
Graph-IC Verification 

  
 

Dennis RAMAEKERS 

 ST-Ericsson  

Grenoble, France 

dennis.ramaekers@stericsson.com 

 

Grégory FAUX 

STMicroelectronics  

Grenoble, France 

gregory.faux@st.com 

 

 
 

Abstract 

In this paper, we describe the application of graph-based 

verification techniques to a complex and highly 

configurable display controller IP block. The main 

challenges, the technology and the major benefits are 

developed, including the reuse at system level for basic 

connectivity verification and more complex system-level 

tests involving multiple IPs. 

 

Keywords 

Graph-based verification, test generation, vertical reuse, 

scenario model 

 

I. INTRODUCTION 

Highly integrated features and sophisticated processing 

capabilities are the factors driving today’s portable 

electronics evolution. The smartphone and tablet market 

explosion made the corresponding SoCs integration and 

complexity grow in an exponential manner. Who 

imagined just a few years ago that we would have 

advanced 3D applications on a mobile platform? The 

hallmark of these new devices is innovative architectures 

and processors combined with the increasing integration 

level and never-ending addition of sophisticated logic. 

These all contribute to making the devices harder to 

verify. 

Constrained-random verification, coupled with an 

appropriate standard methodology such as the Universal 

Verification Methodology (UVM), is the norm for IP 

verification today. Its major strengths are the automation 

for both stimulus generation and expected outcome 

computation, the ability to find unexpected corner cases 

and the reuse of material among multiple projects.  

 

 

However, the ability to describe and generate complex 

scenarios is still a challenge with this technology. 

Vertical reuse, meaning the ability to reuse materials 

between verification levels, is also an important issue. 

Consider these two reasons: 

 Logic complexity can be hard to manage at the 

IP level, but it is unrealistic for people working 

at the system level to acquire deep knowledge of 

multiple IPs. Knowledge and material sharing is 

crucial for productivity and quality. 

 There are increasing demands for system tests 

that go beyond connectivity checks. Those tests 

include the execution of partial or complete data 

flows that involve multiple IPs and reflect real 

use cases of the system.  

We begin by describing the challenges faced by ST-

Ericsson during the verification of a complex video 

controller, at both the IP and system levels. We then 

proceed to provide details of the graph-based verification 

technology. The application of this technology to our 

controller is developed. Finally, we expose the benefits 

we received and the limitations we faced. 

 

II. VERIFICATION CHALLENGES 

We will describe the complexity of the display engine 

and explain the verification challenges brought by the 

different video stream features. We will show the limits 

of a classic constrained-random approach as the 

verification solution and the difficulties associated with 

supporting derivatives. 

 

The role of the display engine is to compose pictures and 

send video streams to display screens using various 

output formatters. We can identify several stages within 

this flow where each stage has its own configuration 

capabilities and application-specific constraints: 

 A pixel fetcher stage that manages memory 

access and pixel fetching. It handles multi-layer 

picture data fetching and can handle up to four 

channels. 

 Video channels that handle picture composition 

and configurable pixel processing.  

 Output formatters that take pixels from a FIFO 

filled by the channel. They format the pixel 

stream for a dedicated display screen using 

different video protocols. 

 

 

mailto:dennis.ramaekers@stericsson.com
mailto:gregory.faux@st.com


 

Figure 1. An overview of the display processor 

For managing picture composition possibilities and 

supporting a wide range of possible video formats, 

additional features are necessary for pixel format 

conversion, resource management (such as input buffer 

or overlay configuration), flow synchronization 

(configured through multiple clock and synchronization 

modes) and communication with the external world 

(such as using interrupts). 

 

Crossing configuration parameters for each stage 

generates a large pool of possible configuration 

candidates. Crossing configuration possibilities within 

each stage multiplies the pool of possibilities and 

quickly becomes unmanageable with numerous corner 

cases that are hard to identify. Adding the temporal 

possibilities with highly configurable synchronization 

modes makes the verification space explode and it 

becomes a nightmare to handle the pattern generation 

space in a generic non-directed way. 

 

 

Figure 2. An overview of the testbench 

 

Previously we verified the controller using a testbench 

based on e code and the associated eRM methodology 

for stimuli generation, results checking and coverage 

collection. These elements were coupled with a C 

reference model called during simulation. This model 

provided the expected outputs based on the design-

under-test (DUT) configuration and incoming data.  

 

 

The classic constrained-random approach can help with 

this list of possible configurations but it quickly reaches 

limits, especially with coverage collection and relevant 

configuration generation:  

 The coverage collection database explodes when 

trying to cross all configuration possibilities.  

 Configuration sequences require hundreds of 

registers writes that need to be described in a 

simple way. These are dependent on multiple 

generated fields. 

 Random pattern generation needs to be highly 

constrained to ensure the relevance of the test 

cases generated. There are very strict steps in 

sequence generation that have to be enforced. 

This results in a huge number of interdependent 

constraints between each aspect of configuration 

and decreases the flexibility of random 

generation. This also impacts the ability to reach 

many corner cases and makes environment 

update and maintenance difficult. 

 Resource management, especially resource 

allocation such as overlays or input buffers, 

becomes tedious due to the high configurability 

of the IP. This is especially true when resources 

are allocated or freed dynamically. 

 

It is the multiplication of configuration possibilities at 

each stage that becomes hard to manage in a random 

generation context. A huge number of items that are 

strongly linked to each other must be generated. In such 

a complex generation space, the verification engineer 

loses controllability and visibility of the testbench. 

Making things worse is the fact that multiple engineers 

were involved in the creation of each part of the 

verification environment and each part needs to be 

compatible with each other for system-level verification. 

In this case, seven people worked on the IP over time 

through different projects. Nobody had a complete view 

of the environment, which caused knowledge transfer 

issues and made it difficult for new engineers to ramp up 

on the project. 

 

Other consequences of the lack of visibility and 

controllability were test implementation difficulties and 

tricky debug sessions. The user could not easily describe 

new tests because there were a lot of parameters to 

define and generation contradictions were often raised 

because of the interdependencies. As the configuration 

parameters were distributed and tightly linked to each 

other, debug was difficult on both sides. On the RTL 

side it was because of the number of cross-configuration 

possibilities, and on the verification environment side it 

was due to the constraint network applied to pattern 

generation. 

 

Pixel 

Fetcher 

FIFO Channel 

Register & 

Interrupts 

Ext 
Src 

MEM 

Ext 

Src 

Channel FIFO 

Pixel 

Fetcher 

FIFO Channel 

Register & 
Interrupts 

Channel FIFO 

eVCs + 
Memory 

eVCs + 

Scoreboards 

C 

Model 
Configuration 

Scenario 

Handling 



The complex interdependencies meant that the 

verification environment created is tightly linked to the 

specification of the IP. This made horizontal reuse for 

several IP versions difficult. IP evolves with SoC 

evolution and each project requires new features, 

variants of existing features or removal of others. As 

configuration and sequence generation is dependent on 

several features of the IP, due to the interdependencies, 

changing, removing or adding a feature can result in a 

significant update to the environment. Reusing IP on a 

new project often required code duplication, significant 

adaptation of existing parts, and parallel maintenance for 

multiple versions. 
 

As expected these difficulties were compounded at the 

top level. The complexity of configuration parameters 

and sequences was high and we were unable to benefit 

from IP experience due to the differences in verification 

approaches. Having constrained-random sequences is 

not directly transposable to a C-code execution flow 

such as the one used for system top-level verification. 

For vertical reuse we had put in place a mechanism that 

probed configuration data at the IP level and transformed 

it into something useable for the system-level 

verification team, but it still needed a lot of support and 

was not flexible. 

 

We decided that to improve the verification environment 

and find a better solution to tackle the problems outlined, 

we had to consider a new approach. A graph-based 

verification flow appeared to be a promising technology. 

This would enable a platform-agnostic application with a 

more natural way to describe configuration and scenario 

goals. The tool was expected to bring about clarity in 

constraint definition and also to enable vertical reuse 

between the IP and the system-level verification teams.  

 

III. GRAPH-BASED VERIFICATION 

A. Technology outline 

The solution to be described is the one proposed by 

Trek, a Breker Verification Systems tool. It makes use of 

a directed graph, which can also be cyclic. The graphs 

are composed from three kinds of node (also called 

goal). Using the three node types, the user expresses the 

way the graph walk, or evaluation, happens. A leaf node 

has no children. It corresponds to any vertex with no 

outgoing edge. The two other node kinds, called select 

and sequence nodes, have an arbitrary number of 

children. For a select node, one of the possible edges 

will be selected and the corresponding subgraph 

evaluated. For a sequence node, all subgraphs are 

evaluated in order. 

 

 
Figure 3. A simple graph with two possible walks 

 

Figure 3 shows a simple graph. seq1 is a sequence node, 

and its two children, namely seq2 and leaf1, are 

evaluated in that order. seq2 is also a sequence node that 

will evaluate sel1 followed by leaf node leaf2. sel1 is a 

select node, meaning that only one of its children, leaf3 

or leaf1, will be evaluated. Therefore there are two 

possible paths for this graph, corresponding to the two 

following sequences: (seq1, seq2, sel1, leaf3, leaf2, 

leaf1) and (seq1, seq2, sel1, leaf1, leaf2, leaf1). 

 

Graph traversal relies on a random evaluation of each 

select node’s subgraph. The random mechanism uses a 

seed that guarantees the reproducibility of the generated 

scenarios and configurations. Thus, the users will run 

multiple tests with different seeds to cover their scenario 

and configuration space, but one given seed will lead to 

the same branch choices and variable generation. 

 

Additional capabilities are provided that influence node 

sequencing. A weight may be assigned to any select 

node’s subgraph that would modify the probability of a 

child being selected. Similarly, a repeat value can be 

assigned to any child of a sequence node. This 

corresponds to the number of times this child is 

evaluated before the next node is considered. The default 

value for repeat and weight is one. A value of zero is 

allowed for both. A child with a zero weight is never 

chosen. A child with a repeat value of zero is never 

evaluated. 

 

We can also apply constraints to the graph walk. 

Constraints can be applied to the children of select 

nodes. Possible constraints are forcing and masking. 

When a child of a goal is masked it will never be 

evaluated. This corresponds to a weight of zero. On the 

other hand, we can force a path in order to direct the 

graph walk. When a child of a select node is forced, it 

will be systematically chosen for evaluation. This 

corresponds to setting the weight of the other children to 

zero. The mechanism of mask and force can be applied 

statically or applied and removed dynamically. Users 

may constrain all instances of a given goal, only 

instance(s) from given subgraph(s) or mask instance(s) 

upon a selected node evaluation. 



Concurrency is mandatory to cope with the parallel 

nature of hardware design and verification languages 

(HDL/HVLs). This is possible as any subgraph can be 

declared as a thread, with possibility to stop/resume at 

any time. Thanks to that, multiple subgraphs can be 

evaluated simultaneously.  

 

B. A closer look at the syntax 

The graph is captured using a Backus-Naur Form 

(BNF).The following code describes the three nodes of 

Figure1. 

goal leaf1; 

goal seq1 := seq2 leaf1; 

goal sel1 := leaf3 | leaf1; 

 

In addition, the user can specify a C++ function for each 

node. This corresponds to the actual node evaluation and 

is executed before its subgraphs are evaluated. This 

method has multiple applications: 

 Enabling arbitrary logic computations for the 

evaluation of goals. This also allows the 

argument list to be modified 

 Changing the default order of evaluation (body 

then subgraph) by explicitly calling the subgraph 

evaluation 

 Calling to a reference model of the design 

 Interfacing with an existing testbench (e, 

SystemVerilog, SystemC, Verilog) for VIP 

configuration, event waiting, method calls, data 

injection or grabbing 

 Writing C code, input data or expected results 

files in the scope of test generation for system 

level 

 

Those last two applications are important to understand 

because they are enablers for reuse across multiple levels 

of verification. Conceptually there is a split between a 

first set of goals that is platform agnostic (common 

between all verification stages) and a second set that is 

tightly connected to the platform. Examples of such 

goals are register read and write, wait for event (such as 

interrupt) and testbench component access.  

 

Consider the example of a register write. At the IP level, 

we made usage of FIFOs to communicate between the 

graph and existing e-based environment. This is the case 

here: the graph sends its requests on one side and the 

corresponding VIP gets its operations from this FIFO: 

goal write_reg (address, data) { 

   var txn; 

   txn["address"] = address; 

   txn["data"] = data; 

   // Direct call to goal portSend 

   :portSend ("REG_WR", txn); 

} 

 

Our SoC verification environment relies on C tests 

running on embedded CPU(s). Therefore, the outcome 

of the graph evaluation should be C code. Our register 

write goal simply dumps the required code in our test 

file: 

goal write_reg (address, data) { 

   // Retrieve register name from address 

   var regName = :get_reg_name(address); 

   // Dump to C test file 

   ::log(“&MCDE+",regName,”=",data,";"); 

} 

 

A generator node (declared using the generator keyword 

instead of goal) is the root of a subgraph whose 

evaluation can be blocked anytime thanks to a wait() 

action. When reaching a wait point, the subgraph 

evaluation is held and returns to the parent of the 

generator node in order to continue further. Thus, graph 

execution continues even though the subgraph held by 

the wait action is not completed yet. The wait state will 

be released when the generator node is called again or 

when a specific call to the held thread is done using a 

dedicated primitive, called next(). As already stated, 

generators permit implementing multiple parallel threads 

and managing interaction with the testbench. 

 

Any node body method and subgraph can be redefined, 

the last definition load being the one used. This allows 

extension of existing graphs in a non-intrusive manner. 

Applications are multiple: graph reuse across projects 

and across platforms, specific test definitions, etc. 

 

C. Modeling with a graph 

When formulating a graph, the user starts with a node 

representing the desired outcome of the graph 

evaluation, that is, the verification intent(s). The 

challenge is to decompose this functional intent into a 

set of subgraphs that will generate the required stimuli to 

achieve this functional intent together with the expected 

outcomes of the design.  

 

What was a high-level node in this graph is likely to be 

used as a subgraph within a higher-level verification 

scenario where multiple IPs are combined, or for a 

directed scenario that might be created for performance 

or stress testing. This compositional process is further 

developed in the following section, based on the 

controller example. 

 



IV. APPLICATION ON OUR CONTROLLER 

The original e environment was presented in Section I. 

We decided to introduce the graph-based technology for 

the scenario and stimuli generation. This choice was 

obvious: it leveraged large parts of our existing 

environment while improving its flow. This introduction 

also enabled vertical reuse for connectivity checking at 

the top level. A diagram for the resulting testbench is 

provided in Figure 4. 

 
-

 

Figure 4. The part handled by the graph 

 

Shown below is the BNF for a simplified graph for one 

video channel of the controller. The corresponding 

visualization is shown in Figure 5. 
 

// Repeat between 1 and 3 video streams 

goal testChA  := testCh:1,3 

{…} 

// Stream handling modeled as a sequence 

goal testCh := selFifoItf 

               genChnl 

               enableChnl 

               processFrames 

               disableChnl 

{ 

   // Force the subgraph walk 

   … 

   // Unlock resources  

   … 

} 

// Select/configure out FIFO and video itf 

goal selFifoItf := selectFA | selectFB; 

// Out FIFO A only connects to interface 0 & 1 

goal selectFA := itf0 | itf1;  

// Out FIFO B only connects to interface 0 & 2 

goal selectFB := itf0 | itf2; 

 

goal itf0{ 

   // Once an interface is selected, mask it   

   // so that the other channel won’t use it 

  … 

} 

// Select/configure a channel 

goal genChnl := genOvl 

                genPixProc; 

// Select/configure overlay(s) 

goal genOvl; 

// Generate pixel processing pipeline config 

goal genPixProc; 

// Enable channel 

goal enableChnl; 

// Process video stream 

goal processFrames := waitINT 

                      waitFrameEnd; 

// wait frame interrupt 

goal waitINT := wait_event 

{…} 

// Wait Frame end from VIP 

goal waitFrameEnd := wait_event 

{…} 

 

Several interesting features are addressed here, such as 

locking resources (in itf0 leaf node), channel 

reconfiguration (repeat applied on testCh), and a 

connection to the e testbench (via FIFO in the 

wait_event node). Overall, this graph models the use of a 

channel and the related generation aspects. 

 

 

Figure 5. Visualization of the channel graph 

An important requirement associated with the 

verification of the controller is the ability to generate C 

code for system-level tests. The graph is evaluated to 

generate a C test file, memory initialization file(s) and 

expected output file(s) for post simulation checking. 

This relies on the redefinition of nodes that were tightly 

connected to the platform as already explained in 

Section II.B. The process is illustrated in Figure 6. 

 

Pixel 
Fetcher 

FIFO Channel 

Register & 
Interrupts 

Channel 
FIFO 

eVCs + 
Memory 

eVCs + 
Scoreboards 

C 
Model 

Configuration 

Scenario 
Handling 

Handled by 
the Graph 



 

Figure 6.The C generation flow 

The first application of this code generation capability 

was the creation of the connectivity checking tests. The 

natural extension of this first test generation is the 

possibility to compose multiple IP graphs to generate 

more interesting test cases when combining multiple IPs 

at the system level. This is a way to exercise complex 

and realistic data paths through the system. While the 

automation of integration test creation is valuable, 

generating these system-level tests would be a 

productivity breakthrough. 

 

 

Figure 7. Graph combining multiple IPs 

The test resulting from the Figure 7 graph traversal will 

generate an interesting system-level use case of a video 

data flow. Multiple entities will be involved during this 

test. Each one may apply several constraints. For 

example, the internal display and the external one 

(typically a TV) may not support the same video format 

or resolution, or will not require the same kind of video 

processing. Similarly, both decoders will not support the 

same kind of encoding format. Those differences will 

constrain the selection of the encoded video stream. 

 

Since they involve multiple IPs at the same time, our 

generated C tests must also handle the CPU resources 

sharing between them. In other words, our C test, 

running directly on our CPU without any operating 

system, should execute each IP code in a multi-threaded 

manner. Let’s take the example of an IP scenario waiting 

for an interrupt triggering. The corresponding C code 

cannot afford to wait actively for it. Instead, it should 

stop execution, allowing the CPU to run another IP code. 

The C test guarantees that our IP code will be resumed 

upon IT triggering. To ease such a test generation, the 

solution is delivered with a top-level graph library and 

the associated methodology. All IP graphs should be 

hooked to this top-level graph and use several predefined 

leafs. 

 

V. RESULTS 

Applying a new methodology on top of an existing 

environment is not the easiest way to upgrade. But it 

enabled us to measure the effectiveness of this 

methodology and to enjoy the benefits of the problems 

that were solved. 

 

The first obvious improvement brought by the graph-

based approach is clarity in scenario and configuration 

generation. Even if the description is still done using a 

programming language, the approach for structuring the 

configuration and scenario elements is still close to 

drawing the scenario on a whiteboard. It forces you to 

start with a high-level idea (the verification intent) and to 

refine it into additional levels of detail. The graph 

methodology helps you to separate problems and to use 

a step-by-step approach for the creation of 

configurations and scenarios. Building this tree ensures 

readability and clarity. This is helped by displaying the 

tree in a graphic manner: each node clearly corresponds 

to some features or scenario elements, and choices 

between branches are easy to follow up. The model 

execution starts with what you want to test, and you 

constrain the graph walk to reach the final scenario you 

want. This way you will easily get all of the elements 

required for your test. 

 

The generation flow is both more readable and more 

controllable. Having the complete configuration and 

scenario elements split into sub-parts and having an 

intuitive structure that enables you to reach each node, 

allows the user to easily apply constraints for graph 

crossing and for the generation of values for the 

configuration fields. Each feature will have its own 

branch (or sub-tree). This structure also allows having 

fewer global constraints and by the way reduces the 

interdependencies between the parts. 

 

Having the scenario and configuration generation graph 

viewable, in a user-friendly way, enables newcomers to 

ramp up quickly. It is easier to explain and to understand 

the feature configuration when it is described step-by-

step with a natural sequencing as it is in the graph. It is 

also easier for understanding how to build a complete 

scenario. Indeed, you will start describing the scenario 

with the end goal in mind and go through the graph with 

only the branch choices you need or want.  

 

 



This last aspect enables easy scenario description. We 

were able to quickly generate different sets of test cases. 

We started with very simple cases for a basic and sanity 

test suite, and we were able to rapidly add other test 

cases which exercised additional features. At the end we 

ran tests with an “everything is possible” aspect, leaving 

the configuration as random as possible, but having a 

step-by-step test suite with gradually increasing 

complexity permitted us to separate problems and to 

have well-identified debug areas. 

 

One other aspect brought by this more user-friendly 

description of the scenario is easy access to the 

information. It helps during debug session as it provides 

a clear view of the scenario. As there are fewer 

interdependencies, the debug context can be reduced and 

the user can focus on relevant aspects of the scenario or 

the configuration. Moreover, during debug sessions the 

user can add some temporary constraints for failing test 

simplification which aim at reducing the debug area 

further. For example you can disable one specific feature 

and check the effect. If the test continues to fail in the 

same way you can continue debugging without losing 

time on the now-disabled feature. Of course this is also 

possible with a classic constrained-random approach, but 

given that all you have to change is one branch selection 

it is really easy and well identified. Adding similar 

constraints in a full constrained-random environment 

may influence several parts of it, especially when there 

are a lot of interdependent constraints. 

 

These statements might seem a bit subjective, but they 

are shared by the people who worked on this project. 

Let’s consider some more concrete advantages to get a 

better idea about the gains this methodology has brought 

us. 

 

The controllability on scenario generation brought by the 

tool permitted us to describe some test cases that we did 

not run on previous versions and to re-write existing test 

cases leading to environment dead-ends. Some 

additional complex scenarios could be run and thus filled 

in the holes in our test suite. This is especially true for 

multi-channel tests with channel or resource on-the-fly 

reconfiguration that were very tricky to handle in our 

previous environment. We can distinguish five test 

families that were improved or created thanks to the 

graph approach:  

 Overlay on-the-fly reprogramming 

 Error tests 

 Complex reconfiguration scenarios 

 Channel reset feature 

 System memory boundaries crossing for huge or 

non-aligned overlays 

 

As explained in Section III, the result of a graph 

evaluation can be exploited in different ways. At the IP 

level we use the output of the graph for driving some e 

code, and the same output data can be exploited for 

generating some C code. This permits us to constrain the 

graph for a specific walkthrough and to replay the same 

scenario and configuration at either the IP or top level. 

This step was really important and was the enabler for a 

real test case exchange between IP and top-level 

verification teams. Instead of reworking log files 

generated after a tedious specific test case writing, we 

could define precisely some graph constraints and share 

with both teams. 

 

One additional discovered benefit was the capability of 

easily reusing an existing graph for different projects. 

With a graph you can over-constrain some parts or over-

write some goals to obtain a variant of the graph that 

could fit other IP versions. Typically between IP 

versions you will have different numbers of channels, 

some new pixel processing methods or removal of 

others, or different number of resources (buffers, 

overlays, etc.) By describing one graph that supports all 

of the possibilities, we could capitalize on a common 

description that can be reduced for each version. We 

were able to split the environment into a “common” part 

and a “project” part. The common part is shared by all 

projects (i.e,. all different IP versions verified in 

parallel). It supports all the IP features with all 

configuration possibilities. The user will then configure 

the environment in the project part to match the current 

version of the IP. 

 

 

Figure 8. Code lines count 

 

To give an idea, Figure 8 represents 650 goals for the 

common part and 80 goals in the IP specific part. 

 

This really accelerated the environmental setup for a 

new IP version. It also assists with maintenance: the 

more you put in common, the less you have to duplicate 

or rewrite between projects! Currently, an environment 

setup for a new IP version usually takes less than two 

weeks.  

• Original testbench: ~28000 e code lines 

• New testbench: 

2000 3500 IP specific 

8500 10000 Common 

Graph e code 

2000 3500 IP specific 

8500 10000 Common 

Graph 



This is a big step forward in execution efficiency 

compared to the time previously needed (more than one 

month for having the e code and the C model working 

together!). It permits us to quickly benefit from existing 

parts for the new hardware configuration of the IP.  

 

 

Figure 9. Setup time gain with the new environment 

 

Thus, the verification engineer can rapidly focus on new 

features or updates, parts that contain most of the bugs in 

the new version. 

 

We have been surprised by the RTL bugs found thanks 

to this new environment. Indeed, re-writing some feature 

configuration permitted to have cleaner configurations. 

Applying previously existing scenarios but using the 

new environment made us find some unexpected bugs. 

For example, the programming of a highly configurable 

output formatter was under-exercised due to too many 

interdependent constraints. Only a subset of possibilities 

was previously exercised on this formatter and thus hid 

some bugs. To conclude, application of this graph-based 

approach permitted us to also improve quality regarding 

the IP functionalities. 

 

VI. CONCLUSION 

We have shown a representative application of graph-

based verification for scenario and stimuli generation for 

a complex video controller IP. We also developed the 

capacity to reuse the scenario model for generation of IP 

integration C tests at the system level. The possibility of 

generating tests to exercise dataflows of multiple IPs has 

also been addressed. The resulting benefits were a more 

readable testbench, which is easier to maintain, shorter 

debug sessions and increased quality of the IP. 

 

VII. ACKNOWLEDGEMENTS 

Thanks to Adnan Hamid, CEO of Breker Verification 

Systems, for his help in this project. 

 

 

Setup  
time 

Original TB New TB 

Weeks 

5 

1 

4 

3 

2 

Setup  
Time 

Original Testbench New Testbench 

Weeks 

5 

1 

4 

3 

2 


