

Automated approach to Register Design and Verification of
complex SOC

Ballori Banerjee

LSI India R&D Pvt. Ltd
GTP, Devarabeesanahalli

Outer Ring Rd, Bangalore, India
(+91)80-41979520
bbanerje@lsi.com

Subashini Rajan
LSI India R&D Pvt. Ltd

GTP, Devarabeesanahalli
Outer Ring Rd, Bangalore, India

(+91)80-41979614
srajan@lsi.com

Silpa Naidu
LSI India R&D Pvt. Ltd

GTP, Devarabeesanahalli
Outer Ring Rd, Bangalore, India

(+91)80-41979603
snc@lsi.com

ABSTRACT
Today's designs contain several hundreds to thousands of registers

and memory elements. Starting from documentation to design

implementation to verification of each single register, each bit and its

property involves a lot of time and complexity.

Use of a single source, written in a high-level register and memory

modeling language like SystemRDL, for documentation, design and

verification helps to reduce this complexity.

The paper describes this methodology which provides an almost

zero-time, low maintenance, and reusable register design and

verification system. A complete solution from SystemRDL to RTL

and documentation, to a complete reusable VMM based register

verification environment, the Register Abstraction Layer-RAL, is

discussed

The paper presents useful RDL constructs for modeling scalable

register descriptions, like registers arrays, regfiles and register field

instantiation. Also presented are constructs for modeling standard

register types like interrupt enable and interrupt status register. A few

useful field properties and their mapping to hardware implementation

are discussed.

Commercially available register automation tools can be used to

generate several outputs from SystemRDL input. This includes

document, RTL, C headers, verification components and other

custom outputs which may be required. Challenges encountered

while setting up the flow with third party tools are discussed.

An example comprising a set of read-write and status registers is

provided to help in understanding the transition of the input to the

outputs formats.

Once setup, the flow is repeatable and can be used across block,

cluster (Sub chip-level) and chip level, with lot of reuse of code and

environment

Categories and Subject Descriptors
[Hardware Software Co-design]: Automatic Register modeling

flow, language constructs

General Terms
Language, Design, Verification.

Keywords
CSR: Control and Status Register

RDL: Register Description Language

RTL: Register Transfer Language

HDL: High Level Description Language

SoC: System on Chip

RAL: Register Abstraction Layer, a VMM application package

RALGen: Synopsys tool to convert RDL to RAL

VMM: Verification Methodology Manual, by Synopsys

1. INTRODUCTION
Registers and memory elements constitute a large percentage of

today’s large and complex designs. On-chip registers define the

software interface to the chip, and usually represent the largest

portion of the chip specification or programmer's guide.

Continuously increasing number of registers makes documentation,

implementation and maintenance a growing challenge. Moreover,
changing specifications during the design cycle require repeated

updates to design, test bench, and register/memory test cases as also

to documentation. Manually managing these components affects

productivity and increases probability of introducing errors in the

process.

Most times, though, registers have a regular structure, defined by

their field attributes. Using this characteristic, it is possible to define

a flow where the register architecture is defined in a high level

register description language like SystemRDL, which in turn is used

to generate the design, documentation and verification components.

This helps to reduce the often tedious and error-prone task of

managing registers, and enables design, verification and firmware

teams to work more efficiently from consistent and synchronized

views of the chip design.

We have implemented this flow on a multi-million gate SoC (around

140 million gates) where on-chip registers are greater than 25,000

overall! Having initially started with the manual coding of registers

and later moving to the unified register management flow, the

following section illustrates the advantage in terms of effort saving

achieved by adopting the methodology.

2. LEGACY FLOW: NO AUTOMATION
Register definition generally starts with an architect scoping out a

specification. Once the specification is completed the hardware

engineer, software engineer, and verification engineers can begin

coding different views of the registers described in the functional

specification. Once we have a design, verification and software

engineers can start running tests. Anytime a bug is discovered the

specification must be changed and all the subsequent outputs must be

changed accordingly. But due to other priorities the designer would

have changed the code but not the document or vice versa. This

process repeats itself many times over the course of the project.

Bugs are only one source of change though. Marketing requests may

also come in at any stage of the design cycle requiring the

specification to change and all downstream code to be modified.

Figure 1 captures this course in a flow chart.

SpecificationRequirement

Change

RTL

Bug/

enhancements

?

Validation

Componnet

Bug ?

Verification

Environment

Verify with tests
Driver

Development

Yes

Hopefully Done !

No

Yes

Figure 1: Legacy Flow

As an example, in a module that we are implementing, there are four

thousand registers. Translating into number of fields, for 4000 32-bit

registers we have 128,000 fields, with different hardware and

software properties!

Coding the RTL with address decoding for 4000 registers, with fields

having different properties is a week’s effort by a designer.

Developing a re-usable randomized verification environment with

tests like reset value check, read-write is another 2 weeks, at the

least. Closure on bugs requires several feedbacks from verification to

update design or document. So overall, there is at least a month’s

effort plus maintenance overhead anytime the address mapping is

modified or a register updated/added.

This flow is susceptible to errors where there could be disconnect

between document, design, verification and software. The automated

register design and verification (DV) flow streamlines this process.

Adopting the automated flow, it took 2 days to write the RDL. The

rest of components were generated from this source. A small amount

of manual effort may be required for items like back-door path

definition, but it is minimal and a one-time effort.

3. AUTOMATED REGISTER DESIGN AND

VERIFICATION FLOW

3.1 Methodology
The flow starts with the designer modeling the registers using a high

level register description language, like SystemRDL. Third party

tools are available to generate the various downstream components

from the RDL file:

i. RTL in Verilog/VHDL

ii. C/C++ code for firmware

iii. Documentation (different formats)

iv. high level verification environment code (HVL)

This is shown in Figure 2. The RDL file serves as a one-stop point

for any register update required following a requirement change.

RTL
for Synthesis

HVL Code
for Verification Documentation

C Code
for Firmware

Third Party Tools

Generated
DocumentationHardware

Design

Register Description Language

 - SystemRDL

Figure 2: Automated Register DV Flow

3.1.1 Choosing SystemRDL
While evaluating the register modeling options for the flow,

following items were considered:

1. Ease of capture: To get various designers to agree to use a

language standard other than a HDL for register modeling,

it should be possible to capture the specifications in a user

readable and writable format.

2. Comprehensive set of constructs: It should be possible to

define all types of registers that may be used in a design,

for instance read-write, read-only, interrupt enable/mask,

multiple instances of a register, a group of similar registers,

external registers.

3. Ease of usage: Defining various registers using the

constructs should be fairly straight-forward.

4. Ease of maintenance/version control: This allows change

control.

5. Support by vendors and stability of flow: We needed to

check with third party vendors on how mature their tools

are to support a particular standard as an input.

6. Implementation guidelines: If a standard has inbuilt

implementation guidelines it is easy to understand the

output generated and allows portability.

In this regard, SPIRIT IP_XACT XML and SystemRDL standards

were considered. Also, possibility of an Excel spreadsheet for

capturing register definitions was explored.

IP_XACT is an XML format for capturing design components.

However, SystemRDL provides a user readable and writable format

to succinctly capture the description from which rest of the

deliverables are produced. It has several constructs with particular

implementation guideline for different types of registers, like read-

write, read-only. Being a text file, it lends itself to easy editing and

maintenance using version control.

An Excel spreadsheet appears easy; however a standard format needs

to be used for all IP blocks of a SOC, while having some method for

version control. There is no defined specification for RTL

implementation when registers are defined in a spreadsheet. Hence

generated RTL is open to tool interpretation of spreadsheet register

attributes. It lacks a defined method for grouping similar registers or

creating an array of registers, where the basic register is defined only

once and we can specify the number of instances of it at defined

addresses. SystemRDL constructs are very efficient to capture such

requirements.

Thus we arrived at SystemRDL as a standard way of defining

registers for all blocks in our project.

3.2 Extending flow for VMM based Verification
Register Abstraction Layer, RAL is a VMM application package

which helps create an object oriented abstraction layer to model

registers and memories in a design under test.

A complete VMM compliant randomized, coverage driven register

verification environment can be created by extending the flow such

that:

i. Using 3rd party tool, from SystemRDL the verification

component generated is RALF, Synopsys’ Register

Abstraction Layer File.

ii. RALF is passed through RALGEN, a Synopsys utility

which converts the RALF information to a complete VMM

based register verification environment. This includes

automatic generation of pre-defined tests like reset value

check of registers and functional coverage model, which

would have taken considerable staff-days of effort to write.

Figure 3 illustrates the Verification flow.

Figure 3: Generating VMM based RAL model for Verification

4. DEMONSTRATING WITH A CSR

EXAMPLE

4.1 Source File: SystemRDL Description

SystemRDL is an object-oriented register description language

(RDL).Its semantics support the entire life-cycle of registers from

specification, model generation and design verification to

maintenance and documentation. Components are defined in

SystemRDL using four basic types of defining elements:

i. Fields – keyword field. This is the basic component that

usually maps to a flip-flop or wire/bus. A register’s

individual bit/bits are mapped to field.

ii. Registers – keyword reg. A Register (reg) has a set of one

or more field instances that are atomically accessible by

software at a given address

iii. Register files – keyword regfile. Describes a logical

grouping of one or more register and register file instances.

iv. Address Maps – keyword addrmap. Addressmap contains

registers, register files or other addressmaps and assigns an

address, defining the boundary of an implementation.

Each component relates to a number of properties which describes its

purpose and implementation.

A field has four basic properties:

i. fieldwidth : describes number of bits/bit

ii. reset: has the default/on-reset value.

iii. hw: captures design’s ability to sample/update a field

iv. sw: captures programmer’s ability to read/write a field.

In addition to these four, software/hardware properties like rclr,

woclr, hwclr can be added to model the corresponding behavior.

Also, there are properties to add descriptive content that gets

reflected in documentation: name; desc

An example of a Control and Status register, CSR, modeled in

SystemRDL is given in Table 1.

Table 1: SystemRDL for CSR Example (CSR_EXAMPLE)

// **** FIELDS ****

field myControl {

 hw = r;

 sw = rw;

 fieldwidth = 16;

 // The above combination would result in a flip-flop in CSR register.

 // The following would show up in generated document outputs

//(HTML, etc.)

 desc = "CSR example's 16 bit control field";

 reset = 16'h3020;

};

field myStatus {

 hw = w;

 sw = r;

 desc = "CSR example's status field";

};

// **** REGS ****

reg Control_and_Status_reg {

 myControl control[15:0]; // bit position assigned

 myStatus status[31:28]; // moves bit position to [31:28]

 // Thus bit[27:16] are now reserved

 status->reset = 4'b1010; // reset value defined for status

 };

// **** ADDRMAPS ****

addrmap csr_example {

 name = "RDL Example for Control Status Register";

 desc = "An example Addressmap.";

Control_and_Status_reg CSR @0x0020;

 reg {

 field { reset = 32'hABCD_BEEF;} myField[31:0];

 } myReg @0x0024;

};

Register verification using
RAL model in environment

Start

Input RDL file

Third Party Tool generates
RALF, DOC, RTL

RalGen creates RAL model
from RALF

Register
Specification

Changed?

 Register Verification results

Stop

Yes

No

4.2 Output Component 1: RALF
The Synopsys Register verification file component, RALF, for the

RDL CSR description (Table 1) is shown in Table 2.

Table 2: RALF for CSR_EXAMPLE

4.3 Output Component 2: RTL
Using a third party tool to generate RTL will ensure standard RTL

interface for the registers, including read /write strobes and address

bus as inputs and the register fields as outputs. The RTL interface

corresponding to the example RDL is shown in Table 3.

Table 3: Verilog RTL Interface for CSR_EXAMPLE

module csr_example (

 input wire CLK,

 input wire cpu_if_read,

 input wire cpu_if_val,

 input wire [31:0] cpu_if_write_data,

 input wire [5:0] cpu_if_address,

input wire [3:0] CSR_status_next,

input wire RESET

input wire [31:0] myReg_myField_next,

 output wire [31:0] cpu_if_read_data,

 output wire cpu_if_access_complete,

 output wire cpu_if_invalid_address,

 output wire cpu_if_invalid_access,

 output reg [15:0] CSR_control,

 output reg [31:0] myReg_myField

);

……………………………

……………………………

endmodule

4.4 Output Component 3: Document
Register documentation of different IPs in a SOC may not have the

same look and feel. A generated document will ensure a uniform

look and keep the document in sync with the other components.

Document view for the CSR is as in Table 4. Most third-party tools

will allow some customization in the look and information content of

the document .Document formats supported can vary from Microsoft

Word, RTF to HTML.

Table 4: Document View for CSR_EXAMPLE

5. VERIFICATION VIEW
The generated RALF is passed through RALGEN, as shown in

Figure 3, to generate an object oriented, reusable, coverage driven

VMM based register verification environment. A small part of the

System Verilog code generated for CSR_EXAMPLE (above

example) is shown in Table 5.

Table 5: VMM based System Verilog environment

`include "vmm_ral.sv"

class ral_reg_csr_example_CSR_bkdr extends

vmm_ral_reg_backdoor;

 function new(vmm_ral_reg __ral_reg);

 super.new(__ral_reg);

 endfunction

 virtual task read ();

 super.pre_read(data);

 ………………

 endtask

 virtual task write();

 super.pre_write();

 ………….

 endtask

endclass

class ral_reg_csr_example_CSR extends vmm_ral_reg;

 rand vmm_ral_field CSR_control;

 vmm_ral_field CSR_status;

 function new();

 super.new();

 endfunction: new

endclass : ral_reg_csr_example_CSR

class ral_block_csr_example extends vmm_ral_block;

……………………...

endclass : ral_block_csr_example

block csr_example {

 bytes 4;

 register CSR @0x20 {

 bytes 4;

 field CSR_control (CSR_control) @0 {

 bits 16;

 access rw;

 reset 0x3020;

 }

 field CSR_status (CSR_status) @28 {

 bits 4;

 access ro;

 reset 0xa;

 }

 }

 register myReg @0x24 {

 bytes 4;

 field myReg_myField (myReg_myField) @0 {

 bits 32;

 access rw;

 reset 0xabcdbeef;

 }

 }}

For each field, register, block and system component available in

RALF, the RAL contains a System Verilog class. These classes are

extended from RAL base classes. The attributes of the components in

RALF such as base address, offset, reset value, domain name are

passed to the individual classes as arguments.

This RAL model can be integrated in a VMM environment for

complete DUT register verification, as in Figure 4. The XL

XACTOR translates the RAL commands to interface commands.

The BFM uses these to drive DUT signals as per protocol.

Figure 4: RAL integration in VMM environment

RAL has several useful features that help in building verification

environment for large and complex designs:

 Named register access

 Mirror register
 Functional coverage model

 Predefined tests

 Access tasks

These are well documented in the RAL user guide that we need to

refer for further usage details.

6. VERIFICATION ASPECTS AND

CHALLENGES

A few important verification aspects and challenges encountered

while using the verification flow from SystemRDL to RALF to RAL

SV classes are discussed here.

6.1 Backdoor Access

There are two ways of accessing design registers in a verification

environment: front door and back door. Front door is by using the

design register bus. This consumes cycles and follows the register

bus protocol. Backdoor is a zero simulation time access by mapping

to the design register directly using the HDL path and allows quick

configuration of registers. Thus, configuring by backdoor saves

simulation time, especially useful for full-chip and sub-chip

simulations where several registers need to be setup.

Backdoor access also helps in uncovering address decode design

bugs. Since the mirror register gets updated while doing front-door

or back-door writes, writing a register in front door and reading it

from the backdoor flags any mismatch between design and the mirror

register.

Another important use of backdoor access is to know when a register

field (RO bit) is updated by design and use that information without

polling for this (RO) bit using the register bus. The example is an

Interrupt status register bit (RO), Using the back door, we get to

know that Interrupt has set and ISR procedure is executed as in the

system.

To have the backdoor path in the verification environment, it needs

to be present in the RALF. To avoid manually inserting the backdoor

path for each register in RALF, it needs to be present in the

generated RALF code.

However, generation of backdoor path for a register in RALF is

subjected to the implementation method of tool converting RDL to

RALF. SystemRDL does not provide any guideline for associating a

backdoor path with a register or register field. If not directly

provided in the RALF /HVL code, users will need to manually add

the backdoor path to RALF to enable backdoor accesses

Further, there is a difference in backdoor path specification format

for Verilog and VHDL RTL. Tool support is required for both.

Below example shows the backdoor path definition for Verilog and

VHDL RTL, in RALF file. ‘didc’ is the backdoor path in the design.

 Backdoor path for Verilog design:

 register DID (didc) @0x0{

 };

 Backdoor path for VHDL design:

 register DID vhdl_path = (didc) @0x0{

 };

The complexity of specifying/generating backdoor path increases

when there is legacy/IP RTL that is not generated from the

SystemRDL file. If the IP RTL register field name does not match

exactly with the RDL register field name, the RTL will need to be

traced and manually mapped in the verification environment to the

corresponding register’s backdoor path.

Also, field names in generated RTL are usually of the format

<register_name>_<filed_name> that is, prefixed with the register

name. However the field name in hand-written RTL does not

usually follow this format. Thus, if a tool automatically derives

backdoor paths from the RDL file, it possibly needs to be different

for generated RTL as compared to hand-written RTL.

 If a designer writing the System RDL file for an IP RTL does not

refer to the RTL while writing the RDL, it is possible to have a

scenario where the fields are defined in RDL which do not exist in

the RTL. If a tool is automatically deriving backdoor paths from

RDL, the field backdoor paths will be present in the RALF

component, will come in to the System Verilog environment and

give elaboration errors due to absence of the actual path in the RTL.

The backdoor paths for Register arrays or array of regfiles are

difficult to map automatically. If a bunch of registers are defined as a

register array in RDL, most times the RTL, generated or hand-

written, will be scalar. Thus, though the verification environment

will have an array, the corresponding RTL implementation will have

individual registers. In such a case, the backdoor path to registers

will need to be manually added to the verification file.

Adding another dimension to this is the current limitation of

RALGEN in supporting hexadecimal array indices. Let us consider a

design having 64 registers for CHANNEL_CONFIG, for 64 channels

of a DMA. RTL may have these implemented as scalar with name

formatting such that the individual register instances have

hexadecimal numbering (example : dma_config_a ,dma_config_b

where trailing letters stand for hexadecimal numbers). However,

while generating the VMM classes from RALF, RALGEN gives

error if a hexadecimal index is present in the backdoor definition of a

register array So, for above example following code will give error:

register DMA_CHANNEL[4] (dma_channel_[%x]) @0x4 {};

This needs to be replaced with:

register DMA_CHANNEL[4] (dma_channel_[%d]) @0x4 {};

This will require a level of post processing to convert the decimal

indices in backdoor definition of the SV register classes to

hexadecimal to map to RTL.

Tools need to be able to handle all these different permutations to

generate the backdoor paths correctly. These are backdoor access

issues found and tool enhancements requested while working on our

project.

If all tools reading SystemRDL followed some standard guidelines

while implementing register interface, for hierarchical addressmaps

and register arrays implementation, keeping in mind backdoor path

requirement, the flow would be considerably smoothened for

verification.

While implementing RTL for a SystemRDL defined register array,

the possibility of an RTL array (using VHDL/ Verilog generate)

could be explored. This would make backdoor path mapping

seamless, though of course tools will need to work with HDL

limitation on two dimensional arrays at ports.

At present, we have a configuration file being passed to the tool to

provide the hierarchical backdoor path of the registers, where it

needs to be manually defined. However, to minimize the effort of

writing the configuration file, it helps to have a switch to enable

generating the backdoor paths such that it is either same as that of the

field instance name or is the register name appended with field name

or is not generated (where field is not present in say a third-party IP

RTL).

A few SystemRDL guidelines if followed can reduce verification

effort in defining backdoor path for IP/non-generated RTL.

 Register/field names should match the RTL register/field

names to enable generation of backdoor paths automatically.

 If there are no fields in the RTL, it is recommended to have a

single field in the RDL with the same name as RTL register

name. However, if multiple fields need to be defined in the

RDL for use in the verification environment, then field

names may be different and that information needs to be

captured in the input file used by the third party tool to

generate the backdoor paths in RALF. In the input file for the

tool, fields with register slices as backdoor paths should be

manually added.

6.2 Multiple Views/Interfaces
It is possible to have registers in today’s complex SOC designs

which need to be connected to two or more different buses and

accessed differently. The register address will be different for the

different physical interfaces it is shared between. This can be defined

in SystemRDL by using a parent addressmap with bridge property,

which contains sub addressmaps representing the different views.

For example:

addrmap dma_blk_bridge {

bridge;// top level address map

 reg commoncontrol_reg {

 shared; // register will be shared by multiple address maps

 field {

 hw=rw;

 sw=rw;

 reset=32’h0;

 } f1[32];

 };

 addrmap {// Define the Map for the AHB Side of the bridge

 commoncontrol_reg cmn_ctl_ahb @0x0; // at address=0

 } ahb;

addrmap { // Define the Map for the AXI Side of the bridge

commoncontrol_reg cmn_ctl_axi @0x40; // at address=0x40

} axi;

 };

The equivalent of multiple view addressmap, in RALF is domain.

This allows one definition of the shared register while allowing

access from each domain to it, where register address associated with

each domain may be different .The following code is RALF with

domain implementation for above RDL.

register commoncontrol_reg {

 shared;

 field f1 {

 bits 32;

 access rw;

 reset 'h0;

 }

}

block dma_blk_bridge {

 domain ahb {

 bytes 4;

 register commoncontrol_reg =cmn_ctl_ahb @'h00 ;

 }

 domain axi {

 bytes 4;

 register commoncontrol_reg=cmn_ctl_axi @'h40 ;

 }

}

Each physical interface is a domain in RALF. Only blocks and

systems have domains, registers are in the block. For access to a

register from one interface/domain RAL provides read/write methods

which can be called with the domain name as argument.

 ral_model.STATUS.write(status, data, “pci”);

 ral_model.STATUS.read(status, data, “ahb”);

This considerably simplifies the verification environment code for

the shared register accesses.

However, when tools do not support domain, the RALF is created

having effectively two or more top level systems re-defining the

registers. This can blow up the RALF file size and also verification

environment code.

system dma_blk_bridge {

 bytes 4;

 block ahb (ahb) @0x0 {

 bytes 4;

 register cmn_ctl_ahb @0x0 {

 bytes 4;

 field cmn_ctl_ahb_fl(cmn_ctl_ahb_f1)@0{

 bits 32;

 access rw;

 reset 0x0;

 } }

 }

 block axi (axi) @0x0 {

 bytes 4;

 register cmn_ctl_axi @0x40 {

 bytes 4;

 field cmn_ctl_axi_f1 (cmn_ctl_axi_f1) @0 {

 bits 32;

 access rw;

 reset 0x0;

 } }

}

 }

In the above example, the tool is generating two blocks ‘ahb’ and

‘axi’ and re-defining the register in each block. For multiple shared

registers, the resulting verification code will be much bigger than if

domain had been used.

Also, without the domain associated read/write methods (as shown

above) for accessing the shared registers, it will be at least a few

lines of code per register for accessing it from a domain/interface.

This makes writing the test scenarios complicated and wordy.

Using domain makes shared register implementation and access in

verification environment easy. However, since tool support was not

available this feature of RAL could not be exploited. Tools should

use the shared and domain properties while generating RALF to

support shared register access from multiple interfaces.

7. USEFUL SYSTEMRDL CONSTRUCTS

7.1 Interrupt
RDL provides particular constructs to define registers like interrupt-

enable/mask and interrupt-status from which interrupt will be

derived. Each bit in the interrupt status register has to be mapped

with corresponding enable/mask bit in the interrupt enable/mask

register using interrupt field access property enable or mask. If it is

enable corresponding interrupt source is used to generate an

interrupt. In case of mask, corresponding interrupt source is not used

to generate an interrupt. Each fieldwidth defined in interrupt status

and interrupt enable register should be 1.SystemRDL example for

interrupt status and enable register and their mapping is given in

Table 6.

Table 6: Interrupt Register Example

reg irq_status_reg {

name = “ IRQ_STATUS”;

desc = “Interrupt status register”;

 field fifo_status {

 hw = w;

 sw = rw;

 woclr;

 intr;

 reset = 1’h0;

 };

 fifo_overflow fifo_status [0:0] ; // bit number zero

 fifo_underflow fifo_status [1:1] ; // bit number one

 fifo_overflow ->desc = “ Set when fifo overflows”;

 fifo_underflow ->desc = “ Set when fifo underflows”;

 };

reg irq_enable_reg {

name = “ IRQ_ENABLE”;

desc = “Interrupt enable register”;

 field fifo_status_enable {

hw = na;

sw = rw;

reset = 1’h0;

};

fifo_status_enable fifo_overflow_enable [0:0] ;

 fifo_status_enable fifo_underflow_enable [1:1] ;

 fifo_overflow_enable->desc = “when set high enables interrupt

generation if corresponding source is set”;

fifo_underflow _enable->desc = “when set high enables interrupt

generation if corresponding source is set

};

addrmap{

 irq_status_reg irq_status@0x0000; // offset zero

irq_enable_reg irq_enable @0x0004; // offset four

};

irq_status.fifo_overflow->enable= irq_enable.fifo_overflow_enable;

irq_status.fifo_underflow>enable=irq_enable.fifo_underflow_enable;

The implemented hardware will have an interrupt signal irq_status

which is the logical OR of all interrupt fields in the status register

ANDed with interrupt enable according to the mapping.

7.2 Register Array
For defining multiple instances of the same register regfile and

register array are useful RDL constructs. A regfile can contain one

or more registers whose array can capture multiple instances of the

same register. Using regfile arrays and register arrays helps to

configure the registers in a loop in the verification environment,.

This helps reduce lines of code required to configure, as in the

example below.

Example: DMA design has two channels; a channel can be

implemented as a regfile with a set of registers and the numbers of

instances are based on the number of channels. Using a for-loop, the

registers of all the channels can be accessed. Even variations in the

number of channels would not require any modification in the

verification environment. In this example, depending on

‘dma_descr_pkt.chnum’ [2 in this case], all the channels registers

can be accessed, using a single line statement. If there are individual

registers, the number of lines would increase, since we have to write

a line of code for each register.

ral_model.dma_blk.CHANNEL[dma_descr_pkt.chnum].CHANNELC

ONTROLSTATUS.read (status, reg_value);

7.3 Addressing Mode
The RDL default addressing mode is that address is aligned to the

width of the component being instantiated. This requires the regfile

array offset to be aligned with the regfile size.

For example, in below example there are two regfiles.

DMA_WPL_RegFile has a single register and DMA_VPL_RegFile

has two registers, each 32-bit wide. 8 instances of

DMA_VPL_RegFile need to be created.

 DMA_WPL_RegFile DMA_WPL_RF @0x00000300;

DMA_VPL_RegFile DMA_VPL_RF[8] @0x00000304

Since the total component size of one DMA_VPL_RegFile is 8

bytes, the address of this array needs to be 8 byte aligned if the

default addressing of SystemRDL is used. Thus the above code will

give an error if default addressing is used.

However, System RDL provides a compact addressing mode. This

can be used for such register components where the offset needs to

be continuous and not aligned with the size of the register

component.

7.4 PERL Preprocessor

SystemRDL supports embedded Perl as preprocessor. This provides

flexibility for file inclusion, text substitution, and conditional

compilation. For instance, implementing different register blocks for

different chip options is possible by using preprocessors. Each

interface registers can be described in different files and if the

current version of the chip has that interface then corresponding file

can be included in the top level file by defining the option through

command line during compile time as shown below.

Perl File Inclusion Example:

<% if($PCI_E) { %>

`include “pci_e.rdl”

<% }; %>

Define $PCI_E =1 to have the pci_e registers in the design.

PERL provides scalability in register and field definitions and allows

control over the format of generated register names while

instantiating a register multiple times.

For example:

<% for($i = 0; $i < 2; $i += 1) { %>

dma_enable_status_reg

dma_<%=sprintf("%1x",$i)%>_enable_status

@0x<%=sprintf("%04x",((0x00C0)+($i*4)))%> ;

<% } %>

When processed, this is replaced by following code:

dma_enable_status_reg dma_0_enable_status @0x00C0

dma_enable_status_reg dma_1_enable_status @0x00C4

An example of text substitution on fields for part select is given

below:

reg test_ob {

 <% for($i=0; $i <6;$i+=2) { %>

 test_ob_sel sel<%=$i%> [<%=$i+1%> : <%=$i%>];

 <% } %>

When processed, this is replaced by following code

// Code resulting from embedded Perl script

test_ob_sel sel0 [1:0];

test_ob_sel sel2 [3:2];

test_ob_sel sel4[5:4];

7.5 MAPPING TO RTL
There are several constructs for defining registers and the RDL

specification needs to be read to go through all in detail. However a

snapshot of few common register types and their mapping to RTL

which were used in our project is provided in Table 7.

Table 7: Useful SystemRDL constructs and their mapping to

RTL

8. CONCLUSION
This flow eliminates tedious and error-prone processes of manually

managing registers, and enables design, verification and firmware

teams to work more efficiently from consistent and synchronized

views of the chip design. It provides an almost zero-time, low

maintenance, and reusable register design and verification (DV)

system.

Once setup, the flow is repeatable and can be used across block,

cluster (sub-chip level) and chip level, with lot of reuse of code and

environment. Overall, there is lot of saving of effort, enhanced

productivity, robust design and better verification. As seen earlier,

greater than a month’s effort can be cut down to less than a week’s

by this approach.

However, better tool support for backdoor paths and for multiple

physical interface implementations would be very useful in making

the flow more seamless and in reducing the effort required in

implementing workarounds. We also look forward to some

guidelines from SystemRDL for nested addressmap RTL

implementation, register array and external register implementation.

This would enable uniform tool outputs for these structures.

9. ACKNOWLEDGEMENTS

We would like to first express our gratitude to LSI and DVCon for

giving us the opportunity to present our work and share our

experiences with others who might benefit from it. We gratefully

acknowledge the contribution of Jayendra Dwaraka, our manager for

his encouragement, guidance and help. We also acknowledge the

help received from Varun.S from Synopsys while setting up the RAL

flow. Please note that any trademarks used herein are the property of

their respective owners.

10. REFERENCES
[1] SystemRDL v1.0 :A Specification for a Register Description Language

[2] VMM Register Abstraction Layer User Guide, RAL Version 1.15

