
The Missing Link: The Testbench to DUT

Connection

David Rich

Design and Verification Technologies

Mentor Graphics

Fremont, CA

dave_rich@mentor.com

Abstract— In recent years, there has been a lot of attention given

to Object Oriented Programming, Constrained Random and

Coverage Driven Verification with SystemVerilog. The various

openly available verification methodologies have put a lot of

effort into explaining how to use these technologies within the

testbench. Of course, RTL synthesis for design has been relatively

stable for the last 20 years. The connection between the

verification environment (the Testbench) and the design under

test (the DUT) has received relatively little attention.

This paper focuses on several methodologies used in practice to

connect the Testbench to the DUT. The most common approach

is the use of SystemVerilog’s virtual interface. This is so common

that people fail to investigate other methodologies that have merit

in certain situations. The abstract class methodology has been

presented before, but still seems to have barriers to adoption.

There are also some obvious direct connection methodologies that

are often overlooked. This paper will compare and contrast each

one so that users may choose the methodology that meets their

requirements.

Keywords-SystemVerilog; testbench; DUT

I. INTRODUCTION

One of the key notions of SystemVerilog was the merging
of hardware verification language (HVL) concepts used in a
testbench with hardware description language (HDL) concepts
used in a design. Even though the language has merged, the
experiences of the users have not – they still have different
ideas about which constructs can and cannot be used in their
environment.

As has been true since the beginning of logic design, a
design under test (DUT) is a boundary between what will be
implemented in hardware and everything else needed to verify
that implementation. In SystemVerilog as in Verilog, that
boundary is represented by a module[1]. The job of the
testbench is to provide the necessary pin wiggles to stimulate
the DUT and analyze the pin wiggles coming out. Although
this may seem like an over simplification, no matter how
complex the environment becomes this point remains the same.

The difference that SystemVerilog introduces is that most
of the testbench will written in dynamically constructed classes
after the beginning of simulation. That means connections
between the DUT and testbench normally need to be dynamic
as well.

Let us start with a progression of testbench environments
starting with an original Verilog testbench and gradually
introduce additional levels of complexity along with the
features in SystemVerilog that address this added complexity.

II. STATIC PIN TO PIN CONNECTIONS

In Verilog, a Design Under Test (DUT) can be modeled
exactly like that – a testbench module above with the design
instantiated in a module underneath. The DUT port connections
are made with variables and wires directly connected to the
DUT instance. Procedural code at the top level stimulates and
observes the port signals.

The structure above rapidly breaks down as the design
becomes more complex. The test usually needs to become
modularized just as the DUT is, so the testbench is broken into
a separate module or several modules and is instantiated
alongside the DUT. Wires at the top level connect the ports of
the test and DUT together.

module testTop;

 reg clock,reset;

 wire [15:0] data;

 reg [15:0] address;

 DUT d1(.clk(clock),.rst(reset),.bus(data),

 .address(address));

 initial begin // the test

 reset = 1;

 #100 reset = 0;

 …

 end

endmodule

module DUT(input wire clk,

 input wire reset,

 input wire [15:0] address,

 inout wire [15:0] bus);

endmodule

TEST

Design

Observing the redundancy of repeatedly specifying the names

of signals involved in connections, SystemVerilog added the

concept of an interface to represent a collection of signals.

Those signals are defined once in an interface and used in the

port connections to the DUT and testbench.

This can significantly reduce the total number of code lines,
especially when there are a large number of signals that can be
put into the interface. Sometimes modules are brought in from
legacy designs, or from environments that do not support
SystemVerilog interfaces. In that case you can simply replace
the port list of the DUT instantiation line with hierarchical
references to the interface signals.

DUT d1(itf.clock,itf.reset,itf.data,itf.address);

The connections shown up to this point have all been
structurally static. The testbench and DUT modules as well as
the connection to those modules are declared at compile time.
Any change to the structure requires recompilation and
elaboration of that structure.

III. DYNAMIC CONNECTIONS

In a class-based testbench environment, classes are used
instead of modules to represent different components of a
testbench, like drivers and monitors. Because SystemVerilog
classes are always constructed dynamically, we can take
advantage of that to randomize the testbench, as well as
override the behavior of those classes by extending them.

Because classes do not have ports that can be connected to
other module ports, some other mechanisms must be used to
communicate with the DUT. We could simply use hierarchical
references to signals in a module, but as shown previously in
[2], this leads to un-reusable and unmanageable code. Using
the recommended practice of putting class declarations in
packages enforces this restriction because hierarchical
references are not allowed from inside packages.

A. Virtual Interfaces

A virtual interface variable is the simplest mechanism to
dynamically refer to an interface instance. This type of variable
can be procedurally assigned to reference an interface of the
same type.

The driver class is free of hierarchical references and its run
method can synchronize to the clock inside the interface. In
this way a virtual interface variable is similar to a class handle
variable where the interface is used as a type and you are
referencing members of the class. Because the interface is

package my_pkg;

class driver;

 virtual dut_itf vitf;

 task run;

 forever @(posedge vitf.clock)

 begin … end

 endtask

endclass

endpackage

// other modules & interface same as previous

module TEST(dut_itf itf);

import my_pkg::*;

driver d;

 initial begin

 d = (new);

 d.vitf = itf;

 d.run;

 end

endmodule

interface dut_itf;

 logic clock,reset;

 wire [15:0] data;

 logic [15:0] address;

endinterface

module testTop;

 dut_itf i1();

 DUT d1(.itf(i1));

 TEST t1(.itf(i1));

endmodule

module DUT(dut_itf itf);

endmodule

module TEST(dut_itf itf);

 initial begin // the test

 itf.reset = 1;

 #100 itf.reset = 0;

 …

 end

endmodule

module testTop;

 wire c,r;

 wire [15:0] d;

 wire [15:0] a;

 DUT d1(.clk(c),.rst(r),.bus(data),address(a));

 TEST t1(.clk(c),.rst(r),.bus(d),.address(a));

endmodule

endmodule

module DUT(input wire clk,

 input wire reset,

 input wire [15:0] address,

 inout wire [15:0] bus);

endmodule

module TEST(ouput reg clk,

 output reg reset,

 output reg [15:0] address,

 inout wire [15:0] bus);

 initial begin // the test

 reset = 1;

 #100 reset = 0;

 …

 end

endmodule

Top

Design

Test

Top

Design

Interface

Test

Class

 virtual

interface

treated like a type, any parameterization of the interface
instance needs to be repeated in the virtual interface
declaration.

In the example above, vitf1 can only be assigned to top.i1
and vitf2 only to top.i2. As interfaces get more complicated in
larger designs, keeping all the virtual interface parameters in
sync with the interface instance parameters becomes a
challenge.

B. Abstract Classes

The abstract class construct of SystemVerilog is an object-
oriented programming concept used to define software
interfaces. It has functionality similar to that of a virtual
interface, with the benefit of a class based approach that may
include inheritance and polymorphism. Another benefit is that
an abstract class can completely decouple a testbench class
component from any dependencies on the SystemVerilog
interface, such as parameters overrides. A downside is that all
members of the interface need to be accessed via methods,
never bi direct reference. However, this is the normal
programming style for object-oriented software.

Now our testbench classes can be written to use the
concrete class handle referenced via an abstract class variable
instead of the virtual interface variable.

IV. WHITEBOX VERIFICATION

It is not always possible to treat the DUT as a black box;
that is to monitor and drive signals for only the top-level ports
of the DUT. This is true especially as one moves from block-
level testing to larger system level testing. Sometimes we need
implementation knowledge to access signals internal to the
DUT. This is known as whitebox verification.

package my_pkg;

 import abstract_pkg::*;

class driver;

 abstract_intf#(16) c_h;

 task run;

 forever begin

 c_h.posedge_clock;

 c_h.set_address(‘h1234);

 end

 endtask

 endclass

endpackage

module testTop;

 dut_itf #(8,16) i1();

 DUT d1(.itf(i1));

 TEST t1(.itf(i1));

endmodule

module TEST();

 import my_pkg::*;

 driver d;

 initial begin

 d = (new);

 d.c_h = itf.c;

 d.run;

 end

endmodule

package abstract_pkg;

 virtual class abstract_intf #(int awidth);

 pure virtual function void set_address(

 input logic [awidth-1:0] a);

 pure virtual task posedge_clock;

endclass

endpackage

interface dut_itf#(int dwidth, awidth);

 logic clock,reset;

 wire [dwidth-1:0] data;

 logic [awidth-1:0] address;

 import abstract_pkg::*;

 class concrete_intf#(int width) extends

 abstract_intf#(width);

 function void set_address(

 input logic [width-1:0] a);

 address = a;

 endfunction

 task posedge_clock;

 @(posedge clock);

 endtask

 endclass

 concrete_intf#(awidth) c = new();

endinterface

interface itf #(int width, size);

 wire [width-1:0] bus;

 logic [7:0] mem[size];

endinterface

module top;

 itf #(.width(8),.size(16)) i1();

 itf #(.width(16),.size(32)) i2();

endmodule

class monitor;

 virtual itf #(#(.width(8),.size(16)) vitf1;

 virtual itf #(#(.width(16),.size(32)) vitf2;

endclass

Top

Test

Class

 abstract class

variable

Interface

 concrete class

handle

Design

A. Hierarchical references

Verilog has always provided the ability to reach inside
almost any hierarchical scope from another scope. Although
this is a very convenient feature, it has several drawbacks:

1. It makes the code less reusable because the
references in the testbench are dependent on the
structure of the DUT.

2. It requires full or partial recompilation of the DUT
to provide access to internal signals

3. It creates a poorly optimized DUT because
internal signals may need to be preserved to
provide access.

It may be impossible to avoid all hierarchical references. As
a general rule, it is best to keep them at the top level of the
testbench, or isolated to as few modules as practical.

B. Bind

SystemVerilog provides a bind construct that allows you to
instantiate one module or interface into another target module
or interface without modifying the source code of the target.
The ports of the instance are usually connected to the internal
signals of the target. If you bind an interface, you can use either
the virtual interface or abstract class mechanisms to reference
the interface.

An interface used in a bind construct typically has ports
used to connect to the internal signals of the target module.

The top-level TEST can declare the bind statement, or some
other designated module suited for that purpose can declare all
the bind statements for a particular testbench.

A complete UVM based example to probe internal signals
using bind is shown in Appendix A. This example also shows
the recommend way to reach into the design hierarchy using a
configuration database [5].

V. SPECIAL DESIGN CONSIDERATION

Some aspects of the DUT to testbench connection require
more detailed knowledge of basic Verilog modeling issues,
especially when dealing with signal strengths and race
conditions.

A. Bidirectional or Tri-State Busses

Any signal with multiple drivers (continuous assignments,
in this context) needs to be modeled using a net. A net is the
only construct that resolves the effect of different states and
strengths simultaneously driving the same signal. The behavior
of a net is defined by a built-in resolution function using the
values and strengths of all the drivers on a net. Every time there
is a change on one of the drivers, the function is called to
produce a resolved value. The function is created at elaboration
(before simulation starts) and is based on the kind of net type,
wand, wor, tri1, etc.

Procedural assignments to variables use the simple rule: last
write wins. You are not allowed to make procedural
assignments to nets because there is no way to represent how
the value you are assigning should be resolved with the other
drivers. There is also no way to represent how long the
procedural assignment should be in effect before another
continuous assignment takes over.

Class based testbenches cannot have continuous
assignments because classes are dynamically created objects

package probe_pkg;

 virtual class abstract_probe;

 pure virtual function get_signal;

 endclass

endpackage

interface probe(inout signal);

 import probe_pkg::*;

 class concrete_probe extends

 abstract_probe;

 function get_signal();

 return signal;

 endfunction

 endclass

 concrete_intf c = new();

endinterface

module DUT (…);

 wire InternalSignal;

endmodule

module TOP;

 DUT d1();

endmodule

package another_pkg;

 import probe_pkg::*;

class monitor;

 bit s;

 abstract_intf c_h;

 task run;

 forever begin

 …

 s = c_h.get_signal;

 …

 end

 endtask

endclass

endpackage

module TEST;

bind DUT : TOP.d1 probe p1(InternalSignal);

import another_pkg::*;

monitor m;

 initial begin

 m = (new);

 m.c_h = TOP.d1.p1.c;

 m.run;

 end

endmodule

Top

Test

Class

abstract class, or

virtual interface

variable

Design

Sub1

Sub2

Bound interface

and are not allowed to have structural constructs like
continuous assignments. Although a class can read the resolved
value of nets, it can only make procedural assignments to
variables. Therefore, the testbench needs to create a variable
that is continuously assigned to a wire.

In this example, procedural assignments are made to
bus_reg for the class-based testbench, while bus has the value
of the resolved signals.

B. Race Conditions and Clocking blocks

If not modeled correctly, a testbench is susceptible to the
same race conditions as the DUT. Any signal that is written by
one process and read in another process when the two
processes are synchronized by the same clock or event must be
assigned using a non-blocking assignment (NBA).

A clocking block can address these race conditions even
further by sampling or driving signals some number of time
units away from the clock edge. It also takes care of the
procedural assignment to a net problem by implicitly creating a
continuous assignment from the clocking block variable to the
net.

One caution about using clocking blocks: use only the @cb
event to synchronize the process that is using the clocking
block variables. Using @(posedge clk) or any other event will
introduce race conditions.

VI. SUMMARY

A number of different mechanisms have been shown to connect
the DUT to the testbench. They are not meant to be exclusive.
The complexity of your verification environment will dictate
the most efficient mechanism for you to use. Above all, it is
important to be as consistent as possible with your coding
decisions and document those decisions.

REFERENCES

[1] IEEE (2009) "Standard for SystemVerilog- Unified Hardware Design,

Specification, and Verification Language”, IEEE Std 1800-2009.

[2] Bromley, J. & Rich, D (Feb 2008) “Abstract BFMs Outshine Virtual
Interfaces for Advanced SystemVerilog Testbenches”, Design &
Verification Conference, San Jose, CA.

[3] Baird, M (Feb 2010) “Coverage Driven Verification of an Unmodified
DUT within an OVM Testbench”, Design & Verification Conference,
San Jose, CA.

[4] Bromley, J. (Feb 2012) “First Reports from the UVM Trenches: User-
friendly, Versatile and Malleable, or Just the Emperor's New
Methodology?”, Design & Verification Conference, San Jose, CA.

[5] Horn, M, Peryer, M. et. al. (retrieved on February 7, 2012) “Connect/Dut
Interface”, Verification Academy UVM/OVM Cookbook,
<http://verificationacademy.com/uvm-ovm/Connect/Dut_Interface>

interface my_if;

 wire [31:0] bus;

 logic [31:0] address;

 bit clk;

 clocking cb @(posedge clk);

 output #1 address;

 inout bus;

 endclocking

 class concrete_intf extends abstract_intf;

 task posedge_clock;

 @cb;

 endtask

 function logic [31:0] get_bus;

 return cb.bus; //resolved value

 endfunction

 function void set_bus(input [31:0] value);

 cb.bus <= value; // driving value

 endfunction

 endclass

 modport DUT(inout bus, input clk, address);

 modport TB(clocking cb);

endinterface

interface my_if;

wire [31:0] bus;

//assign to z when not driving

logic [31:0] bus_reg='z;

assign bus = bus_reg;

modport DUT(inout bus);

modport TB(input bus, output bus_reg);

class concrete_intf extends abstract_intf;

 function logic [31:0] get_bus;

 return bus; //resolved value

 endfunction

 function void set_bus(input [31:0] value);

 bus_reg <= value; // driving value

 endfunction

endclass

endinterface

Appendix A. – EXAMPLE OF USING VIRTUAL INTERFACE AND ABSTRACT CLASS TOGETHER

// $Id: probe.sv,v 1.4 2010/04/01 14:34:38 drich Exp $

//--

// Dave Rich dave_rich@mentor.com

// Copyright 2007-2012 Mentor Graphics Corporation

// All Rights Reserved Worldwide

//

// Licensed under the Apache License, Version 2.0 (the

// "License"); you may not use this file except in

// compliance with the License. You may obtain a copy of

// the License at

//

// http://www.apache.org/licenses/LICENSE-2.0

//

// Unless required by applicable law or agreed to in

// writing, software distributed under the License is

// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR

// CONDITIONS OF ANY KIND, either express or implied. See

// the License for the specific language governing

// permissions and limitations under the License.

//--

// ---

// file RTL.sv

// Package of parameters to be shared by DUT and Testbench

package common_pkg;

 parameter WordSize1 = 32;

 parameter WordSize2 = 16;

endpackage

// simple DUT containing two sub models.

module DUT (input wire CLK,CS,WE);

 import common_pkg::*;

 wire CS_L = !CS;

 model #(WordSize1) sub1 (.CLK, .CS, .WE);

 model #(WordSize2) sub2 (.CLK, .CS(CS_L), .WE);

endmodule

// simple lower level modules internal to the DUT

module model (input wire CLK, CS, WE);

parameter WordSize = 1;

reg [WordSize-1:0] Mem;

wire [WordSize-1:0] InternalBus;

 always @(posedge CLK)

 if (CS && WE)

 begin

 Mem = InternalBus;

 $display("%m Wrote %h at %t",InternalBus,$time);

 end

 assign InternalBus = (CS && !WE) ? Mem : 'z;

endmodule

// ---

// file probe_pkg.sv

//

// abstract class interface

package probe_pkg;

 import uvm_pkg::*;

 virtual class probe_abstract #(type T=int) extends uvm_object;

 function new(string name="");

 super.new(name);

 endfunction

 // the API for the internal probe

 pure virtual function T get_probe();

 pure virtual function void set_probe(T Data);

 pure virtual task edge_probe(bit Edge=1);

 endclass : probe_abstract

endpackage : probe_pkg

// This interface will be bound inside the DUT and provides the concrete class defintion.

interface probe_itf #(int WIDTH) (inout wire [WIDTH-1:0] WData);

 import uvm_pkg::*;

 typedef logic [WIDTH-1:0] T;

 T Data_reg = 'z;

 assign WData = Data_reg;

 import probe_pkg::*;

 // String used for factory by_name registration

 localparam string PATH = $psprintf("%m");

 // concrete class

 class probe extends probe_abstract #(T);

 function new(string name="");

 super.new(name);

 endfunction // new

 typedef uvm_object_registry #(probe,{"probe_",PATH}) type_id;

 static function type_id get_type();

 return type_id::get();

 endfunction

 // provide the implementations for the pure methods

 function T get_probe();

 return WData;

 endfunction

 function void set_probe(T Data);

 Data_reg = Data;

 endfunction

 task edge_probe(bit Edge=1);

 @(WData iff (WData === Edge));

 endtask

 endclass : probe

endinterface : probe_itf

// ---

// file test_pkg.sv

//

// This package defines the UVM test environment

`include “uvm_macros.svh”

package test_pkg;

 import uvm_pkg::*;

 import common_pkg::*;

 import probe_pkg::*;

 //My top level UVM test class

 class my_driver extends uvm_component;

 function new(string name="",uvm_component parent=null);

 super.new(name,parent);

 endfunction

 typedef uvm_component_registry #(my_driver,"my_driver") type_id;

 // Virtual interface for accessing top-level DUT signals

 typedef virtual DUT_itf vi_itf_t;

 vi_itf_t vi_itf_h;

 // abstract class variables that will hold handles to concrete classes built by the factory

 // These handle names shouldn't be tied to actual bind instance location - just doing it to help

 // follow the example. You could use config strings to set the factory names.

 probe_abstract #(logic [WordSize1-1:0]) sub1_InternalBus_h;

 probe_abstract #(logic [WordSize2-1:0]) sub2_InternalBus_h;

 probe_abstract #(logic) sub1_ChipSelect_h;

 function void build_phase(uvm_phase phase);

 if (!uvm_config_db#(vi_itf_t)::get(this,"","DUT_itf",vi_itf_h))

 uvm_report_fatal("NOVITF","No DUT_itf instance set",,`__FILE__,`__LINE__);

 $cast(sub1_InternalBus_h,

factory.create_object_by_name("probe_testbench.dut.sub1.m1_1",,"sub1_InternalBus_h"));

 $cast(sub2_InternalBus_h,

factory.create_object_by_name("probe_testbench.dut.sub2.m1_2",,"sub2_InternalBus_h"));

 $cast(sub1_ChipSelect_h,

factory.create_object_by_name("probe_testbench.dut.sub1.m1_3",,"sub1_ChipSelect_h"));

 endfunction : build_phase

 // simple driver routine just for testing probe class

 task run_phase(uvm_phase phase);

 phase.raise_objection(this);

 vi_itf_h.WriteEnable <= 1;

 vi_itf_h.ChipSelect <= 0;

 fork

 process1: forever begin

 @(posedge vi_itf_h.Clock);

 `uvm_info("GET1",$psprintf("%h",sub1_InternalBus_h.get_probe()));

 `uvm_info("GET2",$psprintf("%h",sub2_InternalBus_h.get_probe()));

 end

 process2: begin

 sub1_ChipSelect_h.edge_probe();

 `uvm_info("EDGE3","CS had a posedge");

 sub1_ChipSelect_h.edge_probe(0);

 `uvm_info("EDGE3","CS had a negedge");

 end

 process3: begin

 @(posedge vi_itf_h.Clock);

 vi_itf_h.ChipSelect <= 0;

 sub2_InternalBus_h.set_probe('1);

 @(posedge vi_itf_h.Clock);

 vi_itf_h.ChipSelect <= 1;

 sub1_InternalBus_h.set_probe('1);

 @(posedge vi_itf_h.Clock);

 vi_itf_h.ChipSelect <= 0;

 sub2_InternalBus_h.set_probe('0);

 @(posedge vi_itf_h.Clock);

 @(posedge vi_itf_h.Clock);

 end

 join_any

 phase.drop_objection(this);

 endtask : run_phase

 endclass : my_driver

 class my_test extends uvm_test;

 function new(string name="",uvm_component parent=null);

 super.new(name,parent);

 endfunction

 typedef uvm_component_registry #(my_test,"my_test") type_id;

 my_driver my_drv_h;

 function void build_phase(uvm_phase phase);

 my_drv_h = my_driver::type_id::create("my_drv_h",this);

 endfunction : build_phase

 endclass : my_test

endpackage : test_pkg

// ---

// file testbench.sv

//

interface DUT_itf(input bit Clock);

 logic ChipSelect;

 logic WriteEnable;

endinterface : DUT_itf

module testbench;

 import common_pkg::*;

 import uvm_pkg::*;

 import test_pkg::*;

 bit SystemCLK=1;

 always #5 SystemCLK++;

 // The DUT interface;

 DUT_itf itf(.Clock(SystemCLK));

 typedef virtual DUT_itf vi_itf_t;

 // The DUT

 DUT dut(.CLK(itf.Clock), .CS(itf.ChipSelect), .WE(itf.WriteEnable));

 // instantiate interfaces internal to DUT

 bind model : dut.sub1 probe_itf #(.WIDTH(common_pkg::WordSize1)) m1_1(InternalBus);

 bind model : dut.sub2 probe_itf #(.WIDTH(common_pkg::WordSize2)) m1_2(InternalBus);

 bind model : dut.sub1 probe_itf #(.WIDTH(1)) m1_3(CS);

 initial begin

 uvm_config_db#(vi_itf_t)::set(null,"","DUT_itf",itf);

 run_test("my_test");

 end

endmodule : testbench

