
Better Living Through Better Class-Based

SystemVerilog Debug

Rich Edelman

Mentor Graphics

Fremont, CA

Raghu Ardeishar

Mentor Graphics

Columbia, MD

John Amouroux

Mentor Graphics

Fremont, CA

Abstract—SystemVerilog [1] UVM [2] class-based testbenches

have become as complex as the hardware under test, and are

evolving into large object oriented software designs. The usual

RTL debugging techniques must be updated to match this new

complexity. Debugging tools are addressing these complexities,

but this paper will describe techniques and approaches that can

be used to help debug these complex environments without

advanced debug tools.

Keywords; SystemVerilog class-based debug, Testbench debug,

UVM debug

I. INTRODUCTION

Debugging large testbenches has changed recently. The
testbenches are larger than they used to be, and they are more
like software than they used to be. In addition, the testbench
language features use object-oriented constructs, and may use a
new library of verification components. Each of these
characteristics adds to the pain of debugging the testbench,
which must be done before debugging of the actual device-
under-test can begin.

This paper covers simulator independent debugging
techniques that can be adopted as aids during the testbench
debug period. Each technique is a small step for better debug,
but when considered together can compensate for tool
limitations, staff training issues, or other issues with adopting
the SystemVerilog language and verification libraries. The
code and techniques are standard SystemVerilog and should be
available on all modern, compliant simulators.

We discuss simple organizational techniques for debug like
naming conventions for files, directories, verification IP, class
names and class member variables.

Breakpoints are important to track flow of control, but can
be hard to use in dynamic, class based testbenches. We discuss
breakpoint pools, and a small infrastructure that can be used to
turn breakpoints on and off using the command line. This
technique requires a little bit of planning, but can aid flow
control debugging. These breakpoints can be class based or
even instance based.

Verification libraries, like the UVM, contain many debug
statements and aids that can be either compiled on, or turned on
from the command line. The UVM itself contains dump() and
print() routines that can be used to explore the UVM data

structures. We describe easy ways to build compiled-in debug
and dynamically controlled debug for user testbenches.

Most large UVM based testbenches are transaction based.
We discuss using transactions for debug, including simple
convert2string() usage, and recommendations against using any
of the field automation macros. Although not fatal, these
macros can hide problems, and create an unnecessary distance
between the testbench transaction and the verification engineer.

Transactions can be recorded, but usually printing
transactions can be just as useful. Using the messaging system
and convert2string(), transaction data and control flow can be
debugged.

We recommend using one single simulation log file, which
provides instant correlation of the entire system. With one log
file, tools like sed, awk, grep and perl can be used to extract
information, create reports and produce debug summaries.
Using a single log file allows all the time correlated data
produced by the simulator to be recorded as it was produced. If
that information is split into multiple log files from the
simulator, then it is hard to correlate events after the fact. Use
post-processing tools to extract interesting data; don’t use the
simulator to do that.

The UVM reporting system (messaging) has many abilities,
including verbosity control, message ID filtering and
hierarchical property setting. This system is large and complex,
and although it has been available for years, it is mostly opaque
to all but the most energetic engineer. We'll show how to
control this system with command line options, with a small
message control block. Finally, we'll build a custom reporting
environment with a user defined report server and report
catcher.

II. STRATEGY

Any testbench must be planned, and a testbench which
supports debug is no exception. Debug does not come for free,
and must be designed in. Debug tools are available, and can
minimize the need for planning and design-in, but even they
can require command line switches, or require a different kind
of compilation flow.

For SystemVerilog UVM class based debug, we are going
to assume full SystemVerilog LRM support, and support for
the latest UVM release.

This paper assumes there is no special debug tool being
used. The only debugging available is debugging that comes
from the simulator running.

III. NAMING CONVENTIONS

Naming conventions [3] [4] are often overlooked as either
too simplistic or onerous, but they can often simplify debug by
making it easier to understand a new test bench. The simplest
conventions are usually the best, and should be followed where
possible, but should not be used rigidly.

The best naming conventions are those that you agree to
and that you use consistently. Some recommendations or
suggestions are listed below – but they are just that –
suggestions.

Naming conventions help eliminate mistakes by being
consistent and simple to understand. Reading the code during
debug is easy. Furthermore, finding things becomes easy, since
they are where they should be. Finding all the axi_scoreboard
factory creation calls in the testbench source code is easy with
grep:

grep –r axi_scoreboard::type_id::create .

A. Names – Files, Classes, Member Variables

Use lowercase file names and directory names. Use
descriptive suffixes like _pkg, _scoreboard, _agent, _env. Use
the .sv file extension for files that get compiled. Use the .svh
file extension for files that get included. Never compile a .svh
file directly. Never `include a .sv file.

Generally speaking you should not use the `include
construct, except to include a file in just one place. A `include
should be used to build a package file (see below). If you need
to reference a type or other definition, then use ‘import’ to
bring the definition into scope. Do not use `include for general
solutions.

package abc_pkg;

 `include “abc_macros.svh”

 `include “abc_monitor.svh”

 `include “abc_driver.svh”

 ...

endpackage

Files should be named after what they are - for example,
ahb_scoreboard.svh will contain the AHB scoreboard, while
the axi_vip_pkg.sv contains the AXI Verification IP.

Create a class to implement functionality with a name that
describes the functionality. For example, a scoreboard for the
ABC verification IP would be named - abc_scoreboard.

Use a prefix in the class name for the kind of object this
class is associated with. In this case ‘class abc_scoreboard’ is a
scoreboard associated with an ‘abc’ kind of verification
component.

Any member that is meant to be private should be named
with a ‘m_’ prefix, and should be made local or protected. Any
member that will be randomized should not be local or
protected. The ‘m_’ prefix is a simple reminder that this
variable or function is not publically available.

B. Directories and Packages

Testbenches are constructed of SystemVerilog UVM code
organized as packages, collections of verification IP organized
as packages and a description of the hardware to be tested.
Other files such as C models are also to be organized.

Each package should exist in its own directory. Each of
these package directories should have one file that gets
compiled - a file with the extension .sv

 abc_pkg.sv

Each package should have at most one file that may be
included in other code. This file may define macros.

 abc_macros.svh

For a complex package that may contain tests, examples
and documentation, create subdirectories:

 abc_pkg/examples

 abc_pkg/docs

 abc_pkg/tests

 abc_pkg/src/abc_pkg.sv

Sample file listing

abc_pkg/src

abc_pkg/src/abc_pkg.sv

abc_pkg/src/abc_macros.svh

abc_pkg/src/abc_env.svh

abc_pkg/src/abc_interface.sv

abc_pkg/src/abc_driver.svh

abc_pkg/src/abc_monitor.svh

abc_pkg/src/abc_scoreboard.svh

abc_pkg/src/abc_sequence_item.svh

abc_pkg/src/abc_sequencer.svh

abc_pkg/src/abc_sequences.svh

abc_pkg/docs/

abc_pkg/docs/abc_user_guide.docx

abc_pkg/tests/......

abc_pkg/examples/....

testbench1/makefile

testbench1/tb_env.sv

testbench1/tb_top.sv

testbench1/test.sv

When you use a package, you import it, and include any
macro definitions.

 import abc_pkg::*;

 `include “abc_macros.svh”

Using these suggestions will help you get organized, and
keep you out of trouble.

IV. DESIGNING THE TESTBENCH

The testbench should be designed with debug in mind. The
main elements that will be used in debugging will be
transactions, sequences and phased components. Building each
of these with debug in mind is important.

Transactions should be designed so that you can figure out
what data is stored in the transaction. For example a routine
named ‘convert2string’ should be provided that creates a string
representing the current “value” of the transaction. A
transaction may also want to register the fact that is has been
constructed.

Sequences should be designed to print information when
they start and when they end. They should also have a way to
breakpoint. They may also want to register the fact that a
sequence has been constructed.

Phased components should be designed to print information
when each phase starts and ends. They should also have a way
to breakpoint.

V. DO IT YOURSELF TOOLS

A. Breadcrumbs

In order to understand control flow, or function call order,
the user might insert a print statement that printed the file and
line number when executed.

$display(“DBG: %s:%0d”, `__FILE__, `__LINE__);

Each time this line is executed, it leaves a trail of where it
has been. Instrumenting each line in a difficult section of code
may help debug problems. The last line printed is where the
problem is.

In addition to a simple file and line number, in class based
debug, we can print the contents of the class. A SystemVerilog
based solution is just to use ‘%p’ with a $display or $sformatf:

$display(“sequence_item=%0p”,

 seq_item_handle);

A UVM based solution is just to use convert2string():

$display(“sequence_item=%s”,

 seq_item_handle.convert2string());

These basic print statements can provide a good amount of
debug. They provide visibility into control flow, and visibility
into data. If your code is stuck in a loop somewhere, and there
are many conditions for exiting the loop, you could set a
breakpoint at the top of the loop, and single step through the
loop. Sometimes this could take a long time before the problem
appeared, and it relies on the debug tool providing breakpoints
and single stepping. A crude but effective alternative is to
sprinkle the $display that uses FILE and LINE on most lines in
the loop or function. Then just run simulation, allowing the
FILE and LINE messages to fill up your transcript. Eventually
you may see a pattern. Certain lines may be repeating, and
other lines may never be executed. With this information you
can infer which if-then-else is failing or what expected exit
condition is not being met.

This kind of breadcrumb trail can be extended to many
situations. For example, at the beginning of every function or
task call, you can add a $display, and print a “start” message

$display(“Function %s starting”, “FunctionName”);

With the UVM more information is available. The function
or task in a UVM based class can include information from

itself, its containing class, or any ancestor class. For example a
function in a uvm_component could print the name of the class
(xyz_h), the type of the class (xyz), the full name of the class
(top.env. xyz_h).

class xyz extends uvm_component;

 `uvm_component_utils(xyz)

 task run_phase(uvm_phase phase);

 $display(“%s %s %s”, get_name(),

 get_type_name(), get_full_name());

 endfunction

endclass

Under normal circumstances, the debug messages are not
needed or are undesirable. They can be deleted from the source
code, but usually they get put back in to help on the next phase
of debugging. Those kinds of messages can be conditionally
turned off and on using a simple command line switch. Don’t
leave breadcrumb messages turned on when you don’t need
them. Either delete them, compile them out, or turn them off
with a run time switch.

if ($test$plusargs(“debug”)) begin

 $display(“%s %s %s”, get_name(),

 get_type_name(), get_full_name());

end

Or

if (debug) begin

 $display(“%s %s %s”, get_name(),

 get_type_name(), get_full_name());

end

Or

`ifndef NO_DEBUG

if (debug) begin

 $display(“%s %s %s”, get_name(),

 get_type_name(), get_full_name());

end

`endif

The UVM also provides a powerful message logging or
reporting system that can be used in place of the simple
$display. (`uvm_info).

B. Threads

Debugging threaded programs is difficult. Instrumenting
each thread is important. Each branch should be instrumented –
each decision point. The start and end of the thread should be
instrumented. There will be many messages generated and they
will be time correlated. It will be easy to see which thread is
running, which thread is doing what.

A good example of a common problem is two threads
communicating through an infinite size fifo. The producer
thread runs, but the consumer thread never runs. By
instrumenting the threads it will be apparent that the producer
thread is always ready to run, so it continues to run, starving
the consumer. By conditioning the producer on a clock edge, or
to yield with a #0 after each 10 transactions are generated, the
consumer will be allowed to run.

Threads exist in SystemVerilog and the UVM in initial and
always blocks, in fork/join constructs, in UVM phases

(run_phase(), build_phase(), etc) and in UVM sequences
(body() tasks). There are many opportunities to have threads
running.

C. Plus args control

Plus args are command line switches supported by the
simulator. They are “application specific” – they can be defined
for each application. The SystemVerilog LRM defines that
arguments beginning with the ‘+’ character will be available
using the $test$plusargs and $value$plusargs PLI APIs. Using
plusargs is a good way to set a mode – like the ‘debug’ mode.
Or to set a value – like the ‘debug_level’.

begin

 bit debug;

 debug = 0;

 if ($test$plusargs("d"))

 debug = 1;

 $display("Debug = %0d", debug);

end

begin

 int debug_level;

 if ($value$plusargs("debug=%d", debug_level)==0)

 debug_level = 1000;

 $display("DebugLevel = %0d", debug_level);

end

Usage:

<simulator> +d +debug_level=42

Using plusargs allows one setting to be made. In the case of
multiple settings (like setting many breakpoints using the +bp
switch), a different solution is needed.

The SystemVerilog LRM specifies that the
vpi_get_vlog_info function returns information about the tool
invocation, including the command line arguments. In the
UVM, an interface has been defined to this vpi_get_vlog_info
function. It is called the command line processor (clp). Using
the clp.get_arg_values(+bp=”, list), a list of all the +bp=
settings is returned in the array ‘list’. Below, ‘list’ is iterated,
each iteration being a +bp= usage from the simulator command
line.

uvm_cmdline_processor clp;

clp = uvm_cmdline_processor::get_inst();

// By Name => +bp:name=

clp.get_arg_values("+bp=", list);

$display("parsing breakpoints=%p", list);

foreach (list[i])

 BPP::set_by_name(list[i]);

Usage:

<simulator> +bp=.*seqA.* +bp=.*seqB.*

This is a useful technique to grab all the plusargs of a
certain kind from the command line.

D. Quieting Debug Messages

Sprinkling code with debug messages makes an easy to
debug, verbose testbench. But eventually the testbench will be
debugged, and those messages should get turned off. They can
be turned on and off with either compile switches and/or run
time switches.

`ifndef NO_DEBUG

`define DEBUG(msg) \

 `uvm_info("DBG", msg, UVM_MEDIUM)

`else

`define DEBUG(msg)

`endif

In this case, `DEBUG(“abc”) is used in the testbench code
to call `uvm_info and produce messages. When it is time to
turn these messages off, a +define+NO_DEBUG can be used
on the compile invocation.

Runtime control is also possible for example, by re-defining
the macro to be

`ifndef NO_DEBUG

`define DEBUG(msg) \

 if (debug) `uvm_info("DBG", msg, UVM_MEDIUM)

`else

`define DEBUG(msg)

`endif

Elsewhere in the testbench, we declared ‘debug’ and set it
from the simulation command line.

int debug = 0;

...

if ($test$plusargs(“debug”) == 1)

 debug = 1;

else

 debug = 0;

Note that this solution has both compile time and run time
options.

E. Transaction Debug

A transaction is a piece of data that is being communicated.
It can contain many different kinds of information – but for
debug purposes a function like convert2string should be
defined that returns the important state information in a
formatted string. Creating convert2string in the base class
means that any class based debug can use any class handle, and
call

 $display(“%s”, transaction_handle.convert2string());

In the code snippet below, convert2string is defined to
format the id and data values. Additionally, a function call like
‘get_type_name()’ can provide useful information. For the
code snippet, get_type_name is defined by the
uvm_object_utils macro.

Another useful feature to embed in a transaction is a unique
id. That way, if you ever see another transaction with the same
id, then you know that it is really is the same transaction – the
same object. The id below is such a unique id – it is
incremented for each call to new(). The UVM also has a unique
id built in for each uvm_object that is created. In the UVM, it is
called ‘m_inst_id’, and it can be accessed by calling
‘get_inst_id()’.

class my_transaction extends uvm_transaction;

 `uvm_object_utils(my_transaction)

 static int g_id;

 int id;

 int data;

 function new(string name = "my_transaction");

 super.new(name);

 `ALLOCATED_TYPE

 id = g_id++;

 endfunction

 function string convert2string();

 return $psprintf("id=%0d, data=%0d",

 id, data);

 endfunction

endclass

VI. THE UVM

A. UVM Breadcrumbs

Instead of $display, use `uvm_info, `uvm_warning,
`uvm_error or `uvm_fatal. Additional information is built-in,
like filename, line number, time, and verbosity control. These
breadcrumbs come with their own controls and capabilities.

B. UVM Macros

Don’t use macros that generate complex code. It is very
hard to debug complex code, and doubly hard when that code
is hidden in a macro. There are useful macros, and macros to
avoid [8].

C. Really Easy UVM Debug

Interested in what’s in the factory?

uvm_factory factory= uvm_factory::get();

factory.print();

Factory Configuration (*)

No instance overrides are registered with this

factory

Type Overrides:

Requested Type Override Type

-------------- -------------

driverA driver2A

<unknown> <unknown>

All types registered with the factory: 57 total

(types without type names will not be printed)

Type Name

driver2A

driverA

envA

questa_uvm_recorder

sequence_A

sequence_A_grandparent

sequence_A_greatgrandparent

sequence_A_parent

sequence_item_A

sequence_item_B

test

(*) Types with no associated type name will be

printed as <unknown>

Interested in which resource [9] (which configuration)
setting was set, but never used? Check it with
‘check_config_usage()’.

uvm_top.check_config_usage(1);

::: The following resources have at least

one write and no reads :::

config_object [/^test\.e2_a\..*$/] : ?

-

test.e2_a reads: 0 @ 0 writes: 1 @ 0

config_object [/^test\.e1_a\..*$/] : ?

-

test.e1_a reads: 0 @ 0 writes: 1 @ 0

my_int [/^test\.e2_a\.sequencer$/] : ?

Less useful, simply for the quantity and style of information
produced, print the configurations available at each hierarchy
level.

uvm_top.print_config(1, 1);

resources that are visible in

recording_detail [/^.*$/] : ?

-

 reads: 0 @ 0 writes: 2 @ 0

test reads: 1 @ 0 writes: 0 @ 0

test.e1_a reads: 1 @ 0 writes: 0 @ 0

test.e1_a.driver reads: 1 @ 0 writes: 0 @ 0

test.e1_a.driver.rsp_port reads: 1 @ 0 writes: 0 @ 0

test.e1_a.sequencer reads: 1 @ 0 writes: 0 @ 0

To see the UVM topology from the top use
print_topology().

uvm_top.print_topology();

UVM_INFO @ 0: reporter [UVMTOP] UVM testbench

Name Type

test test

e1_a envA

driver driver2A

rsp_port uvm_analysis_port

sqr_pull_port uvm_seq_item_pull_port

sequencer uvm_sequencer

rsp_export uvm_analysis_export

seq_item_export uvm_seq_item_pull_imp

e1_b uvm_env

driver driver2#(sequence_item_A)

rsp_port uvm_analysis_port

sqr_pull_port uvm_seq_item_pull_port

sequencer uvm_sequencer

rsp_export uvm_analysis_export

seq_item_export uvm_seq_item_pull_imp

e2_a envA

driver driver2A

rsp_port uvm_analysis_port

sqr_pull_port uvm_seq_item_pull_port

sequencer uvm_sequencer

rsp_export uvm_analysis_export

seq_item_export uvm_seq_item_pull_imp

e2_b uvm_env

driver driver2#(sequence_item_A)

rsp_port uvm_analysis_port

sqr_pull_port uvm_seq_item_pull_port

sequencer uvm_sequencer

rsp_export uvm_analysis_export

seq_item_export uvm_seq_item_pull_imp

Use one of the library calls mentioned in this paper to print
a complete netlist.

show_connectivity(uvm_top, 0);

+ UVM Root: uvm_top

 + Test: test

 + Env: test.e1_a

 + Component: test.e1_a.driver

 Port: test.e1_a.driver.sqr_pull_port

 Connected to Port:

 test.e1_a.sequencer.seq_item_export

 + Sequencer: test.e1_a.sequencer

 Port: test.e1_a.sequencer.seq_item_export

 Provided to Port:

 test.e1_a.driver.sqr_pull_port

D. Reporting System Control

The reporting system has many features, but the most
useful and easiest to use is verbosity. Planning your testbench,
you should liberally sprinkle calls to the reporting system in, so
that you can be made aware of process flow and current state.
Normally most of these debug and status statements are quiet –
they are turned off. They can be turned on from the command
line in a variety of ways.

If you want to turn them all on, then you can just run
simulation with verbosity turned up very high – that way your
testbench will be very verbose.

If you want to turn on just a few components, then you can
control the instances which will be verbose.

Simulating with

+UVM_VERBOSITY=UVM_HIGH

or

+UVM_VERBOSITY=UVM_DEBUG

will produce many messages – likely some detailed
messages from the UVM itself. Your output will be very
detailed, and very verbose.

Instead of turning the verbosity up for the entire testbench,
the verbosity for a small part can be increased using

 +uvm_set_verbosity=e.consumer*,_ALL_,UVM_HIGH.

This causes the string ‘e.consumer*’ to get matched, and all
IDs at that level get verbosity set to UVM_HIGH. In our
producer/consumer example this makes the consumer verbose,
while the producer stays quiet.

It is good debug practice to introduce a debug statement in
interesting places, for example when a phase starts
(begin_phase(), run_phase() especially) or when a sequence
begins or ends (at the start and end of the body() task). These
messages remain quiet if they are using a verbosity higher than
the normal verbosity. Normal verbosity is UVM_MEDIUM.
The verbosity choices are

UVM_NONE,

UVM_LOW,

UVM_MEDIUM,

UVM_HIGH,

UVM_FULL,

UVM_DEBUG.

Normally simulations run at UVM_MEDIUM, and debug
messages are UVM_HIGH or UVM_FULL.

For example, a run_phase instrumentation:

 task run_phase(uvm_phase phase);

 ...

 `uvm_info(get_type_name(), "Starting... ",

 UVM_HIGH)

Or a sequence body task instrumentation:

 task body();

 T t;

`uvm_info(get_type_name(), "Starting... ",

 UVM_HIGH)

These messages won’t be printed unless the verbosity is at
UVM_HIGH or higher.

The first argument in the `uvm_info macro is the ID. It’s a
good practice to use the type_name – that way you can control
all the messages from a certain type by causing the reporting
system to change verbosity or other attributes based on the ID.

E. Data Structures

The UVM Class data structures can be explored to provide
information about the testbench structure, its current state, and
the state of any generated stimulus. There are many APIs
available to choose from – the uvm-1.1a contains 316 class
definitions in 134 files for a total of 67,298 lines of code. Test
benches can contain hundreds or thousands of instances of
class based components. They can generate thousands or
millions of transactions or tests. They can run for hours or
days. These are complex systems described by complex data
structures.

F. Netlist

A simple netlist program can be built to traverse the UVM
component hierarchy and print the connections. In Figure 1 a
simple UVM producer is connected to a fifo. The fifo is
connected to a UVM consumer. The netlist produced shows
that the environment ‘e’ contains three components (consumer,
fifo and producer). The consumer has a port named ‘port’,
which is connected to a port on the fifo named
‘get_peek_export’.

Figure 1 - Simple Producer / Consumer

The UVM code below constructs the hierarchy shown in
Figure 1.

class env extends uvm_env;

 `uvm_component_utils(env)

 producer p;

 consumer c;

 uvm_tlm_fifo #(my_transaction) fifo;

 function new(string name = "env",

 uvm_component parent = null);

 super.new(name, parent);

 endfunction

 function void build_phase(uvm_phase phase);

 p = new("producer", this);

Env: e

fifo

producer

consumer

 c = new("consumer", this);

 fifo = new("fifo", this);

 endfunction

 function void connect_phase(uvm_phase phase);

 p.port.connect(fifo.put_export);

 c.port.connect(fifo.get_export);

 endfunction

endclass

Netlist output:

+ Env: e

 + Component: e.consumer

 Port: e.consumer.port

 Connected to Port: e.fifo.get_peek_export

 + Component: e.fifo

 Port: e.fifo.get_peek_export

 Provided to Port: e.consumer.port

 Port: e.fifo.put_export

 Provided to Port: e.producer.port

 + Component: e.producer

 Port: e.producer.port

 Connected to Port: e.fifo.put_export

A more interesting netlist from a UVM perspective is the
netlist from Figure 2. This diagram shows a test containing an
environment, containing a sequencer and driver. The netlist
shows the driver sqr_pull_port connected to the sequencer
seq_item_export. It also shows the reverse – the sequencer
seq_item_export provided to the driver sqr_pull_port.

Figure 2 - Sequencer / Driver Connection

Netlist output:

+ UVM Root: uvm_top

 + Test: test

 + Env: test.e1_a

 + Component: test.e1_a.driver

 Port: test.e1_a.driver.sqr_pull_port

 Connected to Port:

 test.e1_a.sequencer.seq_item_export

 + Sequencer: test.e1_a.sequencer

 Port: test.e1_a.sequencer.seq_item_export

 Provided to Port:

 test.e1_a.driver.sqr_pull_port

The netlisting code is shown abbreviated below. The
function show_connectivity() is called with a component ‘c’.
First all the direct children are collected into an array named
‘children’. Each child is visited using the foreach(children[i])
loop. A child is either a port or a component; the $cast()
determines which. If this child is a port, then use
‘get_connected_to()’ and ‘get_provided_to()’ to fill in any
connections. Next print the port name, and iterate the

connections lists, printing connected-to and provided-to
information. If this child was not a port, then it is a component,
and show_connectivity() is called recursively with this child
and depth incremented by 2. In this way the entire component
hierarchy from the original component ‘c’ down to the last leaf
will be visited.

function automatic void show_connectivity(

 uvm_component c = null,

 int depth = 0);

 // Array of the children to iterate through.

 uvm_component children[$];

 // Nothing to do.

 if (c == null)

 return;

 begin

 ...

 type_name = "Component";

 $display("%s+ %s: %s", {depth{" "}},

 type_name, name);

 end

 // Fill up the array with all the

 // children of 'c'.

 c.get_children(children);

 // Iterate for each child.

 foreach (children[i]) begin

 // Cast to port_component_base to see if

 //this is a port.

 uvm_port_component_base port_component_base;

 // Test to see if this handle is a port.

 if ($cast(port_component_base, children[i]))

 begin

 uvm_port_list connected_to_list;

 uvm_port_list provided_to_list;

 // See what is connected.

 port_component_base.get_connected_to(

 connected_to_list);

 // See what is connected.

 port_component_base.get_provided_to(

 provided_to_list);

 // If there is something connected,

 // print the port name and the connections.

 if ((connected_to_list.size() > 0) ||

 (provided_to_list.size() > 0)) begin

 // Print the name of the port.

 $display("%s Port: %s", {depth+2{" "}},

 children[i].get_full_name());

 end

 // Iterate across all the connections,

 // printing the thing this port is

 // connected to.

 foreach (connected_to_list[i])

 $display("%s Connected to Port: %s",

 {(depth+2)+2{" "}},

 connected_to_list[i].get_full_name());

 // Iterate across all the connections,

 // printing the thing this port is

 // provided to.

 foreach (provided_to_list[i])

 $display("%s Provided to Port: %s",

 {(depth+2)+2{" "}},

 provided_to_list[i].get_full_name());

 end

 else begin

 // It's a component. Recurse.

Test: test

Env: e1_a

driver

sequencer

 show_connectivity(children[i], depth+2);

 end

 end

endfunction

This code is simple but powerful. It recursively traverses
the component and its children finding the connections to any
ports, printing what they are connected to. It uses four API
calls (‘get_children()’, ‘get_connected_to()’, ‘get_full_name()’,
‘get_provided_to()’) to produce a useful list of all components,
their children and connections.

The netlisting code visits a potentially large data structure,
printing it in human readable form. Data structures can also be
explored one at a time. The code below has two ports, and just
asks what they are connected to using the
debug_connected_to() and debug_provided_to() calls.

 fifo.put_export.debug_connected_to();

 fifo.put_export.debug_provided_to();

 fifo.get_export.debug_connected_to();

 fifo.get_export.debug_provided_to();

These two snippets of code; a full netlister, and a partial
netlister have explored just the basic “children” data structure
in the uvm_component, and have used ports to show
connectivity. The UVM has many other useful data structures
waiting to be explored as a debug exercise for the reader.

G. Active Sequences

Most UVM testbenches will use sequences. The sequences
will be used as stimulus generators. Each agent is likely to have
at least one active sequence, if not more. These sequences are
started, and work together to generate interesting stimulus
conditions for testing. It is hard to know what sequences are
running at any given time. An easy solution is to register the
sequence when it is started, and then de-register it when it ends.
A sequence has just the hooks needed – the pre_body() and
post_body() tasks. By instrumenting the pre_body and
post_body, we can keep track of what sequences are currently
active.

The class ‘active_sequences’ below is a simple wrapper
around an associative array indexed by sequence handle. When
a sequence is started the function active_sequences::add(seq)
should be called to register the sequence. When a sequence is
ending the function active_sequences::remove(seq) should be
called to de-register the sequence. At any given time, calling
the function active_sequences::show() will print the list of
currently active (currently registered) sequences.

class active_sequences;

 // A list of sequences.

 static uvm_sequence_base

 list[uvm_sequence_base];

 // Add 'seq' to the list. If it is already in

 // the list, just override the existing one.

 static function void add(

 uvm_sequence_base seq);

 list[seq] = seq;

 endfunction

 // Remove 'seq' from the list. If it is not

 // in the list, just ignore it.

 static function void remove(

 uvm_sequence_base seq);

 if (list.exists(seq))

 list.delete(seq);

 endfunction

 static function void show(

 string file = `__FILE__,

 int line = `__LINE__);

 uvm_report_info("Seq",

 "Active Sequences", UVM_MEDIUM,

 file, line);

 foreach (list[seq])

 uvm_report_info("Seq",

 $sformatf(" %s", seq.get_full_name()),

 UVM_MEDIUM, file, line);

 endfunction

 ...

endclass

The active_sequences class and the functions used to
register and de-register can be used without any further
support. They can be used in any location where the
functionality is useful. The tasks pre_body and post_body are
two such places.

Instrumenting pre_body and post_body can be done
manually, inserting the calls to active_sequences:add() and
active_sequences::remove() in each sequence. This is tedious
and error prone. Putting this kind of functionality in a base
class is a better idea. Many times there is a common base class
which all sequences in the testbench derive from.

 task pre_body();

 // Begin a sequence

 active_sequences::add(this);

 super.pre_body();

 endtask

 task post_body();

 // End a sequence

 super.post_body();

 active_sequences::remove(this);

 endtask

If no common sequence base class exists, one can be
created – the uvm_debug_sequence. All sequences should
derive from this common sequence, and will inherit the
pre_body() and post_body() functionality that calls keeps track
of active sequences.

class uvm_debug_sequence #(

 type REQ = uvm_sequence_item,

 type RSP = REQ) extends uvm_sequence#(REQ, RSP);

 function new(string name =

 "uvm_debug_sequence");

 super.new(name);

 endfunction

 task pre_body();

 // Begin a sequence

 active_sequences::add(this);

 super.pre_body();

 endtask

 task post_body();

 // End a sequence

 super.post_body();

 active_sequences::remove(this);

 endtask

endclass

Using the new base class takes a little planning, changing
what class is extended from.

 class sequence_B #(type T = int)

 extends uvm_debug_sequence #(T);

 `uvm_object_param_utils(sequence_B#(T))

 const static string type_name =

 {"sequence_B#(", T::type_name, ")"};

 virtual function string get_type_name();

 return type_name;

 endfunction

 ...

At any time in the simulation, a list of the active sequences
can be printed by calling active_sequences::show.

active_sequences::show();

A report will be generated like the report below. The report
below shows four sequencers with sequences running.

e2_b.sequencer@@ggp_seq test.e2_a.sequencer.ggp_seq

e2_b.sequencer@@ggp_seq test.e1_b.sequencer.ggp_seq

e2_b.sequencer@@ggp_seq test.e1_a.sequencer.ggp_seq

e2_b.sequencer@@ggp_seq test.e2_b.sequencer.ggp_seq

e2_b.sequencer@@ggp_seq test.e2_b.sequencer.seq#(T)

e2_b.sequencer@@ggp_seq test.e2_a.sequencer.seq

e2_b.sequencer@@ggp_seq test.e1_b.sequencer.seq#(T)

e2_b.sequencer@@ggp_seq test.e1_a.sequencer.seq

H. Objects Allocated

In many testbenches transactions – classes – are created
dynamically and created based on randomized control. It is not
always possible to predict either how many classes will be
constructed or what types they will be. Many problems can
occur in such a testbench, including allocating too many classes
or too many classes of a specific type.

Adding simple instrumentation each time a class is
constructed; we can keep track of each allocation, and print a
report when needed. This simple technique will tell us the
maximum allocated, but won’t tell us the maximum that
actually was allocated at any given time. We’re not able to
track the garbage collection – the destruction of objects, so we
don’t know when objects are “unallocated”. This kind of
information may become available in the future, but for now
even just the total ever allocated and type is useful for tracking
runaway allocations, expensive construction of already existing
classes, or the uneven distribution of allocating one type over
another.

When a class is allocated (constructed) we’ll instrument the
code with a call to register that fact:

 function new(string name = "sequence_item_B");

 super.new(name);

 objects::add(get_type_name());

 id = g_id++;

 endfunction

Calling ‘objects::add(get_type_name()) in each constructor
of our simple sequences example, increments the count for this
type. Calling ‘objects::show()’ at the end of simulation
produces the following report:

Objects Allocated (by type)

324: sequence_item_A

80: sequence_A

80: sequence_B#(sequence_item_A)

26: sequence_B_parent#(sequence_item_A)

26: sequence_A_parent

...

4: driver2#(sequence_item_A)

2: driverA

...

2: sequence_A_greatgrandparent

1: test

The underlying data structure is a simple associative array,
indexed by a string representing the type name of the allocated
object. Each call to ‘object::add()’ increments the
corresponding array element. The ‘show()’ puts the associative
array elements into a SystemVerilog queue, and sorts it. The
code then iterates the sorted queue, printing the allocation
report seen above.

class objects;

 static int obj[string];

 static function void add(

 string type_name = "object");

 if (obj.exists(type_name))

 obj[type_name] += 1;

 else

 obj[type_name] = 1;

 endfunction

 static function void show();

 typedef struct {

 int count;

 string name;} item;

 item q[$];

 item i;

 $display("Objects Allocated (by type)");

 // Put each item in a queue.

 foreach (obj[type_name]) begin

 i.count = obj[type_name];

 i.name = type_name;

 q.push_front(i);

 end

 // Sort the queue.

 q.rsort with (item.count);

 // Print the items in descending order.

 foreach (q[x])

 $display(" %6d: %s", q[x].count,

 q[x].name);

 endfunction

endclass

`define ALLOCATED_TYPE()\

 objects::add(get_type_name());

I. Conditional Breakpoint

When running simulation it is hard to stop at exactly the
right place. This is especially hard for dynamic classes.

Such a conditional breakpoint might be “stop in packet
processing after the ten thousandth packet has been processed
if the current packet is of type ETH, and there are at least 10
errors”. These kinds of conditional breakpoints are sometimes
most easily hard-coded into the SystemVerilog test – for
example:

if ((packet_count > 10000) &&

 (packet_type == ETH) &&

 (error_count > 10))

 $stop();

Once simulation stops, you can examine the state of the
packet processing. If stopping and examining is not possible, a
summary report could be written out to the logfile, and
simulation continued.

J. Dynamic message control

Sometimes certain debugging should start after many
clocks, or after some condition is detected. This is a case where
we want to run quietly – with little or no messages until the
condition is reached. Once reached, we want to change the
debug level or the verbosity level, producing many log
messages. For example, after 100000 clocks, turn on debug
messages in the AXI agent:

repeat (100000) @(posedge clk);

axi_agent_h.set_report_verbosity_hier(…);

K. Breakpoints in sequences

Sequences can be created at any time during simulation.
Sequences can have short or long lifespans. Many instances of
the same sequence can be constructed. Many different debug
scenarios could be imagined, but with a small breakpoint
library, sequences can be stopped based on their name, their
type or their instance name (full path name).

The breakpoint library is a collection of code which uses
the built-in UVM regular expression interface to match desired
breakpoints with current sequence execution. For example, if
the sequence named “seq” hits the “breakpoint”, then the
breakpoint library will search to see if any regular expression
matches the sequence name “seq” (or the type or the full
name).

Using the breakpoint library is easy. Just call the breakpoint
from the place where the check should occur. In a sequence,
this is most likely at the start of the body() routine.
Alternatively, the pre_body() could be instrumented to get all
sequences instrumented.

Breakpoints are specified as plusargs on the simulation
command line:

+bp=gp_.*

+bp:type=.*greatgrand.*

The ‘greatgrandparent’ sequence is instrumented with `BP:

class sequence_B_greatgrandparent #(type T = int)

 extends sequence_B_parent #(T);

 `uvm_object_param_utils(

 sequence_B_greatgrandparent#(T))

 ...

 task body();

 ...

 `BP // The Breakpoint

 for(int i = 0; i < 3; i++) begin

 ...

 end

 ...

 endtask

 ...

endclass

When the body() task is called, the code from the BP macro
will be executed. The definition of BP is a call to the check
function in the breakpoint pool library. (BPP::check()). Three
arguments are passed in – the current values that are going to
be checked against the regular expressions that are currently set
as breakpoints. The three current values are get_full_name,
get_name and get_type_name. Additionally, the file and line
number are passed in for better debug messages.

// Macro: BP

//

// Must only be used in the context where the

// functions get_name(), get_full_name() and

// get_type_name() exist.

// For example, from within a sequence or within

// a component.

//

// Other macros can be created for other contexts.

//

`define BP if (BPP::check(get_full_name(), \

 get_name(), \

 get_type_name(), \

 `__FILE__, \

 `__LINE__)) $stop;

Evaluating breakpoints, writing regular expressions, and
getting the UVM names right is hard. The breakpoint pool
comes with tracing and debug messages.

% grep BPP::trace transcript

[BPP::trace matched] .*greatgrand.* matched

% grep BPP::debug transcript

[BPP::debug - full_name] test.e2_b.sqr.seq#(T)

[BPP::debug - name] seq#(T)

[BPP::debug - type_name] seq_B_greatgrand#(seq_A)

We instrumented our body() task with a macro - `BP. We
supplied command line arguments +bp:type=.*greatgrand.*.
When we ran simulation we stopped at the exact line were BP
was placed in the body() task – line 220:

Break in Task

envB_pkg/sequence_B_greatgrandparent::body at

envB.sv line 220

Stopped at envB.sv line 220

196 class sequence_B_greatgrandparent

...

217 task body();

...

220 `BP // The Breakpoint

221 for(int i = 0; i < 3; i++) begin

L. Random stability in debug

Any debug solution must be randomly stable. A randomly
stable solution for debug means that when debug is “turned
on”, the simulation results will be the same as without.

The following code is unstable with UVM 1.1. It is simple
code that calls `uvm_info when the command line contains a
non-zero setting for ‘x’ (+x=1). In the code, when x takes the
value zero, then the if-statement will be true, and the macro
`uvm_info will be called. This call to `uvm_info is what makes
this code unstable – it changes the random number order by
creating a new class object.

import uvm_pkg::*;

`include "uvm_macros.svh"

module top();

 int x, r;

 initial begin

 if ($value$plusargs("x=%0d", x) == 0)

 x = 0;

 if (x == 0)

 `uvm_info("DBG", "x is zero", UVM_MEDIUM)

 r = $urandom();

 $display("x=%0d, r=%0d", x, r);

 end

endmodule

In UVM 1.1a this issue is fixed.

For user code, sometimes you must ensure your code stays
randomly stable, by capturing the random state before a “de-
stabilizing” event. Then after the destabilizing event, restore
the random state. The following code is stable using UVM 1.1,
adding the lines commented ‘ADDED’:

import uvm_pkg::*;

`include "uvm_macros.svh"

module top();

 int x, r;

 initial begin

 automatic process p; // Process - ADDED

 string p_rand; // State - ADDED

 if ($value$plusargs("x=%0d", x) == 0)

 x = 0;

 p = process::self(); // Capture - ADDED

 p_rand = p.get_randstate(); // Capture – ADDED

 if (x == 0)

 `uvm_info("DBG", "x is zero", UVM_MEDIUM)

 p.set_randstate(p_rand); // Restore – ADDED

 r = $urandom();

 $display("x=%0d, r=%0d", x, r);

 end

endmodule

M. Using a report catcher

A report catcher is a UVM construct which allows a
message for the messaging system to be “caught”. For
example, a report_catcher could be implemented to catch
messages for a specific ID.

Once the report catcher is executing, it can choose to ignore
or catch the message. If THROW is used, then the next
report_catcher will process this message. If CATCH is used,
then this message will not be processed by any other
report_catcher – the message has been caught.

A simple report catcher skeleton is listed below. It simply
uses the API to retrieve message attributes (get_id(),
get_fname(), etc), then it returns “THROW”.

class my_report_catcher

 extends uvm_report_catcher;

 string id;

 string filename;

 string name;

 string message;

 int line;

 int verbosity;

 uvm_severity severity;

 uvm_report_object client;

 function new(string name = "my_report_catcher");

 super.new(name);

 endfunction

 function action_e catch();

 uvm_severity_type usv;

 id = get_id();

 filename = get_fname();

 line = get_line();

 severity = get_severity();

 verbosity = get_verbosity();

 message = get_message();

 client = get_client();

 name = client.get_full_name();

 usv = uvm_severity_type'(severity);

 // Process this message.

 // Decide THROW or CATCH.

 ...

 return THROW;

 endfunction

endclass

Using a report_catcher is easy. It must be constructed, and
then it must be added to the list of report catchers managed by
the reporting system (uvm_report_cb::add()). A report catcher
can be prepended (UVM_PREPEND) or appended
(UVM_APPEND) to the existing report catcher list.

class test extends uvm_test;

 ...

 my_report_catcher my_report_catcher_inst;

 my_report_catcher_inst =

 new("my_report_catcher_inst");

 uvm_report_cb::add(null,

 my_report_catcher_inst, UVM_APPEND);

 ...

N. Using a report server

A report server is a UVM construct which formats the
reports in the messaging system. The report server below
formats the name and id to fixed widths. The widths are
programmable.

class my_report_server extends uvm_report_server;

 int name_width = 20;

 int id_width = 20;

 function string pad(string s, int width);

 if (s.len() == width)

 return s;

 // s is short. Pad at the end.

 if (s.len() < width)

 return {s, {(width - s.len()){" "}}};

 else

 // s is too long. truncate.

 return s.substr(s.len()-width, s.len()-1);

 endfunction

 function string compose_message(

 uvm_severity severity,

 string name,

 string id,

 string message,

 string filename,

 int line

);

 // Make the width be exactly name_width

 // and id_width.

 name = pad(name, name_width);

 id = pad(id, id_width);

 return super.compose_message(

 severity, name, id, message, filename, line);

 endfunction

 endclass

Using a report server is easy. It must be constructed. After
it is constructed it can be configured. In this case, the
configuration consists of setting the name and id widths. Name
is set to 28 characters, and id is set to 20 in this example.
Finally, the new report server is registered using ‘set_server()’.

class test extends uvm_test;

 // Make my report server.

 begin

 my_report_server my_report_server_inst;

 my_report_server_inst = new();

 // Configure.

 my_report_server_inst.name_width = 28;

 my_report_server_inst.id_width = 20;

 // Set.

 uvm_report_server::set_server(

 my_report_server_inst);

 end

VII. SUMMARY

Classes are dynamic objects in SystemVerilog. A
traditional debugging approach using standard Verilog tools
may not be sufficient for debugging classes. Classes are really
software – they have dynamic life spans, they have user
defined types, they have object-oriented properties, like
inheritance and virtual functions. Debugging SystemVerilog

classes requires adopting new debugging techniques.
Additionally, debugging UVM testbenches for best results
requires understanding and traversing the UVM class library
data structures.

Successful debug depends on getting organized.

Once the infrastructure is in place, messages can be created
in log files and analyzed with standard programming tools like
grep, awk and perl. For example, find all drivers, but not AXI
drivers:

grep driver transcript | grep –v AXI

Reports can be generated gathering statistics about the
distribution of packet type over certain periods of time.
Transfer rates can be calculated. The possibilities are limitless,
but first you have to get organized, and plan your debug.

VIII. REFERENCES

[1] SystemVerilog LRM Std 1800-2009

[2] UVM – www.accellera.org

[3] Coding Guidelines
en.wikipedia.org/wiki/Coding_conventions

[4] Google Style Guide, http://code.google.com/p/google-
styleguide/

[5] Stu Sutherland, SystemVerilog for Design

[6] Chris Spear, SystemVerilog for Verification

[7] Doulos, SV Golden Reference Guide

[8] Adam Erickson, “Are OVM & UVM Macros Evil? A Cost-
Benefit Analysis”, DVCON 2011

[9] Mark Glasser, “Advanced Testbench Configuration with
Resources”, DVCON 2011

http://www.accellera.org/
http://code.google.com/p/google-styleguide/
http://code.google.com/p/google-styleguide/

IX. UVM CLASS LIBRARY

The UVM Class library is large. There are many classes,
with many controls and options (The uvm-1.1a contains 316
class definitions in 134 files for a total of 67,298 lines of code).
Some of the most interesting options, switches, flags and
functions are listed below by UVM class name. This is not an
exhaustive list, nor necessarily a useful list; just an interesting
list for future investigation in the workings of the UVM.

A. uvm_root

+UVM_TESTNAME

+uvm_set_verbosity

+UVM_TIMEOUT

+UVM_SET_INST_OVERRIDE

+UVM_SET_TYPE_OVERRIDE

+UVM_SET_CONFIG_INT

+UVM_SET_CONFIG_STIRNG

+UVM_MAX_QUIT_COUNT

+UVM_DUMP_CMDLINE_ARGS

+UVM_VERBOSITY

uvm_root::find()

uvm_root::find_all()

uvm_root::print_topology()

B. UVM_COMPONENT

+uvm_set_action=<comp, id, severity, action>

+uvm_set_severity=<comp, id, orig severity, new

severity>

uvm_component::get_parent()

uvm_component::get_children()

uvm_component::lookup()

uvm_component::get_depth()

uvm_component::phase_started()

uvm_component::phase_ready_to_end()

uvm_component::phase_ended()

uvm_component::check_config_usage()

uvm_component::print_config_settings()

uvm_component::print_config()

uvm_component::print_config_with_audit()

uvm_component::print_config_matches = 1

uvm_component::raised()

uvm_component::dropped()

uvm_component::all_dropped()

uvm_component::print_override_info()

uvm_component::set_report_id_verbosity_hier()

uvm_component::set_report_severity_id_verbosity_hier

uvm_component::set_report_severity_action_hier()

uvm_component::set_report_id_action_hier()

uvm_component::set_report_severity_id_action_hier()

uvm_component::set_report_severity_file_hier()

uvm_component::set_report_default_file_hier()

uvm_component::set_report_id_file_hier()

uvm_component::set_report_severity_id_file_hier ()

uvm_component::set_report_verbosity_level_hier()

uvm_component::pre_abort()

uvm_component::set_config_object()

uvm_component::check_config_usage()

uvm_component::print_config

C. uvm_object

uvm_object::get_inst_id() (incremented on new object)

uvm_object::get_inst_count() (total count until now)

uvm_object::get_type_name()

D. uvm_CONFIG_DB

+UVM_CONFIG_DB_TRACE

uvm_resource_db_options::is_tracing()

 (`uvm_info(…, UVM_LOW)

uvm_config_db_options::turn_on_tracing()

uvm_config_db_options::turn_off_tracing();

E. Uvm_resource_db

+UVM_RESOURCE_DB_TRACE

dump()

F. uvm_resource

uvm_resource_optjons::trace_on_auditing

uvm_resource::print_resources()

uvm_resource::print_accessors()

G. uvm_resource_pool

uvm_resource_pool::dump_get_records()

uvm_resource_pool::find_unused_resources()

uvm_resource_pool::print_resources()

uvm_resource_pool::dump()

H. uvm_callback

uvm_callback::display()

`uvm_cb_trace_noobj()

I. uvm_event

uvm_event::add_callback()

uvm_event::do_print()

J. uvm_factory

uvm_factory::debug_create_by_type

uvm_factory::debug_create_by_name

uvm_factory::m_debug_pass

uvm_factory::print

K. uvm_objections

uvm_objections::trace_mode

Report ID: OBJTN_TRC

uvm_objections::raised()

uvm_objections::dropped()

uvm_objectsion::all_dropped()

uvm_objections::get_objectors()

uvm_objections::display_objections()

L. uvm_phase

`UVM_PH_TRACE

+UVM_PHASE_TRACE  m_phase_trace

`uvm_info(…, UVM_DEBUG)

uvm_phase::get_state()

 wait(get_state() …)  change phase state

uvm_phase::wait_for_state()

M. uvm_sequence_base

uvm_sequence_base::m_sequence_state

uvm_sequence_base::get_sequence_state()

uvm_sequence_base::wait_for_sequence_state()

uvm_sequence_base::pre_start()

uvm_sequence_base::pre_body()

uvm_sequence_base::pre_do()

uvm_sequence_base::mid_do()

uvm_sequence_base::body()

uvm_sequence_base::post_do()

uvm_sequence_base::post_body()

uvm_sequence_base::post_start()

N. uvm_sequencer_base

uvm_sequencer_base::print()

uvm_sequencer_base::convert2string()

`uvm_info(“PHASESEQ”, …, UVM_FULL)

X. EXAMPLE SEQUENCE INSTRUMENTATION

The sequence ‘sequenceB’ below is an example sequence
with instrumentations. Not all instrumentations shown here are
required for good debug, but these are listed as potential
sequence debug instrumentation points.

First, the sequence extends the uvm_debug_sequence,
inheriting any instrumentation from it.

The sequence defines its type_name, which is hard for
parameterized objects. The sequence uses the
`ALLOCATED_TYPE macro to register the construction of
this object. The sequence is managing an id for each different
parameterized sequence that is created. The sequence defines
pre_body() and post_body(), using the `DEBUG macro for
output. The sequence uses the `uvm_info macros and $display
in the task body(), providing breadcrumbs to trace execution
flow. The sequence uses the `BP macro to allow breakpoint
access to this sequence. Finally, the sequence defines
do_record in a way that will record the actual types of the
variables into the transaction database, instead of recording a
“large enough” bit vector as the type.

class sequence_B #(type T = int)

 extends uvm_debug_sequence #(T);

 `uvm_object_param_utils(sequence_B#(T))

 const static string type_name =

 {"sequence_B#(", T::type_name, ")"};

 virtual function string get_type_name();

 return type_name;

 endfunction

 int id;

 int var_sequence_B;

 int iteration;

 static int g_id = 0;

 function new(string name = "sequence_B");

 super.new(name);

 `ALLOCATED_TYPE

 id = g_id++;

 endfunction

 // `uvm_debug_sequence_body

 virtual task pre_body();

 `DEBUG("pre_body()")

 super.pre_body();

 endtask

 virtual task post_body();

 `DEBUG("post_body()")

 super.post_body();

 endtask

 task body();

 T t;

 `uvm_info(get_type_name(),

 "Starting... ", UVM_MEDIUM)

 `DEBUG($psprintf("My type_name is %s",

 get_type_name()))

 `BP

 begin

 int simple_int = -1;

 if (!m_sequencer.get_config_int(

 "simple_int", simple_int))

 $display("GET CONFIG FAILED");

 else

 $display("GET CONFIG OK");

 `uvm_info("SEQ_B",

 $psprintf("simple_int=%0d", simple_int),

 UVM_MEDIUM)

 end

 for(int i = 0; i < 3; i++) begin

 t = new($psprintf("t%0d", i));

 var_sequence_B = t.id;

 start_item(t);

 finish_item(t);

 end

 `uvm_info(get_type_name(),

 "Finishing...", UVM_MEDIUM)

 endtask

 function void do_record(uvm_recorder recorder);

 super.do_record(recorder);

 `uvm_record_field("id", id);

 `uvm_record_field("iteration", iteration);

 `uvm_record_field("var_sequence_B",

 var_sequence_B);

 endfunction

endclass

XI. BREAKPOINT POOL LIBRARY

The breakpoint pool library, the other classes and macros
mentioned in this paper are available. Please contact the
authors.

// Class: BP

//

// A breakpoint. Really a list of strings

// (regular expressions) that will be used to

// match against. When a match occurs that

// means a breakpoint has been "hit".

//

// This class is not normally used directly,

// but rather from the BPP class.

//

class BP;

 typedef struct { string name; } bp_t;

 bp_t breakpoints[$];

 // add_breakpoint()

 // Put the argument in our list.

 function void add_breakpoint(string str);

 bp_t bp;

 bp.name = str;

 breakpoints.push_front(bp);

 endfunction

 // check()

 //

 // Returns 1 if we matched; the 'match'

 // string has matched something in the

 // breakpoint list.

 // Returns 0 if nothing matched.

 // Return the regular expression that matched

 // in the argument 'thing_that_matched'.

 //

 // Uses regular expression matching.

 //

 function int check(string match = "",

 output string thing_that_matched);

 int nomatch;

 if (match == "")

 return 0; // We didn't match

 foreach (breakpoints[j]) begin

 nomatch = uvm_re_match(breakpoints[j].name,

 match);

 if (nomatch == 0) begin

 thing_that_matched = breakpoints[j].name;

 return 1; // Meaning we matched...

 end

 end

 return 0; // We didn't match.

 endfunction

 // print()

 // Print all the breakpoints.

 function void print();

 foreach (breakpoints[j])

 $display(" Breakpoint '%s'",

 breakpoints[j].name);

 endfunction

endclass

// Class: BPP

//

// A breakpoint-pool.

//

// Collects together three sets of breakpoints.

// Name, Type and Full name.

//

// This is a static class, and is normally

// used from macros.

//

class BPP;

 // Displays trace messages for check().

 static bit trace = 1;

 // Displays debug messages for check().

 static bit debug = 1;

 static BP by_type = new();

 static BP by_name = new();

 static BP by_full_name = new();

 // Fill in the by type

 static function void set_by_type(

 string breakpoint);

 by_type.add_breakpoint(breakpoint);

 endfunction

 // Fill in the by name

 static function void set_by_name(

 string breakpoint);

 by_name.add_breakpoint(breakpoint);

 endfunction

 // Fill in the by full name.

 static function void set_by_full_name(

 string breakpoint);

 by_full_name.add_breakpoint(breakpoint);

 endfunction

 // Calling trace_on causes trace messages to

 // come out.

 static function void trace_on();

 trace = 1;

 endfunction

 // Calling trace_off turns trace messages off.

 static function void trace_off();

 trace = 0;

 endfunction

 // Calling debug_on causes debug messages to

 // come out.

 static function void debug_on();

 debug = 1;

 endfunction

 // Calling debug_off turns debug messages off.

 static function void debug_off();

 debug = 0;

 endfunction

 // Trick to get the command line parsed

 // without any intervention from the user.

 static bit args_parsed = parse_args();

 // parse_args()

 //

 // Legal syntax:

 //

 // +bp:type=

 // +bp:full=

 // +bp=

 //

 static function bit parse_args();

 string list[$];

 uvm_cmdline_processor clp;

 clp = uvm_cmdline_processor::get_inst();

 // By Type => +bp:type=

 clp.get_arg_values("+bp:type=", list);

 foreach (list[i])

 BPP::set_by_type(list[i]);

 // By Full Name => +bp:full=

 clp.get_arg_values("+bp:full=", list);

 foreach (list[i])

 BPP::set_by_full_name(list[i]);

 // By Name => +bp=

 clp.get_arg_values("+bp=", list);

 foreach (list[i])

 BPP::set_by_name(list[i]);

 return 1;

 endfunction

 // check()

 //

 // returns 0 for no match.

 // returns 1 for full name match.

 // returns 2 for name match.

 // returns 3 for type name match.

 //

 // Usually called from a macro:

 //

 // check(get_full_name(),

 // get_name(),

 // get_type_name(),

 // `__FILE__,

 // `__LINE__)

 //

 static function int check(

 string full_name = "",

 string name = "",

 string type_name = "",

 string file = "",

 int line = 0);

 string thing_that_matched;

 int ret;

 if (debug) begin

 `uvm_info("BPP::debug - full_name",

 full_name, UVM_MEDIUM)

 `uvm_info("BPP::debug - name",

 name , UVM_MEDIUM)

 `uvm_info("BPP::debug - type_name",

 type_name, UVM_MEDIUM)

 end

 if (by_full_name.check(

 full_name, thing_that_matched))

 ret = 1;

 else if (by_name.check(

 name, thing_that_matched))

 ret = 2;

 else if (by_type.check(

 type_name, thing_that_matched))

 ret = 3;

 else

 ret = 0;

 // Tell what matched

 if ((trace) && (ret != 0))

 `uvm_info("BPP::trace matched",

 $sformatf("%s matched",

 thing_that_matched), UVM_MEDIUM)

 return ret;

 endfunction

 // print()

 //

 // Debug/information.

 //

 static function void print();

 $display("By Type");

 by_type.print();

 $display("By Name");

 by_name.print();

 $display("By Full Name");

 by_full_name.print();

 endfunction

endclass

