
Advanced Testbench Configuration with Resources
Mark Glasser

Mentor Graphics Corporation
Fremont, CA

mark_glasser@mentor.com

Abstract—Building robust, reusable testbenches means the test-
bench elements must be configurable. At its essence, configuring
a testbench is a matter of populating a database with name/value
pairs and providing a means for testbench objects to access that
database. Simply storing and retrieving name/value pairs does not
tell the whole story. There are a number of architectural issues
concerning the design of the database and how to effectively
populate and use the items in the database to build highly
configurable, reusable testbenches. UVM provides a facility called
resources that provides the configuration infrastructure and API.
We will discuss approaches to common configuration problems
in term of resources. We will show how to use resources to
implement sophisticated configuration use models.

I. INTRODUCTION

An important requirement for constructing reusable test-
benches is a means for providing information to various
parts of the testbench from a central location. This is called
configuration. Another requirement is enabling data sharing
between testbench elements in a thread-safe and tractable
manner. UVM contains a very generalized facility for meeting
these requirements called resources. By “generalized” we
mean that the facility supports a number of interesting use
models and is suitable for specialization by creating layers on
top of it.

Any object in a testbench could require information to be
passed to it from an external source. That includes compo-
nents, sequences, sequence items, modules, and interfaces, or
any other object. We will refer to these generically as testbench
elements. In this paper we will look at the issues related
to supplying information to testbench elements and sharing
information between them.

Central to the whole issue of configuring testbench elements
is reusability. A reusable element is one that can be used
in a variety of different circumstances. To be reusable, the
element needs some knowledge of the circumstance at hand
so that it can alter its topology or behavior accordingly. The
element must have information given to it about how it should
operate in the current environment. That information is called
configuration information and can be passed to testbench
elements in a variety of ways. The most common of these
are:

• class parameters
• constructor arguments
• function calls
Information passed as class parameters must be supplied

at compile time and cannot be changed at run time. This is
fine for structural information that does not need to change

or for information that is known at compile time and will
not or cannot change. For example, bus width is a structural
parameter that often must be fixed at compile time in order
for the testbench to connect properly to the DUT.

Passing information in constructor arguments can lead to
fragile systems. When you add a new argument to a construc-
tor you have to make sure that all the constructor arguments
are passed correctly as one object instantiates another. If this
is not done carefully the wrong information may be passed
along, or compile-time errors may occur if the argument
orders and types are not correct. In UVM, objects are often
instantiated through the factory where constructors are called
for you and you don’t have the option of modifying constructor
arguments. Modifying constructors to pass information to
testbench elements is highly discouraged in UVM.

In the last case, functions can be called in testbench ele-
ments to set or get configuration information. Those functions
put information into a central configuration database or re-
trieve information from it. This technique provides the most
general way of accessing configuration information, so it is
the one that we will focus on in this paper. The element that
puts an item into the configuration database is the setter and
the element that retrieves it is the getter.

II. CONFIGURATION ISSUES

There are a number of issues that arise when configuring a
testbench. In this section we will explore some of them.

When verifying a DUT you must be clear on exactly
what happened during simulation. Whether errors occur during
execution or not, you need to know that the testbench operated
exactly as you expected. If the testbench quietly does the
wrong thing then there is a reasonable likelihood that the
results are invalid. For that reason you must be able to
precisely direct configuration information before execution,
and you must be able to validate post facto what exactly
happened.

When setting configuration information you must be able to
easily identify the element or elements that will receive it. The
information could be directed at one element, some subgroup
of elements or all elements.

It may be that the setter of some piece of configuration
information does not have the last word on the value supplied.
There may be another setter that does. Neither of the setters
may be aware of the other. The precedence of setters must
be deterministic so that it is well understood exactly which
information is retrieved by a getter. There must be a way



to override information already put into the configuration
database. The exact value retrieved from the database must
be unambiguous in the presence of overrides. This implies
that the getter does not need to know who the setter is. In that
respect the database acts like a mailbox. Some entity puts data
in the mailbox and another retrieves it without either having
direct knowledge of the other.

Data communication through the database must be type-
safe. That is, each object should be retrieved from the database
using precisely the same data type as the setter. Any deviation
from this could result in incorrect information being retrieved.
There should be no artificial restrictions on the types of object
that can be communicated through the configuration system.

III. RESOURCES

The resources facility in UVM is comprised of polymorphic
resource containers, a database for storing those resource
containers, and a means for locating resources in the database.
The polymorphic resource container, simply called a resource,
is a parameterized container that holds arbitrary data whose
type is defined by the parameter. It has methods for moving
data into and out of it as well as other operations described
later. Resources are collected together in a centralized database
which is searchable by various means. The skeletal structure
of the resource classes is as follows:
class uvm_resource_base extends uvm_object;

string scope;
int unsigned precedence;

endclass

class uvm_resource#(type T=int)
extends uvm_resource_base;

T val;
typedef uvm_resource#(T) my_type;

endclass

Polymorphism refers to the notion of handling objects of
different types uniformly. This is accomplished by creating
a family of class types, all with a common base class. The
base class contains methods that can be used to operate
the objects in the family independent of the specific derived
type of any family member. Some methods may be virtual
methods and may be reimplemented in the derived class.
Polymorphism, virtual functions, and other elements of object-
oriented programming are discussed in many places in the
literature, for example [2] and [4].

The class uvm_resource_base serves as the common
base class for the family of resource containers. It provides
an interface that applies to all resources, no matter what
type it is. The term interface is often overused. Here, we
mean a functional interface: a set of functions that operate a
data structure. When dealing with resources polymorphically
uvm_resource_base handles are passed around. The class
uvm_resource#(T) provides an interface that is type spe-
cific, such as read() and write(), which makes operations
on resources type safe.

Resources are scoped, meaning each resource is visible
in one or more scopes within the testbench. A scope is a
context, such as a component instantiated in the component

Fig. 1. Organization of the resource pool

hierarchy. As far as the resource facility is concerned, a scope
is just a unique string. Typically the string contains dots to
separate hierarchical elements, such as the string returned
from uvm_object: :get_full_name(), but there is no
requirement that it does so. Since a scope is just a string it
can represent any space, real or imaginary, that you like.

A set of scopes is represented using a regular expression.
A regular expression is a shorthand notation for a set of
strings over some alphabet. For our purposes the set of
strings is a set of scopes. For example, the regular expression
top\.env\.u.*1 represents all of the scopes that begin
with the prefix top.env.u. For example, top.env.u1
and top.env.usb.mon are strings that are in the set
described by the regular expression. The set of strings (scopes)
represented by our regular expression is infinite because the
asterisk, also known as a kleene star, which terminates the
expression means there can be zero or more instances of the
previous element. There is no upper limit on “more”.

Resource Pool. Resources are stored in a database, called
the resource pool. The organization of the resource pool is de-
signed to enable efficient insertions and lookups of resources.
The primary organization of the pool is a pair of maps: a name
map and a type map. When a new resource is inserted into the
pool it is entered into both maps. Each map entry contains a
queue of resources rather than a single resource. This enables
the pool to store multiple resources with the same name or
the same type.

Figure 1 illustrates the organization of the resource pool.
The order of the entries are in each queue is significant, as it
affects the order in which they are searched when looking up
resources in the pool. The significanse will become clear as
we look in detail at the algorithm for locating resources in the
pool.

The essential algorithm for lookup up a resource by name
in the resource pool is as follows:

1The regular expression syntax implemented in UVM is the extended
regular expression syntax as defined in the Posix standard. In that standard a
dot (.) matches any single character and an escaped dot (\.) matches a single
dot.



1) Lookup the queue of resources associated with a name
in the name map.

2) If the queue is empty then there are no resources with
this name. The lookup has failed. Return null.

3) set high_precedence to 0. Set the search target to
the first resource in the queue that is visible in the
current scope. Visibility is determined by matching the
regular expression associated with the resource, which
represents the set of scopes over which the resource is
visible, with the current scope. If there is a match then
the resource is visible in the current scope.

4) Traverse the queue from front to back, visiting each
resource.

5) For each resource, determine if it is visible in the current
scope.

6) Upon visiting a resource, if it is indeed visible in the
current scope, then check to see if its precedence is
greater than the current value of high_precedence.
If it is, then set high_precedence to the new value
in the resource and save the resource as the new search
target.

7) After all resources in the queue have been visited, return
the current search target. If, after all resources in the
queue have been visited, none are visible in the current
scope then the lookup has failed and the search target
will be null.

Looking up a resource by type works exactly the same way,
except a queue of resources is located by type handle instead
of by name. The result of this is that the search target returned
is the resource that is visible in the current scope and has the
highest precedence amongst all the resources with the same
name. In the case where there are more than one resource with
the same highest precedence, the one earliest in the queue (that
is, the first one encountered in the search) is returned as the
search target. The exact resource that is located by a search
depends on three things: The name or type of the resource
(depending on whether you are looking up a resource by name
or by type), the precedence of the resource, and the order in
which it was placed in the queue.

Auditing. To track activity during execution the UVM
resources facility provides an auditing capability. Two types
of information are collected. The first is a set of access
records. Each resource is accessed – either read or written
– by some object. The auditing facility can track the name
of the object from which each resource was accessed. The
accessor is supplied to the system by the user each time a
resource access is made. Typically, the accessor is this. For
example,
x = rsrc.read(this);
rsrc. write(x, this);

In both the read() and write() functions an optional
argument identifies the resource accessor. Along with the name
of the accessor, the time of the last read, the time of the
last write, the number of reads, and the number of writes are
stored. This information is stored for each resource

The second type of information collected is a get record.
Each time a resource is looked up in the resource pool a record
of the lookup is created. The record includes the name of
the object being looked up, the scope supplied as the current
scope, the resource handle, and the time of the lookup. If the
lookup is unsuccessful the resource handle will be empty. Both
the per-resource access records and the history of resource
pool lookups can be dumped at any time. Typically, this
information is dumped at the end of the simulation and serves
as a way to determine if the testbench was configured properly.

All of the details of the structure and interfaces for resources
and the resource pool can be found in [1].

IV. CONFIGURATION USE MODELS

In this section we will discuss some of the use models for
configuring testbenches using UVM’s resources facility.

Basic Usage. The most basic usage of resources is to supply
configuration information to a component. The component
retrieves a value from the resource pool and uses it to control
its topology or behavior. For example, the test might issue the
following call which creates a new resource, populates it, and
inserts it into the resource pool.

uvm_resource_db#(int)::set("size",
"top\.u1\..*",
8, this);

This creates a new resource whose name is "size", is
visible in the scopes identified by "top\.env\.u\..*",
and has a value of 8. The last argument, this, provides
accessor information for the auditing facility. The component
that retrieves this resource would read the value from the
database.

if(!uvm_resource_db#(int)::read_by_name(
"size",
get_full_name(),
val,
this))

‘uvm_error("configuration",
"Resource A not found in this scope");

The call to get_full_name() identifies the cur-
rent scope: the scope that is requesting the resource.
read_by_name() returns a bit that indicates whether or
not the lookup succeeded. The actual value of the resource is
returned as an inout argument.

Notice that in the basic use model we do not
have to deal with resource objects directly. The class
uvm_resource_db#(T) is a convenience layer on top of
the low-level database access classes and methods. It is not
instantiated. Instead, it contains a collection of static functions
that operate resources and the resource pool. The set()
function creates a new resource object whose type is defined
by T, writes data into it, and inserts it into the resource
pool. The function read_by_name() looks up the resource
whose name is "size" and is visible in the current scope.
It then reads the data from the located resource and returns it
via the inout function argument val. The success or failure



of the operation is returned as the function return value. If
a resource matching the search criteria is not located in the
resource pool then the function returns a 0. If it succeeds then
it returns a 1.

Components should not have to know where they are located
in the hierarchy, nor should they have to know which element
is providing resource values. A call to read_by_name()
to retrieve resource values uses the current scope to locate
the correct resource. Components can identify their current
scope by calling get_full_name(). It may be the case
that a component is instantiated multiple times, and the test
wants each instance to have a different value for a particular
configuration item. In that case the test can create separate
resources with the same name, each of which has a different
scope visibility. For example:

uvm_resource_db#(int)::set("A", "top.u1.*",
14, this);

uvm_resource_db#(int)::set("A", "top.u2.*",
1016, this);

uvm_resource_db#(int)::set("A", "top.u3.*",
82, this);

Here we create three resource, all named "A", each with
a different scope visibility, and each with a different value.
Components in the top.u1 sub-hierarchy will receive the
value 14 when they look up resource texttA, components in
the top.u2 sub-hierarchy will receive the value 1016, and
components in the sub-hierarchy top.u3 will receive the
value 82.

Overrides. Often it is the case that an agent will set a de-
fault value for a resourceS and the test or some other testbench
element will want to override it. As we saw in section III,
search order is determined by the order in which resources are
added to the resource pool. The most straightforward way to
override resources is to make sure that the override is entered
in the database first. One way to do this is to create all your
resources in the build() phase. Since build is a top-down
phase, components higher in the component hierarchy will
be processed before those lower in the hierarchy. Thus, those
resources entered at the top of the hierarchy will be searched
before those farther down.

If you are not creating all your resources in the build phase
you run the risk of a race condition. If you create resources
in the run() phase, for instance, you don’t know which run
task will execute first. You are relying on the order in which
the run tasks execute to define the search order of resources.
Since the order in which SystemVerilog processes execute is
not necessarily deterministic, neither would be the resource
search order. This not desirable. When inserting a resource into
the resource pool you can use set_override() instead of
set(). set_override() places the resource at the head
of the queue, ensuring it will be searched before any other
resource already in that same queue. Of course, if you have
multiple processes, each calling set_override(), you still
have a race condition. To get around this problem you can

change the precedence value in the resource before inserting
it in the pool.

Resources by Type. Each resource container has a type
handle: a static member whose value uniquely represents the
type of the container specialization. This is useful for storing
and retrieving resources by type. One usage of this is to
configure agents using a unique configuration object for each
agent type. Consider some_agent, which is parameterized
using bus width and the type of its configuration object.

class some_agent#(type CONFIG=int, int WIDTH=8)
extends uvm_component;

CONFIG cfg;

function void build();
if(!uvm_resource_db#(CONFIG)::read_by_type(

get_full_name(),
cfg,
this))

‘uvm_error("build",
"configuration object not found");

endfunction

...

endclass

In this use model, each agent type has a unique type
for its configuration object, which is specified as a class
parameter. read_by_type() looks up a resource by its
type handle using the algorithm detailed in Section III. In this
case the name of the resource is not important. Because the
resource is a parameterized container, the methods used to
store and retrieve the resource are similarly typed. Thus the
read_by_type() call is type-safe, and no casting or other
run-time type checking is required.

Virtual interfaces are another place where storing and re-
trieving resources by type can streamline your code. In [3] a
technique for handling virtual interfaces is described using a
customized container. The generalized resource container can
take the place of the specialized virtual interface container.
Virtual interfaces can be stored and retrieved either by name
or by type. Here is a short example using types.

module top;
...
bus_if() bif; // instantiate interface

initial begin
uvm_resource_db#(bus_if)::set_anonymous(

"top.*",
bif,
this);

end
endmodule

In our hypothetical testbench there is only one instance of
bus_if, and so there is no need to bother with a name.
We can store the virtual interface anonymously and retrieve
it by type. The function write_and_set_anonymous()
works the same as set() except that the resource is entered
only in the type map, not into the name map. There is no way



to look up an anonymous resource by name.
Sequences. Sequences have been neglected in previous

incarnations of the configuration system. Retrieving a con-
figuration item from the resource pool is done the same way
in a sequence as in a component. The difference is how the
current scope is determined. Components have a natural scope
which can be determined by calling get_full_name().
For sequences there are several choices for supplying a current
scope. The most obvious choice is to use the scope of the
sequencer on which the sequence is hosted. For example:

string scope = m_sequencer.get_full_name();
...
if(!uvm_resource_db#(int)::read_by_name("A",

scope,
val,
this))

...

Another choice is that each sequence provides its own
scope. The scope string can be anything, as long as it uniquely
identifies the element which will be requesting resources from
the resource pool. Any scope that is not part of the component
hierarchy is called a pseudo-scope. Pseudo-scope strings can
be anything. The only requirement is that the element setting
resources agree with the element getting them. As an example,
consider a collection of resources that drive an AHB interface.
Each sequence could supply "ahb" as its scope.

if(!uvm_resource_db#(int)::read_by_name("A",
"ahb",
val,
this))

Thus, resources, such as the one named "A", in the "ahb"
pseudo-space, will be retrieved by sequences that identify
themselves as being in that same pseudo-space.

Virtual sequences, sequences that are invoked without an as-
sociated sequencer, can retrieve information about sequencers
on which to initiate sub-sequences from the resource pool.
This eliminates the need for so-called virtual sequencers:
sequencers whose role is to provide a location to retrieve
handles to other sequencers. Agents can put sequencer handles
into the resource database in an agreed-upon pseudo-space.
Virtual sequences can then retrieve them from this pseudo-
space and use them to invoke sub-sequences.

V. DATA SHARING USE MODELS

So far we’ve discussed use models that involve storing and
retrieving data as resources. The data is supplied by the test
or some other top-level element to be consumed elsewhere
in the testbench. Another collection of use models involves
storing and retrieving resources for the purpose of sharing data
amongst various testbench elements.

One use model is for a process to wait on the value change
of a resource. Consider an example where you want to run
specific sequences when the DUT goes into certain states. You
can capture that state as a resource. When the resource value
changes the test can respond by executing a new sequence.

The choice of sequence is based on the value of the resource.
The monitor updates the shared resource. The test waits for
the resource to change value and responds accordingly when
it does. Here’s a sketch of the relevant parts of the monitor
that implements this use model.

class monitor extends uvm_component;

uvm_resource#(int) rsrc;

function void build();
rsrc = uvm_resource_db#(int)::get_by_name(

get_full_name(), "dut_state");
endfunction

task run();
int state;

// somewhere in the state machine...
rsrc.write(state, this);
...

endtask
endclass

The monitor retrieves the shared resource using
get_by_name(). The value of the resource is updated
appropriately as the state machine changes states. An agent
can respond to changes the state of the DUT by using the
wait_modified() task:

class agent extends uvm_component;

uvm_resource#(int) rsrc;

monitor m;
driver d;
uvm_sequencer sqr;

function void build();
m = new("monitor", this);
d = new("driver", this);
sqr = new("sequencer", this);
rsrc = uvm_resource_db#(int)::get_by_name(

get_full_name(),"dut_state");
endfunction

task run();
fork

sequence_kicker();
join_none

endtask

task sequence_kicker();
uvm_sequence seq;
while(1) begin

rsrc.wait_modified();
seq = lookup_sequence(rsrc.read(this));
if(seq != null)

seq.start(sqr);
end

endtask

The agent retrieves the same resource as the monitor.
The agent’s run() task starts a free-running process called
sequence_kicker(). This task waits until the shared
resource changes value. When it does, it uses the new value to
choose a new sequence to run. We’ve allowed for the case that
not all state changes result in a new sequence being run. If



lookup_sequence() returns null, then no new sequence
is started for that state change.

Barriers are commonly shared to synchronize processes that
otherwise do not have a clean way to share data. You can
store and retrieve handles to barriers in the resource pool. Each
process that is to be synchronized retrieves a handle to a shared
barrier from the resource pool. Using the resource pool instead
of global variables has several advantages. It’s impossible to
tell which elements have accessed a global variable. Such
elements reduce reusability of any element that uses them
by creating a compile-time dependency on the presence of
a variable outside its own scope. The element can only be
used when the global variable is present. The resource facility
removes the requirement for a global variable. If there is a need
to share multiple shared objects, they can easily be created and
added to the resource pool without new global variables.

Besides lack of accountability, global variables suffer from
lack of thread-safety. In the case where multiple processes are
modifying a shared object, you need a way to lock and unlock
a variable so that one process does not inadvertently overwrite
a value or a way to resolve potential race conditions when
updating a variable. Resources have a lock interface which
lets you lock and unlock a resources so it can be updated
atomically.

As an example, consider an integer resource that contains
the serial number of the current transaction. The testbench has
many sequences generating transactions, but only one at a time
is in process. Here is an illustration of the code you would put
in the sequence to update the serial number in a thread-safe
manner.

int serial_number;
uvm_resource_db#(int) sn;
my_item item;
sn = uvm_resource_db#(int)::get_by_name("sn",

my_scope);
...
sn.lock();
serial_number = sn.read();

// Create sequence item for
// our transaction. Put the serial
// number into the sequence item.
...
item.serial_number = serial_number;

// Finish populating the item
// and send it.
...

// update the serial number resource
// and unlock it.
sn.write(serial_number+1);
sn.unlock(();

You can also use a testbench resource to lock a hardware
resource. A shared memory, for example, can only be accessed
by one process at a time. To ensure reads and writes do not
overlap you can use the locking interface on a resource. In
this use model, we do not use the value of the resource, only
the lock.

uvm_resource#(bit) r;
r = uvm_resource_db#(bit)::get_by_name("mem_lock", my_scope);

// lock when doing a read
r.lock();
data = mem.read(addr);
r.unlock();

// lock when doing a write
r.lock();
mem.wirte(addr, data);
r.unlock();

lock() is a task and will potentially block if another
process currently has the resource locked. Because you are
using a resource lock to protect the memory reads and writes
you are ensured that the read and write operations are thread-
safe.

VI. CONCLUSIONS

Configuring testbenches and sharing data amongst testbench
elements requires careful planning in order to make sure that
the right data lands in the right place. The UVM resources
facility provides a mechanism that enables precise placement
of configuration data within all kinds and types of testbench
elements. To make sure that the right data is in the right place,
an auditing facility shows all resources operations.

In this paper we have explained the structure and operation
of resources, and how they can be stored and retrieved in the
resource pool. We have also shown a variety of use models,
starting from very basic storage and retrieval of resources to
more sophisticated sharing of resources. The set of use models
identified here is by no means comprehensive. The generality
of the resources facility lends itself to creative application of
new use models as part of a robust and reusable testbench
architecture.

VII. ACKNOWLEDGMENTS

The author wishes to acknowledge Mohamed Elmalaki of
Intel Corporation for his contributions to this paper.

REFERENCES

[1] Accellera. UVM 1.0 Reference Manual, 2011.
[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elememts of Reusable Object-Oriented Software. Addison-Wesley, 1994.
[3] M. Glasser. The OVM Cookbook. Springer, 2009.
[4] J. Martin and J. Odell. Object-Oriented Methods: A Foundation. Prentice

Hall, 1995.


