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Abstract 
In this paper, we describe the application of the Timed Data Flow 
(TDF) feature of the recently released SystemC-AMS standard in 
the context of a 3G modem Virtual Prototype. 

By realizing the data flow of our 3G hardware models based on 
SystemC-AMS TDF we demonstrate the utilization of TDF in a 
complex virtual prototyping platform and elaborate how a basic 
shortcoming currently present with TDF can be worked around. 

Finally, we perform an ad-hoc comparison of the scheduling 
speed of SystemC-AMS TDF, plain SystemC and a commercial 
data flow simulation tool. 

1. Introduction 
System Modeling and Virtual Prototyping have been attracting 
growing attention in the semiconductor industry over the past 
years. Today, Virtual Prototyping plays an important role in pre-
silicon software development and verification and allows for sig-
nificantly shortened time-to-market cycles. 
The initiator for the success of System Modeling was the devel-
opment of SystemC as a means to describe the timed behavior of 
hardware using the high-level programming language C++. 
With SystemC, hardware units can be efficiently modeled and 
meanwhile the standardization of interfaces like TLM2 allows 
exchanging of models in an ever-growing community.  
One domain where SystemC was less successful so far is the algo-
rithmic elaboration, taking place in a product development phase 
where neither timing nor architecture is defined and engineers 
want to concentrate only on the performance of their algorithms.  
For this task, developers consider SystemC's event-driven simula-
tor usually as not efficient enough and fear that SystemC-based 
modeling involves a lot of simulation-related details, which dis-
tract the attendance from the actual topic of algorithm develop-
ment. Tools like Matlab, SystemStudio or SPW, which allow for 
modeling at higher abstraction levels, are therefore dominant in 
this area.  
So far, developers who wanted to combine the advantages of Sys-
temC based control flow modeling with abstract data flow mod-
els, were therefore forced to resort to usually cumbersome co-
simulations with aforementioned tools. The release of SystemC-
AMS Timed Data Flow (TDF) now opens the chance to effi-
ciently model the algorithmic data flow directly in SystemC, effi-
ciently both in terms of simulation speed and modeling effort.  
In our contribution, we describe the application of SystemC TDF 
in the complex Virtual Prototyping context of Infineon’s 3G mo-
dem solution. This is a perfect test field since the 3G physical 

layer consists of a couple of number-crunching hardware units, 
whose data paths are currently realized in our Virtual Prototype 
by co-simulations with a commercial tool.  
The rest of the paper is structured as follows. In Section 2 we 
describe our model-driven design flow and demonstrate in Section 
3 the applicability of SystemC TDF in the Virtual Prototyping 
environment by integrating a SystemC TDF based data path 
model in the system context of the 3G Virtual Prototype. 
Section 4 gives a brief ad-hoc overview about the scheduling 
performance of TDF compared to plain SystemC and a commer-
cial tool. 

2. System Level Modeling Flow 
In the world of digital communication the development of sys-
tems is separated into several phases. The beginning of the devel-
opment cycle is characterized by scientific engineering work on 
algorithms, including their development, evaluation, selection and 
optimization. Simulation at this stage takes place at a very ab-
stract level since the focus is on algorithmic performance and 
high simulation speed rather than on architectural details. There-
fore, stream-driven data flow modeling is widely used in this 
development phase. 

As soon as the algorithmic exploration phase is finished, the true 
timing behavior of different functional units interacting with each 
other in the whole system gets into the focus. Naturally, timed 
event driven simulation, as e.g. provided by SystemC, is better 
suited for such kind of control flow modeling [1]. 

2.1 Data Flow Modeling 
One main idea of the SystemC-AMS extension on top of SystemC 
is to provide the essential modeling formalisms required to sup-
port Analog Mixed Signal (AMS) behavioral modeling at differ-
ent levels of abstraction. Timed Data Flow (TDF) is one of the 
models of computation, which significantly simplifies the model-
ing of abstract data flow graphs.  
TDF uses a dedicated scheduling mechanism embedded into the 
SystemC simulator, which provides high simulation speed thanks 
to a static schedule being computed at the beginning of a simula-
tion. I.e. other than in event-driven simulation, where a dynami-
cally growing event list for each time instant determines what has 
to be done next, in a static schedule the order of execution is pre-
determined right from the beginning and does not change 
throughout the simulation. This becomes possible by restricting to 
fixed rate relationships between the TDF processing entities. 
As any type of C++ data can be communicated over TDF nets, the 
above fixed rate limitation can be relaxed in the following way: if 
the dynamically growing/shrinking vector<> from C++’s stan-



dard template library is used, also variable data rates become 
possible. Each time a TDF module is activated, it receives and 
processes a given number of data items provided by the previous 
TDF module and sends the processed data to the next module. 
In Figure 2-1, a schematic block diagram of a simple linear data 
path graph is shown. Each data processing step is implemented in 
a dedicated TDF functional module. The whole data processing 
chain can be instantiated in a top level SystemC module.  
The scheduling constraints are given by the modeler in terms of 
the parameters “time step” and “rate” for each module / port of 
the data flow graph. The top level module provides standard Sys-
temC ports as interfaces to the outside world such that it can 
seamlessly be embedded in an overall SystemC simulation. 

 
Figure 2-1: Example of data path models 

2.2 Time Behavior Modeling 
Developing embedded software on virtual hardware implies more 
than just functional correctness of the models. Also the time be-
havior modeling is an important issue due to the real time interac-
tion of different hardware units as well as between software and 
hardware.  
Event-driven, time aware simulation as provided by SystemC is 
an adequate basis for such modeling tasks. A mandatory require-
ment to an overall development flow is that the functional models 
from Section 2.1 can be reused one-to-one in order to minimize 
modeling effort and to avoid the risk of conversion errors.  
In our research case, the reuse is achieved by integrating the TDF 
data flow graph into a SystemC control flow model. Figure 2-2 
illustrates the structure of such an integrated hardware model. The 
unchanged data flow model from Figure 2-1 serves now as the 
hardware unit’s data path, which exchanges data and register in-
formation with the surrounding event driven simulation domain 
via buffered ports. 
Since the data path model is an outcome of the algorithmic explo-
ration phase, where timing is not yet considered, usually no mean-
ingful time annotation comes along with such models. As pure 
functional models they would basically run in zero time from the 
SystemC simulator’s point of view. Therefore, methods of calling 
and controlling a data flow simulation under consideration of the 
temporal dimension are required. 

Two essential components are added to make the model applica-
ble in a timed system model context. First, a virtual bus interface 
providing a time-aware transaction level interface for register 
read/write accesses as well as controllers for reset handling, 
clocking and interrupt generation, and second, a state machine 
controlling the timely reading/writing of inputs/outputs and the 
invocation of the TDF simulation as indicated by the dashed ar-
rows in Figure 2-2. 
Figure 2-2 schematically sketches the structure of a state machine 
having four states. In the Idle state, the module waits for being 
activated. Once triggered by a register access or some other spe-
cific event, a transition into the Read state takes place. At this 
state, the required input data and register information are ex-
tracted from the bus interface and stored in a buffer which serves 
as the input to the TDF model.  
As soon as the scheduling conditions for the data path processing 
are fulfilled, the state machine transits to the Run state, in which 
the TDF simulation is activated. The inputs in the buffer are proc-
essed and the results of the data path computations are written to 
an output buffer.  
Finally, in the Output state, the data processed by the TDF model 
is transferred to the outside world and status registers are updated. 
Here is where time annotation comes into play: As the model has 
to reflect the actual computation time of the hardware’s data path, 
the Output state is taken only after the annotated computation 
time, such that the output data becomes present in coincidence 
with the real hardware. This is important e.g. to detect any prema-
ture software accesses to the data path results.  

 
Figure 2-2: Structure of functional units 

2.3 TDF Controlling 
One problem comes along with using a TDF model in the above 
way. As the TDF simulator is realized on top of the SystemC 
simulator kernel, there is only one unique simulation context, 
which means when sc_start is executed, both SystemC and TDF 
simulations start simultaneously. This has to be avoided because 
the TDF modules are serving in our application as data processing 



units that only may be started when the control state machine 
allows it.   
Either a start/stop controlling mechanism or an independent simu-
lation context for TDF modules would be desirable. Unfortu-
nately, in release 1.0beta1 of SystemC-AMS, which we used as 
the basis for this work, such features were not yet implemented.  
In the next two subsections, we investigate two workarounds to 
overcome this current shortcoming of SystemC-AMS TDF. 

2.3.1 Dynamic Time Step (DTS) 
When integrating TDF into SystemC a mapping between TDF 
ports and SystemC discrete event (DE) ports has to be accom-
plished. The SystemC-AMS simulation kernel is using its own 
simulation time ttdf, which is different from the SystemC discrete 
event simulation time tDE. If a pure SystemC-AMS TDF model is 
used, the SystemC-AMS simulation kernel is always blocking the 
DE kernel, so tDE does not advance at all. For this reason, Sys-
temC-AMS provides converter ports, named  
sca_tdf::sca_de::sca_out<T>,  
sca_tdf::sca_de::sca_in<T>  
for the connection and synchronization between TDF ports and 
DE ports. When converter ports are accessed from the process-
ing() method of a TDF module, the SystemC-AMS simulation 
kernel stops the execution of the static schedule and gives control 
to the SystemC simulation kernel so that the SystemC model can 
execute until tDE equals ttdf, so that the DE and the TDF models 
get synchronized with respect to their interface behavior [2]. 
The main idea of Dynamic Time Step (DTS) is to “sleep” and 
“wakeup” the TDF simulation by dynamically adjusting the time 
step of the TDF module. Table 2-1 shows a template of a DTS-
enabled TDF model. At the instantiation phase the method 
set_attributes() is executed, which sets the time step of the mod-
ule initially to a value much greater than the actual simulation 
time, 10000 seconds here. This lets the TDF module virtually 
“sleep” at the beginning of the simulation.  

Table 2-1: TDF module with dynamic time step settings 

To wakeup the TDF module, a dedicated converter port vdd is 
introduced and the model is synchronized to its default event 
using sca_synchronize_on_event(). When the converter port 
changes its value, the module will be started and the default proc-
essing method processing() is executed. If vdd carries a “1”, the 
TDF time step is set with sca_next_max_time_step() to the small-
est possible value, 1 pico second here, in order to let it virtually 
finish in “zero time”. Next time the TDF scheduler invokes the 
model, the module time step is set back to 10000 seconds so that 
the module “sleeps” again.  

The above procedure works under the assumption that the consid-
ered TDF model has to be executed exactly once per invocation of 
the data path processing. If the rate relations inside the data path 
chain require multiple executions of certain TDF models, addi-
tional measures have to be taken.   
Another less attractive point of this method is that the functions 
sca_next_max_time_step() and sca_synchronize_on_event() are 
declared as private methods in sca_module.h of the SystemC-
AMS version 1.0beta1. To make them callable them from the 
processing() method of the TDF model, it is necessary to patch  
them to protected.  
All together makes the handling of TDF in our application case 
somewhat cumbersome. However, TDF-DTS definitely offers the 
user clear advantages. First is the simplicity of the connections 
between TDF and SystemC modules in terms of the TDF con-
verter ports. This means that no additional interfaces and func-
tions are required for the information exchange. Second is the 
integrity of system level simulations, which means that the TDF 
simulation and the SystemC simulation are compiled into one 
executable without the need of inter-process communication or 
third party library linking, which would be necessary with a co-
simulation approach. 

2.3.2 TDF in a Nutshell 
Besides the DTS, we investigated also to put the TDF data path 
simulation in a separate compilation entity, namely a Dynamic 
Linked Library (DLL). The main idea of this approach is to pack-
age the TDF module together with its own SystemC-AMS simula-
tion kernel into a DLL, which is then controlled from the master 
SystemC model. In this way, the simulation context of the Sys-
temC-AMS simulation is decoupled from that of the controlling 
SystemC simulation.  
One way of starting/stopping of the DLL-based TDF simulation 
can now be easily achieved by setting the SystemC-AMS simula-
tion duration such that one full data path processing cycle is exe-
cuted by calling sc_start via the DLL interface. However, this 
mechanism suffers from much additional computation load be-
cause the elaboration phase is repeated each time the data path is 
invoked. 

SystemC simulation platform SystemC-AMS DLL simulation 
platform

evt.notify()

loading 
SystemC-AMS 

DLL
SystemC Simulation

Starting SystemC-AMS 
TDF Data processing

Wait Function
(sc_event evt)

SystemC-AMS 
Simulation

Synchronization Call
(inside first TDF model)

TDF Data 
Processing Path

 
Figure 2-3: Controlling mechanism using a TDF DLL 

In order to overcome this shortcoming, we investigated another 
start/stop controlling mechanism. Figure 2-3 presents our solu-
tion. At SystemC’s instantiation phase the SystemC-AMS TDF 
DLL is loaded and the SystemC-AMS simulation is started. To 



make the TDF start/stop controllable, we put a synchronization 
function in the first TDF model of the data path chain. This syn-
chronization function is in fact implemented on the SystemC side 
of the master model and basically executes a wait() for the start 
event evt that typically would be triggered in the Run state of the 
control state machine. 
When this happens, the TDF synchronization call resumes and 
gives the execution back to the TDF simulation. As soon as the 
TDF chain enters the next processing cycle it stalls itself again by 
executing the synchronization call. 
Table 2-1 shows the implementations of both the TDF and the 
corresponding SystemC parts. There are three main functions 
defined in main.cpp of the SystemC-AMS DLL: Initialize_TDF(), 
SendToTDF_Source() and Run_TDF(). The function Initial-
ize_TDF(), which is called in the constructor of the SystemC 
module, is used to instantiate the modules of the TDF simulation 
and also to transmit the address of the SystemC synchronization 
function sc_wait_addr() through the constructor to the first TDF 
model. The purpose of SendToTDF_Source() is to transport the 
input data to the data buffer of the SystemC-AMS simulation 
(source). Run_TDF() is called by a root SC_THREAD on the Sys-
temC side in order to start the TDF simulation right at the begin-
ning and setting it into standby mode. The simulation duration of 
the TDF simulation may be set to infinity as it stops together with 
the controlling SystemC simulation anyway. 

Table 2-2: TDF in a nutshell /  DLL approach 

In the master SystemC module, the function controlling the TDF 
simulation is Start_SystemC_AMS_Simulation(). By notifying the 
event evt, the TDF simulation will get out of the SystemC wait 
function in method sc_model::_Wait_Function() and execute the 
TDF modules for one processing cycle. Note that for better read-

ability we omitted the c-syntax and glue code necessary for com-
municating and calling the function pointers provided by the 
DLL. 
Compared to the DTS approach, packaging the TDF model into a 
DLL avoids the somewhat cumbersome dynamic switching of 
time steps and patching of SystemC-AMS source code. On the 
other hand one major advantage of the TDF, namely the seamless 
interfacing with SystemC has to be sacrificed and additional code 
needs to be added for the transport of data between the SystemC 
and TDF domains as well as for the start/stop control.  
So in fact none of the considered solutions to the TDF control 
issue is really satisfying and our hope is that future SystemC-
AMS releases will have better mechanisms already on board to 
accomplish the task considered here. 

3. Integration into a SoC Virtual Prototype 
The final step of our system modeling flow is to integrate the time 
behavioral models into a system architecture model. Figure 3-1 
displays the overall structure of this Virtual Prototype (VP). Be-
sides the signal processing peripheral models with their algo-
rithmic TDF kernels, the system model also contains pure Sys-
temC models, which cover control functionalities of the chip, 
such as interrupt, memory or clock control. 
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Figure 3-1: Structure of Virtual Prototype 

From the firmware programmer’s point of view, the VP function-
ally and temporally behaves (in the limits of the chosen approxi-
mations) like real hardware, also known as Programmers View, 
Timed (PVT). Pre-developed embedded software, can now be 
integrated on the VP and incrementally feature by feature can be 
brought up and running, typically several months before the real 
hardware is available. 

4. Assessment of the Scheduling Performance 
In order to assess the performance of the TDF scheduler, we per-
formed simulations with (a) plain SystemC (in data flow emula-



tion mode), (b) SystemC-AMS TDF, as well as (c) a commercial 
tool supporting both dynamic and static stream-driven scheduling.  
To make sure that the same defined number of context switches 
occur in (a), (b) and (c), we choose the sample system shown in 
Figure 4-1 and identically implemented it for the different simula-
tion environments. The feedback loop forces the scheduler to call 
the models Delay, Module_1, Module_2 and Module_3 in se-
quence for each data token being transported from the source to 
the sink. Without this feedback, it would in principle be possible 
for the scheduler to apply optimization strategies, e.g. to do a 
block processing for multiple data tokens per module invocation, 
which would reduce the number of context switches significantly 
and hence weaken the comparability of the results. 
Since the test is focusing on the speed of the scheduling mecha-
nism the models of the simulation chain do not have any func-
tionality, i.e. they are just feeding through their input values to the 
outputs. 

 
Figure 4-1: Structure of speed measurement system 

The average simulation durations of the different schedulers (a)-
(c) are displayed in Table 4-1. 

Table 4-1: Measured Simulation durations (ms) 

 
SystemC-AMS TDF gives roughly a gain of 3.5 compared to 
SystemC’s event-driven simulation mechanism (the event-driven 
scheduler in this case was abused to mimic a stream-driven be-
havior of the simulation).  
However, as an open source tool TDF still has a large improve-
ment space in the efficiency domain compared to the commercial 

tool we investigated as a reference. Considering static scheduling 
the commercial tool outperforms TDF by roughly a factor of 30 
and even dynamic scheduling is about 3 times faster than TDF. 
Of course some care is necessary in interpreting these figures. In a 
meaningful simulation the modules are not just feeding through 
but involve possibly highly complex computations, which usually 
by far dominate the overall simulation speed in the end.   

5. Conclusion and Future Work 
In this paper, we describe a model-driven system design flow 
based on SystemC and its AMS extension. In this context we 
focused on the data flow modeling using Timed Data Flow (TDF) 
and the integration of it into traditional SystemC control flow 
models.  
Our experience is that TDF is in fact well suited for algorithmic 
design even in such complex algorithm-dominated domains like a 
3G system. Reasons making TDF attractive for algorithm design 
are its open-source availability, its higher simulation speed com-
pared to plain SystemC, the seamless SystemC embedment and its 
high level of abstraction.  
We also describe our experiences with the integration of TDF 
simulations into a SystemC control flow model. Two approaches, 
Dynamic Time Step (DTS) and Dynamic Linked Library (DLL)-
packaging, are introduced to realize dynamic start/stop control of 
an embedded TDF simulation.  
Finally, we successfully applied the TDF models as data path 
kernel simulations of some of our 3G hardware models, and in 
this way proved the applicability of SystemC-AMS TDF in a 
complex Virtual Prototyping platform. 
Future work will focus on two aspects: First, research the effects 
of a broader rollout of SystemC-AMS simulations in even larger 
and more sophisticated systems. Second, foster the development 
of new features of the SystemC-AMS kernel, which support an 
easy-to-use start/stop controlling mechanism for embedded TDF 
simulations. 
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