
Getting Rid of False Errors when Verifying LSI Designs
Including Non-Determinism

Matthieu Parizy

parizy.matthieu@jp.fujitsu.com

Hiroaki Iwashita
iwashita.hiroak@jp.fujitsu.com

Design Innovation Laboratory
FUJITSU LABORATORIES LTD.

Kawasaki, Japan

Abstract— The recent years have seen LSI design complexity

continuing to rise sharply. This phenomenon translates itself in

the design specifications as they include non-deterministic parts

more and more frequently. For example, in cases of designs

using packets for data transmission, packets transfer order is

determined by precise rules. But, depending on the timing of the

transactions, the final order might be hard to predict. It

represents a big challenge in the verification field because

traditional methodologies could lead to detect false errors which

might actually be an early misunderstanding of the specs by the

verification engineer or a failure to model the non-determinism

in a Golden Reference Model (GRM). We present a new method

of verifying designs including non-determinism in their

specifications specifically the ones which use packet based

communications. We create customizable plugins to provide

reusability to the user. Furthermore, we introduce a margin

parameter to control the degree of strictness of the verification.

1. INTRODUCTION

On one hand, making a GRM that translates perfectly the

non-determinism of the design specs is very time consuming. False

errors will be often reported i.e. the GRM will output something

different from the Design Under Test(DUT) whereas when we look

at the design specs, the DUT’s output is also correct. On the other

hand, in the case of designs using packet based communications

protocol, existing tools focus on verifying if a DUT’s outputs are

correct in regard to the protocol specifications. But the problem is:

what can we do when the design specs include stricter rules than the

protocol ones? For example, concerning performances in data

transactions, a delay could be allowed in a particular transaction

when we look at the protocol specs; whereas when we look at the

design specs, this delay would be unaffordable because it is vital that

this data arrives at a certain timing in another part of the design or

else it would lead to consequent failures.

In this paper, we will talk about the solution we developed for

the case of the verification of a design using the USB2.0 Enhanced

Host Controller Interface (EHCI) [1]. When we conceived the

methodology at the core of our solution, as we abstracted the

problem, we realized it could also be used for any designs using

packet based communications. Therefore, to improve productivity of

verification engineers, we set our goal to develop a reusable and

customizable monitor that will not output false errors. The core of

the monitor consists of a verification process that can decide if

packet order is in accordance to both the protocol in use and the

design’s specifications. It is based on customizable binary functions

called plugins which represent the protocol and the design’s

specifications’ rules concerning packet order of transfer which can

be easily inserted or removed as the verification team gets familiar

with the specifications. To implement our monitor, we chose OVM

[2] [3] as its capabilities for adaptability and reusability made it a

natural choice.

2. “REAL” AND “FALSE” ERRORS
During the functional verification process, we often encounter

the following problems:

 By trading the signal/timing accuracy of the DUT with a

more abstract model, less time consuming to realize, the

possible outputs of the GRM might be within the protocol

range but outside of the DUT possible operations [4].

 Protocol specific verification tools might allow a behavior

of the DUT that could also be outside of the DUT possible

operations.

 Because of the Non-Deterministic aspect of the design’s

specifications, the GRM and the DUT’s output could be

different although both being correct in regard to the

protocol and the design’s specifications. Thus it could

mislead the verification team, when comparing the outputs

of the GRM and the DUT for the same input vector, into

finding false errors. (Figure1)

Figure 1. Using GRM with Non-Deterministic DUT

3. OUR APPROACH WITH OVM
Before considering using OVM for our verification needs, we

started by trying to identify the source of the non-determinism in the

EHCI specifications. After finding some clues, namely on the timing

of packet sending in regard to USB frames and micro-frames, we

started to model them using SystemC. The resulting module gave

birth to what later became the “Smart Checker”.

At the beginning, the SystemC module was only checking if the

USB controller was sending packets in a predefined order set by us.

We then improved our module by implementing a verification

process able to judge by itself if the packet order is correct by setting

the plugins according to transfers rules present in the protocol and in

the design’s specifications. These rules take the form of logical

functions, later explained and named as plugins in this paper. Once it

had reached that state, we decided to put it into practice with OVM

on an already started verification effort. We chose SystemVerilog [5]

+OVM because the language construct of the former combined with

the methodology and set of classes provided by the later seemed to

us the ideal candidate.

We based our research on a provided verification environment,

developed for the verification of a designed based on the USB2

EHCI, by the verification team in charge at the time. The provided

environment contains a monitor written in SystemC which assumed

the task of checking the correctness of the DUT at a functional level

with the help of transactors converting the signal from a RTL to

Transaction Level. Wanting to use OVM as well as using the

provided environment without rewriting it in SystemVerilog, we

chose to use TLM to ensure communication between the SystemC

monitor and our OVM scoreboard containing the Smart Checker. It

is connected via TLM to the existing bus monitor. (Figure 2)

Figure 2. Smart Checker’s position in the verification Environment

4. PLUGINS FOR ADAPTABILITY
Figure 3 shows the flow of the Smart Checker inner process:

Figure 3. Smart Checker flow

 The Smart Checker first receives the information that a

new packet came on the bus from the UsbBusMonitor.

 It then performs a check to see if the packet corresponds to

an existing tracked transaction inside the Smart Checker.

 It then checks if the transaction identification of the packet

corresponds to the transaction Id. that was expected. If it

does, it waits for the next packet.

 If the received packet’s transaction Id. was not the one

expected, it calls the plugins to check if the expected

transaction’s packet can be skipped. If the skip is possible,

no problem, it updates the expected transaction Id. with the

next transaction Id. in the assumed order of transaction (set

by the user).

 If the plugins did not allow for the expected transaction to

be skipped, an error is signaled with packet information

and we update in the same way as previously the expected

transaction Id.

The plugins are the key components of the Smart Checker to

solve the false error problem by answering, in our case, the “Ok to

skip expected transaction?” in figure3. They are a set of logical

functions in the monitor which represents the rules the design has to

follow to perform transactions. These rules are part of the design’s

specifications above the protocol’s one and represent conditions on

which the monitor will base its judgment to tell if an error is real or

not. (Figure 4)

skip_ok(packet_id) = not_enough_time_to_send(packet_id)

OR

user plugin

Figure 4. skip_ok logical function

SmartChecker

extends

ovm_scoreboard

DUT
Verilog

UsbTxrPacketIF:
sc_interface

 UsbBusMonitor:
sc_module

Provided

Environment

In Figure 4, if in regard to the USB Host Controller (HC)

specifications there is not enough time to send a packet before the

end of a mircro-frame, the Smart Checker allows that packet to be

skipped. The user plugin represent other rules that could be set to

allow the packet skipping, for which an example is given after. By

giving the plugins the form of logical functions, they are easy to

remove or had in the smart checker program.

The built-in plugin not_enough_time_to_send(packet_id) has

been implemented this way:

 In the USB2.0 EHCI specifications, it is stated that if not

enough time is left in a micro-frame, a transaction A that

could not be finished should not be started. Therefor

allowing skipping it if there is a transaction B which could

fit in the remaining time.

 To control the verification’s degree of strictness with the

Smart Checker, we introduced in this plugin a time margin

parameter to ensure packets would be sent within

micro-frame boundaries by checking the remaining time in

the micro-frame minus the time margin is longer than the

time needed to send a packet.

 As an example of use of the Smart Checker, we can start

with a large margin and gradually reduce it to allow less

and less packet skipping. We can then analyze errors and

fix bugs that would increasingly show on the monitor as we

progressively reduce the margin.

In the use scenario of figure 5 we have a design including the

USB2.0 HC fetching data from the memory to send it over the USB

to a device. Two transactions A and B are queued in that order but

the fetching of data for transaction A is not over yet while B’s

fetching is. Thus in that case we want to allow skip of packets from

transaction A and transfer packets from transaction B instead.

Therefor we create a user plugin packet_not_ready which returns

“true” if data fetching for a transaction is not complete.

Figure 5. Example of utilization of Smart Checker

5. RESULTS
We solved the problem of getting rid of false error when

verifying designs using packet based communications including

non-deterministic parts in their specifications. We achieved creating

a reusable verification monitor for that purpose. But some difficulties

remain:

 Translate the protocol and design specifications rules

concerning packet transfer correctly.

 Find all the rules in the specifications.

One problem we are facing right now is how to be able to set

the plugins properly as a mistake in the translation of the

specifications could lead to false errors or even worse: some errors

being undetected. Especially, the difficulty is to answer the question

“how do we know if the plugins are well set?”

6. ACKNOWLEDGEMENTS
We would like to thank Minoru Shoji from Fujitsu

Semi-Conductors for the support he provided us.

7. CONCLUSION
With the rise of complexity in LSI designs, some of it due to

non-determinism in its specs, the need for checkers to alleviate this

problem is getting stronger. As developing these checkers is

becoming harder and more time consuming, we naturally want to

achieve reusability to save time in future verifications. The versatility

of OVM helps us in achieving it by giving us a solid methodology

we could rely on along with a great API.

Our Smart Checker is a customizable solution adaptable for the

verification of any DUT using packet based communications. It

efficiently removes false errors in the verification of packet

communication based designs, specifically in our example, a USB2.0

based design, if the plugins are well set. But there is still a need for

defining proper guidelines on how to translate efficiently the

non-deterministic parts of the design and the protocol specifications

into plugins for the Smart Checker to be fully operational.

8. REFERENCES
[1]Enhanced Host Controller Interface Specifications.

http://www.intel.com/technology/usb/ehcispec.htm
[2] Glasser, Mark. Open Verification Methodology Cookbook. Mentor

Graphics, 2009

[3]Open Verification Methodology. http://www.ovmworld.org
[4] Rensch, Josh., Prussi, Jesse. Effects of Abstraction in Stimulus

Generation of Layered Protocols within OVM. DVCon, 2010

[5] IEEE-Computer Society. IEEE Standard for SystemVerilog Unified

Hardware Design, Specification, and Verification Language, IEEE-Std 1800,

2005

not_enough_time_to_send(packet): T
remain

 – T
margin

< T
send

(packet_id)

