

This work is protected by US patent, TI Docket #69839, dated
30th Aug 2010 & TI Docket #70456, dated 21st Jan 2011

Assertion Based Self-checking of Analog Circuits for Circuit
Verification and Model Validation in SPICE and Co-simulation

Environments

Lakshmanan
Balasubramanian

Texas Instruments India Pvt. Ltd.
Bagmane Tech Park, 66/3,

Byrasanrdra,
C V Raman Nagar Post,

Bangalore – 560 093, India
+91-80-25099565

lakshmanan@ti.com

Pooja Sundar
Texas Instruments India Pvt. Ltd.

Bagmane Tech Park, 66/3,
Byrasanrdra,

C V Raman Nagar Post,
Bangalore – 560 093, India

+91-80-25048435
p-sundar@ti.com

Timothy W Fischer
Texas Instruments Inc.

12500 TI Blvd
Dallas, TX 75243, USA

+1-214-567-6681
tfischer@ti.com

ABSTRACT

In this paper we propose a methodology to simplify the verification
process by creating a library of small, generic Verilog-A (VA) based
assertion modules that can be connected together to form more
complex checkers for any circuit. This serves as a good
infrastructure for designers to easily build their own checkers. A
Cadence infrastructure with schematic elements like symbols and
forms are built to make the use of the library of assertions for a
module level verification more intuitive and user friendly. Using the
above infrastructure the required assertion based checkers can be
embedded in the module design itself as an integral part and remain
with the design hierarchy during the entire product life cycle at all
integration levels of system-on-chip (SoC). This makes the module
designs self-checking for verification purposes. This method enables
to check the correctness of integration of the IP/design in question at
the higher levels and automatic verification of these modules in the
context of the SoC, avoiding or minimizing the manual checks at
SoC level and / or limiting such checks to specific system scenarios
that might not have been otherwise checked at the module level.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – Simulation, Verification.

General Terms
Assertion Based Verification (ABV), Self-checking analog designs.

Keywords
Simulation, Verification, Assertion, Assertion based verification
(ABV), Co-simulation, AMS, Self-check, verification and validation
(VnV).

1. INTRODUCTION
There has been a trend of increasing Analog, RF and power
management (PM) content integration [1] into SoC necessitated by

solution cost, system flexibility, higher performance, and low power
requirements. Complex SoCs of today with such high levels of
integration necessitates thorough pre-silicon verification to achieve
low operating costs by avoiding costly silicon tape-out iterations and
ensuring high quality design.

All analog circuits are usually extensively verified by Spice
simulations. The quality and functional sign-off of the analog
circuits usually involve manual inspection of simulation results,
waveforms against the requirements. There have been some
automation available for analog simulation analysis based on the
proprietary, vendor specific waveform calculators, post processing
engines like the Cadence™ ADE [2] calculators and proprietary
flows. There are also some run time support like the .measure
statements of spice based tools like HSpice™ [3], HSIM™ [4],
Nanosim™ [5] and Ultrasim™ [6].

Detailed spice based simulations at full-chip level are time
consuming and may not be possible at all in many cases. Hence
there is a necessity of higher levels of abstraction using analog
behavioural models for the analog contents. This include logic level
abstractions of analog interfaces using basic VHDL or Verilog, more
accurate VHDL-AMS, verilog-AMS, system-C etc. The more
accurate models need a separate analog engine for simulation.
Hence there have been recent developments in using real number
features of VHDL (VHDL-RN) for analog behavioural modeling that
can be simulated with the basic VHDL simulation engine resulting in
faster turn around times. These models are usually developed in
early stages of SoC and module development and later updated
regularly as significant maturity is achieved in the design. In all
these stages the models have to be validated against the specification
in early stages and against the actual design at mature stages of the
design. The behavioural model validation (BMV) is usually done in
a manual, iterative process where in the results of model simulations
are checked against the spice simulation results. There have been
some attempts to automate the BMV [7] like automation of test
bench generation, test case equivalence but they still necessitate
manual waveform inspection for final analysis and sign-off.

Manual inspection of simulation results to check that the analog
circuit/model meets specifications, is time consuming and error-
prone. This becomes more complex and cumbersome with the recent
trends of increasing integration of analog, RF and power
management contents in a SoC. Further all the checks for various
specification goals have to be manually repeated at module level
verification and all higher levels of integration making the whole

verification process error prone, iterative and poor coverage due to
complexity of manual checking process.

Automation of this process aims at making analog verification more
efficient in terms of time and accuracy. This paper proposes an
assertion based self-checking methodology for model validation and
circuit verification (VnV) based on generic library of assertions and
infrastructure based on a popular EDA platform for analog design
development and mixed-signal SoC integration. This paper
primarily presents the assertion based self-checking methodology
and its application and will not give the details of all the library of
assertions.

The rest of the paper is organized as follows: Section 2 describes the
concept of and motivation for self-checking design, Section 3
contains the practical implementation details of the proposed
methodology, Section 4 discusses the proof-of-concept
implementation, Section 5 has the results from a test case
application, and finally Section 6 concludes this paper with key
takeaways and scope and suggestions for improvements.

2. CONCEPT OF SELF-CHECKING DESIGN

2.1. ABV for Analog Circuits and Systems
Usually assertions are written in a HDL or verification languages like
Specman e-language [8], PSL [9], OVM [10], VMM [11] to serve as
run-time checker modules. However, to verify analog behavioral
models and even analog circuits with such checkers, a co-simulation
environment is required. Co-simulation overheads like the insertion
and handling of interface modules pose a major challenge in keeping
the verification cost like run time to reasonable levels. For analog
module checks the tool specific native measurement command
infrastructure may be used, but is a challenge when there is a need to
support multiple simulation tools and environments.

Existing verification languages listed above and C-based systems
currently extensively support circuit and system level checks [12, 13,
14] that are predominantly digital in nature, but are difficult to
extend for checking analog quantities. They also need extensive
support from EDA tool vendors to support AMS simulations.
Existing methods and infrastructure necessitate manual, multiple
developments or coding of the same set of assertions using different
languages and tools to enable checks at various abstraction levels
like the actual transistor level circuit, and behavioural models; and
various design hierarchies like the module/IP level, sub-system, SoC
and board level. Such a method as is evident involves repeated

manual efforts, hence error prone and inefficient. Prior work [7] on
assertions for analog design verification and BMV has been reported
to use SystemVerilog (SV) [15] based assertion modules by creating
a parallel hierarchy of the whole SoC design in SV linked to the
original design hierarchy. It uses a proprietary script based
automation to build the parallel hierarchy in an automated fashion.
Though this methodology has been used successfully for analog IP
level verification and BMV, it needs rewriting or manually porting
the assertions for SoC level verification. Each time the automation
engine generates a new parallel design hierarchy. It just falls short of
the concept of “self-checking design with very minimal manual
intervention”.

2.2. Self-Checking Design for VnV
To overcome the difficulties observed in section 2.1 above, a concept
of self-checking design is introduced as illustrated in Figure 1. In
this methodology, the assertions are written and attached to design
elements in a given development platform such that they reside with
the design through the life cycle of the design. Such a concept
enables what is called the “self-checking” designs. Such designs
attached with all required assertion based checks enable automatic
verification of the design context and functionality both at
independent module level or upon integration at higher levels of
integration, at SoC level and may be extended to board level or
system level verification as well.

This methodology enables an intuitive and user friendly platform for
verification. It also frees the designer from the familiarity and
expertise with variety of languages, their syntactic nuances. Thus it
allows him/her to spend value time in developing right test cases and
checkers.

3. ARCHITECTURE AND
IMPLEMENTATION
With the self-checking concept in focus, and given a design
environment like Cadence Virtuoso Schematic Editor or any other
similar platform, the assertions may be linked to a definite design
element like the cell symbol or forms, and hence can reside in the
design itself. Such design elements can be linked to various design
cell views to enable generation of assertions in any language of
interest like PSL, OVM, VMM, Specman e-language, VHDL,
Verilog, VHDL AMS, Verilog AMS, Spice native formats, Verilog-
A or any other vendor specific formats. Such a platform enables
easy portability, interoperability across various design validation and
verification platforms.

Figure 1. Concept of assertion based self-checking design

Though this method is not limited to any specific design
environment, due to popularity among analog and mixed-signal SoC
design community, the Cadence Virtuoso schematic editor is chosen
as the platform for implementation. Spice and AMS co-simulation
environments are the focus of this implementation.

3.1. Library of Assertions
This methodology mandates a pre-developed and validated library of
assertions covering comprehensive set of basic checks. This library
of assertions can be used to build any complex checkers for
functional, electrical, reliability and manufacturability specification
or requirement compliance.

Among the various languages that may be used Verilog-A based
assertion modules can directly be interfaced with SPICE, without
explicitly setting up a co-simulation environment, thereby saving on
simulation run time for analog module level verification. Verilog-A
is supported in most AMS verification tools and environments.
While Verilog-A is chosen for assertions for analog transistor level
design, VHDL/Verilog is used for digital portion of the design in
RTL or higher levels of abstraction and VHDL-RN used for analog
behavioural models. A basic set of assertions to enable following
measurements are built in Verilog-A & VHDL-RN respectively and
linked to unique “symbols”:

1. Value of node potential (voltage) at any given time
2. Value of branch current at any given time
3. Signal transition information between specific threshold

levels like the following:
a. Rise time
b. Fall time
c. Number of transitions
d. Occurrence of a specific type of signal transition

in a specified time window
4. Delay between two identified events
5. Average, RMS value of voltage or current in a given time

window
6. Peak / trough or maximum / minimum value of the signal

level in a given time window.

The above listed measurements are in no way comprehensive
enough, but form a set of representative, most often used functions.
They can also be used to build other more complex functions.

Using right netlisting attributes and options, and features like the
Cadence hierarchy editor, one can dynamically choose the language
in which to netlist any given design module in an SoC.

4. PROOF OF CONCEPT
IMPLEMENTATION
The proposed method was applied for the verification and
behavioural model (BMOD) validation of a circuit used in the power
management system of a complex mixed-signal SoC. In addition,
this methodology has been applied as a means of checking over-
voltage conditions for voltage dependent physical design rules such
as metal spacing requirements.

4.1. Symbol Based Implementation
Figure 2 illustrates an example of how the symbol based assertions
are used to build a specific checker of interest. In this particular
instance the checker is built to check if, after power-up, the output of
the test circuit is within the functional specification limits and if the
input control signals are asserted / de-asserted at the required
sequence meeting the necessary timing requirements. The scenario

is illustrated in Figure 3. Also illustrated below are the VA codes for
each of the functions mapped to unique symbols.

4.1.1. VA code examples
4.1.1.1. Digitizer module
This module checks for any event on the input signal “x” based on
the parameterized threshold values “VTH” and “VTL” , sets the
status outputs accordingly for further processing in addition to
reporting a predefined message represented by “msg” . The status
outputs “rising_edge” and “falling_edge” are defined as below.

rising_edge = 1, if V(x) >= VTH
 0, if V(x) < VTH

falling_edge = 1, if V(x) >= VTL
 0, if V(x) < VTL

The corresponding VA code segment is given below:
module digitizer (x, rising_edge, falling_edge);
input x;
electrical x;
output rising_edge, falling_edge;
electrical rising_edge, falling_edge;
parameter real VTH = 1.3;
parameter real VTL = 0.6;
real v_rising_edge, v_falling_edge;

analog
 begin
 V(rising_edge) <+ v_rising_edge;
 V(falling_edge) <+ v_falling_edge;

 @(initial_step) begin
 v_rising_edge = -1;
 v_falling_edge = -1;
 end

 @(cross(V(x) - VTH, +1)) begin
 v_rising_edge = 1.0;
 v_falling_edge = -1;
 end

 @(cross(V(x) - VTL, -1)) begin
 v_rising_edge = -1;
 v_falling_edge = 1.0;
 end
 end
endmodule

4.1.1.2. Minimum time checker module
This module checks for the delay between two events, in this case
time elapsed since the occurrence of logic ‘1’ in the input “edge_1”
till the occurrence of logic ‘1’ in the input “edge_2”, is greater than
the predefined value represented by the parameter “min_time” . Any
violation of the condition is reported as a predefined message
represented by “msg” . The corresponding VA code segment is
given below:
module min_time_diff (edge_1, edge_2);
input edge_1, edge_2;
electrical edge_1, edge_2;
parameter string msg = "message";
parameter real min_time = 30.0e-06;
real time_1;

Figure 2. Symbol based checker for power-up and sleep functionality

Figure 3. ABV scenario under test and results

time[160] = 75506.786 911 4
EN rising edge at 8.22222e-05
GE_EN rising edge at 8.22222e-05
Rising edge on EN_SAMPLE at 8.22222e-05
Ready to check amt of sleep discharge..
Message: Actual 0.472403V @ 0.000082 Vs Expected LO:0.576000V,
HI:0.642000V
ERROR: minimum time diff check violated @ 0.000000s, Expected: 0.000030s
time[170] = 82224.577 1.12 2
…

Input control signals
 EN
 EN_SAMPLE

Outputs
 OUT
 OUT_SLEEP

analog
 begin
 @(cross(V(edge_1), +1))
 time_1 = $realtime;

 @(cross(V(edge_2), +1)) begin
 if($realtime - time_1 < min_time)
 $strobe(mg);
 $strobe("ERROR: minimum time diff check violated @ %fs,
Expected: %fs", $realtime-time_1, min_time);
 end
 end
endmodule

4.1.1.3. Voltage tolerance checker module
This module checks if enabled (“en” = 1) for the voltage level
tolerance of the input signal “x” between predefined values
represented by the parameters “LO” and “HI” . Any violation of the
condition is reported as a predefined message represented by “msg” .

Message msg is reported if LO <= V(x) <= HI and if V(en)=1

The corresponding VA code segment is given below:
module within_limits (x, en, result);
input x, en;
electrical x, en;
output result;
electrical result;
parameter string msg = "message";
parameter real LO = 0.6;
parameter real HI = 0.6;
real v_result;

analog
 begin
 V(result) <+ v_result;

 @(initial_step) begin
 v_result = -1;
 end

 @(cross(V(en), +1)) begin
 if(V(x) > HI || V(x) < LO) begin
 $strobe(msg);
 $strobe("Actual %fV @ %f Vs Expected LO:%fV, HI:%fV\n",
V(x), $realtime, LO, HI);
 v_result = -1.0;
 end
 else
 v_result = 1.0;
 end
 end
endmodule

4.1.1.4. Time delay checker module
This module passes the value of input signal “in” to the output
signal “out” after a predefined delay represented by parameterized
variable “del” . The corresponding VA code segment is given
below:
module time_delay (in, out);
input in;
output out;
electrical in, out;
parameter string msg = "message";
parameter real del = 100.0e-06;

analog
 begin
 V(out) <+ absdelay(V(in), del);
 end
endmodule

4.1.2. Monitoring Over-voltage for Physical Design
Rule Requirements
While the core digital supply voltage is reduced at every technology
node with respect to previous nodes, the I/O voltage requirements
remain the same in order to support industry standards and legacy
systems. Integration of analog and power management contents into
SoC, direct battery interface (2V to 5V range or even higher) to
portable / mobile applications and necessity for low power operation
are all various other reasons for varied and multiple voltage and
power domains in an SoC. Such requirements in addition to
manufacturing constraints in UDSM technologies have necessitated
voltage dependent physical design rules. For instance, the spacing
requirement for two metals at 3.3V potential difference is higher than
that of two metals that are within 1V of each other.

An approach has been developed to assign voltage properties to nets
in the physical design for design rule checks using a voltage label on
a pseudo layer in the layout. Since the layout data itself does not
contain any real electrical information, a corresponding device,
termed a DVR (Device for Voltage Recognition), is placed in the
schematic. DVR enables checking for over-voltage conditions
during simulation using the ABV methodology proposed in this
paper. Equivalent connective placement of the assertion in the
schematic and the voltage label in the layout is checked during LVS
by extracting both as a pseudo device. A graphical overview of the
full voltage dependent physical verification methodology is
illustrated in Figure 4.

The DVR devices appear in the netlist as a Verilog-A assertion that
compares the voltage during operating point, DC, and transient
simulations to the property assigned to the device in the schematic.
If the simulated voltage exceeds the assigned property, an error
summary is printed at the end of the simulation. While Spice models
do provide the capability to check for over-voltages at the device
level, there was previously no low effort method for checking over-
voltages on individual nets. Furthermore, the checks found in Spice
that use voltage limits of devices tend to be overly verbose in the
error reporting. Since the assertions are written in Verilog-A, the
ABV methodology gives the flexibility to provide a simple error
summary, and to tailor the checks and the error reporting to the needs
of the business. This methodology ensures the correct use of
compatible devices in a given voltage domain with reliable
interconnectivity. It may be further extended for comprehensive
checks for proper handling of multiple voltage and power domains
and signal crossings.

Figure 4. Full Verification of Voltage Dependent Physical Design

Rules

4.2. Form Based Implementation
As is seen in Figure 2, the symbol based methodology has a
limitation of building the asserting in the design itself by making
physical connections to its ports. This can cause errors due to
connecting the DUT or its components to various checkers. Manual
errors in such connections can cause inadvertent shorts between
different nets or signals of the design causing circuit malfunction.
While the purpose of the assertions is to check the circuit
functionality and correctness of context with minimal non-recurring
effort, it should not cause additional issues to the design under
verification (DUV) itself. To overcome this shortcoming, a
connectionless, form based, interactive system is proposed. In this
case an independent form that can be invoked from the schematic
window GUI or from a terminal less symbol that can be instantiated
in the design. Such a system is illustrated in Figure 5.

Figure 5. Prototype of interactive, form based assertions

This can be implemented in two different ways. The first one uses
the same symbol based method discussed in section 4.1 above, but
with no terminals attached to the symbol and with form based
selection of nets for operation / observation. Such a form is attached
as a property of the symbol. This can be called a symbol-linked-
with-form based approach.

An alternate implementation style that is completely form based uses
an automated, dynamic generation of checkers and node connectivity
in the DUT enabled by appropriate scripts. In addition this also
needs a proper database structure compatible with the design
platform. In case of Cadence schematic based design platform,
additional directory structure for each design unit or cell is to be
created where in the necessary scripts, VA assertions and
connectivity information are placed in addition to the existing
schematic, symbol, layout and other views. In case of new design
this new directory structure will be automatically created upon
invoking the ABV form. Upon reinvoking, the forms for ABV of
each design hierarchy will be preloaded with the details available
under the respective directory structure. Skill scripts are used to
build such an infrastructure.

4.3. Comparison of Symbol and Form Based
Implementations
A symbol based implementation discussed in chapter 4.1 or symbol-
linked-with-form based implementation discussed above enable
platform independent truly self-checking design with out any
infrastructural complexities. In contrast, the fully form based
implementation discussed above needs proper infrastructure support
like the database and automation scripts that are platform dependent
and needs to be redeveloped or trimmed for different design
platforms. Since form based implementation requires parallel data

structure with minimal interference to existing designs it can easily
lend itself to comprehensive automation and building of assertion
based checkers by independent verification team. This is in
compliance with contemporary and more popular organization of
verification effort by industrial SoC design teams.

4.4. Circuit Verification & BMV
The implementation and application details in sections above
discussed the circuit verification using the proposed methodology.
This methodology can also be applied to BMV by choosing right
netlisting language options for the assertions, namely VA for the
transistor level circuit of the DUV and VHDL for the equivalent
VHDL BMOD and running the simulations using Spice simulator
and VHDL simulator respectively. The embedded assertions
automatically will take care of checking both abstraction levels
equivalently as long as the test bench equivalence is taken care of.
Of course, necessary design guidelines have to be followed to allow
seamless VHDL and spice netlisting. Some of the key guidelines are
listed below, while they are not comprehensive as it is out of the
scope of this paper:

1. No transistors or any technology components to be used at
the level where BMOD netlisting is to be used.

2. Ensure the pin direction definition of all the designs
consistently to have exactly identical comprehension in
both Spice and BMOD contexts. Limit the use of INOUT
direction to those pins, including power supplies and
grounds, that really functionally behave as a bidirectional
and not just because of the current flow direction as is
usually comprehended by most analog designers.

5. RESULTS
The proposed methodology has a distinctive advantage of avoiding
errors due to various existing manual process steps in VnV of AMS
SoC, extensive reuse of library of assertions and reuse of assertions
at module and SoC levels. Due to the use of VA assertions which
are natively supported in many Spice based simulators and AMS co-
simulators, it also has a specific simulation runtime advantage by
avoiding use of co-simulation and insertion of several connect
modules just to enable ABV. The proposed methodology ensures
optimal simulation run times by mindfully choosing native assertion
support for various levels of abstraction wherever possible.

Table 1. Simulation run time summary

Simulator Speed-Accuracy settings Medium of
Assertions

Run time
(minutes)

TISpice Default No 1

HSIM Optimal for analog operation No 4

TISpice Default VHDL1 ∞

HSIM+VCS
co-sim.

Optimal for analog operation VHDL1 52

HSIM+VCS
co-sim.

Optimal for analog operation
& analog-to-digital interface

VHDL1 8

TISpice Default Verilog-A2 1.1

HSIM Optimal for analog operation
& analog-to-digital interface

Verilog-A2 4

1 VHDL requires co-simulation feature
2 Verilog-A is native to most Spice simulators

A comparative study of simulation run-times with verification using
co-simulation under different settings versus verification using
Verilog-A checkers is presented in the Table 1. All results have been
tabulated for the same test condition of the test circuit, measuring its
transient analysis for 5 ms. The results clearly show that native
assertion support namely Verilog-A in this case, improves the run
time by 2 to 50 times based on necessary simulator and accuracy
settings.

6. CONCLUSION
Simulation based verification and behavioural model validation of
mixed-signal designs and SoC would greatly benefit from assertion
based VnV to overcome manual, iterative, error-prone waveform
inspection. A novel assertion based self-checking concept is
introduced in this paper. A proof-of-concept of implementation
using a small set of often useful functions built using familiar design
infrastructures that allows a set of checkers to be coded once, linked
to a design element like a symbol or form. This infrastructure is used
to build any complex checkers to enable circuit verification,
behavioural model validation of AMS DUV. This automatically
allows functional and context checks at SoC level.

One of the primary challenges is the creation of an adequately rich
library, which requires a thorough study of typical checks needed
during verification. It is especially useful in developing complex
systems like the DC-DC switching regulator, and has the scope to be
applied in diverse environments in the IC design flow. The proposed
methodology has the following key advantages

1. Obviates the need for learning and familiarity with specific
HDL or any other higher level language for coding the
assertions

2. Enables building of assertions based checks for all
specification requirements at module level and high order
of reuse

3. Can work seamlessly with both Spice and co-simulation
environments

4. Enables automated verification at module level and all
higher level of SoC integration

5. Though an implementation using Verilog-A based
assertion & uses Cadence design environment is
illustrated, the concept can easily be extended for most
other languages (HDL and high level languages) and
design environments.

7. ACKNOWLEDGMENTS
The authors would like to thank Sandeep Tare and Dr. M. K. Srivas
or Texas Instruments for initiation into the area of assertion based
verification; Ranjit Kumar Dash, Sameer Dabadghav, Mohamad
Kassem, Daniel Pickens and Keith Kunz of Texas Instruments for
motivation, support and providing opportunity to apply the proposed

concepts on real designs; acknowledge with thanks the support
provided by Badrinarayanan Zanwar of Cadence Design Systems and
Guha Lakshmanan of Texas Instruments for sharing several technical
know-how and literature in the field of assertion based verification.

8. REFERENCES
[1] Buss, D.D., Chatterjee, A., Efland, T.R., Evans, B., Goodpaster, H.D.,
Haroun, B.S., Hellums, J.R., Krenik, W.R., Morton, A., Schichijo, H., Tsai,
C.-Y., Vrotsos, T.R. 2000. DSP & analog SOC integration in the Internet
era. IEEE Emerging Tech. Symp.: Broadband, Wireless Internet Access.
Apr. 2000, 1-5.
DOI=http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=916520
[2] Virtuoso Schematic Editor. Cadence Design Systems.
DOI=http://www.cadence.com/products/rf/schematic_editor/pages/default.asp
x.
[3] Hspice. Synopsys.
DOI=http://www.synopsys.com/Tools/Verification/AMSVerification/Circuit
Simulation/HSPICE/Pages/default.aspx.
[4] HSIM. Synopsys.
DOI=http://www.synopsys.com/Tools/Verification/AMSVerification/Circuit
Simulation/HSIM/Pages/default.aspxc.
[5] Nanosim. Synopsys.
DOI=http://www.synopsys.com/Tools/Verification/AMSVerification/Circuit
Simulation/Pages/NanoSim.aspx.
[6] Ultrasim. Cadence Design Systems.
DOI=http://www.cadence.com/products/cic/UltraSim_fullchip/pages/default.
aspx.
[7] Sharma, V., Lakshmanan, G., Tare, S., Dhamankar, S. 2008. Predicting
the Correlation between Analog Behavioral Models and SPICE Circuits for
robust SoC Verification. IEEE BMAS Workshop. Sep. 2008, 130 – 135.
DOI=http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4751254
[8] IEEE Standard for the Functional Verification Language E. Standard
IEEE 1647. Design Automation Standards Committee. Aug. 2008.
DOI=http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4586409.
[9] PSL: IEEE Standard for Property Specification Language (PSL).
Standard IEEE 1850, Design Automation Standards Committee. Apr. 2010.
DOI=http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5446004.
[10] Open Verification Methodology (OVM). Cadence & Mentor Graphics.
DOI=http://www.ovmworld.org/datasheets/OVM_Datasheet_12-17-07.pdf.
[11] VMM. Synposys & Accelera.
DOI=http://www.vmmcentral.org/grg.html.
[12] Dammers, D., Domingues, C., Schollan, D., Vosskamper, L.M. 2009.
Mixed signal system design verification accelerated with detector-based
diagnostic method. IEEE BMAS Workshop. Sept. 2009, 66-72.
DOI=http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5338887.
[13] Lammermann, S., Ruf, J., Kropf, T., Rosenstiel, W., Viehl, A., Jesser,
A., Hedrich, L. 2010. Towards assertion-based verification of heterogeneous
system designs. DATE. Mar. 2010, 1171-1176.
DOI=http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5456985.
[14] Tutorial on analog assertions and analog value fetch. Version 0.8, June
2010. Cadence Design Systems, Inc. 2010.
[15] IEEE Standard for SystemVerilog-Unified Hardware Design,
Specification, and Verification Language. Standard IEEE 1800, Design
Automation Standards Committee, Feb. 2009.
DOI=http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4796920.

