2018

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

UVM Register Map Dynamic Configuration

Matteo Barbati, STMicroelectronics, Digital Mixed Asic Division, Via Tolomeo 1, Cornaredo
(Milano), Italy (matteo.barbati@st.com)

Alberto Allara, STMicroelectronics, Digital Mixed Asic Division, Via Tolomeo 1, Cornaredo
(Milano), Italy (alberto.allara@st.com)

Short abstract—The UVM register map provides data structures and testsuites that allow checking the data
integrity of the DUT register map during simulations. This object can be extended to allow the synchronization between
the register model and any verification component present in the environment. Beside ad-hoc approaches based on
code customization or custom code generation from IP-XACT, we present a solution that simplifies and automatizes
such interaction.

l. INTRODUCTION

One of the activities required for both IP and SoC Verification is the Register Map Verification. UVM [1][2]
provides a dedicated infrastructure, called UVM register map, to allow verification engineers to perform Register
Map verification and to build complex verification environments. This data structure supports the checking of data
integrity on the DUT register map at every single access.

The UVM register map provides an abstraction layer that allows access to single register fields through logical
names instead of portions of the physical register [3]. In addition, it provides a set of callbacks to adapt the behavior
of the verification component to the needs of the verification engineers. A typical usage of the callbacks is the
possibility to trigger, for instance, an event each time a register or a bitfield is accessed. Once that an event is
triggered, any verification component or scoreboard in the environment may synchronize itself with the updated
contents. This mechanism allows the creation of complex environments, whose behavior is dynamic and follows
the register map configuration of the DUT.

Figure 1 depicts the topology of a generic UVM register map.

UVM Register Model

Register Block - uvm_reg_block

Address Map -

Memory - uvm_mem
= uvm_reg_map

Registers - uvm_reg

e [e L =]

Fields - uvm_reg_field

[I =« 1
——=
[~ |

RN

Figure 1: UVM register model topology

The root of the register map is represented by the uvm_reg_block class, which describes the overall register map
structure. This object is mapped to a specific address through uvm_reg _map class. The register block class

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

instantiates a set of uvm_reg objects modelling the registers of the actual Register map. Each uvm_reg is composed
of a set of uvm_reg_field, the leaf objects used to model bitfields in the Register map. In addition, uvm_reg_block
can also instantiate a memory model.

We can customize our UVM register maps to add new functionalities, thus creating more complex and flexible
verification environments. The steps required to add such functionalities are:

e Specialize ad-hoc the class(es) of the register(s) that need these extra functionalities (for example the
possibility to trigger a particular event) redefining the implementation of one of the dedicated callbacks
available in the uvm_reg class (pre_read, pre_write, post_read and/or post_write)

o Replace the old class(es) with the new one through a UVM factory mechanism.

The piece of code in Figure 2 is a possible implementation of the steps described above for a register called
MODE. We declare a uvm_event called “mode_type e” which is triggered every time a Write Access is performed
on MODE register.

class trig MODE type extends MODE type;

‘uvm_register cb(trig MODE_ type, uvm reg cbs)
‘uvm_set super type(trig MODE type, uvm_reg)

‘uvm object utils(trig MODE_type)

uvm_event pool ep;
uvm event e;

string event name = "mode type e";
rand uvm reg field fieldl;

rand uvm_reg field field4;

function new(string name = "unnamed-trig MODE_ type");
super.new (name) ;
ep = uvm_event pool::get global pool();
e = ep.get(event name);

endfunction

virtual function void build();

super.build() ;
endfunction

virtual task post_write(uvm_reg item rw) ;
‘uvm_info("trig MODE_type", "**** Firing Write trigger ****" 6 UVM HIGH);
e.trigger();

endtask: post write

endclass

2018

DESIGN AND VERIFICATION™
o Y 1 —ﬁgF\ i

i .0 3

CONFERENgé AND EXHIBITION
set type override by type (MODE type::get type(),trig MODE type::get type());

Figure 2: An example of manual extension of the register map

This approach is efficient only when few registers require modifications. As the number of customized registers
increases, it becomes time consuming and potentially error-prone. In particular, if N is the number of registers
requiring the event generation, we need to write N times the same portion of code highlighted in Figure 2. Under
those circumstances, any flow dedicated to automating the process is beneficial.

On this topic, CAD Vendors typically suggest the use of flows based on the IP-XACT [4] description of the
DUT register map. Each of these flows, using a set of vendor-specific tags and tools, starts from an XML description
of the register map, and generates the UVM register model code.

With such flows, if a verification engineer needs to extend the features of the register map, he/she has to modify
the IP-XACT description of the DUT register map by manually adding vendor-specific IP-XACT tags. For
example, if he/she wants to trigger an event after a register access, it is necessary to place a vendor specific tag in
the IP-XACT register description, which embeds the UVM code needed to handle the user-defined event.

The following shippet shows the IP-XACT description of the MODE register from our previous example
customized for Cadence iRegGen flow. In this representation dedicated IP-XACT tags (vendor specific) are added
to allow the generation of an event once a write is performed on the register
<spirit:register>

<spirit:name>MODE</spirit:name>

<spirit:field>

<spirit:name>fieldl</spirit:name>
</spirit:field>

<spirit:field>

<spirit:name>field4</spirit:name>

</spirit:field>
<spirit:vendorExtensions>
<vendorExtensions:rawCode>
<vendorExtensions:source domain="SystemVerilog">
<vendorExtensions:description>My post write
</vendorExtensions:description>
<vendorExtensions:code>
virtual task post_write(uvm_reg item rw);
uvm_event pool ep;
uvm_event e;
‘uvm_info("trig MODE type","**Firing Write trigger**" (UVM HIGH) ;
ep=uvm_event_pool: :get_global pool() ;
e = ep.get("mode type e");
e.trigger() ;
endtask: post write
</vendorExtensions:code>

</vendorExtensions:source>

2018

DESIGN AND VERIFICATION™
CON

CONFERENCE AND EXHIBITION

</vendorExtensions:rawCode>
</spirit:vendorExtensions>
</spirit:register>

Figure 3: MODE register XML description

The resulting UVM register model generated by Cadence iRegGen flow is reported in Figure 4

class MODE type extends uvm reg;
rand uvm_reg field fieldl;
rand uvm_reg field field4;

virtual task post write(uvm_reg item rw) ;
uvm_event pool ep;
uvm_event e;
‘uvm_info("trig MODE type", "** Firing Write trigger **", UVM HIGH) ;
ep = uvm_event_pool::get_global pool() ;

e

ep.get (event name) ;
e.trigger() ;

endtask: post_write

‘uvm_register cb (MODE_type, uvm reg cbs)
‘uvm_set super type (MODE type, uvm reg)
‘uvm object utils (MODE type)
function new (input string name="unnamed-MODE type");
super.new (name, 16, UVM NO COVERAGE) ;
endfunction : new
endclass : MODE_ type

Figure 4: MODE_type class plus vendor_extension code

Also with this approach, if N registers require an event each, the same chunk of code needs to be replicated N
times, as an IP-XACT vendor extension. The advantage of this approach is that extra features are present only in
those registers that really need them. The major drawback is that the verification engineer usually is not the owner
of the IP-XACT file and adding verification-oriented extensions to it can be a problem. In addition, in several cases,
the IP-XACT is a file provided by a third party actor and there are organizations that in their flow explicitly forbid
modifying and using customized version of the same. In such cases, a Verification version of the IP-XACT file is
created in addition to the original one, leading to possible maintenance issues that potentially can create a
misalignment between the two versions.

II. NOVEL APPROACH

Instead of working on the IP-XACT description as suggested by CAD Vendors, our solution focuses directly
on the UVM register model data structure and in particular, on the leaf objects of the UVM regmap hierarchy
represented by the uvm_reg_field class.

The idea is to extend the functionality provided by this class by adding the generation of the desired events and
overriding the original uvm_reg_field class with the new extended version of the class. In this case, we replace the

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

entire register map fields and in order to avoid the generation of a huge number of unwanted events, a mechanism
is required to enable the events generation only where they are really needed.

UVM already provides a mechanism to enable/disable knobs through its internal database uvm_config_db. This
mechanism is automatically managed in the uvm_component class and in all its specializations. Since a UVM
register map is based on uvm_object, rather than uvm_component, it does not support natively such mechanism so
it is necessary to add this extra functionality. The solution we have implemented makes use of UVM regmap
callbacks. In particular, our solution is based on the use of:

o pre_read() and pre_write() callbacks;

e a“lazy initialization” design pattern to evaluate the uvm_config_db only on the first call of the above
callbacks to emulate the behavior of the configuration mechanism available in uvm_component.

The following piece of code shows the implementation of the uvm_reg_field_ext class

class uvm_reg_field ext extends uvm reg field;

‘uvm_object utils(uvm_reg field ext)

uvm_event_pool ep;
uvm_event pre rd e, pre wr e, post_rd e, post_wr_e;
local string pre_rd event name; local string pre_wr_event name;

local string post_rd event name; local string post wr_ event name;
local bit conf;

function new(string name = "uvm reg field ext");
super.new (name) ;
ep = uvm_event pool::get global pool();

conf = 1'bl;

pre rd event name = {"pre rd ", get name()};
pre wr_event name = {"pre wr ", get name()};
post _rd event name = {"post rd ", get name()};
post _wr_event name = {"post wr ", get name()};
endfunction
virtual task pre read(uvm reg item rw) ;

if (conf) begin
uvm_config db# (bit) ::get (uvm_root::get(), get full name(), "en pre rd event", en pre rd event);
uvm_config db# (bit) ::get (uvm_root::get(), get full name(), "en pre wr_event", en pre wr_event);
uvm_config db# (bit) ::get (uvm_root::get(), get full name(), "en post_rd event", en post rd event);
uvm_config db# (bit) ::get (uvm_root::get(), get full name(), "en post wr event", en post wr_event);
conf = 1'b0;

end

if (en_pre rd event) begin
‘uvm_info(get_name(), "**** Firing Pre Read trigger ****" k6 UVM HIGH)
pre rd e.trigger();

end

endtask : pre_read

2018

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

virtual task pre write(uvm_reg item rw) ;

if (conf) begin

uvm_config_db#(bit)::get(uvm_root::get(), get_full name(), "en pre_rd event", en_pre rd event);
uvm_config_db#(bit)::get(uvm_root::get(), get_full name(), "en pre wr_event", en pre wr_event);
uvm_config_db#(bit)::get(uvm_root::get(), get_full name(), "en post_rd event", en post_rd event);
uvm_config_db#(bit)::get(uvm_root::get(), get_full name(), "en post_wr_event", en post_wr_event);

conf = 1'b0;

end

if (en_pre wr_event) begin
‘uvm_info(get_name(), "**** Firing Pre Write trigger ****", UVM HIGH)
pre_wr_e.trigger();

end

endtask : pre write

virtual task post read(uvm reg item rw);
if (en_post rd event) begin
‘uvm_info(get name(), "**** Firing Post Read trigger ****", UVM HIGH)
post_rd e.trigger();
end

endtask : post read

virtual task post write(uvm reg item rw);
if (en_post wr event) begin
‘uvm_info(get name(), "**** Firing Post Write trigger ****", UVM HIGH)
post_wr e.trigger();
end
endtask : post_write

endclass: uvm_reg field ext

Figure 5: uvm_reg_field_ext class

In the pre_read() and pre_write() methods, on the very first access of each single field, we query the
uvm_config_db to get the status of the knob controlling the event generation for that field; then, according to these
settings, events are generated inside the regmap callbacks and can be used in the rest of the verification environment.

To be activated, this approach requires a factory override of the uvm_reg_field class with the new extended
version. In addition, it is required to turn on the conditional event generation on the desired fields. Figure 6 shows
an example where we configure three non-consecutive fields of our MODE register to generate an event after a
write on those fields:

set_type override by type(uvm reg field::get type(),uvm reg field ext::get type());

uvm_config db# (bit) ::set (uvm_root::get(), "regmap.MODE.fieldl", "en post wr_event", 1);

uvm_config db# (bit) ::set (uvm_root::get(), "regmap.MODE.field3", "en post wr_event", 1);

uvm_config db# (bit) ::set (uvm_root::get(), "regmap.MODE.field4", "en post wr_ event", 1X
Figure 6: configuration of uvm_reg_field_ext objects in top level env
The previous approach is the result of a study and analysis process that tries to find the most straightforward

way to add a configuration mechanism to the uvm_reg_field class. In this analysis, we tried also another plausible
strategy where we added the desired configuration features by means of the UVM register map setup functions.

We found this approach limited by the fact that uvm_objects do not provide the phasing mechanism available
in the uvm_components. For this reason the usage of the functions build and reset is not fine. Even the usage of

2018

DESIGN AND VERIFICATION™

N
DVCON

CONFERENCE AND EXHIBITION

function new is not fine, since the field name is not available when the function new is called. The main issues
related to functions build and reset are:

e The build function is not virtual, so it is not possible to replace this function using a factory override;

e The event configurations have to appear, in the code, before the build/reset function calls. The
configurations that follow the build/reset function calls are ignored.

Our solution is affected by an overhead for each uvm_reg_field , in terms of size,w.r.t. to original solution
without any modification This overhead is summarized in the following list:

e Number of required variables : 9
o 1bitto use to put in place the lazy initialization mechanism;

o 1 bit used to manage the enable/disable of the event generation for 4 callbacks (pre_rd,
pre_wr, post_rd and post_wr);

o 4 strings used to store the event name.
e Number of events : 4

The pros and cons of the approaches presented in this paper are summarized in Table 1

IP-XACT flow Custom Code Novel Approach
Pros e Code optimized: e Code optimized: e More flexibility:
events generated events generated Event generation can
only where needed only where needed be dynamically
configured

e Reduce code impact
in case of
customization
needed on high
number of registers

Cons e Error prone in case of e Errorprone in case of e Size Overhead
high number of high number of affecting all the
registers to registers to fields of the entire
customize customize register map:

e Need to rerun the
entire flow in case of
changes in register
customization

e Different version of
the same IP-XACT
description. One for
Design and one for
Verification

Table 1 - Pros and Cons recap

2018

DESIGN AND VERIFICATION™

DVCOIN

CONFERENCE AND EXHIBITION

a set of registers of the register map.

Due to dynamically configurable nature of the DUT the approach we have proposed allow us to easily updated
our Verification environment and Scenarios without the need to update frequently neither the Verification version

USE CASE

The proposed approach is currently used inside our verification environments. Our DUT is a SerDes IP, based
on two separated and configurable datapaths. One dedicated to the transmitter logic and the other one dedicated to
the receiver logic. These paths can be configured to work at different data rates (up to 10 Gbs), data widths (from
8 bits to 80 bits) and data codes (PAM4 or NRZ). The configuration of each single datapath is controlled through

of IP-XACT register map nor the Custom code to add synchronization functionalities to the UVM register map.

The main flow of our approach, currently in use can be summarized in Figure 7. The picture shows an ideal

flow associated to the configuration of the Tx Data Width register variable.

Write_field(tx_data_witdh, 32);

Register

Model

TXVIP
Master

B_

APB VIP

postwr_tx_data_width

Master

uvm_config_dbi(bit)::set RX VIP Slave

(uvm_root::get(),

: 2 Agen
"register_model.regl.tx_data_wi gent

dth", "en_post_wr_event", 1);

APB

Tx Scoreboard

Tx Datapath

tx_data_width = 32

Rx Datapath

TX VIP
Slave

RX VIP Master

Agent

Rx Scoreboard

Figure 7 - Tx Data Width events flow

1. Inside the Top Level Verification Environment we turn-on the event generation related through
uvm_config_db. In this way we configure the register model to generated an event when a write is

performend on field ”tx_data width”;

2. The virtual sequence associated with “Test 17 performs a write on field “tx_data width” to configure
the size of the data stream equal to 32. The register model manage this write field operation and,
through a register adapter, it instructs the APB VIP to perform a Write operation inside the DUT, to

write tx_data_width to 32;

3. DUT Register field “tx_data width” is updated with the new value equal to 32. According to this
configuration the behavior of Tx Datapath changes to manage the new data width.

DESIGN AND

DVI

CONFERENCE AND EXHIBITION

4. In the meanwhile the Register model generates an event to trigger the rest of the verification
environment about the change of the tx_data_width field.

5. The event generated at step 4 triggers the Tx VIPs and the Tx Scoreboard about the change in field
tx_data_width. The two VIPs and the Tx Scoreboard retrieve the information related to the new value
of the field and update their behavior according to the new configuration.

This approach is used in general for all the fields related to data with, data rate and data code used in the Tx and
Rx datapaths of our DUT.

Within our Verification environment, the same approach is used also to create a clock_predictor verification
component. This VIP, based on register configurations, computes and checks the frequencies of internal clocks of
the device.

IV. CONCLUSION AND FUTURE WORKS

UVM register map provides data structures and testsuites that allow checking the data integrity of the register
map DUT during simulations. The Register model can be extended as required by verification needs to add
capabilities to synchronize the content of the register map with the rest of the verification environment.

This extension mechanism can be both manual, modifying the classes instantiated inside the UVM register map,
or automatic according to the suggested CAD Vendor flows by modifying the IP-XACT description of the Register
map. In addition to these two approaches, a novel approach has been proposed in which the leaf of the register map
data structure, represented by uvm_reg_field, is extended to add the new required functionalities to facilitate the
synchronization with any verification components present in the environment.

We are working on a potential extension of the proposed solution that allow to create a cluster of events to
reduce the number of events generated by a set of fields.

ACKNOWLEDGMENT

We would like to thanks and acknowledge Andrea Masi, Rinaldo Franco, Massimo Vincenzi and Matteo
Ferranti for their contributions to the technical implementation of the uvm_reg_field configuration mechanism.

REFERENCES

[1] Accellera, “UVM User Guide, v1.1”, www.uvmworld.org

[2] Accellera, “UVM Reference Guide, v1.1d”, www.uvmworld.org

[3] Mark Litterick, Marcus Harnisch, “Advanced UVM Register Modeling There’s More Than One Way to Skin A Reg”, DVCon 2014
[4] IPXACT XML standard, http://standards.ieee.org/findstds/standard/1685-2009.html

http://www.uvmworld.org/
http://www.uvmworld.org/
http://standards.ieee.org/findstds/standard/1685-2009.html

