Analog Transaction Level Modeling for Verification
of Mixed-Signal-Blocks

Alexander W. Rath*, Volkan Esen' and Wolfgang Ecker*
*Infineon Technologies AG
85579 Neubiberg, Germany
Technische Universitdt Miinchen
Email: Firstname.Lastname @infineon.com
tInfineon Technologies AG
Email: Volkan.Esen@infineon.com

Abstract—The Universal Verification Methodology (UVM) has
become a de facto standard in today’s functional verification of
digital designs. However, it is rarely used for the verification
of mixed-signal designs. This paper presents a new abstraction
technique using UVM that can be used in order to stimulate
mixed signal designs. It is referred to as Analog Transaction
Level Modeling.

I. INTRODUCTION

In today’s IC designs more and more parts of the analog
implementation are shifted to the digital domain, since digital
circuits scale better with new technologies. This trend leads to
mixed signals designs. Their analog and digital parts interface
with each other as well as with the outside world (see fig. 1).

Digital
—_— | 1g1LE
Analog circuit _ Analog |

circuit

L =

circuit

Fig. 1. Structure of a mixed signal design containing analog and digital
circuits interfacing with each other and the outside world

The functional verification of the analog parts is different
compared to the verification of the digital parts:

— Digital parts are functionally verified on register transfer
level (RTL) using very sophisticated methodologies like
OVM [1] or UVM [2]. Their key concepts are the genera-
tion of constrained-random stimulus, automated checking
mechanisms and the collection of functional coverage.

— The analog parts of mixed signal designs are usually
verified on SPICE level using analog network simulators.
This approach covers mainly the verification of electrical
parameters, e. g. input resistance and amplification. How-
ever, it is also used to verify the functional behavior of
the block.

However, in the verification of the whole chip (chip level
verification), where the system-level behavior as well as the
interconnectivity of the blocks are to be checked, the detailed-
ness of the SPICE models is often not required. Also, they
slow down the simulation speed drastically.

In consequence, it is a common practice not to use the
SPICE models in chip level simulations. Instead, so called
real number models (RNM) are used. They purely reflect the
functional behavior of the analog parts and are developed by
using a hardware description language, e. g. VHDL, Verilog or
SystemVerilog. The advantage of this approach is that a regular
event driven simulator can be used to perform the chip level
verification.

However, the resulting design under test (DUT) has not only
digital inputs and outputs. Some of them are analog instead,
as shown in fig. 1. The degree of freedom for analog — real-
valued — signals is much higher as it is for usual digital signals,
i.e. their co-domain is nearly unlimited.

Today, the stimulus for the real-valued inputs is usually
done in a directed way, i.e. it is hard coded in the tests.
Randomization is rarely used.

Hence, in this paper, we present, how the constraint random
stimulation of such a DUT can be efficiently achieved by
introducing the concept of analog transactions.

The paper is structured as follows. First, we give an
overview about related work in this field. Following that,
we show how the concept of transactions is used in UVM
testbenches to stimulate digital designs. In connection to that
we present how we extent this concept to analog stimulus.
Finally, we show two example applications.

II. RELATED WORK

UVM is the emerging de facto standard for creating reusable
testbenches and verification environments. Released by Ac-
cellera, this standard defines a class library, which allows
verification engineers to build verification components (VCs)
and environments in a standardized way. Further, the UVM
class library provides a callback mechanism, which enables
VCs and system models to communicate via TLM.

For the analog domain no such abstract communication
technique is available. However, several different approaches
to extend modern hardware, verification and system descrip-
tion languages with the ability to describe analog behav-
ior have been developed; the newest being SystemC-AMS,
presented in [3]. SystemC-AMS allows modeling engineers
to describe analog behavior in frequency and time domain.

The drawback is, that no verification library, that is such
sophisticated as UVM, exists for SystemC or SystemC-AMS.

Another new approach is UVM-MS presented in [4]. This
approach focuses mainly on the direct stimulation of the pins
of the DUT using UVM and an additional Verilog-AMS layer.

All these newer approaches for the analog domain enable
the verification of AMS models. The difference between AMS
models and the aforementioned RNMs is that AMS models
aim more at a higher level of electrical accuracy that is often
not required for chip level verification. In consequence, AMS
techniques are not fitting well to the verification problem
described in section I.

ITII. STIMULUS GENERATION USING UVM

In this section, we shortly explain how stimulus generation
for digital designs is done using UVM.

In order to stimulate a DUT using UVM, transactions are
used. That means, that the input pins of a DUT are not driven
directly from the test. Instead, a data structure containing
parameters is passed to a driver. The parameters are reflecting
the functional features of a certain protocol. For example for
stimulating a serial interface, these parameters are the address
and the payload. When issuing the transaction from the test,
the parameters are set using constrained randomization. Once
the driver receives the transaction, it drives the pins according
to the protocol and according to the parameters delivered by
the transaction. Hence, from a test point of view, transactions
offer abstraction of the protocol.

To make use of this technique, the transaction’s data
structure has to be defined and a driver has to be imple-
mented. To implement the data structure, the predefined class
uvm_sequence_item is extended. See listing 1 for an
example.

class serial_interface_seq_item extends \
uvm_sequence_item ;

rand bit[7:0] addr;

rand bit[15:0] payload;

‘uvm_object_utils_begin \
(serial_interface_seq_item)
‘uvm_field_int (addr, UVM_ALL_ON)
‘uvm_field_int (payload , UVM_ALL ON)
‘uvm_object_utils_end
endclass

Listing 1. Example of a sequence item for a serial interface containing the
parameters addr and payload. The keyword rand enables the randomiza-
tion when issuing the transaction.

In order to implement the driver, the uvm_driver class is
to be extended. In the driver’s run phase, the received instances
of the class serial_interface_seq_ item are decoded
and the pins of DUT are driven as defined by the protocol’s
standard.

IV. ANALOG STIMULUS GENERATION

In the following section we show, how the concept of
transactions as shown in the previous section can be extended
to analog stimulus.

Analog signals are different comparing to digital signals,
as their co-domain is nearly unlimited. That allows analog
signals to adopt different shapes, whereas a single digital
signal always has a rectangular shape. However, it is possible
to classify the shape of an analog signal. For example an
analog signal can be of a linear, harmonic or cubic spline
shape or of any other shape as well. To describe an analog
signal in detail, it is not sufficient to simply name the shape.
Additional parameters are required. For example, to describe
a linear signal the slope as well as one value at a certain point
in time are to be known.

In the abstraction approach presented in this paper, we
identify the term “shape” with the term protocol” from the
previous section. That means that we use a uvm_driver to
generate an analog signal of a certain shape with parameters
delivered by a randomized uvm_sequence_itemn.

In the following subsection we show how harmonic and
cubic spline shaped stimulus can be generated with this
technique. Stimulus for signals shaped differently could be
generated using the same technique.

A. FOURIER transformation-based stimulus

1) Idea: In many applications harmonic analog signals
play a big role. This is especially true for filters and ampli-
fiers. Harmonic signals can be described by their spectrum.
Hence, the spectrum is the parameter set describing the
signal. From a spectrum the harmonic signal can be gained
through an inverse FOURIER transformation. In consequence,
a uvm_sequence_item for harmonic signals carries a
randomized spectrum of the signal to be generated and the
according uvm_driver has to perform an inverse FOURIER
transformation.

2) Basic theory: In this subsection, we present the basic
theory for the FOURIER transformation referring to [5].

Harmonic signals can be written like this:

oo
s(t) = Z cpelnet, (1)
n=—oo

where s(t) is the signal over time, i the imaginary unit,
wy = %r the angular fundamental frequency and Ty the
period of the signal s(¢). Equation 1 is called the FOURIER
series expansion of s(t). For any sequence (c,) the signal
is determined bijectively. c,, are the FOURIER coefficients of
the signal. In general, the co-domain of ¢, are the complex
numbers.

The kernel K,,(t) = ¢! of the FOURIER series expansion
of s(t) is a periodic and also harmonic function, which means,
that a particular kernel K;(¢), multiplied with its respective
FOURIER coefficient c;, represents one spectral portion of the
signal s(t). Therefore the sequence (c,) is also called the
spectrum of s(t).

The process of calculation the respective spectrum from
a signal s(t) is called the FOURIER transformation, with an
arbitrary point of time g:
to+To

s(t)e ! dt.)
to

The function S(w) is called the FOURIER transformed of s(t).
From this function, the spectrum can be obtained by setting

¢n = S(nwp), with n € N. 3)
Often the transformation term in (2) is abbreviated with
S(w) = F(s(t)).)

A uvm_driver will have to calculate a signal s(¢) from
the spectrum (c,,). This process is called the inverse FOURIER
transformation, denoted with the symbol F~! (S(w)). Equa-
tion (1) can be used to perform this process.

3) Implementation: To implement the inverse FOURIER
transformation we used FFTW [6]. FFTW is written in C. Most
modern languages used in digital design offer an interface to
the C language, which allows verification engineers, to make
use of FFTW also in their projects.

Based on FFTW, SystemVerilog and its Direct Programming
Interface (DPI; [7]), we developed a library, that allows using it
in UVM based testbenches. The core of this library consists of
a C wrapper for FFTW, that is callable via the DPI. To hide
the implementation details we developed a UVM compliant
class library that alleviates the use of FFTW. The class library
is implemented as a package which is shown in listing 2.

The package fourier_pkg imports another package
sv_complex_pkg. This package defines a complex data
type and is shown in listing 3. Furthermore, fourier_pkg
defines DPI function prototypes. They serve as an interface
between the C and the SystemVerilog world. On the Sys-
temVerilog side, their arguments are dynamic arrays. The first
one being a dynamic array containing data that are to be
transformed. The second on being the transformed result. On
the C side, their arguments are pointers on the respective data.

This approach of passing pointers through the interface
allows the memory allocation being done on the SV side which
has basically three advantages:

1) Using dynamic arrays on the SystemVerilog side allows
typed memory allocation, whereas C only allows un-
typed memory allocation using malloc ().

2) The resulting data are provided in a normal dynamic
array. There is no need of accessing the C interface in
order to obtain transformed data.

3) SystemVerilog provides garbage collection. That means
that the user has not to free any allocated memory.

To make the usage even simpler, we introduced wrap-
per classes that hides the DPI access. They are extending
uvm_object. Therefore they integrate themselves seam-
lessly into a UVM test environment. Furthermore they allocate
the dynamic array that will contain the result, i.e. the trans-
formed data.

package fourier_pkg;
import sv_complex_pkg::x*;

import uvm_pkg::x;
‘include “uvm_macros.svh”;

import "DPI-C” function void
fourier_transformation_dpi
(real to_be_transformed]|],
inout sv_complex transformed|[]);

import "DPI-C” function void
fourier_inverse_transformation_dpi
(sv_complex to_be_transformed][],
inout real transformed|[]);

class fourier_transformation
extends uvm_object;
sv_complex result[];

‘uvm_object_utils
(fourier_transformation)

function void fourier_transformation
(real to_be_transformed[]);
result = new|[...];
fourier_transformation_dpi
(to_be_transformed , result);
endclass: fourier_transformation

class fourier_inverse_transformation
extends uvm_object;
real result[];

‘uvm_object_utils
(inverse_fourier_transformation)

function void
fourier_inverse_transformation
(sv_complex to_be_transformed[]);
result = new|[...];
fourier_inverse_transformation_dpi
(to_be_transformed , result);

endclass: fourier_inverse_transformation
endpackage: fourier_pkg
Listing 2. Package for Fourier transformation containing the DPI function

declarations and the wrapper classes.

Besides these core functions, we developed also a sequence
item base class, modeling an analog transaction. It is passed
to a uvm_driver that performs the inverse FOURIER trans-
formation using the package described above and stimulates
the design under test. The sequence item class contains a
dynamic array on complex numbers, i.e. the spectrum and

23

24

25

26

27

28

29

40

41

42

43

44

45

24

25

26

27

29

30

31

32

package sv_complex_pkg;
typedef struct{real re; real im;}
sv_complex;

function sv_complex sv_cadd(sv_complex cl,
sv_complex c2);
return {cl.re + c2.re,
cl.im + c2.im};
endfunction: sv_cadd
function sv_complex sv_csub(sv_complex cl,

sv_complex c2);
return “{cl.re — c2.re,
cl.im — c2.im};
endfunction: sv_csub

function sv_complex sv_cmul(sv_complex cl,
sv_complex c2);

return ’{cl.rexc2.re — cl.imx*c2.im,
cl.rexc2.im + cl.imx*c2.re };
endfunction: sv_cmul

function sv_complex sv_cdiv(sv_complex cl,
sv_complex c2);
return “{(cl.rexc2.re + cl.imx*c2.im)/
(c2.rex%x2.0 + c2.im*x%2.0),
(cl.im*c2.re — cl.rexc2.im)/
(c2.1exx2.0 + c2.im*%2.0)};
endfunction: sv_cdiv

//other DPI functions
endpackage: sv_complex_pkg

Generation of a randomized
sequence item containing a
complex-valued spectrum

Handing over the sequence
item to the sequencer and
driver

Driver generates according
stimulus by performing
transformation

Fig. 2. UVM work flow for generating real-valued stimulus using the
FOURIER transformation approach

‘uvm_create (req);

2500.0;
10000.0;

req.T_realtime
req.duration_realtime

for (int unsigned i=0; i<req.c.size; 1i++)
if (i inside {[5:20]})

req.c[i].re =

real *(Surandom_range (10))/100.0;

else

req.c[i].re = 0.0;
for (int unsigned i=0; i<req.c.size; i++)
req.c[i].im = 0.0;

‘uvm_send (req);

Listing 3. Package for defining a complex data type. The package also defines
functions for complex calculus, such as complex addition etc. Additionally,
our complex calculus package contains some DPI function prototypes. They
enable the calculation of the complex elementary functions such as the
complex exponential. They are not displayed in the listing.

two values of type realtime. They determine the duration
of the transaction and the period Ty of the transformed signal
represented by the spectrum.
The content of the spectrum can be obtained in different
ways:
— It can be obtained by a transformation of a signal de-
scribed in the time domain,
— it can be the output of a analog transaction model
operating in the frequency domain or
— it can be gained through randomization, which is in
general the natural way of gaining stimulus in UVM
based testbenches. See an example in listing 4. See also
a diagram of the work flow in fig 2.

B. Cubic Spline based stimulus

1) Idea: In the previous subsection, we presented a stimu-
lus generation technique using FOURIER transformation. The

Listing 4. Creating a randomized analog transaction. Note how the the real
parts of the frequency portions get randomized in lines 8 and 9.

advantage of this approach is that stimulus can be gener-
ated just by randomly selecting some FOURIER coefficients.
However, the drawback of this technique is that this kind of
stimulus is only useful for designs operating on small signal
level. For large signal level designs this kind of stimulus can
not be used. Therefore we also developed an approach that
allows verification engineers to stimulate such a design using
a cubic spline approach supported by UVM.

The key idea of cubic spline interpolation is to interpolate
a set of tabulated values in such a way that a smooth signal
is resulting. In this context “smooth” means that the second
derivative of the interpolation is continuous. See figure 3 for
a comparison of linear and cubic spline interpolation.

2) Basic Theory: In this subsection, we briefly explain the
basic theory of cubic spline according to [8].

Suppose that some values of a signal s(¢) are given in a
tabulated way s; = s(t;) with ¢ = 1...N. To calculate the
linear interpolation of the signal s(¢) in the interval [t;;¢;4+1],
one can use the following interpolation formula:

s(t) = As; + Bsj1 (%)

s(t)

\/

Fig. 3. Comparison of linear and spline interpolation. The points to be
interpolated are marked with WM. The linear interpolation is shown as a dashed
line.

with

tigr —t
A=~ B=1-4
tit1 =t

(6)

However, using this formula the result is not smooth. To obtain
a smooth result we must extend the formula in such a way that
the second derivative is varying linearly through the interval
[tj;tj+1]. At the interval’s borders the second derivative must
reach a value of 5; or respectively 5;; that is supposed to
be given.

One can reach that constraints by extending equation (5) in
the following way:

with

C=_ (A= A)(tjs1 —t;)>, D=~ (B* = B) (tj41 — t;)°

®)
The remaining problem is that the second derivative is sup-
posed to be known, but it is not. However, it can be gained
by claiming that the first derivative has to be continuous at
the interval borders as well. This requirement leads to a linear
equation system containing N — 2 equations. Its solution are
the §;. We will not express the system here. Please refer to
[8]. After having the system solved, equation (7) is used to
compute a particular value of the signal s(t).

3) Implementation: In order to implement the cubic spline
interpolation, we followed the same approach as for the
FOURIER transformation: We implemented the algorithm itself
in C to ensure fast execution. From the testbench side we
are calling a UVM compliant class based interface that hides
the implementation using SystemVerilog’s direct programming
interface.

Also, we implemented a uvm_sequence_item and a
uvm_driver class that enables verification engineers to use
the concept of transactions to create randomized stimulus from
the test. The parameters in the sequence item are time value
pairs that are to be randomized during creation of the item.
In SystemVerilog we simple identified these time value pairs
using a structure as shown in listing 5.

1 1
6 6

package point_pkg;

typedef struct {real x; real y;}
point;
endpackage: point_pkg
Listing 5. Package that defines a time value pair type using a struct

The creation of a sequence item is shown in listing 6. In
line 1 a sequence item is created and its first time value pair is
initialized to (0, 0) in line 2. Following that, a random number
of values (20 up to 40; line 4) are pushed into the sequence
item in a randomized manner (line 8 to 11).

‘uvm_create (req);

req.points.push_back(point ’(’{0.0, 0.0}));
repeat ($random_range (40, 20))
begin
real old_time = req.points[$].x;
random_value = (—1.0)xx$urandom_range (1)

x real ($urandom_range (4000))/1000.0;
random_time = real ’($urandom_range (
10000000, 500000))/1000.0;

req.points.push_back(point *(’{old_time +
random_time , random_value}));

end

‘uvm_send (req);

Listing 6. Creation of a randomized spline sequence item

The driver is shown in listing 7.

The driver extends uvm_driver and therefore integrates
into a UVM based testbench environment. The code follows
the UVM guide lines. That means that it has a build phase,
a connect phase (both not shown in the listing) and a run
phase. In the run phase, the driver waits on its according
sequencer in order to obtain a sequence item. After having
obtained a sequence item, the actual driving takes place in
the drive_transfer task. There, a wrapper object to
the spline interpolation mechanism is created (line 24). This
wrapper object has the same purpose as the wrapper objects
explained in section IV-A3:

1) It hides the DPI access and
2) allocates the required memory.

After that, the driver calls the spline-method of the wrapper
object in order to start the spline interpolation on the C side
(line 27). The while-loop in line 31 accesses the transformed
data using the get_real method of the wrapper object
and drives the interface variable. How the interface handle
is obtained, we will show in the following section.

29

30

31

32

33

34

35

36

37

38

39

class stimulus_driver extends uvm_driver

#(stimulus_sequence_item);
// ...

// run phase
virtual task run();
forever begin
seq_item_port.get_next_item(req);

$cast(rsp, req.clone());
rsp.set_id_info(req);

drive_transfer (rsp);
seq_item_port.item_done(rsp);
end
endtask: run
// drive_transfer
virtual task drive_transfer

(stimulus_sequence_item trans);
real offset_real = $realtime;
spline sp = spline ::type_id::

create (”sp”);
sp.spline (trans.points);
#(trans.points [0].x);

while ((offset_real + trans.points[$].x)
> S$realtime)
begin
#1;
vif.signal = sp.get_real($realtime —
offset_real);

module adc
#(parameter bit_p =9,

parameter ana_max_p = 5.0)
(input bit clk i,
input real ana_i,
output bit [bit_p—1 0] dig_o);

real resolution_real =
2.0 % ana_max_p / real’(2xxbit_p — 1);

always @(posedge clk_i)
begin
if (ana_i <= —ana_max_p)
dig_o = ’0;
else if(ana_i >= ana_max_p)
dig_o = ’1;
else
begin
dig_o = 0;
for(real i = —ana_max_p;
i+=resolution_real)
dig_o++;
end
end
endmodule:

1 < ana_i;

adc

end
endtask: drive_transfer
endclass: stimulus_driver
Listing 7. Spline driver that generates spline-shaped stimulus based upon

sequence items containing time-value-pairs

V. EXAMPLE APPLICATIONS AND RESULTS

In this section we show some results based upon two
examples applications.

First one is small example containing an analog to digital
converter (ADC) that we created to test out approach.

The second is a productive motor driver application — e. g.
for wipers or electric window lift — from the automotive area.

A. ADC

To have the opportunity to test and refine our approach, we
created a model of an ADC. The source code of the ADC is
shown in figure 8.

Listing 8. Real-number-model of an ADC

The ADC samples the real-valued input signal based on
the rising edge of the input clock clk_i. The parameter
ana_max_p defines the maximum input swing that the ADC
can handle. An input value on ana_i that is equal or
smaller than -ana_max_p will result in an output at dig_o
of all zero. An input value that is equal or greater than
+ana_max_p will result in an output value of all one. All
values between -ana_max_p and +ana_max_p will result
in a respective digital output whose precision is determined
by bit_p.

The analog input of the ADC was connected to a ver-
ification component (VC) containing our drivers presented
in the previous sections. The connection was done via a
virtual interface (vi; see listing 9, 10 and 11). In order to
push down the handle on the interface to the OVC, the
new uvm_config_db mechanism is used. Compared to the
old OVM configuration mechanism, this new mechanism is
much more flexible. The old mechanism was only able to
configure variables of type ovm_bitsteam_t, string or
ovm_object, whereas the new mechanism can configure
variables of any type including virtual interfaces. This is due
to the fact that the new mechanism uses a parameterized
configuration table that is globally visible.

Another very good feature of the new mechanism is that
it explicitly allows to call the set method from a non-
uvm_component context. This is especially useful for push-

o

ing down virtual interface handles, since interfaces are static
and therefore are always instantiated outside the class-based
OVM/UVM context.

interface real _if;
real signal;
endinterface: real_if

Listing 9. SystemVerilog interface that is used to connect the DUT with the
VC. The interface contains only one real-typed signal that will be connected
to the ADC’s input. The driver will be connected to this signal using a virtual
interface handle.

initial

uvm_config_db#(virtual real_if)
::set(null, “uvm_test_top.env.agentl .x”,
“vif”, top.ana_i_if_i);

Listing 10. Assignment of the interface to the virtual interface of the
VC using the new UVM configuration style uvm_config_db. The first
argument of the set method points to a uvm_component. Since the method
is called in a module context, it can not be set to a meaningful context and
is therefore set to null. The second argument points to a uvm_component
relative to the first argument. Since the first argument is null in our case,
the second argument is the absolute path to the target. The third argument is
the name of the field to be set. The fourth argument is the physical interface,
whose handle is to be pushed to the VC.

function void connect();

if (!uvm_config_db#(virtual real_if)
::get(this, 77, ”vif”, vif))
begin\

‘uvm_fatal (get_type_name (),
{"No_VIF_set._for.",

get_full_name (), ”!”});
end
endfunction: connect
Listing 11. The driver and monitor obtain the handle to the interface in the

connect phase using the UVM configuration mechanism. In order to do that,
the get method of the uvm_config_db mechanism is used. The syntax
is the same as in 10. Additionally, a check is performed, whether the set
method has been called before. If not, a uvm_fatal is issued.

The digital output was connected to a passive VC. Both
VCs, we connected to a uvm_scoreboard using TLM
connections (See figure 4). It receives exactly the same se-
quence item as the driver inside the active VC. Therefore, it
calculates directly with the sequence item’s parameters without
transforming them to a signal level. We show in another paper,
how the scoreboard works.

B. Motor driver

After testing and refining our approach using the ADC as
described in the previous section, we applied it in the chip
level verification of a product.

This product is a system on chip (SoC) from the automotive
area. It is used to drive motors, e.g. in wiper or electrical
window lifting applications. Its structure is shown in figure 5.

scoreboard

interface |. | passive
vC BV <ADC U[>'5| interface
VC
virtual
sequencer

Fig. 4. Testbench structure for an ADC model containing an active and a
passive VC as well as a scoreboard
5
-
= <
A °
5 Processor D
7] —
- l 1+ O
=) n S
2 -
o0 Bus system 2 E
i) | =
o]
é o
LIN bus interface
Fig. 5. Structure of the automotive SoC

We connected the analog sensor input shown in fig. 5 with
the VC that uses the presented approach, in order to stimulate
the interface randomly. The interface has been connected to
the VC using the same way as described in the previous
subsection.

With the aforementioned approach we were able to find
a bug in the RTL code of a state machine in the design.
The state machine got stuck after we injected several random
spikes into the sensor input using the cubic spline approach.
During the verification of that project, we considered the main
advantages of our approach that relatively complex stimulus
could be generated much faster as with a directed approach.

VI. CONCLUSION AND OUTLOOK

In this paper we gave a brief overview on an abstraction
technique and highlighted its key features. The technique tack-
les the necessity of being able to generate constraint random
stimulus also for analog inputs of a DUT. Our future work
will focus on the extensions of the presented methodology,
regarding usability and flexibility. The goal is to provide a
UVM based building box that covers the need of verification
engineers to simulate and verify mixed signals designs. This
building box shall include methods and techniques for moni-

toring and checking of analog signals, as well as for coverage
collection.

(1]
(2]
(3]
(4]

REFERENCES

Accellera, OVM User Guide—YVersion 2.1.1, http://www.ovmworld.org,
March 2010.

——, Universal Verification Methodology (UVM) 1.0 User’s Guide,
http://www.uvmworld.org, February 2011.

OSCI, OSCI SystemC-AMS extensions, www.systemc-ams.org, March
2010.

N. Khan, Y. Kashai, and H. Fang, “Metric Driven Verification of Mixed-
Signal Designs,” in proceedings of DVCon, March 2011.

[5]
(6]
(71
(8]

T. Butz, Fourier Transforms for Pedestrians. (Fouriertransformation fiir
Fufigdnger) 4th Revised and Expanded ed. Tuebner, 2005.

M. Frigo and S. G. Johnson, “Fastest fourier transformation in the west,”
www.fftw.org.

IEEE 1800-2009, IEEE Standard for SystemVerilog — Unified Hardware
Design, Specification and Verification Language, December 2009.

W. H. Press, T. S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cam-
bridge University Press, 2007.

