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1. ABSTRACT  
The traditional verification approach used in the analog world still 
lacks some key aspects that have been efficiently deployed to digital 
verification for years.  

SPICE-based analog verification environments are usually hard to 
reuse at System on Chip (SoC) level, difficult to control and do 
barely bring the required simulation performances. 

By leveraging from the well-proven VMM and UVM methodologies, 
the main scope of AMS-TESTBENCH is to provide analog designers 
and verification engineers with a methodology that allows them to, 

• Introduce analog verification planning 
• Introduce constraint-random verification for driving analog 

nodes 
• Model analog stimulus as shaped transaction-based bus 

functional models 
• Integrate reference models with various abstraction level 
• Sample analog nodes to monitor incoming traffic  
• Introduce assertions on analog nodes 
• Introduce analog code coverage and functional coverage 
• Introduce regression management 

In conjunction to elaborating on above features, this paper describes 
a scalable and reusable methodology for verifying analog IPs.  Reuse 
is made possible by correct modeling of verification models that can 
be stitched into the SoC.  

These models can be implemented with HDL or Verilog-AMS. This 
depends upon the required accuracy. 

This paper is a case study that explains the various aspects of this 
methodology that can be applied to VMM/ UVM, from verification 
planning to testbench implementation and coverage collection. 

2. INTRODUCTION  
New generation System on Chip invariably increases the analog IPs 
included. For example, it is becoming usual to see multiple standard 
interfaces such as USB, Ethernet, SATA, DDR, etc on a single chip.  

Additionally, there is a need for more analog IPs to handle multiple 
power domains, clock generation (PLL) and conversion (ADC, 
DAC). 

As the need to include more embedded analog IPs increases, it is 
becoming challenging to architect a verification environment that can 
accommodate digital and analog verification. 

AMS-TESTBENCH technology provides a solution that helps to fill 
this gap. As shown in Figure1, AMS-TESTBENCH allows 
complementing a traditional digital verification environment with a 
few components that can drive some analog IPs such as ADCs or 
Clock generation. 

 

 
Figure 1: Verifying Digital and Analog Blocks 

With this architecture, it is possible to decide when to start injecting 
analog traffic, when to stop and when to sample the output results. 

For example, you can consider a typical scenario such as: 

• Initialize and configure the subsystem registers 
• Wait for the clock generation to stabilize 
• Start injecting analog ramps to the ADC  
• Read the internal converted digital output whenever the 

SoC receives an interrupt.  

Certainly, other VMM or UVM base classes and applications can 
also be used by this architecture, such as RAL to initiate register 
traffic and VMM-LP to model the low-power domains. 

Based on the desired accuracy, ADC can either be a transistor-level 
SPICE netlist or a reference model. The latter provides faster 
simulation performance but with less accuracy. This reference model 
can either be written in Verilog-AMS or SystemVerilog.  

As shown in Figure2, AMS-TESTBENCH comes with the built-in 
base classes that allow the driving analog inputs with the given 
shapes such as sine, saw tooth, square and white noise. These source 
generators can be combined together to create specific shapes, for 
example, to add a sine waveform with a given maximum/minimum 
voltage and frequency with well distributed noise. 
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Figure 2: AMS-TESTBENCH Components 

You can also use these base classes to model your own traffic 
shapes. An interesting application is to directly inject voltage 
waveform anywhere in your analog IP.  

This is of particular interest for pipelined IPs or staged designs where 
you can skip the first stage and directly inject a given waveform to 
the second stage input. This approach allows you to speed up the 
simulation time without having to wait for the first stage to be ready.  

However, as this waveform is modeled in SystemVerilog, you can 
model it in a few lines of code with specific traffic shapes, which in 
fact is difficult to achieve in SPICE. 

3. ARCHITECTURE 
The AMS-TESTBENCH technology allows easy connection 
between a top SystemVerilog environment and an analog netlist, 
which can be in Verilog-AMS or SPICE. 

A very important aspect of this methodology is to enable the 
possibility to drive and sample an analog node directly from a 
Systemverilog component or module. To achieve this, VCS comes 
with direct communication between a SystemVerilog real and an 
analog node. 

With this communication, it becomes possible to have fine grain 
resolution to, 

• Drive a SPICE electrical node by connecting it to a 
SystemVerilog real 

• Sample a SPICE electrical node by converting it to a 
SystemVerilog real 

Similarly, it is also possible to convert electrical to logic, i.e., 

• Drive a SPICE electrical node by connecting it to a 
Systemverilog logic 

• Sample a SPICE electrical node by converting it to a 
Systemverilog logic 

It is important to understand that the overall communication between 
SystemVerilog and SPICE is done with real. Therefore, all analog 
DUT nodes can be grouped in a single SystemVerilog interface.  

So as in digital verification, SystemVerilog modports and clocking 
blocks can be introduced to determine analog node directions (input, 

output, inout) and synchronization against a reference node such as a 
clock. 

As stated in the assertion section, it also becomes possible to gather 
analog assertions in this interface. 

This approach allows modeling interfaces efficiently that are easily 
reusable between projects and higher level of integration (i.e. from 
IP-level to SoC-level). 

Now that we’ve solved the interfacing between SPICE and 
SystemVerilog, all verification techniques that are usual in digital 
verification can be fully leveraged. For instance, the verification 
environment can be architected with, 

• Interfaces for electrical to real, real to electrical 
• Generators to drive analog inputs 
• Samplers to strobe analog outputs, these samplers can be 

combined with scoreboard or reference models to ensure 
the SPICE DUT is behaving as expected 

• Configurations, which can be shared with the SPICE DUT 
• Assertions that can be on SPICE boundary nodes or 

internal 

However, it is also possible to cover analog nodes. A typical 
situation is explained to ensure some nodes are properly toggling. 
For instance, if an analog node is known to swing between 0.4V to 
0.8V, it is fairly simple to associate this variation to toggle coverage 
and ensure this signal has moved as expected. 

Figure3 shows a typical architecture based on AMS-TESTBENCH 
to verify an analog IP. 

 
Figure 3: AMS-TESTBENCH for Analog IP 

Extra attention is required during the self-checking capability of this 
testbench.  

If the analog block is simply a transfer function - i.e. y = f(x) - 
then the reference model can be written in SystemVerilog with the 
help of real scalars to model x, y and the transfer function. 

If the analog block is more complicated, then it makes sense to use a 
language such as Verilog-AMS. 

4. AMS ASSERTIONS 
AMS-TESTBENCH technology makes it possible to write assertions 
with digital or analog nodes. The latter usually trigger events that are 
necessary for creating immediate, concurrent assertions or 
sequences. 
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4.1 Immediate Assertions 
Analog assertions can be modeled with immediate assertions that 
consist of a sampling event and a property to be verified. The 
sampling event is usually a digital clock and the property is a 
combination of expressions applied to SystemVerilog real scalars. 

As shown in Figure4, properties can simply be modeled as 
synchronous immediate assertion which checks whether an analog 
node remains below 1.8V on each rising edge of clk.  

 
Figure 4: Analog Assertion 

This can typically be used to make sure a DUT voltage reference 
always remains under a given value. 

For example, the following pseudo code shows how to verify the 
above property: 

always @(posedge clk) 
  assert(top.analog_node <= 1.8) 
  else $error(“Node is > VDD”); 

Note that you can write assertions which are asynchronous in nature 
by using analog events. 

 

4.2 Concurrent Assertions 
Concurrent assertions are used to check more complicated behaviors.  

These are statements that assert specified properties must be true. 
Such properties are usually needed for verifying well-defined 
protocols or behaviors.  

For example, a PLL should be locked to the main frequency after a 
given time frame that can be expressed in terms of clock cycles. 

Another example would be to verify relations between analog nodes. 
For instance, when i (analog node of interest) value is bigger than 
90% of VDD=1.80V, z must be above 90% of VDD on the next 
clock or the following clock.  

To assert such a property the assertion can be written as follows: 

assert property @(posedge clk) 
  (i>1.62) |-> ##[1:2] (z>1.62); 

 

4.3 Sequences 
Analog assertions can be explicitly specified in a sequence by using 
the non-overlapped operator |->, subsequent sequences are evaluated 
one after the other after 

The following example shows how to write a non-overlapped 
implication. The first element of the s sequence expression is 
evaluated on the 

each analog event. 

next 

wire clk; 

occurrence of top.analog_clk: 

assign clk = top.analog_clk; 
 
sequence s; 
  @(posedge clk) 
    (i>V_HIGH) |-> (z>V_HIGH); 
endsequence 
 
property p; 
  (a<V_LOW) |-> s; 
endproperty 
 
assert property(p); 

Analog assertions can be explicitly specified in a sequence by using 
an overlapped operator |=>. The subsequent sequences are evaluated 
one after the other during the same 

property p; 

analog event. The following 
example shows how to write an overlapped implication: 

  @(posedge clk) 
    (i>V_HIGH) |=> (z>V_HIGH); 
endproperty 
 
assert property(p); 

Here, i condition is first evaluated, if it is true then the z condition 
is evaluated at the same 

 

time.  

4.4 Analog Events 
The previous section explained how to trigger assertions with a 
digital clock.  

Though the triggering event was an analog event, it was converted to 
a Verilog wire, making it easier to trigger sequences.  

It is also possible to directly use the analog event as the triggering 
event.  

always @(analog_clk) 
  assert(top.analog_node <= 1.8) 
  else $error(“Node is > VDD”); 

5. AMS CHECKERS 
As AMS-TESTBENCH provides the foundation for implementing 
analog assertions, it is natural to define some common analog 
checkers. 

These common analog checkers can be modeled as Verilog modules, 
which can be easily instantiated and bounded to any analog node.  

AMS-TESTBENCH also provides these checkers modeled as 
transactors extending from vmm_xactor and uvm_component. 
The main advantage of these components is that they can be 
controlled from the overall VMM/UVM environment. It becomes 
possible to decide when to start or stop them and get them implicitly 
controlled with other components. 



 

 

 

5.1 Threshold Checker  
There are many cases where one would like to ensure an analog 
signal remains within a given range.  

For instance, some outputs should never go above a given voltage 
otherwise it might destroy the subsequent stages while overshooting.  

Another example could be when an input of a given stage becomes 
negative or superior to a given threshold. This situation could occur 
when two stages have different power domains and there are no 
adequate level shifters. 

AMS-TESTBENCH provides such a checker that verifies an analog 
node remains within a given high and low threshold.  This check can 
be performed synchronously or asynchronously. 

This is illustrated in Figure5. The first checkpoint is valid as the 
voltage is within the expected ranges; however, the second 
checkpoint will fire off an error as the voltage becomes higher than 
expected. 

 
Figure 5: Threshold Waveform 

 

5.2 Window Checker 
There are situations where one would like to ensure an analog signal 
remains stable with a given tolerance. For instance, voltage 
references or band gaps should continue sinking a stable voltage 
reference independently of process, supply voltage and temperature. 

AMS-TESTBENCH provides such a checker that verifies an analog 
node remains stable below or above a given threshold.  

This is illustrated in Figure6. The first checkpoint is invalid as the 
voltage is not within the expected tolerances, therefore, the checker 
will fire off an error. 

 
Figure 6: Window Checker 

5.3 Slew Rate Checker  
There are situations where one would like to ensure the slew rate of 
an analog signal remains below or above a given value. For instance, 
comparators have a minimal output slew rate that must be respected 
independently of process, supply voltage, temperature. 

AMS-TESTBENCH provides such a checker that verifies an analog 
node slew rate (+/- tolerance) remains below or above a given value.  

This is illustrated in Figure7, which shows how this checker 
operates. The first checkpoint is valid as the voltage slew rate is 
greater than the expected dV/dt.  However the checker will fire off 
an error on the second checkpoint. 

 
Figure 7: Slew Rate Checker 

5.4 Frequency Checker  
There are situations where one would like to ensure the frequency of 
an analog signal remains within a given tolerance. For instance, 
PLLs are supposed to output stable frequency once they are locked 
for any valid variations of {process, voltage, temperature}. 

AMS-TESTBENCH provides such a checker that verifies an analog 
node frequency remains stable (+/- tolerance).  

This is illustrated in Figure8, which explains how this checker 
operates. The first checkpoint is valid as the voltage frequency is as 
expected. However, the checker will fire off an error on the fourth 
checkpoint as the period decreased. 

 
Figure 8: Frequency Checker 

6. VOLTAGE REFERENCES 
 AMS-TESTBENCH contains a few source generators that can be 
bound to internal or external analog nodes. These generators are 
responsible for driving a particular traffic to your analog IP.   

For example, the sine source generator can drive a well-defined sine 
with determined minimum/maximum voltages at a given frequency. 
Other source generators such as saw tooth, square are also available. 
Injection of random voltage is also possible.  

As shown in the following diagram, it is possible to pick a generator 
followed by another one and so on. 

 
Figure 9 Multi-generation modulation 

Additionally, source generators can be combined together to inject 
more complicated traffic.  

A typical situation is to add white noise on top of a carrier, which is a 
generated sine source. This can be useful to model external 
perturbation or to determine the common-mode rejection ratio 
(CMRR) of a differential amplifier (or other device), which is the 
tendency for  the device to reject input signals common to both input 
leads.  
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As shown in Figure10, the signal of interest can be represented by a 
small voltage fluctuation superimposed on a voltage carrier.  

 
Figure 10: Carrier with Noise 

As these generators do output voltages at a regular pace, it is 
important to ensure the signal shape is accurate enough without 
slowing down the simulation too much. An acceptable tradeoff is to 
output 10 samples / period (e.g. sample rate = 10X frequency). 

 

6.1 Standard Voltage Generator 
It is typical in SPICE to drive analog nodes with a saw-toothed or 
triangle shape, which can be done with the SAWGEN directive. 

AMS-TESTBENCH proposes a saw tooth source generator that 
provides a real value which can be used to drive analog voltage node 
with a saw tooth shape. You can specify min and max voltages Vmin, 
Vmax and the frequency f. This is shown in Figure11. 

 
Figure 11: Sawtooth Waveform Generator 

Another very important generator is the sine waveform generator. 

AMS-TESTBENCH provides a real value waveform generator that 
can be used to drive analog voltage node with a sine shape. You can 
specify min and max voltages Vmin, Vmax and the frequency f. These 
values can be changed during the simulation time. This is shown in 
Figure12. 

 
Figure 12: Sine Waveform Generator 

Similarly, AMS-TESTBENCH provides a real value waveform 
generator that can be used to drive analog voltage node with a square 
shape (which can be done with the PWL directive in SPICE).  

You can specify min and max voltages Vmin, Vmax , the frequency f 
and the duty cycle. These values can be changed during the 
simulation time. This is shown in Figure13. 

The square voltage source generator provides a real value that can be 
used to drive analog voltage node with a square shape. 

 
Figure 13: Square Waveform Generator 

In addition, AMS-TESTBENCH provides a random voltage 
generator provides a real value that can be used to drive analog 
voltage node with a random shape. 

This can be useful when combined with other standard source 
generators. For instance, it can be used to inject errors, distortion or 
perturbation to a given known good signal. It can also be used for 
adding noise on top of a carrier or directly in a voltage reference. 

You can specify min and max voltages Vmin, Vmax . These values can 
be changed during the simulation time. This is shown in Figure14. 

 
Figure 14: Random Waveform Generator 

6.2 Custom Voltage Generator 
In addition to pre-defined voltage shapes, it is possible to write 
custom voltage source generators.  

For example, to model a RC low pass filter governed by the 
following equation: 

 

 
 

This generator can then be controlled and initialized to output 
voltage as illustrated in Figure 15: RC Waveform Generator where 
Vmin=-1V, Vmax=1V, F=1MHz, RC=200ns: 



 

 

 
Figure 15: RC Waveform Generator 

For more details, refer to AMS-TESTBENCH user guide. 

6.3 Voltage Generator Control 
As described in the previous sections, all the source generators are 
easily constructed and their analog value is deposited to analog node 
by explicitly calling their get_voltage() method at regular 
times.  

AMS-TESTBENCH use model is easy but can be further simplified 
with the generic VMM source generator, which is based on 
vmm_xactor.  

AMS-TESTBENCH provides better integration, direct access to pre-
defined SystemVerilog interface and better controllability (hence 
reuse at SoC for example). Additionally, this component comes with 
pre-defined notification that indicates when its embedded source 
generator reaches its half period. This is useful for changing its 
parameters in a well defined way, i.e. when the source generators 
reach a given state. 

Further, the source generator can be started and stopped on purpose 
by using the VMM start_xactor and stop_xactor methods. 

7. CASE STUDY 
To prove that a generic AMS-TESTBENCH solution built on top of 
VMM or UVM would be viable, a simple Amplifier DUT and its 
verification environment were developed.  

The objective of the case study was to replace Calvatec’s existing 
SystemVerilog testbench and the AMS base classes by using more 
mainstream methodology such as Synopsys AMS-TESTBENCH 
built on Accellera UVM code. 

The criterion for the case study was to leverage the pre-defined 
standard voltage generators which in turn would leverage the built-in 
math functions. 

UVM was used as the underlying SV base class library and the 
simulations were executed in the following two modes. 

• Mode 1: Pure digital simulation with VCS only.  
• Mode 2: Mixed signal simulation with VCS and Nanosim 

 

 
Figure 16: Architectural Overview 

As shown in Figure16, SystemVerilog interface was used to carry the 
AMS signal information. The default ams_interface was placed in 
the UVM resource database, and then used by the verification 
environment to drive the signal into DUT. We used the built-in 
AMS-TESTBENCH checkers to ensure signal was correct at the 
monitor.  

Adding more classes such as agents, tests, configurations, sequencers 
etc. were superfluous to the objective of understanding how the 
AMS-TESTBENCH generation would verify DUT. 

Waveforms below show that by connecting the environment together 
and using a sine wave traffic generator, DUT does perform 
amplification at the required gain of 2.5x. The electrical 
representation is done using a sampling signal which provides the 
accuracy of the digital signals. 

In Mode 2, the gain was set as 1 and here the analog code was 
simulated by using VCS and Nanosim. 

 
Figure 1: Mode 1 with Gain of 2.5 

 
Figure 2: Mode 2 with Gain of 1 
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By successfully proving that the setup and code runs as expected, the 
case study example could be developed upon to have multiple agents 
with multiple BFMs and monitors in the verification environment. 

Therefore, Calvatec will now have an access to the complete benefits 
of UVM and AMS-TESTBENCH without having to maintain their 
own internal base classes. 

This also means they can leverage the built in checkers and 
techniques used to verify Mixed-Signal DUT’s. 

The key advantage of having both the modes, pure digital and mixed-
signal simulations means that you can control the performance and 
accuracy of the simulations. 

For certain parts of verification it is perfectly legitimate to run with 
very low accuracy but high performance enabling much better 
regression throughput. Then by enabling more accuracy for other 
types of tests without a change to the infrastructure gives us 
confidence in other areas of DUT. 

All of this coupled with the built in coverage models delivered with 
AMS-TESTBENCH makes it a robust solution offering increasing 
confidence in the design while mitigating risk. 

As shown in Figure17, the cp_vmax analog voltage nodes can be 
broken down into ranges {min, typ, max} and crossed with another 
node cp_vi. This is an efficient way of verifying that all possible 
combinations are covered. In this case, it’s easy to see that cp_vi 
didn’t fully address all expected values. 

 
Figure 17. Analog Functional Coverage 
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