

DVCon2011 Conference 1
 SVTB for Design Exercise

Simple & Rapid Design Verification using SystemVerilog Testbench

on Intel’s Next-Generation Microprocessor

Thomas Alsop Wayne Clift Luke Hood Jeff Gray

Intel Corp Intel Corp Intel Corp Intel Corp

503 712-9055 503 712-3251 503 712-2945 503 712-3529

thomas.r.alsop@intel.com wayne.clift@intel.com luke.hood@intel.com jeff.gray@intel.com

ABSTRACT

SystemVerilog Test Bench (SVTB) is a set of language extensions to the

IEEE 1800 SV LRM used to reduce the amount of time and effort

required to write tests which exercise SystemVerilog (SV) RTL code.

Design Verification or more correctly defined “Design Exercise” is a

methodology in which pre-defined basic boundary conditions of a design

must be tested before submitting code to the project‟s official codebase.

This methodology was used on the next-generation Intel CPU project to

reduce the number of bugs introduced to the RTL model by over 50%.

SVTB for Design Exercise was the utilization of SVTB language

extensions in conjunction with a test environment (TE) automatically

created by the RTL tools for any level of hierarchy in the CPU project.

SVTB was used predominately to fill any validation gaps where the

“official” non-SVTB TE was not available for designers or where the

validation TE collateral lagged behind the RTL coding milestones.

SVTB enabled designers to quickly and easily write directed tests within

a highly controllable and observable environment. SVTB also enabled

rapid debug turnaround time, from test or RTL change, through

compilation, simulation, and wave trace updates, typically 1-5 minutes.

SVTB TE‟s also allowed for extensive randomized and constrained

verification environments to be turned into models as regression test

suites.

INTRODUCTION

Design RTL bugs on Intel CPU projects have increased significantly in

the past decade, much more rapidly than previous trends had indicated,

even accounting for project design complexity increase. Some of the

more recent CPU projects reported record thousands of pre-silicon RTL

bugs. Without decisive action to reduce RTL bug rates, next generation

CPU teams would have faced critical RTL execution issues.

Recent CPU RTL postmortems identified that one of their most

significant sources of RTL bugs were caused by the general lack of early

(pre-code-release) RTL testing. These CPU teams faced a transition to a

brand new design language (SystemVerilog), a new SV-based tool suite,

and a new code development work model. The transition to this new

work environment consumed all available bandwidth and prevented any

serious focus on early “Design Exercise”.

“Design Exercise” is not a new concept in the industry or even within

the CPU design teams themselves. It is the methodology of completing

all gating exercise plan items before releasing new code to the official

project released models. It does not replace the true Validation process

done by Validation teams. “Validation” is an exhaustive process of

testing a design to ensure that it functions precisely to specification

covering all functional boundary conditions and all design usage modes.

“Exercise” is a subset of the total Validation effort. It is an initial breadth-

first testing approach applied to a new feature that provides confidence in

the basic functionality of that feature, before more extensive testing is

performed. In addition, exercise activities should be done at the lowest

hierarchy level at which test environment support is available with

sufficient controllability of the new feature. “Test your own code before

you inflict it on others” is a basic principle of sound engineering practice.

Before moving to this newer SV design language and infrastructure,

previous CPU designs, extensive tools and methodology were developed

for local testing of new features. A proprietary PERL-based Test

Environment (TE) supported local RTL testing. This proprietary TE

utilized a set of shared library functions and RTL model access

techniques, combined with custom user code, which allowed the user a

familiar language (PERL) in which to quickly develop custom test

environments at many hierarchy levels. Because PERL was well known

to the Design teams at Intel, there was very little barrier to entry for an

RTL coder to ramp up and do effective design exercise work.

When the CPU design teams moved to SV to model their hardware they

lost the use of the PERL-base TE. Their validation team made the

decision to not use SVTB for their TE‟s and chose instead a language that

was well ahead of SVTB, at the time, in terms of complexity and usage.

But because it was so significantly different from any language in the

Designer‟s experience, it posed a tremendous barrier to entry. This,

combined with other factors, led the CPU teams to use sub-standard

code-release policies where designers would turn the code in without

exercising the new feature at all, or they would stick it into a side model

and wait for the validation team to get to it later (sometimes months)

before it was turned in to a model. In both cases many bugs were

uncovered causing the overhead of tracking the bug and/or having the

designer re-learn the code he wrote month earlier.

There were some notable exceptions on these projects where the

Validation TE‟s were highly effective and bucked the trend. These

exceptions either gave designers the templates they would need for their

exercise work or some limited use of native SV test benches (TB) were

created. But at least in these more recent CPU teams, these were the

exceptions to the Design Exercise paradigm. Most designers did little or

no design exercise and relied on their validation team to find bugs.

Analysis of the more recent CPU teams Design Exercise experiences lead

to the following mandates to be applied to next generation CPU RTL

Development:

1. Release no code feature to the project repository until it has been

sufficiently/quantifiably exercised.

2. Work efficiently. Take full advantage of existing Test Environment

capabilities. If the required TE features are available, learn to use

them to complete Design Exercise.

mailto:thomas.r.alsop@intel.com
mailto:wayne.clift@intel.com
mailto:luke.hood@intel.com
mailto:jeff.gray@intel.com

DVCon2011 Conference 2
 SVTB for Design Exercise

3. If the project TE is not yet available or does not provide sufficient

controllability, consider completing Design Exercise using a custom

test environment.

Within this context, several SVTB pilots were launched to experiment

with SVTB and to help in the development of several supporting tools.

Three units of different size and complexity were chosen for

experimentation. Ultimately, the next generation CPU projects adopted

SVTB for use during Design Exercise, for cases when the alternative

validation environment was not ready to use or was inadequate. These

CPU teams developed infrastructure tools to generate SVTB wrapper

shells for any module, developed methodology and training material to

be delivered to the design team, and deployed SVTB. This paper will

discuss details of the tools, results from pioneering experiments, and

learnings from practical usage of the SVTB flow in CPU Frontend RTL

Development.

THE SVTB SOLUTION

SVTB is both an easy-to-use and powerful mechanism for writing

directed tests while also being very extensible to a highly random, highly

encapsulated, and fully layered verification environment. It brings many

of the OOP (Object Oriented Programming) concepts of C++ into the

verification world of hardware description languages (HDL), specifically

targeting Verilog extensions. SVTB consists of a significant number of

extensions that are now part of the IEEE 1800 SystemVerilog

specification which allows for more abstract constructs to be used for the

sole purpose of verification. It brings much of the 30+ years of software

verification solutions like OOP into the hardware verification realm in

order to reduce costs, increase productivity, and increase reuse. While it

is relatively new, it is gaining acceptance in the industry as the next

verification language of choice among the EDA vendors and user

companies.

While there are many aspects of the language which are powerful, there

are many pieces of it which still need improvement and therefore it does

lag some of the EDA‟s solutions which have been around longer. Some

of the language descriptions are vague and have left open the

interpretation of various features of the language. This has lead to

different solutions by different vendors‟ often leading to code which does

not compile or behave the same from one EDA simulator to another.

However, the industry is rallying around the spec and the SV community

continues to pour effort into language clarification and improvement.

Once the CPU teams decided to pilot SVTB, many questions had to be

answered. What would the capabilities be? How much ramp time would

be required? Would there be maintenance costs? How much reuse

would be available? What were the limitations? How much automation

could be implemented?

Before any pilots were initiated, the overall language was reviewed along

with industry standards. The two common verification methodologies in

the industry were the Verification Methodology Manual (VMM)[1] and

the Open Verification Methodology (OVM™)[2]. Both methodologies

are similar in scope and capabilities but their complexity and

comprehension levels were far beyond the needs of a simple design

exercise environment. This led us to believe that all of the above

questions had to be answered with a proprietary SVTB solution. Once

the capabilities and limitations were understood through pilots, a working

group (WG) was formed to develop a methodology around the

technology, to enable automated creation of a test environment, and to

deploy the system and train the design team.

THE EXTENDED ADVANCED PROGRAMMABLE INTERRUPT

CONTROLLER (XAPIC) PILOT

The first pilot was conducted by Intel‟s Corporate Design Solutions

(CDS) on the xAPIC, a sub-unit of the memory cluster. The main job of

the xAPIC is to process and prioritize interrupts, initiate handler routines,

and to track all interrupts to completion. The primary goal of the pilot

was to see if the language constructs would meet the needs of a simple

design TE. The secondary goal was to understand the capabilities and

limitations in order to develop a methodology. Several key learning‟s

about SVTB were drawn from this pilot:

Intuitive: The first key learning highlights how intuitive it was to move

from SV to SVTB. Designers that have worked with SV understand the

framework of the RTL environment: (a) the way hierarchy is created, (b)

the concepts of template definitions and instantiation, (c)

parameterization and macro usage, and (d) general syntax and semantics.

This framework does not change for SVTB. Instead it builds on it,

adding constructs and semantics that enable a TE to be created. In fact

the vast majority of the constructs used for RTL coding can be used in the

TB.

Simple: The second key learning realized how simple it was to create the

TE and write your first test. Figure 1, shows the code that drives a set of

interface signals over time. This is the only code a test writer needs to

understand to write his first test. It consists of driving the interface with a

hardcoded value, stepping one clock cycle, driving the next interface

signal, and so on until a complete transaction is done.

Reusable: Third learning, taking the interface pounding example and

encapsulating it into a class was very intuitive as well for SV designers.

The code in Figure 2 shows how to take the code from Figure 1 and

encapsulate it into a class. Within the class is a method, in the form of a

task, called „Write‟, which has both a port list and functionality. The port

list provides a means by which we can give meaningful names to the data

that we are driving. In the port list we can specify default assignments,

like CRThread and CRRead, and then leave these assignments out of the

method call shown in Figure 3.

With the class created, the test writer has to create a handle of that class,

construct the object, and then call the class method via the handle within

class ControlRegisterBus;

 task automatic WR(

 input logic [1:0] CRCtrl,

 input logic CRThread = 1’b1,

 input logic [10:0] CRAddr,

 input logic CRRead = 1’b0,

 input logic [31:0] CRData);

 m.crpwrup = 1'b1;

 ##1; m.crwritebus = {CRCtrl, 1’b1,CRRead,

 CRThread, CRAddr};

 ##1; m.crwritebus = CRData[15:0];

 ##1; m.crwritebus = CRData[31:16];

 m.crpwrup = 1'b0;

 endtask

endclass

Figure 2 – First Test Pounding the Interface

Figure 1 - First Class

 m.crpwrup <= 1'b1;

##1; m.crwritebus <= 16'b0010_0100_1000_0000;

##1; m.crwritebus <= 16'h0000;

##1; m.crwritebus <= 16'h0000;

 m.crpwrup <= 1'b0;

DVCon2011 Conference 3
 SVTB for Design Exercise

the test as shown in Figure 3. The „Write‟ method can now be used over

and over again in the test by substituting the CR address and CR data

with different values. With this first level of abstraction in place, writing

directed tests now becomes very strait forward and intuitive. Additional

classes and methods are also created to model other transactions.

Fast: Another very important key learning with this pilot was the

incredible turn-around time. Compilation AND simulation time was on

average 20 seconds wall time, and simulation speed for this medium-

sized DUT was 35kHz. This is compared to test times for upper level test

environments which ran at 10-100Hz.

Controllability: Another pilot was conducted on the Instruction Fetch

Unit (IFU) which had similar results to the xAPIC. One additional key

learning from that pilot was the level of controllability given to the

designer to hit specific conditions in their DUT. This designer was able

to reproduce a bug found in silicon with SVTB in less than a day that

was never found due to it‟s complexity at the upper test environment

level.

METHODOLOGY DEVELOPMENT

The next step for SVTB was to formalize a methodology. The pilots

gave us a direction but now the language needed to be understood in

depth by a good spectrum of RTL designers to enable the design team to

form the best methods to use SVTB for the entire project. The formation

of a methodology would ensure that productive practices were created

and taught, that an automated TE would adhere to them, and that future

linting technology had a baseline set of rules and guidelines to enforce.

CDS formed an SVTB working group (WG) with CPU engineers and

methodology experts, which was given the charter to develop a working

methodology for the use of SVTB on the next generation CPU project.

This four-month effort led to the development of CPU Design Handbook

Guidelines detailing the SVTB aspects of the language and how they

should be used in order to accommodate a simple and light TE for

designers. Some examples of language features described in the CPU

SVTB methodology include:

Program Blocks are required: Simply stated, program blocks in

conjunction with the use of clocking blocks ensure that race conditions

are eliminated from the TE. The SV language defines regions when code

is evaluated with respect to each other and program blocks are evaluated

once all the modules (DUTs) are completely relaxed. This, in

combination with clocking blocks, ensures that race conditions between

the RTL and the TE, a very problematic issue for Verilog users, are rarely

seen. For this reason, Program Blocks are required in the SVTB TE.

Clocking Blocks are required: Another very important methodology

choice is to use Clocking Blocks (CB). CB‟s serve three functions. First,

they eliminate race conditions. Second, they abstract away timing

complexities. Third, they synchronize the passing of data between the TE

to the DUT on specific event edges.

Sample at #0 and Drive at #2: Another key decision taken by the WG

was to model the sample and drive times through our CB‟s on the #0

timing edge and #2 timing edge respectively. Sampling input signals

from the DUT at #0 lets the TB see all the events from the DUT after they

have been triggered by the clocking edge and after the DUT has

completely relaxed. The TB can then accurately respond and drive back

the correct stimulus. By choosing to drive our events back to the DUT at

#2 we ensure that the TB stimulus will also be the last driver of the DUT

signals.

Combinational Logic Modeling: Understanding CBs made us realize

that there was no way to model combinational paths through a TB within

them. Most validation TE‟s don‟t have to worry about modeling

combinational logic across the DUT/TB interface as they exist at very

high levels of abstraction. This is not the case for Design Exercise. To

model combinational logic, CB‟s cannot be used and the TE must

explicitly drive or sample the signals directly. This removes the latency

of waiting for the CB event and allows them to be immediately seen and

driven back in the same time tick.

Class and Task Usage: Another methodology choice was the use of

classes to encapsulate logic for reuse as seen in Figure 3. Classes allowed

the designer to create complex structures and transactions which can be

parameterized and reused. Monitors, scoreboards, transactions,

generators, and drivers can all be created generically with the use of

classes. While tasks would accomplish some of the same functionality as

the class, they did not allow for compartmentalization and protection of

class properties. Also classes have built in randomization functionality

supported by the language, which cannot be done with tasks.

Logging Macros: CPU projects at Intel have very strict policies on the

content conveyed in log messages. This content included which line of

code was giving the message, which file it was from, what time step it

occurred, what hierarchy (%m) the message came from, and of course the

specific message string. Therefore different logging methods were

looked at from the OVM™ and the VMM and it was decided to use a

pruned-down version of what the OVM™ does, namely using macros as

seen in Figure 5.

AUTOMATION

We wanted to create a test environment conducive for RTL designers so

our focus was on these criteria:

1. Give the designer the ability to choose any hierarchy for the DUT TE

2. Enable the designer to write the test immediately

3. Allow for debug turn-around in minutes

clocking cb @(posedge clock);

 input #0 Q; // Sample exactly at event edge

 output #2 D; // Drive 2 ticks after event edge

 …

endclocking

 CRB.WR(.CRCtrl (2'b00),

 .CRAddr (APIC_ID_CR_ADDR),

 .CRData (32'h0100_0100));

Figure 5 - First Method

Figure 4 - Default #0 Sample and #2 Drive

`define ERROR(str) \

 $display("[%t] at line %0d in %0s",$time,$line,$file);\

 $display("ERROR: %m - %s", str);

Figure 3 - Logging Error Macro

DVCon2011 Conference 4
 SVTB for Design Exercise

The automation was done within the RTL build environment of the CPU

project. Two additional stages were added to the build flow to first create

a TE, and then to build the TE into a simulation executable.

The create stage generates the top level TE seen in Figure 6. This

includes the DUT, the TB, the clock generator, and the top level

connectivity.

The create stage is only run once in the build flow. The user is

encouraged to compile this new code at least once before any edits to

verify that the TE compiles „out of the box‟. Once the TE has been

created, the user can then begin to make changes to the collateral and start

writing tests. Once the first test is written, the code is compiled,

simulated, and loaded into a debugger. The debug loop then becomes a

very simple process of modifying the RTL or TB, recompiling, re-

simulating, and reloading the results (see Figure 7).

AUTOMATION LIMITATIONS

There were several issues that we ran

into with the automation as we didn‟t

want to burden the tools with too

much complexity. This simplistic

approach actually made the tools easy

to maintain and use. The downside,

however, led to extra effort on behalf

of the RTL designers who for each of

the following limitations had to work

around them in one way or another.

Upper Level DUT compile required

– In order to get the collateral in a

cloned CPU model to create a SVTB

TE, the build tools had to first compile

an established block above the level of

the SVTB DUT. This stemmed from

the lack of grafting technology on the

CPU models and from the inability to

build any hierarchy level atomically.

Missing defines – Another common

issue that designers ran into was not

having their TE compile „out of the

box‟ due to either missing search paths

in the simulation build configurations

or missing defines which were scoped

at the established upper TE levels but not as the new lower DUT level.

Reset and Configurations not automated – One of the first things

needed within a TE, once the framework was created, was to create the

reset and register configuration collateral which would simulate getting

the TE and the DUT out of reset and into normal operation. This was not

automated and therefore took effort to either drive the interfaces or drive

internal registers to get to this state.

NEXT GENERATION CPU USAGE

There were two usage models planned for the next generation CPU

project, one in which the designer would create his TE, use it once, and

throw it away once his code was exercised. The other was the opposite

where the TE was created once and then forever maintained as tests were

written and added to regression (test) lists.

The majority of the SVTB TE‟s created on the CPU project turned out to

be the throw-away type. This work model is initially seen by most who

hear about it as very wasteful, but the reality is just the opposite. The

amount of effort to create the TE is very small, and the one time ramp

cost to use it is also small. The TE automation enabled the designer to

move to any model, recreate the TE, and test whatever is new on that

model, sometimes by only driving the internal logic and signals they care

about and observing via debug waveforms the results.

On the other end of the spectrum, there were SVTB TE‟s created and

maintained by the designer because there was no existing TE. These

fully capable TE‟s took full advantage of the SVTB language semantics

and constructs and are discussed in the MLC and Gearbox sections

below.

Finally, there were about 10 “middle of the spectrum” SVTB TE‟s

created and turned into the RTL models. These were relatively simple

TE‟s but still needed to ensure that new functionality did not break

existing functionality. SVTB tests were created and checked into the test

database, and the tests were incorporated into regression lists which were

turned in with the model. Every turn-in thereafter ran these SVTB tests

to make sure nothing was broken. A handful of TE‟s were surprisingly

created at cluster and full chip (top) levels by Clock and DFX engineers

who black-boxed the lower level RTL to test only their code. They used

SVTB either because existing TE‟s did not support them and/or they

wanted quick debug turn-around time.

One other very interesting SVTB implementation came about with the

integration of new proprietary bus within the CPU project. The new bus

had no validation environment for initial coding and mostly depended on

OVM™ Verification IP provided and supported by another team within

Intel. Integration issues aside, we ended up using the OVM™ code to

create the bus agent and fabric TE‟s to validate the new RTL code.

However, due to schedule, the agent code for several units did not exist

yet, so SVTB was used in its place to drive the bus requests and monitor

responses across the bus RTL channels. In essence, we literally had two

atomic TE‟s, one based on OVM™ and the other on SVTB design

exercise principles, working together with the RTL in the middle,

resulting in over a dozen bugs being uncovered.

MID -LEVEL CACHE

The Mid-Level Cache (MLC) functions as an intermediate cache for the

CPU. It contains the queues, FIFOs and other structures to service

memory requests from the lower level caches and performs cache

lookups while managing data returns and protecting cache coherency.

The SVTB based TE for the MLC was created from scratch by an RTL

designer familiar with the MLC Architecture and RTL as well as SV

Clock Generator

DUT TB

Clocking
Blocks

DUT_Top

Test Bench
Template

Class
Templates

Figure 6 - Debug Flow

Setup

Clone Model

SVTB Create

Edit Test

Compile

Simulate

Debug

Figure 7 - Top Level Test Environment

DVCon2011 Conference 5
 SVTB for Design Exercise

itself, but having no SVTB experience. The main resources used to build

the environment were based on learnings and discussions with the the

CDS SVTB expert and System Verilog for Verification[3]. The MLC

work also used some of the previous xAPIC SVTB Pilot code as

templates and coding examples.

The scope of the MLC functionality was very large and startup costs were

more than expected. These costs were spread over two areas: first,

architecting and coding the main interface, and second, implementing the

reset and configuration phases (i.e. getting the RTL to a known good post

reset and power-good state). In both cases, the functionality and

complexity contained within the MLC contributed to a longer than

expected development time. Implementing the reset and configuration

phases included driving multiple clock domains, redundancy/fuse

poundings, power-good and reset sequencing, and TB cache

initialization.

There were no significant startup costs ramping into SVTB or with TB

development. Because the SVTB TE is built on the same SV framework

used for RTL development, this meant that RTL designers very quickly

engaged and started building the blocks needed for the TE. Functional

TE blocks were developed in a matter of hours and focus on the actual

development, rather than new language syntax and semantics. SVTB

ramp time was spent understanding the new constructs, such as dynamic

arrays, and how to use the language effectively by using OOP concepts.

Internal

Memory

DCU Request

Emulator

Request

Buffers

Request

Buffers

IFU Request

Emulator

Cache and

Control

Super

Queue

APIC

Snoop

Queue

Prefetch

Queue
IDI

Control

MLC RTL External

Memory

Request

Buffers

Response

Buffers

Data

Buffers

IDI Bus

Uncore

Emulator

MLC SVTB TE

 Figure 9 - MLC RTL and SVTB TE Overview

The MLC TE development effort included two main internal request

emulators for the DCU and IFU, which shared access to internal memory

(implemented as an associative array). An external bus emulator to

represent the Uncore was also needed. The Uncore emulator had the

external memory for the MLC TE, as well as Uncore request and

response queues (implemented as associative arrays). Implementing an

external bus emulator can be problematic if fine-grained control is

desired from the interface. Fortunately, this is one area in which the

SVTB TE excelled. The SVTB TE allowed the TB writer to specify

certain request and response matching conditions, such that individual

requests could have very specific responses. The TB writer was also able

to specify default cases for various response types and request/response

combinations.

Once the model was up and running, it became apparent in the MLC that

checker development was going to have a high cost. The higher level

validation TE implemented a comprehensive data and coherency checker

for the MLC, which would have taken many weeks of effort to duplicate

in SVTB. Given time constraints, several lighter weight checking

strategies were implemented, rather than a comprehensive validation

solution.

The primary data and state checking for the MLC used internal and

external memory implemented as associative arrays. Cache line data and

line state were tracked with an external view and an internal view. When

data was returned for core requests it was checked against the internal

view. Similarly, when core write data was seen by the external bus

emulator, it was checked against the external view.

A second, more lightweight form of checking was also implemented. In

the lightweight check, the TB writer specified the expected data from a

read-type memory transaction. The SVTB TE would compare the actual

data returned with the test writer‟s expected data and signal an error if it

did not match (see Figure 10).

One area where the SVTB TE far exceeded the higher level validation

TE was in turnaround time. The extremely fast compile and run times

created a work model where the designer could quickly iterate over

changes (see Table 1). This mindset was good because it enabled more

trial and error, but also allowed less well thought-out changes. Note that

while the performance differences are significant between the upper level

TE and SVTB, only a portion of this in Table 1 is the language

difference. The 10 minute number includes the overhead of the build

tools and recompiling the upper level TE code.

Compile

Time

Typical short

test run time

SVTB TE 10 sec. < 1 min.

Upper level

TE 10 min. 5~6 min.

Table 1 – MLC TE Compile and Time Comparison

Maintaining and expanding the SVTB based TE is another area where

SVTB really shined. This was due to language familiarity and the ease

within SVTB to make changes. Any RTL designer could modify and add

functionality to the TE, versus the upper level validation TE experience

where there is only one expert for each TE.

 LLC.AddU2CRsp (.RspDelay(3),

 .RspMESI(NHM_MEU_STATE_I),

 .MatchReq(1'b1),

 .MatchSqid(4),

 .MatchAddr(40'h1234_5678));

Figure 10 - Response Matching Example

Figure 8 - Rd/Wr Transaction with Lightweight Checking

Example

DCU.AddRequest (.ReqType(NHM_DCU_WB_TYPE),

 .Addr(40'h1234_5678),

 .Thread(1),

 .WrData(InitData));

DCU.EmptyReqQ();

SB.FinishAllRequests();

DCU.AddRequest (.ReqType(NHM_DCU_READ_TYPE),

 .Addr(40'h1234_5678),

 .Thread(1),

 .ExpData(InitData));

DVCon2011 Conference 6
 SVTB for Design Exercise

We learned from this effort that if the RTL development begins from

scratch, or with RTL that will undergo significant change, it would be

much easier to develop the SVTB TE in parallel with the RTL. Such a

situation allows for proportional effort to be directed into the TE and into

the RTL, rather than having the TE require an order of magnitude more

development effort.

Also, as seen by the MLC, one of the main benefits to using SVTB is the

speed at which small pieces of TE code can become functional.

Combined with the amazingly short compile and run times, and we can

say that the biggest benefits to having an SVTB TE would come when

the scope of the RTL is kept to a small level. The scope of the MLC

required a large amount of effort to be put into TE development. If this

scope could have been kept at a lower level, there would have been more

benefit to having the SVTB TE.

GEARBOX

The Gearbox was a new microarchitectural unit in the original

conception of the next generation CPU project. It was an entirely new

design, leveraging only minor amounts of existing logic and header files

from the CPU RTL databases. As such, it was a prime candidate for

SVTB exercise, and until a validation resource was assigned to produce a

full-fledged Validation TE, initial bring-up and exercise of the Gearbox in

its early stages was performed using SVTB techniques.

However, even after the Validation environment for the Gearbox was

fully developed and used for official regression testing and RTL turn-in,

the SVTB approach was still used extensively for the addition of the

Gearbox‟s more complex features.

The internal microarchitecture of the Gearbox is beyond the descriptions

of this paper and considered Intel confidential material, so we only focus

on the SVTB development phases of the Gearbox TE. The approach

taken for RTL development was to test code in small increments as soon

as it was ready, a task for which an SVTB methodology is perfectly

suited. This resulted in roughly four phases of coding followed by

rigorous testing, as shown in Figure 12

Phase 1: The first coding task was transcription of the fundamental logic

equations that comprise the Gearbox‟s base function algorithm from the

reference Verilog model into SV. It was decided for upper-level code

readability to use SV functions instead of modules; since the algorithm

fundamentally operates at the byte level using a variety of one-to-one

mapping functions and their inverses, it was very straightforward to

exhaustively test that passing all possible byte values through a function

and then its inverse returned the original data. Testing in this way took a

matter of minutes and exposed one typographical error in the low-level

functions that would have been significantly harder to isolate through

higher-level testing. Higher-level invertible functions that operated on a

4-byte granularity were similarly tested, though not exhaustively, on a

few random data points. Note that in this phase, there was no explicit

SVTB hierarchy work needed; a Verilog program that included the

function library and looped through all desired data values, printing error

messages when bad results was encountered, was all that was needed.

SVTBSVTB

SVTB

SVTB

[y=f(x)]

Phase 2

Phase 3 Phase 4

Phase 1

Figure 11 - Phased Approach to RTL Gearbox Development

Phase 2: With the base function library relatively well-exercised, the

Gearbox sub-system functionality was then coded and tested, with the

goal of proving on at least one data point that the it‟s main algorithm was

implemented. Beginning with this phase of development, the full RTL

hierarchy of the final sub-system was used as the DUT, even though not

all elements were completely coded yet. All internal signals that would

eventually be driven by RTL code were instead driven by TB tasks. In

this phase, the data, key, and control interfaces were all driven SVTB

tasks, some of which are indeed throw-away code, but some were

reusable as the boundary between the TB and the real logic moved

steadily outward. This approach allowed focus to be placed on flushing

out bugs in the datapath, as the behavioral SVTB code for the control

interface of the engine is much simpler to code correctly than the

equivalent hardware FSM.

Phase 3: The next set of sub-system features were then coded in RTL,

which demanded replacing current emulator logic with a much simpler

emulator for the global control logic. Again, proceeding into this phase

knowing that the basic datapath logic was sound allowed the focus of

debugging efforts to be placed on the newly coded, and always bug-

prone, control.

Phase 4: The final phase of development consisted of completing all

remaining RTL code, at which point SVTB emulators were only driving

and sampling top-level DUT interfaces. The focus of testing then moved

from short tests, focused on correctness of single operations, to longer

stress tests, where thousands of requests were sequenced into the system

at both random intervals and at maximum throughput. Once this phase

of exercise was complete, this subsystem was integrated into the upper

level Gearbox unit code, with the very positive result of passing the

higher level validation tests that targeted the Gearbox sub-system within

one day of integration.

DVCon2011 Conference 7
 SVTB for Design Exercise

RESULTS

SVTB for Design Exercise was used in many ways on the next

generation CPU project primarily filling the gaps of existing validation

collateral. The usage of SVTB varied from the extreme of quick and

dirty test writing to very complex TE‟s as described in the MLC and

Gearbox examples. Even though the CPU project had a significant

amount of legacy validation code, they still targeted SVTB towards

exercising 13% (Table 2) of all new features (Note that a condition is

something the test plan wants to hit and the checker is a piece of code that

is looking for specific conditions all the time). An approximate total of

32 TE‟s (Table 3) were created in SVTB, most of which were considered

throw away TE‟s.

In terms of end-user productivity and usefulness, SVTB was generally

seen as a big win. Ramp time was considered insignificant as the design

team already understood SV. This led to quick development of tests and

debugging of new features. The effort of getting the initial TE framework

was free as the tools automated this. Depending on the type of TE (Table

4) the effort towards developing an initial set of transactions, getting

signals into the correct CB, etc, would take anywhere from a couple

hours to a week. The most praised feature of SVTB was its debug turn

around time. The cost of maintaining a quick and dirty TE was very small

while the more complex SVTB TE was anywhere from 5-10% of the

designers time.

Of course there are other intangibles that have no numbers to show for

them. Designers did not have to learn a new language. They had the

ultimate in controllability over exercising their design which meant much

faster debug. They didn‟t have to handoff their code to validation or wait

for them to validate it before they committed it to a model. Goof bugs

were caught right away before they were turned in while the code was

fresh in the designers mind. There was no overhead of tracking these

bugs in any tracking database. There was no overhead of clogging up the

turn-in pipelines with fixes or having back end collateral be redone

because the fix was made much further up in the design cycle.

Additionally SVTB checkers could be shared up the design hierarchy if

they were built correctly.

Results that cannot be measured:

Controllability: The ability for designers to easily toggle the

functionality that matters  Priceless

Handoff: Doing basic validation yourself, no validation

handoff  Priceless

Language: Existing expertise of the testing language

  Priceless

No Goof Bugs: The absence of shame because no bugs are filed

against you  Priceless

No re-ramp Time not spent ramping and debugging code wrote

months ago  Priceless

No overhead No bugs filed == no tracking overhead or clogging

of turn-in pipelines  Priceless

But of course, the most significant return on investment is the reduced

bug count. The current next generation CPU bug count, at FED

completion, is trending at 35% of what previous projects had at the

same point in time (Figure 12). This is the direct result of the Design

Exercise methodology and associated management tracking that was

adopted and pushed by the CPU team in which SVTB was an

important factor.

Figure 12 – x86 CPU bug count trend compared to previous

projects

Type Count

Condition_TE 14118

Condition_SVTB 2149

Checker_TE 1002

Checker_SVTB 38

Total 17307

SVTB Environment Type Number

Quick & Dirty – Throw Away 20

Intermediate – In RTL Models 10

Complex Validation ENV 2

Total 32

Activity Quick & Dirty TE Complex TE

Introductory Training 1 HR 1 HR

Intermediate Training 1 HR 1 HR

Advanced Training Not needed 1 HR

Creation of TE framework Automated Automated

Basic transactions set dev 1-2 HR 2 days - 1 week

Test Debug Loop Time 1-2 minutes 3-6 minutes

Maintenance Cost Less than 1% 5-10%

Return on Investment Major Bug Reduction Major Bug Reduction

Table 2 – SVTB Conditions

Table 3 – SVTB TE Types

Table 4 – SVTB Activity Breakdown

Previous CPU projects (Upper two lines)
Current CPU projects (Lower two lines)

DVCon2011 Conference 8
 SVTB for Design Exercise

SUMMARY

SVTB for Design Exercise was unquestionably a success on the next

generation CPU project. The consensus among those who used it is that

“SVTB was great first approach for Design Exercise.” Moreover, the

focus on RTL stability with a heavy emphasis on the design exercise

methodology is paying off in terms of historically low bug rates. SVTB

gives designers an intuitive, well-known, working environment with an

incredible amount of control and extremely fast debug turn-around times.

Maintenance costs (0-10% of their total RTL coding time) are below

what previous projects have dealt with where TE‟s on average cost 5-

15% of designer effort.

While the results of SVTB have been beyond expectations in terms of

performance and debug turn-around, they led to the discovery of needed

infrastructure fixes and enhancements. This is based on direct feedback

from the 20+ engineers involved in the SVTB efforts. This feedback also

cited that SVTB testing is appropriate in many, but not all areas. If the

legacy TE was available and supported, it was used. SVTB was

considered essential in areas where existing TE‟s were not yet available

or for cases where the ROI made sense for initial testing. Generally

speaking, SVTB for design exercise was considered a “temporary”

testing method.

The improvement feedback mostly centered on tool and flow maturities.

Also cited was the need for more common routine files for error reporting

and assertion handing. More documentation and code examples were

also requested.

The bottom line is SVTB and the TE automation created on this CPU

project provide the infrastructure and capabilities that allow design teams

to automatically create a TE around any block or DUT in their design and

quickly turn around the debug of basic features through directed test

writing, which enables bugs to be caught before they reach the official

project release models.

In creating this first pass automated TE and methodology; the CPU team

implemented a stop-gap mechanism for filling validation holes on the

project. This was understood to be a rudimentary beginner

implementation with an eye towards learning from the experience and

thus focus on those enhancements which would take SVTB and Design

Exercise to the next level. Currently several other projects are now using

SVTB for Design Exercise.

BIBLIOGRAPHY/REFERENCES

 [1] Verification Methodology Manual (VMM) for SystemVerilog,

Janick Bergeron, Eduard Cerny, Alan Hunter, Any Nightingale, Springer

2005

[2] Open Verification Methodology (OVM™) –

(http://www.OVMworld.org/)

 [3] SystemVerilog for Verification, Chris Spears. Springer 2006

http://www.ovmworld.org/

