
Keeping Up with Chip — the Proposed SystemVerilog 2012 Standard
Makes Verifying Ever-increasing Design Complexity More Efficient

Stuart Sutherland
SystemVerilog Trainer and Consultant

Sutherland HDL, Inc.
Portland, Oregon

stuart@sutherland-hdl.com

Tom Fitzpatrick
Verification Evangelist
Mentor Graphics, Corp.

Waltham, Massachussettes
tom_fitzpatrick@mentor.com

Abstract—The complexity and size of our hardware designs
and verification code continues to increase at a rapid rate,
and the SystemVerilog Design and Verification language is
keeping pace. As soon as the SystemVerilog standards
organization completed the SystemVerilog-2009 standard,
they immediately began work on the next generation of the
language, looking for ways to more efficiently and more
effectively model and verify increasingly complex designs. In
just three years — near record time for a complex IEEE
standard — a SystemVerilog-2012 standard has been defined
and is currently in the balloting process. New and powerful
language features include multiple class inheritance, user-
defined net types, additional assertion capabilities, and much
more. You won't need to wait long to use SystemVerilog-2012;
EDA companies have already begun adding SystemVerilog-
2012 features to their software tools.

This paper presents the many new features in the proposed
SystemVerilog standard, and discusses how key new language
capabilities can enable more efficiently verifying designs that
are continually increasing in size and complexity. The paper
also discusses how new features such as multiple inheritance
can benefit the UVM verification methodology. SystemVerilog
is “keeping up with Chip” — your chip.

Keywords—Verilog, SystemVerilog, hardware design,
hardware verification, UVM

I. INTRODUCTION

SystemVerilog has become a primary language for the
design and verification of digital hardware designs.
SystemVerilog was first introduced in 2002 as an Accellera
standard that specified a large number of extensions to the
Verilog-2001 Hardware Description Language[1]. These
extensions added both new modeling and verification
capabilities to Verilog. In 2005, the IEEE standardized
these extensions as the 1800-2005 SystemVerilog
standard[2]. A brief description of these extensions can be
found in [3] and [4]. The base Verilog language remained a
separate standard, IEEE 1364-2005. The 1800-2005

SystemVerilog standard only specified enhancements to
the base Verilog language.

In 2009, the IEEE approved the 1800-2009
SystemVerilog standard[5]. SystemVerilog-2009 merged
the Verilog HDL standard into the SystemVerilog standard,
and officially ended the Verilog standard. SystemVerilog-
2009 standard also added a number of additional features
to the language (see [6] and [7]).

2009 was not the end of the evolution of
SystemVerilog. Design size and complexity continues to
rapidly evolve. A design and verification language must
evolve to keep pace with designs. As soon as the IEEE
SystemVerilog standards committee completed
SystemVerilog-2009, work began on defining the next
generation of SystemVerilog, currently referred to as IEEE
P1800-2012 proposed SystemVerilog-2012[8]. Wish lists
of new language features were developed, and from those a
“top 10” list of new features was created for categories
such as design modeling and testbench modeling.

Furthermore, ambiguities in the SystemVerilog
standard, and occasional typographical errors, were
identified as Electronic Design Automation (EDA)
companies implemented SystemVerilog-2009 in various
types of software tools. Along with specifying new
language features for the next generation of
SystemVerilog, the IEEE 1800 standards committee made
a number of clarifications and minor corrections to
SystemVerilog-2009.

The work on specifying new features and clarification
for SystemVerilog-2012 was completed in January 2012. A
pre-ballot draft of the new standard was prepared and
reviewed during the month of January 2012. At the time
this paper was written, a ballot draft was in the process of
being prepared, with the IEEE balloting process set to
begin in February 2012 and close in March 2012.

The data base used to track changes to the

SystemVerilog standard is called “Mantis.” The Mantis
data base lists 162 changes for the proposed
SystemVerilog-2012 standard. Of these 162 changes:

• 31 are new features that have been added to
SystemVerilog.

• 60 are clarifications of how existing features in the
standard should behave.

• 71 are minor corrections to fonts, punctuation, etc. (plus
a number of minor editorial corrections, such as fixing a
font, that were not recorded in the data base).

This focus of this paper is on the 31 new language
features, and how those features can help make writing
complex verification testbenches simpler or more efficient.

II. NEW FEATURES IN SYSTEMVERILOG-2012

A. OOP enhancements

Three of the new features in the proposed
SystemVerilog 2012 standard affect Object Oriented
Programming (OOP). One is a convenience enhancement
that does not add new functionality. Another adds
important functionality for helping OOP code avoid race
conditions with procedural code. The third enhancement is
significant — a form of multiple inheritance.

1. Typed new() constructors (Mantis 3001)

Previous versions of the SystemVerilog standard
required that the type of an object to be constructed must
match the type of handle variable of that object’s new()
constructor. Once constructed, a child handle can then be
assigned to a handle of its parent type. To construct an
object and assign the handle to a parent type requires at
least three lines of code. For example:

class base_trans; ... endclass

class reset_trans extends base_trans;... endclass

base_trans t_base;
reset_trans t_reset t_reset = new;
t_base = t_reset;

The typed new() constructor enhancement adds a class
scope immediately before the new keyword, specifying the
constructed object’s type independently of the assignment
target. This reduces the three lines of code above to a
single line:

base_trans t_base = reset_trans::new;

This new feature in SystemVerilog is a convenience
enhancement. It does not add new functionality, but can
help reduce the lines of code and make code more self-
documenting.

2. Nonblocking assignments to class properties
(Mantis 2112)

Previous versions of SystemVerilog did not allow
nonblocking assignments to class properties. The proposed
SystemVerilog-2012 standard removes this restriction.

class base_trans;
int data;
bit resetN;

endclass

initial begin
resetN <= 0; // assert reset in NBA region
...

end

While nonblocking assignments are primarily a
hardware modeling construct used in RTL models, they are
also useful in verification code. Nonblocking assignments
allow verification engineers a way to utilize
SystemVerilog’s internal event scheduling regions to
control the order in which concurrent processes are
evaluated. When and why nonblocking assignments should
be used is beyond the scope of this paper, but it is
important. This enhancement enables writing better
verification code.

3. Multiple inheritance (Mantis 1356)

This new feature is one of the most significant
efficiency enhancements in the proposed SystemVerilog-
2012 standard. Multiple inheritance allows a child class to
inherit properties and methods from more than one parent
class. The proposed SystemVerilog-2012 uses Java-like
interface classes to do multiple inheritance.

In brief, a SystemVerilog interface class can define:

• Parameter constants

• User-defined types (typedefs)

• Pure virtual method prototypes

A regular class can then implement one or more
interface classes. The full syntax, semantic rules and
mechanics of interface classes is beyond the scope of this
paper. A simple usage of interface classes and multiple
inheritance is illustrated in the following example (bold
text shows the important new features):

interface class Put;
 pure virtual function void put(int a);
endclass

interface class Get;
 pure virtual function int get();
endclass

//inherit method prototypes from multiple parents
class Fifo implements Put, Get;
... // implementations of inherited methods

endclass

Section III of this paper discusses how multiple
inheritance might be used in a UVM testbench to help
make verification more efficient.

B. Constrained randomization enhancements

Two new features in the proposed SystemVerilog-2012
standard provide a means to more efficiently model
constraints for random value generations. Both are major
enhancements.

1. Soft constraints (Mantis 2987)

All constraints in previous versions of the
SystemVerilog standard are referred to as hard constraints.
All hard constraints must be met, or an error results. This
can be problematic and inefficient in complex verification
code. For example, if a transaction class has default
constraints specified, but a specific test requires and
specifies a different constraint, an error can occur if the
specific constraint conflicts with the built-in constraint.
The programmer developing the special test must be aware
of the potential conflict, and write extra code to first
disable the built-in constraint — and then remember to re-
enable the constraint after the test is complete.

The proposed SystemVerilog-2012 standard adds an
important new feature — soft constraints. A soft constraint
is ignored if it conflicts with another constraint. This
allows for a more efficient coding style. A class can define
default soft constraints that are used most of the time. A
specific test can specify a different constraint, which will
override — instead of conflict with — the default
constraint. For example:

class Packet;
rand int size;
constraint dflt {soft size inside {32,1024};}

endclass

Packet p = new();
p.randomize with {size == 1512;}

In this example, the randomize with() constraint
conflicts with the built-in constraint. No extra coding is
required to prevent a constraint solution error, because the
randomize with() constraint takes precedence over the
soft constraint, and so the soft constraint is ignored.

2. Uniqueness constraints (Mantis 3028)

In previous versions of the SystemVerilog standard, it
was difficult to specify constraints so that a list of several
variables — or all the members of an array — had different
random values, so that no two members of the list or array
had the same value. A short list or very small array could
be specified with multiple constraints, but this would be
impractical for larger lists or arrays.

The proposed SystemVerilog-2012 standard adds a
uniqueness constraint that efficiently — as in a single line
of code — models generating random values where all
variables in a list or an array receive unique values.

class Transaction;
rand int a, b, c;
rand byte data_array[16];

constraint c1 { unique {a,b,c}; }
constraint c2 { unique {data_array}; }

endclass

Constraint c1 ensures that, whenever random values
are generated, the values of a, b and c will be different.
Constraint c2 ensures that whenever random values are
generated, every element of data_array will have a
different value.

C. General programming enhancements

This paper classifies 8 of the new features in the
proposed SystemVerilog-2012 as general programming
enhancements. Most of these new features help make
SystemVerilog more efficient by simplifying or reducing
the amount of code required to verify complex designs.

1. Parameterized tasks and functions (Mantis 696)

A popular, and efficient, coding style in SystemVerilog
(and part of the original Verilog HDL) is parameterized
modules. It allows a single version of module to be written,
and then reconfigured for each usage. SystemVerilog
classes can also be parameterized and reconfigured
(referred to as “specializing”) for each instance in a similar
way.

A limitation in previous versions of SystemVerilog,
however, is that tasks, functions and class methods cannot
be parameterized. If, for example, a design could work
with 16-bit, 32-bit, or 64-bit bus sizes, a different task
would need to be written for each bus size. Redundant code
such as this is inefficient and error-prone.

It has been a long-standing enhancement request to add
parameterized tasks and functions to SystemVerilog.
Unfortunately, the syntax used to redefine module and
class parameters is not compatible with the syntax of task/
function calls. As a result, the SystemVerilog standards
committee has left this enhancement request on a back
burner for each new version of the SystemVerilog standard.

The proposed SystemVerilog-2012 standard adds this
long-desired efficient coding style of parameterized tasks
and functions. A simple and novel way was found to
overcome the parameter redefinition syntax
incompatibility — using static methods within a
parameterized class. Parameters in a class can be redefined
for each usage, and static class methods can be called from

anywhere using the class scope name, and parameters in
the class scope can be redefined for each call.

The following example is adapted from the proposed
SystemVerilog-2012 standard:

virtual class C
#(parameter DECODE_W,

localparam ENCODE_W = $clog2(DECODE_W));
static function logic [ENCODE_W-1:0] ENCODER_f
(input logic [DECODE_W-1:0] DecodeIn);
ENCODER_f = '0;
for (int i=0; i<DECODE_W; i++) begin
if (DecodeIn[i]) begin
ENCODER_f = i[ENCODE_W-1:0];
break;

end
end

endfunction

static function logic [DECODE_W-1:0] DECODER_f
(input logic [ENCODE_W-1:0] EncodeIn);
DECODER_f = '0;
DECODER_f[EncodeIn] = 1'b1;

endfunction
endclass

module test;
...
// Redefine DECODE_W for each function call
encoder_out = C#(8)::ENCODER_f(8'b0100_0000);
decoder_out = C#(4)::DECODER_f(2'b11);
...

endmodule

In this example, functions ENCODER_f and DECODER_f
serve as template functions that can work with any size of
data. The specific return size and input argument size is
specified for each call to these functions by redefining the
DECODE_W class parameter for each call.

In a strict sense, parameterized tasks and functions is a
clarification of previous versions of SystemVerilog, rather
than a new feature. No new syntax or semantic rules were
added to the SystemVerilog standard, but using
parameterized classes to specialize each call to a task or
function was not documented in previous versions of the
SystemVerilog standard.

2. Parameterized user-defined types (Mantis 1504)

SystemVerilog user-defined types are powerful and
widely used in verification code. A limitation, however, is
that a typedef definition applies to all instances of that
type. It cannot be customized to be different each place the
user-defined type is used.

The proposed SystemVerilog-2012 allows user-defined
types to be parameterized so that each usage of the type can
be specialized based on the parameter values. This is
accomplished by defining the user-defined type within a
parameterized class, in a similar manner to the

parameterized tasks and functions described in
enhancement II.1, above. For example:
virtual class P#(parameter SIZE = 1);
typedef struct packed {
logic [63:0] source_addr;
logic [63:0] dest_addr;
logic [31:0] payload [0:SIZE-1];

} pakcet_t;
endclass

module test;
// Redefine SIZE for each usage of packet_t
P#(16)::pakcet_t small_pkt;
P#(1024)::pakcet_t large_pkt;

...
endmodule

Defining class P as virtual in this example means that
the class itself cannot be constructed, but static definitions
within the class, such as typedef, can be referenced at
anytime using the class scope name.

Parameterized user-defined types is more of a
clarification of previous versions of SystemVerilog, rather
than a new feature. No new syntax or semantic rules were
added to the SystemVerilog standard, but using
parameterized classes to specialize each instance of a user-
defined type was not documented in previous versions of
the SystemVerilog standard.

3. Explicit untyped arguments in let constructs (Mantis
2835)

The SystemVerilog let construct allows defining
macro code. The macro can be used anywhere procedural
code is used, and the body of the macro is effectively
expanded at that usage point. The let construct is similar to
the ‘define text substitution compiler directive, but
without the inherent dangers of compiler directives.

The let construct was first introduced in the
SystemVerilog-2009 standard. Its syntax allows for the
data types of its formal arguments to either be explicitly
specified or to implicitly inherit the type of an actual
argument. A mix of typed and untyped arguments is
allowed in SystemVerilog-2009, but only if the untyped
arguments are specified first. It is not possible to have a
mix of explicitly typed arguments followed by implicitly
typed arguments.

The proposed SystemVerilog-2012 standard allows a
mix of typed and untyped let formal arguments to be in
any order, by explicitly specifying untyped arguments
using the untyped keyword. The syntax is the same as
with assertion properties.

let OK(event clk, untyped a) =
assert ($stable(a,clk));

module test;
logic [31:0] d;

real r;
bit clock;

task do_something;
...
OK(@(posedge clock), d) ...
OK(@(negedge clock), r);
...

endtask
endmodule

4. $countbits system function (Mantis 2476)

Previous versions of the SystemVerilog standard
provide several convenience system functions that return
information about the value of a vector: $countones,
$onehot, $onehot0, and $isunknown.

The proposed SystemVerilog-2012 standard adds
another convenience system function, $countbits. This
function returns the number of bits that have a specific set
of values (e.g., 0, 1, X, Z) in a bit vector. This new system
function makes it easier and more efficient to write
verification code that examines the individual bits of a
vector. Without $countbits, it would be necessary to
code a loop that iterates through each bit of a vector.

assert (!$isunknown(data)
else $error (“data has %0d bits with X or Z”,
$countbits (data, 'x, 'z));

This enhancement also makes several clarifications
regarding the semantic rules of the bit-value system
functions that were in previous versions of the standard.

5. ref arguments with dynamically sized dimensions
(Mantis 2929)

SystemVerilog allows module ports and task/function
formal arguments to be reference (in essence a pointer) to
an actual argument. A reference port or formal argument is
declared as ref instead of input, output or inout.

In previous versions of the SystemVerilog standard,
ref ports or arguments could reference an array with fixed
size dimensions, but not an array with dynamically sized
dimensions. The proposed SystemVerilog-2012 standard
adds this capability.

package subroutines;
task put_data (input value, ref d[$]);
d.push_back(value);

endtask
endpackage

module stack (input clk, input int data, ...);
int data_q[$]; // variable size queue array

always @(posedge clock)
put_data(data, data_q);

endmodule

This example would be illegal in previous versions of
SystemVerilog. The work-around would be to hard code

the array name within the task, which would have made the
task more difficult to re-use within the same design project
or other projects.

6. var type() in for-loop variable declarations
(Mantis 2901)

SystemVerilog added to the original Verilog language
the ability to declare a for-loop iterator within the for-loop.
In previous versions of SystemVerilog, the data type of this
iterator had to be hard coded. For example:

for (int i; i<=255; i++) ...

The proposed SystemVerilog-2012 standard provides
more flexibility by allowing the for-loop iterator data type
to be calculated at compilation/elaboration time. This is
done using a var type() declaration. var type() was
already part of the SystemVerilog standard, but previously
was not allowed in for-loop declarations. For example:

paramenter SIZE=64; // redefinable parameter
logic [SIZE-1:0] a, b;

for (var type({a,b}) i; i<=255; i++) ...

In this example, assuming SIZE is not redefined,
variable i will be declared as a logic [128:0] type. If
SIZE is redefined, variable i will adjust accordingly.

7. `begin_keywords 1800-2012 (Mantis 3750)

As with each new version of SystemVerilog, the
proposed SystemVerilog-2012 reserves new keywords that
are used by some of the new language features. The four
new keywords are: implements, interconnect,
nettype, soft.

SystemVerilog provides a compiler directive that can
be used to inform software compilers about the version of
SystemVerilog to which the code was written. This
directive only affects the set of reserved keywords — it is
not a backward compatibility directive that affects syntax
and semantics. The directives for the two previous versions
and the proposed 2012 version of SystemVerilog are:

‘begin_keywords 1800-2005
‘begin_keywords 1800-2009
‘begin_keywords 1800-2012

D. General programming enhancements

Two of the new features in the proposed
SystemVerilog-2012 standard are directed at enabling
mixed analog and digital modeling in SystemVerilog.

1. User defined nets (Mantis 3398)

SystemVerilog allows programmers to create new
variable types using typedef declarations. User-defined
variable types is a powerful modeling construct that is
widely used in both design and verification. Unfortunately,

previous versions of the SystemVerilog standard did not
allow users to define new net data types that could be used
to connect design blocks together.

The proposed SystemVerilog-2012 standard extends
this capability to also create user-defined net types, using
nettype declarations. Unlike variables, nets require both
a value set and resolution functions for multiple drivers of
the net. The new nettype declaration can specify both
value sets and multi-driver resolution functions.

The built-in net types in SystemVerilog, such as wire,
can only work with 4-state values sets. User-defined nets
significantly enhance this, and allow a net to be comprised
of:

• 4-state integral (vector) types, including packed arrays,
packed structures or packed unions

• 2-state integral types (bit, byte, int, etc.)

• real and shortreal types

• Fixed-size unpacked arrays, unpacked structures, and
unpacked unions (each element must have a valid data
type for a net of a user-defined net type)

The full syntax and rules for user-defined net types is
beyond the scope of this paper. Only a simple example,
adapted from the proposed SystemVerilog-2012 standard,
is shown to illustrate the concept of user-defined nets.

typedef struct {
real field1;
bit field2;

} T;

function automatic T Tsum(input T driver[]);
Tsum.field1 = 0.0;
foreach (driver[i])
Tsum.field1 += driver[i].field1;

endfunction

nettype T wTsum with Tsum;

This nettype declaration defines a net whose data
type is T (which has a mix of real and 2-state values), and
which uses the Tsum function to resolve multiple drivers.

The ability to have nets with real (floating point)
values is an important new capability. It allows accurately
modeling and simulating mixed-signal (analog and digital)
designs completely within the SystemVerilog language
rather than requiring co-simulation environments. Co-
simulation can be expensive, difficult, and slow. Keeping
within the SystemVerilog language can simplify
verification and be much more efficient, both in the
amount of coding required and the run-time performance
of simulation.

2. Typeless connections in netlists (Mantis 3724)

SystemVerilog modules, interfaces and programs can

be parameterized to have port types or sizes for each
instance of the block. Configurations and conditional
compilation allow different models to be selected at
compile/elaboration time. These capabilities provide a
great deal of design and verification flexibility, but at the
same time require that the netlist connecting design blocks
be modeled work with a wide variety of data types. This
was difficult to do in previous versions of SystemVerilog.

The proposed SystemVerilog-2012 standard adds a new
typeless net, referred to as an interconnect net, that makes
it much easier and efficient to model generic netlists that
can work with different types of nets. Interconnect nets
separate the specification of the netlist connections from
the data types of the nets. The netlist is generic, and the
types are determined by the internal types of actual
components being connected (which can be selected using
configurations or conditional compilation). The syntax for
typeless interconnect nets is simple; the keyword
interconnect is used instead of a specific net type.

Note that interconnect nets can only be connected to
ports where the other side of the port is a net type or
another interconnect net. Interconnect nets cannot be
connected to ports with a variable on the other side.

nettype real rwire;
nettype int iwire;

module adder #(parameter type DTYPE=wire [15:0])
(input DTYPE a, b,
output DTYPE sum);

...
endmodule

module top;
interconnect a, b, c, d, e, f, r1, r2, r3;

// 16-bit 4-state adder
adder i1 (a, b, r1);

// 32-bit 2-state adder
adder #(.DTYPE(iwire)) i2 (c, d, r2);

// floating point adder
adder #(.DTYPE(rwire)) i3 (e, f, r3);

endmodule

E. Coverage enhancements

There are three significant new features in the proposed
SystemVerilog-2012 that enhance the ability to specify
functional coverage. These enhancements were specified
in one Mantis item in the SystemVerilog standard
committee’s data base, but are listed separately in this
paper (that same Mantis item also made many clarification
changes affecting SystemVerilog functional coverage).

1. Coverpoint variables (Mantis 2506)

In previous versions of SystemVerilog, a coverpoint
could have an optional label. This label was a simple name

that had limited usage; primarily just in cross coverage
specifications and in coverage reports. An example is:

covergroup cg5;
Hue: coverpoint pixel_hue;
Addr: coverpoint pixel_addr + offset;

endgroup

The proposed SystemVerilog-2012 standard changes
the label to a variable name. The data type of this variable
can be explicitly specified or it can be inferred from
context by a software tool. As a variable, the coverpoint
can now be used to describe much more complex
coverpoints, coverpoint bins, and cross coverage. If no data
type is specified, the syntax for a coverpoint looks the
same as in previous versions (and is therefore syntactically
backward compatible). The underlying semantics of a
coverpoint in the proposed SystemVerilog-2012 standard is
quite different from previous versions. This difference
should be transparent to users of the language, but will
require changes within software tools.

covergroup cg;
int Hue: coverpoint pixel_hue;
bit [7:0] Addr: coverpoint pixel_addr + offset;

endgroup

2. Coverage bin...with() expressions (Mantis 2506)

The proposed SystemVerilog-2012 standard adds a
with() clause to the coverpoint bin and cross bin
definitions. The bins...with() construct can be used to
exclude values in a bin that would not be of interest in a
test. The bin will only count values that evaluate as true in
the with() clause. The bins...with() construct uses a
similar syntax to a with() clause in SystemVerilog's array
locator methods. An implicit variable called item is used
to represent a candidate value. This variable can be used as
part of an expression that evaluates to true or false. If false,
then the candidate value is ignored and excluded from the
values counted in the bin.

In the following example, the bin definition covers all
values of data from 0 to 255 that are evenly divisible by 16.

a: coverpoint data {
 bins mod16[] = {[0:255]} with (item % 16 == 0);
}

The name of the coverpoint containing the bin can be
used in place of the value range to denote all possible
values of the coverpoint.

int b: coverpoint data {
bins lt1024 = b with (item < 1024);

}

3. Function calls in covergroup expressions
(Mantis 2506)

The specification of coverage points and cross

coverage in a large design can be very complex. The
specification could be tedious and involve many lines of
code in previous versions of SystemVerilog. Often this
code would need to be repeated for multiple coverpoints.
The proposed SystemVerilog 2012 standard adds the
ability to define and call functions within a coverpoint or
cross point. This allows complex coverpoints and cross
coverage to be described in a much more efficient and re-
usable manner. There are several restrictions regarding
what is allowed in a function used in coverage expressions.
These restrictions are beyond the scope of this paper.

The example that follows is adapted from the proposed
SystemVerilog-2012 standard. Variables a and b are 32-bit
vectors, and therefore a cross of the coverpoints for a and b
would infer a very large set of cross bins. The
bins...with() construct is used to limit the number of
bins to values of interest, but that could still be an unwieldy
and tedious amount of code that would be difficult to re-
use. In this example, a function is used to limit the cross
bins to a range of values that is of interest for a specific
test. The value limits are specified when the covergroup is
constructed, making this definition concise, efficient and
easily re-used.

logic [31:0] a, b;

covergroup cg (int lower_limit, upper_limit);
coverpoint a;
coverpoint b;
aXb : cross a, b {
bins of_interest = f(cg_lim);
function f myFunc(logic [31:0] f_lim);
for (logic [31:0] i = 0; i < f_lim; ++i)
f.push_back('{2*i,2*i});

endfunction
}

endgroup

F. Assertion enhancements

Eight of the new features in the proposed
SystemVerilog-2012 standard enhance or provide new
capabilities in SystemVerilog assertions.

1. Additional data types in assertions (Mantis 2328)

Previous versions of SystemVerilog did not allow
assertions to use real (floating point) values, or dynamic
arrays such as strings and queues. The proposed
SystemVerilog-2012 standard removes these restrictions.
The following simple example references a queue element
as part of an assertion — something that could not be done
this way in earlier versions of SystemVerilog.

byte q[$];
property p1;
$rose(write) |-> q[0];

endproperty

2. Static class properties in assertions (Mantis 2353)

Previous versions of SystemVerilog did not allow
concurrent assertions to access any property variables with
a class object. The proposed SystemVerilog-2012 standard
relaxes this restriction just a little, and allows concurrent
assertions to access static properties within a class.

3. Additional data types in sampled values
(Mantis 3213)

A moment in time in SystemVerilog is subdivided into
several event regions. The SystemVerilog $sampled,
$past, and other sampled value system functions return
the value of a variable or expression that existed at the
beginning of a moment in simulation time, in the Preponed
region. Assertions and some other SystemVerilog
constructs also sample current simulation values in the
Preponed region.

Previous versions of the SystemVerilog standard
restricted the data types that $sampled and other value
sample functions could reference. Most notable is that real
(floating point) and automatic variables were not allowed.
This restriction made it difficult and inefficient to work
with certain types of data, such as the real values that might
be used in an analog/digital mixed signal model. The
proposed SystemVerilog-2012 standard removes most of
the restrictions on the data types that can be used with
sampled value functions.

In the following example, the $past sampled value
function references the automatic for-loop control variable
i. This was not allowed in previous versions of the
standard.

always @(posedge clk)
for (int i = 0; i < 4; i ++)
if (cond[i]) reg1[i] <= $past(b[i]);

Backward compatibility concern — the proposed
SystemVerilog-2012 standard changes how sampled value
functions work with free variables in checkers. The value
that is returned is not backward compatible with previous
versions of SystemVerilog. (Checkers and free variables
were first introduced in the SystemVerilog-2009 standard).
The value returned in previous versions was not correct,
and considered an erratum. The proposed SystemVerilog-
2012 corrects this incorrect specification.

4. New rules for global clock resolution
(Mantis 3069)

The SystemVerilog-2009 standard introduced the
concept of a global clock definition for use in formal
verification assertion constructs. In SystemVerilog-2009,
there could only be a single global clock definition, which
encompassed the entire design. This rule proved to make it

difficult to verify entire designs and/or sub-blocks of
designs where multiple clock domains were involved. The
$global_clock system function could be used anywhere
in the hierarchy of a design to refer to the one global clock
definition.

The proposed SystemVerilog-2012 standard changes
the global clocking rules, and allows each hierarchical
block of a design to specify a global clock for that scope.
Although more than one global clocking declaration may
appear in different parts of the design hierarchy, at most
one global clocking declaration is effective at each point in
the elaborated design hierarchy. The $global_clock
system function refers to the global clock definition in the
scope containing the call to $global_clock.

module master (...);
...
global clocking @(posedge master_clock);
endclocking
...
property @($global_clock)
...

endproperty
...

endmodule

module slave (...);
...
global clocking @(posedge slave_clock);
endclocking
...
property @($global_clock)
...

endproperty
...

endmodule

Backward compatibility concern — the proposed
SystemVerilog-2012 standard is not fully backward
compatible with SystemVerilog-2009. SystemVerilog-2009
allowed a global clocking definition to exist in a non-top-
level module and use $global_clock outside that sub-
hierarchy to reference the definition. This style will result
in an error in the proposed SystemVerilog-2012 standard.

5. Inferred clocks in sequences (Mantis 2412)

In previous versions of the SystemVerilog standard, a
named assertion sequence would only infer a clock when
used in a property. Sequences specified in checkers or
called from procedural code did not infer a clock from
context. This limited the ability to use named sequences in
checkers and other contexts without explicitly defining or
passing in the sequence clock. The proposed
SystemVerilog-2012 standard enhances named sequences
to use the same clock inference rules as $sampled and other
value sample functions. This allows writing more efficient,
reusable checkers.

The following example, adapted from the justification
for this proposed enhancement, would not work in
previous versions of SystemVerilog because the sequence
would not infer its sampling clock.

sequence following(e1, e2);
e1 ##1 e2;

endsequence

checker check_mutex(
input sequence s1,
input cond, event clk=$inferred_clock);

default clocking cb @clk; endclocking
let r = s1.triggered; // not allowed in SV-2009
a1: assert property (cond |=> r);

endchecker

6. Sequence methods with sequence expressions
(Mantis 3191)

Previous versions of the SystemVerilog standard only
allowed the triggered and matched sequence methods
to be used on instances of a sequence. They could not be
used with a sequence that was passed in as a sequence
expression argument. This limited the usefulness of these
methods, and made it difficult to model efficient, reusable
code. The proposed SystemVerilog-2012 standard
enhances the triggered and matched sequence methods
by allowing them to be used on both sequence instances
and sequence expressions.

property p1 (sequence s);
s.triggered; // not allowed in SV-2009

endproperty

assert property p1(a ##1 b);

7. Final deferred immediate assertions (Mantis 3206)

The earliest versions of SystemVerilog included
immediate assertions, which executed as simple
programming statements, the same as an if...else statement.
While very useful, an immediate assertion can
inadvertently trigger multiple times in the same moment of
simulation time if the procedural code containing the
assertion glitches. These glitches could result in false
assertion failures occurring within a moment in time.

SystemVerilog-2009 introduced deferred immediate
assertions to reduce the risk of glitches. However, in order
to allow the same flexibility in assertion action blocks that
immediate assertions have, deferred immediate assertions
still have a possibility, albeit greatly reduced, of glitching.

The proposed SystemVerilog-2012 standard adds a
final deferred assertion construct. Final immediate
assertions execute in the Postponed region of a simulation
time step (the same region used by the $strobe and
$monitor print tasks). The Postponed region severely
restricts what can be done in an action block. In essence,
messages can be printed, but no variables can be assigned.

A final deferred immediate assertion is not as flexible as a
deferred immediate assertion, but is guaranteed to be glitch
free. Final assertions are specified with one of the keyword
pairs: assert final, assume final or cover final.

In the following example, assertion A1 is an immediate
assertion and has the highest risk of false failures, should
the always_comb trigger multiple times in a single
moment of time (due to glitches on the signals read by the
procedure). Assertion A2 is a deferred immediate assertion
and is less likely to have false failures, but glitches could
occur. Assertion A3 is a final deferred assertion, and is
glitch free, but cannot do actions such as incrementing an
error account (or even contain a begin...end block).

module test (...);
...
always_comb
A1: assert (!$isunknown state) else begin

err_cnt++;
$error("bad state");

end
A2: assert #0 (!$isunknown state) else begin

err_cnt++;
$error("bad state");

end
A3: assert final (!$isunknown state)

else $error("bad state");
endmodule

8. Fine-grained assertion controls (Mantis 3295)

Previous versions of SystemVerilog provide the ability
to control assertions using $assertkill, $assertoff,
and $asserton system tasks. These tasks provide a
medium level of granularity on which assertions are
affected. The proposed SystemVerilog-2012 standard adds
a new $assertcontrol system task that provides a much
more fine level of control granularity. This system task can
enable, disable or kill the assertions based on the assertion
type (concurrent, immediate, or deferred immediate) or
directive type (assert, assume, cover, expect). The
task can also enable or disable action block execution of
assertions and expect statements. The full syntax of
$assertcontrol is not shown in this paper, but the
usage is illustrated with a simple example.

enum {
LOCK=1, UNLOCK=2, ON=3, OFF=4, KILL=5,
CONCURRENT=1, IMMEDIATE=2, D_IMMEDIATE=12,
EXPECT=16, ASSERT=1, COVER=2, ASSUME=4

} controls;

$assertcontrol(OFF, CONCURRENT, COVER|ASSUME, 0);

G. Checker enhancements

Two of the new features in the proposed
SystemVerilog-2012 standard provide important new
capabilities for modeling verification checker libraries.

1. Output arguments for checkers (Mantis 2093)

The SystemVerilog-2009 standard added a checker
construct to SystemVerilog. Checkers are a verification
building block that are used to encapsulate related
sequences, properties, assertions, and coverage. A checker
can instantiate other checkers, but, in SystemVerilog-2009,
checkers could only have input arguments. This made it
difficult to build up complex checkers from other checkers.
The proposed SystemVerilog-2012 standard enhances
checkers by also allowing checker output arguments.

2. New capabilities in checkers (Mantis 3033)

The checker construct introduced in SystemVerilog-
2009 was intended to encapsulate related assertion and
coverage definitions. The checker could then serve as a
reusable building block in verification code. The checker
construct is useful, but the limitations on what a checker
could contain made it difficult to encapsulate more
complex verification building blocks. The proposed
SystemVerilog-2012 standard significantly extends the
capabilities of checkers by allowing a greater number of
constructs within a checker. These new features include:

• always_comb, always_latch, and always_ff
procedures

• Procedural blocking assignments

• Continuous assignments of checker variables

• Procedural conditional and looping statements

• Immediate assertions

• Task calls

• let declarations

These new capabilities within a checker enable
modeling more efficient and reusable verification building
blocks.

Backward compatibility — The SystemVerilog-2009
standard permitted always procedures in checkers, but did
not allow always_comb, always_latch and
always_ff. The proposed SystemVerilog-2012 standard
is just the opposite, and makes the general always
procedure illegal. The proposed SystemVerilog-2012
standard also changes the semantic rules for when checker
arguments and external variables are sampled, which can
result in a different simulation behavior between the two
versions of the standard.

H. VPI enhancements

The proposed SystemVerilog2012 standard adds four
major features to the Verification Procedural Interface
(VPI), along with a number of errata and clarification
corrections. These primary enhancements are:

• VPI support for soft constraints (Mantis 3884)

• VPI access added to the built-in process class (Mantis
3193)

• VPI transition to typespecs added to named events
(Mantis 3116)

• VPI join type property added to the Scope diagram
(Mantis 3188)

A full discussion of these new features is outside the
scope of this paper.

III. USING INTERFACE CLASSES WITH UVM

All of the new features in the proposed SystemVerilog-
2012 standard discussed in this paper are applicable to
verification programming, and can potentially reduce the
lines of code or enable more robust verification techniques.
Perhaps the most intriguing of these new features is how
multiple inheritance might enhance and make testbenches
more efficient. This section focusses on multiple
inheritance using interface classes might be useful in a
UVM test environment.

The Universal Verification Methodology (UVM) relies
on parameterization of interfaces in order to provide as
much compile-time type safety as possible when
assembling verification IP and environments. The most
common use of parameterization is to specify the type of
transaction being passed across an interface. Take, for
example, the sequence/sequencer/driver parameterization.

The driver and sequencer communicate via the
uvm_seq_item_port interface.

class my_driver extends uvm_driver
#(type REQ = my_item);
...
task run_phase(uvm_phase phase);
seq_item_port.get_next_item(req);
m_addr = req.get_addr();
m_data = req.get_data();
drive_bus(m_addr,m_data);

endtask
endclass

class my_sequence extends uvm_sequence
#(type REQ = my_item);
...

endclass

class my_agent extends uvm_agent;
my_driver m_driver;
uvm_sequencer #(type REQ = my_item) m_seqr;
...
function void connect_phase(uvm_phase phase);
m_driver.seq_item_port.connect(
m_seqr.seq_item_export);

...
endfunction

endclass

Note that we extend the uvm_driver to include user-

defined functionality to specify exactly how the driver will
convert the sequence item it receives through the
seq_item_port.get_next_item() call into pin-level
activity to communicate to the DUT. It is usually not
necessary to extend the uvm_sequencer because the
default functionality of the uvm_sequencer is sufficient
for most applications.

The sequence itself communicates with the driver via
the start_item()/finish_item() (and optionally
get_response()) methods, each of which relies on the
type of the REQ parameter. When the driver calls

seq_item_port.get_next_item(req);

the item returned is of the parameterized type REQ. This
allows the driver writer to rely on the type of the request
transaction to know what methods to call to get
information. It also constrains the driver to be able only to
communicate with a sequence that generates items of the
particular type, or extensions thereof. Of course, it also
means that the sequence itself can only generate items of
one particular type.

Because the driver can handle extensions of a base
type, it is possible to create two sequences, each of which
generates extensions of a common base item type, and then
run them in parallel on the sequencer so that they interleave
transactions to the driver.

class my_item extends uvm_sequence_item;
...
addr_t m_addr;
data_t m_data;
virtual function addr_t get_addr();
return m_addr;

endfunction
virtual function data_t get_data();
return m_data;

endfunction
...

endclass

class my_err_item extends my_item;
...
function data_t get_data();
addr_t tmp;
tmp = super.get_data();
return tmp+1; // could randomize the error

endfunction
...

endclass

class my_test extends uvm_test;
...
task run_phase(uvm_phase phase);

...
my_seq = my_sequence::type_id::create

("my_seq");
my_err_seq = my_err_sequence::type_id:create

("my_err_seq");
fork
my_seq.start(m_env.m_agent.m_seqr);

my_err_seq.start(m_env.m_agent.m_seqr);
join

endtask
...

endclass

The proposed SystemVerilog 2012 standard introduces
the concept of interface classes that permit greater
flexibility in the use of UVM sequences. An interface class
contains a set of pure virtual methods, type declarations
and parameter declarations that define a common set of
behaviors that can be shared across multiple classes that
are not necessarily derived from each other.

interface class my_driver_intf;
pure virtual function addr_t get_addr();
pure virtual function data_t get_data();

endclass

The driver would then be parameterized in terms of the
interface class that defines how it will extract information
from the item it receives from the sequence.

class my_driver extends uvm_driver
#(my_driver_intf);
...
task run_phase(uvm_phase phase);
seq_item_port.get_next_item(req);
m_addr = req.get_addr();
m_data = req.get_data();
drive_bus(m_addr,m_data);

endtask
endclass

Note that the internals of the driver did not change. It
still uses the get_addr() and get_data() methods to
extract the address and data components of the transaction.
This allows us to have a sequence that can generate any
item type, as long as it implements the desired interface.

class my_item_1 extends uvm_sequence_item
implements my_driver_intf;

...
endclass

class my_item_2 extends uvm_sequence_item
implements my_driver_intf;

...
endclass

The sequence is also parameterized by the interface
class, as was the driver.

class my_intf_seq extends uvm_sequence
#(my_driver_intf);

...
my_item_1 item1;
my_item_2 item2;
task body();
item1 = my_item_1::type_id::create("item1");
item2 = my_item_2::type_id::create("item2");
fork
for(int i = 0; i < 10; i++) begin
start_item(item1);
finish_item(item1);

end
for(int j = 0; j < 10; j++) begin
start_item(item2);
finish_item(item2);

end
join

endtask
endclass

If the structure of the items being generated is similar, it
would be possible to model the same basic pattern by
extending item1 and item2 from the same abstract base
class. This would require the driver, sequencer and
sequence to be parameterized in terms of the abstract base
class. Using the interface class, however, the sequence
items being generated by the sequence do not need to be
related to each other in any way, other than both
implementing the interface class.

While it is possible that interface classes could be used
to simplify the implementation of some of the internals of
UVM, there is no pressing need to do so. Particularly in the
area of the TLM interfaces, the use of interface classes
could eliminate the need for some macros that are currently
used along with the wrapper pattern to model similar
functionality. However, since not all simulators support
interface classes yet, and the savings would be more
aesthetic than functional, this is not something the
Accellera VIP-TSC, the committee that oversees the UVM
standard, has explored at this point.

IV. ENHANCEMENTS THAT MIGHT BE
SYNTHESIZABLE

All of the enhancements listed in this paper are useful
in verification testbenches, and can help with writing more
efficient verification code. A few of these enhancements
might also be synthesizable and, therefore, also useful in
modeling hardware designs. The new language features
that might synthesis are:

• var in for-loop variable declarations

• Parameterized tasks and functions

• Parameterized user-defined types

• Omit default type in parameterized type definition

• User defined nets

• Generic, typeless connections in netlists

• `begin_keywords 1800-2012

Note that there is no official synthesis subset defined
for SystemVerilog. At the time this paper was written, no
major commercial synthesis compilers were supporting the
constructs listed in this section. However, these constructs
could represent hardware, and might be implemented by
synthesis compilers in the future.

V. CONCLUSIONS

It is critical for a hardware design and verification
language to evolve with the complexity of hardware
engineering projects. The proposed SystemVerilog-2012
standard is an important update to the SystemVerilog
language. Thirty-one new design and verification
capabilities have been added to SystemVerilog, along with
numerous clarifications to the previous standard.

At the time this paper was written, The specification of
the proposed SystemVerilog-2012 standard was complete,
and the IEEE balloting and approval process about to
begin. Final approval of the proposed SystemVerilog-2012
standard is expected later in 2012. Many Electronic Design
Automation tool vendors have already begun
implementing the new features in this proposed standard.

A primary goal of the new features in SystemVerilog is
to help make design and verification more efficient. This
efficiency is primarily achieved by providing ways to
model complex design and verification code more
accurately and concisely. Some of the proposed
enhancements for SystemVerilog-2012 might also improve
the run-time efficiency of software tools.

The IEEE 1800 SystemVerilog standards committee
paid careful attention maintaining backwards compatibility
with previous versions of SystemVerilog. The rare
exceptions which were noted in this paper. These
exceptions are behind the scenes, and should have minimal
impact, if any, on existing SystemVerilog code.

The IEEE 1800 SystemVerilog standards committee
has been proactive in ensuring that SystemVerilog is
keeping pace with the engineering projects for which the
language is intended. The chip you are designing is
evolving quickly, and SystemVerilog is indeed “keeping up
with Chip” — your chip.

VI. ABOUT THE AUTHORS

Stuart Sutherland is a well-known Verilog and
SystemVerilog expert, with more than 23 years of
experience using these languages for design and
verification. His company, Sutherland HDL, specializes in
training engineers to become true wizards using
SystemVerilog. Stuart is active in the IEEE SystemVerilog
standards process, and has been a technical editor for every
version of the IEEE Verilog and SystemVerilog Language
Reference Manuals since the IEEE standards work began
in 1993. Prior to founding Sutherland HDL, Mr. Sutherland
worked as an engineer on high-speed graphics systems
used in military flight simulators. In 1988, he became a
corporate applications engineer for Gateway Design
Automation, the founding company of Verilog, and has

been deeply involved in the use of Verilog and
SystemVerilog ever since. Mr. Sutherland has authored
several books and conference papers on Verilog and
SystemVerilog. He holds a Bachelors Degree in Computer
Science with an emphasis in Electronic Engineering
Technology and a Masters Degree in Education with an
emphasis on eLearning. You can contact Mr. Sutherland at
stuart@sutherland-hdl.com.

Tom Fitzpatrick is a Verification Technologist at
Mentor Graphics Corp., where he brings over two decades
of design and verification experience to bear on developing
advanced verification methodologies, particularly using
SystemVerilog, and educating users on how to adopt them.
He has been actively involved in the standardization of
SystemVerilog, starting with his days as a member of the
Superlog language design team at Co-Design Automation
through its standardization via Accellera and then the
IEEE, where he has served as chair of the 1364 Verilog
Working Group, as well as a Technical Champion on the
SystemVerilog P1800 Working Group. At Mentor
Graphics, Tom was one of the original designers of the
Advanced Verification Methodology (AVM), and later the
Open Verification Methodology (OVM), and is the editor
of Verification Horizons, a quarterly newsletter. He is a
charter member and key contributor to the Accellera
Verification IP Technical Subcommittee. He has published
multiple articles and technical papers about SystemVerilog,
verification methodologies, assertion-based verification,
functional coverage, formal verification and other
functional verification topics.

VII. REFERENCES

[1] “SystemVerilog 3.1: Accellera’s Extensions to Verilog”,
Accellera, Napa, CA, 2003.

[2] “1800-2005 IEEE Standard for System Verilog: Unified
Hardware Design, Specification and Verification Language”,
IEEE, Pascataway, New Jersey. Copyright 2005. ISBN: 0-
7381-4811-3.

[3] “SystemVerilog Is For Everyone (not just system designers)”
white paper by Stuart Sutherland, published 2004. Available
at www.sutherland-hdl.com/papers.

[4] “SystemVerilog Interoperability Checklist” paper by Stuart
Sutherland, presented at DVCon-2005, San Jose, California.
Available at www.sutherland-hdl.com/papers.

[5] “P1800-2009 IEEE Standard for SystemVerilog--Unified
Hardware Design, Specification, and Verification Lan-
guage”, IEEE, Pascataway, New Jersey. Copyright 2009.
ISBN: 978-0-7381-6129-7.

[6] “SystemVerilog Is Getting Even Better! An Update on the
Proposed 2009 SystemVerilog Standard, Part 1” presentation
by Cliff Cummings, presented at DAC-2009, San Diego, Cal-
ifornia. Available at www.sutherland-hdl.com/papers.

[7] “SystemVerilog Is Getting Even Better! An Update on the
Proposed 2009 SystemVerilog Standard, Part 2” presentation
by Stuart Sutherland, presented at DAC-2009, San Diego,
California. Available at www.sutherland-hdl.com/papers.

[8] “P1800-2012/D5 Draft Standard for SystemVerilog—Unified
Hardware Design, Specification, and Verification Language
(ballot draft)”, IEEE, Pascataway, New Jersey. Copyright
2012. ISBN: (not yet assigned).

