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ABSTRACT  
 
In this paper we propose a methodology to simplify the verification 
process by creating a library of small, generic Verilog-A (VA) based 
assertion modules that can be connected together to form more 
complex checkers for any circuit.  This serves as a good 
infrastructure for designers to easily build their own checkers.  A 
Cadence infrastructure with schematic elements like symbols and 
forms are built to make the use of the library of assertions for a 
module level verification more intuitive and user friendly.  Using the 
above infrastructure the required assertion based checkers can be 
embedded in the module design itself as an integral part and remain 
with the design hierarchy during the entire product life cycle at all 
integration levels of system-on-chip (SoC).  This makes the module 
designs self-checking for verification purposes.  This method enables 
to check the correctness of integration of the IP/design in question at 
the higher levels and automatic verification of these modules in the 
context of the SoC, avoiding or minimizing the manual checks at 
SoC level and / or limiting such checks to specific system scenarios 
that might not have been otherwise checked at the module level. 
 

Categories and Subject Descriptors  
B.7.2 [Integrated Circuits]: Design Aids – Simulation, Verification. 
 

General Terms  
Assertion Based Verification (ABV), Self-checking analog designs.  
 

Keywords  
Simulation, Verification, Assertion, Assertion based verification 
(ABV), Co-simulation, AMS, Self-check, verification and validation 
(VnV). 
 

1. INTRODUCTION  
There has been a trend of increasing Analog, RF and power 
management (PM) content integration [1] into SoC necessitated by 

solution cost, system flexibility, higher performance, and low power 
requirements.  Complex SoCs of today with such high levels of 
integration necessitates thorough pre-silicon verification to achieve 
low operating costs by avoiding costly silicon tape-out iterations and 
ensuring high quality design. 
 
All analog circuits are usually extensively verified by Spice 
simulations.  The quality and functional sign-off of the analog 
circuits usually involve manual inspection of simulation results, 
waveforms against the requirements.  There have been some 
automation available for analog simulation analysis based on the 
proprietary, vendor specific waveform calculators, post processing 
engines like the Cadence™ ADE [2] calculators and proprietary 
flows.  There are also some run time support like the .measure 
statements of spice based tools like HSpice™ [3], HSIM™ [4], 
Nanosim™ [5] and Ultrasim™ [6].  
 
Detailed spice based simulations at full-chip level are time 
consuming and may not be possible at all in many cases.  Hence 
there is a necessity of higher levels of abstraction using analog 
behavioural models for the analog contents.  This include logic level 
abstractions of analog interfaces using basic VHDL or Verilog, more 
accurate VHDL-AMS, verilog-AMS, system-C etc.  The more 
accurate models need a separate analog engine for simulation.  
Hence there have been recent developments in using real number 
features of VHDL (VHDL-RN) for analog behavioural modeling that 
can be simulated with the basic VHDL simulation engine resulting in 
faster turn around times.  These models are usually developed in 
early stages of SoC and module development and later updated 
regularly as significant maturity is achieved in the design.  In all 
these stages the models have to be validated against the specification 
in early stages and against the actual design at mature stages of the 
design.  The behavioural model validation (BMV) is usually done in 
a manual, iterative process where in the results of model simulations 
are checked against the spice simulation results.  There have been 
some attempts to automate the BMV [7] like automation of test 
bench generation, test case equivalence but they still necessitate 
manual waveform inspection for final analysis and sign-off. 
 
Manual inspection of simulation results to check that the analog 
circuit/model meets specifications, is time consuming and error-
prone.  This becomes more complex and cumbersome with the recent 
trends of increasing integration of analog, RF and power 
management contents in a SoC.  Further all the checks for various 
specification goals have to be manually repeated at module level 
verification and all higher levels of integration making the whole 



verification process error prone, iterative and poor coverage due to 
complexity of manual checking process. 
 
Automation of this process aims at making analog verification more 
efficient in terms of time and accuracy.  This paper proposes an 
assertion based self-checking methodology for model validation and 
circuit verification (VnV) based on generic library of assertions and 
infrastructure based on a popular EDA platform for analog design 
development and mixed-signal SoC integration.   This paper 
primarily presents the assertion based self-checking methodology 
and its application and will not give the details of all the library of 
assertions.   
 
The rest of the paper is organized as follows:  Section 2 describes the 
concept of and motivation for self-checking design, Section 3 
contains the practical implementation details of the proposed 
methodology, Section 4 discusses the proof-of-concept 
implementation, Section 5 has the results from a test case 
application, and finally Section 6 concludes this paper with key 
takeaways and scope and suggestions for improvements. 
 

2. CONCEPT OF SELF-CHECKING DESIGN 
 
2.1. ABV for Analog Circuits and Systems 
Usually assertions are written in a HDL or verification languages like 
Specman e-language [8], PSL [9], OVM [10], VMM [11] to serve as 
run-time checker modules.  However, to verify analog behavioral 
models and even analog circuits with such checkers, a co-simulation 
environment is required.  Co-simulation overheads like the insertion 
and handling of interface modules pose a major challenge in keeping 
the verification cost like run time to reasonable levels.  For analog 
module checks the tool specific native measurement command 
infrastructure may be used, but is a challenge when there is a need to 
support multiple simulation tools and environments. 
 
Existing verification languages listed above and C-based systems 
currently extensively support circuit and system level checks [12, 13, 
14] that are predominantly digital in nature, but are difficult to 
extend for checking analog quantities.  They also need extensive 
support from EDA tool vendors to support AMS simulations.  
Existing methods and infrastructure necessitate manual, multiple 
developments or coding of the same set of assertions using different 
languages and tools to enable checks at various abstraction levels 
like the actual transistor level circuit, and behavioural models; and 
various design hierarchies like the module/IP level, sub-system, SoC 
and board level.  Such a method as is evident involves repeated 

manual efforts, hence error prone and inefficient.  Prior work [7] on 
assertions for analog design verification and BMV has been reported 
to use SystemVerilog (SV) [15] based assertion modules by creating 
a parallel hierarchy of the whole SoC design in SV linked to the 
original design hierarchy.  It uses a proprietary script based 
automation to build the parallel hierarchy in an automated fashion.  
Though this methodology has been used successfully for analog IP 
level verification and BMV, it needs rewriting or manually porting 
the assertions for SoC level verification.  Each time the automation 
engine generates a new parallel design hierarchy.  It just falls short of 
the concept of “self-checking design with very minimal manual 
intervention”. 
 

2.2. Self-Checking Design for VnV 
To overcome the difficulties observed in section 2.1 above, a concept 
of self-checking design is introduced as illustrated in Figure 1.  In 
this methodology, the assertions are written and attached to design 
elements in a given development platform such that they reside with 
the design through the life cycle of the design.  Such a concept 
enables what is called the “self-checking” designs.  Such designs 
attached with all required assertion based checks enable automatic 
verification of the design context and functionality both at 
independent module level or upon integration at higher levels of 
integration, at SoC level and may be extended to board level or 
system level verification as well. 
 
This methodology enables an intuitive and user friendly platform for 
verification.  It also frees the designer from the familiarity and 
expertise with variety of languages, their syntactic nuances.  Thus it 
allows him/her to spend value time in developing right test cases and 
checkers. 
 

3. ARCHITECTURE AND 
IMPLEMENTATION 
With the self-checking concept in focus, and given a design 
environment like Cadence Virtuoso Schematic Editor or any other 
similar platform, the assertions may be linked to a definite design 
element like the cell symbol or forms, and hence can reside in the 
design itself.  Such design elements can be linked to various design 
cell views to enable generation of assertions in any language of 
interest like PSL, OVM, VMM, Specman e-language, VHDL, 
Verilog, VHDL AMS, Verilog AMS, Spice native formats, Verilog-
A or any other vendor specific formats.  Such a platform enables 
easy portability, interoperability across various design validation and 
verification platforms. 

 
Figure 1. Concept of assertion based self-checking design 



Though this method is not limited to any specific design 
environment, due to popularity among analog and mixed-signal SoC  
design community, the Cadence Virtuoso schematic editor is chosen 
as the platform for implementation.  Spice and AMS co-simulation 
environments are the focus of this implementation. 
 

3.1. Library of Assertions 
This methodology mandates a pre-developed and validated library of 
assertions covering comprehensive set of basic checks.  This library 
of assertions can be used to build any complex checkers for 
functional, electrical, reliability and manufacturability specification 
or requirement compliance.   
 
Among the various languages that may be used Verilog-A based 
assertion modules can directly be interfaced with SPICE, without 
explicitly setting up a co-simulation environment, thereby saving on 
simulation run time for analog module level verification.  Verilog-A 
is supported in most AMS verification tools and environments.  
While Verilog-A is chosen for assertions for analog transistor level 
design, VHDL/Verilog is used for digital portion of the design in 
RTL or higher levels of abstraction and VHDL-RN used for analog 
behavioural models.  A basic set of assertions to enable following 
measurements are built in Verilog-A & VHDL-RN respectively and 
linked to unique “symbols”: 

1. Value of node potential (voltage) at any given time 
2. Value of branch current at any given time 
3. Signal transition information between specific threshold 

levels like the following: 
a. Rise time 
b. Fall time 
c. Number of transitions 
d. Occurrence of a specific type of signal transition 

in a specified time window 
4. Delay between two identified events 
5. Average, RMS value of voltage or current in a given time 

window 
6. Peak / trough or maximum / minimum value of the signal 

level in a given time window. 
 
The above listed measurements are in no way comprehensive 
enough, but form a set of representative, most often used functions.  
They can also be used to build other more complex functions. 
 
Using right netlisting attributes and options, and features like the 
Cadence hierarchy editor, one can dynamically choose the language 
in which to netlist any given design module in an SoC. 
 

4. PROOF OF CONCEPT 
IMPLEMENTATION 
The proposed method was applied for the verification and 
behavioural model (BMOD) validation of a circuit used in the power 
management system of a complex mixed-signal SoC.  In addition, 
this methodology has been applied as a means of checking over-
voltage conditions for voltage dependent physical design rules such 
as metal spacing requirements. 
 

4.1. Symbol Based Implementation 
Figure 2 illustrates an example of how the symbol based assertions 
are used to build a specific checker of interest.  In this particular 
instance the checker is built to check if, after power-up, the output of 
the test circuit is within the functional specification limits and if the 
input control signals are asserted / de-asserted at the required 
sequence meeting the necessary timing requirements.  The scenario 

is illustrated in Figure 3.  Also illustrated below are the VA codes for 
each of the functions mapped to unique symbols. 
 
4.1.1. VA code examples 
4.1.1.1. Digitizer module 
This module checks for any event on the input signal “x”  based on 
the parameterized threshold values “VTH”  and “VTL” , sets the 
status outputs accordingly for further processing in addition to 
reporting a predefined message represented by “msg” .  The status 
outputs “rising_edge” and “falling_edge” are defined as below. 
 
rising_edge = 1, if V(x) >= VTH 
       0, if V(x) < VTH 
 
falling_edge = 1, if V(x) >= VTL 
       0, if V(x) < VTL 
 
The corresponding VA code segment is given below: 
module digitizer (x, rising_edge, falling_edge); 
input x; 
electrical x; 
output rising_edge, falling_edge; 
electrical rising_edge, falling_edge; 
parameter real VTH = 1.3; 
parameter real VTL = 0.6; 
real v_rising_edge, v_falling_edge; 
 
analog 
  begin   
    V(rising_edge) <+ v_rising_edge; 
    V(falling_edge) <+ v_falling_edge;    
   
    @(initial_step) begin 
      v_rising_edge = -1; 
      v_falling_edge = -1; 
    end       
    
    @(cross(V(x) - VTH, +1)) begin 
      v_rising_edge = 1.0; 
      v_falling_edge = -1; 
    end 
     
    @(cross(V(x) - VTL, -1)) begin 
      v_rising_edge = -1; 
      v_falling_edge = 1.0; 
    end     
  end 
endmodule 
 
4.1.1.2. Minimum time checker module 
This module checks for the delay between two events, in this case 
time elapsed since the occurrence of  logic ‘1’ in the input “edge_1” 
till the occurrence of logic ‘1’ in the input “edge_2”,  is greater than 
the predefined value represented by the parameter “min_time” .  Any 
violation of the condition is reported as a predefined message 
represented by “msg” .  The corresponding VA code segment is 
given below: 
module min_time_diff (edge_1, edge_2); 
input edge_1, edge_2; 
electrical edge_1, edge_2; 
parameter string msg = "message"; 
parameter real min_time = 30.0e-06; 
real time_1; 



 
Figure 2. Symbol based checker for power-up and sleep functionality 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. ABV scenario under test and results 

time[160]  = 75506.786  911        4         
EN rising edge at 8.22222e-05 
GE_EN rising edge at 8.22222e-05 
Rising edge on EN_SAMPLE at 8.22222e-05 
Ready to check amt of sleep discharge.. 
Message: Actual 0.472403V @ 0.000082 Vs Expected LO:0.576000V, 
HI:0.642000V 
ERROR: minimum time diff check violated @ 0.000000s, Expected: 0.000030s 
time[170]  = 82224.577  1.12       2 
… 
 

Input control signals 
 EN 
 EN_SAMPLE 

Outputs 
 OUT 
 OUT_SLEEP 



analog 
  begin   
    @(cross(V(edge_1), +1)) 
      time_1 = $realtime; 
     
    @(cross(V(edge_2), +1)) begin 
      if($realtime - time_1 < min_time) 
        $strobe(mg); 
        $strobe("ERROR: minimum time diff check violated @ %fs, 
Expected: %fs", $realtime-time_1, min_time); 
    end          
  end 
endmodule 
 
4.1.1.3. Voltage tolerance checker module 
This module checks if enabled (“en” = 1 ) for the voltage level 
tolerance of the input signal “x”  between predefined values 
represented by the parameters “LO”  and “HI” .  Any violation of the 
condition is reported as a predefined message represented by “msg” .   
 
Message msg is reported if LO <= V(x) <= HI and if V(en)=1 
 
The corresponding VA code segment is given below: 
module within_limits (x, en, result); 
input x, en; 
electrical x, en; 
output result; 
electrical result; 
parameter string msg = "message"; 
parameter real LO = 0.6; 
parameter real HI = 0.6; 
real v_result; 
 
analog 
  begin   
    V(result) <+ v_result;  
   
    @(initial_step) begin 
      v_result = -1; 
    end       
    
    @(cross(V(en), +1)) begin 
      if(V(x) > HI || V(x) < LO) begin 
        $strobe(msg); 
        $strobe("Actual %fV @ %f Vs Expected LO:%fV, HI:%fV\n", 
V(x), $realtime, LO, HI); 
        v_result = -1.0; 
        end 
      else 
        v_result = 1.0; 
    end    
  end 
endmodule 
 
4.1.1.4. Time delay checker module 
This module passes the value of input signal “in”  to the output 
signal “out”  after a predefined delay represented by parameterized 
variable “del” .  The corresponding VA code segment is given 
below: 
module time_delay (in, out); 
input in; 
output out; 
electrical in, out; 
parameter string msg = "message"; 
parameter real del = 100.0e-06; 

 
analog 
  begin   
    V(out) <+ absdelay(V(in), del);         
  end 
endmodule 
 
4.1.2. Monitoring Over-voltage for Physical Design 
Rule Requirements 
While the core digital supply voltage is reduced at every technology 
node with respect to previous nodes, the I/O voltage requirements 
remain the same in order to support industry standards and legacy 
systems.  Integration of analog and power management contents into 
SoC, direct battery interface (2V to 5V range or even higher) to 
portable / mobile applications and necessity for low power operation 
are all various other reasons for varied and multiple voltage and 
power domains in an SoC.  Such requirements in addition to 
manufacturing constraints in UDSM technologies have necessitated 
voltage dependent physical design rules.  For instance, the spacing 
requirement for two metals at 3.3V potential difference is higher than 
that of two metals that are within 1V of each other.   
 
An approach has been developed to assign voltage properties to nets 
in the physical design for design rule checks using a voltage label on 
a pseudo layer in the layout.  Since the layout data itself does not 
contain any real electrical information, a corresponding device, 
termed a DVR (Device for Voltage Recognition), is placed in the 
schematic.  DVR enables checking for over-voltage conditions 
during simulation using the ABV methodology proposed in this 
paper.  Equivalent connective placement of the assertion in the 
schematic and the voltage label in the layout is checked during LVS 
by extracting both as a pseudo device.  A graphical overview of the 
full voltage dependent physical verification methodology is 
illustrated in Figure 4. 
 
The DVR devices appear in the netlist as a Verilog-A assertion that 
compares the voltage during operating point, DC, and transient 
simulations to the property assigned to the device in the schematic.  
If the simulated voltage exceeds the assigned property, an error 
summary is printed at the end of the simulation.  While Spice models 
do provide the capability to check for over-voltages at the device 
level, there was previously no low effort method for checking over-
voltages on individual nets.  Furthermore, the checks found in Spice 
that use voltage limits of devices tend to be overly verbose in the 
error reporting.  Since the assertions are written in Verilog-A, the 
ABV methodology gives the flexibility to provide a simple error 
summary, and to tailor the checks and the error reporting to the needs 
of the business.  This methodology ensures the correct use of 
compatible devices in a given voltage domain with reliable 
interconnectivity.  It may be further extended for comprehensive 
checks for proper handling of multiple voltage and power domains 
and signal crossings. 
 

 
Figure 4. Full Verification of Voltage Dependent Physical Design 

Rules 
 



4.2. Form Based Implementation 
As is seen in Figure 2, the symbol based methodology has a 
limitation of building the asserting in the design itself by making 
physical connections to its ports.  This can cause errors due to 
connecting the DUT or its components to various checkers.  Manual 
errors in such connections can cause inadvertent shorts between 
different nets or signals of the design causing circuit malfunction.  
While the purpose of the assertions is to check the circuit 
functionality and correctness of context with minimal non-recurring 
effort, it should not cause additional issues to the design under 
verification (DUV) itself.  To overcome this shortcoming, a 
connectionless, form based, interactive system is proposed.  In this 
case an independent form that can be invoked from the schematic 
window GUI or from a terminal less symbol that can be instantiated 
in the design.  Such a system is illustrated in Figure 5. 
 

 
Figure 5. Prototype of interactive, form based assertions 

 
This can be implemented in two different ways.  The first one uses 
the same symbol based method discussed in section 4.1 above, but 
with no terminals attached to the symbol and with form based 
selection of nets for operation / observation.  Such a form is attached 
as a property of the symbol.  This can be called a symbol-linked-
with-form based approach.  
 
An alternate implementation style that is completely form based uses 
an automated, dynamic generation of checkers and node connectivity 
in the DUT enabled by appropriate scripts.  In addition this also 
needs a proper database structure compatible with the design 
platform.  In case of Cadence schematic based design platform, 
additional directory structure for each design unit or cell is to be 
created where in the necessary scripts, VA assertions and 
connectivity information are placed in addition to the existing 
schematic, symbol, layout and other views.  In case of new design 
this new directory structure will be automatically created upon 
invoking the ABV form.  Upon reinvoking, the forms for ABV of 
each design hierarchy will be preloaded with the details available 
under the respective directory structure.  Skill scripts are used to 
build such an infrastructure. 
 

4.3. Comparison of Symbol and Form Based 
Implementations 
A symbol based implementation discussed in chapter 4.1 or symbol-
linked-with-form based implementation discussed above enable 
platform independent truly self-checking design with out any 
infrastructural complexities.  In contrast, the fully form based 
implementation discussed above needs proper infrastructure support 
like the database and automation scripts that are platform dependent 
and needs to be redeveloped or trimmed for different design 
platforms.  Since form based implementation requires parallel data 

structure with minimal interference to existing designs it can easily 
lend itself to comprehensive automation and building of assertion 
based checkers by independent verification team.  This is in 
compliance with contemporary and more popular organization of 
verification effort by industrial SoC design teams. 
 

4.4. Circuit Verification & BMV 
The implementation and application details in sections above 
discussed the circuit verification using the proposed methodology.  
This methodology can also be applied to BMV by choosing right 
netlisting language options for the assertions, namely VA for the 
transistor level circuit of the DUV and VHDL for the equivalent 
VHDL BMOD and running the simulations using Spice simulator 
and VHDL simulator respectively.  The embedded assertions 
automatically will take care of checking both abstraction levels 
equivalently as long as the test bench equivalence is taken care of.  
Of course, necessary design guidelines have to be followed to allow 
seamless VHDL and spice netlisting.  Some of the key guidelines are 
listed below, while they are not comprehensive as it is out of the 
scope of this paper: 

1. No transistors or any technology components to be used at 
the level where BMOD netlisting is to be used. 

2. Ensure the pin direction definition of all the designs 
consistently to have exactly identical comprehension in 
both Spice and BMOD contexts.  Limit the use of INOUT 
direction to those pins, including power supplies and 
grounds, that really functionally behave as a bidirectional 
and not just because of the current flow direction as is 
usually comprehended by most analog designers. 

 
5. RESULTS  
The proposed methodology has a distinctive advantage of avoiding 
errors due to various existing manual process steps in VnV of AMS 
SoC, extensive reuse of library of assertions and reuse of assertions 
at module and SoC levels.  Due to the use of VA assertions which 
are natively supported in many Spice based simulators and AMS co-
simulators, it also has a specific simulation runtime advantage by 
avoiding use of co-simulation and insertion of several connect 
modules just to enable ABV.  The proposed methodology ensures 
optimal simulation run times by mindfully choosing native assertion 
support for various levels of abstraction wherever possible. 
 

Table 1. Simulation run time summary 

Simulator Speed-Accuracy settings Medium of 
Assertions 

Run time 
(minutes) 

TISpice Default No 1 

HSIM Optimal for analog operation No 4 

TISpice  Default VHDL1 ∞  

HSIM+VCS 
co-sim. 

Optimal for analog operation VHDL1 52 

HSIM+VCS 
co-sim. 

Optimal for analog operation 
& analog-to-digital interface 

VHDL1 8 

TISpice Default Verilog-A2 1.1 

HSIM Optimal for analog operation 
& analog-to-digital interface 

Verilog-A2 4 

                                                                 
1 VHDL requires co-simulation feature 
2 Verilog-A is native to most Spice simulators 



 
A comparative study of simulation run-times with verification using 
co-simulation under different settings versus verification using 
Verilog-A checkers is presented in the Table 1.  All results have been 
tabulated for the same test condition of the test circuit, measuring its 
transient analysis for 5 ms.   The results clearly show that native 
assertion support namely Verilog-A in this case, improves the run 
time by 2 to 50 times based on necessary simulator and accuracy 
settings. 
 
6. CONCLUSION  
Simulation based verification and behavioural model validation of 
mixed-signal designs and SoC would greatly benefit from assertion 
based VnV to overcome manual, iterative, error-prone waveform 
inspection.  A novel assertion based self-checking concept is 
introduced in this paper.  A proof-of-concept of implementation 
using a small set of often useful functions built using familiar design 
infrastructures that allows a set of checkers to be coded once, linked 
to a design element like a symbol or form.  This infrastructure is used 
to build any complex checkers to enable circuit verification, 
behavioural model validation of AMS DUV.  This automatically 
allows functional and context checks at SoC level. 
 
One of the primary challenges is the creation of an adequately rich 
library, which requires a thorough study of typical checks needed 
during verification.  It is especially useful in developing complex 
systems like the DC-DC switching regulator, and has the scope to be 
applied in diverse environments in the IC design flow.  The proposed 
methodology has the following key advantages 

1. Obviates the need for learning and familiarity with specific 
HDL or any other higher level language for coding the 
assertions 

2. Enables building of assertions based checks for all 
specification requirements at module level and high order 
of reuse 

3. Can work seamlessly with both Spice and co-simulation 
environments 

4. Enables automated verification at module level and all 
higher level of SoC integration 

5. Though an implementation using Verilog-A based 
assertion & uses Cadence design environment is 
illustrated, the concept can easily be extended for most 
other languages (HDL and high level languages) and 
design environments. 
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