
Case Study:

Low-Power Verification Success Depends on Positive Pessimism

John Decker
Cadence Design Systems, Inc.

2655 Seely Ave.
San Jose, CA 95134

1-908-735-5358
jdecker@cadence.com

ABSTRACT
Low power has quickly become a primary requirement for a large

percentage of designs. As companies rush forward to incorporate the

latest low power features, they are faced with the growing challenge

of how to verify these complex structures and ensure successful

silicon. As with any large change in methodology, one can see the

industry converging on a set of known best practices; a set of design

and verification techniques that become second nature because they

avoid issues, improve turn-around-time, and provide a more

predictable path to the coveted first pass silicon.

This case study consolidates the experience of several customers as

they evolved their verification methodology to face the unique

challenges of low power design. It describes the changes that were

instituted to instill the time honored verification tradition of “positive

pessimism” into the flow. This principal dictates that the flow takes

a conservative approach whenever possible, to ensure that the design

works in all conditions and is tolerant to changes in the design

environment.

The study describes a basic power shut-off (PSO) flow including an

overview of power modes, state-retention and isolation. The

methodology and automation changes will also be detailed including

both the items that worked well and those that did not. This real-

world review of the methodology transformation will enable

audience members to plan their own low-power verification

improvements restoring the positive pessimism that makes us so

successful.

1. INTRODUCTION

Low power introduces a host of challenges to the verification

methodology. It starts with the added complexity of additional low

power modes of operation and the complex control and interactions

between power regions. Even more fundamentally it adds power as a

new aspect to the design that needs to be correctly modeled

throughout the entire verification flow. This flow includes RTL and

gate simulation, design and equivalency checking, verification

planning and emulation. This modeling not only has to account for

the synthesis of low power constructs but also the impact of physical

design on the power network.

An example of this complexity is the modeling of even a simple

power shutoff design. The verification process has to model the fact

that this logic can be powered off by corrupting the logic at the

correct time. The system has new modes of operation that need to be

verified and ensure the transitions between these modes work

correctly. The RTL verification environment has to model the

implementation of isolation on the boundaries of domains consistent

with what will be done during the implementation flow. Finally, it

has to model the physical implementations of the power switch

network and the delays associated with that network.

This paper will first introduce the key components of a low power

verification flow. An understanding of the basic requirements and

the concept of a closed loop flow is critical to successful low power

verification. The remainder of the document will provide specific

recommendations based on real world usage of the low power flow.

These recommendations are designed to provide more detailed view

of what is required for a pragmatic verification methodology that

uses the concept of “positive pessimism” to ensure the best possible

silicon results.

2. INTRODUCTION TO LOW POWER

VERIFICATION METHODOLOGY

The low power verification is simply an extension of a typical

verification flow. All of the advanced verification techniques and

methodologies in a traditional verification flow should be leveraged.

This includes using methodologies like UVM, verification planning

and metric driven verification. The flow in figure 1 is a high level

description of a typical flow from an RTL design perspective. The

key components of the flow and how low power influences are

described to set a context for the recommendations that are the core

topic of the paper.

The flow depicted below is a simplified flow; a typical low power

flow would also include simulation at higher levels of abstraction

primarily to enable more system level performance analysis and

application level scenarios. It would also have more detailed

physical implementation and verification steps. While these are very

important to low power, for the purpose of this document, we’ve

limited the flow to just the RTL and gate level portions.

2.1 Initial Power Intent Creation + Checking
The flow starts with a functional specification of the low power

intent. This specification is developed through a coordinated effort

with system architects, implementation architects, logic designers

and even marketing.

The specification is then used to generate the initial power intent in

CPF or UPF for use in the rest of the design flow. The first real tool

flow step is to do “Low Power Intent Checks”. These checks verify

the completeness and correctness of the low power intent. The

checking available for the low power includes structural checking,

and power intent completeness checks.

An example check is to verify proper isolation rules between power

domains. A missing isolation cell is quickly identified in formal

checking, but to do the equivalent in simulation would require

finding the signals that went x during power shutoff and analyzing

the logic cone.

Unlike simple linters, the low power intent checks are much more

than a recommendation; they should be treated as a requirement of

the flow. A large percentage of low power design issues are

detected in a series of formal and structural checks. These checks

can find issues early and before costly synthesis and simulation runs,

and can greatly improve productivity and turnaround time.

2.2 Verification Planning and Metric Driven

Verification
Verification planning is a critical step in any low power design. Low

power architectures such as power shutoff or dynamic voltage and

frequency scaling introduce new modes of operation for the design.

A verification plan helps define the required scenarios to ensure

these features a fully validated. This often involves planning to

ensure each mode is entered and exited, but also to define what

features are valid for each mode.

Metric driven verification (MDV) defines a verification plan and the

corresponding set of coverage and checking metrics to validate the

design. The process builds on the traditional verification flow to

integrate data across the complete regression suite. One difference is

that the low power intent can be used to automatically generate a

coverage model and a set of assertions on power control. As the

simulation runs are executed, the coverage and assertions are tracked

and reflected back into the verification plan.

2.3 Power Aware RTL verification
The functional verification of the design is the next step in the flow.

In a low power flow, the functionality of the design is specified by a

combination of the low power intent and the RTL. The simulation

and emulation engines need to model the low power intent as

accurately as possible.

Dynamic simulations of the low power intent ensure the functionality

of the design in the presence of the low power features. On critical

area is to verify the power management and control. Often the

control is part of the firmware or system software, so it is impossible

to verify this logic using static checks.

The following diagram shows an example of a simple power shutoff

design and illustrates the type of modeling that is required. In the

past, modeling this low power intent was mostly done on through a

complex set of ad-hoc scripts, PLI’s,or manual coding. Today, the

modeling is automated based on the low power intent files (CPF or

UPF). The basic requirements are described below, but additional

requirements are given in the recommendation section.

A power shutoff design requires the modeling of:

- Power domain state and voltage

o State can be On, Off, standby

- System level power mode

o The system mode is determined by the state of

all the individual power domains

- Power shutoff – the P/S block is the power switch for the

design, based on input PSE the power domain PDA will

power off. During power off the logic inside the block needs

to be corrupted to X to reflect its unpowered state

- Isolation: To protect the inputs of BLKB from the effects of

PDA’s power shutoff, special cells are inserted to clamp the

Top

BLKA (PDA) BLKA (PDB)

Isolation

P/S

VDD

Retention

PSE

Figure 2 - Sample Power Shutoff Design

LP Func

Spec

CPF Generation

Low Power

Sim + Emulation

Low Power

Intent Checks

Generate Coverage

+ Assertions

L
P

G
ate S

im

LP Equiv + Design

Checks

Synthesis

V
erificatio

n
 P

lan
n

in
g

Figure 1- RTL Level Low Power Verification Flow

LP Equiv + Design

Checks

Physical Design

values to a valid value. These do not exist in the RTL but are

inferred from the power intent

- State Retention – Some designs include state retention. State

retention is the process of saving the state of sequential

elements before power down and restoring it after power up.

This is typically done by special cells that include a small

save latch. Again, this is specified in the RTL, it is in the

power intent.

The simulation engine models the low power intent to reflect the

actual implementation. Keeping the simulation as accurate as

possible is required to ensure that a successful simulation results will

translate into successful silicon.

2.4 Low Power Equivalency and Design Rule

Checking
After synthesis the netlist needs to be check to validate that it is an

accurate implementation of the RTL and power intent. Any design

transformation step in the flow is required to be validated against that

power intent. This is what is referred to as a closed loop flow: All

steps and stages have are verified back to the original intent and

matches what was used in functional verification. Without a closed

loop flow, it’s possible to implement different intent then was

verified.

The Low Power equivalency checking is complex; the low power

intent introduces behavior that is not described in the netlist. For

instance, power shutoff affects the logical output of a cone of logic,

but needs to be modeled by the equivalency checker. Special cells

like isolation and level shifting can have multiple domains that affect

its output value, and all of this needs to be accounted for in the tool.

Finally, the low power design checks ensure the implementation

followed accepted design rules and synthesis process correctly

maintained the power intent. As the design moves through physical

implementation additional checks are needed to verify the power and

ground network and connectivity.

3. LOW POWER VERIFICATION

RECOMMENDATIONS

When the results of five years of low power simulation and

verification on hundreds of designs are analyzed, one can derive a set

of common features that help ensure successful verification. The

following section highlights these features and elaborates on

modeling requirements for the power aware tools.

3.1 Early Qualification of Power Intent
As mentioned earlier, the first step of any low power flow should be

to ensure that the low power intent is complete and correct. Tools

like Conformal Low Power can automate this task and should be a

gate keeper before proceeding to any verification or implementation

tasks.

The power intent checking can statically check for a number of

issues that would cause incorrect results in the simulation process.

- Missing isolation and level shifting

- Illegal mode definitions

- Missing design objects

- Incomplete power control specification

- Incomplete domain specifications

- Library consistency checks

- Power intent linting checks

The recommendation based on our customers experience is to run

these low power checks early and often. Ideally, anytime the power

intent or RTL change the checks should be re-run. This often

viewed as overly cautious, but a quick, exhaustive check for missing

isolation rules can safe hours of wasted simulation runtime. The key

is that this type of static checking is exhaustive; a simulation run is

only as good as its stimulus.

These checks go way beyond simple linting checks, and can detect

serious structural issues. Additional details on this can be found in

the case study by Luke Lang DVcon 2011 paper, “Case Study:

Power-aware IP and Mixed Signal Verification”.

3.2 Ensure the same Power intent is used

throughout the design flow

Traditionally, the verification and implementation teams worked off

of the same low power functional spec but independently

modeled/implemented the low power intent. With the advent of

power intent languages, such as CPF and UPF, the same intent can

be used for both verification and implementation. But even today

there is a temptation to have separate implementation specific and

verification specific files.

Any difference in the intent files could mean that what was simulated

does not match what was implemented. At one customer, the

implementation team removed an isolation rule they deemed was not

necessary but did not make the change to the common intent file. It

turns out that the isolation was in fact needed, but this problem was

not found until just before tape-out. This would have been found

quickly in either the LP design checks or in RTL simulation if the

power intent was properly updated.

It is very common have separate files for the general power intent

and detailed implementation power intent. But the same intent

should be read by all of the tools. This ensures a consistent view and

has no negative impact (the front-end tools will simply ignore any

information not relevant at that level of abstraction).

Whenever there is a difference in what is simulated versus what is

implemented you run the risk of functional errors in silicon. These

issues can be avoided with three simple steps:

- Employ revision control on the power intent files

- Ensure changes to the intent are made in the source

files not in any intermediate files. Discipline is

needed to avoid making changes in the output files.

- Use a tool flow that employs a closed-loop

methodology that ensures the original power intent

matches the final netlist.

Bottom line: Power intent is a design file like RTL, it is NOT a tool

script file since it effects functionality. Its required to be consistent

and complete throughout the design flow.

3.3 Always Run Power Aware Simulations
Originally, some customers defined a set of tests for low power, and

only ran these specific tests with the low power modeling. In

theory, this should be sufficient to test the low power functionality.

But in reality it is incomplete and can cause fatal errors to be

masked.

In one customer’s case, the power control logic had an error in it.

This caused an unexpected power shutoff to a domain. Since this

was unexpected, the domain was not fully isolated, and an X was

pushed out onto the system bus. This caused the system bus to lock

up; in hardware, it would have required a reboot to clear the bus.

This issue was only detected because the user switched to running

all verification scenarios with power aware simulation. If the user

had not made this switch, the issue would not have been detected

until after tapeout.

The user’s original methodology was designed when they had an in-

house PLI solution for modeling the power shutoff. As with most

PLI based low power solutions it had a pretty severe performance

penalty and ran 3-4 times slower than running a normal simulation.

When they switched native compiled low power simulator, like the

Cadence Incisive Enterprise Simulator, they were able to run all

simulations with power. The performance penalty became

insignificant, especially when compared to the risk of missing issues.

A good analogy is directed tests vs. constrained random. The

directed tests do an excellent job of verifying a specific scenario, but

in the end constrained random simulations are used to provide better

coverage. It becomes too difficult to design a test for all possible

scenarios. In Low power it is the same, running the equivalent of

directed test checks a specific scenario, but it limits the coverage and

exposes the design to risk when the application does anything

unexpected.

3.4 Pessimistic Corruption model
Corruption is the process of modeling the effects of low voltage or

power shutoff in the simulator. This is one of the most important

functions of a power aware simulator. If the corruption is not

modeled correctly, the simulation will result in false positives, which

in turn can lead to failures in silicon. It’s critical to model this as

accurately as possible, and when in doubt be conservative.

The modeling of corruption has evolved based on real world usage

by customers, and the following sections describe some of the

specific cases we found.

3.4.1 Voltage Based Corruption Model
The philosophy on how to handle voltage ramps for power shutoff

designs varies from vendor to vendor and customer to customer.

Engineers have a tendency to want to measure and show every value

as accurately as possible. But in this case that modeling could be

counterproductive.

First, let’s define what the voltage ramp corruption .The voltage

ramp models the fact that voltage changes don’t happen

instantaneously. The ramp defines how the voltage changes, and is

used by simulation to determine when during a power cycle the data

is valid. See the diagram below:

Figure 3 - Voltage based corruption

The differences in view among vendors are related to exactly when

the data is valid. In the diagram above the region between 0 and

70% of voltage is universally considered corrupted, as the voltage is

not high enough to support a logic functions. The region between

70% and 100% is considered a valid voltage by some tools and

actions like restoring a retention cell or even clocking in data are

considered valid in that region. At Cadence, we found this to be too

optimistic. Instead we model the voltage as off from the instant we

get the power down signal all the way until the voltage reaches 100%

of its target.

The greatest risk is at the RTL level, where it simply is impossible to

accurately predict the voltage ramp. Even with a non-linear model of

the voltage, there is not enough information at this time to accurately

model this. But it is possible to define a worst case number and use

that as a constraint for the backend and for the simulations.

Why is the voltage ramp difficult to model?

- The ramp is a non-linear function with oscillations

- It is not a static function – it varies by

voltage/temperature/current and cross-chip variations

- The ramp depends on the powers switch architecture: layout,

number of switches, mother-daughter vs. daisy chain, etc

- It depends on number, size and layout of the cells driven by

each switch

The information to model this accurate is not available at the RTL

level. Trying to squeeze out a few nanoseconds of usable time from a

power shutoff is counterproductive; it exposes the design to risk for

something that has a small impact on overall system performance.

The recommended methodology is to specify a maximum voltage

transition and use a physical verification tool to verify that the

transition time is met.

3.4.2 Corruption and isolation of Constants
As customers transitions from in-house power modeling to using IES

we found a number of differences in the simulation results. One

major difference was that customers seldom corrupted constants.

The simulation engine needs to model the hardware as accurately as

possible. Constants that are not optimized away by synthesis will

have a direct or indirect connection to power or ground. When the

domain powers off, the value on the output of the power and ground

may not be valid, so the simulation engine needs to corrupt those

values. On power up, the signals need to be restored to their original

values.

Voltage level: 0% 70% 100%

The Cadence approach is to corrupt both hi and low constants. Some

vendors would like only the high constants corrupted in a power

switched design, and low constants corrupted in a ground switched

design.

The Cadence approach is pessimistic, but it needs to be. The

synthesis tools may optimize the logic and invert the constants. At

the RTL level there is no way to predict, so the only safe approach is

to corrupt all constants.

3.4.3 Modeling Input Pin Corruption
Another requirement in corruption modeling is the corruption of

input pins. The input pin corruption ensures that combinational

logic, through assigns or other logic is corrupted. Without this

corruption the simulation results could be optimistic and miss real

problems in the design.

While the traditional approach of corruption outputs and internal

state handles most of the required power shutoff corruption, it

doesn’t cover everything. For instance any monitors or assertions

that are checking the inputs of a design will not see the corrupted

data (DRV B). In other cases, logic combinational feed through

paths may not corrupt, leading to optimistic results outside of the

block.(DRV A below)

The simulator does make a special case for feed through paths, with

the premise that the implementation tools are intelligent enough not

to buffer a feedthrough path inside a switchable domain. If your

implementation tool doesn’t have that ability, then a command line

option is provided to treat feedthroughs as buffers.

3.4.3 Standby/Sleep Mode corruption.
Standby mode or sleep mode is a case of dynamic voltage scaling

where the voltage for a domain is reduced to the point where it is

high enough to maintain state, but too low to compute new values. If

an input to the domain changes while in standby mode that input is

corrupted. In reality, it is difficult to predict if logic will corrupt or

not. For instance, in a power switched design, a transition to 0 is

probably okay. The safe approach for a simulator is to always

corrupt.

The original recommendation by Cadence was even more

pessimistic. It would corrupt the entire domain if any of the inputs

changed. But based on customer feedback this was relaxed to

corrupt only the related inputs (and through normal event

propagation their cone of logic), and issue a warning message.

The recommendation is to treat any of these warnings very seriously.

It can sometimes be difficult to ensure that a single inputs corruption

is detected by the simulation environment. The warning provides a

flag that should be checked as part of the verification signoff process.

5. CONCLUSION
Verification of advanced low power designs needs to leverage the

best practices of general verification as well as leverage the

experience hard won in the field. The recommendations here

represent a partial view of the results of the past 4 or 5 years

deploying low power verification methodologies at numerous

customers worldwide. Understanding the low power architecture

and what steps are required to properly model the power intent can

avoid many of the common issues in low power, and at the very

least, provide for earlier detection of the issues.

Successful low power verification flows should provide

methodologies to verify the power intent as early in the flow as

possible. This not only means utilizing the structural checks up

front, but also includes modeling the power intent such that RTL

simulations provide the an accurate representation of what the final

implementation will be. This ensures that the RTL verification

provides the highest degree of coverage.

This process often involves making decisions on modeling or flow

that are pessimistic in nature, but provide pay offs in productive and

proven silicon.

This document is primarily focused on the RTL verification of low

power, but this is just a single step in the full low power flow.

Future papers will explore the verification as it moves up into the

TLM/ESL space and also down into the gate level and more physical

verification steps.

6. ACKNOWLEDGMENTS
The recommendations outlined in this document have come from

gathering input from many sources. This includes customers,

Cadence application engineers, product engineers, and R&D. I

wanted to extend my thanks to all that have contributed, directly or

indirectly to making a more robust low power verification

methodology.

7. REFERENCES
[1] Common Power Format Language Reference. Version 1.1. August,
2010.

[2] Neyaz Khan and William Winkeler,. 2008. Power Assertions and

Coverage for improving quality of Low Power Verification and closure of
Power Intent. In DVCON (San Jose, Calif., Feb 19 - 21, 2008).

[3] Cadence CPF Methodology Guide, version 1.1, October,
2010
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:DocumentView

er;src=wp;q=ProductInformation/Digital_IC_Design/CPF_Methodology_v1.
1.pdf

[4] A Practical Guide to Low-Power Design - http://www.powerforward.org

DRV A RCV A

DRV B

Figure 4 - Macro Input Corruption

http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:DocumentViewer;src=wp;q=ProductInformation/Digital_IC_Design/CPF_Methodology_v1.1.pdf
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:DocumentViewer;src=wp;q=ProductInformation/Digital_IC_Design/CPF_Methodology_v1.1.pdf
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:DocumentViewer;src=wp;q=ProductInformation/Digital_IC_Design/CPF_Methodology_v1.1.pdf
http://www.powerforward.org/

