
Title: Advanced Techniques for AXI Fabric Verification in a

Software/Hardware OVM Environment

Galen Blake Steve Chappell

SMTS Solutions Architect

Altera Corporation Mentor Graphics

Austin, TX San Jose, CA

ABSTRACT:

In this paper we present an architecture for verifying

proper operation and performance of an AXI bus

fabric in a dual-core ARM processor system using a

combination of OVM and C software driven test

techniques.

The end system being verified consists of a dual core

ARM processor connected to an AXI bus fabric.

Various peripherals connect to the fabric using both

AXI and AHB bus interfaces. Confirming fabric

connectivity and performance under different end

user scenarios are among the key verification goals.

The dual core processor is configured to run a

minimal Operating System (OS) designed to test

basic operational features of the system including the

peripherals and interfaces. Embedded C software

libraries were developed to manage OVM sequences

capable of driving fabric ports and checking their

status. The Embedded C software is also capable of

initiating direct fabric accesses using the AXI port

which connects the processor to the Fabric. Both of

these Embedded C software techniques are leveraged

as part of the overall AXI fabric verification

framework and reused for other major sub-system

verification of the design.

Master peripherals access the fabric and slave

peripherals respond using AXI, AHB or APB ports.

Although the fabric is predominately AXI, some

older peripherals still use AHB which is bridged to

AXI within the fabric. APB is used for most

peripheral register access and data transport for the

slow peripherals. Bus access typical of a particular

peripheral operation is modeled using highly

configurable OVM sequences that drive the protocol

specific verification IP.

An advanced graph based solution was deployed in

the design of these port-level sequences. They

provide the capability for checking full protocol

compliance, an engine for continuous traffic

generation, precise control and configurability for

shaping the form and type of traffic needed to test the

fabric. These characteristics are easier to construct,

easier to analyze and review and are more efficient to

achieve coverage than constrained-random or

directed OVM sequences.

In order to produce the same level of coverage to the

port connecting the processor to the fabric, the graph

based solution is also applied to the AXI port through

the embedded C where the OVM sequence is

replaced with a series of API calls.

During verification bring-up multiple port-level

sequences were configured to generate traffic typical

of end user peripheral operation. Various burst

attributes including burst sizes and access types,

along with typical data access rates for the peripheral

were configured. Sequence operation was initiated

from the Embedded C software.

A sub-system level OVM sequence layer is added to

control the port level sequences. It is responsible for

generating more complex traffic scenarios that mix

and control the traffic on each peripheral sequence.

The sub-system sequence must be able to create

conditions that are typical of the overall fabric and

system operations. This sequence must manage,

control and synchronize the activity of each

peripherals port-level sequences instructing them to

generate transfers with a wide range detailed

operations. This includes varying payload sizes,

varying destination slave addresses, varying idle time

between transfers and many others. This approach

evaluates performance of the fabric running various

normal and heavy traffic scenarios to extract actual

performance characteristics. These are compared to

predictions of architectural models acceptable system

performance parameters. If any traffic conditions

which lead to performance degradation outside the

acceptable range are identified, proper action can be

taken.

An advanced graph based solution was likewise

deployed in the design of the sub-system level

sequence to effectively manage and deterministically

calculate that all of the important traffic scenarios are

reached.

Some of the more interesting and challenging aspects

of this work will be discussed:

 How to design highly configurable and

adaptable port-level sequences

 Designing the architecture of the higher-

level sequence and connection to the port-

level sequences it manages

 Issues implementing traditional System

Verilog coverage metrics in this type of an

application

 Instrumenting the fabric to evaluate

performance under different traffic scenarios

1. Introduction

Verifying each master to slave connection on an

AMBA fabric is a reasonably straight forward task.

Verifying that each port complies with both the

standard defined protocol and any user defined

conditions at every Master and at every reachable

slave will increase the complexity of the verification

task. Moreover, verifying the fabric will continue to

function and maintain acceptable performance under

normal and heavily loaded traffic conditions

introduces several unique challenges.

Normal fabric operations will include bus

transactions from multiple masters being sent to

multiple slaves. Some masters may also have

multiple transactions in flight.

Defining and controlling transactions on the fabric

from each of the master and slave ports in a real

system using the particular protocol for each of those

ports can be an intractable problem particularly when

we seek a high level of synchronization and control

of that traffic. For example, it is not easy to send a

packet to an Ethernet peripheral block and then

predict with some precision exactly which types of

AXI transactions might result much less on which

clocks they will occur. There are several

dependencies on the state of the block such as buffer

conditions and packets already in flight. This can be

further obscured by design specific implementation

choices and register settings that are found in a 3
rd

party IP. Taking just this one peripheral example and

its protocol into account, now imagine multiplying

this across all the protocols found in a system.

To solve this challenge, we replace those peripheral

blocks with VIP models for the connected protocol

giving us much more precise control and dependable

operation.

We then leverage this control to construct tests that

mimic the normal flow of data from each peripheral.

Then we model the normal and heavy traffic

scenarios to match expected system operations.

Verifying the functionality and performance under

loaded traffic scenarios helps us determine there are

no conditions that could lead to stalls or dead locks in

the fabric, stalled Masters, stalled slaves or issues

with performance degradation beyond tolerable

limits.

2. Environment

The testbench environment is fully based on System

Verilog and the OVM 2.1.1 library. The environment

also includes significant embedded C software

running on the CPU that performs chip level

initialization, driver operations and many test control

and monitoring operations.

There are a number of OVM based Verification IP

(VIP) components that form the foundation of the test

bench. Coupling the embedded C software into the

verification environment means the testbench is also

tightly bound to the CPU. Therefore, the CPU can be

used to coordinate and check test bench activity.

This is facilitated by a custom OVM based mailbox

system with dynamic message passing.

The VIP models receive transactions directly from

OVM sequences launched by an API in the

embedded C SW and/or OVM sequences launched by

the test bench. OVM Sequences launched by the

CPU can include either directed tests, constrained

random tests or more advanced sequences. A block

diagram of the environment is shown in Figure 1

below. Some details such as the CPU-TestBench

communication system are omitted for clarity.

Figure 1 – Block Diagram

3. Beyond Constrained Random

Constrained Random Verification or CRV has been

proven to increase productivity and find bugs missed

by directed tests. Nevertheless there are limitations:

- Users are responsible to define a reasonable

set of random variables and constraints. The

definition of the variables and constraints is spread

across many files. This sprawling structure of data is

difficult to create, difficult to visualize, difficult to

analyze, challenging to refine and hard to assert any

level of precise control.

- Constraint solvers are proprietary and users

are not assured of consistent results across simulation

platforms.

- Discovery of interesting or important corner

cases are randomly discovered and are subject to the

odds of random convergence of multiple variables.

Random coverage of the defined coverage space is

not efficient. Some areas may be repeated many

times before a new unexplored area is exposed.

- Finally, successful CRV also requires

development of coverage models to measure test

effectiveness which can be extremely difficult.

To overcome these limitations, we chose a graph

based solution. Specifically we address the

limitations of CRV in the following ways.

In order to address the coverage definition problem,

we replace the random variable and constraint

definition with an efficient and compact grammar

that defines the coverage space in a single file. This

file is compiled into a graph that makes it easy to

visualize and analyze for correct and complete

definition. This comprehensive view of the

functional space we intend to cover gives us feedback

on the parameters that are covered and those that are

intentionally left out, as well as out of band features

that may be selectively enabled and covered. Careful

reviews of the graph can also give us feedback on

any features of a protocol that we might have missed.

An example of the grammar is shown in Figure 2 and

an example of the graph it produces is shown in

Figure 3.

This solution can be ported to any simulation

platform assuring us of consistent results without any

dependency on the constraint solver of the simulator.

Interesting and important cases are dependably

covered efficiently without dependencies on random

chance.

Finally, coverage checking can be built into the graph

and it can improve coverage closure efficiency by

testing the complete scope of the protocol in a

minimal number of simulation clock cycles. Using

this approach, we are assured that we cover the

complete protocol space covering corner cases with

high efficiency.

Figure 2 – Protocol Grammar.

Figure 3 – Protocol Graph.

4. Testing Individual Ports and Paths of the

Fabric.

Testing individual ports with specific protocols must

cover all aspects of the protocol. Additionally, each

master port must be tested to confirm that it can reach

all accessible slave destinations. The slaves

themselves may support a subset of a protocol or

even be a different protocol altogether from the

Master. For example, an AXI master could initiate a

64 bit transaction to a 32 bit APB slave. It is the job

of the Fabric to split the original 64 bit transaction

into 2x32 bit transactions and the test bench to track

it. In this example the Master and Slave monitors

report transactions based on the Master ID and Fabric

ID using local scoreboards and analysis ports. A

subsystem scoreboard subscribes to the local analysis

ports for checking. Details of this checker are

omitted for brevity.

The graph is used in the form of OVM sequence

compatible with the VIP. This works for most

masters but the graph can also be used to generate

calls to the embedded C API giving us the ability to

use a consistent approach to test the AXI master port

on the CPU connecting it to the Fabric.

The graph based sequences can be used for protocol

testing, path coverage and also generating high

volumes of transactions. The graph based sequences

also have numerous parameters used to activate or

deactivate supported features of each individual port

instance.

In addition to protocol and path tests, the graph can

also be used to generate endless streams of traffic that

can be controlled by the graph itself with a local

perspective matching traffic expected from the

normal peripheral the VIP has temporarily replaced.

Moreover, the local traffic controls and parameters in

the graph can be extended to an external graph with a

system perspective where there is awareness of the

traffic conditions on all other ports. These controls

give us the ability to define, control and synchronize

the traffic conditions across the fabric.

5. Traffic Synchronization and Control.

The same principles that guide our choice of a graph

based solution for bus protocols also apply to

definition and control of traffic conditions. The local

controls in each “protocol graph” that give the ability

to shape traffic within that graph can also be

dynamically controlled by this “traffic graph”.

Examples of these controls include graph parameters

such as the number of idle clocks between

transactions, the size of data and number bursts in a

transaction. Graph parameters can be dynamically

controlled to be a fixed number, a random range of

numbers or a weighted random range of the numbers.

Additional controls are added for synchronization.

For example, a protocol graph can be instructed to

conduct a single transaction and stop until instructed

to run the next transaction. It can be instructed to run

specific numbers of transactions or run continuously

until instructed to stop. This gives the traffic graph

several different ways to control traffic.

Dynamically controllable graph parameters can be

changed between transactions and even during a

transaction at certain control points defined in the

protocol graph. For example, before a transaction

completes, it could check to see if there are any

updates to the number of idle clocks between

transactions prior to completing the transaction.

Most important, the traffic graph has the ability to

simultaneously launch transactions on multiple ports

that can be synchronized to start on the same clock.

All these features can be used to produce any number

of worst case scenarios to thoroughly examine the

capabilities of the Fabric. An example traffic graph

is shown in Figure 4.

Figure 4 – Traffic Graph.

6. Modulating traffic.

Making effective use of the graph parameters

described above gives us the ability to control and

shape or modulate the traffic at each Master port. For

example, the density of transactions can be adjusted

to match the traffic conditions found on a peripheral

that only has occasional traffic.

Transactions can be queued and released on multiple

ports simultaneously or staggered in a very controlled

manner. The size and type of transactions can also be

controlled to match expected system operations. For

example, the bandwidth of a slow peripheral device

will not generate the same amount of traffic as a high

speed peripheral device. Some peripherals may have

very dense transactions for brief periods of time and

then go quiet for a while. Some may have constant

high density transactions. The shape of the traffic

can be influenced by buffer sizes in the peripherals,

the layout and arbitration defined in the fabric,

bandwidth limitations at popular slaves like DDR,

clock and clock ratio settings and interactions

between multiple masters and slaves. The traffic

graph needs the ability to modulate traffic in a

manner that matches normal system operations

described above. The protocol graph that is used to

interact with the API in the embedded C also needs to

implement the same level of control. An example of

modulated traffic control with a normal traffic

scenario on three masters is shown in Figure 5. Each

box represents a series of nearly continuous bus

transactions with very short (not pictured) idle cycles.

A “heavy” traffic scenario would have more activity

and less idle time between each series of transactions

and an example is shown on Figure 6.

Figure 5 – Normal Traffic Modulation Scenario

Figure 6 – Heavy Traffic Modulation Scenario

7. Tracking performance.

In addition to coordination and control, there also

needs to be instrumentation to monitor performance

of the fabric. We first check the “ideal” or unloaded

latencies of each path to validate predictions of our

architectural model. Next we use our architectural

models to predict latencies under normal traffic and

heavy traffic conditions. We use these predictions to

define acceptable performance conditions.

We then take full advantage of the traffic graph to

develop very large numbers of normal and heavy

traffic scenarios ensuring that each of them maintain

basic operations and that performance does not

degrade below acceptable limits. Performance

metrics include both bandwidth and latency. Basic

operations and performance are monitored in flight

with scoreboards used to track and report progress.

8. Findings and Conclusion

Using the graph based approach has improved design

quality very early in the project. Protocol coverage is

reached efficiently and traffic analysis has already

achieved good results improving the design of blocks

connected to the fabric.

The advantages versus constrained random have been

proven. Fabric and System-level coverage goals

have been more easily defined and achieved.

As this environment reaches maturity and small

enhancements are added, our confidence increases

that we have a fabric and a system that will operate

correctly and that our system performance goals will

be met.

