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ABSTRACT  
Use of behavioral description and HLS (high level synthesis) flow 

has allowed designers to shorten design TAT (turn-around- time) 

with its better performance in hardware description, functional 

simulation and RTL generation when it compared to the design flow 

with RTL designs. However, code refinement in HLS flow would be 

performed in RT (register-transfer) level due to the lack of proper 

methodology in HLS flow. Code refinement in RT level is 

time-consuming due to simulation time overhead and lack of 

readability of synthesized RTL designs. This paper describes our 

experience to move the code refinement flow from RT level to 

behavioral level. We analyzed code coverage gaps during and after 

the logic simulation of behavioral level and RT level designs, and 

proposed behavioral level design guides to get the same level of 

coverage value, which helps to finish the code refinement work at the 

behavioral level design stage. Our experiments showed that we can 

get fairly good quality of code refinement result with this proposal as 

well as over 70% reduced code refinement time.    

 

Categories and Subject Descriptors  
[ESL Design and Verification]: Experience using ESL and/or TLM 

for system-level design and verification. 

 

General Terms  
Code refinement, Code coverage, HLS flow  

 

Keywords  
Behavioral Code Coverage, High-Level Synthesis.  

 

 

1. Introduction  

 
HLS has been widely adopted in SoC designs for its high design 

productivity. Once a behavioral level design is prepared initially, 

behavioral code refinement follows to get the design that best fits to 

a given specification [1]. In HLS flow, Code Refinement means 

rewriting or optimizing the behavioral source code to meet the size 

and timing requirements or to achieve function and code coverage 

goals. Code refinement to meet size and timing requirement can be 

performed based on the HLS report without exploring RTL design. 

However, code refinement to achieve function and code coverage 

goals makes a long feedback loop to include RTL exploration for 

debugging or RTL simulation. This paper limits the meaning of code 

refinement within the scope of coverage closure of RTL and 

behavioral designs.  

 

Traditional high-level synthesis flow is shown in the left side of 

figure 1. To get the design which meets the requirements in 

specification, a series of feedbacks is needed. The internal loop is for 

behavioral refinement with behavioral simulation. The external loop 

is mainly for corrective work after debugging and measuring 

coverage. Though behavioral simulation of the internal loop is quick 

and simple, we have used RTL simulation of the external loop to 

measure coverage, because there hasn’t been much activity to verify 

behavioral design using coverage metrics due to the lack of proper 

tools. 

 

Simulation with the synthesized RTL design includes a closure of 

code/function coverage metrics, where the simulation is 

time-consuming due to simulation time overhead and lack of 

readability of the synthesized RTL designs, which results in 

debugging overhead. Once a design bug is found in this stage, the 

design activity is returned to the behavioral coding stage, which 

forms a relatively long feedback loop and it is time-consuming work.  

 

In HLS flow, reducing code refinement time is inevitable to meet the 

TAT requirement of modern SoC designs. A new idea is to move this 

code refinement work to the earlier stage at behavioral level as 

shown in the right side of figure 1. This means that verification at 

behavioral level should be able to cover the verification activities of 

measuring coverage in RTL. Therefore, we have applied JEDAcc 

tool to measure coverage at behavioral level and set up new 

verification flow like the right side of figure 1. Successful code 

refinement at behavioral level makes the feedback loop short as 

shown in figure1. 

 

This paper focuses on the analysis of code coverage metrics in 

behavior level and RT level to see if the code coverage measurement 

can be migrated. Sanguinetti and Zhang showed their behavioral 

level code coverage definition is equivalent to RTL code coverage 

and, as the number of test increases the weighted average of the 

behavioral level code coverage result tends to converge to the RTL 

code coverage result [2]. However, we found the RTL code coverage 

trend leaves the gap after the simulation with all testbench, which is 

the reason that the design refinement at RT level is still needed. This 

paper shows the analysis result of this gap in coverage trends. It 

includes the analysis of the trends of code coverage closure, 

high-level design guides to minimize the coverage gap and a design 

flow to meet the design quality early at behavioral level design stage. 

 

RTL synthesis flow has been successfully established, where 

gate-level design is no longer explored to meet functionality 

requirements. They finish code refinement in RTL design and throw 

it to a logic synthesizer tool. Formal equivalence checker tool will 

check whether the transform from RTL to gate is successful or not. 

Similarly, in an HLS flow, RTL code refinement can be waived as 

long as the HLS flow supports behavioral level code refinement 

methodology and formal equivalence checker [3] between behavioral 

level and RTL designs.   

 



Chapter 2 shows the detail of code coverage analysis. Chapter 3 

introduces high-level design guide to minimize coverage gap 

between behavioral design and RTL design. Chapter 4 shows 

experimental results, and it exploits the correlation between the code 

coverage results in two different levels. Finally, Chapter 5 covers a 

conclusion. 
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Figure 1 Comparison of Code Refinement Flows  
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Figure 2 Gap in Coverage Trends  

 

 

2. Analysis of Code Coverage Measurement  

 
In this section, we analyzed characteristics of behavioral and RTL 

code coverage metrics. In our experiments, we applied Cadence ICC 

solution for RTL coverage measurement and also applied JEDAcc 

for behavioral coverage measurement. Because the two coverage 

metrics are implemented in different tools, it is very important to 

compare the two metrics to replace one with another. There are three 

typical coverage metrics in RTL domain, such as block, expression 

and toggle [4]. We mainly use the block and expression coverage 

metric to measure the quality of the test inputs and the design. Block 

coverage is a basic code coverage type that identifies which block of 

the code has been executed and which has not. This characteristic is 

identical to that of line coverage metric at behavioral level. 

Expression coverage factorizes logical expressions and monitors 

them during simulation run. It measures how thoroughly the 

testbench exercises the logical expressions in assignment statements 

and procedural control constructs (if/case conditions). This 

characteristic is identical to the sum of characteristics of decision, 

condition and multi-condition metric at behavioral level [5].  

 

Figure 3 shows the relation between behavioral and RT level code 

coverage metrics. In figure 3, when the if-statement is hit, the 

behavioral level line coverage increases, which is identical to the 

block coverage of RTL. Sum of the decision, condition, and 

multi-condition is identical to the expression coverage of RTL. 

Behavioral level decision coverage monitors the results of whether 

the if-statement is true or false. Multi-condition monitors the 

combination of each condition. 
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Figure 3 Relations of HL and RTL Coverage Metric 

 

We can intuitively understand that these coverage metrics are closely 

correlated since a line of behavioral code will produce potentially 

many lines in RTL design. However, because of this reason, the 

coverage trend of each design can show different shape as simulation 

time grows, as shown in figure 2. Figure 4 explains how this gap 

happens. The two expressions are translated into multiple lines of 

RTL, and according to the order of excitations, coverage results in 

each side can be different. When first half of the statement is excited 

in behavioral level coverage, coverage ratio is 1/2, and RTL code 

coverage is 3/4. If second statement is excited first, the RTL 

coverage ratio is 1/4, while behavioral level code coverage ratio is 

still 1/2.  

 

a = b

c = d;

 always@(posedge CLK) begin

   tmp1 = b;

   tmp2 = tmp1;

   a = tmp2;

 end

 always@(posedge CLK) begin

   c = d;   

 end
 

Figure 4 Multi-line Effects in Synthesized RTL 

 

The coverage result reaches a certain saturation point as most of the 

statements in the design are excited with good quality of testbench. 

In other words, once fair amount of coverage items are covered, the 

coverage result is expected to reach a certain point. However, in our 

experiments, we found that the saturation points of behavioral level 

and RTL designs are different, shown as the “gap” in figure 2. RTL 

code coverage value is always the same as or less than behavioral 

level code coverage value after a certain saturation point. Unless the 

RTL coverage result meets certain coverage goals, RTL code 

refinement is still needed until the reasons of low coverage result are 

all identified. An RTL design with low coverage result might have 

unreachable codes, which incurs untestable logic blocks in synthesis 

process. Therefore, we analyzed root causes of the coverage gap and 

provided high-level design guides to minimize the gap. The detail of 

high-level design guide will be presented in the next chapter. 

 



3. High Level Design Guide  
 

This chapter shows high-level design guides from our experiences in 

finding the root cause of the coverage difference, and it helps to 

minimize the gap so that we do not need to perform further code 

refinement in RTL designs.  

 

3.1 High Level Synthesis Constraints 
We usually use high-level synthesis constraints during high level 

synthesis, but some of them may affect not only functionality but 

code coverage result. Therefore, a user needs to consider the effect 

on functionality and code coverage before using them. For example, 

wait statement is used to insert a delay of 1 cycle which can affect 

the timing and functionality of the given example. In the behavioral 

source code at the top left of figure 5, there is a for-loop which 

iterate two times, and there are 3 wait statements in the loop body. 

The combination of the given loop count number and the number of 

wait statement causes unreachable RTL code generation and lower 

code coverage result. In the timing diagram at the bottom left of 

figure 5, the period of cycle states and drain is 2, because the loop 

count for the for-loop is set to 2. This shows that the drain and the 

cycle2_state cannot be high simultaneously. Therefore, the 

unreachable codes in the RTL design has been generated as 

illustrated at the right side of the figure 5. Unreachable codes can be 

generated by inserting wait statements more than loop count for the 

for-loop. The designers should be aware of these corner case results 

during their design exploration and it is recommended to avoid these 

corner cases in general. 

 

drain

cycle1_
state

cycle2_
state

Clock

for( int i = 0 ; i < 2; i++ ) 

{ 

   Pipeline_directive(1);

   wait(); // pipeline drain 

   c = a + b; 

   wait(); // cycle1_state 

   d = c * 2; 

   wait(); // cycle2_state 

   e = d + 3; 

}

switch( global_state ){
case 0:  ...   /*reset state*/
case 1:{      /*for loop state*/
    switch( cycle2_state ) {
       case 1:
          switch( cycle1_state ) {
            case 1: 
              drain = i < 2;
              switch( drain ) {
                case 0: <do nothing>; 
                break;
                //Unrechable
                case 1: c = a + b; break; 
              }
            case 0: d = c * 2; 
              drain = i < 2;
              switch( drain ) {
                case 0: <do nothing>; 
                break;
                case 1: c = a + b; break;
              }
          }
       case 0:  e = d + 3; break; 
    }
}

HLS

<Behavioral Code> <Generated RTL >

Sim.

<Simulation Result>

 

Figure 5 No Case of "drain ==1 && cycle2 ==1" 

  

3.2 Style of RTL Output   
Good RTL coding style of generated RTL designs can give better 

RTL code coverage result. The “if statement” which has no 

execution body in RTL code as shown in the left side of figure 6 can 

be the cause of low branch coverage result. If there is no constraint in 

high level synthesis process, the synthesizer would generate the RTL 

code shown at the left side of figure 6. High level synthesizer should 

be guided with the option for the type of output style: 

-- output_style_starc = +S2.8.1.4  

 

 

 if (cond1) begin

 end

 else begin

  // assign

 end

 if (!cond1) begin

  // assign

 end

<RTL w/o option> <RTL w/ option>

 
Figure 6 RTL Generation According to Right Lint Rule 

 

3.3 Optimization Options  
The unreachable codes in RTL which a designer did not intend to 

make may be generated in optimization process. Figure 7 shows an 

example case related to the optimization of switch statement. During 

the implementation and optimization process of the switch 

statements, the unreachable codes can be generated as shown at the 

right side of figure 7. If we assume that the condition “cs1==0” is 

exclusive with “cs2==0”, all cases can be executed in the codes at 

the left side of figure 7, but not in the code at right side. This 

occurrence should be prevented by disabling the option for switch 

optimization: 

       -output_style_merge_case=off 

 

  

switch(cs0)
{
   case 0:
      switch(cs1) 
      {
          case 0:
          case 1:
      }
   case 1:
      switch(cs1) 
      {
         case 0:
         case 1:
       }
}

switch(cs2) 
{
   case 0:
   case 1:
}

switch(cs0) 
{
   case 0:
      switch(cs1)
      {
         case 0:
            switch(cs2) 
            {
                case 0:
                case 1:
            }
         case 1:
            switch(cs2) 
            {
               case 0://Unreachable
               case 1:
             }
       }
    case 1:
      switch(cs1)
      {
         case 0:
            switch(cs2) 
            {
                case 0:
                case 1:
            }
         case 1:
            switch(cs2) 
            {
               case 0:
               case 1:
             }
       }
}

Optimize

<RTL w/o option>

<RTL w/ option>

 
Figure 7 Disable Optimization Option in Case Statement 

 

Therefore, the high level design guides to minimize the coverage gap 

are summarized as follows 

- Guide1:  Recommend to keep the number of wait statements 

not to exceed the loop count number to avoid unreachable code  

generation  

- Guide2: Use the STARC option to change the RTL output 

code style for better code coverage result  

- Guide3: Remove the switch optimization option to avoid 

undesirable merge of case statements 

 

Theoretically, there might be no substantial area/timing overhead 

because the given coding guideline does not change the number of 

registers and the number of data-path elements of given design. 



However, there is a possibility of area overhead due to the guide3 

because it disables possible code optimization chances for better 

logic synthesis results [1]. In our experiments, the area overhead was 

under 1%.  

 

 

4. Case Study: Development of Scaler IP   

 
As a device-under-test, a Scaler IP was used. Figure 8 shows a block 

diagram of the IP. A scaler consists of scaling functions, control 

block, and memories [6]. Operation speed constraint is 200MHz. 

A B

Memory A

Control Block

Memory B

 
Figure 8 Block Diagram of the DUT 

 
Chapter 3 has shown three high level design guides which can 

effectively control the RTL generation process to minimize the 

coverage gap, which is the difference of saturated code coverage 

values at behavioral level and RTL designs. As we applied these 

three design guides one by one, the coverage value showed gradual 

increase as shown in table 2. This means that the design guides are 

very effective in decreasing hardware redundancy in generated RTL. 

 

Table 1 Coverage Enhancement According to HL Guide 

HL Design 

Guide 

RTL Code Coverage 

Block After 

Before After Before After 

HL 

Constraints 
99% 

(4159/4188) 

99% 

(4160/4188) 

96% 

(1549/1614) 

96% 

(1551/1614) 

RTL Output 

Style 
99% 

(4160/4188) 

99% 

(4166/4188) 

96% 

(1551/1614) 

98% 

(1582/1614) 

Optimization 

Options 
99% 

(4166/4572) 
100% 

(4188/4188) 
98% 

(1582/1614) 
99% 

(1598/1614) 

 
We tested behavioral and RTL designs with common testbench and 

DUT that all the design guides have applied to see the correlation of 

RTL and behavioral code coverage behavior. Table 2 shows the 

behavioral and RTL code coverage snap-shots as the number of input 

image frames increases. Behavioral code coverage value is lower 

than that of RTL design in the beginning, but it increases in 

proportion to the increase of stimulus inputs and finally behavioral 

code coverage result converged to the same value as shown in figure 

9. This result shows that with fairly good testbench, we can get the 

same coverage results in both behavioral level and RTL designs.  

 

Table 2 Analysis of Behavioral and RT Level Code Coverage 

Test 

Input 

HL code coverage RTL code coverage 

Line Expression Block Expression 
1 frame 61% 41% 82% 89% 

5 frame 93% 87% 100% 98% 

10 frame 97% 92% 100% 99% 

15 frame 100% 96% 100% 99% 

20 frame 100% 99% 100% 99% 

 

 
Figure 9 Graph of behavioral and RTL Code Coverage Results 

 

Even though we have to perform sequential equivalence check in the 

proposed code refinement flow, overall verification time can be 

reduced since RTL simulation, the most time consuming part, is 

omitted. Figure 10 shows the difference of elapsed time for each 

abstraction level. Code refinement time is a sum of behavioral 

functional verification and sequential equivalence checking, and it is 

smaller than that of RTL verification by over 70%. 

 

 
Figure 10 Analysis of Elapsed Time for Verification 

 

 

5. Conclusion 
In this work, we described our experience to move code refinement 

from RTL to behavioral level. The coverage gap of the saturated 

code coverage value between behavioral level and RTL designs can 

be minimized by the high level design guides which we developed 

through our experience, which means that we can successfully finish 

code refinement early at behavioral level design. We also showed a 

full work flow for behavioral level design which includes sequential 

equivalence checker to back up hardware compatibility. Our 

experiments showed that it is possible to reduce code refinement 

time by over 70% since we do not have to perform iterative 

high-level synthesis and RT-level simulation flow.  
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