
Extending functionality of UVM components 
by using Visitor design pattern

Darko M. Tomušilović
Vtool LTD

© Accellera Systems Initiative 1

Optional company logo(s) only at title page



Introduction

• Goal - add a new operation to each class in existing class hierarchy 

• Most common solutions and their drawbacks

– adding code that will perform each operation into each class in the environment

– creating derived classes that will perform newly added operations

• The alternative to these approaches has been well established in the software 
development world

• Briefly introduce Visitor design pattern

– benefits (decreased code complexity, facilitated maintenance, improved code stability)

– drawbacks (adding a new type of object that a visitor should visit is costly, its usage has 
to be planned in advance)

© Accellera Systems Initiative 2



Visitor design pattern infrastructure
uvm_visitor

• Abstract class defining a general visit operation on a node

• Concrete visitor giving implementation to visit operation according to 
the action the visitor needs to accomplish

• Pre-processing and post-processing hooks

© Accellera Systems Initiative 3



Visitor design pattern infrastructure
uvm_adapter

• Abstract class defining a general accept operation that in turn applies 
the corresponding visitor on every element of the structure that the 
adapter wraps

• The following adapter wraps a single component:

© Accellera Systems Initiative 4



Visitor design pattern infrastructure
Context

• Context invokes method accept of an object of adapter class, providing 
the component to be visited and also the visitor object as arguments

© Accellera Systems Initiative 5



UVM library predefined adapters

• Traverse elements in a complex composite structure in a specific way 
and apply visitor operation upon each of them

– uvm_top_down_visitor_adapter

– uvm_bottom_up_visitor_adapter

– uvm_by_level_visitor_adapter

• Abstract uvm_structure_proxy class provides all children subelements of 
a certain element in a structure, facilitating traversal

• Its specialization class uvm_components_proxy provides all 
subcomponents for a given UVM component

© Accellera Systems Initiative 6



Visitor traversal

© Accellera Systems Initiative 7



UML class diagram

© Accellera Systems Initiative 8



UML sequence diagram

© Accellera Systems Initiative 9



Verification use-case examples

• Component configuration check visitor

– check that every component in the environment is properly configured

• Reset and clock generation check visitor

• Adding messages and improving reporting system

© Accellera Systems Initiative 10



Verification use-case examples
Component configuration check visitor

© Accellera Systems Initiative 11



Verification use-case examples

• Component configuration check visitor

• Reset and clock generation check visitor

– check that the components in the environment are provided with a proper clock 
and reset

• Adding messages and improving reporting system

© Accellera Systems Initiative 12



Verification use-case examples
Reset check visitor

© Accellera Systems Initiative 13



Verification use-case examples

• Component configuration check visitor

• Reset and clock generation check visitor

• Adding messages and improving reporting system

– attach a visitor to certain events in the environment and upon their triggering, 
perform proper reporting (for example, attach a visitor to a queue within a 
scoreboard)

© Accellera Systems Initiative 14



Verification use-case examples
Queue display visitor

© Accellera Systems Initiative 15



Summary

© Accellera Systems Initiative 16



Questions?

Thanks!

© Accellera Systems Initiative 17


