
An experience to finish code refinement earlier
at behavioral level

*Dae-Han Youn, Sik Kim, Byeong Min, Kyu-Myung Choi

Samsung Electronics Co. Ltd.
San#24 Nongseo-Dong, Giheung-Gu,

Yongin-City, Gyeonggi-Do, Korea 446-711
*(82)-31-209-4263

*dhan.youn@samsung.com

ABSTRACT
Use of behavioral description and HLS (high level synthesis) flow

has allowed designers to shorten design TAT (turn-around- time)

with its better performance in hardware description, functional

simulation and RTL generation when it compared to the design flow

with RTL designs. However, code refinement in HLS flow would be

performed in RT (register-transfer) level due to the lack of proper

methodology in HLS flow. Code refinement in RT level is

time-consuming due to simulation time overhead and lack of

readability of synthesized RTL designs. This paper describes our

experience to move the code refinement flow from RT level to

behavioral level. We analyzed code coverage gaps during and after

the logic simulation of behavioral level and RT level designs, and

proposed behavioral level design guides to get the same level of

coverage value, which helps to finish the code refinement work at the

behavioral level design stage. Our experiments showed that we can

get fairly good quality of code refinement result with this proposal as

well as over 70% reduced code refinement time.

Categories and Subject Descriptors
[ESL Design and Verification]: Experience using ESL and/or TLM

for system-level design and verification.

General Terms
Code refinement, Code coverage, HLS flow

Keywords
Behavioral Code Coverage, High-Level Synthesis.

1. Introduction

HLS has been widely adopted in SoC designs for its high design

productivity. Once a behavioral level design is prepared initially,

behavioral code refinement follows to get the design that best fits to

a given specification [1]. In HLS flow, Code Refinement means

rewriting or optimizing the behavioral source code to meet the size

and timing requirements or to achieve function and code coverage

goals. Code refinement to meet size and timing requirement can be

performed based on the HLS report without exploring RTL design.

However, code refinement to achieve function and code coverage

goals makes a long feedback loop to include RTL exploration for

debugging or RTL simulation. This paper limits the meaning of code

refinement within the scope of coverage closure of RTL and

behavioral designs.

Traditional high-level synthesis flow is shown in the left side of

figure 1. To get the design which meets the requirements in

specification, a series of feedbacks is needed. The internal loop is for

behavioral refinement with behavioral simulation. The external loop

is mainly for corrective work after debugging and measuring

coverage. Though behavioral simulation of the internal loop is quick

and simple, we have used RTL simulation of the external loop to

measure coverage, because there hasn’t been much activity to verify

behavioral design using coverage metrics due to the lack of proper

tools.

Simulation with the synthesized RTL design includes a closure of

code/function coverage metrics, where the simulation is

time-consuming due to simulation time overhead and lack of

readability of the synthesized RTL designs, which results in

debugging overhead. Once a design bug is found in this stage, the

design activity is returned to the behavioral coding stage, which

forms a relatively long feedback loop and it is time-consuming work.

In HLS flow, reducing code refinement time is inevitable to meet the

TAT requirement of modern SoC designs. A new idea is to move this

code refinement work to the earlier stage at behavioral level as

shown in the right side of figure 1. This means that verification at

behavioral level should be able to cover the verification activities of

measuring coverage in RTL. Therefore, we have applied JEDAcc

tool to measure coverage at behavioral level and set up new

verification flow like the right side of figure 1. Successful code

refinement at behavioral level makes the feedback loop short as

shown in figure1.

This paper focuses on the analysis of code coverage metrics in

behavior level and RT level to see if the code coverage measurement

can be migrated. Sanguinetti and Zhang showed their behavioral

level code coverage definition is equivalent to RTL code coverage

and, as the number of test increases the weighted average of the

behavioral level code coverage result tends to converge to the RTL

code coverage result [2]. However, we found the RTL code coverage

trend leaves the gap after the simulation with all testbench, which is

the reason that the design refinement at RT level is still needed. This

paper shows the analysis result of this gap in coverage trends. It

includes the analysis of the trends of code coverage closure,

high-level design guides to minimize the coverage gap and a design

flow to meet the design quality early at behavioral level design stage.

RTL synthesis flow has been successfully established, where

gate-level design is no longer explored to meet functionality

requirements. They finish code refinement in RTL design and throw

it to a logic synthesizer tool. Formal equivalence checker tool will

check whether the transform from RTL to gate is successful or not.

Similarly, in an HLS flow, RTL code refinement can be waived as

long as the HLS flow supports behavioral level code refinement

methodology and formal equivalence checker [3] between behavioral

level and RTL designs.

Chapter 2 shows the detail of code coverage analysis. Chapter 3

introduces high-level design guide to minimize coverage gap

between behavioral design and RTL design. Chapter 4 shows

experimental results, and it exploits the correlation between the code

coverage results in two different levels. Finally, Chapter 5 covers a

conclusion.

Behavioral Refinement

High-level Synthesis

Behavioral Simulation

RTL

RTL Simulation

Function/code coverage

Behavioral Refinement

High-level Synthesis

Behavioral Simulation

Function/code coverage

RTL

Sequential EC
(SystemC vs. RTL)

AS-IS TO-BE

Algorithm
(C/C++/SystemC)

Algorithm
(C/C++/SystemC)

Logic Synthesis Logic Synthesis

Figure 1 Comparison of Code Refinement Flows

RTL Trend

Time

Coverage Gap

Behavioral T
rend

Figure 2 Gap in Coverage Trends

2. Analysis of Code Coverage Measurement

In this section, we analyzed characteristics of behavioral and RTL

code coverage metrics. In our experiments, we applied Cadence ICC

solution for RTL coverage measurement and also applied JEDAcc

for behavioral coverage measurement. Because the two coverage

metrics are implemented in different tools, it is very important to

compare the two metrics to replace one with another. There are three

typical coverage metrics in RTL domain, such as block, expression

and toggle [4]. We mainly use the block and expression coverage

metric to measure the quality of the test inputs and the design. Block

coverage is a basic code coverage type that identifies which block of

the code has been executed and which has not. This characteristic is

identical to that of line coverage metric at behavioral level.

Expression coverage factorizes logical expressions and monitors

them during simulation run. It measures how thoroughly the

testbench exercises the logical expressions in assignment statements

and procedural control constructs (if/case conditions). This

characteristic is identical to the sum of characteristics of decision,

condition and multi-condition metric at behavioral level [5].

Figure 3 shows the relation between behavioral and RT level code

coverage metrics. In figure 3, when the if-statement is hit, the

behavioral level line coverage increases, which is identical to the

block coverage of RTL. Sum of the decision, condition, and

multi-condition is identical to the expression coverage of RTL.

Behavioral level decision coverage monitors the results of whether

the if-statement is true or false. Multi-condition monitors the

combination of each condition.

 if(a==1 || b==1)

 0 0

 0 1

 1 0

 1 1

Hit/Miss

True/False

Combination

Decision

Condition

Multi-

Condition

Behavioral

(JEDAcc)

Block

Expression

RTL

(ICC)

True/FalseTrue/False H
L

E

x
p

ressio
n

Line

Figure 3 Relations of HL and RTL Coverage Metric

We can intuitively understand that these coverage metrics are closely

correlated since a line of behavioral code will produce potentially

many lines in RTL design. However, because of this reason, the

coverage trend of each design can show different shape as simulation

time grows, as shown in figure 2. Figure 4 explains how this gap

happens. The two expressions are translated into multiple lines of

RTL, and according to the order of excitations, coverage results in

each side can be different. When first half of the statement is excited

in behavioral level coverage, coverage ratio is 1/2, and RTL code

coverage is 3/4. If second statement is excited first, the RTL

coverage ratio is 1/4, while behavioral level code coverage ratio is

still 1/2.

a = b

c = d;

 always@(posedge CLK) begin

 tmp1 = b;

 tmp2 = tmp1;

 a = tmp2;

 end

 always@(posedge CLK) begin

 c = d;

 end

Figure 4 Multi-line Effects in Synthesized RTL

The coverage result reaches a certain saturation point as most of the

statements in the design are excited with good quality of testbench.

In other words, once fair amount of coverage items are covered, the

coverage result is expected to reach a certain point. However, in our

experiments, we found that the saturation points of behavioral level

and RTL designs are different, shown as the “gap” in figure 2. RTL

code coverage value is always the same as or less than behavioral

level code coverage value after a certain saturation point. Unless the

RTL coverage result meets certain coverage goals, RTL code

refinement is still needed until the reasons of low coverage result are

all identified. An RTL design with low coverage result might have

unreachable codes, which incurs untestable logic blocks in synthesis

process. Therefore, we analyzed root causes of the coverage gap and

provided high-level design guides to minimize the gap. The detail of

high-level design guide will be presented in the next chapter.

3. High Level Design Guide

This chapter shows high-level design guides from our experiences in

finding the root cause of the coverage difference, and it helps to

minimize the gap so that we do not need to perform further code

refinement in RTL designs.

3.1 High Level Synthesis Constraints
We usually use high-level synthesis constraints during high level

synthesis, but some of them may affect not only functionality but

code coverage result. Therefore, a user needs to consider the effect

on functionality and code coverage before using them. For example,

wait statement is used to insert a delay of 1 cycle which can affect

the timing and functionality of the given example. In the behavioral

source code at the top left of figure 5, there is a for-loop which

iterate two times, and there are 3 wait statements in the loop body.

The combination of the given loop count number and the number of

wait statement causes unreachable RTL code generation and lower

code coverage result. In the timing diagram at the bottom left of

figure 5, the period of cycle states and drain is 2, because the loop

count for the for-loop is set to 2. This shows that the drain and the

cycle2_state cannot be high simultaneously. Therefore, the

unreachable codes in the RTL design has been generated as

illustrated at the right side of the figure 5. Unreachable codes can be

generated by inserting wait statements more than loop count for the

for-loop. The designers should be aware of these corner case results

during their design exploration and it is recommended to avoid these

corner cases in general.

drain

cycle1_
state

cycle2_
state

Clock

for(int i = 0 ; i < 2; i++)

{

 Pipeline_directive(1);

 wait(); // pipeline drain

 c = a + b;

 wait(); // cycle1_state

 d = c * 2;

 wait(); // cycle2_state

 e = d + 3;

}

switch(global_state){
case 0: ... /*reset state*/
case 1:{ /*for loop state*/
 switch(cycle2_state) {
 case 1:
 switch(cycle1_state) {
 case 1:
 drain = i < 2;
 switch(drain) {
 case 0: <do nothing>;
 break;
 //Unrechable
 case 1: c = a + b; break;
 }
 case 0: d = c * 2;
 drain = i < 2;
 switch(drain) {
 case 0: <do nothing>;
 break;
 case 1: c = a + b; break;
 }
 }
 case 0: e = d + 3; break;
 }
}

HLS

<Behavioral Code> <Generated RTL >

Sim.

<Simulation Result>

Figure 5 No Case of "drain ==1 && cycle2 ==1"

3.2 Style of RTL Output
Good RTL coding style of generated RTL designs can give better

RTL code coverage result. The “if statement” which has no

execution body in RTL code as shown in the left side of figure 6 can

be the cause of low branch coverage result. If there is no constraint in

high level synthesis process, the synthesizer would generate the RTL

code shown at the left side of figure 6. High level synthesizer should

be guided with the option for the type of output style:

-- output_style_starc = +S2.8.1.4

 if (cond1) begin

 end

 else begin

 // assign

 end

 if (!cond1) begin

 // assign

 end

<RTL w/o option> <RTL w/ option>

Figure 6 RTL Generation According to Right Lint Rule

3.3 Optimization Options
The unreachable codes in RTL which a designer did not intend to

make may be generated in optimization process. Figure 7 shows an

example case related to the optimization of switch statement. During

the implementation and optimization process of the switch

statements, the unreachable codes can be generated as shown at the

right side of figure 7. If we assume that the condition “cs1==0” is

exclusive with “cs2==0”, all cases can be executed in the codes at

the left side of figure 7, but not in the code at right side. This

occurrence should be prevented by disabling the option for switch

optimization:

 -output_style_merge_case=off

switch(cs0)
{
 case 0:
 switch(cs1)
 {
 case 0:
 case 1:
 }
 case 1:
 switch(cs1)
 {
 case 0:
 case 1:
 }
}

switch(cs2)
{
 case 0:
 case 1:
}

switch(cs0)
{
 case 0:
 switch(cs1)
 {
 case 0:
 switch(cs2)
 {
 case 0:
 case 1:
 }
 case 1:
 switch(cs2)
 {
 case 0://Unreachable
 case 1:
 }
 }
 case 1:
 switch(cs1)
 {
 case 0:
 switch(cs2)
 {
 case 0:
 case 1:
 }
 case 1:
 switch(cs2)
 {
 case 0:
 case 1:
 }
 }
}

Optimize

<RTL w/o option>

<RTL w/ option>

Figure 7 Disable Optimization Option in Case Statement

Therefore, the high level design guides to minimize the coverage gap

are summarized as follows

- Guide1: Recommend to keep the number of wait statements

not to exceed the loop count number to avoid unreachable code

generation

- Guide2: Use the STARC option to change the RTL output

code style for better code coverage result

- Guide3: Remove the switch optimization option to avoid

undesirable merge of case statements

Theoretically, there might be no substantial area/timing overhead

because the given coding guideline does not change the number of

registers and the number of data-path elements of given design.

However, there is a possibility of area overhead due to the guide3

because it disables possible code optimization chances for better

logic synthesis results [1]. In our experiments, the area overhead was

under 1%.

4. Case Study: Development of Scaler IP

As a device-under-test, a Scaler IP was used. Figure 8 shows a block

diagram of the IP. A scaler consists of scaling functions, control

block, and memories [6]. Operation speed constraint is 200MHz.

A B

Memory A

Control Block

Memory B

Figure 8 Block Diagram of the DUT

Chapter 3 has shown three high level design guides which can

effectively control the RTL generation process to minimize the

coverage gap, which is the difference of saturated code coverage

values at behavioral level and RTL designs. As we applied these

three design guides one by one, the coverage value showed gradual

increase as shown in table 2. This means that the design guides are

very effective in decreasing hardware redundancy in generated RTL.

Table 1 Coverage Enhancement According to HL Guide

HL Design

Guide

RTL Code Coverage

Block After

Before After Before After

HL

Constraints
99%

(4159/4188)

99%

(4160/4188)

96%

(1549/1614)

96%

(1551/1614)

RTL Output

Style
99%

(4160/4188)

99%

(4166/4188)

96%

(1551/1614)

98%

(1582/1614)

Optimization

Options
99%

(4166/4572)
100%

(4188/4188)
98%

(1582/1614)
99%

(1598/1614)

We tested behavioral and RTL designs with common testbench and

DUT that all the design guides have applied to see the correlation of

RTL and behavioral code coverage behavior. Table 2 shows the

behavioral and RTL code coverage snap-shots as the number of input

image frames increases. Behavioral code coverage value is lower

than that of RTL design in the beginning, but it increases in

proportion to the increase of stimulus inputs and finally behavioral

code coverage result converged to the same value as shown in figure

9. This result shows that with fairly good testbench, we can get the

same coverage results in both behavioral level and RTL designs.

Table 2 Analysis of Behavioral and RT Level Code Coverage

Test

Input

HL code coverage RTL code coverage

Line Expression Block Expression
1 frame 61% 41% 82% 89%

5 frame 93% 87% 100% 98%

10 frame 97% 92% 100% 99%

15 frame 100% 96% 100% 99%

20 frame 100% 99% 100% 99%

Figure 9 Graph of behavioral and RTL Code Coverage Results

Even though we have to perform sequential equivalence check in the

proposed code refinement flow, overall verification time can be

reduced since RTL simulation, the most time consuming part, is

omitted. Figure 10 shows the difference of elapsed time for each

abstraction level. Code refinement time is a sum of behavioral

functional verification and sequential equivalence checking, and it is

smaller than that of RTL verification by over 70%.

Figure 10 Analysis of Elapsed Time for Verification

5. Conclusion
In this work, we described our experience to move code refinement

from RTL to behavioral level. The coverage gap of the saturated

code coverage value between behavioral level and RTL designs can

be minimized by the high level design guides which we developed

through our experience, which means that we can successfully finish

code refinement early at behavioral level design. We also showed a

full work flow for behavioral level design which includes sequential

equivalence checker to back up hardware compatibility. Our

experiments showed that it is possible to reduce code refinement

time by over 70% since we do not have to perform iterative

high-level synthesis and RT-level simulation flow.

6. References
[1] Forte, “Cynthesizer User’s Guide”, Product Version 4.0
[2] John Sanguinetti et al, "The Relationship of Code Coverage Metrics on

High-level and RTL Code", IEEE International High-level Design

Validation and Test Workshop, 2010.
[3] Calypto, “Sequential Logical Equivalence Check(SLEC) User Manual”,

Product Version 5.0

[4] JEDA, “JEDAcc User Manual”, Product Version 1.3
[5] Cadence, “ICC User Guide”, Product Version 9.2

[6] Chun-Ho Kim et al, “Winscale: An Image-Scaling Algorithm Using an

Area Pixel Model”, IEEE Transactions on Circuits and Systems for Video
Technology, VOL. 13, NO. 6, 2003

(Minutes)

Time Gain

