2018

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Automated Configuration of Verification

Environments using Specman Macros
DVcon Europe 2018 — Paper number 260-OH22

Milos Mirosavljevic, Veriest Solutions, Belgrade, Serbia (milosm@veriestS.com)

Ron Sela, VValens Semiconductors, Hod HaSharon, Israel (ron.sela@valens.com)

Dejan Janjic, Veriest Solutions, Belgrade, Serbia (dejanj@veriests.com)

Efrat Shneydor, Cadence Design Systems, Petach Tikva, Israel (efrat@cadence.com)

Abstract—The paper describes a Specman based macro system to automate and facilitate full verification of a 16x16
complex switch project.

Keywords—macro, verification, switch, Specman

. INTRODUCTION

Today’s ASIC devices delivers increasingly more RTL lines of code, more gates and correspondingly more
features wrapped with better efficiency.
These new features represent higher logic complexity, supporting more configurations than ever before.

From a verification point of view, these more-than-ever complex ASICs mean several problems to consider
when planning our verification environment:

This paper shares such dilemmas and solutions in a project that had recently been completed in a joint effort
of Valens Semiconductors alongside with Veriest Solutions — a design & verification service company.

Il. VALENS & HDBASET INTRODUCTION

A. HDBaseT® In a Glance

HDBaseT! is a standard for the transmission of ultra-high-definition video & audio, Ethernet, controls, USB
and up to 100W of power over a single, long-distance, cable. For audiovisual, consumer electronics, and even
industrial PCs, this can be a simple category cable (Cat6 or above), for up to 100m/328ft. For medical and
government applications, optical fiber is usually preferred, spanning several kilometers. For automotive,
HDBaseT can be transmitted over a single unshielded twisted pair (UTP), for up to 15m/50ft, or any other
commonly used media (such as STP, HSD, coaxial and fiber).

! The HDBaseT standard was defined and contributed by Valens Semiconductors, a fabless company
headquartered in Israel and established in 2006.

mailto:milosm@veriestS.com
mailto:ron.sela@valens.com
mailto:dejanj@veriests.com

2018

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Audio
AlV Video @ Ethernet = Power
HDBaseT HDBaseT
Source J Display
A
-
100m/328ft Cat6
Cable

Control ? usB
‘Valens

Figure 1:UHD Video & Audio, Ethernet, Power, Controls and USB on 100m/328ft LAN Cable

IIl. THEPROJECT: HDBASET SWITCH ("T-SWITCH")

HDBaseT Switch ("T-switch) — Main Features ValUE
Management e
e 16 x ports with 16Gbps per port, SyStEm ——
non-blocking switch VAT Enemet
e Supports HDBaseT wire speed wesse | [T . b ven | BT
o - RX PHY TX PHY
packet switching
HoBaset VS2310 HDI| VS2310 HoBaseT
e Switching any combination of S Ry [e S
T-Adaptors / HDBaseT ports J— o
A V82310 | Hoi| ho| vs2310 | [uss Local T-
RX PHY RX PHY kﬁ Adaplors
e Each port supports "
HDCP 2.2 and HDCP 1.4 o [2 i =
HDBaseT]
Switch ase!
e Management over Ethernet or 12C ST s ol "™ o s |
e ValUE management and control system ez | | oBaser
_uss| | vs2ato |HD| TXPHY |——O——
L RX PHY
HDBsseT— ;323':3 ! ! ¥§2§:{3 || HDBaseT
High level architecture can be seen in the Figure 2.
HDBaseT vs2310 HDBaseT
A ;)5(2;:3 HOI| ¢ © P Xeay

Figure 2: Native and HDBaseT switching

IV. T-SWITCH — VERIFICATION CHALLENGES

When the verification team had to plan how exactly the verification environment for the T-switch device
would look like, it had to consider several issues:

How to cover all the different configuration options while, at the same time, meeting shortening schedules
demands presented by today's electronics industry

To achieve that, one should leverage concurrently different strategies:
e Implementing new verification methodologies

e Using advanced code techniques

2018

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

e Harnessing the power of reusability

As ASICs becomes more complex, larger verification teams are needed in order to cope with the task. Most
likely the team will be composed of different levels of verification engineers, including senior as well as entry-
level engineers. This means that whenever one considers of how to structure the verification environment, one
must keep in mind the large variance of the different users of this environment (verification engineers) and as
such, to supply an easy-to-use API which solves all configuration matters “under-the-hood”, facilitating the end-
user the configuration of the system and straightforward access to running actual tests.

In many companies, projects are changing frequently — meaning a project can be cancelled as fast as a new
one emerges. This requires the verification group to be agile and adaptive in terms of re-allocating their team
members. For the verification team lead who is also responsible for the design of the verification environment,
this flexibility requires also to be taken in consideration in advance when planning the verification environment
and how it would be used. New engineers whom will join the project during its life cycle might not have enough
time and bandwidth to fully understand how to setup the environment correctly and as such will cause irrelevant
scenarios and waste of debug time on “bugs” which are not real ones.

V. OUTLINE OF THE VERIFICATION SOLUTION

In order to meet the requirement of driving very complex stimuli in a simple manner, the team relied on
capabilities of Specman macros.

Specman macros define parameterized code, which is instantiated by substituting parameters. In principle, a
macro is used to extend e and add new language constructs. In general, a macro definition specifies:

e Asyntactic pattern that defines a new syntactic construct in the language

e A replacement that specifies e code containing other, already existing constructs of the same
category.

The main usage of the macro is providing the test writers easy to use syntax. Syntax that does not require
being familiar with the language, the testbench or the methodology. (Next sections will expand on the
methodology of using macros).

The output of the macro is a set of rules providing the verification environment information regarding a
certain configuration and, accordingly, generates the required stimuli called a stream. This stimuli is driven
towards the RTL. The project's requirement was to cover many combinations of input streams (each stream
conveys different protocol/s type) and a significant challenge was to develop a mechanism which would allow
this to be done in a simple way. The switch has 16 ports and they can be configured in a various ways and every
port can communicate with every other port, which is 256 of different possibilities for streams between the ports.
Every stream itself has multiple options for configuration, which in total leaves thousands of possibilities for
stimuli.

Therefore, this "ADD_STREAM" macro provides simple solution to this complex problem.

A block diagram of the ADD_STREAM macro is shown in Figure 3.

Required input arguments

v

Optional input arguments

2018

DESIGN AND VERIFICATION™

DVCOIN

CONFERENCE AND EXHIBITION

Figure 3: Required and optional input arguments. Result is stimuli towards the RTL

One of the biggest advantages of the macro usage is that it allows new and inexperienced engineers to quickly
catch up in the project and create desired scenarios, such as:

Inject HDMI data to the switch port 0 and send this data through the HDCP towards port 14 and back from
port 0 (multicast)

Inject data with very low bandwidth to the switch ports 0-7 and send this towards ports 8-15 (checking that
low bandwidth will not impact RTL's behavior)

To take it one step further, this mechanism also allowed chip designers to create and run simple tests for
sanity checks during RTL development, without too much knowledge about Specman code itself. The
ADD_STREAM macro usage is straight-forward and in most cases self-explanatory.

Macro Definition & Strategy

The team had to come up not only with an easy and simple solution, but also define a method to add this code in
such a way it will be able to override necessary old configuration fields generated automatically within the
verification environment and just before the very first simulation tick. The solution was a new action macro
(ADD_STREAM) in such a way that every user would be able to use it under Specman pre-defined run() method.
This was a major decision for picking this strategy rather than using a sequence mechanism, as sequences are
clock-sensitive and cannot achieve the same solution — they must have at least 1 simulation tick for their body()
method to start working.

In fact, for the most situations, using the ADD_STREAM macro in the test requires around 15 lines of code,
as shown below:

run() 1is also {
ADD STREAM
stream type = UNICAST
src_port =0
dst ports = {1}
pkt types category in strm = {OTHER P1l}
specific p type in category = {PTYPE1l4}
priority = {PRIORITY 1}
pkt type bw = {16000}
hdcp = FALSE
burst cycles =0
sid = 100
ayalon source = FALSE
ayalon dest = FALSE
pkt num = 500;

}i

It's worth mentioning that this simple macro instantiation translates into the 180 lines of actual code "under-
the-hood", starting with the following definition:

define <add stream'action> "ADD STREAM []stream type[]=[]<stream_type'type>\

src_port = <src_port'exp>\
dst_ports = {<dst_port'exp>;...}\
pkt types category in strm[]=[]{<pkt types category in strm'type>;...}[

bist termination = <bist termination'type>[]bist port mode =

<bist port mode'type>]\

specific_p type in category[1=[]{<specific p type in category'type>;...}\
priority = {<priority'exp>;...}\

pkt type bw = {<pkt type bw'exp>;...}\

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

hdcp = <hdcp'exp>[hdcp bypass = <hdcp bypass'exp>][hdcp bfg en =
<hdcp bfg en'exp>][hdcp version = {<hdcp version'type>;...}][start delay =
<start delay'exp>]\

burst cycles = <burst cycles'exp>\

sid[]=[]<sid'exp>[hdmic_cmd = <hdmic_cmd'type>]\

ayalon source[]=[]<ayalon_source'exp>\

ayalon dest[]=[]<ayalon_dest'exp>\

pkt num = <pkt num'exp>[add stream on the fly = <add stream on the fly'exp>]|[
remove stream on the fly = <remove stream on the fly'exp> remove delay =
<remove delay'exp>]" as {

That is 1200% of code reduction per one macro usage. Needless to say that writing such 180 lines of code for
each case would require higher level of verification skills and time, and would be prone to more errors and
inconsistencies.

For completeness and to illustrate the richness of options the macro supports, follows the list of Required
input arguments to the macro:

e stream_type: can be UNICAST, MULTICAST or BROADCAST, to make effective use of well-known forms of data
communication.

o UNICAST: injected data will be sent from 1 source port to 1 destination port. It should be noted that source and
destination port can be the same, effectivelly simulating loopback through one port.

o MULTICAST: injected data will be sent from 1 source port to multiple destination ports.
o BROADCAST: injected data will be sent from 1 source port to all other ports, including itself.
e src_port: specifies switch port to which data is being injected by the eVC.
e dst_ports: unlike the above, this is a list of destination ports, to which data from the source port will be sent to.

e pkt_types_category_in_strm: specifies the list of packet type categories which will be present in the stream. Due to large
number of packet types used in the project, it was convenient to first group them under the few higher level types. One
example for this parameter is HDMI

e specific_p_type_in_category: specifies list of packet types, one per each packet type category specified above. For the
mentioned HDMI example, this parameter could be one of the following:

o HDMI_AV CC
o HDMI_AV CG
o HDMI_AV_GC
o HDMI_AV_GCG
o HDMI_AV_PXL
o HDMI_AV_DATA
. priority: specifies priority of the injected packets. This parameter has multiple impacts on the stimuli generation:

o Bandwidth with which the data will be injected to the RTL. Lower priorities have lower bandwidth due to RTL
behavior specification.

o Generated packet types.

o Generating proper stimuli distribution (which packet type and with what bandwidth) was one of the major efforts in
the project, in order to simulate real life scenario as best as possible. By using the ADD_STREAM macro, test
author was able only to specify the priority list, and distribution would be correct.

e pkt_type_bw: specifies bandwidth of the input packet injection. This is total bandwidth in the input, which takes into the
account the above mentioned specific priorities badnwidths.

e sid: specifies Session ID (SID) of the input packets. This parameter is HDBT protocol specific and it defines the routing of the
packet inside the switch.

2018

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION
e hdcp: specifies whether HDMI/Video stream is going through the HDCP block. Relevant only for simulations related to
HDMIL. It is disabled by default.

e ayalon_source/ayalon_dest: specifies chip type of the source and destination. Has impact on RTL behavior and consequently
verification environment.

e pkt_num: specifies number of packets to be injected.

As mentioned above, one may also specify Optional input arguments to the macro are as follows:

bist_termination Specifies BIST termination type (NONE, INTERNAL, INGRESS, EGRESS). Default is
NONE

bist_port_mode Specifies the same port mode for all BIST stream ports (source & destination ports)

hdcp_bypass Specifies if HDCP is in bypass mode or not. The default is TRUE.

hdcp_bfg_en Specifies if HDCP BFG (Basic Format Generator) is enabled. The default is FALSE.

hdcp_version Specifies HDCP versions of HDCP RX/TX for both SRC and DST port respectively.
Defaultis {VER_1_4; VER_1_4; VER_1 4; VER 1 _4}.

hdmic_cmd Specifies HDMIC command which will be used in HDMIC sequences. The default is RXS.

start_delay Specifies Start Delay for the stream that is going to be added On-The-Fly. The default is 0.

add_stream_on_the_fly Specifies if the stream is going to be added On-The-Fly. The default is FALSE.

remove_stream_on_the_fly Specifies if the stream is going to be removed On-The-Fly. The default is 0.

remove_delay Specifies Remove Delay for the stream that is going to be removed On-The-Fly. The

default is FALSE.

VI. EXAMPLES OF MACRO USAGE

The best way to show how required and optional arguments are used is through examples:

A. Examplel:

One of the main scenarios the team had to test was the switch under maximum bandwidth through it, which is
288G. Each port should support 18G, 16G in egress direction and 2G in ingress, which is 18G per port, which is
288G per 16 ports. In order to drive required stimuli, total of 16 ADD_STREAM macros were used,
encompassed inside for loops, as shown in the Figure 5.

run() 1is also {

for i from 0 to 7 {

ADD STREAM

stream type = UNICAST

src_port =i

dst ports = {1+8}

pkt types category in strm = {OTHER P1; OTHER P2; OTHER_P3}
specific p type in category = {PTYPEl4; SPDIF; PTYPEL13}
priority = {PRIORITY 1; PRIORITY 2; PRIORITY 3}
pkt_ type bw = {15750; 200; 50}

hdcp = FALSE;

burst cycles =0

sid = 100+1

ayalon source = FALSE

ayalon dest = FALSE

pkt num = 30000;

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

for i from 0 to 7 {
ADD STREAM

stream type = UNICAST
src_port = 1+8
dst ports = {1i}
pkt types category in strm = {OTHER P1l; OTHER P2; OTHER P3}
specific p type in category = {PTYPE1l4; SPDIF; PTYPE13}
priority = {PRIORITY 1; PRIORITY 2; PRIORITY 3}
pkt type bw = {1750; 200; 50}
hdcp = FALSE
burst cycles =0
sid = 200+1
ayalon source = FALSE
ayalon dest = FALSE
pkt num = 3750;

bi

}; // run() is also

B. Example2:

Consider the following test scenario:
e Drive Video (HDMI) stream from port O to ports 1 and 13.
e The stream is going through HDCP block in bypass mode (without encryption)
e HDCP version in all HDCP blocks is 1.4.

Define macro that is going to be set in the test is:

ADD_STREAM

stream type = MULTICAST
src_port =0

dst ports = {1;13}

pkt types category in strm = {HDMI}
specific p type in category = {PTYPE1l4}
priority = {PRIORITY 1}
pkt type bw = {7000} - 7 Ghps
hdcp = TRUE
hdcp_bypass = TRUE
hdcp_version = {VER_1 4; VER 1 4; VER 1 4; VER 1 4}
burst cycles =0

sid = 100

ayalon source = FALSE

ayalon dest = FALSE

pkt num = 200;

This macro creates a single MULTICAST stream that is going from Source port 0 to Destination ports 1 and
13. Stream bandwidth is 7 Gbps. HDCP macro’s input is set to TRUE which means that HDCP block is going to
be enabled and configured in all ports related to the created stream (ports 0, 1, and 13).

HDCP blocks in all ports are going to be configured to be in bypass mode and to fit HDCP 1.4 version. What
is very important and it is related to the optional macro arguments is that HDCP version is 1.4 by default, same as
for HDCP bypass mode which is enabled by default. That means that hdcp_bypass and hdcp_version optional
fields can be skipped in this macro declaration. Only if we want to set different values for these 2 arguments we
need to add them.

If we set these arguments in the following way:

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

hdcp bypass = FALSE
hdcp version = {VER 1 4; VER 2 2T; VER 2 2T; VER 1 4}

HDCP blocks are going to be configured to do encryption/decryption (it is not bypassed anymore).
Also, HDCP blocks’ versions are changed:

e SRC HDCP RX version — HDCP 1.4
e SRC HDCP TX version — HDCP 2.2T
e DST HDCP RX version — HDCP 2.2T
e DST HDCP RX version — HDCP 1.4

By using these macros in the test it becomes very easy for new/less-experienced verification engineers or even
designers to create the desired often very complex scenarios in a very simple way. They do not have to care about
the configuration that is controlled with these macros and that will be done “behind the scene”.

If there is any limitation to use these macros, dedicated constraints or checkers will find it and suggest to the
users that their scenario is not allowed.

C. Example3:

There are some complex scenarios like adding or removing streams on-the-fly. All streams are defined in
zero-time. That satisfies 99% of tests so it is the default configuration. Anyway, some tests need to check
DUT/environment behavior if new stream is going to be added or if existing stream is going to be removed during
run-time.

If the user who is not familiar enough with the environment want to implement such a test, it is possible to do
that in very simple way using the macro.

For example, consider the following test scenario:
e Add 2 streams for SRCO to DST1 path.
e Add on-the-fly the third stream for the same path.
¢ Remove the stream that was previously added on-the-fly.

Macro for adding new stream:

Y Z R 7 - +1+aam et AR AanA NDQTT N 1 me
//Add the 1st stream between SRC0O and DST1 at 0 time

ADD STREAM

stream type = UNICAST
src_port =0

dst ports = {1}

pkt types category in strm = {OTHER P1l}
specific p type in category = {PTYPEl4}
priority = {PRIORITY 1}
pkt type bw = {5000

hdcp = FALSE

burst cycles =0

sid = 100

ayalon source = FALSE
ayalon dest = FALSE
pkt_num = PKT NUM;
//Add the 2nd stream between SRCO and DST1 at 0 time
ADD STREAM

stream type = UNICAST
src_port =0

dst ports = {1}

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

pkt types category in strm
specific p type in category
priority

pkt type bw

hdcp

burst cycles

sid

ayalon source

ayalon dest

pkt num

//Starting delay for on-the-fly

var start delay: uint;

gen start delay keeping {it in

{OTHER P2}
{SPDIF}
{PRIORITY 2}
{200}

FALSE

0

101

FALSE

= FALSE

PKT NUM;
Stream

S

[20000..5000011};

// ON-THE-FLY - Add 3rd stream between SRC0O and DST1 and later remove it

ADD STREAM

stream type = UNICAST

src_port =0

dst ports = {1}

pkt types category in strm = {OTHER P1}

specific p type in category = {PTYPE1l4}

priority = {PRIORITY 1}

pkt type bw {2000} -- sum of BWs for all 3 streams must
not excide the max BW for that src dst path

hdcp = FALSE

start_delay = 10000

burst cycles =0

sid = 102

ayalon source = FALSE

ayalon dest = FALSE

pkt num = PKT NUM

add_stream on_the_ fly = TRUE -- this stream will be staeted and it's
SID will be the SID Routing Table after the remove delay time has expired

remove_stream on_the_ fly = TRUE -- this stream will be stoped and it's
SID will be removed from the SID Routing Table after the remove delay time has
expired

remove_delay = 20000;--stream will be delayed for
remove delay+5000 ns and SID Routing Table will be reconfigured for this stream

All optional inputs that are used in this scenario are added in the 3rd macro. User enables adding/removing
streams on-the-fly and defines the time when stream is going to be added (start_delay optional input) and the
time when stream is going to be removed (remove_delay optional input).

This macro is later replaced with the code by the pre-processor, that is used in sequences and checkers so
driver will know that it has to wait for specified time before it start driving the new stream. It also knows when

the stream is going to stop (removing stream). Ded

icated checkers are checking is BW is satisfied per each port.

Additionally, the checker also monitors if start_delay time is lower than remove_delay so stream cannot be

removed before it is added, etc.

VII.

ADVANTAGES OF USING SPECMAN MACROS

There are multiple advantages (and some limitation) in implementing this kind of solution in Specman:

Easier to read - Unlike other languages, with e macros the implementer decides of the syntax they

give their users. The macro usage does not have to look like a function call. When a macro has so
many parameters as this utility requires, this is a big advantage in terms of simplicity.

Following is a comparison between calling it by Macro vs calling it by a Function:

2018

DESIGN AND VERIFICATION™

2 ™3 b
CON

CONFERENCE AND EXHIBITION

Calling a macro:

ADD STREAM

stream type = UNICAST
src_port =0

dst ports = {1}

pkt types category in strm = {OTHER P1l}
specific p type in category = {PTYPE14}
priority = {PRIORITY 1}
pkt type bw = {16000}
hdcp = FALSE
burst cycles =0

sid = 100

ayalon source = FALSE
ayalon dest = FALSE

pkt num = 500;

Calling a function:

Add_stream (UNICAST,0,1,0THER P1,PTYPE14,PRIORITY 1,16000,FALSE,0,100,FALSE,FALSE,500)

The improved readability of the macro is very clear from this example.

No need to pass arguments like a function - Another advantage of Specman macros can be seen in
the following example — since the macro is not in the format of a function, the macro can contain
parameters that are list of unknown length. This is implemented using repeating arguments as in the
below code example:

priority = {<priority'exp>;...}

Future enhancements to this utility can be to encapsulate macro within macro, to make the code even
shorter, and easier to maintain. Parts of the macro body that do not depend on the parameters can be
cut out into another macro and conditionally called by the main macro.

It is worth mentioning that during the implementation of the macro, we discovered that Specman
macros have limitation of 14 input arguments, so the team utilized a mechanism of optional
parameters to increase the number of inputs. By using the optional arguments, the total number of
inputs to the macro was increased by roughly 70% (14 —14+10) and it could be higher. Usage of
optional arguments allowed the team much more versatility in generating stimuli.

There is also limitation for number of optional parameters in a macro. Occurrence of (), [] and
syntactic arguments inside <> brackets is limited to 56 per macro. For instance, usage of a single pair
of square brackets makes user 2 steps closer to this limit of 56. For example, while defining macro
we use square brackets (“[]”) to define space between 2 inputs in a macro:

stream type[]=[]<stream type'type>

Each square bracket’s pair provides 0 or multiple spaces. Removing of a single pair of square brackets makes
limit 2 sub-matches farther.

Increasing the number of inputs is not only advantage of optional arguments. Optional arguments also
simplify usage of the macro. All optional inputs may have their default values so if these values do not need to be
changed, such optional inputs don’t need to be declared at all and their default values will be assumed.

10

DESIGN AND

CONFERENCE AND EXHIBITION

VIIIl. IMPLEMENTATION DETAIL: "DEFINE AS" VS "DEFINE AS COMPUTED"

There are two ways to define macro types:
o define as

e define as computed

We decided to use "define as" macro, as it offered a comprehensive solution to the problem of generating and
driving complex stimuli. While "define as computed" macros offer more possibilities and are as such more
powerful, their usage and implementation adds additional layer of complexity, which was not required in the
project. The difference is that with a define as macro the replacement code is just written in the macro body. With
a define as computed macro user writes a procedural code that computes the desired replacement code text and
returns it as a string. It's effectively a method that returns string, in which even the result keyword can be used
to assign the resulting string, just like in any e method. A define as computed macro is useful when the
replacement code is not fixed, and can be different depending on the exact macro argument values or even
semantic context. Regardless, it's important to remember that even define as computed macros are executed
during compilation and not at run time, so they cannot query actual run time values of fields or variables to decide
on the resulting replacement code.

The syntax of “define as” macro is:

define <tag'syntactic-category> “match-expression” as { replacement }

The syntax example is:
<I
define <add stream’action> "ADD STREAM stream type = <stream type’type>" as {

var ingress stream : stream s;
gen ingress stream keeping {
.stream type == <stream type'type>;
i
}i

Another improvement could be to make the macro more generic, not depending on the exact environment
hierarchy, as the hierarchy might change in future projects. This can be done using reflection and ‘define as
computed’. Unlike ‘define as’ macros, which are simple code replacements, by using ‘define as computed’ one
generates code using procedural code. The way the macro is implemented now requires it to be called only from
within the configuring unit, because the replacement code is an action that makes sense only inside a method in
the configuration unit. If we use ‘define as computed’ we will be able to use reflection to query the environment
and search for definitions as well instantiations of any type in the environment. For example, instead of assuming
that the macro is called from within the unit “config_u”, a ‘define as computed’ macro could find — with
reflection - where a unit of a specific type (e.g. — ‘config_u’) is instantiated, what fields it has, and more. Then — it
can call any method of this unit.

var s := rf manager.get_type by name("config u");

var all fields := s. get_declared_ fields();

As mentioned above, the drawback of using ‘define as computed”’ is that it is more complicated to implement
and maintain, as not all engineers are familiar with its syntax.

11

2018

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Largely due the implementation of this ADD_STREAM macro,
the project taped-out on-time and silicon was received right-first-
time, where all the project goals were achieved:

Exhaustive coverage of the device in multiple stream scenarios

Ability to fully leverage members of the team, senior and junior
verification engineers as well as designers, with minimum ramp-up
on the project verification setup and maximum utilization of

resources.

Some overall project figures:

IX. RESULTS

The project’s life span ~2.5 years

Over the project course, there were many changes in
engineers allocation which led for total of 14 different
verification engineers who had been working on this
project

There were total of 7 design engineers whom once finished coding tasks, could join the verification
effort and run tests, even without being verification experts.

The ASIC switch consist of 18,500 registers
Total tests created were 279

The Macro solution described in the above document, was used roughly 75% of the total tests whom
needed some kind of dataflow stimuli

In the picture, the presenter of this paper holding the device test board.

X. REFERENCES

[1] Specman e Language Reference
[2] HDBaseT Specification Ver2.0

12

