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ABSTRACT  

For us, UVM arrived at exactly the right time. Our large new project 

evidently called for more powerful verification techniques than its 

predecessors. At the same time, a change of tool chain was on the 

horizon, bringing cross-vendor compatibility concerns to the fore. 

Finally, many members of the team were beginning to take their first 

steps in OOP and constrained-random verification, making it essential to 

establish a robust framework that could be stable for the foreseeable 

future, while offering a growth path that would match our developing 

needs. This paper reports on some of the successes, pitfalls, unexpected 

problems and unanticipated delights of our UVM rollout.  

Our project was making day-to-day use of UVM verification 

components within two weeks of the Early Adopter release, leveraging 

previous OVM experience of some members of the team. Several 

months on, our in-house UVM library is burgeoning in size and 

flexibility. Real bugs in our design have been found and fixed, and our 

first predominantly UVM-verified tapeouts are due as this paper goes to 

press. Starting from a plain-old-SystemVerilog methodology that 

worked well but had limited room to grow, numerous members of the 

team have transitioned to SystemVerilog OOP with the help of UVM, 

aided by a strong existing culture of re-use.  

Not everything about our UVM experience was positive. Aside from the 

handful of minor shortcomings in the UVM library that any early 

adopter must expect to live with, we describe some important things that 

we had hoped UVM would provide but which we have been obliged to 

build from scratch. We also report on challenges we faced in ensuring 

consistency of approach among team members, incorporating existing 

verification assets into our UVM framework, and getting the best out of 

the whole team’s skills.  

In the paper we review key aspects of our UVM experience, giving 

special attention to the match (or mismatch) between UVM advocacy 

we’ve heard and the UVM features that we found were most productive. 

Examining several specific technical issues in detail, we highlight areas 

where we have chosen to abandon established or published 

recommendations in favour of a more radical approach. Finally we 

assess the overall productivity gains and losses that UVM brought, and 

identify key concerns that we believe the UVM community must soon 

address to avoid the unpleasant prospect of large numbers of users each 

with their own incompatible implementations. 
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1 INTRODUCTION 
This paper reports on our introduction of the Universal 
Verification Methodology, almost as soon as it became 
available, on an ASIC development project.  Section 2 describes 
the motivation and rationale for this choice.  Section 3 discusses 
some of the project management and technical strategy issues 
we encountered during our initial deployment. 

In sections 4 and 5 we examine a selection of specific concerns 
with the design, documentation and presentation of the 
methodology, and indicate areas where we believe it could 
usefully be improved.  It is important to be aware that this paper 
specifically describes the Early Adopter release, and some of the 
concerns have already been addressed by later developments 
from the Accellera committee responsible for the methodology. 

Sections 6 and 8 describe specific techniques for connecting a 
SystemVerilog testbench to the Verilog static hierarchy.  They 
have proved to be useful in our UVM environments and may be 
of interest to other users.  Section 9 enlarges on these ideas to 
provide a novel method for integrating legacy verification 
components with a new UVM environment. 

Finally, section 10 briefly discusses some anecdotal 
observations concerning other engineers' responses to the rollout 
of this new approach in the team. 

2 BACKGROUND 
The Early Adopter release of the Universal Verification 
Methodology (UVM) [1] was published by Accellera in May 
2010.  Our team's management agreed to adopt it for immediate 
use on new verification code for a current ASIC project.  
Although it might seem foolhardy to adopt a new and 
presumably untried methodology toolkit, there were excellent 
reasons for so doing in this case.  The author and a colleague 
were tasked with facilitating the deployment of UVM on this 
project. 

The team's existing verification activity made extensive use of 
SystemVerilog, but little use of classes or object-oriented 
programming.  All verification components were captured as 
modules or interfaces as appropriate, with port connections 
hooking to DUT signals and SystemVerilog mailboxes used to 
provide communication channels between components.  Simple 
classes were used to capture data objects (typically the contents 
of a single bus transaction such as a read or write cycle) so that 
they could be conveniently passed from one component to 
another through these mailboxes.  

Extensive experience with this home-grown methodology had 
led to the creation of a wide selection of useful and reliable 
verification building blocks that could relatively easily be 
applied to the verification of new RTL both at block and at 
system level.  However, any advocate of object-oriented 
programming (OOP) methodology would argue that the use of 
modules to encapsulate verification components is sure to make 
it difficult to extend existing components to meet new 

 



requirements, and is likely to lead to an undesirable diversity of 
application interfaces to the components because there is no way 
to derive them all from a common set of base classes.  These 
limitations were indeed becoming apparent. 

A new project, with larger and more complex digital content 
than had been tackled before, led the team to consider adopting a 
mainstream OOP-based verification methodology.  However, 
the risk of becoming locked into a single tool vendor's offering 
was a major obstacle to adoption of either VMM [4] or OVM [5] 
even though both those methodologies were clearly adequate for 
the task in hand. 

We were carefully observing Accellera's VIP initiative [1] to 
develop a vendor-neutral verification methodology and toolkit, 
and so the timely announcement of the UVM Early Adopter 
release provided exactly the trigger we needed.  It allowed us to 
proceed with confidence that UVM code we write today will 
continue to be useful, perhaps with minor modifications, in the 
future. 

3 OUR INITIAL UVM ROLLOUT 
Much of the UVM's base class library is strongly based on OVM 
2.0 [5].  This made it relatively easy for us to begin work, as the 
author and some colleagues already had extensive experience 
with OVM and VMM.  Consequently we were able to create 
some key UVM components (in particular, agents for some 
proprietary bus structures that are widely used in the DUT) 
within only a couple of weeks of the Early Adopter release.  
Although it took a little longer before we had working 
verification environments doing useful testing, this initial 
success gave us confidence that we could indeed roll out UVM 
across much of our verification effort. 

3.1 Infrastructure 
Creation of some initial UVM agents was quite straightforward.  
It was more challenging to establish a common framework 
(directory structure, naming conventions, etc) so that the UVM 
components we created would be accessible to the verification 
team in a way that did not disrupt existing practice.  The team 
has an elaborate and project-proven scheme for organizing files 
and directories, using Subversion [7] for revision control, and 
we felt it was very important to respect and build on that 
tradition.  We now have a system whereby an environment can 
have access to any UVM component simply by adding just one 
include file to its master list of files; that include file then does 
whatever hierarchical includes are required to compile all parts 
of the component.  Furthermore, the directory structure 
associated with any UVM component or sub-environment is 
consistently named and easy to navigate. 

3.2 A Problem of Proliferation 
An obvious early step in our UVM rollout was to provide UVM 
wrappers for some of the large and valuable collection of 
existing module-based verification IP.  Most of these blocks 
took the form of traditional bus functional models (BFMs) with 
the usual pattern of signal connections through module ports, 
and tasks designed to be called from the verification 
environment to get the BFM to perform various operations.  
Clearly this has strong resemblance to a UVM driver or monitor 
class.  However, we were not sufficiently proactive in setting up 
a framework and guidelines for creating these BFM-to-UVM 
gaskets.  Consequently we found ourselves facing embarras de 
richesses with more than a dozen such components available for 
use, but very little consistency of application-programming 

interface (API) among them.  In many cases the user's interface 
to these objects was entirely through task calls and there was no 
randomizable transaction class to capture a unit of activity that 
could be performed by the component.  The result was a UVM 
quasi-component that suffers exactly the same shortcomings as 
the original BFM: it is easy to use when creating simple directed 
stimulus, but cannot be used with the sequences mechanism and 
does not support any kind of transaction-level (TLM) connection 
with the remainder of the testbench. 

3.3 User Reluctance 
Our user base of verification engineers – many of whom are 
primarily RTL designers who also have excellent verification 
skills – varied greatly in their enthusiasm for UVM.  Some were 
very positive about the new approach, often seeing it as an 
excellent opportunity to develop their SystemVerilog OOP 
skills.  Others saw our growing UVM codebase as an obstacle to 
their understanding and progress, pointing out that UVM made it 
harder to do things that they could do rather easily with their 
existing techniques. 

3.4 Lessons Learnt 
With hindsight there are some clear lessons from this 
experience.  Those who got involved with the development of 
new UVM code, early in the rollout, were much more likely to 
be positive about UVM adoption than those to whom the UVM 
was presented as a fait accompli.  It is clear that we should have 
taken greater care to design a progressive rollout plan that 
engaged all team members effectively.  We underestimated the 
importance of shared understanding and shared decision-making 
across the team. 

For experienced OVM users on the team, it was very easy to 
forget the learning curve associated with UVM adoption.  For 
example, the challenge of gaining familiarity and confidence 
with the huge portfolio of reporting control methods and options 
is a big disincentive to making proper use of the UVM. 

These human factors are discussed more fully in section 11. 

4 SHORTCOMINGS OF THE EARLY 

ADOPTER RELEASE 
This section presents some concerns about the UVM Early 
Adopter release (1.0 EA).  It is probable that there will be a new 
and very much enhanced production-quality release of the UVM 
available by the time this paper is published, and the author is 
confident that many of the concerns described here will have 
been addressed by it.  However, he feels it is useful to record 
them so that developers may continue to bear them in mind as 
the UVM moves forward. 

4.1 Documentation 
There is little doubt that the documentation associated with 
UVM could usefully be improved.  The extensive use of 
NaturalDocs [11] as a tool to generate publishable 
documentation from structured comments in the source code is 
welcome, and generally has led to a thorough and useful 
reference document [2].  However, it is at the mercy of the 
quality of the original source code's comments.  We were sorely 
disappointed by some of the material, such as this example 
describing uvm_object::copy: 

function void copy (uvm_object rhs) 

The copy method returns a deep copy of this object. 



That statement is remarkably unhelpful.  The method doesn't 
return anything at all, it copies rhs rather than the current 
object, and it updates the contents of the current object this as 
a side effect.  Although this is a particularly grotesque example 
of poor internal documentation, there are many other cases 
where careful review with the reader's needs in mind would be 
most welcome. 

The reference documentation is also flawed by the omission of 
various important details.  For example, argument lists of the 
uvm_do_* family of sequence macros are nowhere described.  
It is tiresome to be obliged to study the source code, or to search 
through informal user-guide documents, in order to locate such 
missing details. 

4.2 Handling Low Levels of Abstraction 
A fundamental goal of any sophisticated verification 
methodology, including the UVM, is to raise the level of 
abstraction at which verification can be done.  By expressing 
stimulus and responses as transactions, rather than signal 
transitions, the verification engineer can operate at a level that 
more closely relates to the design specifications, and better 
reflects the description of device activity typically found in 
requirements documents and use-case scenarios.  SystemVerilog 
OOP somewhat forces the verification engineer's hand in this 
respect, making it remarkably difficult to gain access to DUT 
signals directly from code in a class – especially if the class is 
defined in a SystemVerilog package for ease of later re-use. 

This raising of abstraction level is unquestionably a powerful 
approach, allowing code to be written that models complex 
behaviors without becoming mired in the irrelevant details of 
pin-level or clock-by-clock activity.  Unfortunately, though, it is 
not always possible.  Even the largest, most complex ASIC is 
nevertheless a piece of digital hardware with clock, reset and 
enable signals.  For some verification activity, the detailed 
behavior of certain signals at a very low level of abstraction is 
critically important.  The UVM, and its associated 
documentation, fails to provide adequate guidance to users faced 
with this kind of concern. 

4.2.1 Events 
For example, our ASIC uses a common timebase signal 
(typically running at some tens of kHz) to synchronize major 
activities across various parts of the design.  Almost every 
design block, and therefore almost every verification 
component, needs to be aware of this timebase for purposes such 
as grouping a series of data samples according to the timebase 
slot in which they fall.  To capture the transitions of this 
timebase as UVM transaction objects is an unnecessarily 
heavyweight mechanism.  More importantly, it is the wrong 
level of abstraction.  The timebase conveys no information 
except that it has pulsed, and it is conceptually inappropriate to 
represent that as a transaction.  The uvm_event mechanism is 
clearly a useful candidate, but it does not fit smoothly into the 
rest of the methodology.  For example, what does it mean to 
"connect" an event from one UVM component to another?  
There are, of course, many straightforward ways to make such a 
connection, but whatever method one uses there is an 
uncomfortable sense that it is outside the methodology. 

4.2.2 Signal Access 
We have many critical verification requirements that depend on 
parts of the testbench having detailed knowledge of the real-time 
state of certain specific signals.  A typical situation is that the 

meaning of a transaction may vary depending on the value of 
some control signal at the moment the transaction occurred.  If 
the signal is not part of a standard interface protocol, but instead 
is a global control signal in the design, then it does not form part 
of the transaction and must be sampled by other means, while 
maintaining knowledge of the relative timing of that sampling 
and the protocol transactions that the signal affects. 

Sampling and driving such arbitrary "one-off" signals is 
unreasonably troublesome in the UVM.  We soon decided to 
create a special UVM agent, with the usual 
monitor/driver/sequencer architecture, to handle signals of this 
kind.  However, it was unreasonably difficult to design a 
meaningful and useful transaction class that made sense for all 
the varied situations in which such signals are used.  This is a 
clear example of abstraction inversion: the methodology obliges 
us to use an inappropriately abstract representation (transactions) 
for something that inherently demands a rather low level of 
abstraction.  It has led to the creation of verification components 
that are difficult to understand and deploy, and suffer 
unnecessary runtime performance overhead.  More recently we 
have learnt to approach this problem in a more satisfying way 
(described fully in section 8) but it has taken us away from 
mainstream UVM technique, leaving us fearful that we may 
have "broken the rules" and created architectures that will not 
match other UVM users' best practice. 

4.3 Underspecified Data Comparators 
The portfolio of comparator components found in the UVM 
library is disappointingly inadequate to support real verification 
problems.  Although the algorithmic comparator with its 
transformer class provides an interesting tutorial in object-
oriented programming, none of the provided comparators has the 
flexibility that we need.  Whenever we tried to use them we 
were obliged to add preprocessing to the input data streams to 
support skipping of samples, duplicated samples, ignoring a 
certain number of samples after a reset, and suchlike real-world 
issues.  It is these concerns that dominate the coding effort.  By 
contrast, the UVM-provided behavior of matching data at the 
output end of a pair of FIFOs is somewhat trivial, and we soon 
chose to abandon the standard comparators in favor of our own 
designs that better fit our purpose. 

The fate of the UVM standard comparators was sealed because 
of a bizarre oversight in their implementation: there is no way to 
clear the contents of their FIFOs because their FIFO data 
members are declared to be local.  Modeling of reset and mode 
changes is therefore intractable, and requires so much rework of 
the original code that there is little value in using the provided 
classes. 

4.4 Register Modeling 
As already mentioned, we enthusiastically took up the UVM 
Early Adopter release because it offered the promise of vendor 
neutrality within a familiar framework.  Beyond our selfish local 
concerns, though, it was unfortunate that UVM was released 
without including an Accellera-mandated register abstraction 
package.  It is hard to imagine any non-trivial project that does 
not require such a feature. 

Our team's existing SystemVerilog verification framework 
included useful and mature tools for register modeling, but they 
were not easy to adapt for the dynamically-created UVM 
verification environment.  Instead we tried to use one of the 
register packages that had been contributed to the UVM World 
website [10].  We were aware of, and troubled by, the fact that 



this package was not standardized and might become effectively 
deprecated at any time.  What we were not prepared for was the 
rather large amount of work required to massage our existing 
register descriptions (derived from a spreadsheet by means of 
various Perl scripts) into the IP-XACT XML format required for 
the register package we tried to adopt.  Consequently we have 
invested a non-trivial amount of effort into support for a register 
package that is now effectively deprecated thanks to Accellera's 
blessing of a different register abstraction mechanism that will 
form part of the first production release of the UVM [3].  We 
welcome the newly-standardized package, but regret our 
inappropriate choice and the wasted work that it brought us. 

4.5 Lack of Temporal Assertions 
Although this is a SystemVerilog issue that could never have 
been solved by the UVM, it seems appropriate to mention here a 
serious limitation of SystemVerilog's testbench facilities: the 
lack of temporal assertions for use in classes.  SystemVerilog 
Assertions (SVA) [6] provide a powerful, concise and intuitive 
way to describe possible design behaviors over time, and to have 
those behaviors monitored for checking and coverage.  Sadly 
(although for entirely valid reasons) the SVA temporal language 
can be used only in static Verilog design elements such as 
modules and interfaces.  Consequently, temporal assertions 
cannot easily be added to UVM verification components.  
Instead the verification engineer must fall back on traditional 
techniques for coding temporal checks, such as state machine 
descriptions or ad hoc mechanisms. 

5 INSUFFICIENT GUIDANCE FOR 

USERS 
Section 4 could be read as simply a catalog of accusations 
against the UVM.  That is not the intent; UVM has brought great 
benefits to our project and we will continue to use and value it.  
However, it is a recurring theme in section 4 that the 
methodology should provide a supportive framework, guiding 
users' implementation decisions when faced with common 
architecture problems.  In some areas, the UVM meets this 
challenge superbly well.  Transaction-level modeling and the 
associated connection arrangements, analysis ports, the object 
factory, and the conventional agent architecture are all fine 
examples of the UVM's contribution to a consistent, easy-to-
follow implementation framework.  There are, though, some 
equally important concerns that the UVM does not address 
satisfactorily.  This section outlines the issues that caused us 
greatest pain, and for which we would value robust guidance to 
reduce the risk of users adopting widely divergent approaches. 

5.1 Sharing of Globally Important Objects 
Every test environment has information that must be shared by 
many different parts of the testbench.  Typical examples of such 
globally significant information include: 

 timebase and other major synchronization events 
 DUT configuration such as address maps, memory sizes 
 test case configuration 
 reporting and verbosity options 

The UVM configuration mechanism works well for shared 
objects that can be created at the outset, and then shared around 
the environment by top-down configuration.  Often, though, 
shared global objects such as test setup control cannot be 
constructed until creation of the verification environment is 
largely complete – too late for the automatic configuration 

mechanism.  The UVM lacks a uniform mechanism for sharing 
of such late-generated objects.  It has no shortage of techniques 
– the pool classes, built-in tools for navigation of the instance 
hierarchy – but users would benefit from more specific guidance 
on how to deal with this kind of issue.  Some of the 
responsibility for this guidance must fall not on the UVM's 
implementers but on the user community as a whole (and, more 
specifically, on book authors, trainers and tool vendors' 
customer-facing applications engineers). 

5.2 Getting the Nuts and Bolts Right 
Published material on the UVM's predecessor OVM [12] has 
generally been somewhat dismissive of the problem of how to 
connect an OOP verification environment to the DUT's Verilog 
signals.  The author believes this to be misguided.  Linking 
UVM classes to a test harness or DUT may be beneath the 
dignity of expert OOP practitioners, but it is vital to the success 
of a verification effort and users of the UVM deserve to have 
clear, practical guidelines for doing it.  We have discovered to 
our cost that, lacking such guidelines, there will be as many 
different ways of implementing it as there are verification 
engineers on the project. 

The problem is exacerbated by the current widespread 
enthusiasm for SystemVerilog's virtual interfaces, whose 
shortcomings the author has already lamented elsewhere [8]. 

Attaching a collection of virtual interfaces to their proper places 
in a test harness usually requires that at least some UVM classes 
be coded not in a package, where we prefer to put them for ease 
of re-use, but in a module that is instanced somewhere in the 
Verilog hierarchy.  From classes defined in such a module, the 
user can make direct access to specific signals and interface 
instances, making the UVM-to-signals connection possible.  
However, our verification engineers soon discovered the 
enormous convenience of making direct access to signals from 
code in their test classes.  Before long an unfortunate habit had 
developed of writing the whole of a top-level UVM environment 
and its test case classes in a module rather than a package.  Such 
test cases readily degenerate into an orgy of raw signal 
manipulation, wiping out many of the key advantages of an 
OOP verification methodology. 

5.3 Register Modeling 
As already noted, the lack of register modeling facilities was a 
significant drawback for us.  The first production release of the 
UVM will fill this gap with an Accellera-standardized register 
modeling framework, but we note with some concern that its 
code generators (which take a description of the DUT's register 
set, and from it generate SystemVerilog classes and other code 
to support the model) will be provided by tool vendors and 
therefore may diverge.  Users will be able to minimize that 
divergence by adopting a widely-supported standard format such 
as IP-XACT for their register descriptions, but even that format 
requires vendor extensions to support the full set of register 
functionality that almost every user will need. 

From our experience, we urge future users not to underestimate 
the work required to integrate and configure any register 
modeling package, especially if they already have in-house 
register modeling in place that must be aligned with the new 
UVM machinery. 

5.4 Slave Sequences 
The conventional UVM agent architecture of monitor, driver and 
sequencer works well for passive agents (monitor-only) and for 



active agents (stimulus generator using sequences).  There is, 
however, a third and equally important use case: the slave agent.  
In this scenario the agent's driver is used to drive response 
values (typically a READY signal, or read data) on to an 
interface, in real-time response to some transaction on that 
interface.  The UVM agent in this case is acting as a bus slave 
rather than as a bus master. 

In this situation, it is almost always necessary for the response to 
be controlled in some way by the details of the request – for 
example, a read cycle should provide data that is controlled by 
the observed read address.  The standard UVM sequencer/driver 
interface does not support this requirement well.  The most 
challenging problem is that the sequencer should respond in zero 
time, so that the driver is not stalled in mid-transaction by its 
sequencer.  But this cannot be done reliably, because the TLM 
connection between driver and sequencer is a blocking one and 
so is implemented as a task.  The base class library's 
sequencer/driver interface supports this zero-time requirement in 
a fragile and unsatisfactory way by introducing a number of #0 
delays in its wait_for_sequences method.  We found it 
necessary to use nonzero time delays in our driver's synchronous 
sampling/driving loop, so that the sequencer could always be 
sure to respond soon enough for the driver to be able to take the 
response without stalling and therefore introducing an unwanted 
idle cycle or wait state.  This nonzero time delay is extremely 
unsatisfying (sequences should, ideally, be completely 
decoupled from details of driver timing) and it probably 
degrades performance somewhat. 

5.4.1 Slave Sequences and Callbacks 
The new callback mechanism in the UVM provides an 
alternative solution to this blocking response problem.  We have 
used callbacks with some success for this purpose.  They are 
easier and more natural to use than the sequence 
request/response mechanism, which presents many pitfalls for 
users. 

5.4.2 The Problem Remains Unsolved for Users 
Callbacks cannot sidestep the problem that getting a sequence 
item from a sequence requires a blocking task call.  It is 
completely unacceptable for a driver (or a callback) to place 
such a call and assume that it will return in zero time, even 
though this is precisely what will happen in most practical 
situations.  The XBus example helpfully provided with the 
UVM kit presents one possible solution for this issue, but – like 
most such solutions – it seems clumsy and is not in any way 
standardized, and does not form part of any written 
recommendation. 

6 HOOKUP TO THE VERILOG 

HIERARCHY 
There are, in essence, two ways in which class-based 
SystemVerilog code can gain access to signals and other static 
objects in the SystemVerilog module instance hierarchy: 

 Code in any class that is declared within a module or 
interface can directly access anything declared in that design 
element, because it is in the same scope.  From there it can 
reach out to anywhere in the Verilog instance hierarchy. 

 Virtual interface variables provide a reference or pointer to 
an interface instance in the Verilog hierarchy.  Any class, 
even if declared in a package, can have a data member of 
virtual interface type.  Code in the Verilog instance 
hierarchy can then populate that data member with a 

reference to an interface instance.  Code in the 
SystemVerilog class can now reach through the virtual 
interface reference and access anything declared in the target 
interface. 

6.1 Direct Access from Classes in a Module 
At a glance, the first of these mechanisms seems more flexible 
because it gives a class fuss-free and unfettered access to the 
Verilog hierarchy.  If the class in question is declared in a 
module that is near the top of the instance hierarchy – for 
example, in the test harness – it becomes very straightforward 
for code in the class to reach down through the hierarchy to any 
point in the DUT.  However, this convenience comes at a very 
high price: the code so written is no longer portable to even a 
slightly different verification environment.  Consequently, this 
technique seems to be appropriate only for "one-off" test case 
code such as occasional driving or reading of DUT signals 
during debugging. Experience suggests that it is best avoided 
even in those cases, because of its extreme fragility when details 
of the DUT or test harness structure are changed. 

6.2 Virtual Interface Connection 
Virtual interfaces, by contrast, allow for complete decoupling of 
any UVM class from the signals that it will manipulate.  The 
class can now be placed in a package, with no direct access to 
signals, but it can reach the real world of SystemVerilog signals 
through a virtual interface variable.  Consequently an instance of 
the class can now be used with any interface instance whose 
type matches its virtual interface variable, and it is therefore 
portable from one verification environment to another. 

To use virtual interfaces, though, some additional code is 
needed.  The concrete interface definition should normally be 
provided as part of the code that is distributed as a UVM 
verification component, because it is tightly coupled with the 
virtual interface variable that will reference it.  However, the test 
harness (or similar code) must now include an instance of this 
interface, with its signals appropriately wired to the DUT signals 
of interest.  (A thoughtful verification component author will 
have provided ports on the interface to make this task as simple 
as possible).  Finally, procedural code somewhere must make an 
assignment to the object's virtual interface variable, so that it 
references the appropriate physical interface instance. 

7 AWKWARDNESS OF VIRTUAL 

INTERFACE CONNECTION 
The final step described above, of assigning to the UVM 
component's virtual interface, is remarkably troublesome in 
practice and causes much confusion to novice UVM users.  The 
code that constructs the component is likely also to be in a 
package, so cannot reach into the Verilog hierarchy to find its 
interface instance.  The configuration mechanism can be used, 
with code in a top-level module creating a wrapper object that is 
then written into the UVM's global configuration table for later 
interrogation by the UVM component that needs it.  Production 
releases of UVM will offer a resources mechanism allowing 
some simplification of this chain, but it remains messy with a 
bewildering range of possible options for the organization of 
top-level code. 

7.1 Embedded Classes Simplify Connection 
We have increasingly adopted an alternative approach that 
eschews the use of virtual interfaces altogether and instead is 
based on writing a UVM class definition in the body of an 



interface.  If this embedded class definition is derived from 
another class that the user has created in a package, it becomes 
possible to define an API to the class (a set of virtual methods) 
without requiring any other code to have sight of the embedded 
class definition.  Furthermore, if the common base class is itself 
derived from uvm_component then it automatically has 
access to the phasing mechanism and so its internal activity can 
be synchronized with the rest of the UVM environment.  Finally, 
a reference (handle) to this embedded class can easily be 
obtained by hierarchical reference in the code that launches the 
UVM test, and then placed into the UVM global configuration 
table for easy access by other components.  Reference [9] 
describes this approach in more detail. 

8 EMBEDDED CLASSES FOR AD HOC 

DUT CONNECTION 
As indicated in section 6, we have begun to adopt an alternative 
style of connection between UVM classes and the Verilog static 
hierarchy.  After using this approach for signal-level connection 
to our UVM agents, we also noted that it provides a convenient 
methodology for making ad hoc connections to a DUT or test 
harness. 

8.1 A Very Simple Example 
As already mentioned, verification of our DUTs often calls for 
inspection of the instantaneous values of individual signals that 
do not form part of a standard protocol or transaction.  To 
provide a compact and simple illustration, we consider the 
problem of exposing a single-bit status signal to the UVM 
testbench.  This is a good example of real-time information that 
is too simple to justify the overhead of a transaction, but 
nevertheless needs to be observed from within the UVM 
testbench. 

8.2 Define the API as a Base Class 
Our signal-probing class will appear as a uvm_component 
with a uvm_event to notify signal transitions, and an access 
method get_value() to return the current value of the signal.  
We capture this as a base class probe_base derived from 
uvm_component, adding our special access method and event 
member.  This class definition goes in a package that 
encapsulates our new component. 

 

package pkg_probe; 

 

  class probe_base extends uvm_component; 
 

    `uvm_component_utils(probe_base) 
 

    function new(string name,  

        uvm_component parent = null); 

      super.new(name, parent); 

    endfunction 
 

    uvm_event ev_value_change; 

    virtual function logic get_value(); 
  

  endclass 

 

endpackage 

Code Example 8-1 

8.2.1 Factory Registration 
Ideally, probe_base would be coded as an abstract (virtual) 
class, since it has no implementation of its get_value() 

method and therefore cannot usefully be instantiated.  However, 
we wish to register it with the UVM factory like any other 
component, and this registration does not work for an abstract 
class. 

8.3 Create Interface with Embedded Class 
To provide a physical hook to the Verilog hierarchy we next 
implement an interface that contains an embedded class derived 
from probe_base, as indicated in Code Example 8-2. 

 

interface i_probe (input sig); 

  import pkg_probe::*; 

 

  class concrete_probe extends probe_base; 
 

    function new( string name,  

        uvm_component parent = null); 

      super.new(name, parent); 

      ev_value_change = new(); 

    endfunction 
 

    function logic get_value(); 

      return sig; 

    endfunction 
 

    task run(); 

      forever @(sig) 

        ev_value_change.trigger(); 

    endtask 
 

  endclass 

 

  concrete_probe PROBE; 

 

  function automatic probe_base get_probe; 

    if (PROBE == null) 

      PROBE = new($psprintf("%m.PROBE")); 

    return PROBE; 

  endfunction 

 

endinterface 

Code Example 8-2 

It would be equally effective to use a module, but an interface 
has the advantage that it can be compiled unconditionally (along 
with the package) with no risk of the simulator instantiating it as 
an unwanted top-level module if it is not used elsewhere in the 
simulation.  By simple instantiation and port connection, this 
interface can be connected to any chosen signals in the Verilog 
hierarchy. 

The embedded derived class appears within the scope of the 
interface definition, and therefore has full access to static 
properties of the interface, making signal access straightforward.  
The embedded class provides concrete implementations of 
virtual methods in the base class.  The class is a 
uvm_component and so can use the standard UVM phase 
methods to build its internal structure, launch a processing loop 
in its run() task and so forth. 

Although this class is a uvm_component, it is important that it 
should not be registered with the UVM factory.  It will never be 
created by the factory, and the possible existence of the same-
named class in more than one instance of the interface would 
cause serious problems for the factory's type registration system. 

Finally, the function get_probe() provides easy access to the 
embedded UVM component, first creating it as a child of 
uvm_top if it does not already exist.  The component is given a 
UVM instance name that is conveniently related to its Verilog 



hierarchy location.  This function returns a base class reference.  
The concrete derived class is irrelevant to the UVM verification 
environment.  This gives a pleasing separation of concerns, with 
signal connection and manipulation details localized in the 
interface, but with the functional behavior (API) fully defined by 
the base class in a package. 

8.4 Instantiate and Connect the Interface 
To monitor a signal it is necessary to create an instance of the 
interface we just defined and connect its port to the appropriate 
signal.  For the sake of our example we will assume that the 
interface is instantiated with instance name probe_intf 
inside module harness.  If the signals to be probed are inside the 
DUT hierarchy, it may be appropriate to use bind to create this 
instance without disturbing existing code at the instantiation site; 
we discuss this idea more fully in a later section. 

8.5 Integrate Using UVM Configuration 
Finally we must get a reference to our probe class and pass it to 
appropriate places in the UVM testbench.  The standard UVM 
configuration mechanism is a perfect fit for this, allowing code 
outside the UVM class structure to plant a reference into the 
global configuration table where it can later be retrieved by any 
UVM component.  Thanks to our get_probe() function in 
the interface, this reference can be obtained in a very 
straightforward way.  Code Example 8-3 shows an example of 
how code in the top UVM module could do this configuration, 
just before launching the UVM test. 

 

module UVM_topmost_module; 

  import uvm_pkg::*; 

 

  initial begin 

    set_config_object( 

      "*.some_component", "signal_probe", 

      harness.probe_intf.get_probe(), 0); 

    run_test(); 

  end 

 

endmodule 

Code Example 8-3 

The call to set_config_object plants a configuration table 
entry that will be accessible to any UVM component with an 
instance name matching *.some_component.  The 
configuration entry is named signal_probe.  To use UVM's 
automatic application of configuration settings, it is of course 
necessary that the target component have a data member named 
signal_probe that has been registered using the 
uvm_field_object macro and has the appropriate data type 
probe_base.  Through this data member, the target 
component can easily read the probed signal's value and respond 
to events on it. 

8.6 Advantages of This Approach 
This technique for linking UVM classes to Verilog hierarchy is 
in most respects superior to the commonly described virtual 
interfaces approach. 

 It allows the connection to be configured into UVM with 
only a single line of code.  There is no need to declare a 
wrapper class derived from uvm_object and then 
encapsulate the virtual interface in it.  Instead you are 
working with an object (the interface's embedded class) that 

is already derived from uvm_object, and therefore can be 
passed directly to the configuration mechanism. 

 It allows UVM phasing to be applied to code within the 
physical interface.  This greatly eases various concerns 
about the order of construction of objects, synchronization 
of startup activity, reporting control, and collection of 
information at the end of simulation. 

 It provides a convenient point at which class-based code can 
be given direct access to signals and other things in the 
Verilog static hierarchy, without creating a free-for-all of 
signal accesses at the top level of the UVM testbench. 

 It allows diagnostic messages from code in the interface to 
be properly rooted in the UVM hierarchy, rather than 
coming from the global reporter. 

 Issues relating to type parameters are much simplified 
because the interface's parameters do not propagate into any 
data types seen by UVM. 

Finally we observe that this design pattern is applicable to any 
situation in which a connection must be established between a 
generic UVM component (which itself has no knowledge of 
where it will connect in the Verilog hierarchy) and the specific 
structure of your Verilog design and testbench.  It works well for 
typical UVM monitor/driver connections to a set of bus signals, 
and for access to individual signals as in our example.  It also 
provides a convenient way to add UVM capability to existing 
module-based verification IP, as described in section 9 below. 

8.7 Automatic Register Model Updating 
The technique described in this section has also proved valuable 
in implementing the automatic updating of register model 
images in response to the value of status signals within the DUT.  
The name, or other specification, of a register field can be 
provided as a parameter to the interface instance.  Code in the 
interface then locates the desired field image in a register model, 
and arranges for it to be updated automatically from the signal 
whose value the register reflects. 

9 EMBEDDED CLASSES FOR LEGACY 

VERIFICATION COMPONENTS 
We have found the embedded derived class approach, as 
described in the previous section, to be especially useful when 
integrating existing verification IP into our UVM testbenches.  
To illustrate this we take a very simple example of a pulse 
generator BFM written in plain Verilog, shown in Code 
Example 9-1. 

module legacyPulseGen 

            (output logic sig = 1'b0); 

 

  task uvm_pulse(time tH, time tL = 0); 

          sig = 1'b1; 

    #(tH) sig = 1'b0; 

    #(tL); 

  endtask : uvm_pulse 

 

endmodule 

Code Example 9-1 

We first define a suitable UVM API to this legacy module, in 
the form of a base class. 



package pkg_uvm_pulsegen; 

 

  class pulsegen_base 

                extends uvm_component; 

 

    function new( 

        string name,  

        uvm_component parent = null); 

    endfunction : new 

    virtual task pulse ( 

            time tH, time tL = 0); 

 

  endclass 

 

endpackage 

Code Example 9-2 

Next, as before, we create an interface that contains and 
instantiates an embedded derived class.  In this case the interface 
has no ports because our API to the legacy BFM requires only 
task calls, not signal connections. 

 

interface i_uvm_pulsegen; 

  import pkg_uvm_pulsegen::*; 

 

  class concrete_pg extends pulsegen_base; 
 

    function new(string name,  

        uvm_component parent = null); 

      super.new(name, parent); 

    endfunction 

 

    task pulse(time tH, time tL = 0); 

      legacyPulseGen.pulse(tH, tL); 

    endtask 

 

  endclass 

 

  concrete_pg PG;; 

 

  function automatic pulsegen_base get_pg; 

    if (PG == null) 

      PG = new($psprintf("%m.PG")); 

    return PG; 

  endfunction 

 

endinterface 

Code Example 9-3 

Code Example 9-3 is straightforward, with the exception of the 
body of the embedded class's method pulse.  This task has the 
interesting feature that it calls, by hierarchical reference, task 
pulse in the legacy BFM module.  However, it does so by 
using the module's name, not an instance name, as a prefix.  
Because the code makes no reference to specifics of any 
instance hierarchy, this gasket interface is completely generic. 

9.1 Bind an Instance of the Interface 
We now create an instance of this interface inside our chosen 
instance of module PulseGen.  Code Example 9-4 shows how 
that arrangement might appear in a test harness: 

module TestHarness; 

 

  wire test_pulse; 

 

  legacyPulseGen test_pg(test_pulse); 

 

  bind test_pg i_uvm_pulsegen gasket(); 

 

  ... 

 

Code Example 9-4 

The bind statement effectively creates an instance of the 
interface, with hierarchical name test_pg.gasket, as a 
bound child of the BFM instance test_pg.  Consequently, 
hierarchical reference legacyPulseGen.pulse found in the 
interface's uvm_pulse task now floats out of the gasket 
interface and refers to task pulse in the specific instance 
test_pg. 

9.2 Inform the UVM Environment about the 

Gasket Object 
Elsewhere in the test harness, UVM configuration is used to 
push a reference to the gasket object into an appropriate UVM 
component: 

  initial 

    uvm_pkg::set_config_object( 

      "*some.uvm.path", "pulsegen_gasket", 

      test_pg.gasket.get_pg(), 0); 

Code Example 9-5 

It is now straightforward for code in a UVM component to get a 
reference to this gasket instance and access its members, 
including (in this specific example) its pulse task. 

9.3 More Realistic Applications 
This technique for embedding a UVM class in an existing 
Verilog module provides a very convenient way to make use of 
existing legacy verification IP.  Thanks to the use of bind, it is 
applicable even when you are unable or unwilling to modify the 
legacy code. 

Because the embedded class is a uvm_component, its API 
need not be restricted to simple task calls and signal access.  The 
abstract base class can have TLM ports.  In this way, large parts 
of a UVM agent component can be implemented using existing 
module-based IP, with a gasket class in a bound interface 
providing TLM connections such as an analysis port (for a 
monitor) or a sequence item pull port (for a driver). 

9.4 Deployment of This Approach 
The author has experimented with this approach (using TLM 
connections) for integration of legacy BFMs into a UVM 
environment, with useful results.  It is unfortunate that we did 
not develop this methodology earlier in our UVM rollout 
process.  Numerous UVM adapters were written, by various 
members of the team, to allow our UVM testbenches to use 
existing BFMs.  There was little coordination of this activity, 
and therefore almost no consistency of API among the various 
adapters.  Reworking them has, even at this early stage, become 
a dauntingly large task and it is a source of some regret that we 
did not identify this convenient and straightforward approach 
until too late. 



10 HUMAN FACTORS 
The author finds himself in stark disagreement with the style of 
presentation of UVM (and, indeed, of other solutions with 
similar purpose) that says "here is a complete solution; all you 
need to do is to use it and press these buttons".  This approach is 
condescending to users who, for the most part, are highly skilled 
verification engineers and programmers.  It leaves new users 
with the problem of learning not only a methodology but a huge 
body of detail.  Implementers of the UVM itself, and users such 
as the author who are pioneers of UVM rollout within an 
organization, benefit from the experience gained by 
implementing large amounts of infrastructure code.  This 
experience is by far the most effective way to learn and 
internalize the architecture, rationale and details of the base class 
library and other facilities.  By contrast, engineers cast in the 
role of "UVM user" are presented with a large body of code that 
is imperfectly documented and that they are expected to use 
without spending much time investigating its internals.  Not 
surprisingly, many such engineers feel that the methodology is 
being thrust upon them without their understanding or consent.  
In this atmosphere users are unlikely to be motivated to make 
consistent, creative and effective use of UVM.  Instead they tend 
to distort it to accommodate their familiar ways of working, and 
the human problem is thereby compounded because they gain 
little benefit from UVM and instead find that it merely presents 
them with obstacles to achieving results that they could have 
more effectively obtained an easier way. 

11 CONCLUSIONS 
This paper has described a number of shortcomings of the UVM, 
and discussed ways to work around them.  In addition it is 
important to note the imminent release of a production version 
of the UVM, which will have many new facilities and better 
usability.  Nevertheless, there are some difficulties that must be 
overcome by users' own efforts, perhaps with the help of 
techniques described here or perhaps by using other techniques.  
It is this diversity of solutions that most troubles the author, 
because it threatens to undermine one of the UVM's most 
powerful advantages: the promise of true interoperability of 
verification IP and infrastructure among suppliers and users.   

In addition, section 10 highlights some of the challenges faced 
when deploying the UVM (or, indeed, any other advanced OOP 
verification methodology) in an organization where not all the 
engineers are familiar with the underlying techniques.  The 
UVM provides toolkit, documentation and ecosystem to help 
users with this transition, but despite this our experience shows 
that adoption is unlikely to be painless.  In particular, users who 
lack prior experience with OOP verification methodology are 
unlikely to be involved with early deployment of the UVM in an 
organization, and this puts them at a double disadvantage: not 
only must they learn a new approach rapidly, but also they must 
do so without having been not engaged with the rollout and 
in-house development, leaving them feeling little sense of 
ownership. 

To ease these problems we must find ways to make UVM more 
accessible, and more exciting and attractive to users.  Better 

documentation will surely help.  Exposure of the UVM through 
conference papers, textbooks and verification IP will 
progressively bring it into the mainstream of verification culture.  
There is a pressing need for clearer guidelines on use of the 
UVM in commonly encountered practical situations and some of 
those issues have been raised in this paper.  Finally there are 
some shortcomings in the UVM itself, although many of the 
most important issues (handling of reset and test iteration, 
register abstraction, interactive command-line access) are 
expected to be addressed by the production release of the UVM 
in early 2011. 
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