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 ABSTRACT 
 

Clock domain crossing (CDC) verification is a critical step 

in functional verification closure. Design complexity is 

continuously increasing, not only in size but also in 

heterogeneity of system-level design. A typical design 

includes complex features such as multiple cores, peripheral 

devices, many types of IO-interfaces, power islands, and so 

on. Handling such technologies requires the use of 

multiple asynchronous clock domains. As the number of 

clock domains increases, the probability of encountering 

CDC issues increases considerably—thereby making CDC 

verification a critical development step. 

 

Increasing the time to complete the verification process or 

having degraded verification quality can significantly 

increase overall costs. Both factors depend on the approach 

used for CDC verification. Persistent CDC verification 

challenges are: tracking progress and identifying when to 

stop. One puzzling question for verification engineers is: “Is 

my CDC Verification done?”  

 

In this paper, we propose a novel methodology to overcome 

verification closure challenges. This methodology gives 

verification teams reliable information, plus a way to 

identify measurable goals, to measure progress and to 

decide when to stop. We define ‘coverage metrics’ and 

‘coverage models’ for CDC verification closure: 

 

1. Coverage metric is an indicator of progress at each 

step of verification flow. 

2. Coverage models are models defined for the various 

categories of CDC problems. They ensure that the 

synchronizers and protocols at clock domain crossings 

are comprehensively verified for all variations and 

assumptions. Characteristics of CDC synchronizers 

and transfer protocols require a directed coverage 

strategy and directed targets. We also suggest coverage 

models for ensuring metastability tolerance and 

analyzing CDC jitter. 

We provide SystemVerilog CDC models for solving common 

CDC problems that an engineer can use along with their 

design files in a normal verification flow. 

 

1 INTRODUCTION 

Complete CDC Verification is a 5-phase process:   

1. Design Setup Validation 

Verify the clock trees and the design configuration. 

2. Structural Clock Domain Crossing Analysis 

Find missing and incorrect synchronizers. 

3. Synchronizer Protocol Verification 

Use simulation and formal verification to verify the 

transfer protocols of clock domain crossings, including 

advanced protocols such as handshake schemes and 

FIFO synchronization. 

4. Reconvergence Verification 

Ensure safe reconvergence of synchronized signals by 

testing the gray encoding of converging signals 

5. Metastability Tolerance Verification 

Verify that the design tolerates CDC jitter and 

metastability effects. CDC synchronizers handle 

metastability correctly, but with a possible side effect of 

introducing unpredictable delays. Design functionality 

should tolerate the presence of metastability effects and 

clock jitter. 

To know when verification is complete, you must define 

verification targets for each phase. The selection of these 

coverage targets depends on the design’s application domain 

and of course, your intended time-to-market.  

 

We propose a coverage-based CDC verification flow. Here, 

the verification team sets measurable goals for each 

verification phase. To do this, we provide specific coverage 

numbers used to measure validation. These coverage 

numbers are attained through coverage metrics and coverage 

models that we have defined for each verification phase. 

The verification team can use the coverage numbers for the 

current verification phase to decide whether or not to 

advance to the next phase. We also propose an overall 

coverage metric that reflects the current quality of the entire 

CDC verification process. 
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2 CDC COVERAGE METRICS AND COVERAGE 

MODELS 

First, we define coverage metric for each phase of the CDC 

verification process. Each phase has different criteria for 

determining coverage. For example, phases 1 and 2 use 

static CDC analysis data to identify coverage. Phases 3, 4 

and 5 use coverage data collected by coverage models 

during standard verification. Verification teams can set 

coverage goals for each CDC verification phase and for the 

final CDC coverage. 

 

A good coverage metric should model and cover each CDC 

verification phase, should provide clear information about 

the current status of the verification process, and should 

direct the verification focus to valid problems. Such 

coverage metrics help the verification engineer fix design 

problems and add new directed tests that cover missing 

scenarios. A diagram for this coverage model and metric-

based CDC verification approach is shown in Figure 1. 

 

 
 

Figure 1: Coverage-based CDC Verification Flow 

 

Coverage criteria, metrics and verification targets for each 

CDC verification phase are defined in following sections. 

 

2.1 PHASE 1:  DESIGN SETUP VALIDATION  

The goal of the design setup validation phase is to validate 

the clock tree and to tune design configurations for CDC 

analysis. Satisfactory closure of the setup is critical to 

minimize noise and maximize verification efficiency prior 

to advancing to static CDC analysis. 

2.1.1 Clock Tree Verification 

During clock analysis, the CDC verification tool identifies 

the asynchronous clock trees in the design. For a design to 

function correctly, it is important to do the clock 

connectivity checks. All flops should be clocked by user-

specified primary clocks. Inferred clocks can be one of the 

following: 

 Direct Clocks 

Primary ports or black box output pins that drive clock 

logic. The verification engineer should verify that these 

signals are valid clock signals missed as user-specified 

clocks. 

 Gated Clocks 

Combinations of enable/clock signals that drive clock 

logic. The verification engineer should identify clock 

enable signals and mark them as stable (so no gated 

clocks are found). Otherwise, intentional gated clocks 

should be waived as qualified clocks. 

 MUXed Clocks 

Multiple clocks reaching into the clock logic through a 

multiplexer that selects one of the clocks. MUXed 

clocks are selected through mode or configuration 

settings. The multiplexer select signal should be set to 

appropriate constant constraint settings to ensure the 

correct clock is enabled.  

 

Verification Target: Verification engineer must resolve (or 

waive after qualification) all gated, MUXed and inferred 

clocks to attain coverage closure for this sub-phase. 

 

2.1.2 Black Box Qualification  

The following types of design blocks are considered to be 

black boxes by the CDC analysis tool:  

 IP blocks. 

 Blocks those are designed separately and are not yet 

ready to be integrated. 

 Blocks that are designated by the user to be treated as 

black boxes and should be skipped by CDC analysis, 

such as PLL, ADC blocks, and so on. 

Verification Target: Verification engineer must review all 

identified black boxes. For coverage closure, qualified black 

boxes in the design should be waived—so the percentage of 

unqualified black boxes should be 0%. 

 

 

 



2.1.3 Design Component Classification 

Sequential design components should be able to correctly 

sample their data. Where data sampling is blocked, 

sequential design components can be classified as follows:  

 Stuck at the same value. 

Sequential cell (such as a flop, latch or memory) whose 

clock is tied to a constant.  

 Never changes value. 

A sequential cell with a data pin connected to a constant 

and the set/reset logic is missing.  

The sequential cells in these categories might be okay per 

the design requirements or user-specified constraints. But, 

the verification engineer must check and waive them as 

qualified so that they do not contribute to the uncovered 

portion of the coverage data. 

 

We define the percentage overall coverage for the design 

setup validation phase as:  

    
   (        )

  
     

Where: 

St: Total count of sequential cells 

Su: Count of unconstrained sequential cells (not 

clocked by a qualified clock) 

Sc: Count of sequential cells driven by constant clock 

pin 

Sd: Count of sequential cells with constant data and no 

reset condition 

See Figure 2 for a sample classification of design setup 

coverage data. 

 
Figure 2: Sample Clock Tree Coverage Data 

Verification Target: Verification engineer must review 

coverage figures and after excluding sequential cells driven 

by qualified clocks, coverage should reduce close to 0%. 

Acceptable coverage at this phase ensures that the clock 

tree is verified, design configuration is reviewed, and the 

design has no sequential components that are stuck 

unintentionally. The design is set up to proceed with phase 

2 of CDC verification (clock domain crossing analysis). 

2.2 PHASE 2: CLOCK DOMAIN CROSSING 

ANALYSIS 

A clock domain crossing, or CDC, occurs when a signal 

generated in one clock domain is sampled in another clock 

domain that is asynchronous to the first. In certain cases, 

such paths can violate the setup/hold time requirements at 

the receiving registers. These violations can occur in 

random cycles and a design must be resistant to such effects. 

 

Metastability is the inability of a flop to arrive at a known 

state in a specific amount of time when the setup or hold 

conditions are violated. Metastability cannot be avoided—

but its effects can be mitigated by use of an appropriate 

synchronizer at the clock domain crossing. 

 

The goal of the clock domain analysis phase is to ensure that 

valid synchronizers exist at all CDC paths. Key information 

extracted for this phase is classified as follows: 

 Missing Synchronizers 

 Incorrect Synchronizers 

 Good Synchronizers 

“Missing” and “good” synchronizers are self-explanatory.   

An “incorrect synchronizer” is one where either the 

synchronizer circuit is partially correct or the prescribed 

synchronizer for that type of crossing is not used. For 

example, a CDC path with 2-flops in the receiving domain 

is a good synchronizer (Figure 3a).  

 
 

Figure 3a: Good 2-flop Synchronizer for Scalar CDC 

Signal 

However, the presence of combinational logic between the 

transmit and receive flops makes it an incorrect 

synchronizer—as it allows glitches to be fed directly to the 

synchronizing structure—see Figure 3b 

 
Figure 3b: Incorrect Synchronizer with Combo Logic 

Similarly, using a 2-flop synchronizer for individual bits of 

a bus can lead to data coherency issues at the receiver. The 

2-flop synchronizer should be replaced by a MUX-

synchronization scheme (Figure 4).   

 



 
Figure 4: MUX synchronizer is Recommended for Vectors 

 

Coverage for the CDC analysis phase is defined as:  

    
   (         )

  
     

where: 

Xt: Total clock domain crossings 

Xm: Crossings with missing synchronizers 

Xi: Crossings with incorrect synchronizers 

k1, k2: Weights—to be adjusted based on application or 

design requirements 

Coverage for the CDC analysis phase can be improved:  

 Typically, designers add valid synchronizers that 

prevent metastability effects from propagating through 

the design. So, the verification engineer must review 

missing synchronizer warnings.  If a transmitting signal 

is quasi-static or stable, waive the associated warning. 

 Replace incorrect synchronizers with valid ones. 

Verification Target: Verification engineer calculates the 

coverage target for the CDC analysis phase based on the 

design application and project criticality. Acceptable 

coverage at this phase ensures all CDC paths have good 

synchronization structures and the design can properly 

handle the effects of metastability at clock domain 

crossings.  

 

2.3 PHASE 3: SYNCHRONIZER PROTOCOL 

VERIFICATION 

Every synchronizer has some properties (or assumptions) 

that need to be functionally verified. Violating any of these 

properties might result in data loss at the crossing paths, 

which can eventually lead to functional failure.  

 

The synchronizer protocol verification phase ensures that 

the CDC paths’ synchronizer protocols are never violated. 

To accomplish this, synchronizer properties are promoted as 

assertions for the synchronized CDC paths. A verification 

engineer can verify synchronization protocol assertions: 1) 

using simulation with self-checking test benches that match 

actual with expected results, or 2) through formal methods.  

 

A failure of a protocol assertion (sometimes called a firing) 

indicates that the design can malfunction. The cause of the 

firing must be fixed. Once simulation does not cause a CDC 

protocol firing, the verification engineer must ensure that all 

CDC paths are sufficiently tested by monitoring coverage. 

Such testing minimizes the possibility of undiscovered bugs 

in the design. 

 

Protocol coverage is accomplished through SystemVerilog 

coverage constructs in the CDC transfer protocol properties. 

Such data can be gathered using a simulation or formal 

verification tool that supports these SystemVerilog 

constructs. We next define SystemVerilog models for a 

standard set of synchronizers to validate their CDC transfer 

protocols and collect coverage data. 

 

2.3.1 2-Flop Synchronizer 

One protocol for a 2-flop synchronizer (Figures 3a and 5a) 

checks that the transmit signal is held stable long enough for 

its value to be captured reliably by the receiver. The 

protocol also ensures no data loss. 

 

Figure 5a: SVA for 2-Flop Synchronizer 

Here, tx_min_cycles is the minimum number of txclk cycles 

during which tx must remain stable for its value to be 

captured reliably by the receiver. This minimum cycle count 

is calculated from the ratio of the periods of the receiving 

and transmitting clocks. 

 

2.3.2 MUX Synchronizer 

The protocol for the MUX-synchronization scheme (Figures 

4 and 5b) checks that the signal between two clock domains 

is held stable long enough for the signal to be sampled 

reliably by the receiver. The data must remain stable while 

the data select signal (enable) asserts.   

 

Equivalent checks: 

 Transmit select signal should not assert for less than 2 

clock cycles in the receiving clock domain. 

 Data signal should not change while the select (enable) 

signal is asserted. 

property cdc_stable; 

    @(posdedge txclk) 

        !$stable(tx) |=> $stable(tx)[*2  /* tx_min_cycles*/  ]; 

endproperty : cdc_stable 

 

assert property (cdc_stable); 



 

Figure 5b: SVA for Mux synchronizer 

 

2.3.3 Handshake Synchronizer 

Handshake synchronization scheme properties (Figures 5c 

and 5d) verify that the handshake protocol between a 

transmitter and receiver is correctly obeyed and that the 

transfer data are stable in the data transfer window.  

Equivalent checks:  

 Data are stable when request is asserted (data_stable). 

 Every request gets an acknowledge within the next two 

cycles (req_has_ack). 

 No acknowledge is issued without a request 

(ack_had_req). 

 

Figure 5c: SVA for Handshake Protocol Checks 

 
Figure 5d: Handshake Scheme 

 

2.3.4 FIFO Synchronizer 

The FIFO synchronization protocol ensures that the write 

and read pointers of an asynchronous FIFO (Figures 5e and 

5f) change by a hamming distance of 1 and that the FIFO 

does not overflow or underflow.  

Equivalent checks:  

 Overflow: no write when full 

 Underflow: no read when empty 

 Gray-encoding: read and write pointers are gray-

encoded at the source 

 
Figure 5e: FIFO Scheme 

 
 

Figure 5f: SVA for FIFO Protocol Checks 

property bad_access(clk, inc, flag) 

    @(posedge clk) 

        inc |-> !flag; 

endproperty : bad_access 

 

property gray_code(clk, rst, data) 

    @(posedge_clk) disable_iff (rst) 

         !$stable(data) |-> $onehot( data ^ $past(data)); 

endproperty : gray_code 

 

assert property(bad_access (wr_clk, wr_inc, fifo_full); 

assert property(bad_access (rd_clk, rd_inc, fifo_empty); 

assert property(gray_code(wr_clk, wr_rst, waddr); 

assert property(gray_code(rd_clk, rd_rst, raddr); 

Assert Ack 

Transmitter 

Deassert Req 

Receiver 

Assert Req 

Deassert Ack 

property data_stable; 

    @(posdedge clk) 

        req |=>$stable(data) [*1:max]##0 ack; 

endproperty  : data_stable 

sequence req_ack_seq; 

    @(posdedge clk) 

        req ##1 !req [*1:max] ##0 ack; 

endsequence : req_ack_seq 

property req_has_ack; 

    @(posedge clk) 

        req |->req_ack_seq; 

endproperty : req_has_ack 

property ack_had_req; 

    @(posedge clk) 

        ack |->req_ack_seq.ended; 

endproperty : ack_had_req 

assert property (data_stable); 

assert property ( req_has_ack); 

assert property ( ack_had_req); 

 

 

 

property cdc_stable; 

    @(posdedge txclk) 

        !$stable(tx) |=> $stable(tx)[*2 /*tx_min_cycles*/ ]; 

endproperty : cdc_stable 

 

property data_stable_while_enable(data, enable, clk)  

    @(posedge clk) 

        $rose(enable) |=> $stable(data)[*1:max] ##0 !enable; 

endproperty : data_stable_while_enable 

 

assert property (cdc_stable); 

assert property (data_stable_while_enable(data, 

                                                 rx_enable, rx_clk)); 
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Coverage for the synchronizer protocol verification phase 

has three types of metrics: 

 

 Protocol Coverage 

Protocol coverage is defined as: 

    
     

  
      

where:  

Pt:  Total promoted protocols 

Pu:  Uncovered Checkers  

 Synchronizer Coverage 

Verification team should assign a coverage metric for 

each type of synchronizer. Reviewing synchronizer 

coverage identifies some basic issues and dead-code 

conditions in the synchronizer implementations. 

 

 Check Coverage 

Multiple properties can be associated with a 

synchronizer protocol. For example, the FIFO scheme 

has overflow, underflow and data stability assertions 

associated with its CDC transfer protocol. Each 

protocol property must be covered. For example, 

missing coverage for a particular protocol property 

might camouflage a non-functional path in one of its 

associated synchronizers. So, adding directed tests to 

validate this special scenario is necessary to attain 

check coverage closure. 

 

Verification Target: Verification engineer reviews and 

tracks the protocol coverage metric at all levels. Coverage 

for protocol verification can be improved by: 1) fixing 

possible dead-code and error conditions in synchronizer 

implementation and 2) adding directed test cases targeting 

uncovered scenarios. Acceptable coverage at the 

synchronizer protocol verification phase ensures that all 

synchronized paths obey the protocols and no CDC transfer 

event can cause a functional error.  

 

2.4 PHASE 4: RECONVERGENCE VERIFICATION 

The reconvergence of synchronized signals can lead to data-

coherency issues and to subsequent functional errors (if 

timing dependency exists between the reconverging CDC 

paths). Since a synchronizer can introduce unpredictable 

latency on its CDC path, the design logic must be 

sufficiently resilient to tolerate any resulting data 

incoherencies. For example, reconverging signals could be 

gray-encoded to avoid timing dependency between signals.  

 

 

 

Verification of reconvergence takes two steps: 

 

1. Run static CDC analysis to identify reconvergence of 

synchronized signals. Unless required, avoid 

reconvergence of synchronized signals. 

2. Where reconvergence is intentional, check the gray 

encoding on the reconverging signals. For example, 

promote gray-encoding protocol checks on the 

reconverging signals and verify them in simulation. 

Coverage for the gray-encoding protocol check at each 

reconvergence point is collected by standard SystemVerilog 

cover properties.  

 

Cumulative coverage for the reconvergence verification 

phase is defined as:  

    
     

  
     

where: 

Rt: Total reconvergence conditions (excluding waived 

or structurally fixed cases) 

Ru: Uncovered checkers for gray-encoding checks 

 

Verification Target: Verification engineer assigns and 

verifies a coverage metric that ensures coherency issues at 

reconverging points are expected and do not lead to 

functional errors. This reconvergence coverage is improved 

by 1) removing reconvergence conditions or altering the 

design logic, or 2) ensuring that diverging synchronized 

signals are always gray encoded before they reconverge. 

 

2.5 PHASE 5: METASTABILITY TOLERANCE 

VERIFICATION 

 

Even when a design is structurally verified and simulation 

runs correctly, metastability in the design’s silicon 

implementation might cause functional errors. So, to 

accurately model silicon behavior, we use metastability 

models on the CDC receive registers.  

 

A metastability model injects metastability on a bit of a bus 

for one cycle. Metastability models are used during 

simulation to model design behavior in the presence of 

metastability effects on CDC paths. They also have cover 

properties that identify cases where different forms of 

metastability have been exercised during simulation. For 

coverage closure, these assertions must be effectively 

covered. 

 

 

 



Coverage for the metastability tolerance verification phase 

is defined as: 

    
     

  
     

where: 

Mt: Total CDC paths for which metastability model is 

inserted 

Mu: Uncovered checkers  

Verification Target: Verification engineer must ensure 

metastability coverage has achieved an acceptable level for 

which the design is resilient enough to handle random 

metastability effects occurring in silicon. In our systematic, 

phased approach to CDC verification, we proceed to the 

next phase only after achieving the coverage target of the 

current phase. As it is the last phase, metastability tolerance 

verification coverage closure guarantees satisfactory overall 

CDC coverage.  

 

2.6 OVERALL CDC COVERAGE 

The sequential nature of our verification methodology 

means we proceed to subsequent phases in the CDC 

verification flow only after previous phases are “clean.”  

 

For identifying issues and improving the testbench suite, 

coverage analysis and coverage closure are critical at each 

phase. However, an overall CDC coverage metric can have 

special significance as a measure of CDC verification 

quality. This overall coverage value does not provide 

information for debug, but it can give a fair sense of quality. 

Such an overall coverage metric should reflect the need for, 

and the importance of, the sequential CDC verification flow 

and closure. 

 

Based on experiments and the sequential nature of our CDC 

verification flow, we define final CDC coverage as a 

weighed mean of coverage metrics across all phases—with 

higher weights for the initial phases: 

                            

where: 

C1 to C5: Coverage values figures for the verification 

phases 

K1 to K5: Weights, such that: 

 k1  ≥  k2 ≥  k3  ≥  k4  ≥  k5 

k1 + k2 + k3 + k4 + k5 = 1 

Weights are set for the particular application and are based 

on priorities determined by the verification team. For our 

experiments: 

k1 = 0.3,  k2 = 0.3,  k3 = 0.2,  k4 = 0.1,  k5 = 0.1 

 

3 COVERAGE MODEL DESIGN 

The CDC coverage models for the various checks described 

in this paper are written in SystemVerilog using constructs 

such as sequences, properties, assertions and cover 

statements. Each model is a separate SystemVerilog 

module. Designers connect models to the actual signals in 

the design through SystemVerilog bind statements. The 

models are non-intrusive and do not require  modification of 

the golden design. Each model contains the following 

sections: 

 Protocol Checks 

 Properties to check assumptions about the 

correctness of the synchronizer functionality. 

 Coverage data collected for the properties to ensure 

they are triggered and verified during the 

verification flow. 

 Coverage Checks 

 Cover properties to ensure all situations of 

verification are getting covered on the 

synchronizer. 

 Cover groups to collect coverage data in a more 

organized structure and to gather statistics on the 

synchronizer’s verification. 

 Debug Data 

Statistics collected about synchronizer functionality. 

Such information is useful when debugging a protocol 

violation and when inspecting coverage holes. 

 Control Flags 

Flags that completely or partially enable/disable various 

features in the models. Verification engineers might 

want to use control flags for some features to reduce the 

impact of the coverage models on simulation 

performance.  

 

4 COVERAGE-BASED CDC 

VERIFICATION FLOW AND CASE 

STUDY 

For this case study, a coverage metric is defined for each 

phase of the CDC verification flow. Coverage models are 

used to collect relevant information as the CDC verification 

phases are executed. A target coverage for each CDC 

verification phase is pre-defined and verification proceeds to 

next phase only if the target of the current phase is achieved. 

This process results in a systematic and comprehensive 

coverage-based CDC verification flow.  

 



We took an industry design case-study to illustrate the 

benefits of this approach. Coverage models were used for 

validation of the different types of synchronizer protocols 

and to perform reconvergence and metastability tolerance 

checks. Coverage data at each phase was analyzed to decide 

whether or not the CDC verification for that phase was 

complete. The details of the phased coverage metrics are 

represented in Appendix A. 

 

The overall coverage value appeared lower, as there was 

insufficient coverage for phase 2 of the CDC verification 

flow (structural CDC Analysis). And, since this is an early 

phase in the flow, it had a bigger impact on the overall 

coverage numbers. 

 

When we set strict coverage goals and proceeded to the next 

phase only after attaining coverage closure at the current 

phase, results were much better.  

 

 Phase 1 

When reviewing the coverage figures, we identified a 

module with 232 flops that was incorrectly 

instantiated—its clock port was connected to a dangling 

wire. As a result, 232 flops in design were 

unconstrained. After fixing the issue, the revised 

coverage at phase1 increased to 100%. 

 Phase 2 

We added some missing synchronizers and waived off 

all warnings caused by stable transfer signals. The 

coverage for phase 2 improved to 98.1%. 

 Phases 3 to 5  

We performed regular reviews of coverage data and 

addressed associated problems, which also improved 

the coverage figures. 

Overall coverage improved to 97.1% with regular review of 

coverage metrics based on the coverage models. Phase 

coverage information (in conjunction with the overall CDC 

coverage metric) helped provide a clear answer to the 

puzzling question— “Is my CDC verification done?”  

 

Rather than relying on a verification engineer’s whimsical 

judgment, we reviewed the coverage data and concluded 

emphatically: “Yes…CDC verification is DONE!” 

 

5 CONCLUSION 

Our proposed methodology helps achieve systematic, 

accurate and reliable CDC verification closure. Coverage 

models accurately confirm functional verification of CDC 

protocols and structures. Coverage metrics aid verification 

teams to set crisp sign-off targets for each phase of their 

CDC verification flows. This methodology ensures a high 

quality of verification and a strict adherence to standards.  

 

Overall time and costs are saved by cutting time spent on 

the over-verification of certain aspects. This methodology 

eliminates the possibility of functional errors occurring later 

in the design cycle, by ensuring that all aspects of CDC 

problems have been covered comprehensively during 

verification.  Using our proposed coverage models and 

metrics, verification engineers can achieve accurate and 

reliable CDC verification systematically—with measurable 

target goals based on application requirements. 
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Appendix A – CDC Coverage Metric for Case-Study Design 
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74.5% 96.2%

Overall Coverage


