
Comparison of TLM2-Quantum Keeping and
TLM+-Resource Modeling with regard to Timing in

Virtual Prototypes
Wolfgang Ecker∗, Volkan Esen∗, Rainer Findenig†, Thomas Leitner‡ and Michael Velten§

∗Infineon Technologies AG
85579 Neubiberg, Germany

Email: Firstname.Lastname@infineon.com
†Upper Austrian University of Applied Sciences

Softwarepark 11, 4232 Hagenberg, Austria
Email: rainer.findenig@fh-hagenberg.at

‡DICE GmbH & Co KG
Linz, Austria

Email: Thomas.Leitner@infineon.com
§Infineon Technologies AG

Technische Universität München
Email: Michael.Velten@infineon.com

Abstract—Virtual Prototypes (VPs) based on Transaction Level
Modeling (TLM) have become a de-facto standard in today’s SoC
design, enabling early SW development. However, due to the
growing complexity of SoC architectures, full system simulations
(HW+SW) become a bottleneck especially if a high timing accu-
racy is required. Since timing influences system functionality and
since satisfaction of timing constraints is essential in embedded
systems, a quite accurate timing representation is important in
VP modeling. Hence, it is necessary to apply new modeling styles
which allow for further abstraction but provide the required
timing accuracy.

This paper compares two existing modeling concepts with
regard to simulation speed and timing accuracy One referred
to as TLM2 Quantum Keeper (QK) and the other referred to as
the TLM+ Resource Model (RM).

I. INTRODUCTION

Transaction Level Modeling (TLM) with SystemC has been
adopted widely in the development of embedded systems.
Its main use case is to model so-called Virtual Prototypes
(VPs). The main intent behind modeling VPs is to parallelize
the development of hardware (HW) and the software (SW)
which is supposed to be delivered in conjunction with the
final product. This is possible due to two major reasons:

1) Early availability of the virtual model due to its abstrac-
tion

2) Fast simulation execution speed, with low turn-around
times in SW development

Especially, the latter fact is becoming harder to achieve with
the growing complexity of embedded systems. More and more
components (HW and SW) are integrated into one system and
need to be simulated. Hence, it is necessary to counteract the
drawback in simulation speed by developing new abstraction

techniques, such that the whole process is not endangered in
the future.

In this paper we compare two new abstraction techniques
with regard to simulation speed and timing accuracy. These
abstraction techniques are referred to as Quantum Keeping
and the other referred to as the TLM+ Resource Model (RM).

The paper is structured as follows. First, we provide an
overview on related work in this field. Following that, we
formulate key requirements which shall serve as the basis for
the comparison of the mentioned approaches. In connection to
that we provide an overview of both techniques followed by
the actual comparison.

II. RELATED WORK

Transaction Level Modeling is the de-facto standard for
creating Virtual Prototypes. With TLM2, OSCI has released
a standard which defines different communication concepts
for modeling hardware interfaces and bus protocols [1]. Espe-
cially, timing abstraction techniques were introduced to boost
simulation performance, e.g., using a time quantum which is
explained in more detail later.

The interface concepts of the TLM2 standard are comple-
mentary to both approaches compared in this paper.

The new TLM+modeling style for data flow abstraction is
presented in [2] and [3].

Other approaches exist, which deal with different abstrac-
tion techniques. However, these approaches aim at different
goals than the ones discussed in this paper:

SystemQ, an approach presented in [4], provides high-speed
simulation models based on queuing networks. These models
are mainly used for system performance estimation and cannot

be used for SW development as they do not contain system
functionality.

Several approaches as presented in [5], [6], [7] target the
development of fast and timed Real-Time Operating System
(RTOS) simulation models to increase the simulation speed.
These approaches are increasing the simulation speed due to
native software execution of the RTOS models in combination
with e.g., SW timing annotations or task scheduler models.

The authors of [8] are presenting the generation of timed
OS simulation models using delay annotation for the SW
execution. These OS models are communicating through bus
functional models with the HW model. The OS models pre-
sented in [9] are dealing with synchronization problems of SW
and HW. A timed HW/SW co-simulation at an early design
stage which allows simulation performance up to 3 orders of
magnitude faster than using an ISS is presented in [10]. Other
approaches target automatic timing annotations of the native
SW execution. A compiler based approach is presented in [11].
In [12] the SW execution time is derived from a static analysis
and combined with dynamic runtime information in order to
achieve Cycle Approximate (CA) simulations of the native SW
execution. A combination of instruction set simulation and an
abstract RTOS is presented in [13].

However, none of these approaches deal with the abstraction
of HW models.

III. ABSTRACTION REQUIREMENTS

This section discusses requirements an abstraction method-
ology needs to fulfill. Each requirement is listed and discussed
in detail.

As previously described the motivation of this paper is
the comparison of two methodologies for modeling high
performance embedded HW/SW systems which provide the
necessary simulation speed to deal with the growing com-
plexity of today‘s SoC designs. The focus of the abstraction
methodology shall be to provide a platform for developing
higher level embedded software (eSW).

R 1: Faster simulation speed than today‘s TLM VPs
From the motivation to simulate complete embedded
HW/SW systems follows that the abstraction methodol-
ogy must provide a faster simulation speed than TLM.
This has two reasons:

– The steadily growing complexity of SoCs requires
more simulation effort for the hardware model and in
connection to that more complex embedded software
needs to be simulated.

– The abstraction methodology shall support the devel-
opment of higher level software, e.g., protocol stacks,
operating systems, etc.

R 2: Sufficient timing accuracy for eSW development
The new modeling style has to provide a suitable timing
accuracy for the virtual prototype of the hardware and for
the development of embedded software. Often embedded
software has to follow real time conditions for timing
critical hardware interactions and hence, it is essential

that the timing behavior of the embedded software can be
simulated with real time restrictions. Furthermore, origi-
nally working SW must not break due to the abstraction
of timing behavior of the underlying HW model.

R 3: Ability to co-simulate with existing TL models
A co-simulation with an existing TL model shall be
provided by the abstraction methodology. A TLM module
shall be simulated within an abstracted system and vice
versa. Furthermore, it shall be provided to co-simulate
different abstracted systems within one simulation con-
text. The ability to co-simulate offers following advan-
tages:

– Integration of third party IP which does not support
the new modeling style.

– Step by step abstraction of existing TLM virtual
prototypes

– Selective abstraction of bottleneck modules for im-
proving the overall simulation speed.

R 4: Constant complexity of the abstraction technique
The abstraction technique shall provide a constant com-
plexity, i. e., the abstraction technique does not introduce
further complexity to VP modeling if the system com-
plexity increases, e.g., more initiators, target modules or
buses are added to the system.

IV. TLM2 QUANTUM KEEPING

In this section we describe the Quantum Keeping (QK) ab-
straction technique introduced with the latest TLM2 standard
[1].

A. Overview

Context switches induced by SystemC threads suspending
and waking up again are very expensive with regard to
simulation execution speed. When a SystemC thread suspends,
its complete state has to be stored, such that when the thread
wakes up again, it can continue from the exact point where
it has been suspended. The key principle of QK is to reduce
the number of context switches within a simulation in order
to speed up the overall simulation execution time.

Basically, using QK abstraction, all processes which initiate
transactions are modelled in such a way, that the actual
transaction does not consume any time. Instead, a transac-
tion returns a time value, which yields how much time the
transaction would have consumed. The corresponding initiator
accumulates these times, to a so-called LocalTime. I.e., the
initiator stays ahead of the actual simulation time. However,
as the initiator accumulates the LocalTime it is the only active
process in the simulation, i.e., other processes in the system
would starve. Hence, it is necessary to suspend the initiator’s
process once in a while, to make room for other processes to
be executed. Using the QK abstraction a so-called global time
quantum has to be set statically for a simulation. Once, an
initiator’s LocalTime has reached or surpassed the quantum, it
needs to suspend by calling a wait-statement and passing the
current local time to it as argument. This way, other processes

can be executed by the SystemC simulation kernel. Once, the
initiating process wakes up again, when the rest of the system
has caught up with its LocalTime offset, the initiator resets its
LocalTime and the whole procedure starts again.

Figure 1 describes the basic principle of the QK abstraction.

Initiator Target1

b_transport(gp,sc_time&t)

Target2

t=50ns

t=50ns

t=30ns

t=30ns

GlobalQuantum=100ns

b_transport(gp,sc_time&t)

b_transport(gp,sc_time&t)

b_transport(gp,sc_time&t)

SimTime=Xns

SimTime=Xns

SimTime=Xns

SimTime=X+130ns

SimTime=X+130ns

LocalTime=50ns

LocalTime= 0ns

LocalTime=80ns

LocalTime= 0ns

LocalTime=30ns

LocalTime>100ns => wait(LocalTime)

Fig. 1. Quantum Keeping Principle

The TLM2 language reference manual recommends to use
the blocking transport API, when employing the QK abstrac-
tion. This is clear, because of the necessity of resynchronizing
an initiator to the rest of the system by synchronizing its
LocalTime with the simulation time. The blocking transport
API, already provides the infrastructure for handling the
simulation time a transaction would consume, by providing a
reference argument in the signature of the blocking transport
API’s b transport-function. A target which receives the call
of b transport is then responsible to write a sensible value to
this argument, in order to notify the initiator of the time the
transaction needs to consume. This way it is also possible to
model state-dependent time consumption for each target.

tlm_utils::tlm_quantum_keeper

m_next_sync_point : sc_time [1]

m_local_time : sc_time [1]

+ set_global_quantum(sc_time& t :)

+ get_global_quantum() : const sc_time&

+ inc(t : sc_time&)

+ set(t : sc_time&)

+ need_sync() : bool

+ sync()

+ set_and_sync(t : sc_time&)

+ reset()

+ get_current_time() : sc_time

+ get_local_time() : sc_time

tlm::tlm_global_quantum

Fig. 2. Quantum Keeper API

B. Quantum Keeper API

To implement the QK abstraction the TLM2 library comes
with a utility class called tlm quantumkeeper. Figure 2 depicts
the functions and attributes of this class. The class offers
an API to manage the quantum keeping. For instance, it
allows setting and retrieving the global quantum which is
a singleton object and thus valid for any existing initiator.
Furthermore, the class offers functions which implement the
LocalTime accumulation and retrieve the LocalTime as well
as provide means to check if a synchronization is required or
to actually carry out synchronization. When modeling with the
QK abstraction, the user shall use these provided functions, so
that a common management of the LocalTime is guaranteed.
The quantumkeeper class also has two attributes, one to hold
the current LocalTime value and another to hold the next
simulation time at which a synchronization is required.

Figure 3 shows a more fine-grained version of the sequence
diagram from Figure 1. The most important calls to the
quantum keeper utility class are shown.

Initiator Target1 SCKernelGlobalQuantum=100ns

SimTime=Xns LocalTime= 0ns

t=60ns

b_transport(gp,sc_time&t)

b_transport(gp,sc_time&t)

t=50ns

SimTime=Xns LocalTime=50ns

set_global_quantum(100 ns)

need_sync()
false

SimTime=X+110ns LocalTime= 0ns

inc(t)

inc(t)
SimTime=Xns LocalTime=110ns

need_sync()
true

QKeeper

sync() wait(LocalTime)

Fig. 3. Using the Quantum Keeper

As depicted in Figure 3, every time a transport function
is called the returned time offset needs to be added to the
LocalTime by calling the function inc of the quantumkeeper
class. Directly, after this call it is necessary to check whether a
synchronization is required, by calling the function need sync.
If required, the synchronization has to be performed by a call
to function sync, which in turn calls the SystemC function
wait and also resets the tallied LocalTime.

C. Synchronization Points

The TLM2 language reference manual states, that when
using the QK abstraction it is still necessary to introduce other
synchronization points than the one that represents reaching or
surpassing the time quantum; for instance, when a target needs
to wait for another process to be executed in order to determine
the time the transaction would consume. Synchronization
points are also important for avoiding corrupt timing.

Figure 4 shows a scenario where using the quantum keeper
methods can lead to false timing computation if no explicit
synchronization is performed.

Initiator Target1 Initiator2GlobalQuantum=100ns

LT1= 0ns

need_sync()
false

need_sync()
true

QKeeper

SimTime=0ns LT1=50ns

wait(e)

SCKernel

e.notify(110ns)

emit(e)

sync() wait(LocalTime)

b_trans...

t=50ns

b_trans...

t=50ns

SimTime=110ns LT1=50ns

SimTime=110ns LT1=100ns

SimTime=210ns LT1=0ns

SimTime=0ns

SimTime=0ns

SimTime=0ns

ERROR:
should be 0 ns

Fig. 4. Using the Quantum Keeper

The issue is that the quantum keeper has no information
about a potential progress of the real simulation time. It does
not tally the real SystemC simulation time. The local time
offset is incremented with every transaction by the associated
quantum keeper, which only considers the current value of
the local time offset for determining whether the initiating
process needs to synchronize. Especially in models, where
a process consists of several layers of functions, it is very
likely that a suspension takes place in order to synchronize
for instance to an event emitted by another process , i.e., the
SystemC simulation time can progress without being induced
by the quantum keeper. In this case however, as the quantum
keeper does not keep track of the SystemC simulation time
the accumulation of the local time is continued, although the
simulation time has changed with regard to the beginning of
the current quantum. Hence, the local time offset is no longer
an offset to the correct simulation time, which of course, leads
to higher SystemC simulation time values than is expected.
In Figure 4 the process Initiator2 emits an event e once it
is activated (activation is as soon as Initiator1 suspends with
wait(e)). As the event is scheduled at simulation time 0 to
110 ns later, the scheduling logically takes place before the
current LocalTime of Initiator1. However, as soon as Initiator1
receives the event it continues performing transactions until it
reaches the quantum, which then is basically added to the
already progressed simulation time. Hence, in the end the
simulation time is later than it should be, as the timing overlap
between scheduling of event e and the LocalTime of Initiator1
was counted twice. The solution to this problem would be
to make Initiator1 synchronize once more before the call to
wait(e). This however requires, that the quantumkeeper utility
class is accessible from anywhere along the layered Initiator1.
However, it would be more safe to have an automatic way to
perform this kind of synchronization. This could be achieved
by also tallying the simulation time, with regard to when a
new quantum begins.

V. TLM+ RESOURCE MODELING

In the TLM+ modeling style data blocks are transferred
instead of single words. In contrast to state-of-the-art TLM
modeling style, the data blocks are not related to infrastructure
details as e.g., bus transaction burst size. The data blocks are
rather related to logical entities such as OS buffer sizes or data
content sizes such as pictures. This abstraction technique leads
to a huge speedup since the HW/SW and HW/HW interactions
are reduced to block accesses at OS level. Nevertheless, the
programming technique is quite close to the concepts applied
in TLM2. In order to gain high timing accuracy for TLM+

block transfers, computation of functionality and timing is
strictly separated. Timing is computed in a so called resource
model (RM), which is considering the resources and infrastruc-
ture (e.g. buses, CPU) of the complete SoC architecture and
the resulting resource conflicts for the computation of time.
This RM performs timing corrections and actively reschedules
pending transfers to achieve a good timing accuracy at TLM+

level. The TLM+interface abstraction and TLM+timing ab-
straction concepts are described in the following sections.

A. Interface Abstraction

The TLM+interface abstraction is defined by transferring
blocks corresponding to semantic data of the software appli-
cation instead of transferring the data as sequences of single
word transactions to the hardware model. This abstraction
reduces context switches depending on the block size of the
application specific interface. The application specific interface
is defined by merging software and hardware at the device
driver interface in order to transfer buffers of the software
application as complete block through the device driver instead
of splitting the buffer into hardware specific transfer units
like words or bus bursts. This abstraction of the HW/SW
interface requires that the software is executed natively on the
simulation host in order to support block transfers. For this
purpose, a generic SystemC EMUCPU module was developed
which provides native software execution including support for
interrupt handling and SW timing annotation. The behavior
of the EMUCPU can be customized for specific processor
architectures such as ARM, MIPS, etc.

The HW/SW interface for register and bit field accesses
is modeled through bus read and write functions which are
wrapped from SystemC to the C-software. Furthermore, the
HW/SW interface is extended by two additional read and
write functions in order to transfer buffers of the application
software as block to the hardware model. However, the con-
figuration of hardware modules still happens through writing
their configuration registers using the word mode interface but
transferring data is realized through the application specific
interface using the abstracted read and write functions for
block transfers.

Furthermore, in TLM+the hardware structure of the system
is preserved but the transaction interfaces are abstracted to
support block transfers. Since the generic payload of TLM2
already defines a pointer for the data value, the OSCI TLM2
library is fully compatible and can be used for TLM+. Only

the generic payload needs to be extended by a count member
which corresponds to the size of the transferred data block in
bytes.

A more detailed description of the TLM+interface abstrac-
tion concepts is given in [2].

B. Timing Abstraction

When raising the abstraction from word to block transfers
the timing granularity gets reduced to the block size. The
transfer timing of a block can be calculated using the protocol
information of the generic payload and the block size given in
the count value. The problem is that a block transfer cannot
be interrupted; hence, in case of resource conflicts the data
of a transferred block gets valid at a wrong time. Figure 5
shows an example of two conflicting data transfers. In case of
the first transfer T1 the CPU sends 10 words over the bus to
the AES module starting at 0 ns. The second transfer T2 starts
at 9 ns when the DMA transfers 10 words to the memory
module. Every word transfer keeps each module occupied for
1 ns. Hence, the duration of transferring one word is 3 ns.
The transfers T1 and T2 result in a bus conflict and the CPU
transfer T1 is interrupted because of the higher priority of the
DMA transfer T2. Transfer T1 is resumed when T2 is finished
as it is shown in Figure 5. Hence, the data of T1 is valid at
60 ns. In case of the TLM+interface abstraction, the 10 words
are transferred as a single data block. Hence, T1 cannot be
interrupted and its transferred data gets valid at 30 ns instead
of 60 ns also shown in the figure. This timing error can lead
to a fatal system behavior.

0 10 20 30 40 50 60
time

Word mode

Block mode

T1:

T2:

T1:

T2:

bus conflict

Error:
Data valid at
wrong time

Fig. 5. Timing of resource conflicts for word and block transfers

The TLM+timing abstraction deals with this problem by
introducing the concept of the separation of timing and control.
The functionality is still modeled by the HW modules of
the VP but the timing is handled separately by a so called
resource model (RM). This RM takes care of scheduling all
data transfers while taking resource conflicts into account. The
interface of the RM provides functions for registering initiators
and resources during the construction phase. Furthermore, a
priority can be assigned to each initiator and an user definable
arbitration scheme can be assigned to each resource. Figure
6 gives an overview of the registered initiators and resources
of our example system. The CPU initiator I1(0) has priority 0
and the DMA initiator I2(1) has priority 1. A priority based
arbitration scheme is assigned to each resource which defines
that a transfer of lower priority is interrupted by a higher
transfer.

CPU

I1(0) R1

DMA

I2(1) R5

MEM

R4

BUS

R2

AES

R3

0 10 20 30 40 50 60
time

Block mode
T1:

T2: Data valid at
correct time

Fig. 6. Resource model and conflict handling

During the simulation, every time an initiator initiates a
transfer, the transfer has to be registered at the RM using the
registerTransfer function which returns an unique transfer ID
(TID). This TID is passed as member of the TLM+payload
extension. When a transfer passes a resource, the resource has
to call the nonblocking requestResource function by passing
the TID, its registered resource ID, and the requested time as
arguments. This function has to be called on both, the forward
path and backward path of the transaction. This allows the RM
to detect all resource conflicts of simultaneous transfers.

Furthermore, the TLM+methodology defines two synchro-
nization points where the suspendTransfer function has to be
called. The first point is before the data gets processed by the
target module and the second point is on the backward path
before the transfer returns to its initiator. The suspendTransfer
function suspends the specified transfer until its resume event
occurs which gets scheduled by the RM. In case of a resource
conflict the RM cancels and reschedules the transfer resume
events depending on the arbitration scheme of the conflicting
resource.

In case of our example the resource model detects the
conflict of T1 and T2 at the bus resource and reschedules the
resume event of the CPU transfer T1 to 60 ns as it is shown
in Figure 6. Hence, the data block becomes valid at the AES
target module at the correct simulation time. At the end of a
transfer, the initiator has to remove the transfer by calling the
removeTransfer function of the RM.

VI. COMPARISON

In this section we provide a comparison of the explained
abstraction techniqes based on the requirements introduced in
section III.

R1 Faster simulation speed than today‘s TLM VPs

Quantum Keeping: Generally, the QK abstraction provides
an improved simulation execution time when comparing it
to regular TLM modeling, such as PV+T using the TLM2-
standard. As a rule of thumb it can be stated that the higher
the value for the global quantum is chosen, the faster the
simulation execution gets. Well, this tendency of course has its
limits, because the higher the global quantum is set the more

non-reactive the overall system becomes. This is because the
process which handles the quantum keeping will dominate the
scheduling of the SystemC kernel, and other processes would
starve.

TLM+: TLM+in general provides a speed up in simulation
execution time as well. Here, the impact on the execution
speed is directly coupled to the number of how many transac-
tion can be grouped to a single transfer. This means that the
higher the package size can be set due to SW or simulated OS
constraints the higher the speed improvement becomes. How-
ever, if transactions cannot be bundled the TLM+abstraction
can become even slower than regular TLM modeling, because
one transfer requires two process suspensions.

R2 Sufficient timing accuracy for eSW development

Quantum Keeping: The higher the quantum is set the higher
the likelihood of introducing timing diversions becomes, as we
interfere with the natural scheduling of the SystemC kernel. As
an example, let us consider a small system with an instruction-
set simulator (ISS) which executes a program and is capable of
processing interrupts. The TLM initiator interface of the ISS
employs quantum keeping when performing bus accesses and
executing instructions. The interrupt can be considered as a
concurrent input to the ISS. In this setup however, the Software
(SW) being executed on the ISS can only be interrupted at the
granularity of the chosen time quantum, as the initiator process
which runs the SW execution will only suspend at the given
quantum. In other words, the process which would set the
interrupt can only be executed once the quantum kept initiator
process has suspended. Therefore, the relation of when an
interrupt is processed by the ISS and the SW state at that time,
will be different if the QK abstraction is used. Furthermore,
timing becomes less accurate if more than one initiator exists
in a system in combination with resources being shared among
initiators. Since, an initiator is active at most until its local time
has reached the quantum and another initiator can only start
after that, from a resource point of view it is not possible
to detect that two initiators have accessed the resource at
the same LocalTime (both initiators access the resource when
their LocalTimes overlap logically). I.e., arbitration schemes
on the shared resources would not take effect and hence,
arbitration related timing influences on the initiators would
not be considered.

TLM+: In TLM+the usage of a host code execution model
for a cpu to run the SW is required. The thread that runs
the SW and initiates TLM+- transfers is suspended twice per
access to the bus interface. Hence, with this approach, the
cpu can only detect incoming interrupts at the granularity
of transfers, or if the SW contains explicit synchronization
points with the SystemC Kernel. However, this limitation is
not as critical as in the case of the QK abstraction, because
the TLM+abstraction adapts itself to the current SW state.
I.e., if the SW initiates transfers which also involve interrupt
based communication to peripherals, these would be covered
by the timing correction of the TLM+resource model. With
regard to systems with shared resources the TLM+resource

model detects when a shared resource is attempted to be used
by more than one initiator at the same time. Furthermore, it
also employs correction schemes to compute a timing which
considers priorities of initiators and validates the transferred
data according to the corrected initiator times. I.e., the resource
model manages the execution times of initiators over all
existing system resources.

R3 Ability to co-simulate with existing TL models

Both described abstraction techniques utilize standard
TLM2 interfaces. Therefore, they can, in principle, be con-
nected to regular TLM2 models over TLM2 ports. However,
both abstraction techniques would require to insert correspond-
ing transactors which bridge the gap in abstraction when
connecting abstract TLM models with regular TLM models.

R4 Constant complexity of the abstraction technique

Quantum Keeping: When employing the QK abstraction
extreme care has to be taken, when it comes to synchronizing
initiators to rest of the system, if synchronization is required
beyond reaching the time quantum. For instance, whenever an
initiator needs to react to a SystemC event it has to be made
sure that the LocalTime of its quantum keeper is synchronized
first. As waiting for an event can consume simulation time, the
time that has passed between beginning to wait for an event
and the actual emission of the event needs to be considered for
the local time as well. Otherwise one might accumulate times
which actually would have been in parallel to this time gap.
Furthermore, when using the QK abstraction it also has to be
considered how targets are modelled. An initiator for instance
has to prematurely synchronize its LocalTime when accessing
a target where the access leads to temporal side effect, i.e.,
the target emits events upon an access. If such a target was
accessed twice within one quantum, the event emission of the
first access would be cancelled, which can lead to unexpected
behavior and break the overall system.

TLM+: In TLM+the complexity of the abstraction remains
constant. This is due to the generic handling of resources and
transfers. The resource model has no limits with regard to
managing resources, initiators, or transfer sizes. Furthermore,
the process of modeling always follows the same pattern:

• Registration of initiators and resource at elaboration time
• Registration of each new transfer with the resource

model, by the initiator
• At every hop (forward and backward) of a transfer a call

to requestResource is made
• Suspension of a transfer always at the destination target

before commiting processing the payload data and imme-
diately before returning to the initiator

• Deregistration of a transfer at the resource model
Arbitration is modeled per resource and reusable among

resources. Hence, it is independent from the overall system.

VII. CONCLUSION AND OUTLOOK

In this paper we gave a brief overview on two different
abstraction techniques and highlighted their key features. Both

techniques tackle the necessity of improving simulation speed
of VPs in order to preserve the usability of virtual prototyping
for early development of SW. For comparing both abstrac-
tion techniques we defined four main requirements which
we deduced from this overall goal. While both abstraction
techniques have their strengths and weaknesses with regard
to these requirements, the comparison has shown, that the
QK abstraction involves more considerations at modeling and
induces a high effort to provide a stable and easy to use infras-
tructure. Furthermore, it has shown that the TLM+abstraction
besides providing a more application driven methodology, can
handle even resource conflict detection and conflict resolution
with regard to timing. Our future work, hence will focus on
improving TLM+further into the direction of handling SW-
timing and also the use of TLM+models as reference models
in the verification of TLM and even RTL models.

The work presented in this paper is partially funded by the
German Federal Ministry of Education and Research within
the context of the SANITAS project (01M3088).

REFERENCES

[1] OSCI TLM-2.0 Language Reference Manual, Jul. 2009.
[2] W. Ecker, V. Esen, R. Schwencker, T. Steininger, and M. Velten, “TLM+

Modeling of Embedded HW/SW Systems,” in Design, Automation and
Test in Europe (DATE), Dresden, Germany, March 2010.

[3] W. Ecker, V. Esen, R. Schwencker, and M. Velten, “Defining TLM+,”
in Design & Verification Conference & Exhibition (DVCon), February
2010, pp. 1–8.

[4] S. Sonntag, M. Gries, and C. Sauer, “SystemQ: Bridging the gap
between queuing-based performance evaluation and SystemC,” Design
Automation for Embedded Systems, vol. 11, 2007.

[5] A. Gerstlauer, H. Yu, and D. D. Gajski, “RTOS Modeling for System
Level Design,” in proceedings of Design, Automation and Test in Europe
Conference, 2003.

[6] R. Le Moigne, O. Pasquier, and J. P. Calvez, “A Generic RTOS Model
for Real-time Systems Simulation with SystemC,” in proceedings of
Design, Automation and Test in Europe Conference, 2004.

[7] H. Yu, A. Gerstlauer, and D. D. Gajski, “RTOS Scheduling in Trans-
action Level Models,” in 1st IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, 2003.

[8] S. Yoo, G. Nicolescu, L. Gauthier, and A. A. Jerraya, “Automatic
Generation of Fast Timed Simulation Models for Operating Systems in
SoC Design,” in proceedings of Design, Automation and Test in Europe
Conference, 2002.

[9] S. Yoo, I. Bacivarov, A. Bouchhima, Y. Paviot, and A. A. Jerraya,
“Building Fast and Accurate SW Simulation Models Based on Hardware
Abstraction Layer and Simulation Environment Abstraction Layer,” in
proc. of Design, Automation and Test in Europe Conference, 2003.

[10] A. Bouchhima, S. Yoo, and A. A. Jerraya, “Fast and Accurate Timed
Execution of High Level Embedded Software using HW/SW Interface
Simulation Model,” in proceedings of Asia and South Pacific Design
Automation Conference, 2004.

[11] A. Bouchhima, P. Gerin, and F. Pétrot, “Automatic Instrumentation of
Embedded Software for High Level Hardware/Software Co-Simulation,”
in Asia and South Pacific Design Automation Conference, 2009.

[12] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel, “High-
Performance Timing Simulation of Embedded Software,” in proceedings
of Design, Automation and Test in Europe Conference, 2008.

[13] M. Krause, D. Englert, O. Bringmann, and W. Rosenstiel, “Combination
of Instruction Set Simulation and Abstract RTOS Model Execution
for Fast and Accurate Target Software Evaluation,” in proceedings of
6th IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, 2008.

