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ABSTRACT: 

In this paper we present an architecture for verifying 

proper operation and performance of an AXI bus 

fabric in a dual-core ARM processor system using a 

combination of OVM and C software driven test 

techniques.  

The end system being verified consists of a dual core 

ARM processor connected to an AXI bus fabric. 

Various peripherals connect to the fabric using both 

AXI and AHB bus interfaces. Confirming fabric 

connectivity and performance under different end 

user scenarios are among the key verification goals.  

The dual core processor is configured to run a 

minimal Operating System (OS) designed to test 

basic operational features of the system including the 

peripherals and interfaces. Embedded C software 

libraries were developed to manage OVM sequences 

capable of driving fabric ports and checking their 

status. The Embedded C software is also capable of 

initiating direct fabric accesses using the AXI port 

which connects the processor to the Fabric.  Both of 

these Embedded C software techniques are leveraged 

as part of the overall AXI fabric verification 

framework and reused for other major sub-system 

verification of the design.  

Master peripherals access the fabric and slave 

peripherals respond using AXI, AHB or APB ports. 

Although the fabric is predominately AXI, some 

older peripherals still use AHB which is bridged to 

AXI within the fabric.  APB is used for most 

peripheral register access and data transport for the 

slow peripherals.  Bus access typical of a particular 

peripheral operation is modeled using highly 

configurable OVM sequences that drive the protocol 

specific verification IP.   

An advanced graph based solution was deployed in 

the design of these port-level sequences.   They 

provide the capability for checking full protocol 

compliance, an engine for continuous traffic 

generation, precise control and configurability for 

shaping the form and type of traffic needed to test the 

fabric. These characteristics are easier to construct, 

easier to analyze and review and are more efficient to 



achieve coverage than constrained-random or 

directed OVM sequences.  

In order to produce the same level of coverage to the 

port connecting the processor to the fabric, the graph 

based solution is also applied to the AXI port through 

the embedded C where the OVM sequence is 

replaced with a series of API calls. 

During verification bring-up multiple port-level 

sequences were configured to generate traffic typical 

of end user peripheral operation. Various burst 

attributes including burst sizes and access types, 

along with typical data access rates for the peripheral 

were configured. Sequence operation was initiated 

from the Embedded C software.  

A sub-system level OVM sequence layer is added to 

control the port level sequences.  It is responsible for 

generating more complex traffic scenarios that mix 

and control the traffic on each peripheral sequence. 

The sub-system sequence must be able to create 

conditions that are typical of the overall fabric and 

system operations. This sequence must manage, 

control and synchronize the activity of each 

peripherals port-level sequences instructing them to 

generate transfers with a wide range detailed 

operations.  This includes varying payload sizes, 

varying destination slave addresses, varying idle time 

between transfers and many others.  This approach 

evaluates performance of the fabric running various 

normal and heavy traffic scenarios to extract actual 

performance characteristics.  These are compared to 

predictions of architectural models acceptable system 

performance parameters.  If any traffic conditions 

which lead to performance degradation outside the 

acceptable range are identified, proper action can be 

taken.  

An advanced graph based solution was likewise 

deployed in the design of the sub-system level 

sequence to effectively manage and deterministically 

calculate that all of the important traffic scenarios are 

reached. 

Some of the more interesting and challenging aspects 

of this work will be discussed:  

 How to design highly configurable and 

adaptable port-level sequences  

 Designing the architecture of the higher-

level sequence and connection to the port-

level sequences it manages  

 Issues implementing traditional System 

Verilog coverage metrics in this type of an 

application  

 Instrumenting the fabric to evaluate 

performance under different traffic scenarios  



1. Introduction 

Verifying each master to slave connection on an 

AMBA fabric is a reasonably straight forward task. 

Verifying that each port complies with both the 

standard defined protocol and any user defined 

conditions at every Master and at every reachable 

slave will increase the complexity of the verification 

task.  Moreover, verifying the fabric will continue to 

function and maintain acceptable performance under 

normal and heavily loaded traffic conditions 

introduces several unique challenges.   

Normal fabric operations will include bus 

transactions from multiple masters being sent to 

multiple slaves.  Some masters may also have 

multiple transactions in flight.   

Defining and controlling transactions on the fabric 

from each of the master and slave ports in a real 

system using the particular protocol for each of those 

ports can be an intractable problem particularly when 

we seek a high level of synchronization and control 

of that traffic.  For example, it is not easy to send a 

packet to an Ethernet peripheral block and then 

predict with some precision exactly which types of 

AXI transactions might result much less on which 

clocks they will occur.  There are several 

dependencies on the state of the block such as buffer 

conditions and packets already in flight.  This can be 

further obscured by design specific implementation 

choices and register settings that are found in a 3
rd

 

party IP. Taking just this one peripheral example and 

its protocol into account, now imagine multiplying 

this across all the protocols found in a system.  

To solve this challenge, we replace those peripheral 

blocks with VIP models for the connected protocol 

giving us much more precise control and dependable 

operation. 

We then leverage this control to construct tests that 

mimic the normal flow of data from each peripheral.  

Then we model the normal and heavy traffic 

scenarios to match expected system operations.  

Verifying the functionality and performance under 

loaded traffic scenarios helps us determine there are 

no conditions that could lead to stalls or dead locks in 

the fabric, stalled Masters, stalled slaves or issues 

with performance degradation beyond tolerable 

limits. 

  



 

2. Environment 

The testbench environment is fully based on System 

Verilog and the OVM 2.1.1 library.  The environment 

also includes significant embedded C software 

running on the CPU that performs chip level 

initialization, driver operations and many test control 

and monitoring operations.   

There are a number of OVM based Verification IP 

(VIP) components that form the foundation of the test 

bench.  Coupling the embedded C software into the 

verification environment means the testbench is also 

tightly bound to the CPU.  Therefore, the CPU can be 

used to coordinate and check test bench activity.  

This is facilitated by a custom OVM based mailbox 

system with dynamic message passing.   

The VIP models receive transactions directly from 

OVM sequences launched by an API in the 

embedded C SW and/or OVM sequences launched by 

the test bench.  OVM Sequences launched by the 

CPU can include either directed tests, constrained 

random tests or more advanced sequences.  A block 

diagram of the environment is shown in Figure 1 

below.  Some details such as the CPU-TestBench 

communication system are omitted for clarity. 

Figure 1 – Block Diagram 

 

 

  



3. Beyond Constrained Random 

Constrained Random Verification or CRV has been 

proven to increase productivity and find bugs missed 

by directed tests.  Nevertheless there are limitations: 

- Users are responsible to define a reasonable 

set of random variables and constraints.  The 

definition of the variables and constraints is spread 

across many files.  This sprawling structure of data is 

difficult to create, difficult to visualize, difficult to 

analyze, challenging to refine and hard to assert any 

level of precise control. 

- Constraint solvers are proprietary and users 

are not assured of consistent results across simulation 

platforms. 

- Discovery of interesting or important corner 

cases are randomly discovered and are subject to the 

odds of random convergence of multiple variables. 

Random coverage of the defined coverage space is 

not efficient.  Some areas may be repeated many 

times before a new unexplored area is exposed. 

- Finally, successful CRV also requires 

development of coverage models to measure test 

effectiveness which can be extremely difficult. 

 

To overcome these limitations, we chose a graph 

based solution.  Specifically we address the 

limitations of CRV in the following ways.   

In order to address the coverage definition problem, 

we replace the random variable and constraint 

definition with an efficient and compact grammar 

that defines the coverage space in a single file. This 

file is compiled into a graph that makes it easy to 

visualize and analyze for correct and complete 

definition.  This comprehensive view of the 

functional space we intend to cover gives us feedback 

on the parameters that are covered and those that are 

intentionally left out, as well as out of band features 

that may be selectively enabled and covered.  Careful 

reviews of the graph can also give us feedback on 

any features of a protocol that we might have missed. 

An example of the grammar is shown in Figure 2 and 

an example of the graph it produces is shown in 

Figure 3. 

This solution can be ported to any simulation 

platform assuring us of consistent results without any 

dependency on the constraint solver of the simulator.   

Interesting and important cases are dependably 

covered efficiently without dependencies on random 

chance. 



Finally, coverage checking can be built into the graph 

and it can improve coverage closure efficiency by 

testing the complete scope of the protocol in a 

minimal number of simulation clock cycles.   Using 

this approach, we are assured that we cover the 

complete protocol space covering corner cases with 

high efficiency. 

 

 

 

Figure 2 – Protocol Grammar. 

 

 

Figure 3 – Protocol Graph. 

 

 

 

 



4. Testing Individual Ports and Paths of the 

Fabric.  

Testing individual ports with specific protocols must 

cover all aspects of the protocol.    Additionally, each 

master port must be tested to confirm that it can reach 

all accessible slave destinations.  The slaves 

themselves may support a subset of a protocol or 

even be a different protocol altogether from the 

Master.  For example, an AXI master could initiate a 

64 bit transaction to a 32 bit APB slave.  It is the job 

of the Fabric to split the original 64 bit transaction 

into 2x32 bit transactions and the test bench to track 

it. In this example the Master and Slave monitors 

report transactions based on the Master ID and Fabric 

ID using local scoreboards and analysis ports. A 

subsystem scoreboard subscribes to the local analysis 

ports for checking.  Details of this checker are 

omitted for brevity. 

The graph is used in the form of OVM sequence 

compatible with the VIP.  This works for most 

masters but the graph can also be used to generate 

calls to the embedded C API giving us the ability to 

use a consistent approach to test the AXI master port 

on the CPU connecting it to the Fabric. 

The graph based sequences can be used for protocol 

testing, path coverage and also generating high 

volumes of transactions.  The graph based sequences 

also have numerous parameters used to activate or 

deactivate supported features of each individual port 

instance. 

In addition to protocol and path tests, the graph can 

also be used to generate endless streams of traffic that 

can be controlled by the graph itself with a local 

perspective matching traffic expected from the 

normal peripheral the VIP has temporarily replaced.  

Moreover, the local traffic controls and parameters in 

the graph can be extended to an external graph with a 

system perspective where there is awareness of the 

traffic conditions on all other ports.  These controls 

give us the ability to define, control and synchronize 

the traffic conditions across the fabric. 

 

  



5. Traffic Synchronization and Control.  

The same principles that guide our choice of a graph 

based solution for bus protocols also apply to 

definition and control of traffic conditions. The local 

controls in each “protocol graph” that give the ability 

to shape traffic within that graph can also be 

dynamically controlled by this “traffic graph”.  

Examples of these controls include graph parameters 

such as the number of idle clocks between 

transactions, the size of data and number bursts in a 

transaction.  Graph parameters can be dynamically 

controlled to be a fixed number, a random range of 

numbers or a weighted random range of the numbers.  

Additional controls are added for synchronization.  

For example, a protocol graph can be instructed to 

conduct a single transaction and stop until instructed 

to run the next transaction.  It can be instructed to run 

specific numbers of transactions or run continuously 

until instructed to stop.  This gives the traffic graph 

several different ways to control traffic.  

Dynamically controllable graph parameters can be 

changed between transactions and even during a 

transaction at certain control points defined in the 

protocol graph.  For example, before a transaction 

completes, it could check to see if there are any 

updates to the number of idle clocks between 

transactions prior to completing the transaction. 

Most important, the traffic graph has the ability to 

simultaneously launch transactions on multiple ports 

that can be synchronized to start on the same clock. 

All these features can be used to produce any number 

of worst case scenarios to thoroughly examine the 

capabilities of the Fabric.  An example traffic graph 

is shown in Figure 4.  

 

Figure 4 – Traffic Graph. 

 

  



6. Modulating traffic. 

Making effective use of the graph parameters 

described above gives us the ability to control and 

shape or modulate the traffic at each Master port.  For 

example, the density of transactions can be adjusted 

to match the traffic conditions found on a peripheral 

that only has occasional traffic. 

Transactions can be queued and released on multiple 

ports simultaneously or staggered in a very controlled 

manner.  The size and type of transactions can also be 

controlled to match expected system operations.  For 

example, the bandwidth of a slow peripheral device 

will not generate the same amount of traffic as a high 

speed peripheral device.  Some peripherals may have 

very dense transactions for brief periods of time and 

then go quiet for a while.  Some may have constant 

high density transactions.  The shape of the traffic 

can be influenced by buffer sizes in the peripherals, 

the layout and arbitration defined in the fabric, 

bandwidth limitations at popular slaves like DDR, 

clock and clock ratio settings and interactions 

between multiple masters and slaves.  The traffic 

graph needs the ability to modulate traffic in a 

manner that matches normal system operations 

described above.  The protocol graph that is used to 

interact with the API in the embedded C also needs to 

implement the same level of control.  An example of 

modulated traffic control with a normal traffic 

scenario on three masters is shown in Figure 5.  Each 

box represents a series of nearly continuous bus 

transactions with very short (not pictured) idle cycles.  

A “heavy” traffic scenario would have more activity 

and less idle time between each series of transactions 

and an example is shown on Figure 6. 

 

 

Figure 5 – Normal Traffic Modulation Scenario 

 

Figure 6 – Heavy Traffic Modulation Scenario 

 

  



7. Tracking performance. 

In addition to coordination and control, there also 

needs to be instrumentation to monitor performance 

of the fabric.  We first check the “ideal” or unloaded 

latencies of each path to validate predictions of our 

architectural model.  Next we use our architectural 

models to predict latencies under normal traffic and 

heavy traffic conditions.  We use these predictions to 

define acceptable performance conditions.  

We then take full advantage of the traffic graph to 

develop very large numbers of normal and heavy 

traffic scenarios ensuring that each of them maintain 

basic operations and that performance does not 

degrade below acceptable limits.  Performance 

metrics include both bandwidth and latency. Basic 

operations and performance are monitored in flight 

with scoreboards used to track and report progress.  

 

 

 

 

 

 

 

8. Findings and Conclusion 

Using the graph based approach has improved design 

quality very early in the project.  Protocol coverage is 

reached efficiently and traffic analysis has already 

achieved good results improving the design of blocks 

connected to the fabric. 

The advantages versus constrained random have been 

proven.  Fabric and System-level coverage goals 

have been more easily defined and achieved. 

As this environment reaches maturity and small 

enhancements are added, our confidence increases 

that we have a fabric and a system that will operate 

correctly and that our system performance goals will 

be met. 


