
Linking Multiple Verification Flows Using Automatically Generated Assertions

Jing Li

Broadcom Corporation
3151 Zanker Rd.,

San Jose, CA
jingli@broadcom.com

Nantian Qian

Broadcom Corporation
3151 Zanker Rd.,

San Jose, CA
qian@broadcom.com

Yuan Lu
Nextop Software Inc.
2900 Gordon Ave.,

Santa Clara, CA
yuan@nextopsoftware.com

ABSTRACT

More features and more bandwidth capability enabled in our new

generation switch chips create a daunting task for functional

verification. Our verification methodology includes a top level test

environment and many block level tests for key blocks. Both rely on

random stimulus to achieve significant coverage. They are typically

independent effort from different groups. This paper reports a new

methodology using whitebox assertions and functional cover

properties automatically generated by a vendor tool (Bugscope) to

link multiple verification flows. Using an Assertion Synthesis

technology, Bugscope can automatically generate high quality

assertions and cover properties. The main contribution of this paper

is that we realize that Bugscope assertions and cover properties

generated at block level testing can be used to guide further

verification including chip and formal verification. Though the block

level verification should cover all functionalities of a block,

identifying poorly tested blocks early is an important management

task in order to achieve tight schedule. We run Bugscope and

generate properties based on block level tests, and simulate the

properties at top level. If many cover properties are reached, it

indicates that block testing is incomplete as top level tests add many

more behaviors. During this process, the generated assertions which

capture the block constraints are automatically verified at top level.

In a case study, 102 assertions and 43 cover properties are reported

by Bugscope. Among them, 35 cover propertied missed at block

level are covered at top. This raises a red flag on the block.

Meanwhile, one assertion fires and a bug is found.

Categories and Subject Descriptors
B.7.2 [Integrated circuits]: Design aids – verification.

General Terms
Verification

Keywords
Assertion synthesis, assertion based verification, System Verilog

Assertion, constrained random simulation, formal verification.

1. INTRODUCTION

Each new generation of our enterprise switch design enables more

features and more bandwidth capability. While some blocks are

reused, key components typically needs re-architecture and re-design

to accommodate the new features and achieve the line rate and

performance requirement. The new components and their

interactions with the rest of the system create a daunting task for

functional verification [1][2][3][4]. On stimulus side, we do

constrained random verification at both block level and top level. For

certain self contained blocks, we even apply formal verification to

find deep bugs. On observability side, we require block level testing

to reach 100% line coverage and >95% conditional coverage.

Although we always use the cutting edge methodology and tools,

verification is still our biggest cost in the sense of both resource and

schedule time. We realize that, with gate count exceeding tens of

millions, one of the main issues in our existing verification

methodology is that it alone no longer offers sufficient observability.

Assertion-Based Verification (ABV) addresses the observability

problem by embedding both black-box and white-box assertions and

functional coverage goals in the verification process [5]. ABV is now

widely accepted as an effective approach to combat verification

complexity [6], and all of our in-house verification tools now support

standard assertion languages such as SystemVerilog Assertion (SVA)

[7]. Based on their functionality, assertions can be divided into

whitebox assertions and blackbox assertions. Whitebox assertions

use internal signals and capture detailed design intent while blackbox

assertions use interface signals to capture end-to-end functionality.

Most blackbox assertions involve complicated calculations and long

temporal events while many whitebox assertions are often short and

involve fewer operations.

The main barrier of assertion-based verification proliferation has

been the high effort required to create enough high quality assertions

and functional coverage goals. It is desirable to have one assertion

per 10 to 100 lines of RTL, but it is difficult to achieve this desired

assertion density without over-burdening RTL designers.

Consequently, assertions are not as widely used as they should. In

our context, we found that debugging assertions is an extreme

painful process. It often takes hours to make sure an assertion is

completely correct before it becomes useful. Though we desire to

have both whitebox and blackbox assertions in the design, it is not

successful in practice to use ABV in our context.

Figure 1 Assertion Synthesis

Bugscope is an EDA tool for automatically generating assertions and

functional coverage goals [9]. Using an Assertion Synthesis

technology (see Figure 1), Bugscope takes the RTL design and its

tests as input, and generates properties in SVA formats as output. The

algorithm guarantees that the generated properties always hold true

for the given set of tests. If a property is universally true, it can be

classified as an assertion. Otherwise, the property must be an artifact

of the tests and its negation represents a functional coverage hole.

Note that both assertions and cover properties generated by

Bugscope are useful to guide further verification [10].

As described above, our existing methodology involves multiple

flows to achieve high quality verification, including block level

testing, top level testing and formal verification. In this study, we

demonstrate a new and more effective coverage driven random

simulation flow. We also show how to effectively integrate multiple

verification flows by using assertion synthesis technology.

2. CONSTRAINED RANDOM SIMULATION

Figure 2 illustrates the block diagram of a typical packet processing

engine in a switch design. In our case, the entire switch design

contains over 500K lines of RTL Verilog, the packet processor

contains approximately 30K lines of RTL Verilog and the filtering

block contains approximately 3K lines of Verilog.

Figure 2. A Typical Packet Processing Engine

The test environment contains both block level tests for the packet

processor and top level tests for the entire switch design. At block

level, there are over 2000 direct and random tests in the regression

and it takes 10 hours to finish them.

With the 2000 tests, 100% line coverage and >95% conditional

coverage have been achieved. Based on this set of regression test,

Bugscope generates 145 properties for the filtering block, which is

about 5% of the RTL line count. Among them, 43 are classified as

coverage goals and 102 are classified as assertions. Some of the

properties are listed in Table 1 as examples.

Table 1 Bugscope Property Examples

assert !(buffer_empty && filter_fifo_rd)

assert {pkt_valid, sop} != 0 |-> @pkt_length != pkt_length

assert onehot0({key_pkt, bypass_pkt, invalid_tag})

cover (eop && state != DATA1)

cover (multicast_pkt && cur_multicast_pkt)

The first assertion says no read while buffer empty, i.e. no fifo

underflow. In a typical SVA context, this assertion will be written as

follows.

 property not_underflow;
 @(posedge clk) disable iff (!rst_n)
 !(buffer_empty && filter_fifo_rd)

endproperty : not_underflow
assert_not_underflow : assert property (not_underflow) else

begin
 $display (“ERROR: buffer is underflowed”);
end

In order for human to read easily, Bugscope outputs the properties in

the format listed in Table 1 instead of lengthy executable SVA

format. After the properties are classified, the final executable

assertions or cover properties will be outputted in SVA format. In

Bugscope’s shorthand notation, there are two new operators

introduced besides Verilog operators: |-> is the SVA implication and

@ is Bugscope’s next state operator. For example, @packet_length

denotes packet_length’s value at next cycle and @packet_length ==

packet_length denotes the fact that packet_length doesn’t change its

value for two cycles.

The second assertion says in a valid packet, the packet length must

be updated. The third assertion implies that key packet, bypass

packet and invalid tag must be mutually exclusive. Note that

onehot0() has the same meaning with SVA’s system function

$onehot0(). The fourth coverage property says the internal finite state

machine is never in DATA1 at the end of a packet while the last

coverage property says that we never send back-to-back multicast

packets into the block. Note that the two coverage holes denoted by

the last two coverage properties are not detected with either code

coverage or conditional coverage.

With careful analysis, designer realizes that the first coverage

property (cover (eop && state != DATA1)) listed in Table 1 exposes

a functional coverage hole that points to a case where a sequence of

undersized packet has not tested. Then we hook up all the assertions

and coverage properties to the top level random environment. The

FIFO underflow assertion !(buffer_empty && filter_fifo_rd) is

triggered after a top level random test is added to patch the coverage

hole, and points out a new bug in the filtering RTL. Interestingly, the

top level checker does not fire for the added test because the error

condition does not propagate to the output in this particular random

test. As a matter of fact, it is extremely difficult for top level random

tests to propagate this bug to the checker output. Without the

assertion and the cover property, the bug is very likely to slip through

our verification process in both block level testing as well as top

level testing.

Figure 3. Coverage Driven Simulation Flow

Two key concerns in a constrained random simulation flow are

Bugscope

properties

Additional

stimulus

Random

simulation

filtering pre_proc

match_rule

packets

lookup_table

addressed by using Bugscope. One is to detect/mitigate the risks of

deficiencies in a top level checker. Checkers that mask errors can

lead to serious bugs that are not even corner case. White-box

assertions complement checkers. They improve the observability of

bugs. In addition, they reduce our debug turn-around time. The other

key concern is how to measure the quality of random stimulus.

Structural code coverage is insufficient because the result heavily

depends on RTL syntax. Instead, white-box functional coverage

goals by Bugscope can be used to drive test stimulus development.

We propose a new coverage driven flow based on Bugscope (see

Figure 3). We use Bugscope to find whitebox functional coverage

holes in our random environment. Then we add stimulus to address

these coverage holes. Note that the process is similar to traditional

coverage driven verification. The only difference is that we have a

better coverage metrics than structural coverage metrics.

Consequently, we enhance the traditional coverage driven

methodology by adding additional whitebox cover properties (see

Figure 3). Note that this enhanced methodology doesn’t require any

changes in the existing flow except adding Bugscope’s cover

properties and assertions.

3. LINKING BLOCK AND TOP LEVEL

SIMULATION

Our current verification methodology includes a top level test

environment and many block level tests for key blocks. Both top

level and block level rely on random stimulus to achieve significant

coverage. They are typically owned by different engineers and often

from different groups. Due to historical reasons, our top level

random environment is more mature and stable comparing with

block level testbenches which are often ad hoc and owned by private

engineers.

The block level interface offers more controllability, and ideally

block level tests should cover all functionalities of a block. From a

management perspective, identifying poorly tested blocks or poorly

developed block level tests early is one of the most important tasks

in order to meet tight development schedule. Unfortunately, RTL

verification success is measured by effort spent on worst case instead

of average case. One poor verified block will delay the schedule no

matter how good the other blocks are verified. To our knowledge,

there is no good metrics to identify bad verification practice early.

For example, structural code coverage cannot tell such information

as all of our block level tests must hit high code coverage.

Otherwise, they won’t be integrated into chip level. In our previous

practice, we highly depend on individual engineer’s experience and

expertise. In other words, our approach is subjective and therefore

sometimes fails to find the “black hole”.

At the same time, block assumptions and constraints are the area

which typically introduces difficult bugs. It is very important to

validate these assumptions and constraints made by block testing at

top level. As a matter of fact, it is top level verification primary task

to validate such assumptions and constraints. In our traditional

methodology, only RTL is integrated into top level testing. No

information about block level testing is captured. In other words, top

level testing is totally independent from block level effort.

There are two requirements for top level testing to capture interface

constraint bugs: 1) the top level test must activate the bug; 2) the top

level test must propagate the bug to the checker boundary.

Propagation is often difficult due to top level’s complexity. This

becomes extremely difficult in our switch designs because the switch

by nature allow to discarding packets. A packet which activates a bug

can be easily trapped and dropped later before reaching checker

boundary. Therefore, to our knowledge, there is no good approach to

address this problem.

In this paper, we would like to introduce a new methodology which

addresses both issues using Bugscope. The idea works as follows.

Run Bugscope and generate properties based on total block level test

suit, and simulate both assertions and the cover properties in top

level environment (see Figure 4). In this case, the properties capture

the dynamic behaviors of block level tests. If few of the cover

properties are violated, it indicates that block testing is complete

relative to top level testing. If many properties are violated, it

indicates that block testing is incomplete as top level tests add many

more behaviors. For example, in the above packet processing engine

block, we find that 35 out of 43 cover propertied reported by

Bugscope are covered at top level. At the same time, assertions

obtained from block level can be used as internal monitor to catch

interface constraint bugs. Note that these assertions are extracted

based on block level testing. So they are only true with respect to the

block level testing. When block level constraints are violated, these

assertions may fire and find bugs directly. Based on our experience,

we propose a bottom-up simulation methodology as follows.

1. Run Bugscope whenever tests for a block is nearly complete

 Ahead of code coverage setup

 Allow designer time to classify assertions and coverage

properties

2. Add assertions and coverage to top level

 Check block level assumptions

 Test quality evaluation for managers

3. Improve block tests to patch coverage holes

4. Repeat Step 1-3 until coverage converges

Conversely, run Bugscope and generate both assertions and cover

properties based on top level tests, and simulate the properties in

block level tests. In this case, the properties capture the behaviors of

top level tests. If few cover properties of a block are covered at block

level, it indicates that the block testing is incomplete as it adds few

behaviors beyond top level testing. If many properties of many

blocks are covered at block level, it indicates good block level

testing and a possible need to enhance top level testing. At the same

time, the assertions generated from top level often capture the real

assumptions when blocks are integrated. These assertions must be

followed at block level testing. Any trigger of these assertions may

directly indicate incorrect understanding of specification and

therefore find bugs in testbenches. We call this a top-down

simulation methodology.

Both bottom-up and top-down approaches using Bugscope is feasible

and useful. Which approach to be used mainly depends on which

effort finishes first. In most cases, block level testing finishes before

top level testing. Therefore, we typically use bottom-up approach.

However, there are cases that block level effort is not planned

initially. If top level testing finds a lot of issues in some blocks, we

assertions cover properties

Top level testing

Block1 testing Block2 testing Block3 testing

Figure 4. Use Block level properties at top level

often decide to engage a new block level testing to ensure its quality.

Then we can use the above top-down approach.

4. LINKING SIMULATION AND FORMAL

FLOWS

Running formal [11] and semi-formal verification [12][13] typically

requires intensive engineering effort. The two most time consuming

tasks are defining interface constraints and writing formal properties.

We find that careful planning of constraints and deciding which

properties to verify is often critical to using formal verification tools

successful or not.

We use assertions and coverage goals generated by Bugscope as

properties to drive formal engines. These properties are white-box

properties involving interface as well as internal design signals. They

typically have a much smaller cone of influence than end-to-end

properties using only interface signals. As a result, the white-box

properties are often easier for formal engine to converge.

In a typical formal verification setup, we would have focused on the

3K line filter block due to formal capacity limitation. Using

automatically generated white-box properties, we are able to move to

a higher level of abstraction and use the whole packet processing

engine instead (see Figure 5). Note that the whole packet processing

block includes 30K lines of RTL and several large memories which

make it difficult for formal tools to converge for any end-to-end

assertions. Therefore, we decide not to apply formal verification to

this block initially. However, because Bugscope properties are

whitebox and often involve smaller cone of logic, it is much easier to

converge even with current formal tools.

Figure 5. A New Formal Verification Approach

The benefit of moving the formal verification boundary higher is

obvious: the interface constraints at packet processing block are

much less painful to develop than those for the filter block. There are

only two main input buses to be modeled formally while the internal

filtering block talk with a few other blocks and they need to sync up

in order to behave correctly. If we write constraints at filtering block

level, the effort will be prohibitly large. On the other hand, the two

input buses are totally independent. Either of them follows a simple

protocol in which data coming at different cycles are virtually

independent. It takes less than a day to setup the constraints for the

packet processing engine while it may take a week to model

constraints for the filter block. Intuitively, we use other blocks in the

whole packet processing block as default constraints instead of

manually abstracting them and write the constraints. The key benefit

of this methodology is its low bar of investment and fast and high

return.

Given the coverage goal and assertion previously mentioned, a

formal tool has proved 68 of the 102 assertions and covered all 43

coverage properties. In addition, it found a counterexample of an

assertion that pointed to the bug.

5. FUTURE WORK

Testbench acceleration [14] is becoming more and more popular.

Cadence Palladium [15], Mentor Graphics Veloce [16] and Eve’s

ZeBu [17] all provide such capability. Though it has superior

performance benefit comparing with the traditional simulation based

approach, it still cannot replace simulation in most verification

context. One primary reason is that simulation is debug friendly and

easier to converge because of various mature debugging and

coverage tools. In order for testbench acceleration tools to become a

signoff approach, it is very important for them to have a notion of

coverage. Note that such coverage must be synthesizable in order for

accelerators to accept. Traditional line coverage or conditional

coverage cannot be applied directly. In contrast, the automatically

generated assertions and coverage properties by Bugscope can be

applied in accelerators.

Bugscope can output both synthesizable and nonsynthesizable

properties. The tool understands the definition of synthesizable

properties and can output them according to user’s requests. Given

the latest testbench accelerators start to support SVA assertions,

Bugscope assertions can be integrated into testbench accelerators. In

our future work, we will investigate various areas in testbench

acceleration by using Bugscope’s automated assertions and cover

properties:

 Use Bugscope functional cover properties as coverage

signoff for testbench accelerators. The goal is for testbench

accelerator to cover all the missing whitebox cover

properties from block level tests;

 Use Bugscope assertions as an extra monitor to patch

checker holes missed by our end-to-end checkers;

6. CONCLUSION

There are two contributions of this paper. First, we propose a new

coverage driven verification methodology based on automatically

generated assertions and cover properties by assertion synthesis

technology. Second, the main contribution of this paper is that we

realize that Bugscope assertions and cover properties generated at

block level testing can be used to guide further verification including

chip and formal verification. The new methodology allows us to

uncover corner cases bug and identify functional coverage holes. By

reusing the assertions and coverage holes across multiple verification

flows, the methodology allows us to measure and leverage the

quality of different test environments. Such an integrated verification

platform is critical for verifying complex SoCs.

7. REFERENCES

[1] P. Mishra, and N. D. Dut, Functional Verification o

Programmable Embedded Architectures, A Top-down Approach,

Springer, USA 2005.

[2] Andreas Meyer, Principles of Functional Verification, Newnes

Publishers, 2005.

 filtering
pre_proc

match_rule

input

constraints

lookup_table

cover properties assertions

[3] Stuart Sutherland, Adding Last-minute Assertions to a Design

and Verification Project: the Good, the Bad and “Would I Do It

Again?”, DVCon 2009.

[4] Ashish Chandra, Subir Roy, G. Sheshadri, A Novel Approach to

Complex Interrupt Controller Verification, Design Automation

Conference 2010.

[5] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design,

2nd ed. Kluwer Academic Publishers, 2004.

[6] Ping Yeung, Assertion-Based Verification of ARM Core-Based

Designs, Design Strategies and Methodologies, Vol.3, No.5, 2004.

[7] IEEE Std 1800-2005, IEEE Computer Society, 2005.

[8] IEEE Std 1850-2005, IEEE Computer Society, 2005.

[9] Nextop Software Inc. http://www.nextopsoftware.com.

[10] P. Chatterjee, S. Godil, P. Nelson, Y. Lu, Utilizing Assertion

Synthesis to Achieve An Automated Assertion-Based Verification

Methodology for Complex Graphics Chip Designs, Design

Automation Conference, 2010.

[11] Edmund M. Clarke, Jr., Orna Grumberg and Doron A. Peled,

Model Checking, MIT Press, 1999.

[12] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Yunshan

Zhu, Symbolic Model Checking without BDDs, TACAS 1999.

[13] Synopsys, Magellan – Hybrid RTL Formal Verification,

http://www.synopsys.com/TOOLS/VERIFICATION/FUNCTIONAL

VERIFICATION/Pages/Magellan.aspx

[14] Shabtay Matalon, Leonard Drucker, Maya Bar, Michael

Stellfox, Building Transaction-Based Acceleration Regression

Environment using Plan-Driven Verification Approach,

http://www.cdnusers.org/community/incisive/Vtp_dvcon2007_tbareg

ression.pdf

[15] Cadence Design System, Incisive Enterprise Palladium Series

with Incisive XE Software, http://www.cadence.com

[16] Mentor Graphics, Mentor Graphics Veloce Delivers 400X

Acceleration for OVM Driven Verification, Whitepaper,

http://www.mentor.com

[17] Eve Emulation & Verification Engineering, Next Generation

System Validation Using Transactors, Whitepaper, http://www.eve-

team.com

http://en.wikipedia.org/wiki/MIT_Press
http://www.cadence.com/

