How I Learned to Stop Worrying and Love
Benchmarking Functional Verification!

Mike Bartley

Test and Verification Solutions
SETsquared Business Acceleration Centre
University Gate East, Park Row

Bristol BS1 5UB, ENGLAND
mike@testandverification.com

Abstract

This paper describes the 'Functional Verification
Capability Maturity Model' (FV-CMM), a benchmarking
process to help users measure the maturity of their
verification processes and provide a framework for
planning improvements.

The most unique feature of the FV-CMM is a well
defined methodology linking required capabilities to
actual project practices and then quickly identifying the
major issues. This is described in the main body of the
paper which also describes how the reviewers can then
measure process maturity as one of five levels, each
corresponding to a clear step in maturity. This allows
benchmarking to classify all capabilities into distinct and
meaningful categories even without having quantifiable
metrics.

Finally the paper describes how benchmarking results
may be validated and then used for planning verification
process improvements.

Keywords
Benchmarking, Functional Verification, FV-CMMI

Introduction

We are all aware of the need to measure and improve
our functional verification processes but getting to grips
with benchmarking is actually incredibly difficulty. This
paper describes the 'Functional verification Capability
Maturity Model' (FV-CMM), a benchmarking process
developed by TVS that helps the user to measure the
maturity of their verification processes and provides a
framework for planning improvements.

Mike Benjamin

Associate at Test and Verification Solutions
SETsquared Business Acceleration Centre
University Gate East, Park Row

Bristol BS1 5UB, ENGLAND
benjamin@testandverification.com

The first thing to consider when starting any activity is to
clearly define its purpose. Functional verification today
faces ever growing challenges. Some are technical
resulting not only from the increasing complexity and
decreasing timescales of projects but also the need to
embrace advances in functional verification technology
to remain competitive. Others result from business or
organisational changes such as the acquisition or loss of
key teams, a move to multi-site working, or a change in
the target market such as a decision to move into
automotive products. In all these cases we needed to
understand how our customers would benefit from
applying benchmarking. We identified a number of key
aspects:

1. Itis essential not only to meet today’s
challenges but anticipate the future. We
sometime see companies that are in crisis
because their management has been
effectively ambushed by this constant march
of technology. Companies need a process that
can give them a clear warning before things go
wrong!

2. Functional verification requires a vast amount
of resources of all kinds: people, machines and
EDA licenses. Even more importantly it has a
major impact on project timescales. Yet often
engineers and management in companies
have very different perceptions of current
capabilities and fail to identify or address key
areas of weakness.

3. A process of continuous improvement needs a
shared ‘language’ and framework that can be
used to identify issues, then define, prioritise
and monitor tasks. This is a key requirement
for companies to ensure they will continue to
be able to meet future verification challenges.

Over the years there have been numerous attempts to
develop benchmarking methodologies. One approach is
to measure progress against known metrics or
roadmaps such as the International Technology
Roadmap for Semiconductors. This can be very useful
for looking at a specific aspect (Meeth, 2010) but the
focus on specific aspects with defined targets tends to
result in losing the ‘big picture’. Alternatively one of the
most widely used methodologies is the Capability
Maturity Model (CMMI) (Carnegie Mellon University
Software Engineering Institute, 2010). Whilst aimed at
software engineering it provides a framework that is
widely applicable to most business activities. However,
whilst we draw considerable inspiration from CMMI, by
trying to provide a general purpose framework it, out of
necessity, has a number of serious limitations when
trying to use it to benchmark a highly specific activity
such as functional verification:

1. The CMMI is relatively abstract and does not
address domain specific ‘capabilities’, yet
these are at the heart of effective functional
verification®

2. Deploying CMMI is actually quite an involved
process that takes considerable time and
expertise. Even reading the specification is
quite a lengthy business. Our experience
suggested that this was a major barrier to
adoption.

3. Function actually follows form. The capabilities
of teams are largely shaped by their
organisation and practices. Imposing a rigid
benchmarking process can over time distort an
organisation and prevent necessary change.

Much the same observations have been made
independently by other industry experts (Foster &
Warner, 6/2009). For the above reasons we aimed to
develop a more specific, but flexible and light-weight
process dedicated to benchmarking functional
verification. The FV-CMM is a framework that provides a
light weight solution for benchmarking functional
verification capability which can provide:

e Anintegrated view of the organisation from
the viewpoint of functional verification

e An objective benchmark for measuring the
maturity of functional verification activities

e Aframework for process improvement that
can help management define goals and
priorities

! For this reason software testing has developed
the domain specific "Test Maturity Model
Integration’ (TMMi)

Whilst it has some similarities to the ‘Evolving
Capabilities Model’ Foster and Warner proposed it has a
unique approach to decomposing capability in a ‘top
down’ fashion and then evaluating maturity ‘bottom up’.
The rest of this article describes the three key elements
of this benchmarking process: capability, maturity and
the actual benchmarking process that TVS adopts. It also
shows how the methodology can make the link between
a high level view of capability and the specific
verification activities being undertaken on actual
projects.

Capability

The FV-CMM benchmark has a hierarchical structure
that starts by breaking capability down into key process
areas such as 'functional verification planning and
scenario creation'. These can be customised for each
client as a company developing interface IP will face
different challenges to one developing CPUs or doing
SoC integration. The process areas may also change over
time as companies evolve and technology continues to
develop. The only requirement is that each should have
a clearly defined purpose and a clear impact on
functional verification. We have so far defined 13
possible process areas ranging from ‘functional
verification planning’ through ‘metrics, coverage and
closure’ to ‘reviews’. These are not abstract ideas but
specific capabilities required for effective functional
verification. They generally fall into two groups:
methodology being the body of principles and practices
used to solve tasks and process being a series of actions
or operation that produce a specific service or product.
Two of the process areas are of particular interest as
they do not directly refer to functional verification. One
is ‘specification and design’ which is the bedrock on
which functional verification is built whilst the other,
‘organisational capability’, addresses the need to learn
and adapt.

Each process area in turn consists of a set of specific
goals (eg: ‘ensure the integrity of the code base’) and
practices (eg: ‘all tasks should have an agreed
completion date’) that capture key requirements (the
“what”). For example in the case of ‘specification and
design’ the specific goals and practices for functional
verification are:

e Give the verification team visibility of the
architecture and micro-architecture corner
cases

e Make the design 'verification friendly'

e Make the design stable to ensure verification
isn't trying to hit a moving target

These in turn are broken down into example actions and
activities that address that issue (the “how”). These are
not intended to be exhaustive but do serve to connect
the abstract framework to concrete actions. For
example design stability includes ‘checking whether the
project enforces a process of successively freezing the
RTL'. This structure can easily be customised to the
specific needs of different application domains, different
design styles or different companies. The resulting
framework can be captured on a single spreadsheet, as
partly illustrated in Figure 1.

5 System level testing

5.1 The purpose of each test bench should be
clearly identified

5.1.1. The purpose and the scenarios to be reached
by each test bench are clearly identified. The purpose
must consider the appropriate level of testing for the
various scenarios (e.g. integration with other IP,
software debug features, low power features,
performance validation via benchmarking)

5.1.2. Regression testing, using appropriate
scenarios and checkers, is used to validate bug fixes and
ensure errors are never reintroduced.

5.2 Validate key capabilities essential to early
deployment

5.2.1. Architectural verification tests will fully cover
the architecture but be design neutral. Device
verification tests is design specific.

5.2.2. Tests are self checking to run on multiple
platforms including simulation, emulation, FPGA and
silicon

5.2.3. It is possible to determine that the checking
mechanisms employed by the test bench are sufficient.
That is, they are able to detect any bug uncovered by the
stimulus.

5.3 Demonstrate the ability to execute key
software programs

5.3.1. The verification will include executing software
such as operating system bring up and running key
customer applications (where practical). The software
will also be run in the presence of hardware irritators.

Figure 1: Part of an FV-CMM framework

Maturity
When evaluating maturity we consider three aspects:

Ownership: this can vary from tasks, tools and
expertise being specific to named individuals
to ownership being shared across the project
or the entire company wide community. This
corresponds to the level at which: adoption
has occurred, decisions are made, or support
can sensibly be requested. This also reflects
the process for continuous improvement that
can vary from best practice being owned by
individuals who implement improvements in
an ad hoc fashion to institutionalised fact
based learning.

Visibility: this can vary from undocumented,
with no external input, to living
documentation with quantitative metrics and
full involvement of the stakeholders. It is
related to three aspects: the availability of
documentation, the use of metrics for
measuring progress and quality, and the use of
reviews.

Execution: this can vary from ad hoc working
where completion is never checked to a
repeatable process permitting planning and
fact based continuous improvement. Typical
characteristics of a repeatable process are
documentation and automation.

The maturity of each aspect is defined as being at one of
five possible levels. Each of these levels corresponds to a
clear step in maturity. These are:

Initial: Processes are typically ad hoc and
applied incompletely or on a best effort basis,
especially in times of crisis. Goals are often not
satisfied. Processes are typically not
documented or otherwise made repeatable
and best practice remains in the ownership of
individuals rather than being captured by the
organization. Verification planning is either not
performed or is performed and not
documented, or plans are incomplete and not
maintained once written. Stakeholders are not
normally involved in the planning.

Managed: The processes are performed
consistently and the goals are satisfied.
Processes are owned and aligned at project
level. They are automated, or otherwise
repeatable, and will serve to locally capture
best practice. However there are few specific

checks on the capabilities of tools and
processes. Initial verification planning is
performed and documented but the plans are
not maintained. Metrics are used to
demonstrate progress (scenario completion,
code coverage, bug rate) but not to check that
the plan has been implemented. The status of
the work is only visible to management at
defined points and the predictability of
verification completion is weak.

Defined (also known as ‘Planned’): The
processes are planned in conjunction with the
relevant stakeholders. Implementation is
adequately resourced. The verification plan is
either maintained over the life of the project
oris a living plan. In either case there are
checks or coverage metrics allowing the
results to be monitored and reviewed. The
capability of specific processes and tools is
reviewed qualitatively to ensure good
alignment with tasks. The predictability of
verification completion is strong. Best practice
is consistently shared across projects.

Quantitatively Managed: The organisation is
using metrics and profiling. Living
documentation ensures full visibility at all
times and ensures the widest possible
involvement of stakeholders in the verification
process.

Optimising: The organisation practices fact
based learning and continuous improvement
at an institutional level using data collected
across the organisation and projects.
Quantitative metrics are used for both
coverage closure and continuous
improvement of product, tools, process and
organisation.

Process maturity, as summarised in Figure 2, is not a
substitute for skilled and dedicated Engineers. However
they will be greatly helped by ensuring that process
maturity is appropriate to the current needs of the
organisation. A start up or skunk works project with a
small team of experts may be best served by having an
initial process maturity. But as organisations grow
increasing process maturity will make the work of those
individuals more predictable and repeatable, and make
it easier for the organisation to learn from best practice.
And it is often fast growing companies undergoing
organisational change that most urgently need to
address their process maturity.

Initial Managed Defined Quantified | Optimising
Individual Project Project Community Company
Q .
£ Team Stakeholders wide or
[4 or ad hoc institutionalise
g groups of d
g projects
Not Documents | Maintained Living docs. Data
document | incomplete docs. Quantified integrated
ed. or Continuous quality across the
g' No unmaintain tracking metrics. organisation.
3 reviews. ed. against
) No Point quality
> metrics. reviews. metrics.
Progress
metrics.
Ad hoc Tasks Tasks Quantifiable | Quantifiable
performed | planned and | metrics used | metrics used
but implemented | for coverage to drive
g completion ina closure and continuous
= not systematic release improvement.
3 explicitly fashion. determinism
Q checked Check
w completion of
planned
tasks.

Figure 2: Process Maturity

Process

The process areas are largely fixed but no ‘one size fits
all’. The specific actions and activities are often
organisation, time or even project specific. Hence the
first step in applying the FV-CMM is to customise the
framework to the target organisation and its objectives.
This allows the benchmarking to reflect the needs of the
organisation. The results of are then captured in a single
spreadsheet.

Evaluation against the FV-CMM benchmark proceeds
‘bottom up’ using the example actions and activities to
structure evidence gathering. This typically takes the
form of in depth interviews with small groups of key
project or department staff including verification
managers, design managers and project managers as
well as key verification experts. The interviewers work in
pairs with one acting as the interviewer and the other as
the recorder, though they can swap roles. This helps
maintain the pace of the discussion and makes it easier
to ensure all topics are adequately covered.

To ensure a productive discussion it is important to
engage participants by keeping questions ‘open’ and not
forcing the discussion to strictly follow the structure
used in the benchmarking spreadsheet. The interviewers
may instead engage the participants by approaching the
issues in different ways, for example by asking about key
themes such as ‘the main sources of complexity in the
project’ or ‘release determinism’. The answers will then
be mapped back into the benchmarking framework.

The results of the interviews can in turn be backed up by
reviewing project documents and data but this differs in
subtle ways from an audit. Here the intention is to
facilitate discovery and draw out the collective
knowledge of the team rather than enforce practices.

The observations are recorded and validated by being
fed back for comment to the interviewees and other
relevant staff. The reviewers then use their expertise
and this evidence to ‘score’ the maturity of each of the
three key aspects of ownership, visibility and execution
for the associated goal or practice. Overall maturity is
then evaluated based on the maturity of the three
component aspects. Rather than impose an arbitrary
algorithm we make this a subjective process, the only
restriction being that the overall rating can’t exceed the
range set by the individual aspects, hence three wrongs
can’t make a right! The results for the individual goals or
practices are in turn used to guide the overall evaluation
of each process area.

All the results are captured in a single easily accessible
spread sheet and can be made even more visible
through the use of spider graphs to present the key
results. This is illustrated in Figure 3 which shows the
top level results from an actual project. This visual
representation facilitates both reporting the results to
management and also presenting results back to the
project teams.

Verification Workflow Maturity

1 Specification and design
13 Organisational 5 - 2 Functional Verification

Capability AT~ “Planning and Scenario...
1z Rewiews 4)/,\\ .. » 3 Block leveltesting
PR =y
11 su,gtrackilg\‘i b K ') 4 Top level stress tasting

1 R

K ~\
- SRS T L .
10 Configuration control YA Nantl' 4 7' 5 System level testing
N
2 Properties’ {——" 5 Regressions
8 Chechons 7 Memcls_ coverage and
closure

Figure 3: Presenting Verification Workflow Maturity

This process serves to build a picture of the verification
workflow maturity. This may be across projects, teams
or sites. By repeating the review at regular intervals it is
also possible to build a picture over time that can be
used to track the impact of process improvement or
organisational change. It can also be used to find if there
is @ mismatch in perception between various team
members, or between engineers and management. This
can be identified by following a 360 feedback process
where members of staff also score the maturity of the
different process areas. For example Figure 4 shows

results from a project where the less experienced staff
were over-optimistic, especially about their own
capabilities.

1 Specification and
design

5 Orgmisstionsl o 2 Functional
(amf“?“" Wl 27T~ Verification Planning
P s+ /'andScenario Creation
12 Reuiews Sy 3 Block leveltesting
3 / i\ = 4 Toplevelstress
11 Bugtracking (= F L A testing
= s
/‘4 e
10 Configuration | " e T~ s systemleveltests
control £ i ystem leveltesting
9 Properties " "6 Regressions

7 Metrics, coverage
and clasure

8 Checkers

Figure 4 Presenting Results of 360 Feedback Process

The results of the benchmark can also serve to identify
both local weak spots and common mode failures that
run across projects and sites.

Whilst this evaluation is partially subjective the evidence
based ‘bottom up’ flow aims to ensure the conclusions
are fact based and the results can be validated in a
number of ways:

1. By comparing to quantitative metrics. Where
these exist they can provide objective
evidence that is independent of any reviewer
bias.

2. By comparing the results from experience
external reviewers with self assessment by the
verification manager and other experienced
verification staff. Our experience suggests that
these are often closely aligned, as in Figure 3
that shows such results from an actual project
review.

3. By challenging the results when they are fed
back to the project teams and to
management. Unexpected or counter-intuitive
results can be investigated by drilling back
down to the underlying evidence.

By defining target maturity levels appropriate to the
business and its future product roadmap a gap analysis
can be conducted. The results can then be used to
identify key issues and plan improvements in either
specific processes or in overall functional verification
maturity. Regular reviews against this model can ensure
the organisation maintains an appropriate level or help
drive a process of continuous improvement, though
subsequent audits should aim to apply common
standards for evaluating maturity.

Summary

Benchmarking is an essential tool, not only for
addressing current problems but also helping
organisations meet the continually increasing challenges
of verification. They achieve this by providing:

1. An objective fact based, view of strengths and
weakness

2. Aframework for setting goals and priorities,
and measuring progress.

Some parts of functional verification can be measured
with quantitative metrics, others are subjective.
However it is always possible to have a fact based
process to classify all capabilities into distinct and
meaningful categories.

A practical benchmarking methodology must be easy to
customise and lightweight to deploy. This is best
achieved by adopting a domain specific solution that
avoids some key limitations of a more general
framework such as CMMI.

Decomposing capability top down allows a clear link to
be made between abstract capabilities and concrete
actions. Evaluation can then be performed bottom up
using clearly defined maturity levels. The results can be
validated by comparing to objective metrics, comparing
the results from reviewers with self assessment, and
most importantly challenging the results and reviewing
the underlying evidence.

Once the results have been reviewed a gap analysis
against business requirements helps TVS’ customers
identify weak areas of their verification process in a
timely fashion. Thereafter the FV-CMM provides a
framework for management to plan and track
improvements.

Acknowledgement

The authors are grateful to our customers who worked
with us on the development and deployment of the ideas
described in this paper. We would also like to thank the
referees for their very constructive feedback.

Reference

Carnegie Mellon University Software
Engineering Institute. (2010). CMMI For
Development V1.3.

Foster, H., & Warner, M. (6/2009). Evolving
Verification Capabilities. Verification Horizons

Meeth, S. (2010). NVIDIA Formal Verification
Metrics and the ITRS Roadmap. Jasper Users
Group.

