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Abstract—SystemC is a versatile C++ based design and ver-
ification language, offering various mechanisms and constructs
required for embedded systems modeling. Using the add-on Sys-
temC Verification Library (SCV) elemental constrained-random
stimuli techniques may be used for verification. However, SCV
has several drawbacks such as lack of a functional coverage
facility supporting coverage collection on RTL and TLM models.
In this article we present a functional coverage library which
implements parts of the IEEE 1800-2005 SystemVerilog standard
capturing functional coverage throughout the design and verifica-
tion process, and allows to facilitate coverage-driven verification
in SystemC.

I. I NTRODUCTION

In any domain incorporating embedded systems the ver-
ification of the functional and non-functional properties for
integrated system behaviors is essential. Moreover, the ver-
ification process itself will remain the main bottleneck of
every design flow, preventing the industry from better numbers
in first silicon success. For example, in [1] it is estimated
that the verification effort grows at a double-exponential rate
with respect to the Moore’s Law curve. Hence, if the number
of transistors per chip increases by 10X between 2008 and
2018, then the verification effort would increase by 1024X.
Verifying such complex heterogeneous embedded systems is
a time consuming and tedious task. To cope with always more
complexity and to boost productivity, more efficient verifica-
tion techniques and technologies were introduced through the
last years like the notion of functional verification [2] which
supports features such as verification by assertions, constraint-
based random test pattern generation, and functional coverage.

In this article we present a functional coverage library to
enable coverage-driven verification of SystemC designs on
multiple levels of abstraction, which is continuation of work
conducted in [3]. While specialized hardware design and veri-
fication languages (HDLV) such as IEEE-1800 SystemVerilog
[4] and IEEE-1647e incorporate functional coverage language
features, these functionalities are neither available in the IEEE-
1666 SystemC standard [5], the SCV addon-library [6] nor
complete compared to the aforementioned in any publicly
available SystemC library. Moreover, to our knowledge there
is no particular activity of the SystemC working groups to add
these functionalities to the next versions of SystemC or SCV.

The remainder of this article is as follows. In section II
we will briefly summarize the SystemVerilogcovergroup
concept and also discuss existing shortcomings. In section III
we will introduce the functional coverage library for SystemC
in detail. In section IV we will illustrate the handling of
the SystemC functional coverage library and the API via
several examples. In section V we propose how to integrate
the library with a verification methodology. Related work
will be discussed in section VI before we conclude and give
an outlook on further development and research activities in
sections VII and VIII.

II. COVERAGE DRIVEN VERIFICATION

Functional coverage is a user defined metric intended to
investigate to which extent the functionality of a given design
under test (DUT) has been verified by the stimuli generated
from previous simulation runs. As such, value coverage keeps
track of value assignments and changes of expressions and
conditions within the code. Thus, it is not verified if the DUT
is working properly rather than just gives information of the
quality of the test patterns with respect to the user-defined
metrics [7]. So, functional coverage can tell if a property
was executed at the right time, in the right order and in the
correct context and is a valuable metric for verification closure.
The IEEE-1800 SystemVerilog standard implements a metric
for value and transition coverage collection by means of it’s
covergroup keyword. A covergroup is a hierarchical
element that group coverpoints. Acoverpoint is associated
with a value source, for example asc_signal in SystemC
RTL designs. Acoverpoint containsbins, which actually
represent counters, and increment when the value of the
associated value source fits in any of the bins assigned integer
intervals or value transitions during a sampling event. The ex-
isting coverage driven verification scenarios of SystemVerilog
andeare mainly targeted at RTL-level designs and RTL related
signal types. Coverage analysis of system models at higher
levels of abstraction is a promising approach to cope with the
complexity and performance requirements for verification of
ever increasing design sizes. Apart from that, a mandatory
requirement for true TLM capable coverage collection is the
possibility of multiple samplings per simulator delta cycle.



In general the coverage functionalities have to be indepen-
dent from the model abstraction level and coding styles, for
example TLM-2. Moreover, the option to explicitly sample
coverpoints with data, in order to minimize the data collected
and to maximize its information content, is meaningful.

III. A S YSTEMC FUNCTIONAL COVERAGE LIBRARY

In this section we will introduce the functional coverage
library for SystemC in detail. Therefore, we will explain our
assumptions, highlight supported features and name unsup-
ported features of the current implementation.

A. Design Constraints

During the conception phase potential verification use-cases
were discussed and several requirements and assumptions were
taken which influenced the later prototype implementation of
the functional coverage library. Among others requirements,
the library

• shall implement a metric according to the SystemVerilog-
2005 concept of covergroups, coverpoints and bins etc.

• may be used on the standard OSCI SystemC kernel.
• may use header only functionalities of Boost libraries.
• shall not rely on the SystemC Verification Library (SCV).
• shall allow coverage collection and sampling on RTL as

well as TLM abstraction levels.
• shall be designed as an addon library.

B. Library Overview

The SystemC functional coverage library was designed as
a singleton factory class, which is the main facility of the
library, providing all necessary setup and management API
calls for the creation and administration of every element
of the implemented SystemVerilog coverage metric. It may
be used upon the standard OSCI SystemC kernel on any
C++ framework as it was designed as an add-on library
for C++/SystemC environments. This also eases the addition
of functional coverage collection and evaluation to existing
testbenches. Moreover, the factory allows the administration of
the coverage database. The database stores collected functional
coverage information and has to fulfill two requirements. It has
(i) to capture already sampled coverage information prior to
the next run and(ii) to save this data after the test, which
is simplified by a set of convenience API functions. This
allows temporal merging of coverage results from independent
simulation runs of the same coverage metric.

The structure of the library is depicted in figure 1. Via the
connection level the library allows connection of coverpoints
to sc_signals, variables or callback functions. If implicit
sampling is used, each coverpoint has to be bound to a signal
source. If a coverpoint is not bound to a value source upon
simulation start the library will notify about that and halt
the simulation. Connections of value sources to coverpoints
are registered and saved prior to theinit_factory()
method of the factory, as can be seen in listing 1 and 2.
Once a coverpoint is connected to a source it may be sampled
during simulation runs. This can be done via implicit sampling

or explicit sampling with an integer argument. Moreover,
both ways can be performed simultaneously along the entire
hierarchy of covergroups, coverpoints and bins. For example,
the statementcoverpoint->sample() invokes an one-
time value retrieval from the coverpoints connected source and
invokessample(arg) on all itsbins. Within the evaluation
level, all coverpoints and their bins are examined if the
sampled value fits in one of the specified intervals. In this case,
the hit counter of the specific bin will increase. Moreover,
during construction of the coverage metric, the verification
engineer may set coverage goals for each coverpoint such as
minimal hits, targeted hit count and may associate weights.
The API level provides API functions and macros to instantiate
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Fig. 1. Structure of the SystemC functional coverage library.

the covergroup structure, to connect sources to the coverpoints
and to control and evaluate the coverage collection. Apart from
that, the coverage results can be written to a simple database
format.

C. Features

Our SystemC functional coverage implementation allows
the definition and instantiation of covergroups, coverpoints as
well as cross-coverpoints. Each coverpoint may contain an
arbitrary number of (normal) bins, illegal bins, ignore bins
and one optional default bin. Each bin may have numerous
integer intervals assigned. Moreover, a coverpoint can contain
transition bins. Each transition bin can be assigned with an
arbitrary number of integer sequences to implement a simple
successional value transition coverage. Each defined transition
sequence is assigned with a vector matching class instance.
The relation of the library elements is shown in figure 2.
A default bin contains all non-specified intervals of a data
type. Default bins, one per coverpoint, and their corresponding
intervals can be generated for integer data types. Once an
illegal bin is hit the library notifies and halts the simulation.
The hits of ignore bins will be counted but ignored for the
overall coverage percentage calculation of bins and cover-
points respectively. Moreover, the library allows the definition
of cross-coverpoints. In detail, the two selection expressions
binsof and intersect from IEEE-1800 SystemVerilog



Coverage Library

C
o

v
e

rg
ro

u
p

n
  

Covergroup 1

Coverpoint @SIG1 Coverpoint @SIGn

TransitionBin 1

... ...

. . .. . .

TransitionBin n

Bin 1

Interval 1

Interval n

...

Bin n

Interval 1

Interval n

...

Bin n

Interval 1

Interval n

...

Bin 1

Interval 1

Interval n

...

. . .

. . .

. . .

Trans 1 Trans n

VecMatch 1 VecMatch n

CrossBin 1

Bin 1 Bin 2X

CrossBin n

. . .

Fig. 2. Elements according to IEEE-1800covergroup concept.

are implemented to calculate and limit the cross product
of bins. To allow multiple samplings within one SystemC
simulator delta cycle we do not rely onSC_MODULEs and
clock sensitiveSC_METHODs within the implementation. The
sampling process can be triggered from the outside in a method
call fashion. All sources are connected via pointer references
or callback functions so their values may be read multiple
times per delta cycle. Apart from simple value coverage
boolean expression coverage can be implemented via callbacks
functions.

Compared to IEEE-1800 SystemVerilog, the current im-
plementation does not support open value ranges, clock-
ing block signals, conditional guards to avoid sampling,
wildcards specification as well as repeat ranges in transi-
tion bins. Moreover, several coverage type options are not
evaluated during the sampling process and the coverage
percentage calculation. Examples aredetect_overlap,
cross_num_print_missing as well as thestrobe
option. Moreover, the library functionality is restricted to
functional coverage collection only, so other parts of Sys-
temVerilog such as assertions, randomization and constraint-
solving are not considered for implementation. It is assumed
that the used SystemC testbench environment provides these
features, e.g. with help of the SCV library or another library,
to allow true coverage driven verification closure.

D. Simulation Performance

If implicit sampling is used all value sources are referenced
via pointers or Boost callback functions, so the glueing and
value retrieval itself is fast. The execution tradeoff when
applying functional coverage analysis mainly depends on
the granularity and amount of bins and associated intervals,
due to the fact that the library internally has to check if
a sampled value fits into any interval of the bins interval
vector. So the implemented sampling intervals and hierarchy
levels are crucial for simulation performance. Moreover, the
end-user has the option to choose the appropriate level of

sampling granularity and when to trigger coverpoints. This is
the key for using functional coverage successfully; minimize
the data collected but maximize its information content [7].
Metric-depending constants such as default bins intervals are
calculated just once during finalization of the coverage metric
construction. If default bins are defined, they automatically
increase if all other bin types of the specific coverpoint were
checked but did not hit for the specific value.

IV. EXAMPLES

In the following, several examples will be shown to illustrate
the SystemC functional coverage library usage as well as the
corresponding API calls.

A. Usage in a Testbench

Within a SystemC testbench the coverage library may be
included in the testbench infrastructure just by including the
library header file and instantiation of the coverage factory.
Once the factory is instantiated within the testbench the user-
defined functional coverage metric can be defined via the
creation of covergroups, coverpoints and bins. For example, in
a RTL testbench aSC_MODULE is created to act as a coverage
monitor and is then connected to the DUT signals. During the
connection phase of coverpoints the identifiers must be known
to derive pointers for them. For RTL designs the definition of
a SC_METHOD which invokes the users sample function on
posedge events could be done. Within the sample function the
verification engineer could sample the whole coverage metric
from top-level, or just certain coverpoints or bins, depending
on environment conditions. On the other hand, in TLM designs
it is meaningful to make use of analysis ports and interfaces
and to use explicit sampling with an integer argument (also
see section V).

B. Instantiation

In listing 1 the instantiation of the coverage library
singleton factory is shown. Using the API functions
set_coverage_db_name(name) the verification engi-
neer specifies where to store the collected coverage data. By
load_coverage_db(name), this data may be loaded and
evaluated at later steps, e.g. for temporal merging of coverage
results from independent simulation runs of the same coverage
metric.
/ / I n c l u d e t h e f u n c t i o n a l coverage l i b r a r y header
# inc lude <SCFC Factory . h>

/ / I n s t a n t i a t e s t h e f u n c t i o n a l coverage f a c t o r y
/ / e n s u r e s s i n g l e t o n b e h a v i o r
pFac = SCFCFactory : : i n i t ( ) ;

/ / s e t e x t e r n a l coverage da tabase
pFac−>se t coverage db name ( ” s m a l l T e s t . db ” ) ;

/ / coverage m e t r i c d e f i n i t i o n
. . .

/ / f i n i s h e s t h e coverage d e f i n i t i o n
/ / i n s t a n t i a t e s a l l o b j e c t s
pFac−> i n i t f a c t o r y ( ) ;

Listing 1. Example for instantiation of the coverage factory.



C. Coverage Metrics - Value Coverage

In listing 2 the API calls for the creation of covergroups,
coverpoints and bins with their integer intervals are shown.
First a new type of covergroup is created, calledCG_1 and
an instance is created. Using the created referencecg_one it
is now possible to add coverpoints to this covergroup. Each
coverpoint also has astd::string identifier. Using the
overloadedconnect method one can connect three types of
value source to the coverpoint:

• sc_signals of types that can be casted to integer
• pointers to variables that can be casted to integer
• functions with return type integer

The respective identifier has to be known at runtime in the
respective namespace. The API call to create bins makes use
of the C++va_arg macro for variadic functions to specify
the amount of intervals. The third parameter ofnew_bins
specifies how much bins to create for this interval(s).

/ / d e f i n e a new coverg roup t y p e and c r e a t e an i n s t a n c e
CG* cg one = pFac−>new covergroup (t h i s , ”CG 1” , ” CG 1 inst ” ) ;

/ / c r e a t e a new c o v e r p o i n t
CP* cp one = pFac−>new coverpo in t ( cg one , ” CP 1 SystemC ” )

/ / M u l t i p l e o v e r l a y s f o r connec t method , here
/ / connec t a s c s i g n a l<i n t> t o t h i s c o v e r p o i n t
cp one−>connec t ( Addr ) ;

/ / Dec la re a b in f o r w i t h i n t e r v a l s 20:30 and 50:60
pFac−>new bins ( cp one , ” 20 to30&50 to60 ” , 1 , 4 , 2 0 , 3 0 , 5 0 , 6 0 ) ;

/ / Dec la re an i g n o r e b in w i t h range 50−80
pFac−>new ignore b ins ( cp one , ” Ign50−80” , 1 , 2 , 5 0 , 8 0 ) ;

/ / Dec la re an i l l e g a l b in f o r v a l u e 99
pFac−>ne w i l l e g a l b i n s ( cp one , ” 99 BIN” ,AUTOBINS, 2 , 9 9 , 9 9 ) ;

/ / Add a l l o t h e r ranges o f Addr t o a d e f a u l t b in
pFac−>ad d d e f a u l t b i n s ( ”DEFAULT BIN” ) ;

Listing 2. Example forcovergroup, coverpoint andbin definition.

Here the constantAUTOBINS is the equivalent to the
bins a[] notation in SystemVerilog, and creates as many
bins as intervals. The fourth parameter ofnew_bins
is a va_arg argument that specifies how many inter-
val tuples follow. The methodsnew_ignore_bins and
new_illegal_bins share the same parameter intent. Us-
ing add_default_bins a default bin is created. Internally
the library now calculates all non-covered intervals of this
coverpoint and assigns them to this bin.

D. Coverage Metrics - Goals and Weights

The SystemC functional coverage library implements vari-
oustype_option members as declared in the SystemVer-
ilog metric. For example,set_at_least(int) defines the
minimum number of times a bin needs to hit before it is
declared as hit andset_goal(int) specifies the target goal
for a covergroup instance, a coverpoint or a cross-coverpoint
of an instance. The usage is depicted in listing 3. Using
the set_weight(int) method it is possible to specify the
weight of this covergroup instance which is considered while
computing the overall instance coverage.

/ / s e t t h e minimum h i t coun t f o r t h e c o v e r p o i n t t o
/ / be covered acco rd ing t o your m e t r i c
cp one−>set comment ( ”We use t h i s CP t o i d e n t i f y . . . ” ) ;
cp one−>se t w e i g h t ( 1 ) ;
cp one−>se t a t l e a s t ( 2 ) ;
cp one−>se t g o a l ( 9 0 ) ;

/ / a l l o p t i o n v a l u e s can be read v i a t h e API
cou t << cp one−>ge t g o a l ( ) << end l ;
cou t << cp one−>ge t a t l e a s t ( ) << end l ;

Listing 3. Usage of goals and weights within the simulation.

E. Coverage Metrics - Transition Coverage

In listing 4 the definition of transition bins is shown. First a
new transition bin container has to be created via the method
new_trans_bin and has to be assigned to a coverpoint.
Once this transition bin is created, the verification engineer
may add an arbitrary number of transitions. This can be done
in two ways. First, using the library’s transition class where
new values can be added to the transition in a stream syntax.
Second, it is possible to fill astd::vector<int> and pass
it to the transition bin.

/ / d e f i n e a new t r a n s i t i o n b in
Bins* t r a n s B i n = pFac−>new t rans b in ( cp one , ”TRANS” ) ;

/ / d e f i n e a new t r a n s i t i o n from i n t e g e r 23 downto 20
t r a n s i t i o n<i n t> vec23 20 ;
vec23 20 << 23 << 22 << 21 << 20 ;

/ / a s s i g n t h i s t r a n s i t i o n t o t h e t r a n s i t i o n b in
t r a n s B i n−>se t t r a n s ( vec23 20 ) ;

/ / c r e a t e ano the r t r a n s i t i o n
s t d : : vec to r<i n t> vec15 13 ;
vec15 13 . push back ( 1 5 ) ;
vec15 13 . push back ( 1 4 ) ;
vec15 13 . push back ( 1 3 ) ;

/ / a s s i g n t h i s t r a n s i t i o n t o t h e t r a n s i t i o n b in
t r a n s B i n−>se t t r a n s ( vec15 13 ) ;

Listing 4. Example for transition bins.

For every transition that is defined an instance of a vector
matching class is created. During sampling, each vector match-
ing class compares the sample value with the stored transition
sequence. If the value appears in the right order and the end
of the sequence is reached, the hit counter of the transition
bin will increase.

F. Coverage Metrics - Cross Coverage

In listing 5 the definition of cross bins for cross coverage is
shown. First a cross coverpoint has to be created and assigned
to a covergroup. Then coverpoints can be added to this cross
coverpoint via theadd_cp2ccp method. Now a cross bin
can be defined that evaluates its value with the help of a
select expression. This select expression may be composed
of logical AND, OR, NOT and the functionsbinsof and
intersect. The expressionbinsof refers to the bins of
an existing coverpoint. Usingintersect this bins may be
limited by enumerations of values or intervals. The notation of
intervals is again based onva_arg, so the second parameter
of intersect states the amount of intervals that follow.



/ / add a c r o s s c o v e r p o i n t t o t h e coverg roup cgone
C r o s s C o v e r p o i n t* CCP = pFac−>new CCP ( cg one , ”CP1 x CP2” ) ;

/ / add t h e c o v e r p o i n t s cpone and cp two
/ / t o t h e c r o s s c o v e r p o i n t
pFac−>add cp2ccp (CCP, cpone ) ;
pFac−>add cp2ccp (CCP, cptwo ) ;

/ / d e f i n e a c r o s s bin , t h e b i n s v a l u e i s e v a l u a t e d w i th
/ / he lp o f t h e d e f i n e d s e l e c t e x p r e s s i o n
pFac−>new CrossBins ( ”X1” ,

pFac−>bi n s o f ( CP one , b in1 ) && pFac−>bi n s o f ( CP two , b in2 ) ) ;

/ / d e f i n e ano the r c r o s s bin , l i m i t range
pFac−>new CrossBins ( ”X2” ,

pFac−>b i n s o f i n t e r s e c t ( cp one , 2 , 50 , 100) &&
pFac−>b i n s o f i n t e r s e c t ( cp two , 2 , 0xA000 , 0xB000 ) ) ;

Listing 5. Example for cross coverage usingcross-coverpoints.

G. Implicit and Explicit Sampling

The functional coverage metric can be sampled in the fol-
lowing ways. First, it is possible to explicitly sample a certain
coverpoint or bin with an argument using thesample(arg)
method. Internally, it is checked if any bin of the coverpoint or
any single bin has matching intervals defined. In case, the hit
counter for the specific bin increases. Second, a sample method
without any argument can be called on coverpoints and bins. In
this case, every coverpoint must be assigned to a value source,
using a supported overload of theconnect(source)methods
in the metric definition phase. Of course each coverpoint can
be connected to a different value source. During sampling,
the library dereferences the saved pointer or invokes the saved
callback respectively. The result value is then used to perform
a sample(arg) call on the specific coverpoint bins or single
bin.

/ / a SCMETHOD i s a s s i g n e d w i th a sample f u n c t i o n ,
/ / t h a t i n v o k e s sample ( arg ) on t h e f u n c t i o n a l
/ / coverage m e t r i c c o v e r p o i n t s , b i n s .
SC METHOD( sample func ) ;

/ / c l k i s used as t r i g g e r
s e n s i t i v e p o s << * c l k ;

Listing 6. Sampling with clocking event.

The sampling can be performed in relation to a clock event,
similar to SystemVerilog@posedge clk, as depicted in
listing 6. Moreover, the verification engineer may specify
different sampling methods, each evaluating other parameters
of the actual simulation run and focusing coverage collection
on the interesting activities only. The API provides several
convenience functions to retrieve defined covergroups, cov-
erpoints, bins etc. by name or to iterate of vectors of them
as shown in listing 7. Moreover, by means of the explicit
sample(arg) method the coverage metric sampling can be
manually triggered by the start or end of the execution of
a specific function or class method. This allows to imple-
ment behavior similar to that of SystemVerilog block event
expressions. Coverage collection on abstract modeling levels
such as TLM-2 is typically achieved using the analysis port
interface. In doing so, an analysis port is attached to the
interesting model and a coverage monitor is bound to it as a

subscriber. Within the subscriber the payload can be decoded
and functional coverage can be collected.

/ / Code w i t h i n samp lefunc f u n c t i o n :

s t d : : vec to r<SCFC Coverpoint*> cp vec ;
s t d : : vec to r<SCFC Coverpoint* >:: i t e r a t o r c p i t ;

/ / r e t r i e v e t h e v e c t o r o f d e f i n e d c o v e r p o i n t s
/ / f rom coverg roup cgone
cp vec = cg one−>ge t SCFC Coverpo in t vec to r ( ) ;

/ / i t e r a t e over e v e r y c o v e r p o i n t
/ / c a l l sample w i t h o u t argument
f o r ( c p i t = cp vec . beg in ( ) ; c p i t != cp vec . end ( ) ; c p i t ++)
{

( * cp i t )−>sample ( ) ;
}

Listing 7. Implicit sampling on coverpoints, bins.

H. Callbacks and Expression Coverage

The library allows to make use of a boost function pointer
such asboost::function <int (void)> to connect a
value source to a coverpoint. Within the callback function cal-
culations can be done or boolean expressions can be evaluated.
The return value of the function is then used to sample the
specific coverpoint or bin. Listing 8 depicts a very simple
implementation of a callback function. During the creation
of the functional coverage metric thiscallback_fct()
can be connected to a coverpoint via the connect method
coverpoint->connect(callback_fct). Note that in
this example all three variablesx, y andz must be accessible in
the callback function namespace. C++ does not support nested
functions. However, by means of inner classes a structured
approach is possible.

i n t ca l l b a c k f c t ( ){

/ / e v a l u a t e boo lean e x p r e s s i o n
re turn ( ( x < z ) | | ( y < z ) ) ;
}

Listing 8. Callback functions and expression coverage.

I. Evaluation

The factory provides several API methods, such as
get_coverage(), to calculate the functional coverage of
all covergroups as well as single covergroups or coverpoints.
Moreover, it is also possible to just retrieve the hit counter
for every individual bin. With help of the API methods
the verification engineer can build an evaluation metric. If
covergroup type member options were used, such as weights,
they will be considered during all calculations.

/ / w r i t e c o l l e c t e d coverage data i n da tabase f i l e
/ / which was s p e c i f i e d du r ing i n i t i a l i z a t i o n
pFac−>wr i t e db ( ) ;

/ / t h e coverage i n f o r m a t i o n can be q u e r i e d
/ / per f a c t o r y , covergroup , c o v e r p o i n t
cou t << pFac−>g e t c o v e r a g e ( )<< end l ;
cou t << cg one−>ge t c o v e r a g e ( )<< end l ;
cou t << cp one−>ge t c o v e r a g e ( )<< end l ;

/ / a l s o t h e h i t s can be r e t r i e v e d
cou t << t r a n s B i n−>g e t h i t s ( ) << end l ;

Listing 9. Coverage evaluation at the end of simulation.



Besides, the evaluations can also be doneduring the simula-
tion. This allows to alter the simulation specific conditions,
such as the constraint solving, depending on the actual cover-
age results and to steer the stimuli generation into uncovered
areas. In listing 9 a simple coverage evaluation is shown that
prints the coverage of the functional coverage metric at the
end of the simulation.

V. M ETHODOLOGY

In order to fully leverage the presented functional coverage
functionalities in SystemC testbenches we propose the usage
of the Open Verification Methodology (OVM) [8]. By means
of the OVM multi-language release, an efficient and standard-
ized structure of the testbench and its components such as
monitors, drivers, scoreboard etc. is introduced into the Sys-
temC ecosystem. Here the coverage monitor can be modeled
as a subscriber of an analysis port, decoding all transaction
and performing proper sampling. Concerning sampling we
consider implicit sampling (so sample without argument, the
value is derived from the registered value source) useful on
RTL-like SystemC designs where maybe sampling also has
to occur in relation to clock events. On the other hand, when
simulating more abstract models, e.g. with TLM-2 interfaces,
we suggest to make use of explicit sampling, as the nature of
payloads etc. can be so general and abstract, the verification
engineer should have the possibility to define when, where and
how often to sample what piece of data.

VI. RELATED WORK

An earlier version of our SystemC functional coverage
library was used to conduct a case study on a CAN bus
network in [3]. Despite the connection level was limited to
RTL SC_SIGNALs, using the coverage analysis we could
identify coverage holes in the stimuli generation as well as
unforeseen corner cases.

A. Standards and Industry

In the area of (add-on) verification libraries, the Open
Verification Library (OVL) [9] is maintained by Accellera and
provides checkers that may work as assertion, assumption or
coverage point checkers. The most recent versions such as v2.5
support SystemVerilog, Verilog and VHDL. Unfortunately,
there is currently no support for SystemC. Additionally, except
SystemVerilog the supported languages are working on RTL
level, impeding verification on higher levels of abstraction on
more abstract data types. In the area of functional coverage
implementations for SystemC, [10] introduces a functional
coverage prototype. Unfortunately, just a list of functions
without any details is available. In contrast, our library will
be open with all details as open source. Apart from that,
JEDA Technologies provides commercial products for Sys-
temC code, functional and transition coverage [11]. NextOP
Software mainly targets on assertion synthesis and assertion-
driven coverage collection and does not focus on SystemC
[12].

B. Academic

In [13] the author uses the callback facility of the SystemC
SCV library to achieve functional equivalent of SystemVerilog
value and (simple) transition coverpoints. Besides the men-
tioned data structures the author uses the SCVs introspection
facility and smart pointer callbacks to tie variables to cover-
points. This leads to automatic sampling of coverpoint which
is sometimes not intended. Besides we decided in section
III-A not to rely on the SCV facility, the possibility to tie the
sampling to custom events (similar to block event expressions
in SystemVerilog) or to sample custom values (e.g. string
coverage) to coverpoints is not supported. Moreover, unfortu-
nately this approach does not include advanced features such
as cross coverage with select operators, illegal bins or default
bin declaration. In [14] the authors introduce a verification
framework also based on the SystemC Verification Library
(SCV) providing a coverage monitor library for functional
coverage modeling. The implemented basic coverage operators
range from logicalOR, equal, non-equal, greater, etc.
but are not as powerful as the IEEE-1800 SystemVerilog
coverage features. In [15] the authors propose a coverage-
driven verification methodology approach that uses the their
own bve_cover class. This class has also been referenced
in [16] and [17]. It is reported that the approach allows defini-
tion of (illegal) buckets (similar to bins) and cross-coverage.
Unfortunately, the authors do not introduce implementation
details. In [18] a coverage driven testing policy is proposed
whereas Property Specification Language (PSL) expressions
which are converted to C++ are used to gather and inspect
function coverage information.

Concerning the related work, we can conclude that to our
knowledge there is no other free of charge functional coverage
library for the OSCI SystemC ecosystem that incorporates
value, expression and transition coverage as well as cross
coverage. Moreover, to our knowledge there is no particular
activity of the OSCI Verification Working Group (VWG) to
add functional coverage functionalities to the SCV library.

VII. O UTLOOK

For further development and research activities we see
a lot of interesting topics. First of all, missing features of
the current implementation in comparison with IEEE-1800
SystemVerilog such as per-bin conditional guards could be
implemented easily via vectors of callbacks with return type
boolean per bin. Another topic could be improved transition
coverage with open ranges and more advanced features. Here
we have to find a tradeoff between implementing a heavily
C++ meta-programming based facility or defining the desired
value sequence as a property and use an assertion language.
Whenever the assertion fires we could use this as a covergroup
sample or count event. Moreover, as C++ does not have the
declarative syntax feel of SystemVerilog the API syntax needs
to be more compacted in general. Here more efficient usage of
variadic macros techniques and template (meta)-programming
is necessary. Unfortunately, when building C/C++ libraries,
usually a tradeoff between optimal compilation footprint - with



help of extensive usage of generic programming and template
meta-programming - and the necessary amount of time for
(re-)compilation is meaningful. As a lot of iteration steps and
recompilations are likely for testbench engineering this is an
important timing issue. Therefore, the decoupling of manage-
ment and verification tasks of the testbench environment in,
e.g. SystemC/C++ and an interpreter language such as Python
is another interesting point of research. In detail, it should be
considered to which extend the coupling can be made without
SystemC kernel modification, to allow the overall verification
library still to run on standard OSCI SystemC installations.
Moreover, the database interface should support the upcoming
Accellera Unified Coverage Interoperability Standard (UCIS)
which is planned to be first released in 2011 [19], [20].

VIII. C ONCLUSION

In this article we presented an approach to implement
functional coverage for the SystemC ecosystem, capable of
running on the standard OSCI SystemC kernel. We briefly
introduced the available functionalities ranging from value
coverage, expression coverage, cross coverage and simple
transition coverage, by means of multiple example code list-
ings. All introduced functional coverage functionalities are
implementations of the IEEE-1800 SystemVerilog covergroup
metric. Overall, we see big potential for reduction of the ver-
ification effort for coverage-driven verification with SystemC
when moving to higher-levels of abstraction. Enabling the
coverage-driven verification paradigm for verification closure
in SystemC design flows using a functional coverage library
will boost SystemC’s role as high-level design and verification
language (HLDV), in doing so, still being a fully free of charge
and open source ecosystem. In the broader scope this library
will be combined with the results of other work packages
of the BMBF founded SANITAS project, e.g. an enhanced
OVM for SystemC, enabling early verification across the entire
value-creation chain.
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