
Command Line Debug Using UVM Sequences 
  

   
   
  
  
  
  

Mark Peryer 
Mentor Graphics (UK) Ltd 

Rivergate, London Rd., Newbury, 
Berkshire, U.K. RG14 2QB  

Telephone: +44 1635 811614  

mark_peryer@mentor.com  

 
  
  
  
  
  

 

ABSTRACT  
The mainstream use case for the UVM is to create a verification 

environment that supports the running of multiple test cases which 

run sequence based stimulus and use automatic checking and 

coverage mechanisms to achieve closure on a verification plan. 

However, there is another important use case which is not so well 

addressed and that is the interactive debug of hardware and test 

bench bugs. This paper describes a technique which leverages UVM 

sequences to implement a command line debugger which can be used 

to facilitate efficient hardware debug, and potentially, the debug of 

the sequences themselves. In practical terms, the technique is 

encapsulated in a command line debug sequence package. 

 

Using the package allows a user to debug designs more efficiently by 

being able to interactively run short, targeted tests and to check the 

result using the debug resources of the simulator. The approach is 

well suited to the early stages of hardware debug or integration 

debug where its interactivity allows users to track down simple, but 

blocking issues, very quickly. The technique is lightweight, 

leverages existing UVM sequences and is orthogonal to the main 

UVM use model of building up regressions of test cases. 

 

Categories and Subject Descriptors  
 [Hardware Verification]: Functional Simulation and Verification – 

Class based SystemVerilog, UVM class library, sequences, register 

model, command line debug.  

 

General Terms  
Verification, Simulation, Sequences.  

 

Keywords  
UVM, Sequences, sequence wrappers, testbench architecture, debug 

techniques, Registers 

 

1. INTRODUCTION 
The Universal Verification Methodology (UVM) is a SystemVerilog 

base class library which allows users to construct verification 

environments using verification component objects and to create 

stimulus using sequence objects. The UVM encapsulates a number of 

standard building blocks with well-defined APIs which makes it 

straight-forward for users to collaborate or to build testbenches 

which are interoperable with third party verification IP. 

 

1.1 The UVM Verification Process 
The UVM makes a clear separation between stimulus generation and 

the structure of the verification environment. The structure of the 

UVM test bench is created during the build phase when the various 

components are configured and constructed, these structural 

components stay in place for the lifetime of the simulation. However, 

stimulus generation is by means of a library of sequence classes 

which have a transitory life time, being created, executed and de-

referenced as required. Each UVM simulation starts by constructing 

a test class that is responsible for defining the configuration of the 

test bench structure, starting the top-down build process and then 

starting the execution of the chosen set of sequences. 

 

The typical UVM test bench architecture is orientated around the 

interfaces of the Design under test (DUT), with each hardware 

interface having a verification component, or agent, associated with 

it. The agent contains a driver which is responsible for converting 

abstract transaction objects called sequence_items into signal level 

activity. Stimulus is generated for an interface inside sequence 

objects which create and shape a series of sequence_item objects and 

send them to the driver via component object called a sequencer. Co-

ordinated stimulus between hardware interfaces is achieved through 

the use of supervisory sequences which execute sequences on 

multiple sequencers, these are usually referred to as virtual sequences 

and they are executed via virtual sequencer component objects which 

contain handles for the target interface sequencers. This architecture 

is illustrated in Figure 1. 

 

 
 

Figure 1 – UVM Test Architecture 
 

Once the UVM verification architecture has been established, the 

verification process centres around the creation of test cases based on 

the use of sequences.  The emphasis of the verification process is on 

generating volumes of stimulus as efficiently as possible using 

constrained random techniques; re-running test cases with different 

seeds to create conditions which flush out corner case bugs in the 

DUT. When aligned with a metric based, coverage driven 

verification process the UVM has proved to be an effective means of 

verifying hardware using simulation techniques. 

 

Once a test case has passed its initial debug phase, it is passed into a 

regression suite which is run in batch mode. In the regression suite 

the test case is run with different seeds to catch corner cases. The 

priority is on simulation throughput to explore as many parts of the 

design state space in a given time. This use model is efficient once 



the test bench architecture has been completed and once the DUT has 

reached a reasonable level of maturity, but there is a considerable 

period of time where a more interactive use model can facilitate 

rapid debug. This is where the use of sequences controlled from the 

command line can prove effective. 

 

1.2 Command line debug sequence use model 
A simulator converts a hardware description of a DUT into an 

executable model. In the classic UVM use model, the emphasis is on 

wrapping the DUT with a test bench and generating stimulus that 

effectively runs in batch mode with minimal interaction from the 

user, unless a bug in either the DUT or the verification environment 

is uncovered. The command line use model takes advantage of the 

UVM test bench infrastructure and its stimulus objects, but places 

the user in the driving seat by allowing him to interactively direct 

what stimulus is applied to which interface of the executable DUT 

model, and in what order. The closest parallel to this is bringing up 

real hardware on a lab bench with a software debug monitor, signal 

generators and instruments. The architecture of the command line 

debug environment augments the typical UVM environment as 

illustrated in Figure 2. 

 

In the early stages of bringing up a DUT, there are often simple 

problems which need to be debugged interactively with the 

verification engineer and the designer working through a series of 

directed steps to understand what is wrong with the hardware. The 

complexity of these steps will range from individual reads and writes 

of hardware registers to running a series of complex stimulus 

patterns.  

 

 
 

Figure 2 – Command Line Debug Using UVM Sequences 
 

A typical scenario would be to run an initialisation routine, then 

check the state of the DUT registers, followed by a DUT operation, 

followed by a dump of the DUT register or memory content. 

Obviously, this can also be done via the mainstream UVM use 

model, but using the command line allows the user to try out 

different register programming options without having to rewrite, 

recompile and reload the UVM sequence code. With larger scale 

verification environments it can take a significant amount of time to 

iterate round an experimental sequence loop and it can be tricky to 

debug, the command line approach allows the user to try an 

experiment several times until the solution is identified without 

having to change any underlying code or reload the simulation. 

 

 

2. IMPLEMENTATION  
The implementation of the command line debug infrastructure 

leverages the structure of the UVM verification environment and the 

sequence library packages developed for the DUT. The main 

infrastructure of the system is generic, but there are parts of the 

implementation which need to be customised to address the specifics 

of an environment. A script has been developed to reduce the 

extraction and customization effort. 

 

2.1 Requirements  
Before implementing the command line debug system the following 

requirements were considered: 

 

2.1.1 Ease of use 
The debug system needed to be straight forward to use, the target 

being to provide a hardware designer with no knowledge of UVM a 

useful debug environment. 

  

2.1.2 Low implementation overhead 
The time taken to create an implementation of the debug system 

needs to be short, and the creation process needs to be agile to cope 

with updates to the UVM verification code. 

 

2.1.3 Capability to run sequences 
The command line interface needs to be able to specify and run 

sequences from the available library. 

 

2.1.4 Capability to pass arguments 
There needs to be a means of passing arguments from the command 

line which configure the sequences to be run. For instance, a 

sequence which does a bus write will require an address and a write 

data argument. 

 

2.1.5 User help system 
The user needs to be able to view information on the available 

sequences, their purpose and the command line required to execute 

them. 

 

2.1.6 Capability to run command files 
The command line system needs to be able to read text files which 

contain lists of sequence commands. These files can be used to save 

the user from having to enter commonly used sequences of 

commands at the command line. 

 

2.1.7 Log file generation 
Recording the commands submitted via the command line interface 

and their result allows the session to be recorded and to be used as a 

reference or as the basis of a command file. This facility also needs 

to have the capability to annotate comments. 

 

2.1.8 Capability to run parallel commands 
There are situations where there is a need to run multiple sequences 

as parallel threads. An example would be a sequence that sends  

serial packets to the DUT on one interface running concurrently with 

a sequence that handles the packets on another. 

 

2.1.9 Library of utility commands 
The command line package also needs to contain commands which 

allow the user to specify behavior not related to sequences. These 

include: 

• wait_for_clock(n) – Wait for n system clocks 

• wait_for_interrupt – Wait for an interrupt 

• exit – To exit the command line debug 

The main purpose of the command line interface is to execute 

sequences. This means that the meta-language used does not need to 

have a rich feature set. Complex constructs such as decision loops 



and support for specifying randomization constraints are not required 

since they can easily be taken care of in a custom sequence, 

implemented in native SystemVerilog. 

 

2.2 Implementation detail  
The command line interface package comprises a SystemVerilog 

package and a library of c functions. The c functions implement the 

command line monitor.  The SystemVerilog package contains the 

command line interpreter and tasks which create and execute the 

sequences. The c code and the SystemVerilog code communicate via 

the SystemVerilog Direct Programming Interface or DPI. 

 

2.2.1 Using the SystemVerilog DPI 
The DPI provides a light-weight way of allowing SystemVerilog 

code to execute c functions in an external shared object and for c 

functions in an external object to call SystemVerilog tasks or 

functions. In the SystemVerilog code, SystemVerilog tasks and 

functions are exported, and the c functions are imported. The 

SystemVerilog compilation process generates a c header file which 

has to be included in the c code to allow the SystemVerilog tasks and 

functions to be referenced; otherwise the c source code does not 

require any special coding techniques. The interface allows c and 

SystemVerilog data types to be passed as arguments. 

 

The simulator side of the DPI needs to be implemented in the static 

part of the SystemVerilog language so that the shared object can be 

loaded and linked with the simulator kernel at the start of the 

simulation. This means that any DPI code has either to be in a static 

SystemVerilog interface or module, or it needs to be in a package. In 

this case, a sequence command line package was written and this 

encapsulated the DPI imports and exports as well as the tasks and 

functions required to implement the interface. The c side of the DPI 

was implemented as a series of c function calls. 

 

Any sequence of DPI calls has to start under the control of the 

SystemVerilog code. The command line debugger is started by the 

OVM test making a call through the DPI to a c function called 

SV_debugger()  which is the command line monitor loop. The 

simulation is then blocked until the user makes an entry at the 

command line, at which point the string entered is passed to the 

SystemVerilog code to interpret and dispatch the selected sequence 

wrapper task with the appropriate arguments. Once the command has 

been executed on the simulation side, control is passed back to the c 

code to pick up the next command to be executed. The prompt loop 

is terminated when the user types ‘exit’, at which point the 

SV_debugger() function returns and the OVM test run method can 

continue. 

 

2.2.2 The SystemVerilog package (cli_seq_pkg.sv) 
The SystemVerilog side of the debug package is contained within a 

package. The package imports the UVM package (uvm_pkg); the 

packages containing the sequences which it references; and the 

packages for the target agents on which the sequences will be run. 

Inside the package are a small number of generic tasks and functions 

associated with processing the command line: 

 

• process_cmd_line() – Function that is called by the 

command dispatcher, it parses a command line string and 

returns a data structure 

• process_cmd_file() – Task to open and read a command 

file and pass each line to the command dispatcher class 

• dispatcher() – Task which takes the command line and 

dispatches the relevant sequence(s) for execution 

• virtual sequencer handle 

The standard DPI calls, i.e., export or import statements, are also 

present in the package. 

 

The rest of the package is specific to an UVM verification 

environment and is generated by a script based on the content of the 

target sequence packages. It comprises the following tasks and 

functions: 

 

• Sequence wrapper classes – one per target sequence 

• Init() – Task that constructs all the sequence wrapper 

objects, assigns sequencer handles and puts them into an 

associative array. 

• virtual sequencer – Containing handles for the target 

sequencers that the sequences will run on. 

• Utility functions – specific to an environment 

 

2.2.3 The sequence wrapper class 
The sequences used by the command line debugger need to be 

created, configured and then started from the cli_seq package. In 

order to use a generic command dispatcher, the sequences are 

encapsulated in a wrapper class, derived from a base class, which 

contains methods to simplify the implementation of the package. 

Sequences are wrapped and then placed in an associative array, 

indexed by a string. The wrapper classes are generated by a script 

which parses the sequence packages. 

 

To illustrate how a wrapper class is implemented consider a bus read 

sequence: 

 
class apb_read_seq extends ovm_sequence #(apb_seq_item); 

`ovm_object_utils(apb_read_seq) 

//------------------------------------------ 

// Data Members (Outputs rand, inputs non-rand) 

//------------------------------------------ 

rand logic [31:0] addr; 

logic [31:0] data; 

 

// Standard OVM Methods: 

extern function new(string name = "apb_read_seq"); 

extern task body; 

endclass:apb_read_seq 

 

function apb_read_seq::new(string name = "apb_read_seq"); 

  super.new(name); 

endfunction 

 

task apb_read_seq::body; 

  apb_seq_item req = apb_seq_item::type_id::create("req");; 

 

  begin 

    start_item(req); 

    req.we = 0; 

    req.addr = addr; 

    finish_item(req); 

    data = req.data; 

  end 

 

endtask:body 

This sequence has been coded following the recommended coding 

style where configuration data members are randomizable (addr) and 

that result data members are not (data). This coding convention is 

assumed by the generation script. 

 

The code for the sequence wrapper base class is as follows: 

 
// Sequence wrapper class: 

// 

// Takes a sequence and wraps it with other helper methods 

// 

virtual class sequence_wrapper extends uvm_object; 

 

function new(string name = "sequence_wrapper"); 

  super.new(name); 

endfunction 



 

// Handle for the target sequencer 

uvm_sequencer_base sqr; 

 

// Template for the help messaging: 

virtual function string help(); 

  `uvm_error("sequence_wrapper", 

    "Help method not implemented") 

endfunction: help 

 

// Returns the number of arguments used by run_sequence 

virtual function int no_args(); 

  return 0; 

endfunction: no_args 

 

// Needed to spawn multiple sequences concurrently 

virtual function sequence_wrapper spawn(); 

  sequence_wrapper c = new(); 

 

  c.sqr = this.sqr; 

  return c; 

endfunction: spawn 

 

// Assign the handle for the target sequencer 

virtual function void set_sqr( 

   ovm_sequencer_base sequencer); 

  sqr = sequencer; 

endfunction: set_sqr 

 

// Task to start the sequence from the wrapper 

// Generated code goes here ... 

virtual task run_sequence(int arg0 = 0,  

int arg1 = 0,  

         int arg2 = 0,  

int arg3 = 0); 

  `uvm_error("sequence_wrapper", 

             "run_sequence method not implemented")   

endtask: run_sequence 

 

endclass: sequence_wrapper 

 

The resultant wrapper class that is generated for the example 

apb_read_sequence is as follows: 

 
// This code is generated 

class apb_read_seq_wrapper extends seq_wrapper; 

 

`uvm_object_utils(apb_read_seq_wrapper) 

 

function new(string name = "apb_read_seq_wrapper"); 

  super.new(name); 

endfunction 

 

function string help(); 

  return "apb_read_seq addr; - target sequencer: APB"; 

endfunction: help 

 

function int no_args(); 

  return 1; 

endfunction: no_args 

 

function sequence_wrapper spawn(); 

  apb_read_seq_wrapper c; 

 

  c = new(); 

  c.sqr = sqr; 

  return c; 

endfunction: spawn 

 

task run_sequence(int arg0 = 0,  

 int arg1 = 0,  

 int arg2 = 0,  

 int arg3 = 0); 

  apb_read_seq seq = apb_read_seq::type_id::create("seq"); 

  seq.addr = arg0; 

  seq.start(sqr); 

  $display("apb_read: addr:%0h data:%0h", arg0, seq.data); 

  $fdisplay(log_fh, "apb_read: addr:%0h data:%0h", arg0, 

seq.data); 

endtask: run_sequence 

 

endclass: apb_read_seq_wrapper 

 

The package contains an initialization function which is responsible 

for constructing each of the wrapper tasks and putting them into an 

associative array indexed by a string which corresponds to the name 

of the sequence. When a command line request is received by the 

command line dispatcher, it looks up the wrapper sequence in the 

associative array, calls the spawn() method to create a new deep 

copied object and then executes it. The spawning is required to 

enable multiple copies of a sequence to be run in parallel. 

 

The sequence does not return any data to the command line because 

it cannot process returned values, however the result of the sequence 

execution is displayed and recorded in the log file: 

 
# apb_read_seq: addr: 0 data:0 

# apb_write_seq: addr:0 data: aaaaaaaa 

# apb_read_seq: addr:0 data:aaaaaaaa 

 

2.2.3 The package generation script 
In order to make the package code relatively painless for the user to 

produce, a generation script has been developed. The script works in 

two phases.  

 

The first phase takes a list of sequence library packages, parses the 

sequence descriptions and generates a reference file containing a list 

of target sequences and arguments that could be used with those 

sequences. The user then takes the reference file and comments out 

those sequences that he wishes to omit from the command line debug 

package. The user can also comment out sequence arguments and 

specify the name of the target sequencer. 

 

The second phase takes the edited list and generates the wrapper 

tasks, the help functions, the virtual sequencer and the dispatcher 

tasks. The generated code is written into files which are `included 

into the command line debug package. 

 

Once the reference file is in place, the process can be run again to 

capture any new sequences developed as the environment develops. 

This enables a new version of the debug package to be produced very 

quickly. The process can be used with ordinary sequences or with 

virtual sequences. 

 

3 USING THE PACKAGE 
Once the package is in place, it is compiled and imported into the 

SystemVerilog package that contains the test case classes. Inside any 

test class that is going to allow the use of the package, four things 

need to be done in order to get things up and running: 

 

• The package virtual sequencer needs to be declared and 

constructed. 

• The handles for the various target sequencers in the 

package virtual sequencer have to be assigned. 

• The virtual sequencer handle in the package has to be 

assigned to the virtual sequencer in the test. 

• At some point in the execution of the test run method, the 

package sv_debug task has to be called to enable the 

debugger. 

 

The following pseudo code illustrates how the debug functionality 

would be integrated into an UVM test: 

 
// Example leaving out irrelevant code 

class with_debug extends spi_test_base; 

 

`uvm_component_utils(with_debug) 

 

// Debug package virtual sequencer 

seq_cli_v_sqr seq_cli_sqr; 



 

// Build method building debug pkg sequencer 

function void build(); 

  super.build(); 

  seq_cli_sqr = 

     seq_cli_v_sqr::type_id::create("seq_cli_sqr", this); 

  // Assign handle to package virtual sequencer handle: 

  seq_cli_pkg::vs = seq_cli_v; 

endfunction: build 

 

// Virtual sequencer target sequencer handle assignment 

function void connect(); 

  super.connect(); 

  seq_cli_v.APB = m_env.m_apb_agent.m_sequencer; 

  seq_cli_v.SPI = m_env.m_spi_agent.m_sequencer; 

endfunction: connect 

 

task run; 

  #100 ns; // Wait for reset to go away 

  sv_dispatcher(); // Calls the debugger 

  global_stop_request(); 

endtask: run 

 

endclass: with_debug 

 

Once the debug mode is entered, the normal operation of the UVM 

environment comes to a halt, since the simulation will be blocked 

from advancing whilst a command is being entered, and will advance 

in time only when a sequence is being executed. However, the debug 

facilities of the simulator will remain available to the user, allowing 

waveform traces, single stepping through code etc to still be used. 

 

4 APPLICATIONS 
Variants of the command line debug package have been used by 

different users to great effect at different levels of design integration. 

 

The package has been used with block level environments to do 

basic register read and write mode debug.  It has also been used to 

prototype driver code or to develop initialization routines. It has also 

proved extremely useful in debugging specific scenarios where 

multiple interfaces need to be stimulated using several sequences in 

parallel. 

 

At cluster and SoC levels of integration, the technique has proven 

useful for unpicking interconnect issues such as incorrect address 

decoding and data path issues. It has also allowed firmware to be 

debugged before being encapsulated in sequences or processor based 

binaries. 

 

5 FURTHER DEVELOPMENTS 
The current implementation of the command line debug sequence 

package is based on features that were present in the OVM library. 

These features map directly over to the UVM 1.0 base functionality, 

but with the new features available in the UVM it should be possible 

to enhance the package.  

 

The two most promising areas are UVM registers and the UVM 

resources database. Some upgrade work has been recently been done 

to the command line debug package to take advantage of the features 

of the UVM register model classes. The results of the investigations 

into the use of the resource database are not available at the time of 

publication. 

 

 

 

 

 

5.1 UVM Registers 
The UVM register base classes enable the package to provide a 

generic set of methods which allow the user to examine and change 

memory and register content. The UVM register model provides a 

task based API for register accesses, eliminating the need for the user 

to provide read and write sequences specific to the target bus. 

 

The UVM register model is structured to align with the hardware 

structure of the DUT, therefore the command line allows the 

dumping of register content on a system, sub-system, block, register 

or register field level simply by specifying a path. When looking at 

register content, the user has the option of looking at the content of 

the register model database (referred to as the ‘mirror’); performing a 

front door read() access using a bus agent; or by performing a back 

door peek() access using the simulator data-structure. This capability 

enhances the debug process, since it is often inconvenient to do a 

front door read access which disturbs the state of the DUT hardware. 

 

The UVM register classes also allow memories, or regions of 

memories to be accessed either using front or back door access 

methods. The command line package has been upgraded with generic 

commands to allow users to dump memory content; to change 

memory locations; to load memory with the content of a file; or to 

fill it with random data.  

 

Finally, the UVM register map class allows users to access registers 

and memories from different interfaces, something which is 

important when verifying the content of SoCs using complex 

interconnect fabrics which have several bus master ports. The 

capability to specify alternative access interfaces has also been added 

using a command line argument. 

 

5.2 UVM Resources 
Using the UVM resource data base offers the possibility of 

manipulating handles to the target sequencers and the sequence 

wrapper objects more elegantly than was possible before.  

 

6. CONCLUSION 
The command line sequence debug package has proven to be useful 

to OVM users. With the advent of the UVM, there are a number of 

potential upgrades which should enhance the ease of use of the 

package. 

 

7. ACKNOWLEDGMENTS  
My thanks go to my colleagues, especially Rich Edelman for making the time 

to dig my early experiments with the DPI out of the mire and Adam Erickson 

for giving me early insight into the UVM register classes. 

 

8. REFERENCES  
[1] Edelman, R., Warmke D. 2005. Using SystemVerilog Now with DPI – 

Proceedings DVCon 2005 

[2] Edelman, R., 2008. Sequences in SystemVerilog – Proceedings DVCon 

2008 

[3] IEEE 1800 SystemVerilog LRM – IEEE 2009 

[4] Meyer, A., 2009. Overview of Sequence Based Stimulus Generation in 

OVM 2.0 – Application note. Mentor Graphics Corporation 

[5] OVM 2.1.1 Users Guide. Mentor Graphics and Cadence Design Systems 

– 2010 

[6] UVM 1.0 Users Guide – Accellera,  (Awaiting publication) 

 

 
 


