
CompMon: Ensuring Rigorous Protocol Specification and

IP Compliance

Robert Adler
Intel Corporation

3600 Juliette Lane
Santa Clara CA 95054

408 765 0072

robert.p.adler@intel.com

Jin Yang

Intel Corporation
2111 NE 25

th
 Ave

Hillsboro OR 97123
971 214 1735

jin.yang@intel.com

Sava Krstic
Intel Corporation
2111 NE 25

th
 Ave

Hillsboro OR 97123
971 214 1708

sava.krstic@intel.com

Erik Seligman
Intel Corporation
2111 NE 25

th
 Ave

Hillsboro OR 97123
503 712 3134

erik.seligman@intel.com

ABSTRACT

Intel defines numerous forms of reusable IP that are leveraged by

many projects across different divisions and business groups. In

order to ensure the successful reuse in the various system

topologies demanded by Intel design teams, compliance of the IP

to the specification is critical. In this paper, we describe a

compliance methodology and flow developed for a generic

interconnect fabric protocol. We show how to annotate and

automatically extract specification compliance rules in a pre-1.0

evolving specification. We describe a standalone tool-agnostic

SystemVerilog (SV) compliance monitor CompMon that

implements all the compliance rules that can be checked on a

single interface of the protocol. The monitor is written in

SystemVerilog and can be used in any pre-silicon validation flow

to ensure a single, cohesive compliance standard. We describe a

rigorous approach to check that the monitor and the set of

compliance rules it implements are complete, consistent and

correct. We show how we enabled consistent compliance

checking across groups and easy adoption of the compliance

checking methodology into any design team validation

environment. CompMon has been deployed to seven disjoint

verification environments so far, both SoftIP providers and CPU

design teams. Their experiences demonstrate the success of this

methodology for ensuring compliance and successful reuse.

General Terms

Standardization, Verification.

Keywords

Validation, Formal Verification, Simulation, Standards,

Compliance, Protocols

1. INTRODUCTION

IP blocks designed to be compliant to our IO fabric interface

specification are meant to be reusable with minimal incremental

effort. Our internal standard defines the interface signals and key

architecture elements: interface instantiation, the protocol used

for information exchange between compliant IP blocks, the

arbitration and flow control mechanism to initiate and manage

information exchange, the address decoding and translation

capability supported, the way power is managed, and the hooks

required for validation/debug. Figure 1 shows a generic

architecture using our I/O fabric.

Figure 1: Generic Intel® Atom
TM

-based SoC Architecture

In our terminology, IP blocks are called agents, and they are

connected to the fabric via our standard interfaces. The topology

and internal workings of the fabric are product specific. A design

that integrates compliant IP blocks has the flexibility to

implement topologies that meet specific requirements and

constraints for that product.

mailto:robert.p.adler@intel.com
mailto:jin.yang@intel.com
mailto:sava.krstic@intel.com
mailto:erik.seligman@intel.com

The wide adoption of our IO interface standard, with the

ensuing proliferation and reuse of compliant IP blocks, puts an

emphasis on the quality of the architecture, its specification, and

its validation methodology. When we establish that an agent is

compliant to the message interface specifications, we want this to

guarantee interoperability with arbitrary fabrics and agents

designed to the same standard. The validation collateral provided

by the protocol team includes a compliance rules document, bus

functional models (BFMs), and a compliance monitor. Figure 2

illustrates the basic structure of an interface using this standard.

Logic Block

Primary Interface

Sideband Message

Interface

DFX Interface

Figure 2: Basic interfaces in our standard.

The compliance monitor (CompMon) is the subject of this

paper. It implements all the compliance rules that can be checked

on a single interface. It is a standalone SV module and is written

in the synthesizable subset of SV with SV Assertions (SVA) [1].

Consequently, it can be used with simulation, formal verification,

and any verification/validation tool that supports SV and SVA.

The most important features of CompMon are: (1) the tight

linkage between the compliance rules that it implements and the

actual text of the specification, and (2) the use of formal

verification on its implementation. Formal verification of

CompMon and its tight linkage with the specification give us

high confidence that the set of rules it implements and the

specification itself are close to the ideal of being fully complete,

correct, and consistent. By enabling the integration of the

compliance monitor into all pre-Si validation flows and by using

it to verify the specification, the working group is able to provide

a single, cohesive compliance standard that provides an overall

validation strategy with high confidence in compliance.

The rest of this paper is organized as follows. Section 2 is

an overview of the compliance methodology and flow. Section 3

describes our method for annotating and automatically extracting

compliance rules from the evolving specification in order to

provide tight linkage between it and the compliance monitor.

Section 4 focuses on the architecture and key elements of the

compliance monitor and Section 5 on its formal verification. In

Section 6 we discuss the modes of use of the monitor, and in

Section 7 we show how it was integrated into various validation

flows and deployed to several projects, with results and impact.

Section 8 concludes the paper.

2. Overview of CompMon Development

The heart of our specification is a set of explicitly annotated

rules. Each rule is a property (statement) that is either true or

false for any given waveform on the interface wires. The rules

are intended to define the interface. If both the agent and the

fabric obey the rules, then they will be able to properly

communicate.

Along with the specification document itself, our working group

provides a compact list of all compliance rules that are defined in

the specification. This list is extracted from the specification by

an automated procedure described in Section 3. Another

automated procedure cross references all comments in the

CompMon code against the compliance rules list. Thus at any

point in time, we are able to get a concise picture of the rules

implemented by CompMon and how they align with the rules in

a given specification release. When a new specification revision

is made, all compliance rules are automatically extracted into the

compliance rules list and the rule list is automatically aligned to

the rules implemented in CompMon in order to get an idea of the

work required to update CompMon. The middle part in Figure

3 shows the dependence between the specification, the rule

document, and CompMon.

Specification

with Annotated

Rules

Compliance

Rules.xls

Auto Extraction

Compliance
Monitor

FV using Inspect
Functional Test

with TB

Find Checkable

Statements

Write Cover

Properties

Write Asserts

against Monitor

Check for

Consistency

Check for

completeness

TestBench

(TB)

Monitor/TB

Co- Validation

Figure 3: Development flow of the compliance standard.

To ensure that the rules implemented in CompMon are a faithful

representation of the rules in the specification and to examine the

specification itself against logical deficiencies, we use a thorough

validation process that involves co-simulation with dynamic

simulation test collateral (Figure 3, right side) and formal

verification (FV) using the Inspect tool (Figure 3, left), a Formal

Property Verification tool developed at Intel. The FV checks are

based on a large number of checkable statements that we

extracted from the specification (assertions and cover properties)

and are an independent set from the set of compliance rules

implemented in CompMon. Every failed check requires a fix in

either CompMon or the specification itself. The whole process is

detailed in Section 6.

3. Specification and Automatic Extraction of

Compliance Rules

Like many specifications, we define the protocol via a textual

description of the intended functionality provided by the interface

as well as via a distinct set of compliance rules that compliant

devices must follow. To be compliant, an IP block is required to

obey all mandatory protocol rules and any rules that are

applicable to optional features implemented by the block.

Compliance rules applicable to optional features not

implemented by the block are not applicable to the block’s

functionality, and therefore are not a part of compliance testing

for the block.

A rule that appears in the specification can either be categorized

as a design rule, as a signaling rule, as a protocol rule, or as a

transaction rule. Design rules are important specification rules

that IP designers must meet in order to properly design their IP

block. Design rules are either informatory or have to be checked

manually by someone with intimate knowledge of the design’s

micro-architecture. Design rules are not checked by the

compliance monitor and IP designers are required to provide

information about the status of design rules. Signaling rules are

rules that cover transitions on signals at the interface. It is

possible to check signaling rules at the interface using simple

assertions. Protocol Rules are rules that identify protocol

requirements and define how a transaction is exposed by the

interface. Transaction Rules are rules that identify agent

requirements and expected behavior across multiple transactions.

Here are some example compliance rules in each category:

 Design rule (not checked by CompMon): Before

enabling an agent to initiate credit re-initialization,

software must ensure that the re-initializing agent and

all agents that can issue transactions to it are quiesced.

 Signaling Rule: When driving a command, all

initiators must drive all reserved fields to 0.

 Protocol Rule: All agents must check address[0] when

decoding Type 0 configuration cycles to make sure that

it matches the value of its BusSelect strap.

 Transaction Rule: During transactions, the ID and

Tag sent with the original request are returned with the

completion.

In order that a distinct set of compliance rules be given to IP

designers and validators, the design, signaling, protocol, and

transaction rules are extracted from the specification. Originally,

the extraction process was entirely manual, and verification

engineers manually combed and interpreted the specification in

order to extract the rules. For the dedicated rules sections, this

manual process only involved replicating the dedicated rules into

the compliance rules document. However, many of the in-line

rules required rewording in order to make them into compliance

rules because, in many cases, they were either not worded as

compliance rules or they were combined with more informative

text that was not appropriate for the compliance rules document.

In such cases, the verification engineers were forced to create

their own rule text that captured the essence of compliance rules

that were contained within the specification text and not an exact

copy of the text itself.

As the specification evolved, not only were additional features

and rules added, but previous features and rules were tweaked,

removed, or moved to different pages. When the manual process

that originally created the compliance rules document was

utilized to update the compliance rules document, a manual audit

of each and every rule was required in order to make sure it was

still consistent with the specification text and location. While

this process was straightforward for the standalone rules that did

not change, it consumed a large amount of time for any rule that

was in any way different from its corresponding text in the

updated version of the specification, and it was exceptionally

difficult for the rules that were captured from the essence of the

specification’s text.

 In order to address this maintenance problem, we created a

novel way to auto-generate the compliance rules document

directly from the specification Microsoft Word document. Any

text that defines a rule is tagged with a comment and the body of

the comment contains XML that defines important information

about the rule such as its rule number and rule type, which can

be extracted by a script. Because of this auto-generation method,

maintenance of the compliance rules document has become the

specification maintenance that the working group does anyway

plus marginal incremental work to maintain the rule tags and to

run the rule extraction macros when the specification is

published. Beyond the maintainability benefits, this approach

allows for easy extraction of the rule’s location in the

specification. The biggest disadvantage of the use of auto-

generation is that it requires that all text in the specification that

defines rules be written so that the text can stand on its own

without any context from the specification. However, while this

does require some extra work by the specification’s authors, we

believe that it is an improvement to the specification and that the

extra effort is well worth the efficiency and accuracy provided by

the auto-generation.

As an example of the auto-generation, there is a compliance rule

in the document text stating

 On a credit put, the maximum values of the credit

command and data fields are 1 and 4 respectively.

This is linked to the following piece of XML, as an annotation in

Microsoft Word:

 <RuleInfo><RuleNumber>PRI5#7</RuleNumber><

RuleType>Signaling</RuleType></RuleInfo>

This enables us to clearly link rule number PRI5#7 to the text

sentence. Regardless of future changes to the document format

or content, as long as that sentence remains, our extraction script

will always generate a rule like this:

Rule

Type

ID Spec

Loc

Text

Signaling PRI5#7 2.2.1.1 On a credit put, the maximum

values of the credit command

and data fields are 1 and 4

respectively.

A release of the specification published in December 2009 was

the first revision of the specification to make use of auto-

generation for the compliance rules and this method has been

used in every release since. For a recent release in 2010, our

working group was able to release a compliance rules document

that contained 438 rules that were 100% in sync with the

specification within minutes of the final approval of the draft.

4. Compliance Monitor Organization

As shown in Figure 2, our protocol contains two main interfaces,

the “primary” and “sideband”. For each of these interfaces

(primary and sideband), CompMon contains a standalone

SystemVerilog module that implements all the compliance rules

that can be checked on a single interface. The monitor is written

in the synthesizable subset of SV with SVA. It is organized in a

modular, layered fashion based on the protocol stack in the

architecture specification. The following text provides a detailed

discussion on CompMon for the primary interface. The monitor

for the sideband is constructed similarly.

Figure 4 shows the main sub-modules in the monitor and how

each sub-module monitors the signals on primary interface

between the agent block on the bottom left and the fabric block

on the bottom right.

The Request Credit Compliance module ensures that the

request credits for the agent master are reset properly, and that

they are correctly incremented. Similarly, the Transaction

Credit Compliance module ensures that command and data

credits for the agent’s target interface are initialized and handled

correctly. The Target Decode Compliance module ensures that

the target decoding scheme works according to its compliance

rules. The Req/Grnt Flow Compliance module ensures that the

request-grant flow between the agent master and the fabric

follows the set of flow protocol rules. The Command

Compliance module applies to both master and target sides of

the interface. It ensures that any command sent out on the

interface is for a valid command type and that for each valid

command type, the command is properly formatted. The

Completion Compliance module also applies to both sides of

the interface. It ensures that each command is completed

properly according to the completion compliance rules. At the

highest level, the Transaction Compliance module assembles a

transaction from its command and data parts and ensures the

integrity of the transaction and the correct pipelining of back-to-

back transactions. By partitioning the compliance rules into

these submodules, each submodule is responsible for a particular

protocol in the architecture. For instance, the Request Credit

Compliance module only cares about the proper handling of

request credits.

There are several advantages of this modular approach. First, if

some changes are made to one protocol or a new protocol is

added to the specification, the only module that needs to be

updated or added is the one corresponding to the protocol.

Second, this approach enables a much more scalable approach for

formally verifying the monitor in the future, as we can focus on

one module while hiding all other modules by replacing them

with necessary environmental assumptions. For example, if a

change in a new protocol version does not modify the credit

handling, we might want to abstract out that part of the protocol,

assuming its assertions hold true, instead of re-verifying.

5. Verifying the Monitor and Specification

As mentioned in Section 2, the IO fabric compliance standard is

expressed by the set of rules contained in the IO fabric

specification. There are two fundamental ways in which this set

may be deficient; it can be insufficiently constrained or it can be

overly constrained. If the rules are insufficiently constrained,

there is a behavior (waveform) that is undesirable but does not

violate any of the rules. For the purpose of this paper, we

consider this issue to be caused by the rules being incomplete. In

order to make the rules more complete, either new rules need to

be added or existing rules need to be strengthened. If the rules

are over constrained, there exist behaviors that are desirable, but

that violate rules. For the purpose of this paper, we consider this

issue to be caused by the rules being inconsistent. Making the

rules consistent requires that the offending rules either be

weakened or deleted. Since CompMon is another expression of

the compliance standard, the same completeness and consistency

concerns apply to it as well. In addition, there is a correctness

concern about CompMon: its set of rules should be a faithful

expression of the standard, in the sense that CompMon would

raise a red flag when checking a waveform if and only if the

Target Decode Compliance Req/Grnt Flow Compliance

Request Credit Compliance

Command

Compliance

Agent Compliance Fabric Compliance

Completion

Compliance

Transaction Credit

Compliance

Completion

Compliance

Command

Compliance

Transaction Compliance Transaction Compliance

Fabric IP

Ta
rg

et
M

as
te

r

Agent IP

Target
M

aster

CREDIT

REQ

CMD

DATA

CMD

DATA

REQ

GNT

Figure 4: Organization of the Compliance Monitor

waveform violates some of the rules in the specification. We

refer to the completeness, consistency, and correctness as our 3C

verification goals.

For illustration, consider Figure 5. The green set consists of

waveforms consistent with the intent of the specification---an

ideal that represents the architects' notion of what behaviors on

the interface should be considered legal. The yellow set consists

of waveforms that would pass the CompMon test. We would like

these sets to be the same. Any yellow-but-not-green behavior

(bug) indicates an incompleteness bug, and any green-but-not-

yellow behavior (ladybug) indicates an inconsistency bug. Fixing

any (lady)bug brings CompMon a step closer to matching the

specification and the architectural intent.

Below we describe how we use simulation and formal

verification (FV) to get CompMon closer to the ideal. Simulation

exposes ladybugs; FV exposes both bugs and ladybugs.

 Validating the monitor through simulation: During

CompMon development, we validated it by co-

simulating with the team's simulation test generation

collateral. CompMon flagged errors in cases where the

observed traffic violated some of the assertions

contained within CompMon.

 Formally verifying the monitor: In Formal Property

verification (FV), one provides a design with a set of

assumptions, a set of assertions, and a set of cover

points. (All three are sets of properties.) An FV tool

such as Inspect checks each assertion and each cover

point individually. An assertion passes the Inspect test

if and only if it is implied by the assumptions. A cover

point passes the Inspect test when a waveform exists

that complies to the assumptions and the cover point as

well.

For CompMon FV, we configure Inspect as follows:

 Assumptions: The assumption set consists of all the

compliance rules that are implemented in CompMon.

Even though many of these would be considered

assertions by end-users trying to prove compliance of

their IP, they are all considered assumptions here, for

the purpose of verification of the monitor. This is

because want to show that if every compliance property

we supply is true, then validity of expected secondary

assertions and coverage points (see below) will be

guaranteed.

 Assertions: The assertion set for compliance monitor

FV consists of properties that are not stated as explicit

rules, but that are expected to always be true on an

interface that obeys the IO fabric specification. As an

example, "the fabric must be IDLE when the agent

transitions into IDLE" is not explicitly stated in the

specification, but is implied by the set of rules that

describe when an agent may become IDLE. These

properties are logically redundant with respect to the

specification, so not necessary to include there as

explicit rules, but are useful for proving that the

compliance monitor is enforcing the conditions we

intend.

 Cover Points: In the cover points set, we place

examples of expected protocol behavior. These include

reaching every defined state, carrying out each legal

type of transaction, and mimicking every waveform

given as illustration in the specification document. We

need to ensure that the compliance properties, when

assumed to be true, will not rule out expected

behaviors.

The CompMon FV process is illustrated in Figure 6. When

CompMon FV fails, each failing assertion presents a

completeness issue, and each failing cover point is a consistency

issue. They all need to be fixed. With a failing assertion, we look

at the Inspect-produced waveform for it and work to find a too-

weak (or non-implemented) rule that is responsible for the

failure. We then strengthen the rule, or add it if it was not there

at all. With a failing cover point, we need to determine which

single rule or a small set of rules contradicts the cover point. We

then weaken that rule or set of rules accordingly.

When an Inspect FV run on CompMon passes without red flags,

we are guaranteed that every coverpoint is reachable by some

legal simulation and that no legal simulation will violate any of

the declared assertions.

The CompMon FV effort helped not only in the identification

and fixing of several bugs in the monitor implementation, but it

also led to the discovery of several ambiguously stated clauses in

the specification. As a result, some language was tightened or

design-specific parameters were introduced into CompMon to

capture the intended behaviors. To this point in the CompMon

project, 19 such improvements have been made to the

specification in order to improve its completeness, correctness,

and consistency.

6. Compliance Monitor Usage

Recall that CompMon implements all the compliance rules that

can be checked on a single interface and that the core of

CompMon consists of properties that have been partitioned into

agent rules and fabric rules. Monitoring a single interface can

cover over 90% of the compliance rules that are not design rules.

The remaining 10% of the non-design rules require information

beyond what is visible on the interface wires. To validate such

rules, a combination of dedicated test scenarios and internal

white-box assertions are required. The other common categories

of rules that are not checkable by CompMon are multi-interface

rules and system rules. Implicitly, these rules require visibility

across multiple interfaces.

For the rules that are checkable by CompMon, using CompMon

to check for interface compliance is as simple as instantiating a

SystemVerilog module. This will allow CompMon to monitor

the interface wires for violations of the agent and fabric rules that

it implements. In the previous section we showed how these

rules, treated as assumptions in the Inspect tool, allow formal

verification of the monitor and the specification to which it is

tightly linked. However, one of the key goals of the compliance

project is to allow integration of CompMon into the formal

verification and dynamic simulation environments of any

complaint design. The following text describes the way in which

CompMon can be used to enable compliance checking in either

dynamic or formal verification.

ENDPOINT 3ENDPOINT 1

ENDPOINT 2

Figure 7: Compliance checking.

Dynamic Simulation: Consider the system in Figure 7, with

three agents connected to a router via sideband links. In this

scenario, the router and the endpoints might be real RTL or

BFMs and an instance of CompMon is instantiated on each

interface in the design. During simulation runs, the three

instances of CompMon observe all the interface wires on their

specific interface and report compliance violations of any rules

on their interface. The agent and the fabric rules are both treated

as assertions in this usage mode of CompMon.

Endpoint Formal Verification: When formally verifying an

endpoint, we need to ensure that if the fabric is obeying the

protocol, the endpoint will correctly respond. Thus, properties

relating to signals arriving from the fabric need to be

assumptions, while properties on signals generated by the

endpoint need to be assertions. For endpoint IP FV, the IP is

combined with CompMon and given to an FV tool such as

Inspect, with the fabric rules given as assumptions and the agent

rules given as assertions. Failing assertions would indicate bugs

in the IP under test.

Fabric Formal Verification: To verify a fabric, we need to add

an instance of CompMon at each of the fabric’s interfaces,

treating properties on signals arriving from the endpoints as

assumptions, and properties on the fabric signals as assertions.

Referring to Figure 7, the design given to an FV tool would

consist of the fabric and the three monitors. The agent rules in

the monitors would be given to the tool as assumptions, the

fabric rules as assertions. This situation is the dual of the

endpoint formal verification case above.

Configuring CompMon for flexible FV use: The

SystemVerilog language requires that each property be

designated as an assertion or assumption in the code. This

created a problem for us because, as described in Section 5, we

needed the flexibility to enable four different modes of using

CompMon, where agent rules and fabric rules can be

independently treated as assumptions (conditions on the external

environment, assumed to be true), or assertions (properties of the

device under test that we want to prove). We solved the problem

by adding to each module parameters of the form

FABRIC_IS_DUT, ENDPOINT_IS_DUT, and

CHECKER_IS_DUT (the latter to support CompMon FV runs as

described earlier.) We then stated all properties in CompMon

using a wrapper macro, with an extra argument indicating which

module it was checking. The combination of parameters and

macros allows us to flexibly pass in top-level parameters, and

generate the desired formal configuration.

The use of this configurable FV environment was pioneered on

various early models. We successfully demonstrated the viability

of these FV configurations, running initial proof-of-concept

verification to bound 25. This work is still ongoing.

7. Deployment, Results, and Impact

Since its creation, CompMon has seen deployment on seven

different Intel design projects, spanning both Soft IP providers

and SoC CPU designs.

The deployment to the first major SoC CPU project was divided

into three phases in order to minimize environment downtime

caused by assertion firings that prevented designers from

performing code turn-ins due to failed tests. Minimal downtime

was critical due to fact that the deployment happened very close

to RTL freeze. The first phase of the deployment was to deploy

CompMon to the Primary and Sideband BFMs delivered

independently to the project. Because of the deployment of

CompMon to the BFMs, 18 issues were found in a combination

of the BFMs and their tests. The second phase of the

deployment was to integrate the compliance monitor into a

private testbench model, to mitigate risk. The third phase of the

deployment was to permanently deploy the compliance monitor

into the testbench so that all regressions utilized the compliance

monitor. A stretch goal was to deploy CompMon into other

cluster testbenches. We successfully completed all three phases

and the stretch goal.

By inserting CompMon into the various simulation environments

of this SoC design, a total of 15 compliance violations were

discovered. While many of these cases were waived as an

acceptable risk, a few were fixed including a critical showstopper

credit management bug found in their main fabric. While most

of the violations have not been fixed, their discovery has enabled

us to explicitly document the project’s compliance exceptions.

This is very important as future Intel projects that derive from it

will need to be aware of compliance violations so that they can

make informed decisions on what is required to be fixed in order

to integrate IP blocks from other providers around Intel.

In parallel with this initial deployment, CompMon was deployed

to private models of another early project’s validation

environments. This led to improvements in CompMon’s

robustness as this project’s implementation used features which

the other implementation did not exercise. We successfully

caught known non-compliance points for the IP.

All implementations claiming compliance with our protocols are

now required to include CompMon as part of their test

environment and to document how they check for the few rules

that require IP-specific information. A design is considered

compliant if it passes IP-specific functional testing without

violating any of the rules. While waivers might be granted, some

of the assertions will require coverage to ensure interoperability.

If an IP exits functional testing without exercising these

assertions, a hole in functional testing is revealed that must be

filled by additional testing.

8. Summary

In this paper, we described the compliance monitor that has been

created by our working group to enable testing of compliance

with a reusable I/O fabric specification. In order that the same

consistent reference is used for compliance testing of any IP

block, CompMon is a standalone SystemVerilog with Assertions

module that can be used by any design team. By basing the

module on SVA, we enable standard simulation, formal

verification, and arbitrary future tools to be used in an overall

validation strategy which provides high confidence in

compliance. We showed how we solve the problem of

specification and specification rule linkage in a pre-1.0 evolving

specification, and we showed how we used formal verification to

achieve a high level of assurance that the compliance rules and

the specification are correct, complete, and consistent.

The success of our approach and the compliance monitor we

produced have been demonstrated by our co-validation with

simulation collateral, our formal verification checks for monitor

self-consistency, and the use of the monitor in production

simulations. To date, the CompMon project has resulted in the

discovery of 20 specification issues, 20 collateral issues, and 15

compliance violations in an initial SoC CPU project, as well as

countless bugs in the later IP blocks and designs that began using

CompMon near the beginning of their development.

Finally, the rigorous compliance methodology we developed for

our IO fabric is applicable to any communication interface

specification. Furthermore, we strongly believe that by capturing

and verifying an interface specification formally and validating

that every IP is compliant to the verified specification, we can

help accelerate SoC development and validation in a truly

modular and reusable fashion.

9. Acknowledgements

We would like to acknowledge Dave Bertinetti, Sridhar

Lakshmanamurthy, Balaji Venkataraman, Pranabesh Dash,

Andre Oliver, Kam Zamani, Shweta Shah, Tony Jacobs, and Jaya

Chaganti.

10. References

[1] SystemVerilog Org page: http://www.systemverilog.org/

[2] A. Isles, J. Sonander, M. Turpin, “AMBA Compliance

Checking Using Static Functional Verification,” DesignCon,

2005

[3] OCP web page: http://www.ocpip.org/

[4] AMBA Open Specifications available at arm.com website:

http://www.arm.com/products/system-ip/amba/amba-open-

specifications.php

[5] H. Foster, L. Loh, B. Rabii, and V. Singal, “Guidelines for

Creating a Formal Verification Testplan”, Design & Verification

Conference (DVCon) 2006, February 2006.

[6] Erik Seligman, Rami Naqib, Ram Koganti, and Kapilan

Maheswaran, “Bringing Formal Property Verification to an ASIC

Design”, Design & Verification Conference (DVCon) 2006,

February 2006.

[7] C. Edwards, “Make Less Work For Yourself”. Engineering

and Technology, Vol. 5 Issue 4, March 2010.

[8] A. Datta and V. Singhal, “Formal Verification of a Public

Domain DDR2 Controller Design”, 21st International Conference

on VLSI Design, January 2008.

[9] Andrea Fedeli, Matteo Moriotti, Umberto Rossi, and Franco

Toto, “Addressing IP Reuse With Formal Verification and

Assertion Based Verification”, Design and Reuse, February

2004, http://www.design-reuse.com/articles/9511/addressing-ip-

reuse-with-formal-verification-and-assertion-based-

verification.html

http://www.systemverilog.org/
http://www.ocpip.org/
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.design-reuse.com/articles/9511/addressing-ip-reuse-with-formal-verification-and-assertion-based-verification.html
http://www.design-reuse.com/articles/9511/addressing-ip-reuse-with-formal-verification-and-assertion-based-verification.html
http://www.design-reuse.com/articles/9511/addressing-ip-reuse-with-formal-verification-and-assertion-based-verification.html

