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Abstract— In recent years, there has been a lot of attention given 

to Object Oriented Programming, Constrained Random and 

Coverage Driven Verification with SystemVerilog. The various 

openly available verification methodologies have put a lot of 

effort into explaining how to use these technologies within the 

testbench. Of course, RTL synthesis for design has been relatively 

stable for the last 20 years. The connection between the 

verification environment (the Testbench) and the design under 

test (the DUT) has received relatively little attention.  

This paper focuses on several methodologies used in practice to 

connect the Testbench to the DUT. The most common approach 

is the use of SystemVerilog’s virtual interface.  This is so common 

that people fail to investigate other methodologies that have merit 

in certain situations. The abstract class methodology has been 

presented before, but still seems to have barriers to adoption. 

There are also some obvious direct connection methodologies that 

are often overlooked. This paper will compare and contrast each 

one so that users may choose the methodology that meets their 

requirements. 
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I.  INTRODUCTION 

One of the key notions of SystemVerilog was the merging 
of hardware verification language (HVL) concepts used in a 
testbench with hardware description language (HDL) concepts 
used in a design. Even though the language has merged, the 
experiences of the users have not – they still have different 
ideas about which constructs can and cannot be used in their 
environment. 

As has been true since the beginning of logic design, a 
design under test (DUT) is a boundary between what will be 
implemented in hardware and everything else needed to verify 
that implementation. In SystemVerilog as in Verilog, that 
boundary is represented by a module[1]. The job of the 
testbench is to provide the necessary pin wiggles to stimulate 
the DUT and analyze the pin wiggles coming out. Although 
this may seem like an over simplification, no matter how 
complex the environment becomes this point remains the same. 

The difference that SystemVerilog introduces is that most 
of the testbench will written in dynamically constructed classes 
after the beginning of simulation. That means connections 
between the DUT and testbench normally need to be dynamic 
as well.  

Let us start with a progression of testbench environments 
starting with an original Verilog testbench and gradually 
introduce additional levels of complexity along with the 
features in SystemVerilog that address this added complexity. 

II. STATIC PIN TO PIN CONNECTIONS 

In Verilog, a Design Under Test (DUT) can be modeled 
exactly like that – a testbench module above with the design 
instantiated in a module underneath. The DUT port connections 
are made with variables and wires directly connected to the 
DUT instance. Procedural code at the top level stimulates and 
observes the port signals. 

 

 
 

 
 

The structure above rapidly breaks down as the design 
becomes more complex. The test usually needs to become 
modularized just as the DUT is, so the testbench is broken into 
a separate module or several modules and is instantiated 
alongside the DUT. Wires at the top level connect the ports of 
the test and DUT together. 

module testTop; 

  reg clock,reset; 

  wire [15:0] data; 

  reg [15:0] address; 

 

  DUT d1(.clk(clock),.rst(reset),.bus(data), 

          .address(address)); 

 

  initial begin // the test 

         reset = 1; 

    #100 reset = 0; 

 … 

   end 

endmodule 

module DUT(input wire clk, 

           input wire reset, 

           input wire [15:0] address, 

           inout wire [15:0] bus); 

endmodule 
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Observing the redundancy of repeatedly specifying the names 

of signals involved in connections, SystemVerilog added the 

concept of an interface to represent a collection of signals. 

Those signals are defined once in an interface and used in the 

port connections to the DUT and testbench.  
 

  

This can significantly reduce the total number of code lines, 
especially when there are a large number of signals that can be 
put into the interface. Sometimes modules are brought in from 
legacy designs, or from environments that do not support 
SystemVerilog interfaces. In that case you can simply replace 
the port list of the DUT instantiation line with hierarchical 
references to the interface signals. 

DUT d1(itf.clock,itf.reset,itf.data,itf.address); 

The connections shown up to this point have all been 
structurally static. The testbench and DUT modules as well as 
the connection to those modules are declared at compile time. 
Any change to the structure requires recompilation and 
elaboration of that structure. 

III. DYNAMIC CONNECTIONS 

In a class-based testbench environment, classes are used 
instead of modules to represent different components of a 
testbench, like drivers and monitors. Because SystemVerilog 
classes are always constructed dynamically, we can take 
advantage of that to randomize the testbench, as well as 
override the behavior of those classes by extending them. 

Because classes do not have ports that can be connected to 
other module ports, some other mechanisms must be used to 
communicate with the DUT. We could simply use hierarchical 
references to signals in a module, but as shown previously in 
[2], this leads to un-reusable and unmanageable code. Using 
the recommended practice of putting class declarations in 
packages enforces this restriction because hierarchical 
references are not allowed from inside packages. 

A. Virtual Interfaces 

A virtual interface variable is the simplest mechanism to 
dynamically refer to an interface instance. This type of variable 
can be procedurally assigned to reference an interface of the 
same type. 

 

 
 

 

The driver class is free of hierarchical references and its run 
method can synchronize to the clock inside the interface.  In 
this way a virtual interface variable is similar to a class handle 
variable where the interface is used as a type and you are 
referencing members of the class. Because the interface is 

package my_pkg; 

class driver; 

  virtual dut_itf vitf; 

  task run; 

         forever @(posedge vitf.clock) 

           begin … end 

  endtask 

endclass 

endpackage 

// other modules & interface same as previous 

module TEST(dut_itf itf); 

import my_pkg::*; 

driver d; 

  initial begin 

       d = (new); 

       d.vitf = itf; 

       d.run; 

  end 

endmodule 

interface dut_itf; 

  logic clock,reset; 

  wire  [15:0] data; 

  logic [15:0] address; 

endinterface 

module testTop; 

  dut_itf i1(); 

  DUT d1(.itf(i1)); 

  TEST t1(.itf(i1)); 

endmodule 

module DUT(dut_itf itf); 

endmodule 

module TEST(dut_itf itf); 

  initial begin // the test 

         itf.reset = 1; 

    #100 itf.reset = 0; 

 … 

  end 

endmodule 

module testTop; 

  wire c,r; 

  wire [15:0] d; 

  wire [15:0] a; 

 

  DUT d1(.clk(c),.rst(r),.bus(data),address(a)); 

  TEST t1(.clk(c),.rst(r),.bus(d),.address(a)); 

endmodule 

endmodule 

module DUT(input wire clk, 

           input wire reset, 

           input wire [15:0] address, 

           inout wire [15:0] bus); 

endmodule 

module TEST(ouput reg clk, 

            output reg reset, 

            output reg [15:0] address, 

            inout wire [15:0] bus); 

  initial begin // the test 

         reset = 1; 

    #100 reset = 0; 

 … 

  end 

endmodule 
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treated like a type, any parameterization of the interface 
instance needs to be repeated in the virtual interface 
declaration. 

 

In the example above, vitf1 can only be assigned to top.i1 
and vitf2 only to top.i2. As interfaces get more complicated in 
larger designs, keeping all the virtual interface parameters in 
sync with the interface instance parameters becomes a 
challenge. 

B. Abstract Classes 

The abstract class construct of SystemVerilog is an object-
oriented programming concept used to define software 
interfaces. It has functionality similar to that of a virtual 
interface, with the benefit of a class based approach that may 
include inheritance and polymorphism. Another benefit is that 
an abstract class can completely decouple a testbench class 
component from any dependencies on the SystemVerilog 
interface, such as parameters overrides. A downside is that all 
members of the interface need to be accessed via methods, 
never bi direct reference. However, this is the normal 
programming style for object-oriented software. 

 

 

Now our testbench classes can be written to use the 
concrete class handle referenced via an abstract class variable 
instead of the virtual interface variable. 

 

IV. WHITEBOX VERIFICATION 

It is not always possible to treat the DUT as a black box; 
that is to monitor and drive signals for only the top-level ports 
of the DUT. This is true especially as one moves from block-
level testing to larger system level testing. Sometimes we need 
implementation knowledge to access signals internal to the 
DUT. This is known as whitebox verification.  

package my_pkg; 

  import abstract_pkg::*; 

class driver; 

  abstract_intf#(16) c_h; 

  task run; 

   forever begin 

            c_h.posedge_clock; 

            c_h.set_address(‘h1234); 

           end 

   endtask 

 endclass 

endpackage 

module testTop; 

  dut_itf #(8,16) i1(); 

  DUT d1(.itf(i1)); 

  TEST t1(.itf(i1)); 

endmodule 

module TEST(); 

  import my_pkg::*; 

  driver d; 

  initial begin 

       d = (new); 

       d.c_h = itf.c; 

       d.run; 

  end 

endmodule 

package abstract_pkg; 

 virtual class abstract_intf #(int awidth); 

  pure virtual function void set_address( 

          input logic [awidth-1:0] a); 

  pure virtual task posedge_clock; 

endclass 

endpackage 

interface dut_itf#(int dwidth, awidth); 

  logic clock,reset; 

  wire  [dwidth-1:0] data; 

  logic [awidth-1:0] address; 

 import abstract_pkg::*; 

 class concrete_intf#(int width) extends 

                        abstract_intf#(width); 

  function void set_address( 

                input logic [width-1:0] a); 

   address = a; 

  endfunction 

  task posedge_clock; 

   @(posedge clock); 

  endtask 

 endclass 

 concrete_intf#(awidth) c = new(); 

endinterface 

interface itf #(int width, size); 

  wire [width-1:0] bus; 

  logic [7:0] mem[size]; 

endinterface 

module top; 

  itf #(.width(8),.size(16)) i1(); 

  itf #(.width(16),.size(32)) i2(); 

endmodule 

class monitor; 

  virtual itf #(#(.width(8),.size(16)) vitf1;  

  virtual itf #(#(.width(16),.size(32)) vitf2; 

endclass 
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A. Hierarchical references 

Verilog has always provided the ability to reach inside 
almost any hierarchical scope from another scope. Although 
this is a very convenient feature, it has several drawbacks: 

1. It makes the code less reusable because the 
references in the testbench are dependent on the 
structure of the DUT. 

2. It requires full or partial recompilation of the DUT 
to provide access to internal signals 

3. It creates a poorly optimized DUT because 
internal signals may need to be preserved to 
provide access. 

It may be impossible to avoid all hierarchical references. As 
a general rule, it is best to keep them at the top level of the 
testbench, or isolated to as few modules as practical. 

B. Bind 

SystemVerilog provides a bind construct that allows you to 
instantiate one module or interface into another target module 
or interface without modifying the source code of the target. 
The ports of the instance are usually connected to the internal 
signals of the target. If you bind an interface, you can use either 
the virtual interface or abstract class mechanisms to reference 
the interface. 

 

An interface used in a bind construct typically has ports 
used to connect to the internal signals of the target module. 

 

The top-level TEST can declare the bind statement, or some 
other designated module suited for that purpose can declare all 
the bind statements for a particular testbench. 

 

A complete UVM based example to probe internal signals 
using bind is shown in Appendix A. This example also shows 
the recommend way to reach into the design hierarchy using a 
configuration database [5]. 

V. SPECIAL DESIGN CONSIDERATION 

Some aspects of the DUT to testbench connection require 
more detailed knowledge of basic Verilog modeling issues, 
especially when dealing with signal strengths and race 
conditions. 

A. Bidirectional or Tri-State Busses 

Any signal with multiple drivers (continuous assignments, 
in this context) needs to be modeled using a net.  A net is the 
only construct that resolves the effect of different states and 
strengths simultaneously driving the same signal. The behavior 
of a net is defined by a built-in resolution function using the 
values and strengths of all the drivers on a net. Every time there 
is a change on one of the drivers, the function is called to 
produce a resolved value. The function is created at elaboration 
(before simulation starts) and is based on the kind of net type, 
wand, wor, tri1, etc.  

Procedural assignments to variables use the simple rule: last 
write wins. You are not allowed to make procedural 
assignments to nets because there is no way to represent how 
the value you are assigning should be resolved with the other 
drivers. There is also no way to represent how long the 
procedural assignment should be in effect before another 
continuous assignment takes over. 

Class based testbenches cannot have continuous 
assignments because classes are dynamically created objects 

package probe_pkg; 

 virtual class abstract_probe; 

  pure virtual function get_signal; 

 endclass 

endpackage 

interface probe(inout signal); 

 import probe_pkg::*; 

 class concrete_probe extends 

        abstract_probe; 

  function get_signal(); 

    return signal; 

  endfunction 

 endclass 

 concrete_intf c = new(); 

endinterface 

module DUT (…); 

 wire InternalSignal; 

endmodule 

module TOP; 

  DUT d1(); 

endmodule 

package another_pkg; 

  import probe_pkg::*; 

class monitor; 

  bit s; 

  abstract_intf c_h; 

  task run; 

         forever begin 

           … 

          s = c_h.get_signal; 

          … 

       end 

  endtask 

endclass 

endpackage 

 

module TEST; 

bind DUT : TOP.d1 probe p1(InternalSignal); 

import another_pkg::*; 

monitor m; 

  initial begin 

       m = (new); 

       m.c_h = TOP.d1.p1.c; 

       m.run; 

  end 

endmodule 
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and are not allowed to have structural constructs like 
continuous assignments. Although a class can read the resolved 
value of nets, it can only make procedural assignments to 
variables. Therefore, the testbench needs to create a variable 
that is continuously assigned to a wire. 

In this example, procedural assignments are made to 
bus_reg for the class-based testbench, while bus has the value 
of the resolved signals. 

 

B. Race Conditions and Clocking blocks 

If not modeled correctly, a testbench is susceptible to the 
same race conditions as the DUT. Any signal that is written by 
one process and read in another process when the two 
processes are synchronized by the same clock or event must be 
assigned using a non-blocking assignment (NBA). 

A clocking block can address these race conditions even 
further by sampling or driving signals some number of time 
units away from the clock edge. It also takes care of the 
procedural assignment to a net problem by implicitly creating a 
continuous assignment from the clocking block variable to the 
net. 

 

One caution about using clocking blocks: use only the @cb 
event to synchronize the process that is using the clocking 
block variables. Using @(posedge clk) or any other event will 
introduce race conditions. 

VI. SUMMARY 

A number of different mechanisms have been shown to connect 
the DUT to the testbench. They are not meant to be exclusive. 
The complexity of your verification environment will dictate 
the most efficient mechanism for you to use. Above all, it is 
important to be as consistent as possible with your coding 
decisions and document those decisions. 
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interface my_if; 

  wire [31:0] bus; 

  logic [31:0] address; 

  bit clk; 

  clocking cb @(posedge clk); 

    output #1 address; 

    inout bus; 

  endclocking 

  class concrete_intf extends abstract_intf; 

    task posedge_clock; 

      @cb; 

    endtask 

    function logic [31:0] get_bus; 

      return cb.bus; //resolved value 

    endfunction 

    function void set_bus(input [31:0] value); 

      cb.bus <= value; // driving value 

    endfunction 

  endclass 

  modport DUT(inout bus, input clk, address); 

  modport TB(clocking cb); 

endinterface 

interface my_if; 

wire [31:0] bus; 

//assign to z when not driving 

logic [31:0] bus_reg='z; 

assign bus = bus_reg; 

modport DUT(inout bus); 

modport TB(input bus, output bus_reg); 

class concrete_intf extends abstract_intf; 

  function logic [31:0] get_bus; 

    return bus; //resolved value 

  endfunction 

  function void set_bus(input [31:0] value); 

    bus_reg <= value; // driving value 

  endfunction 

endclass 

endinterface 



 

Appendix A.  – EXAMPLE OF USING VIRTUAL INTERFACE AND ABSTRACT CLASS TOGETHER 

 
// $Id: probe.sv,v 1.4 2010/04/01 14:34:38 drich Exp $ 

//---------------------------------------------------------------------- 

//   Dave Rich dave_rich@mentor.com 

//   Copyright 2007-2012 Mentor Graphics Corporation 

//   All Rights Reserved Worldwide 

// 

//   Licensed under the Apache License, Version 2.0 (the 

//   "License"); you may not use this file except in 

//   compliance with the License.  You may obtain a copy of 

//   the License at 

// 

//       http://www.apache.org/licenses/LICENSE-2.0 

// 

//   Unless required by applicable law or agreed to in 

//   writing, software distributed under the License is 

//   distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR 

//   CONDITIONS OF ANY KIND, either express or implied.  See 

//   the License for the specific language governing 

//   permissions and limitations under the License. 

//---------------------------------------------------------------------- 

 

// ----------------------------------------------------------------------------------- 

// file RTL.sv 

 

// Package of parameters to be shared by DUT and Testbench 

package common_pkg; 

   parameter WordSize1 = 32; 

   parameter WordSize2 = 16; 

endpackage 

 

// simple DUT containing two sub models.    

module DUT (input    wire        CLK,CS,WE); 

    

   import common_pkg::*; 

    

   wire CS_L = !CS; 

 

   model   #(WordSize1) sub1 (.CLK, .CS, .WE); 

   model   #(WordSize2) sub2 (.CLK, .CS(CS_L), .WE); 

endmodule 

 

// simple lower level modules internal to the DUT 

module model (input wire CLK, CS, WE); 

   

parameter WordSize = 1; 

reg [WordSize-1:0] Mem; 

wire  [WordSize-1:0] InternalBus; 

 

   always @(posedge CLK) 

     if (CS && WE) 

       begin 

   Mem = InternalBus; 

   $display("%m Wrote %h at %t",InternalBus,$time); 

       end 

    

   assign InternalBus = (CS && !WE) ? Mem : 'z; 

    

endmodule 

  

// ----------------------------------------------------------------------------------- 

// file probe_pkg.sv 

// 

 

// abstract class interface 

package probe_pkg; 

   import uvm_pkg::*; 

   virtual class  probe_abstract #(type T=int) extends uvm_object; 

      function new(string name=""); 

  super.new(name); 



      endfunction 

      // the API for the internal probe 

      pure virtual function T get_probe(); 

      pure virtual function void set_probe(T Data ); 

      pure virtual task edge_probe(bit Edge=1); 

      

   endclass : probe_abstract 

    

endpackage : probe_pkg 

 

// This interface will be bound inside the DUT and provides the concrete class defintion. 

interface probe_itf #(int WIDTH) (inout wire [WIDTH-1:0] WData); 

   import uvm_pkg::*; 

 

   typedef logic [WIDTH-1:0] T; 

    

   T Data_reg = 'z; 

 

   assign WData = Data_reg; 

    

   import probe_pkg::*; 

   // String used for factory by_name registration 

   localparam string PATH = $psprintf("%m"); 

 

   // concrete class  

   class probe  extends probe_abstract #(T); 

      function new(string name=""); 

  super.new(name); 

      endfunction // new 

      typedef uvm_object_registry #(probe,{"probe_",PATH}) type_id; 

  

      static function type_id get_type(); 

  return type_id::get(); 

      endfunction 

  

      // provide the implementations for the  pure methods 

       

      function T get_probe(); 

  return WData; 

      endfunction 

       

      function void set_probe(T Data ); 

  Data_reg = Data; 

      endfunction  

       

      task edge_probe(bit Edge=1); 

  @(WData iff (WData === Edge)); 

  endtask 

   endclass : probe 

 

endinterface : probe_itf 

 

// ----------------------------------------------------------------------------------- 

// file test_pkg.sv 

// 

// This package defines the UVM test environment 

`include “uvm_macros.svh” 

package test_pkg; 

   import uvm_pkg::*; 

   import common_pkg::*; 

   import probe_pkg::*; 

 

   //My top level UVM test class  

 

   class my_driver extends uvm_component; 

      function new(string name="",uvm_component parent=null); 

  super.new(name,parent); 

      endfunction 

      typedef uvm_component_registry #(my_driver,"my_driver") type_id; 

 

      // Virtual interface for accessing top-level DUT signals 

      typedef virtual DUT_itf vi_itf_t; 

      vi_itf_t                vi_itf_h; 



       

      // abstract class variables that will hold handles to concrete classes built by the factory 

      // These handle names shouldn't be tied to actual bind instance location - just doing it to help 

      // follow the example. You could use config strings to set the factory names. 

      probe_abstract #(logic [WordSize1-1:0]) sub1_InternalBus_h; 

      probe_abstract #(logic [WordSize2-1:0]) sub2_InternalBus_h; 

      probe_abstract #(logic) sub1_ChipSelect_h; 

    

      function void build_phase(uvm_phase phase); 

  if (!uvm_config_db#(vi_itf_t)::get(this,"","DUT_itf",vi_itf_h)) 

    uvm_report_fatal("NOVITF","No DUT_itf instance set",,`__FILE__,`__LINE__); 

 

  $cast(sub1_InternalBus_h, 

factory.create_object_by_name("probe_testbench.dut.sub1.m1_1",,"sub1_InternalBus_h")); 

  $cast(sub2_InternalBus_h, 

factory.create_object_by_name("probe_testbench.dut.sub2.m1_2",,"sub2_InternalBus_h")); 

  $cast(sub1_ChipSelect_h,  

factory.create_object_by_name("probe_testbench.dut.sub1.m1_3",,"sub1_ChipSelect_h")); 

      endfunction : build_phase 

    

      // simple driver routine just for testing  probe class 

      task run_phase(uvm_phase phase); 

  phase.raise_objection( this ); 

  vi_itf_h.WriteEnable <= 1; 

  vi_itf_h.ChipSelect <= 0;   

  fork 

     process1: forever begin 

        @(posedge vi_itf_h.Clock); 

        `uvm_info("GET1",$psprintf("%h",sub1_InternalBus_h.get_probe())); 

        `uvm_info("GET2",$psprintf("%h",sub2_InternalBus_h.get_probe())); 

     end 

     process2: begin 

        sub1_ChipSelect_h.edge_probe(); 

        `uvm_info("EDGE3","CS had a posedge"); 

        sub1_ChipSelect_h.edge_probe(0); 

        `uvm_info("EDGE3","CS had a negedge"); 

     end 

     process3: begin 

        @(posedge vi_itf_h.Clock); 

        vi_itf_h.ChipSelect <= 0; 

        sub2_InternalBus_h.set_probe('1); 

        @(posedge vi_itf_h.Clock); 

        vi_itf_h.ChipSelect <= 1; 

        sub1_InternalBus_h.set_probe('1); 

        @(posedge vi_itf_h.Clock); 

        vi_itf_h.ChipSelect <= 0; 

        sub2_InternalBus_h.set_probe('0); 

        @(posedge vi_itf_h.Clock); 

        @(posedge vi_itf_h.Clock); 

     end 

  join_any 

   

  phase.drop_objection( this ); 

      endtask : run_phase 

   endclass : my_driver 

    

   class my_test extends uvm_test; 

      function new(string name="",uvm_component parent=null); 

  super.new(name,parent); 

      endfunction 

      typedef uvm_component_registry #(my_test,"my_test") type_id; 

 

      my_driver my_drv_h; 

 

      function void build_phase(uvm_phase phase); 

  my_drv_h = my_driver::type_id::create("my_drv_h",this); 

      endfunction : build_phase 

   endclass : my_test       

       

endpackage : test_pkg 

 



// ----------------------------------------------------------------------------------- 

// file testbench.sv 

// 

interface DUT_itf(input bit Clock); 

   logic        ChipSelect; 

   logic        WriteEnable; 

endinterface : DUT_itf 

    

module testbench; 

   import common_pkg::*; 

   import uvm_pkg::*; 

   import test_pkg::*; 

 

   bit SystemCLK=1; 

   always #5 SystemCLK++; 

    

   // The DUT interface; 

   DUT_itf itf(.Clock(SystemCLK)); 

   typedef virtual DUT_itf vi_itf_t; 

    

   // The DUT 

   DUT dut(.CLK(itf.Clock), .CS(itf.ChipSelect), .WE(itf.WriteEnable)); 

    

   // instantiate interfaces internal to DUT 

   bind model : dut.sub1 probe_itf #(.WIDTH(common_pkg::WordSize1)) m1_1(InternalBus); 

   bind model : dut.sub2 probe_itf #(.WIDTH(common_pkg::WordSize2)) m1_2(InternalBus); 

   bind model : dut.sub1 probe_itf #(.WIDTH(1)) m1_3(CS); 

 

   initial begin 

      uvm_config_db#(vi_itf_t)::set(null,"","DUT_itf",itf); 

      run_test("my_test"); 

   end 

    

endmodule : testbench 

 

 

 

 

 

     


