
 

 

Exhaustive Equivalence Checking on AMD’s Next-generation Microprocessor Core 

 

Baosheng Wang, Brian McMinn, Borhan Roohipour, Ashok Venkatachar, Arun Chandra, Richard Bartolotti, 

and Lerzan Celikkanat 

Advanced Micro Devices, Inc., 1 AMD Place, Sunnyvale CA 94085, USA 

 {FirstName.LastName}@amd.com

Abstract 

There is an ever-increasing demand for higher 
performance microprocessors within a given power 
budget. Such a demand forces design choices – that were 
once seen only in high-speed custom blocks – to spread 
throughout the microprocessor core. Given these unique 
custom structures, traditional equivalence checking 
methods can no longer meet the requirements of achieving 
the optimal verification coverage and runtime tradeoff. 
More advanced equivalence checking methodologies are 
needed to provide 100% verification coverage while 
maintain a reasonable verification runtime. 

In this paper, we present a framework of exhaustive 
equivalence checking strategies used at AMD on it’s next 
generation high-performance microprocessor core. This 
framework consists of one mainline tape-out sign-off flow, 
two assisting flows and three supporting flows. This 
framework utilizes multiple state of the art equivalence 
checking techniques, such as logic equivalence checking, 
symbolic simulation, binary simulation, and model 
checking. To avoid unnecessarily coverage overlap 
among the three major equivalence checking flows, 
thorough coverage analysis is performed.  By removing 
the unnecessary coverage overlap among these validation 
flows and coupling their applications at different design 
hierarchies, this framework is achieving efficient runtime 
without compromising the verification quality. 

In addition, automation has been put in place to prevent 
pilot errors as much as possible.  

Keywords:  Equivalence Checking, Exhaustive, Symbolic 
Verification, Model Checking, Simulation, Automation. 

1. Introduction 

AMD’s next-generation “Bulldozer” microprocessor core 
[1] is a high-performance core that is significantly 
different than previous AMD cores [2-3]. It is a power-
efficient, cluster-based and multi-threaded execution 
engine. It is designed to enable high-frequency operation 
while delivering superior throughput at a given power 
budget. The monolithic “core pair” is capable of executing 
two threads via a combination of shared and dedicated 
hardware resources. The core includes a 16 KB L1 cache, 
2 MB L2 cache and an enhanced 128-bit floating point 

unit. The core design has more than 200 million transistors 
and it will be used in microprocessors produced at 32nm 
or smaller technology nodes. 

Due to ever-increasing performance requirements, a 
significant portion of the core design includes high-speed 
dynamic logic and custom memory structures. 
Traditionally, thanks to its high efficiency, good 
scalability and proven records on static designs (i.e., 
conventional CMOS standard cell designs), 
Combinational Equivalence Checking (CEC) is widely 
used to ensure the design implementations do not alter the 
functional behaviors of the RTL [4-6]. While dynamic 
logic and custom blocks spread throughout the design, 
CEC can no longer be able to achieve exhaustive 
equivalency checking due to the following reasons: 1) 
standard cells are never the only building blocks of the 
microprocessors and custom cell verification is demanded 
to solidify the foundation of CEC; 2) gate-level logic 
optimization requires certain constraints to help CEC sign 
off. Without exhaustively verifying those CEC constraints, 
the CEC quality is in question; 3) because of the limited 
EDA technology, certain circuit topologies, e. g., dynamic 
logic, have low CEC coverage and hence spice-level 
verification on those topologies is a must; 4) the 
microprocessor is a serialized engine and there might be 
sequential-event-sensitive structures which are never the 
CEC targets.  

Some could argue that Sequential Equivalency Checking 
(SEC) might alleviate pains of CEC, however, the size of 
microprocessor designs makes SEC an impractical option 
in terms of verification runtime. 

In the rest of this paper, Section 2 explains the 
“Bulldozer” microprocessor building and analysis blocks. 
The proposed framework, including the signoff, assisting 
and supporting flows, are presented in detail in Section 3. 
Section 4 utilizes an execution logistical flowchart to 
illustrate the framework automation and demonstrate how 
the exhaustive equivalence checking is performed on 
AMD’s next-generation microprocessors core, and Section 
5 concludes the paper. 

2. Building and analysis blocks of the Core 

AMD’s “Bulldozer” microprocessor core is a hierarchical 
design. It consists of three hierarchies (as shown in Figure 
1): component, block-level-module (BLM) and macro. 



 

 

 

Figure 1. The hierarchies of “Bulldozer” core 

Macro-level blocks are the most complex designs in the 
microprocessors. Numerous transistor-level design styles, 
such as dynamic logic, timing-adjusting circuits, are 
invented to meet timing, area and power requirements. No 
doubt, such blocks require the most extensive equivalency 
checking practices. 

BLMs are usually designed to provide glue logic for 
custom macros and therefore most of them can be RTL-
based. However, this does not mean their equivalency 
verification is well fitting with typical CEC flow. Certain 
structures, e.g., Build-in Constrain-Resolution (BICR) and 
one-hot structures [7], requires extra CEC enhancements 
to achieve exhaustive equivalency coverage. 

Components consist of multiple BLMs, where 
unfortunately interconnects between BLMs are not always 
static. Those non-static interconnects actually introduce 
multiple equivalency checking challenges (see details in 
the following sections). Finally, several components are 
constructed together becoming the monolithic core. 

AMD’s Bulldozer microprocessor core utilizes templates 
as the fundamental blocks for electrical analysis purposes, 
such as analysis on noise, IR, electrical migration, and so 
on [8]. A template is a collection of a specific circuit 
topology originated from a standard cell, a custom cell or 
both. Besides, it carries plenty of circuit topology 
information, e. g., electrical properties, transistor-level 
connectivity graph, gate-level models, etc. Once all known 
templates are built, all macros, BLMs and components can 
be interpreted with multiple templates connected in certain 
ways. Such interpretation mechanics is the in-house tool 
“classification”. As a result, the template library delegates 
the full circuit topology sets of the “Bulldozer” 
microprocessor core. In other words, the exhaustive 
template equivalence verification is fundamental for all 
core analysis flows. 

3. The Proposed Framework 

The proposed framework consists of multiple modern 
equivalency checking methods (as shown in Figure 2): the 
mainline tape-out signoff equivalence checking flow, i.e., 
CEC, the two assisting equivalence checking flows – 
symbolic equivalency checking and functional gate-level 
simulation-based equivalency checking, three supporting 
equivalency checking flows – template-level equivalency 

checking, CEC constraint harvesting and gate-level 
constraint proof. 

 

Figure 2. The proposed framework 

From Figure 2, once the microprocessor design 
specification is created, its RTL-level coding and spice-
level implementation can sometimes start in parallel. 
Whenever a CEC run is requested during the product 
development stages, the spice-level circuits have to be 
abstracted into gate-level formats in terms of basic 
building blocks, i.e., the templates for “Bulldozer” 
microprocessor core. Without question, template 
verification flow (i.e., tsimverify) has to be launched to 
ensure the template verilog models exactly matching its 
spice-level representation under certain conditions, i.e., 
input pin constraints. The supporting flow logvgate is 
designed to formally prove those template-level input pin 
constraints at various design hierarchies. 

Even with both highly qualified RTL and templates, CEC 
still needs some helps from a bunch of RTL-level 
constraints to claim the RTL and the implementation are 
really logically equivalent. The reasons contributing to 
such a need on RTL-level constraints can be referred in 
the following sub-sections. Fortunately, we design a 
dedicate flow named as “logvrtl” to formally harvest those 
RTL-level constraint. 

Lastly, to address certain possible weaknesses of the 
circuit abstraction/modeling process and CEC weakness 
on dynamic and sequential-even-sensitive circuits, we 
introduce 2 extra assisting flows, i.e., macro-level 
symbolic equivalence checking and functional simulation-
based equivalence checking. 

With careful arrangements and optimal coverage-
productivity tradeoffs with those above flows, we can 
achieve exhaustive equivalency checking coverage on 
AMD’s “Bulldozer” microprocessor core. 

3.1 Tsimverify and Logvgate Flows 

Once a template is formed through the “classification” 
process on the design implementations, the first step is to 
create its abstracted gate-level models. We can skip the 
template model abstraction topic since it is out of the 
focus of this paper. Once a template model is developed, 
we apply the “tsimverify” flow to compare the template 



 

 

gate-level model and its spice representation making sure 
they are equivalent by feeding them with exhaustive 
binary vectors. The block diagram of the “tsimverify” flow 
is shown in Figure 3: 

 

Figure 3. Block Diagram of “tsimverify” flow 

As shown in Figure 3, the exhaustive binary vectors w/o 
violating the template input pin constraints are simulated 
on both types of template representations. Their output 
responses are compared. Once there is a mismatch, either 
the template gate model requires a fix or certain template 
input constraints are missing. 

To avoid potential vector-order weaknesses of those 
binary vectors, symbolic vectors are selected on verifying 
templates which are sequential circuits, e.g., flops, latches, 
etc. 

To ensure a template is used correctly, that is, its input pin 
constraints used at template-level verification are never 
violated when such a template is instantiated in the design, 
we develop a flow so called “logvgate” to formally prove 
those template input pin constraints. A block diagram of 
the logvgate flow is illustrated in Figure 4 (the flow details 
can be referred to [8]). 

Once a flatten spice-level netlist is provided, the 
“classification” engine tries to identify every possible pre-
defined templates used in the design and creates a flatten 
gate-level netlist in terms of templates. Meanwhile, the 
template-level input pin constraints are converted into 
OVL assertions, where each element in the equations is 
the driver net to those template input pins. With the helps 
of user-defined control files, the assertions plus the gate-
level netlist are feeding into a model checking tool for 
constraint proof. If such assertions are all proven, it can be 
claimed that the input pin constraints used for template 
verification is true. In other words, all templates are used 
in the expected way. 

 

Figure 4. Block Diagram of “logvgate” flow 

Two extra efforts are usually required during assertion 
failure debug: 

1) Create helper assertions: due to gate optimization, 
sometimes there is a need to create help assertions as 
assumptions in order to prove certain template constraints. 
Usually, those assumptions can be found in the RTL and 
then this effort is to translate those RTL-level assertions 
into gate-level ones with the helps of CEC mapping files. 
If those assumptions do not exist in the RTL, negotiation 
with RTL designers is needed to create such valid helper 
assertions. One important note is that all elements of those 
RTL-level helper assertions have to be directly from 
outputs of state elements since CEC only provides state 
mappings. 

2) Create initial vectors: our logvgate flow starts with 
random state values. However, sometimes, in order to 
constrain the model checking within a certain operation 
mode, e.g., mission mode, non-related states have to be 
initialized. For example, when running logvgate at mission 
mode, all scan control related fops are supposed to be in 
reset states. 

Another engineering problem we are usually facing is the 
logvgate flow is running too long due to a large number of 
assertions. Our solution is to run logvgate hierarchically: 

a) Run logvgate at macro-level w/o any helper assertions; 
report both passed and fired assertions; 

b) Run constraint generation at BLM-level and report all 
generated assertions; 

c) Prune the macro-level passed assertions from the BLM-
level assertions based on test expression matching; 

d) Run model checking on the pruned assertions at BLM-
level. 



 

 

This hierarchical logvgate flow is proven to be very 
efficient in runtime, especially when the same macros are 
instantiated in the BLMs multiple times. 

3.2 CEC and Logvrtl Flows 

The CEC flow used for AMD’s “Bulldozer” 
microprocessor core is not much different from the one 
used for full-static designs. For better coverage-
productivity tradeoffs, CEC is running at both functional 
and scan modes on macros while BLM-level CEC is 
running at functional mode only. 

As mentioned in Section 2, there are quite a few BLMs 
which utilize BICR technology to prevent contentions on 
one-hot structures from random scan vectors [9] (see the 
diagram in Figure 5). 

 

Figure 5. Enhance CEC for BICR Test Decoder Coverage 

Except the functional decoder, the BICR equips test 
decoder logic to ensure any random scan input vectors can 
be decoded as one-hot values before feeding into the 
functional flops driving the 1-hot structures. The RS latch 
in the Figure 5 is used as a selection mechanism for 
observing scan or functional data paths on the scan chains. 

Unfortunately, those BLMs are not the ones which can be 
created by synthesis due to performance requirements. As 
a result, the test decoder logic is also created manually and 
the creation of which is therefore error-prone. To 
overcome such a CEC coverage loss at scan mode, we 
enhance the typical CEC as follows: 

1) Identify the inputs and outputs of test decoder and 
define LEC cut points on those nodes. Luckily, the whole 
BICR flop can be formed as a template and the LEC 
cutpoint identification becomes much easier since they can 
simply be the inputs and outs of BICR flops; 

2). Based on BICR flop template naming conventions, all 
BICR flop instances can be found and those test decoder 
logic are fully validated using typical CEC. 

Another enhancement to ensure CEC robustness is the 
utilization of logvrtl flow [10], which is formally proving 
the CEC constraints at RTL level. The details of this flow 
principle can be referred in [10]. Currently, we are running 
logvrtl at BLM and component levels only for two 
reasons: a) since quite significant glue logic exists outside 
of macros, running logvrtl at macro-level will have lots of 

false negatives; b) Tool capacity issues prevent us running 
logvrtl at the full core level. 

For better coverage-productivity tradeoff, we further 
enhance this flow in three ways: 

1) Initialize all non-array states. It is very important to 
start the logvrtl process from a known operation mode, 
e.g., mission mode, to avoid unnecessary false negatives. 
We implement this enhancement by launching the reset 
vectors dumped from functional verification. 

2) Create helper assertions as many as possible at BLM-
level for either clearing the fires or improving logvrtl 
runtime. As stated in Section 2, lots of interconnects 
between BLMs are not always static. As a result, it is 
expected that there would be BLM-level fired assertions 
which can be fixed using helper assertions. Due to 
intended design loops, logvrtl sometimes is running very 
slow and appropriate helper assertions can greatly shorten 
the tool analysis time on those loops. Moreover, creating 
helper assertions can also help us to understand the root-
cause of fires and therefore increase the robustness of the 
lower-level design at an early stage. Some may be 
concerned with the correctness of those helper assertions. 
Luckily, those helper assertions are blessed by massive 
functional verification vectors before becoming inline 
assertions and there is little chance when incorrect helper 
assertions are checked in. 

3) Prove all CEC constraints plus helper assertions at 
component level. With all correlated logic in place for all 
BLMs, it is very unusual that helper assertions are needed, 
except the architectural-level assumptions and the ones 
that are not guaranteed by hardware but through 
firmware/software. 

3.3 Symbolic-based Equivalence Checking 

Typical CEC flow compares logic cones from one state 
point to another. The state point clocking mechanism must 
be activated for the cone logic in order to make it 
reachable. Unfortunately, this is not always true for 
dynamic logic and glitch latches [11] because their data 
paths also involve clocks. As a result, CEC coverage on 
dynamic logic and glitch latches are not exhaustive. 

Another CEC flow drawback is that the keeper 
functionality can not be modeled accordingly. Basically, a 
keeper keeps the previous value of the circuit. Keepers are 
also called rail-pullers. Keepers are like half latches and 
have loops and introduce sequentiality. In CEC, the keeper 
circuitry is simply modeled using a weak resistive pull-up. 
If such a keeper transistor is not actually resistive, an error 
can be masked [12]. 

The last concern with gate-level equivalence checking is 
the dependency on the circuit abstraction accuracy. 
Although the templates are exhaustively verified, there 
might be some user-preferred modeling tricks but they are 
actually biased from the real circuit behaviors. 



 

 

To resolve the three coverage/robustness concerns above, 
we introduce the symbolic-simulation-based equivalency 
checking flow for our “Bulldozer” microprocessor core 
[13]. This flow simply compares CEC-clean spice-level 
netlist with the corresponding RTL and hence no gate-
level modeling is required, as shown in Figure 2. Since 
most of the highly-customized circuits reside in macros, 
this flow is only run at macro level. 

The most annoying problem we encountered during 
symbolic equivalence checking is the symbolic space 
explosion. We resolve this issue in the following three 
ways: 

1) Constrain the symbolic equivalence checking at 
function mode only. The design usually becomes simple 
enough when it operates at scan mode and typical CEC 
can cover them very well. 

2) Do divide & conquer on complex macros. The common 
practice is to do either protocol-based or data-integrity-
based divide & conquer. Sometimes, sub data-integrity-
based divide & conquer is needed because of wide address 
or data buses. 

3) Do coverage-driven divide & conquer on super 
complex macros. If the regular divide & conquer 
mentioned in 2) is not effective in terms of runtime, we do 
coverage-driven divide & conquer by further reducing 
overlapped coverage from CEC and only targeting on the 
necessary coverage area, e.g., the dynamic logic, glitch 
latches, the keepers, etc. By comparing the reports from 
template-based topology identifications and the ones from 
symbolic equivalence checking coverage, all CEC 
coverage loss can be compensated. 

3.4 Equivalence Checking with Functional 

Vectors 

To fully validate the Bulldozer’s microprocessor core, the 
last equivalence checking flow we developed is to do 
equivalence checking with functional vectors so that 
sequential-event-sensitive structures can be covered. It is 
intended to prove the equivalency of the RTL-level design 
and its gate-level implementation through clean functional 
vectors. As an assisting signoff flow of CEC, its cleanness 
is very important. It paves the foundation for other related 
flows, such as ATPG (Automatic Test Pattern Generation) 
based verification, power analysis, and so on. Also, it 
reduces debug/run efforts on SoC-level validations. Gate-
level simulation is a very complex and time-consuming 
practice since it processes the target RTL, the 
corresponding CEC-clean gate-level netlist, the clean 
template gate-level models, CEC mapping files and the 
passed functional vectors. 

To achieve the optimal throughput without losing too 
much coverage, we apply the following four approaches in 
order to make it cost-effective: 

1) Apply it on BLMs only at an early design stage. For 
more mature designs, apply it on components and cores 
only since there are only a few components and cores. 

2) Limit the stimulation/observation points at primary 
inputs/outputs only. Only when there is a need for debug, 
state points can be the stimulation/observation nodes. 

3) The number of functional vectors is limited. Those 
selected vectors are usually targeting the critical functions 
in functional/DFX/power-saving areas. 

4) Provide a mechanism for substituting the gate-level 
netlist with its RTL/behavior counterpart. This not only 
can speed up flow runtime for fast turnaround but also 
enable an early equivalency checking on entire designs 
when a small portion of gate-level designs is unavailable. 

4. Automation 

Without automation, it is impossible to execute such an 
exhaustive equivalence checking framework in a timely 
manner. Also, with extensive automation, potential pilot 
errors can be avoided at the entries/exists of each 
equivalence check flow. The third benefit of automating 
this framework is that it can be reusable for other projects. 

 

Figure 6. The Automation of the Proposed Framework 

In Section 3, we have explained the flowchart of 
individual equivalence checking flow. This section mainly 
addresses the overall automation flowchart of the 
proposed framework (see the block diagram in Figure 6). 

Since the template is the fundamental element for both 
microprocessor core analysis and equivalence checking 
flows, this library must be clean before starting 
corresponding downstream flows. As a result, the template 
information, e.g., the tsimverify status, the template 
version, is part of CAD environment for core deliverables. 



 

 

To reduce the human communication efforts, we embed 
the CEC at all levels and other equivalence checking flows 
under component level into design publish processes. In 
other words, whenever a designer decides to publish 
his/her macros/BLMs, all necessary equivalence checking 
flows have to be run. Depending on different program 
milestones, some equivalence checking flows require to be 
passed for those macros/BLMs. 

For example, as shown in Figure 6, the CEC flow is 
required to be run and passed at all design levels whenever 
a macro/BLM is published, which not only builds the 
foundation of the design quality but also reduces the 
engineering debug efforts on other equivalence checking 
flows. The macro-level symbolic equivalence checking 
and logvgate, BLM-level logvrtl, logvgate and simulation 
based equivalence checking flows are also parts of design 
publish processes to further improve the design quality of 
equivalence checking. 

It is noted that macro-level logvgate and BLM-level 
logvrtl flows are run for improving productivity. In other 
words, no debug efforts are required when there are 
failures coming out from both flows. After all failures are 
fully debugged and fixed/waived, we officially sign off on 
equivalence checking to core deliver team. 

5. Conclusion 

AMD’s next-generation “Bulldozer” microprocessor core 
is a high-performance, a power-efficient and multi-
threaded execution engine. It is designed to deliver 
superior throughput at a given power budget with the 
helps of highly-customized designs. Such design choices 
create lots of equivalency checking challenges when we 
are trying to ensure those customized circuits work as 
expected, i.e., not altering the functionalities defined at 
RTL level. The proposed exhaustive equivalence checking 
framework greatly resolves the concerns of silicon bugs 
due to circuit designer errors without delaying the 
products. The automated execution logistical flow chart 
demonstrates such a framework is very cost-effective 
vehicle on ensuring the transistors perform what we 
describe in RTL. 

6. Acknowledgements 

We thank anonymous reviewers at Advanced Micro 
Devices, Inc. for their insightful comments and 
suggestions on this work.  

7. References 

[1] M. Butler, “Bulldozer – a new approach to multi-thread 
compute performance”, the IEEE 22nd HotChips 
conference – a symposium on high performance chips, 
Session 7.2, August 22 – 24, 2010 

[2] T. Wood, “Test and debug features of the AMD-K7TM 
microprocessor”, in Proceedings of IEEE International 
Test Conference (ITC), 1999, pp. 130 -136 

[3] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, 
D. Wu, M. Braganza, S. Meyers, E. Fang, R. Kumar, “An 
Integrated Quad-Core Opteron Processor”, the IEEE 
International Solid-State Circuits Conference (ISSCC), 
2007, pp. 102-103 

[4] X. Feng, “Formal equivalence checking of software 
specifications vs. hardware implementations”, PhD thesis, 
University of British Columbia, January 2007 

[5] A. Kuehlmann and Cornelis A. J. van Eijk, 
“Combinational and sequential equivalence 
checking”, in Tsutomu Saso, Soha Hassoun, editor, 
Logic Synthesis and Verification, pp. 343–372. 
Kluwer Academic Publishers, 2002. ISBN: 0-7923-
7606-4 

[6] F. Somenzi and A. Kuehlmann, “Equivalence 
checking”, in Louis Scheffer, Luciano Lavagno, and 
Grant Martin, editor, Electronic Design Automation 
For Integrated Circuits Handbook. CRC Press, 2006. 
ISBN: 0-8493-3096-3 

[7] G. Giles, J. Irby, D. Toneva, and K.-H. Tasi, “Built-
in constraint resolution”, in Proceedings of IEEE 
International Test Conference (ITC), 2005, pp. 696-
706 

[8] R. Bartolotti, T. Burd, B. McMinn and A. Chandra, 
“Constraint management and checking in template-
based circuit designs”, the 10

th
 IEEE International 

Workshop on Microprocessor Test and Verification 
(MTV), 2009, pp. 107-113 

[9] M. Yilmaz, B. Wang, J. Rajarman, T. Olsen, K. 
Sobti, D. Elvey, J. Fitzgerald, G. Giles and W-Y 
Chen, “The scan-DFT features of AMD’s next-
generation microprocessor core”, in Proceedings of 
IEEE International Test Conference (ITC), 2010, pp. 
2.1.1-2.1.10 

[10] X. Feng, J. Gutierrez, M. Pratt, M. Eslinger and N. 
Farkash, “Using model checking to prove constrains 
of combinational equivalence checking”, in the 
Design & Verification Conference & Exhibition 
(DVCON), 2010, pp. 8.2.1-8.2.7  

[11] A. Chandrakasan, W. Bowhill, and F. Fox, Design of 
high-performance microprocessor circuit, New York, 
NY: Wiley-IEEE Press, 2001 

[12] A. Chandra, L. C. Wang, and M. Abadir, “Practical 
considerations in formal equivalence checking of 
PowerPC microprocessors”, in Proceedings of the 
8th IEEE Great Lakes Symposium on VLSI, 1998, 
pp. 362-367 

[13] Synopsys, ESP-CV User Guide, Production Version 
2010.06, June 2010 

 

 


