
First Reports from the UVM Trenches:

User-friendly, Versatile and Malleable, or just the Emperor's New Methodology?

Jonathan Bromley
Verilab Ltd, 272 Bath Street, Glasgow Scotland G2 4JR

jonathan.bromley@verilab.com

ABSTRACT

For us, UVM arrived at exactly the right time. Our large new project

evidently called for more powerful verification techniques than its

predecessors. At the same time, a change of tool chain was on the

horizon, bringing cross-vendor compatibility concerns to the fore.

Finally, many members of the team were beginning to take their first

steps in OOP and constrained-random verification, making it essential to

establish a robust framework that could be stable for the foreseeable

future, while offering a growth path that would match our developing

needs. This paper reports on some of the successes, pitfalls, unexpected

problems and unanticipated delights of our UVM rollout.

Our project was making day-to-day use of UVM verification

components within two weeks of the Early Adopter release, leveraging

previous OVM experience of some members of the team. Several

months on, our in-house UVM library is burgeoning in size and

flexibility. Real bugs in our design have been found and fixed, and our

first predominantly UVM-verified tapeouts are due as this paper goes to

press. Starting from a plain-old-SystemVerilog methodology that

worked well but had limited room to grow, numerous members of the

team have transitioned to SystemVerilog OOP with the help of UVM,

aided by a strong existing culture of re-use.

Not everything about our UVM experience was positive. Aside from the

handful of minor shortcomings in the UVM library that any early

adopter must expect to live with, we describe some important things that

we had hoped UVM would provide but which we have been obliged to

build from scratch. We also report on challenges we faced in ensuring

consistency of approach among team members, incorporating existing

verification assets into our UVM framework, and getting the best out of

the whole team’s skills.

In the paper we review key aspects of our UVM experience, giving

special attention to the match (or mismatch) between UVM advocacy

we’ve heard and the UVM features that we found were most productive.

Examining several specific technical issues in detail, we highlight areas

where we have chosen to abandon established or published

recommendations in favour of a more radical approach. Finally we

assess the overall productivity gains and losses that UVM brought, and

identify key concerns that we believe the UVM community must soon

address to avoid the unpleasant prospect of large numbers of users each

with their own incompatible implementations.

KEYWORDS

UVM,verification, methodology deployment, verification IP

1 INTRODUCTION
This paper reports on our introduction of the Universal
Verification Methodology, almost as soon as it became
available, on an ASIC development project. Section 2 describes
the motivation and rationale for this choice. Section 3 discusses
some of the project management and technical strategy issues
we encountered during our initial deployment.

In sections 4 and 5 we examine a selection of specific concerns
with the design, documentation and presentation of the
methodology, and indicate areas where we believe it could
usefully be improved. It is important to be aware that this paper
specifically describes the Early Adopter release, and some of the
concerns have already been addressed by later developments
from the Accellera committee responsible for the methodology.

Sections 6 and 8 describe specific techniques for connecting a
SystemVerilog testbench to the Verilog static hierarchy. They
have proved to be useful in our UVM environments and may be
of interest to other users. Section 9 enlarges on these ideas to
provide a novel method for integrating legacy verification
components with a new UVM environment.

Finally, section 10 briefly discusses some anecdotal
observations concerning other engineers' responses to the rollout
of this new approach in the team.

2 BACKGROUND
The Early Adopter release of the Universal Verification
Methodology (UVM) [1] was published by Accellera in May
2010. Our team's management agreed to adopt it for immediate
use on new verification code for a current ASIC project.
Although it might seem foolhardy to adopt a new and
presumably untried methodology toolkit, there were excellent
reasons for so doing in this case. The author and a colleague
were tasked with facilitating the deployment of UVM on this
project.

The team's existing verification activity made extensive use of
SystemVerilog, but little use of classes or object-oriented
programming. All verification components were captured as
modules or interfaces as appropriate, with port connections
hooking to DUT signals and SystemVerilog mailboxes used to
provide communication channels between components. Simple
classes were used to capture data objects (typically the contents
of a single bus transaction such as a read or write cycle) so that
they could be conveniently passed from one component to
another through these mailboxes.

Extensive experience with this home-grown methodology had
led to the creation of a wide selection of useful and reliable
verification building blocks that could relatively easily be
applied to the verification of new RTL both at block and at
system level. However, any advocate of object-oriented
programming (OOP) methodology would argue that the use of
modules to encapsulate verification components is sure to make
it difficult to extend existing components to meet new

requirements, and is likely to lead to an undesirable diversity of
application interfaces to the components because there is no way
to derive them all from a common set of base classes. These
limitations were indeed becoming apparent.

A new project, with larger and more complex digital content
than had been tackled before, led the team to consider adopting a
mainstream OOP-based verification methodology. However,
the risk of becoming locked into a single tool vendor's offering
was a major obstacle to adoption of either VMM [4] or OVM [5]
even though both those methodologies were clearly adequate for
the task in hand.

We were carefully observing Accellera's VIP initiative [1] to
develop a vendor-neutral verification methodology and toolkit,
and so the timely announcement of the UVM Early Adopter
release provided exactly the trigger we needed. It allowed us to
proceed with confidence that UVM code we write today will
continue to be useful, perhaps with minor modifications, in the
future.

3 OUR INITIAL UVM ROLLOUT
Much of the UVM's base class library is strongly based on OVM
2.0 [5]. This made it relatively easy for us to begin work, as the
author and some colleagues already had extensive experience
with OVM and VMM. Consequently we were able to create
some key UVM components (in particular, agents for some
proprietary bus structures that are widely used in the DUT)
within only a couple of weeks of the Early Adopter release.
Although it took a little longer before we had working
verification environments doing useful testing, this initial
success gave us confidence that we could indeed roll out UVM
across much of our verification effort.

3.1 Infrastructure
Creation of some initial UVM agents was quite straightforward.
It was more challenging to establish a common framework
(directory structure, naming conventions, etc) so that the UVM
components we created would be accessible to the verification
team in a way that did not disrupt existing practice. The team
has an elaborate and project-proven scheme for organizing files
and directories, using Subversion [7] for revision control, and
we felt it was very important to respect and build on that
tradition. We now have a system whereby an environment can
have access to any UVM component simply by adding just one
include file to its master list of files; that include file then does
whatever hierarchical includes are required to compile all parts
of the component. Furthermore, the directory structure
associated with any UVM component or sub-environment is
consistently named and easy to navigate.

3.2 A Problem of Proliferation
An obvious early step in our UVM rollout was to provide UVM
wrappers for some of the large and valuable collection of
existing module-based verification IP. Most of these blocks
took the form of traditional bus functional models (BFMs) with
the usual pattern of signal connections through module ports,
and tasks designed to be called from the verification
environment to get the BFM to perform various operations.
Clearly this has strong resemblance to a UVM driver or monitor
class. However, we were not sufficiently proactive in setting up
a framework and guidelines for creating these BFM-to-UVM
gaskets. Consequently we found ourselves facing embarras de
richesses with more than a dozen such components available for
use, but very little consistency of application-programming

interface (API) among them. In many cases the user's interface
to these objects was entirely through task calls and there was no
randomizable transaction class to capture a unit of activity that
could be performed by the component. The result was a UVM
quasi-component that suffers exactly the same shortcomings as
the original BFM: it is easy to use when creating simple directed
stimulus, but cannot be used with the sequences mechanism and
does not support any kind of transaction-level (TLM) connection
with the remainder of the testbench.

3.3 User Reluctance
Our user base of verification engineers – many of whom are
primarily RTL designers who also have excellent verification
skills – varied greatly in their enthusiasm for UVM. Some were
very positive about the new approach, often seeing it as an
excellent opportunity to develop their SystemVerilog OOP
skills. Others saw our growing UVM codebase as an obstacle to
their understanding and progress, pointing out that UVM made it
harder to do things that they could do rather easily with their
existing techniques.

3.4 Lessons Learnt
With hindsight there are some clear lessons from this
experience. Those who got involved with the development of
new UVM code, early in the rollout, were much more likely to
be positive about UVM adoption than those to whom the UVM
was presented as a fait accompli. It is clear that we should have
taken greater care to design a progressive rollout plan that
engaged all team members effectively. We underestimated the
importance of shared understanding and shared decision-making
across the team.

For experienced OVM users on the team, it was very easy to
forget the learning curve associated with UVM adoption. For
example, the challenge of gaining familiarity and confidence
with the huge portfolio of reporting control methods and options
is a big disincentive to making proper use of the UVM.

These human factors are discussed more fully in section 11.

4 SHORTCOMINGS OF THE EARLY

ADOPTER RELEASE
This section presents some concerns about the UVM Early
Adopter release (1.0 EA). It is probable that there will be a new
and very much enhanced production-quality release of the UVM
available by the time this paper is published, and the author is
confident that many of the concerns described here will have
been addressed by it. However, he feels it is useful to record
them so that developers may continue to bear them in mind as
the UVM moves forward.

4.1 Documentation
There is little doubt that the documentation associated with
UVM could usefully be improved. The extensive use of
NaturalDocs [11] as a tool to generate publishable
documentation from structured comments in the source code is
welcome, and generally has led to a thorough and useful
reference document [2]. However, it is at the mercy of the
quality of the original source code's comments. We were sorely
disappointed by some of the material, such as this example
describing uvm_object::copy:

function void copy (uvm_object rhs)

The copy method returns a deep copy of this object.

That statement is remarkably unhelpful. The method doesn't
return anything at all, it copies rhs rather than the current
object, and it updates the contents of the current object this as
a side effect. Although this is a particularly grotesque example
of poor internal documentation, there are many other cases
where careful review with the reader's needs in mind would be
most welcome.

The reference documentation is also flawed by the omission of
various important details. For example, argument lists of the
uvm_do_* family of sequence macros are nowhere described.
It is tiresome to be obliged to study the source code, or to search
through informal user-guide documents, in order to locate such
missing details.

4.2 Handling Low Levels of Abstraction
A fundamental goal of any sophisticated verification
methodology, including the UVM, is to raise the level of
abstraction at which verification can be done. By expressing
stimulus and responses as transactions, rather than signal
transitions, the verification engineer can operate at a level that
more closely relates to the design specifications, and better
reflects the description of device activity typically found in
requirements documents and use-case scenarios. SystemVerilog
OOP somewhat forces the verification engineer's hand in this
respect, making it remarkably difficult to gain access to DUT
signals directly from code in a class – especially if the class is
defined in a SystemVerilog package for ease of later re-use.

This raising of abstraction level is unquestionably a powerful
approach, allowing code to be written that models complex
behaviors without becoming mired in the irrelevant details of
pin-level or clock-by-clock activity. Unfortunately, though, it is
not always possible. Even the largest, most complex ASIC is
nevertheless a piece of digital hardware with clock, reset and
enable signals. For some verification activity, the detailed
behavior of certain signals at a very low level of abstraction is
critically important. The UVM, and its associated
documentation, fails to provide adequate guidance to users faced
with this kind of concern.

4.2.1 Events
For example, our ASIC uses a common timebase signal
(typically running at some tens of kHz) to synchronize major
activities across various parts of the design. Almost every
design block, and therefore almost every verification
component, needs to be aware of this timebase for purposes such
as grouping a series of data samples according to the timebase
slot in which they fall. To capture the transitions of this
timebase as UVM transaction objects is an unnecessarily
heavyweight mechanism. More importantly, it is the wrong
level of abstraction. The timebase conveys no information
except that it has pulsed, and it is conceptually inappropriate to
represent that as a transaction. The uvm_event mechanism is
clearly a useful candidate, but it does not fit smoothly into the
rest of the methodology. For example, what does it mean to
"connect" an event from one UVM component to another?
There are, of course, many straightforward ways to make such a
connection, but whatever method one uses there is an
uncomfortable sense that it is outside the methodology.

4.2.2 Signal Access
We have many critical verification requirements that depend on
parts of the testbench having detailed knowledge of the real-time
state of certain specific signals. A typical situation is that the

meaning of a transaction may vary depending on the value of
some control signal at the moment the transaction occurred. If
the signal is not part of a standard interface protocol, but instead
is a global control signal in the design, then it does not form part
of the transaction and must be sampled by other means, while
maintaining knowledge of the relative timing of that sampling
and the protocol transactions that the signal affects.

Sampling and driving such arbitrary "one-off" signals is
unreasonably troublesome in the UVM. We soon decided to
create a special UVM agent, with the usual
monitor/driver/sequencer architecture, to handle signals of this
kind. However, it was unreasonably difficult to design a
meaningful and useful transaction class that made sense for all
the varied situations in which such signals are used. This is a
clear example of abstraction inversion: the methodology obliges
us to use an inappropriately abstract representation (transactions)
for something that inherently demands a rather low level of
abstraction. It has led to the creation of verification components
that are difficult to understand and deploy, and suffer
unnecessary runtime performance overhead. More recently we
have learnt to approach this problem in a more satisfying way
(described fully in section 8) but it has taken us away from
mainstream UVM technique, leaving us fearful that we may
have "broken the rules" and created architectures that will not
match other UVM users' best practice.

4.3 Underspecified Data Comparators
The portfolio of comparator components found in the UVM
library is disappointingly inadequate to support real verification
problems. Although the algorithmic comparator with its
transformer class provides an interesting tutorial in object-
oriented programming, none of the provided comparators has the
flexibility that we need. Whenever we tried to use them we
were obliged to add preprocessing to the input data streams to
support skipping of samples, duplicated samples, ignoring a
certain number of samples after a reset, and suchlike real-world
issues. It is these concerns that dominate the coding effort. By
contrast, the UVM-provided behavior of matching data at the
output end of a pair of FIFOs is somewhat trivial, and we soon
chose to abandon the standard comparators in favor of our own
designs that better fit our purpose.

The fate of the UVM standard comparators was sealed because
of a bizarre oversight in their implementation: there is no way to
clear the contents of their FIFOs because their FIFO data
members are declared to be local. Modeling of reset and mode
changes is therefore intractable, and requires so much rework of
the original code that there is little value in using the provided
classes.

4.4 Register Modeling
As already mentioned, we enthusiastically took up the UVM
Early Adopter release because it offered the promise of vendor
neutrality within a familiar framework. Beyond our selfish local
concerns, though, it was unfortunate that UVM was released
without including an Accellera-mandated register abstraction
package. It is hard to imagine any non-trivial project that does
not require such a feature.

Our team's existing SystemVerilog verification framework
included useful and mature tools for register modeling, but they
were not easy to adapt for the dynamically-created UVM
verification environment. Instead we tried to use one of the
register packages that had been contributed to the UVM World
website [10]. We were aware of, and troubled by, the fact that

this package was not standardized and might become effectively
deprecated at any time. What we were not prepared for was the
rather large amount of work required to massage our existing
register descriptions (derived from a spreadsheet by means of
various Perl scripts) into the IP-XACT XML format required for
the register package we tried to adopt. Consequently we have
invested a non-trivial amount of effort into support for a register
package that is now effectively deprecated thanks to Accellera's
blessing of a different register abstraction mechanism that will
form part of the first production release of the UVM [3]. We
welcome the newly-standardized package, but regret our
inappropriate choice and the wasted work that it brought us.

4.5 Lack of Temporal Assertions
Although this is a SystemVerilog issue that could never have
been solved by the UVM, it seems appropriate to mention here a
serious limitation of SystemVerilog's testbench facilities: the
lack of temporal assertions for use in classes. SystemVerilog
Assertions (SVA) [6] provide a powerful, concise and intuitive
way to describe possible design behaviors over time, and to have
those behaviors monitored for checking and coverage. Sadly
(although for entirely valid reasons) the SVA temporal language
can be used only in static Verilog design elements such as
modules and interfaces. Consequently, temporal assertions
cannot easily be added to UVM verification components.
Instead the verification engineer must fall back on traditional
techniques for coding temporal checks, such as state machine
descriptions or ad hoc mechanisms.

5 INSUFFICIENT GUIDANCE FOR

USERS
Section 4 could be read as simply a catalog of accusations
against the UVM. That is not the intent; UVM has brought great
benefits to our project and we will continue to use and value it.
However, it is a recurring theme in section 4 that the
methodology should provide a supportive framework, guiding
users' implementation decisions when faced with common
architecture problems. In some areas, the UVM meets this
challenge superbly well. Transaction-level modeling and the
associated connection arrangements, analysis ports, the object
factory, and the conventional agent architecture are all fine
examples of the UVM's contribution to a consistent, easy-to-
follow implementation framework. There are, though, some
equally important concerns that the UVM does not address
satisfactorily. This section outlines the issues that caused us
greatest pain, and for which we would value robust guidance to
reduce the risk of users adopting widely divergent approaches.

5.1 Sharing of Globally Important Objects
Every test environment has information that must be shared by
many different parts of the testbench. Typical examples of such
globally significant information include:

 timebase and other major synchronization events
 DUT configuration such as address maps, memory sizes
 test case configuration
 reporting and verbosity options

The UVM configuration mechanism works well for shared
objects that can be created at the outset, and then shared around
the environment by top-down configuration. Often, though,
shared global objects such as test setup control cannot be
constructed until creation of the verification environment is
largely complete – too late for the automatic configuration

mechanism. The UVM lacks a uniform mechanism for sharing
of such late-generated objects. It has no shortage of techniques
– the pool classes, built-in tools for navigation of the instance
hierarchy – but users would benefit from more specific guidance
on how to deal with this kind of issue. Some of the
responsibility for this guidance must fall not on the UVM's
implementers but on the user community as a whole (and, more
specifically, on book authors, trainers and tool vendors'
customer-facing applications engineers).

5.2 Getting the Nuts and Bolts Right
Published material on the UVM's predecessor OVM [12] has
generally been somewhat dismissive of the problem of how to
connect an OOP verification environment to the DUT's Verilog
signals. The author believes this to be misguided. Linking
UVM classes to a test harness or DUT may be beneath the
dignity of expert OOP practitioners, but it is vital to the success
of a verification effort and users of the UVM deserve to have
clear, practical guidelines for doing it. We have discovered to
our cost that, lacking such guidelines, there will be as many
different ways of implementing it as there are verification
engineers on the project.

The problem is exacerbated by the current widespread
enthusiasm for SystemVerilog's virtual interfaces, whose
shortcomings the author has already lamented elsewhere [8].

Attaching a collection of virtual interfaces to their proper places
in a test harness usually requires that at least some UVM classes
be coded not in a package, where we prefer to put them for ease
of re-use, but in a module that is instanced somewhere in the
Verilog hierarchy. From classes defined in such a module, the
user can make direct access to specific signals and interface
instances, making the UVM-to-signals connection possible.
However, our verification engineers soon discovered the
enormous convenience of making direct access to signals from
code in their test classes. Before long an unfortunate habit had
developed of writing the whole of a top-level UVM environment
and its test case classes in a module rather than a package. Such
test cases readily degenerate into an orgy of raw signal
manipulation, wiping out many of the key advantages of an
OOP verification methodology.

5.3 Register Modeling
As already noted, the lack of register modeling facilities was a
significant drawback for us. The first production release of the
UVM will fill this gap with an Accellera-standardized register
modeling framework, but we note with some concern that its
code generators (which take a description of the DUT's register
set, and from it generate SystemVerilog classes and other code
to support the model) will be provided by tool vendors and
therefore may diverge. Users will be able to minimize that
divergence by adopting a widely-supported standard format such
as IP-XACT for their register descriptions, but even that format
requires vendor extensions to support the full set of register
functionality that almost every user will need.

From our experience, we urge future users not to underestimate
the work required to integrate and configure any register
modeling package, especially if they already have in-house
register modeling in place that must be aligned with the new
UVM machinery.

5.4 Slave Sequences
The conventional UVM agent architecture of monitor, driver and
sequencer works well for passive agents (monitor-only) and for

active agents (stimulus generator using sequences). There is,
however, a third and equally important use case: the slave agent.
In this scenario the agent's driver is used to drive response
values (typically a READY signal, or read data) on to an
interface, in real-time response to some transaction on that
interface. The UVM agent in this case is acting as a bus slave
rather than as a bus master.

In this situation, it is almost always necessary for the response to
be controlled in some way by the details of the request – for
example, a read cycle should provide data that is controlled by
the observed read address. The standard UVM sequencer/driver
interface does not support this requirement well. The most
challenging problem is that the sequencer should respond in zero
time, so that the driver is not stalled in mid-transaction by its
sequencer. But this cannot be done reliably, because the TLM
connection between driver and sequencer is a blocking one and
so is implemented as a task. The base class library's
sequencer/driver interface supports this zero-time requirement in
a fragile and unsatisfactory way by introducing a number of #0
delays in its wait_for_sequences method. We found it
necessary to use nonzero time delays in our driver's synchronous
sampling/driving loop, so that the sequencer could always be
sure to respond soon enough for the driver to be able to take the
response without stalling and therefore introducing an unwanted
idle cycle or wait state. This nonzero time delay is extremely
unsatisfying (sequences should, ideally, be completely
decoupled from details of driver timing) and it probably
degrades performance somewhat.

5.4.1 Slave Sequences and Callbacks
The new callback mechanism in the UVM provides an
alternative solution to this blocking response problem. We have
used callbacks with some success for this purpose. They are
easier and more natural to use than the sequence
request/response mechanism, which presents many pitfalls for
users.

5.4.2 The Problem Remains Unsolved for Users
Callbacks cannot sidestep the problem that getting a sequence
item from a sequence requires a blocking task call. It is
completely unacceptable for a driver (or a callback) to place
such a call and assume that it will return in zero time, even
though this is precisely what will happen in most practical
situations. The XBus example helpfully provided with the
UVM kit presents one possible solution for this issue, but – like
most such solutions – it seems clumsy and is not in any way
standardized, and does not form part of any written
recommendation.

6 HOOKUP TO THE VERILOG

HIERARCHY
There are, in essence, two ways in which class-based
SystemVerilog code can gain access to signals and other static
objects in the SystemVerilog module instance hierarchy:

 Code in any class that is declared within a module or
interface can directly access anything declared in that design
element, because it is in the same scope. From there it can
reach out to anywhere in the Verilog instance hierarchy.

 Virtual interface variables provide a reference or pointer to
an interface instance in the Verilog hierarchy. Any class,
even if declared in a package, can have a data member of
virtual interface type. Code in the Verilog instance
hierarchy can then populate that data member with a

reference to an interface instance. Code in the
SystemVerilog class can now reach through the virtual
interface reference and access anything declared in the target
interface.

6.1 Direct Access from Classes in a Module
At a glance, the first of these mechanisms seems more flexible
because it gives a class fuss-free and unfettered access to the
Verilog hierarchy. If the class in question is declared in a
module that is near the top of the instance hierarchy – for
example, in the test harness – it becomes very straightforward
for code in the class to reach down through the hierarchy to any
point in the DUT. However, this convenience comes at a very
high price: the code so written is no longer portable to even a
slightly different verification environment. Consequently, this
technique seems to be appropriate only for "one-off" test case
code such as occasional driving or reading of DUT signals
during debugging. Experience suggests that it is best avoided
even in those cases, because of its extreme fragility when details
of the DUT or test harness structure are changed.

6.2 Virtual Interface Connection
Virtual interfaces, by contrast, allow for complete decoupling of
any UVM class from the signals that it will manipulate. The
class can now be placed in a package, with no direct access to
signals, but it can reach the real world of SystemVerilog signals
through a virtual interface variable. Consequently an instance of
the class can now be used with any interface instance whose
type matches its virtual interface variable, and it is therefore
portable from one verification environment to another.

To use virtual interfaces, though, some additional code is
needed. The concrete interface definition should normally be
provided as part of the code that is distributed as a UVM
verification component, because it is tightly coupled with the
virtual interface variable that will reference it. However, the test
harness (or similar code) must now include an instance of this
interface, with its signals appropriately wired to the DUT signals
of interest. (A thoughtful verification component author will
have provided ports on the interface to make this task as simple
as possible). Finally, procedural code somewhere must make an
assignment to the object's virtual interface variable, so that it
references the appropriate physical interface instance.

7 AWKWARDNESS OF VIRTUAL

INTERFACE CONNECTION
The final step described above, of assigning to the UVM
component's virtual interface, is remarkably troublesome in
practice and causes much confusion to novice UVM users. The
code that constructs the component is likely also to be in a
package, so cannot reach into the Verilog hierarchy to find its
interface instance. The configuration mechanism can be used,
with code in a top-level module creating a wrapper object that is
then written into the UVM's global configuration table for later
interrogation by the UVM component that needs it. Production
releases of UVM will offer a resources mechanism allowing
some simplification of this chain, but it remains messy with a
bewildering range of possible options for the organization of
top-level code.

7.1 Embedded Classes Simplify Connection
We have increasingly adopted an alternative approach that
eschews the use of virtual interfaces altogether and instead is
based on writing a UVM class definition in the body of an

interface. If this embedded class definition is derived from
another class that the user has created in a package, it becomes
possible to define an API to the class (a set of virtual methods)
without requiring any other code to have sight of the embedded
class definition. Furthermore, if the common base class is itself
derived from uvm_component then it automatically has
access to the phasing mechanism and so its internal activity can
be synchronized with the rest of the UVM environment. Finally,
a reference (handle) to this embedded class can easily be
obtained by hierarchical reference in the code that launches the
UVM test, and then placed into the UVM global configuration
table for easy access by other components. Reference [9]
describes this approach in more detail.

8 EMBEDDED CLASSES FOR AD HOC

DUT CONNECTION
As indicated in section 6, we have begun to adopt an alternative
style of connection between UVM classes and the Verilog static
hierarchy. After using this approach for signal-level connection
to our UVM agents, we also noted that it provides a convenient
methodology for making ad hoc connections to a DUT or test
harness.

8.1 A Very Simple Example
As already mentioned, verification of our DUTs often calls for
inspection of the instantaneous values of individual signals that
do not form part of a standard protocol or transaction. To
provide a compact and simple illustration, we consider the
problem of exposing a single-bit status signal to the UVM
testbench. This is a good example of real-time information that
is too simple to justify the overhead of a transaction, but
nevertheless needs to be observed from within the UVM
testbench.

8.2 Define the API as a Base Class
Our signal-probing class will appear as a uvm_component
with a uvm_event to notify signal transitions, and an access
method get_value() to return the current value of the signal.
We capture this as a base class probe_base derived from
uvm_component, adding our special access method and event
member. This class definition goes in a package that
encapsulates our new component.

package pkg_probe;

 class probe_base extends uvm_component;

 `uvm_component_utils(probe_base)

 function new(string name,

 uvm_component parent = null);

 super.new(name, parent);

 endfunction

 uvm_event ev_value_change;

 virtual function logic get_value();

 endclass

endpackage

Code Example 8-1

8.2.1 Factory Registration
Ideally, probe_base would be coded as an abstract (virtual)
class, since it has no implementation of its get_value()

method and therefore cannot usefully be instantiated. However,
we wish to register it with the UVM factory like any other
component, and this registration does not work for an abstract
class.

8.3 Create Interface with Embedded Class
To provide a physical hook to the Verilog hierarchy we next
implement an interface that contains an embedded class derived
from probe_base, as indicated in Code Example 8-2.

interface i_probe (input sig);

 import pkg_probe::*;

 class concrete_probe extends probe_base;

 function new(string name,

 uvm_component parent = null);

 super.new(name, parent);

 ev_value_change = new();

 endfunction

 function logic get_value();

 return sig;

 endfunction

 task run();

 forever @(sig)

 ev_value_change.trigger();

 endtask

 endclass

 concrete_probe PROBE;

 function automatic probe_base get_probe;

 if (PROBE == null)

 PROBE = new($psprintf("%m.PROBE"));

 return PROBE;

 endfunction

endinterface

Code Example 8-2

It would be equally effective to use a module, but an interface
has the advantage that it can be compiled unconditionally (along
with the package) with no risk of the simulator instantiating it as
an unwanted top-level module if it is not used elsewhere in the
simulation. By simple instantiation and port connection, this
interface can be connected to any chosen signals in the Verilog
hierarchy.

The embedded derived class appears within the scope of the
interface definition, and therefore has full access to static
properties of the interface, making signal access straightforward.
The embedded class provides concrete implementations of
virtual methods in the base class. The class is a
uvm_component and so can use the standard UVM phase
methods to build its internal structure, launch a processing loop
in its run() task and so forth.

Although this class is a uvm_component, it is important that it
should not be registered with the UVM factory. It will never be
created by the factory, and the possible existence of the same-
named class in more than one instance of the interface would
cause serious problems for the factory's type registration system.

Finally, the function get_probe() provides easy access to the
embedded UVM component, first creating it as a child of
uvm_top if it does not already exist. The component is given a
UVM instance name that is conveniently related to its Verilog

hierarchy location. This function returns a base class reference.
The concrete derived class is irrelevant to the UVM verification
environment. This gives a pleasing separation of concerns, with
signal connection and manipulation details localized in the
interface, but with the functional behavior (API) fully defined by
the base class in a package.

8.4 Instantiate and Connect the Interface
To monitor a signal it is necessary to create an instance of the
interface we just defined and connect its port to the appropriate
signal. For the sake of our example we will assume that the
interface is instantiated with instance name probe_intf
inside module harness. If the signals to be probed are inside the
DUT hierarchy, it may be appropriate to use bind to create this
instance without disturbing existing code at the instantiation site;
we discuss this idea more fully in a later section.

8.5 Integrate Using UVM Configuration
Finally we must get a reference to our probe class and pass it to
appropriate places in the UVM testbench. The standard UVM
configuration mechanism is a perfect fit for this, allowing code
outside the UVM class structure to plant a reference into the
global configuration table where it can later be retrieved by any
UVM component. Thanks to our get_probe() function in
the interface, this reference can be obtained in a very
straightforward way. Code Example 8-3 shows an example of
how code in the top UVM module could do this configuration,
just before launching the UVM test.

module UVM_topmost_module;

 import uvm_pkg::*;

 initial begin

 set_config_object(

 "*.some_component", "signal_probe",

 harness.probe_intf.get_probe(), 0);

 run_test();

 end

endmodule

Code Example 8-3

The call to set_config_object plants a configuration table
entry that will be accessible to any UVM component with an
instance name matching *.some_component. The
configuration entry is named signal_probe. To use UVM's
automatic application of configuration settings, it is of course
necessary that the target component have a data member named
signal_probe that has been registered using the
uvm_field_object macro and has the appropriate data type
probe_base. Through this data member, the target
component can easily read the probed signal's value and respond
to events on it.

8.6 Advantages of This Approach
This technique for linking UVM classes to Verilog hierarchy is
in most respects superior to the commonly described virtual
interfaces approach.

 It allows the connection to be configured into UVM with
only a single line of code. There is no need to declare a
wrapper class derived from uvm_object and then
encapsulate the virtual interface in it. Instead you are
working with an object (the interface's embedded class) that

is already derived from uvm_object, and therefore can be
passed directly to the configuration mechanism.

 It allows UVM phasing to be applied to code within the
physical interface. This greatly eases various concerns
about the order of construction of objects, synchronization
of startup activity, reporting control, and collection of
information at the end of simulation.

 It provides a convenient point at which class-based code can
be given direct access to signals and other things in the
Verilog static hierarchy, without creating a free-for-all of
signal accesses at the top level of the UVM testbench.

 It allows diagnostic messages from code in the interface to
be properly rooted in the UVM hierarchy, rather than
coming from the global reporter.

 Issues relating to type parameters are much simplified
because the interface's parameters do not propagate into any
data types seen by UVM.

Finally we observe that this design pattern is applicable to any
situation in which a connection must be established between a
generic UVM component (which itself has no knowledge of
where it will connect in the Verilog hierarchy) and the specific
structure of your Verilog design and testbench. It works well for
typical UVM monitor/driver connections to a set of bus signals,
and for access to individual signals as in our example. It also
provides a convenient way to add UVM capability to existing
module-based verification IP, as described in section 9 below.

8.7 Automatic Register Model Updating
The technique described in this section has also proved valuable
in implementing the automatic updating of register model
images in response to the value of status signals within the DUT.
The name, or other specification, of a register field can be
provided as a parameter to the interface instance. Code in the
interface then locates the desired field image in a register model,
and arranges for it to be updated automatically from the signal
whose value the register reflects.

9 EMBEDDED CLASSES FOR LEGACY

VERIFICATION COMPONENTS
We have found the embedded derived class approach, as
described in the previous section, to be especially useful when
integrating existing verification IP into our UVM testbenches.
To illustrate this we take a very simple example of a pulse
generator BFM written in plain Verilog, shown in Code
Example 9-1.

module legacyPulseGen

 (output logic sig = 1'b0);

 task uvm_pulse(time tH, time tL = 0);

 sig = 1'b1;

 #(tH) sig = 1'b0;

 #(tL);

 endtask : uvm_pulse

endmodule

Code Example 9-1

We first define a suitable UVM API to this legacy module, in
the form of a base class.

package pkg_uvm_pulsegen;

 class pulsegen_base

 extends uvm_component;

 function new(

 string name,

 uvm_component parent = null);

 endfunction : new

 virtual task pulse (

 time tH, time tL = 0);

 endclass

endpackage

Code Example 9-2

Next, as before, we create an interface that contains and
instantiates an embedded derived class. In this case the interface
has no ports because our API to the legacy BFM requires only
task calls, not signal connections.

interface i_uvm_pulsegen;

 import pkg_uvm_pulsegen::*;

 class concrete_pg extends pulsegen_base;

 function new(string name,

 uvm_component parent = null);

 super.new(name, parent);

 endfunction

 task pulse(time tH, time tL = 0);

 legacyPulseGen.pulse(tH, tL);

 endtask

 endclass

 concrete_pg PG;;

 function automatic pulsegen_base get_pg;

 if (PG == null)

 PG = new($psprintf("%m.PG"));

 return PG;

 endfunction

endinterface

Code Example 9-3

Code Example 9-3 is straightforward, with the exception of the
body of the embedded class's method pulse. This task has the
interesting feature that it calls, by hierarchical reference, task
pulse in the legacy BFM module. However, it does so by
using the module's name, not an instance name, as a prefix.
Because the code makes no reference to specifics of any
instance hierarchy, this gasket interface is completely generic.

9.1 Bind an Instance of the Interface
We now create an instance of this interface inside our chosen
instance of module PulseGen. Code Example 9-4 shows how
that arrangement might appear in a test harness:

module TestHarness;

 wire test_pulse;

 legacyPulseGen test_pg(test_pulse);

 bind test_pg i_uvm_pulsegen gasket();

 ...

Code Example 9-4

The bind statement effectively creates an instance of the
interface, with hierarchical name test_pg.gasket, as a
bound child of the BFM instance test_pg. Consequently,
hierarchical reference legacyPulseGen.pulse found in the
interface's uvm_pulse task now floats out of the gasket
interface and refers to task pulse in the specific instance
test_pg.

9.2 Inform the UVM Environment about the

Gasket Object
Elsewhere in the test harness, UVM configuration is used to
push a reference to the gasket object into an appropriate UVM
component:

 initial

 uvm_pkg::set_config_object(

 "*some.uvm.path", "pulsegen_gasket",

 test_pg.gasket.get_pg(), 0);

Code Example 9-5

It is now straightforward for code in a UVM component to get a
reference to this gasket instance and access its members,
including (in this specific example) its pulse task.

9.3 More Realistic Applications
This technique for embedding a UVM class in an existing
Verilog module provides a very convenient way to make use of
existing legacy verification IP. Thanks to the use of bind, it is
applicable even when you are unable or unwilling to modify the
legacy code.

Because the embedded class is a uvm_component, its API
need not be restricted to simple task calls and signal access. The
abstract base class can have TLM ports. In this way, large parts
of a UVM agent component can be implemented using existing
module-based IP, with a gasket class in a bound interface
providing TLM connections such as an analysis port (for a
monitor) or a sequence item pull port (for a driver).

9.4 Deployment of This Approach
The author has experimented with this approach (using TLM
connections) for integration of legacy BFMs into a UVM
environment, with useful results. It is unfortunate that we did
not develop this methodology earlier in our UVM rollout
process. Numerous UVM adapters were written, by various
members of the team, to allow our UVM testbenches to use
existing BFMs. There was little coordination of this activity,
and therefore almost no consistency of API among the various
adapters. Reworking them has, even at this early stage, become
a dauntingly large task and it is a source of some regret that we
did not identify this convenient and straightforward approach
until too late.

10 HUMAN FACTORS
The author finds himself in stark disagreement with the style of
presentation of UVM (and, indeed, of other solutions with
similar purpose) that says "here is a complete solution; all you
need to do is to use it and press these buttons". This approach is
condescending to users who, for the most part, are highly skilled
verification engineers and programmers. It leaves new users
with the problem of learning not only a methodology but a huge
body of detail. Implementers of the UVM itself, and users such
as the author who are pioneers of UVM rollout within an
organization, benefit from the experience gained by
implementing large amounts of infrastructure code. This
experience is by far the most effective way to learn and
internalize the architecture, rationale and details of the base class
library and other facilities. By contrast, engineers cast in the
role of "UVM user" are presented with a large body of code that
is imperfectly documented and that they are expected to use
without spending much time investigating its internals. Not
surprisingly, many such engineers feel that the methodology is
being thrust upon them without their understanding or consent.
In this atmosphere users are unlikely to be motivated to make
consistent, creative and effective use of UVM. Instead they tend
to distort it to accommodate their familiar ways of working, and
the human problem is thereby compounded because they gain
little benefit from UVM and instead find that it merely presents
them with obstacles to achieving results that they could have
more effectively obtained an easier way.

11 CONCLUSIONS
This paper has described a number of shortcomings of the UVM,
and discussed ways to work around them. In addition it is
important to note the imminent release of a production version
of the UVM, which will have many new facilities and better
usability. Nevertheless, there are some difficulties that must be
overcome by users' own efforts, perhaps with the help of
techniques described here or perhaps by using other techniques.
It is this diversity of solutions that most troubles the author,
because it threatens to undermine one of the UVM's most
powerful advantages: the promise of true interoperability of
verification IP and infrastructure among suppliers and users.

In addition, section 10 highlights some of the challenges faced
when deploying the UVM (or, indeed, any other advanced OOP
verification methodology) in an organization where not all the
engineers are familiar with the underlying techniques. The
UVM provides toolkit, documentation and ecosystem to help
users with this transition, but despite this our experience shows
that adoption is unlikely to be painless. In particular, users who
lack prior experience with OOP verification methodology are
unlikely to be involved with early deployment of the UVM in an
organization, and this puts them at a double disadvantage: not
only must they learn a new approach rapidly, but also they must
do so without having been not engaged with the rollout and
in-house development, leaving them feeling little sense of
ownership.

To ease these problems we must find ways to make UVM more
accessible, and more exciting and attractive to users. Better

documentation will surely help. Exposure of the UVM through
conference papers, textbooks and verification IP will
progressively bring it into the mainstream of verification culture.
There is a pressing need for clearer guidelines on use of the
UVM in commonly encountered practical situations and some of
those issues have been raised in this paper. Finally there are
some shortcomings in the UVM itself, although many of the
most important issues (handling of reset and test iteration,
register abstraction, interactive command-line access) are
expected to be addressed by the production release of the UVM
in early 2011.

12 ACKNOWLEDGMENTS
The author wishes to thank his employer Verilab, and many
colleagues both at Verilab and at our clients, for insightful and
encouraging discussions. Along with many other users, he is
grateful to Accellera, Inc. and the members of its VIP Technical
Committee for their work in bringing the UVM to fruition.

13 REFERENCES
[1] Accellera Organization Inc Verification Intellectual Property

Technical Subcommittee. http://www.accellera.org/activities/vip/

[2] Accellera Organization Inc. Universal Verification Methodology

(UVM) 1.0 EA Class Reference. May 2010. Distributed at

http://www.accellera.org/activities/vip/

[3] Alsop, T. Accellera’s Verification Intellectual Property (VIP) and

Universal Verification Methodology (UVM). Accellera

Organization Inc, 2010. Available at

www.accellera.org/home/VIP_TSC_2010_article_121710.pdf

[4] Bergeron J, Cerny E, Hunter A, Nightingale A. Verification

Methodology Manual for SystemVerilog. ISBN 0387-25538-9.

Springer 2005.

[5] Cadence Design Systems, Inc; Mentor Graphics, Inc. Open

Verification Methodology version 2.0.1. Available from OVM

World http://www.ovmworld.org/

[6] Cerny E, Dudani S, Havlicek J, Korchemny D. The Power of

Assertions in SystemVerilog. ISBN 978-1441965998. Springer

2010.

[7] Collins-Sussman B, Fitzpatrick B, Pilato CM. Version Control

with Subversion. Available at http://svnbook.red-bean.com/

[8] Gran A, Vreugdenhil G, Bromley J. SystemVerilog Virtual

Interfaces and Design Verification. User-To-User Conference,

Mentor Graphics Inc, San Jose 2008.

[9] Rich D, Bromley J. Abstract BFMs Outshine Virtual Interfaces

for SystemVerilog Testbenches. DVCon 2008.

[10] http://www.uvmworld.org/

[11] Valure G. NaturalDocs. Available at

http://www.naturaldocs.org/

[12] Glasser, M. Open Verification Methodology Cookbook. ISBN

978-1-4419-0968-8. Springer 2009.

http://www.accellera.org/home/VIP_TSC_2010_article_121710.pdf
http://www.ovmworld.org/

