2018

DESIGN AND VERIFICATIOMN=

CONFERENCE AND EXHIBITION

A New Approach to Low-Power Verification:
Low Power Apps

Madhur Bhargava (Madhur_bhargava@mentor.com), Mentor, A Siemens Business
Awashesh Kumar (Awashesh kumar@mentor.com), Mentor, A Siemens Business

Abstract — The current generation of SoCs are incredibly complex. The low-power architecture used in today’s
chips are even more sophisticated and the future trend is only going to go in the same direction. Efficient low-power
architectures have become a necessity. Low-power requirements of SoCs have become as critical as functionality or
timing. The complexity of low-power architecture places an enormous burden on the verification engineers. It is now
very crucial to catch any power bugs early in the design cycle. Unified Power Format (UPF), the IEEE standard for
low-power specification is constantly evolving to address the low-power requirements of the designs. Going in the same
direction IEEE 1801-2015 (aka UPF 3.0) introduced the concept of a low-power information model which can greatly
simplify the life of verification engineers by providing HDL and Tcl APIs to access and manipulate the low-power
information. In order to debug the low-power issues and verify the design efficiently and timely, it has become of utmost
importance to come up with a new approach. The paper describes how verification and design engineers can
innovatively make use of these UPF 3.0 information model-based HDL and Tcl APIs to write useful low-power apps.
In this paper we are also going to propose some of low-power apps which can be used to solve complex verification
issues. We have also presented case studies and examples to demonstrate such usage. The paper also discusses the
benefits of using the aforementioned approach.

. INTRODUCTION

The effective verification of low-power designs has been a challenge for many years now. The IEEE Std
1801™-2015 Unified Power Format (UPF) standard for modeling low-power objects and concepts is
continuously evolving to address the low-power challenges of today’s complex designs. One of the main
challenges for low-power verification engineers has been the fact that there is disconnect between the traditional
RTL and low-power objects. Users cannot access and manipulate the low-power objects in the same way as they
do for RTL. Low-power concepts are abstract and complexities arise because of the number of sources like
UPF, HDL and Liberty all provide power intent in a low-power design. It has also been seen that the majority of
verification time is spent debugging complex low-power issues. There are not too many ways in which users can
do self-checking of their designs. As the low-power architecture is complex and the number of power-domains
used in the design is high, selective reporting of a part of design is needed. The lack of an industry standard in
this regard has resulted in inconsistency in the different ad-hoc approaches adopted by different tool vendors.

To keep pace with the increasing complexity of low-power architectures the IEEE 1801 standard is expanding
its gamut of constructs and commands to include more scenarios of low-power verification and implementation.
In this paper, we will discuss how the UPF 3.0 information model HDL package functions and Tcl query
functions can be used to do innovative things, which are often a very important low-power design verification
criteria. In this paper we will present some innovative ways of writing PA apps using the UPF 3.0 information
model HDL package functions and Tcl query functions. The paper also demonstrates how these low-power
applications (aka PA apps) can help in reporting, debugging and self-checking of low-power designs. We will
also highlight how these apps will help offer an efficient way to significantly save verification effort and time.

A. Power Intent Specification and Basic Concepts of UPF

IEEE Std 1801™-2015 Unified Power Format (UPF) allows designers to specify the power intent of the design.
It is based on Tcl and provides concepts and commands which are necessary to describe the power management
requirements for IPs or complete SoCs. A power intent specification in UPF is used throughout the design flow;
however it may be refined at various steps in the design cycle. Some of the important concepts and terminology
used in power intent specification are the following:

e Power domain: A collection of HDL module instances and/or library cells that are treated as a group
for power management purposes. The instances of a power domain typically, but do not always, share a
primary supply set and typically are all in the same power state at a given time. This group of instances
is referred to as the extent of a power domain.

mailto:Madhur_bhargava@mentor.com
mailto:Awashesh_kumar@mentor.com

2018

DESIGN AND VERIFICATIOMN=

DVLCON

CONFERENCE AND EXHIBITION

e Power state: The state of a supply net, supply port, supply set, or power domain. It is an abstract
representation of the voltage and current characteristics of a power supply, and also an abstract
representation of the operating mode of the elements of a power domain or of a module instance (e.g.,
on, off, sleep).

e Isolation Cell: An instance that passes logic values during normal mode operation and clamps its output
to some specified logic value when a control signal is asserted. It is required when the driving logic
supply is switched off while the receiving logic supply is still on.

o Level Shifter: An instance that translates signal values from an input voltage swing to a different output
voltage swing.

e Hard macro: A block that has been completely implemented and can be used as it is in other blocks.
This can be modeled by an hardware description language (HDL) module for verification or as a library
cell for implementation

II. UPF 3.0 INFORMATION MODEL

UPF 3.0 has come up with the concept of an information model to represent the low-power objects and concepts
in a structured and consistent manner. This information model captures the low-power management information.
This is the result of application of low-power UPF commands on the designs. It consists a set of objects and
various information-bearing properties defined for those objects. It also defines the relationship between the
HDL and UPF. It provides a set of well-defined APIs to query the low-power information in either Tcl or in
HDL. UPF 3.0 information model Tcl APIs can be used to query the static information of a low-power object,
e.g. file/line detail of a UPF object or a list of isolation strategies of a power domain and other similar things. To
get the dynamic information, we can rely on Tcl APIs provided by the verification tools (simulators) to access
the dynamic values of the UPF and RTL objects. Together with the static and dynamic information, innovative
applications can be written to help with the checking and debugging of the design.

UPF 3.0 also presents the HDL package functions and native HDL object definition for the UPF object which
has some dynamic information, e.g. power domain, power states, etc. Native object definition and usage has
been given in the example in the following section. Using these HDL package functions the user can access the
static and dynamic information of low-power objects in HDL. This capability can be leveraged to help
verification engineers create random verification scenarios.

Design

+
Power
Management

w v oo o0 >

L, P,

V. KEY COMPONENTS OF THE UPF 3.0 INFORMATION MODEL
There are two main components of the information model.
A. Objects:

These are the primary holders of information, accessed by handle ID. They represent UPF, HDL and
the relationship between them. There are three main classes of objects, namely:

2018

DESIGN AMD VERIFICATIOMN=
[- “l

CONFEFIEN-C‘:\E ;i-.IND EXHPEIHON
e UPF Objects: Model objects created by UPF.
e HDL Obijects: Model objects representing the HDL design.

e Relationship Objects: Objects that model the relationship of UPF and HDL objects, e.g.
upfExtentT, upfCellInfoT.

B. Properties:
These are the basic pieces of information, accessed by property ID, such as UPF NAME,
UPF ISOLATION STRATEGIES.

VI. UPF 3.0 HDL PACKAGE FUNCTIONS

A. Native HDL representation
UPF 3.0 defines the native HDL representation for the objects that have dynamic properties. The native
HDL representation is the struct/record type in HDL that contains two fields.
e Avalue field corresponding to dynamic property of the object.
e A handle or reference to the UPF object, to allow access of other properties of the object.

Following HDL types are supported with a native HDL representation:

Table 1.
Type Name SV Representation
upfPdSsObjT struct {

upfHandleT handle;
upfPowerStateObjT current_state;
} upfPdSsObjT
upfPowerStateObjT struct {
upfHandleT handle;
upfBooleanT is_active;
} upfPowerStateObjT
upfBooleanObjT struct {
upfHandleT handle;
upfBooleanT current_value;
} upfBooleanObjT
upfSupplyObjT struct {
upfHandleT handle;
upfSupplyTypeT current_value;
} upfSupplyObjT

In Table 1 above, the field representing the dynamic property of the object has been highlighted in bold. For
example, for a power domain or supply set the associated dynamic property is the current power state of the
power domain which is represented by the current state field of the struct in SV native representation of
the up£PdSsObj T type. The other field is a handle to the low-power object, which has all the static information
about the object, e.g. object name, its creation scope, file/line information, etc.

The following Table 2 summarizes the UPF 3.0 information model objects with native HDL information. The
HDL types defined in Table 1 are used to represent the dynamic properties of these objects.

Table 2
Low Power Object Type | Dynamic Property Low Power Idea Native HDL Type
Represented
upfPowerDomainT current_state Current power state upfPdSsObjT
upfSupplySetT current_state Current power state upfPdSsObjT

2018

DESIGN AMD VERIFICATIOMN=
— —
[- “l

CONFERENCE AND EXHIBITION

upfCompositeDomainT current_state Current power state upfPdSsObjT

upfPstStateT is_active Is the PST currently active | upfPowerStateObjT

upfPowerStateT is_active Is the power state currently | upfPowerStateObjT
active

upfAckPortT current_value Logic value at the port upfBooleanObjT

upfExpressionT

current_value

Value of the expression

upfBooleanObjT

upfLogicNetT

current_value

Logic value of the net

upfBooleanObjT

upfLogicPortT

current_value

Logic value of the port

upfBooleanObjT

upfSupplyNetT

current_value

Value of the supply net

upfSupplyObjT

upfSupplyPortT

current_value

Value of the supply port

upfSupplyObjT

B. HDL package functions

UPF 3.0 provides a number of HDL package functions that are used to access the low-power objects
and their properties. These are broadly classified in the following five different classes of functions.

1. HDL access functions: These are the basic functions to access the low-power objects and properties.
For example, the following access function can be used to get the handle of an object.

upfHandleT pd

power domain ‘pd’

upf get handle by name ("/top/dut i/pd") -returns the handle of

One of the key HDL access function is the “upf query object properties”.
upfHandleT upf query object properties (upfHandleT
object handle,upfPropertyIdE attr);

This function returns the handle to a property corresponding to an enumerated value passed as property.
E.g. upfHandleT scope = upf query object properties(pd,
UPF_CREATION_ SCOPE) -returns the creation scope of power domain with handle ‘pd’.

2. Immediate read access HDL functions: All the objects in the UPF 3.0 information model allow read
access to its properties. In the case of dynamic properties these functions return the current dynamic
value/state of that property when this function is called, for example:

upfHandleT ps
upfHandleT ps_active hndl

UPF IS ACTIVE)

upf get handle by name("/top/dut i/pd.power state on")
= upf query object properties(ps,

integer ps_on value = upf get value real (ps_active hndl)

3. Immediate write access HDL functions: Some objects of the information model allow the immediate
write access only if they don’t have an existing driver. This allows the manipulation of low-power
objects from testbench or simulation model. For example, supply on (“supply net name”,
value). The following objects allow immediate write access:

a. upfPowerStateT
b. upfLogicNetT
c. upfLogicPortT
d. upfSupplyNetT
e. upfSupplyPortT

These functions are a powerful tool for users to manipulate low-power objects during simulation from a

testbench.

2018

DESIGN AND VERIFICATIOMN=
P— —
A |

R B
CONFERENCE AND EXHIBITION

4. Continuous access HDL functions: These functions enable continuous monitoring of dynamic values
of an object in the information model. It enables the user to trigger an always block or process
statement using
dynamic values of the low-power objects.
upfSupplyObjT vdd monitor;
upf create object mirror ("/top/dut i/vdd", "vdd monitor");

5. Utility functions: These functions are general utility functions to assist users, for example:
upfClassIdE upf query object type (upfHandleT handle) —returns the type of a handle,
using this the user can find out if the object is a power domain, supply set or some other low-power object.

VII. UPF3.0 TCLAPIS

The UPF 3.0 information model defines a number of Tcl query command to access the low-power objects and
properties. UPF 3.0 introduced a Tcl-based Information Model Application Programmable Interface (API).
These APIs can be used to access PA information:

Basic Tcl APIs
To get various attributes on a given object
upf query object attributes obj —-attribute <attr name> -detailed
To get the type of the object
upf query object type obj
To check if an object belongs to a particular group
upf object in group obj -group <group_ id>
To get the full hier path of an object relative to given scope
upf query object pathname obj -relative to <object handle>

Example
upf query object properties /tb/top/pd.iso strategy -property upf clamp value

An object handle is used to access any power aware information. A handle can be a pathname, e.g.
/tb/topl/PD1.retl, or some tool assigned ID, e.g. #UPFEXTENT1234#.

A. Building Tcl Based Low-Power Apps using Tcl APIs

Tcl based apps are nothing but Tcl procedures that users can write for special requirements, such as reporting,
debugging or checking of the design. Building blocks of Tcl procs (Tcl Low-Power Apps) include:
e UPF 3.0 has four basic APIs which can be used to access any UPF information.

e Tcl APIs provided by verification tools (simulators) to access the dynamic data.

Once an app is built using the above APIs, it can be run either in a verification tool environment, at their static
time, to get static information or post sim to get both static and dynamic waveform data. The following is an
example on how the user can build an app to find the source of corruption/retention of a signal and see the
values of these signals.

UPF:

set _scope /tb/chip top

create power domain PD CAMERA -include_ scope

create supply net pd pwr -domain PD_CAMERA

create supply set ss -function {power pd pwr} -function {ground G _pd net}
assoclate supply set ss -handle PD CAMERA.primary

Here signal in question is /tb/chip_top/c which is corrupted at some time instance in simulation. The goal is to
find the source of corruption of this signal.

#aliasing upf query object properties to simple name such as alias

2018

DESIGN AND VERIFICATIOMN=
P— —
A |

R B
CONFERENCE AND EXHIBITION

alias query upf query object properties

Step 1: Get the properties of the signal

examine tb/chip top/c

1'bx

query tb/chip top/c

{ {upf name c} {upf parent /tb/chip top} {upf cell info #UPFCELLO 71653#}
{upf port dir UPF DIR OUT} }

Step 2: Get the properties of cell applied on that signal

query #UPFCELLO 71653#

{{upf cell kind upf cell corrupt} {upf hdl cell kind upf hdlcell comb}
{upf_cell origin upf origin inferred} {upf_source_extents {#UPFEXTENT2130711#}}
}

Step 3: Get the properties on source extent (extent of power domain, retention strategy etc.) of the cell
query #UPFEXTENT2130711+#

{ {upf hdl element tb/chip top} {upf_object tb/chip top/PD_CAMERA /*power
domain*/} }

Step 4: Get the supplies of the upf_object (power domain, retention strategy etc.)

query /tb/chip top/PD CAMERA -property upf supply set handles

{/tb/chip_ top/PD_CAMERA.primary /tb/chip top/PD CAMERA.default retention
/tb/chip top/PD CAMERA.default isolation}

Step 5: Get the power (or other relevant function) of the primary supply set

query /tb/chip top/PD CAMERA.primary.power

{ {upf name power} {upf creation scope /tb/chip top/PD CAMERA} {upf parent
/tb/chip top/PD CAMERA.primary} {upf ref kind upf ref power} {upf ref object
/tb/chip top/pd pwr} }

Step 6: Check the value of UPF supply net
examine tb/chip top/pd pwr
OFF OV

VIIl. EXAMPLES AND CASE STUDIES

When using Tcl APIs and HDL package functions a number of novel objectives can be achieved. This section
captures some of the innovative low-power apps based on information model APIs to solve practical low-power
verification problems, which otherwise are relatively difficult to solve and users have to rely on tool vendors for
those specific features. The paper captures a few useful applications. However, along similar lines, users can
write their own application for various needs.

A. Low-Power Apps based on HDL Package Functions

Low-Power App 1: (Coverage App) Coverage of a low-power design using HDL Package Functions
In a low-power design, it is of utmost importance for a verification engineer to ensure that all IPs in the design
behave properly in OFF/ON mode. They also need to ensure that transitions from ON->OFF and OFF->ON
have also been verified. This requirement can be achieved by creating a coverage infrastructure to ensure the
full coverage of the simstate property of the primary supply set of all power domains.
The aim of this application is to do simstate coverage (Normal/Corrupt) of all the powerdomains in the design.
The application will cover the NORMAL-> CORRUPT and CORRUPT->NORMAL transitions for each power
domain in the design. We have presented below how UPF 3.0 HDL package functions can be used to achieve
this.

Stepl: Mirror UPF objects to HDL objects

// Native HDL representation for power domains

typedef struct {

2018

DESIGN AND VERIFICATIOMN=

DVLCON

CONFERENCE AND EXHIBITION

upfHandleT handle;
upfSimstateT simstates;
} upfPdObjT;

Use the mirror function to continuously monitor the simstate of all the
power domain in the design
pd_iter upf get all power domains();
pd hndl = upf iter get next (pd iter);
while (pd _hndl) begin
pd obj = "power domain objs[";
pd cnt str.itoa(pd cnt);
pd _obj = {pd obj, pd cnt str};

pd_obj = {pd obj, "I"};
upf create object mirror (upf query object pathname(pd hndl), pd obj);
pd_cnt++;
pd hndl = upf iter get next(pd iter);
end

Step 2: Covergroup definition for state and transition coverage

covergroup PD STATE COVERAGE (string pd name, ref upfSimstateE simstate) @(
simstate);

CORRUPT: coverpoint simstate
{ bins ACTIVE

NORMAL: coverpoint simstate
{ bins ACTIVE = {NORMAL}; }

COA: coverpoint simstate
{ bins ACTIVE = {CORRUPT ON ACTIVITY}; }

option.per instance = 1;

type option.merge instances = 0;

option.comment = pd name;

endgroup

{CORRUPT}; 1}

covergroup PD TRANS COVERAGE (string pd name, ref upfSimstateE simstate) @(
simstate);
TRANSITION COVERAGE:coverpoint simstate
{
bins OFF to ON
bins ON _to OFF

(CORRUPT => NORMAL) ;
(NORMAL => CORRUPT) ;

bins ON_COA OFF = (NORMAL => CORRUPT ON ACTIVITY => CORRUPT);
}
option.per instance = 1;M
type option.merge instances = 0;
option.comment = pd name;
endgroup

Step 3: Instantiation of coverage module:
PD STATE COVERAGE pd state cov [$];
PD TRANS COVERAGE pd trans_cov [$];
initial begin
for (int i = 0; 1 < pd _cnt; i++) begin
pd_state cov[i] = new
(upf query object pathname (power domain objs[i].handle),
power domain objs[i].simstate);
pd trans cov[i] = new
(upf query object pathname (power domain objs[i].handle),
power domain objs[i].simstate);

2018

DESIGN AND VERIFICATIOMN=

DVLCON

CONFERENCE AND EXHIBITION

end
end

Monitor the simstates of a power domain: User can also monitor the simstates of one or more
power domains of interest.
always @ (power domain objs[0].simstate) begin

Sdisplay (Stime, "%s Power Domain '$s' simstate changed to '$s'", identstr,
upf query object pathname (power domain objs[0].handle),
get simstate str(power domain objs[0].simstate)) ;
end

Low-Power App 2: Write function to print current simstates of a power domain using HDL Package
Functions

User can write following set of functions to print the simstates of all the power domains of the design
at any instance of time in simulation.

function string get simstate str(power state simstate simState);
if (simState == NORMAL)

get simstate str = "NORMAL";
if (simState == CORRUPT)

get simstate str = "CORRUPT";
else if (simState == CORRUPT ON ACTIVITY)

get simstate str = "CORRUPT ON ACTIVITY";
else if(simState == CORRUPT_STATE ON ACTIVITY)

get simstate str = "CORRUPT STATE ON ACTIVITY";
else if (simState == CORRUPT STATE ON CHANGE)

get simstate str = "CORRUPT STATE ON CHANGE";
else if (simState == CORRUPT_ON CHANGE)

get simstate str = "CORRUPT ON CHANGE";
endfunction

function reg print current state of hndl (upfHandleT hndl);
upfHandleT state hndl, simstates hndl, pd nm hndl, state nm hndl;
upfHandleT line no hndl, file nm hndl, iter hndl;
int simstate;

state _hndl = upf query object properties (hndl, UPF _ CURRENT STATE) ;
pd nm hndl = upf query object properties (hndl, UPF NAME) ;
file nm hndl = upf query object properties (hndl, UPF FILE);
line no hndl = upf query object properties (hndl, UPF_LINE);
state nm _hndl = upf query object properties(state hndl, UPF NAME) ;
simstate hndl = upf query object properties(hndl, UPF SIMSTATE) ;
simstate = upf get value int(simstate hndl);

oo

Sdisplay ($time, "%s Power domain: %s (%s:%0d), Current simstate: %s",

identstr,
upf get value str(pd nm hndl), upf get value str(file nm hndl),
upf get value int(line no hndl), get simstate str(upfSimstateE' (simstate)));
return 1;
endfunction

function reg print pd simstates();
upfHandleT pd iter;
upfHandleT pd hndl;
int pd _cnt;
pd iter = upf get all power domains();
pd_hndl upf iter get next(pd iter);

while (pd _hndl) begin
print current state of hndl (pd hndl);
power domains[pd cnt++] = pd hndl;

8

2018

DESIGN AND VERIFICATIOMN=

DVLCON

CONFERENCE AND EXHIBITION

pd_hndl = upf iter get next(pd iter);
end
return 1;
endfunction

B. Low-Power Apps based on Tcl APIs

Low-Power App 3: (Reporting App) UPF query_* commands

Reporting is an essential part of the low-power verification process. Once the power intent is captured in a UPF
file, it is important for the verification and design engineers to know that it has be captured as the original
intention. This requirement can be fulfilled by query_* procs. These query commands can query the UPF data as
interpreted by the verification tools and stored in the information model. The output of query commands can be
used to do selective reporting.

interp alias {} query {} upf query object properties;

interp alias {} type {} upf query object type;

interp alias {} group {} upf object in class;

interp alias {} name {} upf query object pathname

proc query port direction {{port name ""} args} {
set direction [query $port name -property upf port dir]
switch $direction {
UPF _DIR IN {set result "in"}
UPF DIR OUT {set result "out"}
UPF _DIR INOUT {set result "inout"}
default { set result ""}
}
return $result
}
Usage:
query port direction /tb/t/a/vdd
Result: “in”

proc query_ power_domain {{domain_ name} args} {
if {[type $ domain name] == "upfPowerDomainT"} ({
set property [query -verbose $ domain name]
set element ""
set extents [lindex [lindex $property 5] 1]
foreach i1 S$extents {
set 1 [split [string map [list " (" \O] $i] \O]
lappend element [string trimright [lindex $1 1] ")"]
}
#lappend result "domain name [lindex [lindex S$property 0] 1]"
puts "{domain name: [lindex [lindex S$property 0] 1]}"
puts "{scope: [lindex [lindex S$property 3] 1]}"
puts "{supply: [lindex [lindex S$property 6] 1]}"
puts "{power switch: [lindex [lindex S$property 12] 1]1}"
puts "{pd states: [lindex [lindex Sproperty 13] 1]}"
puts "{elements: Selement}"
#return S$result
} else {
return "ERROR : Invalid arguments. arg 'S domain name' not a
Power Domain"
}
}
Usage:
query power domain /tb/pd
Result:

2018

DESIGN AND VERIFICATIOMN=

DVLCON

CONFERENCE AND EXHIBITION

{domain_name: pd}

{scope: /tb}

{supply: /tb/pd.primary /tb/pd.default_retention /tb/pd.default_isolation}
{power_switch: /tb/pd_sw}

{pd_states: /tb/pd.ON /tb/pd.SLEEP}

{elements: /th/top2/m4 /tb/top2/m4/iso_inst1}

Low-Power App 4: (Debug/Reporting App) Get all attribute information
In a low-power design, along with the UPF file, some of the power intent can be present in a Liberty file as well.
The Liberty information is annotated on RTL objects using attributes which can then be further updated using
the UPF command set port attributes. Ina low-power design containing hard macros, attribute
information plays a vital role when debugging or reporting. These low-power attributes can be present on an
instance or port of an instance. This low-power app can be used on any signal or instance in the design to get the
attribute information and the respective signal values if wave data is available.
proc pa_query attributes {{object} args} {
set result ""
if {[type $object_name]:: "upfHd1lScopeT"} {
lappend result "model [lindex [query Sobject -property upf model name] 0]"
lappend result "file [lindex [query Sobject -property upf model name] 11"
lappend result "line [lindex [query $Sobject -property upf model name] 21"
} elseif {[type Sobject name]== "upfHdlPortBitT"} ({
set parent [query $object name -property upf parent]
lappend result "parent model [lindex [query $parent -property
upf model name] O0]"
} else {
return "ERROR : Invalid object. Expecting 'HdlPort' or 'Instance'"

}
set attr [query Sobject name -property upf hdl attributes]

if {Sattr != ""} {
lappend result "attributes Sattr"
} else {

lappend result "attributes NO ATTRIBUTE SET"
}
#printing result
foreach 1 S$result {

if { [lindex $i 0] != "attributes"} {
puts "{$i}"
} else {

puts "\{[lindex $i 0]"
set i [lreplace $i 0 0]
foreach J $1i {

puts "\t> {$J}"
}
putS "\}ll

}

return Sresult

Usage:
pa_query attributes tb/dut/ab5
Result:
{model analog}
{file analog.sv} {line 53}
{attributes
> {mspa_ cell functionality pa {analog.lib} {28}}
> {level shifter type HL {analog.lib} {28}}

10

2018

DESIGN AND VERIFICATIOMN=

ey gm—,

i i | ..."%’3
Rl Bl W E
CONFERENCE AND EXHIBITION

> {is_level shifter true {analog.lib} {28}}
}

Low-Power App 5: (Debugging App) Trace drivers of UPF objects

For a low-power design consisting of RTL along with UPF, all the supply network including creation of port,
nets and their connection is written inside the UPF file. Debugging of the supply network is a major problem
that many verification engineers come across. This low-power app is useful as it can trace the driver of any UPF
objects along with printing the values of all the ports and nets in the path. The input of this app can be either a
UPF created supply, Liberty created supply pin or a supply defined in HDL.

proc pa _query drivers {{object} args} {
set fanin S$object
set driver ""
append driver S$object
while {[query S$fanin -property upf fanin conn] != ""} {
set driver [concat S$driver "[examine S$fanin] <-"]
if { [llength [query $fanin -property upf fanin conn]] > 1 } {
set resolution [query S$fanin -property upf resolve type]
set fanin [query $fanin -property upf fanin conn]
foreach index $fanin {
set driver [concat $driver "$index [examine $index]"]
}
set driver [concat S$driver "\{Sresolution\}"]
break
}
set driver [concat Sdriver "[query $fanin -property upf fanin conn]"]
set fanin [query $fanin -property upf fanin conn]

if {[llength $fanin] < 2 } {
set driver [concat S$driver "[examine S$fanin]"]
}
return S$driver
}
Usage:
pa_query drivers /tb/tl/ml/bl/vd bot
Result:
/tb/t1/ml/bl/vd bot {OFF 0} <- /tb/tl/ml/bl/vportl bot {OFF 0}
<- /tb/tl/ml/vd mid {OFF 0} <- /tb/tl/ml/vportl mid {OFF 0}
<- /tb/tl/vd_top {OFF 0} <- /tb/tl/vport2 top {OFF 0}
/tb/tl/vportlitop {OFF 0} {PARALLEL}

IX. POSSIBLE USAGE OF HDL PACKAGE FUNCTIONS AND TCL APPS

As observed in the above sections, there are two main approaches to access and manipulate the low-power
objects and properties. One is HDL package functions and the other is to use the Tcl query commands. There are
different scenarios in which one or the other approach is suited. Following table summarizes the various usage
scenarios where HDL package functions or Tcl query commands can be used.

Table 3.0
HDL Package functions Tcl Apps
Useful for coverage of low-power objects Useful in selective reporting
Useful for transition coverage of power states Batch mode debug (live sim or post sim)
Directed assertions on low-power objects (e.g. Power aware static checking
simstates of power domain)
Dynamic checks involving lower-power objects

11

2018

DESIGMN AND YERIFICATION=

CONFERENCE AND EXHIBITION

X. BENEFITS OVER CONVENTIONAL APPROACHES

Verifications engineers can use the proposed verification approach to achieve early low-power verification
closure. The approach mentioned in this paper using the UPF 3.0 information model provides a number of
benefits. This approach is consistent across tool vendors as it is based on the UPF 3.0 standard. The learning
curve for the users is not steep. Also the user scripts created to use the proposed solution are easily scalable to
bigger and more complex design scenarios.

Xl. CONCLUSION

The low power designs today are incredibly complex with intricate power architecture. A thorough low-power
verification is a must for such designs, as any power bug left can cause a huge setback. In this paper we have
discussed the challenges with the current low-power verification method and how those challenge can be
addressed better with UPF 3.0. We discussed the concepts of UPF 3.0 information model and APIs to represent
and access the lower power information which is the result of application of UPF on the design. We also
presented with examples and case studies how UPF 3.0 information model concepts can be used to develop a
more consistent, robust and scalable low-power verification platform. In the end we discussed the benefits of
using the proposed approach over conventional approaches.

XIl. REFERENCES

[1] IEEE Std 1801™-2015 for Design and Verification of Low Power Integrated Circuits. IEEE Computer Society, 05 Dec 2015.
[2] “Amit Srivastava, Awashesh Kumar”, PA-APIs: Looking beyond power intent specification formats, DVCon USA 2015

[3] “Awashesh Kumar, Madhur Bhargava”, Random Directed Low Power Coverage Methodology: A Smart Approach to Power
Aware Verification Closure, DVCon USA 2017

[3] “Awashesh Kumar, Madhur Bhargava”, Unleashing the Power of UPF 3.0: An innovative approach for faster and robust Low-
power coverage, DVCon India 2017

12

