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Introduction

• Goal - add a new operation to each class in existing class hierarchy 

• Most common solutions and their drawbacks

– adding code that will perform each operation into each class in the environment

– creating derived classes that will perform newly added operations

• The alternative to these approaches has been well established in the software 
development world

• Briefly introduce Visitor design pattern

– benefits (decreased code complexity, facilitated maintenance, improved code stability)

– drawbacks (adding a new type of object that a visitor should visit is costly, its usage has 
to be planned in advance)
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Visitor design pattern infrastructure
uvm_visitor

• Abstract class defining a general visit operation on a node

• Concrete visitor giving implementation to visit operation according to 
the action the visitor needs to accomplish

• Pre-processing and post-processing hooks
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Visitor design pattern infrastructure
uvm_adapter

• Abstract class defining a general accept operation that in turn applies 
the corresponding visitor on every element of the structure that the 
adapter wraps

• The following adapter wraps a single component:
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Visitor design pattern infrastructure
Context

• Context invokes method accept of an object of adapter class, providing 
the component to be visited and also the visitor object as arguments
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UVM library predefined adapters

• Traverse elements in a complex composite structure in a specific way 
and apply visitor operation upon each of them

– uvm_top_down_visitor_adapter

– uvm_bottom_up_visitor_adapter

– uvm_by_level_visitor_adapter

• Abstract uvm_structure_proxy class provides all children subelements of 
a certain element in a structure, facilitating traversal

• Its specialization class uvm_components_proxy provides all 
subcomponents for a given UVM component
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Visitor traversal
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UML class diagram

© Accellera Systems Initiative 8



UML sequence diagram
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Verification use-case examples

• Component configuration check visitor

– check that every component in the environment is properly configured

• Reset and clock generation check visitor

• Adding messages and improving reporting system
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Verification use-case examples
Component configuration check visitor
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Verification use-case examples

• Component configuration check visitor

• Reset and clock generation check visitor

– check that the components in the environment are provided with a proper clock 
and reset

• Adding messages and improving reporting system
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Verification use-case examples
Reset check visitor
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Verification use-case examples

• Component configuration check visitor

• Reset and clock generation check visitor

• Adding messages and improving reporting system

– attach a visitor to certain events in the environment and upon their triggering, 
perform proper reporting (for example, attach a visitor to a queue within a 
scoreboard)
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Verification use-case examples
Queue display visitor
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Summary
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Questions?

Thanks!
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