
An Automatic Visual System Performance
Stress Test for TLM Designs

George F. Frazier

Cadence Design Systems, Inc.
georgef@cadence.com

Neeti Bhatnagar
Cadence Design Systems, Inc.

neeti@cadence.com

Woody Larue
Cadence Design Systems, Inc.

larue@cadence.com

Vincent Motel
Cadence Design Systems, Inc.

vmotel@cadence.com

ABSTRACT
Performance analysis is an important aspect of TLM 2.0-based

system design. While case-specific performance analysis can be hand

coded into any model, it is possible to compute useful performance

analysis metrics in a generic fashion for TLM 2.0 models.

This work shows how the TLM 2.0 framework can be leveraged to

create an automatic visual system performance stress test for SOC

designs. The approach is generic yet powerful – all that is required is

a model of the system which follows the TLM 2.0 standard and the

ability to increase the initiated traffic on the system or selected

portions of the system in a steadily increasing fashion as time

advances. Using the stress test framework requires no code changes

on the part of the system designer.

We demonstrate use of the framework in the design of a high

performance interconnect for a high speed memory sub-system.

For the stress test, the framework measures throughput of the

interconnect. The “stress” point we observe involves increasing

traffic from the initiators to the memories. At capacity, the amount

of data overwhelms the system.

Categories and Subject Descriptors
D.3.3 [System-Level Design]: Experience using ESL and/or TLM

for system-level design and verification.

General Terms
Algorithms, Performance, Design, Standardization, Verification.

Keywords
TLM, ESL, System-Level Design, Performance analysis, Virtual

Platforms, SystemC, C++.

1. INTRODUCTION
Performance analysis is an important aspect of TLM 2.0-based

system design. While case-specific performance analysis can be hand

coded into any model, it is possible to compute useful performance

analysis metrics in a generic fashion for TLM 2.0 models1. This is

possible because TLM 2.0 specifies a standard bus model for

memory-mapped architectures that can be instrumented to compute

performance metrics.

We begin by describing a tool for automatic TLM 2.0-based

performance analysis and looking at the semantics of the response

status of the generic payload.

Then we show how the TLM 2.0 framework can be leveraged to

create an automatic visual system performance stress test for SOC

designs. The user selects a set of paths in the design and the

framework monitors the values of the generic payload objects as they

flow through the transport functions in the selection. From this, a

moving window of system throughput is computed. In addition, the

response status values computed by the transport functions are

monitored to track failure percentages. In many well-constructed

TLM 2.0 designs, throughput and TLM response status are causally

linked. For such systems, once the load approaches maximum

throughput (capacity) the number of failed transactions will increase

until throughput plunges as the system fails to function correctly.

Finally, we demonstrate use of the framework, and construction of an

automatic stress test, in the design of a high performance

interconnect for a high speed memory sub-system. The stress test

provides an abstract way to visualize when the system reaches

capacity. The framework automatically creates a line chart with time

on the X axis and throughput and TLM response status values on the

Y axis. At first, throughput increases and all responses have the

TLM_OK_RESPONSE value. Shortly before capacity is reached,

throughput drops off and the graphs for response status values other

than TLM_OK_RESPONSE begin to spike, indicating the system

has started to fail.

2. TLM 2.0-BASED PERFORMANCE

ANALYSIS
Typically, case-specific performance metrics are computed as a part

of simulated models of system components. Cache models, for

example, often compute and report ratios of hits and misses2. Bus

models often contain monitors used to sample latencies and report

statistics on the usage of buffers3. While case-specific performance

analysis can be built into any simulated model, because TLM is a

standard targeted for memory-mapped bus models4, it is possible to

create tools that compute useful performance analysis metrics in a

generic fashion without requiring any source code changes on the

part of the designer. Such an approach allows automatic collection of

quantitative data from a TLM simulation.

In our approach, we developed a tool having native TLM 2.0

knowledge to monitor the traffic between all TLM initiators and

targets during the simulation. It computes two basic types of system

performance metrics: untimed and timed. Untimed metrics can be

useful for functional models lacking a high degree of timing

accuracy that still provide enough detail to answer important

questions about design trade-offs.

From simple counting metrics, more complex statistics can be

computed. The same basic counting infrastructure is the basis for

timed performance metrics. Timed statistics add one more key

element: latencies. Timed metrics are valuable only to the degree

that a sufficient level of timing accuracy is available in a design, as

described in section 3. With TLM modeling, there is a tradeoff

between timing accuracy, simulation speed, and model development

effort. Functional models based on the loosely-timed coding style

generally are not accurate enough for timing metrics to yield much

information. However for TLM designs using the approximately-

timed coding style that approach cycle accuracy, timing accuracy is

sufficient to make the gathered performance metrics very

informative. The high performance interconnect described in section

4 is such a model.

For such models, average and peak throughput (the number of bytes

transferred as a function of time) at each initiator or target interface

is still the fundamental metric, but the minimum, maximum, and

mean latency values can be of critical importance too.

Those metrics form the basis of the stress test in section 5.

3. MODELING OPTIONS FOR

APROXIMATELY TIMED SYSTEMS

3.1 GENERAL ASPECTS OF APROXIMATELY

TIMED MODELING
The TLM 2.0 standard is specifically aimed at modeling memory-

mapped buses, where multiple initiators initiate transactions in

parallel, with or without synchronization. The transactions flow

through an interconnect structure that routes them to multiple targets

that make the appropriate processing and send the responses back to

the initiators.

To correctly model the performance of such systems, the time to

initiate, transmit and process the transactions must be taken into

account. Most physical implementations would use clocks to time

the transfers, but transaction level modeling, which is based on

function calls to represent transaction, precludes the use of clocks.

Instead, the timing of the elements is modeled by delays between

simulation events, usually representing a count of clock cycles. This

approach results in faster simulation speed and simplifies the overall

modeling effort.

Modeling accumulative delays is straightforward in blocking models

based on the b_transport function of TLM 2.0, but it is

generally not sufficient to represent the numerous transactions that

flow in parallel into a modern pipe-lined design that is usually

modeled with a bidirectional sequence of nb_transport_fw and

nb_transport_bw non-blocking function calls.

Delays are distributed throughout various parts of the system:

• Initiators send transactions at a specific throughput, which

defines the delay between the start of two consecutive requests.

• The interconnect structure can present transmission delays and

generally introduces delays where it must serialize multiple

concurrent transactions on a single physical link (e.g. in

arbiters).

• The targets add latency during the processing of the

transactions.

By adding those delays, models take into account the physical

limitation of the elements in terms of bandwidth (because the

physical clock frequencies are not infinite). They should also take

into account the limited number of concurrent transactions (because

the physical buffer sizes are not infinite).

3.2 LOAD ADAPTION

We should note however that in a well constructed interconnect, it is

possible to adapt initiators whose peak throughput is higher than the

maximum bandwidth of the targets, with some conditions:

• The peak throughput should be limited in time, so that average

throughput is within the capacity of the system.

• Some sort of FIFO elements must be used to buffer the extra

traffic during activity peaks and transmit the transactions at a

rate acceptable by the targets.

Similarly, if some buffering is available before the arbiter, and if the

partial bandwidth allocated to the initiator is sufficient for its average

throughput, an initiator can send traffic to an arbiter in a non-

blocking fashion without waiting for the arbiter to select its

transactions. As a result, the traffic load adaptation and the

absorption of the peaks strongly depend on FIFOs. With FIFO

models of infinite size, systems would seem to run well for any value

of throughput from the initiators, but the number of transactions held

in the FIFOs might never decrease and could increase infinitely.

It is a better modeling practice to represent FIFOS using a finite size

that supports:

• A sufficient total number of transactions

• A sufficient level of write data on the forward paths

• A sufficient level of read data on the backward paths

The latter two parameters are needed if the TLM 2.0 transactions are

not limited in size, otherwise the FIFOs could hold transactions

transporting an arbitrarily large number of bytes, which does not

correspond to physical reality.

Finally, we need to consider the behavior of a FIFO when it cannot

hold a new transaction because it has filled up or lacks capacity to

store the data of the transaction.

Two main options are possible:

• Stall the initiator until the FIFO fill level has decreased and the

transaction can be accepted.

• Return with an error response to the initiator.

The choice can depend on the actual system being implemented. Not

all initiators may support variable traffic rates (they cannot be

stalled). From a modeling point of view, returning errors enables a

simpler initiator design and can help pinpoint performance

weaknesses of a system under a specific load.

3.3 RESPONSE STATUS OF THE GENERIC PAYLOAD

The TLM 2.0 generic payload includes some of the attributes found

in typical memory-mapped bus protocols such as command, address,

data, byte enables, single word transfers, burst transfers, streaming,

and response status4.

Response status is implemented as an enum with values:

TLM_OK_RESPONSE, TLM_INCOMPLETE_RESPONSE,

TLM_GENERIC_ERROR_RESPONSE,

TLM_ADDRESS_ERROR_RESPONSE,

TLM_COMMAND_ERROR_RESPONSE,

TLM_BURST_ERROR_RESPONSE,

TLM_BYTE_ENABLE_ERROR_RESPONSE.

The Generic Payload class includes two helper functions –

is_response_ok and is_response_error – to determine

the error status of a generic payload object. is_response_ok is

true if and only if the response status if TLM_OK_REPONSE and

is_reponse_error returns true if and only if the response status

is not equal to TLM_OK_REPONSE. Thus in a proper TLM 2.0

design, any response other than TLM_OK_RESPONSE indicates an

error condition.

The TLM 2.0 standard specifies a precisely defined semantics for

TLM_ADDRESS_ERROR_RESPONSE,

TLM_COMMAND_ERROR_RESPONSE,

TLM_BURST_ERROR_RESPONSE, and

TLM_BYTE_ENABLE_ERROR_RESPONSE. Models must adhere

to the definitions, in order to ensure interoperability of the models

and debuggability of the system.

However the TLM_GENERIC_ERROR_RESPONSE can be used

with more flexibility to indicate other types of errors not defined by

the standard. The errors related to performance modeling, such as

errors from FIFOs, can be represented using

TLM_GENERIC_ERROR_RESPONSE.

Section 4 describes a high performance interconnect modeled at the

AT level that uses this strategy for indicating failed transactions

when buffers are filled up to their maximum capacity.

4. A HIGH PERFORMANCE

INTERCONNECT FOR A HIGH SPEED

MEMORY SUB-SYSTEM
As a case study, we examine the design of a high performance

interconnect with the following architectural requirements:

• High performance:

o Good utilization of the total memory bandwidth.

o Keep latency reasonably low.

• Many parallel initiators, fewer parallel memory interfaces.

• Initiators:

o Usually not all active at the same time.

o Very different traffic profiles.

o Different priorities.

• Target memories:

o Large capacity and high speed SDRAM, such as the upper

speed bins of DDR3 SDRAM5.

o Limited number of independent interfaces (at most 2 or 4).

o Able to receive transactions from any of the initiators

(fully shared).

o Complex timing:

- Depends on address locality (penalty for row change).

- Depends on command sequence.

Figure 1 shows the specification of an interconnect structure for 64

initiators and 4 SDRAM interfaces running independently and

concurrently.

Figure 1. Generic Interconnect

Several architectural options are possible to design this interconnect,

depending on the tradeoffs of cost and performance. The two

extreme are:

• A full crossbar that enables all paths from any initiator to the

memories in parallel and only arbitrates transactions in front of

the memories. This is the solution with the highest silicon area.

• A single arbiter to serialize the transactions from all initiators

and a single router to select the target memory interface. The

area is minimal, but the total throughput is very limited.

We consider an intermediate solution: a semi-cross-bar made of three

main layers of transaction arbitration and routing. It enables several

parallel transaction paths but is not as large as a full cross bar.

Figure 2 shows the forward path. Figure 3 shows the backward path.

Figure 2. Forward Path.

Arbiters A0 – A7 and C0 – C7 arbitrate between incoming

transactions for use of a shared resource. They implement a priority

policy and perform the routing on the backward path. Routers R0 –

R7 simply route transactions according to their addresses. From a

performance perspective, routing is transparent. They must arbitrate

on the backward path. The FIFOs between the ports and arbiters

support simple buffering of transactions waiting for arbitration. They

have a limited size (for transactions and write data) and return errors

when they are full. There is no buffering on backward path. The

reordering queues provide a size limited buffering capability similar

to the FIFOs. They implement an algorithm to re-order transaction

sequence so that SDRAM usage is more optimal. They do not need

to make any buffering on backward path.

Figure 3. Backward Path.

The interconnect has two types of arbiters. The simple arbiter (Figure

4) selects one request, sends it, and waits for the response before

selecting a new request. A simple arbiter supports only one

outstanding transaction per port (required for non-reentrant targets).

It serializes full (request + response) transactions. Transmission time

may be modeled in the target.

Figure 4. Simple Arbiter.

The simple req arbiter (Figure 5) selects one request, sends it, and

selects a new request without waiting for the response. It supports

any number of outstanding transactions and must tag the requests to

route the responses. It serializes requests (responses are already

serialized by target). Simple req arbiters model the time needed to

transmit a request, typically constant + proportional to write data

size.

Figure 5. Simple Req Arbiter.

5. THE STRESS TEST.
To demonstrate the automatic visual stress test, we took a design

using AT level TLM 2.0 modeling of the system described in section

4. Again, the model buffers elements up to the capacity of the

buffers. After that, the nb_transport_x calls set the

TLM_GENERIC_ERROR_RESPONSE response status for reads

and writes that cannot be successfully completed. Given the fact that

the interconnect has a fixed upper capacity, driving input beyond that

capacity will result in failed transactions.

The Response Status Chart and Throughput Chart shown in Figures

6 and 7 respectively constitute a visualization of the system stress

test for the design of section 4. In both charts, time is displayed on

the X axis. The activity ratio of the design is defined as zero when

all initiators are “off” and producing no traffic (reads and writes

through the interconnect to a memory), and one when all initiators

are “on” and producing traffic at maximum capacity. The charts

show the results from a simulation where the activity ratio was

slowly increased from zero to one over a span of 100 us (of

simulated time).

5.1 RESPONSE STATUS

The Response Status Chart (Figure 6) shows the response status as

the activity ratio is increased. The green line shows the number of

successful transactions (TLM_OK_REPONSE) processed in the 100

us sampling period. The orange line shows the number of

transactions which failed (TLM_GENERIC_ERROR_RESPONSE)

because the system was overloaded and queues were full. Notice that

at low activity ratios (system load) almost all transactions were

successful, but after the activity ratio exceeds 0.2,

5.2 THROUGHPUT
This chart shows the offered load and throughput as the activity ratio

is increased. Notice that the offered load increases linearly with

activity ratio (as you would expect). The throughput of transactions

through the system closely tracks the offered load (because at low

loads nearly all the transactions are successfully processed). Once,

the activity ratio approaches 0.2, the throughput levels off and

declines slightly with increasing activity ratio. This is expected

because once the system is completely saturated, nothing more can

be pushed through the system regardless of how many transactions

are generated by the initiators.

5.2 GENERIC
To reiterate, because of the standardization of the generic payload

under TLM 2.0, this test is constructed in a generic fashion – there is

no need for the user to modify their code as long as they use a tool

for constructing such performance analysis that analyzes the values

of the generic payload. The two charts constitute an automatic visual

stress test for a TLM 2.0 design.

Figure 6. Response Status Chart.

Figure 7. Throughput Chart.

6. CONCLUSION.
This work has demonstrated the use of a new SystemC technology

that automatically generates system performance statistics based on

the TLM 2.0 standard. It shows how the tool can be used to construct

an automatic visual stress test for well constructed TLM 2.0 designs

modeled at the AT level of abstraction. The existence of the generic

payload – that makes interoperability between models of disparate

blocks of IP possible – enables the creation of performance analysis

metrics and tools without modifying individual designs. For results

to be meaningful in real usage, a sufficient level of timing must be

modeled in the system. The model must also be well constructed –

when buffering elements are out of capacity, the response status has

to be set accordingly. These sorts of automatic analyses, made

possible by the TLM 2.0 standard, bring the promise of better

debugging and analysis of SystemC-based SOCs.

7. REFERENCES
[1] Frazier, G., Motel, V., Bhatnagar, N., Larue, W. “Automatic Quantitative
Analysis of Simulations of TLM 2.0 Loosely Timed Models.” Proceedings of

DesignCon. Feb. 2010.

[2] Goodman, J. “Using cache memory to reduce processor-memory traffic.”
Proceedings of the 10th annual international symposium on Computer

architecture. Pages 124-131. Stockholm Sweden. 1983.

[3] Allan, G. “The Love/Hate relationship with DDR SDRAM Controllers,”
Design and Reuse. http://www.design-reuse.com/articles/13805/the-love-

hate-relationship-with-ddr-sdram-controllers.html.

[4] Open SystemC Initiative. “TLM-2.0 Standard.”
http://www.systemc.org/downloads/standards/tlm20.

http://www.cadence.com/rl/Resources/white_papers/tlm-wp.pdf.

[5] Jedec Global Standard Committee. http://www.jedec.org/standards-
documents.

