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From the Editor-in-Chief:
December 2014

JAIF Special Issues

In order to make the journal more attractive, JAIF

aims at regularly publishing and encouraging proposals

for special issues from highly qualified guest editors.

Special issues are an effective means for communicating

state-of-the-art knowledge in a specific research field to

interested readers, and are intended to cover hot research

topics with a large audience in the area of information

fusion.

In addition to being of high value to readers, a spe-

cial issue also gives distinct advantages for the guest

editors and authors of individual papers. The guest ed-

itors gain international visibly in the research field and

build their reputation, which is especially helpful for

junior scientists. For authors, special issues provide a

convenient publication platform for their research re-

sults, where the embedding into similar research topics

typically leads to an increased number of readers and a

higher level of citations.

Articles in a special issue are both invited and openly

submitted based on the general Call-for-Papers. These

may include regular papers and short correspondence

papers, as deemed appropriate by the guest editors.

Organizers of special sessions at ISIF's annual FUSION

conference are welcome to propose a JAIF Special

Issue based on extended versions of special session

papers presented at the conference. All manuscripts for

a special issue must meet the same standards as regular

submissions and undergo exactly the same peer review

procedure.

Potential guest editors should submit a formal pro-

posal for expressing their desire to organize a special

issue. These proposals should provide the biographical

information of the guest editors, the motivation for the

special issue, a general call for contributed papers to the

special issue, a candidate list of papers with authors for

direct invitation, and a schedule for delivery and review

of the papers for the special issue. Typically, one or two

guest editors will be responsible for overseeing the peer

reviews of each special issue, and they will be supported

by a small team of predefined reviewers in order to ex-

pedite the review process. Additional reviewers will be

recruited from the general JAIF reviewer database.
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The editorial board of JAIF makes an accept/reject

decision based on the information in the formal pro-

posal. The selection is based on the relevance of the

proposed topic, its fit to the ISIF community, its interest

to readers of JAIF, its potential for both attracting new

authors and increasing the readership, the broadness and

quality of the papers in the candidate list, and the quali-

fications of the guest editors. In addition, a special issue

should be well-timed and focus on topics with signifi-

cant publications in the last five years. Topics already

treated in special issues of other journals in recent years

should be avoided.

After acceptance of the proposal, an official Call-

for-Papers is assembled by the editorial board in close

cooperation with the guest editors based on the material

provided. The Call-for-Papers will then be posted at

http://www.isif.org and distributed to all ISIF members.

The timeline for a special issue details the steps

required from posting the Call-for-Papers to the final

publication. This includes a submission deadline for

potential authors, review deadlines, and deadlines for

the revision of accepted papers. All deadlines should

include an official date and a buffer. In addition, a

time slot for final copy editing of accepted papers

should be allocated that involves a reading/annotation

phase by a copy editor and another subsequent revision

phase by the authors. A typical publication timeline for

JAIF manuscripts can be found in the editorial of JAIF,

Volume 5, Number 1.

A published special issue will contain the final ac-

cepted papers together with an introduction provided by

the guest editors. This introduction should comprise a

summary of the topic, a synopsis for each article, and

biographical information of the guest editors.

Currently, there is an open Call-for-Papers for a spe-

cial issue on “Nonlinear Derivative-Free Filters: Theory

and Applications”. Guest editors are Jindrich Dunik and

Ondrej Straka from the Department of Cybernetics, Fac-

ulty of Applied Sciences, University of West Bohemia

in Pilsen, Czech Republic. The deadline for paper sub-

mission is March 31, 2015.

Future special issues are planned in the areas of

“Extended Object and Group Tracking”, “Estimation

Involving Directional Quantities”, and “Probabilistic

RGBD Data Fusion”.

Uwe D. Hanebeck

Editor-in-Chief
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Bias Estimation and

Observability for Optical

Sensor Measurements with

Targets of Opportunity

DJEDJIGA BELFADEL

RICHARD W. OSBORNE, III

YAAKOV BAR-SHALOM

In order to carry out data fusion, registration error correction

is crucial in multisensor systems. This requires estimation of the

sensor measurement biases. It is important to correct for these bias

errors so that the multiple sensor measurements and/or tracks can

be referenced as accurately as possible to a common tracking co-

ordinate system. This paper provides a solution for bias estimation

of multiple passive sensors using common targets of opportunity.

The measurements provided by these sensors are assumed time-

coincident (synchronous) and perfectly associated. The Line of Sight

(LOS) measurements from the sensors can be fused into “compos-

ite” measurements, which are Cartesian target positions, i.e., lin-

ear in the target state. We evaluate the Cramér-Rao Lower Bound

(CRLB) on the covariance of the bias estimates, which serves as a

quantification of the available information about the biases. Statisti-

cal tests on the results of simulations show that this method is statis-

tically efficient, even for small sample sizes (as few as three sensors

and three points on the trajectory of a single target of opportunity).

We also show that the Root Mean Squared (RMS) position error

is significantly improved with bias estimation compared with the

target position estimation using the original biased measurements.

Bias observability issues, which arise in the case of two sensors, are

also discussed.
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I. INTRODUCTION

Multisensor systems use fusion of data from multi-

ple sensors to form accurate estimates of a target track.

To fuse multiple sensor data the individual sensor data

must be expressed in a common reference frame. A

problem encountered in multisensor systems is the pres-

ence of errors due to sensor bias. Some sources of bias

errors include: measurement biases due to the deteri-

oration of initial sensor calibration over time; attitude

errors caused by biases in the gyros of the inertial mea-

surement units of (airborne, seaborne, or spaceborne)

sensors; and timing errors due to the biases in the on-

board clock of each sensor platform [11].

The effect of biases introduced in the process of con-

verting sensor measurements from polar (or spherical)

coordinates to Cartesian coordinates has been discussed

extensively in [2] together with the limit of validity

of the standard transformation. If the conversion pro-

cess is unbiased, the performance of a converted mea-

surement Kalman filter is superior to a mixed coordi-

nate Extended Kalman Filter EKF (i.e., target motion in

Cartesian coordinates and measurements in polar coor-

dinates) [2]. The approaches for conversion include the

conventional conversion, the Unbiased Converted Mea-

surement (UCM), the Modified Unbiased Converted

Measurement (MUCM), and the Unscented Transform

(UT). Recently, a decorrelated version of the UCM tech-

nique (DUCM) has been developed to address both con-

version and estimation bias [8], [9]. Another example

of biased measurement conversion is the estimation of

range-rate from a moving platform. To measure range

rate using the Doppler effect, it is necessary to nullify

the impact of platform motion. The conventional nul-

lification approach suffers from a similar bias problem

as the position measurement conversion [3]. A novel

scheme was proposed in [6] and [7] by applying the

DUCM technique to own-Doppler nullification to elim-

inate this bias.

Time varying bias estimation based on a nonlin-

ear least squares formulation and the singular value

decomposition using truth data was presented in [11].

However, this work did not discuss the CRLB for bias

estimation. An approach using Maximum a Posteriori

(MAP) data association for concurrent bias estimation

and data association based on sensor-level track state

estimates was proposed in [12] and extended in [13]. Es-

timation of location biases only for passive sensors was

discussed in [10]. The estimation of range, azimuth, and

location biases for active sensors was presented in [14].

For angle-only sensors, imperfect registration leads

to LOS angle measurement biases in azimuth and eleva-

tion. If uncorrected, registration error can lead to large

tracking errors and potentially to the formation of mul-

tiple tracks (ghosts) on the same target.

In the present paper, bias estimation is investigated

when only targets of opportunity are available. We

assume the sensors are synchronized, their locations are
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Fig. 1. Optical sensor coordinate system with the origin in the

center of the focal plane.

fixed and known, the data association is correct, and

we estimate their orientation biases. We investigate the

use of the minimum possible number of optical sensors

(which can not be less than two sensors). Two cases

are considered. In the first case we use three optical

sensors to observe three points on the trajectory of a

single target of opportunity [4], in the second case we

estimate the position of six points on the trajectory

of a single target of opportunity simultaneously with

the biases of two optical sensors [3]. First, we discuss

the observability issues related to the bias estimation.

Namely, it is shown that for two fixed sensors there

is an inherent ambiguity due to a certain rotation that

does not affect the measurements, i.e., one can not

have complete observability of the sensor biases with

targets of opportunity. For three fixed sensors, the biases

are completely observable. We evaluate the Cramér-

Rao Lower Bound (CRLB) on the covariance of the

bias estimates (for the observable biases), which is the

quantification of the available information on the sensor

biases and show via statistical tests that the estimation

is statistically efficient–it meets the CRLB. Section

II presents the problem formulation and solution in

detail. Section III describes the simulations performed

and gives the results. Finally, Section IV gives the

conclusions.

II. PROBLEM FORMULATION

The fundamental frame of reference used in this

paper is a 3D Cartesian Common Coordinate System

(CCS) defined by the orthogonal set of unit vectors

fex,ey,ezg. In a multisensor scenario, sensor platform s

will typically have a sensor reference frame associated

with it (measurement frame of the sensor) defined by the

orthogonal set of unit vectors fe»s ,e´s ,e³sg. The origin of
the measurement frame of the sensor is a translation of

the CCS origin, and its axes are rotated with respect to

the CCS axes. The rotation between these frames can

be described by a set of Euler angles. We will refer to

these angles Ás+Á
n
s , ½s+ ½

n
s , and Ãs+Ã

n
s of sensor s, as

roll, pitch, and yaw respectively [11], where Áns is the

nominal roll angle, Ás is the roll bias, etc.

Each angle defines a rotation about a prescribed axis,

in order to align the sensor frame axes with the CCS

axes. The xyz rotation sequence is chosen, which is

accomplished by first rotating about the x axis by Áns ,

then rotating about the y axis by ½ns , and finally rotating

about the z axis by Ãns . The rotations sequence can be

expressed by the matrices

Ts(Ã
n
s ,½

n
s ,Á

n
s ) = Tz(Ã

n
s ) ¢Ty(½ns ) ¢Tx(Áns )

=

264 cosÃ
n
s sinÃns 0

¡sinÃns cosÃns 0

0 0 1

375

¢

264cos½
n
s 0 ¡sin½ns

0 1 0

sin½ns 0 cos½ns

375

¢

2641 0 0

0 cosÁns sinÁns

0 ¡sinÁns cosÁns

375 (1)

Assume there are NS synchronized passive sensors

with known fixed position in the CCS, »s = [»s,´s,³s]
0,

s= 1,2, : : : ,NS , and Nt targets, located at xi = [xi,yi,zi]
0,

i= 1,2, : : : ,Nt, in the same CCS. With the previous con-

vention, the operations needed to transform the position

of a given target i expressed in the CCS coordinate into

the sensor s coordinate system is

xnis = T(!s)(xi¡ »s), i= 1,2, : : : ,Nt, s= 1,2, : : : ,NS
(2)

where !s = [Á
n
s ,½

n
s ,Ã

n
s ]
0 is the nominal orientation of

sensor s and T(!s) is the appropriate rotation matrix
and the translation is the difference between the vector

position of the target i and the vector position of the

sensor s, both expressed in the CCS. The superscript n

in (2) indicates that the rotation matrix is based on the

nominal sensor orientation.

As shown in Figure 1, the azimuth angle ®is is the

angle in the sensor xz plane between the sensor z axis

and the line of sight to the target, while the elevation

angle ²is is the angle between the line of sight to the

target and its projection onto the xz plane, that is

·
®is

²is

¸
=

266664
tan¡1

μ
xis
zis

¶

tan¡1

0@ yisq
x2is+ z

2
is

1A
377775 (3)

The model for the biased noise-free LOS measurements

is then·
®bis

²bis

¸
=

·
g1(xi,»s,!s,bs)

g2(xi,»s,!s,bs)

¸
= g(xi,»s,!s,bs) (4)

60 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 9, NO. 2 DECEMBER 2014



where g1 and g2 denote the sensor Cartesian coordinates-

to-azimuth/elevation angle mapping that can be found

by inserting equations (2) and (3) into (4). The bias

vector of sensor s is

bs = [Ás,½s,Ãs]
0 (5)

For a given target, each sensor provides the noisy

LOS measurements

zis = g(xi,»s,!s,bs) +wis (6)

where
wis = [w

®
is,w

²
is]
0 (7)

The measurement noises wis are zero-mean, white Gaus-
sian with

Rs =

·
(¾®s )

2 0

0 (¾²s)
2

¸
(8)

and are assumed mutually independent.

The problem is to estimate the bias vectors for all

sensors and the positions of the targets of opportunity.

We shall obtain the Maximum Likelihood (ML) estimate

of the augmented parameter vector

μ = [x01, : : : ,x
0
Nt
,b01, : : : ,b

0
NS
]0 (9)

consisting of the (unknown) position of target i and the

biases of sensor s, i= 1, : : : ,Nt,s= 1, : : : ,NS , by maxi-

mizing the likelihood function

¤(μ) =

NtY
i=1

NSY
s=1

p(zis j μ) (10)

where

p(zis j μ) = j2¼Rsj¡1=2

¢ exp(¡ 1
2
[zis¡his(μ)]0R¡1s [zis¡his(μ)])

(11)

and

his(μ)
¢
=g(xi,»s,!s,bs) (12)

The ML Estimate (MLE) is then

μ̂ML = argmax
μ
¤(μ) (13)

In order to find the MLE, one has to solve a nonlinear

least squares problem for the exponent in (11). This will

be done using a numerical search via the Iterated Least

Squares (ILS) technique [1].

A. Requirements for Bias Estimability

First requirement for bias estimability. For a given

target we have a two-dimensional measurement from

each sensor (the two LOS angles to the target). We

assume that each sensor sees all the targets at a common

time.1 Stacking together each measurement of Nt targets

seen by NS sensors results in an overall measurement

1This can also be the same target at different times, as long as the

sensors are synchronized.

vector of dimension 2NtNS. Given that the position and

bias vectors of each target are three-dimensional, and

knowing that the number of equations (size of the

stacked measurement vector) has to be at least equal

to the number of parameters to be estimated (target

positions and biases), we must have

2NtNS ¸ 3(Nt+NS) (14)

This is a necessary condition but not sufficient because

(13) has to have a unique solution, i.e., the parameter

vector has to be estimable. This is guaranteed by the

second requirement.

Second requirement of bias estimability. This is the

invertibility of the Fisher Information Matrix (FIM)

[1], to be discussed later. For example, to estimate

the biases of 3 sensors (9 bias components) we need

3 targets (9 position components), i.e., the search is

in an 18-dimensional space. In order to estimate the

biases of 2 sensors (6 bias components) we need at

least 6 targets (18 position components) to meet the

necessary requirement (14). The rank of the FIM has

to be equal to the number of parameters to be estimated

(6+18 = 24). The full rank of the FIM is a necessary

and sufficient condition for estimability, however, for

the two fixed sensors situation this is not satisfied. This

issue will be discussed further in the section III.B, where

an explanation will be provided.

B. Iterated Least Squares

Given the estimate μ̂j after j iterations, the ILS

estimate after the (j+1)th iteration will be

μ̂j+1 = μ̂j +[(Hj)0R¡1Hj]¡1(Hj)0R¡1[z¡h(μ̂j)] (15)

where

z= [z011, : : : ,z
0
is, : : : ,z

0
NtNS
]0 (16)

h(μ̂j) = [h11(μ̂
j)0, : : : ,his(μ̂

j)0, : : : ,hNtNS (μ̂
j)0] (17)

R is a block diagonal matrix consisting of Nt blocks of

NS blocks of Rs

Hj =
@h(μj)

@μ

¯̄̄̄
μ=μ̂j

(18)

is the Jacobian matrix of the vector consisting of the

stacked measurement functions (17) w.r.t. (9) evaluated

at the ILS estimate from the previous iteration j. In this

case, the Jacobian matrix is, with the iteration index

omitted for conciseness,

H = [H11 H21 ¢ ¢ ¢HNt1 H12 ¢ ¢ ¢HNtNS ]0 (19)
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where

H 0is =

2666666666666666666666666666666666666666666666666666666666664

@g1is
@x1

@g2is
@x1

@g1is
@y1

@g2is
@y1

@g1is
@z1

@g2is
@z1

...
...

@g1is
@xNt

@g2is
@xNt

@g1is
@yNt

@g2is
@yNt

@g1is
@zNt

@g2is
@zNt

@g1is
@Ã1

@g2is
@Ã1

@g1is
@½1

@g2is
@½1

@g1is
@Á1

@g2is
@Á1

...
...

@g1is
@ÃNS

@g2is
@ÃNS

@g1is
@½NS

@g2is
@½NS

@g1is
@ÁNS

@g2is
@ÁNS

3777777777777777777777777777777777777777777777777777777777775

(20)

The appropriate partial derivatives are given in the Ap-

pendix.

C. Initialialization

In order to perform the numerical search via ILS, an

initial estimate μ̂0 is required. Assuming that the biases
are null, the LOS measurements from the first and the

second sensor ®i1, ®i2 and ²i1 can be used to solve for

each initial Cartesian target position, in the CCS, as

x0i =
»2¡ »1 + ³1 tan®i1¡ ³2 tan®i2

tan®i1¡ tan®i2
(21)

y0i =
tan®i1(»2 + tan®i2(³1¡ ³2))¡ »1 tan®i2

tan®i1¡ tan®i2
(22)

z0i = ´1 + tan²i1

¯̄̄̄
(»1¡ »2)cos®i2 + (³2¡ ³1)sin®i2

sin(®i1¡®i2)
¯̄̄̄
(23)

D. Cramér-Rao Lower Bound

In order to evaluate the efficiency of the estimator,

the CRLB must be calculated. The CRLB provides a

lower bound on the covariance matrix of an unbiased

estimator as [1]

Ef(μ¡ μ̂)(μ¡ μ̂)0g ¸ J¡1 (24)

where J is the Fisher Information Matrix (FIM), μ is

the true parameter vector to be estimated, and μ̂ is the
estimate. The FIM is

J = Ef[rμ ln¤(μ)][rμ ln¤(μ)]
0gjμ=μtrue (25)

where the gradient of the log-likelihood function is

¸(μ)
¢
=ln¤(μ) (26)

rμ¸(μ) =

NtX
i=1

NSX
s=1

H 0isR
¡1
is (zis¡his(μ)) (27)

which, when plugged into (25), gives

J =

NtX
i=1

NSX
s=1

H 0is(R
¡1
s )Hisjμ=μtrue

=H 0(R¡1)Hjμ=μtrue (28)

III. SIMULATIONS

A. Three-Sensor Case

We simulated three optical sensors at various fixed

and known locations observing a target at three points

in time at unknown locations (which is equivalent to

viewing three different targets at unknown locations).

Five scenarios of three sensors are examined for a set

of target locations. They are shown in Figures 2—6.

Each scenario is such that each target position can be

observed by all sensors. As discussed in the previous

section, the three sensor biases were roll, pitch, and

yaw angle offsets. The biases for each sensor were set

to 1± = 17:45 mrad. We made 100 Monte Carlo runs
for each scenario. In order to establish a baseline for

evaluating the performance of our algorithm, we also

ran the simulations without biases and with biases, but

without bias estimation. The horizontal and vertical

Fields of View (FOV) of each sensor are assumed to

be 60±. The measurement noise standard deviation ¾s
(identical across sensors for both azimuth and elevation

measurements) was assumed to be 0.34 mrad (based on

an assumed pixel subtended angle of 0:02± (a modest
9 megapixel FPA with FOV 60± ¢ 60±; 60±=

p
9 ¢ 106 =

0:02±).

1) Description of the Scenarios. The sensors are as-

sumed to provide LOS angle measurements. We de-

note by »1,»2,»3 the 3D Cartesian sensor positions, and
x1,x2,x3 the 3D Cartesian target positions (all in CCS).

The three target positions are the same for all the scenar-

ios, and they were chosen from a trajectory of a ballistic
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Fig. 2. Scenario 1.

Fig. 3. Scenario 2.

target as follows (in m)

x1 = [¡2860,0,6820]0 (29)

x2 = [¡235:9,0,8152]0 (30)

x3 = [2413,0,6451]
0 (31)

Table I summarizes the sensor positions (in m) for the

five scenarios considered.

2) Statistical Efficiency of the Estimates. In order to

test for the statistical efficiency of the estimate (of the

18 dimensional vector (9)), the Normalized Estimation

Error Squared (NEES) [1] is used, with the CRLB as

the covariance matrix. The sample average NEES over

100 Monte Carlo runs is shown in Figure 7 for all sce-

narios. The NEES is calculated using the FIM evaluated

at both the true bias values and target positions, as well

as at the estimated biases and target positions. Accord-

ing to the CRLB, the FIM has to be evaluated at the

true parameter. Since this is not available in practice,

however, it is useful to evaluate the FIM also at the es-

timated parameter, the only one available in real world

Fig. 4. Scenario 3.

Fig. 5. Scenario 4.

Fig. 6. Scenario 5.

implementations [15], [16]. The results are practically

identical regardless of which values are chosen for eval-

uation of the FIM. The 95% probability region for the
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Fig. 7. Sample average NEES over 100 Monte Carlo runs for all five scenarios (three-sensor case).

TABLE I

Sensor positions (in m) for the scenarios considered.

First Sensor Second Sensor Third Sensor

Scenario » ´ ³ » ´ ³ » ´ ³

1 ¡5500 15 950 ¡230 45 2720 5900 20 50

2 ¡4900 145 505 1230 ¡220 2765 5900 200 110

3 ¡4900 25 1050 1330 25 1585 4900 45 150

4 ¡5600 5 200 1230 10 1220 4900 20 50

5 ¡3500 1500 25 1230 ¡520 1265 4900 1350 20

TABLE II

Sample average position RMSE (in m) for the three targets, over

100 Monte Carlo runs, for the three estimation schemes

(three-sensor case).

First Target Second Target Third Target

Scheme RMSE RMSE RMSE

1 3.33 3.51 2.82

2 146.61 167.43 134.80

3 38.93 43.82 37.68

100 sample average NEES of the 18 dimensional pa-

rameter vector is [16:84,19:19]. For all five scenarios,

the NEES is found to be within this interval and the

MLE is therefore statistically efficient. Figure 8 shows

the individual bias component NEES for all scenarios,

The 95% probability region for the 100 sample aver-

age single component NEES is [0:74,1:29]. For all five

scenarios these NEES are found to be within this inter-

val.

The RMS position errors for the three targets are

summarized in Table II. In this table, the first estimation

scheme was established as a baseline using bias-free

LOS measurements to estimate the target positions.2

For the second scheme, we used biased LOS measure-

ments but we only estimated target positions. In the

last scheme, we used biased LOS measurements and

we simultaneously estimated the target positions and

sensor biases. Bias estimation yields significantly im-

proved target RMS position errors in the presence of

biases.

Each component of μ should also be individually
consistent with its corresponding ¾CRLB (the square root

of the corresponding diagonal element of the inverse

of FIM). In this case, the sample average bias RMSE

over 100 Monte Carlo runs should be within 15%

of its corresponding bias standard deviation from the

2As shown in [15], [16] the unbiased LOS measurements yield com-

posite measurements (full position MLEs) whose errors are zero-mean

and their covariance is equal to the corresponding CRLB.
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Fig. 8. Sample average bias NEES (CRLB evaluated at the estimate), for each of the 9 biases, over 100 Monte Carlo runs for all five

scenarios (three-sensor case).

TABLE III

Sample average bias RMSE over 100 Monte Carlo runs and the corresponding bias standard deviation from the CRLB (¾CRLB), for all

configurations (in mrad) (three-sensor case).

First Sensor Second Sensor Third Sensor

Scenario Ã ½ Á Ã ½ Á Ã ½ Á

1 RMSE 3.168 1.173 2.558 7.358 1.121 3.321 3.210 1.419 2.261

¾CRLB 2.872 1.183 2.679 6.721 1.129 3.639 2.954 1.341 2.459

2 RMSE 1.935 1.133 2.642 7.573 1.069 3.352 4.224 1.335 1.881

¾CRLB 2.028 1.190 2.485 7.855 1.129 3.138 4.355 1.362 1.835

3 RMSE 2.473 1.089 5.923 6.475 1.084 6.675 4.504 1.266 5.272

¾CRLB 2.600 1.124 5.780 7.054 1.140 6.455 4.969 1.239 5.105

4 RMSE 2.512 1.257 5.950 6.472 1.161 6.522 4.579 1.351 5.218

¾CRLB 2.801 1.243 6.198 7.094 1.201 6.976 5.024 1.388 5.634

5 RMSE 3.102 1.697 4.418 5.979 2.124 5.609 4.238 2.195 3.979

¾CRLB 3.334 1.646 4.034 7.078 2.295 5.253 5.011 2.150 3.869

CRLB with 95% probability. Table III demonstrates

the consistency of the individual bias estimates. This

complements the NEES evaluations from Figure 8.

To confirm that the bias estimates are unbiased, the

average bias error
¯̃
b, from Table IV, over 100 Monte

Carlo runs confirms that j ¯̃bj is less then 2¾CRLB=
p
N

(which it should be with 95% probability), i.e., these

bias estimates are unbiased.

In order to examine the statistical efficiency for a

variety of target-sensor geometries, the sensors’ loca-

tions were varied from one scenario to another in order

to vary the Geometric Dilution of Precision (GDOP),
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Fig. 9. GDOPs for the five scenarios considered (three-sensor case).

TABLE IV

Sample average bias error
¯̃
b over N = 100 Monte Carlo runs for all configurations (in mrad) (to confirm that the bias estimates are unbiased)

(three-sensor case).

First Sensor Second Sensor Third Sensor

Scenario Ã ½ Á Ã ½ Á Ã ½ Á

1
¯̃
b 0.336 ¡0:076 0.034 0.693 ¡0:127 0.128 0.240 ¡0:111 0.146

¾CRLBp
N

0.287 0.118 0.268 0.672 0.113 0.364 0.295 0.134 0.246

2
¯̃
b ¡0:099 0.012 0.045 ¡0:356 0.002 0.017 ¡0:195 0.088 ¡0:038

¾CRLBp
N

0.203 0.119 0.248 0.785 0.113 0.314 0.436 0.136 0.184

3
¯̃
b ¡0:191 0.125 0.039 ¡0:565 0.134 ¡0:076 ¡0:348 0.198 ¡0:162

¾CRLBp
N

0.260 0.112 0.578 0.705 0.114 0.645 0.497 0.124 0.510

4
¯̃
b 0.020 ¡0:153 ¡0:481 0.412 ¡0:094 ¡0:374 0.345 ¡0:180 ¡0:209

¾CRLBp
N

0.280 0.124 0.620 0.709 0.120 0.698 0.502 0.139 0.563

5
¯̃
b 0.522 ¡0:002 ¡0:058 0.823 0.038 0.034 0.576 ¡0:009 0.025

¾CRLBp
N

0.333 0.165 0.403 0.708 0.230 0.525 0.501 0.215 0.387

defined as

GDOP
¢
=

RMSE

r
p
¾2®+¾

2
²

(32)

where “RMSE” is the RMS position error for a target

location (in the absence of biases), r is the range to the

target, and ¾® and ¾² are the azimuth and elevation mea-

surement error standard deviations, respectively. Figure

9 shows the various GDOP levels in the 9 target-sensor

combinations for each of the five scenarios for which

statistical efficiency was confirmed.

B. Two-Sensor Case

We simulated two optical sensors at various fixed

locations observing a target at six (unknown) locations

(which is equivalent to viewing six different targets

at unknown locations). In this case a 24-dimensional

parameter vector is to be estimated.

It was observed that the rank of the FIM was 23

which implies incomplete observability. Even with more

target points there was always a deficiency of 1 in the

rank of the FIM. As shown in Figure 10, this can be
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Fig. 10. Rotation around axis S1S2 of the sensors and all targets by

the same angle leaves all the LOS angles from the sensors to the

targets unchanged.

explained as follows: a rotation of the sensors and all

the targets around the axis defined by the line S1S2 con-

necting the optical centers of the two sensors is not ob-

servable because this will yield the same measurements

regardless of the magnitude of this rotation. Note that

this rotation does not change the locations of the sen-

sors, which are assumed known. Thus, with two sen-

sors, one cannot estimate all 6 biases–we are limited

to estimating 5 and this will be borne out by the FIM

in the simulations. A similar observation was made in

[5] for sensors that are facing each other. However the

above discussion points out that the sensors do not have

to face each other–there is an inherent lack of observ-

ability of any rotation around the above defined axis.

This problem does not exist if there are three or more

sensors3 because there is no axis of rotation that does

not change the location of at least one sensor.

Four scenarios of two sensors are examined for a set

of target locations. They are shown in Figures 11—14.

Each scenario is such that each target position can be

observed by all sensors. As discussed in the previous

section, the three sensor biases were roll, pitch, and yaw

angle offsets. The second sensor roll bias is assumed

to be known and null, this is in view of the above

discussion about the inherent rank 1 deficiency of the

FIM in the two sensors case which makes it impossible

to estimate all the 6 sensor biases. Reducing the number

of biases from 6 to 5 allows a full rank FIM. All the

other biases for each sensor were set to 1± = 17:45 mrad.
We made 100 Monte Carlo runs for each scenario.

In order to establish a baseline for evaluating the per-

3Provided that the three sensors (or any number of) are not located

in a straight line.

Fig. 11. Scenario 1 for the two-sensor case.

Fig. 12. Scenario 2 for the two-sensor case.

formance of our algorithm, we also ran the simulations

without bias, and with bias but without bias estimation.

The measurement noise standard deviation ¾s (identical

across sensors for both azimuth and elevation measure-

ments) was assumed to be 0.34 mrad. As a fifth scenario

we simulated two optical sensors observing two targets

(two trajectories) at three points in time for each target,

as shown in Figure 15.

1) Description of the Scenarios. The sensors are as-

sumed to provide LOS angle measurements. We de-

note by »1,»2 the 3D Cartesian sensor positions, and

x1,x2,x3,x4,x5,x6 the 3D Cartesian target positions (all

in CCS). The six target positions are the same for the

first four scenarios, and they were chosen from a tra-

jectory of a ballistic target as follows (in m)

x1 = [¡4931,0,3649]0 (33)

x2 = [¡3731,0,5714]0 (34)

x3 = [¡2400,0,7100]0 (35)
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Fig. 13. Scenario 3 for the two-sensor case.

Fig. 14. Scenario 4 for the two-sensor case.

x4 = [2341,0,6538]
0 (36)

x5 = [3448,0,4956]
0 (37)

x6 = [4351,0,3475]
0 (38)

For the fifth scenario, the six target positions were

chosen from two trajectories of two ballistic targets as

follows (in m)

x1 = [¡4931,0,3649]0 (39)

x2 = [2994,0,5670]
0 (40)

x3 = [¡2400,0,7100]0 (41)

x4 = [¡1400,0,7932]0 (42)

x5 = [2376,0,6497]
0 (43)

x6 = [4075,0,3823]
0 (44)

Table V summarizes the sensor positions (in m) for the

five scenarios considered.

Fig. 15. Scenario 5 for the two-sensor case.

TABLE V

Sensor positions (in m) for the scenarios considered.

First Sensor Second Sensor

Scenario » ´ ³ » ´ ³

1 ¡4550 5420 ¡945 6170 4250 ¡2700
2 ¡4550 5420 950 6170 4250 ¡2700
3 ¡4550 5420 950 6170 3250 ¡2700
4 ¡4550 5420 950 5170 4250 ¡2700
5 ¡1550 6120 ¡1445 6170 5250 ¡1400

2) Statistical Efficiency of the Estimates. In order to

test for the statistical efficiency of the estimate (of the 23

dimensional vector), the NEES is used, with the CRLB

as the covariance matrix. The sample average NEES

over 100 Monte Carlo runs is shown in Figure 16 for all

scenarios. The NEES is calculated using the FIM evalu-

ated at both the true bias values and target positions, as

well as at the estimated biases and target positions. The

results are practically identical regardless of which val-

ues are chosen for evaluation of the FIM. The 95% prob-

ability region for the 100 sample average NEES of the

23 dimensional parameter vector is [21:68,24:34]. For

all five scenarios these NEES are found to be within this

interval and the MLE is therefore statistically efficient.

Figure 17 shows the individual bias component NEES

for all scenarios, The 95% probability region for the 100

sample average single component NEES is [0:74,1:29].

For all five scenarios these NEES are found to be within

this interval.

The RMS position errors for the six targets are sum-

marized in Table VI. In this table, the first estima-

tion scheme was established as a baseline using bias-

free LOS measurements to estimate the target positions.

For the second scheme, we used biased LOS measure-

ments but we only estimated target positions. In the last

scheme, we used biased LOS measurements and we si-

multaneously estimated the target positions and sensor

biases. For the second scheme, the estimation algorithm
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Fig. 16. Sample average NEES over 100 Monte Carlo runs for all five scenarios (two-sensor case).

Fig. 17. Sample average bias NEES (CRLB evaluated at the

estimate), for each of the five biases, over 100 Monte Carlo runs for

all five scenarios (two-sensor case).

does not converge, while the third scheme shows sat-

isfactory target RMS position errors in the presence of

biases. The target position RMSE when the biases are

also estimated, are close to the RMSE with no biases.

Each component of μ should also be individually
consistent with its corresponding ¾CRLB (the square root

of the corresponding diagonal element of the inverse

of FIM). In this case, the sample average bias RMSE

over 100 Monte Carlo runs should be within 15% of its

corresponding bias standard deviation from the CRLB

(¾CRLB) with 95% probability. Table VII demonstrates

the efficiency of the individual bias estimates.

TABLE VI

Sample average position RMSE (in m) for the six targets, over 100

Monte Carlo runs, for the three estimation schemes (two-sensor

case).

First

Target

Second

Target

Third

Target

Fourth

Target

Fifth

Target

Sixth

Target

Scheme RMSE RMSE RMSE RMSE RMSE RMSE

1 3.68 4.84 3.42 4.06 4.64 3.63

3 7.08 7.65 6.49 7.91 7.70 7.76

TABLE VII

Sample average bias RMSE over 100 Monte Carlo runs and the

corresponding bias standard deviation from the CRLB, for all

configurations (in mrad) (two-sensor case).

First Sensor Second Sensor

Scenario Ã ½ Á Ã ½

1 RMSE 0.195 0.271 0.254 0.186 0.314

¾CRLB 0.252 0.307 0.331 0.238 0.430

2 RMSE 0.437 0.442 0.500 0.428 0.348

¾CRLB 0.394 0.494 0.441 0.410 0.410

3 RMSE 1.675 1.668 1.634 1.646 0.4615

¾CRLB 1.279 1.572 1.305 1.207 0.536

4 RMSE 0.475 0.392 0.440 0.465 0.287

¾CRLB 0.467 0.440 0.510 0.483 0.384

5 RMSE 0.258 0.251 0.237 0.245 0.195

¾CRLB 0.345 0.246 0.357 0.347 0.168
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Fig. 18. GDOPs for the five scenarios considered (two-sensor case).

TABLE VIII

Sample average bias error
¯̃
b over N = 100 Monte Carlo runs for all

configurations (in mrad) (to confirm that the bias estimates are

unbiased) (two-sensor case).

First Sensor Second Sensor

Scenario Ã ½ Á Ã ½

1
¯̃
b 0.000 0.007 0.000 0.003 ¡0:045

¾CRLBp
N

0.025 0.030 0.033 0.023 0.043

2
¯̃
b ¡0:055 ¡0:058 ¡0:007 ¡0:016 ¡0:001

¾CRLBp
N

0.039 0.049 0.044 0.041 0.041

3
¯̃
b ¡0:351 ¡0:098 ¡0:254 0.275 0.056

¾CRLBp
N

0.128 0.157 0.130 0.120 0.053

4
¯̃
b ¡0:001 ¡0:069 0.042 ¡0:026 ¡0:013

¾CRLBp
N

0.046 0.044 0.051 0.048 0.038

5
¯̃
b 0.037 0.028 0.006 0.040 ¡0:005

¾CRLBp
N

0.034 0.024 0.0358 0.034 0.016

To confirm that the bias estimates are unbiased, the

average bias error
¯̃
b, from Table VIII, over 100 Monte

Carlo runs confirms that j ¯̃bj is less then 2¾CRLB=
p
N

(which it should be with 95% probability), i.e., these

estimates are unbiased.

Figure 18 shows the various GDOP levels in the 12

target-sensor combinations for each of the five scenarios

for which statistical efficiency was confirmed, in the

case of the two sensors.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an algorithm that uses

targets of opportunity for estimation of measurement

biases. The first step was formulating a general bias

model for synchronized optical sensors at fixed known

locations. The association of measurements is assumed

to be perfect. Based on this, we used a ML approach that

led to a nonlinear least-squares estimation problem for

simultaneous estimation of the 3D Cartesian positions

of the targets of opportunity and the angle measurement

biases of the sensors. The bias estimates, obtained via

ILS, were shown to be unbiased and statistically effi-

cient. In the three-sensor case it was shown that one

has complete observability of the sensor biases. In the

two-sensor case a rank deficiency of 1 in the FIM was

observed, i.e., this allows estimation of only 5 out of 6

biases. A suitable geometric explanation was provided

for this. For moving sensors this problem is expected to

go away if the sensors move sufficiently.

APPENDIX
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@Ts22
@Ãk

= cosÃk sin½k sinÁk ¡ sinÃk cosÁk (81)

@Ts23
@Ãk

= cosÃk sin½k cosÁk +sinÃk sinÁk (82)

@Ts31
@Ãk

= 0 (83)

@Ts32
@Ãk

= 0 (84)

@Ts33
@Ãk

= 0 (85)
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@Ts11
@½k

=¡cosÃk sin½k (86)

@Ts12
@½k

= cosÃk cos½k sinÁk (87)

@Ts13
@½k

= cosÃk cos½k cosÁk (88)

@Ts21
@½k

=¡sinÃk sinÁk (89)

@Ts22
@½k

= sinÃk cos½k sinÁk (90)

@Ts23
@½k

= sinÃk cos½k cosÁk (91)

@Ts31
@½k

=¡cosÁk (92)

@Ts32
@½k

=¡sin½k sinÁk (93)

@Ts33
@½k

=¡sin½k cosÁk (94)

@Ts11
@Ák

= 0 (95)

@Ts12
@Ák

= cosÃk sin½k cosÁk +sinÃk sinÁk (96)

@Ts13
@Ák

=¡cosÃk sin½k sinÁk +sinÃk cosÁk (97)

@Ts21
@Ák

= 0 (98)

@Ts22
@Ák

= sinÃk sin½k cosÁk ¡ cosÃk sinÁk (99)

@Ts23
@Ák

=¡sinÃk sin½k sinÁk ¡ cosÃk cosÁk (100)

@Ts31
@Ák

= 0 (101)

@Ts32
@Ák

= cosÃk cosÁk (102)

@Ts33
@Ák

=¡cos½k sinÁk (103)
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Localization from Angle and

Shockwave Measurements
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This work derives the Cramer-Rao lower bound (CRLB) for an

acoustic target and sensor localization system in which the noise

characteristics may depend on the location of the source. The sys-

tem itself has been previously examined, but without deriving the

CRLB and showing the statistical efficiency of the estimator used.

Three different versions of the CRLB are derived, one in which

direction of arrival (DOA) and (shockwave based) range measure-

ments are available (“local estimate” based CRLB), one in which

two types of DOA measurements and the time difference between

them is available (“native measurement” based CRLB), and one in

which only DOA measurements (bearing) are available (“bearings-

only” CRLB). In each case, the estimator is found to be statistically

efficient; but, depending on the sensor-target geometry, the range

measurements may or may not significantly contribute to the accu-

racy of target localization. Additionally, the native measurements

are found to result in superior localization when compared to the

use of the range estimates.
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1. INTRODUCTION

In any estimation system the ultimate goal is to ex-

tract the maximum information from the available data.

The Fisher information matrix (FIM) provides a mea-

sure of the total information available from the observa-

tions of the system, and its inverse provides the Cramer-

Rao lower bound (CRLB) [2]. A statistically efficient

estimator is one in which the (co)variance of the esti-

mation error meets the CRLB, and, therefore, extracts

all of the available information from the observations.

The CRLB and statistical efficiency of an acoustic

localization system will be examined here, based on the

system described in [9], [10], which is meant to esti-

mate the location of the source of a detected gunshot.

Each sensor node of the system is assumed to provide

an estimated bearing (direction of arrival–DOA) to the

target, and, if the sensor node lies within a certain field

of view (FOV) around the path of the bullet, a range es-

timate and bullet trajectory estimate as well. The range

and bullet trajectory estimates are provided via a non-

linear transformation of the “native” measurements con-

sisting of the bearing, a shockwave DOA measurement,

and a time difference of arrival (TDOA) between the

two DOA measurements. For those sensors that pro-

vide estimated range, the noise variance will be highly

dependent on the position of the source. Each sensor

node’s local estimates (or, alternatively, its native mea-

surements) are passed to a fusion center to perform the

overall estimation of the target position. The sensor lo-

cations can also be simultaneously estimated with the

target (source) location, but the improvement is negli-

gible. It is also possible to remove the sensor locations

from the estimation performed at the fusion center, but

the inaccuracy of the sensor locations must then be ex-

plicitly accounted for in the CRLB derivations.

A number of papers have examined the problem of

target localization in passive sensor environments, in-

cluding [3], [7], [8], [18], [22], [24], [25]. The work of

[24] generalizes the results of [7] to include sensor po-

sition uncertainty; however, neither paper examines the

CRLB to see whether the estimator is statistically effi-

cient. In [3], [8], [18], [25], different applications of lo-

calization with passive sensors are studied that also con-

sider the CRLB. However, in [25], no estimation scheme

is shown to meet the CRLB. In [8] the maximum likeli-

hood (ML) estimation scheme examined is shown to be

statistically efficient only when a significant number of

measurements are used. In none of the above-mentioned

papers were cases of position-dependent measurement

noise considered.

Specific research pertaining to the acoustic local-

ization of small-arms fire is examined in [1], [5],

[9]—[17], [20], [21], [23]. In most of these works,

CRLB/efficiency analysis is not performed. References
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[11], [23] use the “local estimates,” while the remain-

der use either “native measurements” or only time-

of-arrival (TOA) or TDOA measurements. Addition-

ally, [13], [14], [16], [17] employ a bullet decelera-

tion model. The work of [1] examined the effect of

assuming an (incorrect) constant velocity bullet model

and demonstrated modest localization errors for realistic

scenarios. Of the previously mentioned work, only [5],

[12], [16] perform any analysis of the CRLB. In [12],

the CRLB is examined, but only in the case of native

measurements. Reference [5] examines a method of lo-

calization using only TDOA measurements and derives

the CRLB; however, the CRLB is shown to provide only

a loose bound, with inaccurate cross-range performance

prediction. Reference [16] also used TDOA measure-

ments without DOA and derived the CRLB, but did

not present results statistically demonstrating efficiency,

though it was mentioned that simulations indicated their

estimator met the bound for TDOA accuracy below a

given threshold.

In this work, the CRLB of the central estimator

(fuser) is derived for three cases: a “bearings-only”

case, which assumes that only bearing measurements

are available from the sensor nodes; a “local estimate”

case, which assumes that range and bullet trajectory

estimates are available in addition to bearing; and a

“native measurement” case, which assumes that the two

previously mentioned types of DOA measurements (to

the shooter and the shockwave) and the TDOA are

available.

Section 2 provides an overview of the system in

question, and examines the probability distribution and

density of the range estimate errors from the individual

sensors. Section 3 provides the expressions necessary

to evaluate the CRLB for the problem in question,

both with and without the position-dependent noise

terms. Section 4 describes the simulation scenarios and

provides the results. Finally, Section 5 concludes the

paper.

2. LOCALIZATION SYSTEM OVERVIEW

The system to be examined here is the same as the

one described in [9], [10] except that we also consider

the use of native measurements. A brief overview of

the system is provided here, however, to introduce the

concepts and notations.

A number of acoustic sensors are placed throughout

a surveillance region with the intent of detecting gunfire

and estimating the position of the source. The target

(source) location will be denoted as

T = [Tx Ty]
0 (1)

and the ith sensor location is denoted as

Si = [Six Siy ]
0 (2)

The problem is assumed constrained to a two-dimen-

sional plane for simplicity.

Fig. 1. Geometry of the bullet trajectory and the DOA angles of

the muzzle blast and shockwave as seen by the ith sensor node.

2.1. Sensor Nodes

Each sensor will be assumed to provide at most five

native measurements

³i = [Á̂i '̂i ¿̂i]
0 (3)

and
Ŝi = [Ŝix Ŝiy ]

0 (4)

where Á̂i is the DOA angle to the shooter, based on

the detection of the muzzle blast; '̂i is the DOA angle

of the shockwave from the bullet; ¿̂i is the TDOA

between the muzzle blast and the shockwave; and Ŝi
is the noisy sensor location (obtained via a GPS sensor

at each node).1 The DOA measurements are assumed to

be measured counter-clockwise (CCW) from the x-axis

of a global reference coordinate system, to which each

sensor is assumed to be aligned. Each measurement

is assumed to be corrupted by zero-mean Gaussian

noise, with standard deviations of ¾Á, ¾', ¾¿ , ¾ix and

¾iy , respectively. The overall geometry of the various

angular measurements involved are depicted in Figure 1.

The shockwave (and therefore the TDOA measure-

ment) is only visible to sensor nodes that are within a

limited FOV around the path of the bullet, depicted in

Figure 2. The FOV is ¼¡ 2μ [6], where

μ = sin¡1
μ
1

m

¶
(5)

and m is the Mach number of the bullet, assumed here to

be m= 2 [12]. Note that in this work, a constant velocity

bullet model is considered.

The target bearing from the ith sensor node is

Ái = tan
¡1
μ
Ty ¡ Siy
Tx¡ Six

¶
(6)

and the DOA angle of the shockwave is

'i =

8<:¡
¼

2
¡ μ+! if ¼+! < Ái <

3¼

2
¡ μ+!

¼

2
+ μ+! if

¼

2
+ μ+! < Ái < ¼+!

(7)

1We use similar notation and terminology as in [9], [10].
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Fig. 2. Field of view (FOV) of the muzzle blast and shockwave

DOA angles.

where! is the angle of the trajectory (counter-clockwise)

with respect to the x-axis.

Using the native measurements, the sensors can com-

pute the local estimates2

zi = [Á̂i r̂i !̂i]
0 (8)

where [9], [10]

r̂i =
c¿̂i

1¡ cos(Á̂i¡ '̂i)
(9)

is the estimated target range, c is the speed of sound

(assumed to be known perfectly), and !̂i is the estimated

bullet trajectory angle. In view of (7), the estimated

bullet trajectory can be obtained directly from '̂i and

the standard deviation of !̂i is ¾'.

Sensor i sends its measured location (4), and either

the native measurements (3) or the local estimates (8)

to a fusion center, to estimate the source location T.

The variance of the range estimate (which is location

dependent) can be approximated as (similar to [9], [10])

¾2ri(T, Ŝi,!)¼rri
·
¾2¿ 0

0 ¾2Á+¾
2
'

¸
rr0i (10)

where

rri =
·
@ri
@¿

@ri
@(Á¡')

¸
(11)

and

@ri
@¿
=

c

1¡ cos(Ái¡'i)
(12)

@ri
@(Á¡') =¡

ri sin(Ái¡'i)
1¡ cos(Ái¡'i)

(13)

2The angular measurements of (8) are also assumed to be measured

CCW from the x-axis of the global reference frame.

The likelihood function of T, Si, and ! given the

estimate zi is

¤zi (T,Si,!)
¢
=p(zi j T,Si,!)¼N (zi;¹zi ,§zi) (14)

where
¹zi = [Ái ri !]0 (15)

and, since the noise on ! is the same as the noise on '

in view of (7), and is the same for all i,

§zi (T, Ŝi,!) =

264
¾2Á cov(ri,Ái) 0

cov(ri,Ái) ¾2ri(T, Ŝi,!) cov(ri,!)

0 cov(ri,!) ¾2'

375
(16)

with (see Appendix A)

cov(ri,Ái) =¡
ri sin(Ái¡'i)
1¡ cos(Ái¡'i)

¾2Ái (17)

cov(ri,!i) =
ri sin(Ái¡'i)
1¡ cos(Ái¡'i)

¾2'i (18)

The errors in (14) are assumed to be uncorrelated across

the sensors.

The likelihood function of T, Si, and ! given the

native measurements ³i is

¤³i(T,Si,!)
¢
=p(³i j T,Si,!) =N (³i;¹³i ,§³i) (19)

where
¹³i = [Ái 'i ¿i]

0 (20)

and

§³i =

264¾
2
Á 0 0

0 ¾2' 0

0 0 ¾2¿

375 (21)

The likelihood function of Si is

¤Si (Si)
¢
=p(Ŝi j Si) =N (Ŝi;Si,§Si ) (22)

where

§Si =

"
¾2ix 0

0 ¾2iy

#
(23)

The sensors are assumed to obtain their locations,

albeit imperfectly, from GPS.3 Additionally, the sen-

sors are assumed to be aligned to a common reference

frame (e.g., via compass readings, where any error/bias

present is assumed to be identical across sensors due

to the small area involved). For the sensors, the GPS

localization serves as a prior and guarantees complete

observability for the target-sensor complex. The final

estimates of the sensor locations can be only slightly

improved over their initial GPS estimates, but the im-

provement this makes to the final target localization is

3If the sensor position estimates contain a common (slowly varying)

bias across sensors (a reasonable assumption since these sensors are

not too far from each other), the relative sensor registration will be

unaffected and the target estimate will exhibit the same bias.
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Fig. 3. Empirical pdf and cdf of r̃i for Sensor 1 of Scenario 3.

Fig. 4. Empirical pdf and cdf of r̃i for Sensor 2 of Scenario 3.

negligible. For that reason, the simultaneous estimation

of the sensor positions can reasonably be omitted from

the overall estimation, but the effect of the sensor local-

ization errors needs to be accounted for in the variances

of Ái and ri, particularly when calculating the CRLB for

use in determining the overall efficiency of the estima-

tion scheme.

2.2. Range Estimate Error Distribution

The preceding section followed the analysis of [9],

[10] with regards to the range estimation error

r̃i = r̂i¡ ri (24)

where the range estimation error was assumed to be

Gaussian distributed, i.e.,

r̃i »N (ri,¾2ri (T,Si,!)) (25)

where the variance is given by (10), or equivalently as

¾2ri (T,Si,!) =
c2¾2¿ + r

2
i (¾

2
Á+¾

2
')sin

2(Ái¡'i)
(1¡ cos(Ái¡'i))2

(26)

Fig. 5. Empirical pdf and cdf of r̃i for Sensor 3 of Scenario 3.

In order to examine the Gaussian assumption on the

range estimate errors, an empirical pdf and cdf (i.e.,

histograms) of the range estimate error was generated

from 105 Monte Carlo simulations. The range estimates

used to generate the empirical pdfs and cdfs were gener-

ated by (9) using the native measurements corrupted by

Gaussian noise. The nonlinearity of (9) is what causes

the range errors to be non-Gaussian.

The simulation parameters are set identically to Sce-

nario 3 of Section 4. The empirical pdfs and cdfs are

shown in Figures 3—5. Each figure, in addition to the

histograms, is overlaid with the Gaussian pdf of (25).

It is clear from these figures that the actual density of

the range errors is not symmetric, and there is a heavier

left tail than if the errors were indeed Gaussian.

2.3. Centralized Fusion

The estimates zi and Ŝi (or ³i and Ŝi) from each

sensor are passed on to a fusion center in order to

determine the estimate x̂ by means of the Iterated Least

Squares (ILS) estimator4 [2]. The parameter vector to

be estimated is

x= [Tx Ty ! S1x S1y ¢ ¢ ¢Snx Sny ]
0 (27)

with observations

y= [y01 ¢ ¢ ¢y0n]0 (28)

where
yi = [z

0
i Ŝ0i]

0 (29)

or with observations

´ = [´01 ¢ ¢ ¢´0n]0 (30)

where
´i = [³

0
i Ŝ0i]

0 (31)

depending on whether the native measurements (31) or

local estimates (29) are sent to the fusion center.

4Alternatively, Levenberg-Marquardt, or any other suitable nonlinear

least squares solver may be used.
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In order to use the ILS estimation algorithm, an

initial estimate of x is needed. It has been noted [9], [10]

that the ILS estimator is sensitive to the initial estimate

and may diverge if the initial estimate is too far from

the truth.

While the initialization of the target position could

be performed by using the bearing and range measure-

ments (from the nodes with range measurements), the

large variance of the range measurements was found to

occasionally cause divergence in the ILS algorithm. A

more robust initialization was found to follow a similar

method to that used in [4]. This method of initialization

utilizes only the available bearing measurements from

each sensor (6), which can be rewritten as266664
tanÁ1 ¡1
tanÁ2 ¡1
...

...

tanÁn ¡1

377775
| {z }

A

T =

2666664
S1x tanÁ1¡ S1y
S2x tanÁ2¡ S2y

...

Snx tanÁn¡ Sny

3777775
| {z }

b

(32)

and T is obtained as

T = A†b (33)

where A† is the (right) pseudo-inverse of A.

Also, note that (32) can be rewritten using the ex-

pression

Ái = cot
¡1
Ã
Tx¡ Six
Ty ¡ Siy

!
(34)

which is simply (6) rewritten using the cotangent func-

tion. As suggested in [4], use of the cotangent function

has been made when the measured bearing is between

45± and 135± or between ¡45± and ¡135±, in order
to avoid the singularity of the tangent function around

§90±.
To complete the initialization of x, ! can be taken as

the average of !̂i. If the native measurements are sent

to the fusion center, the DOA shockwave estimates '̂i
can be used to solve for the equivalent !̂i in order to

initialize in the same manner.

Due to the nature of the DOA shockwave estimates

(7) (which is one of two angles depending on which

side of the bullet trajectory the sensor is located on),

the predicted values of 'i that must be calculated for

the ILS algorithm may occasionally exhibit very large

errors. This will occur if the errors on Á̂i and !̂i are such

that the ith sensor is predicted to appear on the incorrect

side of the bullet trajectory. For this reason, when the

native measurements are sent to the fusion center, the

predicted value of 'i will be given as whichever of the

two possibilities is closest to the value of '̂i sent to the

fusion center. This is a reasonable solution to resolving

the ambiguity since the errors of '̂i will be assumed to

be much smaller than the difference between the two

values of 'i.

3. CRAMER-RAO LOWER BOUND

The CRLB provides a lower bound on the covari-

ance matrix of the estimate x̂ as

E[(x̂¡ x)(x̂¡ x)0]¸ J¡1 (35)

where J is the FIM

J = Ef[rx¸(x)][rx¸(x)]0g (36)

and ¸(x) is the negative log-likelihood function (NLLF).

3.1. Native Measurement Based FIM

The likelihood function of x based on ´, assuming
the sensor location estimate errors are independent of

the native measurement errors, is

¤´(x) =

nY
i=1

¤³i(T,Si,!)¤Si (Si) (37)

The NLLF corresponding to (37) is

¸´(x) =
1
2

nX
i=1

(´i¡¹´i (x))0§¡1´i (´i¡¹´i (x)) (38)

where

¹´i = [¹
0
³i

S0i]
0 (39)

§´i =

·
§³i 0

0 §Si

¸
(40)

and the unnecessary constant terms have been omitted.

In this case, the FIM can be shown to be

J́ =H 0´§
¡1
´ H´ (41)

where

H´
¢
=
@¹´(x)

@x
(42)

is the Jacobian matrix of the native measurements,

¹´(x) = [¹´1 (x)
0, : : : ,¹´n(x)

0]0 (43)

and

§´ =

2664
§´1 0 0

0
. . . 0

0 0 §´n

3775 (44)

3.2. Local Estimate Based FIM

The likelihood function of x based on y follows
similarly to (37). The corresponding NLLF is

¸y(x) =

nX
i=1

[ 1
2
(yi¡¹yi (x))0§yi (x)¡1(yi¡¹yi(x))

+ 1
2
ln j§zi (x)j] (45)

where

¹yi = [¹
0
zi

S0i]
0 (46)

§yi (x) =

·
§zi(x) 0

0 §Si

¸
(47)
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and the unnecessary constant terms have been omitted.

Note that some entries of §zi are dependent on the

target-sensor geometry. In this case, the FIM will be

more complicated.

The FIM for the case of a multivariate Gaussian

likelihood with parameter-dependent covariance is as

follows [19]. The gradient terms of the FIM are

@¸y(x)

@xj

=
1

2
tr

Ã
§¡1y (x)

@§y(x)

@xj

!

¡ 1
2
(y¡¹y(x))0§¡1y (x)

@§y(x)

@xj
§¡1y (x)(y¡¹y(x))0

¡
"
@¹y(x)

@xj

#0
§¡1y (x)(y¡¹y(x))

where xj is the jth entry of x. The (i,j)th entry in the

FIM Jy is then

Ji,j =
1

2
tr

Ã
§¡1y (x)

@§y(x)

@xj
§¡1y (x)

@§y(x)

@x`

!

+

"
@¹y(x)

@xj

#0
§¡1y (x)

·
@¹y(x)

@x`

¸
(48)

In order to compare bearings-only localization to

the localization schemes presented here, the “bearings-

only” FIM, Jb, must also be derived. It can be shown

that Jb follows identically to (41), but with (42) and (44)

modified to remove the portions dealing with 'i and ¿i.

In all, three versions of the CRLB are evaluated

in the sequel: the bearings-only CRLB, J¡1b , the local

estimate based CRLB, J¡1y , and the native measurement

CRLB, J¡1´ .

For the case of the local estimate based FIM Jy, ap-

propriate care should be taken to adjust ¹y(x) and §y(x)

for sensors that do not provide r̂i and !̂i. Additionally, in

order to calculate the FIM from (48), the partial deriva-

tives of ¾2ri , cov(ri,Ái), and cov(ri,!i) are needed, as well

as the partial derivatives of Ái, ri and !. The expressions

for the necessary partial derivatives can be found in Ap-

pendix B.

4. SIMULATION RESULTS

The simulation scenarios examined here include the

scenarios of [9], [10] and an additional modified sce-

nario with fewer sensors. For each scenario, the Mach

number of the bullet is assumed to be m= 2, and the

speed of sound is assumed to be c= 342 m/s. The mea-

surement noise standard deviations are ¾Á = ¾' = 4
±,

¾¿ = 1 ms, and ¾ix = ¾iy = 2 m. The simulations were

performed for 100 Monte Carlo runs for each scenario.

For each scenario, the fusion center estimates the

vector x of (27) via the ILS algorithm, using each of

the following sets of measurements:

(i) the bearings-only case, with Á̂i and Ŝi

(ii) and the local estimate case, with zi and Ŝi

(iii) the native measurement case, with ³i and Ŝi

When the ILS algorithm is performed at the fusion

center with the local estimates ẑi, the measurement noise

covariance was modified from that of (16). Namely, the

crosscovariance between Ái and ri, and the crosscovari-

ance between !i and ri are assumed to be zero. Even

though these terms were found to be reasonably good

approximations to the true crosscovariance between the

range and angular errors, the ILS algorithm performed

poorly when provided a measurement noise covariance

containing these terms (results demonstrating this can

be found in Figure 21).

In Scenarios 1 and 2, there are five sensor nodes

located at (all positions are in m)

S =

·
127 20 90 136 182

107 22 0 68 59

¸
(49)

In Scenario 1, the target is located at T = [50,50]0

and the bullet is fired at a trajectory of ! = 30± (counter-
clockwise from the x-axis). Due to the location of the

sensors and the trajectory of the bullet, only sensors 1, 4

and 5 receive the shockwave and are able to send range

and bullet trajectory estimates (or, equivalently, 'i and

¿i in the native measurement case) to the fusion center.

The results of Scenario 1 are shown in Figures 6—

8. Each figure shows the true locations of the target

and sensors, along with the corresponding 95% error

ellipses. Figure 6 shows the error ellipses correspond-

ing to the sample covariance matrix (dashed line) cal-

culated from the estimation errors over the 100 Monte

Carlo runs when only bearing measurements are sent to

the fusion center, and the covariance matrix from the

bearings-only CRLB (solid line, denoted as CRLBbo).

Figure 7 shows the covariance matrix calculated from

the estimation errors when the native measurements of

Á, ', and ¿ are available at the fusion center, and the

covariance matrix from the native measurement CRLB

(denoted as CRLBnm). Figure 8 shows the covariance

matrix calculated from the estimation errors when local

estimates of range and bullet trajectory are available at

the fusion center (in addition to bearing), and the co-

variance matrix from the local estimate based CRLB

(denoted CRLBle).

The covariance matrices from the CRLBs closely

match the covariances of the estimation errors calcu-

lated from the simulation. This first indicates that the

ILS estimation carried out by the fusion center is statis-

tically efficient. Additionally, the fact that the bearings-

only CRLBbo and local estimate based CRLBle matri-

ces closely match suggests that very little information

is gained from the range estimates sent from sensors

1, 4 and 5. The native measurement CRLBnm matrix,
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Fig. 6. Scenario 1, bearings-only CRLBbo, ellipses and error

ellipses of estimated target and sensor locations (all 95%).

Fig. 7. Scenario 1, native measurement CRLBnm ellipses and error

ellipses of estimated target and sensor locations (all 95%).

Fig. 8. Scenario 1, local estimate based CRLBle ellipses and error

ellipses of estimated target and sensor locations (all 95%).

however, shows there is room for improvement of the

target localization accuracy, which can be achieved by

sending the native measurements to the fusion center.

In Scenario 2, the target is located at T = [150,¡50]0
and the bullet is fired at a trajectory of ! = 170±. Due
to the location of the sensors and the trajectory of the

bullet, only sensors 2 and 3 receive the shockwave and

are able to send range and bullet trajectory estimates to

the fusion center.

Fig. 9. Scenario 2, bearings-only CRLBbo ellipses and error

ellipses of estimated target and sensor locations (all 95%).

Fig. 10. Scenario 2, native measurement CRLBnm ellipses and

error ellipses of estimated target and sensor locations (all 95%).

Fig. 11. Scenario 2, local estimate based CRLBle ellipses and error

ellipses of estimated target and sensor locations (all 95%).

The results of Scenario 2 are shown in Figures 9—

11. Each figure once again shows the various 95%

error ellipses. Figure 9 shows the error ellipses of the

bearings-only CRLBbo and the estimation errors, Figure

10 shows the error ellipses of the native measurement

CRLBnm and estimation errors, and Figure 11 shows

the error ellipses of the local estimate CRLBle and

estimation errors.
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Fig. 12. Scenario 3, bearings-only CRLBbo ellipses and error

ellipses of estimated target and sensor locations (all 95%).

Fig. 13. Scenario 3, native measurement CRLBnm ellipses and

error ellipses of estimated target and sensor locations (all 95%).

The covariance matrices for all versions of the

CRLB again closely match those obtained from the esti-

mation errors, indicating that the estimator is once again

efficient and the range estimates carry very little infor-

mation. In this scenario, the advantage of sending the

native measurements is minimal in comparison to Sce-

nario 1.

Scenario 3 consists of an identical situation to Sce-

nario 1, but with sensors 2 and 3 removed. In this case,

the geometry of the sensors and target is poor, with each

sensor having very similar line-of-sight (LOS) angles to

the target.

The results of Scenario 3 are shown in Figures

12—14. In this case, the local estimate CRLBle and

estimation errors are improved over the bearings-only

case, and the native measurement case is considerably

better than either of the alternatives. The covariance of

the estimation errors of the bearings-only case does

not match well to the corresponding CRLB, which

suggests that the estimator may not be efficient in this

case. A statistical hypothesis test for efficiency via the

normalized estimation error squared (NEES) is carried

out to more rigorously examine the statistical efficiency

of each case.

Fig. 14. Scenario 3, local estimate based CRLBle ellipses and error

ellipses of estimated target and sensor locations (all 95%).

The NEES for the source localization was examined

for each scenario, using the bearings-only CRLBbo, the

native measurement CRLBnm, and the local estimate

based CRLBle, to provide a statistical confirmation of

the efficiency of the estimator. In each case, the CRLB

was evaluated at the true x. The NEES was calculated

for the following:

(i) the fused position estimation errors using bearings-

only measurements with the bearings-only CRLB,

(ii) the fused position estimation errors using local

estimates with the local estimate based CRLB, and

(iii) the fused position estimation errors using native

measurements with the native measurement CRLB.

The NEES results (with the 95% probability re-

gion based on the chi-square distribution with two de-

grees of freedom and 100 Monte Carlo runs [2], being

[1:63,2:41]) are shown in Figures 15—17. Each scenario

was simulated with multiple levels of angular measure-

ment noise, namely, the standard deviations ¾Á and ¾'
were varied from 10% to 150% of their original value

of 4±. The remaining measurement noise standard devi-
ations remained the same as in the previous simulations.

The NEES results show that each estimation scheme

is statistically efficient, with the exception of the

bearings-only and local estimate based case of Scenario

3, and is “marginally” efficient for the local estimate

based case of Scenario 2. The confidence region for the

NEES assumes that the estimate errors are Gaussian dis-

tributed, which is an approximation in the local estimate

case (see Section 2.2). For the more difficult geometry

of Scenario 3, the bearings-only case loses efficiency for

higher levels of angular measurement noise. Likewise,

at very small levels of measurement noise, the local es-

timate scheme appears inefficient. This is likely due to

the approximations involved in the range variance, and

in the assumption that the range estimation errors are

Gaussian distributed.
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Fig. 15. Scenario 1, NEES for different levels of angular

measurement noise.

Fig. 16. Scenario 2, NEES for different levels of angular

measurement noise.

Fig. 17. Scenario 3, NEES for different levels of angular

measurement noise.

Figures 18—20 show the target position root mean

squared error (RMSE) (coordinate-combined) for Sce-

narios 1—3, along with the CRLB, for the bearings-only,

native measurement, and local estimate cases.

Fig. 18. Scenario 1, target position RMSE for different levels of

angular measurement noise.

Fig. 19. Scenario 2, target position RMSE for different levels of

angular measurement noise.

Figures 18 and 19 show that, over a range of an-

gular measurement noise levels, the favorable geometry

of Scenarios 1 and 2 provides for very little differenti-

ation in the performance of target localization between

the bearings-only and local estimate cases. Figure 20

shows that, for the less favorable geometry of Scenario

3, the inclusion of range estimates provides a significant

increase in the accuracy of target localization. In both

Scenarios 1 and 3, as seen in Figures 18 and 20, the na-

tive measurement case provides significantly improved

target localization accuracy over the local estimate based

case.

It should also be noted that Figure 20 appears to

show the local estimate case outperforming its CRLB

in Scenario 3. The CRLB in the local estimate case is

necessarily approximate due to two factors in particu-

lar: namely, that the local estimates are assumed to have

zero crosscovariances (because the use of approximate

STATISTICAL EFFICIENCY OF TARGET LOCALIZATION FROM ANGLE AND SHOCKWAVE MEASUREMENTS 83



Fig. 20. Scenario 3, target position RMSE for different levels of

angular measurement noise.

crosscovariances can cause instability in the search),

even though the simulations result in non-zero cross-

covariances; and the range errors are assumed Gaus-

sian, which was demonstrated in Section 2.2 to be an

approximation. Additionally, the affect of this approx-

imation is not obvious when there is a more favorable

geometry (e.g., Scenarios 1 and 2, where there are more

(bearings-only) sensors present).

Note that in every case, CRLBnm is always lower

than CRLBle, and indeed the performance of the native

measurements is always better than the local estimates.

This is unsurprising as the local estimates are derived

from the native measurements, and as such, cannot add

any extra information beyond what exists in the native

measurements. A better model for the distribution of

the local estimates is likely needed to approach the

performance of the native measurements.

Figure 21 shows an example run which demon-

strates the reason for setting the crosscovariance terms

of (16) to zero, rather than the (approximate) expres-

sions provided in (17) and (18). Occasionally, when

using these crosscovariance terms, the ILS search will

diverge, whereas, this behavior is not observed when

assuming there is no correlation between the local esti-

mate errors. This divergence is caused by the crossco-

variance terms causing (16) to become ill-conditioned,

which causes difficulty in converging to the global max-

imum of the likelihood function (LF) surface. Note that

in both cases, the local estimates are formed from the

noisy native measurements, so there is indeed a corre-

lation between the local estimate errors. The ILS algo-

rithm must use the latest estimate to calculate the nec-

essary terms of the covariance matrix, however, and it

appears that the algorithm is more likely to diverge for

non-zero crosscovariance terms. In fact, no divergence

was observed in any run (in 3 scenarios, for 15 levels of

Fig. 21. Comparison of ILS iterations with and without

approximate crosscovariance terms (the overlapping square and

triangle represent the initial estimate).

measurement noise, with 100 runs each) when assuming

zero crosscovariance.

Additionally, the different versions of the CRLB can

be compared to gain insights into a particular scenario.

The ratio of the area of the bearings-only CRLBbo el-

lipse to the local estimate based CRLBle ellipse can

be calculated as j(J¡1b )T(J
¡1
y )¡1T j1=2, where (J¡1)T is the

portion of the CRLB that deals with the target localiza-

tion (as opposed to the entire vector x). This is plot-

ted over a two-dimensional (2-D) grid corresponding to

various shooter locations in Figure 22, for sensor loca-

tions identical to Scenario 3. Each point in the 2-D grid

corresponds to the ratio of the CRLB ellipse areas for

a shooter at that location, shooting toward the marked

aimpoint. Figure 22 clearly shows the shooter locations

where the range measurements are most beneficial and

the bearings-only localization will perform particularly

poorly. Figure 23 shows the same results, only this time

the native measurement CRLBnm is compared with the

bearings-only CRLBbo. Figure 23 shows a slightly dif-

ferent aimpoint in order to demonstrate the large dif-

ference in performance that is achieved when the bullet

trajectory passes between different sensors. When the

bullet trajectory passes on the same side of every sensor

(which amounts to every sensor seeing the same shock-

wave DOA ') the performance is not much improved

over either the bearings-only case or the local estimate

based case (this is further demonstrated by the results of

Scenario 2, which corresponds to such a sensor-target

geometry). When the bullet trajectory passes between

sensors (as in Scenario 1 and 3 above), the performance

of the target localization is greatly improved by using

the native measurements.

5. CONCLUSIONS

The CRLB and statistical efficiency were examined

for multiple scenarios of a localization system using

either native measurements or local estimates, where

there are position-dependent noise terms. The system
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Fig. 22. Comparison of local estimate based CRLBle and

bearings-only CRLBbo (j(J¡1b )T(J
¡1
y )¡1

T
j1=2) over a 2-D grid (E-N, in

m) of shooter position (for a fixed aimpoint at ?).

in question is a recently developed shooter localization

scheme using acoustic gunfire detection sensors [9],

[10]. The CRLB was derived for the cases of sensor

nodes which send the following:

(i) bearings only (CRLBbo)

(ii) bearing, range, and bullet trajectory estimates (“lo-

cal estimate” based CRLBle), and

(iii) bearing, shockwave angle, and TDOA measure-

ments (“native measurement” CRLBnm)

When range estimates are passed to the fusion cen-

ter in cases where the sensor-target geometry is favor-

able for angle-only localization, the bearings-only re-

sults (i) closely match the results of (ii), suggesting that

there is little, if any, information contained in the range

measurements in those cases. If the geometry is poor,

however, as in Scenario 3, there is a significant dif-

ference between the bearings-only results (i) and the

local estimate based results (ii). For each of the sce-

narios tested, when the native measurements are passed

to the fusion center (iii), the localization accuracy was

improved, with a significant improvement in Scenarios

1 and 3.

The distribution of the range estimate errors was

also examined in order to highlight the approximation

which is made when assuming the range errors to

be Gaussian distributed. This assumption is likely the

cause for the discrepancy in localization performance

between the local estimate based case (ii) and the native

measurement case (iii).

In each scenario, the NEES shows that the estima-

tion is statistically efficient (with the exception of the

bearings-only case with high measurement noise and

a poor sensor-target geometry). When native measure-

ments are passed to the fusion center, the localization

is performed particularly well for the poor geometry of

Scenario 3 and very closely matches the corresponding

CRLB. The results show both that the estimator used in

this particular acoustic localization system is efficient,

Fig. 23. Comparison of native measurement CRLBnm and

bearings-only CRLBbo (j(J¡1b )T(J
¡1
´ )¡1

T
j1=2) over a 2-D grid (E-N, in

m) of shooter position (for a fixed aimpoint at ?).

and that the CRLB can be used as an accurate means of

performance prediction for such a system (particularly

for the native measurement case).

APPENDIX A, COVARIANCE BETWEEN RANGE AND
ANGULAR MEASUREMENTS

The ith sensor’s range measurement error r̃i can be

approximated (via Taylor series expansion) as

r̃i ¼
c¿̃i

1¡ cos(Ái¡'i)
¡ ri sin(Ái¡'i)(Á̃i¡ '̃i)

1¡ cos(Ái¡'i)
(50)

where ¿̃ , Á̃i, and '̃i are the errors of ¿ , Ái, and 'i,

respectively.

In view of (50), the covariance between the ith

sensor’s range and bearing measurement is

cov(ri,Ái) = E[r̃iÁ̃i]

=¡ ri sin(Ái¡'i)
1¡ cos(Ái¡'i)

¾2Ái (51)

Similarly, the covariance between the ith sensor’s range

and shockwave angle measurement is

cov(ri,!) = E[r̃i'̃i]

=
ri sin(Ái¡'i)
1¡ cos(Ái¡'i)

¾2' (52)

APPENDIX B, PARTIAL DERIVATIVE TERMS FOR
LOCAL ESTIMATE FIM

In order to calculate the @¹(x) terms of (48), the

partial derivatives of (6), (9) and ! are needed. The

partial derivatives of (6) are

@Ái
@Tx

=¡
Ty ¡ Siy
r2i

(53)

@Ái
@Ty

=
Tx¡ Six
r2i

(54)
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@Ái
@!

= 0 (55)

@Ái
@Sx

=
Ty ¡ Siy
r2i

(56)

@Ái
@Sy

=¡Tx¡ Six
r2i

(57)

The partial derivatives of (9) are

@ri
@Tx

=
Tx¡ Six
ri

(58)

@ri
@Ty

=
Ty ¡ Siy
ri

(59)

@ri
@!

= 0 (60)

@ri
@Sx

=¡Tx¡ Six
ri

(61)

@ri
@Sy

=¡
Ty ¡ Siy
ri

(62)

The partial derivatives of ! are straightforward.

The @§(x) terms of (48) require partial derivatives

of (10), (17) and (18).

The partial derivatives of (10) are

@¾2ri
@!

=
2

sin(Ái¡'i)
·
¾2ri +

c2¾2¿ cos(Ái¡'i)
(1¡ cos(Ái¡'i))2

¸

=
2sin(Ái¡'i)
1¡ cos(Ái¡'i)

"
¾2ri ¡

(¾2Á+¾
2
')r

2
i cos(Ái¡'i)

1¡ cos(Ái¡'i)

#
(63)

@¾2ri
@Tx

=¡@Ái
@Tx

@¾2ri
@!

+
2(Tx¡ Six)(¾2Á+¾2') sin2(Ái¡'i)

(1¡ cos(Ái¡'i))2
(64)

@¾2ri
@Ty

=¡@Ái
@Ty

@¾2ri
@!

+
2(Ty ¡ Siy )(¾2Á+¾2') sin2(Ái¡'i)

(1¡ cos(Ái¡'i))2
(65)

@¾2ri
@Six

=¡@¾
2
ri

@Tx
(66)

@¾2ri
@Siy

=¡@¾
2
ri

@Ty
(67)

The partial derivatives of (17) are

@cov(ri,Ái)

@!
=¡ ri¾

2
Á

1¡ cos(Ái¡'i)
(68)

@cov(ri,Ái)

@Tx
=¡@Ái

@Tx

@cov(ri,Ái)

@!
+
@Ái
@Ty

cov(ri,Ái)

(69)

@cov(ri,Ái)

@Ty
=¡@Ái

@Ty

@cov(ri,Ái)

@!
¡ @Ái
@Tx

cov(ri,Ái)

(70)

@cov(ri,Ái)

@Sx
=¡@cov(ri,Ái)

@Tx
(71)

@cov(ri,Ái)

@Sy
=¡@cov(ri,Ái)

@Ty
(72)

The partial derivatives of (18) are

@cov(ri,!i)

@!
=

ri¾
2
'

1¡ cos(Ái¡'i)
(73)

@cov(ri,!i)

@Tx
=¡@Ái

@Tx

@cov(ri,!i)

@!
+
@Ái
@Ty

cov(ri,!i)

(74)

@cov(ri,!i)

@Ty
=¡@Ái

@Ty

@cov(ri,!i)

@!
¡ @Ái
@Tx

cov(ri,!i)

(75)

@cov(ri,!i)

@Sx
=¡@cov(ri,!i)

@Tx
(76)

@cov(ri,!i)

@Sy
=¡@cov(ri,!i)

@Ty
(77)

The @§(x) terms of (48) can now be constructed from

(63)—(77).
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1. INTRODUCTION

Tracking cars, ships, or airplanes may involve es-

timation of their current orientation or heading. Fur-

thermore, many applications in the area of robotics or

augmented reality depend on reliable estimation of the

pose of certain objects. When estimating the orientation

of two-way roads or relative angles of two unlabeled

targets, the estimation task can be thought of as estima-

tion of a directionless orientation. Thus, the estimation

task reduces to estimating the alignment of an axis, i.e.,

estimation with 180± symmetry.
All these estimation problems share the need for

processing angular or directional data, which differs in

many ways from the linear setting. First, periodicity of

the underlying manifold needs to be taken into account.

Second, directional quantities do not lie in a vector

space. Thus, there is no equivalent to a linear model, as

there are no linear mappings. These problems become

particularly significant for high uncertainties, e.g., as a

result of poor initialization, inaccurate sensors such as

magnetometers, or sparse measurements causing a large

integration error.

In many applications, even simple estimation prob-

lems involving angular data are often considered as lin-

ear or nonlinear estimation problems on linear domains

and handled with techniques such as the Kalman Filter

[19], the Extended Kalman Filter (EKF), or the Un-

scented Kalman Filter (UKF) [17]. In a circular set-

ting, most approaches to filtering suffer from assuming

a Gaussian probability density at a certain point. They

fail to take into account the periodic nature of the un-

derlying domain and assume a (linear) vector space in-

stead of a curved manifold. This shortcoming can cause

poor results, in particular when the angular uncertainty

is large. In certain cases, the filters may even diverge.

Fig. 1. Bingham probability density function with M= I2£2 and
Z= diag(¡8,0) as a 3D plot. This corresponds to a standard

deviation of 16±.

Strategies to avoid these problems in an angular set-

ting involve an “intelligent” repositioning of measure-

ments (typically by multiples of ¼) or even discarding

certain undesired measurements. Sometimes, nonlinear
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equality constraints have to be fulfilled, for example,

unit length of a vector, which makes it necessary to in-

flate the covariance [16]. There are also approaches that

use operators on a manifold to provide a local approx-

imation of a vector space [13]. While these approaches

yield reasonable results in some circumstances, they

still suffer from ignoring the true geometry of circular

data within their probabilistic models, which are usually

based on assuming normally distributed noise. This as-

sumption is often motivated by the Central Limit The-

orem, i.e., the limit distribution of a normalized sum of

i.i.d. random variables with finite variance is normally

distributed [42]. However, this motivation does not ap-

ply to uncertain data from a periodic domain. Thus,

choosing a circular distribution for describing uncer-

tainty can offer better results.

In this paper, we consider the use of the Bingham

distribution [5] (see Fig. 1) for recursive estimation. The

Bingham distribution is defined on the hypersphere of

arbitrary dimension. Here, we focus on the cases of

two- and four-dimensional Bingham distributed random

vectors and apply our results to angular estimation with

180± symmetry and estimating orientation in 3D space.
Estimating orientation is achieved by using unit

quaternions to represent the full 3D orientation of an

object. It is well known that quaternions avoid the

singularities present in other representations such as

Euler angles [25]. Their only downsides are the fact

that they must remain normalized and the property that

the quaternions q and ¡q represent the same orientation.
Both of these issues can elegantly be resolved by use

of the Bingham distribution, since it is by definition

restricted to the hypersphere and is 180± symmetric.
This work extends our results on Bingham filtering

[32] and the first-order quaternion Bingham filter pro-

posed in [11] in several ways. First of all, we present a

relationship between the two-dimensional Bingham dis-

tribution and the von Mises distribution and we show

how to exploit it to obtain a more efficient way of com-

puting the normalization constant and its derivatives.

Furthermore, we show a relation to the von Mises-Fisher

distribution, which can be used to speed up parameter

estimation and moment matching procedures in an im-

portant special case. In that situation, we avoid the need

for precomputed lookup tables. This is of considerable

interest because the computation of the normalization

constant plays a crucial role for the performance of the

Bingham filter. Finally, we perform a more thorough

evaluation of both two- and four-dimensional scenarios

using different types of noise distributions and different

degrees of uncertainty.

This paper is structured as follows. First, we present

an overview of previous work in the area of directional

statistics and angular estimation (Sec. 2). Then, we

introduce our key idea in Sec. 3. In Sec. 4, we give

a detailed introduction to the Bingham distribution and

in Sec. 5, we derive the necessary operations needed

to create a recursive Bingham filter. Based on these

prerequisites, we introduce our filter in Sec. 6. We

have carried out an evaluation in simulations, which is

presented in Sec. 7. Finally, we conclude this work in

Sec. 8.

2. RELATED WORK

Directional statistics is a subdiscipline of statistics,

which focuses on dealing with directional data. That is,

it considers random variables which are constrained to

lie on manifolds (for example the circle or the sphere)

rather than random variables located in d-dimensional

vector spaces (typically Rd). Classical results in direc-
tional statistics are summed up in the books by Mardia

and Jupp [37] and by Jammalamadaka and Sengupta

[15]. Probability distributions on the unit sphere are de-

scribed in more detail in [6].

There is a broad range of research investigating

the two-dimensional orientation estimation. A recursive

filter based on the von Mises distribution for estimating

the orientation on the SO(2) was presented in [3], [45].

It has been applied to GPS phase estimation problems

[44]. Furthermore, a nonlinear filter based on von Mises

and wrapped normal distributions was presented in [30],

[31]. This filter takes advantage of the fact that wrapped

normal distributions are closed under convolution and

the fact that von Mises distributions are closed under

Bayesian inference. This filter has also been applied to

constrained object tracking [29].

In 1974, Bingham published the special case for

three dimensions of his distribution in [5], which he

originally developed in his PhD thesis [4]. Further work

on the Bingham distribution has been done by Kent

[21], [22] as well as Jupp and Mardia [18], [35]. So

far, there have been a few applications of the Bingham

distribution, for example in geology [36], [28], [33].

Antone published some results on a maximum like-

lihood approach for Bingham-based pose estimation in

2001 [2]. However, this method was limited to offline

applications. In 2011, Glover used the Bingham distri-

bution for a Monte Carlo based pose estimation [10],

which he later generalized into a quaternion-based re-

cursive filter [11] and applied it to tracking the spin of a

ping pong ball [12]. Glover also released a library called

libbingham [9] that includes C and MATLAB imple-
mentations of some of the methods discussed in Sec. 4.

It should be noted that our implementation is not based

on libbingham. Our implementation calculates the nor-
malization constant online, whereas libbingham relies
on values that have been precomputed offline. In the

case of a two-dimensional Bingham-distributed random

vector, the computation of the normalization constant of

the corresponding probability density function reduces

to the evaluation of Bessel functions. In higher dimen-

sions, a saddlepoint approximation can be used [26].

In 2013, we proposed a recursive Bingham filter for

2D axis estimation [32], which serves as a foundation

for this paper. We also published a nonlinear general-

ization to the quaternion case in [8].
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3. KEY IDEA OF THE BINGHAM FILTER

In this paper, we derive a recursive filter based on

the Bingham distribution for two- and four-dimensional

random vectors of unit length, because they can be

used to represent orientations on the plane and in three-

dimensional space. Rather than relying on approxima-

tions involving the Gaussian distribution, we chose to

represent all occurring probability densities as Bingham

distributions. The Bingham distribution is defined on

the hypersphere and is antipodally symmetric. Our use

of the Bingham distribution is motivated by its conve-

nient representation of hyperspherical random vectors,

its relationship to the Gaussian distribution, and a max-

imum entropy property [35]. Although we restrict our-

selves to the two- and four-dimensional cases in this

paper, we would like to emphasize that some of the

presented methods can easily be generalized to higher

dimensions.

In order to derive a recursive filter, we need to

be able to perform two operations. First, we need to

calculate the predicted state at the next time step from

the current state and the system noise affecting the

state. In a recursive estimation problem in Rd with
additive noise, this involves a convolution with the

noise density. We provide a suitable analogue on the

hypersphere in order to account for the composition of

uncertain rotations. Since Bingham distributions are not

closed under this operation, we present an approximate

solution to this problem based on matching covariance

matrices.

Second, we need to perform a Bayes update. As

usual, this requires the multiplication of the prior density

with the likelihood density. We prove that Bingham

distributions are closed under multiplication and show

how to obtain the posterior density.

4. BINGHAM DISTRIBUTION

In this section, we lay out the Bingham distribution

and the fundamental operations that we use to develop

the filter and discuss its relation to several other distri-

butions. The Bingham distribution on the hypersphere

naturally appears when a d-dimensional normal random

vector x with E(x) = 0 is conditioned on kxk= 1 [26].
One of the main challenges when dealing with the Bing-

ham distribution is the calculation of its normalization

constant, so we discuss this issue in some detail.

4.1. Probability Density Function

As a consequence of the motivation above, it can

be seen that the Bingham probability density function

(pdf) looks exactly like its Gaussian counterpart except

for the normalization constant. Furthermore, the param-

eter matrix of the Bingham distribution appearing in the

exponential (which is the inverse covariance matrix in

the Gaussian case) is usually decomposed into an or-

thogonal and a diagonal matrix, which yields an intu-

Fig. 2. Bingham probability density function with M= I2£2 for
different values of Z= diag(z1,0) and x= (cos(μ),sin(μ))

T. These

values for z1 correspond to standard deviations of approximately 6
±,

16±, and 36±, respectively.

itive interpretation of the matrices. This results in the

following definition.

DEFINITION 1 Let Sd¡1 = fx 2 Rd : kxk= 1g ½ Rd be
the unit hypersphere in Rd. The probability density
function (pdf)

f : Sd¡1!R (1)

of a Bingham distribution [5] is given by

f(x) =
1

F
¢ exp(xTMZMTx), (2)

where M 2Rd£d is an orthogonal matrix1 describing
the orientation, Z= diag(z1, : : : zd¡1,0) 2Rd£d with z1 ·
¢¢ ¢ · zd¡1 · 0 is the concentration matrix, and F is a

normalization constant.

As Bingham showed [5], adding a multiple of the

identity matrix Id£d to Z does not change the distribu-
tion. Thus, we conveniently force the last entry of Z to

be zero. Because it is possible to swap columns of M
and the according diagonal entries in Z without chang-
ing the distribution, we can enforce z1 · ¢¢ ¢ · zd¡1.
The probability density function is antipodally sym-

metric, i.e., f(x) = f(¡x) holds for all x 2 Sd¡1. Con-
sequently, the Bingham distribution is invariant to ro-

tations by 180±. Examples for two dimensions (d = 2)
are shown in Fig. 1 and Fig. 2. Examples for three di-

mensions (d = 3) are shown in Fig. 3. The relation of

the Bingham distribution to certain other distributions

is discussed the appendix.

It deserves to mention that some authors use slightly

different parameterizations of the Bingham distribution.

In particular, the rightmost column of M is sometimes

omitted [11], because it is, up to sign, uniquely deter-

mined by being a unit vector that is orthogonal to the

1An orthogonal matrix M fulfills the equation MMT =MTM= Id£d .
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Fig. 3. Bingham pdf with M= I3£3 for values of Z= diag(¡1,¡1,0), Z= diag(¡5,¡1,0), and Z= diag(¡50,¡1,0).

other columns ofM. As a result of antipodal symmetry,

the sign can safely be ignored. Still, we prefer to include

the entire matrix M because this representation allows

us to obtain the mode of the distribution very easily by

taking the last column of M.

4.2. Normalization Constant

The normalization constant of the Bingham distri-

bution is difficult to calculate, which constitutes one of

the most significant challenges when dealing with the

Bingham distribution. Because

F =

Z
Sd¡1

exp(xTMZMTx)dx (3)

=

Z
Sd¡1

exp(xTZx)dx, (4)

the normalization constant does not depend onM. It can

be calculated with the help of the hypergeometric func-

tion of a matrix argument [14], [23], [40] according to

F := jSd¡1j ¢ 1F1
μ
1

2
,
d

2
,Z

¶
, (5)

where

jSd¡1j=
2 ¢¼n=2
¡ (N=2)

(6)

is the surface area of the d-sphere and 1F1(¢, ¢, ¢) is the
hypergeometric function of matrix argument. In the d-

dimensional case, this reduces to

F = jSd¡1j ¢ 1F1

0BBBBB@
1

2
,
d

2
,

2666664
z1 0 ¢ ¢ ¢ 0

0
. . .

. . . 0

...
. . . zd¡1 0

0 ¢ ¢ ¢ 0 0

3777775

1CCCCCA (7)

= jSd¡1j ¢ 1F1

0BB@12 , d2 ,
2664
z1 ¢ ¢ ¢ 0

...
. . .

...

0 ¢ ¢ ¢ zd¡1

3775
1CCA , (8)

so it is sufficient to compute the hypergeometric func-

tion a diagonal matrix of size (d¡ 1)£ (d¡ 1). If d = 2,
this is a hypergeometric function of a scalar argument,

which is described in [1]. We will later show how to

further reduce this to a Bessel function for d = 2.

A number of algorithms for computing the hyper-

geometric function have been proposed, for example

saddle point-approximations [26], a series of Jack func-

tions [23], and holonomic gradient descent [24]. Glover

has suggested the formula [11, (8)]

F = 2
p
¼

1X
®1=0

¢ ¢ ¢
1X

®d¡1=0

Qd¡1
i=1 ¡

μ
®i+

1

2

¶
z®ii
®i!

¡

μ
d

2
+
Pd¡1
i=1 ®i

¶ (9)

which should only be evaluated for positive z1, : : : ,zd¡1
to avoid a numerically unstable alternating series.2 Be-

cause of the computational complexity involved, lib-
bingham [9] provides a precomputed lookup table and
linear interpolation is used at runtime to obtain an ap-

proximate value. The technique of precomputed tables

has previously been used by Mardia et al. for the max-

imum likelihood estimate, which involves the normal-

ization constant [38].

To allow for online calculation of the normalization

constant, we use Bessel functions for d = 2 and the

saddle-point approximation by Kume et al. [26] for d >

2. The derivatives of the normalization constant, which

are required for the maximum likelihood estimation

procedure, can be calculated according to [27].

5. OPERATIONS ON THE BINGHAM DISTRIBUTION

In this section, we derive the formulas for multiplica-

tion of two Bingham probability density functions. Fur-

thermore, we will present a method for computing the

composition of two Bingham-distributed random vari-

ables, which is analogous to the addition of real random

variables.

5.1. Multiplication

For two given Bingham densities, we want to obtain

their product. This product is used for Bayesian infer-

ence involving Bingham densities. The result presented

below yields a convenient way to calculate the product

of Bingham densities.

2This can easily be achieved by adding a multiple of the identity

matrix to the concentration matrix Z.
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LEMMA 1 Bingham densities are closed under multipli-

cation with renormalization.

PROOF Consider two Bingham densities

f1(x) = F1 ¢ exp(xTM1Z1M
T
1x) (10)

and

f2(x) = F2 ¢ exp(xTM2Z2M
T
2x): (11)

Then

f1(x) ¢f2(x) = F1F2 ¢ exp(xT(M1Z1M
T
1 +M2Z2M

T
2| {z }

=:C

)x)

/ F ¢ exp(xTMZMTx) (12)

with F as the new normalization constant after renor-

malization, M are the unit eigenvectors of C, D has the

eigenvalues of C on the diagonal (sorted in ascending

order) and Z=D¡DddId£d where Ddd refers to the bot-
tom right entry of D, i.e., the largest eigenvalue.

5.2. Estimation of Bingham Distribution Parameters

Estimating parameters for the Bingham distribution

is not only motivated by the need to estimate distribu-

tion parameters of the process noise. It also plays a cru-

cial role in the prediction process when computing the

composition of two Bingham random vectors and reap-

proximating a Bingham distribution. This procedure is

based on matching covariance matrices. Be aware that

although the Bingham distribution is only defined on

Sd¡1, we can still compute the covariance matrix of a
Bingham-distributed random vector x 2 Sd¡1 according
to S= E(x ¢ xT) in Rd. Thus, we will present both the
computation of the covariance matrix of a Bingham dis-

tributed random vector and the computation of parame-

ters for a Bingham distribution with a given covariance

(which could correspond to an arbitrary distribution on

the hypersphere).

The maximum-likelihood estimate for the parame-

ters (M,Z) of a Bingham distribution can be obtained

from given or empirical moments (in the case of given

samples) as described in [5]. M can be obtained as the

matrix of eigenvectors of the covariance S with eigen-

values !1 · ¢¢ ¢ · !d. In other words,M can be found as

the eigendecomposition of

S=M ¢ diag(!1, : : : ,!d) ¢MT: (13)

To calculate Z, the equations

@

@zi
1F1

μ
1

2
,1,diag(z1, : : : ,zd)

¶
1F1

μ
1

2
,1,diag(z1, : : : ,zd)

¶ = !i, i= 1, : : : ,d (14)

have to be solved under the constraint zd = 0, which

is justified by the argumentation above and used to

simplify the computation. The actual computation is

performed numerically. In our case, the fsolve routine

from Matlab was used, which utilizes a trust region

method for solving nonlinear equations.

Conversely, for a given Bingham(M,Z)-distributed
random vector x 2 Sd¡1, the covariance matrix can be
calculated according to

E(x ¢ xT) =M ¢diag(!1, : : : ,!d) ¢MT (15)

=M ¢diag
μ
1

F

@F

@z1
, : : : ,

1

F

@F

@zd

¶
¢MT: (16)

Thus, the underlying distribution parameters of a Bing-

ham distributed random vector are uniquely defined by

its covariance matrix and vice versa. However, it is im-

portant to note that this covariance matrix is usually not

the same as the covariance matrix of a Gaussian random

vector which was conditioned to one in order to obtain

the Bingham distribution.

REMARK 1 For d = 2, there is an interesting relation of

the covariance matrix to the circular (or trigonometric)

moments

mn =

Z 2¼

0

exp(inx)f(x)dx 2C, i2 =¡1 (17)

that are commonly used for circular distributions. A

Bingham distribution with M= I2£2 and x= [cos(μ),
sin(μ)]T has covariance

S=

·
!1 0

0 !2

¸
=

·
E(x21) 0

0 E(x22)

¸
(18)

=

·
E(cos(μ)2) 0

0 E(sin(μ)2)

¸
, (19)

i.e., !1 = Rem2 and !2 = Imm2.

5.3. Composition

Now, we want to derive the composition of Bingham

distributed random vectors, which is the directional ana-

logue to addition of random vectors in a linear space.

Thus, the density of the random vector resulting from

this operation is the directional analogue to the convolu-

tion in linear space. First, we define a composition of in-

dividual points on the hypersphere Sd¡1, which we then
use to derive the composition of Bingham distributed

random vectors. We consider a composition function

© : Sd¡1£ Sd¡1! Sd¡1, (20)

where © has to be compatible with 180± degree sym-
metry, i.e.,

x© y =§((¡x)© y) (21)

=§(x© (¡y)) (22)

=§((¡x)© (¡y)) (23)

for all x,y 2 Sd¡1. Furthermore, we require the quotient
(Sd¡1=f§1g,©) to have an algebraic group structure.
This guarantees associativity, the existence of an identity

element, and the existence of inverse elements.
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REMARK 2 It has been shown that the only hyper-

spheres admitting a topological group structure are S0,

S1, and S3 [39]. Because S0 only consists of two ele-

ments, S1 and S3 (i.e., d = 2 and d = 4) are the only

two relevant hyperspheres. This structure is necessary

to obtain a suitable composition operation.

For this reason, we only consider the cases d = 2

and d = 4 from now on. These two cases are of practi-

cal interest as they conveniently allow the representation

of two-dimensional axes and three-dimensional orienta-

tions via quaternions.

5.3.1. Two-dimensional case:
For d = 2, we interpret S1 ½ R2 as elements in C

of unit length, where the first dimension is the real

part and the second dimension the imaginary part. In

this interpretation, the Bingham distributions can be

understood as a distribution on a subset of the complex

plane, namely the unit circle.

DEFINITION 2 For d = 2, the composition function ©
is defined to be complex multiplication, i.e.,·

x1

x2

¸
©
·
y1

y2

¸
=

·
x1y1¡ x2y2
x1y2 + x2y1

¸
(24)

analogous to

(x1 + ix2) ¢ (y1 + iy2) = (x1y1¡ x2y2)
+ i(x1y2 + x2y1): (25)

Since we only consider unit vectors, the composition

© is equivalent to adding the angles of both complex

numbers when they are represented in polar form. The

identity element is §1 and the inverse element for

(x1,x2)
T is the complex conjugate §(x1,¡x2)T.

Unfortunately, the Bingham distribution is not closed

under this kind of composition. That is, the resulting

random vector is no longer Bingham distributed (see

Lemma 3). Thus, we propose a technique to approx-

imate the composed random vector with a Bingham

distribution. The composition of two Bingham distribu-

tions fA and fB is calculated by considering the compo-

sition of their covariance matrices A,B and estimating

the parameters of fC based on the resulting covariance

matrix. Composition of covariance matrices can be de-

rived from the composition of random vectors. Note that

since covariance matrices are always symmetric, we can

ignore the bottom left entry in our notation and mark it

with an asterisk.

LEMMA 2 Let fA and fB be Bingham distributions with

covariance matrices

A=

·
a11 a12

¤ a22

¸
and B=

·
b11 b12

¤ b22

¸
, (26)

respectively. Let x,y 2 S1 ½ R2 be independent random
vectors distributed according to fA and fB. Then the

covariance

C=

·
c11 c12

¤ c22

¸
:= Cov(x© y) (27)

of the composition is given by

c11 = a11b11¡ 2a12b12 + a22b22, (28)

c12 = a11b12¡ a12b22 + a12b11¡ a22b12, (29)

c22 = a11b22 +2a12b12 + a22b11: (30)

PROOF See Appendix E.

Based on C, the maximum likelihood estimate is

used to obtain the parameters M and Z of the uniquely

defined Bingham distribution with covariance C as de-

scribed above. This computation can be done in an ef-

ficient way, even though the solution of the equation

involving the hypergeometric function is not given in

closed form. This does not present a limitation to the

proposed algorithm, because there are many efficient

ways for the computation of the confluent hypergeo-

metric function of a scalar argument [34], [41].

5.3.2. Four-dimensional case:
In the four-dimensional case (d = 4), we interpret

S3 ½ R4 as unit quaternions in H [25]. A quaternion q=
[q1,q2,q3,q4]

T consists of the real part q1 and imaginary

parts q2,q3,q4. It is written as

q= q1 + q2 i+ q3 j+ q4 k, (31)

where i2 = j2 = k2 = ijk =¡1 are the imaginary units.
A rotation in SO(3) with rotation axis [v1,v2,v3]

T 2 S2
and rotation angle Á 2 [0,2¼) can be represented as the
quaternion

q= cos(Á=2)+ sin(Á=2)(v1 i+ v2 j+ v3 k) (32)

and applied to a vector w = [w1,w2,w3] 2 R3 accord-
ing to

wrot = q(0+w1 i+w2 j+w3 k)q̄: (33)

Here, q̄= q1¡ q2i¡ q3j¡ q4k denotes the conjugate of
q and wrot quaternion containing the rotated vector

encoded as the factors of the quaternion basis elements

i, j, and k.

DEFINITION 3 For d = 4, the composition function ©
is defined to be quaternion multiplication, i.e.,26664

x1

x2

x3

x4

37775©
26664
y1

y2

y3

y4

37775=
26664
x1y1¡ x2y2¡ x3y3¡ x4y4
x1y2 + x2y1 + x3y4¡ x4y3
x1y3¡ x2y4 + x3y1 + x4y2
x1y4 + x2y3¡ x3y2 + x4y1

37775 , (34)

sometimes also referred to as Hamilton product.
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This definition corresponds to the composition of

rotations. The identity element is §[1,0,0,0]T and the
inverse element is given by the quaternion conjugate as

given above.

LEMMA 3 For all nontrivial hyperspheres that allow a

topological group structure (d = 2 and d = 4, see Re-

mark 2), the Bingham distribution is not closed under

composition of random variables.

PROOF We prove this Lemma by computing the true

distribution of the (Hamilton-) product © of two Bing-
ham distributed random vectors x» fx(¢) and y » fy(¢)
with respective parameter matricesMx,My, Zx, and Zy.

The true density f(¢) of x© y can be expressed in terms
of the densities of x and y by

f(z) =

Z
Sd¡1

fx(z© a¡1)fy(a)da: (35)

Inversion of unit quaternions and complex numbers

of unit length can both be obtained by conjugation.

Furthermore, complex numbers and quaternions can

both be represented by matrices. This can be used to

construct a matrix Qz such that z© a¡1 =Qza. Thus,
we obtain

f(z) =

Z
Sd¡1

fx(Qza)fy(a)da (36)

/
Z
Sd¡1

exp(aTQTzMxZxM
T
xQza+ a

TMyZyM
T
y a)da

(37)

/
Z
Sd¡1

exp(aT(QTzMxZxM
T
xQz +MyZyM

T
y )a)da:

Computation of the integral yields a rescaled hypergeo-

metric function of matrix argument. Therefore, the ran-

dom variable x© y does not follow a Bingham distribu-

tion.

LEMMA 4 Let fA and fB be Bingham distributions with

covariance matrices

A=

26664
a11 a12 a13 a14

¤ a22 a23 a24

¤ ¤ a33 a34

¤ ¤ ¤ a44

37775 ,

B=

26664
b11 b12 b13 b14

¤ b22 b23 b24

¤ ¤ b33 b34

¤ ¤ ¤ b44

37775 ,
respectively. Let x,y 2 S3 ½ R4 be independent random
vectors distributed according to fA and fB. Then the

covariance matrix

C=

26664
c11 c12 c13 c14

¤ c22 c23 c24

¤ ¤ c33 c34

¤ ¤ ¤ c44

37775=Cov(x© y) (38)

of the composition is given by

cij = E((x© y)i ¢ (x© y)j), i,j = 1, : : : ,4: (39)

PROOF Analogous to Lemma 2. The complete formula

for cij is given in [11, A.9.2].

6. FILTER IMPLEMENTATION

The techniques presented in the preceding section

can be applied to derive a recursive filter based on the

Bingham distribution. The system model is given by

xk+1 = xk ©wk, (40)

where wk is Bingham-distributed noise. The measure-

ment model is given by

zk = xk © vk, (41)

where vk is Bingham-distributed noise and xk is an

uncertain Bingham-distributed system state. Intuitively,

this means that both system and measurement model

are the identity disturbed by Bingham-distributed noise.

Note that the modes of the distributions of wk and

vk can be chosen to include a constant offset. This

can be thought of as a directional equivalent to non-

zero noise in the linear setting. For example, the mode

of wk can be chosen such that it represents a known

angular velocity or a given control input. Alternatively,

to avoid dealing with nonzero-mean noise distributions,

a rotation may be applied to xk first and zero-mean noise

added subsequently.

The predicted and estimated distributions at time k

are described by their parameter matrices (M
p
k ,Z

p
k ) and

(Me
k,Z

e
k), respectively. The noise distributions at time k

are described by (Mw
k ,Z

w
k ) and (M

v
k,Z

v
k).

6.1. Prediction Step

The prediction can be calculated with the Chapman-

Kolmogorov-equation

fp(xk+1) (42)

=

Z
Sd¡1

f(xk+1 j xk)fe(xk)dxk (43)

=

Z
Sd¡1

Z
Sd¡1

f(xk+1,wk j xk)dwkfe(xk)dxk (44)

=

Z
Sd¡1

Z
Sd¡1

f(xk+1 j wk,xk)fw(wk)dwkfe(xk)dxk
(45)

=

Z
Sd¡1

Z
Sd¡1

±(wk ¡ (x¡1k © xk+1))fw(wk)dwkfe(xk)dxk

=

Z
Sd¡1

fw(x
¡1
k © xk+1)fe(xk)dxk: (46)

This yields

(M
p
k+1,Z

p
k+1) = composition((M

e
k,Z

e
k), (M

w
k ,Z

w
k )), (47)
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which uses the previously introduced composition op-

eration to disturb the estimate with the system noise.

ALGORITHM 1 Algorithm for prediction step.

Input: estimate Me
k,Z

e
k, noise M

w
k ,Z

w
k

Output: prediction M
p
k+1,Z

p
k+1

/* obtain covariance matrices A,B */

AÃMe
k ¢ diag

μ
1

F

@F

@z1
, : : : ,

1

F

@F

@zd

¶
¢ (Me

k)
T;

BÃMw
k ¢ diag

μ
1

F

@F

@z1
, : : : ,

1

F

@F

@zd

¶
¢ (Mw

k )
T;

/* obtain C with to Lemma 2 or 4 */
cij Ã E((x© y)i ¢ (x© y)j), i,j = 1, : : : ,d;
C= (cij)ij ;

/* obtain Mp
k+1,Z

p
k+1 based on C */

M
p
k+1,Z

p
k+1ÃMLE(C);

6.2. Measurement Update

Given a measurement ẑk, we can calculate the up-

dated density f̂ of xk given zk from the density fv of vk
and the prior density fx of xk. This is performed using

the transformation theorem for densities and Bayes’ rule

f̂(a)/ fv(a¡1© ẑ) ¢fx(a): (48)

First, we make use of the fact that negation corresponds

to conjugation for quaternions and complex numbers

of unit length. Thus, we have a¡1© ẑ =D(ẑ¡1© a) with
D= diag(1,¡1) for d = 2 and D= diag(1,¡1,¡1,¡1).
As in our proof of Lemma 7, we can use a matrix

representation Q
ẑ
¡1 of ẑ

¡1
such that ẑ

¡1© a=Q
ẑ
¡1a.

Thus, we obtain

fv(a
¡1© ẑ) = fv(D ¢Qẑ¡1a): (49)

This yields

fv(D ¢Qẑ¡1 ¢ a) (50)

/ exp(aTQT
ẑ
¡1D

TMv
kZ

v
k(M

v
k)
TDQ

ẑ
¡1a) (51)

= exp(aTQẑDM
v
kZ

v
k(M

v
k)
TDQ

ẑ
¡1a): (52)

The last identity is due to DT =D and the fact that

the transpose of the usual matrix representations of

complex numbers and quaternions corresponds to the

representation of their conjugates.

Finally, the parameters of the resulting Bingham

distribution are obtained by

(Me
k,Z

e
k) = multiply((M,Z

v
k), (M

p
k ,Z

p
k )) (53)

with M= (ẑ© (DMv
k)), where © is evaluated for each

column of DMv
k and “multiply” denotes the procedure

outlined in Sec. 5.1. This operation can be performed

solely on the Bingham parameters and does not involve

the calculation of normalization constants (see Algo-

rithm 2).

ALGORITHM 2 Algorithm for update step.

Input: prediction M
p
k ,Z

p
k , noise M

v
k,Z

v
k,

measurement ẑk
Output: estimate Me

k,Z
e
k

/* rotate noise according to measurement */
MÃ ẑ© (DMv

k);

/* multiply with prior distribution */
(Me

k,Z
e
k)Ãmultiply((M,Zvk)), (M

p
k ,Z

p
k ));

7. EVALUATION

The proposed filter was evaluated in simulations for

both the 2D and 4D cases. In this section, all angles are

given in radians unless specified differently.

For comparison, we implemented modified Kalman

filters with two- and four-dimensional state vectors [19].

In order to deal with axial estimates, we introduce two

modifications:

1) We mirror the estimate ẑÃ¡ẑ if the angle between
prediction and measurement 6 (xpk , ẑ)> ¼=2.

2) We normalize the estimate xek after each update step

xekÃ (xek=kxekk).
It should be noted that in two-dimensional scenarios,

a comparison to a Kalman filter with a scalar state is

also possible. We previously performed this simulation

in [32] and showed that the Bingham filter is superior

to Kalman filter with scalar state in the considered

scenario.

7.1. Two-Dimensional Case

In our example, we consider the estimation of an

axis in robotics. This could be the axis of a symmetric

rotor blade or any robotic joint with 180± symmetry. We
use the initial estimate with mode (0,1)T

Me
0 =

μ
1 0

0 1

¶
, Ze0 =

μ¡1 0

0 0

¶
, (54)

the system noise with mode (1,0)T

Mw
k =

μ
0 1

1 0

¶
, Zwk =

μ¡200 0

0 0

¶
, (55)

and the measurement noise with mode (1,0)T

Mv
k =

μ
0 1

1 0

¶
, Zvk =

μ¡2 0

0 0

¶
: (56)

The true initial state is given by (1,0)T, i.e., the initial

estimate with mode (0,1)T is very poor.

To calculate the covariance matrices for the Kalman

filter we fit a Gaussian to one of the two Bingham

modes by means of numerical integration, i.e.,

C =

Z ®m+¼=2

®m¡¼=2
f([cos(Á),sin(Á)]T) (57)

¢
·
(cos(Á)¡m1)2 (cos(Á)¡m1)(sin(Á)¡m2)

¤ (sin(Á)¡m2)2
¸
dÁ,
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Fig. 4. RMSE from 100 Monte Carlo runs.

Fig. 5. Average error over time from 100 Monte Carlo runs.

where (m1,m2)
T is a mode of the Bingham distribution

and ®m = atan2(m2,m1). The original Bingham distribu-

tion and the resulting Gaussian are illustrated in Fig. 6.

We obtain the parameters

Ce0 =

·
3:8£ 10¡1 0

0 1:5£10¡1

¸
, (58)

Cwk =

·
4:7£ 10¡6 0

0 2:5£ 10¡3
¸
, (59)

Cvk =

·
8:8£ 10¡2 0

0 2:8£10¡1
¸
, (60)

which is equivalent to angular standard deviations of

43:9± for the first time step, 2:9± for the system noise

and 36:3± for the measurement noise.

7.2. Four-Dimensional Case

For the quaternion case, we use the initial estimate

with mode (0,0,0,1)T

Me
0 = I4£4, Ze0 = diag(¡1,¡1,¡1,0), (61)

the system noise with mode (1,0,0,0)T

Mw
k =

0BBB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1CCCA , (62)

Zwk = diag(¡200,¡200,¡2,0), (63)

and the measurement noise with mode (1,0,0,0)T

Mv
k =

0BBB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1CCCA , (64)

Zvk = diag(¡500,¡500,¡500,0): (65)

Fig. 6. The Bingham density with parameters Mv
k
,Zv
k
(on the

circle) and a Gaussian (in the plane) fitted to one of the modes with

the mean located at the mode and covariance computed according

to (57).

The true initial state is (0,1,0,0)T, i.e., the initial esti-
mate with mode (0,0,0,1)T is very poor. It should be
noted that the system noise is not isotropic, because the
uncertainty is significantly higher in the third dimension
than in the first two.
We converted the Bingham noise parameters to

Gaussians analogous to the two-dimensional case.

7.3. Results

We simulate the system for a duration of kmax = 100
time steps. For evaluation, we consider the angular
RMSE given by vuut 1

kmax

kmaxX
k=1

(ek)
2 (66)

with angular error

ek =min( 6 (x
true
k ,mode(Me

k)), (67)

¼¡ 6 (xtruek ,mode(Me
k)) (68)
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at time step k. Obviously, 0· ek · ¼=2 holds, which is
consistent with our assumption of 180± symmetry. This
error measure can be used in the two- and the four-

dimensional setting. As we have shown in [8], the angle

between two quaternions in four-dimensional space is

proportional to the angle of the corresponding rotation

between the two orientations in three dimensions, so ek
is a reasonable measure for quaternions.

The presented results are based on 100 Monte Carlo

runs. Even though our filter is computationally more

demanding than a Kalman filter, it is still fast enough

for real-time applications. On a standard laptop with

an Intel Core i7-2640M CPU, our non-optimized im-

plementation in MATLAB needs approximately 8 ms

for one time step (prediction and update) in the two-

dimensional case. In the four-dimensional case, we im-

plemented the hypergeometric function in C, but the

maximum likelihood estimation is written in MATLAB.

The calculations fore one time step require 13 ms on our

laptop.

We consider two different types of noise, Bingham

and Gaussian. Even though Bingham distributed noise

may be a more realistic assumption in a circular setting,

we do not want to give the proposed filter an unfair

advantage by comparing it to a filter with an incorrect

noise assumption. In the cases of Gaussian noise, we

obtain the parameters of the Gaussian as described in

(57) and convert the resulting Gaussians back to Bing-

ham distributions to account for any information that

was lost in the conversion from Bingham to Gaussian.

The results for all considered scenarios are depicted

in Fig. 4 and Fig. 5. It can be seen that the proposed

filter outperforms the Kalman filter in all considered

scenarios. Particularly, it outperforms the Kalman filter

even if Gaussian noise is used. This is due to the fact that

projecting the Gaussian noise to the unit sphere does not

yield a Gaussian distribution, which makes the Kalman

filter suboptimal. Furthermore, the Kalman filter does

not consider the nonlinearity of the underlying domain.

As expected, the advantage of using the Bingham filter

is larger if the noise is following a Bingham distribution.

8. CONCLUSION

We have presented a recursive filter based on the

Bingham distribution. It can be applied to angular

estimation in the plane with 180± symmetry and to
quaternion-based estimation of orientation of objects in

three-dimensional space. Thus, it is relevant for a wide

area of applications, particularly when uncertainties oc-

cur, for example as a result of cheap sensors or very

limited prior knowledge.

We have evaluated the proposed approaches in very

challenging settings involving large non-isotropic noise.

Our simulations have shown the superiority of the pre-

sented approach compared to the solution based on

an adapted Kalman filter for both the circular and the

quaternion case. This is true no matter if the noise is

distributed according to a Bingham or a Gaussian distri-

bution. Furthermore, we have shown that the proposed

algorithms are fast enough on a typical laptop to be used

in real-time applications.

Open challenges include an efficient estimator of

the Bingham parameters based on available data. This

makes an efficient evaluation of the confluent hyperge-

ometric function necessary. Furthermore, extensions to

nonlinear measurement equations and the group of rigid

body motions SE(3) may be of interest.
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APPENDIX A. RELATION TO GAUSSIAN
DISTRIBUTION

The Bingham distribution is closely related to the

widely used Gaussian distribution.

DEFINITION 4 The pdf of a multivariate Gaussian dis-

tribution in Rd is given by

fG(x) =
1p

(2¼)d det§
exp

μ
¡1
2
(x¡¹)T§¡1(x¡¹)

¶
with mean ¹ 2 Rd and positive definite covariance § 2
Rd£d.

If we require ¹= 0 and restrict x to the unit hyper-

sphere, i.e., kxk= 1, we have

fG(x) =
1p

(2¼)d det§
exp

μ
xT
μ
¡1
2
§¡1

¶
x

¶
, (69)

which is an unnormalized Bingham distribution with

MZMT =¡ 1
2
§¡1. Conversely, any Bingham distribu-

tion is a restricted Gaussian distribution with § =
(¡2MZMT)¡1 if MZMT is negative definite. This con-

dition can always be fulfilled by adding a multiple of

the identity matrix Id£d to Z. Modifying Z in this way
yields a different Gaussian distribution, but the values

on the unit hypersphere stay the same, i.e., the Bing-

ham distribution does not change. A graphical illustra-

tion of the relation between a Gaussian density and the

corresponding Bingham resulting from conditioning the

original Gaussian random vector to unit length is given

in Fig. 7.

Due to local linear structure of the underlying mani-

fold, each mode of the Bingham distribution defined on

this manifold is very similar to a Gaussian of dimen-

sion d¡ 1 if and only if the uncertainty is small. This
can be seen in Fig. 8, which shows the Kullback-Leibler
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Fig. 7. A two-dimensional Gaussian distribution, which is restricted

to the unit circle to obtain a two-dimensional Bingham distribution.

divergenceZ ¼

0

f([cos(μ),sin(μ)]T) log

μ
f([cos(μ),sin(μ)]T)

fG(μ,¹,¾)

¶
dμ

(70)

between one mode of a Bingham pdf for d = 2 and

a corresponding one-dimensional Gaussian pdf on the

semicircle.

APPENDIX B. RELATION TO VON MISES
DISTRIBUTION

The Bingham distribution for d = 2 is closely related

to the von Mises distribution. We can exploit this fact

at some points in this paper.

DEFINITION 5 A von Mises distribution [15] is given

by the probability density function

fVM(Á;¹,·) =
1

2¼I0(·)
exp(·cos(Á¡¹)) (71)

for Á 2 [0,2¼), location parameter ¹ 2 [0,2¼) and con-
centration parameter · > 0, where I0(·) is the modified

Bessel function [1] of order 0.

Based on this definition, we can show an interest-

ing relation between Bingham and von Mises distribu-

tions [35].

LEMMA 5 For the circular case, every Bingham density

is equal to a von Mises density rescaled to [0,¼) and

repeated on [¼,2¼).

PROOF We can reparameterize a Bingham distribution

with d = 2 by substituting x= [cos(μ),sin(μ)]T and

M=

·¡sin(º) cos(º)

cos(º) sin(º)

¸
, Z=

·
z1 0

0 0

¸
(72)

to attain the von Mises distribution. With

MZMT = z1

·
sin2(º) ¡cos(º) sin(º)

¡cos(º)sin(º) cos2(º)

¸
, (73)

Fig. 8. Kullback-Leibler divergence on the interval [0,¼] between a

Bingham pdf with M= I2£2, Z= diag(z1,0) and a Gaussian pdf
with equal mode and standard deviation. For small uncertainties

(z1 <¡15, which corresponds to a standard deviation of about 11±),
the Gaussian and Bingham distributions are almost

indistinguishable. However, for large uncertainties, the Gaussian

approximation becomes quite poor.

this yields the pdf

f(μ) =
1

F
exp([cos(μ),sin(μ)]MZMT[cos(μ),sin(μ)]T)

=
1

F
exp(z1(cos(μ) sin(º)¡ sin(μ)cos(º))2) (74)

=
1

F
exp(z1 sin

2(μ¡ º))) (75)

according to sin(a¡ b) = sin(a)cos(b)¡ cos(a)sin(b).
Now we apply sin2(a) = 1

2
(1¡ cos(2a)) and get

f(μ) =
1

F
exp

³z1
2

´
exp

³
¡z1
2
cos(2μ¡ 2º)

´
, (76)

which exactly matches a von Mises distribution with

Á= 2μ,¹= 2º, and ·=¡z1=2 that has been repeated
twice, i.e., μ 2 [0,2¼) and Á 2 [0,4¼).
This property can be exploited to derive a formula

for the normalization constant of the Bingham distribu-

tion.

LEMMA 6 For d = 2, the normalization constant is

given by

F = 2¼ ¢ I0
³z1
2

´
exp

³ z1
2

´
(77)

with derivatives

@

@z1
F = ¼ exp

³z1
2

´³
I1

³z1
2

´
+ I0

³z1
2

´´
(78)

@

@z2
F = ¼ exp

³z1 + z2
2

´
¢
μ
I0

μ
z1¡ z2
2

¶
¡ I1

μ
z1¡ z2
2

¶¶
(79)
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PROOF In order to consider the derivative with respect
to z2, we first consider a Bingham density with arbitrary
z2, which yields

f(x) =
1

F
exp

μ
xTM

·
z1 0

0 z2

¸
MTx

¶
(80)

=
1

F
exp

μ
xTM

·
z1¡ z2 0

0 0

¸
MTx+ z2 ¢ xTMMTx

¶
=
exp(z2)

F
exp

μ
xTM

·
z1¡ z2 0

0 0

¸
MTx

¶
: (81)

We use the formula for the normalization constant of a
von Mises distribution to obtain

exp(z2)

F
=

1

2¼I0

μ
z1¡ z2
2

¶ : (82)

Solving this equation for F and substituting z2 = 0
shows (77). The derivatives are calculated with
[1, eq. 9.6.27].

APPENDIX C. RELATION TO VON MISES-FISHER
DISTRIBUTION

The von Mises-Fisher distribution is a hyperspheri-
cal generalization of the von Mises distribution.

DEFINITION 6 A von Mises-Fisher distribution [7] is
given by the pdf

fVMF(x;¹,·) = Cd(·)exp(·¹
Tx) (83)

with

Cd(·) =
·d=2¡1

(2¼)p=2Ip=2¡1(·)
(84)

for x 2 Sd¡1, location parameter ¹ 2 Sd¡1 and scalar con-
centration parameter · > 0, where In(·) is the modified
Bessel function [1] of order n.

Unlike the Bingham distribution, the von Mises-
Fisher distribution is unimodal and not antipodally sym-
metric, but radially symmetric around the axis of ¹. We
note that by use of hyperspherical coordinates, we can
reformulate the pdf of the von Mises-Fisher distribu-
tion as

fVMF(¢;·) : [0,¼]!R+, (85)

fVMF(Á;·) = Cd(·)exp(·cos(Á)) sin
d¡1(Á), (86)

where Á= 6 (¹,x): (87)

The term sind¡1(Á) arises as a volume-correcting term
when the substitution rule is applied. Using this defini-
tion, we can show an interesting relation between certain
Bingham distributions and the von Mises-Fisher distri-
bution.

LEMMA 7 For a Bingham distribution with z1 = ¢ ¢ ¢=
zd¡1 with pdf f(¢), we have the relation

fVMF(μ;·) = (2cos(μ))d¡1 ¢f(μ) (88)

to the von Mises-Fisher distribution.

PROOF We consider Z= diag(z1 : : : ,z1,0) and M=

[¢ ¢ ¢ j ¹]. From the Bingham pdf, we obtain

f(x) =
1

F
exp(xTMZMTx) (89)

=
1

F
exp(xTMdiag(z1 : : : ,z1,0)M

Tx) (90)

=
1

F
exp(xTMdiag(0 : : : ,0,¡z1)MTx

+ z1x
TMMTx) (91)

=
exp(z1)

F
exp(¡z1xTMdiag(0 : : : ,0,1)MTx):

(92)

We use the fact that the last column of M contains the

mode ¹ and obtain

f(x) =
exp(z1)

F
exp(¡z1xT¹¹Tx) (93)

=
exp(z1)

F
exp(¡z1(¹Tx)2) (94)

=
exp(z1)

F
exp(¡z1(cos( 6 (x,¹))2): (95)

By using the trigonometric identity cos2(x) =

(1+cos(2x))=2, we obtain

f(x) =
exp

³z1
2

´
F

exp
³
¡z1
2
cos(2 6 (x,¹))

´
: (96)

Substitution of spherical coordinates as above yields the

pdf f : [0,¼=2]!R+,

f(μ) =
exp

³z1
2

´
F

exp
³
¡z1
2
cos(2μ)

´
sind¡1(μ): (97)

On the other hand, the von Mises-Fisher pdf can be

stated as

fVMF(Á;·) = Cd(·)exp(·cos(Á)) sin
d¡1(Á): (98)

We set ·=¡z1=2 and Á= 2μ, which yields
fVMF(μ;·) (99)

= Cd

³
¡z1
2

´
exp

³
¡z1
2
cos(2μ)

´
sind¡1(2μ)

(100)

=
sind¡1(2μ)
sind¡1(μ)

¢f(μ) = (2cos(μ))d¡1 ¢f(μ):(101)

This fact can be used to simplify the maximum like-

lihood estimation when the underlying samples are (or

can be assumed to be) generated by an isotropic Bing-

ham distribution, i.e., when the corresponding density

is circularly symmetric around the modes If the sam-

ples are reweighted by a factor of (2cos(μ))d¡1 and
their angle around the mean is doubled, a von Mises-

Fisher maximum likelihood estimate can be performed
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to obtain · and subsequently z1. This can be advan-

tageous, because the maximum likelihood estimate for

a von Mises-Fisher distribution is computationally less

demanding than for the Bingham distribution [43].

APPENDIX D. RELATION TO KENT DISTRIBUTION

Furthermore, it should be noted that the d-dimen-

sional Bingham distribution is a special case of the d-

dimensional Kent distribution [20]. The Kent distribu-

tion is also commonly referred to as the Fisher-Bingham

distribution because it is a generalization of both the von

Mises-Fisher and the Bingham distribution.

DEFINITION 7 The pdf of the Kent distribution is

given by

f(x)/ exp(·¹Tx+
dX
j=2

¯j(°
T

j
x)2), (102)

where x 2 Sd¡1, and ¹ 2 Sd¡1 is the location parame-
ter, ·¸ 0 is the concentration around ¹, the directions
°
2
, : : : ,°

d
2 Sd¡1 are orthogonal and have corresponding

concentrations ¯2 ¸ ¢¢ ¢ ¸ ¯d 2 R.
It can be seen that for ·= 0, this yields a Bingham

distribution. The vectors °
2
, : : : ,°

d
correspond to the M

matrix and the coefficients ¯2, : : : ,¯d correspond to the

diagonal of the Zmatrix. This fact allows the application

of methods developed for the Kent distribution such as

[24], [26] in conjunction with the Bingham distribution.

For ¯2 = ¢ ¢ ¢= ¯d = 0, the Kent distribution reduces to a
von Mises-Fisher distribution.

APPENDIX E. PROOF OF LEMMA 2.

PROOF The covariance of the composition

C=Cov(x© y) (103)

= Cov

μμ
x1y1¡ x2y2
x1y2 + x2y1

¶¶
(104)

=

μ
Var(x1y1¡ x2y2) Cov(x1y1¡ x2y2,x1y2 + x2y1)

¤ Var(x1y2 + x2y1)

¶
can be obtained by calculating the matrix entries indi-

vidually. For the first entry we get

c11 = Var(x1y1¡ x2y2) (105)

= E((x1y1¡ x2y2)2)¡ (E(x1y1¡ x2y2))2 (106)

= E(x21y
2
1 ¡2x1y1x2y2 + x22y22)

¡ (E(x1y1)¡E(x2y2))2 (107)

= E(x21)E(y
2
1)¡ 2E(x1x2)E(y1y2)+E(x22)E(y22)

(108)

¡ (E(x1)| {z }
0

E(y1)| {z }
0

¡E(x2)| {z }
0

E(y2)| {z }
0

)2 (109)

= a11b11¡ 2a12b12 + a22b22: (110)

We use independence of x and y in (107), linearity of

the expectation value in (108), and symmetry of the

Bingham in (109). Analogously we calculate

c22 = Var(x1y2¡ x2y1) (111)

= E((x1y2¡ x2y1)2)¡ (E(x1y2¡ x2y1))2 (112)

= E(x21y
2
2 ¡ 2x1y1x2y2 + x22y21)

¡ (E(x1y2)¡E(x2y1))2 (113)

= E(x21)E(y
2
2)¡ 2E(x1x2)E(y1y2)+E(x22)E(y21)

¡ (E(x1)| {z }
0

E(y2)| {z }
0

¡E(x2)| {z }
0

E(y1)| {z }
0

)2 (114)

= a11b22¡ 2a12b12 + a22b11: (115)

The off-diagonal entry can be calculated similarly

c12 = Cov(x1y1¡ x2y2,x1y2 + x2y1) (116)

= E((x1y1¡ x2y2) ¢ (x1y2 + x2y1))
¡E(x1y1¡ x2y2) ¢E(x1y2 + x2y1) (117)

= E(x21y1y2¡ x1x2y22 + x1x2y21 ¡ x22y1y2)
¡ (E(x1)E(y1)¡E(x2)E(y2))
¢ (E(x1)E(y2)+E(x2)E(y1)) (118)

= a11b12¡ a12b22 + a12b11¡ a22b12: (119)

Because C is a symmetrical matrix, this concludes the

proof of Lemma 2.
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LRKF Revisited:

The Smart Sampling Kalman

Filter (S2KF)

JANNIK STEINBRING

UWE D. HANEBECK

An accurate Linear Regression Kalman Filter (LRKF) for non-

linear systems called Smart Sampling Kalman Filter (S2KF) is in-

troduced. In order to get a better understanding of this new filter,

a general introduction to Nonlinear Kalman Filters based on sta-

tistical linearization and LRKFs is given. The S2KF is based on

a new low-discrepancy Dirac mixture approximation of Gaussian

densities. This approximation comprises an arbitrary number of

optimally and deterministically placed samples in the relevant re-

gions of the state space, so that the filter resolution can be adapted

to either achieve high-quality results or to meet computational con-

straints. The S2KF contains the UKF with equally weighted samples

as a special case when using the same amount of samples. With

an increasing number of samples, the new filter converges to the

(typically unfeasible) exact analytic statistical linearization. Hence,

the S2KF can be seen as the ultimate generalization of all LRKFs

such as the UKF, sigma-point filters, higher-order variants etc., as

it homogeneously covers the state space with a freely chosen num-

ber of samples. It is evaluated against state-of-the-art LRKFs by

performing nonlinear prediction and extended target tracking.
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I. INTRODUCTION

We consider estimating the hidden state of a discrete-

time stochastic nonlinear dynamic system based on

noisy measurements through Bayesian inference. This is

an important problem in many fields of current research

such as (extended) object and group tracking [1]—[6],

human motion tracking [7], object shape estimation [5],

[8], [9], robotics [10], or estimation of extrinsic camera

parameters [11].

Bayesian inference is a versatile approach for per-

forming state estimation, but in general one has to cope

with complex, e.g., multi-modal or non-Gaussian, state

and noise probability density functions, which prohibits

almost always the derivation of closed-form solutions.

Particle Filters [12], [13] are elaborate Bayesian estima-

tion techniques that try to deal with and maintain par-

ticle approximations of such complex densities. How-

ever, their main drawbacks are the high computational

effort due to large sample sets, the problem of sample

degeneration, non-reproducible results, and the need for

explicit likelihood functions.

Therefore, simplifications are required in order to

derive more efficient but still powerful estimators. A

common first step of simplification is to get rid of main-

taining the true complex state density by approximating

it as a single Gaussian. Estimators using this approxi-

mation are grouped into the class of Gaussian Filters.

But even with this convenient state density, closed-form

solutions for state prediction, and especially for incor-

porating newly received measurements into the state es-

timate, are rarely available. Hence, specific Gaussian

Filters are needed that try to overcome this problem

by delivering approximative solutions for the state pre-

diction and measurement updates. Such filters are for

example the Gaussian Particle Filter (GPF) [14] or the

Progressive Gaussian Filter (PGF) [15], [16] that make

use of sample representations of the occurring Gaussian

densities. Nevertheless, these filters, and in particular

their measurement updates, are still costly.

For that reason, a further common step is to simplify

the measurement update by computing linear approxi-

mations of the nonlinear mapping between the hidden

system state and the noisy measurements, that is, ob-

taining a linear relationship between them. Such lin-

earizations can be computed in several ways, e.g., using

Taylor series, as will be discussed below. A key result

of this obtained linear relationship is the possibility to

perform backward inference without an explicit likeli-

hood function. Instead, the well-known Kalman Filter

formulas can be used [17]. Consequently, these estima-

tors are referred to as Nonlinear Kalman Filters, as the

Kalman Filter is applied to nonlinear systems [18].

In case of an already linear system corrupted by

additive Gaussian noise, no linearization is required and

the resulting filter is identical to the Kalman Filter [17],

which yields optimal estimation results in the sense of

a Minimum Mean Square Error (MMSE) [2]. However,
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Fig. 1. Sampling of a two-dimensional standard normal distribution by the new S2KF (orange points) and state-of-the-art LRKFs (blue

points). Covariance matrices with confidence interval of 95% (black circles). (a) New S2KF with 12 samples. (b) UKF with equal weights.

(c) GF with 13 samples. (d) RUKF with 13 samples.

in case of nonlinear systems linearization is required

which might be a strong simplification depending on

the degree of the nonlinearity. The consequence is a

diminished estimation performance compared to the

more general Gaussian Filters not making use of such

linearization. An option to mitigate linearization errors

and therefore improve the estimation quality is to reduce

the degree of nonlinearity by augmenting the actual

nonlinear measurement model with additional, properly

chosen mappings as proposed in [19].

One way to perform such linearization is statistical

linearization [20], [21]. Basically, implementing a Non-

linear Kalman Filter based on statistical linearization

only amounts to calculating the first- and second-order

moments of (nonlinear) transformed densities, depend-

ing on the given system and measurement equations. For

some equations, including polynomials, trigonometric

functions, and their combinations, these moments can

be calculated analytically [22]. Hence, this provides the

filter based on statistical linearization with the best pos-

sible estimation quality and is referred to as analytic sta-

tistical linearization. However, this approach requires an

individual treatment of each occurring equation which

is time-consuming, error-prone, and prevents a generic

filter applicable to any system and measurement equa-

tion, regardless of its complexity.

Awidespread solution for these problems are sample-

based approaches, where the occurring state and noise

densities are represented as a set of samples, selected in

a random or deterministic way. This allows to perform

statistical linearization in the form of statistical linear

regression [21], [23]. Nonlinear Kalman Filters making

use of statistical linear regression are called Linear Re-

gression Kalman Filters (LRKFs) [23], [24]. As a conse-

quence of using samples instead of continuous densities,

time and measurement updates have to be adapted in

order to handle this density representation. On the one

hand, the samples are propagated individually through

the given system and measurement equations. On the

other hand, occurring analytic moment calculations are

turned into their sample-based counterparts, i.e., sam-

ple mean and sample covariance. Of course, this intro-

duces a further approximation step (compared to the

analytic statistical linearization) that may negatively af-

fect the estimation performance. Nevertheless, employ-

ing an LRKF offers several advantages. First, due to the

lack of an explicit use of a likelihood, the problem of

sample degeneration is avoided,1 and second, we obtain

a generic filter that allows us to work with black box

systems, e.g., systems given as (binary) programs, or

to switch easily between different system and measure-

ment models without any additional effort. Moreover,

this facilitates filter design in the sense of rapid pro-

totyping, as a newly designed system or measurement

model can be tried out immediately.

Despite all these advantages of LRKFs, in order

to improve overall estimation quality of filters based

on statistical linearization, a mixture of analytic and

sample-based moment calculation (semi-analytic ap-

proach) [22], [25] should be used whenever possible.

A. Contribution

In this paper, we introduce a new LRKF called the

Smart Sampling Kalman Filter (S2KF), which can be

seen as the ultimate generalization of all LRKFs. For

that purpose, we compute deterministic approximations

of multivariate standard normal distributions compris-

ing a predefined arbitrary number of optimally placed

samples in the relevant regions of the state space (see

Fig. 1(a)). These sets of deterministically chosen sam-

ples serve as the fundamental basis for the new filter.

In contrast to approaches using non-deterministic sam-

pling, this lets the filter compute reproducible results

and is more efficient, as a much smaller amount of sam-

ples has to be employed.

By simply increasing the number of employed sam-

ples, the new filter converges to the analytic statisti-

1This is in contrast to filters explicitly using a likelihood, where back-

ward inference implies a sample re-weighting that typically leads to

a significantly reduced amount of samples contributing to the com-

putation of the posterior moments, and consequently, to inaccurate

results.
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cal linearization as the resulting approximation of the

standard normal distribution becomes more accurate.

Moreover, this approach requires only a single and intu-

itive optimization parameter, i.e., the number of utilized

samples. This makes filter fine-tuning simple, even for

people not very familiar with sample-based Kalman fil-

tering. Moreover, as opposed to state-of-the-art LRKFs,

the number of samples are completely independent of

the concrete dimension of the normal distribution and,

hence, can be chosen freely. There are no restrictions

such as a linear or exponential increase. This offers the

possibility to (automatically) adapt the number of uti-

lized samples for each time step individually depending

on the concrete filtering problem, e.g., use less samples

in situations of mild nonlinearities and more samples in

case of high nonlinearities.

B. Related Work

One of the most popular LRKFs is the Unscented

Kalman Filter (UKF) [26], [27]. It employs 2N +1 sys-

tematically chosen, axis-aligned samples, where N de-

notes the dimension of the standard normal distribution

required for the time and measurement updates (see

Fig. 1(b)). One of its greatest advantages is the ease

with which the sample set can be created as well as

the low computational effort due to the small and fixed

amount of used samples. However, this property is also

its main drawback. First, it is not possible to increase

the number of samples for a concrete dimension N in

order to improve the estimation quality. A consequence

is that the even moments of a Gaussian greater than the

second-order cannot precisely matched [27]. Second,

the state space coverage suffers from the fact that the

samples are placed solely on some principal axes.2 Both

of these factors have a negative impact on the estimation

quality. And third, the small amount of employed sam-

ples makes it possible to compute non-positive definite

covariance matrices and, thus, makes it hard for filtering

applications to work reliably. For example, consider the

nonlinear transformation of a Gaussian density using

a sine-shaped function. If all samples of the Gaussian

fall onto the zeros, the transformed Gaussian will be a

density with zero variance [28].

Another drawback of the UKF is a rather unintuitive

parameter that controls the sample spread and weight-

ing. Besides the use of heuristics, maximum likelihood

estimators can also be employed for determining these

parameters. In [29], the authors select a limited set of

possible values for the scaling parameter. During a fil-

ter step they perform an update for all selected scaling

values individually and then choose the update that best

matches the given measurement. Instead of simply try-

ing various parameters during a filter step, the authors

2Depending on the matrix square root method used for transforming

the sample set to a non-standard Gaussian, i.e., the matrix factoriza-

tion of the involved covariance matrices. For example, the Cholesky

decomposition or the eigendecomposition.

in [28] propose a parameter determination based on

a Gaussian process optimization. Both approaches can

improve the estimation quality, but also introduce new

parameters (the possible scaling values and parameters

controlling the optimization) that have to be determined

in some way. Moreover, despite the additional compu-

tational effort due to the several computed updates for

one filter step, the number of samples remains the same

and, hence, the problems of insufficient state space cov-

erage and non-positive definite covariance matrices are

left unchanged.

A first step to improve the situation is done by the

Gaussian Filter (GF) [30]. It enhances the sampling

by deterministically placing an arbitrary number of

samples on each principal axis (see Fig. 1(c)). Although

the number of samples can easily be adjusted, which

solves the problem of a fixed amount of samples and

makes the covariance computation more reliable, the

state space coverage still remains sparse due to the axes-

only sample placement.

In order to overcome the problem of a sparse state

space coverage, a non-deterministic sampling approach

called Randomized Unscented Kalman Filter (RUKF) is

introduced in [31]. Here, the moments for the time and

measurement updates are calculated with the aid of an

iterative stochastic integration rule, where each iteration

uses an additional UKF sample set with random scaling

and rotation (see Fig. 1(d)). In contrast to simple Gaus-

sian random sampling, this guarantees that mean and

covariance are always captured correctly. Furthermore,

it is possible to create sample sets of arbitrary size with

samples not only placed on the principal axes of the

state space. Hence, the entire state space is covered in an

adjustable manner. However, even though no complex

parameters are required and the state space coverage is

improved, this approach relies on the law of large num-

bers. Therefore, a large amount of samples is required

to produce satisfying estimation results, particularly in

larger state spaces. In addition, estimation results are not

reproducible due to its non-deterministic nature. This is

based on the fact that during each time and measurement

update an individual set of samples is drawn randomly,

which makes the filter outcome unpredictable.3

Table I summarizes the advantages and disadvan-

tages of these state-of-the-art LRKFs and the new S2KF.

We emphasize that only the S2KF is capable of produc-

ing reproducible results by using an arbitrary amount

of samples placed in the entire state space (not only on

the axes).

A completely different approach to compute the mo-

ments required by statistical linearization is to approx-

imate the nonlinear system and measurement models

with the aid of polynomials. That is, instead of the Gaus-

3An option would be to reuse a single randomly generated sample set

for all updates. However, this would conflict with the idea of random

sampling, where sample sets representing the Gaussian distribution

unfavorably are averaged out over time.
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TABLE I

Comparison of important filter properties between state-of-the-art LRKFs and the new Smart Sampling Kalman Filter.

Fig. 2. Taxonomy of the discussed Nonlinear Kalman Filters relying on statistical linearization (solid blue), including the new S2KF

(dashed orange), and explicit linearization (dash-dotted gray).

sian distributions, the nonlinear models themselves get

approximated. By doing so, formulas can be obtained

that allow derivative-free and closed-form moment cal-

culations which require only multiple evaluations of

the nonlinear models. One option is to use polynomial

interpolations for approximating the nonlinear models.

Such filters are for example the Central Difference Fil-

ter (CDF) [32] and the Divided Difference Filter (DDF)

[33]. Although these filters evaluate the nonlinear mod-

els at the same points as the UKF does, the filter results

are different due to their different ways of computing the

desired moments [21]. Another option is to approximate

the nonlinear models by means of Chebyshev polyno-

mials series expansion which results in the Chebyshev

Polynomial Kalman Filter (CPKF) as proposed in [34].

Here, the actual polynomial approximation is obtained

by using discrete cosine transformations. However, the

proposed approach only works for a one-dimensional

state space.

In contrast to statistical linearization, an explicit lin-

earization of the system and measurement models based

on Taylor series approximation is also possible. That is,

the Kalman Filter formulas are still being used, only the

type of linearization is changing. The Extended Kalman

Filter (EKF) uses first-order Taylor expansions at the

prior state mean for system and measurement model

linearization, whereas its iterated version, the Iterated

Extended Kalman Filter (IEKF), tries to improve esti-

mation quality by finding a better point for lineariza-

tion to take a given measurement into account [18].

Second-order variants of the EKF exist [18], [35], but

the additional complexity has prohibited its widespread

use [13]. One problem of this type of linearization is

the need for explicit derivatives. In the best case, these

can be taken analytically which unfortunately entails the

same problems occurring in case of analytic statistical

linearization: no easy exchange between different sys-

tem and measurement models is possible, and it is time-

consuming and error-prone. In all other cases, approx-

imations of the derivatives will be inevitable. Another

problem is that the linearization is only performed at a

single point, that is, not the entire statistical information

of the prior state estimate is taken into account during

linearization. This typically leads to inferior estimation

results compared to statistical linearization [22]. More-

over, this makes the filter also sensitive to the specific

point used for the linearization, that is, to the prior state

mean.

Fig. 2 shows a taxonomy of the above discussed

Nonlinear Kalman Filters including the new S2KF

(dashed orange). It underlines the important difference

between those filters relying on statistical linearization

(solid blue) and the EKF variants using explicit lin-

earization (dash-dotted gray). Additionally, all the fil-
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ters in the bottom row try to achieve results as close as

possible to the analytic statistical linearization.

C. Overview

The remainder of this paper is structured as follows.

In Sec. II, we give a detailed formulation of the gen-

eral Gaussian filtering problem using Bayesian infer-

ence. Then, in Sec. III, the class of Nonlinear Kalman

Filters based on statistical linearization is presented.

Sec. IV describes the transition from analytic statistical

linearization to statistical linear regression in the form

of the general LRKF approach. After that, in Sec. V,

we describe how to compute optimal standard normal

approximations using the idea of Localized Cumula-

tive Distributions. Based on this, we introduce the new

S2KF. Extensive evaluation of the new filter is per-

formed in Sec. VI. Finally, the conclusions are presented

in Sec. VII.

II. PROBLEM FORMULATION

We consider estimating the hidden state xk of a

discrete-time stochastic nonlinear dynamic system based

on noisy measurements ỹ
k
.4 The dynamic system is

modeled by the system equation

xk = ak(xk¡1,wk) (1)

and the measurement equation

y
k
= hk(xk,vk), (2)

where y
k
denotes the measurement random variable

from which the measurements ỹ
k
originate, and wk as

well as vk Gaussian white noise. It is assumed that

both noise processes are mutually independent and also

independent of the system state. The system equation

(1) models the temporal evolution of the system state,

whereas the measurement equation (2) models the re-

lation between the received noisy measurements ỹ
k
and

the not direct observable system state xk.

We denote the probability density function (pdf) of

the state at time step k conditioned on the k received

measurements ỹ
1
, : : : , ỹ

k¡1, ỹk as

fek (xk) = f(xk j ỹk, ỹk¡1, : : : , ỹ1) = f(xk j ỹk:1), (3)

and the predicted state density, i.e., the pdf of the state

at time step k conditioned only on the measurements

ỹ
1
, : : : , ỹ

k¡2, ỹk¡1, as

f
p
k (xk) = f(xk j ỹk¡1, ỹk¡2, : : : , ỹ1) = f(xk j ỹk¡1:1): (4)

The noise pdfs are given by

fwk (wk) =N (wk; ŵk,Cwk )
and

fvk (vk) =N (vk; v̂k,Cvk),

4Vectors are underlined, matrices are printed in bold face, and the

subscript k denotes the discrete time step.

with means ŵk and v̂k, and covariance matrices C
w
k and

Cvk, respectively.
As computing the true conditional state pdfs (3)

and (4) is intractable, our goal is to maintain Gaussian

approximations of (3) and (4) recursively over time and

incorporate new measurements by exploiting Bayes’

rule. Such a recursive Bayesian estimator consists of

two alternating steps, namely the time update and the

measurement update.

A. Time Update

The objective of the time update, also called predic-

tion step, is to propagate the last known Gaussian state

estimate fek¡1(xk¡1) (from the past) to the present by ex-
ploiting the given system model (1) in the form of its

state-transition density fak (xk j xk¡1). This yields the pre-
dicted state estimate f

p
k (xk) according to the Chapman-

Kolomogorov equation [2]

f
p
k (xk) =

Z
fak (xk j xk¡1) ¢fek¡1(xk¡1)dxk¡1

=

Z Z
±(xk ¡ ak(xk¡1,wk))

¢fek¡1(xk¡1) ¢fwk (wk)dxk¡1dwk,
where ±(¢) denotes the Dirac delta function.
However, even though the state density fek¡1(xk¡1) is

Gaussian, this in general does not hold for the predicted

state density f
p
k (xk). Therefore, we have to perform a

subsequent moment matching in order to fulfill our

forced Gaussian state approximation. This is done by

computing the predicted state mean

x̂
p
k =

Z
xk ¢fpk (xk)dxk

=

Z Z
ak(xk¡1,wk)

¢fek¡1(xk¡1) ¢fwk (wk)dxk¡1dwk, (5)

and the predicted state covariance

C
p
k =

Z
(xk ¡ x̂pk ) ¢ (xk ¡ x̂pk )T ¢fpk (xk)dxk

=

Z Z
ak(xk¡1,wk) ¢ ak(xk¡1,wk)T

¢fek¡1(xk¡1) ¢fwk (wk)dxk¡1dwk ¡ x̂pk ¢ (x̂pk )T (6)

of f
p
k (xk), and finally approximating the predicted state

density according to

f
p
k (xk)¼N (xk; x̂pk ,Cpk ): (7)

This Gaussian state distribution will serve as basis for

the measurement update.

B. Measurement Update

The measurement update or filter step incorporates a

given measurement ỹ
k
at time step k into the predicted
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state estimate (7) to correct it. This is done by using

Bayes’ rule. However, this requires that the measure-

ment model (2) is turned into its corresponding like-

lihood function fhk (ỹk j xk) by assuming that the cur-
rent measurement ỹ

k
is conditionally independent of the

already processed measurements ỹ
k¡1:1 given the pre-

dicted state estimate. Then, the corrected state estimate

can be obtained according to

fek (xk) =
fhk (ỹk j xk) ¢f

p
k (xk)

f
y
k (ỹk j ỹk¡1:1)

, (8)

where f
y
k (ỹk j ỹk¡1:1) is only a normalization constant.

More precisely, the measurement distribution f
y
k (yk j

ỹ
k¡1:1) encodes how probable a distinct measurement is,
given all prior received measurements ỹ

k¡1:1. A concrete
measurement ỹ

k
in turn is a realization of this distribu-

tion.

Equation (8) can be rewritten in the form of the joint

density f
x,y
k (xk,yk j ỹk¡1:1) of prior state and measure-

ment as

fek (xk) =
f
x,y
k (xk, ỹk j ỹk¡1:1)
f
y
k (ỹk j ỹk¡1:1)

: (9)

Thus, the Bayesian measurement update can be inter-

preted as a given measurement ỹ
k
determining where to

slice the joint density f
x,y
k (xk,yk j ỹk¡1:1) in order to get

the posterior state density fek (xk).

As with the predicted state density, the obtained pos-

terior state density fek (xk) is not necessarily Gaussian.

Consequently, the posterior state density also has to

be reapproximated as a Gaussian by means of moment

matching afterwards.

C. Bayesian Estimator

The alternating use of the introduced time and mea-

surement updates, together with a given initial state es-

timate

fe0 (x0)¼N (x0; x̂e0,Ce0)
with initial mean x̂

e
0 and initial covariance C

e
0, yields the

desired recursive state estimation in form of a Bayesian

estimator. It is important to note that this estimator is a

restricted variant of the general recursive Bayesian esti-

mator, as we force the state distribution to be Gaussian

all the time.

III. NONLINEAR KALMAN FILTERING BASED ON
STATISTICAL LINEARIZATION

Although the estimator introduced in Sec. II is a

much simpler variant of the general Bayesian estima-

tor, its measurement update is still demanding. First, an

explicit likelihood function is required, which is hard

to derive in case of non-additive measurement noise.

Second, even if one is at hand, it is still almost always

impossible to compute the measurement update analyt-

ically.

However, as we already force the posterior state

density fek (xk) to be Gaussian, the measurement update

can be strongly simplified by additional approximating

the joint density of prior state and measurement in (9)

as a Gaussian, that is,

f
x,y
k (xk,yk j ỹk¡1:1)

¼N
μ·
xk

y
k

¸
;

·
x̂
p
k

ŷ
k

¸
,

·
C
p
k C

x,y
k

(C
x,y
k )

T C
y
k

¸¶
, (10)

where ŷ
k
and C

y
k denote the measurement mean and

covariance, and C
x,y
k the cross-covariance matrix of

state and measurement. As a direct consequence of this

simplification, the posterior state density becomes also

Gaussian [2]

fek (xk)¼
N
μ·
xk

ỹ
k

¸
;

·
x̂
p
k

ŷ
k

¸
,

·
C
p
k C

x,y
k

(C
x,y
k )

T C
y
k

¸¶
f
y
k (ỹk j ỹk¡1:1)

=N (xk; x̂ek,Cek), (11)

with posterior mean

x̂
e
k = x̂

p
k +C

x,y
k ¢ (Cyk)¡1 ¢ (ỹk ¡ ŷk) (12)

and covariance

Cek =C
p
k ¡Cx,yk ¢ (Cyk)¡1 ¢ (Cx,yk )T, (13)

which in fact are the well-known Kalman Filter formu-

las [17]. Hence, an estimator that uses this measurement

update is called Nonlinear Kalman Filter.

Fig. 3 illustrates the Nonlinear Kalman Filter mea-

surement update in case of a scalar state and measure-

ment. The exemplary Gaussian joint density of state and

measurement fx,y(x,y) is depicted in Fig. 3(a) and is

sliced by the given measurement ỹ in Fig. 3(b) to obtain

the posterior state density fe(x). It should be noted that

the variance of the state density fe(x), i.e., the uncer-

tainty of the posterior state estimate, is smaller than the

one of the prior state density fp(x) due to the existing

correlation between prior state and measurement, that

is, Cx,y 6= 0 (a non-axis-aligned Gaussian joint density).
Furthermore, the state mean also changes due to the ad-

ditional difference between the expected measurement

ŷ and the given measurement ỹ.

As a result of (10), the measurement distribution

f
y
k (yk j ỹk¡1:1) becomes a Gaussian, too (see Fig. 3(a)).
By this means, the relation between prior state and

measurement, i.e., the measurement model (2), gets

implicitly linearized. This is a direct consequence of

the fact that there exists always an equivalent linear

transformation from the prior Gaussian state distribution

to this Gaussian measurement distribution.

In order to obtain the posterior Gaussian density

(11), that is, perform the measurement update, the three

moments ŷ
k
, C

y
k , and C

x,y
k are required. Based on the

given measurement model hk(xk,vk), measurement noise
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Fig. 3. Linearized measurement update in case of a scalar state x and measurement y. For readability, the time index k is omitted here.

(a) Prior state density (red), measurement density (yellow), and Gaussian joint density (orange) of prior state and measurement.

(b) The given measurement ỹ slices the joint density (green line) to obtain the posterior state density (blue).

density fvk (vk), and predicted state density f
p
k (xk), we

can compute the measurement mean according to

ŷ
k
=

Z
y
k
¢fyk (yk)dyk

=

Z Z
hk(xk,vk) ¢fpk (xk) ¢fvk (vk)dxkdvk, (14)

the measurement covariance according to

C
y
k =

Z
(y
k
¡ ŷ

k
) ¢ (y

k
¡ ŷ

k
)T ¢fyk (yk)dyk

=

Z Z
hk(xk,vk) ¢ hk(xk,vk)T

¢fpk (xk) ¢fvk (vk)dxkdvk ¡ ŷk ¢ ŷ
T

k
, (15)

and the state measurement cross-covariance accord-

ing to

C
x,y
k =

Z Z
(xk ¡ x̂pk ) ¢ (yk ¡ ŷk)T

¢fx,yk (xk,yk)dxkdyk

=

Z Z
xk ¢ hk(xk,vk)T

¢fpk (xk) ¢fvk (vk)dxkdvk ¡ x̂pk ¢ ŷTk , (16)

respectively. This moment calculation approach yields

the so-called statistical linearization, as the implicit lin-

earization of the measurement model takes the entire

statistical information of the prior state estimate and the

measurement noise into account. The result is a Nonlin-

ear Kalman Filter based on statistical linearization. Such

implicit linearization can be obtained in several ways,

for example, by computing all the moments analytically

or by computing them approximatively using samples.

One should keep in mind that this simplified mea-

surement update comes at the expense of a dimin-

ished state estimation quality, depending on the de-

gree of the concrete measurement model nonlinearity.

In other words, the implicit linearization of a measure-

ment model that is highly nonlinear around the prior

state estimate can lead to large errors in the posterior

state estimate compared to the unmodified measurement

update introduced in Sec. II-B.

IV. THE LINEAR REGRESSION KALMAN FILTER

The Nonlinear Kalman Filter introduced in Sec. III

requires the calculation of certain moments to perform

time and measurement updates. Doing this analytically

provides the Nonlinear Kalman Filter based on statisti-

cal linearization with the best possible estimation qual-

ity, and should be the means of choice whenever feasi-

ble. But, in case of non-existent closed-form solutions,

or complicated system and measurement equations, ap-

proximative moment calculations have to be performed.

One way to achieve this is to replace the occurring

state and noise densities with proper Dirac mixture den-

sities, that is, sample-based density representations. This

turns the statistical linearization into an approximate

statistical linear regression. Consequently, all Nonlin-

ear Kalman Filters using this technique, regardless of

whether random or deterministic sampling is used, fall

in the class of Linear Regression Kalman Filters.

As only a limited number of samples can be used,

this approach always entails a density approximation.

Therefore, Linear Regression Kalman Filters possess

an, in general, inferior estimation quality compared to

Nonlinear Kalman Filters based on analytic statistical

linearization. Nevertheless, these filters are still efficient

and, as no analytic moment calculation is required, are

much easier to use.
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A. Dirac Mixtures

A Dirac mixture approximation of an arbitrary den-

sity function fk(sk) of an N-dimensional random vector

sk, encompassing L samples, has the form of

LX
i=1

®k,i ¢ ±(sk ¡ sk,i), (17)

with sample positions sk,i and positive scalar sample

weights ®k,i, for which

LX
i=1

®k,i = 1

holds [22], [36]. Therefore, the information of the true

density fk(sk) is lossy encoded in the L ¢ (N +1) Dirac
mixture parameters. These parameters can be deter-

mined in a random fashion by drawing samples ran-

domly according to the true density fk(sk), or in a deter-

ministic fashion by systematically minimizing a certain

distance measure between the true density fk(sk) and its

Dirac mixture approximation (17). Moreover, a combi-

nation of both techniques is also possible.

B. Time Update

Our goal is to compute the necessary moments (5)

and (6) for the Nonlinear Kalman Filter time update

based on Dirac mixtures. Therefore, we have to replace

the density product fek¡1(xk¡1) ¢fwk (wk) with an appro-
priate Dirac mixture. Of course, each density could be

approximated separately and the product of the result-

ing Dirac mixtures built afterwards. However, the result

of this density product would be the Cartesian product

of the employed state and noise Dirac mixtures, i.e., a

Dirac mixture with L ¢M samples, where L and M de-

note the respective number of samples of the state and

noise Dirac mixtures. This approach would not scale

efficiently with an increasing number of employed sam-

ples. Fig. 4 illustrates this problem in case of scalar state

xk¡1 and system noise wk. The state density is approx-

imated with L= 9 samples whereas the Dirac mixture

for the system noise employs M = 5 samples.

Nevertheless, we can do better by exploiting the

fact that the state xk¡1 as well as the system noise

wk are independent of each other and their respective

densities, fek¡1(xk¡1) and f
w
k (wk), are Gaussian. That

is, the product is equivalent to their, also Gaussian,

joint density fx,wk (xk¡1,wk) with a zero cross-covariance
matrix Cx,wk . Hence, we can avoid the Cartesian product

by directly approximating the joint density

fx,wk (xk¡1,wk) = f
e
k¡1(xk¡1) ¢fwk (wk)

=N
μ·
xk¡1
wk

¸
;

·
x̂
e
k¡1
ŵk

¸
,

·
Cek¡1 0

0 Cwk

¸¶
using L

p
k samples according to

L
p

kX
i=1

®
p
k,i ¢ ±

μ·
xk¡1
wk

¸
¡
·
xk¡1,i
wk,i

¸¶
, (18)

Fig. 4. Cartesian product of separate scalar state and system noise

Dirac mixture approximations (blue dots). Covariance matrix (black

ellipse) of the true Gaussian joint density fx,w
k
(xk¡1,wk) with

confidence interval of 95%.

where ®
p
k,i denotes the sample weights and [x

T
k¡1,i,w

T
k,i]

T

the sample positions in the joint space of state and sys-

tem noise. Plugging this into (5) and (6), and exploiting

the Dirac sifting property, we obtain the desired pre-

dicted state sample mean

x̂
p
k ¼

L
p

kX
i=1

®
p
k,i ¢ ak(xk¡1,i,wk,i), (19)

and predicted state sample covariance

C
p
k ¼

L
p

kX
i=1

®
p
k,i ¢ ak(xk¡1,i,wk,i)

¢ ak(xk¡1,i,wk,i)T¡ x̂pk ¢ (x̂pk )T, (20)

respectively.

C. Measurement Update

The LRKF measurement update can be computed in

the same manner. First, we approximate the joint density

fx,vk (xk,vk) = f
p
k (xk) ¢fvk (vk)

=N
μ·
xk

vk

¸
;

·
x̂
p
k

v̂k

¸
,

·
C
p
k 0

0 Cvk

¸¶
of prior state and measurement noise with the Dirac

mixture
Le
kX

i=1

®ek,i ¢ ±
μ·
xk

vk

¸
¡
·
xk,i

vk,i

¸¶
(21)

encompassing Lek samples with weights ®
e
k,i and posi-

tions [xTk,i,v
T
k,i]

T. Second, plugging this into (14), (15),

and (16) yields the measurement sample mean

ŷ
k
¼

Le
kX

i=1

®ek,i ¢ hk(xk,i,vk,i), (22)

measurement sample covariance

C
y
k ¼

Le
kX

i=1

®ek,i ¢ hk(xk,i,vk,i)

¢ hk(xk,i,vk,i)T¡ ŷk ¢ ŷ
T

k
, (23)
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and state measurement sample cross-covariance

C
x,y
k ¼

Le
kX

i=1

®ek,i ¢ xk,i ¢ hk(xk,i,vk,i)T¡ x̂pk ¢ ŷTk , (24)

respectively. Finally, the desired posterior state mean

and covariance are computed by using the Kalman Filter

formulas (12) and (13).

D. The LRKF

Algorithm 1 summarizes the general procedure of

a Linear Regression Kalman Filter. It is important to

note that the Dirac mixture approximations (18) and

(21) can be determined in completely different ways

(although this is usually not the case) and do not have

to utilize the same number of samples. Moreover, in

case of pure additive system or measurement noise,

the moment calculation can be simplified so that only

the state distribution has to be sampled. This reduces

the computational burden and improves the estimation

quality of the LRKF.

ALGORITHM 1 Linear Regression Kalman Filter

1: Set fe0 (x0) =N (x0, x̂0,C0)
2: for k = 1,2, : : : do

Time Update:

3: Compute Dirac mixture approximation (18)

4: Compute predicted state moments x̂
p
k and C

p
k

according to (19) and (20)

5: Set f
p
k (xk) =N (xk; x̂pk ,Cpk )

6: if measurement ỹ
k
is available then

Measurement Update:

7: Compute Dirac mixture approximation (21)

8: Compute measurement moments ŷ
k
, C

y
k , and

C
x,y
k according to (22), (23), and (24)

9: Compute posterior state moments x̂
e
k and C

e
k

according to (12) and (13)

10: Set fek (xk) =N (xk; x̂ek,Cek)
11: else

12: Set fek (xk) = f
p
k (xk)

13: end if
14: end for

V. THE SMART SAMPLING KALMAN FILTER

Sec. IV dealt with the general Linear Regression

Kalman Filter. In order to use it, appropriate Dirac

mixture approximations of the non-standard Gaussian

joint densities (18) and (21) have to be determined,

i.e., sets of samples with their respective positions and

weights.

Our goal is to create sample sets in a deterministic

manner encompassing an arbitrary number of equally

weighted samples placed in the entire relevant regions

of the state space, i.e., not only on the principal axes. For

that reason, we turn this density approximation problem

into an optimization problem by utilizing a Dirac mix-

ture approximation procedure based on a combination

of the Localized Cumulative Distribution (LCD) and

a modified Cramér-von Mises distance as described in

[37], [38].

Even though the LCD approach can approximate

any non-standard Gaussian, it is computationally expen-

sive due to its costly optimization procedure and, thus,

is not well suited for online filter execution. But thanks

to the deterministic manner of the LCD approach, we

can reuse a single computed Dirac mixture approxima-

tion for every time and measurement update. By this

means, we circumvent the costly online optimization of

a non-standard Gaussian by computing a Dirac mixture

approximation of a standard normal distribution offline

and only transforming it online (during time and mea-

surement updates) to any non-standard Gaussian using

the Mahalanobis transformation [39]. In the following,

we recapitulate this optimization problem and its main

definitions from [38].

A. The LCD Approach

The considered problem is to determine the optimal

sample positions si of an equally weighted Dirac mix-

ture approximation

1

L

LX
i=1

±(s¡ si) (25)

of an N-dimensional standard normal distribution

N (s;0,I). We denote the L samples, that is, the N ¢L
sampling parameters, as the set

S := fs1, : : : ,sLg:
In order to determine S in an optimal way, we have to

assess the quality of the Dirac mixture approximation

(25) by defining some distance measure between both

densities. Unfortunately, the classical Cumulative Dis-

tribution Function (CDF), which is often used for one-

dimensional distributions, cannot be used for the mul-

tivariate case due to its non-uniqueness and asymmetry

[37]. A solution is to use the Localized Cumulative Dis-

tribution, which considers the probability mass around

each point of the distribution in a certain manner.

DEFINITION V.1 (Localized Cumulative Distribution)

Let f(s) be an N-dimensional density function. The

corresponding Localized Cumulative Distribution is de-

fined as

F(m,b) =

Z
RN
f(s) ¢K(s¡m,b)ds,

with b 2 R+ and the symmetric and integrable kernel

K(s¡m,b) =
NY
k=1

exp

μ
¡1
2

(s(k)¡m(k))2
b2

¶
:

Here, m characterizes the location of the kernel and b

its size.
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Fig. 5. LCD sampling of a two-dimensional standard normal distribution. Covariance matrices with confidence interval of 95% (black

circles). The excellent state space coverage can be clearly seen. (a) LCD approach with 15 samples. Random Dirac mixture initialization on

the left and optimization result (final Dirac mixture) on the right. (b) An optimization result in case of 10 samples.

Using the Dirac sifting property, the LCD of the

Dirac mixture (25) can be obtained according to

FDM(S,m,b) =
1

L

LX
i=1

NY
k=1

exp

Ã
¡1
2

(s(k)i ¡m(k))2
b2

!
,

whereas the LCD of an N-dimensional standard Gaus-

sian is given as

FN (m,b) =
bN³p
1+b2

´N NY
k=1

exp

μ
¡1
2

(m(k))2

(1+ b2)

¶
:

Now, we can compare both densities by comparing

their respective LCDs using a modified Cramér-von

Mises distance defined as follows.

DEFINITION V.2 (Modified Cramér-von Mises Distance)

The modified Cramér-von Mises distance D between

two LCDs F(m,b) and F̃(m,b) is given by

D =

Z
R+
w(b)

Z
RN
(F(m,b)¡ F̃(m,b))2dmdb

with weighting function

w(b) =

( 1

bN¡1
, b 2 (0,bmax]

0, elsewhere:

The modified Cramér-von Mises distance between

the LCDs FDM(¢, ¢, ¢) and FN (¢, ¢) is given by

D(S) =D1¡ 2D2(S) +D3(S) with Di =

Z
R+
Pidb,

(26)

and the sample-independent part

P1 =
¼N=2bN+1³p
1+ b2

´N ,
as well as the sample-dependent parts

P2(S) =
(2¼)N=2bN+1

L
³p
1+2b2

´N ¢ LX
i=1

exp

Ã
¡1
2

NX
k=1

(s(k)i )
2

1+2b2

!

and

P3(S) =
¼N=2b

L2
¢
LX
i=1

LX
j=1

exp

Ã
¡1
2

NX
k=1

(s(k)i ¡ s(k)j )2
2b2

!
:

Given this distance measure, the optimal sample po-

sitions si are computed as follows. One starts by ran-

domly choosing initial sampling parameters S, i.e., plac-

ing L N-dimensional samples randomly in state space,

where L is the cardinality of the desired optimal Dirac

mixture approximation and N the dimension of the con-

sidered standard normal distribution. Then, an optimiza-

tion procedure, e.g., a quasi-Newton method (L-BFGS)

[40], [41], changes these initial sampling parameters S,

i.e., moves the samples in state space, such that the dis-

tance measure (26) between the standard normal and its

Dirac mixture approximation is minimized. Thus, we

perform a global optimization as all sample positions

si are optimized at once. Another solution would be to

use greedy optimizations such as [42], where an existent

Dirac mixture is extended by simply adding additional

samples and leaving the existing samples unchanged.

Unfortunately, this leads to suboptimal approximation

results and, hence, is not considered here.

Fig. 5(a) illustrates the proposed LCD approach for

the case of a two-dimensional standard normal distri-

bution and L= 15 samples. The random initialization is

shown on the left, whereas the final optimal approxi-

mation is shown on the right. Fig. 5(b) depicts another

optimization result with L= 10 samples.

Now, given a non-standard Gaussian distribution

N (z; ẑ,Cz) (27)

during filter execution, i.e., the joint densities

fx,wk (xk¡1,wk) and f
x,v
k (xk,vk), we compute the matrix

square root
p
Cz of Cz using the Cholesky decomposi-

tion,5 and individually translate, rotate, and scale each

5Other matrix square root operations, such as the eigendecomposition,

are also possible.
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Fig. 6. Difference between the direct LCD approximation (a) and the standard normal LCD approximation (same samples as depicted in

Fig. 5(b)) with subsequent transformation using a Cholesky decomposition (b). For comparison, we transformed sample sets from the GF

and the RUKF (same samples as depicted in Fig. 1) as well. (a) Direct approximation. (b) Suboptimal approximation. (c) GF approximation.

(d) RUKF approximation.

sample of (25) according to

zi =
p
Cz ¢ si+ ẑ 8i 2 f1, : : : ,Lg, (28)

so that the new sample set

Z := fz1, : : : ,zLg
forms the Dirac mixture approximation

1

L

LX
i=1

±(z¡ zi)

of the non-standard Gaussian (27). Note that these non-

standard Gaussian samples are still equally weighted.

It is important to note that this combination of stan-

dard normal approximation with subsequent transfor-

mation delivers only suboptimal results compared to a

direct LCD-based approximation of the non-standard

Gaussian. Fig. 6 exemplifies this problem for a two-

dimensional non-standard, i.e., rotated and scaled, Gaus-

sian distribution and Dirac mixtures with 10 samples.

The direct LCD approximation of the considered Gaus-

sian is depicted in Fig. 6(a). One can see an optimal,

regular placement of the samples, covering the relevant

state space regions homogeneously. In contrast to this, a

suboptimal solution is shown in Fig. 6(b). Here, larger

regions of the relevant state space are uncovered, e.g.,

the top-left region of the Gaussian or its middle part.

Nevertheless, all state-of-the-art LRKFs suffer from the

problem of a suboptimal non-standard Gaussian approx-

imation, as they rely on the online Mahalanobis transfor-

mation, too. To demonstrate this, we transformed sam-

ple sets from the GF and the RUKF as well (see Fig. 6(c)

and Fig. 6(d)).

B. The New LRKF

By using offline computed LCD-based Dirac mix-

ture approximations of standard normal distributions

(25) in combination with online transformations (28)

during the LRKF time and measurement updates, we in-

troduce the new Smart Sampling Kalman Filter (S2KF),

with its powerful feature of using an arbitrary number of

optimally placed samples in the entire state space. There

exist no sampling constraints such as axis-aligned sam-

ples or that the number of samples must be a multiple

of the state dimension as with the UKF, GF, or RUKF.

As will be shown in the evaluation, with an increas-

ing number of used samples in (25) the S2KF converges

to the analytic statistical linearization as the resulting

Dirac mixture approximation of the standard normal

distribution becomes more accurate. In contrast to the

UKF with its fixed-size sample set, this allows an ex-

tensive evaluation of the given system and measurement

models, as more and more samples become available in

the relevant regions of the state space. Moreover, this

makes a non-positive definite state covariance matrix

very unlikely and the filter more reliable. As a conse-

quence, the estimation quality can be easily improved

by simply increasing the number of employed sam-

ples, which offers an intuitive optimization parameter.

Of course, this effect is also true for filters relying on

random sampling. But, due to the optimal sample place-

ment, the S2KF converges much faster, so that already a

small number of samples provides an excellent estima-

tion quality. Regarding the filter complexity, assuming

that the Dirac mixture approximations of the required

standard normal distributions are already computed, the

computational complexity of the S2KF grows only lin-

early with the number of used samples L for a fixed

dimension N.

One should keep in mind that the LCD approach

cannot create unique Dirac mixture approximations for

a given dimension N and number of samples L as the

standard normal distribution is rotation-invariant and

the optimization procedure is initialized with random

samples. However, due to the reuse of offline computed

Dirac mixture approximations, the S2KF results still be-

come reproducible. In other words, executing the S2KF
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with the same inputs multiple times, i.e., model param-

eters, initial state, and measurements, will always pro-

duce the same results as the same sample approxima-

tions are used for each execution.

C. The Sample Cache

The proposed S2KF needs several LCD-based Dirac

mixture approximations of standard normal distribu-

tions, one for each required combination of dimension

N and number of employed samples L, depending on the

concrete filtering problem (state dimension, noise di-

mension, and selected filter accuracy). An option to ob-

tain these approximations would be to recompute all re-

quired approximations before each program start. How-

ever, for large dimensions and/or number of samples,

this can be very time-consuming. Moreover, the estima-

tion results from different program executions would be

different as always new sample sets would be used.

For that reason, we introduce a sample storage called

Sample Cache. Whenever a requested sample set for

a given combination of dimension N and number of

samples L is not available during S2KF execution, it is

computed on demand,6 that is, transparent for the user,

and subsequently stored persistently in the file system

for later reuse. Over time, the Sample Cache grows

and the necessity for time-consuming sample generation

becomes more unlikely. Of course, if the user knows all

the needed approximations before filter execution, all

of them can be computed and stored in Sample Cache

in advance so that no sample computation is required at

all during filter execution.

VI. EVALUATION

In this section, we compare the new S2KF with state-

of-the-art LRKFs by performing recursive state estima-

tion using various nonlinear system and measurement

equations. In the first evaluation, the focus lies on non-

linear prediction, whereas in the second evaluation the

filters have to cope with nonlinear measurement up-

dates.

As every LRKF is an approximation of the Kalman

Filter based on analytic statistical linearization, an

LRKF estimate should be as close as possible to the

this estimate. A considerable difference between both

estimates can only result from inaccurate moment cal-

culations by the LRKF and, hence, its utilized Gaussian

sampling technique. Consequently, in order to assess the

investigated LRKFs and their used sampling techniques

properly, the state estimates obtained by analytic statis-

tical linearization will serve in both evaluations as ref-

erence (ground truth) here. Using another ground truth,

for example the true system state, would be unfavorable

to detect such inaccurate moment calculations. The rea-

son is that an LRKF estimate that is close to the true

system state does not indicate whether the moments

6As a consequence, in such a case the filter execution stalls until the

sample set is computed.

were calculated correctly, as the estimate obtained by

analytic statistical linearization might be quite different

from the true system state.

A. Batch Reactor

We consider the gas-phase reaction proposed in

[43], resulting in the estimation problem consisting of a

two-dimensional state xk = [xa,k,xb,k]
T, which obeys the

time-invariant nonlinear system model

xk = a(xk¡1,¢t,w)

= xk¡1 +¢t ¢
"¡0:32 ¢ x2a,k¡1
0:16 ¢ x2a,k¡1

#
+w, (29)

with input ¢t= 0:1 and time-invariant, additive, and

zero-mean Gaussian white noise w with covariance

Cw = diag(10¡5,10¡5):

Over time, we receive scalar measurements ỹk according

to the time-invariant linear mapping

yk = h(xk,v) = [1 1] ¢ xk + v, (30)

where v denotes time-invariant, additive, and zero-mean

Gaussian white noise with variance Cv = 0:1.

We compare the following estimators:

² exact, analytic statistical linearization using [44], for
which closed-form expressions are given in the Ap-

pendix,

² the UKF with equally weighted samples,
² the GF with 25 samples on each principal axis,
² the RUKF with 12 iterations, and finally
² the new S2KF with 10, 20, 50, 100, and 150 samples,
respectively, in order to demonstrate the convergence

of the S2KF towards the analytic statistical lineariza-

tion.

As the measurement equation is linear in this simula-

tion, we can accurately evaluate the nonlinear prediction

performance of the investigated filters. More precisely,

the measurement update is calculated in closed-form by

all filters, i.e., the optimal closed-form Kalman Filter

update is used. Additionally, due to the fact that the

system model (29) is corrupted by pure additive noise,

sampling is reduced to the two-dimensional state space

(see Sec. IV-D). Table II summarizes the resulting num-

bers of samples used by each LRKF for the prediction

step.

The simulation consists of R = 1000 Monte Carlo

runs. For each Monte Carlo run, the true system state

is obtained by initializing it with x0 = [3,1]
T and re-

cursively propagating it 50 times, together with noise

realizations of w, through the system model (29), re-

sulting in a simulation with 50 time steps. Additionally,

we simulate one noisy measurement each time step by

using (30) together with a noise realization of v. All

filters are initialized with mean x̂
e
0 = [0:5,3:5]

T and co-

variance Ce0 = diag(10,10).
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Fig. 7. Batch reactor simulation over 50 time steps. (a) State mean RMSE x̄k . (b) State covariance RMSE C̄k .

TABLE II

Employed LRKFs and their respective sampling settings for the

batch reactor simulation.

LRKF Number of samples Sample placement

UKF 2 ¢ 2+1 = 5 Axes only

GF 24 ¢ 2+1 = 49 Axes only

RUKF 12 ¢ (2 ¢ 2)+1 = 49 Entire state space

S2KF 10 Entire state space

S2KF 20 Entire state space

S2KF 50 Entire state space

S2KF 100 Entire state space

S2KF 150 Entire state space

In order to assess the estimation quality of each

LRKF, we compute the Root Mean Square Error

(RMSE) of their posterior state mean over all simulation

runs with respect to the analytic statistical linearization

posterior state mean, that is,

x̄k =

vuut 1

R

RX
r=1

kx̂(r)k ¡ x̂(r)a,kk22,

where x̂
(r)
k denotes the respective LRKF state mean and

x̂
(r)
a,k the state mean of the analytic statistical lineariza-

tion. The results are depicted in Fig. 7(a). Here, the GF

shows a very high RMSE at the beginning. Over time,

the RMSE decreases but remains at a relatively high

level. The RUKF does not possess such extreme RMSE

but it is constantly at a higher level compared to the

UKF and S2KF estimates. As opposed to this, the UKF

delivers quite good results although the GF uses much

more samples per axis. Moreover, all S2KF instances

are also much better than the GF and RUKF, and the

S2KF instances using 50 or more samples deliver the

best posterior state means of all investigated LRKFs.

The expected convergence of the S2KF with an increas-

ing number of samples towards the analytic statistical

linearization can be clearly seen.

Fig. 8. Axis-aligned extended rectangular target with position ck ,

extent lk , and a target surface point zk .

Moreover, we compute the RMSE for their posterior

state covariance in a similar manner according to

C̄k =

vuut 1

R

RX
r=1

kC(r)k ¡C(r)a,kk2,

where k ¢ k denotes the Frobenius norm, C(r)k the respec-

tive LRKF state covariance, and C(r)a,k the state covariance

of the analytic statistical linearization. When looking at

the results shown in Fig. 7(b), one should notice that the

GF as well as the RUKF estimate themselves much too

uncertain compared to the analytic moment calculation.

Both errors increase quickly and decrease only at a slow

pace over time. In contrast, the covariance of the UKF is

much closer to the analytic statistical linearization than

these filters. However, as with the state mean, the S2KF

instances can outperform the UKF and its convergence

towards analytic statistical linearization is as expected.

B. Extended Target Tracking

In this section, we evaluate the S2KF by means

of tracking an extended target modeled as multiplica-

tive noise. Our goal is to estimate the position ck =

[cxk ,c
y
k ]
T and extent lk = [l

x
k , l

y
k ]
T of a two-dimensional

axis-aligned rectangular target (see Fig. 8). The hidden

system state is given by xk = [l
T
k ,c

T
k ]
T.

In order to incorporate target information into our

state estimate, we assume uniformly distributed, noisy

measurements stemming from the surface of the target.
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Fig. 9. Extended target tracking evaluation results. (a) RMSE for the target position. (b) RMSE for the target area.

For this purpose, we extend the approach proposed in

[6]. The basic idea is that each point of the target surface

can be reached by scaling the axis lengths lxk and l
y
k

individually and adding the center ck, i.e.,

zk =H ¢ lk + ck,
with uncorrelated state independent multiplicative noise

H= diag(hx,hy):

As the measurements are uniformly distributed, hx and

hy also have to be uniformly distributed in the interval

[¡1,1] (see Fig. 8). Taking the measurement noise into
account yields the preliminary nonlinear measurement

equation
mk = zk +w =H ¢ lk + ck +w, (31)

where w denotes additive, zero-mean Gaussian white

noise with unit covariance.

Unfortunately, as mentioned in [6], linear estimators,

including the S2KF as well, are unsuitable for tracking

extended targets modeled this way. To overcome this

issue, we pick up on the author’s suggestion and ex-

tend the measurement equation (31) to match the best

quadratic estimator according to

y
k
=

·
mk

m2k

¸
=

·
H ¢ lk + ck +w
(H ¢ lk + ck +w)2

¸
:

To keep things simple, this evaluation uses a static

target with extent l = [4,2]T located at c= [3,5]T. Thus,

the temporal evolution of xk is modeled as random walk,

i.e., employing the linear system equation

x
p
k = x

e
k¡1 + v,

where v is an additive, zero-mean Gaussian white noise

with covariance

Cv = diag(10¡4,10¡4,10¡3,10¡3):

We compare the following estimators:

² exact, analytic statistical linearization using [44],
² the UKF with 2 ¢ 8+1 = 17 equally weighted sam-
ples,

² the RUKF with 10 iterations (resulting in 10 ¢ (2 ¢8)+
1 = 161 samples), and

² two S2KF instances with 25 and 50 samples, respec-
tively, in order to demonstrate the convergence of the

S2KF towards the analytic statistical linearization.

Due to the fact that the S2KF and the RUKF require

a measurement noise described in terms of a Gaussian

distribution,7 and while the UKF only considers the first

two moments of the measurement noise, we approxi-

mate the uniformly distributed multiplicative noise H

as Gaussian distribution by means of moment matching.

The simulation consists of R = 100 Monte Carlo runs.

For each Monte Carlo run, the initial state estimate is

set to x̂
e
0 = [1,1,0,0]

T and Ce0 = I4, and at each time step

we receive a single noisy measurement from the target

surface.

Similar to the batch reactor simulation, we assess

the estimation quality of each LRKF by computing

the RMSE of their target position estimate over all

simulation runs with respect to the analytic statistical

linearization target position estimate, that is,

c̄k =

vuut 1

R

RX
r=1

kĉ(r)k ¡ ĉ(r)a,kk22,

where ĉ
(r)
k denotes the respective LRKF position esti-

mate and ĉ
(r)
a,k the analytic statistical linearization posi-

tion estimate. The results of the target position RMSE

are depicted in Fig. 9(a). Here, all LRKFs quickly de-

crease their RMSE over time. However, the UKF con-

verges to a little higher RMSE than the other LRKFs.

The S2KF using 50 samples converges quickly to an

error nearly zero and yields the best estimation result of

all LRKFs.

Additionally, we compare their target extent estimate

by computing the RMSE of the estimated target area in

7This is a consequence of the fact that these filters rely on explicit

sampling a Gaussian distribution.
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a similar manner according to

Āk =

vuut 1

R

RX
r=1

(4 ¢ (l̂xk)(r) ¢ (l̂yk )(r)¡ 4 ¢ (l̂xa,k)(r) ¢ (l̂ya,k)(r))2,

where [l̂xk , l̂
y
k ]
(r) denotes the respective LRKF target ex-

tent estimate and [l̂xa,k, l̂
y
a,k]

(r) the analytic statistical lin-

earization target extent estimate. Fig. 9(b) shows the

RMSE for the estimated target area. The 50 sample

S2KF is the only filter that directly converges to a small

error, whereas the UKF and the RUKF quickly increase

to a high RMSE and decrease only at a very low rate.

The UKF area estimate is clearly incorrect, as its area

error converges to approximately 28 m2. As opposed to

this, the S2KF using 25 samples corrects its estimate

relatively fast.

Fig. 10 shows a representative simulation run after

incorporating 75 measurements. One can see that the

UKF leaves its initial state estimate of a target of 4 m2

completely unchanged which coincides with its area

RMSE of approximately 28 m2, and that the RUKF es-

timates the target much too small. In contrast to this, the

S2KF using 50 samples is almost identical to the ana-

lytic statistical linearization estimate. The general S2KF

convergence towards the analytic statistical linearization

concerning both target position and extent is evident as

the 50 sample instance yields the much better tracking

results than the S2KF using 25 samples.

C. Summary

The performed evaluations showed a general prob-

lem of sample-based filtering: not only the amount of

samples and their placement are important for the esti-

mation results, but also their interaction with the under-

lying system and measurement models. This was seen

in the two following cases. On the one hand, the axis-

aligned placement of the UKF samples deliver quite

good results with the batch reactor model, but com-

pletely failed during the extended object tracking. On

the other hand, the RUKF had problems in both evalua-

tions although it places its samples not only the axes. In

contrast, with the ability to use an arbitrary amount of

samples with optimal placement in the relevant regions

of the state space, the new S2KF can easily be tuned to

perform well in both filtering problems.

VII. CONCLUSIONS

In this paper, we introduced a new accurate LRKF

called Smart Sampling Kalman Filter (S2KF). It is based

on LCD-based Dirac mixture approximations of stan-

dard normal distributions comprising an arbitrary num-

ber of samples, which are placed optimally in the rel-

evant regions of the state space, that is, not only on

the principal axes. Hence, the S2KF can be seen as the

ultimate generalization of all sample-based Nonlinear

Kalman Filters.

Fig. 10. Representative simulation run with extended target (gray

rectangle), randomly generated noisy measurements (magenta dots),

analytic statistical linearization estimate (black dashed line), 50

sample S2KF estimate (blue line), UKF estimate (green line), and

RUKF estimate (red line).

First, we gave a general introduction to Gaussian

estimators and Nonlinear Kalman Filters. We explained

the idea of analytic statistical linearization and its ap-

proximation in form of the Linear Regression Kalman

Filter. After that, we described the optimal Gaussian

sampling using the LCD approach and based on this in-

troduced the S2KF. Moreover, we proposed the idea of

a Sample Cache that stores computed Dirac mixture ap-

proximations of standard normal distributions persistent

in the file system for later reuse. Finally, we evaluated

the S2KF by means a nonlinear prediction scenario and

extended target tracking against state-of-the-art LRKFs.

The new filter showed the expected convergence to-

wards the analytic statistical linearization and outper-

formed state-of-the-art LRKFs including the UKF and

RUKF.

As the S2KF encompasses the same structure as the

UKF, the S2KF can easily replace it in order to enhance

existing and future filtering applications. Morever, the

S2KF can be directly used in Gaussian mixture LRKFs

[25], [45] and LRKF square root implementations such

as described in [46].
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APPENDIX

Our goal is to calculate the predicted state mean and

covariance of the nonlinear dynamic system considered

in Sec. VI-A in closed-form. Given the state mean

x̂
e
k¡1 = [x̂a,k¡1, x̂b,k¡1]

T

and state covariance

Cek¡1 =
·
cxaa,k¡1 cxab,k¡1
cxab,k¡1 cxbb,k¡1

¸
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from the last time step k¡1, and the system noise

statistics

ŵk = [x̂a,k, x̂b,k]
T

and

Cwk =

·
cwaa,k 0

0 cwbb,k

¸
from the current time step k, we obtain the moments

E[x2a,k¡1] = x̂
2
a,k¡1 + c

x
aa,k¡1,

E[x3a,k¡1] = x̂
3
a,k¡1 +3 ¢ x̂a,k¡1 ¢ cxaa,k¡1,

E[x4a,k¡1] = x̂
4
a,k¡1 +6 ¢ x̂2a,k¡1 ¢ cxaa,k¡1
+3 ¢ (cxaa,k¡1)2,

E[x2b,k¡1] = x̂
2
b,k¡1 + c

x
bb,k¡1,

E[xa,k¡1xb,k¡1] = x̂a,k¡1x̂b,k¡1 + c
x
ab,k¡1,

E[x2a,k¡1xb,k¡1] = x̂
2
a,k¡1x̂b,k¡1 + c

x
aa,k¡1 ¢ x̂b,k¡1

+2 ¢ cxab,k¡1 ¢ x̂a,k¡1,
E[w2a,k] = x̂

2
a,k + c

w
aa,k,

E[w2b,k] = x̂
2
b,k + c

w
bb,k,

respectively. Using these moments together with p=

¡0:32 and q= 0:16, we obtain the predicted state mean
according to

x̂
p
k =

"
x̂a,k¡1 +p ¢¢t ¢E[x2a,k¡1]
x̂b,k¡1 + q ¢¢t ¢E[x2a,k¡1]

#
+ ŵk,

and the predicted state covariance matrix according to

C
p
k =

·
maa,k mab,k

mab,k mbb,k

¸
¡ x̂pk ¢ (x̂pk )T,

with

maa,k = E[x
2
a,k¡1]+ (p ¢¢t)2 ¢E[x4a,k¡1]+E[w2a,k]

+2 ¢ (p ¢¢t ¢E[x3a,k¡1]+ x̂a,k¡1 ¢ x̂a,k
+p ¢¢t ¢E[x2a,k¡1] ¢ x̂a,k),

mbb,k = E[x
2
b,k¡1]+ (q ¢¢t)2 ¢E[x4a,k¡1]+E[w2b,k]

+2 ¢ (q ¢¢t ¢E[x2a,k¡1xb,k¡1]+ x̂b,k¡1 ¢ x̂b,k
+ q ¢¢t ¢E[x2a,k¡1] ¢ x̂b,k),

mab,k = E[xa,k¡1xb,k¡1]+ q ¢¢t ¢E[x3a,k¡1]
+ x̂a,k¡1 ¢ x̂b,k +p ¢¢t ¢E[x2a,k¡1xb,k¡1]
+p ¢ q ¢¢t2 ¢E[x4a,k¡1]
+p ¢¢t ¢E[x2a,k¡1] ¢ x̂b,k
+ x̂a,k ¢ (x̂b,k¡1 + q ¢¢t ¢E[x2a,k¡1]+ x̂b,k):
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An Exploration of the Impacts

of Three Factors in Multimodal

Biometric Score Fusion: Score

Modality, Recognition Method,

and Fusion Process

YUFENG ZHENG

ERIK BLASCH

Operational applications for human identification require high

credibility in order to determine or verify a person’s identity to a

desired confidence level. Multimodal biometric score fusion (MBSF)

can significantly improve detection, recognition, and identification

performance of humans. The goals of this research are to explore

the impact of each factor in a MBSF process and to determine

the most important (key) factor. The following are three main fac-

tors that will be investigated and discussed in this paper: score

modality, recognition method, and fusion process. Specifically, score

modality is defined as imaging device (hardware) for biometric data

acquisition. Recognition method is defined as matching algorithm

(software) for biometric score calculation. A fusion process such as

arithmetic fusion, classifier-based fusion, or density-based fusion,

is used to combine biometric scores. The hidden Markov model

(HMM) is also applied to the MBSF process as a baseline com-

parison. The accuracy of human identification is measured with a

verification rate. A new metric, relative rate increase (RRI), is pro-

posed to evaluate the performance improvement using score fusion.

Several recognition methods (two to four matchers) and four fusion

processes (mean, linear discriminant analysis, k-nearest neighbors,

and HMM) are compared over four multimodal databases in our

experiments. The experimental results show that the score modality

is the dominant factor in biometric score fusion. The fusion process

becomes more important in a single modality fusion. Adding more

recognition methods into the fusion process has the least impact on

fusion improvement.
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1 INTRODUCTION

Data fusion can be performed at different levels,

e.g., pixel, feature, score, and decision. Accordingly, the

corresponding data preprocessing is also different for

each level. For example, pixel-level and feature-level

image fusion usually require registration and normal-

ization (to align multiple images); while score-level fu-

sion only requires normalization. Decision-level fusion

such as a majority voting probably has the least require-

ments for preprocessing as the results are compiled from

scores. The scope of fusion discussed in this paper is

focused on multimodal biometric score fusion (MBSF).

The source scores may originate from different types of

devices, called modality (e.g., fingerprints, face images),

and/or from variant analysis software, called matcher or

recognition (e.g., linear discriminant analysis algorithm,

Elastic Bunch Graphing Method (EBGM) algorithm)

for face recognition. Score-level fusion usually involves

score normalization, score fusion, and decision fusion.

Score normalization (refer to Section 2.1) and decision

fusion (refer to Section 3.2.2) may have some effects on

the results of score fusion; however, the impacts of score

modality (related with hardware), recognition method

(software), and fusion process (post-processing in a hy-

brid human identification system) will be emphasized

and investigated in this paper.

There are several types of score fusion methods:

arithmetic combination of fusion scores, classifier-based

fusion, and density-based fusion. In arithmetic fusion,

the final score is a value of predefined function, f, with

the input of normalized scores, (s1,s2, : : :). The output

of such a fusion process, SF, is computed by

SF = f(s1,s2, : : : ,sn), (1)

where f stands for a fusion function or a set of fusion

rules. f may be implemented by a simple arithmetic

operation [15] such as taking the summation, average,

product, minimum, maximum, median, majority vote, or

by exploiting a Naive Bayes model [16]. In classifier-

based fusion (referred to as classifier fusion), a classi-

fier is first trained with the labeled score data, and then

tested with unlabeled scores [4], [9]. The choices of

classifiers include linear discriminant analysis (LDA)

[8], k-nearest neighbors (KNN), artificial neural net-

work (ANN) [14], and/or a support vector machine

(SVM) [6]. In density-based fusion, a multi-dimensional

density function is estimated with the score dataset, and

then it can predict the probability of any given score

vector [23], [28]. Nandakumar et al. [21] proposed a

density-based fusion method where the likelihood ra-

tio was estimated by Gaussian mixture model (GMM).

Their experimental results [21] showed that the likeli-

hood ratio fusion outperformed any single matcher and

other fusion processes (like sum rule with min-max).

A Hidden Markov model (HMM) was recently proposed

for MBSF (referred to as HMM fusion [31]), which can
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flexibly combine multiple scores from different modal-

ities and/or from variant matchers. The early experi-

mental results [31] showed that the HMM fusion was

the most accurate and credible method in comparison

to mean fusion and KNN fusion.

The security applications of a human identification

system require achieving greater accuracy, efficiency,

and credibility to robustly determine a person’s iden-

tity (ID). It is clear that the MBSF process can signifi-

cantly improve human identification performance [13],

[21], [26], [27], [30], [31]. The set of literature fo-

cused on the advances of specific score fusion methods

and its performance improvement typically evaluate the

complete system. For example, Toh et al. [27] intro-

duced a reduced multivariate polynomial model for mul-

timodal biometric decision fusion (using three scores

from fingerprint, speech and hand geometry), and they

found that local learning and global decision did bet-

ter than just fusing all three results at once. Ross and

Jain [26] conducted a set of experiments in combining

multimodal biometric scores (from face, fingerprint, and

hand geometry), and their results indicated that the sum

rule performed better than the decision tree and linear

discriminant classifiers. Our early work [31] also fo-

cused on the discussion of performance improvement

with the HMM fusion method. To the authors’ knowl-

edge, there are few published works that explore the

key parameters that influence score fusion. Part of the

reason may be lack of multimodal score databases and

no effective metrics for fusion improvement evaluations

across different methods and databases. Recognizing the

key factor of score fusion will help design an accurate

and credible human ID system to meet the critical needs

of security applications. For instance, assuming that a

human ID system permits a fusion with only two scores,

should two modalities (one matcher per modality, e.g.,

fingerprint and face), or two matchers on one modality

(e.g., fingerprint) be used? What is the impact of var-

ious fusion processes (e.g., HMM versus KNN) over

different scenarios?

The main purpose of this research is to discover

the key factor of multimodal biometric score fusion.

Four fusion methods, mean, LDA, KNN, and HMM, are

tested and compared using four biometric score datasets,

wherein the HMM fusion is specifically configured for

score fusion. Additionally, a new metric (called rela-

tive rate increase) is introduced for fusion improvement

measurement. Our experiments reveal that score modal-

ity is the key factor in a score fusion scenario, which

is meaningful to integrate and configure a multimodal

biometric system. The rest of this paper is arranged as

follows. The score normalization and fusion evaluation

are depicted in Section 2. The score fusion processes in-

cluding HMM fusion are described in Section 3. Exper-

imental results, comparisons, and discussions are pre-

sented in Section 4. Finally, conclusions are drawn in

Section 5.

2 SCORE NORMALIZATION AND FUSION
EVALUATION

Multimodal biometric scores are computed with dif-

ferent modalities and algorithms, which may be similar-

ity values (e.g., confidence values, probabilities, or loga-

rithm probabilities), or distance measures (e.g., Euclid-

ian distance, Hamming distance, or Mahalanobis dis-

tance). The variant source scores may contrast in a va-

riety of ranges. Score normalization is required before

score fusion. Meanwhile, fusion evaluation is needed to

compare the performance of different fusion processes.

To evaluate fusion performance, it is required that all

original scores are either similarity scores or distance

scores (but not the mix of similarity and distance). Con-

verting a similarity score to a distance score is straight-

forward because of their reciprocal relationship.

2.1 Score Normalization

Prior to score fusion, score normalization is expected

since the multimodal scores are heterogeneous and thus

have varying dynamic ranges. The large variances of

multimodal scores are caused either by different match-

ing algorithms or by different natures of biometrical

data. There are many normalization methods proposed

in literature. Jain et al. [13] reported that min-max, z-

score, and tanh normalization techniques, followed by

a simple sum of scores fusion method, resulted in a

superior GAR (genuine accept rate). It was also shown

that both min-max and z-score methods are sensitive to

outliers; whereas the tanh normalization method is both

robust and efficient. The score data used in our experi-

ments were obtained in the controlled lab environment

(with less noise), thus a standard z-score normalization

procedure is applied to all biometric scores,

SN = (S0¡¹0)=¾0, (2)

where SN is the normalized score vector, S0 is the

original score vector, and ¹0 and ¾0 denote the mean
and standard deviation of original scores, respectively.

2.2 Fusion Evaluation

2.2.1 Verification Rate.
Genuine score is the matching score resulting from

two samples of one user; while impostor score is the

matching score of two samples originating from differ-

ent users. Genuine accept rate (GAR) is the fraction of

genuine scores exceeding the threshold; whereas false

accept rate (FAR) is the fraction of impostor scores ex-

ceeding the threshold. A receiver operating character-

istic (ROC) curve is computed from the FAR and true

positive rate (TPR). On an open dataset (the query user

may not be contained in the database), GAR/FAR/ROC

area can be computed by choosing a threshold. On a

closed dataset (the query user is surely included in the

database), the identification performance can be mea-

sured by a verification rate (also called identification
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rate or recognition rate), denoted as RV, the percentage

of correctly identified users over the total number of

users. In our experiments, verification rate (VR) is used

to evaluate the fusion performance since all users (i.e.,

subjects) are guaranteed in the database. Of course, the

VR value may vary with a preset threshold. In a single-

matcher evaluation, top-1 matching (e.g., the shortest

distance) is used, while in a score fusion evaluation, the

default threshold of each classifier is used. Finally, keep

in mind that it is necessary to convert all multimodal

scores to either similarity scores or distance scores be-

fore score fusion.

2.2.2 Relative Rate Increase.
The performance improvement using score fusion

cannot be properly measured by using the absolute dif-

ference of two verification rates. For example, improv-

ing RV from 80% to 90% seems to be more difficult than

the improvement from 98% to 99%. Generally speak-

ing, we know that the improvement of RV via score fu-

sion becomes more and more difficult when the original

rate is approaching 100%. We propose to use a relative

rate increase (denoted as RRI) to evaluate the fusion

improvement.

RRI =
ARI

1¡RV
=
RF¡RV
1¡RV

, (3)

where RF is the verification rate via score fusion; RV is

the mean of original verification rates from individual

modalities or matchers. ARI = RF¡RV is the absolute
rate increase (ARI), which may not precisely measure

the performance improvement as stated above. RRI 2
(0,1]; the higher, the better. According to the RRI

definition, two fusion improvements, from 80% to 90%

and from 98% to 99%, are equivalent, and their RRI =

0:50. It may be understood that the two improvements

are “equivalent” in the sense of their difficulty levels

and/or of the extent of their effort.

Many metrics could be devised, wherein the RRI

metric seeks to measure the actual improvement against

the total amount of possible improvement. With future

large databases, the RRI metric would help in the quality

of the fusion performance over the entire dataset (versus

an assumed recognition performance with a small data

set).

3 SCORE FUSION PROCESSES

In this section, arithmetic fusion and classifier fu-

sion are briefly reviewed, and then HMM models are

introduced for biometric score fusion.

3.1 Arithmetic Fusion and Classifier Fusion

Arithmetic fusion means to combine multiple scores

by taking the summation, average (mean), product

(called geometric mean), minimum, maximum, and me-

dian [15]. Majority vote is actually a kind of decision-

level fusion, which requires the number of decision

makers to be an odd number to avoid a possible tie.

The mean fusion is selected in our experiments because

it has the best performance of all aforementioned arith-

metic fusion processes.

In classifier fusion, four frequently-used classifica-

tion methods are discussed. These methods include lin-

ear discriminant analysis (LDA), k-nearest neighbor

(KNN), artificial neural network (ANN), and support

vector machine (SVM). The fusion results of LDA and

KNN methods will be presented in our experiments

due to their better performance on average [33], and

thus these two methods are briefly described as follows,

where the reader can find descriptions of ANN and

SVM in the literature. The purpose of LDA is to predict

group membership based on a linear combination of a

set of predictor variables (i.e., a feature vector) [8]. The

end result of the LDA procedure is a model (i.e., linear

discriminant function, LDF) that allows prediction of

group membership when only the predictor variables

are known. The KNN method is usually deployed with

a clustering technique. Fuzzy C-means (FCM) [3] is a

data clustering technique wherein each data point be-

longs to a cluster to some degree that is specified by

a membership grade. FCM starts with an initial guess

of data membership and iteratively moves the cluster

centers to the correct location within a data set. Once

a certain number of clusters are formed by the FCM

algorithm, the k-nearest neighbors can be found from

those clusters using a Euclidean distance (between a

testing feature vector and the clustered feature vectors).

The probability of a given feature vector (multimodality

scores) can be calculated with the labeled clusters.

To sufficiently use the sample data in classification

evaluation, a cross validation method is applied to split

original data into two groups for training and testing

purposes. K-fold cross validation [25] is ideal for small

databases. Notice that the divisions of k subsets (k = 10

used in our experiments) are based upon the users. If

one user is grouped into Subset 1, then all scores of that

user (including all his/her genuine and impostor scores)

belong to Subset 1.

3.2 Hidden Markov Model for Multimodal Score
Fusion

3.2.1 Basics on Hidden Markov Models.
In the past two decades, HMMmodels have emerged

as a powerful tool for modeling stochastic processes

and pattern sequences. Originally, HMMs have been ap-

plied to the domain of speech recognition and have be-

come the dominating technology [24]. In recent years,

they have attracted growing interest in computational

molecular biology, bioinformatics, mine detection [12],

handwritten character/word recognition [19], face and

gesture recognition, shape recognition, image database

retrieval, and other computer vision applications [5].

Generally speaking, an HMM is a model of a stochastic

process that produces a sequence of random observa-
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tion vectors at discrete times according to an underlying

Markov chain. At each observation time, the Markov

chain may be in one of N states fs1, : : : ,sNg (hidden
from the observation) and, given that the chain is in a

certain state, there are probabilities of moving to other

states, called the transition probabilities. An HMM is

characterized by three sets of probability density func-

tions: the state transition probabilities (A), the observa-

tion symbol probabilities (B), and the initial state proba-

bilities (¼).
Let T be the length of the observation sequence (i.e.,

number of time steps; t= 1, : : : ,T), O= fO1, : : : ,OTg be
the observation sequence, and Q= fq1, : : : ,qTg be the
state sequence. The compact notation,

¸= (A,B,¼) (4)

is generally used to indicate the complete parameter

set of the HMM model, ¸. In the above, A= faijg
is the state transition probability matrix, where aij =

P(qt = sj j qt¡1 = si) for i,j = 1, : : : ,N; ¼ = f¼ig, where
¼i = P(q1 = si), are the initial state probabilities. In

the case of the discrete HMM, the observation vec-

tors are commonly quantized into a finite set of sym-

bols, fv1, : : : ,vMg called the codebook. Each state is
represented by a discrete probability density function

and each symbol has a probability of occurring given

that the system is in a given state. The observation

symbol probability distribution B= fbi(Ot)g becomes
a simple set of fixed probabilities for each class, i.e.,

bi(Ot) = bi(k) = P(vk j qt = si), where vk is the symbol
of the nearest codebook of Ot.

Three key problems [24] must be solved for the

model defined in Eq. (4) to be useful in real world

applications: the classification (testing) problem, the

problem of finding an optimal state sequence (tuning),

and the problem of estimating the model parameters

(training). The classification problem involves comput-

ing the probability of an observation sequence O=

fO1, : : : ,OTg given a model ¸, i.e., P(O j ¸). The Viterbi
algorithm [20] is an efficient and formal technique for

finding this maximum (optimal) state sequence and as-

sociate probability. The third problem is the training

problem, i.e., how does one estimate the parameters of

the model? First, all the states themselves must be esti-

mated. Then the model parameters need to be estimated.

In the discrete HMM, the codebook is first determined,

usually using clustering techniques such as K-means [7]

or fuzzy C-mean clustering algorithms [3]. The proba-

bility distribution B may be estimated either by fuzzy

memberships [3] in a discrete HMMmodel, or by Gaus-

sian mixture model (GMM) [10], [21] in a continuous

HMM model. Then the parameters (A,B,¼) are esti-
mated iteratively using the Baum-Welch algorithm [2].

3.2.2 HMMs for Multimodal Score Fusion.
The HMM fusion is a type of classifier fusion, but

it significantly differs in data preparation and classifi-

cation process. In the context of this paper, we need

to distinguish two terms, multimodal scores and multi-

matcher scores. Multimodal biometric scores (also re-

ferred to as inter-modality scores) result from different

modalities (such as different hardware devices for imag-

ing face and fingerprint); while multi-matcher scores

(also referred to as intra-modality scores) result from

different software algorithms but use the same modality

(e.g., three face scores generated from three face recog-

nition algorithms, respectively).

For HMM training, a large database with known

users (labeled with user IDs) are expected, and thus a

k-fold cross validation is utilized to satisfy this need.

All scores are normalized and then organized as the in-

puts of HMM models using k-fold cross validation. The

HMM model is adapted to a MBSF process and ini-

tialized with parameters like HMM(m,n,g), or denoted

as m£ n£ g HMM. Where m is the number of intra-

modality scores (from m matchers upon one modality

data) representing an observation vector in HMM, and n

is the number of modalities corresponding to n hidden

states, respectively. By placing n pieces of m-dimension

observation vectors together, an observation sequence

(over time, t) is formed. g is the number Gaussian com-

ponents per state in a Gaussian mixture model (GMM).

The GMM is applied to estimate the state probability

density functions of each hidden state in a continuous

HMM model.

Two HMM models are derived using genuine scores

and impostor scores (in the training dataset), respec-

tively. Given an observation sequence formed with mul-

tiple scores (of dimension m£ n) in the testing dataset,
the two trained HMM models can compute the proba-

bilities of being a genuine user and an impostor user,

respectively. The user is identified as genuine if the

probability given by the genuine HMM is higher. The

details of the HMM model [31] and its adaption to a

MBSF process are described as follows.

3.2.3 HMM Adaption to Multimodal Score Fusion.
The HMM models have wide applications in dif-

ferent fields and require proper data initialization for

a specific application. In HMM score fusion, the ob-

servation vector Ot can be the m-dimensional intra-

modality scores from m matchers. The observation se-

quence O(t,s) can be formed by combining n pieces

of Ot from n modalities: O(t,s) = fSmng. For example,
there are 2 biometric modalities (n= 2; e.g., face, fin-

ger) and 2 matching algorithms (matchers) for each

modality (m= 2). Thus, the length of O(t,s) is 4 (re-

fer to NIST-Face-Fingerer database in Table 1a). The

elements of B can be initialized with GMM, where the

number of Gaussian models (g) in each state are usu-

ally fixed (e.g., g = 3) or automatically decided [10].

Notice that two HMM models, ¸Gen and ¸Imp, are actu-

ally trained using genuine scores and impostor scores,

respectively; where their parameters can be estimated
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TABLE 1a

Summary of four multimodal biometric databases.

Database No. of Modalities No. of Matchers No. of Users No. of Images No. of Scores

NIST-Face-Finger 2: Finger & Face 4 517 3,102 1,069,156

NIST-Finger-Finger 1: Finger 2 6,000 24,000 72,000,000

NIST-Face 1: Face 2 3,000 6,000 36,000,000

ASUMS-Face-Face 2: Face (IR & DC) 6 96 576 110,592

TABLE 1b

Details of the trimmed databases (Sim. = Similarity; Dist. = Distance).

Database Genuine : Impostor HMM Models Matchers Score Type Plot

NIST-Face-Finger M1 (Face) 1,034 : 2,068 2£ 1£ 3 2 Face matchers Sim., Sim. Fig. 2a

NIST-Face-Finger M2 (Finger) 1,034 : 2,068 2£ 1£ 3 Left, Right Finger Sim., Sim. Fig. 2b

NIST-Finger-Finger 12,000 : 24,000 2£ 1£ 3 Left, Right Finger Sim., Sim. Fig. 2c

NIST-Face 6,000 : 12,000 2£ 1£ 5 2 Face matchers Sim., Sim. Fig. 2d

ASUMS-Face-Face M1 (IR) 576 : 1,152 3£ 1£ 2 FPB, LDA, EBGM Dist., Dist., Sim. Fig. 3a

ASUMS-Face-Face M2 (DC) 576 : 1,152 3£ 1£ 2 FPB, LDA, EBGM Dist., Dist., Sim. Fig. 3b

Fig. 1. Sample faces from the ASUMS-Face-Face database: Notice

that the two images (DC/visible, IR/thermal) shown at two

neighboring columns were acquired from the same subject. The

images are the aligned faces (320£ 320 pixels).

using the Baum-Welch algorithm [2]. An unlabeled bio-

metric score sequence, O, will be classified as a “gen-
uine user” if PGen(O j ¸Gen)> PImp(O j ¸Imp)+ ´ (a sim-
ple decision rule); otherwise, O will be an “impostor

user,” where ´ is a small positive number empirically

decided by experiments.

O=

½
Genuine User if PGen(O j ¸Gen)> PImp(O j ¸Imp)+ ´
Impostor User Otherwise

(5)

In general, m¸ 1, n¸ 1, and m£ n¸ 2 are expected.
In other words, at least two scores are required for

HMM fusion. If the number of biometric modality is

one (n= 1), then the number of matching scores from

that modality must be two or greater (produced from

different matching algorithms, e.g., LDA and EBGM

[29] for face recognition). If there are two or more

modalities (n¸ 2), in order to properly initialize and
train the HMM models, the numbers of intra-modality

scores (m¸ 1) derived from each modality must be

same. There are usually more impostor scores than

genuine scores in a biometric score dataset. To prevent

a HMM model from being biased by the excessive

impostor scores, the number of impostor scores used

in training ¸Imp should be equivalent to the number of

genuine scores used in training ¸Gen.

4 EXPERIMENTAL RESULTS AND DISCUSSIONS

The MBSF experiments were conducted on four bio-

metric score databases and evaluated by reporting the

verification rates (RV and RF) and the values of rel-

ative rate increase (RRI). Four fusion processes were

selected to be reported in our experiments because of

their better performance on average. The four fusion

processes include one arithmetic fusion (mean fusion),

two classifier fusions (LDA fusion and KNN fusion),

and HMM fusion [31]. In the context, “modality” repre-

sents a biometric device (fingerprint, face); “matcher” is

the software implementation of a “recognition method”;

and “fusion method” means how to combine multiple

scores (e.g., KNN fusion, HMM fusion). In the follow-

ing discussion, Row 1 (or Column 1) referring to a table

means the 1st row (or column) after the header row (or

column).

4.1 Multimodal Scores and Experimental Design

Four biometric score databases (see Table 1a) were

used in our experiments; three of which were from

NIST-BSSR1 (Biometric Scores Set Release 1, from

National Institute of Standards and Technology) [22],

[31], and one of which was the face scores generated

in our lab. Specifically, as shown in Table 1a, the NIST-

Face-Finger database consists of a total of 1,069,156

biometric scores that were computed with 3,102 images

from 517 users (individuals). Two face images, two

left index fingerprints (images), and two right index

fingerprints were acquired from each user; and then two

face matching systems and one fingerprint matching

system were applied to those images, respectively. So
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TABLE 2a

The verification rates (%) of four fusion processes (RF) across four databases.

Database Single Matcher (RV) Mean Fusion LDA Fusion KNN Fusion HMM Fusion

(m,n,g)

NIST-Face 77.50, 81.02 81.88 92.28 96.82 97.01 (2,1,5)

NIST-Finger-Finger 80.52, 87.88 93.98 97.60 92.29 98.16 (2,1,3)

NIST-Face-Finger 89.17, 84.33 86.46, 92.65 99.61 99.10 99.55 99.68 (2,2,5)

ASUMS-Face-Face 91.67, 93.75, 96.88 90.63, 93.75, 97.92 100.00 99.48 98.48 99.83 (3,2,2)

TABLE 2b

The relative rate increase (RRI) of four fusion processes across four databases. RV is the averaged RV of all matchers.

Database RV Mean Fusion LDA Fusion KNN Fusion HMM Fusion (¹RRI,¾RRI)

NIST-Face 79.26 0.1263 0.6278 0.8467 0.8558 0.6142, 0.3419

NIST-Finger-Finger 84.20 0.6190 0.8481 0.5120 0.8835 0.7157, 0.1794

NIST-Face-Finger 88.15 0.9671 0.9240 0.9620 0.9730 0.9565, 0.0221

ASUMS-Face-Face 94.10 1.0000 0.9119 0.7424 0.9712 0.9064, 0.1153

(¹RRI,¾RRI) (NA) 0.6781, 0.4062 0.8279, 0.1375 0.7658, 0.1915 0.9209, 0.0602 (NA)

there are 4 genuine scores for each user, two scores

from two face matching systems, two scores from one

fingerprint system but running on two fingerprints (left

and right). There are two modalities (finger and face)

and a total of four matchers in the NIST-Face-Finger

database, and thus two 2£ 2£ 5 HMM models [31]

(for genuine and impostor, respectively) were initialized

(g = 5 gave the best performance when varying g from

2 to 71). The NIST-Finger-Finger database contains the

scores from one fingerprint system running on two

fingerprints (left and right); and then two 2£ 1£ 3
HMMmodels were established. The NIST-Face database

is comprised of the scores from two face matching

systems; and two 2£ 1£ 5 HMM models were created.

The ASUMS-Face-Face (Alcorn State University

[ASU] MultiSpectral) database (Row 4 in Table 1a) in-

cludes the scores from three face recognition algorithms

and from two modalities ASUIR (ASU long-wave In-

frared) face images and ASUDC (ASU Digital Cam-

era) face images (see Fig. 1). Three face recognition

algorithms are linear discriminant analysis (LDA) [18],

elastic bunch graph matching (EBGM) [29], and face

pattern byte (FPB) [32]. The corresponding HMMmod-

els were configured as 3£ 2£ g (refer to Table 2a). The
ASUIR-Face subset [32] includes thermal (long-wave in-

frared, IR) face images, whereas the ASUDC-Face sub-

set consists of visible (digital camera, DC) face images

from the same group of users. In these two sub-datasets,

3 face images were acquired from each user, where one

randomly-selected image was used as probe face (i.e.,

a face image from a live camera) and the other two as

gallery faces (i.e., face images from a database). Table

1b shows the comparative relations over the trimmed

datasets (of reduced impostor scores) between num-

bers of genuine to impostor scores, parameters of HMM

1g was determined empirically in the experiment from which the dif-

ferences of g had a marginal impact on the results.

models (m£ n£ g), matchers, score type, and plots (also
refer to Tables 2a, 3a, 4a).

The total number of scores is massive in that it

mainly contains impostor scores. For example, ASUMS-

Face-Face consists of 1,152 genuine scores and 109,440

impostor scores (for all 3 matchers and 2 modalities).

All scores are normalized by using Eq. (2). An unbal-

anced training with the excessive impostor scores may

result a biased or over-trained model. To avoid possible

bias in model training as mentioned in Section 3, two

impostor scores per matcher per user were randomly se-

lected for training. All genuine scores plus reduced im-

postor scores are called “trimmed database.” Arithmetic

fusion used all scores (full databases), whereas HMM

fusion and classifier fusion used trimmed databases (re-

fer to Table 1b). The distributions of normalized scores

of four trimmed databases are presented as scatter plots

in Figs. 2—3, where the x-axis denotes Score 1 and

the y-axis represents other scores. The distributions

of 3 scores shown in Fig. 3 indicate low correlation

of three scores. Figs. 2—3 also show that three NIST

databases contain similarity scores (genuine scores are

large); while the ASUMS database includes both sim-

ilarity scores and distance scores (genuine scores are

small). Notice that less impostor markers shown in Fig.

2c is because most impostor markers are behind (thus

blocked by) the genuine markers.

Four fusion processes were tested across the four

score databases (refer to Table 1a). The fusion results

of mean fusion, LDA (with quadratic kernel), KNN,

and HMM were reported in Table 2a. The HMM mod-

els were implemented and adapted upon the “Hidden

Markov Model (HMM) Toolbox for Matlab” [20]. All

HMM models were tested by varying the number of

Gaussian components (g) from 2 to 7, the best results of

HMM fusions (together with initialization parameters)

are shown in Table 2a. The verification rates of origi-

nal scores are presented in Column “Single Matcher” in
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Fig. 2. Scatter plots (score distributions) of normalized multimodal biometric scores from three NIST databases (trimmed), where the x-axis

is Score 1 and the y-axis is Score 2: (a) NIST-Face-Finger M1 (Face); (b) NIST-Face-Finger M2 (Finger); (c) NIST-Finger-Finger;

(d) NIST-Face. Notice that all genuine scores and the two randomly-selected impostor scores per matcher per user are presented.

Table 2a, where the rightmost number (in italic font) is

the single best performance.

4.2 Results and Discussions

The performance of individual matcher (RV) and

four fusion processes (RF) on four databases are pre-

sented in Table 2a. It is clear that all four fusion ap-

proaches yield improvements compared to the corre-

sponding single best matcher (SBM) on each database.

Overall, the HMM fusion performs the best. It seems

that the mean fusion performs very well on the mul-

timodal databases (99.61% on NIST-Face-Finger and

100% on ASUMS-Face-Face). The possible reason

might be that the genuine scores and the impostor scores

on these two databases are well separated (refer to the

score distributions shown in Figs. 2—3), which makes a

linear separation (like mean fusion) ideal. Surprisingly,

in another independent research [30], the weighted-sum

score fusion reached the highest rate of 99% (SBM=

97%) when two weights were equal, which turned out

to be a mean fusion (but the score distributions were not

presented). The level of improvement will be analyzed

using the values of relative rate increase (RRI).

The RRI values of four fusion processes are given

in Table 2b. Table 2a and Table 2b are corresponding

cell-by-cell except for the last row and the last column.

Let us examine the rationality of RRI, which is pro-

posed to measure the improvement of score fusion. The

RRI value of mean fusion on NIST-Face is 0.1263 (the

smallest value in Table 2b), which corresponds an ab-

solute rate increase (ARI = 2:62%) from 79.26% (RV)

to 81.88%. The RRI value of HMM fusion on NIST-

Face-Finger is 0.9730 (the second largest value in Table

2b), which corresponds ARI = 11:53% (from 88.15% to

99.68%). There is a special case, RRI = 1:0000, for the

mean fusion on ASUMS-Face-Face, which represents a
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Fig. 3. Scatter plots (score distributions) of normalized face scores from two ASUMS datasets (trimmed), where the x-axis shows Score 1

from FPB (distance score), and the y-axis represents Score 2 from LDA (distance score shown in blue) and Score 3 from EBGM (similarity

score shown in red): (a) Scores from ASUMS-Face-Face M1 (IR); (b) Scores from ASUMS-Face-Face M2 (DC). Notice that all genuine

scores and the two randomly-selected impostor scores per matcher per subject are presented.

verification rate increase from 94.10% to 100%. Since

RF = 100% means a perfect fusion (i.e., a perfect hu-

man identification system), it is reasonable for RRI to

take its maximum value, 1.0. On a large database (e.g.,

millions of users), RRI rarely reaches 1.0. According

to the definition of RRI in Eq. (3), improving RF from

90% to 100% (ARI = 10%) and from 99.9% to 100%

(ARI = 0:1%), both will have RRI = 1:0, which makes

sense in terms of difficulty or effort. In other words, the

level of difficulty or the amount of effort for both cases

may be equivalent.

In Table 2b, the means and standard deviations of

RRI, denoted as (¹RRI,¾RRI), in each row and in each

column are listed in the last column and in the last

row, respectively, where “NA” means not applicable. As

shown in the bottom row of Table 2b, when averaging

across four biometric databases, the HMM fusion has

the highest ¹RRI and also the least ¾RRI. We may con-

clude that the HMM fusion is the best for MBSF in terms

of accuracy (high improvement) and credibility (low

variance). The LDA fusion is the second best. Accord-

ing to the rightmost column in Table 2b, when averag-

ing across four fusion processes, the NIST-Face-Finger

database gives the highest ¹RRI (0.9565) with the least

¾RRI. The ASUMS-Face-Face database is the second

best (¹RRI = 0:9064). It is clear that multimodal fusion

(NIST-Face-Finger and ASUMS-Face-Face, their aver-

aged ¹RRI = 0:9314) is superior to single-modal fusion

(NIST-Finger-Finger and NIST-Face, their averaged

¹RRI = 0:6649). It also makes sense that NIST-Face-

Finger produces a better improvement than ASUMS-

Face-Face since NIST-Face-Finger consists of truly di-

verse modalities (face and finger), whereas ASUMS-

Face-Face contains two bands of face images (thermal

and visible).

In Table 2b, ¹RRI(NIST-Face-Finger) = 0:9565 rep-

resents a modality fusion with multimodal scores when

averaging fusions; ¹RRI(HMM Fusion) = 0:9209 is from

the best fusion process when mixing modalities and

recognitions; and ¹RRI(NIST-Face) = 0:6142 is consid-

ered as a recognition fusion result with single-modal

(face) scores when averaging fusions. It reveals that

the importance of fusion factors from the highest to

the lowest are as follows: score modality, fusion pro-

cess, and recognition method. These three factors may

interact with one another; however, we do not have suf-

ficient data (power) to conduct an analysis of variance

(ANOVA).

To investigate and verify key factor that influences

the score fusion (i.e., sensitivity test), we need to sep-

arate three fusion factors: modality, recognition, and

fusion. Thus two multimodal databases, NIST-Face-

Finger and ASUMS-Face-Face, are selected, and di-

vided into modality subsets (e.g., NIST-Face-Finger M1

and NIST-Face-Finger M2; refer to Table 1b) and recog-

nition subsets (e.g., NIST-Face-Finger R1 and NIST-

Face-Finger R2). For example, on NIST-Face-Finger

M1 (face), the mean fusion is performed by averag-

ing the scores from two matchers (i.e., two recognition

methods), which is used to research the impact of the

recognition method. While on ASUMS-Face-Face R2

(EBGM), the mean fusion is achieved by averaging the

two EBGM scores from two modalities (i.e., IR and

DC; see Fig. 1) and used to study the impact of score

modality. The performance of individual matcher (RV)

and four fusion processes (RF) on subsets are listed in

Table 3a and Table 4a, and the relative rate increase

(RRI) of four fusion processes on subsets and their

(¹RRI,¾RRI) are given in Table 3b and Table 4b. The

following discussions are based on the results of RRI
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TABLE 3a

The verification rates (%) of four fusion processes (RF) on four subsets derived from the NIST-Face-Finger database.

Database Single Matcher (RV) Mean Fusion LDA Fusion KNN Fusion HMM Fusion

(m,n,g)

NIST-Face-Finger M1 (Face) 84.33, 89.17 90.52 94.45 96.97 97.42 (2,1,3)

NIST-Face-Finger M2 (Finger) 86.46, 92.65 94.78 97.23 97.48 98.06 (2,1,3)

NIST-Face-Finger R1 (Matcher 1) 84.33, 86.46 94.78 97.16 99.22 99.22 (1,2,2)

NIST-Face-Finger R2 (Matcher 2) 89.17, 92.65 96.71 99.16 99.42 99.42 (1,2,3)

TABLE 3b

The relative rate increase (RRI) of four fusion processes on four subsets derived from the NIST-Face-Finger database.

Database RV Mean Fusion LDA Fusion KNN Fusion HMM Fusion (¹RRI,¾RRI)

NIST-Face-Finger M1 (Finger) 86.75 0.2845 0.5811 0.7713 0.8053 0.6106, 0.2387

NIST-Face-Finger M2 (Face) 89.56 0.5002 0.7348 0.7587 0.8143 0.7020, 0.1386

NIST-Face-Finger R1 (Matcher 1) 85.39 0.6426 0.8055 0.9466 0.9466 0.8353, 0.1447

NIST-Face-Finger R2 (Matcher 2) 90.91 0.6381 0.9076 0.9362 0.9362 0.8545, 0.1449

(¹RRI,¾RRI) (NA) 0.5164, 0.1681 0.7573, 0.1372 0.8532, 0.1020 0.8756, 0.0762 (NA)

or ¹RRI since they can more properly evaluate the im-

provement than RF.

As shown inTable 3b,¹RRI(NIST-Face-Finger R1) =

0:8353 and ¹RRI(NIST-Face-Finger R2) = 0:8545 are

significantly higher than ¹RRI(NIST-Face-Finger M1) =

0:6106 and ¹RRI(NIST-Face-Finger M2) = 0:7020, re-

spectively. Further averaging the RRI values of two

recognition subsets (Rows 3—4), we have ¹RRI(NIST-

Face-Finger Rn) = 0:8449, which is much higher than

¹RRI(NIST-Face-Finger Mn) = 0:6563, where n= 1,2.

The comparisons above indicate that score modality

is a more important factor than recognition method

(matcher) when averaging (or mixing) fusion pro-

cesses. This statement complies with the conclusion

from Table 2b, multimodal fusion is superior to single-

modal fusion. Table 4b shows the same fact, where

¹RRI(ASUMS-Face-Face Rn) = 0:6814 (n= 1,2,3)

and ¹RRI(ASUMS-Face-Face Mn) = 0:6574 (n= 1,2),

although the difference is small as expected (due to less

diversity in score modalities).

To further explore the impacts of fusion factors

within one score database, the (¹RRI,¾RRI) values of

the combined modality subsets (Rows 1—2 in Table

3b and Rows 1—2 in Table 4b) and the (¹RRI,¾RRI)

values of the combined recognition subsets (Rows 3—

4 in Table 3b and Rows 3—5 in Table 4b) are shown

in Table 5. As seen before, the fusion of modalities is

superior to the fusion of recognitions (matchers) with

one exception (the LDA fusion on ASUMS-Face-Face

database). The mean fusion results are not used in the

following discussions due to their high variances (i.e.,

low credibility).

We shall make quantitative comparisons on NIST-

Face-Finger database (Rows 1—2 in Table 5). When the

fusion process is selected (fixed), for instance, with

HMM fusion, the difference of ¹RRI values between

the fusion of modalities and the fusion of recognitions

is 0.1316, denoted as ¢¹RRI(Modality, Recognition j

HMM) = 0:9414¡ 0:8098 = 0:1316. This big difference
shows the fusion of modalities is much better than

the fusion of recognitions. When the modalities are

selected and the matchers (i.e., recognitions) are fixed

(refer to Row 2 in Table 5), no big difference be-

tween different fusion processes is observed, for exam-

ple, ¢¹RRI(HMM, KNN j Recognition) = 0, and ¢¹RRI
(HMM, LDA j Recognition) = 0:0848. These compar-
isons show that the fusion of different modalities is a

dominant factor, which makes the different fusion pro-

cesses have less impact on fusion improvement. When

the matchers are chosen and the modality is fixed (re-

fer to Row 1 in Table 5), we have ¹RRI(HMM, KNN j
Modality) = 0:0448, and ¹RRI(HMM, LDA jModality)
= 0:1518. These results show that the fusion process

plays an important role when fusing multi-matcher

scores from a single modality (i.e., without the dom-

inant factor of modality). Note that in Table 5 the two

identical entries at Row 2, Column 3 and 4 are just

coincident.

Similar quantitative analyses on ASUMS-Face-

Face database (Rows 3—4 in Table 5) are given as fol-

lows. ¢¹RRI(Modality, Recognition jHMM) = 0:7231¡
0:6788 = 0:0443 reveals that the fusion of different

modalities (thermal face and visible face) is slightly

better than the fusion of recognitions but no longer

a dominant factor. ¢¹RRI(HMM, KNN j Recognition) =
0:1135 and ¹RRI(HMM, KNN jModality) = 0:0876 in-
dicate that the different fusion processes become a more

important factor when the modality is not a dominant

factor.

How to apply these findings to guide a MBSF devel-

opment and application is discussed below. Modality is

the key and dominant factor in score fusion, but adding

more matcher scores to the fusion will improve the per-

formance further. In fact, RF(NIST-Face-Finger, HMM

Fusion) = 99:68% (4-score fusion shown in Table 2a) is

higher than RF(NIST-Face-Finger R2, HMM Fusion) =
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TABLE 4a

The verification rates (%) of four fusion processes (RF) on five subsets derived from the ASUMS-Face-Face database.

Database Single Matcher (RV) Mean Fusion LDA Fusion KNN Fusion HMM Fusion

(m,n,g)

ASUMS-Face-Face M1 (IR) 91.67, 93.75, 96.88 96.88 98.97 97.61 98.45 (3,1,2)

ASUMS-Face-Face M2 (DC) 90.63, 93.75, 97.92 98.96 97.94 97.26 97.76 (3,1,2)

ASUMS-Face-Face R1 (LDA) 91.67, 90.63 96.88 96.39 96.90 97.95 (1,2,3)

ASUMS-Face-Face R2 (EBGM) 93.75, 93.75 97.92 98.28 99.49 99.14 (1,2,2)

ASUMS-Face-Face R3 (FPB) 96.88, 97.92 100 98.62 98.28 98.80 (1,2,2)

TABLE 4b

The relative rate increase (RRI) of four fusion processes on five subsets derived from the ASUMS-Face-Face database.

Database RV Mean Fusion LDA Fusion KNN Fusion HMM Fusion (¹RRI,¾RRI)

ASUMS-Face-Face M1 (IR) 94.10 0.4712 0.8254 0.5949 0.7373 0.6572, 0.1562

ASUMS-Face-Face M2 (DC) 94.10 0.8237 0.6508 0.5356 0.6203 0.6576, 0.1210

ASUMS-Face-Face R1 (LDA) 91.15 0.6475 0.5921 0.6497 0.7684 0.6644, 0.0743

ASUMS-Face-Face R2 (EBGM) 93.75 0.6672 0.7248 0.9184 0.8624 0.7932, 0.1169

ASUMS-Face-Face R3 (FPB) 97.40 1.0000 0.4692 0.3385 0.5385 0.5865, 0.2878

(¹RRI,¾RRI) (NA) 0.7219, 0.1994 0.6525, 0.1345 0.6074, 0.2099 0.7054, 0.1272 (NA)

TABLE 5

The (¹RRI,¾RRI) values of the combined modality subsets (Rows 1—2 in Table 3b and in Table 4b, respectively) and the (¹RRI,¾RRI) values of

the combined recognition subsets (the rest rows in Table 3b and in Table 4b, respectively).

Database Mean Fusion LDA Fusion KNN Fusion HMM Fusion Fusion of What

NIST-Face-Finger M1-M2 0.3924, 0.1525 0.6580, 0.1087 0.7650, 0.0089 0.8098, 0.0064 Recognitions/Matchers

NIST-Face-Finger R1-R2 0.6403, 0.0032 0.8566, 0.0722 0.9414, 0.0074 0.9414, 0.0074 Modalities

ASUMS-Face-Face M1-M2 0.6475, 0.2493 0.7381, 0.1234 0.5653, 0.0419 0.6788, 0.0827 Recognitions/Matchers

ASUMS-Face-Face R1-R3 0.7716, 0.1981 0.5954, 0.1278 0.6355, 0.2902 0.7231, 0.1667 Modalities

99:42% (2-score fusion shown in Table 3a). The fu-

sion process becomes very important when the score

modalities are fixed, for instance, the fusion of mul-

tiple matchers of single modality. For example, imag-

ine a human identification system of two modalities

(face and finger) and of two matchers per modality

that has RF = 99:68% using HMM fusion, how can you

further improve the system performance? According to

the findings of this research, the recommended solu-

tion is first to add one more modality (e.g., voice or

iris), then to develop a better fusion process than HMM,

and/or to add more recognition methods (like Local

Gabor Binary Patterns (LGBP) [30] for face recogni-

tion). Of course, using a high-performance matcher is

always preferred. The implication hereby is that devel-

oping a better fusion process (e.g., better than HMM)

will have a higher impact on fusion improvement (i.e.,

a larger RRI) than adding a third matcher into each

modality.

A recent face recognition research [34] explored

the performance improvement with the stereo fusion at

three levels: image, feature, and score. The primary fu-

sions investigated in that paper are stereo fusion with

the stereo images captured from two identical cameras.

Experimental results show that any level stereo fusion

can improve the recognition performance. It seems that

stereo image fusion and stereo feature fusion is better

than stereo score fusion. However, the processes for the

fusions at image level and feature level are more com-

plicated (such as image registration). On the other hand,

score fusion can be implemented without the knowledge

of what images and what features, and can be performed

flexibly by using variant score combinations from dif-

ferent cameras, modalities, and/or matchers. In addition,

score fusion is faster than image fusion or feature fu-

sion.

In the future we will sufficiently investigate and ver-

ify the current findings by developing more recognition

methods and more fusion processes and by using more

biometric modalities (like voice, iris, and palm geome-

try). A statistical analysis (e.g., ANOVA, ROCs [1]) will

be conducted to study the interactions and significance

of those fusion factors. We will also research the im-

pacts of normalization procedures, decision rules, and

image fusion techniques [17] on the MBSF process.

5 CONCLUSIONS

A set of experiments regarding multimodal biomet-

ric score fusion (MBSF) has been conducted in this re-

search. A hidden Markov model (HMM) is tested for

multimodal biometrics score fusion, which is the most

accurate, reliable, and credible fusion process compared
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to other three methods (mean, LDA, KNN). To eval-

uate and compare the improvement of variant fusion

processes, a new metric, called relative rate increase

(RRI), is proposed upon the concept of verification rate.

The RRI metric has proved to be reasonably accurate

in measuring the performance improvement resulting

from MBSF. Based on the experimental results from

four multimodal biometric databases, the findings can

be summarized as follows. The score modality is the

most important (key) factor in biometric score fusion

which dominates the fusion result. When the number

of score modalities is fixed, the fusion process becomes

the next important factor to score fusion. Adding more

recognition matchers has the least impact on fusion im-

provement. Another finding is that, different bands of

face images (thermal and visible) are less diverse modal-

ities than face and finger, which makes the score modal-

ity (of thermal faces and visible faces) no longer a dom-

inant factor.
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