

1

Deploying HLS in a DO-254/ED-80 Workflow

Tammy Reeve, Patmos Engineering Services, Washington, USA (Tammy@patmos-eng.com)

Jacob Wiltgen, Mentor, A Siemens Business, Colorado, USA (jacob_wiltgen@mentor.com)

Byron Brinson, Mentor, A Siemens Business, Texas, USA (byron_brinson@mentor.com)

David Aerne, Mentor, A Siemens Business, Oregon, USA (david_aerne@mentor.com)

Abstract—The adoption of tools into safety-critical workflows is often challenging as these new technologies must

demonstrate sufficient safeness to use before being deployed in production environments. The demand for High-Level

Synthesis capabilities within DO-254 projects is growing and this paper describes the requirements and considerations

to successfully use High-Level Synthesis within a DO-254 workflow.

Keywords—DO-254, Safety, Avionics, HLS, HLV, High-Level Synthesis, Audit;

I. INTRODUCTION

To remain competitive in a challenging market, avionics companies continue to innovate across all aircraft-related

systems, including flight management, communication, navigation, and in-flight entertainment. New features and

capabilities demanded on board aircraft have a direct impact on the complexity of semiconductor design and

verification. Companies are continually challenged to deliver products on time and on budget, while

simultaneously demonstrating a rigorous safety process adhering to RTCA DO-254 and EUROCAE ED-80 [1],

the principal standards assuring airborne electronic hardware is safe for use. To meet these challenges, companies

must adopt new design and verification methodologies making their engineers more efficient.

High-Level Synthesis continues to grow in adoption as it provides a shift-left enabling designers to quickly

develop, test, and deploy new algorithms on hardware targets. The adoption of new technologies within safety-

critical industries is often challenging as these technologies must be proven safe before allowed into production

environments. The demonstration of safeness requires both the technical acceptance and education of the

certification authorities. This paper describes the use of High-Level Synthesis (HLS) within a DO-254/ED-80

workflow and the evidence HLS provides.

II. HIGH-LEVEL SYNTHESIS OVERVIEW

High-Level Synthesis is an automated process that interprets an algorithmic description of a desired behavior and

creates digital hardware that implements that behavior. Similar to the evolution from schematic to hardware

description language (HDL) such as Verilog or VHDL, HLS supports another shift left enabling rapid creation of

complex algorithms that are then synthesized into functionally equivalent HDL. HLS methodology has evolved

significantly over the past decade, allowing engineers to perform verification and test and to make basic design checks

at the abstracted level.

Figure 1 and the following text provide a summary of a generic HLS workflow.

2

Figure 1. Generic High-Level Synthesis Flow

The first task within an HLS flow is to write SystemC/C++ describing the functional intent based on requirement

specifications. After which, design checks are performed as a first round of sanity checking on the SystemC/C++

design. Similar to a traditional HDL workflow, functional verification is performed after design entry to validate

functional behavior prior to HLS synthesis. Functional testing of HLS code with comprehensive coverage efficiently

boosts coverage of RTL and allows designers to find holes in functional testing early to avoid surprises in RTL and

find redundancies in design early to avoid excess resources. High-Level Synthesis designs are commonly leveraged

to develop complex algorithmic functions within a larger system. Using a HLS model the designer can implement

the hardware allocated requirements using HLS SystemC or C++ allowing the designers the ability to model the

design and explore the functional operation at a higher level of abstraction.

The final step in the HLS workflow is to synthesize the SystemC/C++ into HDL. Specifying target technology

and clock frequency along with additional constraints regarding loop unrolling and initiation interval (II) are used

to constrain and guide synthesis. Once synthesized, traditional verification flows as applied to traditional hand-

crafted HDL are performed on the generated HDL.

The resulting HDL design is then sent to backend place and route or incorporated as a module within a larger

system.

It is important to note that HLS leverages libraries of previously developed functions such as math and DSP and

video algorithms. The IP libraries which are not developed by the designer directly must be considered as COTS

IP similarly to any libraries utilized at the VHDL or Verilog design level. CAST paper 33 [2]. as well as AMC

20-152A [4] provides the regulatory framework for how to manage and certify these previously developed library

functions provided within the development environment to meet the DO-254 objectives. Developers are

responsible under a DO-254 project to ensure all functions embedded in the final placed and routed device meet

the objectives of DO-254 including library functions provided by HLS technologies as well as the FPGA, PLD

and ASIC vendor specific libraries.

III. CHALLENGE USING HIGH-LEVEL SYNTHESIS IN A DO-254 WORKFLOW

Historically, the adoption of new technologies and methodologies face resistance in DO-254 workflows until the

technologies can be properly vetted and confidence obtained. Historically, this challenge existed when moving

to RTL levels of design abstraction as well as the acceptance of new functional verification methodologies. High-

Level Synthesis has encountered a similar challenge. While synthesis from RTL to gates is an accepted norm

today within a DO-254 workflow, the acceptance of synthesis from SystemC/C++ to RTL is often met with

resistance. Additionally, the fact that designs are modeled in SystemC/C++ in an HLS environment is often

interpreted as modeled base development and falling under DO-331.

3

The remainder of this paper will highlight the workflow, rationale, and constraints in the use of HLS in a DO-254

workflow.

IV. DEPLOYING MENTOR CATAPULT HLS IN A DO-254/ED-80 WORKFLOW

The Catapult High-Level Synthesis Platform empowers designers to use industry-standard ANSI C++ and

SystemC to describe functional intent and move up to a more productive abstraction level. From these high-level

descriptions, Catapult generates production-quality RTL and by automating the generation of bug free RTL,

Catapult significantly reduces the time to verified RTL. Figure 2 below details the workflow with Catapult High-

Level Synthesis.

Figure 2. Mentor Catapult HLS within a DO-254 workflow

The following sections discuss how the workflow described in Figure 2 overlays with the phases of a DO-254

lifecycle.

A. Planning

The creation of planning information is mandatory and provides an overview of processes, procedures, and

methods that will be used to develop the hardware design. The Plan for Hardware Aspects of Certification

(PHAC) must describe how HLS will be used in the overall development flow and identify the version of the

Mentor tool to be used and maintained. The PHAC must clearly state what objectives in DO-254 the developer

plans to take credit for utilizing the HLS work flow and artifacts from these process steps defined, documented

and controlled as evidence of completing these activities. Catapult HLS also provides functional verification

facilities, referred to as High-Level Verification (HLV). HLV encapsulates design standard checking, achieves

functional coverage goals, and formalizes the post RTL generation equivalency with the HLS model. If any of

these aspects of the tool flow are utilized, tool assessment considerations must be addressed based on the design

assurance level assigned and guidance in DO-254 section 11.4.

B. Requirements Capture

Similar to a traditional HDL flow, requirements represent the input to a flow leveraging HLS for design entry. In

addition to English-language textual requirements, it is also common for models or formal methods to be provided

to express requirements. In the event models or formal methods are leveraged, this approach must be clearly

defined in the plans. Developers are advised to look for guidance from RTCA DO-331 and DO-333, which are

for software development but provide good insight as to how to control requirements when in these forms as well

as guidance on standards.

4

C. Conceptual Design

The objective of the conceptual design phase is to produce an artifact that provides an architecture and design

description showing how the designer intends to meet the requirements. Additional, the delivery includes how

the designer plans to implement the design. The conceptual design is commonly a data flow diagram or functional

block diagram. HLS supports satisfying objectives in DO-254 Conceptual Design by ensuring the hardware item

conceptual design is consistent with the requirements defined in DO-254 5.2.1[1]. HLS SystemC or C++ can be

considered for DO-254 conceptual design if documented and commented properly.

D. Detailed Design

High-Level Synthesis provides a number of benefits above traditional RTL verification. Due to the higher level

of abstraction, there are fewer lines of code, thus permitting testing to begin sooner plus the increased performance

resulting from simulating at a higher level of abstraction. Finally, if done properly, the investment in tests and

testbench development can be re-used for verification of the post-HLS RTL. DO-254 explicitly states HDL as

one element of the detailed design data required during this phase with HDL being defined as all hardware

description languages. Therefore, SystemC/C++ is considered a hardware description language and satisfies the

detailed design objectives for ensuring the detailed design is developed per the hardware item requirements and

conceptual design data (DO-254 5.3.1).

Similar to RTL, a code review must be performed on the HLS design source (SystemC/C++). This is done to

ensure proper coding techniques and guidelines are followed. Traceability from the detailed design to the

requirements is also required.

1) Enhanced Detailed Design evidence provided by Catapult HLS

Catapult Design Checker performs multiple types of design checks on the design source (SystemC/C++) to

confirm proper coding techniques and guidelines are followed. These checks are a combination of lint, static, and

formal-based checks and rules that identify ambiguities in the HLS design source.

E. Implementation

Per DO-254 section 5.0, implementation is the fabrication file or the loadable image file used for programming

the final target device. In the HLS flow, RTL synthesis and HLS synthesis have a similar workflow and the

artifacts generated from this phase are similar as well. Activities such as synthesis constraints and log file review

will be performed for the implementation phase. However, the content of the artifacts will be slightly different

since the synthesis is from SystemC/C++ to RTL, and then to the final program file.

1) Enhanced implementation evidence provided by Catapult HLS

A series of reports are generated during Catapult HLS synthesis detailing the commands exercised. This includes a

cycle report detailing latency and throughput. Additionally, timing reports ensure timing closure on the target

technology and also definition of worst case timing slack. In addition, a Bill of Materials (BoM) report is generated

detailing the resources used for the target technology library, area estimation, and a list of FSMs inferred during

synthesis. Lastly, for HLS enthusiasts, a Gantt chart details the scheduling decided upon during synthesis and

indicates which operators are active on which clock cycle.

F. Configuration Management

The configuration management process for the all of the artifacts and data items produced in the HLS flow are

identical to a typical HDL flow. It is important for DO-254 compliance that all aspects of Catapult HLS and it’s

libraries be documented and controlled for the life of the product in service to ensure continued airworthiness

aspects related to the design and verification of avionics parts generated from this flow.

G. Verification

Functional simulation of HDL is a common and widely-accepted practice within current DO-254/ED-80

workflows. The primary objective of verification is to ensure the hardware item or function that has been designed

behaves in accordance with the specified requirements. The objective of requirement-based simulation is to verify

that the requirement is satisfied within the design under test given a set of input stimulus. This objective remains

5

the same, regardless of whether the code under test is Verilog/VHDL or HLS SystemC/C++. Most HDL

simulators now support mixed language simulation enabling simulation of designs created with VHDL, Verilog,

SystemVerilog, and/or SystemC/C++.

Requirements based tests can be executed on the High-Level Synthesis design and provides benefits from

traditional RTL verification by allowing you to validate the implementation sooner, faster, and quickly identify

gaps in requirements. HLS verification utilizing requirements based test enables code coverage metrics to

ascertain functional requirements have been met.

When the developer in a DO-254 development flow considers the SystemC/C++ as the design/source code, an

HLS testbench can be used to collect functional and code coverage metrics, which are forms of elemental analysis

defined in DO-254 appendix B and a requirement for DAL A and B designs. For DO-254 credit, attention needs

to be taken that the verification aspects meet the design assurance level independence requirements of DO-254.

In both a traditional RTL and SystemC/C++ flow, the testbench for design assurance level A or B must be

independently developed, reviewed or executed. Coverage analysis of the HLS design source is additional

evidence regarding the verification of the RTL output from the HLS flow. The verification metrics captured during

HLS functional verification can also be applicable to the RTL that was generated if appropriate tool assessment

measures are taken.

One measure is utilizing sequential logical equivalency (SLEC) between the HLS source code and the output

RTL. Establishing equivalence allows the user to claim code coverage credit at the RTL level. The use of formal

technology (SLEC) is not new to the electronic hardware certification space and has been identified as an advance

verification method in Appendix B (Section 3.3.3) of RTCA DO-254/ED-80[1], detailing safety specific analysis

and formal methods. SLEC, a formal technology, is used to provide additional design assurance and evidence

regarding the conversion of the HLS design source to HDL. In Catapult HLS, functional equivalency is performed

between the original C++ and the generated HDL. The capability demonstrates HLS synthesis did not alter the

functional intent and that the generated HDL is equivalent to the HLS design source. Specifically, SLEC checks

that the HLS design source and HDL are logically equivalent and also sequentially equivalent, meaning whatever

data path delays or pipelining that was done in the HLS design source is also present in the HDL.

Concerns related to tool assessment that arise from utilizing SLEC may require a second means of assessment.

Executing the same requirements based tests on the RTL level design that were executed on the SystemC/C++

provides that second approach. Catapult SCVerify enables testbench reuse to validate functional equivalence

between the SystemC/C++ and generated RTL. This capability is extremely powerful as it leverages the HLS test

environment infrastructure, executes the same test vectors on the post synthesis HDL, and provides HDL

functional and code coverage metrics. This reuse of existing testbench infrastructure provides an immediate form

of independent assessment between the SystemC/C++ and generated RTL.

Figure 3 below provides a graphical overlay of the two forms of assessment described previously on the already

defined Catapult HLS workflow. #1 represents the reuse of the requirements based test environment and validates

that the intended functionality was not altered during RTL creation. #2 represents the assessment of SLEC HLS

which confirmed sequential logic equivalency between the SystemC/C++ and post-synthesis RTL is validated.

6

Figure 3. Independent Assessment in Catapult HLS workflow

It is important to note that the functional verification results must be retained and controlled as a verification

output for DO-254 compliance. If SLEC is utilized, outputs of equivalence checking must be recorded, retained,

and controlled as a verification output for DO-254 compliance.

H. Target Testing

For all designs it is important the final placed and routed output is integrated into the device vendor specific

platform, ensuring the device functions according to the defined requirements.

V. CONCLUSION

The complexity of avionics systems continues to grow non-linearly and companies must continue to adopt new

technologies to make programs more efficient without sacrificing the safety intent. Similar to the migration from

schematic to RTL, High-Level Synthesis represents an evolution to how designs are created. HLS now include

advanced verification capabilities, allowing for application of known and trusted verification techniques at the

HLS level of abstraction. Thus verification of the design can begin sooner, thus ensuring product requirements

have been met and also re-use of this working verification environment for performing needed verification on the

post-HLS RTL. In the context of DO-254, Catapult HLS delivers a number of artifacts and supplemental evidence

which provides additional confidence to regulators ensuring the design operates per the requirements.

ACRONYMS

Abbreviation Explanation

HLS High-Level Synthesis

HLV High-Level Verification

SLEC Sequential Logic Equivalence Checking

PHAC Plan for Hardware Aspects of Certification

HDL Hardware Description Language

RTL Register Transfer Level

FPGA Field Programmable Gate Array

PLD Programmable Logic Device

ASIC Application Specific Integrated Circuit

REFERENCES

[1] RTCA DO-254 / EUROCAE ED-80, Design Assurance Guidance for Airborne Electronic Hardware

[2] FAA CAST-33: Compliance to RTCA DO-254/ EUROCAE ED-80, “Design Assurance Guidance for Airborne Electronic
Hardware”, for COTS Intellectual Property Used in Programmable Logic Devices and Application Specific Integrated Circuits

7

[3] RTCA DO-331, Model-Based Development and Verification

[4] AMC 20-152A Development Assurance for Airborne Electronic Hardware (AEH)

