Functional coverage-driven verification with
SystemC on multiple level of abstraction

Christoph Kuznik, Wolfgang Mller

Faculty of Electrical Engineering,
Computer Science and Mathematics
University of Paderborn/C-LAB
D-33102 Paderborn, Germany
chri st oph. kuzni k@- | ab. de
wol f gang@cm or g

Abstract—SystemC is a versatile C++ based design and ver- The remainder of this article is as follows. In section I
ification language, offering various mechanisms and constructs we will briefly summarize the SystemVerilogover gr oup
required for embedded systems modeling. Using the add-on Sys-,ncept and also discuss existing shortcomings. In section |lI

temC Verification Library (SCV) elemental constrained-random L . .
stimuli techniques may be used for verification. However, SCV we will introduce the functional coverage library for SystemC

has several drawbacks such as lack of a functional coveragein detail. In section IV we will illustrate the handling of
facility supporting coverage collection on RTL and TLM models. the SystemC functional coverage library and the API via
In this article we present a functional coverage library which several examples. In section V we propose how to integrate
implements parts of the IEEE 1800-2005 SystemVerilog standard the library with a verification methodology. Related work

capturing functional coverage throughout the design and verifica- il be di di tion VI bef lud d ai
tion process, and allows to facilitate coverage-driven verification will be discussed In section etore we conclude a_n_ . glvg
in SystemC. an outlook on further development and research activities in

sections VII and VIII.
I. INTRODUCTION

In any domain incorporating embedded systems the ver- Il. COVERAGEDRIVEN VERIFICATION

ification of the functional and non-functional properties for Functional coverage is a user defined metric intended to
integrated system behaviors is essential. Moreover, the viervestigate to which extent the functionality of a given design
ification process itself will remain the main bottleneck ofinder test (DUT) has been verified by the stimuli generated
every design flow, preventing the industry from better numbeir®m previous simulation runs. As such, value coverage keeps
in first silicon success. For example, in [1] it is estimatettack of value assignments and changes of expressions and
that the verification effort grows at a double-exponential ratonditions within the code. Thus, it is not verified if the DUT
with respect to the Moore’s Law curve. Hence, if the numbés working properly rather than just gives information of the
of transistors per chip increases by 10X between 2008 agdality of the test patterns with respect to the user-defined
2018, then the verification effort would increase by 1024Xnetrics [7]. So, functional coverage can tell if a property
Verifying such complex heterogeneous embedded systemsvias executed at the right time, in the right order and in the
a time consuming and tedious task. To cope with always marerrect context and is a valuable metric for verification closure.
complexity and to boost productivity, more efficient verificaThe IEEE-1800 SystemVerilog standard implements a metric
tion techniques and technologies were introduced through fioe value and transition coverage collection by means of it's
last years like the notion of functional verification [2] whichcover gr oup keyword. A cover gr oup is a hierarchical
supports features such as verification by assertions, constragiément that group coverpoints.c®ver poi nt is associated
based random test pattern generation, and functional coveragi¢h a value source, for examplesx_si gnal in SystemC

In this article we present a functional coverage library tBTL designs. Acover poi nt containsbi ns, which actually
enable coverage-driven verification of SystemC designs oepresent counters, and increment when the value of the
multiple levels of abstraction, which is continuation of worlassociated value source fits in any of the bins assigned integer
conducted in [3]. While specialized hardware design and venitervals or value transitions during a sampling event. The ex-
fication languages (HDLV) such as IEEE-1800 SystemVerildgting coverage driven verification scenarios of SystemVerilog
[4] and IEEE-164 % incorporate functional coverage languagande are mainly targeted at RTL-level designs and RTL related
features, these functionalities are neither available in the IEE&gnal types. Coverage analysis of system models at higher
1666 SystemC standard [5], the SCV addon-library [6] ndevels of abstraction is a promising approach to cope with the
complete compared to the aforementioned in any publictpmplexity and performance requirements for verification of
available SystemC library. Moreover, to our knowledge themyer increasing design sizes. Apart from that, a mandatory
is no particular activity of the SystemC working groups to adeequirement for true TLM capable coverage collection is the
these functionalities to the next versions of SystemC or SQ¥ssibility of multiple samplings per simulator delta cycle.



In general the coverage functionalities have to be indepesr- explicit sampling with an integer argument. Moreover,
dent from the model abstraction level and coding styles, fboth ways can be performed simultaneously along the entire
example TLM-2. Moreover, the option to explicitly sampléiierarchy of covergroups, coverpoints and bins. For example,
coverpoints with data, in order to minimize the data collectdtie statementover poi nt - >sanpl e() invokes an one-
and to maximize its information content, is meaningful.  time value retrieval from the coverpoints connected source and
invokessanpl e(arg) on all itsbi ns. Within the evaluation
level, all coverpoints and their bins are examined if the
In this section we will introduce the functional coveraggampled value fits in one of the specified intervals. In this case,
library for SystemC in detail. Therefore, we will explain outhe hit counter of the specific bin will increase. Moreover,
assumptions, highlight supported features and name unsdpring construction of the coverage metric, the verification
ported features of the current implementation. engineer may set coverage goals for each coverpoint such as
minimal hits, targeted hit count and may associate weights.
The API level provides API functions and macros to instantiate
During the conception phase potential verification use-cases
were discussed and several requirements and assumptions Coverage Library
taken which influenced the later prototype implementation

IIl. A SYSTEMC FUNCTIONAL COVERAGE LIBRARY

A. Design Constraints

the functional coverage library. Among others requiremen A" | APifunctions | | Macros | | Database |
the library
« shall implement a metric according to the SystemVerilo| Evaluation | gins | | crossgins | | Transitions| | Goals |
2005 concept of covergroups, coverpoints and bins et
« may be used on the standard OSCI SystemC kernel. | |Sampling ‘ Implicit via hierarchy ‘ ‘ Explicit via argument ‘
« may use header only functionalities of Boost libraries.
« shall not rely on the System_C Verification L_ibrary (SCV) |connecting ‘ sc_signal ‘ ‘ pointer reference ‘ ‘ callback ‘
« shall allow coverage collection and sampling on RTL &

well as TLM abstraction levels.

« shall be designed as an addon library. 0SCl SystemC

Boost Libraries ISO/IEC C++

B. Library Overview

Tlhe SystemC functional coverage IibrarY_WaS ngigned 8S  Fig. 1. Structure of the SystemC functional coverage library.
a singleton factory class, which is the main facility of the

library, providing all necessary setup and management Affe covergroup structure, to connect sources to the coverpoints
calls for the creation and administration of every elemeghd to control and evaluate the coverage collection. Apart from

of the implemented SystemVerilog coverage metric. It mawat, the coverage results can be written to a simple database
be used upon the standard OSCl SystemC kernel on gB¥mat.

C++ framework as it was designed as an add-on librar
for C++/SystemC environments. This also eases the addition Features
of functional coverage collection and evaluation to existing Our SystemC functional coverage implementation allows
testbenches. Moreover, the factory allows the administrationtbe definition and instantiation of covergroups, coverpoints as
the coverage database. The database stores collected functiwedll as cross-coverpoints. Each coverpoint may contain an
coverage information and has to fulfill two requirements. It hagbitrary number of (normal) bins, illegal bins, ignore bins
(i) to capture already sampled coverage information prior &md one optional default bin. Each bin may have numerous
the next run andii) to save this data after the test, whichinteger intervals assigned. Moreover, a coverpoint can contain
is simplified by a set of convenience API functions. Thigransition bins. Each transition bin can be assigned with an
allows temporal merging of coverage results from independearbitrary number of integer sequences to implement a simple
simulation runs of the same coverage metric. successional value transition coverage. Each defined transition
The structure of the library is depicted in figure 1. Via theequence is assigned with a vector matching class instance.
connection level the library allows connection of coverpoinfBhe relation of the library elements is shown in figure 2.
to sc_si gnal s, variables or callback functions. If implicit A default bin contains all non-specified intervals of a data
sampling is used, each coverpoint has to be bound to a sigtygle. Default bins, one per coverpoint, and their corresponding
source. If a coverpoint is not bound to a value source upartervals can be generated for integer data types. Once an
simulation start the library will notify about that and halillegal bin is hit the library notifies and halts the simulation.
the simulation. Connections of value sources to coverpoirthe hits of ignore bins will be counted but ignored for the
are registered and saved prior to tha@it_factory() overall coverage percentage calculation of bins and cover-
method of the factory, as can be seen in listing 1 and Roints respectively. Moreover, the library allows the definition
Once a coverpoint is connected to a source it may be samptédcross-coverpoints. In detail, the two selection expressions
during simulation runs. This can be done via implicit samplinigi nsof andi nt er sect from IEEE-1800 SystemVerilog



Coverage Library sampling granularity and when to trigger coverpoints. This is
—— | the key for using functional coverage successfully; minimize
Covergroup 1 the data collected but maximize its information content [7].
Coverpoint @SIG1 Coverpoint @SIGn Metric-depending constants such as default bins intervals are
Bin 1 Bin n Bin 1 Bin n calculated just once during finalization of the coverage metric
construction. If default bins are defined, they automatically
‘Intervall ‘ ‘Intervall ‘ ‘Intervall ‘ ‘Intervall ‘ [ . . . . .
o increase if all other bin types of the specific coverpoint were
interval n | || [interval n | ntervaln ||| [interval n | ?,, checked but did not hit for the specific value.
TransitionBin 1 " crossBin 1 % IV. EXAMPLES
|Trans1 | ... Transn | < In the following, several examples will be shown to illustrate
‘Binl ‘ X ‘Binz ‘ the SystemC functional coverage library usage as well as the
‘VecMatchl‘ ‘VecMatchn‘ . Corresponding API Ca||S.
TransitionBin n | |CrossBin n | A. Usage in a Testbench

Within a SystemC testbench the coverage library may be

included in the testbench infrastructure just by including the
library header file and instantiation of the coverage factory.
Once the factory is instantiated within the testbench the user-

are implemented to calculate and limit the cross produg?f'nEd functional coverage metric can be defined via the

. . . - tion of covergroups, coverpoints and bins. For example, in
of bins. To allow multiple samplings within one SystemC'¢2 groups, P P'e,
simulator delta cycle W‘; do no? re?y oRC I\/UDULEsyand a RTL testbench &C_MODULE is created to act as a coverage

clock sensitiveSC_METHODs within the implementation. The monitor and is then connected to the DUT signals. During the
. - : L connection phase of coverpoints the identifiers must be known
sampling process can be triggered from the outside in a metfod" < ) . -
Ping p 99 tg derive pointers for them. For RTL designs the definition of

call fashion. All sources are connected via pointer referenc - .
or callback functions so their values may be read multiplaessc—NET which invokes the users sample function on

times per delta cycle. Apart from simple value covera 0§$d9t§ event; could be; ddone. \:V'tthhm thﬁ slample functlontthe
boolean expression coverage can be implemented via callb gylication engineer could sample the whole coverage metric
functions. rom top-level, or just certain coverpoints or bins, depending

Compared to IEEE-1800 SystemVerilog, the current inPn environment conditions. On the other hand, in TLM designs

. |ﬁ(is meaningful to make use of analysis ports and interfaces
plementation does not support open value ranges, clock-

ing block signals, conditional guards to avoid samplingggg ;ch:is(‘; (\3/);p|ICIt sampling with an integer argument (also

wildcards specification as well as repeat ranges in tranSi-
tion bins. Moreover, several coverage type options are rit Instantiation

evaluated during the sampling process and the coveragén listing 1 the instantiation of the coverage library
percentage calculation. Examples atet ect _overl ap, singleton factory is shown. Using the API functions
cross_numprint_mnissing as well as thestrobe set_ coverage_db_nanme(name) the verification engi-
option. Moreover, the library functionality is restricted tmeer specifies where to store the collected coverage data. By
functional coverage collection only, so other parts of Sy$-oad cover age_db(name), this data may be loaded and
temVerilog such as assertions, randomization and constraialuated at later steps, e.g. for temporal merging of coverage
solving are not considered for implementation. It is assumegsults from independent simulation runs of the same coverage
that the used SystemC testbench environment provides thegsric.

features, e.g. with help of the SCV library or another librafy,; |ncjude the functional coverage library header
to allow true coverage driven verification closure. #include <SCFC_Factory.b>

Fig. 2. Elements according to IEEE-188@ver gr oup concept.

/Il Instantiates the functional coverage factory
/!l ensures singleton behavior
é{fac = SCFCFactory::init ();

D. Simulation Performance

If implicit sampling is used all value sources are refereng
via pointers or Boost callback functions, so the glueing and set external coverage database
value retrieval itself is fast. The execution tradeoff whenFac=>set_coveragedb_name("smallTest.db");
applying functional coverage analysis mainly depends 9 coverage metric definition
the granularity and amount of bins and associated intervals,,
due to the fact that the library internally has to check o o
a sampled value fits into any interval of the bins intery f {Lnsltsahn'at?attgs g?lvegﬁ?gctie“”'“on
vector. So the implemented sampling intervals and hierarCpyac>init_factory ():
levels are crucial for simulation performance. Moreover, the
end-user has the option to choose the appropriate level of

= 2

Listing 1. Example for instantiation of the coverage factory.



C. Coverage Metrics - Value Coverage — . .
/Il set the minimum hit count for the coverpoint to

In listing 2 the API calls for the creation of covergroups,/ be covered according to your metric = .
. . . .o . ¢p_one—>set_comment ("Weuse_this_.CP.to_identify ...");

coverpoints and bins with their integer intervals are Sshowep_one—>set_weight (1);
First a new type of covergroup is created, cal@@ 1 and |cp-one=>set_at_least(2);

. . - — . cp_one—>set_goal (90);
an instance is created. Using the created referegcene it
is now possible to add coverpoints to this covergroup. Ea¢h 2!l option values can be read via the API

i ) i . ) cout << cp_one—>get_goal () << endl;

coverpoint also has atd: : string identifier. Using the | cout << cp_one=>get_at_least () << endl;
overloadedconnect method one can connect three types of

value source to the coverpoint:
« sc_si gnal s of types that can be casted to integer

« pointers to variables that can be casted to integer - - . o .
« functions with return type integer In Ilstmg _4 the_ def|n|t|qn of transition bins is sh_own. First a
. . ) . new transition bin container has to be created via the method
The respective identifier has to be known at runtime in th&.\; t rans bin and has to be assigned to a coverpoint.
respective namespace. The API call to create bins makes gt this transition bin is created, the verification engineer
of the C++va_ar g macro for variadic functions to specify j,5y add an arbitrary number of transitions. This can be done
the amount of intervals. The third parameterrw_bi ns j, nyo ways. First, using the library's transition class where
specifies how much bins to create for this interval(s). new values can be added to the transition in a stream syntax.

Listing 3. Usage of goals and weights within the simulation.

E. Coverage Metrics - Transition Coverage

// define a new covergroup type and create an instance Second, it is possible to fill at d: : vect or <i nt > and pass
CG+ cg_one = pFae>new_covergroup this, "CG_1", "CG_1_inst"); it to the transition bin

/l create a new coverpoint

. // define a new transition bin
CP+ cp_one = pFae>new_coverpoint(cgone, "CP.1_SystemC”)

Binsx transBin = pFae>new_trans bin(cp_one, "TRANS");

/I Multiple overlfays fo_r connect'method, hgre // define a new transition from integer 23 downto 20
/Il connect a scsignal<int> to this coverpoint transition<int> vec23 20:

cp_one—>connect (Addr); vec23 20 << 23 << 22 << 21 << 20;

I/l Declare a bin for with intervals 20:30 and 50:60

/l assign this transition to the transition bin
pFac—>new_bins (cp_one,”20to30&50t060",1,4,20,30,50,60); g

transBin—>set_trans (vec2320);

// Declare an ignore bin with range 50680

Il create another transition
pFac—>new_ignore_bins (cp.one,”lgn50-80",1,2,50,80); '

std :: vectoxint> vecl513;

. . vecl5 13 . pushback(15);
Il Declare an illegal bin for value 99 vecl5 13 . pushback (14);

pFac—>new_illegal_bins (cp.one,”99 BIN" ,AUTOBINS,2,99,99); vecl5 13. pushback (13);

/1l Add all other ranges of Addr to a default bin

B Il assign this transition to the transition bin
pFac—>add_default_bins ("DEFAULT_BIN"); g

transBin—>set_trans (vecl1513);

Listing 2. Example forcover gr oup, cover poi nt andbi n definition. Listing 4. Example for transition bins.

Here the constantAUTOBI NS is the equivalent to the For every transition that is defined an instance of a vector
bins a[] notation in SystemVerilog, and creates as manyatching class is created. During sampling, each vector match-
bins as intervals. The fourth parameter akw_bi ns ing class compares the sample value with the stored transition
is a va_arg argument that specifies how many intersequence. If the value appears in the right order and the end
val tuples follow. The methodsiew_i gnore_bi ns and of the sequence is reached, the hit counter of the transition
new_i | | egal _bi ns share the same parameter intent. Usin will increase.

ing add_def aul t _bi ns a default bin is created. Internally

the library now calculates all non-covered intervals of this Coverage Metrics - Cross Coverage

coverpoint and assigns them to this bin. In listing 5 the definition of cross bins for cross coverage is
shown. First a cross coverpoint has to be created and assigned
D. Coverage Metrics - Goals and Weights to a covergroup. Then coverpoints can be added to this cross

The SystemC functional coverage library implements vaffoverpoint via theadd_cp2ccp method. Now a cross bin

oustype_opti on members as declared in the SystemVeﬁan be defined that evaluates its value with the help of a

ilog metric. For exampleset _at | east (int) defines the select. expression. This select expressiop may be composed
minimum number of times a bin needs to hit before it igf logical AND, OR, NOT and the functionbi nsof and

declared as hit andet _goal (int) specifies the target goal' nt er sect. The expressiomi nsof refers to the bins of

for a covergroup instance, a coverpoint or a cross-coverpo existing coverpoint. Usingnt er sect this bins may be
of an instance. The usage is depicted in listing 3. Usi ﬁmted by enumerations of values or intervals. The notation of
[

the set _wei ght (int) method it is possible to specify the tervals is again based ara_ar g, so the second parameter

weight of this covergroup instance which is considered Whi@( I ntersect states the amount of intervals that follow.
computing the overall instance coverage.



. subscriber. Within the subscriber the payload can be decoded
// add a cross coverpoint to the covergroup _ame .
CrossCoverpoint CCP = pFae>new_ CCP(cgone,"CP1lx_CP2"); and functional coverage can be collected.

/I add the coverpoints cpne and cptwo I/l Code within samplefunc function:

I/l to the cross coverpoint
pFac—=>add_cp2ccp (CCP, cpone);
pFac—>add_cp2ccp (CCP, cptwo);

std :: vectoxSCFC_Coverpoint> cp_vec;
std :: vectokSCFC_Coverpoint >::iterator cp.it;

Il retrieve the vector of defined coverpoints
/1 from covergroup cgone
cp_vec = cgone—=>get_ SCFC_Coverpointvector();

// define a cross bin, the bins value is evaluated with
Il help of the defined select expression
pFac—>new_CrossBins ("X1",

pFac=>binsof(CP.one, binl) & pFae>binsof(CP.two, bin2)); . .
Il iterate over every coverpoint

/1 call sample without argument

I/l define another cross bin, limit range > A . .
pFac->new_CrossBins ("X2" , for (cp_it = cp_vec.begin(); cpit != cp_vec.end(); cpit++)
pFac—>binsof_intersect(cpone, 2, 50, 100) & . .
pFac=>binsof_intersect(cptwo, 2, 0xA000, 0xB000)); ) (x cp_it)=>sample ();

Listing 5. Example for cross coverage usiogoss- cover poi nt s. Listing 7. Implicit sampling on coverpoints, bins.

G. Implicit and Explicit Sampling H. Callbacks and Expression Coverage

The functional coverage metric can be sampled in the fol- The library allows to make use of a boost function pointer
lowing ways. First, it is possible to explicitly sample a certai§lch asboost : : function <int (void) > to connect a
coverpoint or bin with an argument using teanpl e(arg)  value source to a coverpoint. Within the callback function cal-
method. Internally, it is checked if any bin of the coverpoint deulations can be done or boolean expressions can be evaluated.
any single bin has matching intervals defined. In case, the fift¢ return value of the function is then used to sample the
counter for the specific bin increases. Second, a sample metfB@Cific coverpoint or bin. Listing 8 depicts a very simple
without any argument can be called on coverpoints and bins.ifaplementation of a callback function. During the creation
this case, every coverpoint must be assigned to a value souRfethe functional coverage metric thisal | back_f ct ()
using a supported overload of thennect ( source) methods C€an be connected to a coverpoint via the connect method
in the metric definition phase. Of course each coverpoint c&RVer poi nt - >connect (cal | back_f ct) . Note that in
be connected to a different value source. During sampliriis example all three variablesy andz must be accessible in
the library dereferences the saved pointer or invokes the saf@ callback function namespace. C++ does not support nested
callback respectively. The result value is then used to perfofictions. However, by means of inner classes a structured
asanpl e(arg) call on the specific coverpoint bins or singleaPProach is possible.

bin. int callback_fct(){

I/l a SCMETHOD is assigned with a sample function , I/l evaluate boolean expression
// that invokes sample(arg) on the functional return ( (x < z) || (y< z) );
I/l coverage metric coverpoints, bins.

SC METHOD(sample func);

) ) Listing 8. Callback functions and expression coverage.
Il clk is used as trigger
sensitive pos << *clk;

|. Evaluation

The factory provides several APl methods, such as
The sampling can be performed in relation to a clock everget _cover age(), to calculate the functional coverage of
similar to SystemVerilog@osedge cl k, as depicted in all covergroups as well as single covergroups or coverpoints.
listing 6. Moreover, the verification engineer may specifivioreover, it is also possible to just retrieve the hit counter
different sampling methods, each evaluating other parametfs every individual bin. With help of the API methods
of the actual simulation run and focusing coverage collectighe verification engineer can build an evaluation metric. If
on the interesting activities only. The API provides severabvergroup type member options were used, such as weights,
convenience functions to retrieve defined covergroups, cdhey will be considered during all calculations.
erpoints, bins etc. by name or to iterate of vectors of theM /it collected coverage data in database file

as shown in listing 7. Moreover, by means of the expligit/ which was specified during initialization

sanpl e(arg) method the coverage metric sampling can p&2c="rite-ab 0

manually triggered by the start or end of the execution |@f the coverage information can be queried

a specific function or class method. This allows to imples, ;% BEe™Y « Soeiorosk ) coverpoint

ment behavior similar to that of SystemVerilog block eventout << cg_one=>get_coverage ()<< endl;

expressions. Coverage collection on abstract modeling leyéfg't << cp-one=>getcoverage ()<< endl;

such as TLM-2 is typically achieved using the analysis ppft also the hits can be retrieved

interface. In doing so, an analysis port is attached to tff&"' << transBin=>gethits () << endl;

interesting model and a coverage monitor is bound to it as a Listing 9. Coverage evaluation at the end of simulation.

Listing 6. Sampling with clocking event.




Besides, the evaluations can also be dduneng the simula- B. Academic

tion. This allows to_alter tr_le simulatio_n specific conditions, |, [13] the author uses the callback facility of the SystemC
such as the constraint solving, depending on the actual COVEEY library to achieve functional equivalent of SystemVerilog
age results and to steer the stimuli generation into uncoveggye and (simple) transition coverpoints. Besides the men-
areas. In listing 9 a simple coverage evaluation is shown th@ned data structures the author uses the SCVs introspection
prints the coverage of the functional coverage metric at thgelity and smart pointer callbacks to tie variables to cover-
end of the simulation. points. This leads to automatic sampling of coverpoint which
is sometimes not intended. Besides we decided in section
[1I-A not to rely on the SCV facility, the possibility to tie the

In order to fully leverage the presented functional coverag@mpling to custom events (similar to block event expressions
functionalities in SystemC testbenches we propose the uséyeSystemVerilog) or to sample custom values (e.g. string
of the Open Verification Methodology (OVM) [8]. By meanscoverage) to coverpoints is not supported. Moreover, unfortu-
of the OVM multi-language release, an efficient and standaregtely this approach does not include advanced features such
ized structure of the testbench and its components suchagscross coverage with select operators, illegal bins or default
monitors, drivers, scoreboard etc. is introduced into the Sygin declaration. In [14] the authors introduce a verification
temC ecosystem. Here the coverage monitor can be modéikginework also based on the SystemC Verification Library
as a subscriber of an analysis port, decoding all transacti$®CV) providing a coverage monitor library for functional
and performing proper sampling. Concerning sampling wa®verage modeling. The implemented basic coverage operators
consider implicit sampling (so sample without argument, tif@nge from logicaOR, equal , non- equal , gr eat er, etc.
value is derived from the registered value source) useful bnt are not as powerful as the IEEE-1800 SystemVerilog
RTL-like SystemC designs where maybe sampling also heg@verage features. In [15] the authors propose a coverage-
to occur in relation to clock events. On the other hand, wheliiven verification methodology approach that uses the their
simulating more abstract models, e.g. with TLM-2 interface8wn bve_cover class. This class has also been referenced
we suggest to make use of explicit sampling, as the natureif16] and [17]. It is reported that the approach allows defini-
payloads etc. can be so general and abstract, the verification of (illegal) buckets (similar to bins) and cross-coverage.
engineer should have the possibility to define when, where addfortunately, the authors do not introduce implementation

V. METHODOLOGY

how often to sample what piece of data. details. In [18] a coverage driven testing policy is proposed
whereas Property Specification Language (PSL) expressions
V1. RELATED WORK which are converted to C++ are used to gather and inspect

function coverage information.

An earlier version of our SystemC functional coverage g
. Concerning the related work, we can conclude that to our
library was used to conduct a case study on a CAN bus

network in [3]. Despite the connection level was limited t?nowledge there is no other free of charge functional coverage

RTL SC S| GNALS, using the coverage analysis we coul dbrary for the OSCI SystemC ecosystem that incorporates

. . . o : value, expression and transition coverage as well as cross

identify coverage holes in the stimuli generation as well as ) .

unforeseen corner cases coverage. Moreover, to our knowledge there is no particular
' activity of the OSCI Verification Working Group (VWG) to

A. Standards and Industry add functional coverage functionalities to the SCV library.

In the area of (add-on) verification libraries, the Open VII. OuTLOOK

Verification Library (OVL) [9] is maintained by Accellera and For further development and research activities we see
provides checkers that may work as assertion, assumptionaolot of interesting topics. First of all, missing features of
coverage point checkers. The most recent versions such as ¥Be5 current implementation in comparison with IEEE-1800
support SystemVerilog, Verilog and VHDL. UnfortunatelySystemVerilog such as per-bin conditional guards could be
there is currently no support for SystemC. Additionally, excefrhplemented easily via vectors of callbacks with return type
SystemVerilog the supported languages are working on RBoolean per bin. Another topic could be improved transition
level, impeding verification on higher levels of abstraction ocoverage with open ranges and more advanced features. Here
more abstract data types. In the area of functional coverage have to find a tradeoff between implementing a heavily
implementations for SystemC, [10] introduces a function&++ meta-programming based facility or defining the desired
coverage prototype. Unfortunately, just a list of functiongalue sequence as a property and use an assertion language.
without any details is available. In contrast, our library willWhenever the assertion fires we could use this as a covergroup
be open with all details as open source. Apart from thatample or count event. Moreover, as C++ does not have the
JEDA Technologies provides commercial products for Sydeclarative syntax feel of SystemVerilog the API syntax needs
temC code, functional and transition coverage [11]. NextQB be more compacted in general. Here more efficient usage of
Software mainly targets on assertion synthesis and assertieariadic macros techniques and template (meta)-programming
driven coverage collection and does not focus on SystengCnecessary. Unfortunately, when building C/C++ libraries,
[12]. usually a tradeoff between optimal compilation footprint - with



help of extensive usage of generic programming and templatg
meta-programming - and the necessary amount of time for
(re-)compilation is meaningful. As a lot of iteration steps and

recompilations are likely for testbench engineering this is ars]
important timing issue. Therefore, the decoupling of manage-
ment and verification tasks of the testbench environment in,

P. Marriott. The What, When, and How Much of functional coverage.
EDA Tech Forum Journal. (2006, September) [Online]. Available:
http://www.edatechforum.com/volumes/volume-3/september-2006/
the-what-when-and-how-much-of-functional-coverage/

Cadence Design Systems, Inc. Open Verification Methodology Multi-
Language. [Online]. Available: http://www.ovmworld.org/

9] Accellera Organization Inc. Open Verification Library (OVL). (2009,

May) [Online]. Available: http://www.accellera.org/activities/ovl/

e.g. SystemC/C++ and an interpreter language such as Pythop R. Siegmund, U. Hensel, A. Herrholz, and I. Volt. Functional

is another interesting point of research. In detail, it should be
considered to which extend the coupling can be made without
SystemC kernel modification, to allow the overall verification
library still to run on standard OSCI SystemC installation$!1]
Moreover, the database interface should support the upcomj
Accellera Unified Coverage Interoperability Standard (UCIS)
which is planned to be first released in 2011 [19], [20].  [13]

VIII. CONCLUSION [14]

In this article we presented an approach to impIemeH
functional coverage for the SystemC ecosystem, capable 01J
running on the standard OSCI SystemC kernel. We briefly
introduced the available functionalities ranging from value

coverage prototype for SystemC-based verification of chipset
designs. AMD Dresden Design Center. (2004) [Online]. Avail-
able: http://www-ti.informatik.uni-tuebingen.degystemc/Documents/
Presentation-9-UR_siegmund.pdf

JEDA Technologies Inc. JEDA ESL Validation Solution. [Online].
Available: http://www.jedatechnologies.net/base/?q=Products

NextOp Software, Inc. NextOp assertion-based verification. [Online].
Available: http://www.nextopsoftware.com/

K. Schwartz, “A technique for adding functional coverage to SystemC,”
in DVCON 2007. Willamette HDL Inc., 2007.

S. Park and S.-l. Chae, “A C/C++-based functional verification frame-
work using the SystemC verification libraryRapid System Prototyping,
IEEE International Workshop on, vol. 0, pp. 237-239, 2005.

K. R. G. da Silva, E. U. K. Melcher, G. Araujo, and V. A. Pimenta, “An
automatic testbench generation tool for a SystemC functional verification
methodology,” inSBCCI '04: Proceedings of the 17th symposium on
Integrated circuits and system design. New York, NY, USA: ACM,
2004, pp. 66-70.

coverage, expression coverage, cross coverage and SINM¥EG. s. Silveira, K. R. G. da Silva, and E. U. K. Melcher, “Functional

transition coverage, by means of multiple example code list-
ings. All introduced functional coverage functionalities are
implementations of the IEEE-1800 SystemVerilog covergroup
metric. Overall, we see big potential for reduction of the vefi7]
ification effort for coverage-driven verification with SystemC
when moving to higher-levels of abstraction. Enabling the
coverage-driven verification paradigm for verification closure
in SystemC design flows using a functional coverage Iibra[%ﬁ]
will boost SystemC's role as high-level design and verification
language (HLDV), in doing so, still being a fully free of charge
and open source ecosystem. In the broader scope this Iibr@@r
will be combined with the results of other work package
of the BMBF founded SANITAS project, e.g. an enhanced
OVM for SystemC, enabling early verification across the entifé!
value-creation chain.
[21]
ACKNOWLEDGMENT

This work was partly funded by the DFG Collaborative
Research Centre 614 and by the German Ministry of Education
and Research (BMBF) through the BMBF project SANITAS
(01M3088I). We greatly appreciate the cooperation with the
project partners [21].

REFERENCES

[1] H. Foster. Redefining Verification Performance (Part 2). (2010, August)
[Online]. Available: http://blogs.mentor.com/verificationhorizons/blog/
2010/08/08/redefining-verification-performance-part-2/

[2] J. Bergeron, “Writing Testbenches: Functional Verification of HDL
models. Kluwer Academic Publishers,” 2003.

[3] C.Kuznik, G. B. Defo, and W. Nller, “Verification of a CAN bus model
in SystemC with functional coverage,” BIES 2010 Proceeding2010.

[4] IEEE Standard for System Verilog-Unified Hardware Design, Specifica-
tion, and Verification LanguagéEEE STD 1800-2009, pp. C1 —-1285,
2009.

[5] Open SystemC InitiativelEEE Standard SystemC Language Reference
Manual, Open SystemC Initiative Std., 2006.

[6] Open SystemC InitiativeSystemC Verification Library v1.0p2, 2006.
[Online]. Available: http://www.systemc.org/downloads/standards/

verification of an MPEG-4 decoder design using a random constrained
movie generator,” iNSBCCI '07: Proceedings of the 20th annual
conference on Integrated circuits and systems design. New York, NY,
USA: ACM, 2007, pp. 360-364.

C. L. Rodrigues, K. R. G. da Silva, and H. N. Cunha, “Improving func-
tional verification of embedded systems using hierarchical composition
and set theory,” irSAC '09: Proceedings of the 2009 ACM symposium
on Applied Computing. New York, NY, USA: ACM, 2009, pp. 1632—
1636.

Y. Lahbib, O. Missaoui, M. Hechkel, D. Lahbib, B. Mohamed-Yosri, and
R. Tourki, “Verification flow optimization using an automatic coverage
driven testing policy,” inDesign and Test of Integrated Systems in
Nanoscale Technology, 2006. DTIS 2006. International Conference on,
sept. 2006, pp. 94 —99.

R. Goering, “An inside look at the Unified Coverage Interoperability
Standard,"Industry Insight Blog, Cadence Design Systems, Inc., March
2010.

R. Ranjan, M. Burns, A. Sarkar, and R. Ho, “What can be expected
from the Accellera Unified Coverage Interoperability Standarelet-
tronicdesign.com, Penton Media Inc., October 2010.

Collaborative verification along the entire value-added chain;
"SANITAS” research project launched under management of Infineon.
[Online]. Available: http://www.infineon.com/cms/en/corporate/press/
news/releases/2009/INFXX200912-018.html



