
Addressing HW/SW Interface Quality through Standards

David Murray
Duolog Technologies

Mervue Technology Park

Galway, Ireland

david.murray@duolog.com

Sean Boyan
Duolog Technologies

Mervue Technology Park

Galway, Ireland

sean.boylan@duolog.com

Abstract— As software in an increasingly important aspect of

system development, product schedules are mandating the earlier

development of software concurrently with hardware. The

Hardware/Software (HW/SW) interface is a critical development

artifact that plays a key role in efficient system realization. This

white paper gives an overview of the HW/SW interface and

discusses the typical complexities encountered when designing

the SW/HW interactions. The HW/SW interface flow is analyzed

to show how insidious bugs are introduced into this domain. A

compelling HW/SW interface solution is presented that combines

best-practice design, formal specifications, the leveraging of

different industry standards and register management solutions.

This paper discusses each solution and how the emergence of

standards such as IP-XACT (IEEE1685) and UVM help to

eliminate many of these bugs and vastly improve the quality of

the HW/SW interface. This white paper also discusses areas of

improvement and possible standardization going forward.

Keywords- ; HW/SW interface; IP-XACT; UVM; IP quality;

Register Management.

I. BACKGROUND

Software development has become a dominant factor in the
realization of complex systems and the overall success of
related products is increasingly dependent on software oriented
features. For complex systems, software can consume more
than 50% of the development cost. The integration of software
with complex hardware platforms can take over 50% of the
product development time [1] and with software firmly on the
critical path, the development of software earlier and
concurrently with the hardware is of crucial importance to
time-to-market. It is therefore, extremely important to ensure
efficient software development, hardware/software integration
and concurrent hardware/software development flows. One
key area that responds well to overall productivity and quality
improvements is the low-level hardware/software (HW/SW)
interface.

II. THE HW/SW INTERFACE

The main software perspective of the hardware can be
defined as the view that a processor has of a system within its
accessible address space. This address space is defined in a
modular manner and is generally an ordered layout or memory
map of the hardware. A hardware or IP block such as a UART
module which is part of a peripheral sub-system would appear

within the peripheral sub-system memory map as indicated in
Figure 1 below:

Figure 1 : Processor views of a system

The memory map can be considered hierarchical as it
fragments into IP blocks. The hardware implementation of
memory maps typically consists of bus interconnect fabrics,
bridges and decoders. Within the IP blocks the lowest level
HW/SW interface primitive is found in the form of SW
programmable registers.

There are other vital aspects of the HW/SW interface, such
as interrupts but these are not covered within the scope of this
paper. Figure 2 shows the software interface of an IP block as
an address-mapped bus (from processor) being mapped into
registers that provide the configuration, control and status
interface of the hardware logic.

Figure 2 : SW interfacing with HW within an IP block

The software typically has a variety of different interfacing
mechanisms to these registers e.g. read-only, read-write, write-
only etc. These registers typically contain an aggregated set of
different bitfields, each of which can have their own access
characteristics. From a software perspective a typical register
definition would contain the information shown in Figure 3.

Figure 3 : Example of a SW-programmable register

This information typically includes access types, reset
values, offsets, width, names, at register and bitfield levels.
Some added complexities include additional behavior on
bitfields/registers when they are accessed such as when a read
access clears bits (read-to-clear). Overall the HW/SW interface
structure can be quite complex as some systems can have 10s
of 1000s of registers.

Given the current software development dilemma,
discussed at the start of this white paper, it is important to have
high levels of efficiency, quality and timeliness to reach
product delivery goals. This mandates high levels of
involvement from different teams all focused on a single
domain (HW/SW interface) but who have diverse goals,
expertise and perspectives. The HW/SW interface is the
ultimate gathering place for different electronic system
engineering disciplines. It is the meeting point of Design 
Verification, HW SW, IP-level  Chip Level, Virtual 
Real, RTL  TLM and Specification  Implementation.
The necessity of concurrent HW/SW design across these
domains leads to interesting dynamics and problems. The
convergence of the different teams to this singular domain
creates a key prerequisite to achieving system design goals –
good communication.

III. PROBLEMS ON THE HW/SW INTERFACE

Problems in the HW/SW interface originate from factors
such as complexity, concurrency and team misalignment

Complexity: The HW/SW can have a high level of
complexity. SW programmable registers can contain
aggregated functions of bitfields with different access
characteristics and sideband behavior. Complex IP can
have 100s and sometimes 1000s of registers all of which
need to be implemented across the different design
domains. Multicore designs can add a further level of
complexity as memory maps and registers are shared across
the different processors.

Concurrency: Supporting a concurrent design flow moves
design-flow methodology away from traditional waterfall-
based processes to more incremental and iterative-based
ones. This means that, for a large part of the design flow,
the whole system can be in flux and unstable. IP registers
and memory maps can change, IPs may be moved from one
sub-system to another and sub-system/top-level memory
maps may need realignment. Quick turn-around times will
be needed to reflect these changes in all of the different
design views. Keeping a coherent processor view of the
system can be quite a challenge.

Team Misalignment: The number of teams involved adds
to the complexity associated with addressing problems in
the HW/SW interface. Typically hardware IP design, IP
verification and firmware development are specification
driven. With increasingly iterative design flows the
specifications themselves can be considered unstable and
for this reason it can be very difficult to keep teams aligned.
If the quality and stability of the specification are
compromised during implementation it leads to a HW/SW
interface engineering gap as shown in Figure 4.

Figure 4 : The HW/SW interface engineering gap

This HW/SW engineering gap exists when a design flow
produces different HW/SW interface implementations for the
different teams. This engineering gap contributes to very long
HW/SW integration cycles as issue resolution across multi-
domains and multi-disciplines is very cumbersome. For
example, if a firmware developer misinterprets a specification
and implements a bitfield with some subtle difference from the
original specification, it may be very difficult to find and
isolate this during HW/SW integration or even to debug in a
lab on the real device. Compelling solutions need to eliminate
these possibilities.

While these are the main challenges, it is useful to show
how these manifest themselves as real life issues and bugs in
the design flow. The next section of this white paper will
address this.

IV. HW/SW BUG ANALYSIS

Bugs can be introduced into the design process at a very
early stage, such as HW/SW interface definition. These bugs
can be extremely subtle such as missing information in the
specification. They may only materialize much later in the
downstream process with dire consequences. This makes the
bugs insidious in nature and this is where we introduce ‘SID’
the insidious HW/SW interface bug.

Figure 5 : SID- The ‘insidious’ HW/SW interface bug

‘SID’ and his prolific family can make his way into the
design process in a number of ways.

A. Specification Bugs.

Specifications are a considerable vulnerability that allows
insidious bugs to enter the process. They can either be blatant
errors e.g. miscalculation of bitfield offsets or reset values or
they may be more non-deterministic and subtle bugs such as
incorrect descriptions of behavior, or missing information.
Typical specification errors include:

• Incorrect and inconsistent bitfield and register reset
values

• Overlapping register/bitfield offsets

• Incorrect and inconsistent bitfield and register access
types

• Missing bitfield behavior

• Inconsistent naming conventions

B. Interpretation bugs

These bugs follow the last category very closely. A
specification may have certain ambiguities that can be
interpreted differently or information might be missing. This
can result in different implementations. Some examples of
ambiguities that cause these bugs could be;

• A reset value for an 8-bit wide bit-field is defined as
10. This could be interpreted as 0x10, 10 decimal or
10 binary

• A register access value of ‘R’. This can be interpreted
as Read-Only, or maybe it could be Read-Write

• Unspecified bitfield behavior - this could be open to
implementation – e.g. what value should get read
back. Is it deterministic?

C. Transformation bugs

These bugs occur when a specification is being transformed (or
translated) into a different format e.g. from a specification into
an RTL design or a verification test-bench. These bugs are
particularly acute when the transformation is done manually
and is exacerbated by unstable specifications requiring repeated
transformations. Examples of these are:

 Standard typos in names, offsets and access values

 Incorrect behavior implemented e.g. missing write
behavior to a register

 Copy-Paste-Forget errors

D. Team Synchronization bugs

Team synchronization is causing the most recent outbreak of
HW/SW interface bugs. These bugs are typically caused when
different implementations interact incorrectly and result in bugs
being generated in the design flow. One of the frustrations here
is that each implementation could be correctly adhering to a
specification but just not a mutually common one. Examples
of where these mismatches can occur are:

 IP testbench  IP design mismatches

 SW/Firmware  TLM model mismatches

In summary Figure 6 shows where the bugs can appear during
HW/SW interface development.

Figure 6 : Where are the HW/SW interface bugs?

V. SOLUTIONS ON THE HW/SW INTERFACE

The previous section summarized the main types of bugs in
the HW/SW interface which included specification bugs,
interpretation bugs, transformation bugs and synchronization
bugs. The solutions to eliminating these bugs fall into the
following categories:

• Better design practices

• Use of formal specifications

• Leveraging of industry standards

• Automated flows

It can be demonstrated that using these main strategies, and
in particular by the leveraging of standards, the quality of the
HW/SW interface can be dramatically improved.

A. Better Design Practice

Better design-practice aims to achieve a more consistent
and standard design of the HW/SW interface. This is
essentially a design-for-integration type of methodology. Some
examples of good design-for-integration guidelines are detailed
in a book by Gary Stringham [5] including:

• [ID-8.2.7] Design registers should return zeros for reads
from unused bit positions

• [ID-8.2.11] Avoid write-only bits whenever possible

• [ID-8.4.6] Provide block-level ID and version registers
for each block on the chip

• [ID-8.5.7] Registers should always return valid,
accurate and documented values whether the block is
idle or active

In general design-for-integration means the design focus
encompasses the entire HW/SW domain scope. It may make
sense for a hardware design engineer to implement a very
‘alternative’ access mechanism (e.g.write-1-twice-to-toggle)
but it will not be easy to implement and verify in other domains
such as verification, virtual modeling or firmware
development.

B. Use of Formal Specifications

While the HW/SW interface has been traditionally
described using a natural language specification (e.g.
Word/Framemaker document) the problems associated with it
have driven engineers to seek out more formal specification
solutions. Formalizing the HW/SW interface definition
requires adherence to well-defined and well-understood
semantics. In natural language we can define register and bit-
field accesses as read-write, read/write, rw, r-w, r/w or other
deviations. In a formal description there would be only one
way of writing this, for instance ‘read-write’. There are many
benefits of having formalized HW/SW interface specifications:

• A lot of ambiguity is removed

• Formal descriptions are easier to automate (also
known as Machine-Readable)

The EDA industry is now providing an open and standard
formal schema for HW/SW interface specification through IP-
XACT.

C. Leveraging of industry standards

IP-XACT (IEEE-1685) is an open standard that defines a
meta-data description of an IP block in the form of an XML
schema [2]. This provides a common and language-neutral way
to describe IP that is compatible with automated integration
techniques and IP-XACT enabled tools. Many aspects of the
HW/SW interface can be defined in IP-XACT and thus it can
be used as a formal specification. For example, the following
IP-XACT specifies a read-write register named
‘counter_ctrl_status’ at an address 0, with a single read-write
bit-field ‘ResetCounter’.

Figure 7 : IP-XACT XML example

By having this formal specification as an industry-wide
standard, the EDA industry provides highly automated
solutions to ensure improved quality and efficiency. This will
be covered in more detail in the Automation section of this
white paper.

The Universal Verification Methodology (UVM) standard is
a methodology to improve design and verification efficiency
[3]. It enables verification data portability and interoperability
between tools and verification IP (VIP). This methodology
provides advanced verification capabilities and it encompasses
specific applications including solutions centered on the area of
HW/SW interface verification. For instance, UVM defines a
class to describe registers and memory maps as well as
providing access mechanisms to this class that offer
verification engineers an intuitive API. In addition to this,
UVM also provides a set of built-in test sequences that can be
instantly used to check if the device under test’s (DUT)
registers conforms to this pre-defined register specification.
Examples of these built-in test sequences are found in Figure 8:

Figure 8 : UVM built-in register test sequences

The provision of these built-in sequences by UVM means
that verification engineers no longer need to write the usual
register access and bit-bash tests. They can focus on defining
register behavior and handover this typically monotonous work
to the verification environment. This is a good example of how
UVM provides improvements in verification efficiency.
However, while verification efficiency is increased there are
still some areas that can cause concern. For instance, how is
the UVM register definition captured? Is it correct? The main
quality gap is left open if the UVM register packages are
created as part of a disconnected or manual process. This is
where automation has a big impact.

D. Automation

While each of the previous solutions has their own benefit,
automation is key to bringing these together to provide a more
holistic and comprehensive solution to address problems in the
HW/SW interface. If a formal specification is adopted, then the
first application of automation can be focused on the
specification itself. The formal specification can be quality
checked to ensure there are no bugs or downstream issues.
Automation can check the following:

• The HW/SW interface specification adheres to the
correct schema

• There are no overlapping bitfields, registers etc.

• There is consistency between registers and bitfield
attributes

• There is no required information missing

• IPs fit within sub-system memory maps

• Sub-system memory maps fit within the full system
memory map

This is one of the most crucial automation activities
because it ensures that insidious bugs are not entering the
process. Automation can also provide the transformation
process from specification to implementation, eliminating
transformation errors. For example, automation can provide a
mechanism to generate the UVM register package from a
formal HW/SW interface specification. This is currently
possible with IP-XACT and UVM which are essentially two
standard, but different register models. The fact that these are
industry standards means that this automation is quite
deterministic and is solved by the EDA industry and is known
as is known as register management [6] [7] [8]. It is interesting
to note that while IP-XACT provides a formalization of the
HW/SW interface, automation leverages the real value from
this formalization. It is possible, through automation to
enhance IP-XACT compliancy and check for inconsistencies
and missing information. Automation of the main
implementation formats, including documentation, also
eliminates the synchronization bugs presented earlier.

Register Management is a well-recognized solution within
the EDA industry [6] [7] [8] and is probably better described as
HW/SW interface management. This solution typically has the
following features:

• Formal HW/SW interface specification

• GUI for capturing registers, bitfields, memory maps at
IP, sub-system and chip level

• Full Coherency checks including all register attributes
and full memory map validation

• Import of different formats e.g. from excel, XML

• IP-XACT import/export

• Generation (Transformation) of a wide range of
formats, including documentation, RTL, Verification,
SystemC and firmware code

Predefined Test Sequence Description

uvm_reg_hw_reset_seq
Reads all the register in a

block and check their value is

the specified reset value.

uvm_reg_single_bit_bash_seq

Sequentially writes 1’s and

0’s in each bit of the register,

checking it is appropriately
set or cleared, based on the

field access policy specified

for the field containing the

target bit.

uvm_reg_bit_bash_seq

Executes the

uvm_reg_single_bit_bash_seq
sequence for all registers in a

block and sub-blocks.

uvm_reg_single_access_seq

For each address map in

which the register is

accessible, writes the register

then confirms the value was
written using the back-door.

Subsequently writes a value

via the backdoor and checks

the corresponding value can
be read through the address

map.

uvm_reg_shared_access_seq

Requires the register be

mapped in multiple address

maps. For each address map

in which the register is
accessible, writes the register

via one map then confirms the

value was written by reading
it from all other address maps.

The following diagram shows the GUI for a register
management solution called Socrates Bitwise described in [6]
[7] [8]

Figure 9 : Bitwise GUI

A good register management solution can completely
eliminate insidious bugs from the HW/SW interface flow. This
bugs include specification bugs, transformation bugs and team
synchronization bugs.

VI. FUTURE

Standards provide a clear benefit for automation of the
HW/SW interface. The EDA industry has endorsed the
importance of the HW/SW interface with focused solutions
such as IP-XACT as well as advanced verification
methodologies such as UVM. Clearly, there is a need to refine
the current standards and expand the standardization into
firmware and virtual prototyping development. On the
firmware side there is an emerging standard based on the ARM
processor called CMSIS (ARM Cortex Microcontroller
Software Interface Standard) [4]. This is the type of direction
the EDA industry needs to move towards in order to fully align
all the teams that utilize this critical design domain. The
provision of a SystemC register package would boost
transaction level modeling (TLM) automation. Finally, future
quality enhancements can be provided by raising the level of
abstraction used in describing the HW/SW interface even more
through the formal specification of the HW/SW programming
sequences.

VII. CONCLUSION

With software being a vital part of System Realization any
quality issues on the HW/SW interface have a direct impact on
cost and time-to-market. As the HW/SW interface is a facet
that is shared across many different design teams it is also the
breeding ground for many bugs such as specification bugs,
interpretation bugs, transformation bugs and synchronization
bugs. Many disparate methodologies and standards on their
own can incrementally improve on quality and efficiency in
HW/SW interface design and integration. However only fully
automated flows can aggregate and multiply these benefits to

fully eliminate HW/SW interface bugs and streamline HW/SW
design.

VIII. REFERENCES

[1] Concurrent Hardware/Software Development Platforms
Speed System Integration and Bring-Up : Avinun : 2011

[2] http://www.accellera.org/activities/committees/ip-xact

[3] www.uvmworld.org

[4] http://www.arm.com/products/processors/cortex-
m/cortex-microcontroller-software-interface-standard.php

[5] Hardware/Firmware Interface Design. : Stringham,
2010

[6] Register Management of Complex SoCs : Murray,
Clinton, Sugar, Olaszi 2008.

[7] http://www.duolog.com/products/bitwise/

[8] ESL Models and their Applications: 2009 Martin-
Bailey.

