
Metric Driven Verification of Mixed-Signal Designs 
  

Neyaz Khan 
Cadence Design Systems 

6400 International Pkwy, Suite 1500 
Plano, TX, 75093 
+1-972-618-8193 

nkhan@cadence.com 
 

Yaron Kashai 
Cadence Design Systems 

2655 Seely Avenue 
San Jose, CA, 94087 

+1-408-914-6335 
yaron@cadence.com 

 

Hao Fang 
LSI Corporation 

1230 Northland Drive 
Mendota Heights, MN, 55120 

+1-651-675-3140 
Hao.Fang@lsi.com 

 
 
ABSTRACT  
Functional verification has long been a major concern in digital 
design. Over the years, the huge investment in verification spurred 
the development of tools and methodologies for systematic and cost-
effective functional verification. In the last several years, a similar 
need is building in the analog design space. In this paper, we present 
an approach leveraging Metric Driven Verification (MDV) to address 
functional verification of analog and mixed-signal designs. The 
proposed verification methodology scales from a single IP block to a 
full system-on-a-chip (SoC), and is compatible with current digital-
only verification methodologies. 
 
 

Categories and Subject Descriptors  
D.3.4 [Mixed-Signal Verification]: Verification techniques, Mixed-
signal design, coverage-driven verification.  
 

General Terms  
Verification, Measurement. 
 

Keywords  
Mixed-signal Functional Design Verification, Metric Driven 
Verification (MDV), Universal Verification Methodology (UVM). 
Analog Modeling. 
 

1. INTRODUCTION  
Analog design verification has been getting more attention in the last 
several years [6]. This is due, in part, to the fact that today’s analog 
designs are richer in functionality, with many digital controls and 
configurations. Another key change is the close integration between 
the digital and analog blocks, for instance a calibration loop can 
involve digital control along with analog circuits, and sometimes 
software as well. A third consideration is that most SoCs today have 
significant analog IP, hence functional verification at the full chip 
level requires addressing the analog circuits along with the digital 
ones. Current practice draws a firm partition between analog and 
digital design. Analog IP blocks are designed and verified by the 
analog team, most often by running interactive simulations and 
sometimes relying on visual inspection of results. The chip integrator 
may receive some highly abstracted digital models, often nothing 
more than a boundary representing the analog IP.  Hence simulations  

at the SoC level are ineffective at exposing functionality and 
integration errors of the analog IP. This state of affairs led to a 
growing number of failures and re-spins that are blamed on the 
analog-digital integration. 
 
The industry is responding to this challenge by improving the 
integration between analog and digital simulation environments and 
extending assertion based verification to apply to analog modules as 
well [9]. Advanced modeling techniques are introduced to speed up 
the simulation of analog circuits [4]. 
 
A main challenge is the large number of configuration and 
programming options available for most analog IP blocks. The large 
number of configuration and programming combinations compounds 
the verification challenge for such blocks. To address this problem 
we chose to leverage metric driven verification (MDV) [1], adapting 
it for use with analog circuits both at the block level and the SoC 
level. MDV offers a systematic and repeatable approach to 
verification, starting with a verification plan that is quantitative and 
measurable. A test bench is then constructed in which automatic 
stimulus generation and checking are performed. Input stimulus and 
design behavior are monitored, and coverage data is collected. 
Finally, coverage results are reviewed against the goals stated in the 
verification plan. This tight feedback ensures rapid convergence of 
the verification effort. 
 
We have implemented the proposed methodology on a leading-edge 
design from LSI Corporation. This proof-of-concept project served 
to validate the approach in terms of technical feasibility, overall cost, 
and acceptance by the analog design and design verification teams. 
 
The rest of this paper is organized as follows: Section 2 revisits the 
main principles behind MDV and their adaptation to serve analog 
verification. Section 3 discusses the methodology in detail. Section 4 
describes our experience verifying an advanced design using the 
proposed methodology. Section 5 summarizes and offers some 
conclusions. 
 

2. MDV REVISITED 
2.1 Guiding Principles of MDV 
Metric Driven Verification is a broadly used concept for verifying 
large digital designs. Modern designs have state spaces so huge that 
only a tiny fraction of all possible combinations can be simulated. 
MDV helps achieve good functional coverage in these limiting 
circumstances. MDV is guided by a functional specification, rather 
than design implementation. The functional specification is parsed 
down to a hierarchy of features in a verification plan, where each 
feature can be shown to meet the specification by some 
measurement. These measurements are called functional coverage.  
The resulting functional coverage space is many orders of magnitude 
smaller than the design state space – making it a practical metric. A 
test bench is created to exercise the design, check its functionality 

 



and measure coverage. Layers of automation are added to run large 
volumes of simulations with random perturbations. The collected 
coverage is aggregated and compared with the verification plan. 
Areas lacking in coverage are targeted to get an overall balanced 
coverage.  
 
Some popular verification methodologies are based on the MDV 
concept (OVM [2,3,11], and more recently UVM [8,13]). These 
methodologies teach a specific style that is well supported by tools 
and libraries. Experience with these has demonstrated the 
effectiveness of the metric-driven approach for some of the most 
complex digital chips produced. The effectiveness of MDV in 
tackling the state space growth problem motivated us to explore a 
possible adaptation to analog and mixed-signal designs that exhibit 
similar growth. 
 

2.2 Adapting MDV to Analog Design  
Conceptually, applying MDV is straight forward: one should 
enumerate the functional features of the design, associate a 
measurement with each feature and simulate the design to collect 
sufficient coverage, indicating all functions are implemented 
correctly. Unfortunately there are a number of practical obstacles 
when analog designs are concerned. Some of the most prominent 
ones are discussed below. 
 
Analog verification planning and coverage collection. Analog 
features are expressed in a terminology that is richer and broader 
than typical digital features. This implies that capturing analog 
features in verification planning tools requires some extensions. 
Furthermore, the measurement of analog functional coverage is more 
involved. Rather than measuring a logic value, analog properties may 
require the measurement of amplitude, gain, frequency, phase or 
similar values that are more difficult to measure. 
 
Batch execution. A fundamental assumption for MDV is the ability 
to run a large number of simulations in an automated manner. The 
volume of simulations requires that stimulus is automatically 
generated and the test bench is self-checking. The approach is 
inherently incompatible with interactive simulation and manual 
inspection of results – which still dominates the analog verification 
practice. 
 
High performance models. Accurate analog models, such as a 
Spice netlist, are very slow to simulate when compared to digital 
event-driven simulations. For the sake of functional verification, the 
accuracy of the model needs to be traded for higher performance. 
The use of more abstract models such as AMS or real number 
models (RNM) is required to support large number of simulations. 
 
Constrained random stimulus. Input stimulus needs to be 
generated such that simulations explore different behaviors and cover 
the functional space. For analog designs, this means randomized 
control over both digital and analog inputs to the design. The 
problem of driving analog input stimulus that is effectively 
controlled by constraints and sequences is a major requirement. 
 
Self-checking. Determining that an analog design works as planned 
is more involved and somewhat fuzzy when compared to digital 
design. Nevertheless, automatic checking must be implemented. 
Checking can be in the form of embedded assertions as well as more 
elaborate structures such as scoreboards.  
 
We recognize that functional verification in the suggested vein does 
little to offset the verification work done by the analog team. The 
analog team will continue to be concerned with performance metrics 
specific to the design at hand. Looking at power consumption, 
frequency responses, transient responses and similar features while 

running Spice-level simulations is at the core of the analog design 
work. Performing MDV-style functional verification represents extra 
investment.  
 
For a mixed-signal verification methodology to be acceptable, all of 
the challenges above must be addressed in a cost-effective manner. 
The additional investment is justified by the need to compensate for 
the growing risk introduced by adding digital control functionality. 
The work done at the IP block level is reusable at the SoC level, 
offering thorough mixed-signal verification that is mostly missing 
today.  
 

3. THE UVM-MS METHODOLOGY 
3.1 Main Concerns and Design Decisions  
We have named the new methodology Universal Verification 
Methodology – Mixed-Signal, or UVM-MS. We have adopted the 
digital UVM methodology as a basis because of its broad presence 
and tool support. Specific additions make the methodology 
applicable to mixed-signal designs, including driving analog inputs 
and measuring analog metrics. 
 
A primary design decision was to accommodate all modeling styles 
for the design under verification (DUV). Spice netlist models with 
high accuracy are readily available, but their simulation speed is low. 
AMS models and real number models offer progressively higher 
performance, but are an extra cost to create and they require 
verification with respect to the design they model. We felt that a 
methodology that restricted the use of particular model styles would 
be too limiting. Thankfully, the simulation environment and test 
bench tools at our disposal can support all the modeling styles above, 
as well as any mixture of those. 
 
Another key decision is maintaining the abstraction level provided 
by modern hardware verification languages (HVLs). This is required 
to enable a smooth integration into SoC level verification 
environments. Top layers of an HVL test bench are closer to a 
software program than a hardware design. The generation and 
synchronization of inputs is performed by procedures called 
sequences [10]. To fit in, analog inputs would have to be controlled 
in a similar way. 
 
The UVM-MS methodology needs to bridge the gap between 
abstract HVL constructs and the detailed driving and sampling of 
analog signals. We chose to address this by stacking HVL control 
code on top of a Verilog-AMS layer that implements the low level 
operations. This division takes advantage of the different semantic 
constructs available for each language. It also leads to more optimal 
runtime performance. 
 
In the process of implementing the methodology, it became clear that 
a library of simple components could help a great deal in 
constructing new verification environments. Such components 
provide commonly used interfaces between analog signals and test 
bench functions, saving time and effort.  
 

3.2 Tool Flow  
The overall tool flow is depicted in Figure 1 below.  
 



Model
creation

Specification

Verification
Planning

Verification
Management

Verification
Plan

Netlist
Real number

modeling

Abstract
model

Model 
Validation

Analog Design

Design

Simulation

Test Bench
creation

Generation

Checking

Analog
model or

netlist
Coverage

Assertions

Verification
execution

Sim

Coverage

 
Figure 1: UVM-MS tool flow for analog IP verification 

Both the analog design process and the verification process start with 
a specification. We recognize that a formal spec is not always 
available or may be in flux through much of the design process; 
hence the term is used here in a broader sense to include any 
documentation that drives the design process. The spec is used as an 
input to the verification planning process, where experts like the 
project lead spend time to enumerate the hierarchy of features that 
need verification. During planning, features are associated with the 
spec on one hand and with metrics that verify them on the other 
hand. A verification planning tool captures this information and 
creates a database called vPlan. 
 
A verification environment is created based on the plan. The 
environment’s architecture is somewhat specific to the DUV, and 
general guidelines are offered by UVM-MS, including the choice of 
library components that can be used as building blocks. 
 
It probably makes sense to run the first few simulations using the 
Spice netlist created by the analog design process. These simulations 
serve to clean the test bench, but they are likely to be too slow for 
massive regression runs. It is therefore recommended that an 
appropriate abstract model be created – ideally an AMS or real 
number model that is high performance.  If an abstract model is 
created, it needs to be validated against the specification and kept in 
sync with the original Spice netlist.  
 
When both the test environment and the DUV model are in place, 
regression runs can commence. Accumulated coverage is mapped 
back to the plan, so at any time, the verification engineers can assess 
progress and tune the runs as needed. The process of directing 
simulations, spawning them and tracking their execution can be done 
manually, but a verification management tool is invaluable for 
organizing and automating these tasks. 
 
As verification progresses, the number of errors uncovered drops and 
the accumulated coverage reaches an acceptable level, indicating the 
block is ready to be handed over to the integration team. A main 
advantage of the UVM-MS methodology is the ability to hand off 
both verification intent, in the form of the vPlan database, and 
verification implementation that includes units of the test 
environment and the abstract model of the DUV. Handing off 
verification aspects along with the design is a major help in planning 
and executing verification at the SoC level. It enables a deep and 
meaningful verification of the integration. Taking into account that 
many analog IP blocks are integrated into multiple SoCs over a 
longer period of time, the ability to archive and reuse verification 
artifacts along with the design is invaluable. 
 

3.3 Verification Environment Architecture 
A generic architecture of a verification environment is provided in 
Figure 2. In this simplified scheme, the DUV has a single analog 
input and output, and a digital control input. The analog input is 
driven by a signal generator block. The digital control block is 
connected to a digital driver. A specialized monitor samples the 
analog output. Both digital and analog sources are controlled by 
sequence drivers, which in turn are controlled by the test sequence. 
The test sequence can specify control operations as well as inject 
analog waveforms, synchronizing operations as needed. 
 
The monitor component is sampling the analog output for the 
purpose of checking and coverage collection. Additional coverage 
and checking can be implemented by sampling DUV internal nodes 
and conditions. Such checking can use assertions as well as end-to-
end checking schemes similar to scoreboards. 

HVL Test Bench

module UVC

HDL AMS

Wire UVCWire UVC

Mixed Signal
DUV

Signal source

Monitor

Signal source

Monitor

Control
regs

Programmable
clock and reset

Config

Input
wire uvc

Output
wire uvc

Control 
reg uvc

Checker Coverage

Signal map

Sequence
library

Test
scenarios

Top level sequence

 
Figure 2: A generic UVM-MS architecture 

A typical checking scheme for an analog DUV is illustrated below. 
The gain checker in Figure 3 samples both the input and output 
signals, providing the amplitude for each. The checker computes the 
measured gain and compares it with an expected value. The timing of 
the check is controlled by the top-level sequence that may also adjust 
control variables influencing the gain. 

HVL Test Bench

DUV
Signal 
source

Monitor

Signal
wire uvc

Top level sequence

Signal 
source

Monitor

Monitor
wire uvc

Checker
g = Aout/AinAin Aout

 
Figure 3: A typical end-to-end checker, verifying gain 

 

3.4 Utilizing Verification Components  
The architecture depicted in Figure 2 identifies some components 
that are commonly needed to drive and monitor an analog DUV. In 



order to ease the methodology deployment, such components are 
collected in a library that is associated with the methodology. We 
have adopted the term Universal Verification Component (UVC) for 
these library components, following the UVM terminology, though 
we acknowledge that these components are much simpler and lower 
level than digital UVCs. Still, the similarity in role and in 
architecture justifies the name. 
 
A prime example of a library component is the wire UVC, that 
function as a signal source and a signal monitor for high frequency 
analog sine wave signals. Figure 4 below illustrates the wire UVC 
architecture. 
 

Env
Agent

Signal map

Sequence
driver

BFM Monitor

Coverage

Measurement
method port

Measurement
trigger event portSequence

library

HDL (V-AMS)
Module

Control 
registers

Oscillator

Monitor

DUT
signal
interface

 
Figure 4: Wire UVC architecture 

The wire UVC is implemented partly in HVL (e [7] currently, though 
a SystemVerilog [3,12] version exists as well). The lower-level 
driver and monitor functions are implemented in Verilog-AMS. This 
allows for an efficient and flexible implementation that connects 
easily to electrical ports as well as real value ports. 
 
The wire UVC controls the frequency, amplitude, phase and DC bias 
of the generated signal. Higher-level control is provided through a 
sequence library. The same signal properties are measured by the 
monitor and passed on to facilitate checking and coverage collection. 
Figure 5 below depicts the controlled signal properties and a sample 
sequence item. 
 

Phase

Period

AmplitudeDC
Bias

do DRIVE_SEQ ana1_wire_seq keeping {
             .clk_period == 0.5; // sample clk
             .ampl == 0.001;     // 1 mV
             .bias == 1.1;
             .freq == 100e6;      // 100 MHz
             .phase == 0.0;
};

 
Figure 5: Sequence item controlling signal properties 

Another common interface component is a register UVC that 
connects to digital control inputs. The register UVC is a much-
simplified version of a register package UVC used extensively in 
digital verification. Other UVCs in the library include convertors 
between analog and digital values (ADC and DAC), as well as 
various ramp generators, threshold checkers and the like. 
 

3.5 Leveraging Abstract Models 
Developing abstract models for analog circuits is outside the scope of 
this paper. A good introduction is provided in [5]. Such abstract 
models can be detailed and accurate enough for functional 
verification, while offering significant speed increases. Real number 

models in particular, can execute in an event-driven simulation 
framework, which is inherently faster than analog solvers that are at 
the heart of analog simulation. 
 
It should be noted that interfaces of abstract models can vary 
between real number ports and Verilog AMS ports of either 
electrical or logic disciplines. Since the test environment needs to 
support either modeling style, the test bench interfaces may need to 
adapt. The simulation environment we had access to automated this 
task by inserting connect modules that perform the necessary 
adaptation. 
 
4. APPLYING UVM-MS 
4.1 Design and Test Bench Architecture 
For a proof-of-concept, we have targeted a current design from LSI 
Corporation. For a DUV, we have picked a major analog block 
featuring digitally controlled variable-gain-control functions along 
with filtering and fault detection. The DUV included advanced 
power management requiring careful sequencing of power-up and 
power-down operations. A specification was available for the design, 
as well as an informal test plan captured as an Excel spreadsheet. We 
have used both the spec and the informal plan to design and capture a 
formal verification plan, captured in a vPlan database. A tool called 
Enterprise Planner was used for this purpose. 
 
The development of the test environment was divided into two 
phases. Phase 1 concentrated on driving and measuring the main 
control and analog interfaces, verifying gain functionality and power 
control. Phase 2 extended the environment with additional checking 
and implemented a more realistic signal source. 
 
The overall test bench architecture is very similar to Figure 2 above. 
Several instances of the wire UVC were used to construct a signal 
source and an output monitor for the analog interfaces. The register 
UVC was used to control the numerous digital inputs to the DUV. 
An end-to-end gain checker similar to the one depicted in Figure 3 
was implemented. The checker was triggered on any change in the 
setting of the control registers. Additional checkers and monitors 
were implemented to verify the fault detection and power control 
functionality. 
 
The verification environment featured multiple sources that had to be 
coordinated and controlled. This was achieved by creating a top-level 
sequence controlling major interfaces. Sequences in UVM are 
hierarchical procedures that control the activation of test functions 
such as driving inputs and checking outputs. Sequences can 
synchronize to clocks, wait for events, fork sub-sequences and so on. 
A library of low-level sequences defines the basic control operations 
available. Test scenarios are implemented by combining such 
operations. Each sequence can have parameters that are determined 
when the sequence is called. Such parameters can be constrained and 
determining their value requires a random generation step, 
essentially solving a constraint satisfaction problem (CSP). Thanks 
to this randomness, the same sequence hierarchy can yield many 
different test scenarios that share a structure and explore a broad 
space around it. 
 
Figure 6 below shows the structure of a simple test sequence. The 
sequence starts by activating the input signal source with specific 
frequency and amplitude parameters. Next, the power-up sub-
sequence is applied to power up the DUV, an operation that involves 
multiple steps. Three different gain configurations are applied 
sequentially, each automatically triggering a gain check for the 
configured condition. Finally, the DUV is powered down by 



applying the relevant sub-sequence, resulting in the DUV shutting 
down. 
 

Drive Seq

Power-up Seq

VGA R1 Seq

VGA R2 Seq

VGA R3 Seq

Power-down Seq

Main seq

 
Figure 6: A simple test sequence 

The test in Figure 6 is limited because the gain measurements are all 
performed for a single input frequency. A more sophisticated test is 
depicted in Figure 7. That test calls sub-sequences to setup the input 
frequency and gain controls to random values, while considering 
constraints that ensure only legal values are picked. Such tests 
achieve significant coverage growth when run repeatedly. 
 

Repeat n times  {

}

Drive Seq

Power-up Seq

Main Seq

Power-down Seq

Drive 
Frequency Seq

VGA Gain 
Setup Seq

 
Figure 7: A compound test sequence 

A model of the design was initially available as a Spice netlist, which 
was used in the first phase of the work. The netlist model was 
sufficiently fast to run simple tests, taking tens of minutes to execute. 
It was clear, however, that running massive regressions as well as 
system-level tests with the netlist model is impractical. To address 
these needs, a Verilog real number model using extended wreal 
support [10] was created. This model was integrated in phase 2 of the 
project. 
 

4.2 Experimental Results 
The proof-of-concept project was executed by the authors in about 3 
months of calendar time. Verification planning took about half the 
time, during which team members familiarized themselves with the 
design and interacted with the analog design team to understand the 
requirements. Phase 1 of the implementation took about three weeks 
and phase 2 was completed in two weeks. An additional two weeks 
were spent creating and validating the real number model of the 
DUV. That work was done by an expert analog modeler. 
 
The real number model of the DUV provided a 24X speedup over the 
Spice netlist simulation, while its level of inaccuracy was measured 
to be 0.3% (gain inaccuracy measured at 100 MHz). The model 

accuracy was far better than required, given that tolerances on 
checkers were in the range of 5%. The significant speedup allowed 
for very rapid regression runs. A whole suite of regressions would 
execute at the time it took for a single test using the netlist model. 
Even more importantly, running the real number model in a chip-
level simulation became a practical option. 
 
An automatic regression environment was created, using a 
verification management tool. That environment provided two levels 
of control over executing tests: At the test level, it allowed the 
application of constraints that determine the generation and 
sequencing of inputs for each and every run. At the regression 
session level, model parameters such as supply voltage, temperature 
and such could be controlled. Due to technical limitations, the 
simulator parameters needed to be compiled in with the build and 
elaboration process of the simulation. This restriction led us to a flow 
that involved two steps of generation: a first step happened during 
the pre-session phase, generating simulation parameters at random 
from a constrained set of values. The parameters generated are 
included in the build process. The resulting simulation model was 
run many times with different test configurations that were generated 
at random during each execute step. Figure 8 illustrates this setup. 
 

Verification
Manager

Simulation
Build

Session

Analysis

Pre-
session

Generate
configuration

Global
parametersSession

Input

Session
Output

Simulation
snapshot

Coverage

Simulation
RunExecute Simulation
RunExecute Simulation
RunExecute Simulation
RunExecute

Runs Coverage

 
Figure 8: Verification management implementing two-step 

generation process 

Each regression run resulted in a list of simulations with pass/fail 
indication, as well as aggregate coverage accumulated in a data file. 
Coverage information could be analyzed directly, but it was much 
preferred to map coverage back to the verification plan. The result of 
that process is illustrated in Figure 9. The verification plan is 
represented on the left pane, with coverage grade and color 
indication for each feature in the hierarchy. Detailed coverage for the 
selected feature is provided in the right hand side pane.  



 
Figure 9: Analyzing coverage mapped to verification plan 

We held in-depth reviews of the project at the end of each phase. The 
reviews involved the analog design team as well as verification 
experts not directly related to the design. The reviews were met with 
intense interest. The analog team had to be educated about some of 
the terms and concepts; yet after a quick introduction, team members 
were actively involved in analyzing results and proposing new 
checks and coverage metrics. The discussions during the planning 
phase and during the reviews exposed several ambiguities in the 
specification, especially as we considered the checks and metrics 
needed to verify a particular feature. These discussions provided 
valuable insight to all involved and stressed the rigorous nature of 
verification promoted by the UVM-MS methodology.  
 
While the analog design team faced a significant hurdle tackling the 
tools and methods used by the methodology, the verification 
engineers involved in the review were quick to pick up the topic. 
Well versed in digital verification, they only required a short walk 
through of the verification environment to figure out how the 
architecture worked. They felt quite confident in their ability to 
maintain and extend the environment. 
 
Verification exposed several suspect cases that were further 
investigated by the analog design team. Furthermore, both the DUV 
model and the test environment are available to be leveraged for SoC 
level integration. 
 

5. CONCLUSIONS 
The UVM-MS methodology presented here is the first mixed-signal 
verification methodology we are aware of that scales from analog IP 
blocks to mixed-signal SoCs. The methodology does introduce an 
extra cost at the IP verification level. This cost is justified as 
mitigation to the additional risk incurred due to the introduction of 

digital controls, sophisticated power management and broad 
configurability found in current analog circuits. The cost and effort 
implementing UVM-MS is minimized thanks to a library of small 
verification components. The investment at the IP level can be 
leveraged many times over, as the IP block is integrated into 
different SoCs. 
 
Implementing the methodology on a real design provided some 
evidence of how effective MDV can be, even when applied to analog 
design. The positive reaction of the analog design team was an 
indication that this method can become a welcome addition to the 
design flow. The experiment also provided some insight to the 
associated costs and expertise needed. Based on this experience, we 
recommend that the verification team include some verification 
specialists along with the analog designers. The verification 
engineers should focus on architecting and implementing the test 
environment, while the analog engineers can provide the DUV model 
and lead the analysis and debug. The whole team should contribute 
to the planning phase. 
 
We conclude that an MDV approach such as the one proposed in this 
paper is likely to become mainstream in mixed-signal design 
verification.  
 

6. REFERENCES  
[1] Carter, H and Hemmady, S, 2007, Metric Driven Design Verification, 
Springer, ISBN: 978-0-387-38151-0 
[2] Glasser, Mark, 2009, Open Verification Methodology Cookbook, 
Springer, ISBN: 978-1-4419-0967-1 
[3] Iman, S., 2008, Step-by-Step Functional Verification with SystemVerilog 
and OVM, Hansen Brown Publishing, ISBN: 978-0-9816562-1-2 
[4] Intrinsix, 2010, A real solution for mixed signal SoC verification, EE 
Times, http://www.eetimes.com/design/eda-design/4018835/A-real-solution-
for-mixed-signal-SoC-verification 
[5] Joeres, S.  Groh, H.-W.  Heinen, S., 2007, Event driven analog modeling 
of RF frontends, Behavioral Modeling and Simulation Workshop, 2007. 
BMAS 2007. IEEE International, ISBN: 978-1-4244-1567-0 
[6] Kundert, Ken and Chang, Henry, 2006. Verification of Complex Analog 
Circuits. Proceeding of IEEE 2006 Custom Integrated Circuit Conf. (CICC)  
[7] Palnitkar, Samir, 2003, Design Verification with e, Prentice Hall, ISBN: 
978-0131413092 
[8] Rosenberg, S. and Meade, K., 2010, A Practical Guide to Adopting the 
Universal Verification Methodology (UVM), Cadence Design Systems, ISBN 
978-0-578-05995-6 
[9]  www.accellera.org/activities/verilog-ams/ 
[10] Solutions for Mixed-Signal SoC Verification 
http://www.cadence.com/rl/Resources/white_papers/ms_soc_verification_wp.
pdf 
[11] www.ovmworld.org 
[12] www.SystemVerilog.org 
[13] www.uvmworld.org 
  

 
 
 
 


