
A Practical Look @ SystemVerilog Coverage –
Tips, Tricks, and Gotchas

Doug Smith
Doulos

16165 Monterey Road, Suite 109
Morgan Hill, CA USA
+1-888-GO DOULOS

doug.smith@doulos.com

John Aynsley

Doulos
Church Hatch, 22 Market Place

Ringwood, Hampshire UK
+44 1425 471223

john.aynsley@doulos.com

ABSTRACT
Functional verification of today’s large and complex designs is a

major challenge and bottleneck. As a result, various tools,

techniques, and languages have been developed to automate as

much as possible to maximize productivity. For example,

automatic testbench generation of random stimulus offers a

significant aid in finding obscure and hard-to-find bugs. With

random testing, however, there is often no obvious relationship

between a given simulation run and the desired test activity unless

a functional coverage relationship is defined.

Once this relationship is defined, the number of times each

scenario occurs is recorded as functional coverage, providing a

quantitative metric of what has been tested on a device. In

SystemVerilog, functional coverage is defined in terms of cover

properties and functional covergroups. A rich set of language

constructs is provided for defining functional scenarios and the

crossing or intersection of those scenarios. SystemVerilog also

offers a coverage API for accessing coverage results at simulation

runtime.

Unfortunately, not all coverage-related language features are ideal

or even straightforward. For instance, a rather useful feature

omitted in the IEEE-1800 standard is the ability to query coverage

results from specific coverage bins. Nonetheless, with a little

ingenuity these shortcomings can be worked-around, which this

paper describes. Tips and tricks are presented like how to direct

stimulus generation using coverage results, or how to coordinate

cover properties with covergroups to take advantage of the cover

property’s temporal syntax when matching functional behavior.

Likewise, several gotchas to avoid are considered. Armed with the

appropriate toolset, SystemVerilog coverage can provide an

effective tool for accomplishing coverage driven verification.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – hardware description

languages, simulation, and verification.

General Terms
Languages, Verification.

Keywords
Coverage, SystemVerilog, SVA, SystemVerilog Assertions,

covergroup, coverpoint, cover property, default, bins, wildcard,

cross.

1. INTRODUCTION
Functional coverage comes in two flavors in SystemVerilog. One

type of coverage comes from a cover property, which uses the

same temporal syntax used by SystemVerilog assertions (SVA).

Since cover properties uses the same properties as asserts, the

same work creating the properties can be reused in both checking

and coverage gathering. Cover properties are typically used for

protocol coverage since the temporal syntax is ideal for describing

sequences of events over time as needed for bus interfaces.

Unfortunately, cover properties can only be placed in structural

code (i.e., modules, programs, or interfaces) and cannot be used in

class-based objects. Likewise, their coverage information is not

easily accessible in SystemVerilog for use in a testbench (for

example, for steering stimulus generation).

For example, Figure 1 shows a sample cover property. The

simulator keeps track of how many times the sequence occurs and

it can be viewed it in the simulation waveform or coverage report.

cover property (@(posedge clk)

$rose(req) |=> ((req && ack)[*0:$] ##1 !req));

clk

req

ack

0 1
Tool dependent display

Figure 1: Property coverage using a cover property.

The second type of functional coverage is sample-based coverage

provided by a covergroup. Covergroups record the number of

occurrences of various values specified as coverpoints. These

coverpoints can be hierarchically referenced by your testcase or

testbench so that you can query whether certain values or

scenarios have occurred. They also provide a means for creating

cross coverage. Unlike cover properties, covergroups may be

used in both class-based objects or structural code.

For example, Figure 2 illustrates a covergroup. When defining

covergroups, the covergroup is given a name (e.g., cg) and

optionally provide a sampling event, which in this case is the

positive edge of clk qualified by the decode signal. In other

words, when a valid instruction occurs (decode asserted), the

values on the opcode and mode signals are sampled.

module InstructionMonitor (

input bit clk, decode,

input logic [2:0] opcode,

input logic [1:0] mode);

covergroup cg

@(posedge clk iff decode);

coverpoint opcode;

coverpoint mode;

endgroup

cg cg_Inst = new;

...

endmodule: InstructionMonitor

7

14

3

9

000 001 010 011 100 101 110 111

0

5

10

6

13

7

18 16

00 01 10 11

coverage hole

Figure 2: Sample based coverage using a covergroup.

Since opcode has 23 = 8 possible values, 8 bins are created to

keep track of the number of times each value occurs. For the

mode input, there are 22 = 4 possible values so 4 bins will be

created.

Defining the covergroup alone does not start the coverage

collection. A covergroup needs to be instantiated using the new

operator and given an instance name. Inside a class, an instance

name is not required and the new operator is called on the

covergroup inside the class constructor.

Where coverage becomes really interesting is when the individual

coverpoints or bins are crossed together. Crossing terms simply

creates a matrix that shows when the different values cross or

simultaneously occur together.

For example, in Figure 3 all opcodes values are being crossed

with all possible values of mode. In other words, the matrix

shows all the simultaneous occurrences of the different opcodes in

all 4 modes. The zeros in the matrix reveal coverage holes; i.e.,

values that have either not been testing, generated, or possibly

values that are invalid or undefined. In any verification effort,

coverage holes must be identified and either filled by writing

more stimulus, or justifiably ignored in cases such as when the

scenarios are unreachable by design.

covergroup cg ...

coverpoint opcode;

coverpoint mode;

cross opcode, mode;

endgroup

000 001 010 011 100 101 110 111

0

7

3
1 0 1

4
2

0

10

0

0
10

11

00

01

opcode

m
o
d
e

0

0

0

0

0

0

22

22

3

3 3 3

1 1 1 1

11

Figure 3: Cross-coverage example.

2. COVERAGE TIPS
SystemVerilog offers a wide range of options and syntax for

defining coverage in any environment. For a full and detailed

description of what is supported, refer to the IEEE 1800 language

reference manual ([2],[3]).

Writing coverage in SystemVerilog is easy to do; however, there

are a few tips that might help make your coverage even easier and

more productive. Here are few worth considering.

2.1 Tip #1: Use of shorthand notation
SystemVerilog defines many concise ways of defining coverage.

Figure 4 shows an example of a state machine and several

shorthand notations available. Transitional coverage can be

defined using the => operator, which keeps a record of the

transitions from one state to the next.

Idle Go1

Go2

Standby

Reset

enum { Idle, Standby, Go1, Go2 } states;

covergroup cg_FSM @(posedge Clock);

 coverpoint State {

 bins valid_states[] =

 { Idle, Standby, Go1, Go2 };

 bins valid_trans =

 (Idle => Go1 => Go2 => Idle),

 (Idle => Standby => Idle);

 bins reset_trans =

 (Go1, Go2, Standby => Idle);

 bins idle_range = (Idle[*5:7] => Go1);

 bins go1_repeat = (Go1 [-> 5]);

 wildcard bins idle_trans =(2’bx1 => Idle);

 }

endgroup

Figure 4: FSM transition coverage.

Notice the syntax for the reset_trans bin: (Go1, Go2,

Standby => Idle). This is really saying, record all of the

transitions to the reset state or:

Go1 => Idle, Go2 => Idle, Standby => Idle

Explicitly writing all the transitions is not required. Likewise, the

idle_range bin uses the sequence repeat operator [* range],

which translates into one of the following sequences:

(Idle => Idle => Idle => Idle => Idle)

(Idle => Idle => Idle => Idle => Idle => Idle)

(Idle => Idle => Idle => Idle => Idle => Idle

=> Idle)

SystemVerilog also defines a non-consecutive operator, [->N:M],

used in coverage bin go1_repeat. Here, coverage will be

collected everytime there are 5 non-consecutive occurrences of

the Go1 state.

Not only can ranges be defined in covergroups, including using

the open range operator $, which specifies either the minimum or

maximum value for a coverpoint, but the wildcard bins

operator helps to easily define a range of values. With

wildcard, any X, Z, or ? will be treated as a wildcard. In the

idle_trans bin example above, the expression

(2’bx1 => Idle)

translates into

Standby => Idle // Standby = 2’b01

Go2 => Idle // Go2 = 2’b11

Using these shorthand notations makes coverage much easier to

write.

2.2 Tip #2: Covergroup arguments add

flexibility
Covergroups can be defined with arguments using the same

syntax as functions and tasks. Doing so makes a covergroup more

flexible and reusable. For example,

covergroup cg (ref int v, input string comment);

 coverpoint v;

 option.per_instance = 1;

 option.weight = 5;

 option.goal = 90;

 option.comment = comment;

endgroup

int a, b;

cg cg_inst1 = new(a, "cg_inst1 - variable a");

cg cg_inst2 = new(b, "cg_inst2 - variable b");

Here, two arguments have been added to the covergroup cg. An

argument v is added so a signal or variable to cover can be passed

into the covergroup and used with the coverpoint. Notice, the

argument is passed by reference using the ref keyword so the

covergroup can see the variable’s value as it changes. Likewise,

other arguments like strings can be passed to be used in the

covergroup’s options.

Once a covergroup has arguments, multiple instances can be

created where the variable to cover is pass into the covergroup

during the call to new, creating specific covergroups for each

variable. This allows reuse of the same covergroup definition.

Arguments on covergroups also facilitate reuse in another way.

Many times, coverage needs collected on values outside the

module where the covergroup is define such as probing down

inside the design hierarchy from a testbench. SystemVerilog

allows for coverpoints to use hierarchical path names with

coverpoints as follows:

covergroup cg;

 coverpoint testbench.covunit.a;

 coverpoint $root.test.count;

 // ILLEGAL - reference to coverpoint

 // coverpoint testbench.covunit.cg_inst.cp_a;

endgroup

However, hard-coding pathnames inside of anything makes it less

reusable. Instead, covergroup arguments can be used to provide a

way to pass references without hard-coding the references into the

covergroup. For example, the following shows how to make a

generic covergroup and then pass the specific pathnames into it

(provided the reference points to an equivalent type as the

covergroup argument):

covergroup cg (ref logic [7:0] a, ref int b);

 coverpoint a;

 coverpoint b;

endgroup

cg cg_inst = new(testbench.covunit.a,

 $root.test.count);

2.3 Tip #3: Utilize coverage options
Covergroups have many options that can be customized. For

every covergroup, there are type options and per instance options,

represented by a corresponding internal structure.

Type options apply to the entire covergroup type and can only be

set when the covergroup is declared or by using the scope

resolution operator (::). They are specified using the

type_option covergroup member. There are 4 type options

available:

Table 1: Covergroup type options.

Type Option Description

weight Weight of coverage in the coverage

calculation

goal Percentage of coverage to reach

strobe Samples the coverage values once everything

is stable (i.e., postponed simulation region)

comment String comment

The weight and goal options are probably the most noteworthy.

To remove a covergroup from the coverage calculation, simply set

the covergroup’s weight to 0 and it will no longer effect the result.

The goal is important because it determines whether the coverage

report shows a complete coverage (green) or still missing values

(amber or red). The following example shows how to use type

options.

covergroup cg @(posedge clk);

 type_option.weight = 5; // % of calculation

 type_option.goal = 90; // % of goal

 type_option.strobe = 1; // Postponed region

 cp_a: coverpoint a {

 type_option.comment = comment;

 };

 coverpoint b;

endgroup

// Requires constant expressions

cg::type_option.goal = 100;

cg::cp_a::type_option.weight = 80;

One of the nice things about coverage in general is that it is

cumulative. For example, if a covergroup is created in a class

object, every instance of that covergroup adds to the overall

cumulative coverage even if the class objects later becomes

garage collected along with the covergroup.

However, often per instance coverage is required as well. Take

for example, a system-on-chip. Many sub-systems will connect to

the system interconnect along with the memory and the processor.

Each device connects to the system interconnect using the same

module that implements the bus protocol, and this module can

contain a covergroup for the bus protocol. While cumulative

coverage is collected across all the occurrences of the covergroup,

the coverage result will not reflect which interconnects are

performing the communication nor the type of communication

(e.g., burst reads, simple writes, etc.). For coverage results per

instance, the per instance option can be used. Per instance

coverage keeps track of coverage for each interface instance so it

can be seen if all the bus interfaces have been adequately

exercised and tested.

To enable per instance coverage, the per_instance option is

used with the option structure inside a covergroup. The

following illustrates several of the per instance options available:

covergroup cg @(posedge clk);

 option.per_instance = 1; // Turns on options

 option.weight = 5; // % of calculation

 option.goal = 90; // % of at_least

 option.at_least = 10; // Number to see

 option.comment = comment;

 coverpoint a { option.auto_bin_max = 128; };

 coverpoint b { option.weight = 50; };

endgroup

There are 9 different options, but of particular importance is the

at_least option. The at_least option specifies the number

of times a value must occur in order to reach the coverage goal.

For example, say an engineer would like to see at least 10

occurrences of a coverpoint value. If only 8 occurrences are seen,

then the coverage for that coverpoint will only be 80%. Of

course, the goal of any verification effort is to reach 100%

coverage so setting the goal, weight, and at_least options

are important in achieving any verification goal.

3. COVERAGE TRICKS
Defining coverage is typically straightforward in SystemVerilog,

but there are some limitations and shortcomings in the language.

However, that does not mean that these shortcomings cannot be

worked around. In this section, several tricks will be presented to

hopefully help you get the most out of SystemVerilog coverage

and workaround some of its irksome limitations.

3.1 Trick #1: Combine cover properties with

covergroups
Cover properties and covergroups essentially have different uses.

A cover property looks for a match of a temporal sequence or

event while a covergroup creates bins of the different values as

they occur. However, sometimes it is very useful to use the

powerful SVA temporal property syntax to observe behavior and

cross that coverage with other values or events that occur. For

example, a cover property can easily describe a read or write

transaction across a bus interface, and it would be useful to cross

all read and write transactions to different address spaces.

Likewise, in a class-based testbench environment where

transactions are randomly generated, it might be useful to

feedback the cover property coverage to help steer the stimulus

generation, or at least use the cover property temporal syntax in a

monitor to match when read and write transactions occur across

an interface so they can be sent off to a scoreboard instead of

implementing a bus protocol state machine in the monitor.

Unfortunately, cover properties cannot be used in an object

because they create a thread of execution and an object is nothing

more than a chunk memory. Even so, cover properties can be

combined with covergroups to enable them to record protocol

coverage, eliminate the need for state machines in monitors, and

cross the protocol coverage with other interesting coverpoints.

For example, consider a class-based testbench environment with a

coverage collector as shown in Figure 5:

class testbench

class monitor

class collector

Coverage registers

module
cpu

module
sram

module
rom

interface bus_if

Covergroups

Cover Properties

Figure 5: Class-based testbench with coverage collector.

A cover property that monitors for APB read and write

transactions across the system interface might look like this:

interface apb_if;

 ...

 sequence apb_trans;

 t_apb_a addr;

 t_apb_d data;

 @(posedge PCLK)

 (

 ((PSEL && PWRITE), addr = PADDR,

 data = PWDATA)

 ##1

 (PENABLE, cover_write(addr, data))

) or

 (

 ((PSEL && !PWRITE), addr = PADDR)

 ##1

 (PENABLE, data = PRDATA,

 cover_read (addr, data))

);

 endsequence: apb_trans

 cover property (apb_trans);

endinterface

This sequence implements the APB protocol, captures the address

and data, and passes the information into the corresponding

cover_write() or cover_read() tasks. These tasks also

live within the interface, and could be implemented as follows:

typedef struct packed {

 t_dir dir;

 t_apb_a addr;

 t_apb_d data;

} apb_s;

apb_s t;

bit cov_trig = 0;

...

task cover_write(t_apb_a addr, t_apb_d data);

 t = { WRITE, addr, data };

 cov_trig = ~cov_trig;

 endfunction

task cover_read(t_apb_a addr, t_apb_d data);

 t = { READ, addr, data };

 cov_trig = ~cov_trig;

 endfunction

Here, the cov_trig variable will be used to signal the class-

based monitor when there is a new transaction to grab through its

virtual interface. A named event could also be used, but not all

simulators provide good support for an event through a virtual

interface.

In the monitor, there is no need for an APB state machine since

the protocol is being monitored by the cover property. Instead,

the monitor simply waits for the coverage trigger to toggle like

this:

class monitor ...;

 task run ();

 forever begin

 apb_trans tr;

 @(bus_if.cov_trig)

 tr = new(bus_if.t.dir,

 bus_if.t.addr,

 bus_if.t.data);

 cov_collector.write(tr);

 end

 endtask: run

 ...

endclass

Using this approach allows you to have the best of both worlds.

The temporal syntax can be used to create the FSM to watch the

bus protocol and simplify the monitor development, and then

covergroups can be used in the class-based environment to record

the information. Once the information is in the covergroup, cross

coverage can be created, or the coverage information used for test

stimulus feedback.

3.2 Trick #2: Create coverpoints to query

bin coverage
Built-in to all covergroups, coverpoints, and crosses is a function

called get_coverage(), which returns a real number of the

current percentage of coverage. For example,

initial

 repeat (100) @(posedge clk) begin

 cg_inst.sample(); // Sample coverage

 if (cg_inst.get_coverage() > 90.0)

 cg_inst.stop();

 end

In this example, the sample() method is being used to manually

sample the coverage values. The coverage percentage is then

used to determine if the goal of 90.0% has been met and if so then

turn off the coverage collecting.

Not only is get_coverage() useful for controlling coverage

collection, but it can also be used to steer random stimulus.

However, it is important to understand how the coverage is

computed. A coverage bin is considered covered if it has reached

its goal of 100%, and a coverpoint is considered covered if all its

bins have reached 100%; otherwise, it is considered uncovered or

0%. In other words, say for example that a bin has been hit 4 out

of 5 times, and the coverage goal is set to 5 occurrences. A

simulator report will show that the bin is covered 4/5=80%.

Unfortunately, querying the coverage on the coverpoint would

result in 0% covered, not 80%, because the bin has not reached its

coverage goal. If a coverpoint has 2 bins and one of them has

reached its goal, then the coverpoint will be considered 50%

covered, 3 bins with one bin covered—33%, and so on. So there

is no way to query the true bin coverage, but at least whether a bin

has reached its coverage goal or not can be determined.

The get_coverage() function works on covergroups,

coverpoints, and crosses, but not on individual coverage bins. For

example, given the following covergroup,

covergroup cg;

 coverpoint i {

 bins zero = { 0 };

 bins tiny = { [1:100] };

 bins hunds[3] =

 { 200,300,400,500,600,700,800,900 };

 }

endgroup

the querying of coverage on the zero bin would be illegal:

// ILLEGAL – not allowed!

// cov = cg_inst.i.zero.get_coverage();

In other words, SystemVerilog does not provide fine-grain details

to the actual values covered in a coverpoint. Fortunately, there is

a partial workaround. Each value of interest can be turned into a

unique coverpoint so that the get_coverage() function can be

called on each value. This syntax is somewhat cumbersome and

tedious, but it accomplishes the goal. For example, defining

coverage on individual opcodes for a processor design might look

something like this:

covergroup instr_cg;

 op_nop : coverpoint instr_word[15:12] {

 bins op = { nop_op };

 }

 op_load : coverpoint instr_word[15:12] {

 bins op = { load_op };

 }

 op_store : coverpoint instr_word[15:12] {

 bins op = { store_op };

 }

 op_move : coverpoint instr_word[15:12] {

 bins op = { move_op };

 }

 ...

endgroup

Now with the individual coverpoints defined for each value, the

coverage can be queried without any problems:

cov = cg_inst.op_nop.get_coverage();

Again, remember that the only coverage returned from these

coverpoints is either 0% or 100%—i.e., either the goal has been

reached or not. Per instance coverage could also be specified with

the at_least option set for each opcode value.

3.3 Trick #3: Direct stimulus with coverage
Often times, engineers want to feedback coverage information

directly into their constrained random stimulus generation. For

example, this coverage could be used in a randcase to steer the

direction of the random stimulus like this:

// Bias randomness to hit uncovered coverpoints

randcase

 (101 - cg_inst.a.get_coverage): ...;

 (101 - cg_inst.b.get_coverage): ...;

 (101 - cg_inst.c.get_coverage): ...;

 ...

endcase

Here, the current percentage of coverage is being used to

determine the weighting in the randcase statement. If the

coverpoint has reached its goal, then 100% will be returned so the

percentage is subtracted from 101 to bias the randcase to

choose the cases that have not been seen (without excluding it

altogether, which would happen if subtracted from 100).

Another way to steer stimulus is using the SystemVerilog

distribution weighting called dist. With the dist constraint,

you can specify the probability that a particular value will occur.

The dist weighting can be defined as an expression; however,

not all simulators support expressions in a distribution.

Alternatively, variables can be used for each value’s weight. For

example,

int weight_nop = 1,

 weight_load = 1,

 weight_store = 1,

 weight_add = 1,

 ...;

constraint bias_opcodes {

 opcode dist {

 nop_op := weight_nop,

 load_op := weight_load,

 store_op := weight_store,

 add_op := weight_add,

 ...

 };

}

In this example, all the values have an equal weighting of 1 at

simulation startup. As simulation progresses, these weights must

be updated to affect the randomization of the opcode stimulus.

Before randomize() is called, a method called

pre_randomized() is invoked, which is an ideal place to

update these weights that will be used in the dist constraint

when randomize() is called. For example,

function real calc_weight(opcode_t op);

 real cov;

 case (op) // Grab coverage

 nop_op:

 cov = covunit.cg.op_nop.get_coverage;

 load_op:

 cov = covunit.cg.op_load.get_coverage;

 store_op:

 cov = covunit.cg.op_store.get_coverage;

 ...

 endcase

 calc_weight = (100 – cov) * 0.5;

endfunction : calc_weight

function void pre_randomize();

 // Set dist weighting

 weight_nop += calc_weight(nop_op);

 weight_load += calc_weight(load_op);

 weight_store += calc_weight(store_op);

 weight_add += calc_weight(add_op);

 ...

endfunction

The calc_weight() function is called for each opcode and the

coverage updated by grabbing the current coverage and

subtracting it from 100. Recall from section 3.2, the value that

get_coverage() will return will only be 100% or 0%—i.e.,

covered or not covered. Therefore, if the opcode is not covered,

then 100*0.5 = 5 will be added; otherwise, nothing will be added

to the weighting (i.e., 0 * 0.5). Using this formula, opcodes that

have been seen a lot will not increase their weighting; whereas,

unseen opcodes will have a very high probability of being selected

next.

One word of caution—the point of randomization is to find hard-

to-find corner cases due to all the randomization. When

constraining randomization like this, the stimulus is no longer

truly random, which means that while it will quickly fill coverage

matrixes, it may not do a very good job uncovering those hard-to-

find bugs.

3.4 Trick #4: Covering cover properties
When a cover property matches a behavior, the simulator keeps

track of the number of times that that behavior is attempted or

matched. Unlike covergroups, which can be queried for coverage,

there is no direct way to access this coverage information from

within SystemVerilog; instead, it is included in a simulator’s

coverage report. Likewise, there are no language constructs that

allow weighting of the cover property in a coverage report. While

there are no direct ways in SystemVerilog to access this coverage

information, there are still a few indirect ways to acquire it.

3.4.1 Solution 1: SystemVerilog only approach
The easiest way to figure out the number of matches from a cover

property is to simply keep track using a counter. Cover properties

allow for a statement to execute when the property is matched

where a coverage counter can be incremented. For example,

coverage could be store in an associative array as follows:

int coverage[string]; // Coverage array

c1: cover property (a |=> b) coverage["c1"]++;

c2: cover property (c |=> d) coverage["c2"]++;

This coverage records the number of successful attempts of the

property; however, coverage can also be kept for the number of

matches of either the precondition or the condition by using a

function:

function void cov(string s);

 coverage[s]++;

endfunction

c1: cover property (a |=> (b, cov("c1"));

c2: cover property ((c, cov("c2")) |=> d);

When c1 successfully matches the condition of b true, or c2

matches the precondition of c true, then the coverage array is

incremented by the function call to cov(). This coverage is then

readily available within the testbench environment through the

coverage associative array.

Of course, creating a counter does not add the cover property to

the overall coverage calculation. For that, the associative array

can be changed into a true-false array using a bit data type, and a

covergroup. Since the elements will be set by different properties

at different deltas, the covergroup has its

type_option.strobe set so that coverage is only collected

at the end of the time slot. After coverage is sampled, then the

coverage array needs to be cleared in preparation for the next

clock cycle, which can be accomplished on the opposite edge of

the clock using a default assignment pattern:

bit coverage[string];

c1: cover property (a |=> b) coverage["c1"]=1;

c2: cover property (c |=> d) coverage["c2"]=1;

covergroup cg @(posedge clk);

 type_option.strobe = 1; // Sample end of cycle

 coverpoint coverage["c1"] {

 bins match = { 1 };

 }

 coverpoint coverage["c2"] {

 bins match = { 1 };

 }

endgroup

cg cg1 = new;

// Clear the coverage after it is sampled

always @(negedge clk)

 coverage = ‘{default:0};

In addition, this coverage can be weighted and crossed:

covergroup cg @(posedge clk);

 type_option.strobe = 1;

 option.per_instance = 1;

 cp_c1: coverpoint coverage["c1"] {

 bins match = { 1 };

 option.weight = 1;

 }

 cp_c2: coverpoint coverage["c2"] {

 bins match = { 1 };

 option.weight = 0.5;

 }

 cross cp_c1, cp_c2;

endgroup

This covergroup creates a cross matrix for every time that

property c1 occurs at the same time as c2, and it only records the

matches. Removing the bins in the coverpoints would also record

all the non-matches, creating a 2x2 coverage matrix.

3.4.2 Solution 2: DPI and VPI coverage extensions
The previous solution required keeping track of matches manually

in a variable. However, the simulator already does this and the

information is accessible through the VPI assertion extensions.

The VPI function, vpi_get(), has been extended so that the

number of times a property is attempted, succeeds, or fails can be

obtained.

Unfortunately, most simulators do not support these assertion

extensions; however, if you are fortunate enough to use such a

simulator,1 then the coverage can easily be obtained by calling the

vpi_get() function from a DPI function call (DPI is easier

because it does not require registering the user-defined functions).

For example, a simple C function called coverage() can be

defined that queries and returns a cover property’s

coverage:

#include <vpi_user.h>

#include <sv_vpi_user.h>

#include <svdpi.h>

// DPI function

int coverage (const char *pathname) {

 vpiHandle a_handle;

 s_vpi_error_info error;

 PLI_INT32 obj;

 PLI_INT32 count;

 // Get a handle to the property

 if (a_handle = vpi_handle_by_name(

 (PLI_BYTE8 *) pathname,

 NULL)) {

 // Check that the handle is a property

 if ((obj = vpi_get(vpiType, a_handle)) &&

 ((obj == vpiCover)||(obj == vpiAssert))){

 // Retrieve the coverage

 count = vpi_get(vpiAssertSuccessCovered,

 a_handle);

 if (vpi_chk_error(&error) > 0)

 vpi_printf("%s\n", error.message);

 else

1 The following solution works with Cadence Incisive simulator

9.2-p27.

 return count; // Return coverage

 } else

 vpi_printf("%s is not a property!\n",

 pathname);

 } else

 vpi_printf("ERROR! Cannot find %s\n",

 pathname);

 return -1;

}

On the SystemVerilog side, the function can be imported through

the DPI as:

import "DPI-C" context function int coverage(

input string pathname);

and then called inside the testbench code as:

c1: cover property (@(posedge clk) a |=> b);

final

 $display("c1 matched = %d times",

 coverage("tb.c1"));

where tb.c1 is the hierarchical pathname to the c1 cover

property. (Notice, the context keyword is required here since

the DPI function is accessing VPI).

3.4.3 Solution 3: DPI and VPI assertion callbacks
While many simulators have not implemented the VPI assertion

extensions, most have at least implemented the assertion

callbacks. A callback can be created for several reasons such as

an assertion starting, succeeding, or failing, and these callbacks

can be used for asserts or cover properties.

In the first solution above (3.4.1), a function had to be added to

every property in order to record the match in a coverage array.

Using callbacks and DPI, all the properties in a design can

automatically be detected and monitored, and every match

recorded and stored in the DPI code. For example, the following

structure could be used in C to store the information (a C++ hash

would also work nicely):

typedef struct {

 PLI_BYTE8 *pathname;

 int count;

} cover_t;

and then used to create an array of structures for all the properties:

static cover_t *cover_info[MAX_PROPERTIES];

In order to enable the cover property callbacks, the

following function could be used traverse through the design and

enable the callbacks on all cover properties found:

void enable_property_coverage () {

 vpiHandle iter;

 vpiHandle c_handle;

 s_vpi_error_info err;

 PLI_BYTE8 *fullname;

 if ((iter = vpi_iterate(vpiAssertion, 0)) !=

 NULL){

 while ((c_handle=vpi_scan(iter)) != NULL){

#ifndef VCS

 // Enable callbacks only on cover props

 if (vpi_get(vpiType, c_handle) ==

 vpiCover) {

#endif

 // Allocate the memory for the coverage

 cover_info[coverid] = (cover_t *)

 malloc(sizeof(cover_t));

 // Store information in coverage array

 // First, grab the name. Do a string

 // copy to make it portable across

 // simulators.

 fullname = vpi_get_str(vpiFullName,

 c_handle);

 cover_info[coverid]->pathname =

 malloc(strlen(fullname)+1);

 strcpy(cover_info[coverid]->pathname,

 fullname);

 // Initialize the coverage count

 cover_info[coverid]->count = 0;

 // Register the callback

 if (vpi_register_assertion_cb (

 c_handle, cbAssertionSuccess,

 foundmatch, (PLI_BYTE8 *)

 cover_info[coverid++]) == NULL){

 if (vpi_chk_error(&err) > 0)

 vpi_printf("%s\n",err.message);

 else

 vpi_printf("ERROR! Cannot register

callback for cover property %s\n", vpi_get_str(

vpiFullName, c_handle));

 } else

 vpi_printf("VPI: Adding coverage

callback for cover property %s\n", vpi_get_str(

vpiFullName, c_handle));

#ifndef VCS

 }

#endif

 }

 }

}

The vpi_register_assertion_cb() function is called to

register a cbAssertionSuccess callback; i.e., every time the

cover property succeeds, the specified function,

foundmatch(), is invoked. The foundmatch() function

can simply increment the coverage count:

static PLI_INT32 foundmatch(

 PLI_INT32 reason, p_vpi_time ct,

 vpiHandle assert, p_vpi_attempt_info info,

 PLI_BYTE8* user_data) {

 cover_t *cover = (cover_t *) user_data;

 // Increment the coverage counter

 cover->count++;

 return 0;

}

Lastly, a function is needed to provide access to this coverage

information so a function named coverage() is used:

int coverage (const char *pathname) {

 vpiHandle cover_handle;

 s_vpi_error_info err;

 cover_t *cover;

 int i;

 // Get a handle to the cover property

 if (cover_handle = vpi_handle_by_name(

 (PLI_BYTE8 *) pathname, NULL)){

 if (vpi_chk_error(&err) > 0) {

 vpi_printf("%s\n", err.message);

 return -1;

 }

 }

 // Find the coverage in the array

 for (i = 0; i < MAX_PROPERTIES; i++) {

 if (strcmp(cover_info[i]->pathname,

 pathname) == 0)

 // Return the coverage

 return cover_info[i]->count;

 }

 vpi_printf("ERROR! Could not find coverage

for %s\n", pathname);

 return -1;

}

In SystemVerilog, the DPI functions is imported, remembering to

specify the context keyword since VPI is being used:

import "DPI-C" context function void

enable_property_coverage();

import "DPI-C" context function int coverage(

input string pathname);

To turn on the cover property coverage, call the

enable_property_coverage() function at time zero in an

initial block:

initial

 enable_property_coverage();

and then the coverage is collected and stored, and queried in a

testbench by calling the coverage() function:

final

 $display("c1 matched = %d times",

 coverage("tb.c1"));

where tb.c1 is the pathname to the cover property labeled

c1. Also note, this method can be used to keep track of assertion

coverage as well to see how well test cases are stimulating the

assertion checks.

Callbacks provide the ability to keep track of the coverage

information in any way desired. To add this coverage into the

overall coverage calculation, an exported SystemVerilog function

could be called from the callback routine that samples the values

into a covergroup similar to the solution provided in section 3.4.1.

4. COVERAGE GOTCHAS
While SystemVerilog coverage has a few things to be desired

(hence, the coverage tricks in the previous section), there are a

few features to avoid or at least use with caution.

4.1 Gotcha #1: Avoid illegal_bins
The illegal_bins keyword can be used to remove unused or

illegal values from the overall coverage calculation. For example,

logic [2:0] opcode;

covergroup cg @(posedge clk iff decode);

 coverpoint opcode {

 bins move_op[] = { 3'b000, 3'b001 };

 bins alu_op = {[3'b010:3'b011],

 [3'b101:3'b110]};

 bins jump_op = {3'b111};

 illegal_bins unused_op = {3'b100};

 }

The illegal_bins directive also throws errors, which begs the

question, “Should a passive covergroup actively throw error

messages?” and “If the covergroup is relied on for checking, what

happens when coverage is turned off?”

A better option is to use the ignore_bins keyword.

ignore_bins will remove the values from the coverage

calculation without throwing the error. If a check is really needed

for an illegal value, then write an assertion!

4.2 Gotcha #2: Avoid using default
The keyword default is used as a catch-all for all other

possible values that have not already been thrown into a bin. In

the following example, the others[] = default will create

a bin for every value not yet specified:

bit [15:0] i;

covergroup cg_Short @(posedge Clock);

 coverpoint i {

 bins zero = { 0 };

 bins tiny = { [1:100] };

 bins hunds[3] = { 200, 300, 400, 500, 600,

 700, 800, 900 };

 bins huge = { [1000:$] };

 ignore_bins ignore = { [501:599] };

 bins others[] = default;

 }

endgroup

At first glance, default would appear quite useful. However,

there are two possible issues. First, what if the coverpoint has a

very large number of values? Some simulators croak on the

above example:

** Fatal: The number of singleton values

exceeded the system limit of 2147483647 for

unconstrained array bin 'other' in Coverpoint

'a' of Covergroup instance '\/covunit/cg_i'.

The solution to this is to not use the open range with default.

Instead, use the following:

bins others = default;

which buckets all other values into one bin called “others”.

Secondly, default pulls values out of the coverage calculation.

For example, suppose you wanted a shorthand way of taking all

possible values and dividing them into several bins. Then you

wanted to cross those values with another coverpoint. The

obvious way to do this would be to use the default statement:

covergroup cg @(posedge clk);

 cp_a : coverpoint a {

 bins a[4] = default;

 }

 cx_ab : cross cp_a, b;

endgroup

However, the problem with this example is that the coverpoint

cp_a will have no coverage collected for it because it is using the

default keyword. If the coverpoint has no coverage, then

neither will the cross (see Figure 6).

covergroup cg @(posedge clk);

cp_a : coverpoint a {

bins a[4] = default;

}

cx_ab : cross cp_a, b;

endgroup

No coverage!

Therefore, no cross coverage!

Figure 6: default removes bins from coverage calculation.

Again, instead of using default, use $ or wildcard bins.

The $ specifies the minimum or maximum possible values and the

wildcard allows the use of wildcard patterns:

bins huge = { [1000:$] }; // Max values

wildcard bins a[4] = { 'b?0 }; // Even values

4.3 Gotcha #3: Sequence coverage versus

property coverage
With the rich temporal syntax of SVA, having the ability to use it

to describe and cover behavior is a very useful feature. However,

coverage of a property is treated slighty differently than coverage

on a sequence. Coverage of properties is defined to include ([1],

17.13.3):

• Number of times attempted

• Number of times succeeded

• Number of times failed

• Number of times succeeded due to vacuity

where a vacuous success refers to a property that uses an

implication and the implication precondition is not satisfied.

Coverage of a sequence is defined as only covering:

• Number of times attempted

• Number of times matched

Often, when a property is written for an assertion, it will also be

covered. For example, suppose a property is written to describe

the correct read or write behavior, and then the same property is

covered using cover property to record how many times the

reads or writes occur. The intention in doing so is usually to

record how many times the behavior is matched, but assertions

typically use properties2, which record the number of successes,

including all the times when the precondition is not matched (i.e.,

vacuous successes). The result is that the coverage does not

accurately reflect what is really happening because it records

vacuous coverage. The same thing happens when a cover

property is used inside of a procedure:

always @(posedge clk)

 if (a & b)

 cp1: cover property (c);

Here, not only does the sampling event get inferred from the

always block’s sensitivity list, but there is an implicit implication

because of the context. The equivalent cover property is:

cover property (@(posedge clk) a & b |-> c);

Because the implication operator is inferred, this cover property is

treated as coverage of a property instead of coverage on a

sequence (i.e., recording vacuous successes and not only

successful matches).

Likewise, another time when a cover property records

vacuous coverage is when a disable iff is used inside a

cover property. The disable iff construct is only

allowed inside a property and not a sequence. So for example,

adding a disable iff (reset) inside a cover

property automatically treats the coverage as property

coverage, which includes vacuous successes. A disabled property

is successful on every cycle that reset is asserted since the

property is considered vacuously true. The solution would be to

avoid using disable iff in a cover property and instead

use the throughout sequence operator:

!reset throughout (my_seq)

On the other hand, covering a sequence may not always produce

the desired results. While sequence coverage records the number

of times matched, it may match many times on the same

attempt—all of which are included in the coverage count. For

example, if a range is used in a sequence and multiple matches are

possible, then all matches will be recorded. Of course, the

first_match() sequence operator could be used to avoid

recording multiple matches on the same attempt.

Another issue arises from vagueness in the SV-2005 standard.

The expression a ##1 b is a sequence, but properties can be

made of both properties and sequences. So the question arises, is

cover property (a ##1 b);

covering a sequence or a property? Either type of coverage could

be recorded for such a statement—it depends on the

implementation.

The bottom line is, if vacuous coverage is unwanted, then avoid

property operators in a cover property (e.g., implication,

disable iff, etc.); if coverage of multiple matches on a

sequence is unwanted, then make sure to use the

first_match() operator.

2 Any assertion that uses the implication operator (|-> or |=>) is

automatically a property and not just a sequence.

5. SV 1800-2009 ENHANCEMENTS
The SystemVerilog standard was updated in 2009 [3], and several

additions and modifications were made that affect coverage.

First, coverage can now be explicitly specified on a sequence and

not just a property:

cover sequence (@(event) disable iff (expr)

 sequence_expr);

As with a cover property on a sequence, the number of

matches are recorded instead of the vacuous successes. Notice,

the syntax also allows for the use of disable iff while still

collecting sequence coverage instead of property coverage.

Another change made to coverage is with covergroups. The

sample() method for a covergroup can now be overridden,

allowing different arguments to be passed into the covergroup

based on different contexts. For example, a covergroup could

be created as follows:

covergroup cg with function sample(T_state a,

 int b);

 covergroup a;

 covergroup b;

 cross a, b;

endgroup

cg cg1 = new;

Now, the sample() method could be called using local

variables as in a cover property:

property state_cov;

 int i;

 @(posedge clk) (sel, i=mode) ##1

 (enable, cg1.sample(state, i));

endproperty

cover property (state_cov);

A few other subtle changes were also added to covergroup options

like calculating cumulative coverage by merging instance

coverage instead of using weighted averages

(type_option.merge_instances=1) and enabling the

tracking of instance coverage with the

get_instance_coverage() method

(option.get_instance_coverage=1).

6. CONCLUSION
Despite of the shortcomings mentioned in this paper, still

SystemVerilog provides adequate support for gathering the

coverage needed to verify a design. Covergroups have a rich set

of options and syntax, which should meet the need of the most

serious verification effort. In fact, with a few tricks most

shortcomings can be worked around while still accomplishing the

task at hand. There are a few gotchas to watch out for—one of

which that has been solved with the latest SV-2009 standard, but

these are not so much as shortcomings as simply behaviors to be

aware of when defining coverage.

7. REFERENCES
[1] Dudani, S., Cerny, E., Korchemny, D., Seligman, E., and

Piper, L. 2009. “Verification case studies: evolution from

SVA 2005 to SVA 2009.” Proceedings of DVCon (February

24-25, 2009).

[2] IEEE Std 1800TM-2005. IEEE Standard for SystemVerilog—

Unified Hardware Design, Specification, and Verification

Language. IEEE Computer Society, New York, 2005.

[3] IEEE Std 1800TM-2009. IEEE Standard for SystemVerilog—

Unified Hardware Design, Specification, and Verification

Language. IEEE Computer Society, New York, 2009.

