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Abstract—We present GOLDMINE, a methodology for generat-
ing assertions automatically. Our method involves a combination
of data mining and static analysis of the Register Transfer Level
(RTL) design. The RTL design is first simulated to generate
data about the design’s dynamic behavior. The generated data
is then mined for ”candidate assertions” that are likely to be
invariants. These candidate assertions are then passed through
a formal verification engine to filter out the spurious candidates.
The assertions that are attested as true by the formal engine are
system invariants. The counter-examples generated by the formal
verification can then we used as feedback to the decision tree
algorithm to increase the design coverage. These assertions are
evaluated by a process of designer ranking that can be provided
as feedback to the data mining engine. We present results of
using GoldMine for assertion generation of the Rigel 1000+ core
processor. Our results show that GoldMine can generate complex,
high coverage assertions in RTL, thereby minimizing human
effort in this process.

I. INTRODUCTION AND MOTIVATION

Whether it is hardware, software or embedded systems, it is
hard to imagine their development free of bugs. Lack of satis-
factory specifications makes the processes of bug detection and
checking correctness more precarious, since these processes
hinge on knowing what one is looking for.

Assertions or invariants provide a mechanism to express de-
sirable properties that should be true in the system. Assertions
are used for validating hardware designs at different stages
through its life-cycle like pre-Silicon formal verification, dy-
namic validation, runtime monitoring and emulation [1]]–[[3].
Assertions are also synthesized into hardware for post-Silicon
debug and validation and in-field diagnosis [1]], [[4].

Among all the solutions for ensuring robustness of hard-
ware systems, assertion based verification has emerged as the
most popular candidate [5] solution for “pre-Silicon” design
functionality checking. Assertions are used for static (formal)
verification as well as dynamic verification of the Register
Transfer Level (RTL) design in the pre-Silicon phase.

The key question then is: How are these assertions gener-
ated? Assertion generation is an entirely manual effort in the
hardware system design cycle. Placing too many assertions can
result in an unreasonable performance overhead. Placing too
few assertions, on the other hand, results in insufficient cover-
age of behavior. The trade-off point for crafting minimal, but
effective (high coverage) assertions takes multiple iterations

and man-months to achieve [2]], [[6]], [[7]. Another challenge
with assertion generation is due to the modular nature of
system development. A module developer would write local
assertions that pertain to his/her module. Maintaining consis-
tency of inter-modular global assertions as the system evolves
in this fragmented framework is very tedious. In sequential
hardware, temporal properties that cut across time cycles are
usually the source of subtle, but serious bugs. It is difficult for
the human mind to express and reason with temporal relations,
making temporal assertion generation very challenging.

We integrate two solution spaces–statistical, dynamic tech-
niques (data mining) and deterministic, static techniques
(lightweight static analysis and formal verification) to provide
a solution to the assertion generation problem. Static analysis
can make excellent generalizations and abstractions, but its
algorithms are limited by computational capacity. Data mining,
on the other hand is computationally efficient with dynamic
behavioral data, but lacks perspective and domain context.

We present GoldMine, a tool for automatically generating
RTL assertions. An RTL design is simulated using random
vectors to produce dynamic behavioral data for the system.
This data is mined by advanced data mining algorithms to
produce rules that are candidate assertions, since they are
inferred from the simulation data, but not for all possible
inputs. Static behavioral analysis techniques are employed to
guide the data mining process. These candidate assertions
are then passed through a formal verification engine along
with the RTL design to filter out spurious assertions and
retain the system invariants. The formal verification provides
counter-examples which the decision tree uses to increase its
knowledge of the design. This increases the number of true
assertions, thereby increasing the assertion coverage of the
design. A designer evaluation and ranking process is facilitated
in GoldMine to provide useful feedback to the iterative data
mining process.

GoldMine proposes a radical, but powerful validation
paradigm. It uses two high impact technologies- data mining
and static analysis symbiotically to assimilate the design
space. It then reports its findings in a human digestible form
(assertions) early on and with minimal manual effort. This
is intended to replace the traditional method of the engineer
deducing all possible correct behaviors, capturing them in



assertions, testing assertions, creating directed tests to observe
behavior and finally applying random stimulus.

Random stimulus is applied late in the validation phase,
when the design and assertion-based verification environment
are mature enough to withstand and interpret random behavior.
GoldMine explores the random stimulus space and distills it
into assertions that a human can review. GoldMine’s data min-
ing, then, gains knowledge about design spaces that are as yet
unexplored by a human-directed validation phase. Eventually,
the manual, iterative process of validation will arrive at a point
of high coverage. Using GoldMine, however, this step can
be done very early in the design, making a quantum leap in
the validation cycle. If an unintended invariant behavior is
observed, a bug is detected. Otherwise, an assertion that can be
used for all future versions of the design has been generated.
GoldMine is best utilized in the regression test suite of an RTL
design.

GoldMine is completely automatic. It is able to generate
many assertions per output for a large percentage of module
outputs in very reasonable runtimes(see case study). It has
the ability to minimize human effort, time and resources in
the long drawn assertion generation process and increase val-
idation productivity. Along with input/output or propositional
assertions, GoldMine can also generate temporal assertions
in Linear Temporal Logic [8]. 1 GoldMine can generate
assertions that are complex or span multiple logic levels in
the RTL.

We present the Rigel [9] 1000+ core architecture design
as a detailed case study for GoldMine. The Rigel RTL has
been developed recently and is in a stage of functional
verification. The evolving Rigel RTL provides a fertile ground
for investigating our methodology. The assertions generated
through GoldMine can be used as a regression test suite for
Rigel. In addition, we explore the SpaceWire [10], OpenRisc
[11], and ITC benchmark [12] designs to further demonstrate
the versatility of GoldMine.

Our contributions in this work are as follows.
• We introduce a methodology and tool flow to generate

system invariants in hardware automatically using data
mining and static analysis.

• Our tool can produce temporal and complex assertions
for sequential and combinational modules. To the best of
our knowledge, such a result has not been achieved in
the state-of-the-art.

• Our method abridges the validation phase by distilling
random stimuli and achieves coverage of unexplored
spaces earlier than typical in the design cycle.

• With GoldMine, we propose a validation paradigm that
would significantly reduce time and resource consump-
tion, increasing validation productivity.
We demonstrate that GoldMine produces excellent results
on a real RTL design in the form of complex, high
coverage assertions attested by Rigel designers as very
interesting.

1At this time, we can generate assertions with the X operator.
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II. GOLDMINE: ASSERTION GENERATION METHODOLOGY

We propose GoldMine, a methodology to automatically
generate assertions using data mining and static analysis. There
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are five main parts in GoldMine.

A. Data Generator

The Data Generator simulates a given design (or a “module”
of the design). If regression tests or workloads for the design
are available, they can be used to obtain the simulation traces.
GoldMine also generates its own set of simulation traces using
random input vectors.

Typically, simulating with randomized inputs produces the
largest number of true assertions. We used a script to generate
a testbench for each verilog design that we wanted to test.
In the testbench, each input bit is assigned with completely
random value each cycle by using the verilog$random func-
tion. We have the ability to expand this method in the future
by constraining the random input values using background
information where certain input combinations may not be
allowed. For most of our tests, we simulate for 10,000 cycles,
though we can increase this number for extremely large or
complex designs.

B. Lightweight Static Analyzer

The static analyzer extracts domain-specific information
about the design that can be passed to A-Miner. It can include
cone-of-influence, localization reductions [13], topographical
variable ordering and other behavioral analysis techniques.

The current version of the tool only uses static analysis for
logic cone information. The logic cone of a signal consists of
all of the inputs which can influence the value of a given
output. Since data mining methods can only use statistical
methods to infer relationships between signals, it is possible
that an unrelated input may be correlated to an output. The
logic cone prevents this problem by restricting the searched
inputs to only those which are related to the output. This static
analysis is also advantageous in that it decreases the runtime
in many data mining algorithms since there are fewer inputs
to consider.

C. A-Miner

The A-Miner phase derives knowledge and information
from the simulation trace data. This is done by searching
for correlations between the inputs and a target output. For
example, in a simulation trace, when ever inputs A and B



are both 1, the output C is also 1. A data mining algorithm
can quickly and efficiently recognize this pattern. Data mining
algorithms use statistics such as support and confidence to
determine whether there is actually a relationship between the
inputs and target output. Given a rule A =⇒ B (henceforth of
the form if a then b), support(A) is the proportion of instances
in the data that contain A. Confidence can be interpreted as
an estimate of the conditional probability P (B|A). If a rule
has 100 per cent confidence, it means that within the data
set, there is complete coincidence between A and B. A high
support for this rule means that A occurs frequently in the
data set. In GoldMine, we must guarantee that the confidence
is 100% if we want to generate an assertion that is likely to
be true. The reason for this is that if a given antecedent is
correlated with an output that has multiple different values,
then that can not be an assertion since the antecedent does not
imply a single value.

A-Miner also provides hooks for incorporating domain
specific information from the lightweight static analyzer into
the mining algorithms. The data mining algorithm allows
specification of which inputs have relationship with the target
output as determined by the logic cone. In addition, this phase
of GoldMine can have multiple feedback loops from different
parts of the tool. Using the information provided to it, the A-
Miner produces a set of candidate assertions which are likely
to be true. Objective measures of interestingness [14] can be
used to rank this set of candidate assertions like the support
as specified above.

D. Decision Tree Based Supervised Learning Algorithms

Association rule based data mining algorithms like FP
Growth [15] find all possible associations between sets of
predicates and rank them according to support/confidence.
For sequential blocks that might have temporal properties,
exhaustive search is an inefficient option in our experience
(see case study).

We primarily use decision tree based supervised learning
algorithms [16] in A-Miner. In a decision tree, the data space
is locally divided into a sequence of recursive splits in a small
number of steps. A decision tree is composed of internal
nodes and terminal leaves. Each decision node implements
a “splitting function” with discrete outcomes labeling the
branches. This hierarchical decision process that divides the
input data space into local regions continues recursively until
it reaches a leaf.

We require only Boolean splits (for Boolean variables) at
every decision node. The error function implemented to select
the best splitting variable at each node is the variance between
the target output values and the values predicted by a candidate
antecedent. The winner is the one whose error is minimum
which then forms the next level of the decision tree. Each leaf
in the decision tree becomes a candidate assertion where the
variable and value at each split represents a proposition in the
antecedent and the mean of the output represents its predicted
value in the consequent.

E. Formal Verifier

In order to check if the likely invariants generated by A-
Miner are system invariants, the design and candidate asser-
tions are passed through a formal verification engine. If a
candidate assertion fails formal verification, a counterexample
can be generated for feedback to the A-Miner. We use SMV
[17] and Incisive Formal Verifier as our formal verification
engines. The candidate assertions are attached to the design for
verification and checked at the positive edge of the clock cycle.
The reset signal of the design is constrained to off as to prevent
spurious counterexamples. Although the attempt in GoldMine
is to minimize the human effort in the assertion generation
process, we need human intervention to differentiate between
a spurious candidate assertion that fails the formal verification
and a genuine system invariant whose failure reports the
existence of a bug.

F. Counter-example Refinement

When a candidate assertion is proven false using a formal
verifier, a counter-example is produced that shows the reason
why that rule is not true. We can use this counter-example
feature of the formal verifier to increase the number of true
assertions generated using a technique referred to as counter-
example refinement. This method turns the decision tree al-
gorithm into an iterative algorithm which can infer previously
unknown information using these counter-examples to increase
the total number of true assertions for a design.

When a counter-example is produced by the formal-verifier,
it indicates that the simulation trace data provided to the
decision tree was not sufficient to generate a true correlation.
Because the decision tree only produces candidate assertions
based on rules with 100% confidence, this indicates that the
rule is true with respect to the simulation data, but untrue with
respect to the actual design since the simulation data does not
necessarily capture all of the design. A counter-example can
be viewed as data sample which contradicts the data samples
which were used to create the untrue rule. Thus, when you
combine samples from the original data set and the counter-
example, the confidence of the untrue rule must be less than
100%. Since the confidence is less than 100%, the decision tree
can continue to split until more rules with 100% confidence
are created.

G. A-Val: Evaluation and Ranking

Once the assertions have been generated through GoldMine,
their evaluation is extremely important to the process. This is
because assertion generation has been a completely manual
process thus far in the system design cycle.

There are several ways for us to evaluate A-Miner’s perfor-
mance. One basic metric is the hit rate of true assertions. The
hit rate of a run in GoldMine is the ratio of true assertions
to candidate assertions. This provides a very crude indicator
of performance. In addition, we can consider output hit rate,
which is the number of outputs for which GoldMine could
generate a true assertion over the total number of inputs.



Since there are no commercially used metrics for evaluating
the coverage of an assertion, we have devised a method to
evaluate assertion coverage. We can evaluate the coverage of
an assertion by considering the input space that is covered by
the antecedent of the assertion. If we consider the truth table
with respect to some output, each entry that corresponds to
the propositions in the antecedent of an assertion is defined as
covered by that assertion. For example, if there is an assertion
(a = 1&b = 1 =⇒ c = 1), we can consider the input space
coverage to be 25% since we know that 25% of the truth
table entries contain a = 1, b = 1. The reasoning behind this
thinking is that if there is a set of assertions that covers each
entry in the truth table of an output, that output is well covered
by the set of assertions. This metric is simple to calculate
since we can determine the percentage of the input space that
an antecedent of an assertion covers without knowing every
single input combination. The input space coverage is defined
as 1/2|P | where |P | is the number of propositions in the
antecedent. Based on this definition, it can be seen that the
input space coverage is relative to the number of propositions
in the antecedent.

In order to bridge the gap between the human and the
machine generated assertions, human judgment can also be
made a part of the GoldMine process where the designer ranks
the true assertions according to some pre-defined ranks. This
provides an objectification of an inherently subjective decision
and can be used as feedback into A-Miner, with a view to
predict the ranking of a generated assertion and optimize the
process for achieving higher ranks.

III. RELATED WORK

We address the related work in the broad spectrum of
topics allied to our work. Assertion generation though static
analysis of source code or a model has been studied in the
context of deductive program verification [18]]–[[20] since
the seventies. The deduction of “weakest liberal precondition”
from the loop body can quickly get very complex. Static
analysis techniques have been used to learn invariants for
assisting software verification [21]], [[22] Dynamic analysis
[7]], [[23] as well as data mining [24] have been used in
software to determine system invariants.

In hardware, to the best of our knowledge, there have
been no prior attempts to generate assertions through data
mining and static analysis of RTL source code. Some work
has been done in assertion generation for hardware by stat-
ically analyzing the hardware structure and topology as in
[25]]–[[27]. IODINE [28] infers detailed, low-level dynamic
invariants for hardware designs. This is different from our
work, since it does not use data mining techniques to infer
invariants, but a dynamic analysis framework that analyzes the
program behavior with respect to standard property templates
like one-hot encoding, mutex etc. The work in [29] use
dynamic simulation trace data for generating assertions, but
their technology does not use data mining. Instead, they try
to generalize trace behavior. Commercial tools [30] that try to
generate assertions capture simple, pre-defined invariants.

IV. CASE STUDY: RIGEL RTL

We present results of applying GoldMine for the 1000+
core Rigel RTL design. Our intention is to use assertions
from GoldMine to provide a regression test suite for the Rigel
RTL that is in the later stages of its evolution. We generated
assertions for three principal modules in Rigel- the writeback
stage, the decode stage and the fetch stage. The writeback
stage is a combinational module with interesting propositional
properties. The decode and fetch stages are sequential modules
with many interesting temporal properties. A-Miner takes
about 45 minutes to run on 121 outputs, 700 inputs and 20000
data samples. SMV takes about 30 minutes per 2000 candidate
assertions. We have not faced any state space explosion issues
with SMV so far. All experiments were run on a 2.26GHz
dual core processor with 4GB RAM.

The decision tree algorithm is very quick, but the formal
verification in GoldMine can take a long time when there are
many assertions to verify. By using a commercial tool for
formal verification instead of SMV, we were able to produce a
significant speedup. We have also used parallelism to increase
the speed of the formal verification step. Since each assertion
can be verified concurrently, several formal verification threads
can be used for a significant speedup. Because there is some
overhead in creating the model in formal verification, a small
batch of assertions in verified in each thread. This gives a
speedup that is nearly linear with respect to the number of
processor cores.

Since memory conservation is important for large problems,
we have ported our code from Java to C++. Since Java has
dynamic memory management, it is difficult to control the
memory usage and can make it difficult to debug memory
leaks. Since C++ requires manual memory management, it is
easier to keep the memory usage low and controlled.
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Fig. 2. GoldMine evolution: Aspects of the algorithm that increased yield
wrt hit rate and number of true assertions

Our experiments establish that combinational properties
are very easy to generate in GoldMine. Temporal properties
require more methodological fine-tuning. Figure 2 shows the
evolution of the GoldMine process with respect to the hit rate
of assertions and the number of true assertions generated for
the combinational as well as sequential modules. The x-axis
shows some of the “knobs” that we used for fine-tuning our
methodology.



In the initial phase of the Data Generator, we used sim-
ulation workloads from the Rigel test suite (denoted by Ini-
tial). This data was insufficient, (approximately 15 tests of
1000 samples each) producing a very low hit rate for both
propositional as well as temporal assertions (combinational
and sequential modules). We then used random input vector
generation on the RTL for the target modules. These tests
had about 10000 samples each. This drastically increased the
hit rate as well as number of true assertions, demonstrating
that the amount of simulation data can significantly affect
the performance of GoldMine. For the writeback module, we
achieved a 100 percent hit rate with this step alone.

In the next phase, we made a change to the way we
sampled the simulation data. Initially, we collected data only
at the positive edge of the clock signal, making it appear that
blocking and non-blocking statements were happening at the
same time. As a result, we were generating many candidate
temporal assertions, with very few of them being true. We then
changed this sampling process such that data was captured at
positive as well as negative edges of the clock signal, (when
the input changes) so that there is a distinction in when the
output is assigned. This is shown by double sampling in the
graph. These two modifications were added at the same time,
increasing our hit rate for temporal assertions in sequential
modules significantly.

An interesting spike in the hit rate was caused by increasing
the frequency of the reset event in the simulation data.
Initially, our simulation data was collected with the reset signal
being high in the first few cycles and low thereafter. We
noticed that our true assertions did not include the reset signal.
We then forced reset to be high once every 500 cycles. This
expanded the scope of our assertions to those that had the reset
signal in them.

In the next phase of GoldMine, we added lightweight static
analyzer information that was specific to the domain, like
logic cone-of-influence generation and static topographical
variable ordering. Although this increased the hit rate only
marginally, it increased the number of true assertions signifi-
cantly. This shows that the static analysis information was very
useful in helping A-Miner focus on the relevant neighborhood
of variables to generate candidate assertions.

We describe some algorithmic details of the GoldMine
process not shown in Figure 2. In the initial phase, we used
the FP-Growth option. This took unreasonable time (>10
hours) for reaching rules with just 3 predicates for the decode
module. We therefore resorted to the decision tree algorithm
for our purposes. Another aspect is the stopping criterion of the
decision tree splitting. Our initial experiments continued the
splitting process beyond the point where the minimum error
reduction was reached. This process gave us an extremely
high number of candidate assertions (>80000) with many
duplicates (289 out of 300). In the later stages, we elected
to end the decision tree splitting when error was numerically
equal to “0”, i.e. at the point of 100 % confidence.

GoldMine has evolved continuously since the original con-
cept for the tool was developed. The tool has been molded

to better match expected usage. Originally, GoldMine only
worked with combinational circuits which interesting, but not
very useful to the average verification engineer. The reason for
this is that pattern recognition algorithms used in data mining
look for correlations that hold true in all samples, which is
consistent with combinational behavior since outputs change
immediately. However, in sequential circuits, outputs do not
change until the positive edge of the clock. This means that
if a sample is taken before the clock edge, the output will
contain the value determined by the inputs at the previous
clock edge, and not the inputs at the current time. This means
that no relationship can be found since the current inputs have
not influenced the output yet. If a sample is taken after the
clock edge, the inputs have already changed from the values
that determined the current output, meaning that there is still
no relationship that can be inferred by this samples.

This problem can be solved without having to change the
data mining algorithm. The data is only sampled once per
positive clock edge since that is when the interesting behavior
happens. The exact time at which the signal is sampled
depends on the type of signal. If the signal is an input, it is
sampled right before the positive clock edge and if the signal
is an output, it is sampled right after the clock edge. To the
data miner, it seems as if the inputs and outputs have changed
at the same time and is able to find any relationships between
the inputs and outputs.
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The next set of experiments help evaluate GoldMine’s
assertions. Since designer evaluation and ranking forms an
important part of A-Val, we performed an extensive designer
ranking session for every phase of assertion generation of each
module. Also, since the Rigel RTL does not have manual target
assertions to compare against, we performed a subjective,
but intensive evaluation strategy. Rankings were from 1-4,
calibrated as below:

1) Trivial assertion that the designer would not write
2) Designer would write the assertion
3) Designer would write, captures subtle design intent
4) Complex assertion that designer would not write
The results presented in Figure 3 show the distribution of

these ranks for a sample of representative assertions over
all the modules. The algorithmic knobs that produced the



highest hit rate as well as the highest number of assertions
were turned on for this experiment. The maximum number of
assertions in this analysis rank at 2. The writeback module has
some assertions ranked 3. The absence of 3 in the sequential
modules, according to the designers, is due to the fact that
intra module behavior is not complicated enough to have many
subtle relationships. For example, an assertion ranked 1 is: If
the halt signal in the integer, floating point and memory unit is set
to 0, the halt signal is 0. In the RTL, the halt signal is a logical
OR between the integer, floating and memory units. GoldMine
found a true, but over-constraining rule. The designers ranked
it 1, since they would not have written this rule. Now, consider
this RTL code:

decode2mem.valid <= valid_mem &&
!issue_halt && !branch_mispredict &&
fetch2decode.valid && !follows_vld_branch

An assertion ranked 2: if branch mispredict is high, de-
code2memvalid will be high in the next cycle. An assertion ranked
3: If an integer unit does not want to use the first port, and the
floating point unit does not want to use the second port, then the
second port remains unused.

a) Complex assertions in GoldMine: Despite the small
size of the modules, GoldMine achieved rank 4, i.e. it produced
assertions that capture complex relationships in the design.
This is an advantage of mechanically derived assertions: they
are able to capture unintentional, but true, relationships that
can be excellent counter checks and can be brought to the
designer’s attention. We assessed complexity by the number
of levels (depth) of the design captured by assertions. In a few
cases, the assertions capture temporal relationships that are
more than 6 logic levels deep in the design. This provides
a different perspective on the RTL, outside of the expectation,
but may provide avenues for optimizing or analyzing the RTL.
For example, the RTL has the following relationship:

if( choice_mem)
decode_packet <= decode_packet1;

An assertion ranked 4 is: if (reset=0) and (issue0=0) and
(decode packet dreg=0), and in the next cycle if (instr0 issued = 0),
then decode packet dreg = 0. This assertion relates a single field
in the decode packet variable to reset and instr0 issued, both of
which are related to choice mem when the code is traversed
beyond 6 levels of (sequential) logic. Such a relationship
would have been extremely hard to decipher through static
analysis and code traversal. To the best of our knowledge, there
is no state-of-the-art tool/technique that can claim to decipher
such complex assertions. Figure 3 shows the distribution of
assertions with respect to complexity.
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Fig. 4. GoldMine output coverage

Figure 4 shows the number of outputs per module for which

assertions were generated by GoldMine. Although candidate
assertions were generated for all the module outputs, the
assertions that passed formal verification covered a percent-
age of them. Figure 5 shows the probability distribution of
true assertions per output. At the 50% mark, there will be
approximately 4-5 unique assertions per output in the decode
module, Although we are not able to get a precise notion
of path coverage per output signal, the unique assertions per
output are indicative of high path coverage.
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b) The acid test: Regression test experiments: As a
final evaluation of the entire regression suite of GoldMine
assertions, we appended them in the RTL and ran a new set
of directed Rigel tests.

Fig. 6. Figure showing the added coverage of design behavior through
GoldMine assertions for the writeback module

We will analyze the results for the writeback module, since
the fetch and decode are very similar. We used Synopsys VCS
with RTL conditional coverage for procuring coverage of the
directed tests. We used the conditional coverage metric since
unique assertions in GoldMine pertain to different paths. This
metric is meaningful for us since it examines individual path
conditions in generating an output.

The writeback module directed tests achieved 76% con-
ditional coverage, while the random tests used to generate
the GoldMine assertions achieved 100% conditional coverage
and generated 200 unique assertions. When the GoldMine
assertions were included in the directed test runs, 110 (55%) of
the assertions were stimulated by the directed tests. Therefore
90 assertions, or 45%, refer to design behavior as yet untested
by the directed tests. Figure 6 shows the overlap of assertions
with directed tests, and highlights the value of GoldMine
providing significant coverage of the unexplored regions of
the design at this early stage.



The overlapping assertions that coincide with the designer-
crafted directed tests can be used for static checking, formal
verification etc. However, the untouched assertions can be
used to improve the quality of the directed tests. They can
be used as regression checks as the test patterns mature
and the regression test suite evolves. It is probable that the
manual assertion generation process would eventually get to
this point after multiple iterations. In contrast, GoldMine, a
mechanical assertion generator, could explore the design space
far beyond the human generated tests. The designers of Rigel
have evaluated GoldMine’s contribution as “covering a wide
design space much earlier in the design cycle than typically
achievable”.

A. Counter-example Refinement Experiments
We also want to evaluate the results of the counterex-

ample refinement method. The first experiment demonstrates
the increase in coverage as the counterexample algorithm
progresses, showing a monotonic increase in coverage. The
experiment is performed on SpaceWire codec state machine
circuit and Rigel write back stage design. The original test
suite can be in the form of a directed test or a completely
random input stimulus test. In this experiment, we simply
use the initial random input patterns. In each iteration, any
spurious assertions are refined using counterexamples until
the A-Miner has generated a true assertion. The input space
coverage and industrial standard coverage metric are used
in this experiment. The input space coverage of each true
assertion referring corresponding output is calculated by con-
sidering the percentage of the truth table entries that is covered
that assertion. We have summarized these coverage results in
Figure 7 and Figure 8.

In Figure 7, the input space coverage referring to each
output was chosen to measure the validation process. Since
each assertion compactly covers multiple concrete patterns of
input space, we calculate the input space coverage referring
to an output by accumulating the input space coverage of
all generated assertions on that output. The results show a
consistent increase in the input space covered by the assertions
in each iteration.

Fig. 7. Input space coverage of each output increasing over the number
of counterexample iteration on SpaceWire-FSM design and Rigel-wb stage
design

In Figure 8, we choose the line, conditional, branch, toggle
and FSM coverage from industrial standard metric. Redundant

statements, unreachable states and other RTL characteristic
often limit some kind of coverage to achieve 100%, but a
steady increase in such coverage is an indicator of monotonic
progress in the quality of the assertion/tests generated by our
algorithm.

Fig. 8. Standard coverage increasing over the number of counterexample
iteration on SpaceWire-FSM design and Rigel-Wb stage design

We also notice that the coverage increases quickly in the
early iteration and slowly in the later iteration. However,
different from the tradition industrial flow, our method can
guarantee coverage gain in each step and finally reach full
coverage. In the worst case, the maximum number of iteration
required to reach full coverage is equal to the number of
input variables in the logic cone of corresponding output since
at least one variable is added to the original assertion as
counterexample to disprove the spurious assertion.

The second experiment is a limit study showing that the
counterexample algorithm works even when no original di-
rected or random test suite exists. The lack of any patterns
would begin the procedure with a simple assertion of the form
”output always 0”. Figure 9 shows the increase in coverage for
each design as the algorithm progresses. Even without initial
test patterns, the counterexample method is able to create a test
suite that achieves good coverage with few iterations. This
indicates that this method may be a useful methodology to
jump start a module design environment by creating many
tests that can then be run on the testbench to check against
the design specification.

Fig. 9. Coverage increasing by iteration starting from zero pattern on
SpaceWire-FSM design and OpenRisc cache controller design



V. GOLDMINE APPLICATIONS

Though GoldMine is an interesting tool, it can be difficult to
see how it can be used is a realistic verification environment.
Since GoldMine produces assertions based on RTL which
are then verified using formal verification, it is trivial that
generated assertions will pass on the given RTL. The beauty
of this tool is that it can actually be applied in a number of
ways, included applications that have not even been developed
yet.

One way to use GoldMine effectively is to use the assertions
as a regression test throughout development. The assertions
that are true in one revision may fail in a later revision. This
can indicated that the assertions are no longer relevant, which
indicates that those assertions must be updated. However, it
can also indicate that a revision of the design introduced a bug
which the assertion can help to locate. For example, GoldMine
is used on an ALU unit and produces a set of assertions. The
ALU is then revised to make a certain function faster. If there
are any assertions that fail, it likely indicates that there is a
bug in the revised code.

When using random testing to verify a design, it can
be difficult to determine the number of cycles to simulate
before declaring a unit fully verified. One way to measure
testing completeness is to use standard coverage metrics but
this method only gives a very general idea of the coverage.
GoldMine can also be used in addition to standard coverage
metrics to increase confidence of a design. The trace from
the random test simulation can be mined for assertions using
GoldMine. Any assertion mined from this trace indicates
behavior that is covered in the simulation trace. This means
that if the assertions generated in GoldMine have a high
coverage, it is likely that a high percentage of design behavior
has been covered in the random test. If the assertions generated
do not have high coverage, the simulation likely needs to run
for more cycles.

VI. CONCLUSIONS

Since we are deriving the assertions from the design itself,
we may not be able to uncover bugs in the design that
do not follow the specification. In future work, we plan to
extend GoldMine to mine specifications for assertions and use
them for checking the RTL design. We believe that GoldMine
will be an important first step in increasing productivity and
minimizing human resources/cost in the assertion generation
process.
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