
Advanced Techniques for ARM L2 Cache Verification in an 

Accelerated Hardware and Software environment 

Rob Pelt   Jay O’Donnell 

Altera Corporation Mentor Graphics 

San Jose, CA  Seattle, WA 

 
 

ABSTRACT: 

High-end ARM-based SOC designs typically 

implement an L2 cache controller to improve system 

performance and manage memory access.  Such 

systems also provide external peripheral access to L2 

and L3 main memory using the accelerator coherency 

port (ACP) on the processor.  System performance 

can be optimized in the design of both hardware and 

software that configures and manages memory 

access.  Verifying correct operation and performance 

in such a highly configurable system is a key goal. 

 

This paper presents techniques to verify operation 

and performance of L2 cache in this type of system.  

Methods were developed supporting concurrent 

software and ACP hardware L2 accesses in a 

coordinated systematic fashion for various system 

configurations.  Some configurations include 

software-configurable cache “ways” combined with 

different types of cache-able accesses coming from 

both ACP and software targeting cached memory in 

various states. 

 

The requirement for dual access to L2/L3 by both 

software and hardware presents significant challenges 

due to the need to systematically manage two 

distinctly different processes using a common 

verification framework.  Hardware accesses use AXI 

read and write transfers to drive the ACP port.  

Software accesses utilize a software test framework 

and operating system routines. A centralized 

testbench managing both types of accesses is needed 

to provide control and synchronization. 

 

This work utilized intelligent testbench (iTBA) 

techniques to systematically manage both accesses, 

enumerate the verification state space (which had 

well in excess of 10 million cases) and manage the 

test scenario generation to meet coverage goals.  

Traditional approaches using constrained-random or 

directed testing were inadequate due to the extremely 

large number of test scenarios and the requirement, 

incompatible with random generation, to precisely 

manage the scenarios. Traditional functional 

coverage approaches to measure verification 

effectiveness were considered but ultimately rejected 

due to the complexity of instrumenting the 

environment. Also, such approaches were found to be 

unnecessary since the iTBA tool could automatically 

enumerate and target the stimulus state space. 

 

A hardware-accelerated simulation environment was 

used to efficiently simulate the large number of 

scenarios.  Results of the work and lessons learned 

are presented. 

 

1. Introduction 

Verifying the L2 cache from both the CPU and 

external AXI masters through the ACP presents a 

number of challenges: 

 Implementing a flexible verification 

architecture supporting both software and 

hardware access managed by one central 

process 

 Developing a flexible software framework 

and communication mechanism to 

coordinate software and hardware activity 

 Developing a hardware test environment to 

drive ACP 

 Developing a top-level control testbench 

capable of describing the overall test 

scenario and controlling hardware and 

software interfaces to generate the tests 

2. Environment 

The testbench environment is based on System 

Verilog and the OVM library.  A number of 

Verification IP components (VIP) based on OVM 

form the testbench foundation.  The testbench is also 

tightly bound to the CPU in the SOC, which can be 

used to coordinate and check testbench activity.  

Although the VIP components can be driven by 



OVM sequences implemented using directed and 

constrained random approaches, additional advanced 

approaches were considered.  

One testbench architectural challenge is coming up 

with a scheme for ACP access. This is because ACP 

is normally accessed via multiple AMBA fabric 

masters.  Accessing ACP using these AXI masters 

could be very difficult to coordinate and control since 

the actual peripherals would need to generate the 

AXI traffic targeting ACP and rely on the fabric to 

deliver the transactions deterministically.  

In order to simplify ACP access a single AXI fabric 

port having ACP access is configured to generate all 

ACP transactions directly with other ACP capable 

ports configured to be inactive. 

Additionally, the OVM testbench must be able to 

communicate with the CPU’s embedded software.  

This is done to coordinate the L2 cache state before 

issuing transactions to the ACP across the fabric, and 

to instruct the embedded software to initiate various 

L2 cache accesses while concurrently initiating cache 

accesses via ACP. 

 

Figure 1: Verification environment 

Figure 1 shows the main elements of the verification 

environment.  Top TB manages generation of two 

streams of L2/L3 traffic: 

 ACP 

 CPU 

A graph in Top TB defines the total stimulus state 

space and manages the generation of both stimulus 

streams during simulation.   

ACP traffic implemented using TLM is passed to the 

AXI SEQ block, which in turn assembles an OVM 

sequence and passes the (TLM) sequence to the 

OVM AXI VIP driver for delivery on the ACP port 

interface.  The AXI SEQ block is highly configurable 

and can implement all required ACP accesses. 

CPU software accesses are also managed by Top TB, 

but use a custom mailbox communication scheme 

that lets Top TB call pre-configured software routines 

in the test operating system to initiate L2 accesses 

and monitor L2 and L3 states.   

3. Beyond constrained random 

To improve coverage and efficiency, a graph based 

approach was chosen to test the complete scope of 

the protocol, specifically in the space of the AXI 

protocol relative to cache-based transactions to the 

ACP port.  This approach assured complete coverage 

of the ACP-related protocol space and efficient 

coverage of corner cases.  The AXI SEQ graph gives 

a comprehensive view of the functional space we 

intend to cover, thus giving critical feedback on the 

parameters that are covered and those that are 

intentionally left out.  Careful reviews of the graph 

can also help identify ACP-related parameters of the 

AXI protocol that we might have missed.  This 

graph-based approach is much easier to visualize and 

review for accuracy than a scattered list of random 

variables and provides direct tabulation of the size of 

the stimulus state space.  This lets the user identify 

which parts of the graph are important to target 

during simulation (colored highlights) and which run 

randomly.  The approach also supports targeting 

multiple stimulus generation regions with different 

priorities, which improves verification efficiency and 

early bug detection. 



The inFact graph-based intelligent testbench tool was 

selected for this application because of its ability to 

precisely generate all test combinations non-

redundantly as the graph is traversed during 

simulation.  This differs from a traditional 

constrained-random testing (CRT) approach which 

requires the addition of external coverage 

measurement code to validate when test 

combinations are hit.  Such CRT flows typically 

require re-running of the tests using different seeds to 

cause different random variable combinations to be 

hit.  On average at least 10x more CRT tests are 

required to achieve coverage due to the probabilities 

of random variable selection.  

These advantages of the graph-based approach 

eliminate requirements to write coverage code and 

iteratively run tests with different seeds, resulting in 

significant savings in testbench development time 

and overall time savings in the verification process. 

4. Top TB implementation  

Figure 2 shows the top testbench graph responsible 

for coordinating the overall testbench execution 

controlling ACP and CPU accesses of L2/L3 cache.  

Sizing information for the different graph segments is 

also shown. 

This graph specifies a loop of transaction sequences 

that could be a CPU ->ACP (Sw_trans->Acp_*) or 

an ACP->CPU for different “ways” configurations 

targeting different address regions and cache 

scenarios.  The details of address region selection and 

cache scenarios are contained within the brown graph 

symbols that implement sub-graphs.   

Some of the more important scenarios which this 

graph implements include: 

 Cache initialization calling Test OS routines 

 Access ordering: Software or ACP first 

 Ways configurations 

 Cache control and protection bit setting 

combinations, both accesses 

 Cache line state in L2 and L3 and cache 

access scenarios based on state 

 Backdoor access using Test OS routine to 

verify L2 and L3 states during different 

accesses 

 

Figure 2: TOP TB generation graph with sizing 

Modeling L2 and L3 states under different 

configurations is important to assure proper cache 

operation.  To do this, the initial states need to be 

established and then accesses must be precisely 

managed by careful selection of addresses.  This 

helps to simplify predictive model of cache state, 

which will be implemented as a side object in the top 

level testbench. 

5. AXI SEQ implementation 

Figure 3 shows the graph construction for the AXI 

SEQ block that manages AXI accesses.  A close 

inspection of the graph shows sizing for different 

graph segments that gives visibility into stimulus size 



and helps plan which stimulus combinations are 

important and practical to target in combination. 

 

Figure 3: AXI SEQ generation graph with sizing 

6. Test initiation from the embedded software 

Testing cache operations from the CPU’s embedded 

software is fairly easy.  But when ACP transactions 

are submitted from external AXI masters, the 

embedded software must be used to set up the cache 

into known states.  This requires communications 

between the graph-based sequence and the embedded 

software.  

The mailbox communication scheme shown in Figure 

1 provides a mechanism for calling functions in the 

Test OS and verifying OS state calling status 

functions.  A collection of functions were developed 

that support memory initialization and configurable 

memory accesses.  The number of such functions is 

fairly small, though the number of possible accesses 

is quite large due to the combinations of function 

arguments and calling order.  The Top TB graph 

manages the order of function calls and pass 

argument values when constructing the various test 

scenarios. 

7. Accelerating the test 

Cache operations and the sheer number of required 

tests will quickly exceed practical limits of 

simulation.  Therefore the OVM testbench, the VIP 

components and the overall model of the design must 

also be compatible with emulation-based simulation 

acceleration.  This will permit the full spectrum of 

cache operations to be tested. 

8. Findings and conclusion 

The initial work verifying correct L2 operation relied 

on a purely software-based scheme. In this scheme, 

graph-generated static software routines created a 

block of loadable C code that was executed on the 

Test OS to verify basic cache operation in different 

ways scenarios.  The graph was run once to generate 

the test code block, which was later run on the CPU 

during emulation. 

This technique validated basic cache subsystem 

operation but lacked support to verify ACP accesses. 

Various ideas were considered to add ACP, including 

both pre-generation of a purely software-based 

scheme that included calls to external OVM 

sequences to initiate ACP accesses.  This scheme, 

while feasible, had a number of drawbacks: 

 The generated test code would be huge, 

requiring some sort of paging to break up 

the generated tests into manageable blocks 

 Dynamic control of test execution was not 

possible since everything was pre-generated 

 Varying the access order was not feasible 

without re-generating the test code running 

the generator graph with different software 

seeds 

 Time synchronization might present 

problems since it had to be done from the 

CPU 



We concluded that the simpler approach would locate 

the top-level testbench control in the simulation 

environment running under OVM, where the CPU 

and Test OS would be slaved to a single simulation-

based OVM process.  Among this scheme’s benefits: 

 Easier to develop 

 Eliminated the complexity of paging in 

different tests 

 Test ordering could be changed on the fly 

during simulation 

 Easier to make the testbench reactive to 

simulation and CPU state since the graph 

traversal engine is actively managing 

processes and can dynamically adapt to state 

changes 

This work is currently underway and results will be 

available for discussion during the DVcon 2012 

session. 


