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ABSTRACT  
Low power has quickly become a primary requirement for a large 

percentage of designs.  As companies rush forward to incorporate the 

latest low power features, they are faced with the growing challenge 

of how to verify these complex structures and ensure successful 

silicon. As with any large change in methodology, one can see the 

industry converging on a set of known best practices; a set of design 

and verification techniques that become second nature because they 

avoid issues, improve turn-around-time, and provide a more 

predictable path to the coveted first pass silicon. 

  

This case study consolidates the experience of several customers as 

they evolved their verification methodology to face the unique 

challenges of low power design. It describes the changes that were 

instituted to instill the time honored verification tradition of “positive 

pessimism” into the flow.  This principal dictates that the flow takes 

a conservative approach whenever possible, to ensure that the design 

works in all conditions and is tolerant to changes in the design 

environment.     

 

The study describes a basic power shut-off (PSO) flow including an 

overview of power modes, state-retention and isolation.  The 

methodology and automation changes will also be detailed including 

both the items that worked well and those that did not.  This real-

world review of the methodology transformation will enable 

audience members to plan their own low-power verification 

improvements restoring the positive pessimism that makes us so 

successful. 

 

1. INTRODUCTION  
 

Low power introduces a host of challenges to the verification 

methodology.  It starts with the added complexity of additional low 

power modes of operation and the complex control and interactions 

between power regions.  Even more fundamentally it adds power as a 

new aspect to the design that needs to be correctly modeled 

throughout the entire verification flow.  This flow includes RTL and 

gate simulation, design and equivalency checking, verification 

planning and emulation.  This modeling not only has to account for 

the synthesis of low power constructs but also the impact of physical 

design on the power network.     

 

An example of this complexity is the modeling of even a simple 

power shutoff design.  The verification process has to model the fact 

that this logic can be powered off by corrupting the logic at the 

correct time.  The system has new modes of operation that need to be 

verified and ensure the transitions between these modes work 

correctly.  The RTL verification environment has to model the 

implementation of isolation on the boundaries of domains consistent 

with what will be done during the implementation flow. Finally, it 

has to model the physical implementations of the power switch 

network and the delays associated with that network. 

 

This paper will first introduce the key components of a low power 

verification flow.  An understanding of the basic requirements and 

the concept of a closed loop flow is critical to successful low power 

verification.    The remainder of the document will provide specific 

recommendations based on real world usage of the low power flow.  

These recommendations are designed to provide more detailed view 

of what is required for a pragmatic verification methodology that 

uses the concept of “positive pessimism” to ensure the best possible 

silicon results. 

 
 

2. INTRODUCTION TO LOW POWER 

VERIFICATION METHODOLOGY 
 

The low power verification is simply an extension of a typical 

verification flow.  All of the advanced verification techniques and 

methodologies in a traditional verification flow should be leveraged.  

This includes using methodologies like UVM, verification planning 

and metric driven verification. The flow in figure 1 is a high level 

description of a typical flow from an RTL design perspective.  The 

key components of the flow and how low power influences are 

described to set a context for the recommendations that are the core 

topic of the paper. 

 

The flow depicted below is a simplified flow; a typical low power 

flow would also include simulation at higher levels of abstraction 

primarily to enable more system level performance analysis and 

application level scenarios.  It would also have more detailed 

physical implementation and verification steps. While these are very 

important to low power, for the purpose of this document, we’ve 

limited the flow to just the RTL and gate level portions.   



 
 

2.1 Initial Power Intent Creation + Checking 
The flow starts with a functional specification of the low power 

intent.  This specification is developed through a coordinated effort 

with system architects, implementation architects, logic designers 

and even marketing.   

 

The specification is then used to generate the initial power intent in 

CPF or UPF for use in the rest of the design flow.   The first real tool 

flow step is to do “Low Power Intent Checks”. These checks verify 

the completeness and correctness of the low power intent.      The 

checking available for the low power includes structural checking, 

and power intent completeness checks.   

 

An example check is to verify proper isolation rules between power 

domains.  A missing isolation cell is quickly identified in formal 

checking, but to do the equivalent in simulation would require 

finding the signals that went x during power shutoff and analyzing 

the logic cone.    

 

Unlike simple linters, the low power intent checks are much more 

than a recommendation; they should be treated as a requirement of 

the flow.   A large percentage of low power design issues are 

detected in a series of formal and structural checks.  These checks 

can find issues early and before costly synthesis and simulation runs, 

and can greatly improve productivity and turnaround time. 

 

2.2 Verification Planning and Metric Driven 

Verification 
Verification planning is a critical step in any low power design.  Low 

power architectures such as power shutoff or dynamic voltage and 

frequency scaling introduce new modes of operation for the design.  

A verification plan helps define the required scenarios to ensure 

these features a fully validated. This often involves planning to 

ensure each mode is entered and exited, but also to define what 

features are valid for each mode. 

 

Metric driven verification (MDV) defines a verification plan and the 

corresponding set of coverage and checking metrics to validate the 

design. The process builds on the traditional verification flow to 

integrate data across the complete regression suite.  One difference is 

that the low power intent can be used to automatically generate a 

coverage model and a set of assertions on power control.  As the 

simulation runs are executed, the coverage and assertions are tracked 

and reflected back into the verification plan. 

 

2.3 Power Aware RTL verification 
The functional verification of the design is the next step in the flow.  

In a low power flow, the functionality of the design is specified by a 

combination of the low power intent and the RTL.   The simulation 

and emulation engines need to model the low power intent as 

accurately as possible.    

 

Dynamic simulations of the low power intent ensure the functionality 

of the design in the presence of the low power features.  On critical 

area is to verify the power management and control.  Often the 

control is part of the firmware or system software, so it is impossible 

to verify this logic using static checks.    

 

 

The following diagram shows an example of a simple power shutoff 

design and illustrates the type of modeling that is required.  In the 

past, modeling this low power intent was mostly done on through a 

complex set of ad-hoc scripts, PLI’s,or manual coding.  Today, the 

modeling is automated based on the low power intent files (CPF or 

UPF).   The basic requirements are described below, but additional 

requirements are given in the recommendation section.   

 

 
A power shutoff design requires the modeling of: 

- Power domain state and voltage  

o State can be On, Off, standby 

- System level power mode 

o The system mode is determined by the state of 

all the individual power domains 

- Power shutoff – the P/S block is the power switch for the 

design, based on input PSE the power domain PDA will 

power off.  During power off the logic inside the block needs 

to be corrupted to X to reflect its unpowered state 

- Isolation: To protect the inputs of BLKB from the effects of 

PDA’s power shutoff, special cells are inserted to clamp the 

Top  
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Figure 2 - Sample Power Shutoff Design 
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Figure 1- RTL Level Low Power Verification Flow 
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values to a valid value.  These do not exist in the RTL but are 

inferred from the power intent 

- State Retention – Some designs include state retention. State 

retention is the process of saving the state of sequential 

elements before power down and restoring it after power up.  

This is typically done by special cells that include a small 

save latch.  Again, this is specified in the RTL, it is in the 

power intent. 

 

The simulation engine models the low power intent to reflect the 

actual implementation. Keeping the simulation as accurate as 

possible is required to ensure that a successful simulation results will 

translate into successful silicon. 

 

2.4 Low Power Equivalency and Design Rule 

Checking 
After synthesis the netlist needs to be check to validate that it is an 

accurate implementation of the RTL and power intent.  Any design 

transformation step in the flow is required to be validated against that 

power intent.    This is what is referred to as a closed loop flow:  All 

steps and stages have are verified back to the original intent and 

matches what was used in functional verification.   Without a closed 

loop flow, it’s possible to implement different intent then was 

verified.     

 

The Low Power equivalency checking is complex; the low power 

intent introduces behavior that is not described in the netlist.  For 

instance, power shutoff affects the logical output of a cone of logic, 

but needs to be modeled by the equivalency checker.  Special cells 

like isolation and level shifting can have multiple domains that affect 

its output value, and all of this needs to be accounted for in the tool. 

 

Finally, the low power design checks ensure the implementation 

followed accepted design rules and synthesis process correctly 

maintained the power intent.  As the design moves through physical 

implementation additional checks are needed to verify the power and 

ground network and connectivity. 

 

 

3. LOW POWER VERIFICATION 

RECOMMENDATIONS 
 

When the results of five years of low power simulation and 

verification on hundreds of designs are analyzed, one can derive a set 

of common features that help ensure successful verification.   The 

following section highlights these features and elaborates on 

modeling requirements for the power aware tools. 

 

3.1 Early Qualification of Power Intent 
As mentioned earlier, the first step of any low power flow should be 

to ensure that the low power intent is complete and correct.  Tools 

like Conformal Low Power can automate this task and should be a 

gate keeper before proceeding to any verification or implementation 

tasks.   

 

The power intent checking can statically check for a number of 

issues that would cause incorrect results in the simulation process. 

- Missing isolation and level shifting 

- Illegal mode definitions 

- Missing design objects 

- Incomplete power control specification 

- Incomplete domain specifications 

- Library consistency checks 

- Power intent linting checks 

 

The recommendation based on our customers experience is to run 

these low power checks early and often.   Ideally, anytime the power 

intent or RTL change the checks should be re-run.   This often 

viewed as overly cautious, but a quick, exhaustive check for missing 

isolation rules can safe hours of wasted simulation runtime.   The key 

is that this type of static checking is exhaustive; a simulation run is 

only as good as its stimulus.  

 

These checks go way beyond simple linting checks, and can detect 

serious structural issues.  Additional details on this can be found in 

the case study by Luke Lang DVcon 2011 paper, “Case Study: 

Power-aware IP and Mixed Signal Verification”. 

3.2 Ensure the same Power intent is used 

throughout the design flow 
  
Traditionally, the verification and implementation teams worked off 

of the same low power functional spec but independently 

modeled/implemented the low power intent.  With the advent of 

power intent languages, such as CPF and UPF, the same intent can 

be used for both verification and implementation.  But even today 

there is a temptation to have separate implementation specific and 

verification specific files.    
 

Any difference in the intent files could mean that what was simulated 

does not match what was implemented.   At one customer, the 

implementation team removed an isolation rule they deemed was not 

necessary but did not make the change to the common intent file. It 

turns out that the isolation was in fact needed, but this problem was 

not found until just before tape-out.  This would have been found 

quickly in either the LP design checks or in RTL simulation if the 

power intent was properly updated.    

 

It is very common have separate files for the general power intent 

and detailed implementation power intent.  But the same intent 

should be read by all of the tools.  This ensures a consistent view and 

has no negative impact (the front-end tools will simply ignore any 

information not relevant at that level of abstraction).  

 

Whenever there is a difference in what is simulated versus what is 

implemented you run the risk of functional errors in silicon.  These 

issues can be avoided with three simple steps: 

- Employ revision control on the power intent files 

- Ensure changes to the intent are made in the source 

files not in any intermediate files.  Discipline is 

needed to avoid making changes in the output files. 

- Use a tool flow that employs a closed-loop 

methodology that ensures the original power intent 

matches the final netlist. 

 

Bottom line:  Power intent is a design file like RTL, it is NOT a tool 

script file since it effects functionality.  Its required to be consistent 

and complete throughout the design flow. 

 

3.3 Always Run Power Aware Simulations  
Originally, some customers defined a set of tests for low power, and 

only ran these specific tests with the low power modeling.   In 

theory, this should be sufficient to test the low power functionality. 

But in reality it is incomplete and can cause fatal errors to be 

masked. 

 

In one customer’s case, the power control logic had an error in it.  

This caused an unexpected power shutoff to a domain.  Since this 



was unexpected, the domain was not fully isolated, and an X was 

pushed out onto the system bus.   This caused the system bus to lock 

up; in hardware, it would have required a reboot to clear the bus. 

 

This issue was only detected because the user switched to running 

all verification scenarios with power aware simulation.  If the user 

had not made this switch, the issue would not have been detected 

until after tapeout. 

 

The user’s original methodology was designed when they had an in-

house PLI solution for modeling the power shutoff.  As with most 

PLI based low power solutions it had a pretty severe performance 

penalty and ran  3-4 times slower than running a normal simulation. 

When they switched native compiled low power simulator, like the 

Cadence Incisive Enterprise Simulator, they were able to run all 

simulations with power.  The performance penalty became 

insignificant, especially when compared to the risk of missing issues.  

 

A good analogy is directed tests vs. constrained random.  The 

directed tests do an excellent job of verifying a specific scenario, but 

in the end constrained random simulations are used to provide better 

coverage.  It becomes too difficult to design a test for all possible 

scenarios.   In Low power it is the same, running the equivalent of 

directed test checks a specific scenario, but it limits the coverage and 

exposes the design to risk when the application does anything 

unexpected. 

 

3.4 Pessimistic Corruption model  
Corruption is the process of modeling the effects of low voltage or 

power shutoff in the simulator.   This is one of the most important 

functions of a power aware simulator.  If the corruption is not 

modeled correctly, the simulation will result in false positives, which 

in turn can lead to failures in silicon.   It’s critical to model this as 

accurately as possible, and when in doubt be conservative.    

 

The modeling of corruption has evolved based on real world usage 

by customers, and the following sections describe some of the 

specific cases we found. 

 

3.4.1 Voltage Based Corruption Model 
The philosophy on how to handle voltage ramps for power shutoff 

designs varies from vendor to vendor and customer to customer. 

Engineers have a tendency to want to measure and show every value 

as accurately as possible.  But in this case that modeling could be 

counterproductive. 

 

First, let’s define what the voltage ramp corruption .The voltage 

ramp models the fact that voltage changes don’t happen 

instantaneously.  The ramp defines how the voltage changes, and is 

used by simulation to determine when during a power cycle the data 

is valid.   See the diagram below: 

 

     

 
Figure 3 - Voltage based corruption 

 

 

The differences in view among vendors are related to exactly when 

the data is valid.  In the diagram above the region between 0 and 

70% of voltage is universally considered corrupted, as the voltage is 

not high enough to support a logic functions.  The region between 

70% and 100% is considered a valid voltage by some tools and 

actions like restoring a retention cell or even clocking in data are 

considered valid in that region.   At Cadence, we found this to be too 

optimistic.  Instead we model the voltage as off from the instant we 

get the power down signal all the way until the voltage reaches 100% 

of its target.  

 

The greatest risk is at the RTL level, where it simply is impossible to 

accurately predict the voltage ramp. Even with a non-linear model of 

the voltage, there is not enough information at this time to accurately 

model this.   But it is possible to define a worst case number and use 

that as a constraint for the backend and for the simulations.     

 

Why is the voltage ramp difficult to model? 

- The ramp is a non-linear function with oscillations 

- It is not a static function – it varies by 

voltage/temperature/current and cross-chip variations  

- The ramp depends on the powers switch architecture: layout, 

number of switches, mother-daughter vs. daisy chain, etc 

- It depends on number, size and layout of the cells driven by 

each switch 

 

The information to model this accurate is not available at the RTL 

level. Trying to squeeze out a few nanoseconds of usable time from a 

power shutoff is counterproductive; it exposes the design to risk for 

something that has a small impact on overall system performance. 

 

The recommended methodology is to specify a maximum voltage 

transition and use a physical verification tool to verify that the 

transition time is met.   

 

 

3.4.2 Corruption and isolation of Constants  
As customers transitions from in-house power modeling to using IES 

we found a number of differences in the simulation results.  One 

major difference was that customers seldom corrupted constants.  

The simulation engine needs to model the hardware as accurately as 

possible.  Constants that are not optimized away by synthesis will 

have a direct or indirect connection to power or ground.   When the 

domain powers off, the value on the output of the power and ground 

may not be valid, so the simulation engine needs to corrupt those 

values.   On power up, the signals need to be restored to their original 

values. 

 

Voltage level:                       0%    70%   100% 



The Cadence approach is to corrupt both hi and low constants.  Some 

vendors would like only the high constants corrupted in a power 

switched design, and low constants corrupted in a ground switched 

design.    

 

The Cadence approach is pessimistic, but it needs to be.  The 

synthesis tools may optimize the logic and invert the constants.  At 

the RTL level there is no way to predict, so the only safe approach is 

to corrupt all constants. 

 

3.4.3 Modeling Input Pin Corruption  
Another requirement in corruption modeling is the corruption of 

input pins.   The input pin corruption ensures that combinational 

logic, through assigns or other logic is corrupted.   Without this 

corruption the simulation results could be optimistic and miss real 

problems in the design.   

 

While the traditional approach of corruption outputs and internal 

state handles most of the required power shutoff corruption, it 

doesn’t cover everything.  For instance any monitors or assertions 

that are checking the inputs of a design will not see the corrupted 

data (DRV B).  In other cases, logic combinational feed through 

paths may not corrupt, leading to optimistic results outside of the 

block.(DRV A below)    

 

 

 

 

The simulator does make a special case for feed through paths, with 

the premise that the implementation tools are intelligent enough not 

to buffer a feedthrough path inside a switchable domain.  If your 

implementation tool doesn’t have that ability, then a command line 

option is provided to treat feedthroughs as buffers. 

 

3.4.3 Standby/Sleep Mode corruption. 
Standby mode or sleep mode is a case of dynamic voltage scaling 

where the voltage for a domain is reduced to the point where it is 

high enough to maintain state, but too low to compute new values.  If 

an input to the domain changes while in standby mode that input is 

corrupted.   In reality, it is difficult to predict if logic will corrupt or 

not.  For instance, in a power switched design, a transition to 0 is 

probably okay.    The safe approach for a simulator is to always 

corrupt. 

 

The original recommendation by Cadence was even more 

pessimistic.  It would corrupt the entire domain if any of the inputs 

changed.  But based on customer feedback this was relaxed to 

corrupt only the related inputs (and through normal event 

propagation their cone of logic), and issue a warning message. 

 

The recommendation is to treat any of these warnings very seriously. 

It can sometimes be difficult to ensure that a single inputs corruption 

is detected by the simulation environment.  The warning provides a 

flag that should be checked as part of the verification signoff process. 

 

 

5. CONCLUSION  
Verification of advanced low power designs needs to leverage the 

best practices of general verification as well as leverage the 

experience hard won in the field. The recommendations here 

represent a partial view of the results of the past 4 or 5 years 

deploying low power verification methodologies at numerous 

customers worldwide.   Understanding the low power architecture 

and what steps are required to properly model the power intent can 

avoid many of the common issues in low power, and at the very 

least, provide for earlier detection of the issues.  

 

Successful low power verification flows should provide 

methodologies to verify the power intent as early in the flow as 

possible.  This not only means utilizing the structural checks up 

front, but also includes modeling the power intent such that RTL 

simulations provide the an accurate representation of what the final 

implementation will be.  This ensures that the RTL verification 

provides the highest degree of coverage. 

 

This process often involves making decisions on modeling or flow 

that are pessimistic in nature, but provide pay offs in productive and 

proven silicon.   

 

This document is primarily focused on the RTL verification of low 

power, but this is just a single step in the full low power flow.  

Future papers will explore the verification as it moves up into the 

TLM/ESL space and also down into the gate level and more physical 

verification steps. 
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