

Achieving First-Time Success with a

UPF-based Low Power Verification Flow

Kjeld Svendsen
Applied Micro

215 Moffett Park Dr.
Sunnyvale, CA 94089

+1 408 542 8302
Ksvendsen@apm.com

Chuck Seeley
 Mentor Graphics Corporation

Wilsonville, OR
+1-503-685-0816

Chuck_seeley@mentor.com

Erich Marschner
Mentor Graphics Corporation

Ellicott City, MD
+1-410-750-6995

Erich_marschner@mentor.com

ABSTRACT
Minimizing power consumption has become a critical requirement in

today’s designs. Active power management required to minimize

power consumption creates additional challenges for functional

verification. IEEE Std 1801™-2009 [1] defines the Unified Power

Format (UPF), which enables visualization and early verification of

the behavior of a design under active power management during

RTL simulation. This paper describes a UPF-based low power

verification methodology used by Applied Micro Circuits (APM) for

verification of a low power design, including the process used for

verification planning, tool flow, and methods used to track progress

toward coverage closure.

Keywords
Multi-processor system, Low Power, Functional Verification, UPF

Unified Power Format, IEEE 1801

1. INTRODUCTION
Power management has become a critical concern in the design of

electronic systems, especially for those intended for very low power

applications. Larger (e.g., multiprocessor) designs may contain so

much logic that it is impossible to power up all parts of the chip at

the same time. Power management within a chip has become

mandatory for designs such as these.

Minimizing power consumption and consequent heat generation, and

for portable systems, maximizing battery life, are key requirements

for successful products today. Minimizing power consumption

through clock gating was sufficient for older process technologies,

but more recently, with the continued advance to smaller and smaller

process nodes, static leakage has become a major issue as well,

representing as much as two thirds of the power consumption of

modern designs. The need to minimize static leakage has led to new

power reduction techniques [2] such as power gating, biasing, and

multi-voltage supplies, which in turn require power management

architectures that enable and support the use of these techniques, as

well as both hardware and software control logic necessary to initiate

and mediate transitions among the various power states of a system.

Various power management techniques are in common use today.

Clock gating disables the clock of an unused device, to eliminate

dynamic power consumption by the clock tree. Power gating

disconnects a device from its power supply during standby mode, to

eliminate static leakage. Body biasing changes the threshold voltage

to reduce leakage current at the expense of slower switching times.

Voltage scaling changes the voltage and clock frequency to minimize

static leakage while still meeting performance requirements.

Multiple voltages can be used for different parts of a system that

have different performance requirements. One or more of these

techniques may be used to minimize power consumption in a design.

Power management must work correctly while at the same time

enabling the design itself to function correctly. Changes from one

power state to another involve a sequence of operations that must be

orchestrated correctly to ensure that neither logical nor electrical

problems occur. The fact that portions of a chip may be powered

down or in a low power state at any given time requires logic to

isolate those portions from other parts that are operating normally.

Interactions between power domains operating at different voltage

levels requires level-shifting logic to ensure that logic values are

correctly transmitted and received. State retention logic may be

required to preserve key data across power-down periods or to enable

a given power domain to power up quickly without lengthy

reinitialization.

Verifying active power management at the IP block level involves

both verifying the power management architecture – the structures

that provide control over power gating, mediate interactions between

power domains, and enable state retention – and verifying the power

management behavior – the operation of the power management

architecture together with the design, given appropriate sequences of

control inputs. At the system level, power management includes

verifying the correct sequencing of power management control

signals as well as thorough verification of all the system power states

and transitions among them.

2. THE APM DESIGN EXPERIENCE
APM has developed numerous designs involving power islands for

power management. Previous designs employed manual insertion of

technology specific isolation buffers in the RTL design, which

caused inefficiencies in design technology portability and in

particular verification and confidence hereof. The verification issue

was that internal state of powered down blocks did not go ‘X’, but

retained any acquired previous logic state.

This had two consequences. Firstly any powered down block that

drove logic outside the block would not drive an X potentially

causing missing or incorrectly isolated logic from being detected,

and missing any consequences of nets being driven from powered

down block, which could cause complete malfunction in silicon.

Secondly upon repowering of the powered down block(s), one could

not tell if the blocks would correctly repower with uninitialized state

or not, since the internal state would not be driven to X.

Based on these prior experiences the APM86290 design [3] team

recognized early on in the definition phase as requiring more

sophisticated verification capabilities due its more elaborate power

management mechanisms. The APM86290 is a high complexity

SOC with dual IBM46x PowerPC processors organized in a SMP

configuration for cache coherent operation between processors and

I/O and has numerous high-speed interfaces on-chip combined with

several power domains to permit a power operation range of 10uW

to 6W.

To facilitate power management the SOC subsystem design features

the Scalable Lightweight Intelligent Management processor or

SLIMproTM, a dedicated very low power micro-controller managing

power and reset sequencing, so individual processors, both

processors and individual I/O subsystems can be power sequenced,

permitting configuration management for the most power efficient

yet high-performance throughput system based on application

requirements.

Individual power islands on the chip are powered by external voltage

regulators, as the high-end power consumption of the chip doesn’t

permit on-die power switches.

APM decided to embrace the industry standard UPF-based

methodology as this was readily supported by their Mentor Questa

environment and had a convenient design-tool flow path to the

backend synthesis and P&R tools.

It was nonetheless recognized early on that the power management

architecture and related functionality needed to be clearly defined

and specified up-front, and not considered as a quick do-it-later add-

on feature. The specification involved both hardware and software

permitting hardware-software co-development and verification.

2.1. SPECIFICATIONS AND TESTPLANS
The power architecture specification detailed all power regions,

power configurations, specific power goals on a per configuration

basis and system software interface and sequencing procedures. I/O

devices and system aspects to power sequencing were also detailed

to assure end-system compliance.

The architecture specification was further very detailed, describing

strict methods with exact timing diagrams and sequences limited to

specific behaviors to minimize error-proneness due to elusive corner-

cases, engineering miscommunications and to minimize the

verification effort. Of particular concern was the sequencing of

power, isolation and reset going into power-off and into power-on.

For the power-on case, isolation should be set and reset should be

applied and held for a period of time until power is stable and the

internal state properly reset. Then isolation can be removed, and then

again after some time reset de-asserted. Figure 2 shows a waveform

representation of the power on-off flows.

Figure 2. Power Sequencing

RESET

ISOLATION

POWER ON

POWER ON SEQUENCE POWER OFF SEQUENCE

On power-off of a processor, the processor first needs to be

completely quiescent, which was achieved through an internal

processor mechanism. It should be noted that quiescent in the context

of MP systems involves a multitude of other aspects than just signal

quiescence, e.g., all caches must be flushed, all in-flight transactions

completed, snoop queues empty, etc., all which are beyond the scope

of this paper. The HALT instruction would thus indicate through a

signal interface that the processor was ready for power down. Then

reset could be asserted followed by isolation and then power off.

It should be noted that the processors did not have any internal

configuration state that required state retention. Such state was kept

on the outside the processors’ power domains in an always-on power

domain.

The architecture specification permitted a detailed RTL development

plan to be written, starting with a clear-cut design specification to be

developed outlining which blocks were impacted by the power

sequencing and how the different blocks would interact as a

consequence.

The testbench and test development also benefited from the detailed

upfront architecture specification as the test complex could be

developed with the power sequencing requirement in mind. In

particular at the subsystem level, e.g., for the CPU complex the

encapsulating testbench was developed with a pseudo power

sequence controller emulating the SOC level SLIMproTM processor,

permitting testing with the exact sequencing and timing in a simple

manner.

Testplans were developed, which specified all the tests required for

all the power configurations, and coverage objects for all the power

sequences and power configurations.

A key decision was made to include actual system software in the

verification plan to assure software-hardware integration correctness

on a pre-tape-out basis. It was naturally felt this type of verification

would be very time-consuming, but the runtime was found

acceptable as it was estimated possible on an overnight run basis on

high-end servers and minimal iterations would be expected given the

pre-verification should weed out all major hardware issues, and thus

the runs should work with no hiccups except for software issues. But

the potential time cost was considered acceptable given the

alternative time and monetary cost of malfunctioning silicon.

2.2. RTL ORGANIZATION
As RTL development was gated by the architectural specification, it

was possible to properly plan the RTL organization and design effort

with the power architecture fully integrated upfront.

The RTL was accordingly partitioned along power domain borders,

greatly simplifying the UPF specification, verification and debug and

backend work. It is possible to specify power domains in UPF with

logic scattered across multiple blocks, but this was considered error-

prone and was thus deliberately avoided.

The RTL was coded with the needed power-on reset and power

sequencing signals which would then be connected automatically by

the back-end tools thru the UPF specification.

OVL assertions were added to the RTL code to cover incorrect

and/or unexpected power sequencing. This allowed for quick

determination of miscommunications and misunderstandings

between design, verification and software development, and

trivialized potential disasters by pin-pointing critical issue on a very

immediate basis. The UPF code itself also includes a behavioral

description that permits checking of power sequence violations.

2.3. TESTS, TOOLS AND FLOWS
An important aspect of the overall power verification effort was

assurance of full design tool flow integration from specification to

the tape-out database. Mentor’s Questa power aware simulator

readily supported the RTL to UPF integration in an easy to use

manner. The compiler/ simulator can include a UPF file

specification on the command-line, which permits fast integration.

Using UPF enabled technology independent verification, where the

library isolation cells need not be specified yet. In contrast, the target

library isolation cells are required for a CPF specification. Thus with

the UPF format, the power domain aspects of the design can be

verified before and without a cell library available.

The testbench code used the standard UPF interface subroutines to

control the power sequencing. The routines were readily made

available through a library import statement in the testbench:

 Import UPF::*

And routines herein were then called e.g.:

 supply_off(“streak_tb/streak/pVDD1”);

 supply_on(“streak_tb/streak/pVDD1”,0.99);

The signals specified in the function calls are correlated with the

RTL through the UPF file.

In the second supply_on statement, the 0.99 indicates the power on

voltage and would be flagged if the voltage was specified differently

in the testbench than in the UPF file. This is a feature provided by

the UPF format for systems that use multiple voltage levels, e.g.,

Dynamic Voltage Scaling (DVS), but was redundant for this

particular application.

Verification using the simulator quickly identified issues with the

UPF specification, RTL coding, and general functionality. Coverage

was collected as per the specified coverage points to assure all ends

of the design were tested. This was readily available through the

Mentor toolset.

Running actual system software was shrink-wrapped to the power

sequence subroutines, which simplified the verification, shortened

the runtime, but still provided the looked-for software-hardware

integration assurance.

The back-end tools posed an initial challenge as they used the CPF

format which is not compatible with UPF. The design team was

aware of this limitation upfront, but as Questa supports UPF and

early verification could commence before cell library availability,

UPF was used. Furthermore, using Conformal LEC, a CPF file could

be written which, when read in with the RTL, could generate a UPF

file after elaboration. This permitted connecting the front-end tools to

the back-end tools using a single source CPF file. The flow is shown

in Figure 3.

Figure 3. Power Verification Flow

RTL

Netlist UPF

CPF

Conformal

LEC

Synthesis &

P&R

RTL

Verif.

Gatesim

Verif.

Naturally this meant an initial UPF file had to be written for early

verification, then a CPF file written for the back-end tools, and then

the verification rerun with the UPF file generated from the CPF file.

However, at the time the design went to the back end, the power tests

were completed and the verification rerun a minor affair.

The CPF-UPF conversion was admittedly not perfect and did require

a minor tweak in the naming of power nodes. This was not

considered reason for any concern, although it would have been nice

to have better translation correspondence from the naming

conventions used in the CPF file to the generated UPF file.

With a netlist, gate simulations could also be run, and though slow,

this permitted assurance that the netlist worked the same as the RTL.

The Mentor Questa simulator further provided the same corruption

of powered down blocks’ state in the netlist as for the RTL, which

provided good verification confidence. Gate simulations were run

both in Zero delay and with SDF, with the latter permitting

observation and resolution of potential timing troubles, which could

occur due to delays incurred due to the isolation buffer insertions,

including buffer delays and turn-on/turn-off delays.

2.4. UPF CODE
For reference the UPF code for the dual PowerPC processor (Tiger)

complex (Streak) is listed below to exemplify the actual design.

Key elements are the power domain structure specification which

specifies the two power domains PD1 and PD2. There is a processor

in each domain, but only the processor in power domain PD2 is

specified as able to be powered down.

Since the processors are designed in logical blocks the power

domains are easily specified, e.g., tiger_1/tgr. The individual power

ports are specified for connections to the power isolation controls.

Isolation is specified to define the operation of the power isolation

buffers. But the isolation buffers do not need to be specified as the

back-end tools will pick these automatically. This is handy for a

technology-independent design. Isolation can be specified on inputs

and outputs, but output isolation was found to be sufficient.

Some care was required with the isolation_power_net specification

in the UPF set_isolation command. This port needs to be connected

to the outside power domain net, because if it is connected to the

same VDD as the power domain that is powered down, the isolation

buffer will go X when the power is removed.

As a side note, it was found that the isolation buffers’ leakage current

can add somewhat to the power consumption. Also since the

isolation buffers are virtually instantiated thru the UPF simulator

interface they are not viewable in the signal trace tool (neither in

Questa’s GUI nor in Debussy) which was found to be a slight

nuisance. The isolation control identified the signal used to control

the isolation buffer, and its active level, i.e., the level that causes the

isolation buffers to isolate. Getting the hierarchical signal-path right

proved a little tricky as the testbench and top-level RTL paths need

not be specified, but after some experimentation we prevailed.

Lastly the power states and transitions are specified. This is handy

for verification as incorrect state and/or sequencing would be flagged

permitting a quick identification of otherwise easily overlooked

violations.

Define the top

#===

set_design_top streak

Set up logic power domain structure

#===

create_power_domain PD1

create_power_domain PD2 -elements {tiger_1/tgr}

Create power I/O

#===
create_supply_port pVDD -direction in

create_supply_port pVSS -direction in

create_supply_net nVDD -domain PD1
create_supply_net nVSS -domain PD1

connect_supply_net nVSS -ports { pVSS }

connect_supply_net nVDD -ports { pVDD }

create_supply_port pVDD1 -direction in

create_supply_net nVDD1 -domain PD2

create_supply_net nVDD -domain PD2 -reuse

create_supply_net nVSS -domain PD2 -reuse

connect_supply_net nVDD1 -ports { pVDD1 }

set_domain_supply_net PD1 -primary_power_net nVDD

-primary_ground_net nVSS

set_domain_supply_net PD2 -primary_power_net nVDD1

-primary_ground_net nVSS

Set isolation

#===

set_isolation ISO_PD2 -domain PD2 -isolation_power_net nVDD

-isolation_ground_net nVSS -elements { tiger_1 } -clamp_value 0

-applies_to outputs

Set isolation control

#===

set_isolation_control ISO_PD2 -domain PD2 -isolation_signal

streak_cpm/cpm_isolatecpu1 -isolation_sense high

Define static behavior of all power domains

#===

add_port_state pVDD -state {ON 0.99}

add_port_state pVDD1 -state {ON 0.99} -state {OFF off}

create_pst PST -supplies {pVDD pVDD1}

add_pst_state PM1 -pst PST -state {ON ON}

add_pst_state PM2 -pst PST -state {ON OFF}

3. CONCLUSIONS AND FURTHER

DEVELOPMENTS
The UPF flow usage was found to be highly productive and provided

a high level of confidence in the final design, especially compared to

prior design experiences. Actual silicon validated the value of the

design and verification process by providing fully functional first

silicon for the APM86290 processor.

The effort involved to add the UPF portion to our verification

process was approximately 2 man-months. The cost associated with

this effort pales in comparison to the potential disastrous monetary

costs associated with replacing field failures, mask costs to re-spin

the chip, and revenue lost by being late to market . UPF-based low

power verification does involve extra up-front time and effort

leading to a potential longer design time, but the time can be folded

in under other back-end work, for no effective delay.

The integration between Mentor’s front-end low power RTL

simulation capability and the backend tool flow could be somewhat

simpler. In particular, if the backend tools could read UPF files, this

would eliminate the need for CPF to UPF conversion.

UPF also holds promise for next generation designs, which may

involve techniques such as dynamic voltage scaling. UPF already

has features and capabilities that would support such designs.

One currently missing capability is low power verification using

emulation in order to address full system software verification.

Emulation could speed up hardware-software co-verification

significantly and therefore enable verification scenarios such as

Linux boot and actual application runs. However, this seems likely to

become available in the near future.

4. ACKNOWLEDGMENTS
The authors would like to thank Applied Micro Circuits and Mentor

Graphics Corporation for supporting the development of this paper.

5. REFERENCES
[1] IEEE Std 1801™-2009 for Design and Verification of Low Power

Integrated Circuits. IEEE Computer Society, 27 March 2009.

[2] Keating, M., Flynn, D., et al. Low Power Methodology Manual for

System on Chip Design. Chapter 2, Standard Low Power Methods. Springer,

2007.

[3] APM. AppliedMicro PacketPro(TM) Multicore Processor Family

Provides Intelligent SoC

http://investor.appliedmicro.com/phoenix.zhtml?c=78121&p=irol-

newsArticle&ID=1474906&highlight=

Sept 27, 2010.

