
Advanced Techniques for ARM L2 Cache Verification in an

Accelerated Hardware and Software environment

Rob Pelt Jay O’Donnell

Altera Corporation Mentor Graphics

San Jose, CA Seattle, WA

ABSTRACT:

High-end ARM-based SOC designs typically

implement an L2 cache controller to improve system

performance and manage memory access. Such

systems also provide external peripheral access to L2

and L3 main memory using the accelerator coherency

port (ACP) on the processor. System performance

can be optimized in the design of both hardware and

software that configures and manages memory

access. Verifying correct operation and performance

in such a highly configurable system is a key goal.

This paper presents techniques to verify operation

and performance of L2 cache in this type of system.

Methods were developed supporting concurrent

software and ACP hardware L2 accesses in a

coordinated systematic fashion for various system

configurations. Some configurations include

software-configurable cache “ways” combined with

different types of cache-able accesses coming from

both ACP and software targeting cached memory in

various states.

The requirement for dual access to L2/L3 by both

software and hardware presents significant challenges

due to the need to systematically manage two

distinctly different processes using a common

verification framework. Hardware accesses use AXI

read and write transfers to drive the ACP port.

Software accesses utilize a software test framework

and operating system routines. A centralized

testbench managing both types of accesses is needed

to provide control and synchronization.

This work utilized intelligent testbench (iTBA)

techniques to systematically manage both accesses,

enumerate the verification state space (which had

well in excess of 10 million cases) and manage the

test scenario generation to meet coverage goals.

Traditional approaches using constrained-random or

directed testing were inadequate due to the extremely

large number of test scenarios and the requirement,

incompatible with random generation, to precisely

manage the scenarios. Traditional functional

coverage approaches to measure verification

effectiveness were considered but ultimately rejected

due to the complexity of instrumenting the

environment. Also, such approaches were found to be

unnecessary since the iTBA tool could automatically

enumerate and target the stimulus state space.

A hardware-accelerated simulation environment was

used to efficiently simulate the large number of

scenarios. Results of the work and lessons learned

are presented.

1. Introduction

Verifying the L2 cache from both the CPU and

external AXI masters through the ACP presents a

number of challenges:

 Implementing a flexible verification

architecture supporting both software and

hardware access managed by one central

process

 Developing a flexible software framework

and communication mechanism to

coordinate software and hardware activity

 Developing a hardware test environment to

drive ACP

 Developing a top-level control testbench

capable of describing the overall test

scenario and controlling hardware and

software interfaces to generate the tests

2. Environment

The testbench environment is based on System

Verilog and the OVM library. A number of

Verification IP components (VIP) based on OVM

form the testbench foundation. The testbench is also

tightly bound to the CPU in the SOC, which can be

used to coordinate and check testbench activity.

Although the VIP components can be driven by

OVM sequences implemented using directed and

constrained random approaches, additional advanced

approaches were considered.

One testbench architectural challenge is coming up

with a scheme for ACP access. This is because ACP

is normally accessed via multiple AMBA fabric

masters. Accessing ACP using these AXI masters

could be very difficult to coordinate and control since

the actual peripherals would need to generate the

AXI traffic targeting ACP and rely on the fabric to

deliver the transactions deterministically.

In order to simplify ACP access a single AXI fabric

port having ACP access is configured to generate all

ACP transactions directly with other ACP capable

ports configured to be inactive.

Additionally, the OVM testbench must be able to

communicate with the CPU’s embedded software.

This is done to coordinate the L2 cache state before

issuing transactions to the ACP across the fabric, and

to instruct the embedded software to initiate various

L2 cache accesses while concurrently initiating cache

accesses via ACP.

Figure 1: Verification environment

Figure 1 shows the main elements of the verification

environment. Top TB manages generation of two

streams of L2/L3 traffic:

 ACP

 CPU

A graph in Top TB defines the total stimulus state

space and manages the generation of both stimulus

streams during simulation.

ACP traffic implemented using TLM is passed to the

AXI SEQ block, which in turn assembles an OVM

sequence and passes the (TLM) sequence to the

OVM AXI VIP driver for delivery on the ACP port

interface. The AXI SEQ block is highly configurable

and can implement all required ACP accesses.

CPU software accesses are also managed by Top TB,

but use a custom mailbox communication scheme

that lets Top TB call pre-configured software routines

in the test operating system to initiate L2 accesses

and monitor L2 and L3 states.

3. Beyond constrained random

To improve coverage and efficiency, a graph based

approach was chosen to test the complete scope of

the protocol, specifically in the space of the AXI

protocol relative to cache-based transactions to the

ACP port. This approach assured complete coverage

of the ACP-related protocol space and efficient

coverage of corner cases. The AXI SEQ graph gives

a comprehensive view of the functional space we

intend to cover, thus giving critical feedback on the

parameters that are covered and those that are

intentionally left out. Careful reviews of the graph

can also help identify ACP-related parameters of the

AXI protocol that we might have missed. This

graph-based approach is much easier to visualize and

review for accuracy than a scattered list of random

variables and provides direct tabulation of the size of

the stimulus state space. This lets the user identify

which parts of the graph are important to target

during simulation (colored highlights) and which run

randomly. The approach also supports targeting

multiple stimulus generation regions with different

priorities, which improves verification efficiency and

early bug detection.

The inFact graph-based intelligent testbench tool was

selected for this application because of its ability to

precisely generate all test combinations non-

redundantly as the graph is traversed during

simulation. This differs from a traditional

constrained-random testing (CRT) approach which

requires the addition of external coverage

measurement code to validate when test

combinations are hit. Such CRT flows typically

require re-running of the tests using different seeds to

cause different random variable combinations to be

hit. On average at least 10x more CRT tests are

required to achieve coverage due to the probabilities

of random variable selection.

These advantages of the graph-based approach

eliminate requirements to write coverage code and

iteratively run tests with different seeds, resulting in

significant savings in testbench development time

and overall time savings in the verification process.

4. Top TB implementation

Figure 2 shows the top testbench graph responsible

for coordinating the overall testbench execution

controlling ACP and CPU accesses of L2/L3 cache.

Sizing information for the different graph segments is

also shown.

This graph specifies a loop of transaction sequences

that could be a CPU ->ACP (Sw_trans->Acp_*) or

an ACP->CPU for different “ways” configurations

targeting different address regions and cache

scenarios. The details of address region selection and

cache scenarios are contained within the brown graph

symbols that implement sub-graphs.

Some of the more important scenarios which this

graph implements include:

 Cache initialization calling Test OS routines

 Access ordering: Software or ACP first

 Ways configurations

 Cache control and protection bit setting

combinations, both accesses

 Cache line state in L2 and L3 and cache

access scenarios based on state

 Backdoor access using Test OS routine to

verify L2 and L3 states during different

accesses

Figure 2: TOP TB generation graph with sizing

Modeling L2 and L3 states under different

configurations is important to assure proper cache

operation. To do this, the initial states need to be

established and then accesses must be precisely

managed by careful selection of addresses. This

helps to simplify predictive model of cache state,

which will be implemented as a side object in the top

level testbench.

5. AXI SEQ implementation

Figure 3 shows the graph construction for the AXI

SEQ block that manages AXI accesses. A close

inspection of the graph shows sizing for different

graph segments that gives visibility into stimulus size

and helps plan which stimulus combinations are

important and practical to target in combination.

Figure 3: AXI SEQ generation graph with sizing

6. Test initiation from the embedded software

Testing cache operations from the CPU’s embedded

software is fairly easy. But when ACP transactions

are submitted from external AXI masters, the

embedded software must be used to set up the cache

into known states. This requires communications

between the graph-based sequence and the embedded

software.

The mailbox communication scheme shown in Figure

1 provides a mechanism for calling functions in the

Test OS and verifying OS state calling status

functions. A collection of functions were developed

that support memory initialization and configurable

memory accesses. The number of such functions is

fairly small, though the number of possible accesses

is quite large due to the combinations of function

arguments and calling order. The Top TB graph

manages the order of function calls and pass

argument values when constructing the various test

scenarios.

7. Accelerating the test

Cache operations and the sheer number of required

tests will quickly exceed practical limits of

simulation. Therefore the OVM testbench, the VIP

components and the overall model of the design must

also be compatible with emulation-based simulation

acceleration. This will permit the full spectrum of

cache operations to be tested.

8. Findings and conclusion

The initial work verifying correct L2 operation relied

on a purely software-based scheme. In this scheme,

graph-generated static software routines created a

block of loadable C code that was executed on the

Test OS to verify basic cache operation in different

ways scenarios. The graph was run once to generate

the test code block, which was later run on the CPU

during emulation.

This technique validated basic cache subsystem

operation but lacked support to verify ACP accesses.

Various ideas were considered to add ACP, including

both pre-generation of a purely software-based

scheme that included calls to external OVM

sequences to initiate ACP accesses. This scheme,

while feasible, had a number of drawbacks:

 The generated test code would be huge,

requiring some sort of paging to break up

the generated tests into manageable blocks

 Dynamic control of test execution was not

possible since everything was pre-generated

 Varying the access order was not feasible

without re-generating the test code running

the generator graph with different software

seeds

 Time synchronization might present

problems since it had to be done from the

CPU

We concluded that the simpler approach would locate

the top-level testbench control in the simulation

environment running under OVM, where the CPU

and Test OS would be slaved to a single simulation-

based OVM process. Among this scheme’s benefits:

 Easier to develop

 Eliminated the complexity of paging in

different tests

 Test ordering could be changed on the fly

during simulation

 Easier to make the testbench reactive to

simulation and CPU state since the graph

traversal engine is actively managing

processes and can dynamically adapt to state

changes

This work is currently underway and results will be

available for discussion during the DVcon 2012

session.

