
Systematically Achieving CDC Verification Closure

based on

Coverage Models and Coverage Metrics

Ashish Hari (ashish_hari@mentor.com), Yogesh Badaya (yogesh_badaya@mentor.com)

Mentor Graphics Corporation

 ABSTRACT

Clock domain crossing (CDC) verification is a critical step

in functional verification closure. Design complexity is

continuously increasing, not only in size but also in

heterogeneity of system-level design. A typical design

includes complex features such as multiple cores, peripheral

devices, many types of IO-interfaces, power islands, and so

on. Handling such technologies requires the use of

multiple asynchronous clock domains. As the number of

clock domains increases, the probability of encountering

CDC issues increases considerably—thereby making CDC

verification a critical development step.

Increasing the time to complete the verification process or

having degraded verification quality can significantly

increase overall costs. Both factors depend on the approach

used for CDC verification. Persistent CDC verification

challenges are: tracking progress and identifying when to

stop. One puzzling question for verification engineers is: “Is

my CDC Verification done?”

In this paper, we propose a novel methodology to overcome

verification closure challenges. This methodology gives

verification teams reliable information, plus a way to

identify measurable goals, to measure progress and to

decide when to stop. We define ‘coverage metrics’ and

‘coverage models’ for CDC verification closure:

1. Coverage metric is an indicator of progress at each

step of verification flow.

2. Coverage models are models defined for the various

categories of CDC problems. They ensure that the

synchronizers and protocols at clock domain crossings

are comprehensively verified for all variations and

assumptions. Characteristics of CDC synchronizers

and transfer protocols require a directed coverage

strategy and directed targets. We also suggest coverage

models for ensuring metastability tolerance and

analyzing CDC jitter.

We provide SystemVerilog CDC models for solving common

CDC problems that an engineer can use along with their

design files in a normal verification flow.

1 INTRODUCTION

Complete CDC Verification is a 5-phase process:

1. Design Setup Validation

Verify the clock trees and the design configuration.

2. Structural Clock Domain Crossing Analysis

Find missing and incorrect synchronizers.

3. Synchronizer Protocol Verification

Use simulation and formal verification to verify the

transfer protocols of clock domain crossings, including

advanced protocols such as handshake schemes and

FIFO synchronization.

4. Reconvergence Verification

Ensure safe reconvergence of synchronized signals by

testing the gray encoding of converging signals

5. Metastability Tolerance Verification

Verify that the design tolerates CDC jitter and

metastability effects. CDC synchronizers handle

metastability correctly, but with a possible side effect of

introducing unpredictable delays. Design functionality

should tolerate the presence of metastability effects and

clock jitter.

To know when verification is complete, you must define

verification targets for each phase. The selection of these

coverage targets depends on the design’s application domain

and of course, your intended time-to-market.

We propose a coverage-based CDC verification flow. Here,

the verification team sets measurable goals for each

verification phase. To do this, we provide specific coverage

numbers used to measure validation. These coverage

numbers are attained through coverage metrics and coverage

models that we have defined for each verification phase.

The verification team can use the coverage numbers for the

current verification phase to decide whether or not to

advance to the next phase. We also propose an overall

coverage metric that reflects the current quality of the entire

CDC verification process.

mailto:ashish_hari@mentor.com
mailto:yogesh_badaya@mentor.com

2 CDC COVERAGE METRICS AND COVERAGE

MODELS

First, we define coverage metric for each phase of the CDC

verification process. Each phase has different criteria for

determining coverage. For example, phases 1 and 2 use

static CDC analysis data to identify coverage. Phases 3, 4

and 5 use coverage data collected by coverage models

during standard verification. Verification teams can set

coverage goals for each CDC verification phase and for the

final CDC coverage.

A good coverage metric should model and cover each CDC

verification phase, should provide clear information about

the current status of the verification process, and should

direct the verification focus to valid problems. Such

coverage metrics help the verification engineer fix design

problems and add new directed tests that cover missing

scenarios. A diagram for this coverage model and metric-

based CDC verification approach is shown in Figure 1.

Figure 1: Coverage-based CDC Verification Flow

Coverage criteria, metrics and verification targets for each

CDC verification phase are defined in following sections.

2.1 PHASE 1: DESIGN SETUP VALIDATION

The goal of the design setup validation phase is to validate

the clock tree and to tune design configurations for CDC

analysis. Satisfactory closure of the setup is critical to

minimize noise and maximize verification efficiency prior

to advancing to static CDC analysis.

2.1.1 Clock Tree Verification

During clock analysis, the CDC verification tool identifies

the asynchronous clock trees in the design. For a design to

function correctly, it is important to do the clock

connectivity checks. All flops should be clocked by user-

specified primary clocks. Inferred clocks can be one of the

following:

 Direct Clocks

Primary ports or black box output pins that drive clock

logic. The verification engineer should verify that these

signals are valid clock signals missed as user-specified

clocks.

 Gated Clocks

Combinations of enable/clock signals that drive clock

logic. The verification engineer should identify clock

enable signals and mark them as stable (so no gated

clocks are found). Otherwise, intentional gated clocks

should be waived as qualified clocks.

 MUXed Clocks

Multiple clocks reaching into the clock logic through a

multiplexer that selects one of the clocks. MUXed

clocks are selected through mode or configuration

settings. The multiplexer select signal should be set to

appropriate constant constraint settings to ensure the

correct clock is enabled.

Verification Target: Verification engineer must resolve (or

waive after qualification) all gated, MUXed and inferred

clocks to attain coverage closure for this sub-phase.

2.1.2 Black Box Qualification

The following types of design blocks are considered to be

black boxes by the CDC analysis tool:

 IP blocks.

 Blocks those are designed separately and are not yet

ready to be integrated.

 Blocks that are designated by the user to be treated as

black boxes and should be skipped by CDC analysis,

such as PLL, ADC blocks, and so on.

Verification Target: Verification engineer must review all

identified black boxes. For coverage closure, qualified black

boxes in the design should be waived—so the percentage of

unqualified black boxes should be 0%.

2.1.3 Design Component Classification

Sequential design components should be able to correctly

sample their data. Where data sampling is blocked,

sequential design components can be classified as follows:

 Stuck at the same value.

Sequential cell (such as a flop, latch or memory) whose

clock is tied to a constant.

 Never changes value.

A sequential cell with a data pin connected to a constant

and the set/reset logic is missing.

The sequential cells in these categories might be okay per

the design requirements or user-specified constraints. But,

the verification engineer must check and waive them as

qualified so that they do not contribute to the uncovered

portion of the coverage data.

We define the percentage overall coverage for the design

setup validation phase as:

 ()

Where:

St: Total count of sequential cells

Su: Count of unconstrained sequential cells (not

clocked by a qualified clock)

Sc: Count of sequential cells driven by constant clock

pin

Sd: Count of sequential cells with constant data and no

reset condition

See Figure 2 for a sample classification of design setup

coverage data.

Figure 2: Sample Clock Tree Coverage Data

Verification Target: Verification engineer must review

coverage figures and after excluding sequential cells driven

by qualified clocks, coverage should reduce close to 0%.

Acceptable coverage at this phase ensures that the clock

tree is verified, design configuration is reviewed, and the

design has no sequential components that are stuck

unintentionally. The design is set up to proceed with phase

2 of CDC verification (clock domain crossing analysis).

2.2 PHASE 2: CLOCK DOMAIN CROSSING

ANALYSIS

A clock domain crossing, or CDC, occurs when a signal

generated in one clock domain is sampled in another clock

domain that is asynchronous to the first. In certain cases,

such paths can violate the setup/hold time requirements at

the receiving registers. These violations can occur in

random cycles and a design must be resistant to such effects.

Metastability is the inability of a flop to arrive at a known

state in a specific amount of time when the setup or hold

conditions are violated. Metastability cannot be avoided—

but its effects can be mitigated by use of an appropriate

synchronizer at the clock domain crossing.

The goal of the clock domain analysis phase is to ensure that

valid synchronizers exist at all CDC paths. Key information

extracted for this phase is classified as follows:

 Missing Synchronizers

 Incorrect Synchronizers

 Good Synchronizers

“Missing” and “good” synchronizers are self-explanatory.

An “incorrect synchronizer” is one where either the

synchronizer circuit is partially correct or the prescribed

synchronizer for that type of crossing is not used. For

example, a CDC path with 2-flops in the receiving domain

is a good synchronizer (Figure 3a).

Figure 3a: Good 2-flop Synchronizer for Scalar CDC

Signal

However, the presence of combinational logic between the

transmit and receive flops makes it an incorrect

synchronizer—as it allows glitches to be fed directly to the

synchronizing structure—see Figure 3b

Figure 3b: Incorrect Synchronizer with Combo Logic

Similarly, using a 2-flop synchronizer for individual bits of

a bus can lead to data coherency issues at the receiver. The

2-flop synchronizer should be replaced by a MUX-

synchronization scheme (Figure 4).

Figure 4: MUX synchronizer is Recommended for Vectors

Coverage for the CDC analysis phase is defined as:

 ()

where:

Xt: Total clock domain crossings

Xm: Crossings with missing synchronizers

Xi: Crossings with incorrect synchronizers

k1, k2: Weights—to be adjusted based on application or

design requirements

Coverage for the CDC analysis phase can be improved:

 Typically, designers add valid synchronizers that

prevent metastability effects from propagating through

the design. So, the verification engineer must review

missing synchronizer warnings. If a transmitting signal

is quasi-static or stable, waive the associated warning.

 Replace incorrect synchronizers with valid ones.

Verification Target: Verification engineer calculates the

coverage target for the CDC analysis phase based on the

design application and project criticality. Acceptable

coverage at this phase ensures all CDC paths have good

synchronization structures and the design can properly

handle the effects of metastability at clock domain

crossings.

2.3 PHASE 3: SYNCHRONIZER PROTOCOL

VERIFICATION

Every synchronizer has some properties (or assumptions)

that need to be functionally verified. Violating any of these

properties might result in data loss at the crossing paths,

which can eventually lead to functional failure.

The synchronizer protocol verification phase ensures that

the CDC paths’ synchronizer protocols are never violated.

To accomplish this, synchronizer properties are promoted as

assertions for the synchronized CDC paths. A verification

engineer can verify synchronization protocol assertions: 1)

using simulation with self-checking test benches that match

actual with expected results, or 2) through formal methods.

A failure of a protocol assertion (sometimes called a firing)

indicates that the design can malfunction. The cause of the

firing must be fixed. Once simulation does not cause a CDC

protocol firing, the verification engineer must ensure that all

CDC paths are sufficiently tested by monitoring coverage.

Such testing minimizes the possibility of undiscovered bugs

in the design.

Protocol coverage is accomplished through SystemVerilog

coverage constructs in the CDC transfer protocol properties.

Such data can be gathered using a simulation or formal

verification tool that supports these SystemVerilog

constructs. We next define SystemVerilog models for a

standard set of synchronizers to validate their CDC transfer

protocols and collect coverage data.

2.3.1 2-Flop Synchronizer

One protocol for a 2-flop synchronizer (Figures 3a and 5a)

checks that the transmit signal is held stable long enough for

its value to be captured reliably by the receiver. The

protocol also ensures no data loss.

Figure 5a: SVA for 2-Flop Synchronizer

Here, tx_min_cycles is the minimum number of txclk cycles

during which tx must remain stable for its value to be

captured reliably by the receiver. This minimum cycle count

is calculated from the ratio of the periods of the receiving

and transmitting clocks.

2.3.2 MUX Synchronizer

The protocol for the MUX-synchronization scheme (Figures

4 and 5b) checks that the signal between two clock domains

is held stable long enough for the signal to be sampled

reliably by the receiver. The data must remain stable while

the data select signal (enable) asserts.

Equivalent checks:

 Transmit select signal should not assert for less than 2

clock cycles in the receiving clock domain.

 Data signal should not change while the select (enable)

signal is asserted.

property cdc_stable;

 @(posdedge txclk)

 !$stable(tx) |=> $stable(tx)[*2 /* tx_min_cycles*/];

endproperty : cdc_stable

assert property (cdc_stable);

Figure 5b: SVA for Mux synchronizer

2.3.3 Handshake Synchronizer

Handshake synchronization scheme properties (Figures 5c

and 5d) verify that the handshake protocol between a

transmitter and receiver is correctly obeyed and that the

transfer data are stable in the data transfer window.

Equivalent checks:

 Data are stable when request is asserted (data_stable).

 Every request gets an acknowledge within the next two

cycles (req_has_ack).

 No acknowledge is issued without a request

(ack_had_req).

Figure 5c: SVA for Handshake Protocol Checks

Figure 5d: Handshake Scheme

2.3.4 FIFO Synchronizer

The FIFO synchronization protocol ensures that the write

and read pointers of an asynchronous FIFO (Figures 5e and

5f) change by a hamming distance of 1 and that the FIFO

does not overflow or underflow.

Equivalent checks:

 Overflow: no write when full

 Underflow: no read when empty

 Gray-encoding: read and write pointers are gray-

encoded at the source

Figure 5e: FIFO Scheme

Figure 5f: SVA for FIFO Protocol Checks

property bad_access(clk, inc, flag)

 @(posedge clk)

 inc |-> !flag;

endproperty : bad_access

property gray_code(clk, rst, data)

 @(posedge_clk) disable_iff (rst)

 !$stable(data) |-> $onehot(data ^ $past(data));

endproperty : gray_code

assert property(bad_access (wr_clk, wr_inc, fifo_full);

assert property(bad_access (rd_clk, rd_inc, fifo_empty);

assert property(gray_code(wr_clk, wr_rst, waddr);

assert property(gray_code(rd_clk, rd_rst, raddr);

Assert Ack

Transmitter

Deassert Req

Receiver

Assert Req

Deassert Ack

property data_stable;

 @(posdedge clk)

 req |=>$stable(data) [*1:max]##0 ack;

endproperty : data_stable

sequence req_ack_seq;

 @(posdedge clk)

 req ##1 !req [*1:max] ##0 ack;

endsequence : req_ack_seq

property req_has_ack;

 @(posedge clk)

 req |->req_ack_seq;

endproperty : req_has_ack

property ack_had_req;

 @(posedge clk)

 ack |->req_ack_seq.ended;

endproperty : ack_had_req

assert property (data_stable);

assert property (req_has_ack);

assert property (ack_had_req);

property cdc_stable;

 @(posdedge txclk)

 !$stable(tx) |=> $stable(tx)[*2 /*tx_min_cycles*/];

endproperty : cdc_stable

property data_stable_while_enable(data, enable, clk)

 @(posedge clk)

 $rose(enable) |=> $stable(data)[*1:max] ##0 !enable;

endproperty : data_stable_while_enable

assert property (cdc_stable);

assert property (data_stable_while_enable(data,

 rx_enable, rx_clk));

1.1.1.1.1.1 A
s
s
e
r
t

R
e
q

1.1.1.1.1.2 D
e
a
s
s
e
r
t

A
c
k

Coverage for the synchronizer protocol verification phase

has three types of metrics:

 Protocol Coverage

Protocol coverage is defined as:

where:

Pt: Total promoted protocols

Pu: Uncovered Checkers

 Synchronizer Coverage

Verification team should assign a coverage metric for

each type of synchronizer. Reviewing synchronizer

coverage identifies some basic issues and dead-code

conditions in the synchronizer implementations.

 Check Coverage

Multiple properties can be associated with a

synchronizer protocol. For example, the FIFO scheme

has overflow, underflow and data stability assertions

associated with its CDC transfer protocol. Each

protocol property must be covered. For example,

missing coverage for a particular protocol property

might camouflage a non-functional path in one of its

associated synchronizers. So, adding directed tests to

validate this special scenario is necessary to attain

check coverage closure.

Verification Target: Verification engineer reviews and

tracks the protocol coverage metric at all levels. Coverage

for protocol verification can be improved by: 1) fixing

possible dead-code and error conditions in synchronizer

implementation and 2) adding directed test cases targeting

uncovered scenarios. Acceptable coverage at the

synchronizer protocol verification phase ensures that all

synchronized paths obey the protocols and no CDC transfer

event can cause a functional error.

2.4 PHASE 4: RECONVERGENCE VERIFICATION

The reconvergence of synchronized signals can lead to data-

coherency issues and to subsequent functional errors (if

timing dependency exists between the reconverging CDC

paths). Since a synchronizer can introduce unpredictable

latency on its CDC path, the design logic must be

sufficiently resilient to tolerate any resulting data

incoherencies. For example, reconverging signals could be

gray-encoded to avoid timing dependency between signals.

Verification of reconvergence takes two steps:

1. Run static CDC analysis to identify reconvergence of

synchronized signals. Unless required, avoid

reconvergence of synchronized signals.

2. Where reconvergence is intentional, check the gray

encoding on the reconverging signals. For example,

promote gray-encoding protocol checks on the

reconverging signals and verify them in simulation.

Coverage for the gray-encoding protocol check at each

reconvergence point is collected by standard SystemVerilog

cover properties.

Cumulative coverage for the reconvergence verification

phase is defined as:

where:

Rt: Total reconvergence conditions (excluding waived

or structurally fixed cases)

Ru: Uncovered checkers for gray-encoding checks

Verification Target: Verification engineer assigns and

verifies a coverage metric that ensures coherency issues at

reconverging points are expected and do not lead to

functional errors. This reconvergence coverage is improved

by 1) removing reconvergence conditions or altering the

design logic, or 2) ensuring that diverging synchronized

signals are always gray encoded before they reconverge.

2.5 PHASE 5: METASTABILITY TOLERANCE

VERIFICATION

Even when a design is structurally verified and simulation

runs correctly, metastability in the design’s silicon

implementation might cause functional errors. So, to

accurately model silicon behavior, we use metastability

models on the CDC receive registers.

A metastability model injects metastability on a bit of a bus

for one cycle. Metastability models are used during

simulation to model design behavior in the presence of

metastability effects on CDC paths. They also have cover

properties that identify cases where different forms of

metastability have been exercised during simulation. For

coverage closure, these assertions must be effectively

covered.

Coverage for the metastability tolerance verification phase

is defined as:

where:

Mt: Total CDC paths for which metastability model is

inserted

Mu: Uncovered checkers

Verification Target: Verification engineer must ensure

metastability coverage has achieved an acceptable level for

which the design is resilient enough to handle random

metastability effects occurring in silicon. In our systematic,

phased approach to CDC verification, we proceed to the

next phase only after achieving the coverage target of the

current phase. As it is the last phase, metastability tolerance

verification coverage closure guarantees satisfactory overall

CDC coverage.

2.6 OVERALL CDC COVERAGE

The sequential nature of our verification methodology

means we proceed to subsequent phases in the CDC

verification flow only after previous phases are “clean.”

For identifying issues and improving the testbench suite,

coverage analysis and coverage closure are critical at each

phase. However, an overall CDC coverage metric can have

special significance as a measure of CDC verification

quality. This overall coverage value does not provide

information for debug, but it can give a fair sense of quality.

Such an overall coverage metric should reflect the need for,

and the importance of, the sequential CDC verification flow

and closure.

Based on experiments and the sequential nature of our CDC

verification flow, we define final CDC coverage as a

weighed mean of coverage metrics across all phases—with

higher weights for the initial phases:

where:

C1 to C5: Coverage values figures for the verification

phases

K1 to K5: Weights, such that:

 k1 ≥ k2 ≥ k3 ≥ k4 ≥ k5

k1 + k2 + k3 + k4 + k5 = 1

Weights are set for the particular application and are based

on priorities determined by the verification team. For our

experiments:

k1 = 0.3, k2 = 0.3, k3 = 0.2, k4 = 0.1, k5 = 0.1

3 COVERAGE MODEL DESIGN

The CDC coverage models for the various checks described

in this paper are written in SystemVerilog using constructs

such as sequences, properties, assertions and cover

statements. Each model is a separate SystemVerilog

module. Designers connect models to the actual signals in

the design through SystemVerilog bind statements. The

models are non-intrusive and do not require modification of

the golden design. Each model contains the following

sections:

 Protocol Checks

 Properties to check assumptions about the

correctness of the synchronizer functionality.

 Coverage data collected for the properties to ensure

they are triggered and verified during the

verification flow.

 Coverage Checks

 Cover properties to ensure all situations of

verification are getting covered on the

synchronizer.

 Cover groups to collect coverage data in a more

organized structure and to gather statistics on the

synchronizer’s verification.

 Debug Data

Statistics collected about synchronizer functionality.

Such information is useful when debugging a protocol

violation and when inspecting coverage holes.

 Control Flags

Flags that completely or partially enable/disable various

features in the models. Verification engineers might

want to use control flags for some features to reduce the

impact of the coverage models on simulation

performance.

4 COVERAGE-BASED CDC

VERIFICATION FLOW AND CASE

STUDY

For this case study, a coverage metric is defined for each

phase of the CDC verification flow. Coverage models are

used to collect relevant information as the CDC verification

phases are executed. A target coverage for each CDC

verification phase is pre-defined and verification proceeds to

next phase only if the target of the current phase is achieved.

This process results in a systematic and comprehensive

coverage-based CDC verification flow.

We took an industry design case-study to illustrate the

benefits of this approach. Coverage models were used for

validation of the different types of synchronizer protocols

and to perform reconvergence and metastability tolerance

checks. Coverage data at each phase was analyzed to decide

whether or not the CDC verification for that phase was

complete. The details of the phased coverage metrics are

represented in Appendix A.

The overall coverage value appeared lower, as there was

insufficient coverage for phase 2 of the CDC verification

flow (structural CDC Analysis). And, since this is an early

phase in the flow, it had a bigger impact on the overall

coverage numbers.

When we set strict coverage goals and proceeded to the next

phase only after attaining coverage closure at the current

phase, results were much better.

 Phase 1

When reviewing the coverage figures, we identified a

module with 232 flops that was incorrectly

instantiated—its clock port was connected to a dangling

wire. As a result, 232 flops in design were

unconstrained. After fixing the issue, the revised

coverage at phase1 increased to 100%.

 Phase 2

We added some missing synchronizers and waived off

all warnings caused by stable transfer signals. The

coverage for phase 2 improved to 98.1%.

 Phases 3 to 5

We performed regular reviews of coverage data and

addressed associated problems, which also improved

the coverage figures.

Overall coverage improved to 97.1% with regular review of

coverage metrics based on the coverage models. Phase

coverage information (in conjunction with the overall CDC

coverage metric) helped provide a clear answer to the

puzzling question— “Is my CDC verification done?”

Rather than relying on a verification engineer’s whimsical

judgment, we reviewed the coverage data and concluded

emphatically: “Yes…CDC verification is DONE!”

5 CONCLUSION

Our proposed methodology helps achieve systematic,

accurate and reliable CDC verification closure. Coverage

models accurately confirm functional verification of CDC

protocols and structures. Coverage metrics aid verification

teams to set crisp sign-off targets for each phase of their

CDC verification flows. This methodology ensures a high

quality of verification and a strict adherence to standards.

Overall time and costs are saved by cutting time spent on

the over-verification of certain aspects. This methodology

eliminates the possibility of functional errors occurring later

in the design cycle, by ensuring that all aspects of CDC

problems have been covered comprehensively during

verification. Using our proposed coverage models and

metrics, verification engineers can achieve accurate and

reliable CDC verification systematically—with measurable

target goals based on application requirements.

6 REFERENCES

[1] Jean-Francois Vizier, Dennis Raemekers, Zheng Zhou,

Verifying clock-domain crossing at RTL-IP level using

coverage-driven methodology

[2] Chris Rockwood, Chip Design, Keeping Time with

Clock Domain Crossings in FPGAs,

[3] Mark Litterick DVCon 2006, Pragmatic Simulation-

Based Verification of Clock Domain Crossing Signals

and Jitter using systemVerilogAssertions

[4] Doug Smit, John Aynsley, A Practical look

SystemVerilog coverage - Tips, Tricks and Gotchas

[5] Ping Yeung, “Five Steps to Quality CDC Verification”,

Mentor Graphics, Advanced Verification White Paper

[6] Chris Kwok, et al, “Using Assertion-Based Verification

to Verify Clock Domain Crossing Signals,” DVCon

2003

[7] Tai Ly, et al, “Formally Verifying Clock Domain

Crossing Jitter Using Assertion-Based Verification”,

DVCon 2004

Appendix A – CDC Coverage Metric for Case-Study Design

Original Revised

74.5% 96.2%

Overall Coverage

