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ABSTRACT 

SystemVerilog Test Bench (SVTB) is a set of language extensions to the 

IEEE 1800 SV LRM used to reduce the amount of time and effort 

required to write tests which exercise SystemVerilog (SV) RTL code.  

Design Verification or more correctly defined “Design Exercise” is a 

methodology in which pre-defined basic boundary conditions of a design 

must be tested before submitting code to the project‟s official codebase.  

This methodology was used on the next-generation Intel CPU project to 

reduce the number of bugs introduced to the RTL model by over 50%.  

SVTB for Design Exercise was the utilization of SVTB language 

extensions in conjunction with a test environment (TE) automatically 

created by the RTL tools for any level of hierarchy in the CPU project.  

SVTB was used predominately to fill any validation gaps where the 

“official” non-SVTB TE was not available for designers or where the 

validation TE collateral lagged behind the RTL coding milestones.  

SVTB enabled designers to quickly and easily write directed tests within 

a highly controllable and observable environment.  SVTB also enabled 

rapid debug turnaround time, from test or RTL change, through 

compilation, simulation, and wave trace updates, typically 1-5 minutes. 

SVTB TE‟s also allowed for extensive randomized and constrained 

verification environments to be turned into models as regression test 

suites. 

INTRODUCTION 

Design RTL bugs on Intel CPU projects have increased significantly in 

the past decade, much more rapidly than previous trends had indicated, 

even accounting for project design complexity increase.  Some of the 

more recent CPU projects reported record thousands of pre-silicon RTL 

bugs. Without decisive action to reduce RTL bug rates, next generation 

CPU teams would have faced critical RTL execution issues. 

Recent CPU RTL postmortems identified that one of their most 

significant sources of RTL bugs were caused by the general lack of early 

(pre-code-release) RTL testing.   These CPU teams faced a transition to a 

brand new design language (SystemVerilog), a new SV-based tool suite, 

and a new code development work model.  The transition to this new 

work environment consumed all available bandwidth and prevented any 

serious focus on early “Design Exercise”. 

“Design Exercise” is not a new concept in the industry or even within 

the CPU design teams themselves.  It is the methodology of completing 

all gating exercise plan items before releasing new code to the official 

project released models. It does not replace the true Validation process 

done by Validation teams.  “Validation” is an exhaustive process of 

testing a design to ensure that it functions precisely to specification 

covering all functional boundary conditions and all design usage modes. 

“Exercise” is a subset of the total Validation effort.  It is an initial breadth-

first testing approach applied to a new feature that provides confidence in 

the basic functionality of that feature, before more extensive testing is 

performed. In addition, exercise activities should be done at the lowest 

hierarchy level at which test environment support is available with 

sufficient controllability of the new feature. “Test your own code before 

you inflict it on others” is a basic principle of sound engineering practice.   

Before moving to this newer SV design language and infrastructure, 

previous CPU designs, extensive tools and methodology were developed 

for local testing of new features. A proprietary PERL-based Test 

Environment (TE) supported local RTL testing. This proprietary TE 

utilized a set of shared library functions and RTL model access 

techniques, combined with custom user code, which allowed the user a 

familiar language (PERL) in which to quickly develop custom test 

environments at many hierarchy levels.  Because PERL was well known 

to the Design teams at Intel, there was very little barrier to entry for an 

RTL coder to ramp up and do effective design exercise work. 

When the CPU design teams moved to SV to model their hardware they 

lost the use of the PERL-base TE.  Their validation team made the 

decision to not use SVTB for their TE‟s and chose instead a language that 

was well ahead of SVTB, at the time, in terms of complexity and usage. 

But because it was so significantly different from any language in the 

Designer‟s experience, it posed a tremendous barrier to entry.  This, 

combined with other factors, led the CPU teams to use sub-standard 

code-release policies where designers would turn the code in without 

exercising the new feature at all, or they would stick it into a side model 

and wait for the validation team to get to it later (sometimes months) 

before it was turned in to a model.  In both cases many bugs were 

uncovered causing the overhead of tracking the bug and/or having the 

designer re-learn the code he wrote month earlier.   

There were some notable exceptions on these projects where the 

Validation TE‟s were highly effective and bucked the trend.  These 

exceptions either gave designers the templates they would need for their 

exercise work or some limited use of native SV test benches (TB) were 

created.  But at least in these more recent CPU teams, these were the 

exceptions to the Design Exercise paradigm. Most designers did little or 

no design exercise and relied on their validation team to find bugs.  

Analysis of the more recent CPU teams Design Exercise experiences lead 

to the following mandates to be applied to next generation CPU RTL 

Development: 

1. Release no code feature to the project repository until it has been 

sufficiently/quantifiably exercised. 

2. Work efficiently.  Take full advantage of existing Test Environment 

capabilities.  If the required TE features are available, learn to use 

them to complete Design Exercise. 
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3. If the project TE is not yet available or does not provide sufficient 

controllability, consider completing Design Exercise using a custom 

test environment. 

Within this context, several SVTB pilots were launched to experiment 

with SVTB and to help in the development of several supporting tools.  

Three units of different size and complexity were chosen for 

experimentation.  Ultimately, the next generation CPU projects adopted 

SVTB for use during Design Exercise, for cases when the alternative 

validation environment was not ready to use or was inadequate.  These 

CPU teams developed infrastructure tools to generate SVTB wrapper 

shells for any module, developed methodology and training material to 

be delivered to the design team, and deployed SVTB.  This paper will 

discuss details of the tools, results from pioneering experiments, and 

learnings from practical usage of the SVTB flow in CPU Frontend RTL 

Development. 

THE SVTB SOLUTION 

SVTB is both an easy-to-use and powerful mechanism for writing 

directed tests while also being very extensible to a highly random, highly 

encapsulated, and fully layered verification environment.  It brings many 

of the OOP (Object Oriented Programming) concepts of C++ into the 

verification world of hardware description languages (HDL), specifically 

targeting Verilog extensions.  SVTB consists of a significant number of 

extensions that are now part of the IEEE 1800 SystemVerilog 

specification which allows for more abstract constructs to be used for the 

sole purpose of verification.  It brings much of the 30+ years of software 

verification solutions like OOP into the hardware verification realm in 

order to reduce costs, increase productivity, and increase reuse.  While it 

is relatively new, it is gaining acceptance in the industry as the next 

verification language of choice among the EDA vendors and user 

companies.   

While there are many aspects of the language which are powerful, there 

are many pieces of it which still need improvement and therefore it does 

lag some of the EDA‟s solutions which have been around longer.  Some 

of the language descriptions are vague and have left open the 

interpretation of various features of the language.  This has lead to 

different solutions by different vendors‟ often leading to code which does 

not compile or behave the same from one EDA simulator to another. 

However, the industry is rallying around the spec and the SV community 

continues to pour effort into language clarification and improvement. 

Once the CPU teams decided to pilot SVTB, many questions had to be 

answered. What would the capabilities be?  How much ramp time would 

be required?  Would there be maintenance costs?  How much reuse 

would be available?  What were the limitations?  How much automation 

could be implemented?  

Before any pilots were initiated, the overall language was reviewed along 

with industry standards. The two common verification methodologies in 

the industry were the Verification Methodology Manual (VMM)[1] and 

the Open Verification Methodology (OVM™)[2].  Both methodologies 

are similar in scope and capabilities but their complexity and 

comprehension levels were far beyond the needs of a simple design 

exercise environment.  This led us to believe that all of the above 

questions had to be answered with a proprietary SVTB solution. Once 

the capabilities and limitations were understood through pilots, a working 

group (WG) was formed to develop a methodology around the 

technology, to enable automated creation of a test environment, and to 

deploy the system and train the design team. 

 

 

THE EXTENDED ADVANCED PROGRAMMABLE INTERRUPT 

CONTROLLER (XAPIC) PILOT 

The first pilot was conducted by Intel‟s Corporate Design Solutions 

(CDS) on the xAPIC, a sub-unit of the memory cluster.  The main job of 

the xAPIC is to process and prioritize interrupts, initiate handler routines, 

and to track all interrupts to completion. The primary goal of the pilot 

was to see if the language constructs would meet the needs of a simple 

design TE.  The secondary goal was to understand the capabilities and 

limitations in order to develop a methodology. Several key learning‟s 

about SVTB were drawn from this pilot:    

Intuitive: The first key learning highlights how intuitive it was to move 

from SV to SVTB.  Designers that have worked with SV understand the 

framework of the RTL environment: (a) the way hierarchy is created, (b) 

the concepts of template definitions and instantiation, (c) 

parameterization and macro usage, and (d) general syntax and semantics.  

This framework does not change for SVTB.  Instead it builds on it, 

adding constructs and semantics that enable a TE to be created.  In fact 

the vast majority of the constructs used for RTL coding can be used in the 

TB. 

Simple: The second key learning realized how simple it was to create the 

TE and write your first test.  Figure 1, shows the code that drives a set of 

interface signals over time.  This is the only code a test writer needs to 

understand to write his first test.  It consists of driving the interface with a 

hardcoded value, stepping one clock cycle, driving the next interface 

signal, and so on until a complete transaction is done. 

 

Reusable: Third learning, taking the interface pounding example and 

encapsulating it into a class was very intuitive as well for SV designers. 

The code in Figure 2 shows how to take the code from Figure 1 and 

encapsulate it into a class.  Within the class is a method, in the form of a 

task, called „Write‟, which has both a port list and functionality.  The port 

list provides a means by which we can give meaningful names to the data 

that we are driving.   In the port list we can specify default assignments,  

like CRThread and CRRead, and then leave these assignments out of the 

method call shown in Figure 3.   

With the class created, the test writer has to create a handle of that class, 

construct the object, and then call the class method via the handle within 

class ControlRegisterBus; 

 task automatic WR( 

        input logic [1:0]  CRCtrl,  

        input logic        CRThread = 1’b1,  

        input logic [10:0] CRAddr, 

        input logic        CRRead = 1’b0,  

        input logic [31:0] CRData); 

 

       m.crpwrup    = 1'b1;                                  

  ##1; m.crwritebus =  {CRCtrl, 1’b1,CRRead,   

 CRThread, CRAddr};             

  ##1; m.crwritebus = CRData[15:0]; 

  ##1; m.crwritebus = CRData[31:16];      

       m.crpwrup    = 1'b0; 

 endtask 

endclass 

Figure 2 – First Test Pounding the Interface 

Figure 1 - First Class 

     m.crpwrup    <= 1'b1;                                       

##1; m.crwritebus <= 16'b0010_0100_1000_0000; 

##1; m.crwritebus <= 16'h0000;        

##1; m.crwritebus <= 16'h0000;            

     m.crpwrup    <= 1'b0;                             
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the test as shown in Figure 3.  The „Write‟ method can now be used over 

and over again in the test by substituting the CR address and CR data 

with different values.  With this first level of abstraction in place, writing 

directed tests now becomes very strait forward and intuitive.  Additional 

classes and methods are also created to model other transactions.  

Fast: Another very important key learning with this pilot was the 

incredible turn-around time.  Compilation AND simulation time was on 

average 20 seconds wall time, and simulation speed for this medium-

sized DUT was 35kHz. This is compared to test times for upper level test 

environments which ran at 10-100Hz. 

Controllability: Another pilot was conducted on the Instruction Fetch 

Unit (IFU) which had similar results to the xAPIC.  One additional key 

learning from that pilot was the level of controllability given to the 

designer to hit specific conditions in their DUT.  This designer was able 

to reproduce a bug found in silicon with SVTB in less than a day that 

was never found due to it‟s complexity at the upper test environment 

level. 

METHODOLOGY DEVELOPMENT 

The next step for SVTB was to formalize a methodology.  The pilots 

gave us a direction but now the language needed to be understood in 

depth by a good spectrum of RTL designers to enable the design team to 

form the best methods to use SVTB for the entire project.   The formation 

of a methodology would ensure that productive practices were created 

and taught, that an automated TE would adhere to them, and that future 

linting technology had a baseline set of rules and guidelines to enforce. 

CDS formed an SVTB working group (WG) with CPU engineers and 

methodology experts, which was given the charter to develop a working 

methodology for the use of SVTB on the next generation CPU project.  

This four-month effort led to the development of CPU Design Handbook 

Guidelines detailing the SVTB aspects of the language and how they 

should be used in order to accommodate a simple and light TE for 

designers. Some examples of language features described in the CPU 

SVTB methodology include: 

Program Blocks are required: Simply stated, program blocks in 

conjunction with the use of clocking blocks ensure that race conditions 

are eliminated from the TE. The SV language defines regions when code 

is evaluated with respect to each other and program blocks are evaluated 

once all the modules (DUTs) are completely relaxed. This, in 

combination with clocking blocks, ensures that race conditions between 

the RTL and the TE, a very problematic issue for Verilog users, are rarely 

seen. For this reason, Program Blocks are required in the SVTB TE. 

Clocking Blocks are required: Another very important methodology 

choice is to use Clocking Blocks (CB).  CB‟s serve three functions. First, 

they eliminate race conditions. Second, they abstract away timing 

complexities. Third, they synchronize the passing of data between the TE 

to the DUT on specific event edges.   

Sample at #0 and Drive at #2: Another key decision taken by the WG 

was to model the sample and drive times through our CB‟s on the #0 

timing edge and #2 timing edge respectively.  Sampling input signals 

from the DUT at #0 lets the TB see all the events from the DUT after they 

have been triggered by the clocking edge and after the DUT has 

completely relaxed.  The TB can then accurately respond and drive back 

the correct stimulus.  By choosing to drive our events back to the DUT at 

#2 we ensure that the TB stimulus will also be the last driver of the DUT 

signals.  

Combinational Logic Modeling: Understanding CBs made us realize 

that there was no way to model combinational paths through a TB within 

them.  Most validation TE‟s don‟t have to worry about modeling 

combinational logic across the DUT/TB interface as they exist at very 

high levels of abstraction.  This is not the case for Design Exercise.  To 

model combinational logic, CB‟s cannot be used and the TE must 

explicitly drive or sample the signals directly.  This removes the latency 

of waiting for the CB event and allows them to be immediately seen and 

driven back in the same time tick. 

Class and Task Usage: Another methodology choice was the use of 

classes to encapsulate logic for reuse as seen in Figure 3.  Classes allowed 

the designer to create complex structures and transactions which can be 

parameterized and reused.  Monitors, scoreboards, transactions, 

generators, and drivers can all be created generically with the use of 

classes.  While tasks would accomplish some of the same functionality as 

the class, they did not allow for compartmentalization and protection of 

class properties.  Also classes have built in randomization functionality 

supported by the language, which cannot be done with tasks.  

Logging Macros:  CPU projects at Intel have very strict policies on the 

content conveyed in log messages.  This content included which line of 

code was giving the message, which file it was from, what time step it 

occurred, what hierarchy (%m) the message came from, and of course the 

specific message string.  Therefore different logging methods were 

looked at from the OVM™ and the VMM and it was decided to use a 

pruned-down version of what the OVM™ does, namely using macros as 

seen in Figure 5.  

AUTOMATION 

We wanted to create a test environment conducive for RTL designers so 

our focus was on these criteria: 

 

1. Give the designer the ability to choose any hierarchy for the DUT TE 

2. Enable the designer to write the test immediately 

3. Allow for debug turn-around in minutes 

clocking cb @(posedge clock); 

    input  #0 Q; // Sample exactly at event edge 

    output #2 D; // Drive 2 ticks after event edge 

    … 

endclocking 

 

 CRB.WR(.CRCtrl   (2'b00), 

        .CRAddr   (APIC_ID_CR_ADDR),  

        .CRData   (32'h0100_0100)); 
 

Figure 5 - First Method 

Figure 4 - Default #0 Sample and #2 Drive 

`define ERROR(str) \ 

  $display("[%t] at line %0d in %0s",$time,$line,$file);\ 

  $display("ERROR: %m - %s", str); 

 

Figure 3 - Logging Error Macro 



 

DVCon2011 Conference   4 
 SVTB for Design Exercise 

The automation was done within the RTL build environment of the CPU 

project.  Two additional stages were added to the build flow to first create 

a TE, and then to build the TE into a simulation executable.   

The create stage generates the top level TE seen in Figure 6.  This 

includes the DUT, the TB, the clock generator, and the top level 

connectivity.  

The create stage is only run once in the build flow.  The user is 

encouraged to compile this new code at least once before any edits to 

verify that the TE compiles „out of the box‟. Once the TE has been 

created, the user can then begin to make changes to the collateral and start 

writing tests.  Once the first test is written, the code is compiled, 

simulated, and loaded into a debugger.  The debug loop then becomes a 

very simple process of modifying the RTL or TB, recompiling, re-

simulating, and reloading the results (see Figure 7).    

AUTOMATION LIMITATIONS 

There were several issues that we ran 

into with the automation as we didn‟t 

want to burden the tools with too 

much complexity.  This simplistic 

approach actually made the tools easy 

to maintain and use.  The downside, 

however, led to extra effort on behalf 

of the RTL designers who for each of 

the following limitations had to work 

around them in one way or another.   

Upper Level DUT compile required 

– In order to get the collateral in a 

cloned CPU model to create a SVTB 

TE, the build tools had to first compile 

an established block above the level of 

the SVTB DUT.  This stemmed from 

the lack of grafting technology on the 

CPU models and from the inability to 

build any hierarchy level atomically. 

Missing defines – Another common 

issue that designers ran into was not 

having their TE compile „out of the 

box‟ due to either missing search paths 

in the simulation build configurations 

or missing defines which were scoped 

at the established upper TE levels but not as the new lower DUT level. 

Reset and Configurations not automated – One of the first things 

needed within a TE, once the framework was created, was to create the 

reset and register configuration collateral which would simulate getting 

the TE and the DUT out of reset and into normal operation.  This was not 

automated and therefore took effort to either drive the interfaces or drive 

internal registers to get to this state.  

 

NEXT GENERATION CPU USAGE 

There were two usage models planned for the next generation CPU 

project, one in which the designer would create his TE, use it once, and 

throw it away once his code was exercised.  The other was the opposite 

where the TE was created once and then forever maintained as tests were 

written and added to regression (test) lists.   

The majority of the SVTB TE‟s created on the CPU project turned out to 

be the throw-away type.  This work model is initially seen by most who 

hear about it as very wasteful, but the reality is just the opposite.  The 

amount of effort to create the TE is very small, and the one time ramp 

cost to use it is also small.  The TE automation enabled the designer to 

move to any model, recreate the TE, and test whatever is new on that 

model, sometimes by only driving the internal logic and signals they care 

about and observing via debug waveforms the results.   

On the other end of the spectrum, there were SVTB TE‟s created and 

maintained by the designer because there was no existing TE.  These 

fully capable TE‟s took full advantage of the SVTB language semantics 

and constructs and are discussed in the MLC and Gearbox sections 

below. 

Finally, there were about 10 “middle of the spectrum” SVTB TE‟s 

created and turned into the RTL models. These were relatively simple 

TE‟s but still needed to ensure that new functionality did not break 

existing functionality.  SVTB tests were created and checked into the test 

database, and the tests were incorporated into regression lists which were 

turned in with the model.  Every turn-in thereafter ran these SVTB tests 

to make sure nothing was broken.  A handful of TE‟s were surprisingly 

created at cluster and full chip (top) levels by Clock and DFX engineers 

who black-boxed the lower level RTL to test only their code.  They used 

SVTB either because existing TE‟s did not support them and/or they 

wanted quick debug turn-around time.  

One other very interesting SVTB implementation came about with the 

integration of new proprietary bus within the CPU project.   The new bus 

had no validation environment for initial coding and mostly depended on 

OVM™ Verification IP provided and supported by another team within 

Intel.  Integration issues aside, we ended up using the OVM™ code to 

create the bus agent and fabric TE‟s to validate the new RTL code.  

However, due to schedule, the agent code for several units did not exist 

yet, so SVTB was used in its place to drive the bus requests and monitor 

responses across the bus RTL channels. In essence, we literally had two 

atomic TE‟s, one based on OVM™ and the other on SVTB design 

exercise principles, working together with the RTL in the middle, 

resulting in over a dozen bugs being uncovered.   

MID -LEVEL CACHE 

The Mid-Level Cache (MLC) functions as an intermediate cache for the 

CPU.  It contains the queues, FIFOs and other structures to service 

memory requests from the lower level caches and performs cache 

lookups while managing data returns and protecting cache coherency.  

The SVTB based TE for the MLC was created from scratch by an RTL 

designer familiar with the MLC Architecture and RTL as well as SV 

Clock Generator 

DUT TB 

Clocking 
Blocks 

DUT_Top 

Test Bench  
Template 

Class 
Templates 

Figure 6 - Debug Flow 

Setup 

Clone Model 

SVTB Create 

Edit Test 

Compile 

Simulate 

Debug 

Figure 7 - Top Level Test Environment 
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itself, but having no SVTB experience.  The main resources used to build 

the environment were based on learnings and discussions with the the 

CDS SVTB expert and System Verilog for Verification[3].  The MLC 

work also used some of the previous xAPIC SVTB Pilot code as 

templates and coding examples. 

The scope of the MLC functionality was very large and startup costs were 

more than expected.  These costs were spread over two areas: first, 

architecting and coding the main interface, and second, implementing the 

reset and configuration phases (i.e. getting the RTL to a known good post 

reset and power-good state). In both cases, the functionality and 

complexity contained within the MLC contributed to a longer than 

expected development time.  Implementing the reset and configuration 

phases included driving multiple clock domains, redundancy/fuse 

poundings, power-good and reset sequencing, and TB cache 

initialization. 

There were no significant startup costs ramping into SVTB or with TB 

development. Because the SVTB TE is built on the same SV framework 

used for RTL development, this meant that RTL designers very quickly 

engaged and started building the blocks needed for the TE.  Functional 

TE blocks were developed in a matter of hours and focus on the actual 

development, rather than new language syntax and semantics.  SVTB 

ramp time was spent understanding the new constructs, such as dynamic 

arrays, and how to use the language effectively by using OOP concepts.   

Internal

Memory

DCU Request

Emulator

Request

Buffers

Request

Buffers

IFU Request

Emulator

Cache and 

Control

Super 

Queue

APIC

Snoop 

Queue

Prefetch 

Queue
IDI 

Control

MLC RTL External

Memory

Request

Buffers

Response

Buffers

Data

Buffers

IDI Bus

Uncore

Emulator

MLC SVTB TE

                     Figure 9 - MLC RTL and SVTB TE Overview 

The MLC TE development effort included two main internal request 

emulators for the DCU and IFU, which shared access to internal memory 

(implemented as an associative array). An external bus emulator to 

represent the Uncore was also needed.  The Uncore emulator had the 

external memory for the MLC TE, as well as Uncore request and 

response queues (implemented as associative arrays).  Implementing an 

external bus emulator can be problematic if fine-grained control is 

desired from the interface.  Fortunately, this is one area in which the 

SVTB TE excelled.  The SVTB TE allowed the TB writer to specify 

certain request and response matching conditions, such that individual 

requests could have very specific responses. The TB writer was also able 

to specify default cases for various response types and request/response 

combinations. 

Once the model was up and running, it became apparent in the MLC that 

checker development was going to have a high cost.  The higher level 

validation TE implemented a comprehensive data and coherency checker 

for the MLC, which would have taken many weeks of effort to duplicate 

in SVTB.  Given time constraints, several lighter weight checking 

strategies were implemented, rather than a comprehensive validation 

solution.  

The primary data and state checking for the MLC used internal and 

external memory implemented as associative arrays.  Cache line data and 

line state were tracked with an external view and an internal view.  When 

data was returned for core requests it was checked against the internal 

view.  Similarly, when core write data was seen by the external bus 

emulator, it was checked against the external view. 

A second, more lightweight form of checking was also implemented.  In 

the lightweight check, the TB writer specified the expected data from a 

read-type memory transaction.  The SVTB TE would compare the actual 

data returned with the test writer‟s expected data and signal an error if it 

did not match (see Figure 10). 

One area where the SVTB TE far exceeded the higher level validation 

TE was in turnaround time.  The extremely fast compile and run times 

created a work model where the designer could quickly iterate over 

changes (see Table 1). This mindset was good because it enabled more 

trial and error, but also allowed less well thought-out changes.  Note that 

while the performance differences are significant between the upper level 

TE and SVTB, only a portion of this in Table 1 is the language 

difference.  The 10 minute number includes the overhead of the build 

tools and recompiling the upper level TE code. 

 

 

Compile 

Time 

Typical short 

test run time 

SVTB TE 10 sec. < 1 min. 

Upper level 

TE 10 min. 5~6 min. 

Table 1 – MLC TE Compile and Time Comparison 

Maintaining and expanding the SVTB based TE is another area where 

SVTB really shined.  This was due to language familiarity and the ease 

within SVTB to make changes.  Any RTL designer could modify and add 

functionality to the TE, versus the upper level validation TE experience 

where there is only one expert for each TE.   

 LLC.AddU2CRsp (.RspDelay(3), 

                .RspMESI(NHM_MEU_STATE_I), 

                .MatchReq(1'b1), 

                .MatchSqid(4), 

                .MatchAddr(40'h1234_5678)); 

Figure 10 - Response Matching Example 

Figure 8 - Rd/Wr Transaction with Lightweight Checking 

Example 

DCU.AddRequest (.ReqType(NHM_DCU_WB_TYPE), 

                .Addr(40'h1234_5678), 

                .Thread(1), 

                .WrData(InitData)); 

DCU.EmptyReqQ(); 

SB.FinishAllRequests(); 

 

DCU.AddRequest (.ReqType(NHM_DCU_READ_TYPE), 

                .Addr(40'h1234_5678), 

                .Thread(1), 

                .ExpData(InitData)); 
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We learned from this effort that if the RTL development begins from 

scratch, or with RTL that will undergo significant change, it would be 

much easier to develop the SVTB TE in parallel with the RTL.  Such a 

situation allows for proportional effort to be directed into the TE and into 

the RTL, rather than having the TE require an order of magnitude more 

development effort. 

Also, as seen by the MLC, one of the main benefits to using SVTB is the 

speed at which small pieces of TE code can become functional.  

Combined with the amazingly short compile and run times, and we can 

say that the biggest benefits to having an SVTB TE would come when 

the scope of the RTL is kept to a small level.  The scope of the MLC 

required a large amount of effort to be put into TE development.  If this 

scope could have been kept at a lower level, there would have been more 

benefit to having the SVTB TE. 

GEARBOX 

The Gearbox was a new microarchitectural unit in the original 

conception of the next generation CPU project.  It was an entirely new 

design, leveraging only minor amounts of existing logic and header files 

from the CPU RTL databases.  As such, it was a prime candidate for 

SVTB exercise, and until a validation resource was assigned to produce a 

full-fledged Validation TE, initial bring-up and exercise of the Gearbox in 

its early stages was performed using SVTB techniques. 

However, even after the Validation environment for the Gearbox was 

fully developed and used for official regression testing and RTL turn-in, 

the SVTB approach was still used extensively for the addition of the 

Gearbox‟s more complex features.   

The internal microarchitecture of the Gearbox is beyond the descriptions 

of this paper and considered Intel confidential material, so we only focus 

on the SVTB development phases of the Gearbox TE. The approach 

taken for RTL development was to test code in small increments as soon 

as it was ready, a task for which an SVTB methodology is perfectly 

suited.  This resulted in roughly four phases of coding followed by 

rigorous testing, as shown in Figure 12 

Phase 1:  The first coding task was transcription of the fundamental logic 

equations that comprise the Gearbox‟s base function algorithm from the 

reference Verilog model into SV.  It was decided for upper-level code 

readability to use SV functions instead of modules; since the algorithm 

fundamentally operates at the byte level using a variety of one-to-one 

mapping functions and their inverses, it was very straightforward to 

exhaustively test that passing all possible byte values through a function 

and then its inverse returned the original data.  Testing in this way took a 

matter of minutes and exposed one typographical error in the low-level 

functions that would have been significantly harder to isolate through 

higher-level testing.  Higher-level invertible functions that operated on a 

4-byte granularity were similarly tested, though not exhaustively, on a 

few random data points.  Note that in this phase, there was no explicit 

SVTB hierarchy work needed; a Verilog program that included the 

function library and looped through all desired data values, printing error 

messages when bad results was encountered, was all that was needed. 
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SVTB

SVTB
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Phase 2

Phase 3 Phase 4
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Figure 11 - Phased Approach to RTL Gearbox Development  

Phase 2: With the base function library relatively well-exercised, the 

Gearbox sub-system functionality was then coded and tested, with the 

goal of proving on at least one data point that the it‟s main algorithm was 

implemented. Beginning with this phase of development, the full RTL 

hierarchy of the final sub-system was used as the DUT, even though not 

all elements were completely coded yet.  All internal signals that would 

eventually be driven by RTL code were instead driven by TB tasks.  In 

this phase, the data, key, and control interfaces were all driven SVTB 

tasks, some of which are indeed throw-away code, but some were 

reusable as the boundary between the TB and the real logic moved 

steadily outward.  This approach allowed focus to be placed on flushing 

out bugs in the datapath, as the behavioral SVTB code for the control 

interface of the engine is much simpler to code correctly than the 

equivalent hardware FSM.   

Phase 3: The next set of sub-system features were then coded in RTL, 

which demanded replacing current emulator logic with a much simpler 

emulator for the global control logic.  Again, proceeding into this phase 

knowing that the basic datapath logic was sound allowed the focus of 

debugging efforts to be placed on the newly coded, and always bug-

prone, control. 

Phase 4: The final phase of development consisted of completing all 

remaining RTL code, at which point SVTB emulators were only driving 

and sampling top-level DUT interfaces.  The focus of testing then moved 

from short tests, focused on correctness of single operations, to longer 

stress tests, where thousands of requests were sequenced into the system 

at both random intervals and at maximum throughput.  Once this phase 

of exercise was complete, this subsystem was integrated into the upper 

level Gearbox unit code, with the very positive result of passing the 

higher level validation tests that targeted the Gearbox sub-system within 

one day of integration. 
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RESULTS 

SVTB for Design Exercise was used in many ways on the next 

generation CPU project primarily filling the gaps of existing validation 

collateral.  The usage of SVTB varied from the extreme of quick and 

dirty test writing to very complex TE‟s as described in the MLC and 

Gearbox examples.  Even though the CPU project had a significant 

amount of legacy validation code, they still targeted SVTB towards 

exercising 13% (Table 2) of all new features (Note that a condition is 

something the test plan wants to hit and the checker is a piece of code that 

is looking for specific conditions all the time).  An approximate total of 

32 TE‟s (Table 3) were created in SVTB, most of which were considered 

throw away TE‟s.   

 

 

 

 

 

 

 

 

 

 

 

In terms of end-user productivity and usefulness, SVTB was generally 

seen as a big win.  Ramp time was considered insignificant as the design 

team already understood SV.  This led to quick development of tests and 

debugging of new features.  The effort of getting the initial TE framework 

was free as the tools automated this. Depending on the type of TE (Table 

4) the effort towards developing an initial set of transactions, getting 

signals into the correct CB, etc,  would take anywhere from a couple 

hours to a week. The most praised feature of SVTB was its debug turn 

around time. The cost of maintaining a quick and dirty TE was very small 

while the more complex SVTB TE was anywhere from 5-10% of the 

designers time.  

 

 

Of course there are other intangibles that have no numbers to show for 

them.  Designers did not have to learn a new language.  They had the 

ultimate in controllability over exercising their design which meant much 

faster debug.  They didn‟t have to handoff their code to validation or wait 

for them to validate it before they committed it to a model.  Goof bugs 

were caught right away before they were turned in while the code was 

fresh in the designers mind. There was no overhead of tracking these 

bugs in any tracking database.  There was no overhead of clogging up the 

turn-in pipelines with fixes or having back end collateral be redone 

because the fix was made much further up in the design cycle.  

Additionally SVTB checkers could be shared up the design hierarchy if 

they were built correctly.   

Results that cannot be measured: 

Controllability:  The ability for designers to easily toggle the 

functionality that matters  Priceless 

Handoff: Doing basic validation yourself, no validation 

handoff  Priceless 

Language: Existing expertise of the testing language  

   Priceless 

No Goof Bugs: The absence of shame because no bugs are filed 

against you  Priceless 

No re-ramp Time not spent ramping and debugging code wrote 

months ago  Priceless 

No overhead No bugs filed == no tracking overhead or clogging 

of turn-in pipelines  Priceless 

 

But of course, the most significant return on investment is the reduced 

bug count. The current next generation CPU bug count, at FED 

completion, is trending at 35% of what previous projects had at the 

same point in time (Figure 12). This is the direct result of the Design 

Exercise methodology and associated management tracking that was 

adopted and pushed by the CPU team in which SVTB was an 

important factor. 

 

 

Figure 12 – x86 CPU bug count trend compared to previous 

projects 

Type Count 

Condition_TE 14118 

Condition_SVTB 2149 

Checker_TE 1002 

Checker_SVTB 38 

Total 17307 

SVTB Environment Type Number 

Quick & Dirty – Throw Away 20 

Intermediate – In RTL Models 10 

Complex Validation ENV 2 

Total 32 

Activity Quick & Dirty TE Complex TE 

Introductory Training 1 HR 1 HR 

Intermediate Training 1 HR 1 HR 

Advanced Training Not needed 1 HR 

Creation of TE framework Automated Automated 

Basic transactions set dev 1-2 HR 2 days - 1 week 

Test Debug Loop Time 1-2 minutes 3-6 minutes 

Maintenance Cost Less than 1% 5-10% 

Return on Investment Major Bug Reduction Major Bug Reduction 

Table 2 – SVTB Conditions 

Table 3 – SVTB TE Types 

Table 4 – SVTB Activity Breakdown 

Previous CPU projects (Upper two lines) 
Current   CPU projects (Lower two lines) 



 

DVCon2011 Conference   8 
 SVTB for Design Exercise 

SUMMARY 

SVTB for Design Exercise was unquestionably a success on the next 

generation CPU project. The consensus among those who used it is that 

“SVTB was great first approach for Design Exercise.”  Moreover, the 

focus on RTL stability with a heavy emphasis on the design exercise 

methodology is paying off in terms of historically low bug rates. SVTB 

gives designers an intuitive, well-known, working environment with an 

incredible amount of control and extremely fast debug turn-around times. 

Maintenance costs (0-10% of their total RTL coding time) are below 

what previous projects have dealt with where TE‟s on average cost 5-

15% of designer effort. 

While the results of SVTB have been beyond expectations in terms of 

performance and debug turn-around, they led to the discovery of needed 

infrastructure fixes and enhancements.  This is based on direct feedback 

from the 20+ engineers involved in the SVTB efforts.  This feedback also 

cited that SVTB testing is appropriate in many, but not all areas.  If the 

legacy TE was available and supported, it was used.  SVTB was 

considered essential in areas where existing TE‟s were not yet available 

or for cases where the ROI made sense for initial testing.  Generally 

speaking, SVTB for design exercise was considered a “temporary” 

testing method.  

The improvement feedback mostly centered on tool and flow maturities.  

Also cited was the need for more common routine files for error reporting 

and assertion handing.  More documentation and code examples were 

also requested. 

The bottom line is SVTB and the TE automation created on this CPU 

project provide the infrastructure and capabilities that allow design teams 

to automatically create a TE around any block or DUT in their design and 

quickly turn around the debug of basic features through directed test 

writing, which enables bugs to be caught before they reach the official 

project release models.  

In creating this first pass automated TE and methodology; the CPU team 

implemented a stop-gap mechanism for filling validation holes on the 

project.  This was understood to be a rudimentary beginner 

implementation with an eye towards learning from the experience and 

thus focus on those enhancements which would take SVTB and Design 

Exercise to the next level.  Currently several other projects are now using 

SVTB for Design Exercise.  
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