SoC Verification using OVM :
Leveraging OVM Constructs to Perform Processor Centric Verification

Cedric Macadangdang, Paul Yue

Cedric.R.Macadangdang@raytheon.com Paul.Yue@raytheon.com

Raytheon Space and Airborne Systems
2000 E El Segundo Blvd., El Segundo, CA 90245

ABSTRACT

This paper provides an in-depth presentation of our
experiences with verifying an SoC design including
replacing a processor model with an OVM driver to
drive all peripherals on the chip, utilizing reserved
addresses in the memory map, building custom and
reusable APIs to send high-level commands,
monitoring protocols and packet transmissions, and
scoreboarding. In addition, this paper will cover
methods of co-simulation, where the hardware and
software aspect of the design can be verified
together using realistic stimulus to drive all the
components in the system towards complete
functional verification.

Keywords: SoC, OVM, verification, processor-
centric, assertions, bus functional model.

1.0 INTRODUCTION

As advances in technology allow transistors to
decrease in size, engineers now have the liberty to
design an entire complex system where custom
designed hardware elements and interfaces coexist
with an embedded processor on a single piece of
silicon — a System-on-Chip. This will make
verification a daunting task. However, with new
advances in verification methodologies and
languages, mainly the Open Verification
Methodology (OVM) and SystemVerilog respectively,
testbenches can be designed to be more robust and
flexible — a need for verification of today’s designs.

With the advent of the OVM, testbenches can now
have a defined structure, with standardized
components. Furthermore, together with
SystemVerilog, OVM introduces a higher level of
abstraction using transaction level modeling,
allowing verification engineers more freedom to
develop robust testbenches. However, off-the-
shelf, OVM is more suitable towards verification of
component level and module level designs without a

processor. Verification where a processor is
involved is not so much plug-and-play — a few
tweaks need to be made for OVM and an SoC to play
nicely. Introducing a processor into the design adds
a software aspect to the verification task. One
needs to make sure that any software program that
can run on the processor can be supported by the
rest of the design without breaking the system. This
requires having C code and APIs to coexist with the
traditional OVM testbench environment. So how
would one leverage the benefits of OVM to perform
verification on a processor centric design?

Given a simple SoC design, one has to ensure that all
the components on the system can easily
communicate with each other - send commands,
successfully perform reads and writes, transfer data
- following proper protocols. One may suggest
constructing drivers for each of the components on
the board and driving them simultaneously.
Depending on the size of the design, that may
become a pain-staking chore. Instead, why not
replace the role of the driver with the processor?
This is a good idea for several reasons: (1) it is
already physically connected to the other devices on
the chip and can speak the language (adheres to bus
protocols) and (2) it utilizes custom APIs to send
high-level commands to the processor which
eliminates the need for a sequencer. There are also
methods where we can go one step further and
replace the processor with bus functional model that
mimics the processor’s behavior. This will reduce
the simulation time that would otherwise be
required for having a full processor model in the
simulation environment.

1.1 WHY OVM?

Traditional functional verification methods for SoC
designs usually lack a systematic approach.
Verification of one design can have a completely
different approach to another and differing

testbench structures limit reuse. Placing OVM and
using SystemVerilog into the equation will enable
several things — OVM’s modular constructs will
increase reusability and vertical integration into
higher level testbenches, increasing productivity,
and the OVM libraries and tools make it easier to
generate constrained random stimulus that will drive
towards coverage closure, and lends itself towards
automation. In addition, all testbenches following
OVM will have similar layouts making it easy for
other verification engineers to use. This reduces the
learning curve of the testbench setup and the
“transfer-of-knowledge” can happen a lot faster.

1.2 SCOPE

It is important to note that this verification
methodology is designed to verify the SoC design
centered about the processor and does not include
verifying the processor itself. We are under
assumption that the processor has been fully verified
and we are only concerned with verifying from the
processor’s interface, moving outwards. To us, the
internals of the processor is simply a black box. We
will also be assuming that each sub-block in the SoC
design has been verified by the designer. Our
responsibility is to perform top-level verification - to
verify that all the sub-blocks on the SoC interface
correctly to the system bus and can be properly
integrated with the rest of the system and that the
top-level design conforms to its requirements.

Peripheral Peripheral Peripheral
A APB
SDRAM
A
Processor '
Peripheral Interrupt
Bridge Controller
Controller

AHB t

Figure 1 Basic SoC Design

2.0 REPLACING THE PROCESSOR MODEL

Most SoC designs are centered about a processor
that governs the whole system. During simulation,
a bus functional model (BFM) of the processor is
instantiated in the design. Each unique processor
has its own BFM that models everything that
processor is capable of doing its own unique way.
The disadvantage to using these processor BFMs is
that it increases simulation time.

Replacing a processor BFM will require two steps.
The first would be to create an OVM driver capable
of transferring and receiving data to and from the
system bus. The second would be to create an
interface between the driver and the verification
engineer to properly model the sequence of events
(device configuration, line reads and writes,
interrupts, cache hits/miss, data transmission
between peripherals, etc.) that occur during certain
processor tasks given a set of processor instructions.

2.1 OVM Driver

Since we only care about what goes on at the
processor’s interface and not what goes on inside of
it, we can simply create an OVM driver that just
mimics the processor’s interface behavior. At this
level, we will not need to concern ourselves with
how a processor does its job internally. This enables
us to just focus on the interface activity, making sure
the driver to bus interface adheres to the protocol
and can drive instructions (address + data) correctly.
This will enable us to remove the complex processor
BFM from the simulation environment and replace it
with this simpler OVM driver that drives address and

Copyright © 2011 Raytheon Company. All rights reserved.

data onto the system bus to all the attached
peripherals and devices.

0] i

Peripheral A Peripheral B Peripheral C

he
i L

v

Peripheral Interrupt

OVM Driver Bridge Controller
Interface
‘ {

.
AHB Sso,

Figure 2 SoC under an OVM testbench
environment. Processor BFM replaced with an
OVM driver

2.2 OVM Sequencer and API

The next challenge is to model the behavior of the
processor by creating a sequence of instructions.
This involves using custom APl and a C-compiler that
can translate high level processor functions down to
transaction level model (TLM) packets that the OVM
sequencer can feed to the OVM driver.

Once this path is accomplished, the verifier can
easily write sequences of instructions for the OVM
driver to perform. As long as the driver was
constructed accurately to model the processor’s
behavior and the C-compiler can translate high level
abstractions to specific processor commands, the
OVM driver substitution it will serve as a faster
model during simulation compared to the BFM.

Once this is complete, it is up to the verification
engineer to come up with well-thought and
interesting test scenarios to exercise the SoC
through.

Interrupt
Controller

i"= OVM Driverwi‘ Bridge
_Interface | -
s =,

| -:J Processor Specific
Reuseable

Figure 3 Each time a verification component is reused,
the block becomes more functionally robust, and will
increase productivity by reducing design costs.

3.0 MONITORS & SCOREBOARDING

The interfaces at the top level of the SoC can be
monitored through the use of OVM monitors. For
example, if one of the peripherals is a SPI interface,
we can have the processor, or in our case, the OVM
driver send out data to the SPI peripheral and
inspect that it comes out the other end by
monitoring the SPl interface. This will require
constructing a monitor that adheres to the SPI
protocol.

Peripheral A
Monitor

1

Peripheral A Peripheral B Peripheral C
3
SDRAM
A A

Peripheral Interrupt

x:;:;zr OVM Driver Bridge Controller
Interface
o,
i i i AHB "-._i !

Peripheral B
Monitor

Peripheral C
Monitor

APB

Figure 4 Top level OVM test environment with driver,
monitors, and scoreboard

Copyright © 2011 Raytheon Company. All rights reserved.

Each top level interface will each have its own
monitor to capture data that comes out of it. In the
case where the peripheral might request data back,
a responder would be needed in addition to the
monitor to drive data back into the SoC when
required.

Both the driver and the interface monitors will be
connected to the scoreboard. Each time the driver
drives data onto the SoC’s system bus, it will also
send that data to the scoreboard. Similarly, anytime
the monitor receives data at its assigned interface, it
will capture it and send it to the scoreboard as well.
The scoreboard is designed to perform a comparison
between the data sent by the driver to the data
received by one of the monitors.

Since each peripheral or device is mapped to a
specified address range, we can utilize the driver to
send data to specific address locations to target
specific peripherals. The scoreboard can have
knowledge of this address mapping scheme so that
when the driver reports to the scoreboard that it
sent data OXBEEF, to address 0x04, the scoreboard
can determine which interface OxBEEF should come
out of.

Driver Sent

Peripheral A rer sent
Receives :
Data: OXBEEF Da. OXBEEF
Peripheral A
Monitor

Peripheral B
Monitor

Peripheral C
Monitor

4 o
<~z <~z <~
Peripheral A Peripheral B Peripheral C
0X00 -OXAA OxAB - OxBB. OXBC - 0xCC
1 v :

|

Peripheral Interrupt
Bridge Controller

Write (0x08,
OXBEEF)

Figure 5 Example test path: Write instruction,
write(0x04, OxBEEF). Red line shows exercised data path
from the ovm driver through the AHB bus, through the
peripheral bridge, through the APB bus and finally to one
of the SoC's interface via Peripheral A. Peripheral A’s
monitor captures the data and sends it to the scoreboard
where it is checked against the data sent out by the
driver.

All the peripherals, devices, and interfaces can be
exercised in this manner. Each peripheral or
corresponding interface can be exercised individually
with utilizing the constrained random feature
provided by OVM by constraining the address space
to a certain range.

4.0 ASSERTIONS

In an SoC design, there can be many sub-blocks and
interfaces. Verifying these internal interfaces
simultaneously with verifying the top level
interfaces, depending on the design, can become
difficult to manage. We can mitigate this difficulty
to a certain degree by incorporating assertions into
the design. While the monitors and scoreboard
components maintain eyes on the top-level
interfaces of the SoC, assertions keep watch on the
inside.

SystemVerilog provides us with the “bind” directive
to allow verification engineers to bind assertions into

Copyright © 2011 Raytheon Company. All rights reserved.

the design without modifying design code, providing
them with “white-box” testing abilities. Now as the
top level simulations run, these assertions will be
constantly asserted and any violation that fails the
assertion will be noted.

Because assertions are not limited to the interfaces
at the top level, bugs can be detected closer to the

source. The more assertions there are, the easier it
will be to trace down the source of a bug.

| FERpNETE A
Monitor

renpneraro renpnera. |
Monitor Meonitor |

* * *
v 2 - - .
Peripheral A | Peripheral B ‘ Peripheral C
¥ ¥ ¥
' APB
SDRAM T
* “ Y
| : = A Peripheral Interrupt
cn:::;;:, ‘ DMA ‘ 0|V|:/13I'1VEF : Bridge Controller
I nterrace | !
w. “
¥ Assertion -"'-.

Figure 6 Assertions bound to the various interfaces inside
of the SoC - keeps watch for any protocol violations

5.0 CONCLUSION

Incorporating OVM constructs and
SystemVerilog into traditional SoC verification
environments brings about many benefits.

OVM’s modular and systematic approach
enables reuse and together with SystemVerilog
offers users the tools that provide a software-
like automated approach towards achieving
functional coverage. Reusing verification
components and building off of them only make
them better. There is no need to re-invent the
wheel.

Substituting the processor BFM with an OVM
driver and test cases that mimic the processor

BFM'’s behavior at the interface level removes
the complexities that hinder simulation time.

Analysis components such as the top-level
scoreboard and interface monitors allows
verification engineers to spend more time
creating meaningful test cases by eliminating
the time spent on eye-balling waveforms to
verify correctness of the SoC.

Assertions provide verification engineers with
visibility into the design enabling them to detect
bugs closer to their source.

All of these methods, utilizing OVM constructs,
combined together running in concert under
one testbench provides a versatile and agile
approach towards verification of a SoC design.

6.0 REFERENCES

IEEE Standard for SystemVerilog - Unified Hardware
Design, Specification, and Verification Language,
IEEE Std 1800TM-2005, IEEE Computer Society,
2005.

P. Wilcox, Professional Verification: A Guide to
Advanced Functional Verification, Norwell, MA:
Kluwer Academic Publishers, 2004.

Mentor Graphics. UVM/OVM Online Methodology
Cookbook [Online]. Available:
http://verificationacademy.com/uvm-ovm

Duolos. Getting Started with OVM. [Online].
Available:
http://www.doulos.com/knowhow/sysverilog/ovm/t

utorial 2/

Duolog. OVM Golden Reference Guide [Online].
Available:
http://ovmworld.s3.amazonaws.com/contributions/
OVM%202.0%20Golden%20Reference%20Guide 0.p
df

Copyright © 2011 Raytheon Company. All rights reserved.

