the sensor location estimates is shown, averaged over

all sensors having unknown locations. The line labeled

“No Targets” is the algorithm from Section 5.1.2 where

the sensor locations are estimated without explicitly es-

timating the target locations. The line labeled “No Tar-

gets, Min Combos” is the same, except redundant equa-

tions of the
¡
N
3

¢
that could be generated for each set of N

sensors observing a common target were eliminated us-

ing the Gram-Schmidt algorithm [12]. The line labeled

“With Targets” is the RMSE of the sensors when the

target locations are jointly estimated, as given in Sec-

tion 5.1.1. In all cases the solution to As= b was found
using least squares. The angular measurements were

generated using the wrapped normal distribution with

independence between sensors. One thousand Monte

Carlo runs were performed.
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Fig. 8. The RMSE of the estimated sensor locations of the three scenarios compared to the CRLB under wrapped normal noise. In (a) we

use the method of [16] utilizing a linear normal PDF that does not account for the circular nature of the measurements. In (b) we use the

new ML method utilizing the clipped mod normal distribution assumption. 1,000 Monte Carlo runs were performed. (a) ML not corrected.

(b) ML corrected.

The maximum noise standard deviation was set at

2±, corresponding to the accuracy of the acoustic sen-
sors used in [19]. Higher noise standard deviations

were found to produce occasionally very bad estimates

(outliers). The likelihood of encountering such outliers

varies depending upon the geometry. In many practi-

cal scenarios, this may not be a problem, since often,

coarse estimates of the sensor locations can be obtained

when they are placed and the initialization algorithm

can be bypassed. The maximum noise standard devia-

tion in the simulations in this paper was chosen suffi-

ciently low such that extremely bad estimates did not

occur, explaining the smoothness of the curves in the

simulations.

7.3. ML Maximization

We compared the performance of the ML algorithm

of [16] that does not take into account the circular nature

of the measurements (assuming a linear normal distri-

bution), with our ML algorithm (assuming a clipped

normal distribution with the same standard deviation).

The least-squares algorithm of Section 5.1.1 estimat-

ing both sensor and target locations was used to pro-

vide initial estimates. Measurements were generated us-

ing a wrapped normal distribution. All measurements

were taken with respect to a common, known axis.

1000 Monte Carlo runs were performed. The results

are shown in Fig. 8. Since the wrapping of the dis-

tributions depends upon where the ¼, ¡¼ boundary is
placed, rotating the global coordinate system changes

the performance. However, if the ensemble of sensors

make angular observations over the entire 360± range,
then no rotation will exist where the basic linear model

is nearly identical to the circular model.

In Table II, we numerically compare the effects of

having different amounts of data regarding the scenario,

TABLE II

The Average RMSE of the ML Estimates of the Sensor Locations

Depending upon the Measurements Available for ¾μ = 1
± and

¾r = 7:5 m as Obtained using the Initialization and Likelihood

Maximization Algorithms Compared to the CRLB using von Mises

Distributed Noise

(the results when using wrapped normal noise and performing ML

maximization assuming the clipped mod normal density are similar;

1,000 Monte Carlo runs were performed)

von Mises

Measurements Simulated CRLB

angle known axis 5.466 5.437

unknown axis 6.773 6.306

angle+range known axis 2.037 2.049

unknown axis 2.171 2.146

in this case when using the von Mises noise distribution.

The results are comparable when using the clipped

mod normal distribution. The noise parameters for the

sensors were ¾μ = 1
± and, when range measurements

were available, ¾r = 7:5 m.

8. CONCLUSIONS

The importance of accounting for the circular nature

of the data when performing sensor localization was

highlighted. If the measurement noise is truly Gaus-

sian, then the resulting noisy measurement will be

wrapped on the unit circle, leading to the wrapped nor-

mal distribution. We introduced an approximation for

the wrapped normal distribution that is very accurate

for small to moderate circular standard deviation values.

We derived simple linear least squares solutions for the

target locations that we then used as initial estimates

for performing ML estimation, as well as a method for

handling a common, unknown measurement axis. When
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using wrapped normally-distributed noise, our estima-

tion method accounting for the circular nature of the

data and using the clipped mod normal distribution for

estimation proved efficient, whereas a previously intro-

duced (and certainly decent) ML algorithm [16] that

uses a linear noise model can diverge from the CRLB,

dependent upon the geometry of the sensors and where

the ¼=¡¼ boundary for the global coordinates is placed.
We also quantified the effects of having different infor-

mation available when estimating the sensor locations,

including the availability of range measurements and

knowledge of the common measurement axis of the sen-

sors.

APPENDIX A. DERIVATION OF (43A)

Here we derive (43a), which underlies much of the

algorithm. The derivations of (43b), (43c) and (43d) are

performed similarly. Equation (36a) applied to the first

sensor gives us

tan[μ1,j] =
y
j
t ¡ y1s
x
j
t ¡ x1s

(65)

y
j
t = y

1
s +(x

j
t ¡ x1s ) tan[μ1,j]: (66)

Substituting (66) into (36a) applied to the second and

third sensors gives us

tan[μ2,j] =
y1s ¡ y2s +(xjt ¡ x1s ) tan[μ1,j]

x
j
t ¡ x2s

(67)

tan[μ3,j] =
y1s ¡ y3s +(xjt ¡ x1s ) tan[μ1,j]

x
j
t ¡ x3s

: (68)

Solving (67) for the x location of the targets gives us

x
j
t =

y2s ¡ y1s + x1s tan[μ1,j]¡ x2s tan[μ2,j]
tan[μ1,j]¡ tan[μ2,j]

: (69)

Substituting (69) back into (68) and simplifying gives

us the form of (43a).

APPENDIX B. CALCULATING BESSEL FUNCTION
RATIOS

In [10] two methods were considered for converting

a continued fraction representation of the ratio of two

modified Bessel functions of the first kind into sums,

allowing the computation of the ratio of Bessel func-

tions without the overflow problems associated with

calculating each function alone. Though the method at-

tributed to Gauss had better asymptotic performance,

it was demonstrated that the method attributed to Per-

ron allowed for faster calculation of the ratio of two

Bessel functions to an accuracy typically desired on a

computer. The method based upon work by Perron is

summarized as follows:

Iº(x)

Iº¡1(x)
=

1X
k=0

ck (70)

where fx,ºg> 0 and

ck =

kY
n=1

pk (71)

c0 = 1 (72)
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1

2
x

μ
º+

1

2

¶
³
º+

x

2

´μ
º+ x+

1

2

¶
¡ 1
2
x

μ
º+

1

2
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pk =

1

2
x

μ
º+ k¡ 1

2

¶
(1+pk¡1)μ

º+ x+
k¡ 1
2

¶μ
º+ x+

k

2

¶
¡ 1
2
x

μ
º + k¡ 1

2

¶
(1+pk¡1)

:

(74)

Computation of the ratio of Bessel functions may thus

be approximated by summing a suitable number of

terms from (70). A suitable termination criterion for

º = 1 is to stop when adding the next increment no

longer changes the result. For example using double-

precision arithmetic, for ·= 3000 terms k ¸ 5 no longer
change the result; for ·= 11 terms k ¸ 44 no longer
change the result.
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