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ABSTRACT  
Performance analysis is an important aspect of TLM 2.0-based 

system design. While case-specific performance analysis can be hand 

coded into any model, it is possible to compute useful performance 

analysis metrics in a generic fashion for TLM 2.0 models.  

 

This work shows how the TLM 2.0 framework can be leveraged to 

create an automatic visual system performance stress test for SOC 

designs.  The approach is generic yet powerful – all that is required is 

a model of the system which follows the TLM 2.0 standard and the 

ability to increase the initiated traffic on the system or selected 

portions of the system in a steadily increasing fashion as time 

advances.  Using the stress test framework requires no code changes 

on the part of the system designer.  

 

We demonstrate use of the framework in the design of a high 

performance interconnect for a high speed memory sub-system.  

For the stress test, the framework measures throughput of the 

interconnect.  The “stress” point we observe involves increasing 

traffic from the initiators to the memories.  At capacity, the amount 

of data overwhelms the system.   

 

Categories and Subject Descriptors  
D.3.3 [System-Level Design]: Experience using ESL and/or TLM 

for system-level design and verification.  

 

General Terms  
Algorithms, Performance, Design, Standardization, Verification.  

 

Keywords  
TLM, ESL, System-Level Design, Performance analysis, Virtual 

Platforms, SystemC, C++. 

 

1. INTRODUCTION  
Performance analysis is an important aspect of TLM 2.0-based 

system design. While case-specific performance analysis can be hand 

coded into any model, it is possible to compute useful performance 

analysis metrics in a generic fashion for TLM 2.0 models1. This is 

possible because TLM 2.0 specifies a standard bus model for 

memory-mapped architectures that can be instrumented to compute 

performance metrics. 

 

We begin by describing a tool for automatic TLM 2.0-based 

performance analysis and looking at the semantics of the response 

status of the generic payload.  

 

Then we show how the TLM 2.0 framework can be leveraged to 

create an automatic visual system performance stress test for SOC 

designs.  The user selects a set of paths in the design and the 

framework monitors the values of the generic payload objects as they 

flow through the transport functions in the selection.  From this, a 

moving window of system throughput is computed. In addition, the 

response status values computed by the transport functions are 

monitored to track failure percentages. In many well-constructed 

TLM 2.0 designs, throughput and TLM response status are causally 

linked.  For such systems, once the load approaches maximum 

throughput (capacity) the number of failed transactions will increase 

until throughput plunges as the system fails to function correctly. 

 

Finally, we demonstrate use of the framework, and construction of an 

automatic stress test, in the design of a high performance 

interconnect for a high speed memory sub-system.  The stress test 

provides an abstract way to visualize when the system reaches 

capacity. The framework automatically creates a line chart with time 

on the X axis and throughput and TLM response status values on the 

Y axis. At first, throughput increases and all responses have the 

TLM_OK_RESPONSE value. Shortly before capacity is reached, 

throughput drops off and the graphs for response status values other 

than TLM_OK_RESPONSE begin to spike, indicating the system 

has started to fail. 

 

2. TLM 2.0-BASED PERFORMANCE 

ANALYSIS  
Typically, case-specific performance metrics are computed as a part 

of simulated models of system components. Cache models, for 

example, often compute and report ratios of hits and misses2.  Bus 

models often contain monitors used to sample latencies and report 

statistics on the usage of buffers3.  While case-specific performance 

analysis can be built into any simulated model, because TLM is a 

standard targeted for memory-mapped bus models4, it is possible to 

create tools that compute useful performance analysis metrics in a 

generic fashion without requiring any source code changes on the 

part of the designer. Such an approach allows automatic collection of 

quantitative data from a TLM simulation.   

 

In our approach, we developed a tool having native TLM 2.0 

knowledge to monitor the traffic between all TLM initiators and 

targets during the simulation.  It computes two basic types of system 

performance metrics: untimed and timed.  Untimed metrics can be 

useful for functional models lacking a high degree of timing 

accuracy that still provide enough detail to answer important 

questions about design trade-offs. 

 



From simple counting metrics, more complex statistics can be 

computed. The same basic counting infrastructure is the basis for 

timed performance metrics.  Timed statistics add one more key 

element: latencies.  Timed metrics are valuable only to the degree 

that a sufficient level of timing accuracy is available in a design, as 

described in section 3.  With TLM modeling, there is a tradeoff 

between timing accuracy, simulation speed, and model development 

effort.  Functional models based on the loosely-timed coding style 

generally are not accurate enough for timing metrics to yield much 

information.  However for TLM designs using the approximately-

timed coding style that approach cycle accuracy, timing accuracy is 

sufficient to make the gathered performance metrics very 

informative. The high performance interconnect described in section 

4 is such a model. 

 

For such models, average and peak throughput (the number of bytes 

transferred as a function of time) at each initiator or target interface 

is still the fundamental metric, but the minimum, maximum, and 

mean latency values can be of critical importance too. 

Those metrics form the basis of the stress test in section 5. 

 

3. MODELING OPTIONS FOR 

APROXIMATELY TIMED SYSTEMS 
 

3.1 GENERAL ASPECTS OF  APROXIMATELY 

TIMED MODELING 
The TLM 2.0 standard is specifically aimed at modeling memory-

mapped buses, where multiple initiators initiate transactions in 

parallel, with or without synchronization. The transactions flow 

through an interconnect structure that routes them to multiple targets 

that make the appropriate processing and send the responses back to 

the initiators. 

 

To correctly model the performance of such systems, the time to 

initiate, transmit and process the transactions must be taken into 

account. Most physical implementations would use clocks to time 

the transfers, but transaction level modeling, which is based on 

function calls to represent transaction, precludes the use of clocks. 

Instead, the timing of the elements is modeled by delays between 

simulation events, usually representing a count of clock cycles. This 

approach results in faster simulation speed and simplifies the overall 

modeling effort. 

 

Modeling accumulative delays is straightforward in blocking models 

based on the b_transport function of TLM 2.0, but it is 

generally not sufficient to represent the numerous transactions that 

flow in parallel into a modern pipe-lined design that is usually 

modeled with a bidirectional sequence of nb_transport_fw and 

nb_transport_bw non-blocking function calls. 

 

Delays are distributed throughout various parts of the system: 

• Initiators send transactions at a specific throughput, which 

defines the delay between the start of two consecutive requests. 

• The interconnect structure can present transmission delays and 

generally introduces delays where it must serialize multiple 

concurrent transactions on a single physical link (e.g. in 

arbiters). 

• The targets add latency during the processing of the 

transactions. 

 

By adding those delays, models take into account the physical 

limitation of the elements in terms of bandwidth (because the 

physical clock frequencies are not infinite). They should also take 

into account the limited number of concurrent transactions (because 

the physical buffer sizes are not infinite). 

 

3.2 LOAD ADAPTION 

We should note however that in a well constructed interconnect, it is 

possible to adapt initiators whose peak throughput is higher than the 

maximum bandwidth of the targets, with some conditions: 

• The peak throughput should be limited in time, so that average 

throughput is within the capacity of the system. 

• Some sort of FIFO elements must be used to buffer the extra 

traffic during activity peaks and transmit the transactions at a 

rate acceptable by the targets. 

 

Similarly, if some buffering is available before the arbiter, and if the 

partial bandwidth allocated to the initiator is sufficient for its average 

throughput, an initiator can send traffic to an arbiter in a non-

blocking fashion without waiting for the arbiter to select its 

transactions. As a result, the traffic load adaptation and the 

absorption of the peaks strongly depend on FIFOs. With FIFO 

models of infinite size, systems would seem to run well for any value 

of throughput from the initiators, but the number of transactions held 

in the FIFOs might never decrease and could increase infinitely. 

 

It is a better modeling practice to represent FIFOS using a finite size 

that supports: 

• A sufficient total number of transactions  

• A sufficient level of write data on the forward paths 

• A sufficient level of read data on the backward paths 

 

The latter two parameters are needed if the TLM 2.0 transactions are 

not limited in size, otherwise the FIFOs could hold transactions 

transporting an arbitrarily large number of bytes, which does not 

correspond to physical reality. 

 

Finally, we need to consider the behavior of a FIFO when it cannot 

hold a new transaction because it has filled up or lacks capacity to 

store the data of the transaction. 

 

Two main options are possible: 

• Stall the initiator until the FIFO fill level has decreased and the 

transaction can be accepted. 

• Return with an error response to the initiator. 

 

The choice can depend on the actual system being implemented. Not 

all initiators may support variable traffic rates (they cannot be 

stalled). From a modeling point of view, returning errors enables a 

simpler initiator design and can help pinpoint performance 

weaknesses of a system under a specific load. 

 

3.3 RESPONSE STATUS OF THE GENERIC PAYLOAD 

The TLM 2.0 generic payload includes some of the attributes found 

in typical memory-mapped bus protocols such as command, address, 

data, byte enables, single word transfers, burst transfers, streaming, 

and response status4. 

 

Response status is implemented as an enum with values: 

TLM_OK_RESPONSE, TLM_INCOMPLETE_RESPONSE, 

TLM_GENERIC_ERROR_RESPONSE, 

TLM_ADDRESS_ERROR_RESPONSE, 

TLM_COMMAND_ERROR_RESPONSE, 

TLM_BURST_ERROR_RESPONSE, 

TLM_BYTE_ENABLE_ERROR_RESPONSE. 

 

The Generic Payload class includes two helper functions – 

is_response_ok and is_response_error – to determine 



the error status of a generic payload object. is_response_ok is 

true if and only if the response status if TLM_OK_REPONSE and 

is_reponse_error returns true if and only if the response status 

is not equal to TLM_OK_REPONSE. Thus in a proper TLM 2.0 

design, any response other than TLM_OK_RESPONSE indicates an 

error condition. 

 

The TLM 2.0 standard specifies a precisely defined semantics for 

TLM_ADDRESS_ERROR_RESPONSE, 

TLM_COMMAND_ERROR_RESPONSE, 

TLM_BURST_ERROR_RESPONSE, and 

TLM_BYTE_ENABLE_ERROR_RESPONSE. Models must adhere 

to the definitions, in order to ensure interoperability of the models 

and debuggability of the system. 

 

However the TLM_GENERIC_ERROR_RESPONSE can be used 

with more flexibility to indicate other types of errors not defined by 

the standard. The errors related to performance modeling, such as 

errors from FIFOs, can be represented using 

TLM_GENERIC_ERROR_RESPONSE.  

 

Section 4 describes a high performance interconnect modeled at the 

AT level that uses this strategy for indicating failed transactions 

when buffers are filled up to their maximum capacity.  

 

4. A HIGH PERFORMANCE 

INTERCONNECT FOR A HIGH SPEED 

MEMORY SUB-SYSTEM 
As a case study, we examine the design of a high performance 

interconnect with the following architectural requirements: 

 

• High performance: 

o Good utilization of the total memory bandwidth. 

o Keep latency reasonably low. 

• Many parallel initiators, fewer parallel memory interfaces. 

• Initiators: 

o Usually not all active at the same time. 

o Very different traffic profiles. 

o Different priorities. 

• Target memories: 

o Large capacity and high speed SDRAM, such as the upper 

speed bins of DDR3 SDRAM5. 

o Limited number of independent interfaces (at most 2 or 4). 

o Able to receive transactions from any of the initiators 

(fully shared). 

o Complex timing: 

- Depends on address locality (penalty for row change). 

- Depends on command sequence. 

 

Figure 1 shows the specification of an interconnect structure for 64 

initiators and 4 SDRAM interfaces running independently and 

concurrently. 

 

 
 

Figure 1. Generic Interconnect 
 

Several architectural options are possible to design this interconnect, 

depending on the tradeoffs of cost and performance. The two 

extreme are: 

• A full crossbar that enables all paths from any initiator to the 

memories in parallel and only arbitrates transactions in front of 

the memories. This is the solution with the highest silicon area. 

• A single arbiter to serialize the transactions from all initiators 

and a single router to select the target memory interface. The 

area is minimal, but the total throughput is very limited. 

 

We consider an intermediate solution: a semi-cross-bar made of three 

main layers of transaction arbitration and routing. It enables several 

parallel transaction paths but is not as large as a full cross bar. 

 

Figure 2 shows the forward path. Figure 3 shows the backward path. 

 

 
Figure 2. Forward Path. 

 
Arbiters A0 – A7 and C0 – C7 arbitrate between incoming 

transactions for use of a shared resource. They implement a priority 

policy and perform the routing on the backward path. Routers R0 – 

R7 simply route transactions according to their addresses. From a 

performance perspective, routing is transparent. They must arbitrate 

on the backward path. The FIFOs between the ports and arbiters 

support simple buffering of transactions waiting for arbitration. They 

have a limited size (for transactions and write data) and return errors 

when they are full. There is no buffering on backward path. The 

reordering queues provide a size limited buffering capability similar 

to the FIFOs.  They implement an algorithm to re-order transaction 

sequence so that SDRAM usage is more optimal. They do not need 

to make any buffering on backward path.  

 



 
Figure 3. Backward Path. 

 

The interconnect has two types of arbiters. The simple arbiter (Figure 

4) selects one request, sends it, and waits for the response before 

selecting a new request. A simple arbiter supports only one 

outstanding transaction per port (required for non-reentrant targets). 

It serializes full (request + response) transactions. Transmission time 

may be modeled in the target. 

 

 
Figure 4. Simple Arbiter. 

 

The simple req arbiter (Figure 5) selects one request, sends it, and 

selects a new request without waiting for the response. It supports 

any number of outstanding transactions and must tag the requests to 

route the responses. It serializes requests (responses are already 

serialized by target). Simple req arbiters model the time needed to 

transmit a request, typically constant + proportional to write data 

size. 

 

 

 
 

Figure 5. Simple Req Arbiter. 
 

5. THE STRESS TEST. 
To demonstrate the automatic visual stress test, we took a design 

using AT level TLM 2.0 modeling of the system described in section 

4. Again, the model buffers elements up to the capacity of the 

buffers.  After that, the nb_transport_x calls set the 

TLM_GENERIC_ERROR_RESPONSE response status for reads 

and writes that cannot be successfully completed. Given the fact that 

the interconnect has a fixed upper capacity, driving input beyond that 

capacity will result in failed transactions.  

 

The Response Status Chart and Throughput Chart shown in Figures 

6 and 7 respectively constitute a visualization of the system stress 

test for the design of section 4.  In both charts, time is displayed on 

the X axis.  The activity ratio of the design is defined as zero when 

all initiators are “off” and producing no traffic (reads and writes 

through the interconnect to a memory), and one when all initiators 

are “on” and producing traffic at maximum capacity. The charts 

show the results from a simulation where the activity ratio was 

slowly increased from zero to one over a span of 100 us (of 

simulated time). 

 

5.1 RESPONSE STATUS 

The Response Status Chart (Figure 6) shows the response status as 

the activity ratio is increased. The green line shows the number of 

successful transactions (TLM_OK_REPONSE) processed in the 100 

us sampling period. The orange line shows the number of 

transactions which failed (TLM_GENERIC_ERROR_RESPONSE) 

because the system was overloaded and queues were full. Notice that 

at low activity ratios (system load) almost all transactions were 

successful, but after the activity ratio exceeds 0.2,  

  

5.2 THROUGHPUT 
This chart shows the offered load and throughput as the activity ratio 

is increased. Notice that the offered load increases linearly with 

activity ratio (as you would expect). The throughput of transactions 

through the system closely tracks the offered load (because at low 

loads nearly all the transactions are successfully processed). Once, 

the activity ratio approaches 0.2, the throughput levels off and 

declines slightly with increasing activity ratio. This is expected 

because once the system is completely saturated, nothing more can 

be pushed through the system regardless of how many transactions 

are generated by the initiators. 

 

5.2 GENERIC 
To reiterate, because of the standardization of the generic payload 

under TLM 2.0, this test is constructed in a generic fashion – there is 

no need for the user to modify their code as long as they use a tool 

for constructing such performance analysis that analyzes the values 

of the generic payload.  The two charts constitute an automatic visual 

stress test for a TLM 2.0 design.



 

 

 

 

  
Figure 6. Response Status Chart. 

 

 

 

  
Figure 7. Throughput Chart. 



 

6. CONCLUSION. 
This work has demonstrated the use of a new SystemC technology 

that automatically generates system performance statistics based on 

the TLM 2.0 standard. It shows how the tool can be used to construct 

an automatic visual stress test for well constructed TLM 2.0 designs 

modeled at the AT level of abstraction. The existence of the generic 

payload – that makes interoperability between models of disparate 

blocks of IP possible – enables the creation of performance analysis 

metrics and tools without modifying individual designs. For results 

to be meaningful in real usage, a sufficient level of timing must be 

modeled in the system.  The model must also be well constructed – 

when buffering elements are out of capacity, the response status has 

to be set accordingly. These sorts of automatic analyses, made 

possible by the TLM 2.0 standard, bring the promise of better 

debugging and analysis of SystemC-based SOCs. 
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